
Online Algorithms for Temperature

Aware Job Scheduling Problems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

By

Martin David Birks BSc

Department of Computer Science

University of Leicester

2012

Online Algorithms for Temperature Aware
Job Scheduling Problems

Martin Birks

Abstract

Temperature is an important consideration when designing microprocessors.
When exposed to high temperatures component reliability can be reduced,
while some components completely fail over certain temperatures. We con-
sider the design and analysis of online algorithms; in particular algorithms
that use knowledge of the amount of heat a job will generate.

We consider algorithms with two main objectives. The first is maximising
job throughput. We show upper and lower bounds for the case where jobs
are unit length, both when jobs are weighted and unweighted. Many of these
bounds are matching for all cooling factors in the single and multiple machine
case.

We extend this to consider the single machine case where jobs have longer
than unit length. When all jobs are equal length we show matching bounds
for the case without preemption. We also show that both models of preemp-
tion enable at most a slight reduction in the competitive ratio of algorithms.
We then consider when jobs have variable lengths. We analyse both the mod-
els of unweighted jobs and the jobs with weights proportional to their length.
We show bounds that match within constant factors, in the non-preemptive
and both preemptive models.

The second objective we consider is minimising flow time. We consider
the objective of minimising the total flow time of a schedule. We show NP -
hardness and inapproximability results for the offline case, as well as giving
an approximation algorithm for the case where all release times are equal.
For the online case we give some negative results for the case where maximum
job heats are bounded. We also give some results for a resource augmenta-
tion model that include a 1-competitive algorithm when the extra power for
the online algorithm is high enough. Finally we consider the objective of
minimising the maximum flow time of any job in a schedule.

i

Acknowledgements

I would like to thank everyone who has helped and supported me during
my PhD studies and the creation of this thesis. First and foremost, I would
like to thank my supervisor Dr Stanley P. Y. Fung for his help, advice and
insights that have been invaluable throughout my research. I know that I
have benefited immensely from his guidance, this thesis simply would not
have been possible without it.

A great thanks is also due to all staff in the Department of Computer
Science at the University of Leicester during all of my time in Leicester,
through both my undergraduate and PhD studies they have always been
friendly and helpful.

I would like to thank my colleagues in the office G1 and all of the other
GTA’s within the department that have been a great source of encouragement
whenever it was needed. All of my good friends from my time in Leicester
have been fantastic, always there to listen to me during the ups and downs,
as well as providing all important entertainment outside of work.

I am extremely grateful to my family who have provided unlimited sup-
port for me throughout my whole life. Finally, I’d like to thank Emma for
always being there whenever I needed her to be. Without her support, it all
would have been more difficult.

ii

Contents

1 Introduction 1

1.1 Scheduling . 1

1.1.1 Computational Time Complexity 3

1.2 Online Algorithms . 4

1.2.1 Competitive Analysis 5

1.2.2 Resource Augmentation 7

1.3 Preemption . 7

1.4 Randomisation . 9

1.5 Scheduling Objectives . 10

1.5.1 Maximising Throughput 10

1.5.2 Minimising Flow time 10

1.6 Temperature Awareness . 11

1.7 Models and Notation . 16

1.8 My Contribution . 19

2 Unit Length Throughput 25

2.1 Motivation . 25

2.2 Previous Results . 26

iii

2.3 Unweighted Jobs . 27

2.3.1 Reasonable Algorithms Upper Bound 29

2.3.2 Single Machine Lower Bounds 38

2.3.3 Multiple Machines Lower Bound 41

2.4 Weighted Jobs . 46

2.4.1 Full Heat Randomised Bounds 48

2.4.2 Full Heat Deterministic Lower Bound 52

2.4.3 Bounded Heat Randomised Bounds 54

2.5 Summary . 58

3 Equal Length Throughput 59

3.1 Motivation . 60

3.2 Previous Results . 60

3.3 The Non-Preemptive Model 62

3.3.1 Lower Bound . 63

3.3.2 Upper Bound: Coolest First 66

3.3.3 Upper Bound: Non-idling Algorithms 73

3.4 The Preemptive Restart Model 75

3.4.1 Lower Bounds . 76

3.5 The Preemptive Resume Model 90

3.6 Summary . 93

4 Variable Length Throughput 95

4.1 Motivation . 95

4.2 Previous Results . 96

4.3 Unweighted Jobs . 97

iv

4.3.1 Upper Bound: Non-idling Algorithms 97

4.3.2 Lower Bounds . 100

4.4 Proportionally Weighted Jobs 105

4.4.1 Lower Bound . 105

4.4.2 Upper Bound: Longest First 106

4.5 Summary . 113

5 Flow Time 114

5.1 Motivation . 114

5.2 Previous Results . 115

5.3 Preliminaries . 116

5.4 The Offline Case . 119

5.4.1 NP-hardness . 119

5.4.2 Inapproximability . 124

5.4.3 Approximation: Identical Release Times 134

5.5 Bounded Maximum Job Heat 138

5.5.1 Lower Bounds . 139

5.5.2 Non-idling algorithms 147

5.6 Increased Thermal Threshold 154

5.6.1 Lower Bounds . 155

5.6.2 Some Bad Algorithms 157

5.6.3 A 1-Competitive Algorithm 163

5.7 Maximum Flow Time . 167

5.8 Summary . 173

v

6 Conclusions 175

6.1 Summary of Results and Remarks 175

6.2 Open Problems and Future Work 179

vi

List of Tables

2.1 Table of upper bounds for reasonable algorithms 38

3.1 Table of E1 values for selected R and p values. 63

3.2 Table of E3 values for selected R and p values. 75

4.1 Table of logR
(

R
R−1

)
values. 102

vii

List of Figures

1.1 Bounds for the different models when (left) p = 2, (right) p = 3. 21

2.1 Lemma 2.3 ti−1 < ti . 33

2.2 Lemma 2.3 ti−1 ≥ ti and ti−1 ≥ rn 33

2.3 Lemma 2.3 ti−1 ≥ ti and ti−1 < rn 34

2.4 The scenario with A remaining idle and OPT scheduling n

jobs. The vertical inequality signs between the schedules show

the relation between the temperatures. 35

2.5 Input distribution for the randomised lower bound 51

3.1 The different cases of Phase 1 in the lower bound construction. 82

5.1 Theorem 5.15 Case 1 overall 144

5.2 Theorem 5.15 Case 2 . 145

5.3 Theorem 5.17 sub-phases . 149

5.4 Theorem 5.17 Overall Construction 152

viii

Chapter 1

Introduction

In this thesis we present algorithms and analysis for a variety of optimisa-

tion problems. The particular problems that are studied are all scheduling

problems, with the additional constraint of temperature awareness. In this

work we consider this very real problem within a theoretical context.

Considering these problems under a theoretical context will contribute

towards understanding how knowledge of temperature can be used to create

better scheduling algorithms for microprocessors. This work also helps with

the understanding of the limitations of what can be achieved when designing

algorithms for environments where temperature is a major constraint.

1.1 Scheduling

Scheduling is the process by which resources are allocated to tasks. Deciding

on the best way to allocate resources to particular tasks is an important

problem that occurs in an assortment of different contexts, and with a variety

1

of different motivations and objectives. With infinite resources all tasks could

be completed instantly but in the real world this is rarely, arguably never,

a possibility. Because of this, decisions often have to be made that result in

some task being completed before others.

Depending on the specific problem it is possible that completing certain

tasks before others will be considered as somehow ‘better’ than if those tasks

were completed in a different order. What constitutes a better order will

depend on an objective being decided to assess the quality of a given schedule.

There are many situations where it may not be possible to complete all the

available tasks and so in these cases decisions will have to be made on which

tasks to complete, and which tasks to ignore.

To create the best, or optimal, schedule it is common that some objective

has to be maximised or minimised while some constraint or constraints (e.g.

available resources) have to be maintained. It is scheduling algorithms that

we use to provide solutions to these optimisation problems.

These problems are common in an array of real world scenarios. For ex-

ample, a manufacturing company will have to balance the orders it accepts

against its capacity to fulfil those orders. There are likely to be several differ-

ent possibilities regarding which orders to accept and when to allocate certain

resources to them but the company will have to decide which is best for their

particular situation. In other words, a schedule will need to be constructed

that best meets the companies objectives (e.g. maximising long term profit)

while not violating any of its constraints (e.g. resource limitations).

Within the context of computing, scheduling algorithms are used at sev-

eral different levels, such as packet forwarding in routers, or printer spooling.

2

The context focused on in this work is the use of scheduling algorithms to

allocate jobs within microprocessors. There are many different ways that this

problem can be composed with various different complexities: the algorithm

may have access to several machines that may or may not be identical; the

machine(s) may be able to run at different speeds; jobs may have different

priorities and so on. There are also many different ways that the quality of

a schedule can be assessed, such as minimising how long a job has to wait

to be scheduled on average, or minimising the maximum waiting time of any

job.

The problem of creating and analysing scheduling algorithms is an impor-

tant area for theoretical research and has been extensively studied (without

temperature constraints) for a wide range of different models and objectives.

When studying these many problems in scheduling theoretically, it is com-

mon to define the problem using 3-field notation [31]. A review of several

different scheduling problems and their representation in 3-field notation can

be found in [16].

1.1.1 Computational Time Complexity

An important area in the study of scheduling algorithms is regarding the

computational time complexity of the algorithms. This typically involves

analysing algorithms to find how much time they take to create a schedule

and how this grows with the number of jobs that need to be scheduled,

commonly denoted by n. An algorithm is said to run in polynomial time if

the time it takes to find a solution to a problem grows polynomially with n.

3

A decision problem is said to belong to the complexity class NP if it

is possible to decide whether a given solution to the problem is correct in

polynomial time. A subset of NP is the complexity class P , which contains

all the decision problems that can be solved in polynomial time. A problem

is said to be NP -complete if it is in NP and any other problem in NP

can be reduced to it in polynomial time. It is unknown whether P = NP ,

although this is a widely studied and important problem. For more details on

computational complexity theory, see e.g. [27]. Many important optimisation

problems are in NP but no polynomial time algorithms are known that find

an optimal solution.

One strategy for finding efficient algorithms for NP -complete problems is

to design approximation algorithms. An approximation algorithm is an algo-

rithm that produces a solution with a guaranteed worst case quality called an

approximation ratio. This is the ratio of the quality of the solution produced

by the approximation algorithm compared to the optimal solution. For ex-

ample, an approximation ratio of 2 means the solution of the approximation

algorithm will be no worse than 1/2 the quality of the optimal solution. As

it is unlikely that an efficient algorithm can be found that solves an NP -

complete problem optimally, it can be useful to design an approximation

algorithm that provides a lower quality solution, but in polynomial time.

1.2 Online Algorithms

A problem is called online if not all of the information about the problem

is available to an algorithm at the start of execution. Information will then

4

become available to the algorithm as time progresses. In the context of job

scheduling problems, this often means that knowledge of future jobs and their

properties is not necessarily available to the algorithm at a given moment in

time.

There are a large number of real world problems that are inherently on-

line. A microprocessor within a computer is unlikely to know much infor-

mation about future jobs as these will be dependent on the input of the

user. It is therefore clearly important to design good quality algorithms that

perform well even without this knowledge of the future, as this is how these

algorithms are likely to be used in reality.

Not having complete knowledge of the future can lead to decisions being

made that compromise the quality of the schedule produced by the algorithm.

Therefore an online algorithm has to balance the potential future impact of

the decisions it makes, against making the best decisions for the present

situation.

1.2.1 Competitive Analysis

When designing algorithms it is important to have a method of deciding their

quality. We use competitive analysis for analysing the quality of an online

algorithm. This was proposed in [47] and has since become the standard

framework for analysing this type of algorithm. Competitive analysis involves

comparing the quality of the solution produced by the online algorithm to

that of some optimal adversary.

The adversary is offline, meaning it will possess all of the information

5

about future jobs that the online algorithm cannot be aware of. The ad-

versary then uses this information to make optimal decisions that the online

algorithm could not make, as it does not have all the information necessary to

make such a decision. There are different types of adversaries with different

powers, these are described in Section 1.4.

The result of a competitive analysis is a competitive ratio c ≥ 1. This is

the worst case ratio of how well the online algorithm performs against the

adversary for some chosen objective, over all possible inputs. For example,

if a scheduling algorithm is 2-competitive for throughput of jobs, then it will

always schedule no less than 1/2 of the number of jobs that the optimal

adversary will schedule.

More formally we define the competitive ratio of some online algorithm

A as c for some maximisation objective (e.g. maximising job throughput)

where

|OPT | ≤ c× |A|+ α

holds for all possible inputs, with |OPT | and |A| the values of the schedules

produced by OPT and A respectively. The competitive ratio of the online

algorithm for a minimisation objective (e.g. minimising the schedule’s flow

time) is defined as

|A| ≤ c× |OPT |+ α.

Throughout this thesis we will assume that α = 0, this is often known as a

strict competitive ratio. When analysing randomised algorithms we use the

same definitions but consider the expected value of the online algorithm, i.e.

E[|A|].

6

Note that the smaller the competitive ratio the better the algorithm per-

forms and if an online algorithm has a competitive ratio of exactly 1 for some

objective, this means that over any input it will perform as well as an offline

algorithm. For a more detailed discussion of competitive analysis and online

algorithms see [14].

1.2.2 Resource Augmentation

Resource augmentation for online algorithms was proposed in [35]. This

technique involves giving the online algorithm more resources, as a way to

compensate it for the lack of future information. Examples of resource aug-

mentation would be giving the online algorithm an extra machine compared

to the adversary, or increasing the speed of a machine. Analysing resource

augmentation is useful to show the effect that increasing resources can have

in improving algorithm performance, and is a technique that is widely used in

the study of online algorithms. A good example of this is in [43], where they

show that several well known algorithms with poor performance for certain

problems can perform optimally for these problems with only a moderate

increase in resources.

1.3 Preemption

An important consideration with scheduling algorithms is whether jobs can

be interrupted between being started and completing, this is known as pre-

emption. There are three models that we consider regarding preemption:

No Preemption Once a job J is started by an algorithm on a machine m

7

it cannot be interrupted and m is unable to start another job until J

has completed.

Preemption with restarts A job J that is started by an algorithm can be

interrupted but if this occurs the algorithm loses any progress already

made in the execution of J . This means that if J is restarted, it must

be from the beginning.

Preemption with resumes A job J that is started by an algorithm can

be interrupted and the algorithm retains all progress already made in

the execution of J . This means that J resumes from the point it was

preempted if an algorithm chooses to schedule it at a later time.

When considering preemption it is important to distinguish between the

offline and online models. When we are considering the offline case, preemp-

tion with restarts is equivalent to allowing no preemption. This is because

the schedule of an offline algorithm that uses preemption with restarts can

never be made worse by removing any parts of jobs that were started but

not completed. It is therefore always possible to create a schedule without

preemption from a schedule that uses restarts when the algorithm is offline.

Combining multiple machines and preemption allows for the possibility

that jobs can be migrated between machines. This is when a job is started

on some machine but then preempted and moved to a different machine.

This might occur for many reasons, such as the new machine is a different

temperature, or the new machine executes jobs at a different speed to the

current machine.

8

1.4 Randomisation

Algorithms can generally be split into two different categories: deterministic

and randomised. Deterministic scheduling algorithms will always generate

the same schedule if given the same set of inputs and the same resources.

Randomised algorithms will take a set of inputs and resources and can gen-

erate several schedules, each with a given probability.

For competitive analysis of deterministic algorithms, the adversary always

has the same power while the analysis of randomised algorithms can depend

on which type of adversary is used, and how much power it has.

There are 3 types of adversary (as described in [10], but shown here for

completeness), listed in order of increasing strength:

Oblivious Adversary knows the full details of the algorithm; does not

know the result of any random decisions that have been made; serves

the input offline and optimally.

Adaptive Online Adversary knows the full details of the algorithm and

any random decisions that have been made; but serves the input online.

Adaptive Offline Adversary knows the full details of the algorithm and

any random decisions that have been made; serves the input offline and

optimally.

The adaptive offline adversary is so strong that randomisation can never give

an algorithm any additional power over it [10]. When considering randomised

algorithms in this work we will always use an oblivious adversary.

9

1.5 Scheduling Objectives

We now examine in some more detail the two online scheduling problems

that are considered in this work.

1.5.1 Maximising Throughput

Maximising the throughput of jobs is a common goal for scheduling algo-

rithms. This is simply maximising the total number of jobs that are com-

pleted by an algorithm. For these problems jobs usually have release times,

processing times/lengths and deadlines. Before the release time of a job no

algorithm can schedule the job, and an online algorithm will not know it

exists. The processing time/length of a job is how much work the algorithm

has to do after starting the job before it is completed. If a job is not com-

pleted in a schedule before its deadline then that schedule will gain no value

for that job. In some cases the jobs have weights and the objective changes

to maximising the total weighted throughput of jobs, where the weight of the

job is the value gained by a schedule for completing it.

1.5.2 Minimising Flow time

Minimising the flow time of jobs is another common goal for online scheduling

algorithms. The flow time of a job is the difference between its release time

and the time it is completed. There are two sub-versions of this problem

that we consider: minimising the maximum flow time of a job in a schedule

and minimising the total/average flow time of a schedule. If the release times

of all jobs are the same then the problem of minimising the maximum flow

10

time becomes the same as minimising the makespan of a schedule, which is

another widely studied scheduling objective.

For minimising the total/average flow time of a schedule it is well known

that the shortest remaining processing time (SRPT) is optimal for the single

machine case [44] (and references therein).

1.6 Temperature Awareness

High temperatures are a problem when designing computational devices as

they can reduce the reliability of components, incur high cooling costs and

even cause permanent device failures [21]. Over recent years there has

been a trend towards the increasing popularity of devices that are both

small/compact and powerful. This has only accentuated the problem as

dissipating the heat generated by small devices is more difficult than in a

larger device.

Significant amounts of research have been done to address this issue. A

lot of this research has been done at the level of microprocessor architecture

and hardware but in this work we look at the problem from an algorithmic

perspective. The temperature of a processor is related to both its cooling

mechanism and power use, with power use being a convex function of the

processor’s speed [33]. One technique that takes advantage of this to manage

temperature is called Dynamic Voltage Scaling (DVS) and algorithms using

this technique have been analysed both empirically and theoretically.

A related objective to controlling temperature is the objective of minimis-

ing energy use. The paper that instigated the study of this objective for the

11

DVS model is [53]. In this work the authors first study the offline problem

giving a O(n log2 n) time algorithm that computes the energy optimal sched-

ule. They go on to give two natural algorithms for the online version of the

problem with their competitive ratios given in terms of α where the function

P that relates power to speed is P (s) = sα, where s is the processor speed.

The algorithm AV R is 2α−1αα-competitive, while OA has a tight bound of

αα, with respect to energy usage.

In [4] they show the effectiveness of energy aware scheduling empirically.

They use an algorithm with the aim of “dynamically monitoring and re-

claiming the ‘unused’ computation time...” and show that this is a powerful

approach. They give experimental results that show this dynamic reclaiming

can give a 50% energy saving over a static algorithm.

Some microprocessor systems are limited to work at a finite number of

discrete power levels, as opposed to a continuous range of power levels limited

only by some minimum and maximum power setting. This model is consid-

ered in [40] where they give algorithms and experimental results to show the

effectiveness of their techniques.

Procrastination scheduling is a technique that has been created to exploit

the amount of slack that jobs have available to reduce energy use. This has

been discussed in [34] in combination with DVS. Their objective and moti-

vation was to minimise energy wastage in the overhead between switching

the processor between idle and running modes. It was shown that significant

savings in energy use can be made by extending idle periods between jobs

when this is possible.

For more details and results for the problem of energy efficient scheduling

12

see the survey in [1].

Note that the problem of managing temperature is related to, but not the

same as the problem of minimising energy use. Although the temperature of

a processor is related to the amount of power that is used, there are several

differences and this leads to different techniques being used for the different

problems. For example job migrations from a hot to a cool processor can be

very useful in managing temperature, while this is not a technique that is

used to manage energy use; in fact it may cost extra energy in the overhead

costs associated with migrating a job.

In some ways it can be argued that managing temperature is more im-

portant than managing energy: “If the processor in a mobile device exceeds

its energy bound, then the battery is exhausted. If a processor exceeds it

thermal threshold, it is destroyed.” [7] They also emphasise that power man-

agement schemes focus on reducing cumulative power use, while to reduce

temperature more consideration must be given to the power usage at a cer-

tain instant. It has also been shown that “...many low-power techniques

have little or no effect on operating temperature” [45]. See the survey in [33]

and references therein for more details on the relationship between the two

problems.

An example of some empirical work considering temperature awareness

can be be found in [51]. They use temperature awareness as a tool in their

algorithm to improve the performance of the microprocessor, rather than

with minimising maximum temperature being the primary goal itself. They

show that considering temperature when scheduling jobs can actually be used

to give performance benefits within a computer.

13

In [21] they also use empirical methods to judge the quality of their algo-

rithms. They aim to give algorithms that reduce hot spots and temperature

variation across multiprocessor systems, with minimal performance costs.

They present two algorithms, both set a temperature threshold (85 ◦C) and

when a processor reaches this the first algorithm migrates the job to a cooler

core, while the second slows down the speed of the core (DVS). They show

that these techniques do indeed achieve “...low and balanced temperature

profiles at minimal performance cost.” [21]

The problem of using DVS in temperature aware algorithms has been

theoretically analysed in [7], building on the work that initiated this study

[53]. They both assume a constant ambient temperature and Newton’s law

of cooling. They also assume that the machine has an infinite maximum

speed and so every job will always be completed, with the aim to minimise

the maximum temperature of the schedule produced. This is clearly not an

assumption that entirely holds in reality, but is an important step in studying

how DVS can be used to manage temperature. In [7] they show that one of

the algorithms from [53] is constant-competitive with respect to temperature,

while two of the algorithms from that work are not. They then propose a

new algorithm that is constant-competitive with respect to temperature and

e-competitive with respect to maximum speed.

One issue that has been given particular attention (and has been briefly

mentioned above) is managing hot spots within a processor, which is when

a particular part of the processor gets very hot, possibly even while the

rest of the chip stays cool. This is particularly relevant when multicore

processors are considered. A model called HotSpot was proposed in [46],

14

that has become widely used for simulating temperature in microprocessor

systems. This model takes into account that different temperatures occur in

different parts of the processor and so is good for simulations that aim to

avoid these hot spots occurring.

The HotSpot model has been used by many researchers, for example

[42] where they give a temperature aware algorithm for MPEG-2 decoding.

They show that in this case temperature awareness does indeed achieve a

“thermally safe state” [42] although a performance drop of about 12% in

frame rate is suffered in order to achieve this.

In [15] they also consider spacial temperature effects, such as neighbouring

processor cores and heat sinks. They use DVS techniques and consideration

of heat transfers to create a formulation for assigning tasks and creating a

schedule for the NP -hard problem they propose. They show that with these

considerations significant reductions in peak temperature can be achieved

with an average of around 10 ◦C and up to around 30 ◦C in their experiments.

They also show that exploiting the amount of slack that jobs have available

can be a useful technique in managing temperature.

Using DVS to manage temperature is a technique that is most often used

at the hardware level and is often effective in reducing the maximum temper-

ature of a schedule. However many devices have a temperature threshold that

cannot be exceeded without causing problems, including permanent failures.

This motivates a different version of the problem where the aim of an algo-

rithm is to create a schedule that maximises or minimises a property such as

job throughput, while ensuring that the temperature remains under a certain

threshold. This model was proposed in [19], and was the main motivation

15

behind this work.

1.7 Models and Notation

We consider several different models throughout this work but they all share

some common features and notations that will be described here. Any model

specific notation will be detailed in the relevant chapter.

We consider a model where time is split into discrete time steps. An

algorithm will have access to m ≥ 1 parallel, identical machines with the

same fixed processor speed. At each time step [t, t+ 1) an algorithm takes a

decision for each machine deciding whether to schedule a job on that machine,

and if so which job. For simplicity, instead of saying [t, t+ 1) we will just say

that an algorithm schedules a job at time t.

Each job J will have a release time rJ , a processing time pJ , and a heat

contribution per time step hJ . The release time of a job will be an inte-

ger and before this time has been reached an online algorithm will have no

information about the job or even know it exists; an offline algorithm will

know the job exists and its properties but will not be able to start the job

before this time. The processing time of a job is also an integer and indicates

how many time steps a job requires to complete. For the case where all jobs

are of equal length we will just refer to all jobs having the same processing

time p. The heat contribution per time step of a job is a real number that

represents how much heat running that job will generate over a time step,

this is explained in more detail later. The work in [51] demonstrates that

it is possible to estimate the temperature of a job efficiently and online. In

16

some models a job J my also have a weight which will be denoted by wJ .

This is the value an algorithm gets for successfully completing that job.

For the first objective of maximising throughput every job J will have

an integer deadline dJ . If a job is not completed before its deadline by a

schedule then that schedule will gain no value for that job. We say J has a

tight deadline if it must be scheduled immediately upon its release to meet

its deadline, i.e. rJ + pJ = dJ ; we will refer to such a J as a tight job.

We will refer to the algorithm that is currently being analysed as A.

For any q ∈ {1, 2, ...,m}, we use Aq to denote the schedule produced by

the algorithm A on machine q. The jobs scheduled by Aq at some time t are

denoted by Aq(t). We consider every machine to have a separate temperature

when m > 1. For simplicity, we assume that there is no heat transfer between

different machines. It has been suggested that this heat transfer is small

[51] (and references therein), and to calculate such heat transfer would also

require information of the physical layout of the processing units. Therefore

we calculate the temperature of each machine independently. We denote the

temperature of a given machine q at a time t as τq,t, although when m = 1

we will use τt for simplicity.

When we are analysing online algorithms we will refer to the adversary

as OPT . We will denote the temperature of a machine’s schedule OPTq at

a time t as τ ′q,t, or τ ′t when m = 1.

Without ambiguity we will also refer to the schedules generated by A and

OPT as A and OPT respectively, and the value obtained by these schedules

as |A| and |OPT |.

We follow the model in [7] and Fourier’s Law for modelling cooling; this

17

states that the rate of cooling is proportional to the difference between the

temperature of the machines and their environment, and that the environ-

ment’s temperature is assumed to be constant. Each system will have a

cooling factor R > 1. This is how much the temperature of a machine cools

in each time step. To calculate the temperature of a machine q after execut-

ing one time step of a job J at time t we have τq,t+1 = (τq,t + hJ)/R. If the

machine is idle for a time step we calculate the temperature as if a job J is

being scheduled but with hJ = 0. We use a parameter R to model cooling

because the cooling of a system can vary significantly, as will be explained

in more detail in Chapter 2.

Each machine will have a thermal threshold T which is the maximum

allowed temperature of any machine at the end of any time step (after the

cooling has taken place). We set the intial temperature to 0 and the thermal

threshold to 1 without loss of generality. In some cases, as a form of resource

augmentation, we may allow an online algorithm to have an increased thermal

threshold. This will be described in more detail in Chapter 5.

We describe a job J as being pending for an algorithm at some time t if

the job has been released but not expired, i.e. rJ ≤ t ≤ dJ − p′J where p′J is

the remaining processing time of J at time t, and J has not been completed

by the algorithm before t.

We describe a job J as admissible for an algorithm at time t if it is pending

at t and not too hot to be executed on some machine. As a job J takes pJ

steps to complete, the temperature at any point during these pJ steps must

not exceed the threshold. It is easy to show that as long as the temperature

after executing for pJ consecutive time steps is within the threshold, then

18

that must also be the case for any intermediate time steps.

As the thermal threshold is 1 and the cooling factor per time step is R,

it must be that hJ ≤ R for all jobs, otherwise it is impossible to run one

time step of the job without exceeding the thermal threshold. We call the

model where jobs are allowed to have this maximum job heat the full heat

model. In some models we will limit the maximum job heat further so that

∀J : hJ ≤ R− ε for some ε > 0. We call this model the bounded heat model.

1.8 My Contribution

The contributions that have been made in this thesis will now be detailed.

Note that parts of this work have already been published in journals and

conference proceedings [11–13].

There are two broad optimisation objectives that have been studied for

assessing the quality of algorithms during this work. The first objective was

to maximise throughput. The work from [19] on the throughput of unit

length jobs in temperature aware systems was extended to show results for

all cooling factors and multiple machines. In Chapter 2 we first show some

results for the model where jobs are unweighted and unit length.

� We show an upper bound for a class of algorithms called ‘reasonable

algorithms’, for all R > 1 and m ≥ 1. We also give a lower bound that

shows that reasonable algorithms are in fact optimal for all values of R

when m = 1. For m ≥ 2 we give some weaker lower bounds.

The results show how the competitiveness depends on R: specifically, it

increases as R gets smaller, and tends to infinity when R tends to 1.

19

In Chapter 2 we also show some results for the weighted unit length case

for multiple machines. These extend work done by the other authors in [11].

The bounds in this work are given in terms of W , where this is the ratio of

the maximum to minimum job weights.

� We show a lower bound for deterministic algorithms on multiple ma-

chines of Ω((mW)1/m). The upper bound for a deterministic algorithm

is O(mW 1/m), therefore for constant m this gives a tight bound of

Θ(W 1/m). We give an upper bound for the randomised single machine

fully online case of O(log1+εW) which is only slightly larger than the

semi-online case upper bound of O(logW). We also show that with

both multiple machines and randomisation, the same bounds as in the

single machine case hold.

In Chapter 3 we then consider the single machine case where jobs are

unweighted and all have equal length.

� We initially consider the non-preemptive case, and show a lower bound

for all deterministic algorithms. We then show that the algorithm

Coolest First gives a matching upper bound and give a slightly weaker

upper bound for the more general class of non-idling algorithms.

Next we consider preemption and show several lower bound results. We

give lower bounds for the preemptive restart or resume models that are

slightly lower than those of the non-preemptive case. This shows that

preemption is not going to help a lot in reducing the competitiveness.

Moreover, we give a lower bound that shows that preemption with

restarts does not have any advantage at all over the non-preemptive

20

case when Rp > R + 1 where p is the length of each job. The exact

bounds depend on the values of R and p, and will be stated in the

theorems, but the charts in Figure 1.1 give an idea on how the bounds

for the different models change depending on the values.

Figure 1.1: Bounds for the different models when (left) p = 2, (right) p = 3.

In Chapter 4 we consider the case where jobs have variable lengths on a

single machine.

� First we consider the case where jobs are unweighted. We show an

upper bound for non-idling algorithms that is dependant on R and

L, where L is the length of the longest job. We then show a lower

bound for the non-preemptive case that shows this is almost optimal

for all R and L. We also show some lower bounds for both types of

preemption and show that the non-preemptive algorithm is optimal

within a constant factor for any fixed R and all L.

� Next we consider the case where the value of a job is related to its

length, i.e. the value an algorithm gets for scheduling a job J is pJ .

21

We show an upper bound for the Longest First algorithm. We then

show a lower bound that shows that this is optimal for small enough R

, and almost optimal when R is large. We also note that these results

still hold when wJ = pαJ for some α ≥ 1.

The second objective we considered was to minimise the flow time of a

schedule. In Chapter 5 we initially consider the case where the objective is to

minimise the average/total flow time of a schedule produced by an algorithm.

We give some results for the offline case.

� We extend the proof of [19] to show that when R = 2 and the heat of

a job is bounded to 1 + δ for any δ > 0, then the problem of scheduling

them optimally is still NP -hard. We modify the proof of [37] to show

that it is NP -hard to get better than O(n1/2−ε) approximation of the

total flow time of a schedule, where n is the number of jobs released.

We also show an upper bound of 2.618 for an approximation algorithm

for the offline case where all jobs have release time 0 and R ≥ 2. This

algorithm builds on the algorithm for minimising the makespan of a

schedule as in [6].

When the maximum heat of a job is allowed to be exactly R then it can

be trivially shown that no algorithm can give a bounded competitive ratio

in the online case. If the maximum heat of a job is restricted to be no hotter

than R− 1 then it can be easily shown that any algorithm is 1-competitive.

Therefore we consider the case where the maximum allowed heat of a job is

R− ε for some 0 < ε < 1.

22

� We show a lower bound for all deterministic online algorithms that

increases as ε decreases, increasing to infinity as ε approaches 0. We

also show a lower bound of 2 for all deterministic algorithms for all

values of ε.

We show that non-idling algorithms will have a competitive ratio of at

least Ω(n) for all 0 < ε < 1.

Next we allow the online algorithm to have a larger thermal threshold

of 1 + ε while the optimal algorithm still has a threshold of 1 as a form of

resource augmentation. The maximum allowed temperature of a job is not

limited any lower than R (as this is the hottest that OPT can schedule).

Note that when ε ≥ 1/(R−1) a 1-competitive upper bound is trivial because

it is always possible to schedule any job at any time step.

� We first show a lower bound that again increases as ε decreases, in-

creasing to infinity as ε approaches 0. We then show a counter example

for the algorithm coolest first that shows it will have a competitive

ratio of at least Ω(n) for all possible ε values, and we then show that

non-idling algorithms have a competitive ratio of at least Ω(n) as long

as ε < 1/R2. This means that when R = 2 and ε < 1/4, there cannot

be a 1-competitive algorithm.

We then show an upper bound on the Hottest First algorithm that

shows it is 1-competitive as long as ε ≥ R2+R+1
(R−1)(R+1)2

. This means that

when R = 2 and ε ≥ 7/9, Hottest First is 1-competitive.

All of the results in Chapter 5 are shown primarily for the case of minimis-

ing total flow time, however in the final section we give some results for the

23

objective of minimising the maximum flow time of any job in the schedule.

� We show that Coolest and Hottest First have trivially unbounded com-

petitive ratios in the bounded heat and higher thermal threshold models

for all possible ε values. We also show that two variants of FIFO have

unbounded competitive ratios for both models.

In Chapter 6 we provide a summary of the results in this thesis and

indicate some potential directions for future work.

24

Chapter 2

Unit Length Throughput

We now examine the problem of maximising the throughput of unit length

jobs. This work extends the simple model defined in [19], where they used a

single machine, unweighted jobs and a fixed cooling factor, R = 2. All jobs

in this model are unit length, with each job taking exactly one time step to

complete i.e. ∀J : pJ = 1. We consider both the weighted and unweighted

versions of this problem, for both single and multiple machines.

2.1 Motivation

The results we give in this chapter are for all values of R > 1. This is because

the main motivation of modelling the problem using unit-length jobs is to

represent the job slices given to the processor by the operating system [19].

As such the actual cooling factor R relates to the length of this time quantum

and the ‘RC constant’ of the processing unit (a thermal property related to

how quickly the unit cools). Different systems appear to have very different

25

values for these parameters (see e.g. [39]) and it is therefore important that

we can design and analyse algorithms for different values of R.

We also extend the work to consider multiple machines. Multicore pro-

cessors have become increasingly popular over recent years. One of the main

motivations of using multicore processors is that it is a useful tool in coping

with the heat a processor generates (see e.g. [28] and references therein). A

result of power usage being a convex function of processor speed is that it is

more power (and therefore temperature) efficient to run several processors at

a lower speed, than it is to run one processor at a high speed and still carry

out the same amount of work.

In addition to this, the use of multiple machines means that algorithms

have more decisions to make when scheduling jobs, which can increase the

scope for increasing the quality (or if the decisions are made poorly, then

decreasing the quality) of the schedules produced. As one of the main moti-

vations for using multiple machines was in an effort to reduce heat issues, it

follows that it is important to maximise the extra capabilities that multicore

systems provide. This means that the design and analysis of temperature

aware algorithms for multicore systems is needed in order that these systems

can reach their full potential.

2.2 Previous Results

Without temperature it is trivial to find optimal algorithms for the un-

weighted version of the maximum throughput problem on both single and

multiple machines, however the weighted version of this problem has at-

26

tracted a considerable amount of interest. The current best known deter-

ministic bounds for the problem without temperature on a single machine

are an upper bound of 1.828 [25] and a lower bound of 1.618 [2, 18]. Ran-

domisation helps with this problem against an oblivious adversary and as

such the best known randomised upper bound is 1.582 [17] and the lower

bound is 1.25 [18].

The problem of maximising throughput and allowing the use of multiple

machines with weights but without temperature has also been researched.

There are different models, but we will only consider here the case where an

algorithm’s machines are all identical. For this case the best known algorithm

is ((1− (m
m+1

)m)−1)-competitive and there is a lower bound of 1.25 [17].

There has also been some work done that uses the temperature model as

given in this work, which was proposed in [19]. For the single machine case

without job weights and when R = 2 they demonstrated that algorithms

that can be classified as ‘reasonable’ are all 2-competitive and that this is

optimal. They also showed that computing the optimal schedule offline is

NP -hard, even in the special case where all jobs have the same deadline and

are released at time 0.

2.3 Unweighted Jobs

We first give some results for the version of the problem where jobs are

unweighted. Using standard 3-field notation this problem can be described

as P |online-ri, hi, pi = 1|
∑
Ui.

We now analyse a class of algorithms called reasonable algorithms that

27

was originally defined in [19] for the single machine case. The definition is

repeated here for completeness.

They first define the notion of a job J1 dominating a job J2 if dJ1 ≤ dJ2

and hJ1 ≤ hJ2 . If at least one of the inequalities is strict then we say that

J1 strictly dominates J2. We now use this definition to define a notion of

reasonable algorithms, extended to the multiple machine case.

Definition 2.1. An online algorithm is called reasonable if, at any time

step t, it schedules jobs such that (i) a machine is left idle only if there

is no job admissible on that machine, or that all such admissible jobs are

already scheduled on other machines at time t, and (ii) any job scheduled on

a machine is not dominated by some other pending jobs not scheduled on any

machine at time t.

Note that when considering the multiple machine case it may be that, at

a certain time step, a pending job J is admissible on an idle machine q or

dominates the job scheduled on machine q, but J is not scheduled on machine

q; this is possible if J is scheduled on another machine q′ instead, and this

does not violate the definition of reasonable algorithms.

Throughout this chapter we give bounds in terms of the value U , which

is the largest integer u ≥ 1 such that Inequality (2.1) holds, for any fixed

R > 1.

Ru < (u+ 1)R− u. (2.1)

28

2.3.1 Reasonable Algorithms Upper Bound

We now show an upper bound on the competitiveness of all reasonable al-

gorithms. The general strategy for the competitive analysis is to map, or

charge, the completed jobs in OPT to those in A, such that (1) all jobs in

OPT are charged to some jobs in A, and (2) each job in A is being charged

to by a bounded number of jobs in OPT .

Before describing the charging scheme we define the notion of a relative

heating step as originally defined in [19].

Definition 2.2. Whenever, at some time u and for some machine q, Aq

schedules a job J that is strictly hotter than a job K scheduled by OPTq

(with an idle time step in OPT being treated as though a job K with hK = 0

is being executed) we call this a relative-heating step.

Note that whenever τq,u > τ ′q,u for some time u and machine q a relative-

heating step must have occured before time u on machine q.

We use a charging scheme that is based on the one used in [19]. For a job

J that has been scheduled by OPTq at time u the charge of J is as follows:

Type-1 Charge: If Aq has also scheduled a job K at time u then charge J

to K.

Type-2 Charge: If Aq is idle and hotter than OPTq at time u but not at

time u + 1, that is τq,u > τ ′q,u and τq,u+1 ≤ τ ′q,u+1, then there must

have been a relative-heating step on machine q before time u. Job J is

charged to the job K executed by Aq at the last relative heating step

before u.

29

Type-3 Charges: These charges are for the case when Aq is idle at time u

and either Aq is cooler or the same as OPTq at u, or Aq is hotter than

OPTq at time u + 1, more formally τq,u ≤ τ ′q,u or τq,u+1 > τ ′q,u+1. We

divide Type-3 charges into two sub-types:

Type-3a: Type-3a charges are used when τq,u + hJ ≤ R. This means

J must be scheduled by some Aq′ (where q′ may or may not be

the same as q) at some time t ≤ u, otherwise Aq would schedule

J instead of staying idle, by definition of the algorithm.

To find a job to charge J to we construct a chain of jobs J, J ′, ..., J∗

like that constructed in [19]. The chain will be uniquely defined

by J . If at time t, OPTq′ is idle or schedules a job J ′ such that

hJ ′ ≥ hJ then set J∗ = J , that is the last job in the chain is the

copy of the job J in Aq′ ’s schedule. Otherwise OPTq′ schedules

some job J ′ at t such that hJ ′ < hJ . It will be shown in Lemma 2.3

that in this case J ′ must be scheduled by some Aq′′ at some time

t′ ≤ u. Job J ′ is then added to the chain.

Then we repeat this process: if at time t′ OPTq′′ is idle, or sched-

ules a job J ′′ such that hJ ′′ ≥ hJ ′ , then we end the chain and have

that J∗ = J ′. Otherwise J ′′ must be scheduled by some Aq′′′ at

some time t′′ ≤ u, and we add J ′′ to the chain and the process

continues. This process must end at some point as it deals with

strictly cooler and cooler jobs and there are only a finite number

of jobs. Job J is then charged to J∗.

Type-3b: Type-3b charges are used when τq,u + hJ > R, i.e. J would

30

be too hot to be scheduled on machine q (if it is still pending).

It must be the case that τq,u+1 > τ ′q,u+1, because with the other

Type-3 case of τq,u ≤ τ ′q,u, as J is scheduled on OPTq, it must

be that τ ′q,u + hJ ≤ R, so τq,u + hJ ≤ R too, contradicting the

condition of Type-3b charge. It also follows that τq,u > τ ′q,u as Aq

is idle at u so it cannot change from cooler than or equal to OPTq

to hotter than OPTq.

With a Type-3b charge job J is charged to the latest job already

scheduled byAq before time u. Such a job must exist because there

must have been at least one relative heating step on machine q in

order for Aq to be hotter than OPTq at time u.

Although much of the charging scheme is the same as the one in [19],

there are important differences that arise from the fact that we may have

R < 2, and new techniques are needed to handle them. In particular, the

correctness of the Type-3a charges is not straightforward and is established

in the following lemma.

Lemma 2.3. Consider a Type-3a chain J0, J1, ..., Jn−1 where J0 = OPTq(t)

is the job at the beginning of the chain that generates the charge. Let ti be

the time Ji is scheduled in A, q′ be the machine that schedules Jn−1 in A, i.e.

Jn−1 = Aq′(tn−1), and let Jn = OPTq′(tn−1). If hJn < hJn−1, then Jn must

be scheduled by some machine in A on or before t (so the chain continues).

Proof. We prove by contradiction. For simplicity denote rJi , dJi and hJi by

ri, di and hi respectively. Suppose Jn is not scheduled by any machine in A

on or before t, we show that:

31

(1) dn > d0.

(2) τq,t + h0 > R.

The second statement contradicts the definition of a Type-3a charge.

(1) We prove the stronger claim that dn > di for all 0 ≤ i < n. The claim

is proven by induction along the chain. By the definition of a Type-3a chain

and the assumption in the lemma we have that hn < hn−1 < ... < h1 < h0.

First we show that dn > dn−1. We have that hn < hn−1 and that Jn is

not scheduled on or before t by A. This means that if dn ≤ dn−1 then A

would not have chosen to schedule Jn−1 as Jn−1 would be strictly dominated

by Jn.

Now assume dn > di′ for all i ≤ i′ ≤ n− 1. We show dn > di−1. For each

step in the chain we have someAr that schedules Ji at time ti and at the same

time step OPTr schedules Ji+1, that is Ji = Ar(ti) and Ji+1 = OPTr(ti). The

job Ji is in turn scheduled by some OPTs at time ti−1 (which may be equal

to ti) and As schedules a job Ji−1 at the same time step, as the previous step

in the chain. We consider three cases.

Case 1: ti−1 < ti, as in Figure 2.1. (In Figures 2.1 - 2.3, all jobs may appear

to be on the same machine but it is only for ease of presentation; they

may actually be scheduled on different machines.) Job Ji is pending

at ti−1 in A because it must have been released, as it was scheduled

by OPTs at this time, but it is only scheduled by Ar at a later time

u. Since hi < hi−1, it must be that di > di−1, otherwise Ji strictly

dominates Ji−1 and so As would not have scheduled Ji−1 if this were

the case. By induction hypothesis dn > di, and hence dn > di−1.

32

OPT

A

...

...

Ji

Ji−1

...

...
aa

aa
aa

a
Ji+1

Ji

...

...

ti−1 ti

Figure 2.1: ti−1 < ti

OPT

A

...

...

Ji+1

Ji

rn

-
-

-
-

-
-

-
-

-
-

...

...
!!

!!
!!
!
Ji

Ji−1

...

...

ti ti−1

Figure 2.2: ti−1 ≥ ti and ti−1 ≥ rn

Case 2: ti−1 ≥ ti and ti−1 ≥ rn, as in Figure 2.2. This means that Jn must

be pending in A at ti−1. We also know that hn < hi−1. This means

that dn > di−1 otherwise job Ji−1 would be strictly dominated by Jn

and so A would not have scheduled Ji−1.

Case 3: ti−1 ≥ ti and ti−1 < rn, as in Figure 2.3. For this case to occur

there must exist a job Jk such that k > i, that is Jk is added to the

chain later than Ji, and Jk is scheduled by some Ax at time tk > ti−1

but is scheduled by some OPTy at time tk−1 ≤ ti−1. If this is not the

case it would be impossible for the chain to have continued and ended

at time tn−1 ≥ rn.

As k > i this means hi−1 > hi > hk. The job Jk must be pending in A

at time ti−1, as it has already been scheduled by OPT , but it has not

yet been scheduled on any machine in A, so it must be that dk > di−1

otherwise Jk would have strictly dominated Ji−1 and so As would not

schedule Ji−1 at ti−1. By induction we can assume that dn > dk so we

can also conclude that dn > di−1.

(2) As dn > d0 (by (1)) and Jn has not been scheduled on or before t, it must

be too hot to be scheduled by Aq at time t, i.e. τq,t + hn > R, and as we

know that h0 > hn it follows that τq,t + h0 > R as well.

33

OPT

A

...

...

Ji+1

Ji

...

...
��

��
��

��
Jk

?

...

...

Ji

Ji−1

...

...

rn

-
-

-
-

-
-

-
-

-
-

?

Jk
XX

XXX
XXX

XX
...

...

ti tk−1 ti−1 tk

Figure 2.3: ti−1 ≥ ti and ti−1 < rn

The next two lemmas help bound the number of Type-3b charges to a

job.

Lemma 2.4. If Aq remains idle at time t then τq,t − τ ′q,t > τq,t+1 − τ ′q,t+1.

Proof. Let α = τq,t − τ ′q,t. Suppose OPTq schedules a job J at time t (if

OPTq remains idle then treat it as executing a job with hJ = 0). Then

τq,t+1 − τ ′q,t+1 = τq,t
R
− τ ′q,t+hJ

R
= α−hJ

R
< α, since R > 1 and hJ ≥ 0.

Before we proceed with the rest of the proof we define a notion of OPT -

only jobs.

Definition 2.5. We refer to a job as an OPT -only job if it is started by

OPTq at some time t when Aq is idle, and at time t the job is too hot to be

scheduled by Aq.

Note that for an OPT -only job to exist at some time t for some machine

q it must be that τq,t > τ ′q,t.

Lemma 2.6. For any machine q, OPTq can schedule at most U − 1 OPT -

only jobs in a time interval where Aq stays idle when, after each OPT -only

job has been completed by OPTq, the temperature of OPTq is still lower than

that of Aq.

34

OPTq

Aq

...

...

J1

-

J2...Jn

(-)

...

...

> > >

u u+1 u+n

Figure 2.4: The scenario with A remaining idle and OPT scheduling n jobs.
The vertical inequality signs between the schedules show the relation between
the temperatures.

Proof. Suppose there are n jobs J1, J2, ..., Jn in OPTq that are scheduled

consecutively by OPTq but are too hot to be scheduled by Aq; that Aq

remains idle until all n jobs have been scheduled; and that after each job

has been completed by OPTq, the temperature of OPTq is less than that of

Aq. Suppose J1 is scheduled at time u. See Figure 2.4. We will assume that

between any of the jobs J1, ..., Jn in OPTq’s schedule, there are no idle time

slots or jobs that are not OPT -only. It will be shown that the inclusion of

these will not make OPTq able to schedule more OPT -only jobs.

Initially it must be that τq,u ≤ 1. As Aq stays idle for all n time steps we

also have τq,u+i ≤ 1
Ri

for i = 1, ..., n. By the definition of OPT -only jobs all

of the jobs J1, ..., Jn are too hot to be scheduled by Aq. Therefore, each job

Ji, for every 1 ≤ i ≤ n, has a heat contribution

hJi > R− τq,u+i−1 ≥ R− 1

Ri−1 . (2.2)

We now consider the temperature of OPTq after executing these jobs. Ini-

tially τ ′q,u ≥ 0. After executing i jobs, 1 ≤ i ≤ n, the temperature is given

35

by the recursive formula τ ′q,u+i =
τ ′q,u+i−1+hJi

R
, which can be solved to give

τ ′q,u+n ≥
R(1−R−n)

R− 1
− n

Rn
. (2.3)

By the definition of the lemma we must have that after the n jobs have been

completed, τ ′q,u+n < τq,u+n. Together with Inequalities (2.2) and (2.3), this

gives

R(1−R−n)

R− 1
− n

Rn
<

1

Rn
.

This is equivalent to

Rn+1 < (n+ 2)R− (n+ 1).

From the definition of U it follows that U − 1 is the maximum number of

OPT -only jobs that can be scheduled before A starts another job .

We now return to the assumption of OPTq scheduling all of the n jobs

consecutively. Our aim is to upper-bound the number of jobs that can be

scheduled by OPTq but are too hot to be scheduled by Aq in a time period

when Aq remains idle but is still hotter than OPTq. Suppose J1, ..., Jn are

not consecutive then there are time steps in-between where OPTq is idle or

schedules a job that is not too hot to be scheduled by Aq. By Lemma 2.4,

such time steps will reduce the difference in temperature between OPTq and

Aq, thus will not help OPTq schedule more hot jobs.

Theorem 2.7. Any job scheduled by Aq for any q can receive at most U + 1

charges, therefore any reasonable algorithm A is (U + 1)-competitive for any

fixed R > 1.

36

Proof. It is clear that each job in Aq can receive at most one Type-1 charge.

In addition to this each job in Aq receives at most one Type-2 charge. This is

because in between any two time steps that satisfy Type-2 conditions there

must be a relative-heating step, so Type-2 charges will be assigned to distinct

relative heating steps. A job can also receive at most one Type-3a charge

because the chains formed are disjoint and uniquely defined by the original

job that generated the Type-3a charge. If a job J receives a Type-1 charge it

cannot receive both a Type-2 charge and a Type-3a charge. This is because

a Type-3a charge cannot be made to a job at a relative heating step that

also receives a Type-1 charge, otherwise the chain would continue further as

shown by Lemma 2.3. This means that any job can receive at most 2 charges

from the set {Type-1, Type-2, Type-3a}.

Next we upper-bound the number of Type-3b charges a job can receive.

Type-3b charges from a job in OPTq at time u are made to the job most

recently scheduled by Aq before u. Thus, any jobs making Type-3b charges

to a job J in Aq must come from an idle time interval in Aq immediately

after J . Moreover, it was already shown that Aq is hotter than OPTq before

and after the scheduling of such Type-3b jobs in OPTq. Thus they satisfy

the conditions in Lemma 2.6, and so the number of Type-3b charges to

a job is at most U − 1, where U is the largest integer n ≥ 0 satisfying

Inequality (2.1).

Table 2.1 shows the competitive ratio of any reasonable algorithm for

different values of R. It can be seen that the competitive ratio increases as R

decreases. The competitive ratio is still fairly reasonable for moderate values

37

of R, but goes to infinity as R gets very close to 1.

R Upper Bound
R ≥ 2 2

2 > R > −1+
√
13

2
≈ 1.30278 3

1.30278 ≥ R ? 1.15091 4
1.15091 ? R ? 1.09128 5
1.09128 ? R ? 1.0614 6
1.0614 ? R ? 1.04421 7
1.04421 ? R ? 1.03339 8
1.03339 ? R ? 1.02612 9
1.02612 ? R ? 1.02100 10

1.01 15
1.001 45
1.0001 142

Table 2.1: Table of upper bounds for reasonable algorithms

2.3.2 Single Machine Lower Bounds

In this section we show a lower bound for all deterministic algorithms when

m = 1, showing that in the single machine case reasonable algorithms are in

fact optimal for all R > 1. We also show that the simple algorithm Hottest

First performs worse than reasonable algorithms.

Theorem 2.8. When m = 1, any deterministic algorithm has a competitive

ratio of at least U + 1 for any fixed R > 1.

Proof. Fix some deterministic algorithm A. At time 0 release a job J that

has a very large deadline and a heat contribution of just below R, that is

dJ = 2D + U + 1 for a large D and hJ = R− ε for a sufficiently small ε > 0.

D must be large enough so that OPT ’s temperature will have cooled down

from 1 to ε after D steps, i.e. RD ≥ 1
ε
. If A never schedules J then OPT

38

does and A has an unbounded competitive ratio. Otherwise A schedules J

at some time u. We consider two cases:

Case 1: u < D. In this case OPT chooses not to start J yet. At time u+ i

for i = 1, 2, ... the temperature of A is given by τu+i = R−ε
Ri

. At each

such time u + i, as long as τu+i > τ ′u+i, the adversary releases a tight

job Ji with dJi = u + i + 1 and hJi = R − R−ε
Ri

+ δ for a very small

δ > 0. A will be (just) too hot to schedule the job due to scheduling

job J while OPT can and will schedule each of them i.e. they are

OPT -only jobs. We will prove that this stops after U steps. OPT will

then remain idle for D time steps until it is cool enough to schedule J .

Since u + 1 + U + D < 2D + U + 1, OPT can still finish J before its

deadline.

Case 2: u ≥ D. In this case OPT will schedule J to start at time 0. Since

u ≥ D, at time u + 1 OPT ’s temperature will be less than ε. Similar

to the previous case, at each time u + i where i = 1, 2, ... we release a

tight job where dJi = u+ i+1 and hJi = R− R−ε
Ri

+δ. A will be just too

hot to run any of these jobs, and this continues as long as τu+i > τ ′u+i,

so OPT can finish all these jobs.

In both cases OPT will schedule U + 1 jobs (the U tight jobs that are

generated in successive time steps plus J) whereas A will only ever be able

to schedule J . Thus the competitive ratio is U + 1.

The temperature of OPT at time u+ i is given by

τ ′u+1 ≤ ε, τ ′u+i =
τ ′u+i−1 +R− R−ε

Ri−1 + δ

R
for i > 1.

39

This can be solved so we have

τ ′u+i ≤
R

R− 1

(
1− 1

Ri−1

)
−i− 1

Ri−1 +

(
ε

Ri−1 +
1

R− 1

(
1− 1

Ri−1

)(ε

Ri−1 + δ
))

.

The sequence of jobs continues as long as τ ′u+i < τu+i. Hence U is the

largest value of n such that τ ′u+n < τu+n. This gives

R

R− 1

(
1− 1

Rn−1

)
− n− 1

Rn−1 +

(
ε

Rn−1 +
1

R− 1

(
1− 1

Rn−1

)(ε

Rn−1 + δ
))

<
1

Rn−1 −
ε

Rn
. (2.4)

If we ignore all terms involving ε and δ, this is equivalent to

Rn < (n+ 1)R− n

As long as the above inequality holds strictly, we can always choose suf-

ficiently small ε and δ so that Inequality (2.4) still holds. Thus the sequence

indeed stops after U steps with U given by Inequality (2.1).

Therefore by comparing Theorems 2.7 and 2.8 the lower bound matches

the upper bound, and thus reasonable algorithms are optimal for all ranges

of values of R when m = 1.

We now show a non-optimal lower bound on the competitiveness of Hottest

First. Hottest First schedules the hottest admissible job at each time step

that there is an admissible job available. Note that it is not a reasonable

algorithm as it may schedule a job that is strictly dominated by another.

40

Theorem 2.9. Hottest First is at least (U + 2)-competitive for any R > 1

when m = 1.

Proof. At time 0 we release a job J with a heat contribution of R − ε for a

sufficiently small ε > 0 and a deadline of 2 + U + D for a large D. D must

be large enough so that the temperature of OPT can cool down from 1 to ε

after D idle time steps. We also release a job Z with a heat contribution of

0 and a tight deadline of 1. A will start J at time 0.

At each time step i for every 1 ≤ i ≤ U we release a job Ki with a tight

deadline of 1 + i and a heat contribution of R − R−ε
Ri

+ δ for a very small

δ > 0. A will be just too hot to schedule the jobs due to scheduling A,

making each Ki OPT -only. It is clear from the proof of Theorem 2.8 that

this can continue for all U time steps. We won’t release any more jobs so A

will only be able to schedule J .

OPT will schedule Z at time 0, then each of the jobs Ki, for 1 ≤ i ≤ U ,

as soon as it is released. At time 1 + U the temperature of OPT will be at

most 1. This means at 1 + U + D OPT will have cooled down to ε and so

be cool enough to schedule J before its deadline. OPT will therefore have

scheduled U + 2 jobs compared to the 1 job scheduled by A, concluding the

proof.

2.3.3 Multiple Machines Lower Bound

The lower bound from the previous section does not work for any larger

number of machines. We now show some weaker lower bounds for any number

of machines.

41

Theorem 2.10. Any deterministic algorithm has a competitive ratio of at

least 2− 1
U

for any R > 1 and any number of machines m.

Proof. Fix any deterministic algorithm A. At time 0 release a set J of m

tight jobs each with the maximum heat contribution, that is for every Ji ∈ J ,

dJi = 1 and hJi = R. Suppose A schedules x of the |J | jobs at time 0. We

set a threshold of λm for some 0 ≤ λ ≤ 1 to be fixed later. This gives the

following two possibilities:

Case 1: x < λm. OPT can schedule all the m jobs and no further jobs are

released. This gives a competitive ratio of m
x

which is at least 1
λ
.

Case 2: x ≥ λm. Starting at time 1 we release m copies of the U tight jobs

as in the single machine lower bound in Theorem 2.8. The value for

U is given by Inequality (2.1) as before. Only on each of the m − x

machines that do not start a J-job can these U jobs be scheduled, as

any machine that schedules a J-job will remain too hot to schedule any

of the U jobs. OPT will remain idle for the first time step and be able

to schedule U jobs on each of its m machines. This gives a competitive

ratio of mU
x+(m−x)U = mU

x(1−U)+mU
≥ U

λ+(1−λ)U .

We must now find the best value for λ. As the ratio 1
λ

decreases with an

increase in λ, while U
λ+(1−λ)U increases with λ, to find the optimal λ value we

need to find the value for λ where these two ratios are equal for a given U .

This gives λ = U
2U−1 , and using this λ we get a lower bound of 1

λ
= 2− 1

U
.

The lower bound in Theorem 2.10 becomes 1 if R ≥ 2. Below we give

different lower bounds which are better for the case R ≥ 2. The lower

42

bounds use jobs with certain heat contribution properties as stated in the

lemma below.

Lemma 2.11. Consider the case of a single machine with an initial temper-

ature of 0. There exists heat contributions for jobs J and K such that: K

cannot be scheduled immediately after J but can be scheduled with one idle

time step in-between; while J can be scheduled immediately after K.

Proof. The heat contributions of J and K have to satisfy the following

hJ
R2

+
hK
R

> 1,
hK
R2

+
hJ
R
≤ 1,

hJ
R3

+
hK
R
≤ 1

0 ≤ hJ ≤ R, 0 ≤ hK ≤ R.

Set hJ = R2

R+1
−ε and hK = R2

R+1
+ε where ε > 0 is a sufficiently small positive

real number. Then we can verify that all conditions are indeed satisfied (for

sufficiently small ε)

hJ
R2

+
hK
R

=
1

R + 1
− ε

R2
+

R

R + 1
+
ε

R
= 1 + ε

(
1

R
− 1

R2

)
> 1,

hK
R2

+
hJ
R

=
1

R + 1
+

ε

R2
+

R

R + 1
− ε

R
= 1− ε

(
1

R
− 1

R2

)
< 1,

hJ
R3

+
hK
R
−1 =

1

R(R + 1)
− ε

R3
+

R

R + 1
+
ε

R
−1 =

1−R
R(R + 1)

+ε

(
1

R
− 1

R3

)
< 0,

0 <
R2

R + 1
< R.

Theorem 2.12. For any R > 1, any deterministic algorithm with m = 2

43

machines has a competitive ratio of at least 3
2
.

Proof. Fix a deterministic algorithm A and call jobs with heat contributions

hJ and hK as stated in Lemma 2.11 J-jobs and K-jobs. At time 0 release

one J-job with a deadline of 3. If A schedules the job on machine q at time 0

then release two K-jobs at time 1 with tight deadlines of 2. By Lemma 2.11,

machine q will not be able to schedule a K-job at all, as the K-jobs have

tight deadlines and are too hot to be scheduled straight after the J-job. In

this case A can schedule at most two jobs. OPT will remain idle on both

machines for time 0 and schedule both K-jobs at time 1, one on each machine,

followed by the J-job at time 2 on either machine, for a total of three jobs.

This is possible by Lemma 2.11. This gives a competitive ratio of at least 3
2

in this case.

Otherwise A will not schedule any jobs at time 0. In this case release

two K-jobs at time 2 with tight deadlines of 3. A cannot schedule all three

jobs because once the J-job is scheduled on a machine, that machine cannot

schedule a K-job in the next time step. OPT will start the J-job at time 0

and at time 2 will have cooled down enough to schedule both K-jobs giving

a total of 3 jobs. This means in this case A will also have a competitive ratio

of at least 3
2
, thus concluding the proof.

Theorem 2.13. For any R > 1, any deterministic algorithm with m ≥ 3

machines has a competitive ratio of at least 6
5
.

Proof. Fix a deterministic algorithm A and again we use J-jobs and K-jobs

as defined in Lemma 2.11. At time 0 release m J-jobs with deadlines of 3.

If A schedules m
3

or more of the J-jobs at time 0 then release m K-jobs at

44

time 1 with tight deadlines. By Lemma 2.11 any of the machines in A that

scheduled a J-job cannot schedule a K-job. This means that A misses at

least m
3
K-jobs, thus completing at most 2m− m

3
= 5m

3
jobs. OPT will leave

all of its machines idle at time 0, schedule all m K-jobs at time 1 and then

all m J-jobs at time 2. This gives a competitive ratio of 6
5
.

Otherwise A schedules fewer than m
3

jobs at time 0. In this case release

m K-jobs at time 2 with tight deadlines of 3. If A schedules another m
3

or

more J-jobs at time 1, then it misses at least m
3
K-jobs at time 2, again by

Lemma 2.11. Thus A completes at most 2m − m
3

= 5m
3

jobs. Otherwise, A

schedules fewer than m
3
J-jobs at time 1. It schedules at most m jobs (either

J or K-jobs) at time 2. Thus the number of jobs that A completes is at most

m
3

+ m
3

+m = 5m
3

. In both cases, OPT can complete 2m jobs by scheduling

all J-jobs at time 0 and all K-jobs at time 2. Thus the competitive ratio is

also 6
5
.

All these multiple machine lower bounds are far lower than the corre-

sponding (optimal) single machine lower bound and the multiple machine

upper bound, thus it is entirely possible to give better algorithms in the

multiple machine case. However we observe that in order to do this, some

machines must stay idle even when there are admissible jobs:

Theorem 2.14. For any R > 1 and any number of machines m, for any

algorithm that always schedules all machines with jobs as long as an admis-

sible one is available, the competitive ratio is at least the same as that given

in Theorem 2.8.

Proof. We simply consider a job instance which consists of m identical copies

45

of jobs used in the lower bound construction of Theorem 2.8. All machines

will then run the jobs at time 0 and thus miss all later jobs, while OPT

remains idle at the first time step and schedules all U + 1 jobs on each of its

machines.

2.4 Weighted Jobs

We now show some results for the version of the problem where jobs have

weights. Some results have been given for the weighted problem with tem-

perature by the other authors in [11]. They consider any R > 1 and show

that it is not possible to get a constant competitive deterministic algorithm

for this problem on a single machine. We denote the upper bound of the

maximum possible job weight as W and w.l.o.g. we assume that the min-

imum job weight is 1. When W is known in advance this model is called

semi-online, as in this model the algorithm has partial knowledge of future

inputs. All of the results given by the other authors are for the semi-online

case.

They consider two versions of the problem. The first model is called the

full heat model. Recall that in the full heat model we have that ∀J : hJ ≤

R as already explained and defined in Section 1.7. Using the standard 3-

field notation this problem is defined as 1|online-ri, hi, pi = 1|
∑
wiUi for

the single machine case and P |online-ri, hi, pi = 1|
∑
wiUi with multiple

machines.

They also define a bounded heat model where all jobs have a maximum

heat bounded away from R, in particular ∀J : hJ ≤ R(1 − δ), for any fixed

46

δ > 0. We will see that if the heat contribution is bounded away from full

heat some interesting and, arguably, more useful results can be obtained.

Moreover, full heat is not necessarily reasonable because it effectively means

that once any job (of any positive heat contribution) has been scheduled, then

no full heat job can be scheduled, no matter how long afterwards. In practice,

after some finite amount of idle time, the machine is effectively at the ambient

temperature and can run other jobs. Also, a full heat job will almost ‘burn’

the machine (starting from the ambient temperature) in just one ‘quantum’ of

time, which is perhaps not really that reasonable. Using the standard 3-field

notation this problem is defined as 1|online-ri, hi ≤ R(1− δ), pi = 1|
∑
wiUi

for the single machine case and P |online-ri, hi ≤ R(1 − δ), pi = 1|
∑
wiUi

with multiple machines.

For the single machine full heat model, in [11] they give an algorithm

that is O(logW)-competitive and a matching lower bound of Ω(logW) for

the randomised version of this problem. They also give an O(log(1/δ))-

competitive randomised algorithm for the bounded heat model, and show

that this is optimal. For the full heat multiple machine problem they show

an upper bound of O(mW 1/m) on a deterministic algorithm.

We extend the single machine results from [11] to the multiple machine

case. We also show upper bounds for the fully online cases that are only

slightly higher than those for the corresponding semi-online cases. We also

give a lower bound for the full heat multiple machine problem that matches

the existing upper bound within constant factors when the number of ma-

chines is fixed.

47

2.4.1 Full Heat Randomised Bounds

Now we consider the randomised version of the multiple machine full heat

problem.

Upper Bound

We show an upper bound for an algorithm that uses the classify-and-randomly-

select technique [3]. This analysis works both in the semi-online and fully

online case.

When W is known in advance, we first partition the weight range [1,W] in

to dlnW e classes, with the ranges [1, e], (e, e2], ..., (eblnW c−1, eblnW c], (eblnW c,W].

In each class, the job weights differ by a factor of at most e. We then ran-

domly choose a class and use a reasonable algorithm to schedule the jobs

from the chosen class on all machines. All other jobs are ignored.

When W is not known in advance we use a technique from [3] to convert

the given semi-online algorithm into a fully online algorithm, with a slightly

higher competitive ratio. We now describe the algorithm. We define a func-

tion f(ε) =
∑∞

i=1
1

i1+ε
, noting that f(ε) < ∞ for all ε > 0. At each time

step the algorithm holds a set of k classes Ai, 1 ≤ i ≤ k, with k = 0 at the

beginning. Each class is associated with an integer label; a class with label

j denotes the fact that each job J in this class has weight ej−1 < wJ ≤ ej.

When a job J arrives with a weight ej−1 < wJ ≤ ej, the algorithm checks

if there is already a class with label j. If the class exists then J is associated

to this class. Otherwise the algorithm creates a new class, sets its label to

j, and associates J to the new class. When each class Ai is created, if the

48

algorithm has not already selected a class, then the algorithm selects Ai

with a conditional probability such that the absolute probability that it is

selected is pi = 1
f(ε)

1
i1+ε

. Since
∑∞

i=1 pi = 1 these probabilities are valid. It

is also clear that although W is not known to the algorithm in advance, at

most dlnW e classes are eventually created, and the job weights within a class

differ by a factor of at most e. When a class has been selected the algorithm

then ignores all jobs not in this class. We then run an O(1)-competitive

reasonable algorithm for unweighted instances for jobs in this class on all

machines, ignoring the job weights.

We now show the competitiveness of this algorithm using techniques sim-

ilar to those for the single machine case in [11].

Theorem 2.15. The above algorithm is O(logW)-competitive, when W is

known in advance. If W is not known in advance, the above algorithm is

O(log1+εW)-competitive for any ε > 0.

Proof. From Theorem 2.7 in Section 2.3.1, it must be that for a fixed R

the competitive ratio of reasonable algorithms is constant. We denote the

competitive ratio of the online algorithm for the unweighted case as cR. Let

Ai and OPTi be the schedule for the ith class of the online algorithm and

the optimal schedule respectively. It must be that for each class i |OPTi| ≤

cRe|Ai| since the algorithm is cR competitive for the number of jobs, and a

factor at most e is lost on job weights. It is clear that it must also be that∑
|OPTi| ≥ |OPT |. Therefore when W is known in advance

E[|A|] =

∑
|Ai|

dlnW e
≥
∑
|OPTi|/cRe
dlnW e

≥ |OPT |
cRedlnW e

.

49

This makes the algorithm O(logW)-competitive in the case when W is known

in advance.

In the fully online case we have that

E[|A|] =

dlnW e∑
i=1

pi|Ai| ≥
dlnW e∑
i=1

pdlnW e|Ai| ≥
∑dlnW e

i=1 |OPTi|
cRef(ε)dlnW e1+ε

≥ |OPT |
cRef(ε)dlnW e1+ε

.

Thus the algorithm is (cRef(ε)dlnW e1+ε)-competitive in the fully online case.

Although this bound is given for the multiple machine case, it still applies

to the single machine case. This means that we have extended the semi-online

results from [11] to show that the above algorithm is O(log1+εW)-competitive

for the fully online single machine case, as well with multiple machines.

Lower Bound

We now give a lower bound that shows that this is optimal when W is

known in advance, and almost optimal in the fully online case. We use Yao’s

principle [52] and specify a probabilistic construction of the adversary and

bound the competitive ratio against deterministic algorithms with inputs

over this distribution. This lower bound again uses techniques similar to

those for the single machine case in [11].

Theorem 2.16. Any randomised algorithm has a competitive ratio of at least

Ω(logW).

Proof. Choose a large enough positive integer n, and let Ji, for all 1 ≤ i ≤ n,

be a job with wJi = 2i−1 and hJi = R. At each time step i− 1 we release m

50

copies of job Ji, each with a tight deadline of i.

At each time step i, for 1 ≤ i ≤ n, with conditional probability of 1/2 the

sequence stops, and with conditional probability 1/2 the adversary continues

to release job Ji+1. The probability is conditional on the fact that the time

step i is actually reached, i.e. the adversary has not already stopped at

some earlier time step. If Jn is released, then the sequence stops. Thus,

we have a total of n different input sequences, appearing with probability

1/2, 1/4, ..., 1/2n−1, 1/2n−1 as shown for 1 machine in Figure 2.5.

Figure 2.5: Input distribution for the randomised lower bound

Since all jobs have full heat, any algorithm can schedule at most one job on

any machine. Hence, without loss of generality, we can restrict our attention

to a particular machine q and a deterministic schedule Aq,j of the following

form: do not start any of the jobs J1, ...Jj−1 on machine q and start the job Jj

for some 1 ≤ j ≤ n. ThenAq,j gets the value of job Jj if the adversary releases

Jj , i.e. the adversary has not stopped releasing jobs before Jj. This happens

with marginal probability 1/2j−1. Otherwise, if the adversary stopped before

51

releasing Jj, no value is obtained. Thus E[|Aq,j|] = (1/2j−1)(2j−1) = 1, note

that this is independent of j. Thus the expected value obtained by any online

algorithm is E[|A|] =
∑m

i=1E[|Ai,j|] = m.

Meanwhile OPT will always schedule the last set of jobs released by the

adversary, one on each machine

E[OPT] = m

(
n−1∑
i=1

(
1

2i

)
(2i−1) +

(
1

2n−1

)
(2n−1)

)

= m

(
n− 1

2
+ 1

)
=

m(n+ 1)

2
.

Therefore the competitive ratio is at least (n+ 1)/2. Since for the maximum

W possible W ≤ 2n−1, we have proven a lower bound of Ω(logW) on the

competitive ratio.

This matches the semi-online upper bound given in Theorem 2.15 mean-

ing the algorithm given is optimal within a constant factor. Both bounds

also match those given for the single machine case in [11] showing that al-

lowing the use of extra machines does not provide any substantial benefit in

the randomised and weighted full heat case.

2.4.2 Full Heat Deterministic Lower Bound

We now show a lower bound on deterministic algorithms for the multiple

machine full heat version of the problem.

Theorem 2.17. No deterministic algorithm for the full heat problem can be

52

better than (mW)1/m-competitive, when W ≥ mm−1.

Proof. Fix a deterministic algorithm A. Consider a sequence of jobs Ji for

1 ≤ i ≤ m, where rJi = i− 1; dJi = i and hJi = R. The weights of the jobs

are given by wJ1 = 1, and wJi = (c − 1)
∑i−1

j=1wJj for i > 1 where c > 1 is

some value to be chosen later. Each Ji is released successively. Note that

the job Ji cannot be scheduled on any machine that has already scheduled

another job Jj for j < i as all of the jobs have full heat contribution. If A

chooses not to schedule some job Jk on any machine then the subsequent jobs

will not be released. In this case A has scheduled the first k − 1 jobs and so

has a weighted throughput of
∑k−1

i=1 wJi . OPT will schedule all k jobs and so

have a weighted throughput of
∑k−1

i=1 wJi + wJk . As wJk = (c− 1)
∑k−1

i=1 wJi ,

this gives OPT a weighted throughput of c
∑k−1

i=1 wJi giving a competitive

ratio of c in this case.

OtherwiseA does not miss any of the Ji jobs, 1 ≤ i ≤ m. This means that

A has scheduled exactly one job on each of its machines. At time m we then

release m jobs X1, ..., Xm that have heat contributions of R, tight deadlines

of m+ 1 and weights of (c
∑m

i=1wJi)/m. A will be too hot to schedule any of

them, while OPT can skip all the Ji and schedule all X1, X2, ..., Xm, one on

each machine. This gives OPT a weighted throughput of c
∑m

i=1wJi while

A has a weighted throughput of
∑m

i=1wJi which again gives a competitive

ratio of c.

Each job Ji for i > 1 has weight (c − 1)
∑i−1

j=1wJj and wJ1 = 1. Solving

53

the recursion we get wJi = ci−1 − ci−2. Thus

wXi = c

(∑m
i=2(c

i−1 − ci−2) + 1

m

)
=
cm

m
.

The minimum job weight is 1 and the maximum job weight is either wJm or

wXm . The ratio of maximum to minimum job weights is therefore

W = max{cm−1 − cm−2, c
m

m
}

Suppose we have cm−1−cm−2 ≤ cm

m
, then W = cm

m
, i.e. c = (mW)1/m. This is

the desired competitive ratio. The condition cm−1 − cm−2 ≤ cm

m
is equivalent

to cm ≤ c2 + m, which, with the value of c = (mW)1/m, is satisfied if, for

example, W ≥ mm−1.

For any fixed m, this matches the upper bound of O(mW 1/m) for the algo-

rithm given in [11], showing that this algorithm is optimal within a constant

factor.

2.4.3 Bounded Heat Randomised Bounds

We now show some bounds for randomised algorithms with multiple machines

where the maximum heat of a job is bounded to R(1− δ). The algorithm is

based on the m-machine unit job scheduling algorithm DMIX-m in [17] and

the schedule partitioning idea for the single machine case in [11]. We use the

DMIX-m algorithm here because it is online and has a competitive ratio of

(1 − (m
m+1

)m)−1 which is no greater than 2 for all possible values of m. We

use a lemma from [11] that is restated here for completeness.

54

Lemma 2.18. [11] Suppose an algorithm runs jobs of heat at most h every

k ≥ 1 time slots, and keeps idle at other slots. If h ≤ R(1− 1/Rk), then the

temperature does not exceed 1 at any point.

Now we describe the algorithm. We consider the case where all jobs

have a maximum heat contribution of R(1 − 1/Rk). First we ignore the

heat contributions of jobs and use the DMIX-m algorithm to produce a m-

processor schedule S. The schedule S is then partitioned into k sub-schedules

S1, ..., Sk. Each sub-schedule Si schedules the same job as S during the time

slots of the form (i− 1) + jk for j = 0, 1, 2, That means S1 schedules the

same job as S during each of the time slots 0, k, 2k, ... and stays idle at all

other slots. Similarly S2 schedules the same job as S during each of the time

slots 1, k + 1, 2k + 1, ... and stays idle at all other slots and so on for each

S1, ..., Sk. The algorithm randomly picks and executes one of the schedules

with probability 1/k.

Theorem 2.19. For any 0 < δ ≤ 1/R, if the maximum job heat is bounded

to R(1− δ) then the above algorithm is O(log(1/δ))-competitive.

Proof. We set k = dlogR(1/δ)e and partition the schedule S as above into

S1, ..., Sk. By Lemma 2.18 it is clear that none of the sub-schedules will ever

exceed the temperature threshold as each schedules no more than one job

every k time steps. We will set cm = (1 − (m
m+1

)m)−1 ≤ 2, which is the

competitive ratio of DMIX-m. Let OPT ′ denote the optimal offline schedule

for the same input instance but without heat considerations.

It is clear that |OPT | ≤ |OPT ′| because although the schedule of OPT ′

may not be feasible with heat considerations, its weighted throughput must

55

be at least that of OPT , otherwise this would contradict its optimality. We

must also have from the definition of the algorithm that |S| =
∑k

i=1 |Si| and

from the competitiveness of DMIX-m that |OPT ′| ≤ cm|S|. The expected

weighted throughput E[|A|] of our algorithm is equal to 1/k of the total

weighted throughput of S1, ..., Sk i.e. E[|A|] = 1
k

∑k
i=1 |Si|.

Combining these we get that |OPT | ≤ cmkE[|A|]. Therefore, by our

definition of k, we have that the algorithm is O(log(1/δ))-competitive.

We now give a lower bound that shows that this algorithm is optimal up

to a constant factor. Again this is extended from the proof for the single

machine case in [11].

Theorem 2.20. If the maximum job heat is bounded to R(1 − 1/Rk), for

large enough k, no randomised algorithm can have competitive ratio better

than k.

Proof. Set H to be the maximum job heat, that is H = R(1 − 1/Rk). Let

n ≥ 1 be the largest integer such that H/Rn +H/R > 1 (It is required that

H ≥ R/2 i.e. Rk ≥ 2 for such an n to exist). Let x be a real number in

(0, 1), to be determined later. The proof is similar to that of Theorem 2.16.

Let Ji, for all 1 ≤ i ≤ n, be a job with wJi = 1/xi−1 and hJi = H. At each

time step i− 1 we release m copies of job Ji, each with a tight deadline of i.

Then at each time step i (1 ≤ i < n), with conditional probability 1− x the

sequence stops, and with conditional probability x the adversary continues to

release job Ji+1. The probability is conditional on the fact that the adversary

has not stopped releasing jobs before time step i. If Jn is released, then the

sequence stops.

56

Since H/Rn +H/R > 1, any algorithm can schedule at most one of those

jobs on any one machine. Hence, similar to Theorem 2.16, we can restrict

our attention to a particular machine q and a deterministic schedule Aq,j

that does not start any of the jobs J1, ...Jj−1, then starts the job Jj for some

1 ≤ j ≤ n. Thus E[|Aq,j|] = (1/xj−1)(xj−1) = 1 and so the expected value

obtained by any online algorithm is E[|A|] =
∑m

i=1E[|Ai,j|] = m.

As before OPT will always schedule the last set of jobs released by the

adversary, one on each machine

E[OPT] = m

(
n−1∑
i=1

(xi−1(1− x))

(
1

xi−1

)
+ (xn−1)

(
1

xn−1

))
= m ((n− 1)(1− x) + 1) .

Therefore, the competitive ratio is at least (n − 1)(1 − x) + 1. Choose x

to be arbitrarily close to 0, then the ratio can be made arbitrarily close to

n. The condition of H/Rn + H/R > 1 is equivalent to n < logR(RH/(R −

H)). It follows that the lower bound is dlogR(RH/(R − H))e − 1. Since

H = R(1 − δ) = R(1 − 1/Rk) we have that the lower bound is equal to

dlogR(R2(1 − 1/Rk)/(1/Rk−1))e − 1 = dlogR(Rk+1 − R)e − 1. This lower

bound is equal to k for any R > 1 and sufficiently small δ.

This again almost matches the upper bound given meaning the algorithm

given is optimal within a constant factor. As with the full heat case both

bounds also match those given for the single machine case in [11] showing

that allowing the use of extra machines does not provide any substantial

benefit.

57

2.5 Summary

In this chapter we considered maximising the throughput of jobs in the model

with unit length jobs, that are both unweighted and weighted, with single

and multiple machines. For the unweighted single machine case we show

that reasonable algorithms are optimal for all cooling factors, while matching

lower bounds have not been found for the case with multiple machines. All

of the bounds given increase as the cooling factor decreases. We also show

that the algorithm Hottest First performs worse than reasonable algorithms.

For weighted jobs we show that the bounds for the multiple machine

cases are the same as those for the single machine case, in the randomised

full heat and bounded heat models. We also show a fully online algorithm

for the randomised full heat model with a competitive ratio only slightly

higher than in the semi-online case. We also show a lower bound for the

deterministic full heat case on multiple machines that matches the existing

upper bound for a fixed number of machines, within constant factors.

58

Chapter 3

Equal Length Throughput

We now extend the unit length problem to consider the model where all jobs

have the same length, but this length is larger than unit length. We will

denote this length by p, where p > 1 is an integer i.e. ∀J : pJ = p > 1. We

mainly consider the unweighted version of this problem. All results in this

chapter are for all R > 1 and for the one machine case.

For simplicity, when using jobs that are longer than unit length we denote

the total heat contribution of a job J over all pJ time steps as h∗J , defined as

h∗J =

pJ−1∑
i=0

hJ
Ri

=
RpJ − 1

RpJ−1(R− 1)
hJ (3.1)

This takes into account the cooling at each step. With this definition the

temperature after executing J at time t for its entire duration (without pre-

emption) is given simply by τt+pJ = τt/R
pJ + h∗J/R.

It is simple to extend the restriction of hJ ≤ R from the unit length case

to show that we also have that no job with h∗J > R can be admissible for the

59

non-preemptive and preemptive restarts model. Therefore for these models

we assume that h∗J ≤ R for all jobs. We also assume the same for the resume

model (this will be discussed in Section 3.5).

3.1 Motivation

Considering longer than unit length jobs is useful for several reasons: first,

if jobs (for example, CPU processes) are already partitioned into unit length

slices as in the unit length model, credit will be given to each completed

slice even though the job itself may not be completed. Thus to correctly

account for the value gained, the scheduler needs to be aware of the longer,

un-partitioned jobs.

Secondly, because jobs have longer than unit length, the scheduling may

now involve preemption. This could be useful, for example, as an urgent job

may arrive while another less urgent job is already running. Depending on

the application domain, it may not be possible (or it may be costly) to have

preemption, making it useful to analyse the power of preemption which is

not possible in the unit-length model.

3.2 Previous Results

Without temperature considerations the case that involves one machine schedul-

ing jobs that have an equal, but longer than unit, length has been studied.

For the case of unweighted equal length jobs on one machine and no preemp-

tion allowed, a greedy algorithm has been shown with a competitive ratio of

60

2 [8] and this has been shown to be optimal for the deterministic case [29].

For the deterministic case with preemptive restarts allowed an optimal 3/2-

competitive algorithm has been shown [20]. When preemptive resumes are

allowed it is well known it is possible to produce an optimal schedule for the

unweighted problem, see for example [49].

The randomised version of the equal length job problem on one machine

has also been studied. Without preemption a 5/3-competitive algorithm is

known [20], and a lower bound of 4/3 has been shown [29]. For the case where

preemptive restarts are allowed as well as randomisation, a lower bound of

6/5-competitive is also shown [20].

For the version of the one machine non-preemptive problem where jobs are

of equal length and have weights it is well known that no constant competitive

ratio can be achieved. An upper bound of 1 + wmax/wmin has been shown

for a deterministic algorithm where wmax and wmin are the maximum and

minimum allowed job weights respectively [38] and they show that the 1 +

ln(wmax/wmin) lower bound from [5] applies to this case against an oblivious

adversary. They also show a randomised algorithm that achieves an upper

bound of (1+e)(1+ln(wmax/wmin)), which is therefore only a constant factor

of 1+e away from optimal [38]. The results from [38] also apply to the model

where m ≥ 1 parallel/identical machines are allowed.

The current best algorithm for the weighted equal length job problem

on one machine where preemption is allowed has an upper bound of 4.24

[48]. This upper bound applies to both the restarts and resumes models of

preemption, although the algorithms are slightly different for the different

models. The current best lower bound for this problem is 4 [50].

61

The best algorithms for maximising the throughput of equal length jobs

without preemption on 2 machines have a 3/2-competitive ratio [23,30] and

this is optimal. For a general number of machines m a lower bound of 6/5 [23]

is known, and the best known algorithm without preemption is deterministic

and has a competitive ratio of e/(e− 1) ≈ 1.582 for large m [22].

For the multiple machine problem where jobs are weighted, equal length

and always have tight deadlines (i.e. the jobs are intervals), an algorithm

has been shown to be 2-competitive when m is even and 2 + 2/(2m − 1)-

competitive when m is odd [26].

For the model of equal length jobs with temperature considerations we

are not aware of any previous work.

3.3 The Non-Preemptive Model

We now give some results for the non-preemptive version of the problem.

Using standard 3-field notation this problem is defined as 1|online-ri, hi, pi =

p|
∑
Ui.

The competitive ratios for the non-preemptive case are given in terms of

a value E1 (defined in terms of p and R) that is the largest integer e1 > 0

such that (e1 + R)Rp > Re1p+1 + e1 holds. Note that E1 increases when R

decreases, and also as the job length p decreases. Table 3.1 shows the values

of E1 for different values of R and p.

62

E1 p = 2 p = 3 p = 4

1 R > 3
√

2 ≈ 1.260 R > 4
√

2 ≈ 1.189 R > 5
√

2 ≈ 1.149
2 1.260 ? R ? 1.105 1.189 ? R ? 1.075 1.149 ? R ? 1.059
3 1.105 ? R ? 1.058 1.075 ? R ? 1.041 1.059 ? R ? 1.032
4 1.058 ? R ? 1.037 1.041 ? R ? 1.026 1.032 ? R ? 1.020
5 1.037 ? R ? 1.026 1.026 ? R ? 1.018 1.020 ? R ? 1.014

Table 3.1: Table of E1 values for selected R and p values.

3.3.1 Lower Bound

We now show a lower bound for deterministic algorithms in the non-preemptive

model. Recall the definition of OPT -only jobs as given in Chapter 2, modi-

fied here for the single machine case: we refer to a job as an OPT -only job

if it is started by OPT at some time t when A is idle, and at time t the job

is too hot to be scheduled by A.

Theorem 3.1. No deterministic non-preemptive algorithm can be better than

(E1 + 2)-competitive.

Proof. Fix any deterministic algorithm A. At time 0 release a job J with a

deadline of 2D + (E1 + 3)p+ 1 and a total heat contribution h∗J = R− ε for

a sufficiently small ε > 0, where

D =
⌈

logR

(
1

Rp−1ε

)⌉

is the time for an idle machine’s temperature to reduce from 1 to Rp−1ε. The

value Rp−1ε is the maximum temperature at which an algorithm can start J ,

since Rp−1ε
Rp

+ R−ε
R

= 1. If A does not schedule J at all then OPT schedules

it at time 0, and the competitive ratio of A is infinite, so we can assume A

63

schedules J at some time u.

Case 1: If u ≤ D + p, then OPT remains idle at u and at time u + 1

we release a job K that has a tight deadline and a heat contribution

hK = 0. OPT schedules this job, while A must continue with J as it

is non-preemptive, reaching a temperature of 1− ε
R

at time u + p. At

time t = u + ip + 1 for i = 1, 2, ..., the temperature of A is given by

(ignoring the small ε) τu+ip+1 = 1
R(i−1)p+1 . At each such t, as long as

τu+ip+1 > τ ′u+ip+1, the adversary releases a tight job Ji with the smallest

possible heat contribution such that h∗Ji > R− τu+ip+1

Rp−1 . A will be (just)

too hot to schedule the jobs, while OPT will schedule each of them (i.e.

they are OPT -only jobs). The temperature of OPT at time u+ ip+ 1

for every i ≥ 1 is given by

τ ′u+p+1 = 0, τ ′u+ip+1 =
τ ′u+(i−1)p+1

Rp
+
h∗Ji−1

R
for i ≥ 2

This can be solved to give

τ ′u+ip+1 =
Rp −Rp−(i−1)p

Rp − 1
− i− 1

R(i−1)p+1

Strictly speaking the above value of τ ′u+ip+1 should use a > instead of

= sign as h∗Ji is defined to be just hotter than R − τu+ip+1

Rp−1 . Moreover,

as can be seen later, the initial temperature at time u+ p+ 1 may not

actually be zero. However these differences can be made arbitrarily

small so for convenience we use the equal sign here. A full analysis

incorporating this detail can be done similar to that in Theorem 2.8.

64

The maximum number of OPT -only jobs is the largest integer i > 0

such that τu+ip+1 > τ ′u+ip+1 holds, which is satisfied if

1

R(i−1)p+1
>
Rp −Rp−(i−1)p

Rp − 1
− i− 1

R(i−1)p+1

This can be simplified to give

(i+R)Rp > Rip+1 + i (3.2)

which is the same as the formula that defines E1.

After completing JE1 at time (u+E1p+ 1) + p, OPT will then remain

idle for D steps so that it is cool enough to schedule J , at which point

this will be done. Since u ≤ D + p, it can still meet its deadline.

Case 2: If u > D + p then OPT schedules J at time 0. Since u > D + p,

at time u + 1 OPT ’s temperature will be less than Rp−1ε, i.e. almost

0. For a sufficiently small ε we can then continue as in the previous

case, with all E1 jobs and K being scheduled by OPT while A cannot

schedule any more jobs.

This concludes the proof as J is the only job that A is able to schedule

while OPT is able to schedule J1, ..., JE1 as well as J and K, making A no

better than (E1 + 2)-competitive.

65

3.3.2 Upper Bound: Coolest First

In this section the algorithm Coolest First will be shown to have an optimal

competitive ratio. Coolest First schedules a job whenever one is admissible,

and if several are admissible will always schedule the job with the smallest

heat contribution. Whenever several jobs have the same smallest heat con-

tribution it will always schedule a job in this set that has the smallest or

equal smallest deadline. Coolest First will never preempt a job.

Before proving the competitive ratio, we need two lemmas to bound the

number of OPT -only jobs during an idle period of A. The two lemmas are

similar, but in the second one, OPT starts those jobs one time step later.

Lemma 3.2. If A completes a job at time u then OPT can start at most E2

OPT -only jobs on or after time u but before A starts the next job, where E2

is the largest integer e2 ≥ 0 such that (e2 + 1)Rp > Re2p + e2 holds.

Proof. For A we must have τu ≤ 1. We first assume OPT runs these OPT -

only jobs consecutively starting from u without idle time or other jobs in

between; we will return to this assumption later. As A remains idle while

OPT starts jobs, the temperature of A after i jobs have been run by OPT

is given by

τu+ip ≤
1

Rip
(3.3)

For each OPT -only job Ji it must be too hot to be admissible in A, i.e.

h∗Ji > R−
τu+(i−1)p

Rp−1

66

Therefore the temperature of OPT after it has run i jobs is given by

τ ′u ≥ 0, τ ′u+ip =
τ ′u+(i−1)p

Rp
+
h∗Ji
R

This can then be solved to give

τ ′u+ip ≥
Rp −Rp−ip

Rp − 1
− i

Rip
(3.4)

As long as τu+(i−1)p > τ ′u+(i−1)p it remains possible for OPT to schedule

the i-th OPT -only job Ji at time u + (i − 1)p. The maximum number of

OPT -only jobs is thus the largest i > 0 such that τu+(i−1)p > τ ′u+(i−1)p, which

using inequalities (3.3) and (3.4) is upper bounded by

1

R(i−1)p >
Rp −Rp−(i−1)p

Rp − 1
− i− 1

R(i−1)p

This can be simplified to

(i+ 1)Rp > Rip + i (3.5)

which is the same as the formula that defines E2.

We now return to the assumption that these OPT -only jobs are consec-

utive. Our aim is to upper-bound the number of jobs that can be scheduled

by OPT but are too hot to be scheduled by A in a time period when A

remains idle. This relies on A being hotter than OPT during this whole

period. Suppose J1, ..., JE2 are not consecutive, then there are time steps

in between where OPT is idle or schedules a job that is not too hot to be

67

scheduled by A. It can be easily shown (by a trivial extension of Lemma 2.4

from the unit length case) that such time steps will reduce the difference in

temperature between OPT and A, thus will not help OPT schedule more

OPT -only jobs.

Lemma 3.3. If A completes a job at time u and OPT does not start a job

at [u, u+1), then OPT can start at most E1 OPT -only jobs on or after time

u+ 1 but before A starts the next job.

Proof. For A we must have τu ≤ 1 and τu+1 ≤ 1/R. As in the previous

lemma we assume these OPT -only jobs are started consecutively from time

u+ 1. As A remains idle while OPT starts jobs, the temperature of A after

i jobs have been run by OPT is given by

τu+ip+1 ≤
1

Rip+1
(3.6)

For each OPT -only job Ji it must be too hot to be admissible in A, i.e.

h∗Ji > R−
τu+(i−1)p+1

Rp−1

Therefore the temperature of OPT after it has run i jobs is given by

τ ′u+1 ≥ 0, τ ′u+ip+1 =
τ ′u+(i−1)p+1

Rp
+
h∗Ji
R

This can be solved to

τ ′u+ip+1 ≥
Rp −Rp−ip

Rp − 1
− i

Rip+1
(3.7)

68

As long as τu+(i−1)p+1 > τ ′u+(i−1)p+1 it remains possible for OPT to sched-

ule the i-th OPT -only job Ji. The maximum number of OPT -only jobs

is thus the largest i > 0 such that τu+(i−1)p+1 > τ ′u+(i−1)p+1, which using

inequalities (3.6) and (3.7) is upper bounded by

1

R(i−1)p+1
>
Rp −Rp−(i−1)p

Rp − 1
− i− 1

R(i−1)p+1

This can be simplified to

(i+R)Rp > Rip+1 + i (3.8)

which is the same as the formula that defines E1.

It turns out that E2 is always close to E1.

Lemma 3.4. If E1 and E2 are defined from the same p and R, then E1 ≤

E2 ≤ E1 + 1.

Proof. For simplicity, define the constant L = Rp and define f(x) = Lx,

f1(x) = xL−1
R

+ L and f2(x) = x(L − 1) + L. Then E1 and E2 are the

largest integers satisfying the inequalities f(x) < f1(x) and f(x) < f2(x)

respectively. Let e∗1 and e∗2 be the unique positive roots of the corresponding

equations, i.e. f(e∗1) = f1(e
∗
1) and f(e∗2) = f2(e

∗
2) .

Observe that f(x) is an exponential function, f1(x) and f2(x) are linear

increasing functions with f2 having a steeper slope, f(0) = 1 < L = f1(0) =

f2(0). Thus the intersection of f(x) and f1(x) occurs at an earlier point of x

than the intersection of f(x) and f2(x), i.e. e∗1 ≤ e∗2.

69

Next we show e∗2 ≤ e∗1 + 1. Note that f(e∗2) = f2(e
∗
2) and f(e∗1) ≤ f2(e

∗
1)

(as e∗1 ≤ e∗2). If f(e∗1 + 1) ≥ f2(e
∗
1 + 1) this will establish the claim. This is

equivalent to

Le
∗
1+1 ≥ (L− 1)(e∗1 + 1) + L

⇐⇒ L

(
L− 1

R
e∗1 + L

)
≥ (L− 1)(e∗1 + 1) + L

⇐⇒ L(L− 1)e∗1 + L2R ≥ (L− 1)Re∗1 + (L− 1)R + LR

⇐⇒ (L− 1)(L−R)e∗1 ≥ (2L− 1)R− L2R

⇐⇒ (L− 1)(L−R)e∗1 ≥ −(L− 1)2R

⇐⇒ e∗1 ≥
(L− 1)R

R− L

which is true as L = Rp > R so the right hand side of the last inequality is

negative.

So we have e∗1 ≤ e∗2 ≤ e∗1 + 1. It follows from their definitions that

E1 = de∗1e − 1 and E2 = de∗2e − 1. As x ≤ y implies dxe ≤ dye for any x and

y, this proves the lemma.

We now prove the competitive ratio of Coolest First.

Theorem 3.5. Coolest First is (E1 + 2)-competitive for the non-preemptive

model.

Proof. The algorithm will be analysed by dividing the schedules into regions,

and then associating with each region certain credits for jobs scheduled by

OPT and A. Each region is a time interval [u, v), where u is the time when

A starts a job, and v is the earliest time on or after u + p when A starts

another job. If A does not start another job after u, set v =∞. Clearly, for

70

every two consecutive regions [u, v) and [u′, v′) it must be that v = u′, i.e.

the regions form a non-overlapping partition of the schedules.

The first region starts when A first schedules a job. OPT cannot schedule

any job before this time as A schedules a job as soon as one is released. Thus

it is not possible for OPT to start a job before the start of the first region.

Each job completed by A or OPT will be given credits towards some

region. We use ΦOPT
[u,v) and ΦA[u,v) to denote the credits associated to region

[u, v) of OPT and A respectively, and ΦOPT
∞ and ΦA∞ to represent the total

credits of OPT and A respectively after jobs have stopped being released

and all jobs have expired or completed. We prove that for every region [u, v)

it must be that ΦOPT
[u,v) ≤ (E1 + 2) ·ΦA[u,v). Summing over all regions this gives

ΦOPT
∞ ≤ (E1 + 2) · ΦA∞. This shows that A is (E1 + 2)-competitive.

Fix a region, and let J be the job that A schedules in this region. The

starting time of J is u. We give A one credit for the job it schedules in each

region, so ΦA[u,v) = 1 for every region. We also give one credit to ΦOPT
[u,v) in

every region, to account for the fact that at some point in the future OPT

may schedule the job J .

We consider the following cases of OPT ’s action when J is started by A

at time u:

Case 1: OPT starts a job K at u, and K has either been completed by A

on or before u, or is the same job J . In either case we do not need to

give any more credit to OPT for scheduling job K as it has already

been accounted for.

Any other job started by OPT in this region must be started at a time

71

t while A is idle. Consider one such job X. If X has already been

scheduled in A before u, then a credit will have already been given

to a previous region to account for it, so we do not give any credit

to this region. Otherwise, X is still pending in A at time t, and it

must be too hot to be executed by A at time t because otherwise A

would have started it and therefore started a new region. So X is an

OPT -only job, and from Lemma 3.2 we know that OPT can start at

most E2 OPT -only jobs before A starts another job. We give ΦOPT
[u,v)

one credit for each such job. This means these OPT -only jobs account

for at most E2 credits. In addition to the credit already given for J ,

this make ΦOPT
[u,v) at most E2 + 1, while ΦA[u,v) is equal to 1.

Case 2: OPT does not start a job at u. In this case OPT can either start

a job in the interval [u+ 1, u+ p) or not. If OPT does not start a job

in this interval then again we can use Lemma 3.2 to show that ΦOPT
[u,v)

will be given at most E2 more credits as in Case 1. If OPT does start

a job K in this interval then we give ΦOPT
[u,v) another credit for K. By

the same argument as in Case 1, any other jobs started by OPT have

either been scheduled by A before and have therefore been accounted

for, or are OPT -only. These jobs (excluding K) can only be started

on or after time u + p + 1, one time step after A completes J . From

Lemma 3.3 it follows that there are at most E1 such OPT -only jobs.

By Lemma 3.4 we have that E2 ≤ E1 + 1, meaning the total credits in

ΦOPT
[u,v) is at most E1 + 2.

Case 3: OPT starts a job K 6= J at u, but K has not been completed by

72

A on or before u. It must be the case that hK ≥ hJ , since otherwise

A would have started the cooler job K instead of J . We consider two

sub-cases. If τ ′u ≥ τu, then it must also be the case that τ ′u+p ≥ τu+p

as K is hotter than or equal to J . Thus it is not possible to have any

OPT -only jobs in this region. So ΦA[u,v) = 1 while ΦOPT
[u,v) = 2 (one from

K and one from J). The other sub-case is τ ′u < τu. Here there must be

a previous region before this one, as in the first region both OPT and

A has the same starting temperature of 0. We claim that the previous

region has at most E2−1 or E1−1 (depending on which case it belongs

to) OPT -only jobs. This is because, if there are E2 (or E1) OPT -only

jobs in the previous region, then following the arguments in Lemmas 3.2

and 3.3, by the end of the previous region (which is the beginning of

this region, i.e. time u) OPT must be hotter than A, otherwise there

could be more OPT -only jobs, contradicting the maximality of E2 (or

E1). Therefore, we can count the job K to the previous region instead

of this one. As in Case 1 there can be at most E2 OPT -only jobs in

this region, so ΦOPT
[u,v) is at most E2 + 1.

From the three cases, it can be seen that ΦOPT
[u,v) ≤ max{E1 + 2, E2 + 1} ·

ΦA[u,v). Lemma 3.4 shows that E2 ≤ E1 + 1. This completes the proof.

3.3.3 Upper Bound: Non-idling Algorithms

The algorithm Coolest First is a reasonable algorithm. This is because

Coolest First starts a job whenever one is admissible and, as it always starts

the coolest job, will never start a job that is strictly dominated by another.

73

We now extend this notion further and define a class of non-idling algorithms,

defined here for the single machine case.

Definition 3.6. An online algorithm is called non-idling if at any time step

when it is not already running a job it always starts a job if there is an

admissible one available.

Note that this is a weaker notion than that of reasonable algorithms, as

reasonable algorithms are non-idling algorithms, but with stricter restrictions

on which job must be scheduled. Also note that a non-idling algorithm will

never preempt a job by this definition.

Using a region analysis similar to Theorem 3.5 it can be shown that non-

idling algorithms have a competitive ratio at most E2 + 2. Note that it

follows from Lemma 3.4 that this bound is no worse than 1 greater than that

of Coolest First.

Theorem 3.7. Any non-idling algorithm is (E2+2)-competitive for the non-

preemptive model.

Proof. We define regions in the same way as in Theorem 3.5. Again OPT

cannot schedule any job before the start of the first region as A is non-idling

and so will schedule a job as soon as one is released.

We prove that for every region [u, v) it must be that ΦOPT
[u,v) ≤ (E2 + 2) ·

ΦA[u,v). For each region we will give one credit to ΦA[u,v) for the one job J that

is completed in that region. We also give one credit to ΦOPT
[u,v) to account for

the fact that job J may be completed by OPT at some point in the future.

OPT may start a job (6= J) in the interval [u, u+ p) that cannot be started

74

by A as it is already running J at this time, so we give another credit to

ΦOPT
[u,v) to account for this.

In each region OPT may schedule any amount of jobs that have already

been scheduled by A but these do not give any extra credit to ΦOPT
[u,v) as a

credit has already been added in advance for every job started by A.

By Lemma 3.2 we can show that at most E2 OPT -only jobs can be

scheduled by OPT in any region. We give ΦOPT
[u,v) one credit for each such job.

So in each region ΦA[u,v) = 1 and ΦOPT
[u,v) is at most E2 + 2, thus concluding the

proof.

3.4 The Preemptive Restart Model

We now consider the model where preemptive restarts are allowed. Using

standard 3-field notation this problem can be described as 1|online-ri, hi, pi =

p, pmtn-restart|
∑
Ui.

In the preemptive restart and resume models many of the competitive

ratios are given in terms of E3, defined as the largest integer e3 ≥ 0 such

that e3R(Rp − 1) > R + R(e3+1)p − 2Rp holds. Table 3.4 shows the value of

E3 for some combinations of R and p.

E3 p = 2 p = 3 p = 4

0 R >
√

2 ≈ 1.414 R > 3
√

2 ≈ 1.260 R > 4
√

2 ≈ 1.189
1 1.414 ? R ? 1.109 1.260 ? R ? 1.081 1.189 ? R ? 1.062
2 1.109 ? R ? 1.050 1.081 ? R ? 1.039 1.062 ? R ? 1.031
3 1.050 ? R ? 1.030 1.039 ? R ? 1.023 1.031 ? R ? 1.019
4 1.030 ? R ? 1.019 1.023 ? R ? 1.015 1.019 ? R ? 1.012

Table 3.2: Table of E3 values for selected R and p values.

75

3.4.1 Lower Bounds

Two lower bounds will be proven in this section, which in a way complement

each other. The first one applies to all values of R, but is relatively weak

(gives a bound of 2) when R > p
√

2. The second one only applies to the case

where Rp > R+ 1, but gives a stronger bound of 3. The root of Rp = R+ 1

is, for large p, just a bit larger than p
√

2, so the two theorems together show a

lower bound of 3 for almost all values of R. Moreover, as the non-preemptive

upper bound (Theorem 3.5) is 3 when R > p+1
√

2, this means that preemption

with restarts does not help for Rp > R + 1, which is quite a wide range for

large p (for example when p = 2 it is equivalent to R > 1.618 but when

p = 10 it becomes R > 1.076).

Theorem 3.8. No deterministic algorithm for the restart model can be better

than (E3 + 2)-competitive.

Proof. Release a job J at time 0 with a large deadline 2D+ (E3 + 4)p and a

total heat contribution h∗J = R−ε, for a very small ε > 0, where D is the time

it takes for the temperature to drop from 1 to Rp−1ε, i.e. the temperature

at which J can start. If A never starts the job then the competitive ratio

is infinite. So A will start the job at some time u. At time u + p − 1, A’s

temperature (ignoring the small ε) is given by τu+p−1 =
∑p−1

i=1
hJ
Ri

= Rp−R
Rp−1 . At

time u + p − 1, release a tight job K with a heat contribution so that it is

just too hot to be scheduled by A, i.e. h∗K > R − τu+p−1

Rp−1 = R − R−R2−p

Rp−1 . As

K is too hot to be executed anyway, A will not preempt J and will continue

to finish it. Meanwhile OPT does not start J and starts K. Assume OPT

has temperature 0 before it starts K. After K has been completed by OPT

76

we have

τu+2p−1 =
1

Rp−1 , τ ′u+2p−1 =
h∗K
R

> 1− 1−R1−p

Rp − 1

At time u + (i + 1)p − 1 for each i = 1, 2, ..., as long as τu+(i+1)p−1 >

τ ′u+(i+1)p−1 we release a tight OPT -only job Ji with a heat contribution that

is just too hot for A to schedule, i.e. h∗Ji > R − τu+(i+1)p−1

Rp−1 . For i ≥ 1, the

temperatures τu+(i+1)p−1 and τ ′u+(i+1)p−1 are given by

τu+(i+1)p−1 =
1

Rip−1 , τ ′u+(i+2)p−1 =
τ ′u+(i+1)p−1

Rp
+
h∗Ji
R

The latter can be solved to give

τ ′u+(i+1)p−1 =
R1−ip +Rp − 2R(1−i)p

Rp − 1
− i− 1

Rip−1

The maximum number of OPT -only jobs is the largest possible i such

that τu+(i+1)p−1 > τ ′u+(i+1)p−1, which is satisfied when iR(Rp − 1) > R +

R(i+1)p − 2Rp, i.e. the same formula that defines E3.

OPT can schedule all the OPT -only jobs plus K and J : if u < D+p, then

OPT will finish allK, J1, ..., JE3 by time u+(E3+1)p−1+p < D+(E3+3)p−1,

and can still meet the deadline of J after taking D time steps of cooling time.

If u ≥ D + p, OPT will schedule J at time 0 and will become cooler than

Rp−1ε (i.e. temperature almost 0) at time u, and thus can schedule all OPT -

only jobs as above. A can only complete J . This gives a lower bound of

E3 + 2.

We now prove that when R is not too small the lower bound for the

problem is 3. First we give a brief outline of the proof. The lower bound

77

proof is split into phases, and there are several steps in each phase. Different

jobs are released in the phases depending on the decisions that A makes,

however in every phase A will be able to schedule 1 job while OPT will

schedule 3 jobs. It may also be that at the end of a phase A still has a job

pending. In this case we start another phase, again with jobs released such

that OPT can always schedule 3 jobs in the phase while A can only schedule

1. If no job is pending for A (or any pending job for A will never become

admissible before its deadline) we stop releasing jobs.

This process keeps repeating until it either stops as described above giving

a lower bound of 3, or until a large enough number n of phases have been

completed. In this case one extra job may be completed by A in addition

to the one job from each phase A has already completed and we get a lower

bound of 3n/(n + 1), which can be made arbitrarily close to 3 with large

enough n.

We now give two lemmas that will be used in the proof. The first gives

the temperature after not quite completing a job.

Lemma 3.9. If a job J of heat contribution h∗J is executed for p − 1 steps

only, then immediately after its execution the temperature is at least
h∗J
R+1

.

Proof. The temperature after executing J for p− 1 steps is at least

hJ

p−1∑
i=1

1

Ri
= hJ

(
1− 1

Rp−1

R− 1

)
= h∗J

(
1− 1

Rp−1

R− 1

)(
Rp−1(R− 1)

Rp − 1

)
= h∗J

(
Rp−1 − 1

Rp − 1

)

78

This is an increasing function of p; when p = 2 this is equal to
h∗J
R+1

concluding

the proof.

The following lemma is used to establish the fact that we can always

create a job with a certain heat contribution, given two jobs with certain

heat contributions.

Lemma 3.10. Let h∗J and h∗K be the heat contributions of some jobs, where

h∗K is just smaller than h∗J/R − ε0/R
p and ε0 is some small non-negative

constant that can be chosen to be as small as necessary. Then there exists a

heat contribution h∗L such that

R2

(
ε0

R2p+1
+

h∗K
Rp+1

− hJ
R2p+1

− 1−R1−p

Rp(R− 1)
hK

)
< h∗L < R

(
hJ
R2p

+
h∗K
Rp
− h∗J
Rp+1

− ε0
R2p

)

Proof. We first show that

R2

(
ε0

R2p+1
+

h∗K
Rp+1

− hJ
R2p+1

− 1−R1−p

Rp(R− 1)
hK

)
< R

(
hJ
R2p

+
h∗K
Rp
− h∗J
Rp+1

− ε0
R2p

)

which will show that such a h∗L exists. Using (3.1) from page 59, this inequal-

ity can be shown to be equivalent to

h∗K >
Rp − 2R + 1

Rp+1 −R2
h∗J +

2R

Rp+1 −R2

(
1− 1

Rp

)
ε0

The fraction (Rp−2R+1)/(Rp+1−R2) is strictly smaller than 1/R for p ≥ 2.

Thus this can be rewritten as

h∗K >

(
1

R
− δ
)
h∗J + Cε0

79

for some positive constants δ and C. This can in turn be rewritten as

h∗K −
(
h∗J
R
− ε0
Rp

)
> −δh∗J + ε0

(
C +

1

Rp

)

As h∗K is just smaller than h∗J/R − ε0/Rp, the inequality can be made true

by choosing a sufficiently small ε0.

We also need to show that h∗L is a valid heat contribution, i.e. between 0

and R. Consider the upper limit of the range of h∗L, which is equal to

R

(
hJ
R2p

+
h∗K
Rp
− h∗J
Rp+1

− ε0
R2p

)
= R

(
h∗J(R− 1)

R2p+1 −Rp+1
+
h∗K
Rp
− h∗J
Rp+1

− ε0
R2p

)
< R

(
h∗J(R− 1)

R2p+1 −Rp+1
− 2ε0
R2p

)

This is clearly positive, and is at most

R2(R− 1)

R2p+1 −Rp+1
=

R2(R− 1)

Rp+1(Rp − 1)
< 1

so h∗L can indeed take a valid heat contribution.

We now formally define a phase. A phase i is started at the point in time

that a job Ji is released, and ends at the time that a job Ji+1 is released, if

such a job is released. For the first phase the starting time will be time 0

when J1 will be released, while the actual time that a Ji is released for the

other phases (if at all) depends on the decisions of A within a phase. If the

job Ji is completed by A, then no future J-jobs will be released and phase

i is the final phase. The same is also true if Ji is not completed by A in a

phase but still cannot be completed by A before its deadline. Otherwise Ji

80

will become admissible in A at some time si. We define the start of the next

phase i + 1 to be the time ti = si − (2p + 2). We denote the temperature

of OPT at the start of a phase i (i.e. at time ti−1) as εi for all i ≥ 2. For

the first phase we define ε1 to be some very small positive number related

to the deadline of J1 and use ε0 = 0 in the calculations of the temperatures

of OPT and A as a placeholder so that extending the analysis of phase 1 to

other phases is more straightforward.

We now give a lemma that details the different cases for the first phase,

and shows that in this phase OPT can always schedule 3 jobs while A will

complete only 1.

Lemma 3.11. When Rp > R + 1, in phase 1 OPT will always complete 3

jobs, while the most A will complete is 1.

Proof. At time 0 release a job J1 with a total heat contribution of h∗J1 = R−ε1

for some small ε1 > 0, and a deadline D1 + 4p where D1 is the time it takes

to cool down from a temperature of 1 to Rp−1ε1. We choose a small enough

ε1 so that D1 is much larger than p. If J1 is not scheduled by A then OPT

will schedule it and the competitive ratio of A is infinite, so we assume that

A starts J1 at some time u1.

In the following we assume A will not preempt a currently running job

unless it is to start another job (i.e. it will not preempt a job only to stay

idle). If such a situation does happen, OPT will then act as if the preempted

job has never been started - it can only be disadvantageous to A for raising

its temperature without completing the job. We now consider several cases,

as illustrated in Figure 3.1.

81

Figure 3.1: The different cases of Phase 1 in the lower bound construction.

Case 1: u1 ≥ p. At time u1 + p − 1 we release a job Z1 with a heat con-

tribution of 0 and a tight deadline. Regardless of whether A preempts

J1 with Z1 or not, A’s temperature at time u1 + 2p− 1 can be shown

to be at least
h∗J1

(R+1)Rp
by Lemma 3.9 because it executes at least p− 1

steps of J1. OPT will start J1 at time 0 and also runs Z1, so by time

u1 + 2p − 1 its temperature is at most
h∗J1
R2p + ε0

R3p−1 . As Rp > R + 1,

OPT is cooler than A for small enough ε0, and we then release a job

X1 at time u1 + 2p − 1 with a tight deadline and a heat contribution

so that it is just too hot for A to schedule but OPT can schedule it.

So OPT schedules 3 jobs and A schedules only one.

82

Case 1a: If A has not preempted J1, then we are done.

Case 1b: If A has preempted J1, it may restart the job later. This

completes Phase 1 and we move to Phase 2.

Case 2: u1 ≤ p − 1. At time u1 + 1 the adversary releases a job K1 with

a tight deadline and a heat contribution h∗K1
that is just smaller than

h∗J1
R
− ε0

Rp
.

Case 2a: Suppose A does not preempt J1. Then it cannot schedule

K1. OPT will then schedule K1, so at time u1 + p + 1 its tem-

perature is just below ε0
Ru1+p+1 +

h∗J1
R2 − ε0

Rp+1 ≤
h∗J1
R2 , and is therefore

cooler than A, and so the adversary can release a job X1 at time

u1 + p+ 1 with a tight deadline and a heat contribution so that it

is just too hot for A to schedule but OPT can schedule it. OPT

waits D1 steps after completing X1 so that it is cool enough to

schedule J1. Since (u1 + p+ 1) + p+D1 + p ≤ D1 + 4p, OPT can

complete J1 before its deadline. OPT will have scheduled 3 jobs

and A will have scheduled 1 and the lower bound is complete.

Case 2b: : Otherwise A must have preempted J1 with K1. In this

case the adversary releases a job L1 at time u1 + p with a tight

deadline. Its heat contribution will be specified later. If A does

not preempt K1 then it cannot schedule L1. In this case OPT will

schedule J1 at time u1 and L1 at u1 + p. We choose h∗L1
to be cool

enough so that OPT will be cooler than A (which executed J1 for

83

one time step and completed K1) at u1 + 2p, i.e.,

ε0
R2p

+
h∗J1
Rp+1

+
h∗L1

R
<
hJ1
R2p

+
h∗K1

Rp
(3.9)

(It can be verified that it is indeed feasible for OPT to schedule

both J1 and L1.) The adversary then releases a tight job X1 with

a heat contribution so that it is just too hot for A to schedule but

OPT can schedule it. OPT will have scheduled 3 jobs (J1, L1 and

X1), while A will have completed 1 job, and may still be able to

complete J1 in the future. Move on to Phase 2.

If instead A preempted K1 with L1, we consider it in the next

case.

Case 2c: In this case the adversary releases a job M1 at time u1+p+1

with a heat contribution of 0 and a tight deadline. If A does not

preempt L1 then it cannot schedule M1. In this case OPT will

schedule K1 and M1. L1 has to be hot enough so that OPT is

cooler than A (which has executed J1 for one time step, then K1

for p− 1 time steps, then L1) at time u1 + 2p+ 1, i.e.

ε0
R2p+1

+
h∗K1

Rp+1
<

hJ1
R2p+1

+
hK1(1−R1−p)

Rp(R− 1)
+
h∗L1

R2
(3.10)

Lemma 3.10 shows that an h∗L1
that satisfies both (3.9) and (3.10)

does exist.

The adversary then releases a tight job X1 at time u1 + 2p + 1

with a heat contribution h∗X1
so that it is just too hot for A to

84

schedule but OPT can schedule it. In this case OPT will have

scheduled 3 jobs and A will have completed 1 job, and still be

able to complete J1 in the future. Move on to Phase 2.

If instead A preempted L1 with M1, we consider it in the next

case.

Case 2d: In this case the adversary releases a job Y1 at time u1 + 2p

with a heat contribution of 0 and a tight deadline. A can either

preempt M1 or not but either way only one of M1 or Y1 can be

completed by A. OPT will complete J1, L1 and Y1. In this case

OPT will have scheduled 3 jobs and A will have only completed

1 job, and may still be able to complete J1 in the future. Again

we will deal with this in Phase 2.

Note that in all of the cases, in this phase A has only completed 1 job while

OPT has completed 3.

We now give a lemma that establishes some properties that will be needed

to complete the proof over all the necessary phases.

Lemma 3.12. Consider cases 1b, 2b, 2c and 2d where J1 may restart later.

Let s1 be the earliest time when A becomes cool enough to schedule J1 again

(i.e. temperature at most Rp−1ε1). Define a time t1 = s1 − (2p + 2) and let

ε2 = τ ′t1. Then

(1) s1 ≥ D1 − 2

(2) τt1 < τ ′t1 ≤ R3p+2τt1

85

(3) ε1 < ε2 < R6p+3ε1.

Proof. (1) Consider cases 1b, 2b, 2c and 2d where J1 may be restarted later

by A.

In case 1b, A executes p − 1 steps of J1, so its temperature when it

preempts J1 (i.e. at time u1 +p−1) is, by Lemma 3.9, at least h∗J1/(R+1) >

h∗J1/R
p (recall we have assumed Rp > R + 1). The number of cooling steps

required before it can run J1 again is then at least

⌈
logR

(
h∗J1/R

p

Rp−1ε1

)⌉
=
⌈

logR

(
h∗J1

Rp−1ε1

)⌉
− p =

⌈
logR

(
R− ε1
Rp−1ε1

)⌉
− p

which is at least D1 − p, because by our definition of D1, we have that

dlogR(R/Rp−1ε1)e = D1 + 1. Thus s1 ≥ (p− 1) + (D1 − p) = D1 − 1.

In cases 2c and 2d, A executes one step of J1 and p−1 steps of K1, so its

temperature when it preempts K1 (i.e. at time u1 + p) is, by Lemma 3.9, at

least h∗K1
/(R+ 1) ≈ h∗J1/R(R+ 1) > h∗J1/R

p+1. The number of cooling steps

required before it can run J1 again is then at least

⌈
logR

(
h∗J1/R

p+1

Rp−1ε1

)⌉
− 1 =

⌈
logR

(
h∗J1

Rp−1ε1

)⌉
− (p+ 1)− 1 ≥ D1 − p− 2

(Here we subtracted one time step to account for the fact that h∗K1
is slightly

smaller than h∗J1/R and thus it may require one fewer step to cool.) Thus

s1 ≥ p+ (D1 − p− 2) = D1 − 2.

In case 2b, A executes one step of J1 and p steps of K1, so its temperature

when it completes K1 (i.e. at time u1 + p + 1) is at least h∗K1
/R, and with

similar calculations as cases 2c and 2d we can show that s1 is again at least

86

(p+ 1) + (D1 − p− 2) = D1 − 1.

(2) Let tOPT be the time when OPT finishes its last job in Phase 1. It can

be verified that at time tOPT , OPT must be hotter than A. (In fact, if it is

not the case, then we can simply release more just-too-hot jobs like X1 that

OPT can schedule but A cannot, making the competitive ratio even worse.)

This remains true until time t1 because until then both OPT and A are idle.

In the proof of (1) above, it was shown that when A preempts J1 (case

1b) or completes K1 (case 2b) or preempts K1 (cases 2c, 2d), its temperature

is always at least h∗J1/R
p+1 (i.e. just under 1/Rp). At time tOPT , OPT ’s

temperature is at most 1. So, comparing these two points of time, OPT is

hotter by at most a factor that is just larger than Rp; for convenience take

the factor to be Rp+1. Also, in all these cases, there are at most 2p+ 1 time

steps between tOPT and the time A finishes/preempts J1/K1, so A has at

most 2p+ 1 extra idle steps to cool down, so at any time after tOPT , OPT ’s

temperature is hotter than A (at the same time instant) by at most a factor

of R3p+2.

(3) Observe that Rp−2ε1 < τs1 ≤ Rp−1ε1 as s1 is the earliest time that is cool

enough. The first inequality is true because ε2 = τ ′t1 > τt1 = R2p+2τs1 >

R2p+2Rp−2ε1 > ε1. The second inequality is true because ε2 = τ ′t1 < R3p+2τt1

(from (2)) = R3p+2R2p+2τs1 ≤ R5p+4Rp−1ε1 = R6p+3ε1.

Using these properties we now construct the full proof over all phases to

prove the lower bound.

Theorem 3.13. Every deterministic algorithm for the preemptive restart

model is at least 3-competitive when Rp > R + 1.

87

Proof. Lemma 3.11 shows that in phase 1 OPT always completes 3 jobs while

A completes 1. If J1 has not been completed by A during phase 1 then we

start the next phase.

Phase 2. If s1 > dJ1 − p then A cannot schedule J1 so we have achieved

a ratio of 3 and we stop here. Otherwise Phase 2 begins at time t1.

Let ε2 be the temperature of OPT at this point. We release a job

J2 at time t1 = s1 − (2p + 2), with deadline t1 + D2 + 4p and a heat

contribution of h∗J2 = R−ε2, where D2 is the time it takes to cool down

from a temperature of 1 to Rp−1ε2. Note that OPT is cool enough to

start J2 at this point if it so wishes. Note also that t1 is after the

deadlines of all the phase 1 jobs except J1, as D1 is much larger than

p. Therefore, scheduling of Phase 1 jobs (except J1) does not interfere

with the scheduling of Phase 2 jobs.

A cannot schedule both J1 and J2: if A schedules J1 at some time ≥ s1,

then J2 cannot start until at least D2 − 1 steps after s1 + p, i.e. time

s1+p+D2−1, but the deadline of J2 is t1+D2+4p = s1+D2+2p−2, so

J2 cannot finish before its deadline. If on the other hand J2 is scheduled

first, on or after t1, then J1 must wait at least D1 − 1 steps after J2

finishes, i.e. J1 starts earliest at t1 + p + (D1 − 1) = (s1 − 2p − 2) +

D1 + p − 1 = s1 + D1 − 3 − p ≥ 2D1 − 5 − p (from Lemma 3.12 (1))

but its deadline is D1 + 4p. It can therefore be assumed without loss of

generality that A will not schedule J1, as J2 is cooler and has a later

deadline.

A must schedule J2 at some time u2; then we proceed as in Phase 1 and

88

Lemma 3.11, following cases 1a - 2d as necessary (replacing J1, Z1, K1,

L1, M1, X1, Y1 with J2, Z2, K2, L2, M2, X2, Y2; ε0 with ε2; and change

all job release times to be relative to time t1). In this phase OPT can

complete 3 jobs while A can complete at most one, and possibly have

J2 still pending at the end of the phase, in which case we move to Phase

3.

Phase i ≥ 2. In general, after Phase (i− 1), if Ji−1 is not pending then the

construction ends. Otherwise, let si−1 be the earliest time thatA is cool

enough to restart Ji−1. If si−1 > dJi−1
− p then again the construction

ends. Otherwise define a time ti−1 = si−1− (2p+ 2) and Phase i begins

at time ti−1. Let εi be OPT ’s temperature at this point. We release Ji

with a deadline of ti−1+Di+4p and a heat contribution of h∗Ji = R−εi,

where Di is the time it takes to cool down from a temperature of 1 to

Rp−1εi. Similar to the discussion in Phase 2, we can assume A will not

schedule Ji−1, and cases 1a - 2d will be followed.

This process continues until either A does not have some Ji pending that

will become admissible before dJi−p, or Phase n is reached for a large enough

n in which case we stop. In the latter case the competitive ratio is 3n/(n+1)

as OPT schedules 3 jobs in every phase whereas A schedules one job in every

phase except Phase n where it schedules 2.

Similar to Lemma 3.12 (3) we can prove that εi < εi+1 ≤ R6p+3εi for all i.

Thus by choosing a small enough ε1 we can ensure that all other εi are also

small enough and the Di are large enough for the construction to work for

any large enough number of phases n. This concludes the proof as the ratio

89

can be made arbitrarily close to 3 for large n.

3.5 The Preemptive Resume Model

We now consider the model where preemptive resumes are allowed. Us-

ing standard 3-field notation this problem is defined as 1|online-ri, hi, pi =

p, pmtn|
∑
Ui.

Potentially, the preemptive resume model can allow for a much hotter

job to be executed than the non-preemptive or restart models: even if the

heat contribution per step (hJ) of a job is almost R, it can still be scheduled

by taking a long enough idle time in-between any two scheduled steps of the

job. However, it can be shown that such a model leads to bad results.

Theorem 3.14. When the maximum heat contribution of a job per time

step is R − ε for some sufficiently small ε > 0, no deterministic algorithm

for the resume model is better than pE2-competitive, where E2 is as defined

in Lemma 3.2.

Proof. Fix some deterministic algorithm A. Release a job J at time 0 with

hJ = R − ε for some small ε > 0 and a very large deadline p + pD; D is

the number of time steps it takes for a system to cool from 1 − ε/R to ε.

We choose a small enough ε so that D is much larger than E2. Because it is

so hot, J can only be scheduled by splitting it into p unit-sized pieces, each

separated by at least D time steps in the schedule.

If A does not schedule J at all then OPT does and the competitive ratio

will be infinite. Therefore A starts the first piece of J at some time u1. OPT

90

remains idle until u1 + 1 and then we release E2 OPT -only jobs in the same

way as in the proof of Lemma 3.2. For a sufficiently small ε, these jobs can

all be scheduled by OPT but cannot be scheduled by A.

Let D′ be the number of cooling time steps needed for OPT to cool down

after processing the last of the E2 jobs to start the same sequence of E2

OPT -only jobs. The value of D′ depends only on the heat contributions of

the E2 OPT -only jobs. A smaller ε means A will be hotter and therefore

these OPT -jobs can be less hot, implying that D′ will be slightly smaller. At

the same time, a smaller ε implies a larger D. Thus it is always possible to

choose a small enough ε so that D > D′ +E2, i.e. A must remain idle while

OPT processes these E2 jobs and cools down.

After A becomes cool enough, it must schedule the second piece of J at

some time u2 or else again its competitive ratio is infinite. The process is

then repeated (A is slightly hotter this time because of a non-zero starting

temperature, but we can still use the same set of E2 jobs for OPT). In the

end, A will only be able to schedule J to completion while OPT will schedule

E2 jobs after every piece of J scheduled by A thus giving a competitive ratio

of pE2.

Therefore, in the following we assume the maximum permissible heat

contribution of a job is the same as the non-preemptive/restart case, i.e.

h∗J ≤ R. This also allows a fairer comparison between different models of

preemption.

We now prove a lower bound that is precisely one smaller than the cor-

responding lower bound for the restart model.

91

Theorem 3.15. No deterministic algorithm for the resume model can have

a competitive ratio better than E3 + 1.

Proof. The proof is very similar to that of Theorem 3.8. Fix a deterministic

algorithm A. At time 0 release a job J with a total heat contribution h∗J = R,

and a tight deadline of p. We assume that A schedules J for p consecutive

time slots in [0, p) as otherwise it schedules no job at all and gives an infinite

competitive ratio. After p− 1 steps the temperature of A is given by τp−1 =∑p−1
i=1

hJ
Ri

= Rp−R
Rp−1 . We then release a tight job K with a heat contribution

that is just too hot for A to schedule, i.e h∗K > R − τp−1

Rp−1 = R − R−R2−p

Rp−1 .

Therefore A will continue with and complete J . Meanwhile OPT will not

schedule J and so can schedule K. The rest of the proof is the same as

Theorem 3.8 i.e. for i ≥ 1, as long as τ(i+1)p−1 > τ ′(i+1)p−1 we release an

OPT -only job Ji at time (i + 1)p− 1. The maximum number of OPT -only

jobs is thus given by the same formula that defines E3. We then have a lower

bound of E3 + 1 as OPT can complete the E3 OPT -only jobs plus K while

A can only complete J .

Note that for R > p
√

2, the above theorem gives a trivial lower bound of

1. We can give a different lower bound (that works for any R > 1):

Theorem 3.16. No deterministic algorithm for the resume model can have

a competitive ratio better than 2.

Proof. Fix a deterministic algorithm A. Release a job J at time 0 with a

total heat contribution h∗J = R − ε for some very small ε > 0. This gives

hJ = (R−1)(R−ε)Rp−1

Rp−1 . Job J has a deadline of 2D+3p, where D is the number

of time steps it takes for the machine to cool down from a temperature of 1

92

to Rp−1ε. Again we can assume A starts the job at some time u; if it does

not start J at all then the competitive ratio would be infinite.

If u ≥ D + p then OPT will schedule J in the p consecutive time steps

starting at time 0. This means that OPT will have cooled down to a temper-

ature of at most Rp−1ε by time u+ 1. At time u+ 1 the temperature of A is

equal to (ignoring the tiny value of ε) τu+1 = hJ
R

= (R−1)Rp−1

Rp−1 . At time u+1 the

adversary releases a job K with a tight deadline and a heat contribution that

makes it just too hot to be scheduled by A but can be scheduled by OPT .

This requires the heat contribution of K to be h∗K > R − τu+1

Rp−1 = R − R−1
Rp−1 .

As this job has a tight deadline A cannot ever schedule it even if it preempts

J , so A will only be able to schedule J . Meanwhile OPT can schedule both

K and J . This gives a competitive ratio of 2 for this case.

Otherwise u < D+ p. In this case OPT will remain idle until u+ 1 when

K will be released as in the previous case. OPT will complete K and then

wait at most D time steps and schedule J . OPT will therefore finish J at

the latest by time (u + 1) + p + D + p ≤ (D + p) + p + D + p = 2D + 3p,

meeting its deadline. Again this means that OPT has scheduled J and K

while A can only schedule J , giving a competitive ratio of 2 and concluding

the proof.

3.6 Summary

In this chapter we considered maximising the throughput of equal length, un-

weighted jobs on a single machine. We show that an algorithm is optimal for

all cooling factors in the non-preemptive case, and that the class of reason-

93

able algorithms have a competitive ratio of at most 1 larger than the optimal

competitive ratio. These competitive ratios increase when R decreases, and

also as the job length p decreases.

We then analyse the extra power that preemption can provide. We show

that for a large range of cooling factors allowing preemptive restarts cannot

reduce the competitive ratio over the non-preemptive case. We also show

that allowing preemptive resumes can only reduce the competitive ratio by

at most 1 over the preemptive restarts model, for all cooling factors.

94

Chapter 4

Variable Length Throughput

We now extend the equal length job problem to consider the case where

jobs may have any integer length. We consider two different models for this

problem, the first is the unweighted model in which an algorithm gets the

same value for completing each job regardless of the job’s characteristics.

The second model is the proportionally weighted model, where the value an

algorithm gets for completing each job is the same as the length of the job

i.e. ∀J : wJ = pJ .

We will denote the longest job length as L throughout the chapter. All

of the results in this chapter are upper and lower bounds that are linear in

terms of L. The results given are for the one machine case for all R > 1.

4.1 Motivation

Considering jobs of arbitrary lengths is a natural extension of the equal length

job problem. Until now we have been considering jobs that are modelled as

95

equal length slices of jobs, while in reality the complete jobs are likely to be

of differing lengths. Therefore to more accurately study real life scenarios, it

is useful to investigate the effect of allowing a variety of lengths, and discover

how this affects the quality of a schedule.

As with the non-unit length, equal length jobs scheduling of variable

length jobs may involve preemption. Analysing the potential power of pre-

emption will again be useful, as there are various applications where preemp-

tion is either not possible, or very costly.

4.2 Previous Results

There are no previous results for either the unweighted or proportionally

weighted models with temperature. Without temperature, in the unweighted

case with no preemption it is well known that no algorithm can have a com-

petitive ratio of better than LR, where LR is the ratio of the longest to short-

est job length. The unweighted case with preemptive restarts has been stud-

ied in [32]. They give an algorithm with an upper bound of 2-competitive,

and a matching lower bound.

With the unweighted case with preemptive resumes it has been shown

that every deterministic algorithm has a non constant competitive ratio, im-

plied from the proof to be Ω(logLR
log logLR

) [8]. It can be shown that for this

model the well known algorithm SRPT is Θ(logLR)-competitive [36]. The

offline version of the problem is solvable in polynomial time, using a dynamic

programming algorithm [41]. In [8] they also give several special instances of

the problem (e.g. 2-competitive tight bounds for the case of monotonic dead-

96

lines) and corresponding deterministic algorithms with constant competitive

ratios. A randomised algorithm for the problem is given in [36] which has a

very large, but constant competitive ratio.

For the proportionally weighted model without temperature, if preemp-

tive resumes are allowed there is a 4-competitive deterministic algorithm

[9], and this is also shown to be optimal. For the non-preemptive version

of this problem an algorithm has been shown with a competitive ratio of

2Cmin+Cmax+2
Cmin+2

[24] where Cmax and Cmin are the largest and smallest job

lengths. Several results for various restrictions on the general problem are

also given in [24].

4.3 Unweighted Jobs

We first give some results for the unweighted job version of the problem. Us-

ing standard 3-field notation this problem is defined as 1|online-ri, hi, pi|
∑
Ui.

In this section we give an upper bound on non-idling algorithms, and then

show lower bounds that are almost matching for both the non-preemptive

and preemptive cases.

4.3.1 Upper Bound: Non-idling Algorithms

We now analyse non-idling algorithms, as defined in Section 3.3.3. In this

section we give bounds in terms of U as defined in Chapter 2. Recall the

definition of U as the largest u ≥ 1 such that Ru < (u+ 1)R− u.

We first give a lemma that proves that U is the maximum number of

OPT -only jobs that OPT can schedule while A remains idle.

97

Lemma 4.1. Consider a time step when A is idle. U is the maximum

number of OPT -only jobs that OPT can schedule from this idle time step

until A starts a job.

Proof. It can easily be established from examining the analysis in Lemma 2.6

and Theorem 2.7 that U is the maximum number of OPT -only jobs that can

be scheduled before A starts a job, if all of them are of unit length. We show

that the same holds if some of these jobs are longer.

Consider an OPT -only job J that is scheduled by OPT at some time

t and has a length pJ ≥ 2. Consider an alternative schedule OPT ′ that is

identical to OPT up to time t, and that the time interval [t, t+pJ) is replaced

by a time interval [t, t + 1) that schedules a unit length OPT -only job J ′.

The rest of the OPT ′ schedule is identical to the rest of OPT moved forward,

i.e. OPT ′ in [t+ 1,∞) is the same as OPT in [t+ pJ ,∞).

Let τ ′′t be the temperature of OPT ′ at time t. By definition of OPT -only

jobs it must be that hJ ′ > R − τt and h∗J > R − τt/RpJ−1. We can assume

all OPT -only jobs take their minimum permissible heat contributions as this

maximises the number of OPT -only jobs. Therefore, if we ignore the slight

extra heat contribution of each job, we have

τ ′t+pJ = τ ′t/R
pJ + 1− τt/RpJ ; τ ′′t+1 = τ ′t/R + 1− τt/R.

We show that τ ′t+pJ ≥ τ ′′t+1. This is true if and only if τ ′t/R
pJ+1−τt/RpJ ≥

τ ′t/R+ 1− τt/R which is equivalent to (RpJ −R)(τt − τ ′t) ≥ 0. This must be

true because (1) R > 1 and pJ ≥ 2; and (2) for an OPT -only job to exist at

t it must be that τ ′t < τt. Therefore τ ′t+pJ ≥ τ ′′t+1, thus OPT ′ is still a feasible

98

schedule i.e. the jobs in OPT after t + pj can still be scheduled in OPT ′

after t + 1. As for A, it remains idle in both cases so it is unaffected. This

means that τt+pJ = τt/R
pJ and τt+1 = τt/R, so τt+1 > τt+pJ . Therefore the

other OPT -only jobs after J ′ in OPT ′ remain OPT -only as the temperature

at the corresponding time in A is higher.

We can similarly replace all other non-unit length OPT -only jobs in OPT

to create a schedule OPT ′ so that all OPT -only jobs in OPT ′ are of unit

length. OPT ′ is a feasible schedule containing the same number of OPT -only

jobs as OPT but all of them are of unit length. As we already know that the

number of OPT -only jobs in OPT ′ is at most U , the number of OPT -only

jobs in OPT is also at most U .

Now we show an upper bound on all non-idling algorithms.

Theorem 4.2. All non-idling algorithms are (L+ U + 1)-competitive.

Proof. We analyse the algorithms using a charging scheme, where every job

completed by OPT generates a charge to a job completed by A. We then

show that every job completed by A can receive at most L + U + 1 charges

thus proving the competitiveness of A.

Every job J completed by A receives a charge from each of the jobs that

is started by OPT while A is running J . We use 3 types of charge.

Type-A Charge: As non-idling algorithms do not preempt any jobs we

know that J will always complete and so will always be able to receive

the charges from these jobs. As J will have a length at most L, J can

receive at most L charges of this type.

99

Type-B Charge: The next type of charge will be generated by jobs that

have yet to be completed by A and are completed by OPT after A has

completed job J , but before A starts another job. As A is non-idling,

any job that is admissible would be started immediately and as the

jobs that generate these charges are not started by A (by definition of

the charge) they must be too hot to be admissible for A, and therefore

OPT -only. The maximum number of these jobs that can be completed

by OPT while A is idle is shown by Lemma 4.1 to be U .

Type-C Charge: The final type of charge that J can receive is from a copy

of itself, if it is completed by OPT later. It is clear that each job can

only receive one of these charges.

These 3 charge types cover all possible jobs that could be scheduled by

OPT and so every job completed by OPT generates a charge while every

job completed by A can receive at most L+ U + 1 charges, thus concluding

the proof.

4.3.2 Lower Bounds

We now show some lower bounds for deterministic algorithms for the un-

weighted job problem. First we give a bound for the model without preemp-

tion that is only 1 below the upper bound for any R and L values.

Without Preemption

Theorem 4.3. No non-preemptive deterministic algorithm is better than

(L+ U)-competitive.

100

Proof. Fix some deterministic algorithm A that does not use preemption.

Release a job J with a total heat contribution h∗J = R − ε for some small

ε > 0, a processing time of L, and a deadline of 2D + U + 3L for some large

D. D must be large enough so that a system can cool to ε after a starting

temperature of 1 and D idle time steps. If A never schedules J then OPT

does and A has an unbounded competitive ratio. Otherwise A schedules J

at some time u.

Case 1: If u ≤ D + L then OPT does not start J yet. At each time step

u+ i for i = 1, 2, ..., L− 1 we release a job Ki with a heat contribution

of 0, a processing time of 1 and a tight deadline of u+ i+ 1. OPT will

schedule all of these jobs while A will not be able to as it has already

scheduled J and is non-preemptive. At each time step u+L+ i− 1 for

i = 1, 2, ..., U we will release an OPT -only job with a processing time

of 1. This is done in the same way as the OPT -only jobs are released

in Theorem 2.8, with the proof of that theorem being sufficient to show

that we will indeed be able to release a maximum number U of these

jobs. OPT will then remain idle for D time steps and then schedule J

(for L time steps). This will always be possible before J ’s deadline as

u+U +D+ 2L ≤ 2D+U + 3L. In this case OPT will have completed

L−1 of the K jobs, U OPT -only jobs and J , while A will only complete

J , thus giving a competitive ratio of L+ U .

Case 2: Otherwise u > D + L and OPT starts J as soon as it is released.

As u > D+L once A starts J the temperature of OPT will be at most

ε which can be made arbitrarily close to 0. As before we release the

101

L− 1 K jobs followed by U OPT -only jobs. OPT will schedule all of

these jobs while A can still only schedule J , thus concluding the proof.

With Preemption

Now we give lower bounds for the model where preemption is allowed. The

bounds hold for both types of preemption. The bounds for this case are linear

in L, as are the bounds without preemption. This shows that given a fixed

R value, preemption can only give at most a constant factor improvement in

competitive ratio.

The following term is used in the bound:

logR

(
R

R− 1

)

This number is between 0 and 1 whenever R ≥ 2 and gets larger as R

decreases, becoming infinity when R = 1. Table 4.1 gives some values for

this term with corresponding R values.

logR
(

R
R−1

)
R

≤ 1 R ≥ 2
≤ 2 R ≥ 1.618
≤ 3 R ≥ 1.466
≤ 4 R ≥ 1.380
≤ 5 R ≥ 1.325
≤ 10 R ≥ 1.197
≤ 100 R ≥ 1.035

Table 4.1: Table of logR
(

R
R−1

)
values.

102

Theorem 4.4. No deterministic algorithm with preemption is better than

Ω
(
L− logR

(
R
R−1

))
-competitive, for any L > logR(R

R−1).

Proof. Fix some deterministic algorithm A that uses preemption. Release a

job J at time 0 with h∗J = R, pJ = L and dJ = L. If A does not start J as

soon as it is released then it cannot ever start J , and in this case OPT will

complete J and the competitive ratio of A will be unbounded. So A starts

J as soon as it is released and OPT stays idle at time 0.

At time 1 we release a job K1 with pK1 = 1, a tight deadline of 2, and a

heat contribution that makes it just too hot for A to schedule K1 even if A

were to preempt J . A therefore cannot schedule K1. OPT will schedule K1

then remain idle until it is cooler than A. As soon as OPT is cooler than A

we release another OPT -only job K2 with a processing time of 1 and a tight

deadline that is just slightly too hot to be scheduled by A. We continue this

process, idling until OPT is cooler than A then releasing an OPT -only job

Ki with a processing time of 1 and a tight deadline. As each job Ki is only

slightly too hot to be scheduled by A, and OPT is cooler than A, it is always

possible to choose a heat contribution for Ki such that OPT can schedule

these jobs.

We now show that after logR(R
R−1) time steps, exactly 1 K-job can be

scheduled by OPT every 2 time steps. The temperature of OPT after

scheduling each K-job will always be at most 1, and therefore after an idle

step following a K-job the temperature of OPT will be at most 1/R. We

now calculate the temperature of A after completing x time steps of J . As

h∗J = R and pJ = L this gives hJ = (R−1)RL
RL−1 > R − 1 meaning that at time

x the temperature of A must be at least 1 − 1/Rx. Therefore it is always

103

possible to release an OPT -only K-job every 2 time steps after some time x

as long as 1/R < 1−1/Rx, which is true whenever x > logR(R
R−1). Therefore

the total number of jobs that OPT can schedule is at least
L−logR(R

R−1
)

2
, while

A can only ever complete J .

Note that as R decreases, so does the value of L − logR
(

R
R−1

)
. On the

other hand when R decreases the value of U + 1 increases. This means that

for the case where U + 1 > L − logR
(

R
R−1

)
we can use the lower bound for

unit length jobs as in Theorem 2.8 to show that no deterministic algorithm

can be better than (U+1)-competitive. In this bound all jobs are unit length

meaning that no preemption will be possible, therefore this bound also holds

for all preemption models.

We can combine Theorem 4.4 and 2.8 to show a lower bound of

max

{
Ω

(
L− logR

(
R

R− 1

))
,Ω(U)

}

= Ω

(
L− logR

(
R

R− 1

)
+ U

)
.

It follows from Theorem 4.4, that for a fixed R, the lower bound is only

dependent on L.

Corollary 4.5. For a fixed R, no deterministic algorithm can be better than

Ω(L)-competitive.

As given in Theorem 4.2, the upper bound without preemption is L +

U + 1. If we assume a constant R value this becomes O(L), therefore we

have shown that for a fixed R allowing preemption can only give a constant

factor improvement over the non-preemptive case.

104

4.4 Proportionally Weighted Jobs

We now give some results for the proportionally weighted job version of

the problem. Using standard 3-field notation this problem is defined as

1|online-ri, hi, pi ≥ 1|
∑
piUi. The bounds in this proof are expressed in

terms of a value V = dlogR 2e − 2 that increases as R decreases. We give a

lower bound of L + V + 1, that works for the cases with and without pre-

emption. We also show a non-preemptive upper bound that matches when

V ≥ 1, and when V = 0 is almost matching. This shows that preemption

cannot significantly reduce the competitive ratio of algorithms in this model.

4.4.1 Lower Bound

We now provide a lower bound for deterministic algorithms. Note that this

lower bound can apply to the models both with and without preemption.

Theorem 4.6. No deterministic algorithm is better than (1+V+L)-competitive.

Proof. Fix some deterministic algorithm A. At time 0 release a job J with

h∗J = R − ε for some small ε > 0, pJ = 1 and dJ = V + L + 2D + 2 where

D is the number of time steps it takes a system to cool from 1 to ε. A will

start J at some time u. We consider two cases.

Case 1: A starts J at some u ≤ D. OPT will remain idle at and before u.

At time u + 1 we release a job K that has the smallest possible heat

contribution such that h∗K > R− R−ε
RV

, pK = V and a tight deadline. (If

V = 0 we omit this job.) A will be just too hot to schedule K, making

it OPT -only, and so will idle for the next V time steps, while OPT

105

will schedule K. After these V time steps we will have τu+1+V = R−ε
RV+1

and τ ′u+1+V > 1 − R−ε
RV+1 . This means that we have τu+1+V > τ ′u+1+V if

V < logR(2 − 2ε/R), which is true as ε can be made arbitrarily small

and V = dlogR 2e − 1. We then release another OPT -only job X at

u + 1 + V with h∗X = R − τ ′u+1+V

RL−1 , pX = L and a tight deadline. As

an OPT -only job, X will be too hot to be scheduled by A meanwhile

OPT will schedule it. OPT will then idle for D time steps until it

cools down to a temperature of ε, and then schedule J . J will still be

pending as u ≤ D, therefore u+ 1 +V +L+D ≤ V +L+ 2D+ 1 < dJ .

For this case A will only have scheduled J and so have a profit of 1

while OPT will schedule J , K and X receiving a profit of 1 + V + L.

Case 2: : Otherwise A starts J at some u > D. In this case OPT will start

J in the first time slot and so be ε or cooler by time u. We then proceed

as before releasing jobs K and X. Again we will get a competitive ratio

of 1 + V + L.

4.4.2 Upper Bound: Longest First

In this proportionally weighted model the value of a job depends on its length,

with a longer job giving more value than a short job. A natural algorithm

to consider for creating a schedule with this objective is therefore the simple

Longest First algorithm. Longest First will run a job whenever there is a

job admissible, meaning it belongs to the class of non-idling algorithms. If

there are several admissible jobs it runs the one with the largest processing

106

time. If there are several jobs with this processing time, then the job with

the smallest heat contribution is chosen. Longest First does not preempt

any jobs. We now provide an upper bound on the competitive ratio of the

algorithm Longest First which we will denote as A throughout the proof.

We analyse A by splitting the schedule produced by A into regions [u, v)

as in Theorem 3.5. To recall, each region is defined as starting at a time u

when a job J starts in A and ending at the time v that A starts another job

J ′. This means that for two consecutive regions [u, v) and [u′, v′) it must be

that v = u′. Each job started by A and OPT will give credits to some region

[u, v). We use ΦA[u,v) and ΦOPT
[u,v) to denote the credits associated to a region

[u, v) of A and OPT respectively. We then show that for every region [u, v)

it must be that when V = 0 we have ΦOPT
[u,v) ≤ (3

2
+ L)ΦA[u,v) and when V ≥ 1

we have ΦOPT
[u,v) ≤ (1+V +L)ΦA[u,v). Summing over all regions shows that A is

(3
2

+ L)-competitive when V = 0 and (1 + V + L)-competitive when V ≥ 1.

In every region A will get credit for the job J that it schedules in the

region so ΦA[u,v) = pJ . We also give ΦOPT
[u,v) the same pJ credits for that region

to account for the fact that J may be scheduled by OPT at some point in

the future. This means that we now only consider jobs started by OPT in a

region [u, v) that have not already been scheduled by A.

We use the following lemmas to bound the credit that can be generated

by OPT -only jobs in any given region.

Lemma 4.7. If an OPT -only job J is started by OPT at a time t and J is

not the last OPT -only job in that region, pJ ≤ V .

Proof. As we know that τt ≤ 1, it must be that h∗J > R − 1/RpJ−1 for J

107

to be OPT -only. It must also be that τ ′t ≥ 0, therefore τ ′t+pJ > 1 − 1/RpJ .

By definition of the region and OPT -only jobs it must be that A stays idle

during the region [t, t + pJ) (otherwise a new region will be started and so

J was the last job that OPT could start in that region), which will give

τt+pJ ≤ 1/RpJ . For there to be another OPT -only job in the region we must

have τt+pJ > τ ′t+pJ . This implies 1/RpJ > 1 − 1/RpJ , which is equivalent to

pJ < logR 2. As pJ must be an integer it means that for this to be possible

pJ ≤ dlogR 2e − 1 = V .

Lemma 4.8. The maximum credits that OPT can generate from OPT -only

jobs in a region [u, v) is V + L.

Proof. First we note that a job X that starts at some time t with hX = x+η

where x = (R−1)(RpX−τt)
RpX−1 is OPT -only whenever η > 0. Using this definition

we will refer to x as being the minimum total heat contribution a job X

needs to be OPT -only.

Consider the heat contributions of two OPT -only jobs J and K such that

pJ > pK , that start at some time t. Let

j =
(R− 1)(RpJ − τt)

RpJ − 1
; k =

(R− 1)(RpK − τt)
RpK − 1

.

We have that j < k iff

(R− 1)(RpJ − 1)(RpK − 1)(τt − 1)(RpJ −RpK) < 0

Because we have R > 1, pJ > pK ≥ 1 and τt ≤ 1 the above statement must

be true. It follows that the minimum possible heat contribution per time

108

step of a longer OPT -only job will be no greater than that of a shorter job

if both started at the same time t.

Now consider two consecutive OPT -only jobs J1 and J2 with no other jobs

or idle time in between. Consider the heat contributions and temperatures

if they were replaced with a single OPT -only job K, of length pJ1 + pJ2 ,

starting at the same time J1 was started. We can assume all J1, J2, K have

the minimum heat contributions for them to be OPT -only. The previous

paragraph shows that K has a smaller per-step heat contribution than J1.

The same holds for J2; the fact that J2 starts later only makes the minimum

heat contribution, in order for it to be OPT -only, higher. Therefore such a

replacement results in a lower temperature of OPT by the time J2/K finishes.

We can apply a similar procedure so that all except the last OPT -only job

are merged into one OPT -only job, with the temperature of OPT only being

reduced. By Lemma 2.4 we still know that no other jobs or idle time space

in between the OPT -only jobs can increase the total number of OPT -only

jobs.

Lemma 4.7 shows that it is not possible for an OPT -only job of length

greater than V to be followed by another OPT -only job. The original set

of OPT -only jobs, before merging, will result in an even higher temperature

and therefore also will also not allow another OPT -only job to appear after

them. Therefore the total length of all except the last OPT -only jobs must

be at most V .

Finally we can bound the total credit of all the OPT -only jobs. We have

already bounded the total length of all but the last OPT -only jobs to be at

most V , while it is clear that the last OPT -only job can have a length at

109

most L. Therefore the maximum total length of OPT -only jobs is V + L; it

follows that this is the total number of credits that OPT can generate in a

region.

Now we use these lemmas to prove the competitiveness of Longest First.

Theorem 4.9. When V ≥ 1 Longest First is (1 + V + L)-competitive, oth-

erwise when V = 0 Longest First is (3
2

+ L)-competitive.

Proof. We will refer to the job scheduled by A in a given region as job J .

Therefore for each region [u, v) and job J scheduled by A in the region, we

have ΦA[u,v) = pJ . By Lemma 4.8 we bound the credit for OPT generated

by OPT -only jobs in every region to V + L. OPT also gets extra credit of

pJ for the possibility that it may run J in the future. The only jobs that

haven’t been accounted for now are the jobs that are started by OPT while

A is running J . We bound the processing time of these jobs in the following

cases:

Case 1: At u OPT doesn’t start a job. Note that this case applies if OPT

is running a job it has already started, but the credit for this job will

be counted towards the previous region. If pJ = 1 then no other jobs

can be started while A is running J , so we have that ΦOPT
[u,v) ≤ 1+V +L

and ΦA[u,v) = 1. This gives a competitive ratio of 1 + V + L.

Otherwise pJ > 1. In this case OPT may start some jobs while J

is running that A cannot start as A will not preempt J . The last of

these jobs gives a credit of at most L while the total length of all the

other preceding jobs is at most pJ − 2. This gives ΦOPT
[u,v) ≤ 2pJ − 2 +

110

V + 2L. This gives a competitive ratio for this case of 2pJ−2+V+2L
pJ

=

2 + 2L+V−2
pJ

≤ 2 + 2L+V−2
2

= L+ V
2

+ 1 ≤ 1 + V + L.

Case 2: At u OPT starts some job K with pK = pJ . If hK ≤ hJ then we

know that either K = J or K must have already been scheduled by A

at some time before u, as otherwise A would have started K instead of

J . In either case we do not need to give OPT any extra credit for K.

Hence ΦOPT
[u,v) ≤ pJ + V +L, and as pJ ≥ 1 this case gives a competitive

ratio of at most 1 + V + L.

Otherwise hK > hJ . We now consider two sub-cases.

Case 2a: τu ≤ τ ′u. In this case it must also be that τu+pJ ≤ τ ′u+pJ .

Therefore OPT cannot schedule any OPT -only job that has not

already been completed by A at some time earlier than u, after J

in this region. This is because A will always start a job if one is

admissible, and if a job was pending in A and admissible for OPT

it would also be admissible for A. This means that ΦOPT
[u,v) ≤ 2pJ ,

as OPT can only get credit for running K and possibly J in the

future. This gives a ratio of at most 2 for this sub-case.

Case 2b: τu > τ ′u. Similar to the proof of Lemma 4.7 it can be shown

that if τu > τ ′u then in the previous region OPT can have sched-

uled OPT -only jobs for at most V time steps. Therefore the

previous region will be at least L credits below its maximum and

as pK ≤ L we can charge K to the previous region without the

previous region’s credits exceeding the bound, in a similar way to

Theorem 3.5. This gives ΦOPT
[u,v) ≤ pJ + V + L, giving a ratio of at

111

most 1 + V + L.

Case 3: At u OPT starts some job K with pK > pJ . If τu > τ ′u then we can

again charge K to the previous region. This gives ΦOPT
[u,v) ≤ pJ + V + L

but no more as OPT starts K at u and pK > pJ so OPT cannot start

any other jobs while A is running J .

Otherwise τu ≤ τ ′u. In this case we know that if K was pending for A

then it would have also been admissible for A and as pK > pJ A would

have started K. This means that K must have already been scheduled

by A and so we do not need to give OPT any extra credit for it.

In either instance it must be that ΦOPT
[u,v) ≤ pJ + V + L, giving a com-

petitive ratio of at most 1 + V + L for this case.

Case 4: At u OPT starts some job K with pK < pJ . In this case it must be

that pJ ≥ 2. OPT may start some jobs before J has completed in A in

this case. Similar to Case 1, the last of these jobs has length at most

L and the total length of the other jobs preceding it is at most pJ − 1,

so the maximum number of credits that can be generated by these jobs

is pJ − 1 + L. This gives ΦOPT
[u,v) ≤ 2pJ − 1 + V + 2L. This results in a

competitive ratio of 2pJ−1+V+2L
pJ

= 2+ 2L+V−1
pJ

≤ 2+L+ V−1
2

= L+ V+3
2

.

When V = 0 this gives a competitive ratio of at most 3
2

+ L, while for

V ≥ 1 the competitive ratio is at most L+ V+3
2
≤ 1 + V + L.

Note that all of the analysis in this section can be extended to the case

where wJ = pαJ for any α ≥ 1. The analysis of the number of jobs remains

112

the same, but the different credit for the jobs has to be taken into account

i.e. Lemma 4.1 gives a new limit of V α + Lα on the amount of credit than

can be generated by OPT -only jobs in a region. This gives a lower bound of

(1 +V α +Lα) and an upper bound of 1 +V α +Lα when V ≥ 1 and Lα + 3/2

when V = 0.

4.5 Summary

In this chapter we considered maximising the throughput of variable length

jobs on a single machine. First we show that when jobs are unweighted and

preemption is not allowed, any non-idling algorithm is nearly optimal. We

also show that when both types of preemption are allowed, for any fixed

cooling factor, these algorithms are still optimal within constant factors.

We then consider the case where jobs have weights that are proportional

to their length. We show that for small cooling factors the algorithm Longest

First is optimal, and for the remaining cooling factors the algorithm is almost

optimal. This applies to the non-preemptive case, and with both types of

preemption.

113

Chapter 5

Flow Time

In this chapter we consider the objective of minimising the flow time of a

schedule. We will only consider the most basic single machine problem with

unit length jobs i.e. ∀J : pJ = 1. We only consider the unweighted version

of this problem. We will be considering the case of minimising total/average

flow time of the schedule produced by the algorithm, apart from in Section 5.7

where we consider some results for the case of minimising the maximum flow

time of a job in a schedule.

5.1 Motivation

Until this chapter we have only considered problems with the objective of

maximising throughput, however this is only one way of assessing the quality

of a scheduling algorithm. In some real life problems, maximising through-

put might not be the best way to decide which algorithm is best. For exam-

ple, consider the situation where customers have jobs that they would like

114

completing as soon as possible. In this case just completing the maximum

number of jobs is not an appropriate measure of the quality of the schedule

produced, while measuring the average flow time will give us a way to assess

how content most customers are with how quickly their job was completed.

If we want to make sure that each customer is as happy with the schedule

as every other customer, then it might make sense to measure the maximum

flow time of a job in the schedule. It is necessary to make a distinction

between the two different measures of flow time because it is possible that an

algorithm that is good at minimising average flow time performs very badly

for the objective of minimising maximum flow time.

5.2 Previous Results

Without temperature, it is well known that SRPT is optimal for minimis-

ing the total flow time in the case where jobs have arbitrary lengths and

preemption is allowed. It is also well known that FIFO is optimal for min-

imising the maximum flow time in the non-temperature case. For the offline

case without preemption with arbitrary job lengths it is known that unless

P = NP , no polynomial time approximation algorithm for minimum flow

time can have an approximation ratio of less than O(
√
n) [37]. They also

gave an approximation algorithm that achieved the O(
√
n)-approximation

ratio.

The NP -hardness result from [19] is originally for the model of maximis-

ing throughput but also implies that it is NP -hard to minimise total flow

time. In [6] they consider the makespan objective with multiple machines

115

where all jobs have the same release time (hence this is an offline problem).

They showed that it is not possible to have a polynomial time approxima-

tion algorithm with a better approximation ratio than 4/3 for minimising

the makespan of a schedule, unless P = NP . They also show a polynomial

time algorithm with an approximation ratio of 7/3 − 1/3m for minimising

the makespan. This algorithm and analysis therefore apply to the objective

of minimising the maximum flow time in the restricted case where all release

times are 0.

5.3 Preliminaries

We now outline some preliminaries that will be used throughout this chapter.

We will describe jobs that are pending for an algorithm as being stored in

a queue. For simplicity we will denote the queues of A and OPT at some

time t as Qt and Q′t respectively, for the time instant when all jobs that are

released at t have arrived, but before any jobs have been scheduled for that

time step. We will denote the size of a queue Q at this time instant t as |Qt|.

Where there is no chance of confusion we will also denote the flow time of a

schedule of A as |A|, of a job J as |J | and a set of jobs A as |A|. We will

denote the maximum heat of any job as hmax throughout this chapter.

Job naming conventions. We now describe the naming conventions that

we use for jobs in this chapter. In several of the proofs we release a large

number of jobs with heat contributions of exactly R − 1, and other jobs

with heat contributions of 0. Where it is appropriate, for simplicity, we

116

shall refer to these jobs as B-jobs and Z-jobs respectively. It should be

noted that whenever a B-job is scheduled by an algorithm at some time

t, the temperature of that algorithm at t + 1 will be hotter than at t. In

several proofs we also release what we call B-blocks. A B-block of size b

will be a block of B-jobs released one per time step for b time steps. After

each of the jobs in a B-block of size b has been scheduled the temperature

of the algorithm that schedules it will be at least 1 − 1/Rb. Using this

construction the temperature of an algorithm can be made arbitrarily close

to 1, by increasing the size of the B-block until the algorithm’s temperature

is as close to 1 as required, assuming the algorithm has to schedule all of the

jobs in the block. In a similar way we also release Z-blocks of size z, that

can reduce the temperature of the algorithm that schedules them completely

to at most 1/Rz.

Incremental flow times. It is well known that, in a discrete time model,

the flow time of a schedule is equal to the sum of the number of pending

jobs (i.e. the queue size) at each time step, over all time steps. This is

because the flow time of each job will increase by 1 for each time step until

they are completed. In many of the proofs we use this approach and bound

the number of jobs in the queues in each time step. Sometimes we call this

the incremental flow time of this time step. Moreover we can generalise this

and refer to the incremental flow time of a time interval [u, v) as the sum of

incremental flow times (i.e. queue sizes) of the time steps u, u+ 1, ...v − 1.

117

Repeating phases. Several of the proofs in this chapter use the fact that

total flow time is the sum of an algorithm’s queue size to show that an

algorithm has an Ω(n)-competitive ratio. We generally proceed by describing

a phase that is repeated many times. We formalise our approach in the

following lemma.

Lemma 5.1. Suppose the schedules of OPT and A can be partitioned into

phases such that (i) all phases are identical, i.e. they contain the same con-

stant number of time steps t = Θ(1), the jobs released and OPT and A’s

schedules are repeated over all phases; (ii) if started from an empty queue,

the incremental flow time of a phase for OPT and A are both Θ(1); (iii)

at the end of the phase the queue size of A will be one larger than before

the phase starts but OPT ’s will remain the same. Then after c phases the

competitive ratio of A is at least Ω(c).

Proof. Suppose there are c phases each containing a constant number of time

steps t = Θ(1). Just before the i-th phaseA’s queue contains i−1 jobs, so the

incremental flow time for the i-th phase for A will be Θ(1) + (i− 1)t = Θ(i)

(as each additional pending job contributes 1 to the incremental flow time

in each of the t steps). Meanwhile the incremental flow time for OPT is still

Θ(1). After the i-th phase A will now have i jobs in its queue. The total flow

time for A after c phases is therefore Θ(c2) and for OPT it is Θ(c), therefore

the competitive ratio of A is then Ω(c).

118

5.4 The Offline Case

In this section we give three results about the offline version of the problem:

first we generalise the proof in [19] and prove that the problem remains NP-

hard even if all jobs have heat contribution arbitrarily close to R− 1 (below

which the problem becomes trivial). For simplicity we only consider the case

when R = 2, although the proof can be extended to all R values. Next we

show that the problem is not approximable within a factor of O(
√
n), unless

P = NP (this however uses hot jobs). Finally we show an algorithm that

achieves a 2.618-approximation ratio for the special case where all jobs have

the same release time.

5.4.1 NP-hardness

The result given in this section is for the problem formally denoted as

1|ri, hi, pi = 1|
∑
Fi.

Theorem 5.2. When R = 2 and hmax is at most R − 1 + δ for any δ > 0,

the offline problem is NP -hard.

Proof. As in [19] this reduction is from NUMERICAL-3D-MATCHING (N3DM).

In this problem, there are 3 sets A1, A2 and A3 of k non-negative integers

each and a positive integer β. A 3-dimensional numerical matching is a set of

k triples (a1, a2, a3) ∈ A1×A2×A3 such that each number is matched exactly

once and all triples satisfy a1+a2+a3 = β. NUMERICAL-3D-MATCHING is

known to be NP -complete even when the values of all numbers are bounded

by a polynomial in k.

119

We construct a job for each integer in A1, A2, A3 as follows. First we define

a function f(x) = δx
(y−1)β for some y > 0 to be described later and small δ > 0.

We also fix some α1, α2 and α3 to be chosen later. For every integer a1 ∈ A1

there is an A1-job with a heat contribution such that hA1 = α1 + 8f(a1).

For every integer a2 ∈ A2 there is an A2-job with a heat contribution such

that hA2 = α2 + 4f(a2). For every integer a3 ∈ A3 there is an A3-job with a

heat contribution such that hA3 = α3 + 2f(a3). We will refer to these jobs

collectively as A-jobs. These heat contributions will be described in more

detail later but we first claim they must satisfy the following:

1 + α1

8
+
α2

4
+
α3

2
= 1− yδ

y − 1
(5.1)

α1 > 1− 79δ

105
; α2 > 1− 1829δ

1575
; α3 > 1− 9δ

7

1 ≥ hA1 > hA2 > hA3

It can be easily shown that it is possible to find values that satisfy all of

these conditions: first, if we choose α1, α2, α3 that are as close as possible

to the minimum values stated above then we have 1 > α1 > α2 > α3 and

moreover α1 + 2α2 + 4α3 < 7 − 8δ. Therefore the αi’s can be chosen such

that α1 + 2α2 + 4α3 is arbitrarily close to 7−8δ. Equation (5.1) is equivalent

to y = 7−(α1+2α2+4α3)
7−8δ−(α1+2α2+4α3)

, therefore we can make y as large as necessary. It

follows that the f(.) terms are arbitrarily small and so 1 > hA1 > hA2 > hA3 .

The job scheduling instance consists of a B-block of size x released at

time 0, where x is a constant large enough to bring the temperature to close

enough to 1 if all jobs in the B-block are scheduled consecutively, and the

120

3k A-jobs described above are released at time x. In addition we have k

“gadget” jobs that have heat contributions of 1 + δ, also released at time x.

Note that all non-gadget jobs have heat contributions of at most 1 and so

are always admissible at any time step.

The idea of the proof is as in [19] but will be described here for complete-

ness. We show there is a solution to the NUMERICAL-3D-MATCHING

instance if and only if there is a schedule that completes all jobs by time

x + 4k, i.e. with no idle time. The gadget jobs are hot enough so that in

order to be scheduled without idle slots they need to be scheduled every 4th

time slot, splitting the schedule into k blocks. The other jobs have heat

contributions that depend on two parts. The first part is the constant part

(α1, α2, α3). This part is large enough so that in each block there must be

exactly a single A1, A2 and A3 job, and also ensure that they must be sched-

uled in that order. The second part is variable and depends on the instance

of the matching problem. This defines the partition of triplets into the form

(a1, a2, a3) ∈ A1 × A2 × A3. The gadget jobs are then hot enough to force

every triple to satisfy each a1 +a2 +a3 ≤ β. We now formalise the argument.

(⇒) Suppose there is a solution to the instance of NUMERICAL-3D-

MATCHING. We construct a schedule that contains no idle time. We start

by scheduling all of the jobs in the B-block, which will bring the temperature

to close to 1. We then schedule the gadget jobs in every 4th time slot, which

splits the schedule into k blocks. We associate the ith triple (a1, a2, a3) to

an ith block containing the corresponding A1, A2, A3 jobs scheduled in that

order.

We can show that the temperature of the schedule never exceeds 1. The

121

non-gadget jobs must all be cooler than 1 so by definition after they have

completed the temperature must be at most 1, therefore we now show that

after each gadget job has executed the temperature must be no greater than

1 by induction. Note that after scheduling the B-block the temperature must

be close to, but below, 1.

We now work out the temperature of the schedule just before the ith

gadget job is started. By definition of f(x) and the fact that a1+a2+a3 = β,

we have that:

8f(a1)

8
+

4f(a2)

4
+

2f(a3)

2
=

δ

y − 1

Combined with the definition of α1, α2 and α3, the temperature just before

the gadget job is scheduled is at most

1 + hA1

8
+
hA2

4
+
hA3

2
= 1− yδ

y − 1
+

δ

y − 1
= 1− δ

Therefore after the gadget job the temperature is at most (1−δ+1+δ)/2 = 1.

(⇐) Suppose there is a schedule with no idle time. It must again be that

all of the jobs in the B-block are scheduled immediately in the interval [0, x),

bringing the temperature to close to 1. We now show that a gadget job must

be scheduled every 4th time slot. First we note that every job heat must be

hotter than α3, and because the temperature is arbitrarily close to 1 at time

x, it follows that the temperature must be hotter than α3 at any time after

x. We now show by contradiction that a gadget job cannot be scheduled two

time slots after the last gadget job was scheduled.

α3 + 1 + δ

8
+
hA3

4
+
hA3

2
>
α3 + 1 + δ

8
+
α3

4
+
α3

2
> 1− δ

122

This must be true as long as α3 > 1− 9δ/7.

We can use this restriction to work out the minimum temperature straight

after a gadget job has been scheduled.

τ + α3

16
+
α3

8
+
α3

4
+

1 + δ

2
= τ

Therefore τ > 1− δ/15.

We can use this to show that an A1 job must be in the first time slot of a

block. We show this by contradiction, assume it is not scheduled in the first

time slot then:

τ + α3

8
+
hA1

4
+
α3

2
>
τ + α3

8
+
α1

4
+
α3

2
≥ 1− δ

This must be true as long as α1 > 1− 79δ/105.

We can then use this information to work out what this will make the

new minimum temperature after a gadget job:

τ + α1

16
+
α3

8
+
α3

4
+

1 + δ

2
= τ

Therefore τ > 1− 7δ/225.

We now use this to show that an A2 job must be scheduled in the second

time slot.

τ + hA1

8
+
α3

4
+
hA2

2
>
τ + α1

8
+
α3

4
+
α2

2
≥ 1− δ

This must be true as long as α2 > 1− 1829δ/1575.

123

We now show that each triple must satisfy a1 + a2 + a3 = β. If this isn’t

the case then there must exist a triple (a1, a2, a3) such that a1 + a2 + a3 > β

which implies

8f(a1)

8
+

4f(a2)

4
+

2f(a3)

2
>

δ

y − 1

This means that:

1 + hA1

8
+
hA2

4
+
hA3

2
= 1− yδ

y − 1
+

8f(a1)

8
+

4f(a2)

4
+

2f(a3)

2
> 1− δ

and the gadget job that follows will not be admissible, contradicting the

feasibility of the schedule.

5.4.2 Inapproximability

In this section we extend the inapproximability result from [37] to show that

in our model for any R > 1 no polynomial time approximation algorithm

can have a worst case performance guarantee of O(n1/2−ε) for any ε > 0.

The proof is again a reduction from the N3DM problem. For consistency

with [37] we will redefine the notation used to describe the N3DM problem.

The problem consists of positive integers ai, bi and ci, 1 ≤ i ≤ k, with∑k
i=1(ai + bi + ci) = kD. The problem is finding if there exist permutations

π, ψ such that ai + bπ(i) + cψ(i) = D.

For every N3DM instance and for any given ε > 0, we construct a corre-

sponding scheduling instance. We first define some numbers:

r = dµk2(1/ε−1)D1/εe; g = rk2

124

where µ is a large constant.

For every number ai in the N3DM instance, we introduce a corresponding

job with a heat contribution of R − 1/R(2r+ai)rg−1, for every bi a job with a

heat contribution of R − 1/R(4r+bi)rg−1, and for every ci a job with a heat

contribution of R−1/R(8r+ci)rg−1. These 3k jobs are called big jobs and they

are all released at time rg.

We will also have a number of tiny jobs. Tiny jobs occur in groups denoted

by G(t; l) where t and l are positive integers. A group G(t; l) consists of l

tiny jobs, released at times t+ i for i = 0, ..., l−1, all with heat contributions

of R− 1. Note that it is always possible to process all jobs in G(t; l) during

the time interval [t, t+ l] with a total flow time of l (and a final temperature

below 1). We introduce the following groups of tiny jobs:

(T1) For 0 ≤ i ≤ k, we introduce the group G(i(14r +D + 1)rg; rg).

(T2) For 1 ≤ i ≤ g, we introduce the group G((k(14r+D+ 1) + ir+ 1)rg−

2g; 2g).

This completes the construction of the scheduling instance. The idea

is that the k + 1 groups of type (T1) occur regularly starting at time 0.

Each takes rg time steps and leaves k ‘holes’ each of length (14r + D)rg

between them. Similarly, the groups of type (T2) occur regularly after time

k(14r +D + 1)rg + rg. They leave holes of size (r2 − 2)g.

Each group has at least g jobs in it. The number g must be chosen

(by choosing a large enough µ) such that after scheduling consecutively g

jobs with heat contribution R− 1, the temperature of the system is brought

‘very close’ to 1. If this temperature were exactly 1 then a job with a heat

125

contribution of R− 1/Rx, for some positive integer x, would require exactly

x consecutive idle time steps before the job becomes admissible, and then

after its execution the temperature is again 1. In fact, when we say ‘very

close’, all we need is that this temperature is strictly greater than 1/R; a job

with heat contribution R− 1/Rx would still require x idle time steps. It can

be easily shown that after scheduling g consecutive jobs of heat contribution

R − 1, the temperature is at least 1 − 1/Rg, so for any constant R there is

a corresponding constant g that makes this temperature greater than 1/R.

Moreover, right after scheduling a big job the temperature is clearly also

greater than 1/R.

We will denote the total flow time obtained by the optimal algorithm as

F ∗ throughout this proof.

Lemma 5.3. If the N3DM instance has a solution then for the constructed

scheduling instance F ∗ ≤ 52rg2 holds.

Proof. Consider the following feasible schedule. All tiny jobs are processed

immediately at their release times. Hence, their total flow time equals (k +

1)rg+2g2. For every triple (ai+bπ(i)+cψ(i)) with sum D in the solution we put

the corresponding three jobs together into one of the holes of length (14r +

D)rg that are left free by the groups of type (T1). The job corresponding to ai

is scheduled first, followed by the job corresponding to bπ(i), and finally the job

corresponding to cψ(i). We now show that such a schedule is always feasible.

Consider the time ti after the (i − 1)-th type (T1) group has completed.

We have τti ≤ 1 and we know that a job of temperature R − 1/Rx will be

admissible after x consecutive idle time steps. The heat contribution of the

126

ai job is R − 1/R(2r+ai)rg−1, and so the job can be completed in (2r + ai)rg

time steps ((2r+ai)rg−1 idle time steps followed by one time step of actual

execution). After executing this job the temperature is at most 1 again. The

same holds for the other two jobs. As there is a matching we know that

ai + bπ(i) + cψ(i) = D. This means that all three jobs can be completed in

(14r+D)rg time steps, precisely the size of the hole between the (T1) groups

i− 1 and i.

It is easy to see that this schedule yields a total flow time of

((k + 1)rg + 2g2)+(
3

k∑
i=1

(ai + 2r) + 2
k∑
i=1

(bi + 4r) +
k∑
i=1

(ci + 8r) +
3

2
(14r +D + 1)k(k − 1)

)
rg

Since
∑k

i=1(ai + bi + ci) = kD and since D ≤ r, this gives an upper bound of

((k+1)rg+2g2)+(25rk+24rk(k−1))rg < (rg2 +2g2)+(49rk2)rg < 52rg2.

Next we prove that if the N3DM instance has no solution that the flow

time of the corresponding job instance must be large. Before that we need

several lemmas on the structure of the optimal schedule regarding how the

tiny jobs are scheduled. We first state this observation (see e.g. [19]): given

two jobs, scheduling the hotter job first followed by the cooler job will result

in a lower final temperature than scheduling them the other way round, as

long as the hotter job is admissible at the earlier time step. In particular

127

this means we can assume, without loss of generality, that an idle slot will

not precede a job if the job is admissible at the idle slot.

Define a tiny interval to be the time interval during which a group of tiny

jobs is released.

Lemma 5.4. In any optimum schedule, and in any subinterval of a (T1)

tiny interval where no big jobs are scheduled, we can without loss of gener-

ality assume that the schedule is in the form of a number (possibly zero) of

consecutive tiny jobs followed by a number (possibly zero) of consecutive idle

steps.

Proof. If there are some idle slots in a tiny interval, the only reason for

delaying the processing of those tiny jobs is to get a lower temperature by

the end of this tiny interval so that the big job that follows can execute earlier.

If there is an idle slot followed by a scheduled tiny job, we can change this to

a tiny job followed by an idle slot, and this (i) makes the temperature lower,

and (ii) reduces the flow time of this group of tiny jobs.

Lemma 5.5. If a schedule S∗ has flow time less than r2g2/4, then in each

(T1) tiny interval, the temperature must be strictly greater than 1/R at some

point.

Proof. Let the tiny interval be [t, t + rg − 1). If a big job is scheduled

somewhere inside then obviously the temperature is strictly greater than 1/R

after this big job. Suppose no big job is scheduled in this interval, and suppose

y of those tiny jobs are scheduled after time t+rg−1. By Lemma 5.4, we can

assume the other rg−y tiny jobs are scheduled consecutively in [t, t+rg−y).

Even if all these y delayed jobs are scheduled in [t+ rg, t+ rg + y), the flow

128

time of this tiny group is at least (rg − y) + y(y + 1) = rg + y2. Thus,

if y > rg/2, the flow time of this group alone is already at least (rg)2/4,

contradicting the condition of the lemma. Hence at least rg/2 > g tiny jobs

are scheduled consecutively starting at t, bringing the temperature to strictly

larger than 1/R.

Lemma 5.6. Consider a schedule S∗ with flow time less than r2g2/4 and

consider a (T1) group. Let y1 be the number of idle slots after the point of

highest temperature in the tiny interval. Then y1 < g.

Proof. Let t be the ending time of the tiny interval. By Lemmas 5.4 and

5.5, the hottest point in the tiny interval must have temperature greater

than 1/R. After this point all slots must be idle (since either a big job or

a tiny job can only raise the temperature). So there are (at least) y1 tiny

jobs delayed. Clearly, the only reason to delay scheduling these y1 jobs is

to schedule a big job in front of them. As any big job has heat at least

R − 1/R2r2g−1, it takes at least 2r2g − 1 idle steps from a temperature of

larger than 1/R before a big job is admissible. Hence a big job can finish

earliest at time t− y1 + 2r2g. Therefore, similar to the proof of Lemma 5.5,

the total flow time of this tiny group is at least (rg−y1)+y1(2r
2g). If y1 ≥ g

then the flow time of this group is already at least r2g2/4, contradicting the

condition of the lemma. Hence y1 < g.

Lemma 5.7. Consider a schedule S∗ with flow time less than r2g2/4 and

consider a (T1) tiny group where a big job is scheduled. Let y2 be the number

of tiny/idle slots in this tiny interval before the big job. Then y2 < rg/2 + g.

129

Proof. By Lemma 5.4, the tiny interval before the big job must consists

of consecutive tiny jobs followed by idle slots. There must be less than g

consecutive tiny jobs; any more would result in a temperature of greater

than 1/R and the big job cannot be scheduled in this tiny interval. From

the proof of Lemma 5.5, there cannot be more than rg/2 idle slots in a tiny

group. Hence y2 < rg/2 + g.

Lemma 5.8. In a schedule S∗ with flow time less than r2g2/4, a big job

cannot be scheduled after the end of the last (T1) group.

Proof. First we show that in S∗ none of the big jobs are processed during

the time interval that starts with the release of the last group of type (T1)

and ends with the release of the last group of type (T2). By Lemma 5.6, the

temperature is larger than 1/R less than g steps before the end of this last

(T1) group. Hence a big job can only be run at least 2r2g − g steps after

the end of the last (T1) group. Since the first (T2) group arrives after less

than r2g time steps, and the size of the (T2) group is 2g, this big job must

be executed at least (2r2g − g) − r2g − 2g = r2g − 3g steps after the end

of the (T2) interval. Some of these (T2) jobs may be executed during this

(T2) interval or after it. From Lemma 5.4 we can assume w.l.o.g. that any

(T2) jobs not delayed are executed as early as possible in this interval, and

those delayed are scheduled after the big job. There are two possibilities: (1)

If less than g tiny jobs are scheduled in the tiny interval, i.e. at least g are

delayed to after the big job, then the total flow time of these tiny jobs is at

least (r2g − 3g)g ≥ r2g2/4, contradicting the condition of the lemma. (2) If

at least g tiny jobs are scheduled in the tiny interval, then the temperature

130

becomes larger than 1/R, so the big job will need another 2r2g idle steps,

i.e. it can only be executed completely after the next (T2) group. We can

then apply the same argument to the next group.

Therefore, the only remaining possibility is to execute the big job after the

last (T2) group, which is completed at time (k(14r+D+1)+gr+1)rg. Hence,

the big job has a completion time of at least r2g2 + rg, and since its release

time is rg, its flow time will therefore be at least r2g2+(r−1)g > (r2g2)/4 for

suitably large r and g, again contradicting the condition of the lemma.

Lemma 5.9. If the N3DM instance does not have a solution, then for the

constructed scheduling instance F ∗ ≥ r2g2/4 holds.

Proof. Consider an optimum schedule S∗ and suppose that its total flow

time is strictly less than r2g2/4. From Lemma 5.8 we know that the big

jobs can only be scheduled before the end of the last group of (T1) jobs.

If all (T1) tiny jobs are scheduled as soon as they are released, then the

big jobs can only be scheduled in the holes between (T1) intervals. The

temperature at the beginning of the hole is larger than 1/R, and each hole

is of size (14r + D)rg. However, not all tiny jobs may be scheduled in their

intervals. From Lemma 5.6 we know that a temperature of larger than 1/R

will appear at most g steps before the start of the hole. If a big job is

scheduled in a tiny interval earlier than the final g steps of the interval,

we count it towards the hole before it; Lemma 5.7 tells us that it must be

scheduled at most rg/2 + g steps into a tiny interval. Thus, the ‘effective’

size of a hole (counting from the point before the hole when the temperature

is larger than 1/R, to the last point when a big job can be scheduled) is at

131

most (14r +D)rg + rg/2 + 2g ≤ 15r2g.

Suppose two jobs corresponding to the numbers ci and cj are scheduled

into one of these holes. Before each big job can start there must be at least

8r2g − 1 idle time steps (from a point when the temperature is larger than

1/R, either because of the tiny group or another big job). Adding the two

time steps to actually execute the jobs, there must be at least 16r2g time

steps in a hole to schedule two jobs corresponding to the numbers ci and

cj, therefore this is impossible. As there are k holes and k c-jobs, having no

c-job in one hole would imply two or more c-jobs in another hole, so it follows

that each hole must contain exactly one job corresponding to some ci.

By similar arguments we can show that every hole must contain exactly

one job corresponding to some ai, bj and ch respectively. Again by relating the

heat contribution of the jobs to the number of idle steps required, this implies

that for the corresponding three numbers (2r + ai)rg + (4r + bj)rg + (8r +

ch)rg ≤ (14r +D)rg + rg/2 + 2g. Moreover, as ai, bi and ci are integers, the

quantity on the left is a multiple of rg and so the extra rg/2+2g is not useful

and the inequality is equivalent to (2r+ai) + (4r+ bj) + (8r+ ch) ≤ 14r+D,

i.e. ai + bj + ch ≤ D. This in turn means that ai + bj + ch = D since the

sum of these 3k numbers is kD. This is a contradiction as this implies the

N3DM instance has a solution, and therefore our claim is proved.

We have introduced 3k big jobs, k + 1 groups of tiny jobs of size rg and

g groups of tiny jobs of size 2g, so the total number of jobs n is equal to

3k + (k + 1)rg + 2g2 = 3k + (k + 1)r2k2 + 2r2k4.

Lemma 5.10. For any constant γ, there exists sufficiently large k and D

132

such that γn1/2−ε < r/208.

Proof. We have n = 3k + r2k2(k + 1) + 2r2k4 < 4r2k4. Hence

n1/2−ε < 41/2−εr1−2εk2−4ε < 2r(µk2(1/ε−1)D1/ε)−2εk2−4ε = (2µ−2εk−2D−2)r.

Hence, no matter how large γ is, there are large enough k and D so that

γn1/2−ε is smaller than r/208.

Theorem 5.11. For any ε > 0, there is no polynomial time approximation

algorithm for minimising total flow time with worst-case approximation ratio

O(n1/2−ε), unless P = NP .

Proof. Suppose an approximation algorithm A with approximation ratio

O(n1/2−ε) exists. The approximation ratio of A is smaller than r/208 by

Lemma 5.10. Take an instance of N3DM, and perform the above construc-

tion. Both r and g are polynomial in k and D, thus the number of jobs is also

polynomial. Moreover the heat contributions of a big job R− 1/R(2r+ai)rg−1

(more precisely the −1/R(2r+ai)rg−1 part) can be encoded in O((r + ai)rg)

bits, again polynomial in k and D. Thus, as long as the instance of N3DM is

encoded in unary (N3DM remainsNP -complete when encoded in unary [37]),

the size of the constructed instance is polynomial in the size of the N3DM

instance and this can be done in polynomial time. Apply algorithm A to the

resulting instance. From Lemma 5.3, if the N3DM instance has a solution

then the flow time of the scheduling instance returned by A is smaller than

52rg2 · r/208 = r2g2/4. On the other hand, if the N3DM instance has no

solution then from Lemma 5.9 the flow time returned by A is at least r2g2/4.

133

Hence with the approximation algorithm A we can distinguish the two cases

and solve the N3DM problem in polynomial time, hence P = NP .

Note that this result also implies that no online polynomial-time algo-

rithm can have a competitive ratio better than O(
√
n), unless P = NP .

5.4.3 Approximation: Identical Release Times

We consider the single machine case with n jobs, all having the same release

time, w.l.o.g. we can assume it is 0. More formally this problem is denoted

as 1|ri = 0, hi, pi = 1|
∑
Fi.

Note that if more than 1 job with a heat contribution of R is released

then no algorithm will ever be able to schedule more than the first such job.

Therefore we will restrict our attention to the set of inputs with at most 1

job with a heat contribution of R, as these are the only inputs that allow a

feasible schedule to be constructed.

For each job Ji with a heat contribution hJi > R − 1, we define a value

ki that is the largest k such that hJi >
Rk−1
Rk−1 .

We now show an upper bound for this case. The upper bound proof makes

use of two propositions from [6] that will be restated here for completeness.

Proposition 5.12. [6] Any schedule in which every job Ji is executed after

at least ki idle slots is feasible.

Proposition 5.13. [6]

When R ≥ 2, in an optimal schedule, between the execution on the same

processor of jobs Jj and Ji (where Jj is before Ji), of heat contributions

134

hJj , hJi > R−1 there are at least ki−1 slots, which are either idle or execute

jobs of heat contribution at most R− 1.

First the algorithm orders all of the jobs in non-decreasing order by heat

contribution i.e. hJ1 ≤ hJ2 ≤ ... ≤ hJn . Next we split the jobs into 2

sets depending on their heat contribution. We refer to the number of jobs

with a heat contribution of not hotter than R − 1 as c and use this to

split the jobs. We define set C as all jobs with heat contributions of not

hotter than R − 1, C = {J1, J2, ..., Jc} and the set H as all the other jobs,

H = {Jc+1, Jc+2, ..., Jn}. For simplicity we will refer to a job Ji in set C

(where i ≤ c) as Ci and a job Jc+i in set H (where i ≤ n− c) as Hi.

The algorithm first assigns the hottest job, Hn−c if H 6= ∅, to the first

time slot. For time slots 2 to c + 1 the algorithm then assigns all of the C

jobs in descending order. These jobs will always be admissible as they all

have heat contributions of not greater than R− 1. All of the remaining jobs

Ji ∈ H−{Hn−c} are then scheduled in the coolest first order, where each job

of heat contribution hJi is preceded by ki idle time slots. Proposition 5.12

ensures that the schedule is feasible.

This is only a small modification of Coolest First, but it is necessary to

obtain the 2-approximation ratio. To illustrate this necessity consider the

following example, we have two jobs J1 and J2 such that hJ1 = R − 1 and

hJ2 = R − 1/Rk for some large k. Coolest First would schedule J1 followed

by J2 and produce a schedule with the total flow time of 1 + Ω(k) while the

modification given here will schedule them in the opposite order, producing

a schedule with the flow time of 2.

135

Theorem 5.14. When R ≥ 2, the above algorithm A achieves a 2.618-

approximation ratio for minimising total flow time.

Proof. If c ≥ n− 1 then A will schedule 1 job every time step without idling

and so must be optimal, therefore we need to only consider the case where

c < n − 1. It is clear that |A| = |C| + |H| = |C| + |H − {Hn−c}| + 1. We

can use the following to calculate the flow time of each of the jobs Ci for

1 ≤ i ≤ c as |Ci| = i+ 1. This can be used to get the flow time for the set C.

|C| =
c∑
i=1

|Ci| =
c2 + 3c

2

Next we calculate the flow time of each job Hi for 1 ≤ i < n− c: |H1| =

1 + c + kc+1 + 1 and |Hi| = |Hi−1| + kc+i + 1, solving this recursion gives

|Hi| = c + i + 1 +
∑i

j=1 kc+j. We can then use this to get the flow time for

the set H − {Hn−c}.

|H−{Hn−c}| =
n−c−1∑
i=1

|Hi| =
n2 + n− c2 − 3c− 2

2
+
n−c−1∑
i=1

kc+i((n−c−1)−(i−1))

These can be combined to give the total flow time of A:

|A| = 1+
c2 + 3c

2
+
n2 + n− c2 − 3c− 2

2
+
n−c−1∑
i=1

kc+i((n−c−1)−(i−1)) (5.2)

We now analyse the flow time of the optimal schedule by analysing the

flow time of a virtual schedule OPT ′ that must have a flow time of no more

than that of OPT . OPT ′ will schedule the hottest job Hn−c at the first

time step. OPT ′ will then schedule each job in H according to the Shortest

136

Processing Time First rule, but using ki as the processing time for each job

Ji (instead of ki + 1 as in A). OPT ′ will then assign the jobs from C into

the earliest possible idle slots in between each of the jobs from H. The

virtual schedule of OPT ′ may not be feasible but by Proposition 5.13 and

the optimality of the Shortest Processing Time First rule when temperature

is not considered, it must be that |OPT | ≥ |OPT ′|. We will denote the flow

time, in the schedule of OPT ′, of a job J as |J∗| and a set A as |A∗|.

We now analyse this virtual schedule. It must be that |OPT ′| = |C∗| +

|H∗| = |C∗| + |H∗n−c| + |(H − {Hn−c})∗|. It must be that |C∗| + |H∗n−c| ≥

|C| + |Hn−c| = 1 + (c2 + 3c)/2. We can work out the flow time of each job

Hi for 1 ≤ i < n − c: |H∗1 | = 1 + kc+1 and |H∗i | = |H∗i−1| + kc+i, solving the

recursion gives |H∗i | = 1 +
∑i

j=1 kc+j. This can be used to get the total flow

time for the set H − {Hc−n}.

|(H −{Hn−c})∗| =
n−c−1∑
i=1

|H∗i | = (n− c− 1) +
n−c−1∑
i=1

kc+i((n− c− 1)− (i− 1))

These can then be combined to bound the flow time for OPT :

|OPT | ≥ |OPT ′| = 1 +
c2 + 3c

2
+ (n− c−1) +

n−c−1∑
i=1

kc+i((n− c−1)− (i−1))

(5.3)

Combining Equations (5.2) and (5.3) gives us the competitive ratio:

|A|
|OPT |

≤ n2 + n+ 2
∑n−c−1

i=1 kc+i((n− c− 1)− (i− 1))

c2 + c+ 2n+ 2
∑n−c−1

i=1 kc+i((n− c− 1)− (i− 1))

As every ki value for a Ji ∈ H must be at least one, we can work out the

137

minimum value for
∑n−c−1

i=1 kc+i((n− c− 1)− (i− 1)) to be (c2 − 2cn + c +

n2 − n)/2. This gives a ratio of at most:

n2 + n+ c2 − 2cn+ c+ n2 − n
c2 + c+ 2n+ c2 − 2cn+ c+ n2 − n

=
c2 − (2n− 1)c+ 2n2

2c2 − (2n− 2)c+ n2 + n
<
c2 − 2nc+ 2n2

2c2 − 2nc+ n2

Let x = c/n, then this ratio is equal to x2−2x+2
2x2−2x+1

. For 0 ≤ x ≤ 1, the maximum

value of this ratio is equal to (3 +
√

5)/2, attained at x = (3−
√

5)/2.

5.5 Bounded Maximum Job Heat

Now we show some lower bounds for online algorithms to minimise the total

flow time of a schedule when hmax is at most R − ε for some 0 < ε < 1.

We consider this range of ε values because this is the only ε range that gives

non-trivial results. No algorithm can give a bounded competitive ratio when

hmax is allowed to be exactly R. This is because after scheduling any job with

a non-zero heat contribution, any algorithm will have a positive temperature

which means that the algorithm will never be able to schedule a job with

heat R, and so any such jobs will end up with an infinite flow time.

If, on the other hand, hmax is restricted to be no hotter than R − 1

then any job will be able to be scheduled at any time. This is because the

maximum temperature of an algorithm is 1 and if the maximum heat of a

job is R − 1 then after running any job the temperature of any algorithm

will be no more than (1 +R− 1)/R = 1, which means that the temperature

threshold can never be violated. As the flow time of an algorithm’s schedule

increases with the queue size of the algorithm, the only way that an optimal

138

algorithm can be better than the online algorithm is if at some point both

algorithms have the same queue size, but the online algorithm idles while

the optimal algorithm schedules a job. However if the maximum heat of a

job is limited to R − 1, all jobs in the online algorithm’s queue are always

admissible. It is therefore trivial to show that any non-idling algorithm is

1-competitive.

Using standard 3-field notation this problem is denoted as 1|online-ri, hi ≤

R− ε, pi = 1|
∑
Fi.

5.5.1 Lower Bounds

We now show that no online algorithm is better than Ω(log(1/ε))-competitive.

In this proof we frequently use the fact that starting a hot job before a cool

job gives a cooler final temperature than if the jobs are scheduled the other

way around. Note that this still applies when swapping a hot job with an

idle time slot.

Theorem 5.15. For any integer k ≥ 2, if hmax = R−ε where ε ≤ (R−1)/Rk

then any deterministic algorithm is at least k-competitive.

Proof. Fix a deterministic algorithm A. At time 0 release a job J1 with

hJ1 = R − 1 and a job J2 with hJ2 = (R − 1)/Rk−1. A will start a job at

some time t. We analyse the two cases.

Case 1: If A starts J1 first then at time t+ 1 we release another job J3 with

hJ3 = R− (R− 1)/Rk. A can either schedule J2 or J3 as its next job.

Case 1a: Suppose A starts the job J2 first, then starts J3 at some time

u. We now show that u ≥ t + k + 1. If J2 is started by A on or

139

after t+ k then by definition of the case J3 cannot start before J2

and so we must have that u ≥ t + k + 1. Otherwise J2 is started

earlier than t+ k. In this case the temperature of A at time t+ k

must be at least R−1
Rk

+ (R−1)/Rk−1

Rk−1 > (R− 1)/Rk, therefore J3 will

not be admissible until at least t + k + 1. The temperature of A

at u+ 1 (i.e. directly after J3 has been scheduled) must be hotter

than hJ3/R = 1− (R− 1)/Rk+1.

We then release a job J4 with a heat contribution of R− 1/Rk−1,

starting at time u + 1 and repeating every k time steps. As

1/Rk−1 > (R−1)/Rk ≥ ε this job temperature is below R−ε. We

now show that A needs at least k− 1 idle time steps to cool down

before being able to schedule each of these J4-jobs. For a J4-job

to be admissible the temperature must be no more than 1/Rk−1.

As τu+1 > 1− (R− 1)/Rk+1, after k− 2 idle slots from time u+ 1

the temperature of A becomes (1−(R−1)/Rk+1)/Rk−2. This last

term is greater than 1/Rk−1 if and only if (R−1)R1−2k(Rk−1) > 0

which is true as R > 1 and k ≥ 2. So after k − 2 idle slots A will

still be too hot to schedule the first J4-job.

We now show that it will not be possible for A to schedule the

rest of the J4-jobs without at least k − 1 idle steps before each

J4-job that is scheduled. We assume that each J4-job starts as

soon as it is admissible in A. Recall that swapping a hot job with

an idle slot will increase the final temperature. As all of the J4-

jobs have the same heat contributions postponing a J4-job when

it is admissible cannot increase the number of J4-jobs that A can

140

schedule in a given time interval, therefore the assumption is safe.

We also know that each job must be admissible after at most k−1

idle time steps following the previous J4-job because after k − 1

idle time steps the temperature of A is at most 1/Rk−1.

Consider the temperature of A at time u + k + 1 in case 1a i.e.

after the first J4-job has been scheduled by A

τu+k+1 >

(
1− (R− 1)/Rk

R

)
/Rk +

R− 1/Rk−1

R
.

After k− 2 idle time steps we can then calculate the temperature

of A

τu+2k−1 >

(
1− (R−1)/Rk

R

)
/Rk + R−1/Rk−1

R

Rk−2 .

This is not only hotter than 1/Rk−1 but also hotter than (1 −
(R−1)/Rk

R
)/Rk−2 (i.e. the minimum value of τu+k−1). This means

that the temperature of A just before it has scheduled this second

J4-job will be hotter than before it scheduled the first. This in

turn means that after each J4-job has been executed it will be

hotter than after executing the last, and therefore between each

J4-job there must be k − 1 idle time steps.

Case 1b: Alternatively A can start J3 first at some time u. At t + 1

the temperature of A is (R − 1)/R. In order to start J3 the

temperature of Amust be no hotter than (R−1)/Rk and therefore

we have that u ≥ t+ k.

If u ≥ t+ k + 1 then we release a job J4 with a heat contribution

141

of R − 1/Rk−1 every k time steps starting at u + 1 as in case 1a.

Because the temperature at u+1 is the same as in case 1a, we can

use the same argument as case 1a to show that A can only start

each J4-job after at least k − 1 idle time steps. A will also still

have J2 pending but scheduling J2 either before the first J4-job or

between any J4 jobs can only increase the temperature of A, and

will therefore not reduce the number of idle time steps A needs

before scheduling the next J4-job.

Otherwise it must be that u = t + k, and therefore τu+1 = 1. In

this case we release a job J4 with a heat contribution of R−1/Rk−1

every k time steps starting at u+ 2. Again we can safely assume

that these J4-jobs are started as soon as they become admissible,

and they will become admissible in A after at most k − 1 idle

steps. If J2 is scheduled before the first J4-job then at u + k

the temperature of A will be at least 1
Rk−1 + (R−1)/Rk−1

Rk−1 > 1/Rk−1,

meaning that J4 will not be admissible until u+k+1. In a similar

way to case 1a we can calculate the temperature after scheduling

the first J4-job

τu+k+2 ≥
1/R + (R− 1)/Rk

Rk
+
R− 1/Rk−1

R
= 1−(R− 1)(Rk −R)

R1+2k
.

After k−2 idle time steps we can again calculate the temperature

of A for this case

τu+2k ≥
1− (R−1)(Rk−R)

R1+2k

Rk−2 .

142

This last term is not only greater than 1/Rk−1 but hotter than the

minimum possible value of τu+k iff (R− 1)(Rk − 1)(Rk −R) > 0,

which is true as R > 1 and k ≥ 2. Therefore it must be that

A needs more than k − 2 idle slots before being able to schedule

the next J4-job. This also means that the temperature of A after

it has scheduled this second J4-job is again hotter than after it

scheduled the first, and as this will only increase with each job it

must be that between each J4-job there must be k − 1 idle time

steps in A.

Otherwise J2 is not started before the first J4-job. In this case

τu+k = 1/Rk−1, meaning J4 becomes admissible by u + k at the

earliest, and so will be started at this time giving τu+k+1 = 1. As

τu+k+1 = τu+1 we can actually infer that if J2 remains unscheduled

by A for the time interval [u, u + ik), that for any i ≥ 1, τu+ik =

1/Rk−1, and so the next J4-job will be scheduled at u+ ik giving

τu+ik+1 = 1. When the job J2 is scheduled in some interval [u +

ik+ 1, u+ (i+ 1)k+ 1), we can use similar calculations to the case

where J2 is scheduled before the first J4-job to show that the next

J4-job won’t become admissible until at least u+ (i+ 1)k + 1. It

then also follows that from this point there must again be k − 1

idle time steps in between each J4-job in A. We will show that J2

cannot be indefinitely postponed.

In either of these cases OPT schedules jobs J2, J3 and J1 at time t,

t+1 and t+2 respectively, this gives τ ′t+3 = 1. OPT will then idle until

143

J4 is released. As the release time of the first J4-job is always at least

t + k + 2 the temperature of OPT will be at most 1/Rk−1 when the

first J4-job is released and so can schedule it immediately. As there are

then k − 1 idle steps before the next J4-job is released OPT is clearly

able to schedule each of the J4-jobs as soon as they are released.

Consider the case when in total x copies of J4 are released. Denote

the flow time that OPT incurs from the jobs J1, J2 and J3 as µ. OPT

will get a flow time of 1 for each of the x J4-jobs and so for case 1

will get a total flow time of µ+ x. Meanwhile for case 1a and the case

1b where J2 is started before the first J4-job the flow time of A for

each of the x J4-jobs will be kx giving a total flow time of greater than

kx (as we are ignoring the flow time of J1, J2 and J3). For case 1b

where J2 is not started before the first i J4 jobs for some 0 ≤ i ≤ x the

flow time of the J4-jobs and J2 gained from time u+ 1 will be at least

(k−1)i+ki+(x−i)k ≥ kx. As x can be made arbitrarily large, we can

ignore the constant value of µ giving a competitive ratio of arbitrarily

close to k. If J2 gets postponed after x J4-jobs then the flow time of J2

in A alone is already at least xk, so no more J4-jobs need to be released

and the argument still works.

Figure 5.1: Theorem 5.15 Case 1 overall

144

Case 2: Otherwise A starts job J2 at time t. Suppose J1 is started by A

at some time v ≥ t + 1. At time v + 1 we release a job J3 with hJ3 =

R− (R− 1)/Rk that will be started by A at some time u. After k − 1

idle slots the temperature of A at v+k is (R−1)+(R−1)/Rk
Rk

> (R−1)/Rk.

This means that we must have u ≥ v + k + 1.

Meanwhile OPT will start J2, J3 and J1 at time t, v+1 and v+2. Note

that this will be possible because v+1 ≥ t+2 and τ ′t+2 = (R−1)/Rk+1,

so J3 will be admissible from this time, and J1 is always admissible.

Next we release a job J4 with a heat contribution of R−1/Rk−1, starting

at time u+ 1 and repeating every k time steps. Because the minimum

temperature of A at u+ 1 in this case is the same as the minimum at

u + 1 in case 1a we can use the same argument as in case 1a to show

that OPT is able to schedule each of these jobs as soon as they are

released, while A will have a delay of k − 1 time steps per job before

they can be scheduled. Again this can be repeated a large amount of

times to give a competitive ratio of k, thus concluding the proof.

Figure 5.2: Theorem 5.15 Case 2

The above theorem only gives a non-trivial result when ε < (R − 1)/R2.

145

The next theorem gives a bound that is not as strong but holds for any ε < 1.

Theorem 5.16. Any deterministic algorithm is at least 2-competitive when

hmax = R− 1 + δ for any δ > 0.

Proof. Fix a deterministic algorithm A. At time 0 we release a B-block of

size x, for some large enough x to be explained later. Initially we assume A

will always schedule a job when it has one that is admissible, we will return

to this assumption later. This means that A will schedule all x of these B-

jobs and have temperature of 1− α at time x where α = 1/Rx. At this time

step we then release a B-job, B1, and a job J1 with hJ1 = R− 1−Rδ + α.

If A schedules B1 at time x then immediately afterwards its temperature

is 1− α/R. At time x+ 1 we then release a job J2 with a heat contribution

of R − 1 + δ. A will be too hot to schedule job J2 as long as α/R < δ. We

can make α arbitrarily small by choosing a large enough x, so this is always

possible. A will therefore start J1 instead. This gives A a temperature of

1 − δ + α/R − α/R2 and so A is still too hot to schedule the job J2 and

must idle at x + 2 (as it has no other jobs in its queue). Meanwhile OPT

will schedule J1, J2 and B1 at times x, x+ 1 and x+ 2 respectively. We then

release a B-job in each of the next y time steps. During these time steps

|Qt| is at least 2 while |Q′t| = 1. The incremental flow time in these time

steps is therefore at least 2y for A and y for OPT , and thus for large y the

competitive ratio is arbitrarily close to 2.

Otherwise A schedules J1 at time x. At time x + 1 no new jobs are

released. A will schedule B1 as it is admissible, giving a temperature of

1 − δ/R. Meanwhile OPT will schedule B1 at time x and J1 at x + 1 and

146

end up with a temperature of 1 − δ + α/R − α/R2. At time x + 2 we then

release a job J3 with hJ3 = R − 1 + δ − α/R + α/R2. As we already have

that α/R < δ, we have that while OPT can schedule this job A cannot and

so must remain idle. We then continue to release y B-jobs and as before get

a competitive ratio arbitrarily close to 2.

We now return to the assumption that A will schedule a job whenever

it has one that is admissible. Suppose A idles at some time t when it has

an admissible job in its queue. We can easily see from the above cases that

it must be that |Qt| ≥ |Q′t| for any possible t. It is also easy to see that at

any time in any of the above cases, OPT can construct a schedule with the

jobs remaining in its queue that has no idle time. We then stop releasing

any further jobs for the next |Q′t| time steps. At each time t + i for every

0 ≤ i < |Q′t|, OPT will schedule a job in its queue. Starting at time t+ |Q′t|

we then release each of the y B-jobs at each time step as before. Again

|Q′u| = 1 during each of these time steps u while |Qu| ≥ 2 as A idled at least

in time step t. Again y can be made arbitrarily large so we get a competitive

ratio of arbitrarily close to 2.

5.5.2 Non-idling algorithms

We now give lower and upper bounds on the performance of non-idling al-

gorithms. The analysis is tight within constant factors, for any fixed R and

ε.

We first show a lower bound on the competitive ratio for this algorithm

class. This lower bound holds where the maximum heat of a job is bounded to

147

R−1+δ for any small δ > 0 which means that this class of algorithms cannot

ever achieve a constant competitive ratio for any non-trivial maximum job

heat.

Theorem 5.17. When hmax = R − 1 + δ for any δ > 0, any non-idling

algorithm is at least Ω(n)-competitive for any fixed R and δ.

Proof. Fix a non-idling algorithm A. The proof uses many jobs that are

organised as a large number of phases, each in turn contains a large number

of sub-phases. We begin with a description of sub-phases and phases. The

sub-phases are illustrated in Figure 5.3, while the overall proof construction

is illustrated in Figure 5.4. The proof uses a large number of K-jobs, all with

heat contribution R − 1 + δ. We also fix a large enough integer x that is a

constant depending on R and δ.

We now describe a sub-phase. Each sub-phase contains either x + 4 or

x+ 5 time steps. We maintain the following invariants: at the start and end

of each sub-phase, A’s temperature is at least 1 − 1/Rx. Moreover, at the

beginning of a sub-phase, OPT only has B-jobs in its queue while A only

has K-jobs in its queue. At the end of the sub-phase, OPT will have one

more B-job and A will have one more K-job in their queues. Finally, we

make sure that K-jobs are not admissible at any time during a sub-phase i.e.

the temperature is hotter than 1− δ throughout. This is clearly true at the

beginning of a sub-phase.

Let time t be the starting time of a sub-phase. At time t we release a job

J1 with hJ1 = R − 1 − α for some small 0 < α < Rδ/2 and another job J2

with hJ2 = R − 1− Rδ + α. Both J1 and J2 are admissible for A at t while

148

Figure 5.3: Theorem 5.17 sub-phases

any K-jobs are not, and so A must schedule either J1 or J2.

Case 1: A schedules J2 at time t. We release the following additional jobs:

at t+2 we release a job J3 with hJ3 = R−1−(R−1)δ−α/R+α/R2, and

at time t+3 we then release one B-job and one K-job. A must schedule

J1, J3 and the B-job at time t + 1, t + 2, t + 3 respectively: we show

that any K-jobs are not admissible at any of these time steps. Note

that τt = 1− 1/Rx can be made arbitrarily close to 1; for simplicity we

first assume τt = 1 here. Then we have:

τt+1 = 1− δ + α/R; τt+2 = 1− δ/R− α/R + α/R2;

τt+3 = 1− δ(R2 −R + 1)

R2
− 2α(R− 1)

R3

It is clear that at t + 1 and t + 2, A is hotter than 1 − δ as R >

1 and 0 < α < Rδ/2. We also have that τt+3 > 1 − δ as long as

(R − 1)(δR − 2α) > 0 which is true by choice of δ. Therefore the

K-jobs are not admissible at these times. The fact that τt is not 1

but 1− 1/Rx means the temperatures are actually slightly lower than

indicated above, but we can choose a large enough x to ensure the

difference is small enough so that any K-job remains not admissible.

149

Meanwhile OPT will schedule J1, J2, J3 and the K-job at time t, t+ 1,

t + 2 and t + 3. As both J1 and J2 are cooler than R − 1, they are

admissible at any time step. It can also be verified that τ ′t+3 ≤ 1 − δ

and so the K-job is admissible at t+3 as well, so this schedule is indeed

feasible.

At t+4 we then release another B-block of size x. BothA and OPT will

schedule B-jobs in the next x steps. (We know that τt+4 > τt+3 > 1− δ

as A scheduled a B-job at t + 3, so A is again too hot to schedule

K-jobs at any of these steps.) At time t+ 4 + x the temperature of A

therefore returns to at least 1 − 1/Rx as at the start of the case. At

t+ 4, OPT has one more B-jobs in its queue comparing to t, while A

has one more K-jobs.

Case 2: Otherwise A schedules J1 at time t. At t + 2 and t + 3 we release

a B-job and J3 respectively, and at time t+ 4 we then release a B-job

and a K-job. A must schedule J2, a B-job, J3 and the other B-job

at time t + 1 to t + 4, in this order: we show that A will be too hot

to schedule any K-job in any of these steps. As before we can assume

τt = 1.

τt+1 = 1− α/R; τt+2 = 1− δ + α/R− α/R2;

τt+3 = 1−δ/R+α/R2−α/R3; τt+4 = 1− δ(R
2 −R + 1)

R2
− α(R− 1)2

R4

It is clear that at t + 1, t + 2 and t + 3 that A is hotter than 1− δ as

R > 1 and 0 < α < Rδ/2. We also have that τt+4 > 1 − δ as long as

(R − 1)(δR2 + α − αR) > 0 and as (Rδ)/2 > α > 0 and R > 1 this

150

must also be true.

Meanwhile OPT schedules a B-job (from the already released B-block),

J1, J2, J3 and a K-job at time t to t+4, in this order. It can be verified

that τ ′t+4 ≤ 1 − δ, so a K-job is indeed admissible at t + 4. At t + 5

we then release another B-block of jobs of size x. Again we know that

τt+5 > τt+4 > 1−δ as A scheduled a B-job at t+4, so both A and OPT

will schedule B-jobs in the next x steps, and that the temperature of

A returns to close to at least 1 − 1/Rx as at the start of the case. At

this point OPT will again have one more B-job in its queue while A

will have one more K-job, comparing to time t.

This completes the description of a sub-phase. We now define a phase.

We maintain the invariants that whenever a phase begins, A has at least one

K-job in its queue while OPT has exactly two B-jobs in its queue. Moreover

A’s temperature is at least 1− 1/Rx at the beginning and end of the phase.

Finally, at the end of a phase, OPT again has two B-jobs in its queue whereas

A will have one more K-job comparing to the beginning of the phase.

For a phase that begins at time t, it consists of y sub-phases of jobs, the

first one at time t and each subsequent one immediately following the end

of the previous one, for some y ≥ 1 to be defined later. From the properties

of a sub-phase it follows that, at the end of the y-th sub-phase, OPT has

y+ 2 B-jobs in its queue while A has y new K-jobs (in addition to whatever

number of K-jobs it has at the start of the phase). Let u be the time when

the y-th sub-phase ends. No jobs are released for the next y time steps. In

each of these time steps OPT will schedule one of the B-jobs in its queue, so

151

in the end it returns to having two B-jobs in its queue. A meanwhile will be

too hot to schedule any K-jobs at time u and so will idle for one step, then

schedule y − 1 K-jobs that it still has pending. y needs to be chosen such

that exactly y−1 K-jobs scheduled consecutively by A starting at time u+1

brings its temperature to larger than 1−δ i.e. A cannot schedule the yth job

in its queue with that heat contribution. Finally at u+y we release a B-block

of size x, which both A and OPT schedule, bringing A’s temperature to at

least 1− 1/Rx. This completes the description of one phase.

Figure 5.4: Theorem 5.17 Overall Construction

We can now describe the complete construction. At time 0 we start an

initial phase: we release a B-block of size x. A will schedule all of these jobs.

At time x we release another B-job, and a K-job. x is large enough so that

A is too hot to schedule the K-job, so A will have to schedule B1. Meanwhile

OPT will schedule the first x− 1 B-jobs from the B-block then idle for one

time step and schedule the K-job when it is released. At this time A will

have only a K-job in its queue while OPT will have two B-jobs. A will have

a temperature of 1−1/Rx. Thus, we have established the starting conditions

required for a phase.

We then release a large number of phases c, each immediately following

152

the preceding one. Each phase involves the release of Θ(y) sub-phases, while

each sub-phase involves the release of Θ(x) jobs. The value of y will be the

same for each phase, because this value depends on the temperature of A at

time u (the time straight after the yth sub-phase ends). However, as the last

x time steps of each sub-phase are a B-block, this will bring the temperature

of A at u to very close to the same temperature after each sub-phase in

every phase. An x value can always be chosen so that the temperature at

u in each phase is arbitrarily close to the same temperature, meaning that

the y value will be the same for each phase. Each sub-phase involves x + 4

or x+ 5 jobs, therefore each phase involves the release of Θ(yx) jobs, and at

the end of each phase the queue size of A will be one larger than before the

phase starts, but OPT ’s remains the same. Although these conditions are

not exactly as in Lemma 5.1, as there is only very small variation in phase

lengths and y the analysis of the Lemma still holds, giving a competitive

ratio of Ω(c). For any fixed w, x and y values (which depend on fixed R and

ε values) n = Θ(cy(x+w)) = Θ(c), therefore the competitive ratio of A will

be Ω(n).

We now show an upper bound on the performance of non-idling algo-

rithms.

Theorem 5.18. For any integer k ≥ 1, if the maximum heat of a job is

R− ε where ε ≥ (R− 1)/Rk, any non-idling algorithm is O(kn)-competitive.

Proof. First we note that any job with the maximum heat contribution of

R − ε can be scheduled after k idle time steps. OPT can schedule no more

than 1 job per time step and so for an instance with n jobs we know that

153

|OPT | ≥ n. A meanwhile will schedule at least 1 job every k time steps,

with the first job being completed immediately. We now calculate the flow

time for the ith job Ji that is scheduled by A.

|J1| = 1; |Ji| ≤ (i− 1)k + i;

We can now use this to upper bound the total flow time of the schedule

produced by A

|A| =
n∑
i=1

|Ji| ≤ 1 + (kn2 − kn+ n2 + n− 2)/2 ≤ O(kn2)

Therefore we have that |A|/|OPT | ≤ O(kn).

Comparing this to the lower bound Ω(k) of the problem (Theorem 5.15)

this shows that ignoring constant factors this upper bound is a factor of O(n)

larger than the lower bound. For a fixed R value the upper bound becomes

O(n), and so this analysis is tight within constant factors.

5.6 Increased Thermal Threshold

In this section we look at the case where the temperature threshold of the

online algorithm is increased. We redefine ε so that the online algorithm

has a thermal threshold of 1 + ε for some 0 < ε < 1
R−1 but the temperature

threshold of OPT remains at 1. (Note that the maximum heat contribution

of a job remains at R.) We limit the value of ε to less than 1
R−1 because if

a larger value is allowed then, in a similar way to the case where we bound

154

job heats to a maximum of R − 1 (Section 5.5), any algorithm can always

schedule any job at any time step and therefore any non-idling algorithm

is trivially 1-competitive. Using standard 3-field notation the problem is

defined as 1|online-ri, hi, pi = 1|
∑
Fi.

This model is a form of resource augmentation as the power of the online

algorithm is being increased, relative to the adversary. This increased ther-

mal threshold could be achieved by improving the quality of the components

in the microprocessor, for example.

5.6.1 Lower Bounds

Theorem 5.19. For any integer k ≥ 1, if ε < (R − 1)/Rk+1 then no deter-

ministic algorithm is better than k-competitive.

Proof. At time 0 release a job J1 with hJ1 = R − 1. A will start J1 at some

time t. At t+ 1 we release a job J2 with hJ2 = R which will be started by A

at some time u. It must be that u ≥ t+k because otherwise the temperature

of A would be at least (R − 1)/Rk+1 + 1 > 1 + ε after scheduling J2 at any

time earlier than t + k. Meanwhile OPT schedules J2 and J1 at time t + 1

and t+ 2 respectively.

Starting at time u + 1, i.e. immediately after A has completed J2, we

release a job J3 with hJ3 = R − 1/Rk−1 every k time steps. We can safely

assume that each J3-job starts as soon as it is admissible in A because all

J3-jobs have the same heat contribution and so postponing a J3-job cannot

increase the number of J3-jobs that can be scheduled in any given interval.

Consider the first such job at time u+1. A has a temperature of at least 1 at

155

this time step (because it has just complete J2), and so would not be able to

schedule J3 for the next k−1 time steps as long as 1/Rk−1+(R−1/Rk−1)/R >

1 + ε, i.e. ε < 1
Rk−1 − 1

Rk
. Note that R−1

Rk+1 <
1

Rk−1 − 1
Rk

for all R > 1, therefore

the requirement ε < 1
Rk−1 − 1

Rk
is satisfied as ε < R−1

Rk+1 . Meanwhile at u + 1,

OPT has a temperature of at most 1/Rk−1 (as OPT has idled between t+ 2

and u + 1 ≥ t + k + 1), so is able to start J3 immediately. OPT will then

idle for k − 1 steps to cool to a temperature of at most 1/Rk−1.

The same holds for subsequent J3 jobs: OPT will always have been idle

for k−1 time steps before each job is released and so will be able to schedule

each J3-job immediately, while as long as ε < 1
Rk−1 − 1

Rk
A will only be able

to schedule each job after it has already been released for k − 1 time steps.

After scheduling a J3-job the temperature of A will always be greater than

1. Therefore in between each J3-job there must be at least k− 1 idle steps in

A by the same argument as why A has to idle for k− 1 steps before starting

the first of the J3-jobs.

If in total x such J3 jobs are released then the flow time of A is at least

xk while OPT will have a flow time of x for these jobs. As x can be made

arbitrarily large we can ignore the flow time generated by J1 and J2, giving

a competitive ratio arbitrarily close to k.

The following is a direct consequence of the above theorem.

Corollary 5.20. No algorithm can be 1-competitive when ε < (R− 1)/R2.

This contrasts with the upper bound to be given in Section 5.6.3 which

shows that Hottest First is 1-competitive whenever ε ≥ R2+R+1
(R−1)(R+1)2

.

156

5.6.2 Some Bad Algorithms

We now examine the limitations of some algorithms for this model. We

first show a counter example for all non-idling algorithms that holds for a

limited range of ε. We then show a lower bound for Coolest First, which is

a non-idling algorithm, which holds for every possible ε.

We now show a lower bound that gives a competitive ratio of Ω(n) but

for the restricted group of non-idling algorithms. This lower bound holds as

long as ε < 1/R2.

Theorem 5.21. If ε < 1/R2 then any non-idling algorithm is at least Ω(n)-

competitive.

Proof. Fix a non-idling algorithm A. Similar to Theorem 5.17, the proof

uses many jobs that are organised as a large number of phases, each in turn

contains a large number of sub-phases. We begin with a description of sub-

phases and phases. We fix some values x and y such that both are large

enough, to be described later. These values depend on R and ε. This proof

uses a large number of K-jobs, all with heat contributions of R− 1/Ry.

We now describe a sub-phase. Each sub-phase contains x+ 1 time steps.

We maintain the following invariants: at the start and end of a sub-phase

the temperature of A is at least 1 − 1/Rx and at no time step during a

sub-phase is the temperature of A any less than 1/R. At the start of each

sub-phase OPT will have only B and Z-jobs in its queue, with a total of

y + 1 jobs and at least one B-job. At the end of each sub-phase the queue

of OPT will contain one less B-job and one more Z-job than at the start of

the sub-phase. The queue of A will contain the only K-jobs at the start and

157

end of a sub-phase, with the number of K-jobs being the same at both the

start and end of each sub-phase. The temperature constraint on A ensures

that no K-jobs are admissible during the sub-phase.

Let t be the starting time of a sub-phase. At t we release a Z-job. As

A only has K-jobs already in its queue and these are not admissible at t, A

must schedule the Z-job at this time. At t + 1 we release a B-block of size

x. As 1− 1/Rx can be made arbitrarily close to 1, for simplicity we will first

assume that τt = 1 here. This means that τt+1 = 1/R. We will now show that

x and y values can always be chosen so that K is not admissible at this time

step. K is not admissible as long as 1/R+R−1/Ry > R(1 + ε). This is true

as long as ε < 1/R2−1/Ry+1, therefore we can always choose a large enough

y to ensure that any K-job remains not admissible as long as ε < 1/R2.

The fact that τt is not 1 but at least 1 − 1/Rx+1 means the temperatures

are actually slightly lower than indicated above but we can choose a large

enough x to ensure the difference is small enough so that any K-job remains

not admissible. Therefore for each time step t + i for 1 ≤ i ≤ x A will

start a B-job from the B-block, as scheduling each B-job will only raise the

temperature of A. This means that the invariants for A are maintained.

Meanwhile OPT will start one of the B-jobs in its queue at time t, and

then run each job from the B-block when it is released. It is clear that this

will also maintain the invariants for OPT .

This completes the description of a sub-phase. We now define a phase.

We maintain the invariants that whenever a phase begins and ends the tem-

perature of A is at least 1−1/Rx. At the start and end of a phase the queue

of OPT will contain exactly y + 1 B-jobs. Meanwhile the queue of A at the

158

start of each phase will contain at least one K-job, and at the end of each

phase will contain one extra K-job than at the start of the phase.

For a phase that begins at time t we release y consecutive sub-phases, the

first starting at time t and then each subsequent sub-phase starting immedi-

ately after the end of the previous one. From the properties of a sub-phase

it follows that after these y sub-phases OPT will have only y Z-jobs and one

B-job in its queue, while the queue of A will contain only the same number

of K-jobs as at the start of the phase.

Let u be the time the yth sub-phase ends. At u we release a B-block of

size y which A must schedule entirely as any of the K-jobs in its queue will

still not be admissible at any of these time steps. Meanwhile OPT schedules

all y Z-jobs in its queue consecutively bringing its temperature to at most

1/Ry. At time u+ y after the B-block has finished being released, we release

a K-job. A will still be too hot to schedule it and so remains idle, while

OPT will schedule the new K-job. We then release another B-block of size

x which will be scheduled by both A and OPT (as the K-jobs are still too

hot to be admissible in A) bringing the temperature of A to at least 1−1/Rx.

This clearly maintains the invariants for both OPT and A.

We now describe the complete construction. At time 0 we start an initial

phase. At this time we release a B-block of size x+ y + 1 and at time x+ y

we release a K-job. A will schedule all of the jobs from the B-block, and not

the K-job because by the time the K-job is released A will already be too

hot to schedule it, and so will schedule the final B-job. Meanwhile OPT will

schedule the first x B-jobs, then idle for y time steps, and schedule the K-job

as soon as it is released. After this time A will be hotter than 1− 1/Rx and

159

its queue will contain only a K-job, while OPT ’s queue will contain y + 1

B-jobs. Thus, we have established the conditions for the start of a phase.

We then release a large number of phases c, each immediately following

the preceding one. It is clear that each sub-phase involves the release of x+1

jobs, and so each phase involves the release of Θ(yx) jobs. At the end of

each phase the queue size of A will have increased, and so the conditions of

Lemma 5.1 are satisfied giving a competitive ratio of Ω(c). For any fixed x

and y values (which depend on fixed R and ε values) n = Θ(cyx) = Θ(c),

therefore the competitive ratio of A will be Ω(n).

We now consider the algorithm Coolest First. This is the algorithm that

schedules a job whenever one is admissible, and if several jobs are admissi-

ble it schedules the coolest one. Coolest First is a non-idling algorithm so

Theorem 5.21 applies, but we now give a stronger bound that shows Coolest

First has a competitive ratio of Ω(n) for all non-trivial values of ε.

Theorem 5.22. If ε < 1/(R− 1) then Coolest First has a competitive ratio

of at least of Ω(n).

Proof. Again we describe the adversary using sub-phases and phases. We

begin with a description of these sub-phases and phases. We fix some values

x, w and y such that all are large enough, to be described later. These values

depend on the values of R and ε. This proof uses a large number of K-jobs,

all with heat contributions of R− 1/Rw.

We now describe a sub-phase. Each sub-phase lasts x+w+ 1 time steps.

We maintain the following invariants: at the start of each sub-phase the

queue of A will either be empty or contain only K-jobs, and at the end of

160

each sub-phase the queue of A will contain one extra K-job compared to at

the start of the sub-phase. At the start of each sub-phase the queue of OPT

will either be empty or contain only Z-jobs, and at the end of each sub-phase

the queue of OPT will contain one extra Z-job compared to at the start of

the sub-phase.

Let t be the starting time of a sub-phase. At t we release a B-block of

size x and at time t+ x we then release a Z-block of size w. At t+ x+w we

release 2 jobs, a Z-job and a K-job. As B- and Z-jobs are all cooler than the

K-jobs that are already in A’s queue, A will schedule the complete B-block,

followed by the Z-block and at t + x + w the newly released Z-job. This

means the K-job will be in the queue of A at this time which is the end of

the sub-phase, maintaining the invariant.

Meanwhile OPT will also schedule the whole of the B- and Z-blocks.

OPT will then schedule the K-job as soon as it is released at t + x + w.

As OPT will be no hotter than 1/Rw at time t + x + w, the K-job will be

admissible. This means the Z-job will be in the queue of OPT at this time

which is the end of the phase, maintaining the invariant.

This completes the description of a sub-phase. We now define a phase.

We maintain the invariants that whenever a phase ends the queue of OPT

will be empty, while the queue of A will contain an extra K-job compared

to the start of the phase.

For a phase that begins at time t we release y consecutive sub-phases,

the first starting at time t, and then each subsequent sub-phase starting

immediately after the end of the previous one. From the properties of a sub-

phase it follows that after these y sub-phases OPT will have y Z-jobs in its

161

queue and A will have at least y K-jobs.

Let u be the time the yth sub-phase ends. At time u we stop releasing

jobs for y time steps. OPT will schedule the y Z-jobs in its queue and at

time u + y have an empty queue. Meanwhile A can schedule at most y − 1

of the K-jobs in its queue consecutively and be too hot to schedule a K-job

in the time step u+ y− 1, we now show this must be the case. At time u the

temperature of A must be close to 1/Rw+1, and as the temperature of A can

be made arbitrarily close to this value by increasing x, we will assume for

simplicity that τu = 1/Rw+1. We now show that if the yth K-job is scheduled

then the temperature of A will be hotter than 1 + ε. The temperature of A

after it scheduled the yth K-job can be calculated as

1

Rw+1+y
+

y∑
k=1

R− 1/Rw

Rk
.

This will be larger than 1 + ε as long as

R−w−y−1 +
R−w−y

R− 1
− R−w

R− 1
− R1−y

R− 1
+R/(R− 1)− 1 > ε

As both w and y can be made arbitrarily large then we can makeR−w−y−1+

R−w−y

R−1 −
R−w

R−1 −
R1−y

R−1 arbitrarily small which means that it is not possible to

schedule the yth K-job as long as ε < R/(R − 1) − 1 = 1/(R − 1). This is

the end of the phase, and so the invariants have been maintained.

For the complete construction we release a large number of phases c,

each immediately following the preceding one. It is clear that each phase

involves the release of Θ(x+w) jobs, and so each phase involves the release of

162

Θ(y(x+w)) jobs. After each phase the queue size of A is increased, while the

queue size of OPT will stay the same, so each phase satisfies the conditions

of Lemma 5.1 giving a competitive ratio of Ω(c). For any fixed w, x and y

values (which depend on fixed R and ε values) n = Θ(cy(x + w)) = Θ(c),

therefore the competitive ratio of A will be Ω(n).

5.6.3 A 1-Competitive Algorithm

We now show an upper bound for the Hottest First algorithm, that is 1-

competitive when ε ≥ R2+R+1
(R−1)(R+1)2

. We do this by showing that for every time

step t, the number of idle steps by OPT before t is less than the number of

idle time steps by A before t. This shows that the queue of OPT must be

at least the size of the queue of A and therefore the flow time of OPT must

be at least that of A.

First we split all jobs into two classes, any job J with R2/(R+1) < hJ(≤

R) is called an H-job, and every other job is called a C-job. We now show

three lemmas regarding the properties of H and C-jobs.

Lemma 5.23. OPT can never schedule two H-jobs consecutively.

Proof. If two H-jobs J1 and J2 run consecutively, the temperature of OPT

immediately after running the second job is given by

hJ1
R2

+
hJ2
R

>
R2/(R + 1)

R2
+
R2/(R + 1)

R
= 1

i.e. it exceeds the temperature threshold. The inequality is due to the

minimum heat contribution of H-jobs.

163

Lemma 5.24. When ε ≥ R2+R+1
(R−1)(R+1)2

, A can always schedule a H-job directly

after a C-job if some H-job is pending for A .

Proof. In order for a C-job J1 and H-job J2 to always be able to be scheduled

consecutively by A it must be that (1 + ε+ hJ1)/R
2 + hJ2/R ≤ 1 + ε, and as

hJ1 ≤ R2/(R + 1) and hJ2 ≤ R this is true if

1 + ε+R2/(R + 1)

R2
+
R

R
≤ 1 + ε

which is equivalent to ε ≥ R2+R+1
(R−1)(R+1)2

thus concluding the proof.

Lemma 5.25. When ε ≥ 1/(R2− 1), a pending C-job will always be admis-

sible to A.

Proof. In order for a C-job J to always be admissible for A it must be that

(1 + ε+ hJ)/R ≤ 1 + ε, and as we have that hJ ≤ R2/(R + 1) this is true if

1 + ε+R2/(R + 1)

R
≤ 1 + ε

which is equivalent to ε ≥ 1/(R2 − 1).

We now introduce some notation that will be used in the rest of the proof.

We refer to the number of C-jobs scheduled by A and OPT in [0, t) (i.e. time

steps 0, ..., t− 1) as ct and c′t respectively. The number of H-jobs scheduled

by A and OPT in [0, t) will similarly be referred to as ht and h′t.

Lemma 5.26. When ε ≥ 1/(R2 − 1), if there exists some time t where A is

idle and |Qt| = |Q′t|, it must be that h′t ≥ ht.

164

Proof. Consider such a time t. A will always schedule an admissible job

and by Lemma 5.25 all C-jobs are always admissible. Hence, as A idles at

t, it must have scheduled all of the C-jobs released so far, so c′t ≤ ct. As

|Qt| = |Q′t| we have that ct + ht = c′t + h′t. Therefore h′t ≥ ht.

Lemma 5.27. When ε ≥ R2+R+1
(R−1)(R+1)2

, at every time t it must be that h′t ≤ ht.

Proof. We prove this claim by induction on t. First we show two trivial base

cases. Before time 0 neither algorithm will have scheduled any job and so

it must be that h′0 = h0 = 0. If OPT has scheduled a hot job J at time 0,

then this job must also be admissible for A and as A will always schedule

the hottest job possible then either J , or a hotter job will be scheduled by

A and so h′1 ≤ h1.

For general t ≥ 1, we use the induction hypothesis h′t−1 ≤ ht−1 and h′t ≤ ht

to show that h′t+1 ≤ ht+1. Consider the following cases. If OPT schedules a

C-job at t then h′t+1 = h′t and as h′t ≤ ht it must also be that h′t+1 ≤ ht+1. In

the same way we can show h′t+1 ≤ ht+1 if at t both OPT and A schedule a

H-job. This means we only need to consider the case where OPT schedules

a H-job at t but A does not. In this case we know by induction that we

have that h′t−1 ≤ ht−1. By Lemma 5.23 we know that OPT cannot schedule

a H-job at t − 1, so h′t+1 = h′t−1 + 1. Hence if h′t−1 ≤ ht−1 − 1 then it must

be that h′t+1 = h′t−1 + 1 ≤ ht−1 ≤ ht+1.

Otherwise h′t−1 = ht−1. IfA schedules a H-job at t−1 then ht+1 = ht−1+1

and we know that h′t+1 = h′t−1 + 1, therefore it follows that h′t+1 = ht+1.

Otherwise A did not schedule a H-job at t − 1. However we can show that

an H-job must be pending at t: as h′t−1 = ht−1 and OPT schedules a H-

165

job at t, therefore at least ht−1 + 1 H-jobs have been released up to and

including time t, and as A does not schedule a H-job at t − 1, at least one

H-job is pending at t. A will always schedule a job when one is admissible

though, and we know that A scheduled either a C-job or no job at t − 1 so

by Lemma 5.24 this H-job or any hotter admissible job will be scheduled by

A at t, contradicting the assumption that it does not. This concludes the

proof.

Theorem 5.28. When ε ≥ R2+R+1
(R−1)(R+1)2

, Hottest First is 1-competitive.

Proof. Note that R2+R+1
(R−1)(R+1)2

> 1
R2−1 whenever R > 1. Thus for any ε >

R2+R+1
(R−1)(R+1)2

Lemmas 5.26 and 5.27 both hold.

For OPT to have a total flow time less than A there must exist some

time s such that |Qs| > |Q′s|. Moreover there must also exist some t < s

such that |Qt| = |Q′t|, A idles at t and OPT does not idle at t. It follows

from Lemmas 5.26 and 5.27 that if such a time t were to exist then h′t = ht.

We now show that such a t cannot exist, specifically by showing that if OPT

does not idle at t then A would not idle either. We consider two cases.

Case 1: OPT schedules a C-job at t. As h′t = ht and by definition of

time t we have |Qt| = |Q′t|, then c′t = ct (by the same argument as

Lemma 5.26). This means that if a C-job is pending for OPT at t,

that one must also be pending for A at t. By Lemma 5.25 we know

that this C-job must be admissible for A and A always schedules a job

if one is admissible, contradicting that A is idle at t.

Case 2: Otherwise OPT schedules a H-job at t. This means h′t+1 = ht+1+1

contradicting Lemma 5.27.

166

We have proven that when ε ≥ R2+R+1
(R−1)(R+1)2

Hottest First is 1-competitive.

When R = 2 then this makes Hottest First 1-competitive when ε ≥ 7
9
, while

from Corollary 5.20 we know that no algorithm can be 1-competitive when

ε < 1
4
.

By Theorem 2.9 we know that in the unit length job case with the ob-

jective of maximising throughput Hottest First performs worse than Coolest

First. It is therefore interesting to note that with the objective of minimising

total flow time with resource augmentation, Hottest First performs the best

out of the two algorithms.

5.7 Maximum Flow Time

We now show some bounds for algorithms that have the objective of minimis-

ing the maximum flow time. This objective can be described using standard

3-field notation as 1|online-ri, hi, pi = 1|Fmax

First we note that the k-competitive lower bounds given for the objective

of minimising total flow time can be easily modified to give Ω(k)-competitive

lower bounds with regard to the maximum flow time, in both the bounded

heat and increased threshold models.

It is trivial to show that the algorithms Hottest First and Coolest First

have competitive ratios of at least Ω(n). This is for both the case where the

thermal threshold of the online algorithm is increased and when job heats are

bounded, as the proofs do not even require a job being not admissible for the

online algorithm. The proofs take advantage of how the algorithms choose

167

which job to schedule, and use this to prevent another job ever being chosen.

For Coolest First if we release two jobs B and K in the first time step with B

being an B-job and hK > hB. Coolest First will schedule B as its cooler and

then in each time step i > 1 we release another B-job. These will always be

cooler than K and so Coolest First will schedule an B-job at each time step

and K will never get scheduled. Meanwhile OPT will schedule K followed

by B and then at each of the next i time steps the B-job that was released

at i− 1, giving OPT a maximum flow time of 2. To show that Hottest First

has a competitive ratio of at least Ω(n) we release the same jobs in the same

way except that hK < hB.

We now consider the algorithm FIFO. We define FIFO to be an algorithm

that schedules a job whenever one is admissible, and chooses the job with

the earliest release time if there are several admissible jobs. If several jobs

have the same release time then any of the jobs is chosen. This makes FIFO

a non-idling algorithm.

In the case without temperature FIFO is known to be optimal for the

objective of minimising the maximum flow time. FIFO is a non-idling al-

gorithm meaning that we can use Theorem 5.17 to show FIFO must have a

competitive ratio of at least Ω(n) for the bounded maximum job heat model

for any δ > 0. Even though Theorem 5.17 is for the objective of minimising

total flow time, the proof works by increasing the size of the queue of the on-

line algorithm to a large amount while keeping the queue size of the optimal

algorithm constant. The proof still holds because it is clear that each time

the queue size of the online algorithm increases by one, then the maximum

flow time out of the jobs in that queue also increases by one.

168

We can also show some results for FIFO in the increased thermal threshold

case. The result given in Theorem 5.21 still holds for the maximum flow time

case for the same reason as in the bounded heat case, however we now give

a lower bound for FIFO that holds for all non-trivial values of ε.

Theorem 5.29. If the temperature threshold of the online algorithm is 1 + ε

where ε < 1/(R− 1) then FIFO has a competitive ratio of at least Ω(n).

Proof. This proof starts in a similar way to that of Theorem 5.22, however

we don’t use repeated phases and sub-phases. We fix some large enough w,x

and y to be described later. At time 0 we release a B-block of size x and

at time x we release a Z-block of size w, with the modification that the last

two jobs of the Z-block are released at the same time step x + w − 2. At

x+w− 1 we release y B-jobs (note that this is not a B-block because all of

the jobs are released at the same time step), and at x+w we release a job K

with hK = R− 1/Rw. At x+w+ y we release a very large B-block of size c.

FIFO will schedule the first B-block, followed by all the jobs in the Z-

block, then schedule the final B-block, as all of these jobs are released before

K. This means that the temperature of FIFO at x + w + y will be at least

1− 1/Ry+1. We can therefore always choose values of w and y such that K

is not admissible at this time for any ε < 1/(R− 1), using techniques similar

to those in Theorem 5.22. FIFO will therefore schedule the final B-block,

and therefore not cool down enough during these time steps to schedule K.

The flow time of K will therefore be at least c as it can’t be scheduled until

the B-block has completed.

Meanwhile OPT will schedule all of the jobs from the first B-block fol-

169

lowed by those from the Z-block. OPT will then schedule K at time x + w

followed by the remaining two B-blocks in FIFO order . This means that the

maximum flow time for a job in OPT will be y+ 2. As c can be made much

larger than the values of w,x and y this gives a competitive ratio of Ω(n) for

FIFO.

We now examine an algorithm which can be seen as another interpretation

of FIFO, and show that it has a competitive ratio of at least Ω(n). We

will call the algorithm FIFO withIdle. This algorithm is defined as starting

the job with the earliest release time (whether admissible or not) at each

time step, if there are several such jobs then pick one that is admissible (if

any), and if none of these jobs are admissible then idle. We now show that

when the maximum heat of a job is bounded to R − 1 + δ for any δ > 0

then FIFO withIdle has a competitive ratio of at least Ω(n). Note that the

way these proofs are constructed means they will also hold for the case of

total/average flow time.

Theorem 5.30. When the maximum job heat is R − 1 + δ for any δ > 0,

FIFO withIdle has a competitive ratio of at least Ω(n).

Proof. This proof involves the release of a large number of phases. We first

define a phase. Consider a phase starting at time t. At t we release a B-block

of size x, for some large enough x. This value depends on the values of R

and δ. At time t + x we then release an B-job B and a Z-job Z. Then at

time t + x + 1 we release a B-block of size x − 1. Then at time t + 2x + 1

we release a job K with hK = min{R− 1 + δ, R− 1/R}. This completes the

description of a phase.

170

We release an arbitrarily large number of phases, each immediately fol-

lowing the preceding one. For each phase OPT will schedule all 2x of the

B-jobs (including B) then follow them with Z and then be cool enough to

schedule K as soon as it is released. FIFO withIdle will always schedule the

jobs in the order they are released meaning that for the jobs from each phase

it will schedule the first B-block, followed by B and Z (in either order) then

the final B-block. This means the temperature of FIFO withIdle will be at

least 1 − 1/Rx by the time K is the next job to be scheduled. An x value

can always be chosen that is large enough so that FIFO withIdle is too hot

to schedule K, and therefore will idle.

As the schedule of FIFO withIdle introduces an idle step with every phase,

the execution of each job in the next phase is postponed by one step for the

algorithm. As the algorithm schedules jobs in a FIFO order, it must be that

for each phase the jobs are still scheduled in the same order as they were

in the first phase. This means that the maximum flow time of a job after c

phases in OPT is x while in FIFO withIdle it is Θ(c). As each phase involves

a constant number of jobs being released this means that the maximum flow

time of any job in FIFO withIdle is Ω(n), while in OPT it remains constant,

concluding the proof.

We can also show that FIFO withIdle has a competitive ratio of at least

Ω(n) for the increased temperature threshold model, for all ε < 1/(R − 1).

This proof is similar to the proof in Theorem 5.22. Note that again this proof

also shows that FIFO withIdle has a competitive ratio of at least Ω(n) for

the objective of minimising total flow time.

171

Theorem 5.31. If the temperature threshold of the online algorithm is 1 + ε

where ε < 1/(R − 1) then FIFO withIdle has a competitive ratio of at least

Ω(n).

Proof. This proof involves the release of a large number of phases. We first

define a phase. Consider a phase starting at time t. At t we release a B-

block of size x, for some large enough x. These jobs will all be scheduled by

FIFO withIdle and OPT as soon as they are released. At t+x we then release

w Z-jobs (note that this is not a Z-block as all the jobs are released at the

same time step) , which are also scheduled by both OPT and FIFO withIdle

bringing both system temperatures to arbitrarily close to 1/Rw at time t +

x+w. At time step t+ x+w− 1, the time step before all the final Z-job is

scheduled, we release y B-jobs. At the next time step t+ x+w we release a

job K1 with a heat contribution of R− 1/Rw.

OPT will schedule the jobK1, followed by theB-jobs while FIFO withIdle

will schedule all y of the B-jobs as they were released first. We can always

choose w and y values that are large enough so that FIFO withIdle be too hot

to schedule K1 at t+ x+w+ y for any ε < 1/(R− 1), and so FIFO withIdle

will idle. This completes the description of a phase.

We release an arbitrarily large number of phases, each immediately fol-

lowing the preceding one. As the schedule of FIFO withIdle introduces an

idle step with every phase, the execution of each job in the next phase is

postponed by one for the algorithm. This means that the maximum flow

time of a job after c phases in OPT is max{w, y} while in FIFO withIdle

it is Θ(c). As each phase involves a constant number of jobs being released

this means that the maximum flow time of any job in FIFO withIdle is Ω(n),

172

while in OPT it remains constant, concluding the proof.

These results seem to indicate that when considering the online model

with temperature, the objective of minimising maximum flow time is at least

as hard as minimising total flow time. We also know that the traditional

algorithm for minimising maximum flow time, FIFO, does not perform well

in the setting with temperature.

5.8 Summary

In this chapter we consider minimising the flow time of unit length jobs. We

consider the offline case initially and show that when maximum job heats

are bounded to any non-trivial heat, the problem of creating a schedule that

is optimal for minimising total flow time is NP -hard. We also show that no

polynomial time algorithm with an approximation ratio of less than O(n1/2−ε)

can exist for any ε > 0, unless P = NP when job heats are unbounded. For

the special case where all jobs are released at the same time step we show a

polynomial time algorithm that has a 2-approximation ratio.

Next we consider the online case where maximum job heats are bounded

and show a lower bound that increases as the maximum job heat increases.

We also show that non-idling algorithms must have a competitive ratio of

at least Ω(n), and we show an upper bound on non-idling algorithm that

matches this for any fixed maximum job heat.

We also give results for the case with resource augmentation in the form of

an increased temperature threshold and unbounded maximum job heat. We

show a lower bound that increases as the amount of resource augmentation

173

decreases. We show counter examples for the competitiveness of non-idling

algorithms and the algorithm Coolest First. We then show that Hottest

First is 1-competitive when enough extra resources are available to the online

algorithm. This contrasts with the case of maximising throughput where

Coolest First (and all reasonable algorithms) perform better than Hottest

First.

Finally we consider the objective of minimising the maximum flow time.

We show that the lower bounds from the minimising maximum flow time

objective still hold for this objective. We also show that several natural

algorithms have competitive ratios of at least Ω(n).

174

Chapter 6

Conclusions

6.1 Summary of Results and Remarks

In this thesis we studied online algorithms for a variety of temperature aware

models that require the temperature of the algorithms to remain below a

given thermal threshold at all times, with two main scheduling objectives.

The first objective was to maximise the throughput of a schedule, with the

second objective being to minimise the flow time of a schedule. We give new

lower bounds and upper bounds for these problems.

For maximising the throughput of unit length jobs we considered two

sub-problems. For the unweighted case we extended the analysis from [19] to

give an upper bound for reasonable algorithms with multiple machines and

any R > 1. These algorithms have an upper bound of 2 whenever R ≥ 2, and

this increases towards infinity as R approaches 1. We then show matching

lower bounds for the single machine case and give some lower bounds for the

multiple machine case that are lower. We also show that for this objective

175

Hottest First performs worse than any reasonable algorithm.

For the weighted problem we show several bounds. For the single machine

case with full heat we show an upper bound on a randomised algorithm that

is almost optimal for the fully online case when W is not known in advance.

For the multiple machine full heat case we extend the randomised single

machine results from [11] that show the same upper and lower bounds as

the single machine case hold. This means that the randomised algorithm

analysed is optimal within a constant factor in the semi-online case, and

almost optimal in the fully online case. For the deterministic full heat case

on multiple machines we give a lower bound that matches the upper bound

given in [11] for this model with a fixed number of machines m, within a

constant factor. Finally we extend the single machine bounded heat results

from [11] to show the same bounds still hold in the multiple machine case,

making the algorithm optimal within constant factors.

It is interesting to note that in the non-weighted job model allowing mul-

tiple machines seems to give a significant advantage over the single machine

case. However in the weighted job model the results for multiple machines

are the same (within constant factors) as the single machine case, although

the weighted results are for the randomised case while the non-weighted job

results are deterministic.

Next we extend the model to consider jobs that are still equal length, but

larger than unit length, and still with the objective of maximising through-

put. We consider the case with single machines and unweighted jobs. We give

an upper bound on the non-preemptive algorithm Coolest First for all R > 1,

that increases when R decreases, and also as the job length p decreases. We

176

also show an upper bound on all non-idling algorithms that is exactly one

higher for all R and p values. We then show a lower bound for the non-

preemptive case that shows that Coolest First is optimal. We also give lower

bounds for the cases with both preemptive resumes and preemptive restarts.

We show that for most values of R and p allowing preemptive restarts don’t

allow any reduction of the competitive ratio over the non-preemptive case,

and for the other R and p values the potential reduction is only small. It is

also shown that the lower bound for preemptive resumes is exactly one less

than for preemptive restarts, except for a very small R and p range where

they have the same lower bounds.

This model is then further extended to consider jobs with variable lengths,

again with the objective of maximising throughput. We considered two sub-

problems for this model. The first sub-problem is the case where jobs are

unweighted. We show an upper bound on non-idling algorithms that is linear

in L. We then show almost matching lower bounds for the case without

preemption, and with preemption we show a bound that is also optimal

within constant factors when R is fixed. The next sub-problem is for the

case where jobs have weights that are proportional to their length. We show

an upper bound on the algorithm Longest First that is also linear in L.

We then show a lower bound that works for the non-preemptive and both

preemptive models, that matches for all small enough values of R, and is

almost matching all other R values.

The second objective we study is that of minimising the flow time of a

schedule. For this model we study the single machine case where jobs are

all unit length. First we give some results for the offline case. We show

177

that even when the maximum heat of a job is bounded to R − 1 + δ, the

problem of minimising the total flow time of a schedule is NP -hard. We then

show that for all R > 1, but with unbounded job heat, for the problem of

minimising the total flow time no polynomial time approximation algorithm

with an approximation ratio of less than O(n1/2−ε) can exist for any ε > 0,

unless P = NP . Finally we give a positive result for the restricted case when

all jobs are released at the same time, which is a polynomial time algorithm

with an approximation ratio of 2.

Next we give results for the online case where the maximum heat of a

job is bounded to R − ε. We show that no deterministic algorithm can be

better than k-competitive where ε ≤ (R−1)/Rk, and for large ε we show that

no deterministic algorithm will be better than 2-competitive. We then show

that no non-idling algorithm can get a competitive ratio less than Ω(n) for

any allowed value of ε. We then give a trivial upper bound on all non-idling

algorithms of O(kn) where ε ≤ (R− 1)/Rk.

Results are then given for a model with resource augmentation. In this

model job heats are no longer bounded, but the online algorithm is given an

increased temperature threshold of 1 + ε for some 0 < ε < 1/(R − 1). We

show than no deterministic algorithm can be better than k-competitive where

ε < (R − 1)/Rk+1. Next we give lower bounds for some of bad algorithms.

We show that no non-idling algorithm can get a competitive ratio of less

than Ω(n) when ε < 1/R2. We then show that Coolest First cannot achieve

a competitive ratio of less than Ω(n) for all non-trivial values of ε. Finally for

this section we show that Hottest First is 1-competitive when ε ≥ R2+R+1
(R−1)(R+1)2

.

It is interesting to use this result to compare the algorithms that perform

178

well for the different scheduling objectives. We show in Chapters 2 and 3

for the objective of maximising the throughput of jobs that Coolest First is

the best algorithm, with Theorem 2.9 showing that Hottest First performs

worse than Coolest First for this objective. However in Chapter 5 when we

consider the different objective of minimising flow time we show with resource

augmentation Hottest First performs significantly better than Coolest First.

Finally, we present a discussion of algorithms for the problem of minimis-

ing the maximum flow time in a schedule. We show that all of the lower

bound results for the minimising total flow time case hold for the maximum

flow time objective. We also show that Hottest First and some other natural

algorithms have competitive ratios of at least Ω(n), even in the case with an

increased temperature threshold.

It is interesting to compare the difficulty of the two different flow time

objectives. It seems from the results given here that the problem of min-

imising the maximum flow time of jobs in a schedule is at least as hard as

minimising the total flow time. However the results in this work are not

conclusive so investigating the difficulty of the two problems would be some

interesting future work.

6.2 Open Problems and Future Work

We will now discuss some open problems in the models studied in this the-

sis. First we will consider the objective of maximising throughput. For

unweighted unit-length jobs on a single machine, the majority of the work

that has been done so far is for the deterministic case. In the randomised

179

case it is only known that it is possible to prove a lower bound of 4/3 for the

case when R ≥ 2 [19] but so far no improvement on the upper bound of 2

has been found.

For the multiple machine version of this problem there is a significant gap

between the upper and lower bounds. In particular it seems as though the

upper bound should be lower than for the single machine case. As shown by

Theorem 2.14, in order to reduce the upper bound on the competitive ratio,

it would be necessary to use an algorithm that sometimes leaves a machine

idle, even if there are still some admissible jobs available.

For the equal length jobs problem it would be interesting to try to close

the (small) gap between the non-preemptive upper bound and the preemptive

resumes lower bound. This is likely to involve designing an algorithm that

uses preemptive resumes to reduce the upper bound for the problem.

For the unweighted variable length jobs problem it has been shown that

allowing preemption can only give up to a constant factor improvement in the

upper bound for any fixed R. However when R is very small this constant

can be large. Therefore it would be interesting to try and close this gap.

It would also be interesting to investigate the difference in power between

the preemptive resumes and preemptive restarts model. From the equal

length job results it seems likely that allowing preemptive resumes should be

more powerful than allowing preemptive restarts but so far no work has been

undertaken for the variable length jobs model that gives different bounds for

the two preemption models.

For the proportionally weighted variable length jobs problem it might

also be interesting to consider the case where the value of a job increases in

180

a sub-linear way with the length of the job i.e. wJ = pαJ for some 0 < α < 1.

For α = 1, the algorithm Longest First performs well, however it is unlikely

to perform as well when the length of a job doesn’t increase the value of the

job as much.

For both the equal and variable length job problems it would be inter-

esting to try and extend the results to multiple machines. In particular it

seems from the unit length results that to reduce the single machine upper

bound it would again be necessary to use algorithms that sometimes leave

machines idle, even if there are still admissible jobs available.

It might also be interesting to consider the model where instead of idling

when the threshold is reached, one could consider reducing the frequency of

the processor. There could be discrete multiple frequencies, or it could be

a continuous range of frequencies. This model is likely to involve combining

the techniques from the unit length and variable length job problems.

There are also several open problems for the objective of minimising the

flow time. For the offline problem it would be of interest to try and design

polynomial time algorithms with better than O(n)-approximation ratios. It

would also be interesting to investigate the inapproximability of the bounded

job heat model. The given inapproximability result requires jobs of very large

temperatures and so does not still hold in the bounded job heat model, while

the NP -hardness result does still hold.

The online case with bounded job heats also has several open problems.

As the inapproximability result from the offline case implies that any online

algorithm with a competitive ratio better than O(
√
n) will not be able to run

in polynomial time, it might be interesting to consider some online algorithms

181

with larger than polynomial running time to discover if this bound can be

broken. However analysing these algorithms is unlikely to be easy. Therefore

it could be more achievable and still interesting to prove an upper bound on

a polynomial time online algorithm.

An interesting open problem in the increased thermal threshold model is

closing the gap between the 1-competitive upper bound on the Hottest First

algorithm for large enough ε, and the Ω(n) lower bound for ε < 1/R2 which

is proven for all non-idling algorithms. It would be especially interesting to

see if an upper bound can be found that gradually increases towards Ω(n), or

if there is an ε value where Hottest First suddenly stops being 1-competitive

and immediately becomes O(n)-competitive. It might also be interesting

to analyse other algorithms to try and close this gap. From Corollary 5.20

we know that for small ε no algorithm can be 1-competitive, and so there

is a large gap between the ε values necessary for the known 1-competitive

algorithm and the ε values where no algorithm can be 1-competitive.

It might also be interesting to try different types of resources augmenta-

tion for this model i.e. increasing the cooling factor of the online algorithm

relative to the adversary. This would be equivalent to increasing the cooling

of a processor, for example by fitting a larger fan.

182

Bibliography

[1] Susanne Albers. Energy-efficient algorithms. Communications of the

ACM, 53(5):86–96, May 2010.

[2] Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing

policies for qos switches. In Proceedings of the fourteenth annual ACM-

SIAM symposium on Discrete algorithms (SODA), pages 761–770, 2003.

[3] Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Compet-

itive non-preemptive call control. In Proceedings of the fifth annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 312–

320, 1994.

[4] Hakan Aydin, Pedro Mej́ıa-Alvarez, Daniel Mossé, and Rami G. Mel-

hem. Dynamic and aggressive scheduling techniques for power-aware

real-time systems. In Proceedings of the 22nd IEEE Real-Time Systems

Symposium (RTSS), pages 95–105, 2001.

[5] Michael O. Ball and Maurice Queyranne. Toward robust revenue man-

agement: Competitive analysis of online booking. Operations Research,

57:950–963, July 2009.

183

[6] Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli, Evangelos

Markakis, and Ioannis Milis. On multiprocessor temperature-aware

scheduling problems. In Proceedings of Frontiers in Algorithmics and

Algorithmic Aspects in Information and Management (FAW-AAIM),

pages 149–160, 2012.

[7] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage

energy and temperature. Journal of the ACM, 54(1), 2007.

[8] Sanjoy K. Baruah, Jayant R. Haritsa, and Nitin Sharma. On-line

scheduling to maximize task completions. In Proceedings of the 15th

IEEE Real-Time Systems Symposium (RTSS), pages 228–236. IEEE

Computer Society, 1994.

[9] Sanjoy K. Baruah, Gilad Koren, D. Mao, Bhubaneswar Mishra, Arvind

Raghunathan, Louis E. Rosier, Dennis Shasha, and Fuxing Wang. On

the competitiveness of on-line real-time task scheduling. Real-Time Sys-

tems, 4(2):125–144, 1992.

[10] Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and

Avi Wigderson. On the power of randomization in on-line algorithms.

Algorithmica, 11(1):2–14, 1994.

[11] Martin Birks, Daniel Cole, Stanley P. Y. Fung, and Huichao Xue. On-

line algorithms for maximizing weighted throughput of unit jobs with

temperature constraints. Journal of Combinatorial Optimization, (to

appear).

184

[12] Martin Birks and Stanley P. Y. Fung. Temperature aware online schedul-

ing with a low cooling factor. In Proceedings of 7th annual Conference

on Theory and Applications of Models of Computation, (TAMC), pages

105–116, 2010 (Journal version submitted).

[13] Martin Birks and Stanley P. Y. Fung. Temperature aware online algo-

rithms for scheduling equal length jobs. Theoretical Computer Science,

2012 (to appear).

[14] Allan Borodin and Ran El-Yaniv. Online computation and competitive

analysis. Cambridge University Press, 1998.

[15] Thidapat Chantem, Xiaobo Sharon Hu, and Robert P. Dick.

Temperature-aware scheduling and assignment for hard real-time appli-

cations on mpsocs. IEEE Transactions on VLSI Systems, 19(10):1884–

1897, 2011.

[16] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A review of ma-

chine scheduling: Complexity, algorithms and approximability. Hand-

book of Combinatorial Optimization, 3:21–169, 1998.

[17] Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wojciech Ja-

wor, Jiri Sgall, and Tomás Tichý. Online competitive algorithms for

maximizing weighted throughput of unit jobs. Journal of Discrete Al-

gorithms, 4(2):255–276, 2006.

[18] Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling with par-

tial job values: Does timesharing or randomization help? Algorithmica,

37:149–164, 2003.

185

[19] Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert.

Algorithms for temperature-aware task scheduling in microprocessor sys-

tems. Sustainable Computing: Informatics and Systems, 1(3):241 – 247,

2011.

[20] Marek Chrobak, Wojciech Jawor, Jiri Sgall, and Tomás Tichý. Online

scheduling of equal-length jobs: Randomization and restarts help. SIAM

Journal on Computing, 36(6):1709–1728, 2007.

[21] Ayse K. Coskun, Tajana S. Rosing, and Keith Whisnant. Temperature

aware task scheduling in MPSoCs. In Proceedings of Design, Automation

and Test in Europe Conference, pages 1659–1664, 2007.

[22] Jihuan Ding, Tomáš Ebenlendr, Jǐŕı Sgall, and Guochuan Zhang. Online

scheduling of equal-length jobs on parallel machines. In Proceedings of

the 15th annual European conference on Algorithms, ESA, pages 427–

438, Berlin, Heidelberg, 2007. Springer-Verlag.

[23] Jihuan Ding and Guochuan Zhang. Online scheduling with hard dead-

lines on parallel machines. In Proceedings of Second International Con-

ference Algorithmic Aspects in Information and Management (AAIM),

volume 4041, pages 32–42. Springer, 2006.

[24] Shlomi Dolev and Alexander Keizelman. Non-preemptive real-time

scheduling of multimedia tasks. Real-Time Systems, 17(1):23–39, 1999.

[25] Matthias Englert and Matthias Westermann. Considering suppressed

packets improves buffer management in qos switches. In Proceedings of

186

the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

SODA, pages 209–218, 2007.

[26] Stanley P. Y. Fung, Chung Keung Poon, and Duncan K. W. Yung.

On-line scheduling of equal-length intervals on parallel machines. Infor-

mation Processing Letters, 112(10):376–379, 2012.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability;

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,

1990.

[28] Pawel Gepner and Michal Filip Kowalik. Multi-core processors: New

way to achieve high system performance. In Fifth International Con-

ference on Parallel Computing in Electrical Engineering (PARELEC),

pages 9–13. IEEE Computer Society, 2006.

[29] Sally A. Goldman, Jyoti Parwatikar, and Subhash Suri. Online schedul-

ing with hard deadlines. Journal of Algorithms, 34:370–389, February

2000.

[30] Michael H. Goldwasser and Mark Pedigo. Online nonpreemptive

scheduling of equal-length jobs on two identical machines. ACM Trans-

actions on Algorithms, 5(1):2:1–2:18, December 2008.

[31] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Op-

timization and approximation in deterministic sequencing and schedul-

ing: a survey. Annals of Operations Research, 5:287–326, 1979.

187

[32] Han Hoogeveen, Chris N. Potts, and Gerhard J. Woeginger. On-line

scheduling on a single machine: maximizing the number of early jobs.

Operations Research Letters, 27(5):193 – 197, 2000.

[33] Sandy Irani and Kirk Pruhs. Algorithmic problems in power manage-

ment. SIGACT News, 36(2):63–76, 2005.

[34] Ravindra Jejurikar and Rajesh Gupta. Procrastination scheduling in

fixed priority real-time systems. In Proceedings of the ACM SIG-

PLAN/SIGBED conference on Languages, compilers, and tools for em-

bedded systems, LCTES, pages 57–66, 2004.

[35] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clair-

voyance. Journal of the ACM, 47(4):617–643, July 2000.

[36] Bala Kalyanasundaram and Kirk R. Pruhs. Maximizing job completions

online. Journal of Algorithms, 49(1):63–85, October 2003.

[37] Hans Kellerer, Thomas Tautenhahn, and Gerhard J. Woeginger. Ap-

proximability and nonapproximability results for minimizing total flow

time on a single machine. SIAM Journal on Computing, 28(4):1155–

1166, 1999.

[38] Sven O. Krumke, Alfred Taudes, and Stephan Westphal. Online schedul-

ing of weighted equal-length jobs with hard deadlines on parallel ma-

chines. Computers and Operations Research, 38:1103–1108, August

2011.

188

[39] Eren Kursun, Chen yong Cher, Alper Buyuktosunoglu, and Pradip Bose.

Investigating the effects of task scheduling on thermal behavior. In Third

Workshop on Temperature-Aware Computer Systems (TACS), 2006.

[40] Woo-Cheol Kwon and Taewhan Kim. Optimal voltage allocation tech-

niques for dynamically variable voltage processors. ACM Transactions

on Embedded Computing Systems, 4:211–230, 2005.

[41] E. Lawler. A dynamic programming algorithm for preemptive scheduling

of a single machine to minimize the number of late jobs. Annals of

Operations Research, 26:125–133, 1990. 10.1007/BF02248588.

[42] Wonbok Lee, Kimish Patel, and Massoud Pedram. Dynamic thermal

management for mpeg-2 decoding. In Proceedings of the international

symposium on Low power electronics and design, ISLPED, pages 316–

321, 2006.

[43] Cynthia A. Phillips, Clifford Stein, Eric Torng, and Joel Wein. Opti-

mal time-critical scheduling via resource augmentation. Algorithmica,

32(2):163–200, 2002.

[44] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online scheduling. In Handbook of

Scheduling: Algorithms, Models, and Performance Analysis, chapter 15,

pages 15–1 – 15–41. CRC Press, 2004.

[45] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy,

Karthik Sankaranarayanan, and David Tarjan. Temperature-aware mi-

croarchitecture. SIGARCH Computer Architecture News, 31:2–13, May

2003.

189

[46] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang,

Sivakumar Velusamy, and David Tarjan. Temperature-aware microar-

chitecture: Modeling and implementation. ACM Transactions on Ar-

chitecture and Code Optimization, 1:94–125, March 2004.

[47] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency

of list update and paging rules. Communications of the ACM, 28(2):202–

208, 1985.

[48] Nguyen Kim Thang. Improved online scheduling in maximizing through-

put of equal length jobs. In The 6th International Computer Science

Symposium in Russia (CSR), pages 429–44, 2011.

[49] Nodari Vakhania. A fast on-line algorithm for the preemptive schedul-

ing of equal-length jobs on a single processor. In Proceedings of the

2nd WSEAS International Conference on Computer Engineering and

Applications, pages 158–161, 2008.

[50] Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and

end times. Theoretical Computer Science, 130(1):5–16, 1994.

[51] Jun Yang, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lingling Jin.

Dynamic thermal management through task scheduling. In IEEE Inter-

national Symposium on Performance Analysis of Systems and Software

(ISPASS), pages 191–201, 2008.

[52] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified

measure of complexity. In Proceedings of the 18th annual Symposium

190

on Foundations of Computer Science, pages 222–227. IEEE Computer

Society, 1977.

[53] Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for

reduced CPU energy. In 36th annual Foundations of Computer Science

Symposium (FOCS), pages 374–382. IEEE Computer Society, 1995.

191

