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Abstract 

The concern of this thesis is the development of software for systems utilising 
embedded processors. In many cases, the safety of users of “embedded systems” (and 
other people in the immediate vicinity) depends on the correct operation of this 
software.  

This project explores the ways in which the cost of designing, implementing and 
verifying the behaviour of systems that include embedded software can be reduced. 
More specifically, the goal is to determine the extent to which the use of a time-
triggered (TT) architecture - as opposed to an equivalent “event triggered” (ET) 
architecture - could offer benefits to the developers of reliable embedded systems. To 
evaluate this, a method of software architecture evaluation was developed and is 
described.  
The work detailed in this thesis involved an extensive empirical study of the costs 
involved in testing TT systems, with and without task pre-emption. Factors considered 
in this comparison included: [i] implementation costs, including code size, overhead, 
memory and CPU utilisation of a scheduler; [ii] testing costs, including the ease of 
obtaining timing data for isolated and in-situ tasks; and [iii] design costs, including 
execution time, lines of code and number of inputs required to perform a test of 
schedulability on the task set.  

The results from empirical studies suggested the use of TT architectures (compared 
with equivalent designs based on ET architectures) would require greater efforts at the 
design phase, but lower efforts during the testing phases. The results also suggested 
systems based on TT designs are likely to have lower implementation costs than 
equivalent systems based on ET designs. Taken together, the results point to a lower 
overall cost for TT systems.  

Execution of the method is described through the presentation of experimental case 
studies. Throughout these activities, the method has been shown to be a capable tool for 
software architecture evaluation. 
[302 words] 
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Chapter 1  

Introduction 

1.1 Introduction 

This chapter presents an overview of the research area addressed in this thesis and 

introduces the main goals of the research. It includes a review highlighting a case 

stressing the importance of testing and debugging, offers contextual information 

exploring methods for evaluating software architecture based on scheduling strategy 

cost of design, implementation and the verification of embedded real-time systems. The 

research hypothesis and the contributions of the research are also described in this 

chapter. 

1.2 Motivation 

On July 4, 1997, Pathfinder (see Figure 1.1) landed successfully in the Ares Vallis 

region of Mars. The spacecraft was a robotic embedded system, designed to collect 

samples, capture video images and transmit meteorological readings back to Earth. 

Unfortunately, in its third week of operation, the Pathfinder encountered problems that 

required a total system reset (Cook and Spear, 1998), resulting in long data acquisition 

delays (Durkin, 1998). 
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Figure 1.1 Pathfinder on Mars (source: jpl.nasa.gov) 

It took three weeks (Durkin, 1998) for the engineers at the Jet Propulsion Laboratory 

(JPL), to remotely diagnose the problem. The software bug was eventually fixed 

following extensive simulations lasting eighteen hours (Durkin, 1998). Once the 

software in the spacecraft was updated, it again became fully operational.  

In many ways, the successful debugging of the Pathfinder can be seen as a significant 

achievement. Despite the device being millions of miles away on another planet, 

programmers were able to restore it to normal operation. However, if we factor in that it 

took, what is probably one of the most advanced engineering teams on the planet, 

around three weeks to address the problem the success is not quite so impressive. For 

instance; had this been a manned mission, and the failure involved a critical function, 

the astronauts may not have survived for three weeks.  

The importance of rapid testing and verification has already been acknowledged in 

aerospace, automobile and military domains. For example, NASA and ESA (Sha et al., 

2004) have sponsored extensive studies into the impact of costs incurred during 

development phases and assessment prior to design. In addition, the need to use 

appropriate software architecture to ensure the testability of complex real-time systems 
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has been noted by scholars (e.g. Kopetz (1991), Scheler, (2006), Thane (2000) and Xu, 

(2003)). However, there is not yet broad acceptance over the best way to design such 

systems in order to reduce testing costs.  

There are two main ways to design an embedded software system, namely using event-

triggered (ET) or time-triggered (TT) architecture. TT architecture is a subset of ET 

architecture, as shown in Figure 1.2. However, in the case of TT, a recurring clock tick 

controls the only event that can trigger action.  

 

Figure 1.2 Illustration of ET and TT systems 

In the first approach, the so-called event-triggered (ET) approach, processing activities 

are initiated in response to specific external events. In the second approach, the time-

triggered (TT) approach, processing activities are initiated at predetermined points in 

time. This fundamental difference has a huge impact on the entire development process 

of embedded systems (as shown in Figure 1.3), including design, implementation, 

testing and validation for real-time critical applications. 

In the Pathfinder system, an ET architecture with pre-emptive scheduling was used. 

Although it is clear that the software architecture used in the Pathfinder could control a 

complex real-time system, the need for high testing and debugging to detect and fix the 

problem, which occurred, at great cost and effort is disconcerting.  



4 

 

Figure 1.3 Typical software development lifecycle  

Due to the additional software architecture option when designing embedded systems, 

it is essential to compare whether the use of a TT architecture software superior to that 

of ET (Allworth, 1981; Pont, 2001). It is also important to examine the impact of 

limited pre-emptive scheduling and co-operative scheduling, to evaluate if they can 

provide any benefits when testing reliable embedded systems.  

1.3 Research objectives and hypotheses 

The aim of this project is to explore the benefits provided by the use of a time-triggered 

software architecture with co-operative scheduling in the development of reliable 

embedded systems. More specifically, the following hypotheses will be tested: 

H1. Use of limited pre-emptive scheduling in a design results in lower testing 

costs than the use of fully pre-emptive scheduling and co-operative 

scheduling in the implementation phase. 

H2. Testing a system with a TT architecture incurs less cost than testing an 

equivalent system with an ET architecture, when experimental-based 

methods and comparative analysis are used.  

H3. The cost of verifying a system with a TT design is always higher than that 

required to verify an equivalent system with various types of ET design. 

 

 

Analysis Design Implementation Testing Deployment
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1.4 Thesis contribution 

This thesis makes the following contributions to the area of research: 

• It offers a novel integrated software architecture evaluation approach, based on 

experimental work carried out to analyse the impact of a TT architecture vs. an ET 

architecture on the cost of design, implementation and testing real-time embedded 

systems. 

• Assessing and analysing the effects of test running times and other related costs 

from the TT architecture; using a limited pre-emptive and co-operative 

schedulability test (represented by TTSA) and ET architecture with a pre-emptive 

(represented by RTA) and co-operative (represented by heuristic search) 

schedulability test when the number of tasks increases.  

• Assessing the impact of the implementation costs involved in creating TTC, TTH 

and TTP scheduling for a small and a large system, including lines of code, CPU 

and memory utilisation. 

• Introducing a new experimental-based evaluation approach to compare ease of 

testing for systems under the TT and ET architecture; based on the underlying 

hypothesis that testing will be easier for systems in which the timing data obtained 

for isolated and in-situ tasks is very similar.  

• Bridging the gap between testing fully pre-emptive, limited pre-emptive and co-

operative scheduling by utilising the effects of task synchronisation methods to 

provide similar timing behaviour for isolated tasks and the task runs in the 

completed system.  
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1.5 Thesis structure 

The remainder of this thesis is organised as follows:  

• Chapter 2 details the basic concept of software architecture and scheduling strategy 

in real-time embedded systems. It also explains the evolution of pre-emptive 

scheduling and co-operative scheduling. 

• Chapter 3 examines the motivation that has driven work on the reliability and 

predictability aspects of real-time software architecture to reduce efforts and costs 

for testing embedded real-time applications. It also covers related work on real-time 

system software architecture that might influence timeliness verification at the 

design stage, implementation stage and testing stage.  

• A novel integrated software architecture evaluation method for analysing the impact 

of a TT and ET architecture on the cost of design, implementation and testing of 

real-time embedded systems is described in Chapter 4, leading to three 

experimental-based assessments as discussed in Chapters 5 to 7. 

• Chapter 5 covers the first experimental work, focusing on the cost analysis for pre-

emptive and co-operative scheduler implementation. The problem, method and 

results are presented. 

• Chapter 6 covers the analysis for the costs of testing assessment, with details of the 

problem, method and results. It describes the design and implementation of the task 

in isolation for ET and TT designs. This chapter also provides detailed analyses and 

case studies to measure the impact of task synchronisation and inter-task 

communication when testing real-time systems.  
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• Chapter 7 presents an evaluative study to assess the cost of design, for ET and TT-

based architectures using a schedulability test, complete with the discussion of 

problems presented, methods involved and the results obtained. 

• Finally, the contributions of the research are highlighted and limitations and future 

work for this study are discussed in Chapter 8.  
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Chapter 2  
Embedded Software Architecture and Real-time Task 

Scheduling 

2.1 Introduction 

This chapter introduces the concept of embedded real-time systems, and explains their 

relevance to this work. It contains explanations about tasks, software architectures, 

scheduling strategy and the operating systems used when implementing such systems. 

The chapter also covers the evolutionary trends for scheduling algorithms, to 

understand the broader implications of real-time software architecture. 

2.2 Real-time software architecture 

In ANSI/IEEE standard 1471-2000, architecture (Garlan, 2000) is defined as:  

“[Software architecture goes] beyond the algorithms and data structures of the 

computation; designing and specifying the overall system structure emerges as a new 

kind of problem. Structural issues include gross organisation and global control 

structure; protocols for communication, synchronisation, and data access; assignment 

of functionality to design elements; physical distribution of design elements; scaling 

and performance; and selection among design alternative”. 

Real-time systems are used to control physical processes with a diverse array of 

complexities; ranging from automobile ignition systems, to controllers for inflight 

systems and nuclear power plants. A real-time system is one in which the correctness of 

the system is based on the correctness of the logical results obtained, or outputs and 

their timeliness. 
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The principal component of real-time systems is embedded real-time software, which 

can observe and respond to triggering events from the environment, albeit periodically 

or immediately. The frequency depends on which software architecture the real-time 

systems utilises. Some architectures are preferred, due to testability, resource 

utilisation, predictability, extensibility and fault tolerance (Scheler and Schroieder-

Preikschat, 2006).  

2.2.1 Tasks  

The process or task is most important entity handled by embedded real-time software 

(Buttazzo, 2005a). A task encapsulates all the information involved in the execution of 

a program, for instance stack, program counter (PC), source code and data (Labrosse, 

2008). However, some developers have provided different viewpoints in reference to 

the processes and the tasks involved. For example, Butazzo defines a task as “a 

sequential execution of code that does not suspend itself during execution while a 

process is more complex computational activity and may contain more than one task. 

Computational activities in real-time systems are called real-time tasks.” (Buttazzo, 

2005a). 

A task can be suspended by an internal or external interrupt, as is the case in pre-

empted architectures. Moreover, a task can also be defined as an independent thread of 

execution comprising a sequence of independently schedulable instructions, which 

competes independently for CPU execution. 

2.2.2 Task properties 

The categories into which real time tasks can be divided are: periodic, aperiodic and 

sporadic.  
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• Periodic tasks are activated at fixed time intervals or periods (Schneider, 2003). 

Thus, all the points in time, at which such tasks will be activated are known in 

advance. This type is typically used to monitor sensor data and provide updates on 

the current state of internal variables and outputs.  

• Aperiodic tasks are activated by events that occur in the environment (internal or 

external events) at unpredictable points. For example, an aperiodic task might be 

activated when a switch is pressed (Laplante and John Wiley & Sons., 2004).  

• Sporadic tasks are a form of aperiodic task, in which consecutive tasks are 

separated by a guaranteed minimum inter-arrival time (Schneider, 2003).  

Each real-time task must meet a set of time constraints imposed in the form of a 

response time for the task (Buttazzo, 2005a). Due to their nature, the timing constraints 

for aperiodic tasks can be less critical than those of periodic and sporadic tasks. In 

many ways, a sporadic task is similar to an aperiodic task, although the minimum 

separation between two consecutive instances of sporadic tasks restricts the rate at 

which they can arise. In the case of an aperiodic task, the minimum separation can be 0. 

For example, in the area of robotics, a task that is generated for handling an obstacle 

that has suddenly appeared is a sporadic task. The time of occurrence of the task cannot 

be predicted and a system in which all timing constraints are met is well-timed.  

In general, each real-time task, τi is characterised by the following parameters 

(Buttazzo, 2005a): 

• Task release time ri : is the time at which a task becomes ready for execution. 

• Task computation time ci: is the time allocated to the processor for executing the 

task without interruption. 
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• Task deadline di : is the time before which a task should be completed to avoid 

damage or performance degradation. 

• Task period, Pi : is the minimum length of intervals between the release times of 

consecutive tasks. 

• Task worst-case execution time (WCETi): is the longest allowed computation time 

for tasks. 

• Task best-case execution time (BCETi): is the shortest computation time for tasks. 

Some of the parameters defined above are illustrated in Figure 2.1. 

 

Figure 2.1 Typical parameters of a real-time task (Buttazzo, 2005a) 

Real-time tasks must meet the deadline (Buttazzo, 2005a). A task is said to be hard if 

completion after its deadline can result in catastrophic consequences for the system. In 

this case, any instance of such a task should be guaranteed a priori in the worst-case 

scenario (Buttazzo, 2005a). On the other hand, if the effect of missing a task deadline is 

to decrease system performance, the task is classified as a soft real-time task (Laplante 

and John Wiley & Sons., 2004).  

In addition, one or more of the task constraints described below can be used to define 

the relationship between tasks (Buttazzo, 2005a, Baruah et. al., 1999):  

• Distance: is defined as the minimum time interval between the completion of one 

task and the start of another;  
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• Precedence: is used to specify the execution order of two tasks; 

• Exclusion: is used to maintain data consistency and control access to shared 

resources;  

• Latency: can be defined as the maximum duration of time between the start of one 

task and the completion of another;  

• Jitter: refers to the variation between the inter-completion [or activation] times for 

successive jobs of the same task"; and  

• Task Offset: is the time between system power on and commencement of the first 

period of the task.  

2.2.3 Shared resources 

In every real-world scheduling problem, it is necessary for some (or all) tasks to share 

some kind of resource; for example a data structure, a set of variables, a main memory 

area, a file, a piece of program or a peripheral device (as shown in Figure 2.2) 

(Schneider, 2003). A resource that can be used in more than one task is known as a 

shared resource. Some shared resources require mutual exclusion such as when they are 

engaged in competing tasks. Thus, a software system must provide a synchronisation 

mechanism, such as a semaphore, to allow tasks to access mutually exclusive resources 

sequentially. 

 
Figure 2.2 Illustration of Resource Management (modified from Pont (2008)) 
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2.2.4 Functional blocks of architecture 

Real-time software architecture consists of well-defined fundamental functional blocks, 

which are referred to in this thesis as the scheduler, the resource manager and the task 

dispatcher. The architecture is designed to ensure that the processor services the tasks 

requested, as shown in Figure 2.3. The resource manager allocates memory and a 

processor to the task, which is then placed on the ‘ready list’ (a list of tasks that are 

ready for execution). The dispatcher then scans the ready list to identify a task that can 

be executed on the available processor, and starts its execution. Specifically in real-time 

systems, the task must be completed within a specified time, called the deadline. 

 

Figure 2.3 Functional Block diagram of a typical Real-time Software Architecture, with the 

Scheduler, Resource Manager and the Task Dispatcher (modified from Kopetz, 1997). 

The set of rules which define these timing constraints are defined by the design 

engineer, and are assigned to a software algorithm, which produces a schedule for each 

task, based on which tasks are dispatched to the processor. However, there is a dilemma 

concerning how the tasks should be prioritised. The processor can only execute a single 

task at any one time. There are a further two options for the designer; either to allow an 

existing task to complete, prior to the start of the next task, or stop the existing task 
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midway, allowing the higher priority task to execute. Thus arises, the concepts of co-

operation and pre-emption in task execution, as will be discussed later. 

The scheduler is a fundamental block of the software architecture, and the majority of 

the literature has focused on its design, implementation and evaluation methods. The 

scheduler is discussed in detail subsequently.  

2.3 Software architecture categories 

A brief introduction to ET and TT architecture is given in Chapter 1. A detailed 

explanation of these architectures and their classification will be given in this section. 

2.3.1 Time-triggered architecture 

TT architectures are widely used by the aerospace and medical systems industries 

(Schild and Würtz, 2000); they are less familiar to developers of mainstream embedded 

systems. The main concept behind the architecture is describe by Pont (2001b):  

When implementing TT systems, the key thing we need to remember is the “one 

interrupt per CPU” rule. That is, TT designs only have one interrupt enabled. This 

single interrupt is usually linked to a timer “tick”, which might occur (for example) 

every millisecond.  

The system tick is used to trigger an interrupt (the tasks) service routine. When an event 

occurs in-between tick interrupts, then the event handler is delayed until the next 

scheduler invocation. Figure 2.4 illustrates the architecture for a TT system approach. 

 

Figure 2.4 Illustration of TT systems 
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In TT software architecture, scheduling algorithms are developed based on a set of 

static predetermined schedules (Katcher et al., 1993; Liu, 2000). These schedules must 

consider all task dependencies and provide for implicit synchronisation of the tasks run 

times (Xu, 2000; 2003). All task activations can be pre-calculated offline and the entire 

schedule then stored in a table. At run time, the operating system executes all the tasks 

based on a lookup table which contains all the guaranteed tasks arranged in the proper 

order (Buttazzo, 2005a).  

2.3.2 Event-triggered architecture 

Event-triggered systems are designed to immediately react to a significant change of 

state or event in the environment, by reconsidering the current schedule. The detection 

of events is via the interrupt mechanism. For example, an event can cause an interrupt 

in the current execution. Figure 2.5 illustrates the architecture for the ET approach. 

 

Figure 2.5 Illustration of ET systems 

The design involves the handling of multiple interrupts. For example, interrupts may 

arise as a consequence of periodic timer overflows, the arrival of messages on a CAN 

bus, the pressing of a switch, the completion of an analogue-to-digital conversion, and 

so on. In order to create such systems, the developer may write codes designed to 

manage the various interrupts directly: this will typically involve creating a so-called 

“interrupt service routine” (ISR) to deal with each event, as ISRs take the shortest time 

to handle the interrupt (Brunl, 2006; Laplante, 2004). Moreover, ET systems require a 
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dynamic scheduling strategy to activate the appropriate software tasks to service the 

event (Schild and Würtz, 2000). 

There is a major difference between interrupt handling in ET and TT systems. In an ET 

design, interrupts can cause the system to respond immediately. For example, pressing 

a switch for an external interrupt may cause execution of a certain task on an ET 

system. However, with a TT design, all other interrupts are polled (Pont, 2003), and the 

system may detect repeat events by periodically executing a task that monitors the 

switch for changes and then acts appropriately when they are detected.  

2.4 Design of the scheduler  

As mentioned by Butazzo (2005), task scheduling can be grouped according to type of 

task: periodic and aperiodic tasks, as depicted in Figure 2.6, are used as the 

fundamental principles to categorise the schedulers for ET and TT architectures. Each 

principle is then classified into pre-emptive and co-operative scheduling, at which 

point, four principles of schedule designs have been derived; namely ET pre-emptive 

(ETP), ET co-operative (ETC), TT pre-emptive (TTP) and TT co-operative (TTC). The 

operation of each scheduler is discussed in the following sections.  

'

 Figure 2.6 Classification of real-time scheduling (Buttazzo, 2005) 
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2.4.1 ET pre-emptive scheduling  

In an ET architecture, events can occur to activate tasks at any time, either periodically 

or dynamically during execution; subsequently pre-emption becomes an important 

factor. Numerous papers have discussed pre-emptive scheduling and designed it by 

taking different approaches to scheduling algorithms, such as fixed priority and 

dynamic priority. However, in this chapter, the operations of the scheduler and the 

manner in which these are verified will be scrutinised further. 

The operations of the ETP scheduler can be illustrated using Figure 2.7 and Figure 2.8. 

 

Figure 2.7 ETP with periodic tasks 

Figure 2.7 provides an example of two tasks running on an ETP scheduler, which is 

also referred to as rate monotonic (RM) scheduling. It can be seen, at time 5 that task B 

was pre-empted, because task A has a shorter duration than task B.  
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'

Figure 2.8 ETP with aperiodic task 

In contrast, Figure 2.8 illustrates the ETP scheduler for aperiodic tasks, with the EDF 

scheduling policy applied. Task B arrives at time 5 and has an earlier deadline than task 

A, thus, in this example it pre-empts task A. 

2.4.2 ET co-operative scheduling  

The simplest approach to multitasking is to use a “co-operative” or “non pre-emptive” 

scheme; in other words, tasks should run to completion once they have started 

(Br©Þunl, 2006; Bertogna et al., 2011). However, when pre-emption is not permitted 

and tasks have dynamic activations, finding a feasible schedule becomes NP-hard 

problem. In addition, response times are usually longer (Jeffay et al., 1991b; Short, 

2011). Nevertheless, there are a number of scheduling algorithms which are based on a 

co-operative approach to handle aperiodic tasks including: The First-Come-First-Serve 

(FCFS) algorithm, Shortest Process Next (SPN) algorithm (Labrosse, 2002) and Spring 

scheduling (Bletsas, 2007). The listed algorithms are examples of heuristic scheduling 

approaches, which aim to find a feasible schedule for those aperiodic tasks that contain 
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resource constraints or precedence constraints and co-operative properties (Buttazzo, 

2005a).  

'

Figure 2.9 ETC with aperiodic task 

Figure 2.9 exemplifies an ETC scheduling design. Task A begins execution and runs to 

completion. Although task B arrives at time 5 it does not pre-empt task A, since this 

design does not allow for other tasks to pre-empt the task that is currently running, until 

it completes. 

2.4.3 TT co-operative scheduling  

A TTC scheduler is characterised by a minor cycle (represented by the scheduler tick), 

and a major cycle (consisting of the amount of time required for the sequence in all the 

periodic tasks to be repeated). The minor cycle is typically implemented using a 

periodic timer interrupt, that is produced by an external timer overflow.  
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Figure 2.10 TTC with periodic tasks 

The operation of the TTC architecture is illustrated schematically in Figure 2.10, which 

shows Tasks A and B run co-operatively. In a TTC design, all tasks must be completed 

within the system's tick interval. Therefore, it is crucial to determine the tasks' worst 

case execution time (WCET) and estimate this before employing them in a TTC 

scheduler. The worst case execution time (WCET) for every task must be known at the 

time of design. However, determining the WCET of a task is a problem which faces the 

developer of embedded real-time systems (Gendy, 2008).  

A TTC scheduler potentially offers a highly predictable platform for embedded real-

time systems. However, if a system has one or more tasks of WCET, e and also 

responds within an interval t to an external interrupt, on a situation where t < (e + 

execution time of the task that handles the event), this means purely co-operative 

scheduling is not ideal. This scenario is known as task overrun, and will cause 

unpredictable behaviour in a system, making it unsafe for hard real-time systems. 
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2.4.4 TT pre-emptive scheduling  

Other designs employing pre-emptive scheduling mechanisms for periodic tasks are TT 

pre-emptive architecture (TTP) (Short et al., 2008) and TT hybrid scheduling (TTH). In 

the case of a TTP design, fixed priority scheduling, which enforces a “one interrupt per 

CPU” rule is employed to provide information about the system’s predictable 

behaviour. Task priorities are statically set to RM, DM or EDF scheduling algorithms. 

In fixed priority scheduling, priorities are assigned to tasks that are statically offline 

before they are placed in a priority queue (Locke, 1992). A task dispatcher is 

responsible for assigning the processor to the highest priority task. Any lower priority 

task executing at this time will be pre-empted and returned to the queue. An example of 

this scheduler is the rate monotonic type (RM). In contrast, in dynamic priority 

scheduling or dynamic scheduling, the priority of each task is dynamically assigned, 

and this can be changed at runtime. An example of this is the earliest deadline first 

(EDF) scheduler, in which the priority of each task depends on its absolute deadline 

(Buttazo, 2005a). The main advantage of this form of scheduling is its flexibility when 

adding a new task or modifying task characteristics. Nevertheless, without careful 

analysis of the scheduler and resource allocation techniques, there is the possibility that 

it can become exposed to priority inversion problems (Sha et al, 1990). 

The TTH scheduler is also categorised as a pre-emptive scheduler; it allows the system 

designer to create a static schedule with a single pre-emptive task and a collection of 

co-operative tasks (as illustrated in Figure 2.12). A system employing a TTH scheduler 

can be as reliable as a TTC scheduler (Pont, 2001).  
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Figure 2.11 A simple TTH architecture 

The TTH scheduler provides an attractive proposition as it allows for the creation of a 

scheduler with minimal resources (Maaita, 2008) when compared to other pre-emptive 

schedulers.  

In Figure 2.12, the time-triggered pre-emptive operation of the rate-monotonic (RM) is 

described. 

'

Figure 2.12 TTP with periodic task 

In this example, the scheduler manages three tasks: Task C, which is the low priority 

task; Task B which is a medium priority task; and Task A which is a high priority task. 
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These tasks are assigned to periods and execution times as shown in Figure 6.6. Tasks 

A and C are ready for execution at time 7, and as task A has a higher priority than task 

B, it pre-empts task B and runs to completion, while task C is directed back to the task 

queue until the point that task B finishes its execution. It is then allowed to continue 

running from the interrupt point. At time 14, tasks A and B are ready for execution, 

thus, they will pre-empt task C. At this point, task A will pre-empt task C and run to 

completion, while task B is placed in the task queue. This process runs continuously 

throughout the lifetime of the system.  

Many real-time applications require more flexible schedulers (with more than one pre-

emptive task) than is provided by TTH schedulers; in this case it is tempting to use a 

fully pre-emptive scheduler. A TTP scheduler is designed as a fixed priority scheduler 

and can support multiple pre-emptive tasks. In a TTP scheduler implementation, 

priorities are assigned to tasks statically offline and then placed in a priority queue. A 

task dispatcher is responsible for assigning the processor to the task with the highest 

priority. Any lower priority task executing at the time will be pre-empted and returned 

to the queue. TTP schedulers provide the required flexibility and responsiveness, which 

is lacking with TTC schedulers and TTH schedulers.  

There are many scheduling algorithms implemented in embedded real-time systems, 

each of which has its own strength and trade-offs. The main aspects that impact on the 

effectiveness and performance of scheduling algorithms are complexity, response time, 

feasibility and overheads (Labrosse, 2002). In this study, the research focused on 

comparing the effects of using pre-emptive and co-operative scheduling in a system. 

One way to observe this is by reviewing the scheduler’s trends and related issues.  

Alternatively, a developer may employ a conventional real-time operating system 

(RTOS) to support a event handling (Schneider, 2003, Labrosse, 2008, Stankovic and 
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Rajkumar, 2004). Whether an RTOS is used or not, the end result is the same: the 

system must be designed in such a way that events, which may occur at “random” 

points in time, and in various combinations, can always be handled correctly. 

2.5 Real-time operating system  

The use of a Real-Time Operating System (RTOS) assists the developers of real-time 

applications by providing basic system routines that inherently keep to timing 

requirements (Labrosse, 2008). Each RTOS has a real-time kernel that contains the 

main functionality of the RTOS, including task management, memory management and 

I/O management. To handle multi-interrupts in event-triggered real-time systems, 

schemes such as the round-robin, pre-emptive priority, or a combination of both, are 

utilised. These types of operating systems are readily available as commercial products 

and known as real-time operating systems (RTOS) (Stankovic and Rajkumar, 2004). 

Figure 2.13 is a block diagram of a kernel-based RTOS.  

 

Figure 2.13 RTOS block diagram (Labrosse, 2004) 

RTOS provides a number of mechanisms for communication and synchronisation 

amongst those tasks running on the same processor and using shared resources, 

including messaging, semaphores, mutexes, message queues and event flags. In order to 
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synchronise tasks for accessing shared data, mutual exclusion (mutex) techniques can 

be employed. Mutex allows shared memory to be locked up by the task accessing it, so 

that no other tasks can pre-empt it. Alternatively, semaphores can be used for task 

synchronisation. In a VxWorks operating systems, for example, three different 

semaphore mechanisms are provided: binary semaphores, mutual exclusion semaphores 

and counting semaphores (Labrosse, 2002). For inter-task communication, message 

passing algorithms are usually employed. Basically, messages can be sent to and from 

tasks using message queues.  

There are various popular commercial RTOS, as well as open source RTOS in the 

market place, such as VxWorks, uC/OS II, Jbed and Linux. Some of these come with 

packages include a real-time kernel, an input/output manager, a file system, debuggers 

and cross-platform compilers. The main disadvantage when using a commercial RTOSs 

is that development and maintenance costs are very expensive (Labrosse, 2002).  

At present, certified RTOS has become well-known in the embedded software world, as 

the requirements for software safety and reliability increase in embedded products, such 

as cars, trains, medical devices and airplanes. For example, the RTOS for IEC 61508 

certifications is produced as an international standard for the functional safety of 

electrical/electronic/programmable electronic safety-related systems. Thus, every 

RTOS used in safety-critical applications must conform to specific standards, such as 

EN50128 (Railway), DO-178B (Aerospace) and IEC 601-1-4 (Medical Equipment). 

Based on the limited information available, such RTOSs are likely to cost more than 

60,000 US dollars (Clegg, 2008).  

This explains why some people prefer to use their own operating systems (rather than 

using certain real-time scheduling paradigms) or off-the-shelf commercial RTOS. 

Although there are a number of non-commercial RTOS in the market, these are 
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generally complicated and have a higher runtime overhead, both as regards memory 

usage and execution speed (Labrosse, 2002; Cooling, 2001). 

Since highly-predictable system behaviour is a primary design requirement for many 

embedded systems, TT software architectures have become the focus of considerable 

attention (e.g. see Kopetz, 1997). In particular, it has been widely accepted that TT 

architectures are a good match for many safety-critical applications, since these can 

help to improve overall safety and reliability (Allworth, 1981; Storey, 1996; Bate and 

Burns, 2003; Obermaisser et al., 2005). For example, the Time-Triggered Group (TTG) 

established by Airbus, Audi, Delphi, Honeywell, PSA Peugeot Citroën, Renault and 

TTTech companies promotes cross-industry technologies for a TT solution in many 

safety-critical industries, including the aerospace, railway and automotive, where safety 

requirements must be satisfied at low cost (TTA-Group, 2007). In the automotive 

industry, for example, TT architectures have recently been accepted as a generic 

solution for highly dependable systems such as the X-by-Wire systems (see Ayavoo et 

al. (2007). The main reason why TT approaches are preferred in such applications is 

that they result in systems with very predictable and deterministic behaviour. 

2.6 Use of WCET 

Another aspect influenced by pre-emptive scheduling is the huge gap in terms of the 

WCET of a task. The concept of worst-case execution time for a program has for a long 

time been an element to consider in regards to real-time, especially in terms of the 

execution of schedulability analysis. Many scheduling algorithms and all schedulability 

analyses assume some form of prior knowledge about the worst-case timing of a task.  

Figure 2.14 depicts several relevant properties of a real-time task. A task typically 

shows a certain variation in execution times, which is dependent on the input data or 
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different behaviour in the environment. The set of all execution times is shown in the 

upper curve. The shortest execution time is referred to as the best-case execution time 

(BCET); the longest execution time is referred to as the worst-case execution time 

(WCET). In most cases the state space is too large to exhaustively explore all possible 

executions and thereby determine the exact worst-case and best-case execution times. 

'

Figure 2.14 Basic notions concerning the timing analysis of systems (Wilhelm et al., 2008) 

The determination of the upper bounds for execution times, commonly called Worst-

Case Execution Times (WCETs), is a necessary step in the development and validation 

process when designing hard real-time systems. Knowing worst-case execution times is 

critical to the success of schedulability analysis in hard real-time systems.  

In hard real-time systems, the WCET is estimated and analysed to ensure that the 

system will not miss its deadline. WCET estimates can be used to verify that the 

response time for a critical piece of code is short enough that the interrupt handlers 

finish quickly, or that the sample rate of a control loop can be retained (Wilhelm et al., 

2008). Two main criteria for producing WCET estimates are required: 

• actual WCET = < WCETEST  

• WCETEST – actual WCET ! Minimal 
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Firstly, the WCET estimates must be equal to, or slightly greater than, the actual WCET 

of tasks. Secondly, the bounds or estimates of WCET should be close to exact values. 

Underestimating the WCET is not safe when using hard real-time systems, as this may 

cause deadlines to be missed in practice. On the other hand, pessimistic estimates of 

execution times may lower the utilisation of resources. However, advanced features in 

modern processors, such as caching and pipelining, complicate timing analysis. Much 

work has been performed to analyse cache behaviour in a single-task system, in order to 

predict the timing properties of the system. Although single task-based timing analysis 

can assist in the acquisition of useful insights about the timing properties of tasks, many 

of the factors in a multitasking system are not taken into consideration, which definitely 

affects the accuracy of timing estimates. In a pre-emptive multitasking system, timing 

analysis becomes even more difficult because of the unpredictability of pre-emption, 

the interaction among tasks, such as intertask cache evictions, and the underlying 

scheduling algorithms (Schneider, 2003). 

A number of methods for computing WCETs have been published (Kim et al., 1996; 

Burns and Wellings, 1995; Bernat et al., 2002). To predict WCETs accurately, WCET 

analysis should not only consider the schedulability analysis for tasks like interrupts, 

context switch times, sporadic tasks, system clock and release jitter; microarchitecture-

related pre-emption costs resulting from pre-emption also need to be considered 

(Schneider, 2003). Moreover, the majority of these problems are related to dynamic 

runtime behaviours. For example, most loop bounds were determined by system 

parameters during the runtime of the scheduler, and dynamic function calls like 

function pointers are also called at runtime. The presence of unpredictable issues has 

resulted in poor WCET estimation, making WCET analysis much more difficult. In 

more recent studies, they noted that the WCET of a task can be affected by fully pre-
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emptive scheduling up to 40% (Yao et al., 2011) at runtime, This may cause poor 

WCET estimation and result in unsafe real-time systems. Therefore, in order to reduce 

the runtime overheads, current researchers (Bertogna et al., 2010; Buttazzo and Kuo, 

2009; Min-Allah et al., 2007) have aimed to reduce the number of pre-emptive tasks in 

the system, as will be discussed in Section 2.8. 

2.7 Evolution of pre-emptive scheduling on uniprocessor systems 

Real-time schedulers have been studied since the late 1960s and early 1970s. Initial 

designs were based on pre-emptive scheduling; these evolved over time, with added 

functional and performance requirements added to improve the quality of Liu and 

Layland’s low scheduling bound. Updates improved average response times for soft 

deadlines aperiodic tasks and also improved the NP-hard solution for finding the 

schedulability of a set of periodic tasks involving resource sharing and improved 

scheduling overhead for dynamic pre-emptive scheduling (Spuri and Buttazzo, 1996). 

The current research trends for pre-emptive scheduling are illustrated in Figure 2.15 

and will be deliberated upon in this section. 

'

Figure 2.15 Trend of real-time scheduling 

One of the earliest and most comprehensively studied schedulers, is the Rate 

Monotonic approach, which was proposed, discussed and evaluated by Liu and Layland 

(1973). This tool was designed to handle cases of fixed priority and pre-emptive 

scheduling, for periodic independent tasks. In the RM scheduling algorithm, task 
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priorities were set according to request rates i.e. tasks with higher request rates were 

assigned higher priorities. It was claimed to be an optimal1 approach amongst those 

proposed for fixed priority assignments, as stated in theorem 2 by Liu and Layland 

(1973) “If a feasible priority assignment exists for some task set, the RM priority 

assignment is feasible for that task set.” 

However, in certain circumstances, the RM approach may lead to a time-overflow 

affecting lower priority tasks, as indicated by Locke (1992), thus: “A task with the 

higher priority (has the shortest periods) could pre-empt the lower priority task and 

cause the start and completion time of a task maybe delayed arbitrarily. Consequently, 

the schedulability of the tasks set cannot be guaranteed under RM algorithm.”  

An extension to the RM was made with the Deadline Monotonic (DM) approach 

introduced by Leung and Whitehead in 1982; wherein periodic tasks can have a relative 

deadline that is less than the duration of their period. DM takes static priority 

assignments and assumes pre-emptive task scheduling. Tasks with shorter deadlines 

will then be assigned higher priorities. A running task could be pre-empted by a newly 

arrived task with a shorter relative deadline. This approach is optimal for tasks with 

deadlines that are unequal to their periods. 

A further development on the basis of the deadline based approach, which can be used 

when scheduling a set of aperiodic tasks on a single processor, is known as the Earliest 

Due Date (EDD) or Jackson’s rule. The rule states (Buttazzo, 2005a) that;  

“Given a set of n independent task, any algorithm that executes the tasks on order of 

non-decreasing deadlines is optimal with respect to minimising the maximum lateness.” 

                                                
1 The optimal schedule is the scheduling algorithm that can minimise some given cost function 
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However, this algorithm fails to encompass pre-emptive issue, since all the tasks arrive 

simultaneously. In contrast, Horn’s algorithm considers pre-emptive issues; he points 

out that in practice all tasks are not synchronous but rather have arbitrary arrival times; 

therefore, he recommended employing an Earliest Deadlines First (EDF) approach to 

establish priorities. He was accustomed to setting the priorities of tasks prior to running 

them, but retained the provision to reschedule priorities during the runtime. According 

to this algorithm, tasks with earlier deadlines can be executed with higher priorities. 

Buttazzo (2005) comments on EDF that;  

“The EDF algorithm is a dynamic scheduling rule that selects tasks according to their 

absolute deadlines. It is intrinsically pre-emptive: the currently executing task is pre-

empted whenever another periodic instance with earlier deadline becomes active. EDF 

is the optimal algorithm for dynamic pre-emptive scheduling for scheduling periodic as 

well as aperiodic tasks.” 

In real-time system applications, the system always requires a combination of periodic 

and aperiodic tasks. For instance, in A-7e aircraft, the operational flight program 

comprises 75 periodic and 172 aperiodic tasks (Stankovic et al, 1994). One of the 

simplest methods for implementing mixed task scheduling is to apply standard 

scheduling algorithms. For example, RM is used for handling periodic tasks, whereas 

First Come First Serve (FCFS) can be used for aperiodic tasks. This approach has been 

expanded through the use of a server; as with the Polling Server (PS) algorithm (1989), 

the Deferrable Server (DS) algorithm (Lechozky et al, 1987) and the Priority Exchange 

(PE) algorithm (Lechozky, 1987). Butazzo compared these algorithms in terms of their 

performance, computational complexity, memory requirement and the complexity of 

implementation (Butazzo, 2008). This comparison led to the conclusion that PS and DS 

algorithms have an excellent performance, although a greater computational 
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complexity, memory requirement and implementation complexity when compared with 

the PE algorithm.  

Although the pre-emptive approach have been used to address tasks that demand 

varying workloads, it suffers from issues that arise, such as those which ensure higher 

priority tasks cannot be blocked when waiting for lower priority tasks to execute, a 

problem referred to as the ‘priority inversion phenomenon’. This relates to the problem 

of scheduling tasks when accessing shared resources. Several approaches have been 

proposed to address this problem, including avoiding pre-emption during the execution 

of all critical sections (Butazzo, 2005) and using a priority inheritance protocol (Sha et 

al., 1990), a priority ceiling protocol (Sha et al, 1990) or a stack resource policy (Baker, 

1991). For example, in reference to a priority ceiling protocol, Sha suggested that 

resources should be protected using semaphore in order to schedule periodic tasks to 

deliver exclusive access to a common resource (Sha, 1990). However, the majority of 

these protocols incur a considerable overheads and are difficult to implement. For 

instance, each time a shared resource is acquired, the acquiring task must be hosted to 

the resource's priority ceiling. Conversely, every time a shared resource is released, the 

hosted task's priority must be lowered and returned to its original level. All this extra 

coding takes time. In more recent work by Short and Pont (2008), a simpler form of 

pre-emptive scheduling was proposed to support priority inheritance protocols, as well 

as a variety of fixed pre-emptive tasks and co-operative tasks; this is known as the time-

triggered protocol (TTP).  

Methods proposed by (Baruah and Chakraborty, 2006), Butazzo (2009), Bertogna 

(2010), Min-alah (2011) and Yao and Butazzo (2011) are focused on dynamic priority 

scheduling, and these all have limited pre-emption, in order to reduce runtime 

overhead. The floating non-pre-emptive region (NPR) and the fixed pre-emption point 
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(FPP) models are considered when designing limited pre-emptive scheduling (Yao, 

2011). In FPP, each task is divided into subtasks. A higher priority task can be 

permitted to pre-empt lower priority tasks, according to predefined pre-emption points. 

However, each task must consider a number of NPRs of maximum length. NPRs are 

floated in the task code. Baruah (2005) computed the longest NPR for each task under 

EDF. Yao considered both FPP and NPR in their analysis, and Yao (2011) noted that 

scheduling with fully pre-emptive scheduling may affect the WCET of a task by up to 

40%. To address this problem, Yao proposed the feasibility test of a task set with 

limited pre-emption under fixed priority scheduling. Bertogna (2010) introduced a 

hybrid limited-pre-emption real-time scheduling algorithm designed to result in a low 

runtime overhead, while scheduling all systems that can be scheduled using fully pre-

emptive algorithms. A method that Bertogna (2010) proposed involves selecting pre-

emption points, under the assumption of fixed pre-emption costs at each pre-emption 

point. Since research in this area is relatively new and has been analysed only using 

experimental simulation-based approach, the results may not necessarily be accurate. 

Thus, more analysis and work on the relevant hardware is required.  

Most of the researchers in this area are working in a fully pre-emptive environment. As 

the researchers aim to reduce runtime overheads, limiting pre-emption real-time 

scheduling becomes the point of innovation in the scheduling field. However, this is not 

new. In 2001, Pont introduced a time-triggered hybrid (TTH) scheduler, which supports 

a limited degree of pre-emption in a fully co-operative environment. This became one 

of the research interests of this study, focusing on analysing its effects on overheads, 

implementation costs and effort, as compared to pre-emptive scheduling and co-

operative scheduling.  
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2.8 Evolution of co-operative scheduling on uniprocessor systems 

One of the most popular co-operative scheduling approaches to handling periodic tasks 

is cyclic executive scheduling or timeline scheduling (Locke, 1992, Laplante and John 

Wiley & Sons., 2004). This is simple and provides a highly predictable schedule, which 

means that a task is guaranteed to run to completion once it is started (Br©Þunl, 2006, 

Bertogna et al., 2011). A very simple cyclic executive implementation uses the Super 

Loop and delay functions (Kurian and Pont, 2007). The main advantage of this 

scheduler is its simple implementation and small requirements in terms of resources. Its 

main drawback is that the period length of tasks is not fixed, which can increase task 

jitter (Bate, 1997). Alternatively, TTC addressed these issues using a hardware timer set 

to generate interrupts on a periodic basis (known as ‘tick interval’) (Pont, 2001). Tasks 

will be invoked following every scheduler tick. This provides more a predictable 

system with very low levels of jitter (Locke, 1992),  

Under a static and co-operative scheduling scheme, all periodic tasks are scheduled 

offline and will be executed at a fixed time, known as the time interval. The scheduler 

requires a timer to synchronise the activation of the tasks at the beginning of each time 

interval (Buttazzo, 2005a, Buttazzo, 2005b). Nevertheless, within an online scheduling 

scheme, there are a number of scheduling algorithms based on a co-operative approach 

that are used to handle aperiodic tasks, as discussed by Butazzo (2005), including: 

First-Come-First-Serve (FCFS) algorithm, Shortest Process Next (SPN) algorithm 

(Labrosse, 2002) and Spring scheduling (Stankovic and Ramamritham, 1989). 

However, assessing the feasibility of a set of tasks for scheduling becomes a NP-hard 

problem when task arrival times are unknown.  

In 1990, Jeffay proved that the co-operative scheduling of concrete periodic tasks 

(where release times of the tasks are known) is NP-Hard in the strong sense when an 
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inserted idle time is disallowed. With this restriction, EDF is still optimal in co-

operative scenarios (Jeffay, 1991). However, if the restriction is released, EDF is then 

not optimal for co-operative scheduling (Buttazzo, 2005a). In more recent work, Short 

(2012) provides a comprehensive study and comparison of co-operative scheduling, 

following an earlier suggestion (Short, 2011) that co-operative scheduling of the EDF 

algorithm with idle time implies polynomial complexity. However, the response jitter 

of a task is potentially high. Alternatively, the time-triggered co-operative scheduling 

algorithm (TTC), which is of interest in this study (Pont, 2001, 2007, 2008, 2009), can 

be characterised as having highly predictable timing behaviour, with a very low level of 

task jitter (Gendy, 2008, Short, 2012).  

2.9 Conclusion 

This chapter has provided a comparative study of existing work on pre-emptive and co-

operative schedulers; as well as ET and TT design for uniprocessor systems. Schedulers 

have been reviewed as these have evolved over time. The drawbacks of pre-emptive 

scheduling have been discussed in light of the literature reviewed. It has been observed 

that current and future trends are shifting towards a TT architecture, specifically to one 

incorporating limited pre-emptive scheduling such as TTH scheduling. Thus, cross-

scheduler evaluation is required to compare the costs involved in designing, 

implementing and testing fully pre-emptive, limited pre-emptive and co-operative 

scheduling. Furthermore, it was found, that there is a need to conduct more cross-

architecture evaluations to highlight the different implications arising from ET and TT 

architecture. In this study, the focus is on the costs involved in testing and verifying 

systems running such architecture. The remainder of the thesis will review literature on 

how the cost of testing can be evaluated in ET and TT architecture at the design, 

implementation and testing phases.  
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Chapter 3  

Testing TT and ET Software Architecture 

3.1 Introduction 

Having discussed the theory of embedded software architecture and the evolution of 

pre-emptive and co-operative schedulers, this chapter explores the implications of 

different software architecture when testing real-time systems. This is because software 

architecture is the most significant activity, which affects software development costs 

tremendously. This chapter also describes a review of the relevant literature for 

verifying and testing ET and TT systems.  

3.2 Validation, verification and testing terminology 

Prior to reviewing and analysing the results from previous work in this area, it is 

essential to mention the confusion that has surrounded the use of the terms “testing”, 

“validation” and “verification” amongst those working on the evaluation of software 

systems (Thane, 2000).  

Validation: is the process of evaluating the correctness of a final program with respect 

to its specifications. 

Verification: is confirmation by examination and provision of objective evidence that a 

system meets the set requirements, according to IEC61508 (the international standard 

for electrical, electronic and programmable electronic safety-related systems). This 

means that verification is performed at the end of each development phase. In terms of 

cost and time, the verification phase is the most expensive when systems are being 

developed to safety critical standards.  
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Testing: requires execution of the system (dynamic verification) while supplying it with 

predicted and observed inputs and outputs for the purpose of fault finding or deviation 

from requirements.  

According to ISO 26262 - an automotive industry specific functional safety standard - 

verification implies the following requirement:  

In the test phases, verification is the evaluation of the work products within a test 

environment to ensure that they comply with their requirements. The tests are planned, 

specified, executed, evaluated and documented in a systematic manner.  

The goal of testing is to verify whether a specific input will yield a specific output, as 

defined by the specification. The alternative is to enhance trust in the system. However, 

testing is only capable of detecting the presence of errors not confirming their absence. 

Thus, it cannot ever be conclusively established that all errors have been detected. 

3.3 Overview of testing 

Verification of embedded real-time systems is one of the most complex and time-

consuming activities that takes place during the development of real-time systems. For 

example, for the Boeing 777 aircraft, 50% of overall software-development efforts and 

budgeting are spent on the areas of analysis and testing (Burns and McDermid, 1994). 

Expensive software engineering techniques that are not cost-effective when applied to 

non-critical systems may on occasion be used for critical systems development.  

For small applications, embedded system design generally emphasises implementing 

the desired functionality in the least costly way possible in order to achieve a “good 

enough” design within the shortest possible timeframe and using minimal resources 

(Bletsas, 2007). In addition, because testing represents a major proportion of the effort 

involved in the development of real-time systems (see Figure 3.1), it is sensible to 
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adopt design techniques that can simplify the testing process. Choice of architecture is 

one of the aspects of the design that has an impact on the satisfaction of both real-time 

constraints and constraints imposed by the embedded nature of the application. 

However, individual designers can further adapt any such system configuration to meet 

their own timing constraints, through appropriate scheduling of computation.  

 

Figure 3.1 ‘V’ lifecycle model for safety-related systems (Storey, 1996) 

Both validation and verification (which is commonly referred to as the V&V process) 

are required in the evaluation of any software system, to ensure that the whole software 

product fulfils the system requirements and operates according to the user's 

specifications.  

The development of real-time and safety-related systems usually begins with 

establishing functional requirements, supplemented by temporal requirements, often 

also called “timing constraints”. For example, the requirements of a system can take on 
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the form of set protocols, such as “the aircraft must process accelerometer data for 

every 10 milliseconds” or “the gate needs at least 15 seconds to lower itself to the down 

position when the train is crossing”. The rationale for setting requirements is to convey 

to the design team, function and implementation for both design and verification 

purposes.  

Hazard and risk analysis will then be produced to provide information about potential 

dangers in the embedded system as related to safety-critical systems. If a result is 

incorrect or arrives too late, then the real-time system has failed. The potential 

consequences of such a failure depend upon the characteristics of the real-time system 

being developed.  

With respect to the functional and timing correctness of real-time systems, Schütz 

(1993) identified six basic requirements for testing such systems, which are: 

Organisations, Observability, Reproducibility, Host/Target Approach (Controllability), 

Environment Simulation and Representativity (Test Coverage). Many general software 

development methodologies are also combined with suitable test methodologies. These 

test methodologies should be organised into separate test phases, so that the design 

phases are compatible with the system structure.  

Observability represents the ease of determining whether specified inputs affect 

outputs, while controllability represents the ease of producing a specified output from a 

specified input. For its part, reproducibility holds a two-fold functionality; first, to 

ensure that any errors have been accurately corrected and secondly, to guarantee that 

any modification will not introduce unnecessary errors. Nevertheless, there are two 

main factors that rule out the reproduction of an error; tight timing restrictions and the 

non-deterministic behaviour of real-time software systems. Both factors make the 
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testing of real-time systems more difficult than that of non real-time systems (Tsai, 

1990).  

Furthermore, due to the lack of resources, such as power consumption and memory 

size, typically most embedded real-time systems utilise separate computer systems to 

run their real-time software and testing systems. In contrast, in a desktop system 

environment, a similar machine is used for testing and running the program itself. 

Despite testing the target system in its actual environment (which sometimes is not 

permissible due to safety and cost issues), a highly interactive software target simulator 

with simulated environment could feasibly assist this testing strategy. However, 

modelling a real environment into a simulation-based system is more complicated when 

testing complex real-time systems. Designers need to design the system carefully, so 

that the results produced by the simulator are precisely similar to those in the real 

environment, particularly the system’s temporal behaviour. In reality, simulations are 

typically slower than in the actual environment (Marwedel, 2003). Therefore, 

simulation is not an ideal technique for accurately detecting timing problems. However, 

it can still be used as one of the test phases in the development methodology (Schütz, 

1993). 

Finally, testing approaches are also determined by the properties of the underlying 

software architecture (Kopetz, 1998). The software architecture and scheduling models 

chosen for a system may reflect written requirements. For example, Katcher (1993) 

described the impact on the requirements of event-driven and time-driven fixed 

priority-based scheduling. In time-driven scheduling, designers have to deal with a 

scheduler with periodic timer interrupts. Thus, the design of the tasks will be based on a 

periodic timer that interrupts execution and invokes the scheduler. On the contrary, 

tasks in event-driven scheduling will be initiated by external interrupts associated with 
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the software task priorities. Thus, designers need to identify what scheduling policy 

they have to use to handle the pre-emption of a higher priority task over an active task; 

for instance, by using RM or EDF scheduling approaches. 

3.4 The influence of software architecture on testing  

Various studies, such as those of Kopetz (1991), Schütz (1993), Thane and Hansson 

(2001) and Lindstro ̈m et al. (2008) provide a comparative foundation for testing using 

TT and ET architecture.  

The main issue raised was the need to consider a higher number of possible execution 

scenarios when testing an ET design. Schütz (1993) analysed both architectures by 

comparing the upper boundary for the number of possible control paths (CP) executed 

in response to the observation points of the same time interval, using TT systems 

Equation (3-1) and (3-2) ET systems.  
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Where n is an independent input and k is the number of observation points. In a TT 

system, the value of k is two, since it can only detect the presence or absence of the 

input states at the end of the tick interval. Thus, the formula for Equation (3-1) can be 

simplified to !"! ! = 2!.! 

The results also suggest that testing should cover a much larger number of input spaces 

in the system environment when using an ET system rather than a TT system. In fact, 

the test effort for ET systems grows exponentially with the number of observation 
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points, which impacts on the number of observation points, and consequently the 

selection of test cases becomes more complicated, since the same test may involve 

different behaviours in different executions.  

Although the model seems to represent a comparison of the testing effort between the 

ET and TT architecture perfectly, there are some important aspects that have been 

overlooked, i.e. the effects of pre-emption costs and the information of order of events. 

These elements are important as they affect testing effort. For example, if the 

information on order of events is needed by an application which running on a TT 

architecture, this may increase the number of observational states ( Schütz, 1993).  

Thus, Schütz (1993) re-modelled Equation 3-1 by adding subinterval elements, with 

respect to the arrival of events between two uninterrupted points. The results show that 

test effort for TT architecture is actually greater than for the previous model. This 

implies that the simpler model is not precise enough to be used to assess the test effort 

for TT architectures. 

On the other hand, the model (Equation 3-2) only represents the lower boundaries of 

!"!. In fact, ET systems have arbitrary points that can be observed in reference to 

newly arrived input, leading to an explosion in the combinations and consequently the 

numbers of possible CPs.  

It is therefore deduced, that to cover all the aspects that might affect the testing of an 

ET and TT architecture, using the above testing model, is relatively difficult. As a 

result, a different form of comparison is needed to distinguish the testing effort required 

for testing an ET and TT architecture. This should include as many of the aspects as 

possible that might affect the testing effort. This approach should also provide more 

accurate analysis when evaluating the testing effort for both software architectures.  
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In more recent work, Lindstrom (2008) considered pre-emption points and a maximum 

number of concurrently executing tasks, to observe their effects on testability. In view 

of the Lindstrom’s findings, the number of execution orders increases exponentially 

when the maximum number of pre-emptions increases. This means that the designated 

pre-emption points also have a great impact on testability in ET systems (Lindstro ̈m et 

al., 2008). This work represents the impact of software architecture on the cost of 

testing. In reality, there are many aspects that need to be considered, such as 

implementation costs, as well as the effects of synchronisation mechanisms, as 

described in the previous chapter.  

In spite of the disadvantages of an ET design, for low and average load conditions, the 

resource utilisation in an ET design is much better than with a TT design. However, this 

is not the case in peak load scenarios, where the time available for execution is reduced 

by increasing the processing time for interrupt handling, synchronisation and 

scheduling algorithms (Kopetz, 1997). In this case, a TT design may perform better 

than an ET design. 

As noted previously, Schütz (1993) discussed the influence of software architecture in 

testing real-time systems based on six basic elements: Observability, Reproducibility, 

Representativity (Test Coverage), Host/Target Approach (Controllability), 

Organisations and Environment Simulation, as mentioned in section 4.3. He used a 

rolling ball experiment to present his work and demonstrated that TT architecture 

outperforms ET architecture according to the first three testing requirements.  

Recently, Lindstrom (2008) reconsidered these issues (with respect to pre-emption, 

observations and process instances) for testing ET systems as well as in TT systems. A 

metric of timeliness testability was used in the study of execution environment 

constraints and their impact on testability. Due to elements that are uncontrollable in ET 
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systems, behaviour with respect to the timing and execution order is less predictable in 

a dynamic real-time system (ET systems) than in a corresponding static real-time 

system (TT systems). This partly explains why it is difficult to test ET systems. The 

number of potential execution orders were previously proposed as a testability metric 

by Thane (2000). The number of execution orders was chosen as a testability metric in 

Lindstrom’s study (Lindström et al., 2008). This metric is in line with previous work on 

the testability of real-time systems and assigns the highest level of testability to the TT 

design (Schütz, 1993; Thane and Hansson, 2001; Lindström et al., 2008). 

Moreover, based on Thane and Tsai’s studies (Thane and Hansson, 2001; Tsai et al., 

1990b), deterministic replay and reproducibility are crucial elements in assisting the 

debugging and testing of real-time systems. However, it is complicated to reproduce an 

identical behaviour when stimulated with the same test case in an ET design, since the 

event involves non-deterministic behaviour. This also implies that it is necessary to 

employ a software architecture with natural partitions in the temporal domain, which 

can provide deterministic behaviour in the system.  

Testability for dependable and predictable real-time systems is determined by the 

properties of fundamental system architecture (Kopetz, 1991, Schütz, 1994, Linstrom, 

2008). Therefore, a test methodology must take advantage of these properties to 

produce a system that is as easy to test as possible. In addition, Kopetz (1995) and Xu 

(2003) also claimed that TT software architecture can make timing verification for large 

real-time systems easier. Xu (2003) noted that designers have to provide an a priori 

guarantee that all timing constraints will be satisfied for a TT architecture based on the 

static scheduling method. This can be achieved by identifying all the critical sections of 

those programs that access shared resources, then computing an offline schedule for all 

instances of the entire set of periodic tasks (Xu, 2007, Xu and Parnas, 1993, Xu, 2003). 
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Although, more effort is required to ensure that all different possible overload scenarios 

and the worst-case overheads are covered in the schedule design (Xu, 2007), testing 

will become easier for such systems, as noted: 

The pre-runtime scheduling approach effectively reduces the number of the possible 

cases of the actual code’s timing behaviours by structuring real-time software as a set 

of cooperating sequential processes and imposing strong restrictions on the 

interactions between the tasks. This makes it easier to inspect and verify all the timing 

behaviours of the software. 

Unlike those preparing TT designs, most ET system designers do not need to emphasise 

the verification of timeliness at the design stage; the main challenge they face is to 

ensure that the assignment of task attributes and timing requirements can be imposed on 

the scheduler during the run time (Liu and Layland, 1973; Sha et al., 1990), (Tsai and 

Bi, 1991). 

Despite providing the advantages of TT architecture for testing real-time systems, Bate 

(1998) and Scheler and Schroeder-Preikschat (2006) revealed contradictory views on 

this issue. Bate (1998) pointed out in his thesis that a pre-emptive fixed priority 

structure makes a system easier to verify in comparison to TT architecture, which is 

based on cyclic executive scheduling. This is because a fixed priority scheduler can be 

verified using analysis, whereas a cyclic scheduler is verified through testing. Analysis 

can be performed over a short time with minimum effort. On the other hand, testing is 

considered as a much more expensive activity than analysis. Furthermore, Scheler 

claims that neither TT systems nor ET systems are to be preferred with respect to 

testability (Scheler and Schroeder-Preikschat, 2006). According to Scheler, as the 

timing constraints of TT and ET systems are both verified using formal techniques, 

such as a constructive schedulability test and response-time analysis, testing with 
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typical load scenarios is not sufficient, when hard deadlines have to be kept. Thus, both 

architectures do not provide any testing benefits.  

Since there is still a lack of confidence over determining which software architecture 

can provide less testing efforts, an assessment to observe the impact of software 

architecture on cost of testing is vital.  

3.5 The influence of scheduling policy on testing  

The principal difference between pre-emptive and co-operative scheduling is that task 

execution can be pre-empted at any time by the release of a higher priority task. This 

leads to a greatly increased number of possible program paths, making functional 

testing is more difficult to achieve. More importantly, data flows and updates could be 

interrupted, causing a task to be pre-empted when a data calculation is only partly 

finished. If data in a transient state is used then the effect could be difficult to 

determine.  

Furthermore, Pont (2001, 2008) noted that one of the advantages of employing co-

operative approaches is that a system can then be tested simply. For instance, isolation 

of the tasks (for testing purposes) is difficult to achieve in pre-emptive scheduling due 

to impacts of scheduling overheads (Katcher, 1993). Unlike pre-emptive scheduling, 

tasks running in co-operative scheduling can be tested completely in isolation (Pont, 

2001). This simplifies testing by allowing various tasks to be investigated separately.  

Moreover, testing represents a major proportion of the effort involved in the 

development of a safety critical system, it is wise to adopt structured and design 

techniques that simplify the testing process. For example, Storey (1996) mentions that: 

Simple systems are easier to test. Thus, every attempt should be made to reduce the 

complexity of the hardware, software and data structures. A reduction in complexity 
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also offers advantages in other areas such as reliability and the cost of 

implementations.  

Verification and testing are necessary for each phase in the software development 

processes to ensure all requirements are met. Much literature exists describing studies 

investigating the cost of testing and verification on the software engineering life-cycle 

in detail. Lifecycle stages relevant to evaluating the cost on embedded software 

architecture and scheduling of real-time systems are considered as testing and 

verification: at the design phase; implementation phase; and testing phase.  

3.6 Schedulability test 

Many different types of scheduler design were discussed in Chapter 2. From the real-

time scheduling design perspective, justifying and demonstrating how requirements are 

met can also affect the cost of design. Schedulability testing, or schedulability analysis 

is usually employed to ensure whether all tasks are schedulable or not for particular 

schedulers. This section explains the evolution of those schedulability testing 

techniques used with ET and TT designs.  

Schedulability testing is one of the well-known verification forms needed to increase 

the degree of confidence in a system’s timing properties at the design stage. Although, 

over 100 papers have discussed how to improve on accuracy and performance (Zhang 

et al., 2010, Zhang and Burns, 2009, Bini et al., 2003, Bini and Buttazzo, 2004, Davis 

et al., 2008, Tindell et al., 1994), there remain no accurate mathematical models for 

schedulability testing.  

Several schedulability test performances have been applied in order to evaluate 

scheduling mechanisms; for instance utilisation-based on Liu and Layland’s analysis 

(Liu and Layland, 1973) and the Hyperbolic Bound (Bini et al, 2003) analysis for Rate 
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Monotonic (RM) scheduling, and Response Time analysis (RTA) (Audsley et al., 1993) 

for Fixed Priority Pre-emptive Scheduling.  

The problems with studying the efficiency of multi-task scheduling on single 

processors started in 1967, when Fineberg and Serlin (Fineberg and Serlin, 1967) 

studied the problem relative to two tasks. As the complexity of the systems evolved, 

more tasks were serviced by the systems. Comprehensive work introducing 

schedulability test techniques was carried out and published by (Liu and Layland, 

1973). 

Liu and Layland (Liu and Layland, 1973) studied the problem of scheduling periodic 

tasks under the Rate Monotonic (RM) and Earliest Deadline First (EDF) scheduling 

policy, and developed corresponding schedulability tests for single-processors with 

priority driven pre-emptive schedulers. In the case of fixed priority sets of periodic 

tasks using an RM scheduler, a sufficient but not necessary condition for schedulability 

testing was introduced. In addition, Liu and Layland (1973) expanded their work to 

incorporate the dynamic assignment of priorities to a set of pre-emptive periodic tasks. 

Liu and Layland (1973) also proposed sufficient and necessary condition for dynamic 

scheduler EDF.  

Liu and Layland (1973) developed their analysis from small to arbitrarily large set of 

inputs, making the following assumptions about the environment:  

• A 1. “The requests for all tasks for which hard deadlines exist are periodic, 

with constant interval between requests.” 

• A 2. “Deadlines consist of run-ability constraints only, i.e. each task must be 

completed before the next request for it occurs.” 

• A 3. “The tasks are independent in that requests for a certain task do not 

depend on the initiation or the completion of requests for other tasks.” 
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• A 4. “Run-time for each task is constant for that task and does not vary with 

time. Run-time here refers to the time which is taken by a processor to execute the task 

without interruption.” 

• A 5. “Any non periodic tasks in the system are special; they are initialisation 

or failure-recovery routines; they displace periodic tasks while they themselves are 

being run, and do not themselves have hard, critical deadlines.” 

Further multiple improvements have been carried out by researchers, utilising certain 

conditions about assumptions. For example, Leung (1982) relaxed assumption A3 

whereas Kather (1993) relaxed assumption A4 while conducting their analysis.  

Liu and Layland (1973) defined the (processor) utilisation factor, as the fraction of the 

processor time used, for ! tasks, with worst case execution times !!, and period of tasks 

!!, given in equation (3-3): 

For the case of RM, a task set will not miss any deadline if it meets the following 

sufficient conditions, but this is not necessary, (least upper bound) (Buttazzo, 2005a, 

Liu and Layland, 1973):  

For high values of n, the least upper bound converges to (Buttazzo, 2005b),  

 !"#
!→!

! = !"!! ≈ !.!"! (3?5)'

However, in the case of EDF, the least upper bound is given as !U! ≤ 1 (Liu and 

Layland, 1973), therefore, tasks may utilise the processor up to 100% and remain 

schedulable. 
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!
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In 1986, Joseph and Pandya introduced an exact schedulability condition for fixed 

priority scheduling: Response Time Analysis (RTA). The utilisation-based tests 

introduced by Liu and Layland (1973), have two significant drawbacks identified by 

(Joseph and Pandya, 1986); i.e. they are (a) not exact, and (b) not precisely applicable 

to more general process models. Unlike the utilisation based tests for fixed priority 

scheduling, RTA has the advantage of not only being sufficient, but also necessary; i.e. 

if the process set passes the test they will meet all their deadlines; if they fail the test, 

then, at run-time, a process will miss its deadline, unless the computation time 

estimates, !C , prove to be pessimistic.  

Leung (1982) relaxed the A3 assumption in order to provide a more flexible process 

model, which could be adopted to handle tasks with jitter constraints or activities with 

short response times comparative to their periods. Hence, Leung introduced an 

algorithm as an extension of RM, where tasks can have relative deadlines shorter than 

their period. Specifically, each periodic task is characterised by 4 parameters: Phase!Φ!, 

WCET !!, deadline, !! and period, !!. Leung and Whitehead then generalised the 

results of Liu and Layland, proving that the Deadline Monotonic (DM) algorithm is 

optimal for a fixed priority scheduling model.  

In order to find a sufficient and necessary schedulability test for DM, the exact 

interleaving of higher priority tasks must be evaluated for each process. In general, this 

procedure is costly, since for each task, it requires the construction of the schedule until 

Di.  

 !! ! = ! !! .
!
!!

!
!

!!!
 (3.6) 
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Hence, a breakdown utilisation analysis is introduced to show that the average 

scheduling bound is usually much better than the least bound – as proposed by Liu and 

Layland (1973).  

In 1989, an exact Boolean schedulability test was introduced by (Lehoczky et al., 

1989). Exact schedulability conditions were based on the Processor’s demand, 

computed according to the total demand for processor time in a critical instant by a job, 

combined with the total demand of processor time for all the higher priority tasks. Then 

the test check if this demand can be met prior to the job's deadline. 

Audsley (Audsley et al., 1993) proposed an efficient method for evaluating the exact 

interference on periodic tasks and derived a sufficient and necessary schedulability test 

for DM. According to the method proposed by Audsley, the longest response time 

(WCRT) Ri for a periodic task is computed at the critical instant (Joseph and Pandya, 

1986), as the sum of its computation time and the interference due to pre-emption by a 

higher priority task: 

 !! = !!! + !!!' (3?7)'

Where, 
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The schedulability test was improved by Sha (see Sha et al., 1990), who claimed that it 

is difficult to extend schedulability analysis for priority scheduling, taking into account 

the application constraints that frequently exist in real-time applications, such as 

precedence constraints, release times that are unequal to the beginning of their periods 

and low jitter requirements.  

Xu (1993) then suggested that it is possible to avoid the application of sophisticated 

runtime synchronisation mechanisms, by directly defining precedence relations and 

exclusion relations, on pairs of task segments to achieve process synchronisation and 

prevent simultaneous access to shared resources (Xu and Parnas, 1993) if pre-runtime 

scheduling or TT scheduling is being used.  

In 1990, Jeffay, Stanat and Martel (see Jeffay et al., 1991a) proved that non-pre-

emptive scheduling of concrete periodic tasks is NP-Hard in the strong sense. They 

presented a necessary and sufficient condition for the schedulability of co-operative 

periodic tasks under no idling EDF.  

In order to improve the accuracy of schedulability, Katcher (1993) relaxed Liu and 

Layland’s (1973) assumption A4 (Katcher et al., 1993). Katcher described scheduler 

implementation costs and produced new schedulability analysis to account for the 

timing behaviour of a system when using the scheduler. Unfortunately, the application 

of their simple theory yielded pessimistic predictions. 

In 1995, a more precise model of the activities taking place in a real-time scheduler 

were made in comparison with Katcher's model (Burns et al., 1995), in particular the 

influences causing delays in task processing in the scheduler were taken into 

consideration. Also, it is possible to show that sets of periodic and sporadic tasks are 
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feasibly executed when a simple theory rejects such sets. Accurately predicting the 

scheduler's overheads proved to be a complex task. 

Over the past 10 years, there have been many improvements which have been carried 

out in ET architecture to improve schedulability and to test accuracy and boundaries. 

The details of this evolutionary work are given in Appendix -B. Butazzo (2005) 

provides comprehensive studies for hard-real-time scheduling theories and 

schedulability analysis. In a more recent publication, Davis (2008) introduced an 

approach using the response time upper bound, to determine the right time to compute 

exact schedulability and new initial values as an advanced starting point; thereby 

significantly reducing the execution time of exact schedulability tests based on RTA. 

In contrast, in light of the TT architecture, researchers placed much effort on increasing 

flexibility and resolving design fragility issues (Xu, 2000, 2007). For example, the 

constructive schedulability analysis of TT architecture can be done automatically rather 

than manually, in order to improve the cost of design to the system.  

Later, Yao et al. (2009) introduced an approach using response time upper bound to 

determine when to compute exact schedulability and new initial values as an advanced 

starting point, significantly reducing the execution time of exact schedulability tests 

based on RTA. 

In 2010, Bertogna (2010) derived a new hybrid limited-pre-emption real-time 

scheduling algorithm, which aimed to achieve low runtime overheads, while scheduling 

all the systems with fully pre-emptive algorithms. 

Min-Alah (2011) proposed that a faster schedulability test becomes more prominent 

when it is applied to online systems. Under fixed priority co-operative real-time 
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systems, current schedulability tests (in exact form) can be divided into response-time 

based tests and scheduling points tests. 

In 2011, Short (2011) claimed that, in most cases npEDF (non-pre-emptive earliest 

deadline first) outperforms many other co-operative software architectures. Short also 

provided a new schedulability test for npEDF based on Gendy's schedulability test. 

However, the analysis is still immature and may cause high jitter. 

In more recent studies, Yao and Butazzo (2011) introduced a feasibility analysis under 

fixed priority scheduling with limited pre-emptions. This paper presents the 

schedulability analysis of real-time tasks with co-operative regions, under fixed priority 

assignments. In particular, two different pre-emption models are considered: the 

floating and the fixed pre-emption point model. 

3.7 The influence of ET and TT architecture on the schedulability 
test 

Each of the software architectures has demonstrated different approaches to verify the 

timing characteristics of such systems. In light of the TT architecture, based on the 

static scheduling method, designers have to provide a priori guarantee that all timing 

constraints will be satisfied, for example, by identifying all the critical sections of those 

programs that access shared resources and compute a schedule for all instances of the 

entire set of periodic tasks offline (Xu, 2007, Xu and Parnas, 1993, Xu, 2003). The 

construction of the schedule is considered to be a constructive sufficient schedulability 

test. Thus, more effort is required to ensure that all the different possible overload 

scenarios and worst-case overheads are considered in the schedule design. The principal 

drawback of offline scheduling is its inflexibility, since it can only handle periodic 

tasks. However, there are several methods that can be employed to increase its 
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flexibility ,such as transforming the sporadic requests into periodic requests or 

introducing a sporadic server task (Kopetz, 1997). 

Unlike a TT architecture, an ET architecture need not have an offline computation in 

order to verify its timing properties. Nevertheless, the main challenge faced by 

designers of ET systems is to ensure that the assignment of task attributes and timing 

requirements can be imposed on the scheduler (Bate, 1998) during the run time. This 

can be achieved by applying the task schedulability test (Liu and Layland, 1973, Sha et 

al., 1990) or timing analysis (Tsai and Bi, 1991).  

3.7.1 Number of schedulable tasks 

As mentioned at the outset of the chapter, one of the main differences with TT and ET 

architectures is the implementation of a schedulability test. Although the aim of the 

schedulability test for both architectures is similar, to ensure all task sets must meet 

their timing requirements, the results of the test can differ for the same number of tasks 

running in TT and ET architectures.  

Liu and Layland produced their schedulability test model based on the utilisation of the 

upper bound concept, under the assumptions that all tasks do not have resource 

constraints or precedence relations. Liu and Layland (1973) stated that all the task sets 

with a total utilisation smaller than the utilisation upper bound are schedulable. 

However, Xu (Xu and Parnas, 2000) proved this analysis to invariably be pessimistic, 

since the above condition is not always accurate. In cases where there are 20 tasks to 

run on RM scheduling, each of has an execution time of 1 milliseconds and a period of 

28 milliseconds. Using the analysis with the total utilisation is 0.71 (20*(1/28)) and the 

processor utilisation is 0.705. This shows that the sets of tasks are not schedulable. 

Similarly, if a worst-case response time schedulability test is applied in the same 
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example; those sets of tasks also cannot be scheduled. However, it is argued that those 

tasks can be scheduled when a pre-runtime scheduling approach is used (Xu, 2000). In 

addition, a feasible schedule for the tasks can be computed offline; thereby the run-time 

scheduler can use this knowledge to achieve higher schedulability by scheduling tasks 

more efficiently (Buttazzo, 2005a). 

3.7.2 Scheduler fragility 

From the point of view of flexibility, an ET design is easy to modify and making it 

possible to add a dynamic task to an existing node; however, this is not easily 

implemented in a TT design (Burns, 1995).  

One of the challenges facing the developers of TT designs is the scheduler fragility at 

design time. This means that if developers need to make small changes to the timing of 

particular tasks, they need to make substantial alterations to the whole schedule. 

However, this issue refers to an earlier form of TT schedules known as cyclic 

executives. In contrast, for more advance forms of TT scheduling (Xu, 2007), the 

schedule can be constructed using algorithms to automate the task schedules. If 

modification is required, system designers do not need to construct the whole schedule 

by hand, which would be very strenuous. Instead, they have to modify only the logical 

structures of the tasks and their time constraints. In order to obtain a new schedule, an 

automatic scheduling algorithm can be used to reschedule the modified processes and 

segments. In more recent work, Gendy (2008) provided a constructive schedulability 

analysis for the TTC and TTH schedulers known as the TTSA (Time Triggered 

Schedulability Analysis). The TTC and TTH schedule can then be constructed 

automatically using TTSA algorithms.  
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Unlike an ET architecture, some people claims that a TT architecture is not flexible 

because it does not allow for the dynamic admission of tasks. However, Xu (2007) 

argued that neither ET nor TT architecture can guarantee that the timing constraints 

associated with a new task with an unknown arrival time can be satisfied, unless both 

software architectures have information about the tasks’ timing properties in advance, 

such as WCET and task period, in order to determine before runtime whether those 

timing constraints can be satisfied or not. In TT architecture, more information about 

the task, such as release times and precedence constraints are required. Although some 

people claim that ET architecture requires a small fraction of information be added to a 

new task, the results show that the system under ET architecture has a higher system 

overhead, resulting in lower processor utilisation, and most importantly, making the 

system’s runtime behaviour more difficult to test and predict (Xu, 2003). 

3.7.3 Complexity of scheduling test algorithms 

One of the most important tools in scheduling research is complexity theory (Leung, 

2004). It identifies the efficiency of an algorithm based on its run time, or 

computational time, which is measured by the number of basic steps it takes to perform 

an operation (Leung, 2004). In scheduling studies, the complexity of algorithms is 

represented by measuring the running time of algorithms as a function of the number of 

tasks, n. This is reasonable since the algorithm would be expected to take more time as 

the number of tasks increases. If the growth rate is an exponential function of n, this 

means the algorithm is not practical, except for small numbers of Task Scheduling 

problems.  

Each schedulability test algorithm has different complexity functions, which are 

represented by the big-oh notation and n as in the number of tasks. Liu and Layland’s 
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analysis has O(n) complexity, since its schedulability test condition depends only on the 

number of tasks. 

The commonly used scheduling algorithm for offline scheduling is the Brute-force 

(Burns et al., 1995), branch-and-bound (BnB) (Xu and Parnas, 1990), and heuristic 

search. The performance of algorithms is usually measured as the time the algorithm 

takes to find a feasible schedule. For example, Brute-force and BnB strategies take 

longer to find a feasible solution for large numbers of tasks than heuristic search 

algorithms. This is because Brute-force and BnB algorithms search and test all possible 

combinations of settings, whereas heuristic algorithms search only to test which offers a 

solution.  

In TTSA (time-triggered schedulability analysis) testing only, some combinations of 

test paths are applied in order to find a feasible schedule for a set of tasks (Gendy, 

2008); causing the complexity to be O(n.t). 

Furthermore, the exact schedulability test, such as the response time analysis (RTA) 

(Audsley, 1995) and processor demand analysis (Lehoczky et al., 1989) have pseudo-

polynomial complexity; this means the schedulability test using those algorithms is 

time consuming, due to its high computational complexity (Bini, 2003). Ramirez 

(2009) provided a complete complexity comparison for schedulability test algorithms 

for RM scheduling. 

In addition, a system which employs an ET architecture with co-operative scheduling 

and the arrival time of tasks is unknown; causing a problem when minimising the 

maximum lateness and when finding a feasible schedule, as this can become NP-hard 

(Butazzo, 2005). 
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3.8 Current state of the art 

In 2009, Lindstrom conducted a comparison analysis for the testing of ET and TT 

systems inspired by Schütz (1993) works. Pre-emptions, observations and test inputs 

were highlighted as the main components when comparing TT and ET architecture. The 

experiment was conducted in simulations, as the number of test inputs for ET 

architecture is usually large and difficult to analyse using a hardware implementation.  

In Chapter 2, some of the current trends for scheduling were discussed. Since 

schedulability testing is very important in scheduling design, researchers always need to 

provide algorithms for this. Thus, the trends for schedulability tests are similar to the 

trends for scheduling (as shown in Figure 3.2). 

Current scheduling research focuses on improving the schedulability test’s accuracy 

and complexity. Recently, Butazzo (2010) proposed an approach using the response 

time upper bound to determine when to compute exact schedulability and new initial 

values as an advanced starting point. This is something that significantly reduced the 

execution time for the exact schedulability tests based on RTA. 

Min-Alah (2011) suggested that the speed of the schedulability test becomes a more 

prominent feature when applied to online systems. In the light of fixed priority co-

operative real-time systems, current schedulability tests (in exact form) can be divided 

into: response time based tests, and scheduling point based tests. 
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'

Figure 3.2  Trends in Schedulability test. 

Yao and Butazzo (2011) proposed a feasibility analysis under fixed priority scheduling 

with limited pre-emption. This paper presents the schedulability for of real-time tasks 

with co-operative regions, under fixed priority assignments. In particular, two different 

pre-emption models were discussed; the floating and the fixed pre-emption point 

models. 

In 2011, Short proposed a schedulability test for npEDF scheduling, which was adapted 

from the TTSA schedulability algorithm (Gendy, 2008). Although the complexity and 

number of tasks that can be scheduled has improved when compared to the TTC, the 

jitter is high. This is unacceptable for real-time systems, because they require high 

responsiveness.  

3.9 Cross-architecture evaluation on cost of design 

In order to assess the cost of scheduler's design performance, cross-scheduler 

architecture evaluation is usually employed. Cross-architecture evaluation of cost of 

design is defined as a comparative study between two real-time software architectures. 

One of the earliest cross-architecture evaluations was conducted by Kopetz (1991, 

1997), who discussed the theory and practical work of TT and ET architecture focusing 
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more on distributed systems. Extensive work was conducted by Kopetz and his research 

group comparing TT and ET architecture for scalability, and the testability of 

distributed real-time systems (Fohler et al., 2001, Puschner and Nossal, 1998).  

Katcher (1993) provides a wider cross-architectural evaluation, covering ET and TT 

within fixed priority domains with pre-emptive and co-operative scheduling. Therefore, 

in total, Katcher developed and compared four different architectures in terms of their 

schedulability testing, which also included the implementation costs. Unfortunately, the 

application of this simple theory yields pessimistic predictions. 

One of the most recent cross-architecture evaluations was that performed by Lindstrom 

(2009). The work involved testing real-time systems in ET and TT designs. The details 

of his work were discussed in the previous sections. 

Lastly, Xu's papers provide a detail explanation of pre-runtime scheduling (a type of TT 

scheduling). Xu also clarified some of the misconceptions included in Burns’ (1995) 

and Tindell’s (1994) papers, which claimed that TT designs endured with design 

fragility and inflexible behaviour. For example, in the latest TT schedulability test, an 

automatic schedulability analysis can be employed. If a new task needs to added to this 

system, then the designers are not required to reconstruct the whole system (Xu, 2003). 

Xu's works is theoretically biased, therefore it offers insufficient means of evaluation. 

The actual system implemented must be tested so that performance can be effectively 

evaluated.  

3.10 Scheduler implementation issues 

The use of embedded software within real-time applications has increased dramatically 

across almost all industrial fields. According to Potocki De Montalk (1991), the number 

of words of executable code in civil aircraft doubled every couple of years between 
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1965 and 1995. Furthermore, the code size has expanded further in recent years, as real-

time systems have become more advanced (Abella et al., 2011). For example, the lines 

of code for space missions increase consistently over time from 1990 to 2010. In 2010, 

the LOC of the MER mission consisted of 600, 000 lines. Based on this trend, it is 

predicted that software will become more complex and increasingly costly to maintain 

as a consequence. As is becomes more complex the need for continuous measurement, 

monitoring and control increases. 

At this point, we have merely discussed verification issues associated with ET and TT 

architecture at design time. In practice, many issues need to be considered with respect 

to hardware implementation. For example, we know that a processor is the most 

important shared resource for tasks. Processor attributes contribute to the 

implementation cost in the form of overheads, blocking, dispatch latency and worst 

case interrupt response time, as will appear in a kernel scheduler implementation 

(Labrose, 2002). Cho et al. (2007) clarified that the term scheduler implementation also 

refers to the process of implementing a physical (software or hardware) scheduler that 

enforces the task sequencing determined by the schedule. 

This section presents an overview of the literature concerning scheduling 

implementation costs; in particular scheduling overheads, context switch overheads and 

blocking, which are all influenced by pre-emptive and co-operative scheduler’s 

implementations. 

This section also discusses other issues that are required to implement these schedulers, 

most of which researchers do not consider in their discussions. For example, Katcher 

(1993), Burns (1995) and Arakawa et al. (1993) provided only a comparative study of 

implementation costs for pre-emptive versus co-operative scheduling in theory and 
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practice, without any explanation of the implementation cost of the code in reference to 

schedulers.  

3.10.1 The impact of lines of code on cost of implementation 

Given that a scheduling “algorithm” is a set of rules that, at every moment in the 

system’s run-time, determine which task must be allocated resources to execute, the 

scheduler “implementation” is the process of transforming these rules into an 

executable source code (Sommerville, 2007). Therefore, the source code is interpreted 

as the lower-level software representation of the system, which practically dictates its 

functional and timing behaviour. Thus, the scheduler’s source code should be observed 

in order to determine the complexity of the scheduler’s implementation.  

The importance of code size analysis is described in this section. Size measures can be 

measured using lines of code (LOC), function points and feature points. This is not only 

a key indicator of software cost but also a base unit from which to derive other metrics 

to describe project status and software quality measurement. LOC is one of the oldest 

and simplest ways to predict programming effort (Shen et al., 1983). It measures any 

line of program text that is not a comment or a blank line, regardless of the number of 

statements or fragments of statements on the line. Although the usage of LOC as an 

indicator for software cost and effort is of questionable validity, Rosenberg (1997) 

claimed it remains an important metric in software engineering, enabling it to become a 

uniform basis for evaluation in almost all empirical studies metrics, including function 

points (Albrecht and Gaffney, 1983). In addition, it is always used to predict software 

development and maintenance efforts, as in the COCOMO model. Moreover, there are 

many empirical studies demonstrating the efficacy of LOC for planning, monitoring the 

progress of projects and comparing the effectiveness of several software metrics (Basili, 
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1980). This shows that the LOC technique is a valid indicator of how to evaluate 

software costs.  

In more recent study, Kitchenham (2010) provides a comprehensive review of software 

metrics evaluation research between the years 2000 and 2005. One of the outcomes 

mentioned is that at any specific time, it is inappropriate to use code metrics to predict 

fault rates in a largely evolving system, due to the lack of correlation between pre-

release and post-release faults (Fenton and Pfleeger, 1997). They claimed that LOC 

does scale linearly with fault counts for the pre-release of a system's elements, which 

has modules that were developed in the same way and which have the same potential to 

detect faults (Kitchenham, 2010).  

3.10.2 CPU utilisation and memory requirements 

The most important parameters required to evaluate system performance relate to the 

use of CPU and memory utilisation. A CPU utilisation or time-loading factor, U, is a 

relative measure of any non-idle processing that is taking place. Systems with a high 

CPU utilisation value may cause problems, since the system is risky as regards time-

overloading; whereas, systems with low CPU utilisation are not cost-effective. The 

term time-overloading relates to when the percentage of time the application spends 

executing or operating a system kernel code and task is very high (Hunt and John, 

2012). 

Memory is an important aspect of any embedded system design and is greatly 

influenced by the software design; it in turn may dictate how the software is designed, 

written and developed. Katcher (1993) measured CPU utilisation to evaluate 

performance of pre-emptive and co-operative schedulers. Chu et al. (2007) used 

memory requirements to compare the performance of scheduler implementations 
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running in centralised and distributed systems. Moreover, Anderson et al. (1997b), 

measured CPU utilisation to observe the performance of a system with and without 

locking synchronisation methods. Nahas et al. (2009) produced a fair comparison of 

various TTC scheduler implementations and used CPU and memory requirements as 

evaluative parameters. To produce a more accurate analysis, CPU and memory 

requirements for scheduler implementation should be considered.  

3.10.3 Real-time systems overheads 

Real-time system overhead is the time spent in the kernel performing a service for a 

specific task, such as invoking or terminating it (Katcher, 1993). Several types of 

interrupt mechanisms, such as timer interrupts and event interrupts, can invoke task 

processing. Interrupts are used for various reasons, firstly, to enable the processor to 

deal with external aperiodic events and secondly, to provide accurate timing of system 

operations. 

The first interrupt is associated with ET scheduling and the interrupt handling 

operation. For example, if a switch is pressed, an external device signals a hardware-

generated interrupt. The corresponding interrupt handler is then dispatched to the 

processor and the interrupt handler starts executing. The task is inserted into the ready 

queue immediately after it becomes ready.  

  

Figure 3.3 Scheduling overheads of event-triggered scheduling 
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Figure 3.3 illustrates an interrupt-driven operation. The total scheduling overhead of ET 

scheduling is Cint + Cq, where Cint is the fixed overhead of every interrupt invocation 

and Cq is the time required by the interrupt handler to insert the new task into the ready 

queue. Since the scheduler is invoked on task arrival, this may lead to a large overhead. 

In other words, to handle more interrupts, the processing overhead costs will be 

increased. 

The second interrupt is associated with tick scheduling or TT scheduling. Unlike ET 

scheduling, the scheduler is usually associated with a timer handler that is invoked 

periodically. The interrupt occurs at regular intervals (also referred to as clock 

interrupts), affecting the scheduling overhead. A drawback of this approach is that 

when an event release occurs between clock interrupts, then the event handler is 

delayed until the next scheduler invocation.  

In addition, real-time scheduling overheads are also caused by context switches, which 

are required when maintaining the context of the tasks involved in a pre-emption 

operation. The context-switch overhead is the time spent by the scheduler to service the 

event interrupt that triggers the context switch, and to perform the scheduling action at 

the context switch. For instance, when the processor acknowledges the interrupt (for 

pre-empting current task), it begins to complete current instructional activities, and then 

save all the contents of current task register information to the stack. Then, it branches 

(‘vector’s) to the related interrupt service routine (ISR) and starts executing ISR codes. 

After the body of the ISR is executed, the processor restores all the register information 

from the stack. 
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Figure 3.4 Context switching overheads 

Figure 3.4 illustrates the context switch overhead associated with pre-empting task A, 

saving task A’s context, loading task B’s context and resuming task B. The 

functionality depends on how many registers have to be saved and restored by the 

processor. The more registers a CPU has, the higher the overhead is (Labrose, 2002). 

3.10.4 Blocking 

Blocking is time spent either in the kernel or in an application task, when a higher 

priority task is prevented from running; this is also referred to as a priority inversion 

problem (Sha et al, 1990). This is a problem unique to systems with co-operative 

scheduling. They can also avoid pre-emptive context switches due to blocking. Thus, 

blocking can help to reduce the cost of a context switch overhead. However, from a 

scheduling perspective, this can introduce long blocking segments, which can affect 

task response time. 

3.10.5 Other implementation costs 

In 2007, Gebhard and Altmeyer mentioned two other costs that need to be considered 

for each pre-emption. These are not only the scheduling and context switch costs 

identified by Katcher (1993) and Burns (1995), but the real costs involved in scheduler 

implementation. Those identified are as follows:  



68 

• a scheduling cost: arising due to the time taken by the scheduling algorithm to 

suspend the running task, insert it into the ready queue, switch the context, and 

dispatch the new incoming task; 

• a pipeline cost: arising due to the time taken to flush the processor pipeline when 

the task is interrupted and the time taken to refill the pipeline when the task is 

resumed; 

• a cache-related cost: arising due to the time taken to reload the cache lines evicted 

by the preempting task. The length of time depends on the specific point at which 

preemption occurs and on the number of preemptions experienced during the task  

These implementation costs result in the degradation of task WCET by up to 40% when 

runtime overhead is included (Yao and Buttazo, 2011). Furthermore, the fact that the 

schedulability test accuracy of real-time tasks was found to be degraded by 20% from 

the ideal, when the implementation cost is considered in pre-emptive scheduling this is 

an important aspect to be explored (Katcher 1993). This can be one of the factors that 

can affect cost and the effort of verification and testing of real-time systems. 

3.11 Evaluation on cost of implementation in TT architecture  

Over a period of 10 years, the implementation process for TTC schedulers on a broad 

range of low-cost embedded microcontroller platforms has been one of the prominent 

areas of interests for ESL researchers. An early work in this area was carried out by 

Pont (2001) which described techniques for implementing TTC architectures using a 

comprehensive set of “software design patterns” written in C programming language. 

The resulting “pattern language” was referred to as the “PTTES Collection” which 

contained more than seventy different patterns.  
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Moreover, Professor Michael Pont and his PhD students also considered the design and 

implementation of a time-triggered hybrid (TTH) scheduler, which allows a single, 

time-triggered, pre-emptive task to be scheduled in the TTC scheduling framework. 

This architecture can wither be considered as an extended version, or as a modified 

implementation of the original TTC scheduler. Various comparisons of a TTH 

scheduler and a TTC scheduler implementation have been described by researchers 

(Pont, 2001; Maaita and Pont, 2005; Hughes and Pont, 2009; Phatrapornnant, 2007, 

Short, 2012). 

Nahas (2008) compared the cost of a set of representative implementation classes for a 

TTC scheduling algorithm such as TTC-ISR, TTC Dispatch and TTC-Adaptive in 

hardware-based implementation. The implementation costs (including CPU, memory 

and power requirements) involved in creating each scheduler are also considered when 

distinguishing between the different TTC implementations. Note that the source codes 

in all the outlined scheduler implementations were written in programming language C. 

This language is used because of its efficiency; it can support functions and modules as 

well as affording good access to hardware via pointers. It is also available with every 

embedded processor (8-bit to 32-bit or more) (Pont, 2002) (Lindgren et al., 2008). 

In addition, Wang (2008) and Short (2008) compared fully pre-emptive scheduling 

using RM and static schedule using TTC. They proved that the system still has 

predictable behaviour with limited resources. For example, TTC needs less than 

651.1% of RAM as compared to RM scheduling. Moreover, (Hanif, 2008) implemented 

a simple but flexible TT architecture for practical embedded applications such as motor 

applications. However, the design is still immature and the research is ongoing.  

Moreover, since 2001, ESL researchers have also been concerned with the 

implementation of TT architectures on multi-processor embedded platforms (Athaide et 



70 

al., 2008, Muhammad and Pont, 2010). Atheide (2007) proposed a novel high 

determinism multi-core processor with two capable software scheduler implementations 

that allow for application software to be designed, as for a single-core system by 

leveraging the TT nature of the underlying system. On the other hand, Amir (2010) 

compared various TT-based Shared-Clock scheduler implementations to provide high 

reliability communications at low cost, using a Control Area Network (CAN) protocol. 

Nevertheless, detailed comparisons relating to cost of scheduling implementation have 

still not been done in this research group. 

3.12 Error detection approaches in ET and TT systems 

In order to detect errors that may be affected by the timing fault, transient fault, random 

fault, systematic fault or permanent fault (Tsai, 1990, Storey, 1996), testing and 

monitoring processes are required. In real-time systems, the crucial aim of testing is to 

detect timing errors. However, what actually causes timing errors? Specifically, real-

time systems are usually exposed to timing errors (Tsai and Bi, 1991), persistent errors 

and synchronisation errors (for multi-tasking real-time systems) (Tsai et al., 1990b), 

since the system has to deal with timing constraints. A typical timing constraint with a 

task is the deadline, which represents the time before which it should complete its 

execution to be certain of not causing damage to the system. For hard real-time 

systems, any instance of the task should be guaranteed a priori in the worst-case 

scenario, since the consequences of a missed deadline in such systems can be 

catastrophic. 

Tsai (1991) has produced three theorems with regards to the violation of timing 

constraints in real-time systems. The first theorem is related to computational errors, 

which may occur at runtime. If the tasks of a timing constraint take more time to 

execute than expected, the program needs to be re-designed to reduce execution time. 
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The second theorem relates to scheduling errors. As explained in Chapter 2, a scheduler 

determines which task will run next in a multitasking system. However, if tasks cannot 

obtain enough CPU time to execute, this means that timing constraints cannot be 

guaranteed. Thus, a method for re-scheduling or re-assigning tasks with higher 

properties is essential. The third theorem relates to resource constraints, in which 

operating systems usually provide a synchronisation mechanism to ensure sequential 

accesses to mutually exclusive resources. When a running task occupies mutually 

exclusive resources, such as a semaphore, all tasks blocked on the same resource are 

kept in a queue associated with the semaphore that protects the resource. Another task 

will enter a waiting state whenever the semaphore is unlocked by a running task. 

However, this may cause a timing error if the task spends too much time in a waiting 

state.  

Since the failure of embedded real-time systems can be dangerous to the environment 

or human life, timing errors must be detected effectively. Over the past 20 years, a 

number of testing and monitoring techniques have been extensively developed, based 

on real-time testing requirements. Nevertheless, it has been discovered that non-

deterministic software architecture behaviour used in a system complicates the testing 

and monitoring processes. In addition, the testing process itself is far from trivial, not 

least because it is often difficult to determine which task or process is the root cause of 

an observed problem (Tsai, 1990). In this section, research work on monitoring and 

testing system faults as applied to existing ET and TT systems is described. 

3.12.1 Issues in ET systems 

One of the main reasons why it is hard to debug and test an ET system is because the 

run time behaviour of the scheduler can be unpredictable, making it difficult to analyse 

(Tsai et al., 1990b). Non-deterministic behaviour can cause a reproduction of execution 



72 

times that is difficult to achieve. A deterministic replay of execution behaviour in a way 

that guarantees the reproduction of program errors is essential in order to detect the 

source of any faults. If errors are irreproducible, logs and traces of inter task messages 

should be collected and investigated to assess whether any abnormality can be detected 

in the task behaviour. The user can check the messages and the time spent in the 

sequence to identify a failed task message and localise faults within that task. This 

requires sophisticated monitoring techniques and deterministic replay mechanisms, 

which are very costly and time-consuming to develop.  

There have been a number of previous research studies that have explored the design of 

monitoring for testing and debugging of single nodes in real-time. For example, Thane 

et al. (2000) presents a method that calculates all possible execution orders for a system 

with periodic tasks only and fixed priority scheduling using an execution order graph 

(EOG). The system was developed according to a real-time kernel that supports pre-

emptive scheduling. In addition, the kernel has a recording mechanism that it uses to 

record significant system events such as task start, pre-emption and access to a real-

time clock.  

A software-based monitoring technique was developed and managed to avoid the 

“Probe Effect” and to provide reproducible deterministic observation. Prior to these 

implementations, a software-based monitoring system that employed a passive testing 

method was described. Time encapsulation and a schedulability analyser were used by 

Tokuda (1988) in the ART real-time monitoring system for testing purposes.  

Software-based monitoring approaches need to consider the effects of probes caused by 

software instruments. If probes are not removed, they might slow down a system’s 

performance (Schütz, 1993). As an alternative, hardware-based monitoring approaches 

are also a possibility. Tsai et al (1995) utilised a hardware instruction counter to enable 
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deterministic replay. A “Non-interference” monitoring system was also designed by 

Tsai; this ensures that the system does not affect the execution of the target system 

during the verification process. However, this approach requires dedicated hardware to 

monitor the target systems at a very low level, leading to additional problems, such as a 

lack of scalability and non-portability (Thane, 2000) which may increase testing costs.  

Another disadvantage is that the testing of this system requires a number of tasks and 

system information in order to trace errors. In addition, event histories that are 

monitored and recorded using a software or hardware monitor can only be replayed on 

the same system in relation to reproducibility issues. It is also questionable whether it is 

possible to use the same event history in different programs. These are the main 

problems associated with reproducibility and observability with the testing of ET 

systems. The next section will discuss the testing methods applied in TT systems. 

3.12.2 Issues in TT systems 

Much research involves deciphering TT scheduler errors in software-based, hardware-

based and simulation-based solutions. In general, the same issues linger in relation to 

the testing the TT pre-emptive scheduler with respect to reproducibility and 

observability. In general, errors are difficult to reproduce in the pre-emptive and ET 

domain. However, some of these issues can be reduced, since predictability and 

deterministic behaviour are provided for in TT design (Shutz, 1993).  

In order to detect timing-based errors in TT systems, a variety of monitoring 

approaches can be used, such as the scheduler and watchdog approach (Bate, 1997, 

1998, Pont, 2001) and a non-invasive monitoring system (Chan and Pont, 2010). 

Moreover, an implementation of the task guardian, as recommended by Hughes and 

Pont (2008) can also help to detect and handle task overruns in TTC scheduling 
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algorithms. However, all this experimental work has vulnerabilities, as it is reliant on 

monitoring (software based and hardware-based) techniques to detect errors. In reality, 

testing is a core means to identify where the sources of faults are located. This area of 

work is yet to be considered within an ESL research group. 

Alternatively, the Hardware-in-the-loop (HIL) technique (Short and Pont, 2005) 

provides simulation-based testing using TT architecture that allows developers to 

investigate system safety and reliability efficiently. Typically, simulations can help to 

find errors in system designs. However, most actual systems are too complex to allow 

for the simulation of all the possible inputs. In addition, there is no guarantee of the 

absence of error, since simulations cannot exhaustively be run for all possible 

combinations of inputs and internal states. For example, a timing constraint violation 

still occurred on the F/A-18 aircraft system, even though the system had been verified 

through simulation-based testing (Shepard and Gagne, 1991, Shepard and Gagne, 

1990). As a result, it was necessary had to identify the software components causing 

this issue in order to improve the simulation technique applied. This has further 

increased the complexity of the software and rendered its maintenance difficult; this a 

problem many hard real-time systems have encountered (Shepard, 1991). 

3.13 Assessing timing behaviour  

Previously the issues and current testing approaches available with ET and TT systems 

have been reviewed and discussed. It is worth noting that, most of the work discussed 

above relates to dynamic testing, because only testing on running systems can provide 

obvious implications for testing using ET and TT. In reality, there are various software 

verification issues including static analysis, formal methods and evolutionary testing. 

Other timing testing techniques will also be discussed in this section.  
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3.13.1 Formal verification methods  

A range of modelling methods is used in the production of safety-critical systems. 

Formal methods may be used to model such systems as an aid to implementation, 

verification and validation (Storey, 1996). The formal methods utilised include 

extensions of temporal logic to allow for quantitative reasoning about time, analysis for 

timed Petri nets (Storey, 1996), real-time logic, and timing analysis using graphs (Tsai, 

1991). Formal verification methods have been introduced in an attempt to prove the 

correctness of programs with respect to system specifications and software engineering. 

One of the formal specification methods is using different languages, such as timed 

CSP and TRIO formulas (Mandrioli et al., 1995), or techniques such as timed Petri 

nets, to produce an unambiguous specification of timing requirements.  

In more recent work, Nourch et al. (2007) introduced an approach named ArchMDE for 

”Architecture-centric Model Driven Engineering” to address the development and the 

formal verification of real-time software architecture. It uses concepts derived from 

Model Driven Engineering (MDE) and software architecture for the automatic 

generation of a network of timed automata, in accordance with a blackboard 

architectural style. Timed automata were used only by analysers of real-time formal 

models. Since then, the use of timed automata based tools has spread to almost every 

aspect of real-time MDD, such as controller synthesis, code synthesis, scheduling and 

probabilistic analyses. A small number of tools, such as UPPAAL (Behrmann et al., 

2004), RED (LAUREN, 2001), and VerICS (Kacprzak et al., 2008), have been actively 

maintained and so have evolved over an extended period of time. As zone-based 

techniques are now well-established, there is a bright future awaiting timed automata 

based tools. 
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In contrast, modelling languages, like UML, describe concepts, rather than 

implementations of solutions. Thus, they are useful for organising designs and 

specifications to address the different perspectives of the system, meeting the needs of 

developers and customers. In particular, they capture a notion of correctness, in terms 

of the requirements the system has to meet. Formal methods typically address model 

correctness, operating on a (possibly very close) mathematical formalisation of the 

model. This makes it possible to prevent errors inexpensively at the early design stage 

(David, 1999). Another approach that can be applied is timed process algebra or finite-

state machines (Clarke, 1995; Dasarthy, 1985). However, this is extremely time-

consuming and costly (Storey, 1996). Thus, only projects which involve the highest 

level of criticality are reserved for this method of assessment. 

3.13.2 Measurement techniques 

Measurements can be used in different ways. End-to-end measurements of a subset of 

all possible executions produce estimates, not bounds. These may give the developer an 

idea of execution times in common cases and the likelihood of the occurrence of a 

worst case. Measurements can also be applied to code snippets, after which results are 

combined to estimate a whole program using similar methods to those used in static 

methods. Therefore, this make it possible for safe bounds to be stamped on rather 

simple architectures. 

Measuring can be used in the same spirit as testing, in order to identify errors. Testing 

is the only method that allows a thorough examination of a test object’s run-time 

behaviour in the actual application environment. Only by means of this examination, 

can dynamic aspects that are especially important for the correct functioning of real-

time systems be considered. Examples of these dynamic aspects include the duration of 
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computations, the actual memory required during program execution and the 

synchronisation of parallel processes. 

The main disadvantage of this method is that it can only detect the presence of errors; 

not their absence. Instead, the testing carried out must increase confidence in the 

system, even though it may still contain undetected errors; by ensuring that the software 

meets these requirements. In addition, when using this method, the real cause of the 

fault cannot be detected. Therefore, analysis of additional methods may be needed 

(Tsai, 1993).  

3.13.3 Timing analysis 

Timing analysis is critical for real-time systems (Tsai, 1991). An analytical method 

based on system execution traces for real-time systems can be used to find the causes of 

a violation for timing constraints from the collected data. The timing behaviour of a 

target system at process level can be observed using a non-interference monitoring 

system (Tsai, 1993). Timing analysis can also be represented as a graph, which is useful 

when highlighting the timing errors in real-time systems. For instance, the Dedicated 

Coloured Process Interaction Graph (DCPIG) can be used to detect deadlocks, 

distributed terminations, starvation and missed operation errors (Tsai, 1991). However, 

this form of analysis can only detect the segments which contain sets of tasks 

immediately responsible for the violation of the timing constraint; it is unable to 

identify the source of faults. 

3.13.4 Evolutionary testing 

Alternatively, evolutionary testing has been widely studied in the literature; it has been 

applied to many test data generation scenarios including temporal testing (Wegener et 

al., 1999), stress testing (Briand et al., 2005), finite state machine testing (Derderian et 
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al., 2010) and exception testing (Tracey et al., 2000). Wegener (1998) produced a so 

called evolutionary testing technique to discover which input situations produce a 

temporal error. The method begins by identifying the shortest and the longest execution 

times for test objects. To search for the longest and shortest execution times 

automatically, a genetic algorithm is used. The evolutionary process runs repeatedly 

until a temporal error is detected; for example when an execution time is found which is 

outside the specified timing bounds of the system being tested. The only disadvantage 

is that it is difficult to find suitable test parameters for genetic algorithms. The work has 

been extended, to improve the test quality, with a combination of evolutionary testing 

techniques reliant on systematic testing (Gotchmen, 1998). In addition, (Harman et al., 

2012) delivered a comprehensive study on the trend for search-based test generation 

techniques that offer a suite of adaptive automated and semi-automated solutions in 

large complex problem spaces with multiple competing objectives. As real-time 

systems require fully automated and effective systems testing, a combination of search-

based and adaptive random testing could be used to automatically generate test cases 

and test oracles when integrated with an environment simulator, to enable early testing 

of such system (Iqbal et al., 2012). In 2011, researchers were aiming to improve test 

coverage in real-time systems. For example, Ha et al. introduced an evolutionary 

algorithm that generated timed test traces to achieve transition coverage using Timed 

Extended Finite State Machines (TEFSM) in an abstract time domain (Ha et al., 2011).  

3.14 Importance of fault localisation in testing 

Part of the testing process is intended to localise system faults within the fault diagnosis 

process. Even for a simple system, such as a switch system with a time factor, fault 

analysis requires too much effort. This is due to the requirement for a detailed analysis 
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of all the possible faults that may occur within the system. The analysis is described in 

detail in Appendix -F.  

In large and complex systems, software not only contains a single unit but also consists 

of an integration of separate software units or modules, such as functional, object and 

data flow structuring. By partitioning software systems into smaller chunks, it may be 

possible to reduce the total number of problems into one software unit (see Figure 3.5).  

Furthermore, Tsai et al’s (1990a) work mentioned to using fault localisation techniques 

for testing real-time software systems. These techniques are proven to reduce a large 

quantity of the time and effort required for diagnosing system faults. Furthermore, 95% 

of the problems can be represented by the fault localisation approach (Tsai et al., 1989). 

In order to accomplish this, dynamic testing can be used.  

 

Figure 3.5 Typical software structures (Cooling, 2003) 

In order to ensure that software system performs correctly, a program of software 

testing needs to be completed (Cooling, 2001). In general, each software unit needs to 

be tested individually or in isolation. This testing technique used facilitates developers 

to determine whether each code unit or software function behaves exactly as is 

expected. In addition, it reduces the difficulties resulting from discovering errors 
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contained in more complex portions of the application; test coverage is often enhanced 

because attention is given to each unit.  

Many general software development methodologies are included with the range of 

suitable test methodologies. Test methodologies should be organised into separate 

phases so that the design phase is compatible with the system structure. For example, 

Gomaa (1986) introduced a strategy describing a Design Approach for Real-Time 

Systems (DARTS). The strategy begins by identifying the system’s main functions and 

conducting a data flow analysis. Using this information, the system is structured into 

tasks and interfaces between tasks. In DARTS, the task interfaces are categorised into 

task synchronisation and task communication modules after developing the task 

structure. Each module contains more than one task, with similar functions. To verify 

the modules and tasks design, unit testing strategies can be employed. For example, an 

isolated task’s test phase can be performed for each task and a task integration test can 

be performed for each module.  

3.15 Discussion 

In embedded real-time systems, instead of tight timing restriction, the non-deterministic 

behaviour of real-time software systems can make testing real-time systems more 

difficult when compared to non real-time systems (Lindstrom, 2008, Tsai, 1990). With 

deterministic and predictability behaviour imposed on a TT design, there is some 

reduction in the complexity involved in testing real-time software systems. 

Additionally, because they have a very predictable patterns of behaviour, testing TT 

systems can be comparatively straightforward: in fact, one of the factors which 

motivates organisations to adopt TT architectures is a desire to reduce the time taken to 

conduct system testing activities. This has become a motivating force for this research, 
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in order to determine whether TT designs can improve on the current testing 

techniques.  

3.15.1 Verification at design level 

Sections 3.6 to 3.9 have presented existing approaches to verify the timing constraints 

for ET and TT systems at the design stage. Obviously, software architecture and 

schedulability testing can affect the cost of a system’s design. Previous studies have 

shown that the cost of designing a system with a TT architecture is greater than that 

with an ET architecture. However, since more advanced approaches have been 

developed to improve schedulability test techniques, the results may differ. As a result, 

an investigation into the effects of software architectures and scheduling strategy as 

linked to cost of design will be carried out.  

In addition, in order to evaluate the performance of the scheduler design, schedulability 

theory provides theoretical modelling to assess and measure of schedulable tasks, (Liu 

and Layland, 1973, Bini, 2002, Baruah, 1990, Buttazo, 2005, Yao, 2010). However, as 

is evident from the literature review, the schedulability test becomes more accurate 

when the complexity and the schedulability's test-run time increases (although the latter 

is not desirable for ET architecture, it may have an effect on TT).  

Moreover, extensive theoretical studies have been conducted to evaluate performance 

measures, demonstrating that schedulability theory is well established; however, there 

exists a vacuum in experimental research. In addition, most of the work conducted in 

the last few years has only focussed on improving schedulability analysis for a single 

architecture, most commonly for ET. Only a few papers were found to reflect cross-

architecture evaluations. Thus, more assessments of the scheduler design need to be 

performed in order to assist designers in their choice as to the most cost-effective 
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scheduler design currently. From the literature review it is evident that the current state 

of the art scheduler design is TT architecture with limited pre-emption. 

A misconception that has been observed in the literature is that TT is prone to schedule 

fragility (Xu, 2003). However, experimental evaluations to counter these 

misconceptions could not be identified within the literature. Furthermore, the 

disadvantage of TT architecture is stressed as its fragility; referred to as Cyclic 

Executive (CE) (Burns, 1995), this relates to TT’s need to reschedule when each new 

task is added, thereby increasing the time-consuming nature of the testing. The current 

schedulability test mentioned by Xu (2003) is different from CE, and it is easy to add 

new tasks. In 2008 Gendy proposed a schedulability test for TTC and TTH with O(n.t) 

complexity, in which the running test time is faster than Xu’s heuristic search for TT. 

However, comprehensive cross-architecture evaluations for design costs for the current 

state of the art software are scarce in the literature. 

3.15.2 Assessment of implementation cost 

Despite the usefulness of the studies carried out in the area of schedulers, there exists a 

vacuum in terms of discussion with regards to scheduler implementation and its 

implications in practical real-time embedded systems. More specifically, while there 

has been a great deal of interest in the development, assessment and refinement of real-

time scheduling algorithms, the process of translating between algorithms and 

implementations has not been widely considered. This is a claim supported by Cho et 

al. (2007) who clearly stated that few studies address the architecture and the 

implementation of schedulers. The great majority of the studies reviewed during the 

course of this project mainly emphasise design issues and only discuss implementation 

issues from a removed perspective. The potential impact a particular software 
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implementation would have, on the actual run-time behaviour of the system when 

implementing the scheduler has not been considered. 

Theories to evaluate pre-emptive based schedulers and schedulability analysis have 

seen massive development both at the theoretical and implementation level. However, 

in order to cap the complexity arising from infinite pre-emption, the trend is to limit 

that pre-emption (Betogna, 2009, Yao 2010). 

Moreover, despite the usefulness of the studies carried out in the area of scheduler 

implementation, the literature survey showed that a comparative study of limited pre-

emption scheduler, fully pre-emptive scheduler and fully co-operative scheduler 

implementation is lacking. Due to limited pre-emption and the scheduler's popularity 

for real-time embedded systems, as performed by TTH scheduler, this trend is expected 

to continue or progress over the next few years. Therefore, the need to document and 

analyse the impact of the TTC, TTH and TTP scheduler implementations in a 

systematic way is surely of vital importance and benefit to designers. The evaluation 

conducted in this thesis is illustrated in Figure 3.7. 

Based on the study, only a handful of papers have been found that evaluate the cross-

scheduling algorithms, performance from an implementation cost point of view 

(Katcher, 1993, Burns, 1995, Betogna, 2010) in comparison to the architectures, with 

implementation costs i.e. overheads, included. This emphasises the need to carry out 

comparative studies by adding more assessment parameters, i.e. CPU, memory 

utilisation and code size, for all architectures; in order to study the impact on overall 

implementation cost. 

Reference is made to Section 3.6 and Section 3.11, where extensive theoretical studies 

were described as having been conducted to evaluate the performance of scheduling 
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theory and implementation costs. It has been discovered that most of the analytical 

works were used simulation-based approaches (Butazzo, 2005, Bertogna, 2010, Yao, 

2011). Therefore, it is necessary to conduct hardware implementation in order to 

analyse the impact of scheduler implementation. 

In resource-constrained and embedded systems (i.e. washing machines, mobile phones, 

mp3 players), designers are frequently concerned over CPU and memory requirements. 

These requirements should therefore be considered as a comparative measure for the 

implementation of the scheduler.  

3.15.3 Cross-architecture evaluation on cost of testing 

A broader perspective and impact analysis describing cross-architecture studies is very 

limited in the literature. In addition, scholars have noted the need to use appropriate 

software architecture to design for the testability of real-time systems (e.g. Kopetz 

(1991), Schütz (1993), and Xu, (2003)). However, it has been found that there is a 

vacuum in the following areas: 

• Experimental testing performance evaluations of TT and ET architectures are 

scarce; 

• Testing has not been covered extensively in the literature review, for cross-

architecture comparative evaluation based on experimentation (Schütz 1993, 

Lindstorm, 2009); and 

• The current trend in the research points towards limited pre-emption (Bertogna, 

2010, Yao, 2011); thus, it is important to observe the impact of this on testing (as 

has been discussed in Section 3.6). 

Since ET and TT systems are two completely different entities, the requirements and 

designs for each system are different. However, in order to develop a comparative 
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study, it is important to develop an equivalent system with the same functions and a 

similar number of tasks. This presents a great challenge to test designers. In addition, in 

order to produce an accurate analysis, hardware implementation is necessary. Both 

systems need to be programmed and implemented using the hardware, and a testing 

evaluation can be run in developed systems.  

Based on the studies, there is a shortage of assessment and a limited analysis of 

software cost metrics when testing embedded software in ET and TT designs, and more 

specifically, in areas touching on co-operative and pre-emptive scheduling techniques. 

It is also important to observe how TTC, TTH and TTP schedulers perform when 

assessed at the testing and verification phases. This analysis will provide useful 

information to embedded systems software researchers who are aiming to achieve a 

limited pre-emptive scheduling and TT architecture (state-the-of-the-art scheduling and 

real-time software architecture). The trend for cross architecture comparative studies is 

described in Figure 3.6. 

 



86 

6c. Event Triggered

7c. Pre Run-time

8c. Priority Based

Cross-Architecture Comparative Studies

Com
pa

re 
CE an

d R
M (1

c, 
4c

, 2
e)

Bate

1998

Com
pa

re 
1d

 in
 1b

, 2
b, 

1c
, 5

c, 
6c

, 

2e
)

Katc
he

r

1993

Com
pa

re 
tic

k s
ch

ed
uli

ng
 

an
d R

M (1
c, 

1d
, 2

b) 

Burn
s

1995

Com
pa

re 
CE &

 R
M (1

c,4
c,1

e)

Bak
er

1992

Com
pa

re 
tes

tin
g (

7c
, 8

c, 
1e

)

Xu

2000

Com
pa

re 
tes

tin
g i

n E
T an

d T
T(5c

, 6
c, 

2e
, 3

e)

Lin
ds

tro
m

2009

Compare
 te

sti
ng in

 ET vs
 TT (T

TP, 

TTH, T
TC)

 (m
iss

ing part
)

2b. Pre-emptive Scheduling

1d. Implementation cost

2d. Shared resources

3d. Response time

1c. Rate Monotonic

2c. Earliest Deadline First

1b. Co-operative Scheduling

4d. Limited pre-emption

3b. Hybrid scheduling 3c. Deadline monotonic

4c. Cyclic Executive

5c. Time triggered

1e. Theoritical comparison 

2e. Empirical comparison

Com
pa

re 
(1c

, 2
c, 

1e
)

Butt
az

o

2005

Com
pa

re 
tes

tin
g (

7c
, 8

c, 
1e

)

Xu

2007

Com
pa

re 
tes

tin
g f

or 
ET 

an
d T

T (1
e,2

e) 

Shu
tz

1993

Com
pa

re 
ET an

d T
T (5

c, 
6c

,1e
, 2

e)

Kop
etz

1997

3e. Simulation

Com
pa

re 
ET an

d T
T (5

c, 
6c

,1e
, 2

e)

Kop
etz

1991

Trends
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3.15.4 Task isolation 

As discussed above, a considerable volume of work has been produced to demonstrate 

how TT architecture can improve on the testability of real-time systems (Kopetz, 1991; 

Lindstro ̈m et al., 2008; Schütz, 1993) in comparison to an ET architecture. However, to 

the author’s knowledge, to date no empirical research exists addressing the question of 

how ET and various TT scheduling including TTP, TTH and TTP schedulers effects 

testing costs and efforts within an experimental-based approach.  

In order to address this issue, a testing technique needs was designed for the purpose of 

conducting this comparative study. According to Tsai (1990), fault localisation is an 

effective means by which to find and source faults. In a software system, detecting the 

presence of a fault at the lowest level of the software structure (as shown in Figure 3.5) 

is essential. Hence, the smallest and most important component needing to be tested is 

the task. Although the idea of task testing is not new, there is a vacuum of studies 

revealing whether task isolation can help us to assess the testing effects of various 

software architectures and scheduling policies. 

To our knowledge, there is an absence of empirical studies that show whether ET, TTP, 

TTH or TTC systems can easily reproduce the identical behaviour of a task running on 

a complete system with a task in isolation on a uniprocessor system. Most of the work 

done by Schütz (1993), Kopetz (1997), and Lindstrom (2008) discussed testing on real-

time distributed systems. Although many modern systems are equipped with distributed 

or multiprocessors, some designers continue to prefer uniprocessors, ostensibly to avoid 

degradation of system performance (Amdahl, 2007). 
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3.15.5 Impact of shared resources in testing 

The usage of semaphore or other synchronisation protection mechanisms in pre-

emptive scheduling can cause additional overheads. Anderson (Anderson et al., 1997a) 

provides a comparative study of the overhead for lock-free and lock-based 

synchronisation in pre-emptive scheduling. It shows that the processor utilisation 

achieved is only about 94% when a lock-free approach is used. On the other hand, were 

lock-based techniques employed, the processor utilisation would be approximately 

99.4% (Anderson et al., 1995). Lock-free techniques have three advantages, which 

allow tasks to work independently: (1) One task can access any shared resource without 

the need for detailed knowledge about another task's objects; (2) a new task can be 

added dynamically since operating tables do not have to be recomputed; and (3) this 

approach provides less overhead and lower task response times when compared to lock-

based techniques. Alternatively, co-operative scheduling can be employed. In the TTC 

architecture (for example), pre-emption is not permitted; thus, there is no issue related 

to a conflict with shared resources.  

As synchronisation mechanisms are very useful for ET systems and pre-emptive 

scheduling, it is important to observe their impact on testing. Analysis is also aimed at 

bridging the gap between ET systems - with various synchronisation implementations - 

and TT systems - with TTP, TTH and TTC implementations - particularly when testing 

real-time systems.  

3.16 Conclusion 

An extensive literature review covering the most important aspects related to the second 

hypothesis, as mentioned in Section 1.3, have been presented in this chapter. The 

drawbacks of event-triggered architecture have been discussed relative to the reviewed 

literature. The main concern with ET architecture derives from its non-deterministic 
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behaviour, which makes it difficult to test. The chapter also examined testing for time-

triggered architecture and limited pre-emptive scheduling, which is currently 

considered to be the "state of the art" approach for real-time systems. As a result, it was 

found, that more cross-architecture testing evaluations need to be carried out to 

highlight the implications of different architectures on the cost of testing and 

verification (see Figure 4.6). To supply this need, comparative studies and evaluations 

are presented in the following chapter. 

Moreover, extensive theoretical studies have been conducted to evaluate performance 

measures to the extent that schedulability theory is well established; however, there 

exists a vacuum in terms of experiments in the reviewed literature. In addition, most of 

the work conducted in recent years have only focussed on improving the schedulability 

analysis for a single architecture, particularly ET. Few papers were found to reflect 

cross-architecture evaluations. Thus, more assessment of the scheduler design needs to 

be performed in order to help designers to choose the most cost-effective design. From 

the literature review, it became evident that the current state of the art scheduler design 

is TT architecture with limited pre-emption. 

A misconception observed in the literature regarding TT is that it is prone to schedule 

fragility (Xu, 2003). However, more comprehensive arguments against this 

misconception, based on experimental evaluations could not be identified during our 

literature survey. Furthermore, the disadvantages of TT architecture, due to its schedule 

fragility, referred as Cyclic Executive (CE) (Burns, 1995), meaning the TT's need to 

reschedule when each new task is added, lengthens the testing time. The current 

Schedulability Test mentioned by Xu is different from CE, in that it is easy to add to 

new tasks. Gendy in 2008, proposed a schedulability test for TTC and TTH with O(n.t) 

complexity, in which the running test time is faster than that of Xu’s heuristic search for 
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TT. However, comprehensive cross architecture evaluations and design costs for the 

current state of the art are scarce in the literature. 

An extensive literature review covering the most important aspects relevant to the third 

hypothesis mentioned in Section 1.3 were presented in this chapter. The schedulers 

were reviewed as they evolved over time according to a schedulability analysis as has 

been summarised above. The drawbacks of the event-triggered architecture were 

discussed in reference to the reviewed literature. Based on the review, it has been 

observed that current and future trends are shifting towards TTH as a cost-effective 

prospective architecture. Furthermore, it has been found, that more cross-architecture 

evaluations need to be carried out to pinpoint the different implications arising from the 

use of architectures on the cost of design. Owing to the need for more experimental 

based evaluation, and to verify the theoretical models, comparative studies and 

evaluations are presented in the following chapters. Figure 3.7 illustrates the evaluation 

of software architecture conducted in this study. 
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Figure 3.7 Evaluation conducted in this study 
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Chapter 4  

A Novel Software Architecture Evaluation Model 

4.1 Introduction 

The rationale for this research was presented in Chapters 2 and 3. The main idea of this 

study is to explore the advantages associated with systems with high predictability. This 

includes TT systems, which can assist in reducing the costs arising from timing 

verification for real-time software systems in the design, implementation and testing 

phases. With this motivation, a method to evaluate the impact of software architecture 

as well as real-time scheduling was introduced to fulfil the following objectives: (1) 

identify the cost involved in evaluating the fundamental costs involved in ET and TT 

software architecture at the design, implementation and verification phases; and (2) 

assess that cost by using evaluation techniques and experimental approaches, then 

compare the results in order to show which of the software architectures produces a 

low-cost system (this will be discussed in Chapters 5, 6 and 7).  

4.2 Necessity of software architecture evaluation 

Scholars and designers have put forward more than 100 software inspection and 

verification approaches related to timing requirements in concurrent processes, and 

some real-time software architecture trade-off evaluations. However, there is a lack of 

evidence of real-time software behaviour with which to explore the impact of software 

architecture in reference to its design, implementation and verification costs, as a single 

goal. Such an evaluation would be useful for practitioners aiming to choose which 

software architecture is suited to verifying the timeliness characteristics of their 

systems. The results of this analysis are also of value to the research community; they 

will facilitate analysis of the cost and effort involved in existing timing verification 
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methods, for both ET and TT systems (in design, implementation and testing stages). 

This can be achieved by pointing out to what extent the verification of software with 

timing requirements will be affected as the system becomes larger and more complex.  

The first aim here was to point out existing ET-based and TT-based timing verification 

approaches that propose concrete means to guarantee if critical timing constraints will 

be met. This is useful for both designers and scholars wishing to explore the cost and 

effort involved in various timing verification mechanisms for both software 

architectures. A key issue is the need for a combination of different sorts of software 

cost metrics; for instance, involving a running time that consumes a run schedulability 

test for a large number of tasks, based on overhead costs that need to be taken into 

account in order to trace errors in TT and ET schedulers by assessing the code size 

needed. 

The second aim of this analysis, therefore, was to shed light on the software 

architecture role of timeliness testing and cost, evinced by existing timing verification 

approaches. This can help designers to select suitable software architecture, while 

avoiding lateness and additional predicaments when testing their systems. For example, 

systems which consider the ET architecture as a means to reduce the testing effort may 

not be suited to large complex real-time systems where the number of tasks is 

enormously high.  

The third goal of the analysis was to contribute to an understanding of the ET and TT 

software architecture behind the timeliness testing and verification. This is useful for 

both scholars and designers, as a greater understanding of the software architecture 

increases their knowledge of why a particular architecture has (or is expected to have) 

the intended impact on system size. In addition, a need to use appropriate software 
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architecture to design for the testability of large real-time systems was noted by 

scholars (e.g. Kopetz (1991), Scheler, (2006) and Xu, (2003)). However, there is still a 

lack of assessment and analysis of software cost metrics when designing, implementing 

and testing embedded software in ET and TT designs, or more specifically, in co-

operative, limited pre-emptive and pre-emptive scheduling techniques. A detailed 

discussion of the method used is given in the next section.  

4.3 Description of method 

This study introduces a novel evaluation model for comparing the cost of design, 

implementation and for testing real-time systems in order to ultimately assist designers 

to choose a cost-effective software architecture and scheduling policy. This work was 

conducted by several researchers, such as Kazman (1999) and Bate (2008), to analyse a 

trade-off in real-time software architecture, but not specifically for ET and TT 

architecture.  

Kazman (1999) introduced a software architecture trade-off analysis and Bate (2008) 

proposed a graphical notation with cost estimate weighting analysis, to identify all the 

costs involved in order to guide designers or practitioners when making decisions about 

which software architecture would be ideal for their systems. In this study, the 

evaluation of software architecture does not only provide a quantitative or cost 

weighting analysis. In fact, real data from experimental results is used as evidence to 

assess the software architecture comparatively. In addition, the software architecture 

introduced in this study takes into account the cost involved at each phase of the 

software development cycle. It is widely known that verification is the most expensive 

activity in the software development process; thus, the main focus of this research was 

to evaluate the cost involved, in order to verify the timing behaviour for each software 

architecture. This will include assessing schedulability test running time and input 
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requirements, overheads and the simplicity of reproducing similar timing data for 

testing isolated tasks.  

The results of the experimental work, strongly support the notion that an overall 

development cost evaluation is likely to fall below actual cost, as these two costs are 

incorporated in addition to design costs. The costs and their implications have been 

explained in detail in their relevant chapters respectively.  

The method proposed is compared with Bate’s method, which is given in Figure 4.1. 

The first step in Bate's model is to identify design goals. Once the goals are identified, 

all claims and arguments proceeding from the goals can be derived using GSN 

principles. Then, qualitative and quantitative assessment criteria can be extracted by 

expanding the goals for the system into sub-goals, relating to the efficiency of 

scheduling policies or greater design choices, such as using offline or online 

mechanisms. Based on a combination of software architecture evaluations results and 

weighted factors, a quantitative measure for a particular change to the design solution is 

provided.  
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!

Figure 4.1 Bate’s software architecture evaluation method (Bate, 2008) 
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4.4 A novel method for evaluating embedded real-time software 
architecture 

This section is concerned with presenting the method derived, along with the rationale 

behind it. This method was inspired by Bate’s trade off analysis and followed a step by 

step approach. However, in this study, costs were not presented using weighting 

techniques. Rather, costs were observed and compared based on experimental results 

and the impact of software architecture and scheduling strategies on software and 

hardware aspects, such as memory utilisation, overhead and lines of code.  

4.4.1 Process 

Figure 4.2 provides an overview of the method. The individual stages of which are 

explained in the following sections. 



98 

 

Figure 4.2 Overview of Evaluation Model for Software Architecture. 
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4.4.2 Stage 1 – Selecting the software architecture associated with the 

scheduling strategy  

The evaluation cost method selects the main software architecture and scheduling 

strategy for assessment during the first stage. For instance, when carrying out the 

discussion for the RT embedded system architecture, it emerged that the impact of pre-

emptive and co-operative scheduling on the system cost for ET and TT systems must be 

included as shown in Figure 4.3.  

 

Figure 4.3 Example list of RT embedded systems' software architectures for assessment for RT 

embedded systems. 

4.4.3 Stage 2 – Producing an argument for the goals 

In the second stage, the aims of the system assessments were decomposed into more 

detailed goals, although there are many arguments that can result in a low-cost system. 
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timing requirements for the TT and the ET architecture would be met. The goals of the 

evaluation are described in Figure 4.4. 

 

Figure 4.4 Example Evaluation objectives for RT-Architecture 
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complexity, running time, LOC and test inputs in the light of schedulability analysis. 

Thus, these can be the relative factors used to evaluate the cost of design across a 

variety of software architectures.  

4.4.4.2 Stage 3 (b) – Evaluating the software architecture on the cost of design 

Given the need to assess a set of evaluation criteria, the next stage calls for ways to 

determine how individual objectives from the design argument can be measured and 

analysed as different software architecture and scheduling strategies and design costs 

can be compared. This stage is involved in turning a given objective and argument into 

the experimental design cost evaluation.  

4.4.4.3 Stage 3 (c) – Extracting evaluation criteria on cost of implementation 

Once an argument exists about the suitable cost of implementation, the evaluation 

criteria for the cost needs to be extracted. For example, the accuracy of any 

schedulability analysis can be degraded when the implementation cost is considered. 

The pre-emptive scheduling implementation is usually affected by a context switch 

event that occurs when a higher-priority task interrupts a lower-priority task. It is 

impossible to take into account all of the effects of the context switch on schedulability 

analysis. Furthermore, an interrupt can happen at any time an event occurs. This makes 

evaluation of the implementation cost problematical. On the other hand, such issues do 

not exist in co-operative scheduling, since all the tasks should run until completion. In 

fact, a context switch then occurs only at the tick interval. Thus, based on this issue, 

context switch overheads can be used to understand the comparative and quantitative 

impact of software architecture on the cost of implementation of embedded systems. 

Moreover, the impacts of pre-emptive and co-operative scheduling implementations can 
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also be examined according to the usage of memory and CPU, the LOC required to 

implement scheduling and the impact of the number of tasks.  

4.4.4.4 Stage 3 (d) – Evaluating the software architecture on the cost of 

implementation 

Given a set of evaluation criteria for assessment, the next stage undertaken was to 

determine individual objectives according to the implementation argument as measured 

and analysed; thus, different forms of software architecture and scheduling strategy 

relative to the costs of implementation can be compared. The steps involved in turning 

a given objective and argument into experimental implementation and cost evaluation. 

Results can be obtained using measurement-based techniques and scenario-based 

techniques. For example, context switch overheads can be measured using execution 

time measurement-based techniques. In order to produce more comparative results, 

scenario-based techniques such as the impact of the number of tasks can be used.  

4.4.4.5 Stage 3 (e) – Extracting the evaluation criteria on the cost of testing 

Once a suitable cost for testing and verification has been determined, the evaluation 

criteria for the costs need to be extracted. There are numerous issues to be discussed 

relating to the testability of real-time systems, including reproducibility, controllability 

and observability. One can use one or more of these aspects for the purposes of 

evaluation. In this study, for instance, the ease of reproducing similar timing data for 

the isolated task and the in-situ task became the main criteria with which to observe the 

impact of software architecture on the cost of testing. Testing will be easier for systems 

in which the timing data obtained for isolated and in-situ tasks is similar. In reality, 

many issues can be considered when evaluating the cost of testing.  
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4.4.4.6 Stage 3 (f) – Evaluating the software architecture on cost of testing 

Given a set of evaluation criteria to assess, the next step is to determine how individual 

objectives from a verification argument can be measured and analysed using different 

software architecture and scheduling strategies to compare the cost of verification. The 

stage involved here is turning a given objective and argument into experimental 

verification for cost evaluation. In order to measure the timing data for an isolated task, 

measurement techniques can be used. The WCET of isolated tasks can then be 

compared with the WCET of the task running in the complete system. In order to 

evaluate this according different software architectures, a similar system needed to be 

developed for two or more of the software architectures under evaluation. 

4.4.4.7 Stage 3 (g) – Basic analysis test 

This test is one of the three tests considered for assessing the impact of software 

architecture or scheduling strategies and cost. For most system problems there already 

exist a wide range of analysis and test methods that can be applied to evaluate the key 

properties and objectives. For example, with respect to timing, there is schedulability 

analysis.  

4.4.4.8 Stage 3 (h) – Scenario-based assessment 

The second assessment technique is scenario-based assessment. This method can be 

used when there is a lack of precise information that would be suited for evaluation. 

Scenarios of change can then be applied to a particular evaluation, and the impact of 

costs evaluated from two perspectives: i.e. whether TT architecture has a higher impact 

than ET architecture; and if TT architecture has a higher impact, then by what 

percentage over ET architecture, and why has the difference occurred?  
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4.4.4.9 Stage 3 (i) – Dynamic test 

For real-time systems, correct system functionality depends on logic as well as on 

timing correctness. Static analysis alone is insufficient to verify the temporal behaviour 

of real-time systems. Dynamic testing and measurement-based approaches are 

important for examining runtime behaviour, based on an execution in the application 

environment as noted by Schütz (1993): 

“Any%performance%tests%and%tests%intended%to%evaluate%the%temporal%behaviour%of%the%

systems%yield%only%meaningful%results%if%they%are%conducted%on%the%target%system”.%

4.5 Method comparison 

To compare the impact of different software architectures, one has to identify matching 

factors for evaluation purposes carefully. This can be accomplished by identifying 

common arguments in software architectures for each of these evaluation criteria. Since 

most of the evaluation techniques in this study are experimental-based, and there is a 

range of design choices that can be considered in embedded systems development, a 

comparative framework to justify the selection and formation of its components and 

elements is required.  

The evaluation framework introduced in Table 4.1 was used as the tool for analysis. 

The framework is based on using NIMSAD as an evaluation tool. The NIMSAD 

(Normative Information Model-based Systems Analysis and Design) evaluation 

framework makes it apparent that the assessment of most methodologies will be 

assisted by subjecting them to a NIMSAD analysis. NIMSAD is also useful for 

developers of methodologies, as it enables them to identify conceptual gaps that they 

may wish to fill and provides useful criticism of design factors requiring further 

thought. The NIMSAD framework uses the entire problem solving process as the basis 
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of evaluation and for evaluating methods in any category. According to NIMSAD, 

methodologies are evaluated according to four elements, which are: the Methodology 

Context, the Methodology User, the Methodology, and finally Evaluation; the way the 

methodology evaluates the other three elements. Jayaratna (1994) defines an extensive 

set of questions. Babar and Gorton (2004) summarised those questions according to a 

software architecture evaluation. In this study, a list of questions were used as a 

comparative tool for analysis. 

The goal of this evaluation was to provide an overview of current software architecture 

evaluation methods and to expose if the methods differed in any aspect of the 

embedded software architecture evaluation. Therefore, a neutral, common and quite 

extensive NIMSAD framework for method evaluation was utilised to derive the 

fundamental element categories for the framework. The NIMSAD framework was 

earlier applied to the evaluation of software engineering methods. The application of 

the framework to software engineering methods provided a basis for a detailed element 

definition of categories. With regard to various questions this study tries to address 

maturity, practicality and the scope of the methods used to identify differences. On the 

other hand, the goal was also to study if the methods really constitute a method. These 

elements are considered in the following categories: 
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Table 4.1 The NIMSAD framework and its interpretation in comparing software architecture evaluation methods 

 

 

 

 

 

 

 

 

 

 

 

 

Category)) Elements) Questions)

Context' Software'architecture'definition' Does'the'method'explicitly'consider'a'particular'definition'of'SA?'

' Specific'goal' What'is'the'particular'goal'of'the'methods?'

' Quality'attributes' How'many'and'which'quality'attributes'are'covered'by'the'method?'

' Applicable'stage' Which'is'the'most'appropriate'development'phase'to'apply'the'method?'

' Input'&'output' What'are'the'inputs'required'and'outputs'produced?'

' Application'domain' What'is/are'the'application'domain(s)'the'method'most'frequently'applied?'

User' Target'group' Who'are'the'stakeholders'addressed'by'the'method?'

' Motivation' What'are'the'user’s'benefits'when'using'the'method?'

' Benefits' What'are'the'benefits'of'the'method'to'the'stakeholders?'

' Process'support' How'much'support'is'provided'by'the'method'to'perform'various'activities?'

' Necessary'skills' What'skills'does'the'user'need'to'accomplish'the'tasks'required'by'the'method?'

' Guidance' How'does'the'method'guide'the'user'while'applying'the'method?'

Contents' Method'structure' What'are'the'activities'to'be'performed'and'in'which'order'to'achieve'the'goals?'

' Software'architecture'description' What'form'of'SA'description'is'recommended'(e.g.,'formal,'informal,'particular'ADL,'views'etc.)?'

' Evaluation'approaches' What'types'of'evaluation'approaches'are'used'by'the'method?'

' Tool'support' Are'there'tools'or'experience'repository'to'support'the'method'and'its'artefacts?'

Validation' Maturity'of'method' What'is'the'level'of'Reliability'maturity'(inception,'development,'refinement'or'dormant)?'

' Method’s'validation' Has'the'method'been'validated?'How'has'it'been'validated?'
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4.5.1 Context 

Context pertains to the concept of the method itself and the situation in which the 

methodology is intended to be used, according to what is considered to be important in 

the situation. Within this context many possible factors contribute to the perception of 

the attributes and characteristics of the situation under concern and the environment 

within which it operates. These factors could potentially influence the identification and 

definition of the problem in question. Software architecture analysis generally has one 

of three goals; for example prediction of future maintenance costs, identification of 

system inflexibility and a comparison of two or more alternative architectures (Babar 

and Gorton, 2004). Depending on the goal, the method employs different techniques for 

some of its main steps. 

A precise and well-documented definition of a software architecture is critical for a 

successful software architecture evaluation. It is difficult to define metrics to assess the 

capability of a software architecture with respect to quality attributes, without precisely 

describing the software architecture according to a particular evaluation method.  

4.5.2 User 

Users are those using the software architecture evaluation method. The ‘content’ is 

supported by methodology that, in turn, is used by the methodology user. Thus, the 

methodology user is the problem solver or decision maker. It is necessary to know what 

guides his decisions, what kind of abstract thinking is required from him, how well he 

gets to know the methodology he utilises, and how he can acquire the necessary skills. 

These things are included in the evaluation of the methodology user element. 
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A stakeholder is any person or organisational representative who has a vested interest in 

a system. The methods studied also vary in terms of number and categories of 

stakeholders involved in evaluation, including architects, designers, and end users. 

4.5.3 Content 

Content refers to the method or approach adopted by the user in the transformation of 

the situation, as represented by the ‘content’ element of the framework. Jayaratna 

(1994) mentioned that content comprises three essential phases: problem formulation, 

solution design, and design implementation. These three phases provide a structured 

approach to the complex activity of problem solving. In a scenario-based method, for 

example, the activities include scenario development and scenario evaluation activities. 

In addition, a tool is required to support the evaluation process and to capture the design 

artefacts together with the decision rationale, measurement and administrative 

information.  

4.5.4 Evaluation 

To prove the method, an evaluation was required. Evaluation provides a measure for 

the effectiveness of the ‘content’ and the ‘user’ within the particular ‘context’, and the 

degree of success achieved when resolving the perceived problem. In the evaluation, 

questions are directed according to the application of three elements of the framework, 

to determine the potential impact of the transformation upon the context of the 

organisation, the potential impact of the ‘user’, and upon the outcome of the 

transformation and the content, rationale and direction of the transformational process. 

Software architecture evaluation methods can also be compared from the perspective of 

maturity as this may foster confidence in method users. Thus, the existing evaluation 

methods can be classified in any of the four maturity phases of the software evaluation 
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methods lifecycle, namely requirement phase, the design phase, the implementation 

phase and the testing phase. 

4.6 Overview of software architecture evaluation methods using 
NIMSAD elements 

4.6.1 Scenario-based architecture analysis method 

Kazman introduced the software Architecture Analysis Method (SAAM) in 1993 

(Kazman et al., 1994). The goals of SAAM were mainly geared to evaluating software 

architecture against desired quality attributes. SAAM was developed for modifiability 

and used for various quality attributes. 

The most appropriate time to apply SAAM is after the requirement phase and before the 

implementation phase. Designers, developers, software architecture descriptors, and 

quality requirements are the main inputs when using this method. The outputs of the 

method include mapping between scenarios and software architecture components, and 

the anticipated amount of effort associated with each changing scenario.  

SAAM involves different users, such as the architect, developer, maintainer and 

product manager. SAAM provides a number of techniques to perform various activities 

associated with this process, such as classifying quality attributes, eliciting scenarios, 

and scenarios. 

SAAM follows six steps: scenario development, architecture description, scenario 

classification and prioritisation, individual scenario evaluation, scenario interaction, and 

overall evaluation. In situations involving comparing multiple software architectures, 

scenarios are assigned a weighting to determine the overall rank of different software 

architectures. SAAM evaluates each scenario by mapping it onto a software 

architecture description and investigating whether the software architecture supports it 
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(direct scenario) or not (indirect scenario). The cost of accommodating each indirect 

scenario is estimated by counting the number of changes required. Scenario interaction 

analysis reveals whether the inclusion of multiple indirect scenarios affects the same 

components, and is a sign of poor separation of concern. SAAM is a mature approach, 

which has been validated using different case studies, such as user interface 

development environments, key word in context (KWIC) systems and embedded audio 

systems (Kazman et al., 1994).  

4.6.2 Architecture level modifiability analysis 

A unified architecture-level analysis method, which focused on modifiability was 

introduced in 2003 (Bengtsson et al., 2004). Architecture level modifiability analysis 

(ALMA) has been developed around a conceptual framework that is known as goal-

oriented evaluation. Goal setting is the most important activity associated with this 

method, as the remainder of activities are performed in the light of the evaluation goals. 

The specific goal of this method is to address modifiability related issues at the 

software architecture level, such as the maintenance of cost prediction, risk assessment 

or software architecture selection.  

The main benefits of using ALMA are identification of software architecture risks, and 

an estimation of the efforts required to accommodate change, or the selection of an 

optimal SA. Inputs include software architecture specifications and quality 

requirements. ALMA has successfully been applied in telecommunications, information 

systems, embedded systems and medical domains. ALMA usually involves only a 

small set of users, namely the development team and software architect. Five main 

activities of ALMA include: setting a goal, describing software architecture, eliciting 

scenarios, evaluating scenarios and interpreting results. ALMA uses impact analysis to 
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evaluate software architecture against change scenarios. Impact analysis is performed 

by identifying the components affected by these scenarios, deducting what 

modifications are required, and determining ripple effects. ALMA provides a 

framework with which to describe results quantitatively. ALMA has been applied 

across several industrial cases including software architectures at Ericsson Software 

Technology, the Dutch Department of Defence and the Dutch Tax and Customs 

Administration (Bengtsson et al., 2004).  

4.6.3 Performance assessment of software architecture 

Williams and Smith (1998) presented a scenario-based method with which to assess the 

performance of software architecture; known as Performance Assessment of Software 

Architecture (PASA). The aim of this method is to help developers select a suitable 

architecture. PASA includes performance sensitive software architecture styles and 

anti-patterns, as analysis tools, formalising the software architecture analysis activity 

and the performance engineering process.  

The specific goal of PASA is to assess the capability of software architectures with 

respect to the performance and quality objectives of a system. PASA guides the 

software architecture analysis activity, using performance related scenarios as a source 

of reasoning, workload specifications, software plans, execution environment, resource 

requirements and processing overheads. PASA can be applied early in the development 

cycle, post-deployment, or during an upgrade of a legacy system. Typically, only a 

development team is involved. PASA has ten steps including the process overview, 

architecture overview, identification of critical use cases, selection of key performance 

scenarios, identification of performance objectives, architecture clarification and 
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discussion, architectural analysis, identification of alternatives, presentation of results 

and economic analysis (Williams and Smith, 2002).  

This method incorporates both qualitative and quantitative techniques, to illustrate the 

potential risks that may be inherent in software architecture. This method also 

demonstrates how scenarios can be useful when characterising run-time quality 

attributes such as performance. PASA itself or techniques related to it have been 

validated in different case studies. The method has been applied to embedded systems, 

real-time systems (Moreno et al., 2008), and within the financial domain. 

4.6.4 Architecture trade-off analysis method 

The Architecture Trade-off Analysis Method (ATAM) was initially positioned as a 

software architecture design method to support design trade-offs. Later, it was 

presented as a model for software architecture analysis (Babar and Gorton, 2004). 

The specific goal of ATAM is to promote a disciplined reasoning mode, for analysing 

software architecture’s capability with respect to multiple quality attributes. It also 

helps make trade-offs between competing attributes. ATAM will be applicable to any 

stage of the software development, however, it is most effective when applied at an 

early stage of the software development lifecycle. The inputs for ATAM include 

business goals, software specifications, and software architecture description. The 

outputs of ATAM are a list of scenarios, defining any risks, sensitivity points and trade-

off points (Kazman et al., 1999).  

The application domains include combat systems, web-based systems and embedded 

systems. ATAM claims to provide several technical as well as social benefits. ATAM 

also involves various users or stakeholders, including an evaluation team, customer 

representatives and an architecture team (Kazman et al., 2000).  
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ATAM is a heavy weight process comprising four phases: presentation, investigation 

and analysis, testing and reporting. There are nine activities in these phases: present the 

ATAM, present business drivers, present architecture, identify architectural approaches, 

generate a quality attribute utility tree, analyse architectural approaches, brainstorm and 

prioritise scenarios, analyse architectural approaches and present results (Kazman et al., 

2000).  

ATAM does not prescribe any specific evaluative techniques. Rather, it uses various 

theoretical models to identify the quality attribute communities for quantitative analysis 

and to apply qualitative reasoning heuristics that are documented according to attribute-

based architectural styles, architectural patterns, tactics and quality sensitive scenarios. 

ATAM is considered to be a mature approach, that has been validated in different 

domains such as Battlefield Control Systems (BCS) and AGV transportation systems 

(Boucké et al., 2006).  

4.6.5 Goal-based requirement analysis method 

In 1996, Anton developed a goal-base method, entitled the Goal-based requirement 

analysis method (GBRAM) (Anton, 1996). The main aims of this method were to 

identify, elaborate, refine and organise goals according to requirement specifications. 

Obviously, this method can be applied at the requirement phase of the development 

lifecycle. The users involved in this analysis are practitioners and software architects.  

There are two process elements that they focused on predominantly, goal analysis and 

goal evolution. Goal analysis concerns exploration of documentation as according to 

the organisation and classification of goals, whereas goal evolution concerns the way 

goals change from the moment they are first identified to the moment they are 

operationalised in a system specification.  
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This method has been used in a Career Track Training System (CTTS), which was part 

of the business re-engineering project for an Air Force Base (AFB).  

4.6.6 Bate’s software architecture evaluation method 

Bate (2008) introduced a systematic approach to evaluate a design trade-off based on 

the goal structuring notation (GSN). The goals of Bate’s method were mainly to present 

a technique to understand the software architecture trade-off, so that the cost of design 

changes could be estimated.  

This method can be applied in the software requirement phase and design phase. The 

method used for deriving the trade-off analysis problem is based on a goal structuring 

notation (GSN). Designers, developers, software architecture description and quality 

requirements are the main inputs for this method. The outputs of the method include 

mapping scenarios and software architecture components, and the anticipated amount 

of effort associated with each change scenario.  

Bate’s method involves different users, including the software architect, designers, 

developer, and maintainer. The process starts be employing GSN to decompose the top-

level objectives of the system in a hierarchical tree-like fashion. The decomposition is 

continued until the objectives reach a suitably low-level; they are then employed to 

measure how well specific individual objectives are met. The detailed process 

informing the method is presented in Figure 4.1. There are four main activities included 

here, presenting the current design, producing an argument for the key objectives, 

extracting information from the argument (i.e. design choices and assessment criteria) 

and decomposing the design. The assessment criteria can then be converted to a 

quantifiable measure, and appropriate weighting applied.  
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Bate’s method is not considered to be a mature method, since it has not been applied to 

a real application. The introductory paper only demonstrated a case study outlining the 

task allocation problem (Bate, 2008).  

4.7 Conclusion 

This thesis introduces a method that can be used to evaluate the impact of software 

architecture on the cost of design, implementation and testing. Before an evaluation can 

be made, it is necessary to identify the costs that are representative for the software 

architecture. Once cost is identified, assessment can be done using experimental 

approaches based on dynamic testing, scenario-based testing and basic analysis testing. 

This method can also present an unambiguous comparison of a variety of software 

architectures and scheduling strategies, for use with real-time systems. The 

experimental work in the research conducted was undertaken to perform evaluation as 

an integrated entity, based on which a novel evaluation model of real-time software 

architecture can be proposed. From Chapter 5 onwards, the detailed costs of design, 

implementation and testing in ET and TT architecture are examined. 
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Chapter 5  

Assessment of Implementation Cost 

5.1 Introduction 

An extensive literature review, covering the most important aspects related to the first 

hypothesis tested in this research, has been presented in Chapter 3. The drawbacks of 

pre-emptive scheduling have been discussed in light of the reviewed literature. In this 

chapter, the implementation costs for both co-operative and pre-emptive schedulers will 

be evaluated. The results of this assessment, will then be related to the costs of 

scheduler implementation, such as overheads, CPU utilisation, memory utilisation and 

lines of code in reference to the first hypothesis. 

5.2 Problem statement 

The performance of pre-emptive versus co-operative based schedulers is assessed, in 

the light of implementation costs, for which the costs need to be defined, measurable 

parameters, and a suitable method to measure the parameters determined. This is 

followed by a discussion on the comparative analysis involved. 

In doing so, the scheduler needs to be evaluated in line with the following hypothesis: 

Use of limited pre-emptive scheduling in a design results in lower testing costs than the 

use of fully pre-emptive scheduling and co-operative scheduling in the implementation 

phase. 

5.3 Problem description 

In order to assess the problem outlined in section 5.2, software implementation of the 

schedulers, suitable tool!sets to evaluate their performance, and the necessary 

measurement equipment are required, as shown in Figure 5.1. 
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Figure 5.1 Evaluation of implementation cost, using hardware and software based performance 

measures 

In this instance, TT architecture becomes the focal element for this study. To evaluate 

the implementation cost of co-operative, limited pre-emptive and fully pre-emptive 

scheduling, it has been feasible to consider TTC, TTH and TTP, as the schedulers for 

this assessment. The schedulers will be stored in the ARM7 core board. Some examples 

of tasks are presented in order to conduct this experiment. To measure the 

implementation cost, tools such as RapidiTTy (RapidiTTy, 2010), Labview (National, 

2010) and CodeCounter (Code, 2006) are required to measure CPU and memory 

utilisation, lines of code, worst case execution time (WCET) and idle time. Complete 

descriptions of these tools are provided in Appendix A. 

The available software tool RapidiTTy (RapidiTTy, 2010), which is based on TT 

technology, allows developers to create, test, and maintain reliable and resource 

efficient embedded systems, as well as to perform timing analysis, does not provide any 

measurement for idle-time. Thus, suitable hardware for the purpose of measurement 
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5.4 Adopted methodology 

5.4.1 TTC, TTH and TTP schedulers implementation 

Schedulers handle the interrupts in Time Triggered Co-operative (TTC), Time 

Triggered Hybrid (TTH) and Time Triggered Pre-emptive (TTP) architectures. Codes 

for handling priority allocation are not required in TTC. However, they are required for 

TTP in order to obtain a decision; whereas, TTH runs several tasks in a co-operative 

manner, but also allows one pre-emptive task allocation. It is important to understand 

how each real-time scheduler is programmed and executed within the processor system. 

Most real-time kernel operations are based on subroutines that use parameter-passing 

techniques, known as context switching. These can be useful for handling external 

aperiodic or sporadic events, and to provide accurate timing for system operations. The 

schedulers, along with their associated overheads are depicted in Figure 5.2. 

TTC architecture provides the simplest way to handle multi-tasking, as shown in Figure 

5.2(a). The architecture does not allow pre-emption. When the processor receives a tick 

interrupt signal (which is triggered by the overflow of a hardware timer), it saves 

essential registers to the stack, obtains information identifying the interrupt type, and 

then branches out to the interrupt service routine (ISR). This process causes latency 

when handling interrupts, varying in a range between 1-100 microseconds (Cooling, 

2003). The ISR will execute the scheduler Update( ) function, to update the tick 

count, and determine which tasks are due to run and sets the corresponding flags. After 

this, the Dispatch( ) function will prompt all the tasks in the task array to execute. 
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Figure 5.2  TTC, TTH and TTP scheduling operations with associated overheads 

Such arrangements produce an overhead to the scheduler and this can be increased 

based on the number of tasks that are to be implemented in a given tick interval. When 

the ISR or scheduler functions remain inactive, the system is usually placed in a low-

power sleep or idle mode. Once it enters the idle mode, the system only wakes up upon 

the occurrence of the next tick interrupt.  

TTH and TTC are very similar in approach, except for at the start of the scheduler, as 

shown in Figure 5.2(b). Unlike TTC, TTH supports single task pre-emption activity in 

its implementation. Note that the scheduler only supports a sporadic type of task, that 

once pre-empted, will run periodically. Assume that a currently executing long co-

(a) TTC   (b)  TTH   (c) TTP 
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operative task reaches the tick interrupt (see Figure 5.2(b)). The tick is updated on an 

interrupt from the real-time clock. This results in the current task being replaced by the 

tick handler. All current contexts must be saved before this handler is loaded up and 

implemented, which, as a result, incurs extra overheads. After the tick interrupt occurs 

and all the starting scheduler operations take place, the TTH scheduler directly checks 

for the existence of a pre-emptive task and executes it to completion (if the pre-emptive 

task exists). If it does not exist, the scheduler will execute the other tasks co-

operatively. The checking process is programmed in the update() function in the 

TTH scheduler, thus causing extra overhead.  

Many real-time applications require more flexibility and responsiveness than can be 

provided by TTC and TTH schedulers. TTP schedulers are fixed priority pre-emptive 

schedulers in which all the task priorities are assigned to tasks statically offline. It also 

supports mutexes that implement priority ceiling protocols (Sha et al., 1990, Sha et al., 

1991), which can be used when various tasks seek to use the common resources 

simultaneously. When all task priorities are the same, the TTP scheduler will behave 

similarly to the TTC scheduler. The tick is updated on an interrupt handler, and then a 

scheduler update() function is used to assign the processor to the task with the 

highest priority. Any lower-priority task running at this time will be pre-empted and 

placed back in the queue. This process is then repeated until the lowest priority task 

completes its execution. Complete TTP operations are described in Figure 5.2(c). 

Obviously, depending on which context-restore action is taken, extra time is needed to 

prioritise tasks.  

The main element used for constructing a context switch in TTP is a ‘task control 

block’ (TCB). It holds the task state information or context, such as registers, program 

status register (PSR), link register (LR) and program counter (PC) when the task is pre-
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empted. When the task regains control of the processor, the TCB allows the task to 

resume execution exactly where it was left. The structure of the TCB is shown in 

Listing 5.1, and all the TCBs contain dynamic information. Thus, they have to be 

located in RAM.  

/ Task Control Block structure 
typedef struct { 
 uint32_t PSR; 
 uint32_t R0; 
 uint32_t R1; 
 uint32_t R2; 
 uint32_t R3; 
 uint32_t R4; 
 uint32_t R5; 
   uint32_t R6; 
   uint32_t R7; 
  uint32_t R8; 
  uint32_t R9; 
  uint32_t R10; 
  uint32_t R11; 
  uint32_t R12; 
  uint32_t LR; 
  uint32_t PC; 
} tcb_t; 
 

Listing 5.1  Task control block in TTP architecture 

Before a higher-priority task can be executed, all the current contexts of the lower-

priority task must be saved on the stack, and the context information for the higher-

priority task must be loaded and executed. All the task control information is stored in a 

TCB when the task is not running on the processor. When the execution of higher-

priority task completes, the content of the TCB for the lower-priority task is loaded 

back into the processor. In addition, due to the change in the PC, code execution 

resumes from the point at which the PC is pointing. The context switch code is written 

in assembly language because most C compilers cannot manipulate processor registers 

directly from C (Labrose, 2006). The process is illustrated in Figure 5.3. 
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Figure 5.3  Context switch operation (Labrosse, 2006) 

5.4.2 Implementation costs definition 

An implementation cost is defined as the time it takes for the scheduler to run a 

particular number of tasks, and according to the ease of implementing a scheduler. In 

order to deduce the cost, the parameters, i.e. overheads, LOC, memory and CPU 

utilisation of the TTC, TTH and TTC schedulers, need to be measured. Any of the 

parameters showing high values indicate that the scheduler consumes more cost or 

effort. The parameters are measured against increments in the number of tasks from 1 

to 100 tasks. According to previous experimental work, this number of tasks is 

sufficient for observing and analysing the impact on system behaviour (Short, 2010). 

5.4.3 Overhead measurements 

There are three important parameters required to measure scheduler overhead: 
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• Worst case execution time of tasks (WCET [i]): obtained by setting a pin high at the 

beginning of the task and low at the end of the task. The widths are measured using 

a data acquisition NI card with LabVIEW software (as shown in Appendix E). In 

each study, 10000 consecutive pulse widths are measured and recorded. This is 

found to be sufficient for the purpose of this study.  

• Total worst case execution time of tasks: obtained by combining the worst-case 

execution times for all tasks. 

• Idle time: obtained by making direct measurements from the hardware. A pin was 

set to high at the beginning of the interrupt service routine (ISR) of the tick interrupt 

and to low before the scheduler enters ‘idle mode’. The measurement of the widths 

used a similar technique to (i).  

 

Figure 5.4  Overhead measurement for time-triggered co-operative scheduler 

In order to reduce operating power when a system is not using ISR or scheduler 

functions, the scheduler is usually placed in a low-power sleep mode (Pont, 2001). 

Most processors have an idle mode so that battery life can be increased. Once in the 

idle mode, the system will only wake up when the next tick interrupt takes place. The 

overhead value for TTC is straightforward to determine, since all the tasks run co-

operatively and must complete execution within a tick interval. The formula is given as 

follows: 

 !Overhead! = !Tick_interval!– !(Idle_time!+ ! WCET! i !!
!!! ) (5-1) 



124 

As shown in Figure 5.4 the overhead can be measured as:  

 

!"#$ℎ!"#! = ! (1!– !(!"#$_!"#$!

+ !(!"#$!!"!!"#$!!!!"#!!"#$!!"!!"#$!!)))!!" 
(5-2) 

Figure 5.5 depicts overheads in time-triggered pre-emptive scheduling. In this 

scheduling scheme, high priority tasks are allowed to pre-empt the current run task, 

which has lower priority. For example, the figure shows the situation in which a short 

periodic pre-emptive task interrupts a long periodic task.  

Equation (5-1) can be used as a basic formula to calculate the overhead of pre-emptive 

scheduling. The scheduling scheme allows pre-emption over low priority tasks and also 

supports long execution time tasks, which may exceed the tick interval; therefore this 

calls for some modifications to be applied.  

 

Figure 5.5  Scheduling and context switch overheads in time-triggered pre-emptive systems 

As a long task execution time could exceed the tick interval, or be pre-empted by a high 

priority task, the overhead calculation needs to consider the duration of a tick interval in 

which all the tasks completely finish their execution. Hence, the overhead of the pre-

emptive scheduler is measured as in Equation (5-3):  



125 

Overhead = Duration!of!tick!interval!to!complete!execution!of!all!tasks− 

(!"#!!"#$ + !"#$! ! )!
!

!!!
 

(5-3) 

Note that in many designs, a pre-emptive task will be used for periodic data acquisition, 

typically through an analogue-to-digital converter or similar device. The task may 

execute every tick interval. Therefore, all such task execution time need to be taken into 

account when measuring the real-time overhead of TTH and TTP scheduling.  

Overhead! = !Duration!of!tick!interval!to!complete!execution!of!all!tasks!– 

(!"#$_!"#!! !"#$! ! !+ !WCET!of!other!tasks!in!the!duration)!!!!
!

!!!
 

(5-4) 

An example will be given in the analysis results section.  

5.4.4 Measuring CPU and memory utilisation using the simulation tool 

Processor and memory utilisation are taken from the RapidiTTy simulation tools 

(Rapiditty, 2010). Visualisations of CPU and memory requirements are shown in 

Figure 5.6 and Figure 5.7. 

 

Figure 5.6  Sample of visualisation of memory utilisation 
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Figure 5.7  Sample of CPU Utilisation for 5 tasks 

5.4.5 Scalability analysis 

The idea of this study is to identify the suitable number of tasks required for analysis in 

order to investigate the effect on the performance in pre-emptive and co-operative 

schedulers. A few research papers and journals, related to performance measurement 

for uniprocessor systems, have been reviewed in order to determine a reasonable 

number of tasks for this analysis (Liu and Layland, 1973, Locke et al., 1991, Audsley et 

al., 1993, Arakawa et al., 1993, Katcher, 1993, Buttazzo, 2005, Burns and Wellings, 

1995, Bini, 2003, Xu and Parnas, 2000, Devi, 2003, Gendy, 2008, Short, 2010).  

On average, most studies focused on analysis for systems with 20 tasks or fewer. For 

example, Locke et al. (1991), Audsley et al. (1993), Arakawa et al. (1993), Katcher 

(1993) and Burns and Wellings (1995) applied their analyses to a small avionics case 

study which consisted of 18 tasks. In addition, from the analysis made by Bini (2003), 

Xu and Parnas (2000) and Katcher (1993), the performance of schedulability analysis 

can be evaluated using only 20 tasks. For example, with an analysis of 20 limiting 



127 

tasks, Katcher claimed that TT with a co-operative scheduler outperforms ET with  pre-

emptive scheduler. 

The higher numbers of tasks that have been studied in previous research range from 80 

tasks (Katcher et al., 1993) up to 1000 tasks (Devi, 2003). These studies aimed to 

compare the performance of a small and a large system in a uniprocessor. However, in 

Gendy’s (2008) analysis, 50 tasks were used to represent a large system. In a more 

recent study, Short (2012) used from 4 up to 256 tasks for a performance analysis 

(Short, 2012). Devi classified the pseudo-polynomial-time test into two groups of tasks 

in order to analyse their accuracy and efficiency in the determination of schedulability. 

The first group was equipped with a thousand tasks per task set, while the other groups 

were allocated a hundred tasks per task set.  

Based on the previous work (Katcher, 1993, Devi, 2003), the performance of a 

scheduler can be sufficiently observed when a system has hundreds of tasks. For 

example, Katcher’s analysis has shown that the breakdown utilisation decreases 

exponentially as the number of tasks grows (Katcher, 1993). Therefore, a comparison 

of scheduler implementation for time-triggered co-operative and pre-emptive 

scheduling algorithms was made by generating a number of tasks in a task set which 

varied between two and a hundred.  

5.4.6 Measuring LOC using the Code Counter Software Tool 

LOC is calculated by measuring all the lines containing program headers, declarations, 

and executable and non-executable statements. Comments and blank lines are excluded 

from the calculation (Conte, 1986). Table 5.1 shows an example of LOC measurement. 
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Table 5.1  LOC measurement 

Source'code'line' LOC' Comment' Blank'
!//! Change! the! LED_pin! from!OFF! to! ON! (or! vice!
versa)!

!
*!

!if!(LED_state!==!1)! *!
! !{! *!
! !

! ! !
*!

!!!LED_state!=!0;! *!
! !!!!PORT_Pin_Write(LED_pin1,!1);!//!Set!to!off! *! *!

!}! *!
! ! 

In this example, the total LOC is 5, the number of comments is 2 and the number of 

blanks is 1. All the scheduler’s program has been developed using the C programming 

language. Thus, the implementation files (*.h* to *.c*) in the scheduler, system and 

task folders have also been measured.  

The LOC of the scheduler implementation has been counted using Code Counter 

Software Tools. The sample results of the code counter are shown in Figure 5.8. 
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Figure 5.8  Code Counter (Code, 2011) 

5.5 Experimental setup 

5.5.1 Hardware platform 

It is assumed in this project that the target platform for the embedded systems is a small 

microcontroller, which will be programmed using C language. In particular, the 

empirical studies reported in this thesis for the single-processor systems have been 

conducted using an LPC-2378STK development board supporting an NXP LPC2378 

(NXP, 2011) processor from Olimex (Olimex, 2009). The LPC2378 is a modern 32-bit 

microcontroller with an ARM7 core. The processor was used as an oscillator with a 

frequency of 12 MHz, and a CPU with a frequency of 60 MHz. The oscilloscope has 
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been deployed to visualise the I/O pin voltage, which was required during overhead 

measurement. Figure 5.9 shows the hardware used in this experiment.  

 

Figure 5.9  Measurement using a hardware based setup  

The GNU C compiler for ARM7 operating in Windows has been used. Meanwhile, the 

TTE Systems’ RapidiTTy (v2.0) has been used as the IDE and simulator. This tool 

provides a graphical presentation of timing analysis, hence enabling designers to 

visualise the behaviour of the tasks running on the TTC, TTH and TTP schedulers. 

Figure 5.10 shows a sample of timing analysis in the RapidiTTy tool (RapidiTTy, 

2010). 
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Figure 5.10  RapidiTTy timing analysis (RapidiTTy, 2010) 

5.5.2 Timing analysis tools 

Although the RapidiTTy v2.0 IDE tool supports the timing analysis for TT schedulers, 

by acquiring detailed information about timing behaviour for each individual task using 

logging techniques, the results produced can be affected by the overhead of logging 

timing data mechanisms. In fact, some timing data cannot be acquired due to hardware 

limitations. For example, the JTAG debugging connection, which is used to acquire 

timing data, is established when the scheduler is in active mode. Hence, if the scheduler 

enters idle mode, the connection will be lost. However, the tool provides graphical 

representations of timing statistics for each task so that designers can visualise the 

timing behaviour of the tasks easily. 

Note that the calculations of overhead require the measurement of idle time. Obviously, 

the timing analysis of this tool is unable to provide such timing information. Therefore, 
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in order to address these issues, the timing data measured using a National Instruments 

data acquisition card ‘NI PCI-6035E’ has been used in conjunction with LabVIEW 

2009 software (as shown in Figure 5.11and Figure 5.12). An oscilloscope has been used 

to visualise the data.  

 

Figure 5.11  Front panel for measuring Pulse Width-Buffered-Finite (National, 2010) 
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Figure 5.12  Block diagram for measuring Pulse Width-Buffered-Finite (National, 2010) 

5.5.3 Generation of task set 

In order to explore the effect of real-time overhead in TTC, TTH and TTP scheduling, 

firstly a small number of tasks has been generated to run in each scheduler. Table 5.2 

shows the sample of task specifications for one task to be tested in TTC, TTH and TTP 

scheduling. The reason for starting the test with one task is to observe the minimal 

differences in WCET for each task when running in different scheduling algorithms. It 

has been assumed that the delay of all tasks is 0 and that all the tasks which start their 

execution in a given tick interval will complete their execution before the next tick 

occurs. Such a restriction is not an essential requirement in the TTH and TTP designs as 

the schedulers have the ability to handle “long tasks”.  
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Table 5.2  Task specifications for 1 task 

Software 
architecture 

Task 
number 

Period 
(Tick) 

WCET 
(us) 

TTC 1 1 814.5 
TTH 1 1 814.5 
TTP 1 1 814.5 

 

Table 5.3 presents a task set consisting of 5 tasks. In the TTC design, the WCET of 

tasks has been designed to have duration less than the tick interval. On the other hand, 

the tasks in the TTH and TTP schedulers have been designed to have longer WCET 

than the tick interval. Furthermore, the priorities of the tasks need to be defined in the 

TTP scheduling. Task 1 had the highest priority, followed by Task 2, Task 3, Task 4 

and Task 5. In the TTH scheduler, only one short task is allowed to pre-empt a task. 

The other tasks run co-operatively and have equal priorities lower than that of the pre-

empting task. Thus, Task 1 has been set to pre-empt the task specifications while the 

other tasks have been set to co-operate. Note that Task 2 has the longest WCET and 

was pre-empted by Task 1 at runtime.  

Table 5.3  Task specifications for 5 tasks 

Software 
architecture 

Task 
number 

Priority 
(5 = High) 

Period 
(Tick) 

WCET (us) 

TTC task 1  1 543 
 task 2  1 543 
 task 3  1 271.5 
 task 4  1 814.5 
 task 5  1 814.5 

TTH task 1 Pre-emptive 1 271.5 
 task 2 Co-operative 1 1900.5 
 task 3 Co-operative 1 1900.5 
 task 4 Co-operative 1 1900.5 
 task 5 Co-operative 2 4072.5 

TTP task 1 5 1 271.5 
 task 2 4 1 1900.5 
 task 3 3 1 1900.5 
 task 4 2 1 1900.5 
 task 5 1 2 4072.5 
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All the tasks have been created as dummy tasks. The WCETs of tasks have been 

defined as constants by using a “software delay” technique, in order to control the 

execution of each task. For example, to implement a task function, the code in Listing 

5.2 was entered in the function. 

 

Listing 5.2  Sample of the task_N function 

The duration of Task N was adjusted using the “counter” value. The software delay 

contains a for-loop structure implemented particularly to generate T microseconds delay 

(approximately) based on the value of the counter. The relationship between the counter 

value and the WCET is shown in Figure 5.13. As the counter value increases, the 

execution time of the task increases. For example, when the counter is set to 1000, the 

execution time is equal to 271.5 microseconds. The execution time has been measured 

using the NI card and Labview 2009. 

The test has been conducted to observe the effect on real-time overhead in co-operative 

and pre-emptive scheduling as the number of tasks increases. As the WCET of each 

task is known, as well as its idle time and tick interval, the overhead value can be 

calculated as in Equation (5-1) for TTC and Equation (5-2) for TTH and TTP. The 

scenarios and measurements were repeated until the number of tasks had been varied 

from 2 to 100. The execution times of the tasks were in the range from 0.2715 

microseconds (counter = 1) to 27150 microseconds (counter = 100000). The tick 

interval was set between 1000 and 10000 microseconds. 

void Task_N(void) 

{ const uint32_t counter = M; 

    for (x = 0; x <= counter; x++) 

       { 

        } 

} 
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Figure 5.13  Counter value and execution time 

Although the results can be expected, the execution time for different counter values 

was measured using Labview tools to confirm the WCET of the loop function. The 

results are plotted in a graph as shown in Figure 5.13. 

5.6 Results for cost of implementation 

This section presents the results of costs for the TTC, TTH and TTP scheduling 

implementations and the effect on overhead, LOC, memory utilisation, CPU utilisation 

and number of pre-emptions, evaluated as the number of tasks increases. Over 100 

random task sets were generated to test a small number of tasks, and 1000 random task 

sets were generated for a large number of tasks. The total processor utilisation of each 

task set has been selected to be between 20% and 80%. Systems that are too highly 

utilised are undesirable because changes or additions cannot be made in the system 

without risk of time-overloading. In each study, 10000 consecutive pulse widths were 

measured to give average results.  
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5.6.1 Impact on small and large systems 

The first purpose of the evaluation is to observe the impact, as the number of tasks 

increases, when TTC, TTH and TTP scheduling are used in a system. One pre-emptive 

task is included in the TTH and TTP evaluation so that the impact can be observed 

comparatively. 

5.6.1.1 Small number of tasks 

Table 5.4 and Table 5.5 show the percentage overhead for systems with 1 task and 5 

tasks. 

Table 5.4  Overhead for 1 task 

Software 
architecture 

WCET 
(us) 

Tick 
Interval 

(us) 

Idle time 
(us) 

WCET and 
Overhead 

(us) 

Overhead 
(us) 

Overhead 
% 

TTC 814.5 10000 9150 ± 2 850 ± 2 35.5 ± 2 0.36% 

TTH 814.5 10000 8900 ± 2 1100 ± 2 285.5 ± 2 2.86% 

TTP 814.5 10000 8906 ± 2 1094 ± 2 279.50± 2 2.80% 

 

The overhead values presented in the table show that with the TTC implementation, the 

size of the overhead is low. However, the processor suffers more overhead when TTH 

and TTP are employed. The high overhead is mainly caused by the scheduling overhead 

of the interrupt invocation and the interrupt handler when adding a new task into the 

ready queue. The difference between the TTH and TTP overhead percentages is also 

very small, about 0.06%. To obtain more unambiguous effects on overhead for co-

operative and pre-emptive scheduling algorithms, the system was tested with five tasks. 

In the TTC scheduling, the total WCET of the tasks has been designed to be less than 

the tick interval to avoid task overrun. However, for the pre-emptive scheduling, a long 

task has been created (which exceeds the tick interval) particularly to perform pre-
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emption activities in the scheduling. The timing behaviour of the five tasks running in 

the pre-emptive scheduling is schematically illustrated in Figure 5.14.  

 

Figure 5.14  Task timing behaviour in the TTH scheduler and the TTP scheduler with same 

priorities 

As can be seen, Task 5 has been pre-empted by Task 1 while it runs. Although, the 

TTH scheduler is not a fully priority-based scheduler, all the tasks (except Task 1) run 

co-operatively using earliest active first (EAF) scheduling strategies (Pont, 2001, 

Short,2012). Similarly, the results of the TTP scheduler can be illustrated as in Figure 

5.14 if the priority of Task 1 has been set to the highest priority, while the others have 

equal priority. Note that if the other tasks have different priority, but the priority of 

Task 1 remains the highest and the WCETs of the tasks unchanged, the overhead on the 

system remains similar (as shown in Table 5.5). This is because the number of context 

switches of the tasks remains the same for both scenarios. 

 

Figure 5.15  Task timing behaviour in TTP with different priorities 
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The average overhead results (in percentages) for the 5 tasks running in the TTC, TTH 

and TTP schedulers are presented in Table 5.5. This diagram is generated by the 

Rapiditty tool.  

Table 5.5  Overhead for 5 tasks 

Software 
architecture 

Total 
WCET 

(us) 

Tick 
Duration 

(us) 

Idle 
time(us) 

WCET and 
Overhead 

(us) 

Overhead 
(us) 

Overhead 
% 

TTC 2986.5 10000 6519 ± 2 3481 ± 2 494.5 ± 2 4.95% 

TTH 16018.5 20000 1880 ± 2 18120 ± 2 2101.5 ± 2 10.5% 

TTP 16018.5 20000 1322 ± 2 18678 ± 2 2659.5 ± 2 13.3% 

 

The CPU overhead results show that the TTC and TTH schedulers have lower 

overheads in comparison to the TTP scheduler.  

Note that only one pre-emption occurred in TTH and TTP testing, when the Task 1 

interrupt occurred while Task 5 is running. To measure the overheads for TTH and 

TTP, the duration of the tick interval required to complete all the task execution and all 

other tasks’ WCETs during the tick interval need to be considered. For example, in the 

TTH scheduler, the overhead for 5 tasks can be calculated as follows, using data from 

specifications in Table 5.3 and its idle time (in Table 5.5): 

Overhead = 20000 – (1880+10045.5+ (271.5+1900.5+1900.5+1900.5)) microseconds 

From the above calculation, the overhead of the tasks has been determined to be 2101.5 

microseconds. This gives an overhead percentage of 10.5%.  
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5.6.1.2 Large number of tasks 

As shown in Figure 5.16, there appears to be larger context switch overhead for a 

system with 20 tasks operating under the TTP scheduler. Complete results of the 

experiments are shown in Appendix -D. 

 

Figure 5.16  Timing behaviour of 20 tasks in the TTP scheduling 

In 20000 microseconds tick duration, about 40 context switch processes occurred. 

A comparison of the overhead percentages for increasing numbers of tasks, for the TTC 

software architecture on one processor, is plotted in Figure 5.17. The same experiment 

is replicated for the TTH and TTP architectures. The aim of the comparison is to 

explore the impact of the number of scheduled tasks on the overhead behaviour of co-

operative scheduling (represented by the TTC scheduler) and pre-emptive scheduling 
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(represented by the TTP scheduler), as well as hybrid scheduling (represented by the 

TTH scheduling). This experiment is based on 1000 to 10000 randomly generated task 

sets which are schedulable. For each task set, the utilisation is between 20% and 80% 

and the maximum period is 20,000 microseconds.  

 

Figure 5.17  Overhead rate for TT software architecture 

By analysing the overhead values of a range of numbers of tasks, it is noticeable that in 

the case of the TTP architecture, the overhead level increases higher than that for the 

TTC and TTH architectures as further tasks have been scheduled to run in the system. 

In fact, it has shown an exponential growth for a large number of tasks. In addition, the 

graph shows that the percentage overhead for the TTP architecture is almost double that 

of the TTC architecture for every increment of the number of tasks shown. The 

distinction between the overhead percentages for TTP and TTH is small for a small 
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number of tasks (about 4%). As the number of tasks becomes larger, the difference in 

overhead can vary to 20%. 

5.6.2 LOC of TTC, TTH and TTP architecture 

All the source code for the individual software architectures is stored in the source 

folder (Figure 5.18). The source code of the architecture is held in the main.c file and 

the other three folders in the file project.  

• Scheduler : It contains C and header files of the scheduling algorithms 

• System : It contains the system’s startup file (*.strt*) and system and task 

initialisation 

• Tasks: All the task source codes are stored in the folders.  

The results of LOC for TTC, TTH and TTP scheduling are depicted in Figure 5.19. In 

this example, each software architecture consists one task to be executed.  

By comparing the implementation source code of the individual main file and source 

folders for the different software architectures, the results indicate that TTP had higher 

LOC compared to the other architectures by 35 percent (with TTC) and 38 percent 

(with TTH). It is worth noting that an assumption that all schedulers run only one task 

was made. The graph demonstrates that the variations of LOC can be clearly seen in the 

scheduler and system folders. However, LOC for TTH and TTC in the system folder is 

the same. The dissimilarity for both schedulers was exposed in the scheduler folder 

where the C and header files of the scheduler have been allocated.  
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Figure 5.18  Source code files in TT project 

 

Figure 5.19  Details of LOC for TT software architecture 
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The major concern of this assessment is to observe to what extent the software 

architecture implementation can be affected by LOC. The results also suggest that the 

TTP scheduling had a more complicated design and greater fault rates. 

5.6.3 Impact of number of tasks 

Each task contains a program that is responsible for a specific function for real-time 

applications. Therefore, LOC increases when the number of tasks rises. Using the 

similar project developed for the overhead assessment, a graph of LOC and number of 

tasks has been plotted in Figure 5.20. 

 

Figure 5.20  Impact of LOC by number of task 

By plotting the number of lines of code against the number of tasks, it can be seen that 

the LOC of TTC, TTH and TTC increased proportionally. Note that the experiment 

used samples of dummy tasks with similar data sets for the purpose of overhead 

measurement (see section 3.5.3). By observing the growth of the LOC in such 

architecture, it is transparent that the TTC architecture has 38 fewer lines of code than 
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the TTH architecture for all the range of numbers of tasks. Similar effects occur for the 

TTP architecture. It has been observed that the difference between the TTP and TTH 

architectures is about 299 lines. The lines of code increase when more tasks are added 

to the systems (Lindstro ̈m et al., 2008). For the same number of tasks which have the 

same LOC, the impact of the number of tasks cannot be seen clearly. However, the 

LOC varied when different software architectures were employed. 

5.6.4 Impact of memory utilisation 

Memory utilisation is an important aspect to be assessed when comparing the 

implementation costs of TTC, TTH and TTP. The code and data of the TTC, TTH and 

TTP programs are stored in Flash and RAM. Figure 5.21 depicts the impact on memory 

utilisation as the number of tasks grows. 

 

Figure 5.21  Memory utilisation when number of tasks increases 

The results show that only one pre-emption task has been included within the system so 

as to compare fairly the TTH and TTP schedulers. As can be seen, the increase in RAM 

usage is higher than that for Flash when the number of tasks increases for all the three 
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schedulers. However, the memory utilisation increases gradually in the TTC scheduler, 

TTH scheduler and TTP scheduler. For a small number of tasks, the difference in the 

memory requirements for the TTC scheduler and TTP scheduler is 0.9 percent. 

However, as the number of tasks rises to more than 20, the memory requirements for 

the TTH and TTP schedulers rise rapidly. The difference for 100 tasks between TTC 

scheduler and the TTP scheduler becomes 2.4%.  

5.6.5 Impact of processor utilisation 

Another important factor to be observed is the impact on processor utilisation as a 

system becomes bigger. Obviously, the processor utilisation is increased. However the 

main point of interest is to identify which schedulers require more CPU utilisation 

when the number of tasks grows. Figure 5.22 presents a comparative view of CPU 

utilisation for the TTC, TTH and TTP schedulers. 

In the TTC scheduler, CPU utilisation increases rapidly as the number of tasks grows. 

For example, for 50 tasks, the CPU utilisation becomes constant at the 75% level. On 

the other hand, the CPU utilisation increases higher for the TTP scheduler, and for 50 

tasks, the CPU utilisation is almost 85%. 

5.6.6 Impact of number of pre-emptions 

Finally, the impact of the number of pre-emptions is used to observe the cost of 

implementation. Every pre-emption can cause context switch activities, which produce 

system overheads. Figure 5.23 depicts the evaluation results for overheads when the 

number of pre-emptions increases. 
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Figure 5.22  CPU utilisation for TTC, TTH and TTP scheduling 

 

Figure 5.23  Impact of number of pre-emptions in TTP scheduler 

The observation of overheads is conducted by increasing the number of pre-emptions 

from 0 to 20. Visualisation of the timing analysis can be seen in Appendix A 2.2. In the 

absence of pre-emption, the overhead for 20 tasks amounts to only 19.84%. As the 
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number of pre-emptions goes higher, the overhead increases rapidly. For pre-emptive 

systems, when the number of tasks gets larger, the number of pre-emptions increases, 

which may lead to the increase in system overhead.  

5.6.7 Comparison of LOC with other RTOS 

In order to determine whether the TT software architecture has indeed reduced the size 

required in implementing real-time scheduling, the results have been compared with 

other commercial RTOS such as FreeRTOS and MIcroC/OS as shown in Table 5.6. 

Table 5.6  Comparison of LOC for TT scheduling with commercial RTOS 

TT scheduling/RTOS LOC 
TTC 469 

TTH 507 

TTP 811 

FreeRTOS 4500 

MicroC/OS 5500 

 

The results show that MicroC/OS and FreeRTOS require more than four thousand lines 

of code in their operating system (OS) implementation. By contrast, in the TT software 

architecture, less than a thousand of lines of code are used to implement the scheduling 

system operation. Figure 5.24 expands the results of LOC for varying numbers of tasks. 
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Figure 5.24  Impact of number of tasks on the LOC 

Despite presenting the results of LOC of software architecture and RTOS, the impact of 

memory utilisation is also examined. Figure 5.25 shows the effect on memory 

utilisation when the number of tasks increases. 

As can be seen in Figure 5.25, FreeRTOS requires more memory than TTP. The 

memory required by FreeRTOS is almost four times higher than that required by TTP 

scheduling even though both architectures provide similar attributes which can support 

pre-emptive scheduling.  



150 

 

Figure 5.25  Memory utilisation for TTP and FreeRTOS 

5.7 Discussion 

The real-time overhead does have a considerable impact on the schedulability of the 

task set. This overhead arises from the time spent in handling the tick interrupt, the time 

spent in updating and testing the delay of each task in turn (in order to check which task 

should run next), and the time spent in saving/resuming the state of pre-empted tasks in 

the TTH and TTP designs. The level of this overhead depends on various factors 

including the number of tasks in the system, the scheduler type and the speed of the 

hardware used to implement the system. 

The observed patterns are caused by the architecture of the system. In the TTC 

architecture, the update() function – invoked after the tick interrupt – determines which 

tasks are due to run and sets the corresponding flags. Then, the Dispatch() function will 
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execute the flagged tasks. A consequence of this process is the scheduler overhead 

which will vary depending on the number of tasks that are implemented in a given tick 

interval (Nahas, 2008). This means that when the number of tasks increases, the 

overheads also increase.  

The effect of overhead in the TTH architecture is rather higher than in the TTC 

architecture. Although TTH can be implemented in the same way as TTC, running the 

pre-emptive task has an impact on the overhead. The TTH implementation controls the 

pre-emptive task by checking for its existence in the Update() function – within the tick 

ISR – and if it exists, the task will be promptly executed. This is a simple way to allow 

a pre-emption activity to influence other co-operative tasks. However, in such an 

implementation, the overhead in TTH will be slightly higher than that for TTC. In 

general, the overhead percentage for TTH increases in parallel with that for TTC, but is 

somewhat higher.  

Under the TTP architecture, the scheduler always executes the highest priority task that 

is ready to run. Upon completion of an ISR, the scheduler resumes execution of the 

highest priority task ready to run. The process of saving the current task’s context and 

restoring the new task’s context induces overhead in the system. The overhead can 

become higher when the CPU has a higher number of registers to be saved and restored. 

In addition, based on observation, the amount of overhead depends on how often the 

context switch service is invoked. When the number of tasks is small, the overhead is 

minimal. However, the percentage of overhead gets bigger as the number of tasks 

increases. This is because the processor needs to manage more context switching during 

runtime.  

Liu (2000) stated that the overhead cost is high if a pre-emptive scheduling approach is 

employed by the operating systems. This is due to the fact that each pre-emption incurs 
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processing overheads. The processor must decide which task to run, and then swap 

processor states. 

Consequently, a major focus in the design of operating systems has been to avoid 

unnecessary context switching to the greatest possible extent. However, this has not 

been easy to accomplish in practice. In fact, although the cost of context switching has 

been declining when measured in terms of the absolute amount of processor time 

consumed, this appears to be due mainly to increases in processor clock speeds rather 

than to improvements in the efficiency of context switching itself (Liu, 2000).  

By using a co-operative architecture, the context switch overhead can be reduced. The 

context switch is needed after a task completes its execution, and the next task is ready 

to run. This operation typically occurs in multi-tasking systems. However, the context 

switch overhead becomes much more complex because the processor needs to perform 

a save and restore service during the swap operations.  

Upon further investigation, it becomes clear that co-operative scheduling has the 

simplest architecture in comparison to any versions of pre-emptive scheduling. One of 

the factors that promotes this result is the context switch implementation. In the TT 

implementation, the context switch is stored in the system folder. The results in Figure 

5.19 revealed that TTP had higher number of LOC compared with TTC and TTH. In 

addition, TTP design is a priority-based design while TTH and TTC do not employ any 

priority scheme in their design, except for one pre-emptive task in TTH. This priority-

based implementation involves comparing the priority of current running task with the 

pre-emptive task. This process must be included in the TTP scheduling implementation. 

Obviously, the total LOC of TTP is the highest amongst the three schedulers; this is 

also shown in the graph in Figure 5.19. There is a possibility that the LOC of the 
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scheduling implementation can be reduced so that the complexity and effort are 

minimised. 

As an embedded system has tight memory size and CPU utilisation, it is also necessary 

to analyse the cost of memory and processor utilisation for each software architecture, 

as well as the impact of number of pre-emptions. In this study, the impact of the 

number of tasks on all the above costs was examined. More memory is required by TTP 

in comparison to TTH and TTC. The TTP scheduler implementation itself needs more 

memory space than the others. In practice, the TTP scheduler should have higher 

memory utilisation than the TTH scheduler since it can support more than one pre-

emptive task. Thus, the context switch mechanism and activities during pre-emption 

will increase the memory utilisation. The impact of context switch overhead in the TTP 

scheduler is shown in the results of the impact of number of pre-emptions (section 

5.6.6).  

The impact of processor utilisation is also investigated. Clearly, TTP requires more 

CPU utilisation than TTC. Only one pre-emptive task for each of the TTH and TTP 

schedulers has been included in this study. The reason behind this is to observe the 

impact of TTH and TTP schedulers with similar task attributes. Although both 

schedulers run a single pre-emptive tasks for evaluation purposes, it shows that the TTP 

scheduler has higher CPU utilisation than the TTH scheduler. If more than one pre-

emptive task is included, the CPU utilisation will be increased due to context switch 

processing activities.  

In the previous evaluation, only a single pre-emptive task is considered in order to 

provide a reasonable comparison with the TTH scheduler in which can support a single 

pre-emptive task. In section 5.6.6, the analysis of costs examines the effects on 

overhead when the number of pre-emptions increases. In practice, more than one pre-
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emptive task will pre-empt other tasks if pre-emption is allowed, as in the TTP 

scheduler. The results clearly show that the overhead increases along with the number 

of pre-emptions. This may result in increased memory utilisation as well as processor 

utilisation. As mentioned in Chapter 4, the main drawback of pre-emptive scheduling is 

the context switch overhead when pre-emption occurs. The need to save and restore the 

current task activities – to allow the higher-priority task to run – may increase the cost 

of scheduling implementation.  

A scheduler can be presented as a small operating system that manages a set of tasks 

(Pont, 2001). In embedded applications, many developers employ a conventional RTOS 

to support event handling. The implementation of RTOS is very complex. For example, 

the MicroC operating system employs about 5500 lines of source code. Unlike 

conventional RTOS, simple schedulers like TTC and TTH use only 400 to 600 lines of 

code in their implementation. Finally, the assessment investigates a comparison of 

memory utilisation for the TTP scheduler and FreeRTOS architecture as the number of 

tasks increases. Only a single pre-emptive task was included for each evaluation of the 

number of tasks. The results imply that, even though both architectures provide similar 

characteristics such as supporting pre-emption activities and having context switch 

overhead, the TTP scheduler requires less memory than FreeRTOS, which gives many 

advantages, particularly when aiming for a cost-effective system.  

 

5.8 Conclusion 

The main focus within this chapter has been the assessment based on the first 

hypothesis which relates to the implementation cost of pre-emptive and co-operative 

scheduling. The study analysed the implementation costs for the time-triggered co-



155 

operative (TTC) scheduler (to represent co-operative scheduling), the time-triggered 

hybrid (TTH) scheduler (to represent combination of co-operative and pre-emptive 

scheduling) and the time-triggered pre-emptive (TTP) scheduler (to represent pre-

emptive scheduling). The context switch overhead for the TTP scheduler increases 

exponentially as the number of tasks grows. The increase is also higher in comparison 

to that for TTH and TTC. Besides the effect on overhead of the number of tasks, the 

extent to which the software architecture affects the code size, memory and processor 

utilisation, as well as the number of pre-emptions, has been explored. In addition, the 

behaviour of co-operative and pre-emptive scheduling algorithms has been compared in 

order to identify which of these techniques will help to reduce the cost and effort of 

embedded software implementation. In conclusion, the results have shown that the first 

hypothesis under test is valid. The TTC scheduler, when compared to the TTP 

scheduler, is applauded due to its simplicity of implementation that requires small code 

size and low cost. The discussion and results of the second assessment will be presented 

in the following chapter. 
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Chapter 6  

Evaluation of the Cost of Testing  

6.1 Introduction 

As discussed in Chapter 4, assessment to examine the impact of software architecture 

on the cost of testing real-time embedded systems is required. Therefore, this chapter 

provides a detailed cost analysis of testing. In addition, the main intention of this 

chapter is to explore the advantages of the system relative to high predictability, such as 

that present in TT system, thereby assisting the testing process for finding faults in real-

time software systems. With this motivation, a testing strategy to localise errors to find 

their main source was considered. Further investigation was also undertaken to explore 

the extent to which inter-task communication and synchronisation mechanisms, as 

undertaken in embedded systems, can be affected throughout the course of the testing 

phase.  

6.2 Problem statement 

The problem involves accurately evaluating the cost of testing complete systems. This 

requires a discussion of the cost of testing at different phases of the system 

development lifecycle, requiring selection of a base system to form the basis of a 

comparison, and to define the testing procedures to be evaluated.  

A testing cost analysis for TT and ET software architectures needs to be undertaken in 

order to assess the following hypothesis, which appears in Chapter one as H2: 

Testing a system with a TT architecture incurs less cost than testing an equivalent 

system with an ET architecture, when experimental-based methods and comparative 

analysis are used.  
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6.3 Adopted methodology 

6.3.1 Cost of Testing 

The cost of testing is defined in terms of complexity, duration of the executed test, and 

ease of testing. Furthermore, the tests should be repeatable and the results reproducible 

when applying the same conditions.  

In order to assess the said costs, measurable parameters had to be defined. Therefore, a 

complete system which runs itself into a fault was considered. In doing so, the fault 

needed to be localised in order to isolate the task that had caused the fault to emerge. 

The fault was assessed and identified by determining whether the timing requirements 

had been met or not. It was important to replicate the same timing error, which should 

be reproducible for a single task, as opposed to the whole set of running tasks.  

In order to evaluate the cost of testing, the following hypothesis was used: 

Testing will be easier for systems in which the timing data obtained for isolated and in 

situ tasks is very similar.  

This hypothesis was used as a basis for conducting experimental work to evaluate the 

cost of testing during the testing phase. The ease of isolating a single task is a parameter 

that impacts upon the cost of testing. In fact, it is one of the most important aspects to 

assess when evaluating and testing systems. Thus, if we easily managed to isolate the 

task in a system, the cost of testing that system would be less.  

6.3.2 Measuring WCET of tasks  

In order to measure the execution time for each task, the code for the task was 

instrumented for sending signals at the start and end of each task code. The easiest way 

was to use a digital output port. This port was dedicated to the testing of embedded 
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applications. One or two bits of an 8-bit digital output port 4 of LPC2378 were used as 

a gateway to monitor the timing behaviour of the tasks.  

During the course of the code measurement, it is important to execute it in a state that 

produces the WCET. The WCET for the task was measured using a measurement-based 

method on real hardware and obtained by taking the maximum measured time over a 

number of trials using a set of selected input data. Note that, the impact of pre-emption 

is evident in lower priority tasks or pre-empted tasks.  

In order to measure the execution time for a task in ET and TT architecture, the task 

must have an analysable design. This means that it must has a definitive starting and 

stopping point in each cycle. The execution time of the tasks was obtained by setting 

the high pin at the beginning of the task and the low pin at the end of the task. The 

widths were then measured using the NI card with LabVIEW software.  

As a result, 10000 consecutive pulse widths were measured and recorded for each 

study. This was deemed to be sufficient for the purpose of this research. In an ET 

system, current running tasks can be pre-empted by higher priority tasks. For pre-

empted tasks, for example task 2, which is shown in Figure 6.1, the execution time is 

the difference between t!!t!, minus the execution time used by task 1, (t!!t!)during 

that time period.  
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Figure 6.1   Measuring execution times for an ET system 

It is important to note that the measured execution times include, if not all, most of the 

RTOS overheads. In fact, the overheads usually affect the execution time of the lowest 

priority tasks. Consequently, the WCET of the lowest task can be used to demonstrate 

the effects of the overheads. 

In FreeRTOS implementation, the “Button_Update” task is called periodically using a 

vTaskDelay() function. Conversely, the “Update_Lights” task is continuously executed 

in the loop. Judging by the reading measured by the execution time from NI 

instruments data generated by the pulse width in Figure 6.2, it the RTOS overhead for 

context switching and scheduling was assumed to be included in the measurements and 

evenly distributed across each task.  

 

Figure 6.2   Measuring execution times for a FreeRTOS system 
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The execution time of task 2, C2 is calculated thus: 

 !! = ! (!! − !!!)− (!!,!+!!!,! + !!,! + !……+ !!!,!)  ( 6-1) 

Where t2 is the time the pin low is executed, t1 is the time the pin high is executed, and 

C1,1, C1,2, … C1,n is computed as the amount of time that the task with higher priority is 

executed. As can be seen, task 1 has two execution times: C1,1 if the push button is in 

the release state, or C1,4 if the push button is pressed and then released. In this example, 

the “button_update” task is a periodic task with a 10 millisecond period time, and thus 

the “lights_update” task will be pre-empted for every 10 milliseconds. When an event is 

released in which the button is pressed, the execution time of task 1 becomes C1,4. After 

the button is released, the execution time is back to normal – the execution time of the 

“button_update” task if the push button is not pressed.  

In TT systems, the execution time of tasks in co-operative scheduling can be 

straightforwardly measured using the relative time. For pre-emptive schedulers, such as 

the TTH and TTP scheduler, the measurement of execution times has to take into 

account for the execution times used by higher priority tasks during the time period. 

Examples of pre-emption scenarios in tick-based scheduling are illustrated in Figure 

6.3. 

 

Figure 6.3   Measuring execution times for a TTH and TTP scheduler 
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In order to calculate the actual execution time of task 2, the duration of t1 and t2 which 

is obtained from the setting of pin high and low in task 2 code, should be subtracted 

with the total of execution times of task 1 in that duration since the task has higher 

priority and shorter time period than task 2. Hence, the execution time of task 2 is: 

 !! = ! (!! − !!!)− (!!,!+!!!,! + !!,!) ( 6-2) 

In general, the concepts of measurement for Equation 6-1 and Equation 6-2 are similar. 

As the duration of lower priority task is known, as well the execution times of higher 

priority tasks, the actual execution time of the lower priority task can be measured by 

subtracting the execution times of the higher priority tasks from the measured duration 

time of lower priority tasks.  

6.4 Case study 1: Assessing the cost involved in task testing 

In the case study presented in this section, the aim was to explore the timing behaviour 

of the tasks during the testing operation. The particular goal was to consider both a 

simple TT system and an equivalent system implemented using an ET-based 

architecture. These studies considered the tasks in isolation (as is normal when 

undergoing detailed examination during a testing process); and also considered the 

tasks operation when in the complete system. The underlying hypothesis was that 

testing will be easier for systems in which the timing data obtained for “isolated” and 

“in situ” tasks is very similar. 

Detailed studies have been conducted on the measurements of the worst-case execution 

times (WCETs) of tasks employing ET and TT designs. In each case, the timing of 

tasks has been measured (i) when the tasks are isolated; and (ii) when the tasks are 

executed in the complete system.  
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Two small case studies were undertaken in order to evaluate which of the software 

architectures can reduce testing effort. These studies and the results obtained are 

described in this chapter. 

6.5 The traffic lights system 

Case study 1 was used to evaluate the extent to which TT architecture can provide 

effortless task testing using a task in an isolation strategy – when the incurrence of the 

event is unpredictable. This study involved the design of a traffic lights system in TT 

and ET architecture. A description of the case study is presented in this section.  

6.5.1 Task functions 

The study is of a traffic lights system that acts as a controller for the traffic lights and 

pedestrian crossing lights used at a typical crossroads in the UK. Crossroads can have 

traffic lights at each of the four possible directions and pedestrian crossing lights on all 

four sides. A pedestrian crossing lights system consists of two images (a green walking 

man and a red standing man) which alert pedestrians to when it is safe to cross the road, 

and when to give way to motor vehicles. In addition, there is a button used to alert the 

traffic light system that pedestrians are waiting in a queue to cross the road. Once 

pressed, the button illuminates with a 'wait' sign as an indicator for pedestrians to wait 

until the light turns green. 

The traffic lights system can be simulated graphically using the LCD on the LPC2378 

ARM processor board (Olimex, 2009). The hardware setup for implementing this 

experiment is shown in Figure 6.4. The NI board was connected to one of the ports on 

the Olimex board for the purpose of measuring the execution time of the task.  
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Figure 6.4   Hardware for Traffic Light Systems for testing 

The state diagram of the system is shown in Figure 6.5.  

 

Figure 6.5   State diagram for the traffic light system 

Under normal operations, the traffic lights will turn the cycle through the usual states, 

S0, S1,….S7. When a pedestrian presses the button the ‘wait’ indicator will light up 
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(before entering S8); and when the system reaches one of the states where both lights 

have transitioned to red, the pedestrian crossing light will transition to green.  

At this point, the wait indicator should turn off and the pedestrians be given time to 

cross (5 seconds). As a warning to both drivers and pedestrians, returning to normal 

operation after a crossing will involve state S9.  

A complete system of traffic lights consists of two tasks:  

• A “Button_Update” task (high priority task) which updates the states of the 

pedestrian switch button,  

• A “Lights Update” task (low priority task) which controls the traffic lights states 

and the transmitted data to the LCD screen.  

6.5.2 Implementation of a system with an ET architecture 

In an ET system, the significant external event triggers are often relayed to the 

computer system by means of an interrupt mechanism. The main program is a polled 

loop instruction. The various tasks in the system are scheduled via either hardware or 

software interrupts, whereas dispatching is performed by interrupt-handling routines. 

Moreover, this system often lacks explicit temporal control; thus, temporal control is 

programmed using hand-coded delay blocks.  

6.5.2.1 The foreground/background system  

Foreground/background methods are employed in order to demonstrate an event-

triggered architecture. In this architecture, the polled loop instruction is replaced by the 

code that performs useful processing - a background task.  

The background task is fully pre-emptive by any foreground task. The foreground 

operation for the system is the same as that of the interrupt-only system. If more than 
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one foreground process exists, round-robin, pre-emptive priority or hybrid methods 

would be needed to provide scheduling. A typical foreground/background method is 

given in Figure 6.6. 

 

Figure 6.6   A foreground/background system 

In a background/foreground system setting, the application consists of exactly one loop 

without an exit condition. Within this loop, the application calls for subroutines in a 

sequential order, which implement the application’s logic. The loop’s execution time 

essentially determines the application’s temporal behaviour. The loop is commonly 

referred to as the background. If an interrupt occurs, an interrupt service routine (ISR) 

pre-empts (suspends) the loop and services the interrupt. The ISR is commonly referred 

to as foreground; hence the name background/foreground system. The application 

typically spends time in the background part, executing the main loop. When an 

interrupt occurs, the system switches to the foreground and the ISR services the 

interrupt. Once the ISR is completed, the system switches back to the background 

operation and resumes the main loop. 

The main application domain of background/foreground systems are small embedded 

systems such as washers, dryers, microwave ovens, and simple radios. In comparison to 

multi-threaded systems with explicit temporal control, background/foreground systems 

require less system overheads and less understanding of concurrency and temporal 
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control. However, low system overheads have limitations; the application’s output is 

non-deterministic with respect to the timing. The points in time at which the application 

produces an output changes depending on the application’s execution path for each run 

in the loop and how many and what types of interrupts occur. The application’s timing 

is also sensitive to modifications to the loop. For example, one additional inner loop in 

the main loop changes the timing behaviour of everything that follows after this inner 

loop. Such a change can alter the whole system’s behaviour. In addition, modifying the 

ISR changes the timing behaviour depending on how often the ISR pre-empts the main 

loop. 

In the case study, the system included a single interrupt that occurred periodically. It 

has the highest priority and can be used to handle a task that requires immediate 

attention.  

6.5.2.2 Event-triggered with RTOS support 

In order to handle multiple interrupts in event-triggered real-time systems, a complex 

operating system using round-robin, pre-emptive priority, or a combination of both 

schemes would be required. These types of operating systems are readily available as 

commercial products known as real-time operating systems (RTOS). The RTOS’s 

design is based on the foreground/background architectures with added functions such 

as a device driver, a network interface and complex debugging tools. The operating 

system represents the highest priority task, kernel or supervisor and has been 

demonstrated through the use of an off-the-shelf RTOS called FreeRTOS (Barry, 

2001). 

FreeRTOS is a real-time, pre-emptive operating system targeting embedded devices. 

This FreeRTOS is a portable, open source, mini real-time kernel which can be used to 
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develop commercial applications for small embedded systems. In addition, its 

scheduling algorithm is dynamic and priority-based. Although scheduler decision 

points occur at regular clock frequency, asynchronous events can also invoke the 

scheduler's decision points. Therefore for this reason, FreeRTOS is adopted for 

implementation in this case study in order to compare its implementation with a pure 

ET architecture and a pure TT architecture.  

6.5.3 Implementation of a system with a TT architecture 

In TT architecture, numerous scheduling algorithms were developed with different 

system behaviours. Some commonly using time-triggered scheduling algorithms are co-

operative scheduling, pre-emptive scheduling and hybrid scheduling (Pont, 2001). In 

order to carry out this study, a time-triggered co-operative (TTC) was adopted to 

represent a pure time-triggered (TT) architecture, a time-triggered hybrid (TTH) and a 

time-triggered pre-emptive (TTP) scheduler.  

Note that, the system was designed and implemented in a different way from an ET and 

a FreeRTOS architecture. Due to the tick-based scheduling attribute of the TT 

architecture, the system can be implemented using a multi-state (input/timed) system 

(Pont, 2002).  

 

Listing 6.1 presents the states in the traffic lights system including the pedestrian traffic 

lights system states.  

typedef enum 
{ 

// ROO == Red, Off, Off; the state of each light 
 ROO_ROO_STOP_1, 
 RAO_ROO_STOP, 
 OOG_ROO_STOP, 
 OAO_ROO_STOP, 
 ROO_ROO_STOP_2, 
 ROO_RAO_STOP, 
 ROO_OOG_STOP, 
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 ROO_OAO_STOP, 
 ROO_ROO_WALK, 
 ROO_OFO_FLASH_1, // off 
 ROO_OFO_FLASH_2, // on 
 ROO_OFO_FLASH_3, // off 
 ROO_OFO_FLASH_4, // on 
 ROO_OFO_FLASH_5, // off 
 ROO_OFO_FLASH_6  // on 
} state_t; 
 

Listing 6.1   Possible system states 

The traffic lights sequencer executes a sequence of pre-determined manoeuvres. 

Transitions between states are controlled by the passage of time or by system input as 

presented in Listing 6.2. 

// Time for every state, in multiples of 500 ms 
const uint8_t time[] = { 
  2, 2, 20, 2, 2, 2, 20, 2, 
 
  10, 1, 1, 1, 1, 1, 1 
}; 
const state_t next[] = { 
  RAO_ROO_STOP, OOG_ROO_STOP, OAO_ROO_STOP, ROO_ROO_STOP_2, 
  ROO_RAO_STOP, ROO_OOG_STOP, ROO_OAO_STOP, ROO_ROO_STOP_1, 
            // Pedestrian traffic light states 
  ROO_OFO_FLASH_2, ROO_OFO_FLASH_2, ROO_OFO_FLASH_3, 
  ROO_OFO_FLASH_4, ROO_OFO_FLASH_5, ROO_OFO_FLASH_6, 
  ROO_OOG_STOP 
}; 

Listing 6.2   Time and state arrays 

The time spent in each state is shown in the time array and is associated with states in 

the next array. These timing values are defined using the periodic execution of the task. 

For example, say a task has a 500 milliseconds period of time; the system begins at the 

RAO_ROO_STOP state, repeatedly executing the task for two times so that it remains 

in the state for 1 second. Thus, as can be seen in the time array, time 2 is required for 

the RAO_ROO_STOP state. This then moves into the next state, OOG_ROO_STOP and 

remains there for 1 second, repeatedly executing the task. The process will be 

continuously performed in an orderly manner.  

In alternative scenario, when a pedestrian pushes the button, the traffic lights sequence 

will be stopped at the RAO_ROO_STOP_2 state and the sequence of pedestrian traffic 
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lights states will be executed. A snippet of the “Lights_Update” function is shown in 

Listing 6.3. 

void Lights_Update(void) 
{ 
 ….. 
 if (--current_time == 0) 
 { 
  if (current_state == ROO_ROO_STOP_2 && pressed) 
  { 
   current_state = ROO_ROO_WALK; 
  } 
  else 
  { 
   current_state = next[current_state]; 
  } 

current_time = time[current_state]; 
….. 

 } 
} 

Listing 6.3   Lights_Update ( ) function in TT systems 

6.5.4 Interrupts 

Interrupts which are triggered by external hardware are used to demonstrate an event 

occurring in the ET system. External interrupts can be used in reaction to the external 

sensors. In handling the external events for ET systems, two different interrupt handlers 

can be used: Interrupt Request (IRQ) and Fast Interrupt Request (FIQ) interrupts. 

External interrupt sources should be initialised before enabling IRQ and FIQ interrupts, 

to avoid unexpected interrupts occurring before an appropriate handler has been set up. 

An IRQ and FIQ exception causes processor hardware to go through a common 

procedure as shown in Figure 6.7.  

 

Figure 6.7   IRQ interrupt handler (Labrosse, 2002) 
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In this experiment, a pedestrian switch button was set as an external source to cause an 

IRQ exception. When an external interrupt was raised, or the switch button pressed, the 

normal sequential execution of instructions was be halted to allow the IRQ handler to 

execute – in this context, an interrupt service routine (ISR), followed by the 

“Button_Update” task. Listing 6.4 shows how the “Button_Update” task was called 

using the IRQ handler. 

void Handle_Interrupts_IRQ(void) 

{ 

   Button_Update(); 

} 
Listing 6.4   IRQ handler 

Upon completion, the processor mode reverted to the original main code. Note that, on 

entry to the IRQ handler, IRQ exceptions are disabled and should remain disabled until 

the current interrupt source has been cleared, in order to avoid further triggering of an 

exception. 

Alternatively, an ET architecture could be implemented using FreeRTOS to support 

dynamic scheduling. FreeRTOS can be configured to operate under a pre-emptive 

mode. In the scheduler, after the clock is reset, the FreeRTOSConfig.h parameter 

configUSE_PREEMPTION would be referenced to determine which mode is being 

used and in this experiment, this is set to 1. This means that whether the pre-emptive 

kernel is configured or otherwise, the kernel is set to co-operative. The co-operative 

kernel is not a point of interest for this study.  

FreeRTOS was employed due to its supportive function, since it can support event 

handling. When an event occurs, the scheduler requires an online scheduling decision. 

If a task is unblocked and it has a higher priority than the current task, then a context 
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switch is executed. Finally, the context is restored, soft registers are un-stacked, and the 

scheduler returns from the interrupt. 

By contrast, the task activation in a TT system is controlled by tick interrupts. Thus, a 

task which is ready may not be noticed and acted upon by the scheduler until the next 

tick interrupt. Note that the tick interrupt is a single interrupt source in a TT system, as 

these require a fast response time. Thus, normally a FIQ interrupt is set.  

In order to implement the experiment under a TT-based architecture, a switch-poll task; 

a “Button_Update” task is created; this periodically observes whether the push button is 

pressed or released. If the system detects that the push-button switch is pressed or 

released, the ‘state’ variable will react by changing its state. By using the time-triggered 

cooperative (TTC) scheduler, all the tasks are predetermined before execution. The 

system runs the switch-poll task, which is invoked every 10 milliseconds. When the 

switch button has been pressed, the “Button_Update” task is placed in the pending 

(task) queue. The scheduler holds the tasks that have been released or unblocked since 

the last tick interrupt. When the scheduler executes, it moves the tasks in the pending 

queue to the ready queue and places them in the ready queue to be executed.  

 

6.5.5 Task properties 

One of the main aims of the experiment was to develop a similar system with two 

different software architectures: one with a TT architecture and another with an ET 

architecture. In addition, the study also investigated the implementation of the system 

using the off-the-shelf RTOS. These systems have two tasks: a “Button_Test” task and 

an “Update_Lights” task. However, the task properties of those systems are different as 

shown in the next sub sections.  



172 

6.5.5.1 Task properties on an ET architecture 

In an ET-based system, an “Update_Lights” task runs as a background task in the main 

function; while a “Button_Test” task runs as a foreground task.  

Table 6.1  Task properties for the traffic light systems on an ET-based system 

Name Delay Task type 

Button_Update 0 Foreground task 

Update_Lights Delay_c1 = 1000 

Delay_c2 = 10000 

Delay_c3 = 5000 

Delay_c4 = 3000/6 

Background task 

 

A “hardware delay” function is used to control the timing of the traffic light system (see 

Listing 6.5) (Pont and Association for Computing Machinery, 2001). 

void Update_Lights(void) 
{ 

  …… 
  while (TRUE) 
   { 
   TRAFFIC_Set_Light_State(1, TRAFFIC_RED); 
   // Delay to control the state on hardware timer 0 
   Hardware_Delay_T0(delay_c1); 
   TRAFFIC_Set_Light_State(0, TRAFFIC_RED_AMBER); 
   Hardware_Delay_T0(delay_c1); 
   TRAFFIC_Set_Light_State(0, TRAFFIC_GREEN); 
   …… 
   } 

 

Listing 6.5 Implementation of the “Update_Lights” task for an ET-based system 

Where Hardware_Delay_T0 ( ) is a function implemented particularly to generate N 

millisecond delay (approximately) based on hardware Timer 0 as shown in Listing 6.6. 

void Hardware_Delay_T0(const uint32_t Delay) 
     { 
     // Set up required match register 
     T0MR0 = ((TTE_PCLK(TTE_PC_TIMER0) / 1000U) * N) - 1; 

T0MCR = 0x06; // Interrupt on match, and automatically restart 
counter 

     // Counter enabled 
     T0TCR |= 0x03; // Start timer 1 (Timer Control Register) 
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     T0TCR |= 0x02; 
while ((T0TCR &= 0x01) != 0) ; // Loop until Timer 1 matches 
(T1TCR[0] == 0) 

     T0TCR |= 0; // Stop timer 1 (Timer Control Register) 
     } 

Listing 6.6 A hardware delay function 

 

6.5.5.2 Task properties on a FreeRTOS 

The FreeRTOS kernel creates a task by instantiating and populating a TCB. Then, the 

tasks are allocated in the ready list in order of priority. Tasks with similar priority are 

serviced on a round-robin basis. Moreover, tasks can be synchronised by binary and 

counting semaphores and mutexes. In this example, mutex was used to synchronise the 

tasks. The usage of mutex will be discussed in detail in the next chapter. Error! Not a 

valid bookmark self-reference. depicts the parameters of the tasks to implement the 

traffic lights system on FreeRTOS. 

Table 6.2   Task properties for the traffic lights system on the RTOS 

Name Delay Period (ms) Task priority 

Button_Update 0 10 2 

Update_Lights Delay_c1 = 1000 

Delay_c2 = 10000 

Delay_c3 = 5000 

Delay_c4 = 3000/6 

- 1 

 

The priority of the “Button_Update” task is set to 2 which denote it as the higher 

priority task than the “Update_Lights” task. To generate a delay for a task, the 

FreeRTOS Application Programming Interface (API) vTaskDelayUntill() function can 

be used as shown in Listing 6.7.  

void Update_Lights(void) 
{ 

  …… 
  while (TRUE) 
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   { 
   portENTER_CRITICAL(); 
   TRAFFIC_Set_Light_State(1, TRAFFIC_RED); 
   portEXIT_CRITICAL(); 
 
   vTaskDelayUntil(&lastWakeTime, delay_c1); 
 
   portENTER_CRITICAL(); 
   TRAFFIC_Set_Light_State(0, TRAFFIC_RED_AMBER); 
   portEXIT_CRITICAL(); 
 
   vTaskDelayUntil(&lastWakeTime, delay_c1); 
 
   portENTER_CRITICAL(); 
   TRAFFIC_Set_Light_State(0, TRAFFIC_GREEN); 
   portEXIT_CRITICAL();  
   …… 
   } 
 

Listing 6.7   Implementation of the “Update_Lights” task in FreeRTOS 

 

From Listing 6.7, the two functions named portENTER_CRITICAL() and 

portEXIT_CRITICAL().These are mechanisms to protect simultaneous accesses of 

shared resources, such as semaphores and mutex. Note that in this chapter, neither ET, 

TTC nor TTH systems use the shared resources protection method except in the RTOS 

and TTP implementation. A complete discussion of this issue is presented later in this 

chapter. 

6.5.5.3 Task properties on a TT architecture 

The task's properties relative to the system are based on a TTC architecture, a TTH 

architecture and a TTP architecture are shown in Error! Not a valid bookmark self-

reference., For the TTH scheduler, besides the two basic task properties, each task 

must be set to either a TRUE or FALSE condition to determine whether it is a pre-

emptive or non pre-emptive task. If it is TRUE, it means that it is a pre-emptive task, 

otherwise, it will behave as a non-pre-emptive task. In this scheduler, only a single task 

can be assigned as a pre-emptive task.  
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Table 6.4 and For the TTP scheduler, the task’s priority needs to be set beforehand. The 

task with high priority (for example, the Button_Update task) can pre-empt the lower 

priority task (for example, the Update_Lights task).  

 

Table 6.5. Because timer interrupts can be used to periodically implement a repeating 

task with a fixed time frame, the properties of the tasks, such as the delay and period 

must be determined prior to the runtime. For the TTC scheduler, two basic task 

properties need to be established before the runtime; which are the task’s delay and 

task’s period.  

Table 6.3   Task properties for the traffic lights system on a TTC architecture 

Name Delay Period 

Button_Update 0 10 

Update_Lights 0 500 

 

For the TTH scheduler, besides the two basic task properties, each task must be set to 

either a TRUE or FALSE condition to determine whether it is a pre-emptive or non pre-

emptive task. If it is TRUE, it means that it is a pre-emptive task, otherwise, it will 

behave as a non-pre-emptive task. In this scheduler, only a single task can be assigned 

as a pre-emptive task.  

Table 6.4   Task properties for the traffic lights system on a TTH architecture 

Name Delay Period Pre-emptive 

Button_Update 0 10 True 

Update_Lights 0 500 False 
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For the TTP scheduler, the task’s priority needs to be set beforehand. The task with 

high priority (for example, the Button_Update task) can pre-empt the lower priority 

task (for example, the Update_Lights task).  

 

Table 6.5   Task properties for the traffic lights system on a TTP architecture 

Name Delay Period Priority 

Button_Update 0 10 2 

Update_Lights 0 500 1 

 

Note that the tick interval is set to 1 millisecond. Thus, the “Button_Update” task will 

be invoked for every 10 ticks; while the “Update_Lights” task will be activated for 

every 500 ticks. For the TTH and TTP architecture, another property of a task is added 

as shown in Table 6.4 and Table 6.5.  

6.5.6 Executing test for task in isolation  

Previous sections have discussed the implementation of the traffic lights systems on 

three different platforms. In addition testing in an ET system using FreeRTOS was also 

included. The techniques to be applied to validate the timing constraints of dynamic 

systems are very demanding (Liu, 2000). For example, an interrupt which occurs in the 

complete systems could not be easily and precisely reproduced for the testing and 

debugging processes (Thane and Hansson, 2001); and the test coverage of an ET 

system is very high because interrupts can occur at an arbitrary point which leads to an 

enormous number of test inputs (Schultz, 1993). 

In this context, the WCET behaviour of the tasks was observed. The WCET of the 

background tasks can be measured using observation points or testing points. In the 
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“Update_lights” code, the observation points of the traffic system needs to be specified. 

Test 1, Test 2, Test 3, are examples of testing points placed in the codes as shown in 

Listing 6.8. 

 

void Update_Lights(void) 
{ 

 ………… 
  while (TRUE) 
  { 
   //Test point 1 
   TRAFFIC_Set_Light_State(1, TRAFFIC_RED); 
   Hardware_Delay_T0(delay_c1); 
 
   // Test point 2 
   TRAFFIC_Set_Light_State(0, TRAFFIC_RED_AMBER); 
   Hardware_Delay_T0(delay_c1); 
 
   // Test point 3 
   TRAFFIC_Set_Light_State(0, TRAFFIC_GREEN); 
   Hardware_Delay_T0(delay_c2); 
   ……… 
  } 

} 

Listing 6.8   The background task in isolation 

 

In normal operation, interrupts (for example, when someone is pressing the button) 

should be invoked at the test point and the execution time of the update_lights() 

function is recorded. Eight (8) testing points were identified to find the WCET of the 

task, as shown in Figure 6.8.  



178 

 

Figure 6.8   Testing and interrupt points 

 

Every test must run independently and one at a time so that the timing behaviour of the 

task can be monitored when interrupts occur at a specific point. When implementing a 

task in isolation, the external interrupt is disabled. The variable, which is used to read 

the push button states is set to TRUE as revealed in Listing 6.9. 

Complete System 
void Button_Update(void) 

{ 

 boolean_t pin_high = !GPIO_Read(BUTTON_PIN);  

 if (pin_high == TRUE) 

  { 

   button_pressed = TRUE; 

   TRAFFIC_Set_Wait_Light(TRUE); 

  } 

      //Clear Interrupt 

} 

Task in isolation 
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void Task_Harness_Button_Update(void) 

{ 

 boolean_t pin_high = TRUE; 

 if (pin_high == TRUE) 

  { 

   button_pressed = TRUE; 

   TRAFFIC_Set_Wait_Light(TRUE); 

  } 

 

 //Clear Interrupt 

} 

Listing 6.9   Implement the task harness for the ET system 

 

At test points, this Task_Harness_Button_Update () task is called and its functional and 

temporal behaviour should be similar with the task runs in the complete system. This 

strategy is applied to analyse impacts of interrupts. Moreover, most importantly, the 

task can be tested individually by employing as many test cases as possible to trace 

which of the tasks has the source of timing errors.  

6.5.7 Using the task harness for testing in TT systems 

Testing for tasks in isolation in a TT system is more straightforward. Figure 6.9 

illustrates that the “task harness” is called after the isolated task, during the testing 

process. 

 

Figure 6.9   The task harness 
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Note that, the WCET of a task can only be obtained when all possible input values are 

considered. Thus, the task harness should contain potential input values required by 

lower priority tasks from higher priority tasks. For example, the states of the traffic 

light system are controlled by time values and input from the pedestrian push button. 

Therefore, to test lower priority tasks such as in the update_lights() task, the values of 

variables that are needed when the button pressed are declared in the task harness. 

Listing 6.10 provides an example of the task harness in the traffic lights system.  

 

 void Harness_Button(void) 
{ 
 // Pass the values of the output ports to this function: 
 static boolean_t pressed = TRUE; 
 static uint32_t pressed_duration = 0; 
 static boolean_t toggle_state = FALSE; 
 
 Harness_Button_Output(pressed, toggle_state, pressed_duration); 
} 

Listing 6.10   The task harness function 

 

Table 6.6, Table 6.7 and Table 6.8 presents the implementation of the task harness to 

test the update_lights() task. 

 

Table 6.6   Task harness for the traffic light systems on a TTC architecture 

Name Delay Period (ms) 

Update_Lights 0 500 

Harness_Button 0 5000 

 

 

 



181 

Table 6.7   Task harness for the traffic light systems on a TTH architecture 

Name Delay Period (ms) Pre-emptive 

Update_Lights 0 500 False 

Harness_Button 0 5000 False 

 

Table 6.8   Task harness for the traffic light systems on a TTP architecture 

Name Delay Period (ms) Priority 

Update_Lights 0 500 2 

Harness Button 0 5000 1 

 

It has been found that, the task harness runs co-operatively with the update_lights() task 

with respect to the TTC and TTH schedulers. Every 5000 milliseconds, the “Harness 

Button” task updates the value of the pressed variable to TRUE which represents the 

action of the push button being pressed. By using this strategy, the WCET of the task in 

the complete system can be produced as a task running in isolation.  

6.5.8 Results for Case Study 1 

The results of the experiments are shown in the following sub-sections. Note that the 

analysis focussed on lower priority tasks, in this case the update_lights() task. The aim 

of this was to ensure the impact of ET-based and TT-based architecture was observed. 

Table 6.9 presents the WCET of the update_lights() task for five different software 

architectures.  
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Table 6.9   The comparison of the execution times of the isolated and in-situ tasks 

Software architecture 

WCET (us) of Update_Lights task 

Difference Task in the Complete 
System Task in Isolation 

Event triggered architecture 34813142.38 33817934.41 995207.97 

Full-featured RTOS 32997972.90 32997915.45 57.45 

Time triggered architecture:    

TTP 132795 132955 160 

TTH 132072 132152 80 

TTC 132150 132152 2 

 

The time requirement for implementing this task should be 33 seconds, as designed. 

The WCET for ET and RTOS architecture is obtained when the pedestrian presses the 

button. Hence, the duration between the start state from the S0 state to the finish state, 

the S9 state (Figure 6.5) should be 33 seconds, as designed.  

From the measurement, the task running in the complete system in ET architecture had 

a WCET of approximately 34.8 seconds; whereas the task in isolation had a WCET of 

33.81 seconds. There is almost a 1 second difference. By contrast, the difference is 

about 57.45 microseconds between the system running in RTOS. This means that ET 

finds it difficult to reproduce the test and detect the error. 

For TT architecture, the WCET is different because the system design is dissimilar – 

using a multi-state (input/timed) strategy. As can be seen, TTP architecture provides a 

higher difference than the TTH followed by the TTC architecture.  
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The graph in Figure 6.10 illustrates the maximum difference of the WCET of the 

update_lights() task running in the complete system and the task in isolation.  

 

Figure 6.10  The maximum difference of the WCET of the “Update_Lights” task in percentage. 

The results of this graph correspond to the data obtained and depicted in Table 6.9. The 

ET architecture showed the highest percentage of 2.8% to compare the WCET of the 

update_lights() task in isolation with its WCET in the complete system. Conversely, the 

other architecture, such as RTOS, TTP, TTH and TTC architecture have differences 

lower than 0.5%. Clearly, the TTC architecture provides the least difference with a 

percentage of approximately 0.001%.  

6.6 Case study 2: Assessing the effects of shared resources 
mechanism 

It is important to apply an appropriate method in order to analyse the impact of testing 

for pre-emptive systems which employ synchronisation mechanisms. The objective of 

the experiment was to compare the methods that could provide a small difference of the 

WCET of a task when it runs both in the complete system in isolation.  

In this experiment, it was assumed that all overheads (as described in Chapter 2) were 

included in WCET of the lower priority task. Therefore, the analysis focussed on lower 
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priority tasks, in which the WCET is always affected by interruptions from higher 

priority tasks. This interruption would be expected to cause overheads. The 

measurement of the WCET was repeated for lower priority tasks and was executed 

using the FreeRTOS and TTP; each system employs different mutual exclusion 

methods, which are described in the following sub-sections.  

The case study for the FFT system can be used to evaluate the extent to which the TT 

architecture can provide effortless task testing, using the task in the isolation strategy – 

when a long task is involved. This study involved the design of a FFT system in the 

TTP, TTH and TTC schedulers. A description of the case study is presented in this 

section.  

6.7 The FFT system 

The second case study used a Fast Fourier Transform (FFT) system. The system takes a 

buffer filled with samples and the maximum frequency (half the sampling rate) and 

returns the first harmonic frequency and displays it on LCD screen. There are three 

tasks involved; one for the sampling, one for the FFT and one for the output.  

A Fast Fourier Transform (FFT) system. The system samples the generated signal (at 1 

KHz), carries out a FFT on the sampled data and finally displays the output of the first 

harmonic frequency to the LCD screen, which consists of three required tasks; one for 

the sampling, one for the FFT and one for the output. 

(i) Signal_Acquisition: This task samples the ADC data and stores them in a 

adc_buffer. 

(ii) Frequency_Calculation: This task performs the FFT and produces the first 

harmonic frequency 
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(iii) Output_Value: This task displays the first harmonic frequency onto the LCD 

screen. 

Communication between the tasks takes the form of shared-memory. The shared 

resources (in this case the buffer) are protected with disabled interrupts, disabled 

scheduling and semaphores.  

 

Figure 6.11   Hardware for FFT Systems for testing 

The main concern was how to minimise testing efforts, which may arise in a 

uniprocessor system when concurrent tasks use shared resources, if the WCET of the 

isolated task and in situ task are very similar. That implies that shared resources 

mechanisms and inter-task communication techniques could make the testing timing 

properties simpler.  

6.7.1 FFT functions 

The system first samples the generated signal (at 1 KHz) and then performs a FFT on 

the sampled data before finally outputting the first harmonic frequency onto the LCD 
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screen. This involves three tasks; one for the sampling, one for the FFT and one for the 

output. 

Signal_Acquisition: 

Sample the ADC data and store them in an adc_buffer. The function is shown in Listing 

6.11.  

void Signal_Acquisition(TTE_UNUSED void *params) 
{ 
 ADC_Init(SIGNAL_ADC, NULL); 
 uint32_t index = 0; 
 
 while (TRUE) 
 { 
  Enter_Critical(); 

adc_buffer[index++] = ADC_Acquire_Raw_Reading(SIGNAL_ADC); 
  Exit_Critical(); 
 
  if (index == FFT_BUFFER_SIZE) 
  { 
   index = 0; 
  } 
 
  vTaskDelay(1); 
 } 
} 

Listing 6.11   Signal_Acquisition() function 

Frequency_Calculation: 

Perform the FFT and produce the first harmonic frequency. The function is shown in 

Listing 6.12. 

void Frequency_Calculation(TTE_UNUSED void *params) 
{ 
 portTickType lastWakeTime = xTaskGetTickCount(); 
 vTaskDelayUntil(&lastWakeTime, FFT_BUFFER_SIZE - 1); 
 
 while (TRUE) 
 { 
  Enter_Critical(); 
  harmonic_freq = Perform_FFT(adc_buffer, 500, NULL); 
  Exit_Critical(); 
 
  vTaskDelayUntil(&lastWakeTime, FFT_BUFFER_SIZE); 
 } 
} 

Listing 6.12 Frequency_Calculation()function 
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Output_Value: 

Display the first harmonic frequency to the screen. The function is shown in Listing 

6.13. 

void Output_Value(TTE_UNUSED void *params) 
{ 
 portTickType lastWakeTime = xTaskGetTickCount(); 
 vTaskDelayUntil(&lastWakeTime, FFT_BUFFER_SIZE); 
 
 while (TRUE) 
 { 
  Enter_Critical(); 
  uint16_t freq = harmonic_freq; 
  Exit_Critical(); 
 
  char buff[] = "Freq:     Hz"; 
  buff[6] = ((freq / 100) % 10) + '0'; 
  buff[7] = ((freq / 10) % 10) + '0'; 
  buff[8] = (freq % 10) + '0'; 
 
  LCD_Send_String(buff, 5, 12, LARGE_FONT, WHITE, BLACK); 
 
  vTaskDelayUntil(&lastWakeTime, FFT_BUFFER_SIZE); 
 } 
} 

Listing 6.13 Output_Value()function 

6.7.2 Task properties 

In order to implement the FFT system in the FreeRTOS, the priorities and period of 

tasks need to be identified. As the Signal_Acquisition() task collects the ADC data 

without having to miss a single sample, it must be set to the highest priority. In this 

example, the higher the number of the task priority, the higher the priority becomes. 

After 256 data samples have been acquired and buffered from the ADC, the 

Frequency_Calculation() task processes the samples.  
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Table 6.10  Task properties of the FFT systems using FreeRTOS 

Name Period (ms) Task priority 

Signal_Acquisition 1 3 

Frequency_Calculation 256 2 

Output_Value 256 1 

 

The system was also implemented in TT architecture. As with the TTC-based design, 

pre-emption was not allowed to occur; in fact the Frequency_Calculation() task has 

very long execution times, which may exceed the tick interval. Therefore, pre-emptive 

software architectures should be applied. In this case, a hybrid scheduler was 

considered as an intermediate solution between a TTC-based design and a fully pre-

emptive solution. The task properties of a TTH-based design are shown in Table 6.11 

Table 6.11  Task properties of the FFT s.ystems using TTH 

Name Delay (ms) Period (ms) Pre-emptive 

Signal_Acquisition 0 1 True 

Frequency_Calculation 256 256 False 

Output_Value 256 256 False 

 

Only the Signal_Acquisition() task is set to TRUE, which means it is allow to pre-

empt other tasks. By contrast, the Frequency_Calculation()task and the 

Output_Value() task will behave co-operatively.  

Table 6.12 presents properties of task using TTP architecture. This is a fully pre- 

emptive TT-based design.  
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Table 6.12   Task properties of the FFT systems using TTP 

Name Delay (ms) Period (ms) Task priority 

Signal_Acquisition 0 1 3 

Frequency_Calculation 256 256 2 

Output_Value 256 256 1 

6.7.3 Hardware measurements 

A similar technique is used to measure the WCET of the tasks in which a pin on the 

ARM7 microcontroller is set high at the start of each measured task and is then set to a 

low point before the end of that task. The widths of the resulting pulses are measured 

using a National Instruments data acquisition card in conjunction with appropriate 

software. The resolution of the timing measurements is 0.1 microseconds. In each 

study, 10,000 consecutive pulse widths are measured for the lower priority task in each 

experiment in order to provide the results presented in this thesis.  

6.7.4 Experimental methodology for shared resources  

There are several techniques to be employed in order to protect shared resources using 

FreeRTOS. In this section, some of the methods applied in the experiment are 

described. 

6.7.4.1 Critical sections 

In order to protect shared resources which are said to be serially reusable, 

Enter_Critical()and Exit_Critical()functions are used. All the shared resources 

include certain peripherals, shared memory and the CPU should be protected inside 

these functions as shown in Listing 6.14.  
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Enter_Critical(); 
 
// Critical section codes 
// This code will be executed only by one thread at a time 
 
Exit_Critical(); 

Listing 6.14   Critical section 

These sections of codes are known as critical sections of codes. Once a task entered the 

sections, it cannot be pre-empted. 

 

Figure 6.12   Illustration of Synchronization Overhead 

6.7.4.2 Disabling and enabling interrupts 

One of the simplest ways to gain exclusive access to a shared resource is by disabling 

and enabling interrupts. In order to implement this, FreeRTOS provides two macros:  to 

disable and then enable interrupts from the C code: portENTER_CRITICAL()and 

portEXIT_CRITICAL(), as shown in Listing 6.15. 

void Enter_Critical(void) 
{ 
portENTER_CRITICAL(); 
} 
 
void Exit_Critical(void) 
{ 
portEXIT_CRITICAL(); 
} 
 

Listing 6.15   Disabling and enabling interrupts 
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6.7.4.3 Disabling and enabling scheduling 

Alternatively, if two or more tasks can share data without the possibility of conflicts, 

disable and enable scheduling can be used. While the scheduler is locked, interrupts are 

enabled, and if an interrupt occurs whilst in the critical section, the ISR is executed 

immediately. At the end of the ISR, the kernel always returns to the interrupted task, 

even if the ISR has made a higher priority task ready to run. The scheduler is invoked 

when xTaskResumeAll() is called to see if a higher priority task has been made ready to 

run by the task or an ISR. The sample for assessing the shared data by disabling and 

enabling scheduling is shown in Listing 6.16. 

void Enter_Critical(void) 
{ 
vTaskSuspendAll(); 
} 
 
void Exit_Critical(void) 
{ 
xTaskResumeAll(); 
} 

 

Listing 6.16   Disabling and enabling scheduling 

6.7.4.4 Semaphores 

The most popular synchronisation mechanism offered by most multi-tasking kernels is 

the semaphore. There are three folds of semaphores usage included to control access to 

a shared resource (mutual exclusion), to signal the occurrence of an event and to allow 

two tasks to synchronise their activities.  

Tasks designed to synchronise their activities execute wait and signal operations on 

shared semaphores. If a task executes a wait operation and the value of the semaphore 

is one or greater, then the task can decrement the semaphore and continue. If the 

semaphore has the value of zero at the time the process executes the wait operation, 
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then decrementing the semaphore would result in a negative value. In order to continue 

execution, the code should acquire a key or a semaphore.  

// The semaphore has been previously constructed 
void Enter_Critical(void) 
{ 
 xSemaphoreTake(lock); 
} 
 
void Exit_Critical(void) 
{ 
 xSemaphoreGive(lock); 
} 
 

Listing 6.17   Semaphore 

6.7.4.5 Disabling and enabling interrupt Mutex  

The implementation of mutex is shown in Listing 6.18. In TTP scheduling, a mutex 

mechanism is used to provide synchronisation of shared resources amongst tasks.  

// The mutex has been previously constructed 
void Enter_Critical(void) 
{ 
 Lock_the_mutex(); 
} 
void Exit_Critical(void) 
{ 
 Unlock_the_mutex(); 
} 

Listing 6.18   Mutex 

6.7.4.6 Message queue 

The implementation of the system is not similar to previous synchronisation methods, 

since this form requires a task to send “messages” into a queue as represented by the 

Signal_Acquisition ( ) task (in Listing 6.19); and another task is to receive “messages” 

from a queue and then perform the process as represented by the 

Frequency_Calculation ( ) task (in Listing 6.20).  
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Figure 6.13   Illustration of message queues 

Inter-process communication is achieved via the creation of queues. Most information 

exchanged via queues is passed by value and not by reference which should be a 

consideration for memory constrained applications. The queue reads or writes from 

within the interrupt service routines (ISRs) which are non-blocking. The queue reads or 

writes with zero timeout which are non-blocking. All other queue reads or writes block 

with configurable timeouts.  

void Signal_Acquisition(TTE_UNUSED void *params) 
{ 
 ADC_Init(SIGNAL_ADC, NULL); 
 
 while (TRUE) 
 { 
 uint16_t adc_reading = ADC_Acquire_Raw_Reading(SIGNAL_ADC); 
 
  if (xQueueSend(readings, &adc_reading, 0) != pdPASS) 
  { 
   Enter_Safe_State(); 
  } 
  
  vTaskDelay(1); 
 } 
} 

Listing 6.19 Send message queue 

 
void Frequency_Calculation(TTE_UNUSED void *params) 
{ 
while (TRUE) 
 { 
 static uint16_t adc_buffer[FFT_BUFFER_SIZE]; 
 
 for (uint32_t i = 0; i < FFT_BUFFER_SIZE; i++) 
 { 
 if (xQueueReceive(readings, &adc_buffer[i], 1) != pdPASS) 
  { 
   Enter_Safe_State(); 
  } 
 } 
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 static uint16_t freqs[FFT_FREQ_COUNT]; 
 uint16_t harmonic_freq = Perform_FFT(adc_buffer, 500, freqs); 
 
 if (xQueueSend(harmonic, &harmonic_freq, 0) != pdPASS) 
  { 
   Enter_Safe_State(); 
  } 
 
 for (uint32_t i = 0; i < FFT_FREQ_COUNT; i++) 
  { 
  if (xQueueSend(frequencies, &freqs[i], 0) != pdPASS) 
   { 
    Enter_Safe_State(); 
   } 
  } 
 } 
} 

Listing 6.20   Receive message queue 

6.7.5 Executing task in isolation with shared resources protection mechanisms 

It is not an easy task to test tasks in isolation, when shared resources protection 

mechanisms are involved. If a resource is being shared, this means that the values of the 

shared variables can also be modified by other tasks. Therefore, it is important to 

understand the possible inputs or data required for testing a task in isolation.  

The main concern is how to isolate lower priority tasks with a consideration of 

synchronisation, inter-task communication and protection mechanism issues. Protection 

mechanisms can be very complex and may make the task too complicated to test 

independently. Thus, it is important to identify which mechanisms can provide a small 

difference in execution times between the task which is executing in the complete 

system and the task which is running individually. Thus, the study aimed to compare 

the effects of timing behaviour of the tasks when the synchronisation involves both 

tasks (which can be observed when tasks are running in a complete system); and when 

there is no synchronisation involved (which can be observed when the task is running in 

isolation).  

In order to test a task in isolation for the lower priority Frequency_Calculation ( ) task, 

samples of ADC data are required. Supposing the data gathered by the ADC reading is 
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a sine wave, then a sample of the data time can be placed in that buffer for testing 

purposes as shown in Listing 6.21. These data represent sine wave input data which is 

stored in a shared buffer between the Signal_Acquisition () task and the 

Frequency_Calculation ( ) task. 

static uint16_t adc_buffer[FFT_BUFFER_SIZE]=  

{30, 143, 46, 308, 355, 18, 563, 0, 461, 195, 157, 490, 0, 

550, 46, 320, 348, 21, 427, 90, 256, 404, 0, 560, 0, 406, 263, 93, 526, 0,513, 
112, 243, 418, 0, 556, 0, 389, 280, 76, 532, 0, 501, 130, 223, 433, 0,555, 6, 
358, 299, 65, 540, 0, 493, 147, 208, 448, 0, 553, 17, 341, 315, 52,542, 0, 
481, 161, 190, 473, 0, 549, 32, 325, 338, 35, 547, 0, 469, 181, 172,481, 0, 
547, 40, 309, 347, 25, 552, 0, 456, 197, 156, 492, 0, 544, 54, 292,365, 13, 
555, 0, 445, 211, 142, 501, 0, 538, 77, 282, 379, 2, 554, 0, 427, 230,124, 
512, 0, 529, 97, 251, 396, 0, 559, 0, 414, 248, 109, 521, 0, 523, 113, 
249,411, 0, 560, 0, 398, 262, 80, 528, 0, 510, 127, 233, 427, 0, 558, 1, 383, 
281,65, 535, 0, 503, 145, 218, 439, 0, 555, 9, 367, 298, 52, 543, 0, 495, 160, 
199,456, 0, 552, 21, 348, 314, 40, 547, 0, 482, 168, 172, 467, 0, 548, 34, 
334, 329, 26, 552, 0, 471, 185, 164, 479, 0, 543, 48, 317, 361, 20, 553, 0, 
459, 202, 151,492, 0, 540, 60, 299, 376, 8, 557, 0, 447, 220, 137, 500, 0, 
536, 75, 283, 393,0, 559, 0, 432, 235, 118, 512, 0, 526, 90, 267, 409, 559, 
400, 253, 103, 299, 376, 8, 557, 393, 512, 0, 526, 90, 267, 409, 559, 400, 
253, 103, 299}; 

Listing 6.21  Sampled data in the shared buffer for testing purposes 

Once the data is defined, then the Frequency_Calculation ( ) task is ready to be tested in 

isolation – without the Signal_Acquisition () task and the Output_Value task as in the 

complete system. The WCET of the Frequency_Calculation ( ) task is recorded and 

compared with the WCET of the task while running in the complete system.  

6.7.5.1 Shared resources in the FFT system 

In order to demonstrate the effectiveness of shared resources of inter-task 

communication issues in the testing of an embedded system, a FFT system is used. In 

the FFT system, the tasks need to communicate with each other through the use of 

global variables as shown in Listing 6.22 and Listing 6.23.  
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The code shows that the adc_buffer [] array is filled with 256 samples by the 

Signal_Acquisition () task. Because the Frequency_Calculation () task executes once 

every 256 milliseconds or 256 of the Signal_Acquisition () task which is called every 1 

millisecond, it begins to execute after the Signal_Acquisition () task is released, and the 

locking mechanism of the adc_buffer [] array. 

// A shared (global) variables 

uint16_t adc_buffer[FFT_BUFFER_SIZE]; 

void Signal_Acquisition() 

{ 

 ……. 

Enter_Critical(); 

 adc_buffer[index++] = ADC_Acquire_Raw_Reading(SIGNAL_ADC); 

 Exit_Critical(); 

……. 

} 

Listing 6.22 Shared buffer in the Signal_Acquisition()task 

// A shared (global) variables 

extern uint16_t adc_buffer[FFT_BUFFER_SIZE]; 

void Frequency_Calculation() 

{ 

 ……. 

 Enter_Critical(); 

 harmonic_freq = Perform_FFT(adc_buffer, 500, NULL); 

 Exit_Critical(); 

……. 

} 

Listing 6.23   Shared buffer in the Frequency_Calculation()task 

Regardless of any pre-emption, the Frequency_Calculation () task is free to process the 

last 256 samples. Note that, the pre-emptive task (in this case, the Signal_Acquisition () 

task) cannot gather and buffer the next 256 samples since it is being blocked by the 

Frequency_Calculation () task. By using this technique, the shared variable or shared 

hardware can be prevented from any conflict.  



197 

Alternatively, to avoid resource conflicts without using critical section protections, 

double-buffered data arrays can be used as part of the software architecture. Instead of 

using a single adc_buffer[]array, a double-buffered adc_buffer[x][y]array can be used 

where x is an index variable to indicate the active array and y is the allocation of 256 

ADC data samples. The x value will be toggled after 256 samples are gathered which 

means that the next 256 data samples will be buffered in the second 256-size-buffer. 

Using this technique, the data are sampled without being blocked by other tasks. In fact, 

this is an easy way to implement this shared array without ever having to drop a single 

sample.  

6.7.5.2 Shared resources in the traffic light system 

In the traffic lights system example, the LCD is an example of shared hardware 

resource hardware. The LCD is used to graphically simulate the traffic lights functions, 

as well as the pedestrian traffic lights. Each task needs to take its turn in using the LCD. 

For example, in the Update_Lights () task, functions that will draw the traffic lights' 

colours on the LCD will be protected as shown in Listing 6.24. 

void Update_Lights() 

{ 

…… 

  Enter_Critical(); 

  TRAFFIC_Set_Light_State(1, TRAFFIC_RED); 

  Exit_Critical();  

…… 

} 

 

Listing 6.24   An example of shared resources mechanism for the traffic lights system  

As can be seen in Listing 6.24 when the TRAFFIC_Set_Light_State(1, 

TRAFFIC_RED) function is executing which means that the LCD is in use, other tasks 

are not allowed to pre-empt or use the LCD. When an interrupt occurs during this 

execution (for example, when the button is pressed), and the Button_Update () task 
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wants to access the LCD (as shown in Listing 6.25), the task has to wait until the 

Update_Lights () task “unlocks” the usage of the LCD.  

 

void Button_Update() 
{ 
……. 
   Enter_Critical(); 
   if (!button_pressed) 
   { 
    button_pressed = TRUE; 
    TRAFFIC_Set_Wait_Light(TRUE); 
   } 
 Exit_Critical(); 
 ……… 
} 

Listing 6.25   Critical section in higher priority task 

Once the shared resource is unlocked, the LCD can now be used by the 

Button_Update() task to display the “WAIT’ light onto the LCD screen. The 

effectiveness of the approach used to protect the shared resources is examined. The 

main concern is to find the best approach which produces less time difference between 

the task running in the complete system and the task running in isolation in the light of 

the protection of shared resources.  

6.7.6 Results for Case Study 2 

In the second case study, the system required a pre-emption task for the sampling of 

data in every 1 millisecond and needed to perform the FFT task, which has a very long 

execution time. Thus, the TTC was excluded when testing. However, the TTH 

scheduler (which supports a single time-triggered pre-emptive task can be added to a 

TTC scheduler) and can be employed to test the system.  

The double-buffered technique is also employed in the TTH implementation, along 

with lock-based synchronisation mechanisms.  
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Table 6.13 shows the synchronisation and shared resource protection strategies 

(implemented using standard RTOS) which have a different impact on the WCET of 

the task, ranging approximately from 90 to 130 microseconds. 

Table 6.13  Comparison of WCET of the Frequency_Calculation ( ) task execution times of an 

isolated task and a task in a complete system 

 

Software architecture 

WCET of Frequency_Calculation task (us) 

Task in the complete 
system Task in isolation 

Full-featured RTOS     

Disable Interrupt 6968.95 6875.10 

Disabled Scheduling 6989.95 6886.95 

Mutex 6995.50 6860.00 

Binary Semaphore 7004.95 6905.83 

Time-triggered architecture   

TTH 6858.05 6823.78 

TTP (Mutex) 6995.24 6921.51 

 

Disable interrupt techniques provide less difference than the other lock-based 

mechanisms. In contrast, mutex gives the highest difference amongst other techniques. 

A graph in  

Figure 6.14 illustrates the comparison of the difference between the WCET of 

Frequency_Calculation ( ) task using different shared resources strategies.  
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Figure 6.14   The maximum difference of WCET of Frequency_Calculation ( ) task 

 

TTH, which uses the lock-free based shared resources technique, showed a small 

difference of approximately 0.5%. The other software architectures, which support the 

pre-emptive scheduler, showed a difference between 1.5% and 1.8%. The TTP 

scheduler uses mutex techniques to synchronise the shared data. As can be seen, the 

difference of the isolated WCET and complete WCET of the task running in the TTP 

scheduler is smaller than the mutex implementation in RTOS by 0.7%. This may be due 

to the fact that the mutex implementation in RTOS is more complicated than its 

implementation in the TTP scheduler. This also shows that, the disable interrupt results 

in the lowest difference in comparison to the other FreeRTOS synchronisation 

strategies.  

The Frequency_Calculation ( ) task’s function takes a buffer filled with samples and the 

maximum frequency (half of the sampling rate) and returns the first harmonic 

frequency and displays it onto the LCD screen. Communication between the tasks will 

take the form of shared-memory. The shared resources (in this case a shared buffer) are 
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protected with disabled interrupts, disabled scheduling, semaphores and mutex. In 

addition, the message queue is also implemented to the system. Tasks with a higher 

priority sample the data and send it to the message queue. Conversely, the other task 

will receive the message queue and put it into the buffer. This technique requires 'send 

and receive' or 'write and read' text on the message queue.  

The 'send message queue' task must have higher priority than the 'receive' or 'read' from 

the message queue task. Thus, it is not possible to isolate the task which utilises the 

message queue mechanism as performed by the Frequency_Calculation ( ) task and the 

signal acquisition task in the FFT system.  

Table 6.14 presents the WCET of the Update_Lights()task implementation using four 

different software architectures and four different synchronisation and inter-task 

communication techniques. The WCET of the Frequency_Calculation ( ) task with the 

same implementation (excluding the TTC scheduler) as in the first case study is shown 

in table 6.13 

It is evident that a system with the TTC scheduler could easily reproduce the isolated 

task with similar behaviour as the task which is running in the complete system. A task 

which runs under the co-operative scheduler has less overheads and no pre-emption 

related costs in comparison to the pre-emptive schedulers. The results show that: 

Cpreempt > Cco-opeative 
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Table 6.14   Comparison of WCET of the Update_Lights()task execution times of an isolated 

task and a task in a complete system 

Software architecture 

WCET of Update_Lights()task (us) 

Task in the 
Complete System Task in Isolation 

Full-featured RTOS   

Disable Interrupt 33798886.33 33792841.94 

Disable Scheduling 33798500.33 33792841.94 

Mutex 32997972.90 32997915.45 

Semaphore 32998018.25 32997915.23 

 

Where Cpreempt is the execution time of a task in the pre-emptive scheduler and Cco-

operative is the execution time of a task in the co-operative scheduler. Overheads in the 

pre-emptive scheduler are caused by the time needed to save the state of the active task 

to a task-control block and the time to load the new active task state from the ready 

state; and also the effects of using synchronisation and inter-task communication 

strategies.  

In the TTC system (for the Update_Lights () task), the difference between the execution 

times for the isolated task and the same task “in situ” is 0.0015% (see Figure 6.15). 

Systems using the TTH and TTP schedulers have a difference between 0.06% and 

0.15%. By contrast, in the RTOS system, the difference is approximately between 0.12 

% and 0.14%. 
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Figure 6.15   The maximum difference of WCET of Update_Lights()task 

6.8 Discussion 

This section discusses the results of Case Study 1 and Case Study 2.  

6.8.1 Discussion for Case Study 1 

'Interrupt only' systems are a special case of foreground/background systems, which are 

widely used in embedded systems. The systems are easy to write and typically have fast 

response times because the scheduling process can be done via hardware. One major 

drawback of these systems is the time wasted in the jump-to-self loop and the difficulty 

in providing advanced services such as device drivers and interfaces to multiple-layered 

networks. This procedure can be tedious and error-prone. Another disadvantage is its 

vulnerability to malfunctions owing to factors including timing variations, 

unanticipated race conditions and, hardware failure. Some companies avoid such 

designs, which are based on interrupts for these reasons.  

Conversely, the TT approach provides a more attractive option for real-time systems 

requiring highly reliable behaviour, due to its predictability and safety benefits on 

offers (Allworth, 1981; Nissanke, 1997 and Pont, 2001). In the TT architecture, 
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numerous scheduling algorithms have been developed with different system 

behaviours. Some commonly used time-triggered scheduling algorithms are co-

operative scheduling, pre-emptive scheduling and hybrid scheduling (Pont, 2001). 

Systems that utilise the pre-emptive scheduler have more overheads in comparison to 

the co-operative based scheduler. Thus, it is much easier for the TTC scheduler to 

produce similar timing data for isolated tasks and in-situ tasks than the TTH and the 

TTP scheduler. If the TTC scheduler is used, similar timing data of a task can be 

reproduced as close to 99% to the task which is running in the complete system. 

Furthermore, some problems like priority inversion and recursive deadlock are 

observed as occurring during run-time only and are proven to be very difficult to 

reproduce. Thus, this makes the testing of pre-emptive based systems more difficult. In 

contrast, tasks run to completion, and the mutual exclusion issues are eliminated within 

the remit of the co-operative scheduler. 

6.8.2 Discussion for Case Study 2 

As noted in Section 6.5, the traffic lights system runs two tasks, the Update_Button () 

task and the Update_Lights () task which share a mutually exclusive resource (in this 

case, the button state variable), on which both operations are defined. Thus, the code 

implementing such operations is a critical section which must be executed in mutual 

exclusion. In these cases (except for the TTC scheduler), pre-emption is allowed and 

the Update_Button () task which has a higher priority than the Update_Lights () task, 

then one task can block another from accessing the critical section. For example, the 

Update_Lights () task is activated first and after a while, it enters the critical section and 

locks the semaphore. While it is executing its critical section, the Update_Button () task 

arrives as it has a higher priority, pre-empting the Update_Lights () task and starts 
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executing. However, when attempting to enter its critical section, it is blocked either 

using the disabled interrupts technique, the semaphore or mutex and the 

Update_Lights() task resumed. The Update_Button() task is blocked until the 

Update_Lights() task releases the critical section by enabling the interrupts or executing 

the signal(s) primitive, which unlocks the semaphore. 

Temporarily masking or disabling interrupts offers the lowest overheads which prevent 

simultaneous access to a shared resource. However, this method is typically used only 

when the critical section has a few instructions and contains no loops. When a binary 

semaphore is used for this purpose, then each critical section must begin with a wait(s) 

primitive and must end with a signal(s) primitive.  

Nevertheless, semaphore implementation may consume the inherent dangers such as 

recursive deadlock, priority inversion or task-death deadlock. All these problems occur 

at run-time and can be very difficult to reproduce and make the testing and debugging 

processes harder. The results also show that the implementation of these techniques can 

increase the system's overheads by 1% in comparison to the TTH synchronisation 

approach, and therefore making testing more difficult.  

The results of the overhead cost of the traffic lights system and the FFT system are not 

similar. The difference is mainly caused by the interrupt activities and significantly 

depends on the system operations. 

The concept of ownership in the mutex principles enables problems of semaphore 

implementation to be addressed. Mutexes guarantee that only one task can lock a given 

mutex. When that task unlocks the mutex, the other tasks can enter that code region. 

Semaphore and mutex operations are invoked each time a critical section is accessed 

and this represents a significant run-time overhead. The WCET of a task using the 
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semaphore mechanism occurs when the semaphore is already locked and when the 

system call is made. This type of overhead is associated with locking and unlocking the 

semaphores.  

Finally, the message queue technique was implemented on the FFT system. However, it 

is not possible to isolate the task as it requires two tasks for 'writing' and 'reading to and 

from' the message queue. 

6.9 Conclusion 

The chapter has presented the results from the case studies, which explored the testing 

of systems with a TT architecture and an ET architecture using pre-emptive scheduling. 

The results showed that – with the TT architecture – the timing behaviour of “isolated” 

and “in-situ” tasks is similar whereby the WCET of a task in TTC scheduling was 

easily reproduced for testing purposes. Conversely, when TTP scheduling was used, the 

WCET of a task was difficult to produce. Hence, from the results, it is apparent that the 

second hypothesis “Testing a system with a TT architecture incurs less cost than testing 

an equivalent system with an ET architecture, when an experimental-based method and 

comparative analysis are used” could be used to evaluate cost of testing for different 

software architecture.  

Systems that utilise a pre-emptive scheduler have more overheads in comparison to the 

co-operative based scheduler. The impact of additional synchronisation overheads in 

testing real-time systems has been discussed in this chapter. Some problems like 

priority inversion and recursive deadlock only occur during run-time and are very 

difficult to reproduce. Thus, this will make the debugging of pre-emptive based systems 

more difficult. In contrast, tasks run to completion using the co-operative scheduler, 

therefore causing and the mutual exclusion issues to be eliminated. In addition, using 
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lock-free techniques to underlying TT software architecture (i.e. TTH scheduler) could 

also reduce the testing effort in reproducing similar timing behaviour for any task that is 

running in isolation and the ones running in a complete system. It is anticipated that the 

findings of this initial study will lead to development in the field of cost testing 

assessment. 
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Chapter 7  

Effects of ET and TT architecture on the Cost of 

Verification at the Design Phase 

7.1 Introduction 

This chapter studies the cost analysis from the design perspective and provides the 

results of the final hypothesis under testing. The problem is defined and the parameters 

are identified which help to assess the cost of verification with the TT and ET design. 

The results are discussed at the end of this chapter. 

7.2 Problem statement 

In order to perform a design cost analysis for the software architectures TTP, TTC, 

ETC, ETP, the following hypothesis needs to be proven: 

The cost of verifying a system with TT design is always higher than that required to 

verify an equivalent system with various types of ET design. 

7.3 Problem description 

In embedded systems, especially in safety-critical designs, the cost is assessed in terms 

of intangible properties, such as the complexity and the time taken to design, time taken 

and verifying/testing the design. In other words, a good design is one which is carried 

out in the shortest possible time, utilises minimal resources, is easy to test and verify 

and is easy to implement, whilst meeting all the set requirements. Therefore, a cost-

effective design would have all of the above. 

In order to assess the cost-effectiveness, the parameters which form the basis of this 

analysis need to be defined, so as to compare the four architectures in the problem 

statements. The most critical functional block of a real-time embedded system, i.e. the 
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task scheduler, was chosen for the studies. Since the scheduler is embedded software, 

its design depends on the underlying selected architecture, and it must strictly meet 

given conditions, which is believed to assist in developing the necessary arguments for 

our said hypothesis. In addition, it is important to note that for each of the underlying 

architectures, the scheduler has to be designed accordingly, which turns out to be quite 

different in each case.  

A fundamental schedulability test approach in the real-time scheduling is assessed on: 

(1) comparison of the schedulability test between the ET and TT software architecture 

on their running time, lines of code and the required test inputs; and (2) examination of 

the impact of the testing performance with increased number of tasks. 

7.4 Adopted methodology 

In order to deduce the cost of design, schedulability analysis was utilised, therefore 

defining the tangible parameters for its analysis. The parameters are described as 

follows: 

• Number of inputs required: This consists of a set of task specifications for each 

architecture which is varied in terms of number and attributes. For instance, the 

most common and important ones are: Worst case execution times, deadlines and 

periods. A complete list is stated in Table 7.6. 

• Test running time: This refers to the time it takes to run a single test for a given set 

of tasks. It has to be measured, for the implemented schedulability test algorithm, 

which is not the scheduling algorithm. 

• Lines of code: This is the number of instructions written in the programming 

language, which are used to implement the schedulability analysis. 
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The use of a higher number of inputs has made the analysis more realistic and accurate, 

i.e. the test results are closer to the realistic implementation. Conversely, much effort is 

required to identify all task constraints, which indirectly requires more time in 

development, thus adding complexity to the design's cost. 

If the test running time is long, this causes the design to be time-consuming and 

cumbersome as it is now imperative to carry out tests during the design phase in order 

to verify the coding. 

It has been initially thought that small codes guarantee full functionality, however this 

is highly unlikely as in real applications lines of code indirectly influence the 

complexity of the programme. Therefore the larger the code size is, the more difficult it 

is to test and debug, causing an increase in complexity, and making it harder to 

maintain. Thus this can only mean that the lines of code are basic, meaning only the 

validity of the parameters needs to be assessed. 

Algorithms are ported to a single programming language, i.e. C for TTSA; and RTA 

and Heurisic from Matlab codes (TORSCHE) (Sucha et al., 2006).  

The pseudo codes for each are found in the appendices section (refer to Appendix -C). 

In order to find LOC, the algorithms are ported to C. It was difficult to implement the 

complete functionality especially the heuristic search, and therefore, in this case the 

actual comparison is undertaken using the original codes.  

The test running time is implemented in Matlab (Mathworks, 2010) and Visual C++ 

(Microsoft, 2010). The time required for the code to run, was measured using a timer 

function.  
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Table 7.1  Methods used for measuring the test running time, for the TTSA, RTA and 

heuristic algorithms. 

Schedulability 
Test Algorithms 

Programming 
Environment 

Measurement Method Number of Tasks  

TTSA Visual C++ Custom Timer Function  2, 10, 50, 80, 100 
RTA Matlab Custom Timer Function  2, 10, 50, 80, 100 

Heuristic Matlab Custom Timer Function 2, 10, 50, 80, 100 

 

As the programming environment used to run the schedulability test was different, the 

difference between the timer functions in Matlab and Visual C++ were identified and 

carried out by implementing the same logical function with a similar code size. The 

running times for both programming environments was compared. The results showed 

that, without being fully optimised, the Visual C++ running time was greater than 

Matlab by a factor 0.358. 

7.5 Experiment setup 

7.5.1 System specifications 

The algorithms for the test running time were tested, on a desktop PC with a 2.66GHz 

Intel Core Duo Processor E6750, 2GB RAM, running Windows XP Professional 

(v2002 sp3), MATLAB R2010a, and Microsoft Visual C++ (2010 Ultimate). 

7.5.2 Test set generation 

The tests were carried out for the stated number of tasks, three times per test, with the 

average times calculated as described in the results. A task set was established prior to 

testing the algorithms. A successful task set was created using the Hit and Trial method 

in which it was schedulable by all of the three algorithms. A typical task set is depicted 

in Table 7.2, Table 7.3 and Table 7.4. 
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Table 7.2  The RTA sample task set. 

Name  Processing Time Period 
t1 51 1000 
t2 3000 5000 
t3 2000 25000 
t4 1000 25000 
t5 1000 40000 
t6 1000 40000 
t7 1000 50000 
t8 1000 50000 
t9 1000 50000 
t10 2000 80000 

 

Table 7.3  Sample data of heuristic search schedulability test. 

Name  Processing Time Release Time 
t1 3 10 
t2 5 9 
t3 5 7 
t4 5 2 
t5 9 0 
t6 3 10 
t7 5 9 
t8 5 7 
t9 5 2 
t10 9 0 

 

Table 7.4  Sample data of TTSA Schdelability test (Gendy, 2008). 

Task 
WCET 

(us) 
Deadline 

(us) 
Period 

(us) 
Jitter 
(us) 

Exclusion Precedence 
Distance 

(us) 
Latency 

(us) 

1 496 3964 4000 1614 
 

Task A 
excludes 
Task C 

 
Task A 

precedes 
Task C 

 
Distance 
between 
Task A 

and Task 
C is 
3335 

 
Latency 
between 
Task A 

and 
Task C 
is 3921 

2 828 4711 10000 9488 

3 64 3673 4000 67 
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Table 7.2, Table 7.3 and Table 7.4 illustrate the time taken from when the test input 

starts to be processed to when the test output is produced. It was found that when a 

TTSA test is carried out the number of task sets are tested in order to determine their 

schedulability and run times are calculated. Conversely, the number of task sets in RTA 

are declared schedulable by each test when running times are calculated.  

A set of task specifications including task execution time and period were required as 

the test input for the RTA and TTSA tests. However, for the latter, some additional 

inputs of tasks constraints such as jitter, distance, latency, precedence and exclusion 

were necessary also. The outputs from the RTA test were: 

• The worst case response time of the task. 

• The result of the schedulability of the tasks i.e. whether the tasks are schedulable or 

not. 

• The list of schedulable tasks. 

The outputs of TTSA test were: 

• The list of schedulable tasks and their offsets. 

• The list of unschedulable tasks. 

• The tick interval. 

The outputs of the heuristic search test were: 

• The results of the schedulability of the tasks. 

• The list of schedulable tasks. 

In this test, periods were randomly distributed in the interval [Pmin, Pmax], where 

Pmin = 1 and Pmax = 100,000,000 unit of time; and the WCET, Ci were randomly 

distributed in [0, 10000]. The task characteristics and constraints were randomly 

generated in accordance to the test of the input requirements. The details of the 

numerical values used for parameters are shown in Table 7.5. 
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Table 7.5  Numerical values used for test running time analysis. 

 Response Time  

Analysis for  

ETP 

Time Triggered 

Schedulability 

Analysis for TTC and 

TTP 

Heuristic Search  

for 

ETC 

WCET [0, 10000] [0, 10000] [0, 100] 

Release Jitter - [0, 1000] - 

Period [0, 100000000] [0, 100000] - 

Deadline - [0, 10000]  

Distance - [1,10000] - 

Precedence - [0, 1] - 

Exclusion - [0, 1] - 

Latency - [1,10000] - 

Jitter - [0, 10000] - 

Scheduling 

Overhead 
- [0,100] - 

Release Time -  [0,100] 

Offset -   

 

The execution time of the schedulability test for the sets of tasks was assessed using the 

RTA, TTSA and heuristic search (based on earliest computation first) algorithms. The 

measurements of the execution time were carried out using a simple (custom) schedule 

simulator, running on a desktop PC 2.66GHz Intel Core Duo CPU. The time taken from 

the start of the input being processed and produced is recorded. The setting for the 

TTSA test entails the number of task sets tested schedulable or not by each test with its 

running time calculated. In addition, the number of task sets declared schedulable by 

each test in the RTA and its running time are calculated. The results for the TTSA 

undertaken and the RTS test are found in Figure 7.2. 
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7.5.3 The evaluation platform 

The study is conducted on a desktop PC 2.66GHz Intel Core Duo CPU running 

Windows XP. The code counter software that supports C/C++ and its header as well as 

assembly language is used to count the lines of code.  

7.5.4 Measurement of the lines of code 

A similar method to that mentioned in the previous experiment was used for measuring 

LoC for the implementation of the schedulability test.  

7.6 Results for the cost of design 

This section presents an analysis of the costs associated with verifying the timing 

constraints during the design phase.  

7.6.1 Number of inputs required for the test 

In Table 7.6 a comparison of the number of inputs required to perform the 

schedulability analysis, is tabulated. This delivers a comparison in the number of inputs 

required to perform a schedulability analysis. As can be seen, the RTA and heuristic 

search algorithms require four inputs; whilst the TTSA requires nine items of timing 

information in order to perform the schedulability test. The number of inputs was 

derived from an in depth studies of the RTA, TTSA, and Heuristic Search theories, and 

the TORSCHE software (Sucha et al., 2006) which implemented the algorithms in 

further depth. These are the only number of inputs required, since these are the 

parameters defined in the functions. 

In order to meet these requirements, the theory of RTA (Audsley, 1993), TTSA 

(Gendy, 2008) and heuristic search (Stankovic, 1989) and the TORSCHE software 

(TORSCHE, 2001) which implemented the algorithms was studied in depth and the 



216 
 

 
 

number of inputs used was the number of inputs tabulated. As mentioned earlier, these 

are the only inputs required, since the parameters were defined in the functions.  

Table 7.6  Number of inputs required for the schedulability tests analysis. 

Response Time  
Analysis for  

ET-P 

Time Triggered 
Schedulability Analysis 

for TT-C and TT-P 

Heuristic Search  
for 

ET-C 
• WCET 
• Release jitter 
• Period 
• Deadline 

• WCET 
• Deadline 
• Period 
• Distance 
• Precedence 
• Exclusion 
• Latency 
• Jitter 
• Scheduling 

overhead 

• WCET 
• Release time 
• Deadline 
• Precedence 

4 No. of Inputs 10 No. of inputs 4 No. of Inputs 
(Audsley et al., 1993). (Gendy et al., 2008, 

Gendy and Pont, 2008a, 
Gendy and Pont, 2008b). 

(Bletsas, 2007 and 
Buttazzo, 1997). 

 

7.6.2 Lines of code (LOC) schedulability analysis algorithms 

MATLAB implements RTA and Heuristic Search codes, which were ported to C, using 

the Matlab Coder (MatlabCoder, 2012). Although the ported code was not optimised, 

due to lack of time, and complexity of the code, just the ported code was considered in 

our comparisons. Therefore, the LOC is considered as a weak parameter in our 

comparative studies. However, TTSA was already written in C, by one of our research 

members, Gendy (2008).  

Since TTSA was written in C language, therefore, for a fair comparison, RTA and 

heuristic search codes, were also ported to C. The lines of code computed are depicted 

in Figure 7.1. It is evident that the total LOC of the TTSA test is greater than the RTA 
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test by 61%. Conversely, the LOC of the heuristic search algorithm is higher than the 

RTA and TTSA. 

 

Figure 7.1  LOC of TTSA and RTA schedulability test. 

An initial observation suggested that more LOC was required in the TTSA 

schedulability test when compared with the RTA schedulability test. However, in 

comparison with the TTSA algorithm, the heuristic search algorithm has more than 

2000 LOC. This number is higher than TTSA’s LOC. This is due to the fact that the 

search technique is rather complex for implementation, in order to consider timing 

constraints of each task such as release time and execution time. 

7.6.3 Comparison of running time of the schedulability test algorithm  

In order to explore the efficiency of the schedulability test, each schedulability test was 

tested from a small number of tasks to a large number of tasks. 
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Figure 7.2  Comparison between the RTA, TTSA and heuristic search algorithm 

As can be seen from Figure 7.2, there may be significant effects proceeding from the 

schedulability test execution time when the task constraints are included. The number 

of tasks in each test varied from 2 to 100. Clearly, as the number of tasks in an 

application increases, the execution time when calculating the worst-case response time 

and arranging the task ordering in finding the suitable offsets of the tasks rapidly 

increases with the schedulability test execution time.  

It is worth noting that, although the RTA test had a faster execution time than the TTSA 

test; theoretically, the RTA alone has pseudo-polynomial complexity when the number 

of tasks increases (Bini, 2004). This is due to the increment in the number of steps or 

iterations in the innermost loop of the RTA test as a function of the number of tasks. 

For example, the RTA test used 5 iterations to calculate the worst-case response time of 

the 2 tasks and took 0.00175 microseconds for testing. When the number of tasks 

increases to 100, the number of iterations increases to 677825 with a total execution 
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time of 0.0404 microseconds. However, the effects of the number of tasks to the RTA’s 

running time can be seen more evidently in the experimental results. In this experiment, 

it shows that when the number of tasks grows, the execution time for running RTA 

increases exponentially. Thus, the relationship for RTA and number of tasks is 

exponential rather than pseudo-polynomial as mentioned in the scheduling theory.  

In contrast, the schedulability analysis of TTC and TTH required more time than the 

RTA test. For instance, in order to test the schedulability of 20 tasks, the RTA took 

0.00268 microseconds to run, whereas the TTSA takes 0.18 seconds. The TTSA testing 

process applied a longer execution time to sort the tasks in accordance to their task 

constraints and scheduling techniques. The purpose of this process was to find suitable 

offsets of the tasks and to locate the appropriate tick interval in order to schedule the 

tasks. Unlike RTA, TTSA's execution time functions proportionally and increases by 

the number of tasks. 

The results imply that that the pre-emptive schedulers' schedulability analysis generally 

outperforms the co-operative schedulers' schedulability analysis. However, the RTA 

test did not consider the task constraints, which affected the results of the scheduling 

theory and its implementation. Conversely, the TTSA test considered all the task 

constraints such as task jitter, precedence, overheads and latency, since the test was 

used with static scheduling. Thus, the scheduling theory for the TTSA test could have 

much closer analysis to its implementation realities. In a real scheduler implementation, 

processor attributes contribute to the amount of overhead and blocking projected. Thus, 

a small gap between scheduling theory and its implementation could be meaningful for 

validating the correctness of the timing properties of real-time applications.  
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As mentioned by Butazzo (Buttazzo, 2005a), the problem of finding a feasible schedule 

become NP-hard for a periodic task and non pre-emptive scheduling. Such scheduling 

algorithms adopted in the Spring kernel (Bletsas, 2007), as well as other researchers 

such as Burns (Burns et al., 1995), Jeffay (Jeffay et al., 1991b), Tindell (Tindell et al., 

1992) and Short (Short, 2011). A heuristic search is usually used to make the algorithm 

computationally tractable. The search algorithm can be based on a heuristic search 

function that can behave as the First-Come-First-Serve, the Shortest-Job-First or the 

Earliest-Computation-First.  

7.7 Discussion 

The work presents the first evaluation results for four different software architectures. 

TTSA can be used to make a constructive schedulability test for TTC and TTH (TT 

with limited pre-emption) schedulers; whilst the RTA and heuristic search algorithm 

are used for ETP and ETC schedulers. The RTA schedulability analysis, commonly 

used for schedulability analysis for fixed priority scheduling approach, has a 

sufficiently short execution time in a small system domain. This can provide benefits to 

real-time applications which require online scheduling computation (Buttazzo, 2005a).  

However, the RTA has pseudo-polynomial complexity and this affects the test 

performance when the number of tasks gets larger. Thus, RTA is unsuitable for large 

real-time applications which require online scheduling.  

Figure 7.2 reveals that the TTSA takes a longer time to run the test than RTA. This is 

due to the fact that the TTSA finds a workable scheduler by using a heuristic but not an 

exhaustive search in addition to adding the offsets onto the tasks (Gendy, 2008). In fact, 

the test also includes all task constraints such as task jitter, precedence and overheads. 

The test requires more knowledge of timing constraints than the RTA and the heuristic 
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search algorithm. The standard RTA test and heuristic search test do not take into 

account such task constraints in its computations. By considering task constraints in the 

schedulability analysis, this could reduce the gap between scheduling theory and its 

implementation in real applications.  

It is worth mentioning that the TTSA is a constructive schedulability analysis which is 

normally used in offline scheduling to ensure that all the timing constraints are met. 

Since the offline scheduling computes all the timing requirements before runtime, it 

makes the execution time unnecessary for TT architecture. In fact, more complex 

schedulability analysis can be applied to the test (Xu, 2006). Unlike TT architecture, ET 

architecture is normally associated with online scheduling. Although ET architecture 

schedulability analysis such as RTA has a fast execution time, this is not always true in 

all types of ET architecture. For ET architecture with co-operative scheduling, its 

schedulability analysis is based on a heuristic search (Butazzo, 2005). As can be seen 

from the results, the LOC of the heuristic search algorithm is higher than RTA and 

TTSA.  

It is important to have a minimal execution time in the light of the schedulability test as 

well as suitability to use all the system's domain sizes for online scheduling or ET 

systems (Davis, 2008). It also has the least gap between scheduling theory and its 

implementation (Katcher, 1993). In order to minimise the gap between scheduling 

theory and its implementation, specifically for RTA, the analysis should be extended to 

account for operating system costs such as overheads and/or blocking costs. However, 

the computation will become more complicated and longer. 

The LOC of TTSA represents the complexity of implementing the schedulability test 

for TT architecture. Conversely, the LOC of RTA represents the complexity for 
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implementing the test on a set of tasks running under ET architecture in order to 

determine whether it is schedulable or not. The results from Section 7.6.2 show that the 

TTSA program has higher LOC than the RTA program. This suggests that the use of 

ET architecture requires less effort for implementing as opposed to the TT architecture. 

However, with regards to the schedulability test design perspective, the TTSA 

schedulability test is facilitated by many automatic procedures contained in its 

programs. For example, it provides a suitable tick interval for the systems and 

appropriate offsets of the tasks to be scheduled. Conversely the RTA schedulability test 

is much simpler since it is only making use of a ceiling function to test the 

schedulability of a set of tasks.  

7.8 Conclusion 

This chapter presents the final evaluation of temporal verification of real-time 

scheduling behaviour based on the last hypothesis: The cost of designing a system with 

a TT architecture is higher than that when designing an equivalent system with an ET 

architecture. Scheduling theory is an important means to validate the timing correctness 

for real-time applications. Therefore, for this purpose, a few commonly used 

schedulability analyses performed in ET and TT scheduling algorithms were reviewed. 

Then, the effect of the execution time of the schedulability test for RTA, TTSA and 

heuristic search algorithms was discussed. This assessment provided a basic 

comparison approach for evaluating the cost performance for real-time software at the 

design phase. The cost of design of software architecture was evaluated by measuring 

the time taken to run the schedulability test and LOC of the schedulability test 

algorithm. The impact of the increments in the number of tasks for each metrics was 

demonstrated and recorded. The results prove that the hypothesis is not valid for all 

categories of ET and TT architecture. It was also shown that an ET with pre-emptive 
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scheduler incurs lower design costs in comparison to TT architecture. However, the 

current TT schedulability test shows that performance is better than that for the 

previous TT schedulability test, which is viewed as too fragile. In fact its complexity is 

less than the ETP schedulability test.  
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Chapter 8  

Conclusions 

8.1 Overview of the work conducted 

The work described in this thesis began by exploring ways in which software 

architectures could be used to support the development of cost-effective and reliable 

embedded systems. Specifically, the initial aim of this study has been to determine 

whether the use of a time-triggered software architecture (Pont, 2001a) can provide any 

benefits to find a cost-effective solution to verify the system’s timing behaviour at 

design, implementation and verification phases of the software development process. 

An extensive comparison based on experimentation, for pre-emptive versus co-

operative scheduling, was carried out, and the results have been promising, favouring 

co-operative schedulers. Although ET-based schedulers are not included in the 

experimental comparison, a similar outcome/result can be deduced as encountered 

throughout the TT-based study. 

The second assessment, in terms of comparative studies, was  undertaken to evaluate 

the testing cost implication on ET versus TT architecture for which two case studies 

have been carried out. Both were designed and implemented on a hardware, and their 

WCET’s measured under isolated task test conditions, as well as the overall system's 

task test condition. The implemented case studies have verified that TT-based 

architecture is much quicker and easier to test, as compared to ET. The TTC within the 

TT architecture has proven to be the best performance in terms of testing. 

In order to assess the impact of synchronisation methods on the testing, experimental 

hardware-based evaluation studies have been undertaken, based on Free-RTOS. This 

real-time operating system which supported the synchronisation algorithms is generally 
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not available in the customly developed embedded software architecture i.e. ET, or TT. 

Thus the easier the task can be isolated, the faster and more efficient the testing 

becomes. It has been found that TTH performs the best in comparison with the TTH, 

TTP and other custom RTOS. This is primarily due to the fact that TTH provides the 

lowest percentage difference in the timings of isolated tasks. 

A method for evaluating embedded real-time software architecture was followed to 

assess three main phases: design, implementation and testing. The method was 

proposed to rapidly assess the overall cost involved: which can be used to specifically 

the ET and TT systems.  

8.2 The efficacy of a software architecture evaluation approach 

Three main effects of timing verification of embedded software were investigated: the 

schedulability test cost, the implementation cost and the testing cost. Based on these 

evaluations, it could help designers to make a wise decision in order to choose which 

architecture is best to use for developing a low-cost system.  

8.2.1 Impact of software architecture on cost of design 

Schedulability analysis is an important formal testing strategy applied to test whether a 

set of tasks is schedulable or not in a real-time scheduling algorithm. The most popular 

priority-based scheduling and dynamic scheduling schedulability test is based on CPU 

utilisation performance and response time analysis (RTA) (Liu and Layland, 1973; 

Burns and McDermid, 1994; Buttazzo, 2005a; and Bini et al., 2003). Conversely, for 

TT architecture, constructive schedulability analysis such as the heuristic search, branch 

and bound and time-triggered schedulability analysis (TTSA) are usually used (Xu and 

Parnas, 1990; Burns et al., 1995, Gendy and Pont, 2008a and Short, 2012).  
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The schedulability test is performed with timing properties information of tasks in 

mind, covering aspects including the task period, worst-case execution time and 

deadline. The costs of performing the schedulability test for TT pre-emptive and co-

operative systems (represented by time-triggered schedulability analysis – TTSA 

(Gendy and Pont, 2008a)) and ET pre-emptive and co-operative systems (represented 

by response time analysis – RTA (Tindell et al., 1994 and Davis et al., 2008) and the 

heuristic search (Bletsas, 2007 and Buttazzo, 2005a)) are examined to identify which of 

these architectures provides less cost in performing the schedulability analysis of a set 

of tasks (see Chapter 7). The results have suggested that although the cost of 

schedulability analysis alone is not a perfect metric for comparing cost evaluation of the 

ET and TT architecture, it can still be used to estimate the cost of design for reliable 

embedded systems. It has also been noted that the cost is less in TT designs, as opposed 

to ET designs adopting co-operative scheduling strategy. 

8.2.2 Impact of software architecture on cost of implementation 

There is still a big gap between the schedulability analysis and the implementation 

results of real-time timing properties. Nevertheless, it is also impossible to take into 

account all overhead factors in the formal analysis. Audsley (Audsley et al., 1995), 

Burns (Burns and McDermid, 1994) and Katcher (Katcher et al., 1993) which improved 

the schedulability analysis for the TT and ET architecture by considering the context 

switch, blocking and scheduling overheads. The ET architecture produces more context 

switch overheads than the TT architecture while the TT architecture produces more 

blocking overheads than ET architecture (Katcher et al., 1993). The results presented in 

Chapter 6 have clearly shown that the effects of cost implementation of the TTP 

scheduler such as memory, LOC and processor utilisation are higher than the TTH and 
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TTC schedulers. In fact the overhead costs of the TTP architecture increase 

exponentially when the number of tasks increases. The results also suggest that the 

overall implementation cost can be reduced if the co-operative scheduling is used 

effectively.  

8.2.3 Impact of software architecture on the cost of testing 

As mentioned by Myers (1979) and Tsai et al (1989), the fault localisation represents 

perhaps 95% of the problem. Hence, the testing strategy focuses on the process of fault 

localisation in order to find the source(s) of faults at task level. The testing strategy in 

this study has observed the timing behaviour of the tasks when the task in isolation 

method is performed.  

The hypothesis of this evaluation is that the testing will be easier for systems in which 

the timing data obtained for isolated and in-situ task is very similar. Two case studies 

have been presented (in Chapter 7) to evaluate the easiness of testing in the TT 

architecture and the ET architecture.  

A system has been developed in different software architecture including the ET, off-

the-shelf RTOS – FreeRTOS and TT architectures. The idea being to observe which 

architecture is more difficult to produce the WCET of task when the task needs to be 

tested in isolation. A test harness has been employed to help the isolated task to 

reproduce its WCET behaviour as in the complete system. In addition, inputs of the 

task, in this case, the events – should be identified so that expected outputs can be 

monitored. However, this is not the case for the ET architecture since it involves too 

many possible inputs or testing points, which have to be observed – the events can 

occur at any point in the system. Thus, it is difficult to reproduce a similar timing 

behaviour for isolated tasks under the ET architecture. Unlike the ET architecture, 
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observation points are easy to identify in TT designs – only during the tick interrupt 

(Schu\tz, 1993). In fact, the WCET of the isolated task produced during testing using 

the TT architecture was found to be 99.9% similar with the WCET of the task run in the 

complete system.  

8.2.4 Effects of shared resources synchronisation mechanisms 

Finally, in this study, the impact of synchronisation and inter-task communication on 

testing cost has been examined. As many synchronisation mechanisms include the 

application of the lock-based and lock-free techniques in the ET architecture and pre-

emptive scheduling, it was important to evaluate which of these mechanisms could 

provide the minimum effort in testing tasks in isolation.  

Many standard RTOS support several synchronisation mechanisms such as semaphore, 

mutex, disable interrupt and disable scheduling. Thus, the analysis of the effects used 

the RTOS platform to compare all those techniques. It has shown that the usage of 

semaphore and mutex could increase the difference between the WCET of task in 

isolation and the WCET of task in the complete system. The effectiveness of the TTP 

synchronisation method has also been covered in this study as well as the message 

queue techniques. The TTP synchronisation method has also provided a large overhead 

that could make task timing behaviour hard to reproduce.  

However, using the TTH scheduler with double-buffer techniques – in the absence of 

the synchronisation locking methods, the timing behaviour obtained for isolated and in-

situ task has been very similar.  

Although in most cases, tasks can be isolated, however, based on the analysis, tasks 

which have used message queue as inter-task communication methods could not be 

easily isolated. In order to perform the message queue techniques, it requires the higher 
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priority task sent and another task, usually of lower priority, to receive and process it. It 

is impossible to isolate the lower priority task of the message queue since the queue 

must firstly be filled in with the higher priority task's data. Thus, it implies that the 

message queue techniques are not an appropriate method of communication for testing 

tasks in isolation.  

8.3 Evaluation of the software architecture analysis methods  

The results of software architecture evaluation method on the cost of design, 

implementation and testing have shown an obvious comparison between the ET and TT 

systems as well as the pre-emptive scheduling and co-operative scheduling. We have 

summarised the differences between the reviewed methods for evaluating the software 

architecture. All approaches have focused on software, and are intended to be used by 

embedded software supplier organisations. 

Each of the methods under evaluation has been distinguishable concerning the specific 

goal of the method. All the methods had the same overall goal, i.e. to compare the cost 

of software architecture.  

In principle, Bate’s method, has been improved, by incorporating costs of 

implementation, and testing and verification. Thus even for evaluating the design costs, 

the two additional costs are to be assessed. This adds rigorous evaluation, but based on 

this thesis, these two costs are deemed essential for the evaluation model. 

Kazman’s strategy is related to applying the ATAM approach while the architecture is 

still on paper. After attribute taxonomies of software architecture are developed, some 

screening questions are constructed in order to facilitate the comprehensive elicitation 

of relevant attribute-specific information. However, when using an evaluative approach, 
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it is very difficult to ensure complete coverage of trade-off comparisons that can be 

implemented, particularly for large systems.  

Conversely, Bate’s (2008) evaluation method provides a more quantitative comparison 

for evaluating software architecture. All objectives within the system which are derived 

from arguments and goal-oriented mechanisms are converted into weighted values. The 

results from each stage are combined with the weighted values in order to obtain the 

overall cost of the design modifications. Although Bate claimed that this approach 

could support maintainability of the system in a systematic way, it is possible to see 

that his evaluation method can confidently help designers to make design choices. 

Table 8.1 provides a comparison of evaluation methods for real-time software 

architecture.  
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Table 8.1  Comparison with current Evaluation approaches for Software Development 

 

User Validation

Method/Author Specific6goal Method

Quality6attributes6(maintainability,6
reusability,6modifiability,
adaptability,6development

or6operational6cost,6performance,6
reliabilitytestability6and6portability)

Stage6of6the6
development6lifecycle Application6domain Input/Output Users'6involvement Cost6of6design6 Cost6of6

implementation Cost6of6testing Evaluation6technique Tool6support Method's6activities Validation

SAAM,%Kazman,%
1993

Identify the potential SA 
risks

Scenario3based%
method

Single%quality%attribute:%modifiablity%
analysis

After%specification%
phase%and%before%

implementation%phase
Combat and avionics systems

Requirements%
specifications,%

business%drivers%and%
software%architecture%

descriptions.

Architects, designers, 
and end users

√ x x Purely%scenario3based SAAMTOOL
Use%scenario%profiles%to%
categorise%the%generated%

scenarios

Validated in several 
domains

ALMA

Predicting%modifiability%cost%
based%on%risk%assesment,%

maintenance%cost%prediction%
and%softwre%architecture%

comparison

Scenario3based%
method

Single%quality%attribute:%modifiablity%
analysis

After%specification%
phase%and%before%

implementation%phase

Embedded%systems,%
telecommunications,%
and%information%

systems%

Requirements%
specifications,%

business%drivers%and%
software%architecture%

descriptions.

Designers%only √ x x
Uses a variety of 

approaches depending 
on evaluation goals

Not%available
Use%scenario%profiles%to%
categorise%the%generated%

scenarios

Validated%in%several%
domains

PASA To%identify%and%mitigate%
performance%related%risks

Scenario3based%
method

Single%quality%attribute:%
performance%analysis

After%specification%
phase%and%before%

implementation%phase

Embedded%systems,%
telecommunications,%
and%information%

systems%

Requirements%
specifications,%

business%drivers%and%
software%architecture%

descriptions.

Developers%and%
Maintainers √ x x

Combines%scenarios%
with%performance%

modelling
Not%available Use cases and scenarios to 

identify performance goals
Validated%in%several%

domains

ATAM%
(Kazman,1994,%

1999)

Identifies%and%analyses%
sensitivity%and%trade3off%

points%as%these%can%prevent%
the%achievement%of%a%

desired%quality%attribute

Scenario3based%
and

attribute%model3
based%analysis%
technique

Multiple%quality%attributes Requirement%phase Combat%and%avionics%
systems

Requirements%
specifications,%

business%drivers%and%
software%architecture%
descriptions,%trade3off%

points

Architects,%designers,%
and%end%users √ x x

Integrates%existent%
questioning%and%

measuring%techniques:%
attribute%model3based%

analysis

Information%provided%
by%experts/reusing%
information%derived%
during%previous%

applications%of%the%
technique

provides%a%six3element%
framework%to%characterise%

quality%attributes,%and%uses%a%
utility%tree%for%generating%and%

classifying%scenarios

Validated%in%several%
domains

Bate,%2008 To%understand%and%
evalutaing%design%trade3offs

Goal3oriented%
approach

Maintainability,%reusability,%
modifiability%of%the%system's%design Design%trade%off Safety%critical%

application

Requirements%
specifications,%Top3
level%objectives

Designers%and%
Maintaners √ X X

Use%safety%
argumentation%to%build%

design%arguments

Systematic%means:%
simulated%annealing%

and%genetic%algorithms

Convert%design%arguments%to%
a%quntifiable%measure%and%a%

appropriate%weighting%
applied

Based%on%case%study

GBRAM%(Anton,%
1996%)

To%identify,%elaborate,%refine%
and%organise%goals%for%

requirement%specifications

Goal3oriented%
approach

Single%quality%attribute:%modifiablity%
analysis Requirement%phase Air%Force%Base%(AFB)

Requirements%
specifications,%

business%drivers%and%
software%architecture%

descriptions.

Analyst,%Stakeholders x x x Combine%scenario%and%
goal%analysis Not%available

Objectives%are%mined%from%
existing%sources%

(documentations%and%
usecase),%Goal%analysis

Not%yet%validated%on%
real%projects

Proposed%
software%

architecture%
evaluation%

To%identify%and%compare%
cost%%of%testing%and%
verfication%at%design,%

imlementation%and%testing%
phase

Goal3oriented%
approach Correctness,%Testability,%Verifiability

Design,%
Implementation,%

Testing

Embedded%real3time%
systems

Requirements%
specifications,%

objectives,%software%
architecture%
description,%

experimental3based%
results

Designers%and%
developers √ √ √

Use%goal%arguments,%
case%study%and%measure%

cost%of%design,%
implementation%and%

testing%phase

Experimental%means Convert%design%arguments%to%
experimental%assesment

Validated%at%design%
(schedulability%test),%
implementation%

(scheduler%
implementation)%and%
testing%phases%(traffic%
light%and%FFT%systems)

Context Content
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When using NIMSAD as a tool for comparative analysis, the following observations 

were made: it is possible to show results such as quality attributes, methods or 

techniques used and input/outputs when implementing software architecture evaluation, 

as categorised within the software architecture evaluation context. The ‘User’ section, 

only includes the category of user’s involvement, since this represents the potential for 

those who can obtain benefits from the software architecture evaluation method. 

‘Evaluation techniques’ and ‘Method activities’ partly overlap in content. For the 

analysis of ‘Validation’, there are combinations presenting maturity of method and 

method validation; in addition there are characterisations associated with the validation 

of methods as applicable to a real application. 

Kazman (1994) and Bate (2008) provided a software architecture analysis based on 

trade-off analysis to identify a suitable design; however, in this study, a different angle 

of analysis was introduced which considers more comparative and quantitative 

evidence prior to the appropriate software architecture being chosen. The results of this 

can be clearly seen on plotted graphs for the ET and TT architecture, based upon 

scenario and measurement-based techniques. In addition, most other approaches do not 

consider implementation costs or testing costs. In this study, costs from three main 

development lifecycles have been considered based on the proposed hypotheses and 

experimental works. Thus, it is apparent that the results produced, such as lines of code, 

schedulability analysis running time, ease of isolating an individual task, have shown 

different characteristics for each software architecture and scheduling algorithm. 

However, more qualitative results need to be presented to compare the costs involved in 

designing a system using TT or ET architecture.  

Systems under testing, can benefit from the proposed methods. The evaluation method 

can provide results that increase the confidence level of an evaluation. Indeed, an 
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analysis for a large system can be developed using an evaluation strategy so that the 

impact of software architecture can be observed as the system grows. 

However, to compare the impact from different software architectures, one has to 

carefully identify matching factors for the purpose of evaluation. This can be 

accomplished by determining common arguments in software architectures for each 

evaluation criteria. Since most of the evaluation techniques used for this study are 

experimental-based, and there is a range of design choices this can be considered in 

embedded systems development, as more experimental evidence may prove to be 

useful.  

8.4 Bridging the gap between TT and ET architecture in the testing 
of real-time systems 

As mentioned in the introduction chapter, it is necessary to reduce time and effort when 

testing of real-time systems, particularly for safety critical applications. For example, if 

a nuclear power plant operation is breaking down, the source of the error must be 

identified immediately and efficiently, otherwise there is a risk of catastrophic damage 

to the environment. Hence, using these empirical studies and evaluations of the impact 

on software architecture across several software aspects, the gap in design, 

implementation and testing costs or efforts for TT and ET architecture can be filled.  

It has been shown that TT architecture provides many benefits that make testing easier 

than the ET architecture particularly for large and complex systems. Systems with less 

overheads and lower cost and complexity can improve testing effort to enhance the 

safety of critical systems. Thus, it will take more time and effort to ensure that all the 

tasks are schedulable as well as to avoid occurrence of deadlock or synchronisation 

error during execution (Xu, 2007). 
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8.5 Limitations and future work  

A software metric has been employed to evaluate the costs involved in TT and the ET 

systems. These assessments can be improved by providing more accurate schedulability 

analysis; such as the Hyperplanes Exact Test (HET) (Bini and Buttazzo, 2004) or the 

exact schedulability analysis for EDF scheduling, such as Quick Processor-demand 

(Zhang and Burns, 2009). Furthermore, the evaluation and analysis can be extended to 

study the effects of clock-synchronisation, parallel executions and varying 

communication latencies (Thane and Hansson, 2001). These can prove to be beneficial 

factors for assisting assessments.  

In order to obtain more accurate analysis for overheads, more variations of the WCET 

of tasks could be used and the number of tasks in the analysis could be increased to 

over 100 tasks. Although there are many research studies that have been conducted to 

address this issue, there remain a lack of empirical studies covering comparisons 

between ET and TT architecture in light of schedulability analysis' running time, 

implementation costs, lines of code and tasks in isolation for distributed systems.   

The impact of micro architecture influence is evaluated by incorporating cache and 

pipeline, in the system testing. 

8.6 Conclusion  

In conclusion, evaluations testing real-time systems in different software architectures 

are vital and can provide numerous benefits for researchers and designers of embedded 

real-time applications (such as a nuclear reactors, military and space shuttle systems). 

However, verifying that a system is operating correctly, particularly as regards timing 

properties, can present major challenges. Thus, ways to analyse the impact of ET and 

TT architecture in reaction to pre-emptive and co-operative scheduling on the cost of 
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design, implementation and testing can assist designers to choose ideal software 

architectures.  

The project described in this thesis has made three major contributions to the field of 

testing of the embedded real-time systems using event-triggered architectures and time-

triggered architectures. These are summarised below: 

Firstly, a comparative analysis of pre-emptive and co-operative schedulers was done, 

assessing the effects of overheads, memory and CPU utilisation, lines of code and the 

number of pre-emptions. 

Secondly, a novel analysis was carried out to assess the ease of reproducing similar 

timing data for an isolated task, in comparison to a complete system. 

Thirdly, scalability analysis was carried out for a schedulability test, assessing the 

effects on running time test, and other related costs, for ET and TT architecture, in 

response to the increase in the number of tasks. 

Finally, an integrated software architecture evaluation approach was introduced to 

analyse the impact of a TT and ET architecture on the cost of design and 

implementation, and the testing of real-time embedded systems. 

The research has successfully bridged the gap between TT and ET architecture within 

the embedded software testing perspectives in light of verification at the design phase. 

However, there are still many software effects that have not been included, although 

this would provide more convincing evaluations, particularly for modern 

microcontroller architecture. In fact, finding the source of errors is the most 

complicated consideration for software designers, particularly those working on large 

and complex real-time systems. Hence, it is important to choose a cost-effective 
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software architecture that can be guaranteed to be efficient across the design, 

implementation and testing phases. 
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Appendix -A  

Design tools/Language Description 

Code Counter (Code, 2006). 
 

 

 

 

 

 

 

Code Counter Pro software is a source code 
counter program for Windows that can count 
several types of source code - including Java, 
JSP, C or C++, VB, PHP, HTML, Delphi or 
Pascal, ASM, XML, and COBOL (Code, 2006). 
The software will produce a report that can be 
exported into excel or HTML files. 
http://www.geronesoft.com/  

Labview for Instrument Control 
(National, 2010) 

LabVIEW is a development environment for 
problem solving and accelerated productivity. NI 
LabVIEW for Instrument Control software is one 
of Labview’s products, which helps to acquire 
data and provides extensive libraries for signal 
processing and data visualisation (National, 
2010). The power of LabVIEW software and 
IDNet instrument-specific drivers can help to 
automate third-party instruments to create 
reusable measurement solutions. 
http://www.ni.com/labview/applications/instrum
ent-control/ 

 

RapidiTty Builder (RapidiTTy, 
2010) 

RapidiTTy Builder provides IDE to implement 
embedded C programming. The toolsets includes 
compilers, substantial code libraries, one or 
more real-time operating systems, and full 
support for detailed timing analysis. It has C and 
/ or Ada compilers, detailed C and Ada code 
examples, with code libraries, a user-friendly 
editor with sophisticated function hyper-linking 
and code completion, a debugging framework 
with all the usual features - instruction stepping 
mode, setting breakpoints, viewing internal 
registers and memory contents (RapidiTTy, 
2010).  
http://www.ttesystems.com/products/rapiditty_b
uilder 

TORSCHE (TORSCHE, 2007, TORSCHE (Time Optimisation, Resources, 
SCHEduling) Scheduling Toolbox for Matlab is 
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Sucha et al., 2006) a freely (GNU GPL) available toolbox developed 
at the Czech Technical University in Prague, 
Faculty of Electrical Engineering, Department of 
Control Engineering (Sucha et al., 2006). 
The current version of the toolbox has a variety 
of areas of scheduling: scheduling on dedicated 
processors/parallel processors, cyclic scheduling 
and real-time scheduling. Furthermore, 
particular attention is dedicated to graphs and 
graph algorithms, due to their large 
interconnection with scheduling theory. The 
toolbox offers various scheduling/graph 
algorithms, a useful graphical editor of graphs, 
an interface for Integer Linear Programming 
and an interface to TrueTime. 
(MATLAB/Simulink based simulator of the 
temporal behaviour). 

 

Olimex board (Olimex, 2009) 

https://www.olimex.com/Products/
ARM/NXP/LPC2378-STK/ 

LPC-2378STK is a starter kit, which uses a 
Microcontroller LPC2378 from NXP. This 
microcontroller supports various serial 
interfaces such as USB 2.0, UART, CAN, audio 
input and output, JTAG, Ethernet, TFT display 
and SD/MMC cardholder on this board. All this 
makes it possible to build a diversity of powerful 
applications to be used in a wide range of 
situations. 

 

MATLAB Coder (MatlabCoder, 
2012) 

MATLAB Coder™ generates standalone C and 
C++ code from MATLAB® code. The source 
code generated is portable and readable. 
MATLAB Coder supports a subset of core 
MATLAB language features, including program 
control constructs, functions, and matrix 
operations. It can generate MEX functions that 
accelerate computationally intensive portions of 
MATLAB code and verify the behaviour of the 
generated code. Features for the MATLAB 
Coder include: ANSI/ISO compliant C and C++ 
code generation, MEX function generation for 
fixed-point and floating-point math, Project 
management tools for specifying entry points, 
input data properties, and other code-generation 
configuration options, Static or dynamic memory 
allocation for variable-size data. Code 
generation support for many functions and 
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System objects™ in Communications System 
Toolbox™, DSP, System Toolbox™, and 
Computer Vision System Toolbox™, Support for 
common MATLAB language features, including 
matrix operations, subscripting, program control 
statements (if, switch, for, while), and structures.  
(MatlabCoder, 2012) 

 

Embedded C Programming (Pont, 
2006) 

C is a powerful system programming language, 
and C++ is an excellent general purpose 
programming language, with modern bells and 
whistles. C’s strengths in embedded system 
development greatly outweigh its weaknesses. It 
may not be an ideal language for developing 
embedded systems, but it is unlikely that a 
‘perfect’ language will ever be created (Pont, 
2006). 

 

Microsoft Visual C++ (Microsoft, 
2010) 

Microsoft Visual C++ is Microsoft's 
implementation of the C and C++ compiler and 
associated languages-services and specific tools 
for integration with the Visual Studio IDE. It can 
compile either in C mode or C++ mode. For C, 
it follows the ISO C standard with parts of C99 
spec along with MS-specific additions in the 
form of libraries. For C++, it follows the ANSI 
C++ spec along with a few C++11 features. 
Microsoft positions Visual C++ for development 
in native code, or in code that contains both 
native as well as managed components. Visual 
C++ supports COM, as well as the MFC library. 
Visual C++ can also use the Visual Studio forms 
designer to design UI graphically, and can be 
used with the Windows API. It also supports the 
use of intrinsic functions, i.e. functions 
recognised by the compiler itself and not 
implemented as a library (Microsoft, 2010).  

 

FreeRTOS (Barry, 2011) FreeRTOS TM is a market leading RTOS from 
Real Time Engineers Ltd. that supports 33 
architectures. It is professionally developed, 
strictly quality controlled, robust, supported, and 
free to embed in commercial products. 
FreeRTOS has become the de facto standard 
RTOS for microcontrollers; this has been 
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achieved by removing common objections to 
using free software, and in so doing, providing a 
truly compelling free software model (Barry, 
2011). 

http://www.freertos.org/RTOS.html 
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Appendix -B  

B.I A Tabularised Summary of Literature Review 

 

 

1971 1973 1974 1980 1982 1982 1983 1984 1985 1986 1986 1987 1988 1989 1989 1989 1989 1990 1990 1990 1990
Characteristics of systems Brat LnL Der Leu Mel Leu Mok Carl Zhao Cheng JnP Leh Sta Kop Leh Bak Chet Tok Sha Loc Leh

Software architecture
ET-task activation X X X X X X X X X
TT-task activation

Scheduling
Preemptive X X X X X X X X X X X
Non pre-emptive
Dynamic priority (EDF) X X X X X X X X
Fixed Priority (RM) X X X X X X X
Preruntime X
Table driven X
Cyclic Executive X X X
Tick scheduling
Time-Driven

Feasibility test
Heuristic test X X
Utilization based test X X X X
Response time analysis X
Pseudo Polynomial test X
Polynomial complexity
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1990 1990 1990 1991 1991 1991 1991 1992 1992 1992 1992 1993 1993 1993 1993 1995 1994 1994 1994 1995 1995
Characteristics of systems Xu Chn Bar Jeff Bak Tsai Aud Loc Xu Jeff Scw Bar Ara Xu Aud Katc Yu Tind Tind GM Tind

Software architecture
ET-task activation X X X X X X X
TT-task activation X X X

Scheduling
Preemptive X X X X X X X X X X
Non pre-emptive X X X X X X X
Dynamic priority (EDF) X X X X X X X X X
Fixed Priority (RM) X X X X X X X X X
Preruntime X X X X
Table driven
Cyclic Executive X
Tick scheduling X
Time-Driven X

Feasibility test
Heuristic test X X
Utilization based test X X X
Response time analysis X X X X X
Pseudo Polynomial test X
Polynomial complexity
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1995 1995 1995 1995 1995 1995 1996 1996 1996 1997 1998 1999 2000 2000 2000 2000 2000 2001 2001 2002 2003
Characteristics of systems Katt Tind Sta Spu Burn Burn Burn Mok Mok Han Sjo Che Dev Mat Xu Lu Liu Ekel Bini Shei Bril

Rooi
Software architecture
ET-task activation X X X X X X X X X X X X X X X
TT-task activation X X

Scheduling
Preemptive X X X X X X X X X X X X X
Non pre-emptive X
Dynamic priority (EDF) X X X X
Fixed Priority (RM) X X X X X X X X X X X
Preruntime X
Table driven
Cyclic Executive X X X
Tick scheduling X
Time-Driven

Feasibility test
Heuristic test X X X
Utilization based test X X X X X
Response time analysis X X X X X X X X
Pseudo Polynomial test X X
Polynomial complexity X X
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2003 2003 2003 2003 2003 2004 2004 2005 2005 2005 2006 2006 2006 2006 2006 2007 2007 2007 2008 2008 2008
Characteristics of systems Bini Coo Bate Cof Xu Dob Bini Bini Butt Bar Push Bar Xu Nil Lu Bril Butt Lu Lind Ram Dav

Software architecture
ET-task activation X X X X X X X X X X X
TT-task activation X X X

Scheduling
Preemptive X X X X X X X X X X
Non pre-emptive X X X X
Dynamic priority (EDF) X X X
Fixed Priority (RM) X X X X X X X X X X X
Preruntime X X X
Table driven
Cyclic Executive X X
Tick scheduling
Time-Driven

Feasibility test
Heuristic test X X
Utilization based test X X X X
Response time analysis X X X X X X
Pseudo Polynomial test
Polynomial complexity X X X
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2008 2008 2009 2009 2009 2010 2010 2011 2011 2011 2012
Characteristics of systems Aym Shor Pont Zha Yao Pont Bert Min Yao Shor Shor

Software architecture
ET-task activation X X X X X X
TT-task activation X X X X X X

Scheduling
Preemptive X X X X X X X
Non pre-emptive X X X X X X X
Dynamic priority (EDF) X
Fixed Priority (RM) X X
Preruntime
Table driven
Cyclic Executive
Tick scheduling
Time-Driven
non-EDF X X
Feasibility test
Heuristic test X X
Utilization based test
Response time analysis X
Pseudo Polynomial test X
Polynomial complexity
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Appendix -C  

C.I Pseudo-code: Response time analysis (Davis, 2008): 

 
rpev = 0; 

r = initial_value(); 

while((r > rprev) && (r <= task[i].D) 

 { 

  rpev = r; 

  r = task[i].C; 

  for(j = 0; j < 1; j++) 

  {   

   r+= ceiling(rpev, task[j].T)*tasks[j].C; 

  } 

 } 
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C.II Pseudo-code: TTSA schedulability analysis algorithm (Gendy, 2008): 

START 

Arrange tasks in order according to their deadlines (EDF) 

//Common divisors of task periods in descending order 

gcd(t) = (GCD,....,GCD), t = 1, 2, ....., m; 

Sched_Strategy = (TTC, TTH); 

// First check schedulability using TTC strategy 

Sched_Strategy_Index = 1; 

DO 

 { 

 Tick_Interval = GCD(Tick_Index); 

 i = 1; Offset(t) = 0; 

 Sched(i) = TRUE, Sched_Tasks = 1; 

 Do 

  { 

  i++, offset[i] = 0; 

  Do 

  { 

  Length_of_Major_Cycle = LCM(Period(k), k = 1,2,....,i 

Max_Offset = Max(Offset(k)), k = 1,2,...,I; 

Test_Period = 2* Length_of_Major_Cycle + Max_Offset; 

Sched(i) = Check_Sched(i, Test_Period, Tick_Interval, 
Sched_Strategy_Index) 

IF (Sched(i) = TRUE) 

 (Sched_Tasks ++;) 

ELSE 

 (Offset[i]++;) 

}WHILE ((Offset[i]<Period[i]) and (Sched[i] = FALSE)); 

}WHILE (i<n); 

IF (Sched_Tasks = n) 

{print task offsets, tick interval, scheduler type; EXIT;} 

ELSE 

{Tick_index++;} 

}WHILE(Tick_index <= m) 

Sched_Strategy++; //Try the TTH strategy 

}WHILE(Sched_Strategy <= 2); 

Print list of the scheduled and unscheduled tasks; 

END 
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C.III Heuristic search schedulability analysis algorithm (Stankovic, 1989): 

Procedure Scheduler (task_set; task_set type; var schedule; 
schedule;type; var schedulable;boolean); 

VAR EAT*, EAT*, vector type; 

BEGIN 

 schedule := empty; 

 schedulable := TRUE; 

 EAT* := 0; 

 WHILE (NOT empty (task_set)) AND (schedulable) DO 

BEGIN 

 calculate Test for each task T € task_set; 
IF NOT strongly feasible (task_set, schedule)THEN 

 schedulable := FALSE; 

 ELSE 

 BEGIN 

 apply function H to each task in task_set; 

 let T be the task with the minimum value of function H; 

 Test = Test; 

 task_set = task_set - T; 

 schedule = append(schedule, T);//Append T to schedule 

 calculate new values of EAT 

 END 

END 

END 
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Appendix -D  

The timing behaviours of tasks that are used to visualise task timing behaviour when assisting 

the production of the implementation cost analysis, are shown here.  

D.I Experimental results of impact of number of tasks  

Timing analysis diagrams that are used to observe task timing behaviour and implementation 

costs for 5, 20, 50 and 100 tasks are shown below. Three main software architectures were used 

in this experiment: TTC, TTH and TTP.  

D.II  TTC  

 

Figure D.1  Impact of no. of tasks for 5 tasks on TTC. 

 

Figure D.2  Impact of no. of tasks for 20 tasks on TTC 
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Figure D.3  Impact of no. of tasks for 50 tasks on TTC 
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Figure D.4  Impact of no. of tasks for 100 tasks on TTC 
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D.III TTH 

 

Figure D.5  Impact of no. of tasks on tth for 5 tasks. 

 

Figure D.6  Impact of no. of tasks for 20 tasks. 
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Figure D.7  Impact of no. of tasks on tth for 50 tasks.  
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Figure D.8  Impact of no. of tasks for 100 tasks. 
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D.IV TTP 

 

Figure D.9  Impact of number of tasks on TTP for 5 tasks. 

 

Figure D.10  Impact of no. of tasks on TTP for 20 tasks. 
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Figure D.11  Impact of no. of tasks on TTP for 50 tasks. 
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Figure D.12  Impact of no. of tasks on TTP for 100 tasks. 
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D.V Experimental results of impact of number of pre-emption 

Sample results for the impact of pre-emption for 20 tasks are presented below. The 

analysis started from 0 pre-emption and ran up to 19 pre-emptions.  

 

Figure D.13  Impact of 0 pre-emption. 
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Figure D.14  Impact of 19 pre-emptions
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Appendix -E  

E.I Labview Tools used in timing measurements: 

 

Figure E.1  Labview front end developed for measurement 

 

Figure E.2  LabView block diagram of measurement tool developed for timing analysis.
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Appendix -F  

F.I Aim of this pilot study 

The aim of the pilot study is to explore the difficulties encountered when localising 

faults for a simple switch system.  

F.II Target system specification 

An Olimex LPC2129 ARM board was used as the target system platform. This board 

contains the programs needing to be debugged. In this case, the designer should invent 

a method to remotely debug the target system’s peripherals, such as an LED system 

(represents the system’s output) and a switch system (represents the system’s input). 

Both peripherals are controlled by a scheduler with a time-triggered (TT) architecture. 

The target system runs a 'switch-poll' task, which periodically checks for a switch pin 

and observes if it is pressed on or released. If the system detects that the push-button 

switch is pressed or released, the LED system will react by turning on or off the light. 

By using the time-triggered cooperative (TTC) scheduler, all the tasks are then pre-

determined before execution. The target system runs the switch-poll task, which is 

invoked every 20 milliseconds. The other task is the LED response task, which 

responds to the switch state's transition. This task is invoked every 10 milliseconds.  
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Figure F.1 LED state diagram 

Initially, the LED is in the ‘off’ state. If the switch is pressed and released within 2 

seconds, the LED turns on and remains on for 10 seconds, then the LED switches off 

again. The switch will remain on during the 10-second period, even if the switch is 

pressed again. In another scenario, if the LED is in the ‘off’ state and the switch is 

pressed and released for more than 2 seconds, the LED remains on permanently. 

Similar principles are used when the LED is in the ‘on’ state. The specification of the 

system is shown in Figure F.1. 

A failure is an event that denotes a deviation between the actual service and the service 

intended. The system should run exactly as defined in the system specifications. For 

example, the switch system responds by turning the LED on for 10 seconds if it is 

pressed and released for less than 2 seconds. When the LED turns on for more or less 

than 10 seconds, the system is considered to be operating under faulty conditions. 

System specifications become the main reference for designing fault models. A system 

that does not fulfil its specification is a failed system.  

LED off

LED on

[(Time_LED_state == 0_sec
&& Less_two_sec_pressed == TRUE)

||
(More_two_sec_pressed == TRUE)

||
(Time_LED_state >> 10_secs)

&&Less_two_secs_pressed == FALSE]

[++Time_LED_state =< 10_Secs
&&

Less_two_sec_pressed == TRUE]

[++Time_LED_state =< 10_Secs
&&

Less_two_sec_pressed == TRUE]

[(Time_LED_state == 0_sec
&& Less_two_sec_pressed == TRUE)

||
(More_two_sec_pressed == TRUE)

||
(Time_LED_state >> 10_secs)

&&Less_two_secs_pressed == FALSE]

Reset

Reset states:
LED = OFF
Time_LED_state = 0 sec
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F.III Switch system test cases 

The test cases for the system are developed based on the target's specifications. The test 

cases contain all possible inputs (pre-conditions) for the system and all expected 

outputs. Black-box testing or requirement-based testing is implemented to check 

whether the system does what the specification says. Results from the testing procedure 

may be used to assess and investigate inaccuracies in the system. Testing will also 

uncover faults that may then be removed, thus increasing system dependability. 

In order to obtain meaningful data through monitoring systems, some testing 

procedures are required. Table  A.1 shows a list of tests carried out for the switch 

system.  

Table F.1 Switch test cases 

Testing Description 

Test 1 Switch is pressed for 200 milliseconds 

Test 2 Switch is pressed for 1.9 seconds 

Test 3 Switch is pressed for 3 seconds 

Test 4 Switch is pressed for 6 seconds 

 
The sample of expected results for the test cases: 

Test 1: if pre condition = OFF, LED turns on for 10 seconds and turns off. 
Test 2: if pre condition = OFF, LED turns on for 10 seconds and turns off. 

Test 3: if pre condition = OFF, LED turns on and remains on 
Test 4: if pre condition = OFF, LED turns on and remains on 

The details of the test cases are mentioned in Appendix F.IV. A successful test case is 

one that shows that a program does not do what it is designed to do. One of the aims of 

the debugging processes is to find errors, as a result of a successful test case. Based on 

test results, the main sources of errors can be identified.  
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F.IV Conclusion 

Here a pilot study for the testing system and the switch system with TT software architecture 

has been discussed. The development of the system begins with a fault analysis of the target 

system specifications. FMEA and FTA designs then become a foundation for the KB system, 

which is important in the fault localisation process. The system also facilitates online testing 

and monitoring of systems. The sample of outputs (monitoring and fault diagnosis processes) is 

shown in this chapter. There are only two faults diagnosed amongst the many potential faults, 

which could ultimately lead to the need to prolong the development time. The results from the 

empirical study suggest that further investigations of methods applied to predict a wide range of 

faults are required. 
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F.V Test cases for the switch system 

F.VI LED testing 

Case% LED%Testing% Pre0Conditions% Consequences%of%states% Operation%% Post0conditions%
1" Press"and"release"the"switch"" LED"is"OFF" 1)"Less_two_sec_pressed"="TRUE" LED"turns"ON" LED"is"OFF"

" for"200ms""
Less_two_sec_pressed"="
FALSE" 2)if"("++Time_LED_state"=<"10"secs)" for"10"secs"and"then"

Less_two_sec_pressed"="
FALSE"

" "" Time_LED_state"="0"sec" ~"LED"turns"ON" LED"turns"OFF" Time_LED_state"="0"sec"

" "" "" 3)if"Time_LED_state">>"10"secs"" "" ""

" "" "" ~"LED"turns"OFF"
" "

" "" "" ~Less_two_sec_pressed"="FALSE"
" "

2"
"
Press" and" release" the" switch" for" 2"
seconds" LED"is"OFF" 1)"Less_two_sec_pressed"="TRUE" LED"turns"ON" LED"is"OFF"

" ""
Less_two_sec_pressed"="
FALSE" 2)if"("++Time_LED_state"=<"10"secs)" for"10"secs"and"then"

Less_two_sec_pressed"="
FALSE"

" "" Time_LED_state"="0"sec" ~"LED"turns"ON" LED"turns"OFF" Time_LED_state"="0"sec"

" "" "" 3)if"Time_LED_state">>"10"secs"" "" ""

" "" "" ~"LED"turns"OFF" "" ""

" "" "" ~Less_two_sec_pressed"="FALSE" "" ""

"
"" "" "" "" ""

3"
Press" and" release" the" switch" for" 3"
seconds" LED"is"OFF" 1)"More_two_sec_pressed"="TRUE" LED"turns"ON" LED"is"ON"

" ""
More_two_sec_pressed"="
FALSE" 2)"LED"turns"ON"" permanently"

More_two_sec_pressed"="
FALSE"

" "" Time_LED_state"="0"sec"
"

"" Time_LED_state"="0"sec"

" "" "" "" "" ""

4"
Press" and" release" the" switch" for" 6"
seconds" LED"is"OFF" 1)"More_two_sec_pressed"="TRUE" LED"turns"ON" LED"is"ON"

" ""
More_two_sec_pressed"="
FALSE" 2)"LED"turns"ON"" permanently"

More_two_sec_pressed"="
FALSE"
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" "" Time_LED_state"="0"sec"
"

"" Time_LED_state"="0"sec"

Case% LED%Testing% Pre0Conditions% Consequences%of%states% Operation%% Post0conditions%

"
5"
Press" and" release" the" switch" for"
200ms" LED"is"ON" 1)"Less_two_sec_pressed"="TRUE" LED"turns"OFF" LED"is"ON"

" ""
Less_two_sec_pressed" ="
FALSE" 2)if"("++Time_LED_state"=<"10"secs)" for"10"secs"and"then"

Less_two_sec_pressed"="
FALSE"

" "" Time_LED_state"="0"sec" ~"LED"turns"OFF" LED"turns"ON" Time_LED_state"="0"sec"

" "" "" 3)if"Time_LED_state">>"10"secs"" "" ""

" "" "" ~"LED"turns"ON" "" ""

" "" "" ~Less_two_sec_pressed"="FALSE" "" ""

" "" "" "" "" ""

6"
Press" and" release" the" switch" for" 2"
seconds" LED"is"ON" 1)"Less_two_sec_pressed"="TRUE" LED"turns"OFF" LED"is"ON"

" ""
Less_two_sec_pressed" ="
FALSE" 2)if"("++Time_LED_state"=<"10"secs)" for"10"secs"and"then"

Less_two_sec_pressed"="
FALSE"

" "" Time_LED_state"="0"sec" ~"LED"turns"OFF" LED"turns"ON" Time_LED_state"="0"sec"

" "" "" 3)if"Time_LED_state">>"10"secs"" "" ""

" "" "" ~"LED"turns"ON" "" ""

" "" "" ~Less_two_sec_pressed"="FALSE" "" ""

" "" "" "" "" ""

7"
Press" and" release" the" switch" for" 3"
seconds" LED"is"ON" 1)"More_two_sec_pressed"="TRUE" LED"turns"OFF" LED"is"OFF"

" ""
More_two_sec_pressed" ="
FALSE" 2)"LED"turns"OFF" permanently"

More_two_sec_pressed"="
FALSE"

" "" Time_LED_state"="0"sec"
"

"" Time_LED_state"="0"sec"

" "" "" "" "" ""

8"
Press" and" release" the" switch" for" 6"
seconds" LED"is"ON" 1)"More_two_sec_pressed"="TRUE" LED"turns"OFF" LED"is"OFF"

" ""
More_two_sec_pressed" ="
FALSE" 2)"LED"turns"OFF" permanently"

More_two_sec_pressed"="
FALSE"
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" "" Time_LED_state"="0"sec"
"

"" Time_LED_state"="0"sec"

"
""
" "" "" "" ""

9" Press"and" release" the" switch" several"
times" LED"is"OFF" 1)"Less_two_sec_pressed"="TRUE" LED"turns"ON" LED"is"OFF"

" ""
Less_two_sec_pressed" ="
FALSE" 2)if"("++Time_LED_state"=<"10"secs)" for"10"secs"and"then"

Less_two_sec_pressed" ="
FALSE"

" "" Time_LED_state"="0"sec" ~"LED"turns"ON" LED"turns"OFF" Time_LED_state"="0"sec"

" "" "" 3)if"Time_LED_state">>"10"secs"" "" ""

"
" " " " "
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F.VII Switch testing 

Case% Switch%Testing% Pre0Conditions% Consequences%of%states% Operation%% Post0conditions%
"" "" "" "" "" ""
1" Press"and"release"the"switch"for"200ms" Duration"="0;" 1)"if"(switch"=!"release)" The"switch"is"pressed"" Duration"="0;"
"" "" Less_two_sec_pressed"="FALSE" ~++Duration" less"than"2"seconds" Less_two_sec_pressed"="TRUE"
"" "" "" 2)"if"(Duration"=<"2_seconds)" "" ""
"" "" "" ~"Duration"="200ms" "" ""
"" "" "" "" "" ""
2" Press"and"release"the"switch"for"2"seconds" Duration"="0;" 1)"if"(switch"=!"release)" The"switch"is"pressed"" Duration"="0;"
"" "" Less_two_sec_pressed"="FALSE" ~++Duration" less"than"2"seconds" Less_two_sec_pressed"="TRUE"
"" "" "" ~"Duration"="200ms" "" ""
"" "" "" 2)"if"(Duration"=<"2_seconds)" "" ""
"" "" "" Less_two_sec_pressed"="TRUE" "" ""
"" "" "" "" "" ""
3" Press"and"release"the"switch"for"3"seconds" Duration"="0;" 1)"if"(switch"=!"release)" The"switch"is"pressed"" Duration"="0;"

"" "" Less_two_sec_pressed"="FALSE" ~++Duration" more"than"2"seconds"
More_two_sec_pressed" ="
TRUE"

"" "" "" ~"Duration"="3"seconds" "" ""
"" "" More_two_sec_pressed"="FALSE" 2)"if"(Duration"=<"2_seconds)" "" ""
"" "" "" Less_two_sec_pressed"="TRUE" "" ""

"" "" "" 3)"if"(Duration">>"2_seconds)" "" ""
"" "" "" More_two_sec_pressed"="TRUE" "" ""

"" "" "" Less_two_sec_pressed"="FALSE"

""
"
"
"
" ""

" " " " " "



269 
 

 

Case% Switch%Testing% Pre0Conditions% Consequences%of%states% Operation%% Post0conditions%

4"
"
Press"and"release"the"switch"for"6"seconds" Duration"="0;" 1)"if"(switch"=!"release)" The"switch"is"pressed"" Duration"="0;"

"" "" Less_two_sec_pressed"="FALSE" ~++Duration" more"than"2"seconds"
More_two_sec_pressed" ="
TRUE"

"" "" "" ~"Duration"="6"seconds" "" ""
"" "" More_two_sec_pressed"="FALSE" 2)"if"(Duration"=<"2_seconds)" "" ""
"" "" "" Less_two_sec_pressed"="TRUE" "" ""

"" ""
"

3)"if"(Duration">>"2_seconds)" "" ""
"" ""

"
More_two_sec_pressed"="TRUE" "" ""

"" ""
"

Less_two_sec_pressed"="FALSE" "" ""
"" "" "" "" "" ""
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F.VIII Fault Tree Analysis (FTA) for the switch system 

F.IX Failure to turn the LED off 

 

Failure to turn
LED off

LED activated
(P0.13 has logic 0)

Primary
LED

failure

Excessive
Current

Undetected switch
control signal/P0.15

not activated

Primary
Microcontroller

hardware
failure

Conditions to turn off the LED:
1) Pre-condition of LED = ON
2) (Time_LED_state == 0_sec
&& Less_two_sec_pressed == TRUE)
||
(More_two_sec_pressed == TRUE)

Switch
contacts fail

to close

Unsatisfied
conditions to turn

off the LED

No  switch
transition

states detected
Primary

Microcontroller
hardware

failure

Timer of
Time_LED_state

failure

Timer of
Duration
failure

Primary
Switch
failure

Secondary
Switch
failure

Requirements of turning on
LED related with
Time_LED_state:
1) if (LED on &&
Time_LED_state >> 10 sec)
!Less_two_secs_pressed =
FALSE
2) if (LED on &&
Time_LED_state == 0)

Failure to
turn LED off

Possible
causes

If (Duration >> 2_secs)
!More_two_sec_pressed = TRUE
else (Duration =< 2_secs)
!Less_two_sec_pressed = TRUE

Input

Output
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F.X Failure to turn the LED on for 10 seconds 

 

 

 

 

 

Failure to turn
LED on for 10

secs

Power
supply
failure

Undetected switch
control signal/P0.15

not activated

Primary
Microcontroller

hardware
failure

Conditions to turn on the LED for
10 secs:
1) Pre-condition of LED = OFF
2) (Time_LED_state == 0_sec
&& Less_two_sec_pressed ==
TRUE)
3) (++Time_LED_state =<
10_secs
&& Less_two_sec_pressed ==
TRUE)
4) (Time_LED_state >> 10_secs
&& Less_two_sec_pressed ==
TRUE)

Switch
contacts fail

to close

Unsatisfied
conditions to turn on
the LED for 10 secs

No  switch
transition

states detected
Primary

Microcontroller
hardware

failure

Timer of
Time_LED_state

failure

Timer of
Duration
failure

Primary
Switch
failure

Secondary
Switch
failure

Possible failures of Time_LED_state:
1) if (LED off && Time_LED_state == 0
&&Less_two_sec_pressed == TRUE)
!OK:LED ON
!FAILURE:LED OFF
 2) if (LED off &&
Time_LED_state >> 10 sec)
!Less_two_secs_pressed = FALSE not detected
!OK:LED ON
!FAILURE: LED OFF
3) if (LED on && ++Time_LED_state =< 10_secs
&& Less_two_sec_pressed == TRUE)
!OK:LED ON
!FAILURE:LED OFF

Failure to
turn LED on
for 10 secs

Possible
causes

If (Duration >> 2_secs)
!More_two_sec_pressed = TRUE
else (Duration =< 2_secs)
!Less_two_sec_pressed = TRUE

Less_two_sec_pressed
== TRUE not detected
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