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Abstract

We consider the linear global stability of the boundary-layer flow over a ro-

tating sphere. Our results suggest that a self-excited linear global mode can

exist when the sphere rotates sufficiently fast, with properties fixed by the

flow at latitudes between approximately 55◦–65◦ from the pole (depending

on the rotation rate). A neutral curve for global linear instabilities is pre-

sented with critical Reynolds number consistent with existing experimentally

measured values for the appearance of turbulence. The existence of an un-

stable linear global mode is in contrast to the literature on the rotating disk,

where it is expected that nonlinearity is required to prompt the transition to

turbulence. Despite both being susceptible to local absolute instabilities, we

conclude that the transition mechanism for the rotating-sphere flow may be

different to that for the rotating disk.
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1. Introduction

The stability of the boundary layer on rotating bodies of revolution has

received considerable attention over a number of years. A significant advance

has been made by Lingwood [1], who showed that the boundary layer on a

rotating disk of infinite extent is locally absolutely unstable at Reynolds num-

bers in excess of a critical value (equivalent to being outside a critical radius

at fixed rotation rate), and is at worst convectively unstable inside this ra-

dius. The value of the critical Reynolds number agrees exceedingly well with

experimentally measured values of the transition Reynolds number, leading

to Lingwood’s hypothesis that absolute instability plays a rôle in turbulent

transition on the rotating disk. Lingwood [2] later experimentally confirmed

the presence of absolute instability above a fixed, critical Reynolds number

very close to the theoretical value by tracking the wavepacket response to an

impulse excitation on a rotating disk; thereby adding weight to her initial

assertion.

A few years later, Davies & Carpenter [3] performed direct numerical

simulations solving the linearized Navier–Stokes equations directly on a ro-

tating disk of infinite extent. When they made the same homogeneous flow

approximation as in Lingwood’s analysis, they recovered her results in full,

with absolute instability clearly present at high Reynolds number. However,

when the spatial inhomogeneity of the boundary layer was included there

was no evidence that the local absolute instability gives rise to the unstable

global oscillator in the long-time response that would be required to sug-

gest the onset of transition within a purely linear theory. Indeed their study

suggests that convective behaviour eventually dominates at all the Reynolds
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numbers investigated, even for strongly locally absolutely unstable regions.

Their conclusion was that absolute instability was not involved in the transi-

tion process through linear effects. These theoretical results have since been

supported experimentally by Othman & Corke [4].

Following this, Pier [5] demonstrated explicitly that a nonlinear approach

is required to explain the self-sustained behaviour of the rotating-disk flow.

Using the result of Huerre & Monkewitz [6] that the presence of local abso-

lute instability does not necessarily give rise to linear global instability, Pier

suggested that the flow has a primary nonlinear global mode (fixed by the

onset of the local absolute instability) which has a secondary absolute insta-

bility that triggers the transition to turbulence. Some experimental evidence

for a secondary instability exists [11–13], but its behaviour and relation to

the primary absolute instability are not fully understood as yet, although

some considerable advances in related geometries have been made recently

by Viaud et al. [14, 15].

In an attempt to explain Lingwood’s [2] original experimental observa-

tions in the light of the subsequent theoretical developments, Healey [16]

presented a theory, based on the Ginzburg–Landau equation, that suggests

that there can be a linear global instability when there is local absolute in-

stability in a finite domain (thereby representing the edge of the disk). The

finite size of experimental disks is of course a crucial difference between ex-

perimental and theoretical studies prior to this work. Healey demonstrated

that, under particular assumptions about the flow at the edge of the disk,

the effects of finite size are destabilizing in a linear setting but stabilizing in

the nonlinear setting. Contrary to Healey’s theoretical study, the experimen-
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tal study of Imayama et al. [17] found no clear experimental evidence that

edge effects would either enhance or reduce stability. Pier [18] has recently

suggested that this apparent discrepancy could be reconciled with a change

in Healey’s assumptions for the flow at the edge of the disk.

A theory of transition over the rotating disk continues to develop and,

with the new developments around edge effects in mind, we feel it instructive

to present our study of the linear global instability of the boundary-layer

flow over a rotating sphere. The spherical geometry is such that theoretical

studies do not suffer from edge effects in the same way, although of course

the colliding boundary layers orginating from the two poles must erupt at

the equator, presenting a barrier to boundary-layer stability calculations. In

this study we consider the linear global modes of the rotating-sphere system,

as formulated for weakly nonparallel shear flow by Monkewitz et al. [19].

The idea is to use data from the local absolute instability analysis of Garrett

& Peake [20] and Barrow & Garrett [21] to construct solutions for the entire

flow with single complex frequency γG. The long-time response of the system

is then governed by Im(γG), and will be linearly globally stable if Im(γG) < 0

and globally unstable if Im(γG) > 0. The approach in this paper is to attempt

to determine γG for the rotating-sphere flow.

As discussed by Garrett [20, 22], the rotating-sphere flow has a number of

similarities with that over a rotating disk. In particular, for sufficiently high

rotation rate the flow exhibits the same distinct flow regimes (laminar, tran-

sitional, turbulent) and these move towards the pole with further increases

in rotation rate. For very high rotation rates, where the transitional region

is close to the pole, the critical values of flow parameters for the onset of
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convective and absolute instabilities approach values consistent with those

on the rotating disk. Physically this is of no surprise, as the sphere is lo-

cally flat near to the pole and so acts as a rotating disk in that region. For

lower rotation rates, where the transitional behaviour manifests itself away

from the pole, the effects of the sphere’s surface curvature lead to distinct

behaviour and critical parameters. The similarity between the rotating-disk

flow and the flow around the sphere’s pole can be shown mathematically

using a simple series solution to approximate the steady-flow profiles in the

boundary layer over the sphere, as first used by Banks [23]. Specifically, this

approach demonstrates that the steady flow close to the pole is given by the

von Kármán ordinary differential equations.

As demonstrated by Lingwood [1] and Garrett & Peake [20], the abso-

lute instability under consideration here exists as a result of inviscid effects.

However, Healey [24] suggests pinch points resulting from a purely inviscid

formulation (i.e. from the solution of the Rayleigh equation) are in fact dis-

tinct from those that exist in a viscous formulation (i.e. from the solution of

an Orr–Sommerfeld-type equation). With this is in mind, we work with the

viscous formulation throughout this paper.

2. Formulation

We consider a spherical body of revolution with surface described by the

equation r∗0 = r∗0(s∗), where s∗ is the arc length measured along the surface

of the body starting from the pole and r∗0(s∗) is the cross-sectional radius of

the body in the plane perpendicular to the axis of symmetry. The body spins

about its axis with angular velocity Ω∗, in an otherwise undisturbed incom-
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pressible fluid. The asterisk denotes dimensional quantities. We consider

typical length and time scales to be (ν∗/Ω∗)1/2 and (ν∗/Ω3)1/2/a∗ respec-

tively, where ν∗ is the kinematic viscosity and a∗ is the sphere radius. We

nondimensionalize s∗ and r∗0(s∗) with the typical length scale to form

s =
s∗

(ν∗/Ω∗)1/2
, r0(s) =

r∗0(s∗)

(ν∗/Ω∗)1/2
,

and define further nondimensional spatial variables

S =
s∗

a∗
, R0(S) =

r∗0
a∗
.

By eliminating s∗ and r∗0(s∗) between the two sets of scaled spatial variables

we find that S is the slow spatial variable and R0 is the slowly varying surface

radius, i.e.

S = εs, R0(S) = εr0

with

ε =
1

a∗

√
ν∗

Ω∗
, (1)

which is the ratio of the characteristic boundary-layer thickness to the char-

acteristic size of the body. In what follows we assume that ε << 1 which will

be seen in Eq. (4) to be consistent with the assumption of large Reynolds

number. From Barrow & Garrett’s [21] previous calculations, it follows that

ε lies in the range 1/2883 < ε < 1/240, depending on the location at which

local absolute instability is first observed between the pole and the equa-

tor respectively, which provides an a posteriori justification of the small ε

analysis at each location over the sphere.

In this geometry it is clear that R0(S) = sinS and we see that the slow

spatial variable S can be identified with the latitudinal angle, measured from

the pole.
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We now introduce the transverse coordinate η∗ ≡ (ν∗/Ω∗)1/2η which

points in the normal direction out of the sphere, with η = 0 being the sphere

surface, together with the azimuthal angle φ measured around the axis. The

coordinates S, φ and η form the coordinate system for our problem, and the

fluid velocity has components U∗, V ∗, W ∗ in these respective directions. We

write these velocity components in the form of an axisymmetric non-swirling

steady flow plus an unsteady perturbation,

U∗ = a∗Ω∗ [U(S, η) + εu(S, φ, η, t)]

V ∗ = a∗Ω∗ [V (S, η) + εv(S, φ, η, t)]

W ∗ = a∗Ω∗ [εW (S, η) + εw(S, φ, η, t)] , (2)

where t is time nondimensionalized as indicated above, and the overbar de-

notes the unsteady perturbation. Note that the characteristic scale of the

steady velocities in the S and φ directions is a∗Ω∗, while the steady η (wall-

normal) velocity has scale (ν∗Ω∗)1/2, which we have also taken as the scale

of the unsteady perturbations. Finally, we note that the corresponding di-

mensional pressure can be written in the form

ρ∗(a∗Ω∗)2ε [εP (S, η) + p(S, φ, η, t)] , (3)

where ρ∗ is the fluid density. These scalings define the Reynolds number of

the system as

R =
a∗Ω∗

√
ν∗/Ω∗

ν∗
= a∗

√
Ω∗

ν∗
=

1

ε
. (4)

The Reynolds number is therefore seen to be a direct measure of the scaled

boundary-layer thickness and an indirect measure of the rotation rate, Ω∗.

This is in contrast to the interpretation of the Reynolds number in studies of
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the rotating disk, where, for fixed rotation rate, it gives the nondimensional

radial position of the local stability analysis. For the sphere, the position of

the local analysis is given by S for any rotation rate defined by R.

The equations for the steady boundary-layer flow around the sphere to

leading order in ε are well known, see (2.2)–(2.4) of [20] after the substitution

of S for θ, for example. These partial differential equations in S and η are

solved subject to the no-slip and quiescent fluid boundary conditions. Further

details of our numerical solution of these equations are given in that reference.

We now consider the unsteady flow where the resulting perturbation equa-

tions are given as (2.19)–(2.22) in [22] (after appropriate variable substitu-

tions). In what follows we will be interested in the long-time response of

the perturbation equations to initial forcing. Briggs and Bers [9, 10] showed

that such behaviour can be analysed by investigating the dispersion proper-

ties of single-frequency homogeneous solutions. The Briggs–Bers procedure

was developed for spatially homogeneous systems, but a significant extension

was made by Monkewitz et al. [19], who considered weakly nonparallel flows

which evolve only slowly in the streamwise direction. We therefore look for

solutions of the perturbation equations of the form

(u, v, w, p)(S, η, φ, t) = (ũ, ṽ, w̃, p̃)(S, η) exp
(
inφ− iγt+

i

ε

∫ S
α(S ′)dS ′

)
. (5)

Here n must be an integer in order to enforce periodicity in the φ direction

around the axis of symmetry. We will require n to be large, and choose the

preferred scaling n = n/ε, with n = O(1). It is crucial to note that we

are looking for a global mode with azimuthal order which is the same at all

S. We now proceed by substituting (5) into the perturbation equations and,

after completing a series of straightforward manipulations, we find the system
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identical to (2.13)–(2.18) in [20] after the simple substitution of β = n/ sinS

and θ = S. The resulting system of perturbation equations is listed in

Appendix A for completeness.

As the steady flow is a mixed function of S and η, it is impossible to

scale out n in the perturbation system and we must consider each value of n

separately. The numerical solution of the perturbation system is completed in

a standard fashion for each parameter pair of R and n̄ using a fourth-order

Runge–Kutta integrator, starting from an analytical solution at the outer

edge of the boundary layer (taken to be at η = 20), and using a Newton–

Raphson search procedure to solve the associated eigenvalue problem. Full

details can be found in [22].

3. Global modes

Monkewitz et al. [19] show that the long-time linear behaviour of a weakly

nonparallel flow is governed by the behaviour of the global mode of complex

frequency γG: If Im(γG) > 0 then the global mode is unstable, and hence the

flow will be globally unstable, whereas if Im(γG) < 0 then the global mode

is damped and the flow will be globally stable. The global-mode frequency

is determined as follows. First, for each real S we look for a pinch in the

complex α plane, i.e. for points of zero group velocity, ∂γ/∂α = 0, formed

by the coalescence of modes from opposite halves of the complex α plane.

This provides us with a complex local absolute frequency, γ = γ◦(S), along

the real S axis. Second, we search for an S pinch point in γ◦(S), which

in general will occur at complex S and will therefore necessitate analytical

continuation off the real S axis. In other words, we find a saddle point
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∂γ◦/∂S = 0, and then verify that the S contour can be deformed off the

real axis so as to lie along the steepest descent contour through this saddle.

Once these conditions have been satisfied, the global mode frequency simply

corresponds to the frequency, γG, of this double α–S pinch at the saddle

location SS.

We solve the perturbation system (as given in Appendix A) for local

absolute instability over the sphere by marching through the range of S

in one degree increments for pairs of values of azimuthal wavenumber n̄

and Reynolds number R. In practice, it is known that an eruption of the

boundary layer occurs at the equator (S = 90◦) and pollutes the steady flow

around that region, and for this reason the study is confined to S ≤ 80◦.

Typical results are demonstrated in Figure 1 where we show the absolute

frequency γ◦(S) for a sample of parameter pairs. Pockets of local absolute

instability can be seen provided that n̄ is sufficiently small and R sufficiently

large. Although not shown in Figure 1, our study considers all combinations

of parameter pairs from n = 0.05 to 0.25 (in increments of 0.05) and R =

100, 200, 300, 400, 500, 1000, 2000.

Unlike for the rotating disk/cone class of flows (see [25]), an analytical

continuation of the absolute frequencies to complex S cannot be undertaken

easily, due to the complicated dependence of the base flow on S in the govern-

ing partial differential equations. Instead we follow the suggestion of Cooper

& Crighton [26] and use Páde approximants. The idea is that a rational func-

tion is fitted to complex γ◦(S) for real S (see [27], for example), which can

then be interrogated to determine the location of any pinch point in complex

S plane. After extensive tests with different orders of Páde approximant, it
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Figure 1: Plots of absolute frequency, γ0(S) at various R for n =

0.05, 0.10, 0.15, 0.20, 0.25 “–”, “. . . ”, “- -”, “–.”, “-..”, respectively.
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was found that using polynomials of order five for both the numerator and

the denominator typically gave the smallest error for each parameter set. In

Cooper & Crighton’s notation, Em, the root mean square error incurred by

using the Páde function to approximate the data on the real axis, is at worst

O (10−4). This method of approximation yields a complex absolute frequency

which, for real S, agrees with the original results to three decimal places for

all parameter values considered here.

Figure 2 shows sample contours of γ◦i in the complex S plane for a small

sample of n,R parameter pairs. Saddle points are visible towards the right

of each plot and are marked with a ‘*’. The thicker lines represent the zero

contour (γ◦i = 0). Table 1 gives the positions of the saddle points, SS, and

the associated global frequencies, γG, for a range of parameters.

We are able to plot the neutral curve for linear global instability by re-

peating the analysis at various n and recording R such that Im(γG) = 0; this

is shown in Figure 3.

The results in Table 1 and Figure 3 show that a linear global mode exists

in the boundary-layer flow over the rotating sphere. The mode is damped for

rotation rates corresponding to R below a critical value of Rcrit = 337 (which

occurs at n = 0.11). As the rotation rate is increased beyond this, the range

of n for which a self-sustained global mode can exist broadens, reflecting

the increased extent of the pockets of absolute instabilities that exist at

these parameter values. Interestingly, Table 1 shows that the properties

of the unstable global mode at each R appear to be fixed by properties of

the flow at latitudes between approximately 55◦–65◦ for all R ≤ 2000, by

which point the boundary layer is known to be locally absolutely unstable
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points are marked with ‘*’. Here S is measured in degrees.
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Figure 3: Neutral curve for the onset of linear global instability.

at all latitudes above approximately 15◦ (see [20, 21]). It is worth noting

that these critical latitudes are well away from the high latitude where the

boundary layer solution is terminated. Also note, from Table 1, that the S

saddles are relatively close to the real S axis, which suggests that the analytic

continuation is reliable.

It is interesting to compare the theoretical onset of local absolute insta-

bility [20, 21] and experimental measurements for the onset of turbulence

[28, 29] at each latitude with our predicted onset of the linear global mode.

This comparison is presented in Figure 4 in terms of the spin Reynolds num-

ber (RS = R2) that has been used to report experimental results in the liter-

ature. The figure shows the onset of local absolute instability as a function

of latitude, S, to be roughly parallel to the observed onset of turbulence,

although we see an increasing discrepancy as the analysis moves to higher

S. The experimental results appear to tend to a particular value of spin
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Figure 4: Theoretical onset of local absolute instability, the unstable linear

global mode and experimental data for the onset of turbulence [28, 29].

Reynolds number, denoted RS,A, as S tends to the equator. This limiting

value represents the minimum Reynolds number that is required to observe

turbulence on spheres of any radius, and can be used to calculate the mini-

mum spin rate required to observe turbulence close to the equator of a sphere

of particular radius. One might expect RS,A to be associated with Rcrit and

the two values are indeed reasonably consistent. As discussed by Lingwood

[2] for example, the measurement of the precise onset of turbulence is open to

some experimental discretion, and this, together with the inaccuracies arising

from the Páde approximation used in this analysis, could partly explain the

discrepancy between the values of RS,A and Rcrit. Furthermore, the limita-

tions of a linear theory as compared to measurements of a nonlinear physical

system are bound to manifest at this stage.

16



4. Conclusions

Our results suggest that the boundary-layer flow over a sphere rotating in

an otherwise still fluid can support self-sustained linear global modes if it is

rotated sufficiently fast. This conclusion has been reached with knowledge of

the local absolute instability properties of the boundary layer [20, 21] which

we have used to locate the complex S saddle point. The critical Reynolds

number for the onset of the linear global mode, Rcrit = 337, is reasonably

consistent with the observed minimum Reynolds number for the appearance

of turbulence in experimental studies and the discrepancy could be due to

the inaccuracies arising within both the experimental and theoretical studies.

The existence of the unstable linear global mode is in contrast to the liter-

ature concerning the linear global modes over a rotating disk [3, 5], where it

is generally accepted that self-sustained linear global modes do not exist. It

is important to note that our results do not contradict this result as the un-

stable linear global mode we have found on the sphere appears to be fixed by

properties of the flow at latitudes between 55◦–65◦. This location is well away

from the pole where the boundary-layer flow over the sphere approximates

that of the disk. We have no evidence to suggest that further increases in

Reynolds number would lead to the global properties of the flow being fixed

closer to the pole. Our results suggest that, despite both being susceptible to

local absolute instability, the mechanisms by which transition to turbulence

occurs over rotating disks and spheres could be fundamentally different. The

next stage in this continuing work is to study the effects of increased rotation

rate and the connection between the properties of the rotating sphere near

to the pole and the rotating disk.
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A. Governing perturbation equations

The perturbation equations can be written as a set of six first-order or-

dinary differential equations using the transformed dependent variables

z1(η;α, n̄, γ;R,S) = (α− i cotS/R)u+ (n̄/ sinS)v,

z2(η;α, n̄, γ;R,S) = (α− i cotS/R)Du+ (n̄/ sinS)Dv,

z3(η;α, n̄, γ;R,S) = w,

z4(η;α, n̄, γ;R,S) = p,

z5(η;α, n̄, γ;R,S) = (α− i cotS/R)v − (n̄/ sinS)u,

z6(η;α, n̄, γ;R,S) = (α− i cotS/R)Dv − (n̄/ sinS)Du,

where D represents differentiation with respect to η. Writing α1 = α −

[i cotS/R]s, these equations are
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+
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+
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R

]
s

+

[
1

R

((
α1
∂U

∂S
+

n̄

sinS
∂V

∂S

)
u−

(
α1V −

n̄

sinS
U
)
v cotS

)]
s

,

Dz3 =− iφ1 −
[
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[
iWz1

R

]
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+
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=
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+
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The subscripts v and s indicate which of the O(R−1) terms arise from the

viscous and streamline-curvature effects respectively. Note that since a sta-

tionary frame of reference is used Coriolis terms do not appear in the gov-

erning equations). Note also that the perturbation velocities u and v still
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appear explicitly, but can be expressed in terms of z1 and z2 via

u = 1
α2
1+(n̄/ sinS)2

(
α1z1 − n̄

sinS z5

)
,

v = 1
α2
1+(n̄/ sinS)2

(
α1z5 + n̄

sinS z1

)
.
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