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Abstract 

We apply a random-coefficient framework to deal with two problems frequently encountered in 

applied work. First, we use a real-world relationship to derive from it a sub-relationship among 

fewer variables without introducing a single specification error to correct misspecifications in a 

small area level model. Second, we use this framework to resolve Simpson’s paradox. We show 

that this paradox does not arise if a statistical relationship between a pair of variables is derived 

from the corresponding real-world relationship involving all relevant variables including the 

original pair without introducing a single specification error.     
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1. Introduction 

Empirical models are subject to several types of specification errors, including those that 

arise from incorrect functional forms, omission of relevant regressors, measurement errors, and 

incorrect relationships between included and excluded regressors. In this paper we show how to 

correct such specification errors within a random-coefficient framework. Specifically, we apply 

this framework to Fay and Herriot’s (FH) (1979) small area level model and use our approach to 

resolve Simpson’s paradox. 

Small area level model. In sample surveys, it can be the case that for sub-groups, the data 

available for those groups -- or domains -- are sparse and, as a result, direct estimates of the 

relevant parameters based on these data are not reliable.
1
 Further problems arise if these data are 

also corrupted by nonsampling errors, such as nonresponse and measurement errors. Any sample 

estimator can be expressed as its estimand plus the sum of its sampling and nonsampling errors. 

A statistical model of this estimand is called “a linking model.” If this model is not seriously 

misspecified, it can be used to improve the precision of the sample estimator. A necessary 

condition (discussed below) for a linking model to be free from all specification errors has been 

provided by Swamy, Mehta, Tavlas and Hall (2014). If this necessary condition is not satisfied, 

the empirical model is misspecified or false because it cannot have unique coefficients and error 

terms. The intuition underlying this result is that misspecified models will have incorrect 

functional forms and arbitrary coefficients and error terms. We use the Fay and Herriot (FH) 

(1979) model to illustrate our methods of correcting linking models for their specification errors.   

Simpson’s paradox. Simpson’s paradox is the (paradoxical) observation in which two 

variables appear to have, say, a positive relationship towards one another when, in fact, that 

                                                           
1
  A domain estimator is referred to as “direct” if it is based only on the domain-specific sample data. 
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relationship is reversed or disappears after a third variable is brought into the analysis.
2
 This 

paper presents a method of resolving Simpson’s paradox by correcting the relationship for its 

specification errors.    

The remainder of this paper is divided into three sections. Section 2 first presents a 

theorem giving a necessary condition for a model to be free from all specification errors. Then, 

the section first corrects FH’s model to satisfy this condition and then shows that the same 

corrections resolve Simpson’s paradox. Section 3 concludes.  

2. False Linking Models, their Corrections, and Resolution of Simpson’s Paradox  

2.1 False linking models  

In this section we explain a necessary condition for a model not to be false. By “false”, we mean 

that the model is not free from all specification errors. Under the heading: ‘specification errors,’ 

we include (i) incorrect functional forms, (ii) arbitrary error terms, (iii) incorrect relationships 

between included and excluded regressors (or covariates), (iv) omission of relevant regressors, 

and (v) imperfect measurements. 

Swamy, Mehta, Tavlas, Hall (2014) proved the following:      

Theorem: A necessary condition for a (mathematical or statistical) model to be completely free 

from all specification errors is that its coefficients and error term, having the correct functional 

forms, are unique (henceforth, SMTH’s theorem; see Swamy, Mehta, Tavlas and Hall 2014)
3
. 

We call a model that does not contain these specification errors “the original real-world 

                                                           
2
 For recent discussions of Simpson’s paradox, see Christensen (2014), Keli Liu and Xiao-Li Meng (2014), and 

Pearl (2000, 2014). 
3
 Swamy, Mehta, Tavlas and Hall did not formalize the conditions for this theorem, although the essential elements 

of the theorem were stated in that paper. In this paper, we formalize the theorem. 
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relationship”
4
. That is, by controlling for all relevant pre-existing conditions, we can help ensure 

that this relationship does not lead to false relationships among different sub-sets of its variables.
 

5
 Specifically, by not omitting any of relevant regressors or any of relevant pre-existing 

conditions from the original real-world relationship, that relationship does not need any error 

term to represent omitted variables. A “shorter real-world relationship” is the original real-world 

relationship containing fewer regressors than the original real-world relationship and which has 

the error term. The included regressors are those that are included in both original and shorter 

real-world relationships. Omitted regressors are those that are included in the original but not in 

the shorter real-world relationship. We apply these definitions below.  

The coefficients and error term of shorter real-world relationship are unique in the sense 

that they are invariant under those changes that keep the equality signs in the real-world 

relationships between each omitted regressor and the included regressors unchanged; each of the 

unique coefficients on nonconstant regressors has the form of the partial derivative of the true 

value of the dependent variable with respect to the true value of an included regressor plus the 

corresponding omitted-regressors bias; the unique error term has the form of a function (having 

the correct functional form) of certain ‘sufficient sets’ of omitted regressors, a concept due to 

Pratt and Schlaifer (1988, p. 34); the coefficients cannot be unique unless they have the correct 

functional forms.  

What SMTH’s theorem establishes is the following: while the models with nonunique 

coefficients and error terms are false, a sufficient condition for the truth of a model with unique 

                                                           
4
 We call any relationship which is not misspecified “a real-world relationship” (see Basmann 1988). See also 

Swamy and Hall (2012). The SMTH theorem holds as a direct consequence of writing a real-world relationship in 

two forms, one with all relevant arguments including all relevant pre-existing conditions and another with fewer 

regressors. What these two forms are can be seen from Section 2.3. 
5
 Skyrms (1988, p. 59) proved this statement.  
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coefficients and error term is not known. Using the well-known dictum (attributed to George 

Box) that "All models are wrong, but some are useful", SMTH’s theorem modifies this statement 

by reducing the set of false models from “the set of all models” to “the set of models with 

nonunique coefficients and error terms.” This reduction is very useful. Intuitively, SMTH’s 

theorem makes a lot of sense. If the error term of a model is nonunique, then the correlations 

between the error term and the included regressors can be made to appear and disappear at the 

whim of an arbitrary choice between two equivalent forms of the model (see Swamy, Mehta, 

Tavlas and Hall, 2014, pp. 217-218). Because of this problem, consistent estimation of the 

parameters of false models is impossible.  

This difficulty is also presented by White’s (1980, 1982) assumption that the nonunique 

error term and the regressors of his nonlinear model are uncorrelated with each other. If the 

coefficient on a regressor of a model is nonunique, then the effect of the regressor on the 

dependent variable is not consistently estimable (see Swamy, Mehta, Tavlas and Hall, 2014, pp. 

217-218). From this discussion, we can conclude that the models with nonunique coefficients 

and error terms are not useful.            

2.2 Fay and Herriot’s model
6
    

Let 
î  = log i

ˆ
Y  where i

ˆ
Y  is a direct sample estimator of iY  which is the per capita income (PCI) 

for the ith small area. FH (1979) explained how they computed i

ˆ
Y . They write î  = i  + ie  

where i  = log iY  and ie  is the sampling error. Suppose that there are M areas in the population 

                                                           
6
 The U.S. Bureau of the Census uses FH’s model (shown below as equation (2)) to periodically update the estimates 

of per capita income for areas with population less than 1,000. The U.S. Treasury Department uses these estimates 

to determine allocations of funds to the local governments within different states under the General Revenue Sharing 

Program.  
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and only m (< M) areas are selected in the sample. It is assumed that for i = 1, …, m, ( )p i iE e |  = 

0 and p i i iV ( e | )  .   

For i = 1, …, M, FH assume a model of the form  

 i ix   + i ib v ,                                                                                                                   (1) 

where 1( )i i pix x ,...,x   is the column vector of p regressors, 1( )p,...,     is the column vector 

of p coefficients, the ib ’s are known positive constants, vi is the model error, FH showed how 

they obtained these ib ’s. They assume that ( )m iE v  = 0 and )m iV ( v  = 
2

v  (  0) are the model 

expectation and variance respectively. The regressors in (1) are: 1x  = 1, 2x  = log(county PCI), 

3x  = log(value of owner-occupied housing for the place), 4x  = log(value of owner-occupied 

housing for the county), 5x  = log(adjusted gross income per exemption from the 1969 tax returns 

for the place), 6x  = log(adjusted gross income per exemption from the 1969 tax returns for the 

county), p = 6. FH assume that the sample areas obey the population model in (1). Equation (1) 

is FH’s linking model. Substituting the sum of two terms on the right-hand side of equation (1) 

for i  in 
î  = i  + ie  gives the basic area level model  

î  = ix   + i ib v  + ie                                                                                                                      (2)  

It is customary to assume that the sampling variances p i i iV ( e | )   are known because they are 

not identifiable. This means that model (2) is also not identifiable.    

 The possible misspecifications of (1) are: (i) its log-linear functional form is incorrect, (ii) 

its coefficients and error term are not unique, (iii) the measurements on its regressors are not 
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perfect, (iv) 
î  is corrupted by nonsampling errors, and (v) the selection of the covariates of (1) 

is not based on appropriate economic theories.     

   

2.3 Corrections to FH’s model 

To correct (1) for its misspecifications, we need the following real-world relationship:  

*

iY  = 1( 2 1 )* * *

i i gi if x ,x ,g ,...,G,x , G ,...,L    = (.)if                                                                    (3) 

where the variables with an asterisk are the true values containing no measurement errors, the 

function if (.) has unknown functional form and has three types of arguments: (i) 1

*

ix , an included 

determinant of 
*

iY , (ii) the 2*

gix ,g ,...,G,  are labeled, “omitted determinants” of 
*

iY , and the 

1*

ix , G ,...,L  , represent all relevant pre-existing conditions.
7
 Note that the variable 1

*

ix  in 

equation (3) is the true value of 2 ix
e  in (1).

8
 We do not enter the regressors 3ix , 4ix , 5ix , and 

6ix  of (1) into (.)if  as its arguments because we are not sure that they are the determinants of 
*

iY

. We use them for some other purpose below.    

Assumption I (Normalization rule): The coefficient of the dependent variable 
*

iY  of equation (3) 

is set equal to 1 for all i.       

Equation (3) is called “the original real-world relationship.” We justify this label by using 

the following argument: Since the true functional form of (3) is unknown, the idea that is used 

here is: Not specifying a particular functional form for (.)if  amounts to not misspecifying its 

unknown true functional form. Using this idea we do not specify the functional form of (3).  

                                                           
7
 The reason why we use these specific labels here will be clear as we proceed. 

8
 Given that incomes are usually underreported, it is safe to assume that the counties’ per capita incomes are 

measured with error, i.e., 
1ix = 

1

*

ix  + 
*

1i  where 
*

1i  is a measurement error.        
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Another problem is that we do not have the complete list of the determinants of 
*

iY .  To 

stop this ignorance of ours from making us omit any of the relevant arguments of (.)if , we 

neither define the regressors 2*

gix ,g ,...,G,  nor specify their number G. Finally, we do not 

know what the relevant pre-existing conditions are and what their number is. So we neither 

define the variables 1*

ix , G ,...,L  , nor specify their number L. In (3), there is no need to 

include an error term representing omitted determinant of 
*

iY  and omitted pre-existing conditions 

because there are no such omitted variables. The function if (.) is not stochastic. Basmann (1988, 

p. 73) pointed out that “causal relations and orderings are unique in the real world and that they 

remain invariant … [under] mere changes in the language we use to describe them.” It should be 

noted that equation (3) has this property of causal invariance. All these properties of (3) assure 

that it is a real-world relationship.  

Assumption II: The function if (.) is differentiable with respect to its arguments.   

 The form of (3) is not convenient for further analysis. Therefore, without misspecifying 

its functional form, (3) is written as  

*

iY  = 1 1

2 21 1

( )
* * * *L L

* * * * *i i i i
i ji i i ji* * * *

j ji ji i ji

Y Y Y Y
x x Y x x

x x x x 

   
   

   
                                                               (4a)  

     = 1 1 0

2

L
* * * * *

i i ji ji i

j

x x  


                                                                                                  (4b) 

where for j = 1, 2, …, L, *

ji  = 
*

i

*

ji

Y

x




 and 0

*

i  = 
1

( )
*L

* *i
i ji*

j ji

Y
Y x

x





  is the intercept. Note that in 

taking the partial derivatives 
*

i

*

gi

Y

x




, g = 1, …, G, the values of all the determinants of 

*

iY  

including all relevant pre-existing conditions ( 1*

ix , G ,...,L  ) but not including *

gix are held 
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constant. As a consequence, 
*

i

*

gi

Y

x




 = 0 if the relation of 

*

iY  to *

gix  is false and is equal to a 

nonzero function otherwise, as shown by Skyrms (1988, p. 59).
9
 This explains why we enter 

1*

ix , G ,...,L  , into if (.) of (3) as its arguments.     

The coefficients of equation (4b) or the partial derivatives in equation (4a) are constants 

when the function (.)if  in (3) is linear. In the case where this function is nonlinear, the 

coefficients of (4b) are variables and are functionally related to its regressors.               

  In (1), FH follow the usual practice of treating the net effect of omitted regressors on i  

as the error term. If we follow this practice, then the coefficients (
*

0i , 1

*

i ) and the error term      

(
2

*L
*i
ji*

j ji

Y
x

x




 ) become nonunique, in which case model (4b) is false by SMTH’s theorem (see 

Swamy, Mehta, Tavlas and Hall 2014). An explanation of this nonuniqueness is that the error 

term (
2

*L
*i
ji*

j ji

Y
x

x




 ) is a function of omitted regressors ( *

jix , j = 2, …, L) which are not unique. 

Pratt and Schlaifer (1988, p. 34) pointed out that the assumption that the included regressor (i.e., 

1

*

ix  in (4b)) is independent of ‘the’ omitted regressors (i.e., *

jix , j = 2, …, L, in (4b)) themselves is 

“meaningless unless the definite article is deleted and can then be satisfied only for certain 

‘sufficient sets’ of … [omitted regressors] some if not all of which must be defined in a way that 

                                                           

9
 Skyrms (1988, p. 59) pointed out that if any partial derivative, say 

*

i

*

ji

Y

x




, in (4a) becomes zero  when the values of 

all relevant pre-existing conditions are held constant, then this means that the sub-relationship between *Yi  and 
*x ji  

is false. In taking these partial derivatives we do hold the values of all relevant pre-existing conditions constant.   
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makes them unobservable as well as unobserved.”
10

 We derive such sufficient sets below. The 

error term i  of FH’s model in (1) is not a function of ‘sufficient sets’ of omitted regressors. 

Therefore, by Pratt and Schlaifer’s logic, both FH’s assumption that ( | )m i iE v x  = 0 and White’s 

(1980, 1982) assumption that an arbitrary error term of his nonlinear model is uncorrelated with 

its regressors are equally “meaningless”. To avoid such “meaningless” assumptions, we will 

replace FH’s i  by a function of certain ‘sufficient sets’ of the omitted regressors 2*

gix ,g ,...,G,  

derived below. We will also ensure that this function has the correct functional form.   

Assumption III: Every one of the omitted regressors ( *

jix , j = 2, …, L) is differentiable with 

respect to the included regressor ( 1

*

ix ).  

 The fully corrected FH’s model with unique coefficients and error term can be obtained 

by using the following real-world relationships between omitted and included regressors. For j = 

2, …, L: 

1

1

*

ji* *

ji i*

i

x
x x

x





 + ( 1

1

*

ji* *

ji i*

i

x
x x

x





)                                                                                                       (5a)   

      = 1 1 0

* * *

i i ix                                                                                                                             (5b) 

where 1

*

i  = 
1

*

ji

*

i

x

x




 and 0

*

i  = (
1

1

*

ji* *

ji i*

i

x
x x

x





). Following Pratt and Schlaifer (1984, 1988), we 

                                                           
10

 Here Pratt and Schlaifer (1988) are not talking about the covariate selection problem. By assuming that (3) is a 

real-world relationship we have bypassed this problem. It can be solved by using the “ignorability” condition: In 

(4b), the set 
*

jiX , j = 2, …, L, is an admissible set of covariates if, given 
*

jiX , j = 2, …, L, the value that 
i  would 

take had 
1

*

iX  been 
1

*

ix  is independent of 
1

*

iX  (see Pearl 2000, p. 79). Since this condition is impossible to verify, we 

cannot determine whether the covariates of (1) are admissible or not. Because of this difficulty econometricians use 

economic theories to select the regressors for their models.           
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interpret 0

*

i  as the portion of the omitted regressor *

jix  remaining after subtracting the effect       

( 1 1

* *

i ix ) of the included regressor ( 1

*

ix ) on *

jix  from *

jix .  

      Substituting the right-hand side of equation (5b) for *

jix  in (4b) gives 

0 0 1 1 1

2 2

( )
L L

* * * * * * * *

i i ji i i ji i i

j j

Y x     
 

                                                                                             (6)  

This is a corrected version of FH’s model. Note that we go from (3) to (6) without resorting to 

any approximation or committing any misspecification. For this reason, equation (6) is called 

“the original real-world relationship shortened to have only one regressor” 1

*

ix  (or, simply, “the 

shortened real-world relationship”). The regressor 1

*

ix  is called “the included regressor” because 

it is included in both (3) and (6); the regressors *

jix , j = 2, …, L, are called “omitted regressors” 

because they are included in (3) but not in (6).    

The coefficients of (6) have the correct functional forms. Furthermore, in conjunction 

with the included regressor ( 1

*

ix ) the portions ( 0

*

i ’s) of omitted regressors ( *

jix ’s) are sufficient to 

determine the value of 
*

iY  in (6) exactly. This justifies Pratt and Schlaifer’s label “sufficient sets 

of omitted regressors” for the 0

*

i ’s. According to them, the second term ( 0

2

L
* *

ji i

j

 


 ) on the right-

hand side of equation (6) can be treated as the error term. One can easily see how different this 

error term is from FH’s error term i ib v  in (1).  

Swamy, Mehta, Tavlas and Hall (2014, Appendix 1, pp. 217-219) proved that the error 

term ( 0

2

L
* *

ji i

j

 


 ) and the coefficient 1 1

2

( )
L

* * *

i ji i

j

  


  of 1

*

ix  in (6) are unique in the sense that they 

are invariant under those changes that keep the equality signs of relationships (5b) unchanged. 
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The term 1

2

L
* *

ji i

j

 


  is the correct measure of omitted-regressors bias and the term 1

*

i  is the bias-

free component of the coefficient of 1

*

ix  in (6).  

It should be noted that equations (4b) and (6) are two different forms of the same real-

world relationship in (3). If we are only interested in predicting 
*

iY , then there is no need to 

eliminate omitted-regressor bias from the coefficient of 1

*

ix  because the right-hand side of the 

equality sign in (6) is exactly equal to its left-hand side.   

2.4 Measurement errors       

Now, we assume that the dependent variable and the regressor 2 ix
e  of (1) contain measurement 

errors. We insert these errors at the appropriate places in (6) to express model (6) in terms of 

observed variables. Let 1ix  (= 2 ix
e ) in (1) be equal to 1

*

ix  in (3) plus a measurement error, denoted 

by 
*

1i . Algebraically, 1 1 1

* *

i i ix x   .
11

  

Assumption IV: The variable 1ix  is continuous.  

Inserting 1ix  - 1

*

i  for 1

*

ix  in (6) gives   

i

ˆ
Y  = 0i  + 1 1i ix                                                                                                                            (7a) 

where i

ˆ
Y  = 

*

iY  + 
*

i  + iu , the 
*

i ’s are the sampling errors, the iu ’s are nonsampling errors, 0i  

= 0

*

i  + 0

2

L
* *

ji i

j

 


  + 
*

i  + iu , 1i  = 1
1 1

2 1

( )(1 )
*L

* * * i
i ji i

j ix


  



  , and 1
1 1

2 1

( )( )
*L

* * * i
i ji i

j ix


  



   is the 

                                                           
11

 This 1ix  should not be confused with 1x  in (1).        
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right measure of measurement-error bias of 1i . We call equation (7a) “the fully corrected FH 

model with measurement errors”.
12

  

 Now it can be seen that the three components of the intercept of (7a) are: (i) the intercept 

of (4b), (ii) the error term of the shorter real-world relationship in (6), (iii) the sum of sampling 

and nonsampling errors in the dependent variable of (7a). The components of the coefficient on 

the nonconstant regressor of (7a) are: (i) the bias-free partial derivative 1

*

i , (ii) the omitted-

regressor bias ( 1

2

)
L

* *

ji i

j

 


 , and (iii) the measurement-error bias 1
1 1

2 1

( )(
*L

* * * i
i ji i

j ix


  



  ). Now, we 

need to estimate the coefficients of (7a) without distorting these interpretations.
13

  

   

          To do so, we need to parameterize (7a) to facilitate its estimation. Let iz  = (1, 1iz =

3 6

4 )i ix x

ie ,...,z e   be a 5   1 vector. The elements of this vector are the same as a subvector of 

the regressors of (1). We write 0i  + 1 1i ix  in a matrix form as i ix   where ix  = (1, 1 )ix   and i  =      

( 0 1 )i i,   . Let Π  = 
00 01 04

10 11 14

, ,...,

, ,...,

  

  

 
 
 

 be a 2   5 matrix. Using these definitions we write 

i

ˆ
Y  = Πzi ix  + i ix   (i = 1, …, m)                                                                                                   (7b) 

where i  = Πzi  + i , i = ( 0 1 )i i,   .  

                                                           
12

 The cases where 1ix  takes the value 0 with positive probability can be handled by adding the term 

1 1 1
2

( )( )
L* * * *

i ji i i
j

   


   to 0i  after rewriting the term 

1
1 1

2 1

( )(1 )
*L* * * i

i ji i
j ix


  


   as 

1 1 1 1

2

( )( )
L

* * * *

i ji i i i

j

x   


   (see Swamy, Mehta, Tavlas and Hall 2014, pp. 198-199).     

13
 The coefficients and error terms of the observation equations of state space models are not unique and do not have 

the same interpretations as the coefficients of (7a). For this reason, the maximum likelihood method of estimating 

the state space models given in Durbin and Koopman (2001, pp. 30-32) and Kim and Nelson (1999) cannot be used 

to estimate (7a). 
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It is assumed that for i, i  = 1, …, m, ( | , )i i iE z x  = 0 and ( | , )i i i iE z x  
  = 

2 if 
0     {

i i
i i
   

  where 

  is a 2   2 nonnegatuve definite matrix.    

The coefficient vector of equation (7a) is i . The elements of the vector iz  in the model 

i  = Πzi  + i  are aptly called the coefficient drivers.
14

 These drivers explain the variation in the 

coefficient vector i . In conjunction with this vector, the vector ix  of the regressors of (7a) 

explains the variation in the dependent variable i

ˆ
Y . Thus, this dependent variable has two 

sources of variation whereas the dependent variable of FH’s model in (1) has only one source of 

variation in the regressor vector of (1). The error term i  of i  = Πzi  + i  is part of i . Part of 

the first element of i  is the error term of (6).     

The function 2 ix
e  of one of the regressors of FH’s model appears as the regressor 1ix  of 

equation (7a) and the antilog of each of the remaining regressors of FH’s model appears as a 

coefficient driver in i  = Πzi  + i . This use introduces the interactions between the antilog of 

2ix  and the antilog of each of the other regressors of FH’s model into (7b). Thus, (7b) is richer 

than FH’s model. The reason why we use the antilog of FH’s regressor 2ix  in (1) as the regressor 

of (7a) and use the antilog of each of FH’s other regressors ( 3ix , 4ix , 5ix , and 6ix ) in (1) as the 

coefficient drivers is that i

ˆ
Y  is part of the antilog of 2ix  but not of the antilog of each of FH’s 

other regressors. The motive for introducing the equation i  = Πzi  + i  is the aim that different 

combinations of the coefficient drivers would give accurate estimates of the components of the 

                                                           
14

 We only choose observable variables as the coefficient drivers. 
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coefficients of (7a). If this aim turns out to be false, then FH’s regressors of their model can be 

judged to be inappropriate.       

Note that the instrumental variables that are highly correlated with ix  and uncorrelated 

with i ix   cannot exist. Therefore, the method of instrumental variables does not apply to model 

(7b). This result cannot be avoided if one wants to specify a model without introducing any 

specification errors. Equations (3), (4b), (5b), (6), (7a) and (7b) always end up with the 

multiplication of the error vector i  of i  = Πzi  + i  by the regressor vector ix  of (7a), as in 

(7b).    

Admissible coefficient drivers: The elements of the vector iZ  = (1, 1 4 )i iZ ,...Z   in i  = Πzi  + i   

is an admissible set of coefficient drivers if, given iZ , the value that the vector of the coefficients 

of (7a) would take had 1(1, )i iX X   been 1(1, )i ix x   is independent of iX  for all i.   

 Assuming that the elements of i  are contemporaneously and serially correlated, Swamy, 

Tavlas, Hall and Hondroyiannis (2010) developed an iteratively rescaled generalized least 

squares (IRSGLS) method to estimate the parameters and to predict the i ’s of (7b). They have 

also shown that under certain conditions, these estimators are consistent. Next, we use these 

estimates in Lehmann and Casella’s (1998, p. 467, Theorem 5.3) way to obtain asymptotically 

efficient estimates of the parameters of (7b). Inserting these estimates into (7b) gives  

i

ˆ̂
Y  = Πzi i

ˆx  + i i
ˆx                                                                                                                          (8a) 

î  = Πzi
ˆ  + î                                                                                                                               (8b) 

where the symbols with hat are IRSGLS or asymptotically efficient estimates. We partition two-

equation system (8b) into   
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0î  = 0 i
ˆ z   + 0î                                                                                                                              (9) 

1î = 1 i
ˆ z   + 1î                                                                                                                              (10) 

where 0̂   and 1̂   are the first and second rows of Π̂ , respectively.  

If the regressors of FH’s model are appropriate and adequate, then equations (9) and (10) 

provide useful information about the components of the coefficients 0i  and 1i  of (7a), 

respectively. To extract the estimates of the coefficients of (6) from the dependent variables of 

(9) and (10), we need to subtract an accurate estimate of (i) the sum (
*

i  + iu ) of sampling and 

nonsampling errors from 0î  ( 0i  = 0

*

i  + 0

2

L
* *

ji i

j

 


  + 
*

i  + iu  ) and (ii) the measurement-error 

bias [ 1
1 1

2 1

( )( )
*L

* * * i
i ji i

j ix


  



  ] of 1i  [= 1
1 1

2 1

( )(1 )
*L

* * * i
i ji i

j ix


  



  ] from 1î . For this purpose, we 

exploit the information contained in (9) and (10). The quantities 0
ˆ

i  and 1î  are treated as parts 

of the estimates of ( ie  + iu ) and measurement-error bias of 1i , respectively.        

Since the information contained in 0
ˆ

i  and 1î  is already used up, we can now see what 

portion of the unused information contained in 0 i
ˆ z   and 1 i

ˆ z   of (9) and (10) can be used to 

obtain accurate estimates of ( ie  + iu ) and measurement-error bias of 1i , respectively. With 5 

coefficient drivers, we can have 
52  - 1 = 31 combinations of them. Each of these combinations 

can be written as     

Π z i
ˆ
   (  = 1, …, n, i = 1, …, m)                                                                                                (11) 

where iz  is a truncated vector of coefficient drivers obtained by deleting from iz  one, two, 

three, or four elements at a time; and Π̂  is a submatrix of Π̂  having all the columns that 
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correspond to the elements in z i . For each  , we compute kernel density estimates using Π z i
ˆ
  , 

i = 1, …, m. The large sample properties of these estimates are stated in Lehmann (1999, pp. 

406-419). By comparing the locations, spreads, modes and medians of these kernel estimates we 

might be able to pick those kernel density estimates of 0i  and 1i  that have negligible 

magnitudes of ( ie  + iu ) and measurement-error bias, respectively.     

2.5 Simpson’s Paradox 

To illustrate the paradox, we have taken the following example from Armistead (2014): When a 

hypothetical quasi-experiment was conducted for both male and female subjects assigned to a 

medical treatment, the combined recovery rates for males and females from treatment are 50% 

for the treated subjects and 40% for the controls (untreated subjects). In the subgroups of males 

and females, the recovery rates for treated males and untreated males (controls) are 60% and 

70% and those for treated females and untreated females (controls) are 20% and 30%, 

respectively. Thus, in the aggregate (combined) group of men and women, treated subjects fared 

better than untreated subjects (controls). However, in the subgroups of males and females, the 

finding is reversed: untreated males (controls) are shown to recover better than treated males and 

untreated females (controls) are shown to recover better than treated females, respectively. What 

is paradoxical about these results is that the treatment is good for everyone but bad for males and 

females when they are treated as subgroups. For this type of result to arise, there needs to be 

different proportions of men and women in the treated and untreated groups.  

In this experiment, Simpson’s paradox was observed when gender (a third variable) was 

introduced into a statistical relationship between a pair of variables (treatment and recovery). Let 

us now derive a relationship between a pair of variables from a relationship between the same 

pair of variables involving all relevant third variables without committing a single specification 
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error. We will show below that this derivation does not produce Simpson’s paradox. Let us look 

at our algebra behind this derivation. The question which Simpson’s paradox poses is: Do the 

disaggregated (separate male-female) data invalidate the aggregated (combined male-female) 

data? To rephrase this question, we treat data on the variables in (4b) as Armistead’s (2014) type 

disaggregated data and data on the variables in (6) as Armistead’s type aggregated data. To make 

a comparison of our work in this paper with Armistead’s (2014) analysis, we view (6) as 

containing aggregated data on (
*

iY , 1

*

ix ) and view (4b) as containing data on (
*

iY , 1

*

ix ) 

disaggregated by including *

jix , j = 2, …, L. Suppose that (6) is a first-order relationship between 

*

iY  and 1

*

ix . The variables *

jix , j = 2, …, L, are used in place of a third variable used in Armistead 

(2014).   

The relevant question is: Whether the third variable, gender, is causal or not.
15

 Our 

answer is: Any third variable is causal if it enters into a real-world relationship of (4b)’s type 

with nonzero coefficient and is not causal if it enters into (4b)’s type equation with zero 

coefficient.
16

 Sections 2.1-2.4 of this paper show how we carefully examine the third variables 

*

jix , j = 2, …, L.   

Suppose that the correlation between treatment and recovery is not spurious or the 

relationship between 
*

iY  and 1

*

ix  is not false. Then the numerical results in Armistead (2014) 

hold but the result, viz., 50% vs. 40% recovery, contains incorrect functional-form and omitted-

regressor biases due to omitting the third variable which is gender. Because of these biases it 

                                                           
15

 This question was raised in the debate published in the February 2014 issue of The American Statistician. 
16

 Armistead (2014) gives a different answer: “Whether causal or not, third variables can convey critical information 

about a first-order relationship, study design, and previously unobserved variables. Any conditioning on a non-trivial 

third variable that produces Simpson’s Paradox should be carefully examined before either the aggregated or the 

disaggregated findings are accepted, regardless of whether the third variable is thought to be causal.” 
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cannot be concluded from the result that the disaggregated data invalidate the aggregated data. 

Disaggregated equation (4b) does not imply false relationships among different subsets of its 

variables, since all relevant pre-existing conditions are controlled. It can be seen that in 

disaggregated equation (4b), the coefficient of 1

*

ix  is 1

*

i  and in aggregated equation (6), the 

coefficient of the same 1

*

ix  is 1 1

2

( )
L

* * *

i ji i

j

  


 . These two coefficients will have the same sign and 

magnitude if the omitted-regressors bias 1

2

L
* *

ji i

j

 


  is completely removed from 1 1

2

( )
L

* * *

i ji i

j

  


 . 

Thus, disaggregated equation (4b) does not reverse the relationship between the pair of variables 

(
*

iY , 1

*

ix ) implied by aggregated equation (6). Any sign of 1 1

2

( )
L

* * *

i ji i

j

  


  that is the opposite of 

the sign of 1

*

i  does not mean that disaggregated data in (4b) reversed the relationship in (6) but 

mean that the addition of the omitted-regressors bias 1

2

L
* *

ji i

j

 


  to 1

*

i  has assigned to the sum 

1 1

2

( )
L

* * *

i ji i

j

  


  a sign that is the opposite of the sign of 1

*

i . Incorrect functional-form and 

omitted-regressor biases cause wrong signs all the time in econometrics. A comparison of (6) 

with (4b) is not a comparison of apples and oranges because (6) and (4b) are the two forms of the 

same real-world relationship in (3).   

    

2.6 Discussion  

Equations (4b) and (6) have multiple uses: (i) they show how to eliminate specification errors 

from any misspecified model. We chose FH’s model to illustrate this point. (ii) They can resolve 

Simpson’s paradox. (iii) They show how to derive the formulas for omitted-regressor and 
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measurement-error biases with the correct functional forms. (iv) They show how the unique 

coefficients and error terms of models look like.  

With equations (4b) and (6) we could resolve Simpson’s paradox. Causality is the property of 

such real-world relationships as (3). The derivation of disaggregated relationship (4b) from real-

world relationship (3) and that of aggregated relationship (6) from disaggregated relationship 

(4b) avoid all specification errors as well as Simpson’s paradox. Model (6) satisfies the 

necessary condition of SMTH’s theorem.    

    

2.7 Prediction  

In actual practice, false models with nonunique coefficients and error terms are used for 

generating predictions under some arbitrary error distributions. A desirable practice would be to 

use equation (7b) for prediction. If this is done, then the sources of forecast errors are: (i) 0î  - 

0i  , (ii) ( ie  + iu ) – estimate of ( ie  + iu ), (iii) ( 1î  - 1i ), (iv) 1
1 1

2 1

( )( )
*L

* * * i
i ji i

j ix


  



   – estimate 

of [ 1
1 1

2 1

( )( )
*L

* * * i
i ji i

j ix


  



  ], and (v) measurement errors in the 1ix . It is very difficult to eliminate 

any of these sources. Some of the components of forecast errors coming from these sources can 

be very large.   

3. Conclusions 

We have dealt with the following issues. 

(1) Models with nonunique coefficients and error terms are not free from specification errors. 

FH’s misspecified model or any other misspecified model can be modified so that it has 

unique coefficients and error term. Such modified models are proven to be free from all 

relevant specification errors. After these modifications have been made in FH’s model, 
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accurate forecasts of its dependent variable can be generated from it if the sum of 

sampling and nonsampling errors and the measurement-error bias component can be 

completely removed from its intercept and slope coefficient, respectively.   

(2) We use the random coefficient framework to resolve Simpson’s paradox. We show that 

this paradox does not arise if a statistical relationship between a pair of variables is 

derived from the corresponding real-world relationship involving all relevant variables 

including the original pair without introducing a single specification error.       
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