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Abstract

A theoretical investigation is carried out into the linear stability of the boundary-
layer flow around a rotating sphere immersed in an incompressible viscous fluid.
Two potentially stabilising mechanisms are considered: a forced uniform axial flow
in the surrounding fluid, and the introduction of mass suction/injection through the
surface of the sphere. The investigation is broadly split into a “local” analysis, where
a parallel-flow assumption is made which limits the study to individual latitudinal
positions; and a “global” analysis, where the entire streamwise extent of the flow is
considered. In the local analysis, both stationary and travelling convective distur-
bances are considered. For a representative subset of the parameter space, critical
Reynolds numbers are presented for the predicted onset of convective and absolute
instabilities. Axial flow and surface suction are typically found to postpone the onset
of all types of instability by raising the critical Reynolds number, whereas surface
injection has the opposite effect. This is further demonstrated by a consideration of
the convective and absolute growth rates at various parameter values.

The results of the global analysis suggest that the rotating sphere can support a
self-sustained, linearly globally-unstable global mode for sufficiently large rotation
rates. This is in contrast to the case of the rotating disk, where it is generally
accepted that self-sustained linear global modes do not occur.
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Chapter 1

Introduction

1.1 Motivation and literature review

This thesis is concerned with the boundary-layer flow over a rotating sphere under

various conditions. In the basic case of a sphere rotating in otherwise still fluid,

experimental work by, for example, Sawatzki (1970) and Kohama & Kobayashi

(1983), shows that for sufficiently high rotation rates, three regions can be observed,

each characterised by distinct flow regimes. Close to the pole, the flow is laminar;

at higher latitudes, co-rotating spiral vortices, characteristic of cross-flow instability,

are present; and at still higher latitudes, the flow undergoes transition and becomes

turbulent (see Figure 1.1). As the rotation rate is increased, the unstable regions

move closer to the pole in a manner similar to that observed over rotating disks

and cones; see Gregory et al. (1955), Kobayashi et al. (1980), Kohama (1984b)

and Kobayashi et al. (1987), for example. Some previous theoretical work exists to

characterise the instability mechanisms at work within the rotating-sphere boundary

layer, most notably by Garrett & Peake (2002, 2004) and Garrett (2010c), and

the aim of this thesis is to further this knowledge with particular emphasis on

aerodynamically significant flow configurations and suggest possible methods for

flow control. In particular we look at the effects of axial flow and surface mass-flux

on local and global instabilities within the boundary layer.

The mathematical description of the steady boundary-layer flow (i.e. that within

1



Figure 1.1: Photograph of a rotating sphere illustrating the region of spiral vortices (van
Dyke, 1982).

the laminar regime close to the pole) around a sphere rotating within otherwise still

fluid has been the subject of some research. Notably, Howarth (1951) derives the

partial differential equations that govern the steady flow and develops a solution

method that employs a series expansion in powers of the latitudinal angle measured

from the pole. These early results, though later shown to be subject to significant

numerical inaccuracies, are consistent with the observation that there is an inflow

of fluid near the poles, with fluid moving over the sphere surface and being ejected

near the equator, and reflect its similarity to the von Kármán flow over a rotat-

ing disk which is known to act as a fluid pump (von Kármán (1921)). Improved

series-solution methods are later used by Banks (1965) to better approximate the

profiles of the velocity components and later Manohar (1967) and Banks (1976) apply

more accurate finite-difference techniques to the same problem. Further theoretical

research is carried out by El-Shaarawi et al. (1985), who also develop and use a

finite-difference technique, and include an enforced axial flow in their model. More

recently, Garrett and co-workers (Garrett & Peake (2002, 2004), Garrett (2002),

Garrett et al. (2009a)) have used commercially available NAG routines to solve the

2



resulting partial differential equations that govern the steady flow.

There has been little directly-pertinent experimental work on the boundary layer

on a rotating sphere, beyond the original observations of the three distinct flow

regions. Papers by various authors including Noordsij & Rotte (1967), Noordzij &

Rotte (1968), Tanaka & Tago (1975) and Furuta et al. (1975) present some work

in this area, but they are mostly concerned with its effect on mass-transfer rate in

electrolysis. However, El-Shaarawi et al. (1987) provide measurements of the velocity

components within the boundary layer, and later work by Kobayashi et al. (1988),

Kobayashi & Arai (1990) places emphasis on instability and transition. These papers

include results for spheres rotating in both otherwise-still fluids and axial flows.

As observed by Howarth (1951), the behaviour of fluid near the poles of the

sphere approximates that over a rotating disk. Physically this is of no surprise as

the sphere is locally flat near to the pole and so acts as a rotating disk in that

region. It might be expected, therefore, that the results presented here for positions

close to the pole show close agreement with those obtained for a rotating disk. For

lower rotation rates, where the transitional behaviour manifests away from the pole,

the effects of the sphere’s surface curvature lead to distinct behaviour and critical

parameters. The relationship between disks and spheres means that previous work

on disks is relevant to this research. Indeed the observation of spiral vortices within

the second of the three flow regions is closely related to the observations of Gregory

et al. (1955), Kobayashi et al. (1980), Malik et al. (1981) and Wilkinson & Malik

(1985). Further theoretical and experimental work on the rotating-disk boundary

layer is performed by Lingwood (1995a, 1996). Kobayashi et al. (1980) and Malik

et al. (1981) find that although the instability waves first appear at different points in

the parameter space, dependent on the rotation rate, the onset of turbulence always

occurs at a fixed local Reynolds number, RX . Garrett & Peake (2002) observe that

the results of Kohama & Kobayashi (1983) for the rotating sphere also indicate the

occurrence of turbulence at a fixed RX , up to a latitude of 70◦ from the pole, and

they give its approximate value as RX = 2.5× 105.
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Kobayashi & Arai (1990) observe that for large rotation rates, the vortices that

arise in the transitional region are stationary with respect to the sphere surface,

while at lower speeds they travel at a constant multiple of the local surface speed,

measured as 0.76. These travelling disturbances have not been observed on either the

rotating disk (see Kohama (1984b), for example) or the rotating cone (see Kobayashi

et al. (1987), for example); in both cases the positions of the vortices appear fixed

relative to the rotating surface, as they would be expected to appear on surfaces

where some elements of roughness exist.

The stability of the rotating-cone boundary layer is also the subject of some

research, with experimental work by Kappesser et al. (1973), Kobayashi & Izumi

(1983), for example, and later theoretical work by, among others, Hussain (2010),

Garrett & Peake (2007), Garrett et al. (2009a) and Garrett (2010a). As a cone’s

half-angle approaches 90◦, it approaches the case of a flat disk, and in this way the

three types of boundary layer - disks, cones and spheres - are closely related.

In his thesis, Garrett (2002) performs a stability analysis on both spheres and

cones, subject to axial flow, and examines the relationship between theoretical in-

stabilities and the transition to turbulence. His work relating to spheres has since

been elaborated on and published as Garrett & Peake (2002, 2004), Samad & Gar-

rett (2009, 2010, 2013). In particular, Garrett demonstrates the presence of local

convective and absolute instabilities within the rotating sphere boundary layer and

is able to associate these predictions with the experimental observations reported

above, including the observation of a constant local Reynolds number at the onset of

turbulence at low to moderate latitudes. Garrett also demonstrates the relationship

between the rotating-sphere flow close the pole and the rotating-disk flow mathemat-

ically by a comparison of the leading order expressions arising from Banks’s original

series solution. Furthermore, Garrett (2010a) explains Kobayashi & Arai’s observa-

tion of slow vortices over the sphere through a consideration of relative growth rates

of convective instability modes. Garrett has since predicted similar slow vortices on

highly-polished rotating bodies of all geometries (Garrett (2010a,b, 2011), Samad &

4



Garrett (2013)).

The motivation for the work presented here is in its applicability to problems in

engineering, such as the flow over spinning projectiles and aero-engine components.

In such situations, it may be useful to be able to predict where and when a flow

becomes unstable, since it may be advantageous to prevent transition to turbulence

and maintain laminar flow for reasons of efficiency, or to reduce wear on components.

Alternatively, there may be applications in which turbulence is desirable, such as

when fluids are to be mixed. Many applications in fluid mechanics have shown

that suction can be used as an effective flow-control mechanism, and all studies

have shown injection to have the converse effect by destabilising the boundary layer

to all instability types. It is therefore useful to include the parameters of suction

(or injection) and axial flow in this work, and to understand how they affect flow

stability.

The effect of axial flow on the stability of flow over rotating bodies has received

some limited attention. In the case of the rotating disk, Hussain et al. (2011)

examine theoretically the effects of axial flow, and find it to increase the critical

Reynolds number for the onset of convective stability. Both theoretical (Garrett

et al. (2009)) and experimental (Salzberg & Kezios (1965), Kobayashi et al. (1983),

Kohama (1984a)) work on rotating cones has found axial flow to delay the onset of

convective and absolute instability types. For the rotating sphere, notable studies

incorporating axial flow include experimental work by Kobayashi & Arai (1990),

and later theoretical work by Garrett (2002, 2010c).

With regard to the literature on surface mass-flux, Lingwood & Garrett (2011)

have calculated theoretical critical Reynolds numbers and disturbance growth rates

for the general class of rotating “Bödewadt, Ekman and von Kármán” (BEK) flows,

subject to surface suction. Stuart (1954) performs early theoretical work on the

effects of surface suction on the rotating-disk boundary layer, and finds increased

suction to decrease the radial velocity component of the flow, the dominant fac-

tor in the onset of the cross flow instability. Gregory & Walker (1960) study this
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experimentally and find suction to increase the critical Reynolds number, delaying

the onset of instability. Lingwood (1997c) performs theoretical work in this area;

her results predict that suction delays the onset of instability and that injection

promotes it - though injection is found to be less destabilising than suction is stabil-

ising. Other literature concerned with mass flux on the rotating disk, using various

numerical and asymptotic approaches, includes Ockendon (1972), Dhanak (1992),

Bassom & Seddougui (1992). Suction is universally found to be stabilising.

In this thesis, research is conducted into the effects of both axial flow and mass

flux (distributed suction or injection of fluid through the surface), on the stability of

the laminar boundary-layer flow around a rotating sphere. Throughout this work,

perturbations to the steady flow are assumed to be small enough so that nonlinear

effects are negligible and a linear stability analysis can be used. We follow Garrett

and use a NAG routine to solve the governing partial differential equations (PDEs)

for the steady flow and incorporate similar numerical methods to solve the governing,

unsteady perturbation equations. In addition, both the sphere and the surrounding

fluid are assigned distinct uniform temperatures, and the thermal boundary layer

is analysed for fluids with various Prandtl numbers. Jain & Venkataraman (1966)

analyse a similar system using a series-solution method; the approach we take will

use the same numerical method used for calculating the velocity components. Fol-

lowing Lingwood’s and Garrett’s various publications, a parallel-flow approximation

is made throughout (this is described in more detail in Chapter 5), and the fluid

is assumed to be incompressible. The research presented in this thesis effectively

extends the work of Garrett (2002), who accounts for axial flow but not mass flux

and has, so far, been concerned only by local stability analyses over the sphere.

In some respects, this work can be considered as the final stage in the study of

incompressible, rotating fluids of this type, and the effects of compressibility are

now starting to be included in parallel studies on the cone and sphere at Leicester

(Towers & Garrett (2012)).

The presentation of a global stability analysis in Chapters 8 and 9 of this thesis is a
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major step forward and builds on previous work on the local absolute instability of

the boundary layer.

In the study of boundary-layer stability on rotating bodies of revolution, a signif-

icant advance has been made by Lingwood (1995a), who showed that the boundary

layer on a rotating disk of infinite extent is locally absolutely unstable at Reynolds

numbers in excess of a critical value (equivalent to being outside a critical radius at

fixed rotation rate), and is at worst convectively unstable inside this radius. The

value of the critical Reynolds number agrees exceedingly well with experimentally

measured values of the transition Reynolds number, leading to Lingwood’s hypoth-

esis that absolute instability plays a role in turbulent transition on the disk. By

experimentally tracking the wavepacket response to an impulse excitation on a ro-

tating disk, Lingwood (1996) confirmed the presence of absolute instability above

a fixed, critical Reynolds number very close to that predicted for the onset of local

absolute instability, thereby adding weight to her assertion.

A few years later, Davies & Carpenter (2003) performed direct numerical sim-

ulations solving the linearised Navier-Stokes equations directly on a disk of infinite

extent. When they made the same homogeneous-flow approximation, i.e. parallel-

flow approximation, as in Lingwood’s analysis, they recovered her results in full,

with absolute instability clearly present at high Reynolds numbers. However, when

the spatial inhomogeneity of the boundary layer was included there was no evidence

that absolute instability gives rise to an unstable global oscillator in the long-time

response that would be required to give the onset of transition within a purely linear

theory. Indeed their study suggests that convective behaviour eventually dominates

at all the Reynolds numbers investigated, even for strongly absolutely unstable re-

gions, thereby suggesting that absolute instability was not involved in the transition

process through linear effects.

Following this, Pier (2003) demonstrated that a nonlinear approach is required

to explain the self-sustained behaviour of the rotating-disk flow. Using the result

of Huerre & Monkewitz (1990) that the presence of local absolute instability does
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not necessarily give rise to linear global instability, Pier suggested that the flow has

a primary nonlinear global mode that is fixed by the onset of the local absolute

instability which has a secondary absolute instability that triggers the transition to

turbulence. Some experimental evidence for a secondary instability exists (Kohama

(1984b) and Imayama et al. (2012)), but the behaviour of the secondary instability

and also its relation to the primary absolute instability are not fully understood as

of yet.

In an attempt to explain Lingwood’s original experimental observations in the

light of the subsequent theoretical developments, Healey (2010) presented a theory,

based on the Ginzburg-Landau equation, that suggests that there can be a linear

global instability when there is local instability at the edge of the disk. The finite

size of experimental disks is of course a crucial difference between experimental and

theoretical studies prior to Healey’s work, and edge effects were a new addition to

the arguments in the literature. The very recent experimental study of Imayama

et al. (2013) finds that edge effects may indeed lead to linear global instability as a

first step in the onset of transition. The literature continues to develop a theory of

transition over the rotating disk.

The spherical geometry is such that neither experimental nor theoretical studies

suffer from edge effects. In this study we consider the linear global modes of the

rotating-sphere system, as formulated for weakly nonparallel shear flow by Monke-

witz et al. (1993). The idea is to use data from the local absolute stability analysis

of Garrett & Peake (2002) and the work in Chapters 5–7 of this thesis to construct

solutions for the entire flow with single complex frequency γG. The long-time re-

sponse of the system is then governed by Im(γG) and will be linearly globally stable

if Im(γG) < 0 and globally unstable if Im(γG) > 0. The approach taken in Chapters

8 and 9 is to attempt to determine γG for the rotating sphere flow.

As demonstrated by Lingwood (1995a) and Garrett & Peake (2002), the absolute

instability under consideration in both the local and global analyses presented here

exists as a result of inviscid effects. However, Healey (2004) suggests pinch points
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resulting from an inviscid formulation (i.e. from the solution of the Rayleigh equa-

tion) are in fact distinct from those that exist in a viscous formulation (i.e. from the

solution of an Orr-Sommerfeld-type equation). With this is in mind, we work with

the viscous formulation throughout.

The thesis is presented as follows. Chapters 2–4 are concerned with calculating the

basic laminar velocity and temperature profiles. The PDEs that govern the steady

flow are derived, and they are generalised to allow for the effects of axial flow and

distributed surface suction or injection. In later chapters linear stability analyses

on these steady profiles are performed. Chapter 5 deals with convective instability,

with §§5.1 and 5.2 concerned with the formulation of perturbation equations and

the explanation of the solution method. We then present and discuss the results,

assuming stationary disturbances in §5.3, and allowing for non-stationary distur-

bances in §5.4. Critical Reynolds numbers are calculated for the predicted onset

of convective instability, and neutral-stability curves are presented. We also con-

sider the predicted number and angle of spiral vortices, which are experimentally

observable quantities. In Chapter 6 the spatial growth rates of the disturbances are

considered in order to establish the dominant instability mechanism under various

conditions. In Chapter 7 we calculate critical parameters for the occurrence of local

absolute instability. Chapters 8 and 9 explain the global linear stability analysis.

In Chapter 8 we revert to the still-fluid case and reformulate the problem, and in

Chapter 9, we reintroduce the control parameters of axial flow and mass injection.

In each case, predicted critical Reynolds numbers are presented. Finally, in Chapter

10, we draw conclusions from the results obtained, and discuss their relevance to

engineering applications.

Chapters 2–7 have been published as Barrow & Garrett (2013), and Chapter 8

forms the basis for Barrow et al. (2013), which is currently in preparation.
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1.2 Stability theory

This thesis is concerned with the application of stability theory to flows of practical

significance. Given the applied nature of the flows, the thesis is presented in a

manner consistent with the intended readership and is not overly mathematical.

However, for completeness, we summarise the fundamental mathematics of stability

theory here. Much of this theory was originally developed in the field of plasma

physics by Briggs (1964) and Bers (1972). We include the formal definitions of local

and global instability and the criteria that determine whether an unstable flow is

convectively or absolutely unstable. For a more thorough treatment of this topic,

Huerre & Monkewitz (1990) give an extensive review, and the theory is also covered

by Crighton & Gaster (1976), Bers (1984), Thomas (2007), among many others.

1.2.1 Local stability

Given a steady open flow whose streamwise velocity component is given by U (y,R),

where y is the cross-stream spatial coordinate, and R is a set of control parameters,

we can characterise its reaction to an initial infinitesimal disturbance at time t = 0

by the general dispersion relation,

D (α, γ,R) = 0. (1.1)

Here, α and γ are the streamwise wavenumber and the frequency of the disturbance,

respectively. By defining U without a dependence on the streamwise spatial coor-

dinate, x, we are assuming that the steady mean-velocity profile is independent of

streamwise location (the parallel-flow assumption), and this means we are studying

local instabilities. The quantities α and γ are, in general, complex. Solutions of (1.1)

where α (γ) is a considered a complex function of real γ are called spatial branches,

while solutions where γ (α) is considered a complex function of real α are called tem-

poral modes. Here we will ignore cross-stream variation in the disturbance, ψ (x, t),

and simply analyse its evolution in the (x, t) plane. We then associate D with a
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differential operator such that

D

[
−i

∂

∂x
, i
∂

∂t
;R

]
ψ (x, t) = 0, (1.2)

allowing an analysis of the system’s behaviour in physical space and time (see Huerre

& Monkewitz (1990)). The response to the disturbance is characterised by the

Green’s function, G(x, t), for the operator D, such that

D

[
−i

∂

∂x
, i
∂

∂t
;R

]
G (x, t) = δ(x)δ(t), (1.3)

where δ is the Dirac delta function. Physically, this corresponds to a disturbance

introduced at t = x = 0. We can now state the conditions for linear stability: the

flow is stable if

lim
t→∞

G(x, t) = 0 along all rays x/t = constant, (1.4)

and it is unstable if

lim
t→∞

G(x, t) =∞ along at least one ray x/t = constant. (1.5)

If the flow is unstable, it can be further classified as to its type: the flow is convec-

tively unstable if

lim
t→∞

G(x, t) = 0 along the ray x/t = 0,

and it is absolutely unstable if

lim
t→∞

G(x, t) =∞ along the ray x/t = 0.

Figure 1.2 illustrates the physical distinction between convective instability (a.) and

absolute instability (b.). As time progresses, the disturbance grows in the regions

between the dashed rays.

By examining the structure of the dispersion relation, we can deduce general

11



(a.) (b.)

Figure 1.2: Illustration of convective and absolute instabilities. A point disturbance at
t = 0 creates a travelling wave. As it moves forward in time, it may convect downstream
and away from the source position (convective instability, (a.)) or spread upstream of the
initial disturbance, eventually polluting all spatial points in the flow (absolute instability,
(b.)).

criteria for distingishing between convective and absolute instability. The Green’s

function, G, can be recast into Fourier-Laplace space by expressing it as the double

integral,

G (x, t) =
1

(2π)2

∫
F

∫
L

ei(αx−γt)

D [α, γ;R]
dγdα, (1.6)

where F and L are the integration contours for the Fourier and Laplace transforms,

respectively. At time t = 0, the contour L is a horizontal line in the complex-γ plane;

it must be positioned above all singularities of the integrand to satisfy causality,

since by assumption the flow is steady before the disturbance is introduced. The F

contour initially lies along the real axis in the complex-α plane. Figures 1.3 (a.) and

(b.) show the initial locations of the integration contours in the complex-γ plane and

the complex-α plane, respectively. These figures also show the forms typically taken

by the spatial branches and temporal modes. Note that it is assumed that there are

two spatial branches, α+(γ) and α−(γ), corresponding to effects downstream and

upstream of the initial disturbance, respectively. In finding the time-asymptotic

solution of (1.6) these contours will be deformed using analitic continuation, until a

singularity is encountered.

The Green’s function defined by (1.6) takes the form of a disturbance wavepacket

in the (x, t)-plane, with the response along each ray x/t dominated by a single
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(a.) (b.)

(c.) (d.)

Figure 1.3: Illustration of the contours of integration.

complex wavenumber, α∗, such that ∂γ/∂α(α∗) = x/t. The temporal growth rate

along each ray is then given by γi(α∗) − (x/t)α∗i. Within a temporal mode, γ(α),

where α is real, the growth rate reduces to γi(α∗). The maximum growth rate, γi,max,

is then found at the stationary point, ∂γi/∂α = 0.

From (1.4) and (1.5), we can now derive more simple criteria for linear stability:

the flow is linearly stable when γi,max < 0, and it is linearly unstable when γi,max > 0.

By considering the dominant wavenumber along the ray x/t = 0 at a fixed

spatial location, we can also derive criteria for the convective/absolute nature of the

instability. This complex wavenumber, α0, has zero group velocity by definition:

∂γ

∂α
(α0) = 0. (1.7)

The frequency corresponding to this wavenumber is given by γ0 = γ(α0), and is

referred to as the absolute frequency. Typically, α0 is a saddle point of γ in the

complex-α plane. The absolute growth rate is then given by the imaginary part of
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the absolute frequency, γ0,i, and it is the sign of this quantity that determines the

long-time response. If γ0,i < 0, the flow is convectively unstable; if γ0,i > 0, the flow

is absolutely unstable.

However, although it is necessary for (1.7) to be satisfied with positive γ0,i,

these criteria alone are insufficient to identify absolute instability. The Briggs-Bers

method (see Briggs (1964) and Bers (1972)) allows an asymptotic examination of

the long-time behaviour of the disturbance: if we let

Ḡ(x, γ) =
1

2π

∫
F

eiαx

D(α, γ;R)
dα, (1.8)

then by rearranging (1.6), we can write

G(x, t) =
1

2π

∫
L

Ḡ(x, γ)e−iγtdγ. (1.9)

As t increases, we can lower the L contour. As L is lowered, the relationship

between α and γ enforced by the dispersion relation means that the two spatial

branches, α+ and α−, deform towards each other. The F contour must be lowered

to keep them confined to separate halves of the complex-α plane. At some point,

however, the spatial branches will meet, and here F will become pinched between

the two. This “pinch point” prevents us from progressing any further with the

lowering of L. If, at the pinch point, L remains above the real-γ axis, then absolute

instability will occur due to the growth of the exponential term in (1.9) as t→∞.

If L has moved below the real axis, this term will decay, and if there is instability, it

is convective at worst. Figures 1.3 (c.) and (d.) show the positions of the contours

as they reach a pinch point. In this example, the flow is absolutely unstable.

1.2.2 Global stability

Section 1.2.1 describes the process of identifying convective and absolute instabilities

assuming that the steady-flow velocity profiles are locally invariant in the streamwise

direction. However, it is often more insightful to analyse the behaviour at a global
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scale, and to do this it is necessary to overcome the parallel-flow approximation used

in the local analyses.

In order to relate the local to the global stability properties of the flow, we require

that the velocity, U , changes over a slow spatial scale in the streamwise direction,

so that the flow is weakly non-parallel (see Monkewitz et al., 1993). To this end, we

introduce X = εx, where ε� 1 is a small scaling factor.

We redefine the dispersion relation, D, and the perturbation response, Ψ, such

that they satisfy

D

[
−i

∂

∂x
, i
∂

∂t
;R,X

]
Ψ = 0,

and we now seek Ψ of the form

Ψ(x, t;X) = ψ±(x;X)e−iγGt, (1.10)

where ψ+ and ψ− represent the response downstream and upstream of the source,

respectively, and take the form

ψ±(x;X) ∼ A±(X) exp

(
i

ε

∫ X

α±(X; γ)dX

)
.

Here, A+ and A− represent the complex amplitude of the initial disturbance for

x > 0 and x < 0, respectively. The global behaviour of the flow is governed by the

single complex frequency, γG. Global stability then depends on the growth-rate of

this quantity, γG,i. The flow is said to be globally stable if γG,i < 0, and globally

unstable if γG,i > 0.

Formulation of the global mode

As in §1.2.1, the local absolute frequency, γ0, is the value of γ at a point along the

ray x/t = 0, satisfying:

∂γ

∂α
(α,X) = 0, (1.11)
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and the value of α at this stationary point is α0. The local absolute growth rate is

the imaginary part of the absolute frequency, denoted by γ0,i.

The local maximum growth rate, γi,max, is the value of γi which satisfies:

∂γi
∂α

(α,X) = 0.

For global instability to exist, it is required that there exists a region of local

absolute instability, where γ0,i > 0. This necessarily means that γi,max > 0, since the

value of the local absolute growth rate can never exceed that of the local maximum

growth rate.

Having located points with zero group velocity, as per (1.11), we now seek a

point with the additional criterion that

∂γ

∂X
(α,X) = 0. (1.12)

The symbols αs and Xs are used respectively to refer to the values of α and X at

such a point, and typically, both are complex quantities.

We then proceed in a manner similar to that of §1.2.1. In the global case, we

examine the long-time behaviour of the Green’s function for the differential operator,

D:

D

[
−i

∂

∂x
, i
∂

∂t
;R,X

]
G(x, t) = δ(x)δ(t),

The Green’s function is defined as

G(x, t) =
1

2π

∫
L

Ḡ(x, γ)e−iγtdγ, (1.13)

where

Ḡ(x; γ) ∼ A±(X) exp

(
i

ε

∫ X

α±(X; γ)dX

)
. (1.14)

L is a horizontal line in the complex-γ plane, which initially lies above all singularities

in γ0(X). F initially lies on the real X axis. As time progresses, these contours are

16



deformed until a second pinch point is reached. Here, the superscripts + and −

refer to effects downstream and upstream of the disturbance, respectively.

The global mode is then defined as the value of γ at this double pinch-point,

where both (1.11) and (1.12) hold:

γG = γ(αs, Xs).

The above mathematics underpins much of what follows. The reader is referred

back to this section as appropriate.
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Chapter 2

Incompressible boundary-layer

flow over a rotating sphere

In this chapter, the case of a sphere rotating within still fluid is considered. The

effects of heating, mass-flux and axial flow will be the subject of later chapters;

however, it is illustrative to consider the still-fluid case in the first instance. The

work presented here is based on the description given in Chapter 2 of Garrett (2002)

and also Garrett & Peake (2002) and is, in part, based on the previous work of

Howarth (1951), Banks (1965), Manohar (1967), Banks (1976). In §2.1 we formulate

the problem and derive the governing set of PDEs and the appropriate boundary

conditions. In §2.2 this system is solved and the resulting profiles discussed.

2.1 Formulation and governing equations

Incompressible fluid flow is governed by the Navier-Stokes equations:

Du?

Dt
=− 1

ρ
∇P ? + ν?∇2u,

∇ · u? = 0.
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Forced Flow

Figure 2.1: Illustration of the coordinate system used throughout this work.

Since we are studying flow over a sphere, it will be convenient to express these

equations in spherical coordinates, as follows.

∂W ?

∂t?
+ (u? · ∇)W ? − U?2

r?
− V ?2

r?
=

−1

ρ

∂P ?

∂r?
+ ν?

[
∇2W ? − 2W ?

r?2
− 2

r?2 sin θ

∂

∂θ
(U? sin θ)− 2

r?2 sin θ

∂V ?

∂φ

]
,

∂U?

∂t?
+ (u? · ∇)U? +

W ?U?

r?
− V ?2 cot θ

r?
=

− 1

ρr?
∂P ?

∂θ
+ ν?

[
∇2U? +

2

r?2
∂W ?

∂θ
− U?

r?2 sin2 θ
− 2 cos θ

r?2 sin2 θ

∂V ?

∂φ

]
,

∂V ?

∂t?
+ (u? · ∇)V ? +

V ?W ?

r?
+
U?V ? cot θ

r?
=

− 1

ρr? sin θ

∂P ?

∂φ
+ ν?

[
∇2V ? +

2

r?2 sin θ

∂W ?

∂φ
+

2 cos θ

r?2 sin2 θ

∂U?

∂φ
− V ?

r?2 sin2 θ

]
,
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where r? is the radial distance from the centre of the sphere, θ is the angle of latitude

measured from the pole, and φ is the angle of azimuth measured from some fixed

plane parallel to the axis of rotation. U?, V ? and W ? are the components of u?,

the steady-flow vector, in the directions θ, φ and r? respectively; ν? is the kinematic

viscosity, and P ? is pressure. Note that ? indicates a dimensional quantity.

The sphere is considered to rotate within a fixed frame of reference, with angular

velocity Ω? (see Figure 2.1). Due to this frame of reference, terms representing

Coriolis forces do not occur in the governing equations. On the boundary of the

sphere, r? = a?, the no-slip condition applies. Also, by assumption, motion in the

fluid is caused only by the motion of the sphere, leading to a quiescent fluid condition

in the far field; hence

U? = W ? = V ? − a?Ω? sin θ = 0 on r? = a?,

U? = V ? = 0 as r? →∞.
(2.1)

These give the boundary conditions on the surface of the sphere and in the far field,

respectively.

The Navier-Stokes equations can be simplified by making the additional boundary-

layer assumptions that

W ? ∼ O (δ?) , U? ∼ O (1) ,

V ? ∼ O (1) , ∂
∂θ
∼ O (1) ,

where δ? is the boundary-layer thickness, given by

δ? =

(
ν?

Ω?

) 1
2

� 1,

Making these assumptions, and neglecting azimuthal variation, which reflects the
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rotational symmetry of system, leads to the equations

W ?∂U
?

∂r?
+
U?

a?
∂U?

∂θ
− V ?2

a?
cot θ = ν?

∂2U?

∂r?2
, (2.2)

W ?∂V
?

∂r?
+
U?

a?
∂V ?

∂θ
+
U?V ?

a?
cot θ = ν?

∂2V ?

∂r?2
, (2.3)

∂W ?

∂r?
+

1

a?
∂U?

∂θ
+
U?

a?
cot θ = 0. (2.4)

We note that these are identical to those listed in the literature.

Equations (2.2)–(2.4) can be non-dimensionalised by introducing the following

non-dimensional variables:

U(η, θ) =
U?

Ω?a?
, V (η, θ) =

V ?

Ω?a?
, W (η, θ) =

W ?

(ν?Ω?)1/2
,

with η =
(

Ω?

ν?

) 1
2 (r?−a?) being the non-dimensional distance from the surface of the

sphere, non-dimensionalised on the boundary-layer thickness. This gives

W
∂U

∂η
+ U

∂U

∂θ
− V 2 cot θ =

∂2U

∂η2
, (2.5)

W
∂V

∂η
+ U

∂V

∂θ
+ UV cot θ =

∂2V

∂η2
, (2.6)

∂W

∂η
+
∂U

∂θ
+ U cot θ = 0. (2.7)

Note that the latitudinal and azimuthal velocities are scaled on the equatorial surface

speed of the sphere.

Using the same scalings, the boundary conditions (2.1) become

U = W = V − sin θ = 0 on η = 0,

U = V = 0 as η →∞.
(2.8)

2.2 Obtaining the steady flow

The system of PDEs (2.5)–(2.7) subject to conditions (2.8) governs the scaled steady

flow within the rotating-sphere boundary layer. It is now necessary to solve this
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system in order to study the properties of the flow. As discussed in Chapter 1, the

solution at each latitude can be obtained from approximate series-solution methods

as used by Banks (1965) and Jain & Venkataraman (1966), or accurate numerical

methods; see Manohar (1967), Banks (1976), Garrett (2002) and Garrett & Peake

(2002). We choose to follow Garrett (2002), Garrett & Peake (2002) and use the

routine, D03PEF, commercially available from the Numerical Algorithms Group.

However, in order to implement this we first require a complete initial solution at a

low latitude (θ = 1◦ in this work), which we obtain from the series solution of Banks

(1965).

We begin by summarising the series-solution method in §2.2.1, before proceeding

to obtain the full solution in §2.2.2. In addition, we will discuss the implications of

using the series solution over the entire sphere.

2.2.1 A series-solution method

Two series-solution methods have been considered. The first and more accurate of

these, originally proposed by Howarth (1951) and later used by Banks (1965), is

considered in detail here. The second, by Jain & Venkataraman (1966), assumes a

series solution in both θ and η, and will be shown to be very inaccurate in §2.2.3.

Banks’s method is to express each of U , V , and W as a series expansion in powers

of θ;

U = F1θ + F3θ
3 + . . . , (2.9)

V = G1θ +G3θ
3 + . . . , (2.10)

W = H1 +H3θ
2 + . . . , (2.11)

where Fi, Gi, and Hi are non-dimensional functions of η, and i = 1, 3, 5, . . . . By

applying the boundary conditions from (2.8), and equating coefficients of each power
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of θ, we obtain

Fi(0) = Hi(0) = Gi(0)− 1

i!
(−1)

i−1
2 = 0, (2.12)

Fi(∞) = Gi(∞) = 0. (2.13)

Substituting the expansions (2.9)–(2.11) into (2.5), after changing to the spatial

variable η, we again equate coefficients of each power of θ. At orders one to four, we

obtain the following nonlinear ordinary differential equations (ODEs) which govern

Fi, Gi and Hi, with a prime denoting differentiation with respect to η.

H1F
′
1 + F 2

1 −G2
1 = F ′′1 , (2.14)

4F1F3 +H1F
′
3 +H3F

′
1 − 2G1G3 +

G2
1

3
= F ′′3 , (2.15)

6F1F5 + 3F 2
3 +H1F

′
5 +H3F

′
3 +H5F

′
1

−2G1G5 −G2
3 +

2

3
G1G3 +

1

45
G2

1 = F ′′5 , (2.16)

8F1F7 + 8F3F5 +H1F
′
7 +H3F

′
5 +H5F

′
3 +H7F

′
1 − 2G1G7

−2G3G5 +
1

3
G2

3 +
2

3
G1G5 +

2

45
G1G3 +

2

945
G2

1 = F ′′7 . (2.17)

Similarly, substituting into (2.6) and then (2.7) gives

2F1G1 +H1G
′
1 = G′′1, (2.18)

4F1G3 + 2F3G1 +H1G
′
3 +H3G

′
1 −

1

3
F1G1 = G′′3, (2.19)

6F1G5 + 4F3G3 + 2F5G1 +H1G
′
5 +H3G

′
3

+H5G
′
1 −

1

3
F1G3 −

1

3
F3G1 −

1

45
F1G1 = G′′5, (2.20)

8F1G7 + 6F3G5 + 4F5G3 + 2F7G1 +H1G
′
7 +H3G

′
5 +H5G

′
3 +H7G

′
1

−1

3
F1G5 −

1

3
F3G3 −

1

3
F5G1 −

1

45
F1G3 −

1

45
F3G1 −

2

945
G1F1 = G′′7, (2.21)
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2F1 +H ′1 = 0, (2.22)

4F3 +H ′3 −
1

3
F1 = 0, (2.23)

6F5 +H ′5 −
1

45
F1 −

1

3
F3 = 0, (2.24)

8F7 +H ′7 −
2

945
F1 −

1

45
F3 −

1

3
F5 = 0. (2.25)

The solution to Equations (2.14)–(2.25), subject to the boundary conditions

(2.12) and (2.13), is found using a shooting method. Values for F ′i (0) and G′i(0)

are initially guessed, and the equations are integrated forwards using a fourth-order

Runge-Kutta routine over a suitably large domain. On the outer boundary of the

domain of integration, the resulting values of Fi and Gi are compared with the

boundary condition (2.13). If the values for Fi and Gi do not satisfy this to within

a predefined tolerance, a Newton-Raphson procedure is used to find better approx-

imations for F ′i (0) and G′i(0). The integration step is performed again, and the

process then repeats until the desired level of precision is reached. This algorithm

is based on an amended version of a routine used by Garrett (2002), based on code

originally developed by Lingwood (1995a).

The domain of integration used in the shooting method is chosen such that it

is large enough so that increasing its size further has very little effect on the values

of F ′i (0) and G′i(0). In this case, the domain is chosen by performing the shooting

method several times over domains of increasing size, until further enlargement

causes the new values for F ′i (0) and G′i(0) to differ in the sixth decimal place only.

It is found that this condition is satisfied upon reaching η = 20, so a domain of

0 ≤ η ≤ 20 is considered sufficient.

The series-solution method provides acceptable accuracy for small values of θ, i.e.

for positions close to the sphere’s pole, but this accuracy diminishes with latitude,

and it is for this reason that the numerical solution of Garrett (2002), described in

§2.2.2, is preferable. As θ tends to zero, Equations (2.14)–(2.15) limit to the von

Kármán equations for the rotating disk, demonstrating the similarity in the two

systems. We will return to this in §2.2.3.
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Figure 2.2: Velocity profiles for U(η), V (η) and W (η), each plotted for latitudes of 10◦

to 80◦ in increments of 10◦ (left to right).

2.2.2 A full numerical solution

The numerical solution is found using the commercially available NAG routine,

D03PEF. This routine is able to integrate a system of first-order PDEs by reducing

it to a system of ODEs by using a Keller Box scheme and the method of lines.

Starting with a provided complete solution at latitude θ = 1◦, taken from Banks’s

series solution method, the NAG routine proceeds to calculate solutions for each

one-degree increment of θ over the body. Figure 2.2 shows the resultant velocity

profiles at selected latitudes. It can be seen that close to the sphere surface, the

components U and V grow with latitude. The radial component, W , is negative

over most of the sphere, reflecting the fact that fluid is entrained into the boundary

layer, but the plots corresponding to latitudes of 70◦ and 80◦ indicate a region of

reverse flow near the surface. In fact, this reverse flow occurs at latitudes 63◦ and

above.
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Figure 2.3: Comparison of profiles calculated using the series-solution method of
Banks (1965) (crosses) with profiles for the numerical NAG solution (solid line), at
θ = 10◦, 40◦, 70◦.

2.2.3 Analysis of error in the series-solution method

The graphs in Figure 2.3 illustrate the difference between the results obtained by

Banks (1965) using the series-solution method and the more accurate numerical

method. As expected, the error appears to increase at greater distances from the

pole. However, the solutions show close agreement for all η at low latitudes.

Jain & Venkataraman (1966) use a different series-solution method, expressing

each component as an expansion in powers of sin θ. This also leads to a system of

ODEs, but at increasing orders of sin θ. The resultant ODEs are then solved by

assuming expansions in powers of η. Figure 2.4 shows how their results compare

with the numerical solution. In this case the error increases with both θ and η,

which is to be expected from such a series solution. Given the evident inaccuracies

shown in Figure 2.4, we will use only the Banks and NAG solutions going forward.

26



0 0.1 0.2
0

5

10

15

�

�������	��


0 0.5 1
0

5

10

15

�

���������


−10 0 10
0

5

10

15

�

�������	��


0 0.1 0.2
0

5

10

15

�

������� � 


0 0.5 1
0

5

10

15

�

������� � 


−10 0 10
0

5

10

15

�

�������	��


0 0.1 0.2
0

5

10

15

�

������� � 


� 0 0.5 1
0

5

10

15

�

���������


� −10 0 10
0

5

10

15

�

�������	��


�

Figure 2.4: Comparison of profiles calculated using the method of Jain & Venkatara-
man (1966) (crosses) with profiles for the numerical NAG solution (solid line), at θ =
10◦, 40◦, 70◦.

2.3 Boundary-layer flow over a rotating sphere

with heating

In this section we extend the formulation and solution method described in §§2.1

and 2.2 in order to obtain the steady-flow profiles over the rotating sphere for incom-

pressible flow with heating. The Prandtl number of the fluid, Pr, is a dimensionless

number approximating the ratio of momentum diffusivity (ν?) to thermal diffusivity.

Due to the assumption that the fluid is incompressible, heating and cooling have no

effect on its density, which remains constant and uniform. This means that velocity

profiles are independent of the Prandtl number, and consequently the stability of

the flow is not affected. The thermal boundary layer is therefore treated alongside

the mean velocity profiles in Chapters 2–4, but it will not be considered further.

The results calculated here may form the basis of a future study that allows for a

compressible fluid.
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In a similar process to that used in §2.2, we first use a series-solution method,

before obtaining a numerical solution using the NAG software. The governing equa-

tions are again (2.5)–(2.8) with the addition of the energy equation and appropriate

boundary conditions. These are stated as

W
∂T ?

∂r?
+
U

a?
∂T ?

∂θ
=
ν?

Pr

∂2T ?

∂r?2
, (2.26)

U = W = V − sin θ = 0, T ? = T ?a on η = 0,

U = V = 0, T ? = T ?∞ as η →∞.
(2.27)

Here T ?a is the surface temperature and T ?∞ is the the ambient fluid temperature.

We assume the following expansions, using expressions from Banks (1965) for

the velocity components, and for temperature:

U? = a?Ω?
(
θF1 + θ3F3 + . . .

)
, (2.28)

V ? = a?Ω?
(
θG1 + θ3G3 + . . .

)
, (2.29)

W ? = (ν?Ω?)
1
2
(
H1 + θ2H3 + . . .

)
, (2.30)

T ? = T ?a + (T ?∞ − T ?a )
(
M1 + θ2M3 + θ4M5 + . . .

)
, (2.31)

We obtain the following ODEs at successive orders of θ:

H1M
′
1 −

M ′′
1

Pr
= 0, (2.32)

H1M
′
3 +H3M

′
1 + 2F1M3 −

M ′′
3

Pr
= 0, (2.33)

H1M
′
5 +H3M

′
3 +H5M

′
1 + 4F1M5 + 2F3M3 −

M ′′
5

Pr
= 0, (2.34)

H1M
′
7 +H3M

′
5 +H5M

′
3 +H7M

′
1 + 6F1M7 + 4F3M5 + 2F5M3 −

M ′′
7

Pr
= 0, (2.35)

. . .

with a prime, as before, denoting differentiation with respect to η. The functions

Fi, Gi and Hi are determined from the equations stated previously, (2.14)–(2.25).
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The functions Mi are subject to boundary conditions,

Mi(0) = 0 (2.36)

Mi(∞) = 0 (2.37)

We use a shooting method to determine the initial conditions for this system

of equations for each of several values for Pr, then evaluate them computationally.

Figure 2.5 is based on the data output by the numerical routine from NAG, and

illustrates how the temperature profile is affected by varying Pr over the interval

between 1.0 and 7.0 (roughly corresponding to water), plotted at selected latitudes.

For illustration, we model a cold body whose temperature is one unit lower than the

fluid in the far field. For any cool-body case, the temperature profiles take on an

identical shape, and data can be generated for arbitrary values of Ta and T∞ by a

simple scaling. The velocity profiles are as discussed in §2.2.2 and are independent

of Pr at any particular θ.

A comparison between the results of the series-solution method and the numerical

method is included in the error analysis of §4.3.
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Figure 2.5: Temperature profiles for a one-unit temperature difference; θ =
10◦, 30◦, 50◦, 70◦; each with plots for Pr = 1, 3, 5, 7 (top to bottom).
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Chapter 3

Boundary-layer flow over a

rotating sphere with heating and

mass flux

In this chapter we examine the effects of distributed surface mass-flux on the steady-

flow profiles over the rotating sphere for incompressible flow with heating that were

described in §2.3. We introduce a parameter ι?, representing the mass flux through

the sphere surface, and change the boundary condition for the normal velocity com-

ponent such that W ? = ι? on the surface of the sphere. By scaling ι? on
√
ν?Ω?,

the non-dimensional scaling for the W -component (see Chapter 2), we introduce the

non-dimensional parameter, ι:

ι? =
a?Ω?

R
ι,

where R = a?δ?Ω?

ν?
is the Reynolds number: a non-dimensional measure of the ratio

of inertial forces to viscous forces. The Reynolds number will be discussed further in

a later chapter, but it is sufficient here to understand that it will be interpreted as a

measure of the spin rate for a sphere of fixed dimension. We note that the mass-flux

parameter is related to the equatorial surface speed, but scaled on the Reynolds

number that otherwise does not appear in the steady flow system. That the scaling

of the mass-flux parameter depends only on global properties of the system (not
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latitudinal location), means that a particular ι can be used to represent the same

mass-flux at all latitudes over the sphere. We let ι vary between −1 and 1, with

positive values interpreted as fluid injection, and negative values as suction. This

range is imposed to limit the number of cases to be studied, but can be arbitrarily

extended within this formulation.

With the addition of this parameter, the non-dimensional boundary conditions

become

U = V − sin θ = 0, W = ι on η = 0,

U = V = 0 as η →∞.
(3.1)

The system of PDEs governing the steady flow is identical to that in Chapter 2,

and we now solve them numerically, using the previously described NAG routine,

subject to these altered boundary conditions.

Figures 3.1–3.4 show the velocity and temperature profiles, subject to selected

values of ι. Each component is presented at ι = −1,−0.5, 0, 0.5, 1, and on each

set of axes a profile is plotted for a range of latitudes. Note that unless otherwise

specified, Pr is fixed at 0.7 (the approximate Prandtl number for air at all temper-

atures), and the temperatures of the sphere surface and the free stream are fixed

at 0 and 1, respectively. As demonstrated by Equation (2.31), general surface and

free stream-temperatures can be incorporated by a simple scaling; however, it is

sufficient to consider only this simple case in the comparisons presented here. The

plots corresponding to ι = 0 are identical to those in Chapter 2.

As might be expected, applying mass flux appears to have the most pronounced

effect on the normal velocity component, W , although the latitudinal velocity, U ,

is also seen to be sensitive. The boundary conditions state that on η = 0, W is

equal to ι, and this results in the translation of the lower part of the profile that is

observable in Figure 3.3. We also see that suction increases the rate at which fluid

is entrained into the boundary layer. Furthermore, injection is seen to exaggerate

the region of normal reverse flow at higher latitudes.

Figure 3.1 shows that the U profile is also significantly distorted by high magni-
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Figure 3.1: The effects of mass flux on U at ι = −1.0, −0.5, 0, 0.5, 1.0, with each case
plotted for θ = 10◦, 30◦, 50◦, 70◦ (left to right).
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Figure 3.2: The effects of mass flux on V at ι = −1.0, −0.5, 0, 0.5, 1.0, with each case
plotted for θ = 10◦, 30◦, 50◦, 70◦ (bottom to top on each set of axes).
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Figure 3.3: The effects of mass flux on W at ι = −1.0, −0.5, 0, 0.5, 1.0, with each case
plotted for θ = 10◦, 30◦, 50◦, 70◦ (left to right).
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Figure 3.4: The effects of mass flux on T at ι = −1.0, −0.5, 0, 0.5, 1.0, with each case
plotted for θ = 10◦, 30◦, 50◦, 70◦ (bottom to top on each set of axes).
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tudes of mass flux, with suction producing slower latitudinal jets close to the wall

at all θ and causing U to tend to zero more quickly with respect to η. Injection has

the opposite effect, producing larger jets. We see that at a given η, the magnitude

of the change in U caused by altering ι is greater at higher latitudes. This means

that at higher injection speeds, U has a greater range of values over the range of θ

considered.

The effects of mass flux on V and T are more subtle, but in both cases, suc-

tion causes the variable to tend to the free-stream boundary value over a shorter

distance in η, and injection has the opposite effect. In physical terms the above

observations on each flow component and temperature profile correspond to a nar-

rowing of the boundary layer with suction, and thickening with injection. This is

physically sensible.

Figures 3.5–3.7 show the effects of varying ι at selected fixed latitudes and with

fixed Prandtl number. Note that the velocity plots progress from left to right as ι

is increased from −1 to 1, while the temperature plots progress from right to left.

In each case, the dotted line corresponds to the case of zero mass flux (ι = 0),

and is identical to the corresponding plot in Chapter 2. Again we see that injection

magnifies the streamwise wall jet effects at all latitudes and also the extent of normal

reverse flow seen at higher latitudes (Figure 3.7). Both of these are effects close to

the sphere surface.

Comparing the profiles in Figures 3.5–3.7 we see that in every case, for U , V

and T , the effects of mass flux appear to be greater for higher latitudes. For W ,

however, this trend appears to be reversed: the range of speeds attained as ι moves

from −1 to 1 is narrower at higher latitudes.

We now proceed to examine the effects of different Prandtl numbers on the

temperature profiles. As discussed in §2.3, the velocity profiles are independent of

Pr, so they are not considered at this stage. Note that in this section, Pr is fixed at

a constant value, whereas for many real fluids, Pr may change as a function of T .

For fluids where Pr is particularly sensitive to T , care needs to be taken with the
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Figure 3.5: Velocity and temperature profiles at θ = 10◦; plotted for ι = −1 to 1, in
increments of 0.2. For increasing ι, the velocity plots can be seen going from left to right,
while the temperature plots proceed from right to left.
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Figure 3.6: Velocity and temperature profiles at θ = 40◦; plotted for ι = −1 to 1, in
increments of 0.2. For increasing ι, the velocity plots can be seen going from left to right,
while the temperature plots proceed from right to left.
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Figure 3.7: Velocity and temperature profiles at θ = 70◦; plotted for ι = −1 to 1, in
increments of 0.2. For increasing ι, the velocity plots can be seen going from left to right,
while the temperature plots proceed from right to left.

interpretation of the results.

As Figures 3.8–3.10 all show, increasing the Prandtl number of the fluid causes T

to change more quickly with respect to η, i.e. most of the change in T occurs closer to

the sphere surface. This corresponds to a narrowing of the thermal boundary layer

with increased Pr, as would be expected with a decrease in the relative thermal

diffusion rate that increasing Pr corresponds to.

Figures 3.11 and 3.12 show similar plots to those presented above but for Pr = 7.

This corresponds to water at a temperature of 293K. Again we see injection/suction

acting to thicken/narrow the thermal boundary layer. These effects are again seen

to be exaggerated as the latitude is increased.

37



0 0.2 0.4 0.6 0.8 1
0

5

10

15

����������

0 0.2 0.4 0.6 0.8 1
0

5

10

15

������
	��

0 0.2 0.4 0.6 0.8 1
0

5

10

15

������
���

0 0.2 0.4 0.6 0.8 1
0

5

10

15

���������

�

Figure 3.8: Temperature profiles at ι = 0, Pr = 1, 3, 5, 7; each plotted for θ =
10◦, 30◦, 50◦, 70◦ (bottom to top on each set of axes).
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Figure 3.9: Temperature profiles at ι = −1, Pr = 1, 3, 5, 7; each plotted for θ =
10◦, 30◦, 50◦, 70◦ (bottom to top on each set of axes).
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Figure 3.10: Temperature profiles at ι = 1, Pr = 1, 3, 5, 7; each plotted for θ =
10◦, 30◦, 50◦, 70◦ (bottom to top on each set of axes).
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Figure 3.11: The effects of mass flux on T with Pr = 7 at ι = −1.0, −0.5, 0, 0.5, 1.0,
with each case plotted for θ = 10◦, 30◦, 50◦, 70◦ (bottom to top on each set of axes).
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Figure 3.12: Temperature profiles at Pr = 7; θ = 10◦, 40◦, 70◦; plotted for ι = −1 to 1 in
increments of 0.2 (bottom to top).
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Chapter 4

Introducing an axial flow

In this chapter, we extend the model with an additional parameter which controls the

magnitude of a uniform flow enforced onto the rotating sphere, parallel to its axis of

rotation. We take the same approach as Garrett (2002), Garrett & Peake (2004), and

calculate the steady mean flow by solving the altered governing equations formulated

in §4.1. We then examine the results in §4.2, with a view to understanding the

combined effects of mass flux and axial flow on the behaviour of the velocity and

temperature profiles.

4.1 Formulation

We let U?
∞ be the dimensional free-stream speed of axial fluid flow, and U?

0 (θ) be the

latitudinal velocity distribution at the outer edge of the boundary layer, referred to

as the slip velocity. The free-stream velocity is non-dimensionalised on the equatorial

speed of the sphere by

τ = U?
∞/a

?Ω?.

The form of U?
0 (θ) is determined by the pressure distribution, P ?(θ), over the sphere,

and satisfies

U?
0

a?
∂U?

0

∂θ
= − 1

a?ρ?
∂P ?

∂θ
. (4.1)
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It is non-dimensionalised on the free-stream speed by

U0(θ) = U?
0/U

?
∞.

The form of U0(θ) used throughout this work is a series expansion obtained experi-

mentally by Fage (1936):

U0(θ) ≈ 1.5θ − 0.4371θ3 + 0.1481θ5 − 0.0423θ7, (4.2)

where, in this case, θ must be measured in radians. In using this we are assuming

that the magnitude of suction is sufficiently small so as not to affect the free-stream

flow around the sphere.

Using the above, we non-dimensionalise the governing equations stated by Man-

gler (1945), and we obtain

W
∂U

∂η
+ U

∂U

∂θ
− V 2 cot θ =τ 2U0

dU0

dθ
+
∂2U

∂η2
, (4.3)

W
∂V

∂η
+ U

∂V

∂θ
+ UV cot θ =

∂2V

∂η2
, (4.4)

∂W

∂η
+
∂U

∂θ
+ U cot θ = 0. (4.5)

Note that in the case of zero axial flow (τ = 0), these equations reduce to Equations

(2.5)–(2.7) derived in Chapter 2.

Also, we now have the far-field boundary condition that U = τU0, so that the

boundary conditions for the system become

U = V − sin θ = 0, W = ι on η = 0,

V = U − τU0 = 0 as η →∞.
(4.6)

We therefore have mass flux affecting the lower boundary conditions within the

boundary layer and axial flow affecting the upper boundary conditions; these are

assumed to be independent. Again, when τ = 0, these conditions reduce to (2.8).
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With a distribution chosen for U0(θ), we can now simply use τ as a parameter

controlling the magnitude of axial flow. We allow τ to vary between 0.00 and

0.25: a reasonable range of experimentally attainable values. This was the range

considered by Garrett (2002) and Garrett & Peake (2004) in the absence of surface

mass-flux.

We non-dimensionalise P ? using P = P ?/ρ?(a?Ω?)2. Then at the edge of the

boundary layer, from (4.1) we obtain

∂P

∂θ
= −τ 2U0

dU0

dθ
. (4.7)

The slip-velocity distribution (4.2) attains a maximum at θ = 1.2912, or 74◦, and

dU0/dθ is positive in the range 0 ≤ θ < 1.2912. Given this, it can be seen from

(4.7) that ∂P/∂θ is negative over the same range, which implies the existence of a

favourable pressure gradient for all latitudes below 74◦; this is expected to have a

stabilising effect on the flow.

4.2 Results

These governing equations are solved subject to their boundary conditions, using

the commercially available NAG routine discussed in earlier chapters. Figures 4.1–

4.4 show the combined effects of axial flow and mass flux on the profiles of each

velocity component and temperature. In each figure, profiles are arranged in a 3×3

grid, with rows corresponding to latitudes θ = 10◦, 40◦ and 70◦. The central column

corresponds to zero mass flux, while the left and right columns show example cases

of suction and injection, respectively. Lines corresponding to zero axial flow are

identical to corresponding results from Chapter 3.

Examining Figure 4.1, we see that increased axial flow causes U to tend to a larger

constant value. It has a much greater effect on the streamwise flow component at

higher latitudes. For any given latitude and axial-flow magnitude, mass flux does

not alter the value to which U tends in the far field, although it does affect the
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Figure 4.1: U profile at selected latitudes (rows) and selected ι (columns), plotted for
τ = 0 to 0.25 in increments of 0.05 (left to right in each frame).
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Figure 4.2: V profile at selected latitudes (rows) and selected ι (columns), plotted for
τ = 0 to 0.25 in increments of 0.05 (right to left in each frame).
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Figure 4.3: W profile at selected latitudes (rows) and selected ι (columns), plotted for
τ = 0 to 0.25 in increments of 0.05 (right to left in each frame). (In the case of the
bottom-right frame, the order is right to left as measured at η = 20.)
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Figure 4.4: T profile at selected latitudes (rows) and selected ι (columns), plotted for
τ = 0 to 0.25 in increments of 0.05, at Pr = 0.7 (top to bottom in each frame).
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Figure 4.5: T profile at selected latitudes (rows) and selected ι (columns), plotted for
τ = 0 to 0.25 in increments of 0.05, at Pr = 4.0 (top to bottom in each frame).
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Figure 4.6: T profile at selected latitudes (rows) and selected ι (columns), plotted for
τ = 0 to 0.25 in increments of 0.05, at Pr = 7.0 (top to bottom in each frame).
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profile close to the sphere surface. The previously-observed distortion of the wall

jets caused by mass flux is significantly reduced by increased rates of axial flow.

This can be seen from the figure by observing that across any row, the left-most line

undergoes a much larger change than the right-most.

Increasing axial flow has a less pronounced effect on V , but it clearly causes it

to maintain a lower magnitude close to the sphere surface, eventually tending to the

same constant value as η → ∞. Similarly to the case for U , the effect is greater

at higher latitudes. Mass flux appears to have a small effect, with positive values

slightly magnifying the effects of axial flow.

It can be seen from Figure 4.3 that non-zero enforced axial flow prevents the

normal velocity component, W , from tending to a constant value with increasing η,

and instead causes it to assume a constant rate of change as η → ∞. This implies

that fluid is entrained into the boundary layer at unbounded speed as η → ∞.

As noted by Garrett (2002) and Garrett & Peake (2004), this is a consequence of

the boundary-layer approximations used in the model; it is clearly impossible for

the fluid to maintain this acceleration at an indefinite distance from the sphere,

although El-Shaarawi et al. (1987) experimentally show that this behaviour does

occur close to the surface in practice. The effects of axial flow are seen to decrease

with increasing latitude.

Rearranging (4.5), we obtain

∂W

∂η
= −τ

(
U0 cot θ +

∂U0

∂θ

)
.

Hence, the W gradient is independent of mass flux, which is clearly seen in Figure

4.3.

Increasing the axial flow rate causes T to tend more quickly (with respect to

η) to its free-stream value. This implies greater heat diffusion. Positive mass flux

increases the effect varying axial flow has upon the behaviour of the T profile, while

negative mass flux decreases it. Plots of these effects on T are presented for Pr

values 0.7, 4.0 and 7.0, in Figures 4.4, 4.5 and 4.6, respectively. It can be seen
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that for higher Pr, the greater heat diffusion causes the thermal boundary layer to

become thinner, and the effects of other parameters upon the profiles are reduced.

4.3 Error in the series-solution method

It is these profiles calculated with the NAG routine on which we will perform stabil-

ity analyses in later chapters. Having completed the model with these parameters,

we examine the accuracy of the series-solution method by comparing it to the nu-

merical method. For a quantitative measure of the series-solution’s deviation from

the numerical one, we take the root mean square (RMS) of the difference between

corresponding results. The RMS error for some fixed injection (ι), axial flow (τ),

Prandtl number (Pr), and latitude (θ) is given by

EX(ι, τ,Pr, θ) =

√√√√ N∑
i=1

(Xn(ηi)−Xs(ηi))
2

N
,

where X represents any one of the velocity or temperature components: U , V , W ,

or T , subject to the specified values for the four fixed parameters. The subscript n

indicates that the component was calculated using the numerical method, while s

indicates that it was obtained by the series-solution method. The sum is taken over

a discrete set of N evenly-spaced values of η between 0 and 20.

Table 4.1 shows consistently higher error for higher latitudes, as is expected for

a series solution in θ. Higher rates of axial flow also cause increased error. Table

4.2 suggests that the effect of surface mass flux upon the error is less consistent

than that of axial flow or increased latitude. With non-zero axial flow, the U and

W errors appear to decrease slightly with increasingly positive mass flux, but they

remain at the same order of magnitude. However, the error in V increases with both

τ and ι.

Although Tables 4.1 and 4.2 show only data for Pr = 0.7, the error in T is found

to increase with increased Pr. Since U , V and W are independent of Pr, the error

in these quantities is unaffected.
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τ = 0.00 τ = 0.10
θ U V W T U V W T
10◦ .00002 .00006 .00024 .00002 .00009 .00002 .02216 .00017
30◦ .00003 .00016 .00082 .00005 .00205 .00037 .14667 .00133
50◦ .00028 .00087 .00849 .00160 .00667 .00133 .21764 .00307
70◦ .00747 .02032 .18237 .03071 .01313 .00486 .35305 .00808

×10−1

τ = 0.15 τ = 0.25
θ U V W T U V W T
10◦ .00013 .00003 .03468 .00022 .00023 .00004 .06033 .00029
30◦ .00314 .00055 .22964 .00178 .00535 .00080 .40160 .00235
50◦ .01023 .00192 .34345 .00403 .01749 .00277 .60596 .00528
70◦ .02029 .00629 .57042 .00988 .03500 .00845 1.03609 .01233

Table 4.1: Error, EX , in the series-solution method with Pr = 0.7, ι = 0.0

τ = 0.00 τ = 0.10
ι U V W T U V W T
−1 .00083 .00981 .08078 .00923 .00321 .00035 .24303 .00101
−0.5 .00264 .01234 .05226 .00648 .00319 .00047 .23774 .00140
0 .00264 .01584 .08211 .00490 .00314 .00055 .22964 .00178
0.5 .00534 .01901 .10852 .01047 .00308 .00058 .21999 .00211
1 .00792 .02215 .10279 .01551 .00300 .00059 .20934 .00242

×10−3

τ = 0.15 τ = 0.25
ι U V W T U V W T
−1 .00431 .00041 .32727 .00115 .00541 .00045 .41168 .00125
−0.5 .00428 .00056 .32274 .00161 .00539 .00062 .40801 .00175
0 .00424 .00069 .31507 .00211 .00535 .00080 .40160 .00235
0.5 .00417 .00077 .30501 .00259 .00529 .00094 .39218 .00296
1 .00410 .00082 .29363 .00303 .00521 .00104 .38073 .00354

Table 4.2: Error, EX , in the series-solution method with Pr = 0.7, θ = 30◦
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The series-solution method is considerably simpler to implement and so, for this

reason, would be preferable to incorporate into engineering design codes. However,

given the inaccuracies just described, the series-solution method is of significantly

less use once these additional parameters are included in the model and, despite its

ease of use, we focus on the NAG profiles in all that follows. We do not recommend

using the series-solution method in any application, with the exception of at latitudes

very close to the pole.
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Chapter 5

Convective stability analysis with

emphasis on critical Reynolds

number

In this chapter, a theoretical convective stability analysis is performed on the pre-

viously described system.

Convective instability is characterised by a response to an initial disturbance

which grows in space, but which convects away from the source, leaving the fluid at

the source undisturbed after some period of time; see §1.2. Physically, convective

instability in the rotating sphere and related systems is known to give rise to co-

rotating spiral vortices, and we proceed with the analysis by fixing the local speed

of these vortices with respect to the sphere surface. This speed is referred to as c,

and is defined in §5.3.

In §5.1, the perturbation equations are derived. In §§5.3 and 5.4, stability analy-

ses are conducted using these equations. §5.3 uses the assumption that vortices are

stationary with respect to the sphere surface (c = 1), while §5.4 permits travelling

vortices. It is assumed throughout that any disturbances to the mean flow are of

sufficiently small magnitude that no secondary instability occurs, and transition is

controlled only by the primary instability of the steady flow profiles.
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In formulating the problem, we make the assumption that the boundary layer is

locally spatially homogeneous. This is sometimes called the “parallel flow” approx-

imation, and amounts to assuming that η/R ≈ 0 in some instances. Because the

critical Reynolds numbers are generally lower at high latitudes, and the boundary

layer is typically thicker, the validity of this approximation decreases with proximity

to the equator, but as discussed by Garrett (2002), the error remains within a tol-

erable magnitude. The parallel-flow assumption simplifies the governing equations

by removing the dependence on latitudinal position, apart from via the steady flows

obtained in Chapters 2–4, but limits us to performing a “local” analysis, i.e. we can

only analyse the behaviour of the boundary layer at individual latitudes, where we

observe the reaction of the local velocity profile to the initial disturbance, rather

than over the whole streamwise extent of the sphere. However, an investigation into

the global behaviour is presented in Chapter 8.

In the case of incompressible fluid considered here, the stability properties are

completely defined by the velocity and pressure profiles; the temperature profiles

considered in Chapters 2–4 have no effect. We therefore focus on the U , V , W and

P profiles in what follows.

5.1 Derivation of the perturbation equations

We now derive perturbation equations by adding infinitesimally small perturbing

quantities to each of the basic variables, U?(η, θ; ι, τ), V ?(η, θ; ι, τ), W ?(η, θ; ι, τ)

and P ?(η, θ; ι, τ) at particular latitudinal positions, θ. Once again, we initially

follow Garrett (2002) in the formulation of the problem. The perturbing quantities

are assumed to have the normal mode form given by

(û?, v̂?, ŵ?, p̂?) = (u?(r?), v?(r?), w?(r?), p?(r?))ei(α?a?θ+β?a?φ sin θ−γ?t?), (5.1)

where α? and β? are the dimensional wavenumbers of the disturbance in the direc-

tions of θ and φ, respectively, and γ? is the temporal frequency. Hence, we write
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the perturbed variables as

(Ū?, V̄ ?, W̄ ?, P̄ ?) = (U? + û?, V ? + v̂?,W ? + ŵ?, P ? + p̂?)

Substituting these perturbed quantities into the previously derived governing equa-

tions, (2.2)–(2.4), we obtain

W ?du
?

dr?
+

[
i

{
(α?U? + β?V ?)

a?

r?
− γ?

}
+

1

r?

(
∂U?

∂θ
+W ?

)]
u?

−2V ? cot θ

r?
v? +

(
∂U?

∂r?
+
U?

r?

)
w? = − iα?a?p?

r?ρ?

+ν?
[
d2u?

dr?2
+

2

r?
du?

dr?
+

{
−
(
α?2 + β?2

) a?2
r?2

+
iα?a? cot θ

r?2

+
1

r?2 sin2 θ

}
u? − 2iβ?a? cot θ

r?2
v? +

2iβ?a?

r?2
w?
]
, (5.2)

W ?dv
?

dr?
+

[
i

{
(α?U? + β?V ?)

a?

r?
− γ?

}
+

1

r?
(U? cot θ +W ?)

]
v?

+

(
∂V ?

∂θ
+ V ? cot θ

)
u?

r?
+

(
∂V ?

∂r?
+
V ?

r?

)
w? = − iβ?a?p?

r?ρ?

+ν?
[
d2v?

dr?2
+

2

r?
dv?

dr?
+

{
−
(
α?2 + β?2

) a?2
r?2

+
iα?a? cot θ

r?2

− 2

r?2 sin2 θ

}
v? +

2 (iα?a? cot θ)

r?2
u? +

2iβ?a?

r?2
w?
]
, (5.3)

W ?dw
?

dr?
+

[
i

{
(α?U? + β?V ?)

a?

r?
− γ?

}
+
∂W ?

∂r?

]
w?

+
2V ?

r?
v? +

(
∂W ?

∂θ
− 2U?

)
u?

r?
= − 1

ρ?
dp?

dr?

+ν?
[
d2w?

dr?2
+

2

r?
dw?

dr?
+

{
−
(
α?2 + β?2

) a?2
r?2

+
iα?a? cot θ

r?2

− 2

r?2

}
w? − 2 (iα?a? + cot θ)

r?2
u? − 2iβ?a?

r?2
v?
]
, (5.4)

iα?a? + cot θ

r?
u? +

iβ?a?

r?
v? +

2

r?
w? +

dw?

dr?
= 0. (5.5)
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Equations (5.2)–(5.5) can be non-dimensionalised by introducing the scaled vari-

ables:

(u, v, w) = (u?, v?, w?) /a?Ω?,

p = p?/ρ?a?2Ω?2,

α = α?δ?,

β = β?δ?,

γ = γ?δ?/a?Ω?,

δ1 = δ?/a?.

During this spatial analysis, α is in general complex, while β and γ remain real.

We use αr and αi to refer to the real and imaginary parts of α, respectively. The

Reynolds number is defined as in Chapter 3: R = a?δ?Ω?

ν?
. R is the dimensionless ratio

of inertial forces to viscous forces; for a sphere of fixed radius, a?, this formulation

allows R to be interpreted as the spin rate. This is contrast to the interpretation of

the Reynolds number in studies of the rotating disk, where, for fixed rotation rate,

it gives the non-dimensional radial position of the stability analysis. For the sphere

the corresponding position is given by the latitude, θ.

U?, V ?, W ? are non-dimensionalised using the same scalings as in Chapter 2.

This yields the following system of equations:
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δ1W
du

dη
+

[
i {(αU + βV ) l − γ}+ δ1l

∂U

∂θ

]
u− 2V δ1l cot θv

+

(
∂U

∂η
+ δ1lU

)
w = −iαlp+

1

R

[
d2u

dη2
− l2

(
α2 + β2

)
u

]
, (5.6)

δ1W
dv

dη
+ [i {(αU + βV ) l − γ}+ δ1lU cot θ] v +

(
∂V

∂θ
+ V cot θ

)
δ1lu

+

(
∂V

∂η
+ δ1lV

)
w = −iβlp+

1

R

[
d2v

dη2
− l2

(
α2 + β2

)
v

]
, (5.7)

δ1W
dw

dη
+

[
i {(αU + βV ) l − γ}+ δ1

∂W

∂η

]
w − 2Uδ1lu− 2V δ1lv

= −dp
dη

+
1

R

[
d2w

dη2
− l2

(
α2 + β2

)
w

]
, (5.8)

dw

dη
+ 2δ1lw = −l {(iα + δ1 cot θ)u+ iβv} , (5.9)

where l = 1/ (1 + δ1η). During the stability analyses, we make the assumption

that l = 1, representing the parallel-flow assumption described at the start of this

chapter. We introduce the following scaled variables:

φ1 (η;α, β, γ;R, θ) =

(
α− i

R

)
u+ βv, (5.10)

φ2 (η;α, β, γ;R, θ) =

(
α− i cot θ

R

)
u′ + βv′, (5.11)

φ3 (η;α, β, γ;R, θ) = w, (5.12)

φ4 (η;α, β, γ;R, θ) = p, (5.13)

φ5 (η;α, β, γ;R, θ) =

(
α− i cot θ

R

)
v + βu, (5.14)

φ6 (η;α, β, γ;R, θ) =

(
α− i cot θ

R

)
v′ + βu′, (5.15)

where a prime denotes differentiation with respect to η. Using (5.10)–(5.15) and

Equations (5.6)–(5.9), the following system of six differential equations can be de-
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rived:

φ′1 = φ2, (5.16)

[
φ′2
R

]
v

=
1

R

([
α2 + β2

]
v

+ iR (αU + βV − γ)
)
φ1 +

[
Wφ2

R

]
s

+

(
α1U

′ + βV ′ +

[
1

R
(α1U + βV )

]
s

)
φ3 + i

(
α2 + β2 −

[
iα cot θ

R

]
s

)
φ4

−
[
V cot θφ5

R

]
s

+

[
1

R

((
α1
∂U

∂θ
+ β

∂V

∂θ

)
u− (α1V − βU) v cot θ

)]
s

,

(5.17)

φ′3 = −iφ1 −
[

2φ3

R

]
s

, (5.18)

φ′4 =

[
iWφ1

R

]
s

−
[

iφ2

R

]
v

+

[
2

R
(Uu+ V v)

]
s

− 1

R

([
α2 + β2

]
v

+ iR (αU + βV − γ) +W ′
s

)
φ3, (5.19)

φ′5 = φ6, (5.20)

[
φ′6
R

]
v

=

[
V cot θφ1

R

]
s

+

[
Wφ6

R

]
s

+

[
β cot θφ4

R

]
s

+

(
α1V

′ − βU ′

+

[
1

R
(α1V − βU)

]
s

)
φ3 +

[
1

R

((
α1
∂V

∂θ
− β∂U

∂θ

)
u+ (α1U + βV ) v cot θ

)]
s

+
1

R

([
α2 + β2

]
v

+ iR (αU + βV − γ)
)
φ5, (5.21)

with α1 = α − (i cot θ/R). Terms with the subscript s arise due to streamline

curvature, while terms with the subscript v arise due to viscous effects.

Equations (5.16)–(5.21) represent an eigenvalue problem for which solutions will

be found during the stability analysis, subject to the homogeneous boundary con-

ditions,
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φi = 0 on η = 0

φi → 0 as η →∞,
(5.22)

for i = 1, 2, . . ., 6. These conditions stipulate that the perturbations are contained

within the boundary layer. We note that (5.16)–(5.21) are identical to Garrett’s.

We further note that neglecting streamline curvature terms leads to the standard

Orr-Sommerfeld equation,

i
R

(φ′′′′3 − 2(α2 + β2)φ′′3 + (α2 + β2)2φ3)

+(αU + βV − γ)(φ′′3 − (α2 + β2)φ3)− (αU ′′ + βV ′′)φ3 = 0.

Additionally neglecting viscous terms leads to the Rayleigh equation,

(αU + βV − γ)(φ′′3 − (α2 + β2)φ3)− (αU ′′ + βV ′′)φ3 = 0.

This thesis considers the full version of the perturbation equations only. However,

it is instructive to demonstrate their consistency with the standard equations of

stability theory.

Note that because ι does not appear in the mean-flow equations, (4.3)–(4.5), the

perturbation equations derived above are independent of ι. Because τ only appears

in the pressure term of (4.5), which is determined completely by the slip velocity, the

perturbation equations are also independent of τ . Thus, the introduction of axial

flow and surface mass-flux parameters only affects the steady mean-flow profiles

upon which the stability analysis is performed, and Equations (5.16)–(5.21) are

identical to the equations that would be used in the absence of these parameters.

5.2 Solution method

In this section, the method of solving the perturbation equations is described. The

description given here is brief, since the method is the same as that used by Garrett

(2002), who provides a more detailed explanation in his thesis.
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The system of equations allows six independent solutions for each of φ1, φ2, . . . ,

φ6. For each of the transformed variables, a superscript j is used to indicate which

of the six possible solutions is being referred to. Hence, solutions have the form

φji (η;α, β, γ;R, θ; ι, τ). We form each full solution, φi, by taking a linear combination

of these, discounting those which do not decay with η, since they fail to satisfy the

second boundary condition of (5.22).

At the edge of the boundary layer, the equations take on the form

φ′1 = φ2, (5.23)

φ′2 =
(
α2 + β2 + iR (αU∞ − γ)

)
φ1 +W∞φ2 + α1U∞φ3

+ iR

(
α2 + β2 − iα cot θ

R

)
φ4 + α1

∂U∞
∂θ

u+ βU∞v cot θ, (5.24)

φ′3 = −iφ1 −
2φ3

R
, (5.25)

Rφ′4 = iW∞φ1 − iφ2 + 2U∞u−
(
α2 + β2 + iR (αU∞ − γ) +W ′

∞
)
φ3, (5.26)

φ′5 = φ6, (5.27)

φ′6 = W∞φ6 + β cot θφ4 − (RβU ′∞ + βU∞)φ3

− β∂U∞
∂θ

u+ α1U∞v cot θ +
(
α2 + β2 + iR (αU∞ − γ)

)
φ5. (5.28)

Equations (5.23)–(5.28) are obtained by substituting the boundary values of U , V

and W into the system (5.16)–(5.21) for η → ∞. U∞ and W∞ are these boundary

values of U and W , respectively.

Due to our assumption that the perturbing quantities decay exponentially as

η →∞, (5.23)–(5.28) permit solutions of the form

φji (η →∞;α, β, γ;R, θ) = cjie
κjη, (5.29)

where κj < 0, and cji and κj are independent of η. By substituting (5.29) into
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(5.23)–(5.28), we find cji and κj:

κ1 = κ3 =
W∞

2
−

[(
W∞

2

)2

+ α2 + β2 − iRγ

]1/2

, (5.30)

κ2 = κ4 =
W∞

2
+

[(
W∞

2

)2

+ α2 + β2 − iRγ

]1/2

, (5.31)

κ5 =−
[
α2 + β2 − iα cot θ

R

]1/2

, (5.32)

κ6 = +

[
α2 + β2 − iα cot θ

R

]1/2

. (5.33)

We take the real parts of the complex square roots to be positive. Only the solutions

with j = 1, 3 and 5 decay as η →∞ so only these are relevant. We find the required

coefficients to be

c1
1 = 1 c3

1 = 0 c5
1 = iκ5,

c1
2 = κ1 c3

2 = 0 c5
2 = iκ2

5,

c1
3 = −i/κ1 c3

3 = 0 c5
3 = 1,

c1
4 = 0 c3

4 = 0 c5
4 =

1

Rκ5

(
iRγ − iα cot θ

R
−W∞κ5

)
,

c1
5 = 0 c3

5 = 1 c5
5 = 0,

c1
6 = 0 c3

6 = κ3 c5
6 = 0.

Starting from this initial solution, the equations are integrated down towards η = 0.

The first boundary condition (5.22), stipulates that on the surface of the sphere,

the value of the perturbation quantities must be zero, so we have


φ1(0)

φ3(0)

φ5(0)

 =


φ1

1(0) φ3
1(0) φ5

1(0)

φ1
3(0) φ3

3(0) φ5
3(0)

φ1
5(0) φ3

5(0) φ5
5(0)




C1

C2

C3

 =


0

0

0


for some constant coefficients C1,2,3. The coefficient matrix must be singular in order
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for the solution to be non-trivial, and this condition leads to the dispersion relation,

D(α, β, γ;R, θ, τ, ι) = 0, (5.34)

where D is the determinant of the matrix. This requirement means that in any

given configuration, i.e. fixing values for R, θ, τ and ι, the value of any of α, β or γ

can be deduced if the other two are known.

The code used to find solutions to (5.16)–(5.21) is an amended version of that

used by Garrett (2002), based on the code originally developed by Lingwood (1995a)

that incorporated routines from Press et al. (1992).

5.3 Convective stability analysis of stationary vor-

tices

Regions of convective instability are now calculated by fixing the longitudinal dis-

turbance phase velocity, γr/β, with respect to the sphere surface, and using this to

determine α and β. The non-dimensional speed of the sphere surface is sin θ; hence

the non-dimensional disturbance speed, c, is given by γr/β sin θ. For this section,

we set c = 1, so that the vortices are stationary with respect to the sphere surface.

Using the approach of fixing c, the dispersion relation (see §1.2) reduces to

D(α, β, γ = cβ sin θ;R, θ, τ, ι) = D(α, β;R, θ, c, τ, ι) = 0. (5.35)

At high latitudes, travelling vortices with c = 0.76 have been observed exper-

imentally on the rotating sphere by Kobayashi & Arai (1990). Travelling vortices

are considered in §5.4.

Figure 5.1 displays typical examples of the form of the spatial branches that

govern convective instability, in the complex-α plane. Points on these branches

correspond to solutions to (5.35). The case illustrated is that of a still fluid at a

latitude of θ = 30◦. In each case, two branches are visible, referred to as branches 1
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Figure 5.1: Spatial branches at θ = 30◦, τ = ι = 0; R = 600, 735, 800.

and 2; however, in Figure 5.1a, branch 2 resides entirely above the αr axis, and so

it does not contribute to the instability. Figures 5.1b and 5.1c show the positions of

the branches at successively higher Reynolds numbers. By Figure 5.1b, an exchange

of modes has occurred, and what was formerly branch 2 has moved down enough

to intersect the αr axis, forming a second unstable region, which manifests itself on

the neutral curve as the streamline-curvature lobe.

Presented in Figures 5.2–5.10 are neutral-stability curves in the (R,αr)- and

(R, β)-planes for a representative sample of the parameter space. These curves

indicate the points at which the imaginary parts of both α and γ are equal to zero.

The regions enclosed by the curves are convectively unstable. As will be seen from

the following figures, these curves typically exhibit two lobes. The upper lobe, which

occurs at higher wavenumbers, represents crossflow instability; this is an inviscid

effect that arises due to the inflectional nature of the mean velocity profiles. The

lower lobe, which occurs at lower wavenumbers, arises due to streamline-curvature

instabilities caused by the geometry of the flow and viscous effects. These modes

of instability are also referred to as Type I and Type II, respectively. We use the
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Figure 5.2: Neutral stability curves for αr and β at τ = 0, ι = 0 (still fluid), and θ = 10◦

to 70◦ in increments of 10◦ (right to left).

critical Reynolds number, Rc(θ; ι, τ ; c), as a quantitative measure of the stability of

a system. It is the value of R below which the flow is always stable for a given set

of parameters, and is therefore visible as the leftmost point on the curve. In cases

where two lobes are present, the one which extends to the smallest Reynolds number

(i.e. the one which determines Rc) is referred to as the dominant lobe.

The first three Figures, 5.2–5.4, show example cases of zero, positive and negative

surface mass-flux, all without forced axial flow, at various latitudes. Figures 5.5–

5.7 show the effects of both axial flow and surface mass-flux at a fixed latitude of

θ = 10◦. Figures 5.8–5.10 show the same, but at θ = 50◦.

Note that the visible range of values on each axis varies based on the parameter

set in order to optimally display the data. In Figure 5.7, the restricted range has

resulted in the neutral curve not being visible for the extremely stable case of (τ, ι) =

(0.25,−1), since this causes Rc to exceed 10,000.

In all cases, increased suction exaggerates the two-lobe profile of the curve and
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Figure 5.3: Neutral stability curves for αr and β at τ = 0, ι = 1.0, and θ =
10◦, 30◦, 50◦, 70◦ (right to left).
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Figure 5.4: Neutral stability curves for αr and β at τ = 0, ι = −1.0, and θ =
10◦, 30◦, 50◦, 70◦ (right to left).
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Figure 5.5: Neutral stability curves for αr and β at θ = 10◦, τ = 0, and ι = −1 (· · · ), 0
(−), 1 (- -).
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Figure 5.6: Neutral stability curves for αr and β at θ = 10◦, τ = 0.1, and ι = −1 (· · · ),
0 (−), 1 (- -).
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Figure 5.7: Neutral stability curves for αr and β at θ = 10◦, τ = 0.25 and ι = 0 (−),
1 (- -).
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Figure 5.8: Neutral stability curves for αr and β at θ = 50◦, τ = 0, and ι = −1 (· · · ), 0
(−), 1 (- -).
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Figure 5.9: Neutral stability curves for αr and β at θ = 50◦, τ = 0.1, and ι = −1 (· · · ),
0 (−), 1 (- -).
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Figure 5.10: Neutral stability curves for αr and β at θ = 50◦, τ = 0.25 and ι = 0 (−),
1 (- -).
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produces higher critical Reynolds numbers, and a larger stable region overall. This

is to be expected, since suction has been seen to have a stabilising influence in

similar boundary-layer flows (see the work by Lingwood (1997c) on rotating disks,

for example). Injection has the opposite effect, and we see that the two-lobe form is

lost for high magnitudes. The lower, streamline-curvature lobe becomes dominant

as suction is increased. It can be seen from the results of Chapters 3 and 4 that

suction causes a thinning of the boundary layer; in particular, Figures 3.1–3.3 and

4.1–4.3 demonstrate how the mean velocity profiles become fully developed closer

to the sphere surface in the presence of suction. The data also show significantly-

reduced streamwise wall jets as suction is increased. Physically, these effects are

associated with increased stability, so it is sensible that suction is seen to delay the

onset of instability.

Increasing τ increases the relative importance of the Type II lobe. It also moves

both the upper and lower branches to larger wavenumbers for large R, but the effect

on the upper branch is much greater. This has the effect of allowing convective

instability to exist over a wider range of wavenumbers.

Although increasing τ typically raises the critical Reynolds number (and there-

fore promotes stability), small magnitudes of forced axial flow are in fact found to

decrease the critical Reynolds number of the Type II lobe (compare the middle rows

of Tables 5.1 and 5.2). At high latitudes (with the precise value depending on ι),

where the Type II lobe is dominant, this results in a lower value for Rc overall. To

give a specific example: if we fix ι and θ at 0.0 and 70◦, respectively, and allow τ

to increase from 0.00 to 0.25, Rc(τ) initially decreases until it attains a minimum

at τ = 0.09. It is not until τ reaches 0.20 that Rc exceeds Rc(0) (see Figure 5.11).

Thus, in these cases, moderate axial flow is seen not only to broaden the unstable

range of wavenumbers, but also to cause a small decrease in Rc, making the model

more susceptible to instability. Further increasing τ , however, increases Rc, and the

behaviour becomes typical of that seen at lower latitudes. The threshold value of

τ , above which Rc surpasses its value at τ = 0, is dependent on the latitude and ι.
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Figure 5.11: Illustration of one case (θ = 70◦, ι = 0.0) where small magnitudes of axial
flow decrease Rc relative to the case of τ = 0.00.

Both surface mass injection and suction reduce the magnitude of this effect, and it

is not observed at all with strong suction. The significance of this effect is question-

able, since it only occurs at high latitudes, where the critical Reynolds numbers are

low and are more sensitive to the parallel-flow approximation.

We see that, in all cases, changes in both ι and τ have a significantly more

pronounced effect on the upper branches of the neutral curves. Compared to that

of the upper branch, the position of the lower branch appears to be less influenced

by changes in any of θ, τ and ι, for large R. It may be interesting to examine the

implications of this by performing an asymptotic analysis at a later date.

Tables 5.1–5.3 show the computed critical Reynolds numbers for a representative

range of parameters. Where the neutral curve has two lobes, the critical R for the

crossflow mode is presented first, and the value for the streamline-curvature mode is

given in parentheses. Whichever value represents the dominant lobe is given in bold

text. A dash in the table indicates a combination of parameter values for which no
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θ
ι 10◦ 30◦ 50◦ 70◦

−1.0 6610.6 (6309.1) 2272.4 (1993.5) 1523.0 (1127.0) (421.2)
0.0 1601.5 (2478.0) 497.2 (726.0) 260.7 (341.8) (92.3)
1.0 (602.7) (176.9) (82.0) (36.3)

Table 5.1: Critical Reynolds numbers, Rc, for τ = 0.00

θ
ι 10◦ 30◦ 50◦ 70◦

−1.0 9705.7 (8350.7) - 2187.4 (1469.4) -
0.0 2117.0 (2494.6) 655.6 (724.4) 340.9 (329.9) (71.7)
1.0 (664.2) (193.4) (88.0) (37.4)

Table 5.2: Critical Reynolds numbers, Rc, for τ = 0.10

data could be obtained; these usually correspond to extremes of one or more of the

parameters, where numerical instabilities arise in the solution code.

Figure 5.12 examines in detail the case of θ = 30◦, showing the behaviour of Rc

as τ and ι are varied. It is clear that the stabilising effect of increasing the rate of

axial flow is greater in the presence of suction, and correspondingly, that positive

mass injection reduces its effect. The figure also illustrates that Rc is increased

significantly more by suction than it is reduced by the same magnitude of injection.

This conclusion was also reached by Lingwood (1997c) and Lingwood & Garrett

(2011) for the class of general BEK flows.

The number of spiral vortices occurring on the sphere at the onset of convective

instability, and the angle they make with a circle parallel to the equator, have

been measured by Kohama & Kobayashi (1983). They observe that the angle, ε, is

always approximately 14◦, but the number of vortices, n, increases with the rotation

rate (this is equivalent to increasing with R, in our formulation) and tends towards

approximately 32. These measurements are provided for the still-fluid case only; for

θ
ι 10◦ 30◦ 50◦ 70◦

−1.0 - - - -
0.0 3541.6 (3448.2) 1116.0 (1010.0) 598.5 (473.4) (119.5)
1.0 (973.3) (285.3) (130.7) (55.9)

Table 5.3: Critical Reynolds numbers, Rc, for τ = 0.25
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Figure 5.12: Critical Reynolds numbers for the onset of convective instability at θ = 30◦,
for ι = −1,−0.5, 0, 0.5, 1 (top to bottom).

non-zero axial flow or mass flux, it does not appear that these quantities have yet

been experimentally measured. The number of vortices is related to the azimuthal

wavenumber β, and is equivalent to the number of complete cycles of the disturbance

around the azimuth. It is given by n = Rβ sin θ. Note that this definition does not

take into account the fact that the vortices are observed to grow spatially with

latitude, and it may not reliably predict the true value of n, but it is still useful as

a quantitative measure of how the number is affected by changing the parameters ι

and τ . The vortex angle is given by ε = tan−1(β/αr).

For each entry in Tables 5.1–5.3, the predicted number of vortices and their

angle has been calculated at the critical point of the neutral curve, and these are

presented in Tables 5.4–5.6. As with the tables of critical Reynolds numbers, entries

corresponding to the dominant lobe are given in bold text. Where Rc could not be

determined in the previous analysis, we are unable to calculate the critical values of

n and ε, and entries corresponding to these parameter sets are marked with ‘-’.
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Number of vortices:
θ

ι 10◦ 30◦ 50◦ 70◦

−1.0 62 (38) 57 (33) 48 (24) (10)
0.0 22 (20) 19 (17) 14 (12) (4)
1.0 (10) (8) (5) (3)

Angle of vortices:
θ

ι 10◦ 30◦ 50◦ 70◦

−1.0 5.3◦ (9.3◦) 5.1◦ (8.6◦) 4.4◦ (7.1◦) (3.9◦)
0.0 11.4◦ (19.6◦) 11.4◦ (18.9◦) 11.2◦ (17.4◦) (13.7◦)
1.0 (16.2◦) (16.6◦) (16.2◦) (15.7◦)

Table 5.4: Number and angle of vortices for τ = 0.00

Number of vortices:
θ

ι 10◦ 30◦ 50◦ 70◦

−1.0 258 (103) - 210 (75) -
0.0 51 (32) 43 (26) 31 (18) (6)
1.0 (16) (13) (8) (4)

Angle of vortices:
θ

ι 10◦ 30◦ 50◦ 70◦

−1.0 12.0◦ (14.9◦) - 11.0◦ (12.9◦) -
0.0 16.1◦ (22.4◦) 16.0◦ (21.8◦) 15.7◦ (20.5◦) (16.7◦)
1.0 (20.4◦) (20.4◦) (20.2◦) (19.5◦)

Table 5.5: Number and angle of vortices for τ = 0.10

Number of vortices:
θ

ι 10◦ 30◦ 50◦ 70◦

−1.0 - - - -
0.0 169 (76) - 102 (44) (17)
1.0 (40) (32) (20) (9)

Angle of vortices:
θ

ι 10◦ 30◦ 50◦ 70◦

−1.0 - - - -
0.0 25.3◦ (29.6◦) - 24.3◦ (27.6◦) (24.5◦)
1.0 (28.7◦) (28.4◦) (28.0◦) (26.8◦)

Table 5.6: Number and angle of vortices for τ = 0.25
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In the still-fluid case (τ = ι = 0), we find that the vortex angle at the onset

of the crossflow mode is roughly independent of θ. This is consistent with the

experimental observations of Kohama & Kobayashi (1983), who report a constant

angle of approximately 14◦. The results presented in Table 5.4 also show close

agreement with the results of Malik (1985), who calculates the vortex angles on the

rotating disk at the onset of instability to be 11.4◦ and 19.5◦ for the crossflow and

streamline-curvature modes, respectively.

Beyond this, we see that surface suction has the effect of increasing the number

of vortices and shallowing their angle, while injection decreases n and steepens ε. As

the magnitude of axial flow increases, the number of vortices is predicted to increase,

and the vortex angle to become steeper. These observations are in agreement with

Garrett (2002); however, there is currently no experimental data for τ and ι 6= 0 for

comparison.

5.4 Convective stability analysis of non-stationary

vortices

We now consider vortices which travel at different speeds relative to the sphere

surface, c 6= 1. We do this by fixing c at certain values and then taking the same

approach as used in §5.3: marching through β and R to map spatial branches in

the complex-α plane. The points at which these branches intersect the real axis

represent points of neutral stability, and when measured at various R, they provide

the data used to produce a neutral curve. This method is introduced as method-2 by

Garrett (2010b), for the rotating-disk boundary layer, and is subsequently applied

to rotating spheres in Garrett (2010c).

Figures 5.13–5.16 show examples of neutral-stability curves obtained for ι = 0

at a range of c. They show good agreement with those of Garrett (2010c).

Figures 5.17–5.20 show examples of neutral-stability curves obtained with no

forced axial flow, but with non-zero ι. As before, surface suction has a stabilising
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Figure 5.13: Neutral stability curves for αr and β at θ = 10◦, τ = 0, ι = 0, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.14: Neutral stability curves for αr and β at θ = 70◦, τ = 0, ι = 0, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.15: Neutral stability curves for αr and β at θ = 10◦, τ = 0.2, ι = 0, and c = 0.8
(- -), 1 (–), 1.2 (· -).

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

�

���

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

�

�

Figure 5.16: Neutral stability curves for αr and β at θ = 70◦, τ = 0.2, ι = 0, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.17: Neutral stability curves for αr and β at θ = 10◦, τ = 0, ι = 1, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).

effect, increasing the critical Reynolds numbers for all parameter values. It also

exaggerates the two-lobe profile of the curve. We see that the lobe corresponding to

the streamline-curvature mode of instability is affected more than the crossflow lobe

(compare Figures 5.13 and 5.19, for example). The crossflow lobe for c = 0.8 appears

to be the least affected by surface suction. Once again, surface mass injection has

the effect of decreasing the critical Reynolds numbers for all parameter values.

Figures 5.21–5.22 show examples of neutral-stability curves with both forced

axial flow and non-zero ι. We see that for large positive ι, increasing the magnitude

of forced axial flow has only a modest effect on Rc. However, it broadens the range of

wavenumbers over which convective instability is predicted. This effect was observed

in §5.3, but we now observe that the magnitude of the distortion is highly dependent

on the vortex speed, with greater effects apparent for systems with large c; there is

very little broadening of the wavenumber range in the slow case of c = 0.7.

Although only the neutral curves for selected combinations of parameter values
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Figure 5.18: Neutral stability curves for αr and β at θ = 70◦, τ = 0, ι = 1, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.19: Neutral stability curves for αr and β at θ = 10◦, τ = 0, ι = −1, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.20: Neutral stability curves for αr and β at θ = 70◦, τ = 0, ι = −1, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.21: Neutral stability curves for αr and β at θ = 10◦, τ = 0.2, ι = 1, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).
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Figure 5.22: Neutral stability curves for αr and β at θ = 70◦, τ = 0.2, ι = 1, and c = 0.7
(· · · ), 0.8 (- -), 1 (–), 1.2 (· -).

c
τ ι 0.7 0.8 1.0 1.2 cmin

−1 9225 6810 6611 (6309) 6769 (3997) 0.94
0.0 0 1921 1622 1601 (2478) 1650 (1681) 0.90

1 641 596 603 625 0.85
−1 * - - - -

0.2 0 * 2951 3005 (3056) 4189 (1482) 0.88
1 800 758 845 1015 (982) 0.79

* No unstable region predicted.

Table 5.7: Rc for a range of parameter values at θ = 10◦

c
τ ι 0.7 0.8 1.0 1.2 cmin

−1 3257 2366 2272 (1993) 2313 (1249) 0.96
0.0 0 602 508 497 (726) 509 (488) 0.93

1 190 177 177 181 0.89
−1 * - - - -

0.2 0 * 933 937 (888) 1257 (416) 0.88
1 238 226 246 281 (271) 0.79

* No unstable region predicted.

Table 5.8: Rc for a range of parameter values at θ = 30◦
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c
τ ι 0.7 0.8 1.0 1.2 cmin

−1 2317 1615 1523 (1127) 1536 (689) 1.02
0.0 0 316 270 261 (342) 264 (226) 0.98

1 90 84 82 82 1.07
−1 * - - - -

0.2 0 * 502 494 (407) 630 (-) 0.89
1 112 108 112 109 0.76

* No unstable region predicted.

Table 5.9: Rc for a range of parameter values at θ = 50◦

c
τ ι 0.7 0.8 1.0 1.2 cmin

−1 2506 1506 (421) (243) †
0.0 0 157 135 (92) (49) †

1 41 39 36 34 †
−1 - - - - -

0.2 0 437 275 93 43 †
1 51 50 46 33 †

†No minimum within this range of c.

Table 5.10: Rc for a range of parameter values at θ = 70◦

are presented here, the results show a smooth transition between the extremes of

each parameter. In all cases, larger values of c make the streamline-curvature lobe

increasingly significant with respect to the crossflow lobe.

Tables 5.7–5.10 provide critical Reynolds numbers for a representative range of

parameter values, at selected latitudes. Each entry in the table may contain a pair

of critical values: one for the crossflow lobe, and one for the streamline-curvature

lobe (in brackets). If either lobe is not present, its corresponding value is omitted.

In all cases, the lower of the two, representing Rc, is given in bold text. As with the

previous tables, the absence of data is indicated by a dash.

Where the streamline-curvature lobe is present, its critical Reynolds number

decreases monotonically with increasing c over the range examined in this work.

For the crossflow lobe, however, there is typically a value of c for which the critical

Reynolds number is minimised; this value is denoted cmin and it is given in the

rightmost column.

Also presented here in Tables 5.11–5.14 are the predicted numbers of vortices
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Number of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 214 98 62 (38) 47 (19)

0.0 0 56 33 22 (20) 17 (11)
1 19 14 10 8
−1 * - - -

0.2 0 * 140 118 (57) 132 (29)
1 40 34 29 29 (16)

Angle of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 16.8◦ 8.9◦ 5.3◦ (9.3◦) 3.9◦ (6.5◦)

0.0 0 29.4◦ 18.5◦ 11.4◦ (19.6◦) 8.4◦ (14.1◦)
1 34.9◦ 24.8◦ 16.2◦ 12.2◦

−1 * - - -
0.2 0 * 35.0◦ 22.2◦ (27.0◦) 16.9◦ (19.6◦)

1 49.4◦ 37.5◦ 25.9◦ 20.0◦ (23.9◦)
* No unstable region predicted.

Table 5.11: Vortex number and angle for a range of parameter values at θ = 10◦

and their angles, calculated in the same way as in §5.3. In all cases, increasing c

decreases n and causes the vortices to assume a shallower angle at the critical point.

Travelling modes with c < 1, which are expected to be dominant on highly-

polished surfaces, appear to be more sensitive to both suction and axial flow than

are stationary modes. In most cases, the value of c that minimises Rc is less than

one, though close to the equator, we can no longer find a minimum in Rc within the

range of c examined.

5.5 Summary of results

In this chapter we have investigated the onset of local convective instability, and pre-

sented tables of critical Reynolds numbers for a range of parameter values. Systems

with fixed vortex speeds, c, between 0.7 and 1.2 were considered.

In §5.3, surface suction and injection were seen to have a stabilising and destabil-

ising effect, respectively, upon the flow. There were seen to be two factors involved

in understanding the stability of the system: one was the value of Rc, below which no
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Number of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 201 90 57 (33) 43 (17)

0.0 0 48 29 19 (17) 14 (9)
1 16 12 8 6
−1 * - - -

0.2 0 * 120 98 (47) 109 (24)
1 33 27 23 21 (13)

Angle of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 15.8◦ 8.5◦ 5.1◦ (8.6◦) 3.7◦ (6.0◦)

0.0 0 28.8◦ 18.3◦ 11.4◦ (18.8◦) 8.4◦ (13.7◦)
1 34.4◦ 24.7◦ 16.6◦ 12.3◦

−1 * - - -
0.2 0 * 34.3◦ 21.9◦ (26.4◦) 16.6◦ (19.0◦)

1 48.3◦ 37◦ 25.8◦ 20.0◦ (22.9◦)
* No unstable region predicted.

Table 5.12: Vortex number and angle for a range of parameter values at θ = 30◦

Number of vortices:
c

τ ι 0.7 0.8 1.0 1.2
-1 176 77 48 (24) 37 (13)

0.0 0 33 21 14 (12) 11 (6)
1 10 8 5 4
-1 * - - -

0.2 0 * 87 70 (32) - (-)
1 22 18 15 10

Angle of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 13.8◦ 7.4◦ 4.4◦ (7.0◦) 3.2◦ (4.9◦)

0.0 0 27.5◦ 17.8◦ 11.2◦ (17.4◦) 8.3◦ (12.7◦)
1 33.0◦ 24.2◦ 16.2◦ 12.5◦

−1 * - - -
0.2 0 * 33.2◦ 21.3◦ (25.0◦) 16.2◦ (-)

1 46.4◦ 35.9◦ 25.3◦ 20.9◦

* No unstable region predicted.

Table 5.13: Vortex number and angle for a range of parameter values at θ = 50◦

81



Number of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 148 56 (10) (5)

0.0 0 16 10 (4) (2)
1 5 4 3 2
−1 - - - -

0.2 0 83 45 12 6
1 10 9 6 4

Angle of vortices:
c

τ ι 0.7 0.8 1.0 1.2
−1 9.9◦ 5.3◦ (3.9◦) (2.7◦)

0.0 0 24.1◦ 17.3◦ (13.7◦) (9.5◦)
1 29.4◦ 22.5◦ 15.7◦ 12.3◦

−1 - - - -
0.2 0 50.0◦ 31.2◦ 21.7◦ 16.1◦

1 41.8◦ 33.2◦ 24.4◦ 19.5◦

Table 5.14: Vortex number and angle for a range of parameter values at θ = 70◦

convective instability is predicted to arise; the other was the range of wavenumbers,

α and β, that is susceptible to instability.

Increased axial flow was seen to exaggerate the streamline curvature lobe relative

to the crossflow lobe, and in most cases, it significantly increased Rc. However, it

typically broadened the range of α and β that supported the convectively unstable

flow regime, with the greatest effect seen in the position of the upper branch.

In §5.4, similar effects were observed over the range of c that was studied. Models

with low vortex speeds were typically seen to be more sensitive to changes in τ and

ι. Lowering c caused the unstable region to shrink or, in some cases, disappear

altogether.
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Chapter 6

Convective growth rates

6.1 Growth rates

Before examining local absolute instability in the model, we now look at the spatial

growth rates of the azimuthal disturbance. In the previous chapter, we used α =

αr + iαi to represent the complex wavenumber of the latitudinal disturbance, and

our formulation (in particular, the form of Equation (5.1)) means that −αi can be

interpreted as the amplification rate of the disturbance. This quantity may dictate

which combination of wavenumber and phase velocity is likely to be selected, and

this will have implications for the long-time behaviour of the flow.

The procedure for finding the maximum growth rate associated with a given point

in the parameter space is similar to that used to obtain neutral-stability curves in

Chapter 5. Because the range of Reynolds numbers covered by the convectively

unstable region varies with θ, ι, τ and c, maximum growth rates are sampled at a

fixed distance into this region. In this way, a consistent comparison can be made

between different models. Garrett & Peake (2002) have shown that the rotating-

sphere boundary layer becomes absolutely unstable at a particular Reynolds number,

Ra. Beyond this point, the flow is turbulent and the spatial growth rate is undefined.

For this reason, it is important to sample the convective growth rate at some R

within the range Rc < R < Ra. Having chosen values for θ, ι, τ and c, we select the

Reynolds number to be R = Rc + 150. This is far enough into the unstable region
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Figure 6.1: Spatial growth rates over a range of c at selected τ and ι; R = Rc + 150,
θ = 30◦.

to conduct the study. Beginning at some arbitrary value of β, we use the dispersion

relation (5.35) to solve for α, then proceed to march through β, solving for α at each

step. Rather than recording only the neutral points, where αi = 0, we record the

entire spatial branch. At some point along the branch, within the unstable region,

αi will attain a minimum (and the growth rate, −αi, will attain a maximum) and

this gives the growth rate we use for comparison.

6.2 Results

Figure 6.1 shows how spatial growth-rates vary with suction, axial flow and vortex

speed, at θ = 30◦.

Table 6.1 presents this information in tabular form, giving the values of c for

which −αi is maximised, computed for certain models at θ = 30◦. At this latitude,

the maximum growth rate is always associated with vortices travelling more slowly
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τ
0.00 0.20

−1.0 0.80 -
ι 0.0 0.76 0.84

1.0 0.74 0.76

Table 6.1: Vortex speed, c, giving maximum spatial growth rate at θ = 30◦

than the sphere surface. With ι = τ = 0, the maximum growth rate is predicted at

a disturbance speed of c = 0.76, which shows excellent agreement with theoretical

results of Garrett (2010c), and may provide some insight into the slow-vortex ob-

servations of Kobayashi & Arai (1990). It is interesting to note that the same value

of c is found in all related rotating geometries, (Garrett (2010a,b, 2011), Samad &

Garrett (2013)). In the absence of mass flux, the data also corroborate Garrett’s

observation that the peak moves to a slightly higher value of c with increased axial

flow. In general, increased axial flow decreases the maximum growth rate. Although

not shown here, results obtained for latitudes other than 30◦ indicate that the growth

rates increase with θ.

Suction is seen to significantly lower the growth rate in all cases. This is sensible,

given that suction has already been shown to have a stabilising effect. If we insist on

stationary vortices, we find that with τ = 0 and θ = 30◦, one unit of suction causes

a 93% decrease in the maximum growth rate and one unit of injection increases it

by 92%. With c fixed at 0.76, these figures become 65% and 135%, respectively. It

is clear that the effects of suction are highly dependent on the selected vortex speed.

Suction also raises the vortex speed that possesses the maximum growth rate.

The plots in Figure 6.2 show the spatial branches for a broad sample of the

parameter space at a fixed latitude of 30◦. The points at which the branches intersect

with the (R,αr)-plane form the neutral curve in each case, and the branches’ height

above the (R,αr)-plane gives the spatial growth rate at that point. These plots

emphasise the previous observation that slowly-travelling vortices (to the left of the

figure) are associated with larger growth rates.

Beyond a certain Reynolds number, some cases exhibit a change in the form
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Figure 6.2: Spatial branches showing growth rates for various R at θ = 30◦. The bold
lines in the (R,αr)-plane are the neutral curves calculated previously.
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of the spatial branches, and the maximum growth rate becomes undefined. This

corresponds to the onset of absolute instability, which is the subject of the next

chapter.
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Chapter 7

Absolute stability analysis

7.1 Absolute instability

We now turn our attention to the occurrence of local absolute instability, where the

initial disturbance causes a reaction that is unbounded for large time at all points

in space. Prediction of the onset of absolute instability therefore requires that we

use a spatio-temporal analysis, in contrast to the purely spatial analysis that was

sufficient when modelling convective instability. While the imaginary part of γ was

zero by assumption during the convective analysis, it can no longer be restricted to

taking on real values; both α and γ are considered to be complex quantities, while

β remains real to ensure periodicity in the rotating system.

The notion of disturbance phase velocity, denoted c in Chapters 5 and 6, is not

relevant to the analysis of absolute instability. Consequently, c does not appear in

the dispersion relation:

D(α, β, γ;R, θ, τ, ι) = 0.

Occurrences of absolute instability can be found using the time-asymptotic Briggs-

Bers procedure (see Briggs (1964), Bers (1972)). At t = 0, the system is perturbed at

a particular latitude θs, by an impulsive line forcing parallel to the equator, given by

δ(θ− θs)δ(t)einφ, where δ is the Dirac delta function. Singularities in the dispersion
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relation are sought, where

D(α, β, γ;R, θ, τ, ι) = 0,

which correspond to points where spatial branches “pinch” together. In order for

the point of this coalescence to be considered a “pinch point”, it is necessary for the

two branches forming the singularity to originate on opposite sides of the complex-

α plane, in the limit of large positive γi. The frequency at such a pinch point is

then denoted γ0, with real and imaginary parts, γ0,r and γ0,i, respectively. The

corresponding wavenumber is α0 = α0,r + iα0,i. At a pinch point, the latitudinal

group velocity, ∂γ/∂α(α0) = 0. It is necessary for γ0,i to be positive in order

to identify absolute instability (see §1.2.1 for a more detailed explanation of the

relevant stability theory). If γ0,i is negative, the pinch point does not imply the

existence of absolute instability; if instability exists at such a point, it is convective

in nature.

7.2 Results

Unlike the convective neutral stability curves of previous chapters, neutral curves for

absolute instability are always single-lobed. The critical Reynolds number for the

onset of absolute instability for a given case is denoted by Ra(θ; ι, τ), and it always

holds that Ra ≥ Rc. No attempt has been made to present all the relevant neutral

curves, but for the purposes of illustration, Figure 7.1 gives some typical examples

of the form they take. Although only these plots are presented here, it is found

that for fixed θ, ι and τ , the range of wavenumbers α and β that is susceptible

to absolute instability is typically far narrower than that which is susceptible to

convective instability, even when compared against the results for low convective

vortex speeds which usually produce narrower neutral curves.

Table 7.1 gives the critical Reynolds numbers for the onset of absolute instability

at a range of latitudes, for various magnitudes of axial flow, all with ι = 0. Axial
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Figure 7.1: Examples of neutral absolute instability curves at θ = 30◦.

flow is seen to significantly increase Ra, especially at low latitudes. Comparing these

figures to those calculated by Garrett & Peake (2002), Garrett (2002), we find they

are in excellent agreement at low-to-moderate latitudes. However, the data (which

are not presented here) show an increasing discrepancy as θ is increased. The author

believes that this is due to a slight difference in the steady basic flow profiles used,

and the results presented here are considered to be more reliable, as they are based

on a refined version of the NAG implementation.

With the introduction of non-zero mass flux, we examine in detail the latitudinal

position of θ = 30◦. Table 7.2 gives the value of Ra for several combinations of

parameters (combinations for which no data could be obtained are marked with ‘-’),

and Figure 7.2 uses the same data to show how Ra is affected by changes in τ and

ι. It shows that as ι increases from −1.0 (the topmost line) to 1.0 (the bottom-most

line), Ra grows less quickly with τ . This suggests that surface suction postpones

the onset of absolute instability and that injection promotes it, with a substantially

greater effect observed for large magnitudes of forced axial flow. These plots are
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τ
0.00 0.05 0.10 0.15 0.20 0.25

10◦ 2883 4198 7420 15317 36703 103663
θ 30◦ 913 1321 2299 4626 10738 29165

50◦ 482 690 1177 2299 5139 13368
70◦ 240 346 578 1095 2370 5989

Table 7.1: Ra at selected latitudes for ι = 0.0

τ
0.00 0.05 0.10 0.15 0.20 0.25

−1.0 3784 8531 20509 - - -
−0.5 1735 3017 6184 14552 - -

ι 0.0 913 1321 2299 4626 10738 29165
0.5 535 697 1072 1881 3735 8418
1.0 339 417 594 947 1673 3276

Table 7.2: Ra at selected parameter values for θ = 30◦

similar in shape to those in Figure 5.12, demonstrating that altering the suction

and axial-flow parameters has qualitatively the same effect on absolute instability

as it has on convective instability.

7.2.1 Comparison to experiment

There has been limited experimental work on the rotating sphere in still fluid; here

we attempt to relate our results to the observed onset of turbulence in those ex-

periments; this is distinct from the onset of the convective instability that is asso-

ciated with and compared to the onset of the spiral vortices. Figure 7.3 places the

Reynolds numbers we have calculated as marking the onset of local absolute insta-

bility (the dashed line) alongside the Reynolds numbers for the observed onset of

turbulence from three experiments. The earliest of these experiments was performed

by Sawatzki (1970) using a sphere of diameter 240mm, and the remaining two were

performed by Kohama & Kobayashi (1983), using spheres of diameter 150mm and

250mm. Note that these experimental results have simply been read off the graphs

in the latter paper and they are therefore approximate. The experimental data is

presented in terms of the “spin” Reynolds number, RS, which is equal to R2 in our

notation. It can be seen that turbulence is observed to arise at a higher Reynolds
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Figure 7.2: Critical Reynolds numbers, Ra, for the onset of absolute instability at θ = 30◦;
for ι = −1,−0.5, 0, 0.5, 1 (leftmost-top to bottom).

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

40

45

50

55

60

65

70

75

80

85

90

���������

�

 

 
Sawatzki (1970) − 240mm
Kohama & Kobayashi (1983) − 250mm
Kohama & Kobayashi (1983) − 150mm
Local AI

Figure 7.3: Reynolds numbers at the onset of turbulence
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τ
0.00 0.10 0.20

−1.0 0.104 0.010 -
−0.5 0.265 0.052 -

ι 0.0 0.594 0.195 0.024
0.5 1.116 0.516 0.101
1.0 1.855 1.047 0.289

×10−3

Table 7.3: Maximum temporal growth rates, γi, for absolute instability at θ = 30◦

number than our predicted value of Ra at all latitudes above 40◦. The difference

appears to decrease with decreased latitude, however. More recent experimental

observations on disks (for example, Lingwood (1996)) report transitional Reynolds

numbers much closer to the theoretical onset of absolute instability; it is therefore

possible that further experiment on the sphere at lower latitudes (where the sphere

increasingly approximates a flat disk) could give closer agreement with our results

at a later date. Unfortunately there is no experimental data available for latitudes

θ < 40◦. The discrepancy at high latitudes may indicate that the onset of turbu-

lence is governed by a different mechanism at these positions. We will consider these

experimental results again in Chapter 8, during the global stability analysis.

7.2.2 Absolute growth rates

During the convective stability analysis, we considered the spatial growth rate of

the disturbance. Here we can identify γi as the temporal growth rate, which we

sample in a manner similar to the way −αi was sampled in Chapter 6, i.e. by taking

its maximum value at a fixed distance beyond the critical Reynolds number. Table

7.3 gives the maximum value of γi at the position Ra(θ; ι, τ) + 150, for a range of

parameter values at θ = 30◦. Where Ra could not be determined in §7.1, table

entries are marked with ‘-’. Growth rates are seen to be affected in the same way as

the value of Ra by changes in the parameters ι and τ : they are reduced by surface

mass-suction and axial flow, and increased by surface mass-injection. Although data

for other latitudes are not shown here, growth rates also increase with θ.
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The results of the local stability analysis obtained in this chapter form the basis of

the global stability analysis of Chapters 8 and 9.

94



Chapter 8

Global stability analysis

8.1 Introduction

The stability analysis up to this point has been based on the assumption that the

boundary layer is spatially homogeneous. This has limited us to examining the local

stability characteristics at individual latitudinal positions on the rotating sphere.

We now wish to infer the global behaviour of the flow from the collection of local

analyses over the body surface.

8.2 Formulation

In this chapter we continue with the viscous formulation used previously. This

enables control over the spin rate as determined by R. We initially analyse the

global instability with a low Reynolds number of R = 100, then examine the effects

of increasing this in several steps to R = 2000. As R is increased, we expect our

results to tend to those for the inviscid case.

As described in §1.2.2, the global analysis requires us to use a slowly-varying

streamwise parameter. For this reason we reformulate the problem to satisfy this

condition. We consider a spherical body of revolution with surface described by the

equation r?0 = r?0(s?), where s? is the arc length measured along the surface of the

body starting from the pole and r?0(s?) is the cross-sectional radius of the body in
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the plane perpendicular to the axis of symmetry. The body spins about its axis with

angular velocity Ω?, in an otherwise undisturbed incompressible fluid. We consider

typical length and time scales to be (ν?/Ω?)1/2 and (ν?/Ω?3)1/2/a? respectively. We

non-dimensionalise s? and r?0(s?) with the typical length scale to form

s =
s?

(ν?/Ω?)1/2
, r0(s) =

r?0(s?)

(ν?/Ω?)1/2
,

and define further nondimensional spatial variables

S =
s?

a?
, R0(S) =

r?0
a?
.

By eliminating s? and r?0(s?) between the two sets of scaled spatial variables we find

that S is the slow spatial variable and R0 is the slowly varying surface radius, i.e.

S = εs?, R0(S) = εr?0

with

ε =
1

a?

√
ν?

Ω?
, (8.1)

which is the ratio of the characteristic boundary-layer thickness to the characteristic

size of the body. In what follows we assume that ε � 1, which will be seen to be

consistent with the assumption of large Reynolds number by Equation (8.4). From

our previous calculations in Chapter 7 (Tables 7.1 and 7.2), it would then follow

that ε = 1/2883→ 1/240, which provides an a posteriori justification of the small ε

analysis at each location over the sphere. It is clear that R0(S) = sinS and we see

that the slow spatial variable S can be identified with the latitudinal angle, θ.

We now introduce the transverse coordinate η? ≡ (ν?/Ω?)1/2η, which points in

the normal direction out of the sphere, with η = 0 being the sphere surface, together

with the azimuthal angle φ measured around the axis. The coordinates S, φ and η

form the coordinate system for our problem, and the fluid velocity has components

U?, V ?, W ? in these respective directions. We write these velocity components in
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the form of an axisymmetric non-swirling steady flow plus an unsteady perturbation,

U? = a?Ω? [U(S, η) + εū(S, φ, η, t)]

V ? = a?Ω? [V (S, η) + εv̄(S, φ, η, t)]

W ? = a?Ω?ε [W (S, η) + w̄(S, φ, η, t)] , (8.2)

where t is time nondimensionalised as indicated above, and the overbar denotes the

unsteady perturbation. Note that the characteristic scale of the steady velocities

in the S and φ directions is a?Ω?, while the steady η (wall-normal) velocity has

scale (ν?Ω?)1/2, which we have also taken as the scale of the unsteady perturbations.

Finally, we note that the corresponding dimensional pressure can be written in the

form

ρ?(a?Ω?)2ε [εP (θ, η) + p̄(θ, φ, η, t)] , (8.3)

where ρ? is the fluid density. These scalings define the Reynolds number of the

system as

R =
a?Ω?

√
ν?/Ω?

ν?
= a?

√
Ω?

ν?
=

1

ε
. (8.4)

The Reynolds number is therefore seen to be a direct measure of the scaled boundary-

layer thickness and an indirect measure of the rotation rate, Ω?.

The equations for the steady boundary-layer flow around the sphere to leading

order in ε are given in Chapter 2 as Equations (2.5)–(2.7). After the substitution

of S for θ, these partial differential equations in S and η are solved subject to the

no-slip and quiescent fluid boundary conditions (4.6).

We now consider the unsteady flow where the resulting perturbation equations

are as stated in (5.6)–(5.9) (after appropriate variable substitutions). In what fol-

lows we will be interested in the long-time response of the perturbation equations

to initial forcing. Briggs (1964) and Bers (1972) have shown that such behaviour

can be analysed by investigating the dispersion properties of single-frequency ho-

mogeneous solutions. The Briggs-Bers procedure was developed for spatially homo-
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geneous systems, but a significant extension was made by Monkewitz et al. (1993),

who considered weakly-nonparallel flows which evolve only slowly in the streamwise

direction. We therefore look for solutions of the perturbation equations of the form

(ū, v̄, w̄, p̄)(S, η, φ, t) = (ũ, ṽ, w̃, p̃)(S, η) exp

(
inφ− iγt+ i

∫ S
α(S ′)dS ′

)
. (8.5)

Here n must be an integer in order to enforce periodicity in the φ direction around

the axis of symmetry. We will require n to be large, and choose the preferred

scaling n = n̄/ε, with n̄ = O(1). It is crucial to note that we are looking for a

global mode with azimuthal order which is the same at all S. We now proceed by

substituting (8.5) into the perturbation equations and, after completing a series of

straightforward manipulations, we find the system identical to (5.16)–(5.21) after

the simple substitution of β = n̄/ sin θ and θ = S.

As the steady flow is a mixed function of S and η, it is impossible to scale out

n̄ in the perturbation system and we must consider each value of n̄ separately. The

numerical solution of the perturbation system is completed in a standard fashion,

using a fourth-order Runge-Kutta integrator, starting from an analytical solution

at the outer edge of the boundary layer (taken to be at η = 20), and using a

Newton-Raphson search procedure to solve the associated eigenvalue problem. The

implementation of this solution method is an amended version of a Fortran routine

used by Garrett (2002), based on code originally developed by Lingwood (1995a).

Full details can be found in Chapter 5.

8.3 Global modes

Monkewitz et al. (1993) show that the long-time behaviour of a weakly-nonparallel

flow is governed by the behaviour of the global mode of complex frequency γG: if

Im(γG) > 0 then the global mode is unstable, and hence the flow will be globally

unstable, whereas if Im(γG) < 0 then the global mode is damped and the flow will

be globally stable. The global-mode frequency is determined as follows. First, for
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each real S we look for a pinch in the complex-α plane, i.e. for points of zero group

velocity, ∂γ/∂α = 0, formed by the coalescence of modes from opposite halves of

the complex-α plane. This provides us with a complex local absolute frequency,

γ = γ◦(S), along the real-S axis. Second, we search for a S pinch point in γ◦(S),

which in general will occur at complex S and will therefore necessitate analytical

continuation off the real-S axis. In other words, we find a saddle point ∂γ◦/∂S = 0,

and then verify that the S contour can be deformed off the real axis so as to lie

along the steepest descent contour through this saddle. Once these conditions have

been satisfied, the global mode frequency simply corresponds to the frequency, γG,

of this double α-S pinch at the saddle location, SS.

We solve the perturbation system for local absolute instability over the sphere

by marching through the range of S in one degree increments for pairs of values of

azimuthal wavenumber n̄ and Reynolds number R. In practice, it is known that an

eruption of the boundary layer occurs at the equator (S = 90◦) and pollutes the

steady flow around that region (see Sawatzki (1970), Kohama & Kobayashi (1983)),

for this reason the study is confined to S ≤ 80◦. Typical results are demonstrated

in Figure 8.1 where we show the absolute frequency γ◦(S) for a sample of n̄, R

parameter pairs. Pockets of local absolute instability can be seen provided that

n̄ is sufficiently small and R sufficiently large. Although not shown in Figure 8.1,

our study considers all combinations of parameter pairs from n̄ = 0.05 to 0.25 (in

increments of 0.05) and R = 100, 200, 300, 400, 500, 1000, 2000.

Unlike for the rotating disk/cone (see Garrett & Peake (2007)), an analytical

continuation of the absolute frequencies to complex S cannot be undertaken easily,

due to the complicated dependence of the base flow on S in the governing partial

differential equations. Instead we follow the suggestion of Cooper & Crighton (2000)

and use Páde approximants. The idea is that a rational function is fitted to complex

γ◦(S) for real S (see Press et al. (1992)), which can then be interrogated to determine

the location of any pinch point in complex S. After extensive tests with different

orders of Páde approximant, it was found that using polynomials of order five for
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Figure 8.1: Plots of absolute frequency, γ◦(S) at various R; n̄ =
0.05, 0.10, 0.15, 0.20, 0.25: ‘–’, ‘· · · ’, ‘- -’, ‘· -’, ‘·· -’, respectively.
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both the numerator and the denominator typically gave the smallest error for each

parameter set. In Cooper & Crighton’s notation, Em, the root mean square error

incurred by using the Páde function to approximate the data on the real axis, is at

worst O (10−4). This method of approximation yields a complex absolute frequency

which agrees with the original results to three decimal places for each n̄ and R at

all integer values of S in the range 10◦ ≤ S ≤ 80◦.

Figures 8.2–8.4 show sample contours of γ◦i in the complex-S plane for a small

sample of n̄, R parameter pairs. Saddle points are visible towards the right of each

plot and are marked with a ‘*’. The thicker lines represent the zero contour (γ◦i = 0).

Table 8.1 gives the positions of the saddle points, SS, and the associated global

frequencies, γG, for a range of parameters. Positive growth rates (Im(γG)) indicating

globally unstable flow are highlighted with bold text. Furthermore, we are able to

plot the neutral curve for linear global instability by repeating the analysis at various

n̄ and recording R such that Im(γG) = 0; this is shown in Figure 8.5.
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Figure 8.2: Level curves of γ◦i in the complex-S plane at n̄ = 0.05. Saddle points are
marked with ‘*’.
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Figure 8.3: Level curves of γ◦i in the complex-S plane at n̄ = 0.15. Saddle points are
marked with ‘*’.
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Figure 8.4: Level curves on γ◦i in the complex-S plane at n̄ = 0.25. Saddle points are
marked with ‘*’.
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R n̄ S γG
0.05 73.6 + 0.6i 0.06668− 0.01436i
0.10 60.9 + 16.5i 0.06508− 0.01382i

100 0.15 70.8 + 15.5i 0.08714− 0.01195i
0.20 75.6 + 10.6i 0.11341− 0.01410i
0.25 78.7 + 4.7i 0.14156− 0.02013i
0.05 51.0 + 12.7i 0.04466− 0.00525i
0.10 63.4 + 16.6i 0.06730− 0.00405i

200 0.15 70.9 + 11.5i 0.09418− 0.00415i
0.20 75.8 + 6.8i 0.12294− 0.00697i
0.25 75.5− 13.2i 0.15414− 0.01348i
0.05 48.0 + 11.7i 0.04146− 0.00243i
0.10 63.1 + 13.5i 0.06914− 0.00084i

300 0.15 70.3 + 8.5i 0.09758− 0.00148i
0.20 75.3 + 1.6i 0.12781− 0.00485i
0.25 72.1− 9.4i 0.15890− 0.01106i
0.05 53.4 + 9.4i 0.04327− 0.00143i
0.10 63.1 + 11.4i 0.07031 + 0.00087i

400 0.15 69.6 + 5.6i 0.09978− 0.00012i
0.20 71.8− 2.8i 0.13077− 0.00395i
0.25 68.4− 8.3i 0.16228− 0.00979i
0.05 54.0 + 9.1i 0.04316− 0.00027i
0.10 63.0 + 9.8i 0.07113 + 0.00196i

500 0.15 68.4 + 3.7i 0.10123 + 0.00066i
0.20 68.7− 4.1i 0.13276− 0.00340i
0.25 66.2− 8.4i 0.16500− 0.00908i
0.05 54.8 + 7.8i 0.04302 + 0.00240i
0.10 61.8 + 5.9i 0.07313 + 0.00423i

1000 0.15 62.8− 0.9i 0.10515 + 0.00197i
0.20 61.5− 6.6i 0.13851− 0.00263i
0.25 61.0− 9.6i 0.17317− 0.00796i
0.05 55.0 + 6.4i 0.04299 + 0.00412i
0.10 59.2 + 3.9i 0.07443 + 0.00538i

2000 0.15 55.9 + 2.0i 0.10742 + 0.00167i
0.20 57.9− 11.0i 0.14463− 0.00336i
0.25 58.2− 11.5i 0.18148− 0.00804i

Table 8.1: Saddle-point location, SS , and associated values of global frequencies γG.

103



300 350 400 450 500 550 600 650 700 750
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

�

� �

Figure 8.5: Neutral curve for the onset of linear global instability.

The results in Table 8.1 and Figure 8.5 show that a linear global mode exists in

the boundary-layer flow over the rotating sphere. The mode is damped for rotation

rates corresponding to R below a critical value of R = 337 (which occurs at n̄ =

0.11). As the rotation rate is increased beyond this, the range of n̄ for which a

self-sustained global mode can exist broadens, reflecting the increased extent of the

pockets of absolute instabilities that exist at these parameter values. Interestingly,

Table 8.1 shows that the properties of the unstable global mode at each R appear

to be fixed by properties of the flow at latitudes between 50◦–60◦ for all R ≤ 2000,

by which point the boundary layer is known to be locally absolutely unstable at

all latitudes above approximately 15◦ (see Garrett & Peake (2002) and Barrow &

Garrett (2013)).

We can compare our results to the experimentally-observed onset of turbulence

by expressing them in terms of the “spin” Reynolds number, RS, used by Kohama

& Kobayashi (1983). This is equal to R2 in our notation. Figure 8.6 places our

results alongside those of Sawatzki (1970) and Kohama & Kobayashi (1983). The

vertical line corresponds to our calculated minimum Reynolds number for the exis-
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Figure 8.6: Comparison of the experimentally-observed onset of turbulence to our results.

tence of global instability, and the dashed line gives our calculated positions for the

onset of local absolute instability. We might expect to see the experimental results

asymptotically approach the global instability line; however, turbulence is observed

at a lower Reynolds number than our results suggest. The difference (corresponding

to roughly 300 units in R - a discrepancy on the order of 100%) may be attributable

to inaccuracies introduced by some combination of, firstly, the Padé approximant

method used to predict the global modes; and secondly, the parallel-flow approxi-

mation used in the local absolute stability analysis which underpins the inference of

the global response. It may also be due to issues with the experimental techniques

employed in the studies in the 1970s and 1980s. Close to the equator, where turbu-

lence is first observed, the boundary layer is known to erupt, causing a breakdown

of the assumptions made in this work. Further investigation is required to deter-

mine whether this discrepancy can be totally explained by these factors, or whether

the mechanism of linear global instability is insufficient to accurately predict the

occurrence of turbulence.
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8.4 Conclusions

These results suggest that the boundary-layer flow over a sphere rotating in an

otherwise still fluid can support self-sustained linear global modes if it is rotated at

a rate such that R > 337. This conclusion has been reached with knowledge of the

local absolute instability properties of the boundary layer, as calculated by Garrett

& Peake (2002) and in Chapter 7 of this thesis, which have been used to locate

the complex S saddle point. The existence of the unstable linear global mode is in

contrast to the literature concerning the linear global modes over a rotating disk

(Davies & Carpenter (2003) and Pier (2003)), where it is generally accepted that

self-sustained linear global modes do not exist. It is important to note that these

results do not contradict this result as the unstable linear global mode found on

the sphere appears to be fixed by properties of the flow at latitudes between 50◦–

60◦. This location is well away from the pole where the boundary-layer flow over

the sphere approximates that of the disk. These results suggest that, despite both

being susceptible to local absolute instability, the mechanisms by which transition to

turbulence occurs over rotating disks and spheres could be fundamentally different.
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Chapter 9

Global instability with surface

mass-flux and axial flow

Having studied the effects of surface mass-flux and axial flow on local stability

in Chapters 5–7, it is appropriate also to consider these parameters in the global

analysis, and that is the focus of this chapter. Parameters ι and τ are as defined in

Chapters 3 and 4, respectively. The equations that govern the system are unaltered

by the addition of these parameters, and they are solved using an identical process

to that of Chapter 8. Changes in the values of ι and τ are modelled by switching to

the appropriate steady-flow velocity profiles that were calculated previously.

As with previous chapters, it is impractical to generate results for finely-grained

intervals in each parameter, but the data presented can be usefully treated as a

qualitative indication of how changes to τ and ι typically affect the global stability

of the flow. It should also be noted that with the inclusion of positive mass flux (i.e.

injection), the critical Reynolds number for the onset of local absolute instability

decreases, and in these positions this may negatively affect the validity of our as-

sumption of large R, or equivalently, small ε, used in the formulation of the problem.

Consequently, results may become less reliable as ι becomes more positive.

For each combination of ι and τ it is possible to calculate the neutral curve

for linear global instability and the corresponding critical Reynolds number, using
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R n̄ S γG
0.05 55.1 + 13.1i 0.04725− 0.00697i
0.10 66.0 + 18.0i 0.06760− 0.00444i

100 0.15 71.0 + 14.2i 0.09218− 0.00347i
0.20 75.1 + 9.9i 0.11913− 0.00562i
0.25 78.0 + 4.8i 0.14807− 0.01154i
0.05 54.4 + 11.2i 0.04542 + 0.00038i
0.10 64.1 + 13.1i 0.07184 + 0.00407i

300 0.15 69.3 + 9.0i 0.10050 + 0.00381i
0.20 71.9 + 4.2i 0.13068 + 0.00035i
0.25 73.0− 2.0i 0.16215− 0.00586i
0.05 55.1 + 10.2i 0.04498 + 0.00269i
0.10 63.5 + 10.8i 0.07320 + 0.00608i

500 0.15 66.4 + 6.2i 0.10320 + 0.00493i
0.20 67.4 + 1.1i 0.13453 + 0.00063i
0.25 66.1− 3.5i 0.16717− 0.00589i
0.05 55.6 + 9.0i 0.04456 + 0.00481i
0.10 61.7 + 8.5i 0.07441 + 0.00764i

1000 0.15 61.5 + 6.6i 0.10535 + 0.00521i
0.20 60.4− 2.9i 0.13915− 0.00075i
0.25 59.8− 4.6i 0.17417− 0.00714i
0.05 55.9 + 7.8i 0.04426 + 0.00619i
0.10 60.0 + 7.7i 0.07501 + 0.00856i

2000 0.15 53.3− 9.2i 0.10823 + 0.00137i
0.20 58.1− 5.3i 0.14479− 0.00294i
0.25 55.0− 6.0i 0.18172− 0.00915i

Table 9.1: γG location and magnitude for ι = 0.5, τ = 0

the same process used in §8.3 (see Figure 8.5). However, the time required to

calculate these precisely is prohibitive of giving good coverage of the parameter

space. Therefore, the data presented here consists only of saddle-point location and

associated frequency for selected Reynolds numbers and values of n̄.

Table 9.1 gives the values of S and γG at the calculated saddle points, subject

to half a unit of surface injection, and Table 9.2 gives the same, subject to half a

unit of surface suction. Bold text indicates a parameter set where the system is

predicted to be globally unstable (γGi > 0).

When considered alongside the data for ι = 0 in Chapter 8, we see a clear trend

of decreasing global stability as ι is increased. In the cases considered, we never find

a globally-unstable mode for Reynolds numbers below 100, nor is the instability ever

present at or above n̄ = 0.25.
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R n̄ S γG
0.05 58.7 + 9.5i 0.02897− 0.04073i
0.10 66.6 + 10.2i 0.05609− 0.03622i

100 0.15 78.7 + 1.7i 0.08810− 0.03062i
0.20 76.4 + 9.5i 0.10541− 0.02825i
0.25 78.8 + 3.6i 0.13129− 0.03423i
0.05 48.7 + 11.7i 0.04316− 0.00977i
0.10 60.4 + 12.3i 0.06494− 0.00775i

300 0.15 69.1 + 7.1i 0.09175− 0.00922i
0.20 71.9− 3.6i 0.12065− 0.01307i
0.25 68.1− 8.8i 0.14993− 0.01860i
0.05 49.0 + 10.1i 0.04047− 0.00314i
0.10 60.7 + 8.5i 0.06707− 0.00347i

500 0.15 66.6 + 1.4i 0.09617− 0.00543i
0.20 65.9− 5.7i 0.12656− 0.00933i
0.25 64.1− 9.7i 0.15773− 0.01429i
0.05 51.0 + 6.1i 0.04036− 0.00045i
0.10 59.8 + 3.8i 0.06986 + 0.00005i

1000 0.15 61.7− 2.9i 0.10128− 0.00230i
0.20 60.6− 8.1i 0.13410− 0.00615i
0.25 60.1− 11.8i 0.16792− 0.01064i
0.05 53.4 + 4.6i 0.04068 + 0.00177i
0.10 57.4 + 0.7i 0.07213 + 0.00197i

2000 0.15 56.8− 5.9i 0.10573− 0.00097i
0.20 56.2− 11.9i 0.14116− 0.00497i
0.25 57.8− 15.2i 0.17779− 0.00885i

Table 9.2: γG location and magnitude for ι = −0.5, τ = 0
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R n̄ S γG
0.05 53.3− 3.1i 0.05338− 0.04170i
0.10 41.3 + 12.7i 0.07513− 0.02878i

100 0.15 49.3 + 12.1i 0.10195− 0.03197i
0.20 60.2 + 11.7i 0.12298− 0.03440i
0.25 72.2 + 10.0i 0.14433− 0.03348i
0.05 50.2 + 5.3i 0.04540− 0.01607i
0.10 48.4 + 14.1i 0.07569− 0.01355i

300 0.15 66.4 + 14.9i 0.10284− 0.01118i
0.20 69.6 + 10.9i 0.13085− 0.01161i
0.25 72.2 + 7.3i 0.15931− 0.01427i
0.05 49.6 + 4.8i 0.04443− 0.01206i
0.10 47.4 + 15.8i 0.07602− 0.00850i

500 0.15 66.0 + 12.7i 0.10598− 0.00620i
0.20 69.2 + 8.4i 0.13577− 0.00694i
0.25 71.6 + 3.7i 0.16602− 0.01019i
0.05 48.8 + 3.8i 0.04384− 0.00765i
0.10 61.5 + 15.0i 0.07773− 0.00308i

1000 0.15 65.7 + 9.2i 0.10985− 0.00175i
0.20 67.6 + 4.3i 0.14156− 0.00322i
0.25 66.6− 0.7i 0.17359− 0.00749i
0.05 48.2 + 4.0i 0.04380− 0.00435i
0.10 61.7 + 11.6i 0.07947 + 0.00000i

2000 0.15 64.8 + 5.5i 0.11305 + 0.00083i
0.20 62.8 + 0.9i 0.14619− 0.00176i
0.25 60.1− 4.0i 0.18008− 0.00699i

Table 9.3: γG location and magnitude for ι = 0, τ = 0.15

R n̄ S γG
0.05 42.3 + 5.7i 0.03803− 0.04006i
0.10 55.4 + 12.7i 0.07482− 0.01368i

500 0.15 64.5 + 12.3i 0.10510− 0.01432i
0.20 67.6 + 8.5i 0.13447− 0.01587i
0.25 70.6 + 5.4i 0.16390− 0.01845i
0.05 50.3 + 3.0i 0.04177− 0.01041i
0.10 58.7 + 12.7i 0.07669− 0.00847i

1000 0.15 64.6 + 8.9i 0.10904− 0.00833i
0.20 68.3 + 5.1i 0.14077− 0.00945i
0.25 71.7 + 0.8i 0.17276− 0.01202i
0.05 49.9 + 2.4i 0.04224− 0.00686i
0.10 60.7 + 9.9i 0.07867− 0.00458i

2000 0.15 65.0 + 5.2i 0.11282− 0.00422i
0.20 68.5 + 0.3i 0.14662− 0.00546i
0.25 68.9− 6.4i 0.18066− 0.00850i

Table 9.4: γG location and magnitude for ι = −0.5, τ = 0.15
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R n̄ S γG
0.05 48.2 + 4.9i 0.04632− 0.00895i
0.10 62.9 + 18.0i 0.07689− 0.00201i

500 0.15 66.7 + 11.9i 0.10690 + 0.00048i
0.20 67.8 + 7.9i 0.13648− 0.00107i
0.25 67.2 + 3.0i 0.16693− 0.00619i
0.05 47.3 + 4.8i 0.04528− 0.00481i
0.10 62.5 + 14.7i 0.07853 + 0.00168i

1000 0.15 64.0 + 9.8i 0.10992 + 0.00308i
0.20 62.6 + 5.9i 0.14079 + 0.00024i
0.25 59.7 + 2.7i 0.17213− 0.00646i
0.05 46.6 + 5.1i 0.04495− 0.00185i
0.10 61.2 + 12.6i 0.07981 + 0.00386i

2000 0.15 60.0 + 8.6i 0.11205 + 0.00433i
0.20 58.4 + 5.8i 0.14342 + 0.00047i
0.25 52.4− 2.0i 0.17725− 0.00987i

Table 9.5: γG location and magnitude for ι = 0.5, τ = 0.15

For comparison, example cases of suction and injection combined with forced

axial flow are given in Tables 9.4 and 9.5.

Since no experimental data is available for cases including axial flow or mass

flux, we are unable to compare these results to empirical observations.
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Chapter 10

Conclusions

In this chapter, we will review the work that makes up this dissertation, and discuss

the results obtained and their implications.

10.1 Review and summary

The first part of this work required us to solve the simplified Navier-Stokes equations

that govern the velocity of the steady flow around a rotating sphere, subject to a

forced axial flow, and surface suction or injection. This is documented in Chapters

2–4. Results obtained using the NAG solver were compared to those using other

solution methods, and the NAG results were determined to be the most accurate.

This data underpins the subsequent linear-stability analyses.

In Chapter 5, we first derive the perturbation equations that govern the response

resulting from an initial disturbance. The formulation of these equations is such

that they do not depend on the axial flow or injection parameters, so they remain

unaltered from the form they take in the still-fluid case. Changes in the values of ι

and τ change only the steady mean flow profiles on which the stability analysis is

performed.

We consider the onset of linear convective instability by insisting initially that

the disturbance rotates at the same rate as the sphere, so that its speed is equal to
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the local surface speed. We find that the critical Reynolds number, Rc(θ; ι, τ ; c = 1),

decreases with increased latitudinal distance from the pole. In addition to the still-

fluid case, the effects of axial flow and surface mass-flux are considered, and this

decrease in Rc with increased θ is found in all considered cases.

Increased axial flow (parameterised by τ) is found to increase Rc in all cases.

However, it also broadens the range of wavenumbers that are susceptible to convec-

tive instability. Surface fluid injection (ι > 0) is found to exaggerate the streamline-

curvature lobe and lower Rc, while surface suction (ι < 0) has the opposite effect.

For equivalent magnitudes of suction and injection, suction is found to increase Rc

more than injection decreases it, i.e. the flow is more sensitive to surface suction.

We go on to consider non-stationary disturbances that move at a fixed multiple,

c 6= 1, of the sphere surface speed. “Slow” vortices travelling at 0.76 times the local

surface speed have been observed experimentally by Kobayashi & Arai (1990). The

chosen value of c was seen to have varying effects on the stability, depending on the

magnitude of axial flow and surface suction. Typically, when all other parameters

are fixed, Rc is higher with c < 1, and lower with c > 1, but this is not true in all

cases. In particular, in the presence of strong surface injection at positions close to

the pole, Rc achieves its lowest value when c < 1.

For all considered vortex speeds, suction increases Rc. Axial flow also increases

Rc, except in some cases near to the equator with large values of c. Rc is found to

be lower at higher latitudes, except in cases near to the equator with small c and

suction.

When we consider the growth rates of the disturbances, we find that “slow”

vortices, with c < 1 are the most amplified in all cases. In the still-fluid case

(ι = τ = 0), disturbances with c = 0.76 are found to be the most amplified, which

may explain why experiments on the rotating sphere (Kobayashi & Arai (1990))

have shown this speed to be selected.

Of less direct relevance to flow stability are the predicted number and angle of

spiral vortices, which are nonetheless included in this work for completeness, and
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can be compared to experimental measurements. Typically, as c is increased, the

number of vortices decreases and their angle becomes shallower. Suction and axial

flow both act to increase the vortex count, but while suction causes them to assume

a shallower angle, axial flow steepens the angle. Vortices are predicted to be more

numerous and have steeper angles when they occur at lower latitudes.

In Chapter 7, we consider absolute instability, where the perturbation response is

unbounded in time at any spatial location. Absolute instability is identified at all

latitudes. Here the disturbance has no associated speed, c. Qualitatively, surface

mass-flux and axial flow affect the critical parameters for absolute instability in

the same way as they affect the critical parameters for convective instability, i.e.

increased surface suction and axial flow increase Ra, and injection decreases it. As

with convective instability, higher latitudes are found to be more susceptible. These

trends hold for every case examined.

The final part of this work is concerned with global instability. It is found that the

sphere in still fluid can support a globally-unstable mode when it is rotated at a

rate such that R > 337. This is in contrast to the case of the rotating disk, where

Davies & Carpenter (2003) and Pier (2003) predict that absolute instability does not

give rise to a self-sustained linear global mode, and a non-linear theory is required

to explain the onset of turbulence. That the unstable global mode appears to be

fixed by properties of the flow at latitudes well away from the pole suggests that

the mechanism by which turbulence arises on the rotating sphere may be distinct

from that of the rotating disk, and consequently these results do not contradict their

findings.

We also consider the effects of axial flow and surface mass-flux. As with the other

instability types, axial flow and suction are seen to increase the minimum Reynolds

number required to sustain a globally-unstable mode, while injection decreases it.
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10.2 Applications

In the aeronautical industry, the optimisation of fuel efficiency and the reduction of

noise emissions are considerations of increasing importance in the design of aircraft.

These affect not only the costs incurred by both airlines and passengers, but also the

environmental impact of air travel in the face of growing demand1. With oil supplies

decreasing, it is vital to maximise fuel efficiency for sustainability. An important

factor in these effects is the drag incurred by the various components that make up

the aircraft, and an understanding of the laminar/turbulent nature of the airflow

around these components is useful in order to locate areas that could potentially

be modified to promote laminar flow. Generally, the goal is to improve the aerody-

namics of an aeroplane such that turbulence close to its surface is greatly reduced

or eliminated, since turbulence has been identified as causing a significant increase

in both drag and noise emissions. It is also beneficial for the air-intake into an aero-

engine to be as smooth as possible, since turbulent airflow can increase mechanical

wear. The results presented in this dissertation have implications for engineering

applications such as these. We have seen that surface suction typically stabilises the

boundary layer flow around a sphere, and it might be possible, for example, for a

hemispherical nose-cone to employ a mechanism to provide distributed suction over

its surface. It will, however, require further research to determine whether the po-

tential efficiency gains provided by such a system are enough to offset the additional

fuel use owing to the extra weight the hardware would contribute to the engine.

The theory presented here and in related work may also be of interest in the

defence industry, where the accuracy of spinning projectiles, for example, can be

adversely affected by turbulence; delaying transition is therefore desirable. An un-

derstanding of the transition mechanisms on hemispheres (and also cones) and the

parameters that affect them is important. Of course, in the case of engines and

projectiles, axial flow speed is not a parameter which can be easily adjusted and

1See “European Aeronautics: A Vision for 2020” (http://ec.europa.eu/research/growth/
aeronautics2020/pdf/aeronautics2020_en.pdf)
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exploited as a flow-control mechanism; rather, it has been included to simulate the

effects of flight in leading-edge components. These results may, however, be relevant

to other kinds of machinery where axial flow could usefully be incorporated for flow

control.

Chemical Vapour Deposition (CVD), a process widely used in the semiconductor

industry, is another application where the reduction or elimination of turbulence is

important. Typically, a gaseous compound is passed over a substrate with which it

reacts, and maintaining high precision and uniformity of deposition requires a stable

flow. In the manufacture of semiconductors, the rotating disk is typically a more

relevant model; however, CVD can also be used for applying thin films of material

to surfaces of various geometries, including spheres, and therefore these results form

part of a body of research that is applicable to these problems.

Since experimental research on systems such as those described above can be costly,

requiring wind-tunnels and specialist equipment, verifiable theoretical results form

a valuable basis for this area of research.

10.3 Future work

The next stage in this work may be to study the effects of increased rotation rate

and the connection between the properties of the rotating sphere near to the pole

and the rotating disk, particularly in relation to global modes. As mentioned in

§5.3, it would also be interesting to perform an asymptotic study to confirm the

results obtained for high Reynolds numbers. Such a study could be carried out

without making the parallel-flow assumption. Asymptotic methods have already

been applied to similar studies on the rotating disk (Hussain et al. (2011)), and the

rotating cone (Garrett et al. (2009a)).

An absolute instability, which grows temporally, is known to give rise to nonlinear

effects given sufficient time. The present study is limited to analysing the linear

response of the flow to an initial perturbation, due to the assumption that this
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perturbation is small enough to make nonlinear effects negligible. There is scope for

further work which considers nonlinear effects on this and similar systems.

Further research is also needed on the effects of compressibility on rotating flows,

and indeed, this is the subject of current work by, for example, Towers & Garrett

(2012).
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