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Children between 5 and 8 years of age freely intervened on a
three-variable causal system, with their task being to discover
whether it was a common cause structure or one of two causal
chains. From 6 or 7 years of age, children were able to use informa-
tion from their interventions to correctly disambiguate the struc-
ture of a causal chain. We used a Bayesian model to examine
children’s interventions on the system; this showed that with
development children became more efficient in producing the
interventions needed to disambiguate the causal structure and that
the quality of interventions, as measured by their informativeness,
improved developmentally. The latter measure was a significant
predictor of children’s correct inferences about the causal struc-
ture. A second experiment showed that levels of performance were
not reduced in a task where children did not select and carry out
interventions themselves, indicating no advantage for
self-directed learning. However, children’s performance was not
related to intervention quality in these circumstances, suggesting
that children learn in a different way when they carry out interven-
tions themselves.
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Introduction

Most developmental studies of causal learning (e.g., Bullock, Gellman, & Baillargeon, 1982; Gopnik,
Sobel, Schulz, & Glymour, 2001; Shultz, 1982) have required children to judge whether an event is
causally efficacious. However, in learning about the world, what is at issue is often not just whether
a specific variable has a particular causal power but also the structure of the causal relations between
a set of variables. You might observe that Events A, B, and C tend to co-occur (e.g., that when you feel
stressed you are likely to drink more heavily and also that your blood pressure is raised). This
co-occurrence is consistent with a variety of different causal structures; for example, the structure
may be a common cause in which A independently causes both B and C, B A ? C (stress causes
heavier drinking and also independently causes raised blood pressure), or a causal chain in which A
causes B which causes C, A ? B ? C (stress causes heavier drinking which raises blood pressure).
How do we distinguish between these possibilities? Intervening on a causal system potentially pro-
vides very important information (Hagmayer, Sloman, Lagnado, & Waldmann, 2007; Sloman &
Lagnado, 2005; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). Observing what happens if we
intervened on B only would allow us to distinguish between the two suggested causal structures;
if, assuming no background causes, we make B occur on its own (engage in heavy drinking when
not stressed), and C does not occur (blood pressure is not elevated), we can rule out the A ? B ? C
causal chain.

A variety of studies have required adults to infer the structure of the relations between sets of vari-
ables (e.g., Fernbach & Sloman, 2009; Kushnir, Gopnik, Lucas, & Schulz, 2010; Lagnado & Sloman, 2004,
2006; Sobel & Kushnir, 2006; Steyvers et al., 2003). In several of these studies, participants learned the
causal structure by deciding what interventions to make on elements in the system, carrying out these
interventions and observing their effects (Bramley, Lagnado, & Speekenbrink, 2015; Lagnado &
Sloman, 2004, 2006; Sobel & Kushnir, 2006; Steyvers et al., 2003). Such interventions are assumed
to reveal conditional dependencies or independencies between variables, and adults’ success on these
tasks has been interpreted as being consistent with the causal Bayes net approach to causal learning
(e.g., Glymour, 2001; Gopnik et al., 2004) that captures causal learning in terms of the construction of
causal models based on conditional probability information. A major advantage of this approach is
that it specifies how and why interventions on a system yield richer information about the causal
(in)dependencies between variables than that which is available through observation of patterns of
covariation (Hagmayer et al., 2007; Steyvers et al., 2003; Waldmann & Hagmayer, 2005).

The causal Bayes net approach has been extensively adopted by developmental psychologists inter-
ested in explaining children’s learning about causation (Gopnik, 2012; Gopnik & Wellman, 2012;
Gopnik et al., 2004). The majority of studies in this tradition have involved children learning whether
an object possesses a particular causal power, usually on the basis of observing the experimenter’s
actions (e.g., whether an object makes a box light up and play a tune; Gopnik & Sobel, 2000;
Kushnir & Gopnik, 2007; Sobel, Tenenbaum, & Gopnik, 2004). Relatively few studies have used tasks
in which children themselves decide which interventions to carry out in order to discover the causal
structure of a system (e.g., whether it has a causal chain or common cause structure). Such studies are
particularly important because they can be used to assess young children’s effectiveness in generating
and testing hypotheses about the causal relations between sets of variables. Moreover, a key advan-
tage of the causal Bayes net approach over most other accounts of causal learning is that it can capture
this more complex type of learning, distinguishing between different causal paths as well as identify-
ing variables’ ultimate effects.

One study that did examine children’s ability to learn causal structure by means of making inter-
ventions on a system is that of Schulz, Gopnik, and Glymour (2007, Experiment 3), in which 4- and
5-year-olds intervened on a causal system involving a box with two gears. Children needed to decide
whether each gear moved by itself or whether one of the gears caused the other one to move. Children
could remove each gear in turn from the box to examine whether the other gear worked on its own
when the box itself was switched on. They gave their answers about the relations between the gears
by selecting from a set of anthropomorphized pictures of the two gears that depicted different possible
relations between them. Performance on this task was mixed. Children did not all reliably generate the
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right interventions to distinguish between the different possible relations that might hold between
the gears. Even among those who did make appropriate interventions, children were not successful
at identifying instances in which one of the other gears caused the other one to move.

Schulz and colleagues’ (2007) study provides limited support for the claim that children will gen-
erate informative interventions and use this information to distinguish between different causal struc-
tures. Not only was performance relatively weak, but children were only required to make judgments
about the dependencies between pairs of variables rather than to distinguish among three-variable
causal structures. Children gave their responses by pointing to pictures of the two gears that showed
whether they turned themselves or one turned the other. There was a third variable—a switch—that
was important in the system, but children did not need to represent how its relation to the gears var-
ied for the different causal systems, and it did not feature in the pictures depicting causal relations
between the gears. Thus, this study does not allow us to draw firm conclusions about whether children
can use interventions to distinguish between, for example, common cause and causal chain structures.

However, the findings of some other studies suggest that we should expect even very young chil-
dren to be good at crafting appropriate interventions and using them to learn about causal systems
(Bonawitz, van Schijndel, Friel, & Schulz, 2012; Cook, Goodman, & Schulz, 2011; Schulz & Bonawitz,
2007). Indeed, Schulz (2012) argued that the ability to select appropriate interventions and use the
evidence generated from such interventions may be developmentally basic. In various studies, she
and her colleagues showed that young children will appropriately explore a causal scenario when
given ambiguous information (Cook et al., 2011; Schulz & Bonawitz, 2007). In these scenarios, chil-
dren’s behavior did suggest that children were trying to figure out whether an object possessed a cer-
tain causal property. However, children did not need to make interventions to disambiguate the
structure of the relations between different variables and then use this information to decide, for
example, whether a system was a common cause or causal chain.

A further study by Sobel and Sommerville (2010) tried to address this specific issue. Children
viewed a box with four colored lights—A, B, C, and D—and were told that some of the lights could make
other lights turn on. The box was configured so that the relations between the lights took the form of
either a common cause, B A ? C, or a causal chain structure, A ? B ? C. Children could interact
freely with the box by switching on lights and observing their effects. They were then asked a series
of questions about the relation between pairs of lights. Sobel and Sommerville found that children per-
formed above chance on these questions, which could be interpreted as indicating that they were able
to use the information generated from their interventions to decide on the structure of the causal rela-
tions. There are, however, two difficulties with this interpretation. First, before children answered the
questions, the experimenter pressed each of the buttons in turn and narrated what it did; arguably,
this provided children with the answers to the test questions (indeed, children performed above
chance, although less accurately, when given just this narration). Second, it was not clear that to
answer correctly children needed to have an integrated representation of how the three variables in
the system were related to each other rather than just knowledge of pairwise relations. Indeed,
Sobel and Sommerville did not include in their analyses the answers that children gave to the question
of whether A makes C go in the case of the causal chain, arguing that answers to this question are hard
to interpret. However, by questioning children only about the other pairwise relations between A and
B and between B and C, it is impossible to know whether children actually understood the nature of
the overall causal structure.

The general point here is that we can distinguish between learning structurally local pairwise links
and integrating such links to form a representation of causal structure. This distinction is important
because learning localized pairwise relations is likely to be easier than learning global structure
(Fernbach & Sloman, 2009). Moreover, learning local pairs only is often liable to lead to the wrong glo-
bal model; for example, when one connection ‘‘explains away’’ the dependence between two others, a
pairwise learning strategy would still attribute a connection between these two variables, whereas a
global strategy would not. A number of other studies of children’s causal learning can also be inter-
preted as studying children’s learning of pairwise relations rather than global causal structure (e.g.,
Schulz, Goodman, Tenenbaum, & Jenkins, 2008; Sobel & Sommerville, 2009), meaning that we still
have limited evidence about children’s ability to learn causal structure.
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Uncertainty as to whether children are adept at appropriately generating interventions and using
them to learn causal structure comes from two sources. First, research on children’s scientific learning
has for many years suggested that younger children may have great difficulty in generating appropri-
ately informative interventions and learning the nature of relations between variables from the evi-
dence generated by these interventions (e.g., Klahr & Dunbar, 1988; Klahr, Fay, & Dunbar, 1993;
Kuhn, 1989; Schauble, 1996; Zimmerman, 2000, 2007). On the face of it, this body of findings seems
at odds with recent findings from the causal Bayes net tradition. One possible explanation of the dif-
fering findings lies in the role of the knowledge base in scientific learning studies. For example, pre-
existing, and sometimes erroneous, beliefs can hamper children’s ability to generate appropriate
interventions and interpret statistical data (e.g., Amsel & Brock, 1996; Kuhn et al., 1988). Indeed,
Schulz and colleagues suggested that this type of factor, along with task complexity, may mask chil-
dren’s basic learning skills (Bonawitz, van Schijndel, Friel, & Schulz, 2012; Cook et al., 2011), which
may be better demonstrated in the tasks used in the causal Bayes net tradition where
domain-specific knowledge is of limited importance and statistical evidence is simple.

However, the findings of a recent study by McCormack, Frosch, Patrick, and Lagnado (2015) provide
a second reason for being unsure about children’s ability to learn from interventions on a causal sys-
tem. This study, like most of those in the causal Bayes net tradition, involved children learning about a
novel mechanical system. The only relevant data for causal learning were supplied by two types of
domain-general cues: statistical information provided through interventions on the system and the
temporal patterns of event occurrence. Children needed to learn the causal structure of the sys-
tem—a box with three separate shapes (A, B, and C) on its surface that rotated. Across two experi-
ments, children watched while the experimenter intervened on components of the system. In one
experiment, the experimenter carried out interventions in which she disabled one of the shapes by
preventing it from moving before moving each of the other shapes in turn. Children did not find it
straightforward to use the patterns of evidence provided by these interventions to discriminate
between causal structures even when the system operated deterministically. Although 6- and
7-year-olds were able to use the evidence from the more complex interventions to accurately infer
when the system was one of the causal chains, children younger than this could not do so, and even
7- and 8-year-olds were unable to use information from these interventions to accurately judge when
the system was a common cause. McCormack and colleagues argued that children’s difficulties may
stem from integrating pieces of evidence provided across a number of separate observations of the
causal system.

At first sight, McCormack and colleagues’ (2015) findings seem to be more consistent with the con-
clusions stemming from research on children’s scientific learning that has emphasized its limitations.
It might be argued, however, that this study did not provide children with an optimal opportunity to
demonstrate their abilities. Children watched while the experimenter made a series of interventions
rather than making the interventions themselves. Sobel and Kushnir (2006) argued that participants
find it easier to learn causal structure when they decide what interventions to conduct, largely
because this provides an opportunity for them to engage in more active hypothesis testing (but see
Lagnado & Sloman, 2004). In particular, they suggested that when participants craft interventions
themselves, they obtain evidence in a structured way that makes it more apparent whether it supports
specific hypotheses. Moreover, children might be particularly likely to benefit from being allowed to
explore how a system operates in that hands-on interventions may ensure they stay engaged with the
task.

In this study, we used a task very similar to that of McCormack and colleagues (2015) in which chil-
dren needed to decide whether a three-element causal system was a common cause, B A ? C, an
A ? B ? C causal chain, or an A ? C ? B causal chain. Children intervened on the system themselves
in order to learn its structure. Shapes on top of a box rotated when children moved them by hand, or
shapes could be moved by rotating another shape that was causally connected to them. For example,
for the A ? B ? C causal chain, spinning A initiated the rotation of both B and C, and spinning B
rotated C; all of the shapes always moved simultaneously in the tasks to minimize temporal cues.
Children needed to select and carry out a series of interventions; these could be simple interventions
in which they made one of the three shapes spin, or they could be more complex interventions in
which children prevented one of the three shapes from moving by disabling it and then spun one
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of the other two shapes. Note that we were not attempting to faithfully recreate a free-play situation
because it was important for our analyses that we were able to exhaustively categorize children’s
actions on the system. Although they were completely free to choose their interventions, the only
actions children could carry out were interventions on the system. Furthermore, it was made clear
to children that their job was to learn the causal structure of the system and that they could not make
an unlimited number of interventions. This allowed us to look in our modeling work at the efficiency
with which children produced informative interventions.

We examined two aspects of performance: the nature of the interventions that children selected
and children’s causal structure choices. Not all interventions provided useful information to discrim-
inate among the three possible causal structures, which allowed us to examine whether the tendency
to choose informative interventions changes with age. We also examined whether there was any rela-
tion between the quality of children’s interventions and the likelihood that children chose the correct
causal structure at test. It is possible to try to examine these issues without formal modeling (see
Sobel & Kushnir, 2006) by, for example, simply distinguishing between two broad classes of informa-
tive and non-informative interventions. However, we chose to model children’s learning in a Bayesian
framework. Doing so has two key advantages. First, it allows us to properly assess whether there are
developmental changes in the extent to which children resemble idealized Bayesian learners. This is
important because, within the currently dominant causal Bayes net tradition, young children’s learn-
ing is often characterized as approximating to such an ideal, particularly with regard to causal learning
from statistical information (e.g., Gopnik, 2012; Gopnik & Wellman, 2012). Formal modeling allows us
to assess the extent to which this characterization is appropriate by assessing children’s performance
against the standards set by the Bayesian tradition itself.

Second, although in this study we can (and do) classify interventions broadly as informative or
non-informative, the learning task itself is sequential. This means that how informative an interven-
tion is depends on what children have already observed and what they can remember about such
observations. However, figuring out the informativeness of each intervention that a participant makes
on a trial-by-trial basis would be a formidable task without a formal model. Indeed, without such a
model, it is hard to see how one would operationalize the notion of informativeness under such cir-
cumstances. Our Bayesian model allowed us to capture the sequential nature of the learning task
by assuming that the most informative interventions were those that maximally reduced uncertainty
about which was the correct hypothesis at any particular point in the learning sequence given some
level of forgetting.
Experiment 1

Method

Participants
Children were from three different school years: 21 5- and 6-year-olds (M = 72 months, range = 64–

80), 31 6- and 7-year-olds (M = 86 months, range = 80–93) and 25 7- and 8-year-olds (M = 98 months,
range = 93–103). Children were tested individually in their schools.
Materials
The study used a wooden box, 41 cm (long) � 32 cm (wide) � 20 cm (high), which had an on/off

switch at the front. There were three different colored lids for the box. Two of these had three col-
ored/patterned shapes (e.g., circle, rectangle, star) inserted on their surface that rotated independently
on the horizontal plane; a separate lid was used in pretraining and had only two shapes (see Fig. 1).
The colors and shapes of the components were varied across participants and causal structures. On
each of the two lids used in testing, the three shapes formed an equilateral triangle of 24-cm sides.
Each shape had a small hole that aligned with a hole in the lid of the box. There was a miniature
red-and-white ‘‘Stop’’ sign affixed to a metal rod that could be inserted through the hole on any shape
into the corresponding hole in the box, preventing it from moving. Each of the shapes could be rotated
by hand; the rotation of the other shapes was controlled by a laptop hidden inside the apparatus that



Fig. 1. (A,B) Apparatus: box lid used in training (A) and two box lids used during testing (counterbalanced between common
cause and chain trials) (B). (C) Procedure: (i) participants indicate (optionally) which shape to block with the stop sign and
which shape to spin; (ii) participants perform the action(s) they chose; (iii) participants observe which shapes spin as a result of
their test; (iv) after 12 (or 18) tests, participants point to the card showing how they think the machine works. Green arrows
and highlighting show participants’ actions on an example trial. (For interpretation of the reference to color in this figure
legend, the reader is referred to the web version of this article.)
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participants were unaware of. A set of photographs was used during the learning phase that partici-
pants used to indicate which intervention they were going to make; these photographs depicted each
shape on the box, and in addition there were photographs of each of the shapes alongside the stop
sign. Photographs of the whole box with its shapes depicting three possible causal structures were
used at test for children to indicate their judgment of the causal structure: one common cause and
two causal chains (i.e., depicting B A ? C, A ? B ? C, or A ? C ? B). The photographs for use at test
were overlaid with pictures of hands to indicate causal links (following Frosch, McCormack, Lagnado,
& Burns, 2012).
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Procedure
Children completed two test trials: one common cause and one causal chain (order counterbal-

anced). There was a pretraining phase to ensure that children knew what their task was and how
to give their answer at test. The pretraining procedure used a lid on the box that had only two colored
shapes inserted on its surface; its purpose was to demonstrate that some shapes caused others to
move but that the stop sign could be used to prevent a shape from moving. Children were initially
asked to name the colors of the shapes to ensure that they would know which shapes the experi-
menter was referring to, and the experimenter drew children’s attention to the on/off switch at the
front set at the ‘‘off’’ position. She then switched the box on and manually rotated one of the two
shapes (X). This had no effect on the other shape (Y), which remained stationary, and the experimenter
pointed this out to children. She then rotated the other shape (Y), which resulted in the first shape (X)
simultaneously rotating. She explained to children, ‘‘Some shapes are made to move by others.’’ The
experimenter then switched the box off and introduced children to the stop sign, which she inserted
into X to stop it from moving, saying, ‘‘See this stop sign, it can be used to stop a shape from moving.
See the [color of X] one cannot move now.’’ She then switched the box on again and rotated Y, which
this time had no impact on the movement of X because it was prevented from moving by the stop sign.
Following this, the lid was removed from the box and replaced by a different colored lid with three
different shapes for the first test trial.

Children were asked to name the colors of the three shapes and were told that their job was to fig-
ure out how the box worked. They were introduced to the three test pictures depicting the three dif-
ferent causal structures, with the experimenter saying, ‘‘In a moment I will ask you to figure out how
the box works, but first I want to show you some pictures of the box which show different ways in
which the box may be working. Only one of them is right, and you’ve got to work out which is the right
one. It won’t change halfway through, and it is definitely only one of the pictures. You’ll have to use
your detective skills to work out which picture shows what the box does.’’

The experimenter described each of the three pictures (e.g., ‘‘In this picture, the red one makes the
blue one go, and the blue one makes the white one go, and the hands show that’’). Following these
three descriptions, children were then asked a set of three comprehension questions. For each causal
chain picture, the experimenter asked, ‘‘Can you show me the picture where the [color of A] one makes
the [color of B/C] one go and the [color of B/C] one makes the [color of B/C] one go?’’ For the common
cause picture, the experimenter asked, ‘‘Can you show me the picture where the [color of A] one
makes both the [color of B] one and the [color of C] one go?’’ The majority of children answered these
questions correctly the first time, but if they did not answer all three questions correctly, the exper-
imenter repeated the initial descriptions and asked the comprehension questions again. This proce-
dure was repeated again if necessary.

Following this pretraining, the experimenter said, ‘‘I am going to switch the box on now, and I want
you to figure out how the box works.’’ Children were told that they could do one of two things (order
counterbalanced): either ‘‘You can move a shape to see if it makes other shapes move’’ or ‘‘You can
stop a shape from moving by putting the stop sign in and then see what happens when you move
another shape.’’ It was explained to children that before they carried out each intervention, they
needed to point to a card indicating what they intended to do. The experimenter said, ‘‘Before you
try anything on the box, I want you to point to one of these cards. This card means you want to spin
the [color] one, and you point to this card if you want to stop the [color] one. See, we also have the
cards for spinning and stopping the [color and color] ones. So, each time you want to do something,
you point to one of these cards first.’’

Children were told that they had 12 ‘‘goes’’ to start with and that each time they moved a shape
counted as 1 ‘‘go.’’ It was made clear that using the stop sign did not count as a go by itself; children
needed to then in addition move one of the other shapes. The procedure with cards was used to ensure
that children interacted with the box in a controlled way and to make clear that they could not make
an unlimited number of interventions. It also ensured that all children made a fixed minimum number
of interactions before attempting to answer the test question. Children were told that they did not
need to keep track of the number of goes that they had with the box because the experimenter would
count this for them.
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Before children began, the experimenter said, ‘‘Remember, you’ve got to figure out which picture
shows how this box really works.’’ She then demonstrated what happened when the A shape was
moved, which was that the other two shapes also moved simultaneously, and pointed out that they
did not know yet ‘‘which ones make other ones go.’’ Participants were subsequently allowed to make
interventions on the box by first selecting the appropriate card and then making the intervention. So,
for example, if they wanted to see what happened when C was moved if B was disabled, they needed
to point to the card depicting B with the stop sign in it and then to the card depicting C. They then
carried out their intervention.

After participants completed 12 interventions, the experimenter said, ‘‘You have had your 12 goes
now. Do you want to choose which picture you think shows what the box did, or do you want to have
another 6 goes?’’ The majority of participants opted to choose after 12 interventions. Children com-
pleted a short filler task (a paper-and-pencil maze) in between the common cause/causal chain trials.
It was made clear that the second box might work in the same way as the first box or it might work in
a different way. The second box always had a lid of a different color and different shapes.

Results

In both trials, 69 of the 77 participants stopped after 12 interventions. The remaining 8 opted for an
additional 6 interventions in one or the other trial. Of these, 4 participants opted for the additional 6
interventions on both trial types. Initial data analyses examined participants’ responses for each of
the two trial types. Fig. 2 shows the percentage of participants who chose each response type for each
trial type. The majority of participants in each group, except for the youngest group, chose the correct
answer for the causal chain trial. The majority of participants in all groups chose the common cause
response for the common cause trial. Binomial analysis showed that each group of participants chose
the correct response more often than chance (all ps < .01) except for the 5- and 6-year-olds who did not
select the correct causal chain more often than chance. This group tended to select the common cause
response for both structures. Performance on the causal chain structure was associated with age,
v2(2) = 6.91, p < .05, with the number of correct responses improving with age. Performance on the
common cause structure was marginally significantly associated with age, v2(2) = 5.66, p = .056,
although in this case the 6- and 7-year-olds gave more correct responses than each of the other groups.

Analysis of interventions
Subsequent analyses examined the nature of participants’ interventions on the system. We initially

discriminated between whether an intervention was informative or not given the three possible causal
structures. There were three interventions that were never informative: A+, B+C–, and B–C+, adopting
the notation of ‘‘+’’ to mean that a particular shape was moved by the participant and ‘‘–’’ to mean that a
shape was disabled. Potentially informative interventions were A+B–, A+C–, B+, C+, A–B+, and A–C+. We
also classified interventions as simple or complex; A+, B+, and C+ were classified as simple, and those
involving initially disabling one of the components before moving another component were classified
as complex. Table 1 shows the percentage of times that participants in each age group chose each of
these interventions. The most popular intervention tended to be A+, which, although it was uninforma-
tive, did make all of the three shapes spin. Propensity to select a complex intervention increased signif-
icantly with age, F(2,74) = 7.22, p < .002, g2 = .16, with 7- and 8-year-olds being the most likely to pick
the complex interventions (65% of the time vs. 46% for 5- and 6-year-olds and 45% for 6- and
7-year-olds). We examined whether participants chose informative interventions more often than
chance by conducting a one-sample t-test with a test value of .67 given that two thirds of the nine pos-
sible interventions were informative. Only the 7- and 8-year-olds were significantly more likely than
chance to select informative interventions, t(24) = 2.83, p < .01, both ps > .10 for the younger groups.
A logistic regression showed that the proportion of informative interventions significantly predicted
the probability of a participant getting the chain trial correct (z = 2.73, p < .01) (see Table 2), but this
was not the case for the common cause trial (z = �0.62, p > .50). One potential explanation for the latter
finding is that the children were overall more likely to select the common cause, doing so 56% of the
time. Thus, some of the correct responses on the common cause test trial are likely to have been made
by the weaker participants purely by virtue of their favoring the common cause structure.
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Table 1
Percentage of times that participants chose each intervention collapsed across common cause and causal chain trials.

Informative Uninformative

B+ A–B+ C+ A–C+ A+C– A+B– A+ B–C+ B+C–

5–6 years 17.9 9.5 12.9 5.1 9.6 8.3 23.3 8.2 5.4
6–7 years 17.5 9.2 14.2 8.2 8.2 9.0 21.8 6.4 5.6
7–8 years 10.8 11.3 9.4 11.1 14.8 13.5 14.2 6.9 8.0

Table 2
Regression analyses from Experiment 1.

Dependent Parameter Estimate SE Odds ratio z p(>|z|)

Pcorrect(chain) Intercept –4.77 1.80 –2.65 .008**

% Informative 7.37 2.70 1587 2.73 .006**

Pcorrect(common cause) Intercept 1.87 1.48 1.27 .21
% Informative –1.32 2.15 0.267 –0.62 .54

Pcorrect(chain) Intercept –0.81 0.75 –1.09 .278
Efficiency 1.22 0.92 3.39 1.32 .186

Pcorrect(common cause) Intercept 3.39 0.99 3.39 .0007***

Efficiency –3.31 1.27 0.037 –2.62 .009**

Pcorrect(chain) Intercept –4.43 1.74 2.53 .012*

Quality 7.98 3.06 2921 2.61 .009**

Pcorrect(common cause) Intercept 1.46 1.40 1.04 .30
Quality –0.78 2.24 0.46 –0.35 .73

Note: The table shows three separate analyses of predictors of performance on the causal chain and common cause trials:
percentage informative interventions, efficiency, and intervention quality.

* p < .05.
** p < .01.

*** p < .001.
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Modeling interventions
So far, we have looked at proportion of informative intervention choices without considering the

sequential nature of the task or whether and how efficiently children produced a set of informative
interventions sufficient to discriminate between causal structures. A child who did not produce such
a set but repeatedly produced a single informative intervention would score 100% on this measure.
Moreover, how useful an intervention is depends on what learners already know (in this case what
they have already learned from their previous interventions). For example, A+B– and C+ are both infor-
mative interventions in this task provided that you do not know anything yet. But suppose that you
have already performed A+C– and observed that this made B spin. This evidence effectively rules
out the ACB chain, leaving only the ABC chain and the common cause as possibilities. Now, on subse-
quent trials, performing C+, or repeating A+C–, will not tell you anything new because both of these
interventions simply distinguish the ACB chain from the other two. To capture how efficiently chil-
dren’s intervention choices allow them to home in on the true structure, we can analyze the interven-
tions sequentially by looking at how effectively these interventions reduce uncertainty, assuming that
initially children are perfectly able to remember past outcomes and integrate new information.

To do this, we defined participants’ subjective uncertainty about the true structure at a given time
point as the information entropy H(S) (Shannon, 1948) of their posterior distribution over the three
possible structures s 2 S given the data they had seen so far1 (see Eq. (1)):
1 Sha
2005), i
predicti
criterio
(2015)
maximi
accurac
entropy
learning
probabi
HðSÞ ¼ �
X
s2S

PðsÞlog2PðsÞ: ð1Þ
Every time children observed new evidence, this distribution was updated using Bayes rule and the
likelihoods P(o|s,i) for observing that outcome o 2 O given the different structures g and the interven-
tion i 2 I giving posterior probabilities P(s|o,i) (see Eq. (2)):
PðSji; oÞ / Pðoji; SÞPðSÞ: ð2Þ
Because the box worked in a deterministic way, the likelihood was always 0 (if the outcome was
impossible given that structure and intervention) or 1 (if the outcome was to be expected given that
structure and intervention). If an outcome had a zero likelihood under one structure, that structure’s
posterior probability would go to zero once participants saw that outcome. By doing this, we were able
to compute the expected reduction in information entropy E[H(S|i)] for each intervention chosen partic-
ipants (see Eq. (3)),
E½HðSjiÞ� ¼
X
o2O

HðSji; oÞPðojS; iÞ; ð3Þ
and to rescale this by the maximum achievable expected increase in information over the different
interventions at that time point. This gave a measure of the overall efficiency of the intervention
choices made by each child for facilitating their identification of the true structure (see Eq. (4)):
Efficiencyi ¼
E½HðSjiÞ�

max
r2I

E½HðSjrÞ� : ð4Þ
Because of the deterministic nature of the task, in fact all of the children generated enough informa-
tion with their interventions for their uncertainty to go to zero before the end of the trial, so interven-
tion efficiency was simply calculated for the interventions up until the point that their posterior
nnon entropy is not the only possible criterion value for modeling active learning. Others include probability gain (Baron,
mpact (Wells & Lindsay, 1980), and diagnosticity (Good, 1950). Although in most situations the measures make very similar
ons, Nelson (2005) found that when they differ Shannon entropy is at least as good as any other, both as a normative
n and as a descriptive account of human active query selection. In the domain of causal learning, Bramley, Lagnado, et al.
found that adults are better described as choosing interventions that minimize expected Shannon entropy rather than
ze expected probability gain or utility and that sequentially minimizing Shannon entropy provides better long-run
y than these other two measures. Finally, Bramley, Nelson, Speekenbrink, Crupi, and Lagnado (2014) showed that Shannon

performs at least as well as any of a broader family of generalized entropy functions in the domain of active causal
. For these reasons, we report modeling using Shannon entropy. Nevertheless, we also repeated these analyses using
lity gain, finding qualitatively the same results.
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uncertainty reached zero. Fig. 3 shows an example of how the model worked using a real set of inter-
ventions; it also depicts how these interventions were categorized. We established chance level inter-
ventional efficiency by simulating the task 1000 times with randomly selected interventions, finding
average chance efficiency levels of .48 for the chain structure and .43 for the common cause.2

For all age groups, for both structures, children’s interventions were significantly much more effi-
cient than the chance level (mean efficiencies for chain and common cause, respectively: 5- and
6-year-olds = .71 and .66, 6- and 7-year-olds = .79 and .63, and 7- and 8-year-olds = .82 and .80; all
ts > 6, ps < .0001). Children’s efficiency for the common cause changed significantly with age,
F(2,74) = 4.47, p 6 .02, g2 = .11, but there was no effect of age on efficiency on the causal chain trials,
F(2,74) = 1.14, p = .32, g2 = .03. Unlike proportion informative interventions, efficiency did not predict
accuracy on the chain (see Table 2) and was in fact negatively related to accuracy on the common
cause (z = –2.62, p < .01).

Whereas proportion informative interventions did not take into account the sequential nature of
the task, arguably interventional efficiency has the opposite shortcoming. By assuming, implausibly,
that children have a perfect memory for the outcomes of their previous interventions and perfect abil-
ity to make inferences from this information, it ignores what they do on subsequent interventions
once they have, in principle, enough information to potentially identify the correct structure. An
inspection of the modeled data found that children obtained sufficient information for certainty after
an average of only 2.75 interventions; this means that our measure of efficiency ignores a large pro-
portion of the data and makes no allowances for noise, forgetting, or uncertainty in learning. A more
balanced way to assess the quality of participants’ interventions is achieved by adding some noise,
encapsulating the idea that learning is likely to be somewhat leaky or error prone.

We augmented our Bayesian learning model so that, after each test, some proportion of what was
learned previously was ‘‘forgotten.’’3 This was achieved by mixing a uniform distribution in with the
posteriors, with the proportion determined by a forgetting rate c (see Eq. (5)),
2 Thi
the true
be iden
chain),

3 The
that ch
interve
and un
PðSji; oÞ / Pðoji; SÞ ð1� cÞPðSÞ þ c
1
3

� �
; ð5Þ
and using this as the prior for next intervention. This procedure was carried out for each learner’s 12
(or 18) tests. This means that previously ruled out alternatives gradually regained some probability
mass, whereas more likely options became a little less favored. The quality of each intervention
was then calculated based on the extent that it reduced uncertainty across these distributions com-
pared with an intervention that would have maximally reduced uncertainty. This method captures
the idea that continually repeating a particular intervention is less useful than selecting a complemen-
tary mixture of different interventions while also allowing that real-world learners are likely to forget,
ignore, or make mistakes about the evidence they have seen previously, meaning that revisiting pre-
vious interventions is not useless.

The exact level of ‘‘forgetting’’ in the model turned out not to be particularly important. We found
qualitatively the same results setting it to 10%, 25%, 50%, 75%, and 90%, although the results were
clearer for the lower levels of forgetting. Here we report results assuming 25% forgetting after each
test. We established chance levels of intervention quality, again through simulation over 1000 trials.
The 5- and 6-year-olds’ intervention quality was not significantly above chance on either the chain or
common cause; the 6- and 7-year-olds were above chance on the chain, t(30) = 2.88, p < .01, and mar-
ginal on the common cause, t(30) = 1.73, p = .09; and the 7- and 8-year-olds’ intervention quality was
above chance for both trials (chain: t(24) = 2.46, p < .02; common cause: t(24) = 4.87, p < .001).
Averaged over trial types, we found that intervention quality improved with age, F(2,74) = 4.03,
s corresponds to getting enough information to identify the true structure after an average of 3 random interventions when
structure is a chain and 4.5 random tests when the true structure is the common cause. The chain is somewhat quicker to

tifiable by chance because sometimes it can be identified from a single intervention (e.g., B+ allows identification of the ABC
whereas the common cause always requires a minimum of two interventions.
re are numerous ways in which to model forgetting (e.g., Wixted, 2004), but a reasonable high-level approach is to assume
ildren forget random aspects of their priors, leading to a net ‘‘flattening’’ of their subjective priors going into each new
ntion. We remain agnostic about whether this parameter captures cognitive forgetting or more generalized sources of error
certainty in children’s integration of information.



Fig. 3. Interventions selected by a 6- or 7-year-old in the common cause trial. From left to right, columns show test order,
selected intervention, which shapes (if any) spun as a result, whether the intervention was generally informative, a learner’s
prior given perfect memory and integration of previous tests, the corresponding efficiency of the intervention in allowing
identification of the common cause, a learner’s prior given 25% forgetting, and the corresponding quality of each intervention.
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p < .03, g2 = .10, with 7- and 8-year-olds significantly more efficient that 5- and 6-year-olds (p < .01),
but no significant difference between 5- and 6-year-olds and 6- and 7-year-olds. Breaking this into
responses for the two structures, regardless of forgetting rate, intervention quality was a significant
predictor for correct identification of the chain structure (z = 2.61, p < .01), but not for the common
cause structure (see Table 2).
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Discussion

Our findings provide important information about developmental changes in children’s ability to
learn causal structure through intervention. Children’s ability to learn a causal chain structure
improved developmentally, with the youngest children not managing to learn this structure at
above-chance levels. However, we need to consider why the 5- and 6-year-olds correctly identified
the common cause structure as accurately as the 7- and 8-year-olds. Our view is that the good perfor-
mance on this second trial type is due to a tendency even among the youngest children to assume that,
when events happen simultaneously, the underlying structure is a common cause. Previous studies
have found that both children and adults make use of this simple temporal heuristic when they
observe a three-variable system with this sort of temporal schedule (Burns & McCormack, 2009;
Fernbach & Sloman, 2009; Lagnado & Sloman, 2006; McCormack et al., 2015). Indeed, McCormack
et al. (2015) demonstrated that children will use this type of temporal heuristic even when faced with
contradictory statistical information provided either through observing the operation of a probabilis-
tic causal system or through observing the effects of interventions on a deterministic system. Thus, the
good performance of the younger children on the common cause structure is likely to reflect use of
this heuristic rather than use of statistical information derived from interventions on the system.
This would also straightforwardly explain the lack of a relation between intervention quality and per-
formance on the common cause structure.

The analyses of children’s intervention choices provide insights into why performance improved
developmentally on the causal chain trial. Interventions could be initially classified as informative
or non-informative given the three possible causal structures. Over all trials, unlike the oldest group,
younger groups of children did not choose informative interventions more often than chance. It
proved to be fruitful, however, to further examine intervention choices and how these related to per-
formance in more detail by means of our modeling work. The initial analysis of how efficient partic-
ipants were at producing a set of interventions that could in principle discriminate between the
different hypotheses showed that all groups of children produced such a set more quickly than would
be expected if they were simply choosing between interventions at random. This means that even the
youngest children had the evidence available to them to make the appropriate causal inferences.
However, intervention efficiency was not a predictor of performance. This demonstrates that good
performance does not hinge on simply initially choosing interventions that are as a matter of fact dis-
ambiguating. Children may forget or fail to make use of what they have observed, and the subsequent
interventions they make may also influence their judgments.

Our modelling work suggested that this was indeed the case because our measure of the quality of
children’s interventions that took into account the complete sequence of interventions predicted per-
formance on the causal chain structure, under the assumption that there was some degree of forget-
ting. Moreover, unlike efficiency, intervention quality improved with age, with older children being
more likely to consistently choose interventions that would help to disambiguate the causal structures
given what they had already observed. These results indicate that with development children become
more discerning in their choice of interventions, and this has an impact on their causal structure
learning.

How do our findings fit with what is already known about developmental changes in children’s use
of interventions to learn about causal systems? In designing our study, we sought to ensure that
domain-specific knowledge was not relevant for task performance. However, this did not rule out chil-
dren exploiting a type of preexisting, albeit domain-general, heuristic about the nature of the causal
system, namely that when multiple events occur immediately following an intervention, the
underlying structure is likely to be a common cause (McCormack et al., 2015). When the evidence gen-
erated from interventions was consistent with this assumption (i.e., in the common cause trial), even
young children performed well. However, younger children had difficulty in discarding this assump-
tion on the basis of the contradictory evidence provided by their interventions. This is consistent with
evidence from the scientific learning literature indicating that children have difficulty in discarding a
preexisting hypothesis and may routinely ignore statistical evidence that fails to support such a
hypothesis (Amsel & Brock, 1996; Kuhn et al., 1988).
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Furthermore, an inspection of developmental changes in the pattern of children’s intervention
choices (Table 1) yields some further interesting additional parallels with findings from the scientific
learning literature. Our task is very different from those used in research on children’s scientific learn-
ing; it is simpler, and the children we tested are younger than those typically used in such studies (but
see Koerber, Sodian, Thoermer, & Nett, 2005; Piekny, Grube, & Maehler, 2014). Nevertheless, some of
our findings confirm broad developmental patterns that are well established in that research. Younger
children tended to prefer making the A+ intervention and did so repeatedly. This intervention is the
most causally effective (it makes all of the events happen) but does not discriminate among the three
available hypotheses. However, it reinforces any existing hypothesis that the causal structure is a
common cause by providing the temporal pattern of all events happening simultaneously. Young chil-
dren’s preference for this intervention has parallels with demonstrations in the scientific learning
studies showing that children attend most to the variable already believed to be causal, focus more
on producing an effect than on generating disambiguating evidence, and produce evidence that is con-
sistent with their existing hypothesis rather than seeking to disconfirm it (e.g., Klahr & Dunbar, 1988;
Klahr et al., 1993; Kuhn, 1989; Schauble, 1990, 1996).

Although younger children’s patterns of interventions led to poorer performance, it is interesting to
note that recent formal analyses have demonstrated that whether their type of approach should be
viewed as inefficient depends on the learning context. First, the tendency to intervene on variables
already believed to be causal in order to confirm an existing hypothesis is not necessarily always
the wrong strategy. This type of strategy has been shown to be rational under the assumption that
causal connections in the world are sparse (Navarro & Perfors, 2011), meaning that competing causal
hypotheses do not generally share the same effect variables. In such circumstances, ‘‘positive tests,’’
operationalized as intervening on the variable thought to be the root cause (Coenen, Rehder, &
Gureckis, 2015), are highly diagnostic. Hence, younger children’s pattern of interventions could be
interpreted as due to a tendency to act in a way that has proved to be an effective general-purpose
method for learning causal relationships in the past but is not appropriate given the specific learning
context in which they find themselves.

Second, we also found that younger children were less likely than older children to produce the
more complex interventions that involved disabling one of the components in the system. This type
of intervention can be particularly informative because it can be used to exclude a variable as being
necessary for production of an effect. However, separate Bayesian modeling work with adults has
demonstrated that producing simple rather than complex interventions is not always an inefficient
strategy. Bramley, Lagnado, et al. (2015) showed that simple interventions tend to be more informa-
tive than complex interventions with respect to a broader hypothesis space (e.g., all possible
three-variable causal models), with more complex interventions becoming more useful once the space
of possibilities narrows to favor only a few overlapping causal hypotheses. In our task, children needed
to discriminate among just three competing hypotheses, so it is one in which complex interventions
are likely to be useful. In summary, the observed developmental changes can be interpreted as sup-
porting the idea that whereas younger children used simple strategies that may have proved to be
effective in other contexts, older children were more able to adjust their learning strategy in a way
that was appropriate for the task—that is, to use a control of variables strategy (Chen & Klahr,
1999; Dean & Kuhn, 2007) in which confounding variables are experimentally controlled.
Experiment 2

Experiment 1 showed that by 6 or 7 years of age children can generate informative interventions
and use these to derive the structure of a three-variable causal system and that the quality of their
interventions predicts their performance. What we have not yet shown, however, is that children ben-
efited from generating interventions themselves. Following Sobel and Kushnir’s (2006) study with
adults and Sobel and Sommerville’s (2010) related study with children, we might predict that being
able to self-generate interventions facilitates active hypothesis testing. In our second experiment,
we tested additional groups of children using a ‘‘yoking’’ procedure similar to Sobel and Kushnir’s pro-
cedure. Children did not select interventions themselves; rather, each child was individually matched
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with one of the children from Experiment 1 and saw the outcomes of the set of interventions made by
that child. There were two conditions; children in the yoked–self condition carried out a series of
interventions on the system but did not select which interventions to make, and children in yoked–
observe condition simply watched interventions being carried out by the experimenter. If children
benefit from selecting interventions themselves, we would expect performance to be worse in the
yoked conditions compared with the self-generated interventions in Experiment 1. If there are bene-
fits from simply carrying out interventions oneself, even if one has not selected them, we would
expect performance in the yoked–self condition to be better than performance in the yoked–observe
condition.

In addition to comparing performance across conditions, we examined whether our measures of
intervention quality, taken from the interventions made by the yoking participants from
Experiment 1, were predictive of performance even in the yoked conditions. It is important to note
that all participants in Experiment 2 received sufficient information to disambiguate the causal struc-
tures. Because all children in Experiment 1 obtained sufficient information to make correct inferences,
the relation between intervention quality and performance found in that experiment can be explained
in two potentially independent ways. It may be that this relation was obtained because higher quality
interventions resulted in a larger quantity of useful information that was obtained in a sequence that
facilitated learning. Alternatively, it may be that this relation was obtained because children who were
engaged in productive hypothesis testing selected useful interventions that allowed them to assess
these hypotheses. If the former is the case, we might expect to see a relation between intervention
quality and performance in the yoked conditions of Experiment 2 because children in those conditions
received identical sequences of information to the children who selected the interventions them-
selves. However, if this relation hinges on the role of active hypothesis testing, it might not be
obtained in circumstances where children do not select interventions themselves.

Method

Participants
Three groups of children took part in this part of the study: 28 5- and 6-year-olds (M = 75 months,

range = 70–81), 62 6- and 7-year-olds (M = 87 months, range = 81–93), and 50 7- and 8-year-olds
(M = 99 months, range = 91–105), who were recruited from the same year groups and from schools
in the same area as the child participants in Experiment 1. Half of the children were assigned to
the yoked–self condition and half to the yoked–observe condition.

Materials
These were identical to those used in Experiment 1.

Procedure
The procedure for each of the conditions was identical to that of Experiment 1 up until the learning

stage of the task. In the yoked–self condition, the experimenter explained that she was going to ask
children to do things to the shapes in the box in order to figure out how the box worked, using cards
to give instructions. She explained that when she pointed to a picture of a specific shape, children
needed to move that shape to see what happened to the other shapes, and when she pointed to a pic-
ture of a shape with a stop sign in it, children needed to initially put the stop sign in that shape and
then see what happened when they moved whichever shape was depicted in the next picture that she
pointed to. Children were told that the experimenter would give them 12 instructions of this sort to
start with. During the learning phase, the experimenter then instructed children to carry out the inter-
ventions in the same order as their yoked participants from Experiment 1. For those children who
were yoked to children from Experiment 1 who completed 12 interventions (the majority of children),
after those interventions were completed the experimenter said, ‘‘You have had your 12 goes now.
Which picture do you think shows how the box works?’’ For the remaining children, after 12 interven-
tions the experimenter said, ‘‘We have 6 more things to try before you give your guess about how the
box works,’’ and then showed the remaining 6 interventions before asking the test question. The pro-
cedure for the yoked–observe condition was very similar except that the experimenter explained that
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she would point to the pictures of the shapes herself before moving them. During the learning phase,
the experimenter then pointed to the appropriate pictures before each intervention and carried out all
interventions herself with children observing.
Results

Fig. 4A shows the distribution of responses for each trial type for the yoked–self condition, and
Fig. 4B shows the distribution for the yoked–observe condition. As can be seen from the figure, correct
responses were relatively similar to those in Experiment 1, although the 7- and 8-year-olds seemed to
perform less well on the causal chain. We compared performance in these conditions with perfor-
mance from the yoked participants from Experiment 1; Table 3 shows the percentages of correct
responses for the causal chain and common cause trials as a function of condition. There was no sig-
nificant association between condition and numbers of correct responses for the causal chain trial,
v2(2) = 1.48, p = .48, or for the common cause trial, v2(2) = 3.89, p = .14; the association between con-
dition and numbers of correct responses for each trial type was also not significant if each age group
was examined separately or if each condition was compared separately with the other two conditions.
We then examined whether the factors that were predictive of performance in Experiment 1 predicted
performance in the yoked conditions. Neither the proportion of informative interventions presented to
participants, the efficiency of the sequences of interventions for identifying the true structure, nor
their overall quality (assuming 25% forgetting) predicted performance for either the yoked–self or
yoked–observe groups on either trial type (all ps > .05). The relation between these measures of inter-
ventions and performance on the causal chain identified in the 77 participants in Experiment 1 were
still significant for the 70 whose data were yoked to the yoked–self and yoked–observe groups (infor-
mative interventions: z = –2.69, p < .005; intervention quality: z = –2.50, p < .01), indicating that the
fact that the measures do not predict performance in the yoked groups is not a problem of slightly
reduced statistical power.
General discussion

Experiment 1 examined children’s causal structure learning under circumstances in which they
selected and carried out interventions on a simple three-variable causal system. To the best of our
knowledge, the analyses reported here of its data constitute the first attempt to model the quality
of children’s interventions when learning causal structure within a Bayesian framework. Our findings
regarding children’s interventional learning varied depending on whether children were learning a
causal chain or a common cause structure. With regard to the former, there were clear developmental
improvements not only in terms of accuracy of structure learning but also in terms of the quality of the
interventions that children produced, as assessed in our Bayesian modeling. The key advantage of the
modeling is that it provided us with a quantitative measure of the quality of children’s interventions,
allowing us to formally examine the extent to which children’s interactions with the system were
optimal. This Bayesian measure of intervention quality predicted performance. Put simply, the find-
ings suggest that with development children increasingly resemble idealized Bayesian learners,
although we note that the best predictor of performance from our modeling results was a measure
of interventional quality that assumed some degree of noise in the Bayesian learning process.

The same pattern of findings was not obtained for the common cause structure, and the most plau-
sible interpretation of this is that younger children’s inferences in this task were based on a simple
temporal heuristic (‘‘assume a common cause if effects happen simultaneously’’) rather than on use
of statistical information provided from interventions. Use of such temporal heuristics is widespread
in both children’s and adults’ causal structure learning (Burns & McCormack, 2009; Fernbach &
Sloman, 2009; Lagnado & Sloman, 2004, 2006; White, 2006), with McCormack et al. (2015) demon-
strating that younger children’s causal structure inferences are highly influenced by the temporal pat-
tern of events. Their findings are consistent with those from the current study insofar as those authors
also found no developmental improvements in the likelihood that children would give a common
cause judgment under circumstances in which all events happened simultaneously. Children’s



A

B

Fig. 4. (A) Percentage of response choices for each causal structure as a function of age group for the yoked–self condition.
Correct responses to the causal chain are denoted as ABC. (B) Percentage of response choices for each causal structure as a
function of age group for the yoked–observe condition. Correct responses to the causal chain are denoted as ABC.

Table 3
Percentage correct responses for each trial type as a function of condition.

Causal chain Common cause

Self-select (Experiment 1) 55.7 75.7
Yoked–self 48.6 80.0
Yoked–observe 45.7 65.7
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tendency to recruit temporal heuristics is likely to be due to the heuristics’ low demands on informa-
tion processing in comparison with using statistical information (Fernbach & Sloman, 2009). For
example, in the current study, use of such a heuristic would have been based on the observation of
a single intervention—the temporal pattern of events following A+. This intervention was the most
common one made by the younger groups; we interpreted this as suggesting that these children focus
on producing an effect rather than systematically testing the competing hypotheses and in doing so
are provided with evidence (i.e., the temporal pattern of events) that they take to be consistent with
their existing hypothesis. Younger children were also less likely to disable components in the system,
suggesting that they were less likely to try to exclude any variables.
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Although younger children’s interventions in the system had these characteristics, all children pro-
duced a set of interventions that could in principle have allowed them to correctly judge the causal
structure. However, the Bayesian analysis proved to be useful in establishing that simply initially pro-
ducing interventions that could potentially disambiguate the causal structure was not predictive of
good performance. Rather, children’s performance was related to how informative their interventions
were as they moved through the task sequentially, with the Bayesian modeling making it possible to
operationalize the informativeness of sequential intervention choices.

In general, as we argued above, our developmental findings are broadly consistent with some
well-established findings in the literature on scientific learning. One of the aims of the scientific learn-
ing literature is to explore the wide variety of cognitive and metacognitive processes that are impor-
tant at each stage of the reasoning process, from formulating initial questions, generating and
evaluating evidence, to constructing and revising theories. Our aim in this study was not to match
such studies in the breadth of cognitive processes that they explore or in the depth of analysis that
they typically provide regarding, for example, the range of strategies that participants recruit. For a
start, although we have described children as deciding between hypotheses, we do not believe that
it is helpful to consider children to be engaged in theory construction in our task. Nevertheless, our
findings are valuable in terms of what they add to our knowledge specifically about basic aspects of
causal structure learning.

As already emphasized, in many instances scientists must uncover not just which variables are cau-
sal but also the overall structure of a causal system. Most studies of children’s causal and scientific
learning have focused on their ability to learn whether specific variables are causally efficacious.
Although in scientific learning studies such variables sometimes have additive or interactive effects
(e.g., Kuhn & Pease, 2008; Kuhn, Pease, & Wirkala, 2009), typically participants do not need to distin-
guish between, for example, common cause and causal chain structures. It is an important strength of
the causal Bayes net approach that, unlike more traditional models of causal learning, it can model this
sort of learning of structure. Our modeling work demonstrates the utility of examining such learning
within a broadly Bayesian framework, albeit to allow us to conclude that younger children might not
be the idealized Bayesian learners they are sometimes assumed to be within the causal Bayes net
tradition.

Active versus passive learning

Our use of a yoking procedure in Experiment 2 provided insights into whether active participation
assists children’s causal learning. We found no clear learning benefits of either selecting or carrying
out interventions oneself, a finding that contrasts with that of Sobel and Kushnir’s (2009) adult study
but is consistent with the findings of Lagnado and Sloman (2004). We note that there is a
long-standing debate in the literature on children’s scientific learning over whether ‘‘hands-on’’ learn-
ing is more beneficial than more passive learning (e.g., Bruner, 1961; Kirschner, Sweller, & Clark, 2006;
Mayer, 2004). The debate regarding active versus passive learning is multifaceted, encompassing both
cognitive and motivational issues, but in the context of children’s scientific learning the central ques-
tion has been whether children show benefits in terms of the amount, depth, and persistence of
knowledge gained when allowed to engage in self-guided discovery learning. So, for example, Klahr
and Nigam (2004) compared how well children learned a control-of-variables strategy in two condi-
tions: either direct instruction or a condition in which they designed and carried out experiments
themselves. On the basis of their findings, these authors argued that direct instruction is more bene-
ficial than discovery learning. Unsurprisingly, such a conclusion has attracted much attention because
it is believed to have important consequences for how children should be taught science
(Hmelo-Silver, Duncan, & Chinn, 2007; Kuhn, 2007).

In interpreting the contribution of our findings to this debate, it is important to remember that our
task is much simpler than those typically used in studies of the benefits of active learning. Moreover,
children did not need to learn a theory or generalize from their learning, and the task was not one in
which we could contrast hands-on learning with, for example, teacher instruction. Nevertheless, our
task provided a context in which we could examine whether there were measurable benefits to
actively selecting one’s own interventions in circumstances where children need to decide between
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different hypotheses. In the self-select condition, unlike in the other two conditions, children freely
decided what information to sample and when to sample that information; this freedom with regard
to information sampling can be seen as the most important difference between active and passive
learning conditions (Gureckis & Markant, 2012). We found no evidence that such freedom yielded
benefits. This suggests that, at least on the face of it, in learning causal structure, children do not ben-
efit from being able to actively generate interventions in order to test specific hypotheses that they
may be entertaining, as opposed to either just observing such interventions or carrying out interven-
tions that were decided by another person.

However, the results also indicate a more nuanced conclusion because we examined not just
whether levels of performance differed depending on learning condition but also whether the quality
of interventions predicted performance even in yoked conditions. Interestingly, we found that this
predictive relation did not hold in our yoked conditions. This finding is reminiscent of the results of
correlational analysis conducted by Sobel and Kushnir (2006) on their adult data. They calculated
the proportion of interventions that participants self-generated (or were exposed to in yoked condi-
tions) that would provide information that was critical for learning a particular causal structure
(i.e., a simple measure of intervention quality). They found that the correlation between the propor-
tion of critical interventions and accuracy in causal structure judgments was significant only in con-
ditions where participants generated the interventions themselves, not in yoked conditions. Their
interpretation of this finding is that participants who generate critical interventions are better placed
to interpret the outcome that results from an intervention and use it to distinguish between hypoth-
esized structures.

Although we did not find that self-generating interventions boosted learning, our findings are at
least compatible with Sobel and Kushnir’s (2006) suggestion that learning may proceed in a different
way under such conditions. When selecting interventions themselves, children who were testing
hypotheses in an effective way were able to select informative interventions specifically to test par-
ticular hypotheses (consistent with Sobel & Kushnir’s characterization of learning under this condi-
tion), and this may have underpinned the relation between quality of interventions and
performance. Gureckis and Markant (2012) argued that when participants are selecting for them-
selves, they can preferentially select information that reduces their current uncertainty. Indeed, the
measure of quality of interventions produced in our Bayesian modeling can be seen as a formal mea-
sure of the extent to which participants are adept at selecting interventions to reduce uncertainty, and
it is this that predicted performance in the self-select condition.

However, this mode of learning was not available to children in the yoked conditions, which may
be why there was no relation between quality of interventions and performance in these conditions.
Note, however, that the unavailability of this mode of learning in the yoked conditions did not signif-
icantly impair performance. It is possible that the benefits of active hypothesis testing were out-
weighed in our study by the information processing demands of selecting and implementing
interventions, demands that were reduced in the yoked conditions. Such a possibility is consistent
with suggestions that there may be disadvantages associated with self-directed learning (for discus-
sions, see Gureckis & Markant, 2012; Kirschner et al., 2006; Markant & Gureckis, 2014). Moreover,
as Gureckis and Markant (2012) pointed out, active learning might not necessarily be beneficial under
circumstances where learners are biased in their information seeking and focus, for example, on con-
firming preexisting erroneous hypotheses. As we have discussed, there is evidence that the younger
children adopted such an approach to their intervention choices. There may be other circumstances,
however, where children’s causal learning would benefit from the opportunity to engage in active
hypothesis testing, but the broader literature on self-directed learning has yet to clearly identify
the situations where any advantages may outweigh potential disadvantages (Gureckis & Markant,
2012).
Conclusions

The findings of this study point to two clear directions for future work in this area. First, the fact
that children become increasingly Bayes-efficient information seekers in their causal learning raises
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the question of what cognitive changes underpin this developmental shift. There has been consider-
able discussion over the role of Bayesian modeling not only in a developmental context but also in
providing an explanatory framework within cognitive psychology more generally (e.g., Bowers &
Davis, 2012; Jones & Love, 2011; Schlesinger & McMurray, 2012). Here, we have used a Bayesian
approach simply to provide a more formal analysis of how the quality of children’s interventions
improves developmentally. Questions regarding the developmental changes that account for these
improvements cannot be directly addressed by the modeling reported here, which does not model
cognitive processes (although we note that directly inspecting the patterns of children’s interventions
suggested that some developmental changes have parallels to those shown in the scientific learning
literature). It is possible, however, that in the future models based on approximate Bayesian inference
that attempt to be more psychologically plausible (Bramley, Dayan, et al., 2015; Kemp, Tenenbaum,
Niyogi, & Griffiths, 2010; Sanborn, Griffiths, & Navarro, 2010; Shi, Feldman, & Griffiths, 2008) may play
a role in addressing this question. Importantly, the developmental improvements found in our study
highlight the need for Bayesian models that not only capture idealized learning but also can accom-
modate, and potentially explain, developmental changes in the quality of children’s causal learning.
Explaining developmental changes will require additional research that builds on the current findings
but also tries to examine in more detail the role of particular types of cognitive processes such as chil-
dren’s strategies.

The second direction for future research stems from our finding that although active learning, in
the form of self-selecting interventions, did not seem to benefit children’s causal structure learning
(beyond simply observing someone else’s interventions), our modeling raised the possibility that
learning may proceed in a qualitatively different way when children do not have the opportunity to
choose interventions themselves. This finding demonstrated the potential benefits of examining not
just whether causal learning is affected by whether or not individuals can engage in more active learn-
ing but also how it may be differentially related to the sort of information generated in active learning.
Further examination of potential qualitative differences looks like an important goal for future empir-
ical and modeling work on causal structure learning.
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