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ABSTRACT
The Kepler mission has recently discovered a number of exoplanetary systems, such as Kepler-
11 and Kepler-32, in which ensembles of several planets are found in very closely packed
orbits (often within a few per cent of an au of one another). These compact configurations
present a challenge for traditional planet formation and migration scenarios. We present a
dynamical study of the assembly of these systems, using an N-body method which incorporates
a parametrized model of planet migration in a turbulent protoplanetary disc. We explore a wide
parameter space, and find that under suitable conditions it is possible to form compact, close-
packed planetary systems via traditional disc-driven migration. We find that simultaneous
migration of multiple planets is a viable mechanism for the assembly of tightly packed
planetary systems, as long as the disc provides significant eccentricity damping and the level
of turbulence in the disc is modest. We discuss the implications of our preferred parameters
for the protoplanetary discs in which these systems formed, and comment on the occurrence
and significance of mean-motion resonances in our simulations.

Key words: methods: numerical – planets and satellites: dynamical evolution and stability –
planets and satellites: formation – planets and satellites: individual: Kepler-11 – planets and
satellites: individual: Kepler-32 – planets and satellites: individual: Kepler-80.

1 IN T RO D U C T I O N

Of the myriad of recent advances in our study of extrasolar planets,
perhaps the most interesting is the discovery of large numbers of
systems of multiple planets. The first multiple-planet system around
a main-sequence star, Upsilon Andromedae, was reported by Butler
et al. (1999), and we now know that many, if not most, planets
form in multiple systems. In the final Kepler data release (Burke
et al. 2014) there were 2738 planet candidates around 2017 unique
stars. 475 (24 per cent) of these stars host multiple candidates, while
1196 (44 per cent) of the candidates are found in multiple-planet
systems. Statistical considerations suggest that the false positive rate
in Kepler’s multiple-planet systems is low (Lissauer et al. 2012).
When one considers non-detections, it seems likely that the majority
of planets form in multiplanet systems.

Among this avalanche of new data, arguably the most surpris-
ing discovery was a new class of compact, tightly packed systems.
These systems, for which Kepler-11 is the prototype (Lissauer et al.
2011b, 2013), consist of several Neptune- or super-Earth-size plan-
ets, typically within a few tenths of an au of their host star, and
often within a few hundredths of an au of one another. They are in-
variably dynamically cold, with low eccentricities and low mutual
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inclinations. Mean-motion resonances (MMRs) between adjacent
planets are seen in some cases, but not all (e.g. Lissauer et al. 2013;
Swift et al. 2013), and many of these compact systems appear
to be close to dynamical instability (Deck et al. 2012). Compact
planetary systems therefore represent a striking contradiction: they
apparently require delicate assembly in order to avoid being de-
stroyed by dynamical instabilities, but their prevalence suggests a
robust formation mechanism.

The extreme architectures of these systems have led a number
of authors to consider in situ formation models (e.g. Hansen &
Murray 2012, 2013; Chiang & Laughlin 2013; Chatterjee & Tan
2014), as these naturally avoid the complications and uncertainties
inherent in migrating systems of multiple planets. However, Swift
et al. (2013) show that the dust sublimation radius for Kepler-32
is outside the innermost planet’s orbit for the length of all but the
most unrealistic disc lifetimes, suggesting that at least some planets
in compact systems could not have formed at their present loca-
tions. Moreover, conventional protoplanetary disc models contain
too little mass at small radii to form systems such as Kepler-32 in
situ (Swift et al. 2013). Hansen & Murray (2013) used Monte Carlo
simulations of in situ formation to show that this mechanism can
qualitatively reproduce the distribution of tightly packed systems –
albeit with a slight shift towards longer periods – while Hansen &
Murray (2014) suggested that tidal dissipation may be responsible
for bringing planets inside the expected dust sublimation radius to
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shorter period orbits. More recently, Raymond & Cossou (2014)
have argued against in situ formation, on the basis that the range of
disc models required for the formation of Kepler’s sample of tightly
packed super-Earths in this way is unrealistic.

The natural alternative to in situ formation is that hot super-
Earths formed at larger radii and migrated inwards. These planets
are of sufficiently low mass that they are unlikely to open a gap
in a disc, and hence undergo Type I migration (Kley & Nelson
2012). Raymond, Barnes & Mandell (2008a) made predictions of
observational signatures that might help to distinguish between in
situ and migration models, and find that mean-motion resonances
would be expected if such systems formed by migration. Several
authors have conducted simulations exploring the scenario in which
hot super-Earths form from inwardly migrating planetary embryos.
Terquem & Papaloizou (2007) performed calculations which can
form 2–5 super-Earths in very tight orbits since their migration is
halted at the inner edge of the disc, whilst McNeil & Nelson (2010)
found that super-Earths of up to 3–4M⊕ form readily in a sufficiently
massive disc. Cossou et al. (2014) have explored the problem with
a more recent model of Type I migration and found that super-Earth
sized objects can form from embryos migrating from 1–20 au and
either pile up at the inner edge of the disc they are embedded in,
or become giant enough to migrate outwards and become the core
of a giant planet. Note that the line between in situ formation and
formation further out in the disc can be blurred once the embryos
have migrated sufficiently far in, since they may continue to accrete
material once the disc has dissipated via collisions with other bodies
(Cossou et al. 2014).

In this paper, we investigate assembling compact, tightly packed
planetary systems by traditional, disc-driven migration. We con-
sider a scenario in which planets are formed fully further out in the
disc and then migrate inwards. We adopt an N-body approach, using
a variety of parametrized forces designed to mimic those that each
planet would experience in a real protoplanetary disc. We consider
the influence of each of the main elements of the Type I regime:
planetary migration, eccentricity damping and disc turbulence. This
results in a large parameter space with many inherent uncertainties,
so we use a statistical approach, running large numbers of models
of individual systems in order to understand what balance of param-
eters is most conducive to building these systems. This approach
allows us to capture the essential physics of the simultaneous mi-
gration of multiple planets, while avoiding the computational cost
of full hydrodynamic calculations. In essence our calculations are
a proof-of-concept, designed simply to understand whether simul-
taneous migration of multiple planets is a viable model for the
assembly of tightly packed planetary systems.

2 N U M E R I C A L M E T H O D

Following the simultaneous migration of many planets in a hydro-
dynamic calculation is computationally expensive, and the large
parameter space makes this approach infeasible here. We instead
model the assembly of compact multiplanet systems using an N-
body approach, employing parametrized forces to mimic the effects
of disc-driven migration, eccentricity damping and turbulent forc-
ing.

2.1 N-body integrator

We compute gravitational interactions (both star–planet and planet–
planet) using a direct summation N-body code. We adopt a modified
second-order kick-drift-kick leapfrog method (see Appendix A) for

time integration, with adaptive time-stepping to ensure numerical
accuracy whilst minimizing the computational cost.1 The star and
planets are modelled as point masses, and no gravitational softening
is used. We assign physical radii to all the particles, but these are
used only to identify physical collisions between particles.

2.2 Migration and eccentricity damping

Gravitational torques from a protoplanetary disc drive both planet
migration and eccentricity damping. The low planet masses con-
sidered here are expected to migrate in the Type I regime (Kley &
Nelson 2012), where this torque is given by (e.g. Tanaka, Takeuchi
& Ward 2002; Paardekooper & Papaloizou 2009)

� = −C
q2

h2
�pa

4�4
p . (1)

Here a is the orbital semimajor axis of the planet, q is the planet:star
mass ratio, �p is the angular frequency of the planet and h is the disc
aspect ratio, and C is an order-unity constant. The torque scales with
the square of the planet mass, so the Type I migration rate da/dt
increases linearly with planet mass Mp. We follow other authors
(e.g. Lee & Peale 2002; Rein 2012), and parametrize the migration
rate as

da

dt
= − a

τ (Mp)
. (2)

In contrast to previous work, we define the migration time-scale to
be a function of planetary mass

τ (Mp) = τMscale/Mp . (3)

Here τ and Mscale are reference values: we choose Mscale = 3 ×
10−5M� (approximately 10M⊕), and treat the migration time-scale
τ as an input parameter. We implement migration (and eccentric-
ity damping; see below) in our code following a method described
in the Appendix A. This method differs from that of Lee & Peale
(2002) in that the damping is implemented directly as forces at each
time-step, and is similar to the method implemented by Rein & Liu
(2012). This approach captures the most important features of Type I
migration (the migration rate and scaling with planet mass) while re-
maining computationally inexpensive. In adopting this method, we
assume that all planets migrate inwards only. Several authors have
recently shown that outward migration is possible for super-Earth
sized planets, and that this behaviour can be important in preventing
the loss of planets on to the star (Bitsch et al. 2013a, 2014b; Cos-
sou et al. 2014). We note however that the only the most massive
planets (those with Mp � 5M⊕) considered here are large enough
to potentially migrate outwards in the disc models considered by
these studies, and even then only in specific regions of the disc (e.g.
Bitsch et al. 2014a). We consider a range of migration time-scales
τ = 103.5–105.5yr, except in the case of Kepler-11. It was clear from
early work with this system that a longer migration time-scale was
preferred, and hence for Kepler-11 we consider τ = 104–106 yr.
We do not base our choice of time-scale on a specific or evolv-
ing disc model; instead we explore a broad range of the relevant
physical parameters, without reference to the disc properties. It is
however possible to relate the migration time-scales presented here
to canonical disc models using simple arguments. For instance, for
a 1 M� star and typical parameters (� = 1000 g cm−2, a = 1 au,

1 Strictly, the use of adaptive time-stepping violates the symplectic nature
of the integrator but in practice this is unimportant, as the system is in any
case non-Hamiltonian due to our use of non-conservative damping forces.
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h = 0.05, Mp = Mscale), equation (1) gives a migration time-scale
τ = 6.3 × 104 yr. Our adopted range of migration time-scales there-
fore corresponds approximately to a range of disc surface densities
� � 102–104 g cm−2 at 1 au.

For low eccentricities (e � 2h) in the Type I regime, both ana-
lytic arguments and numerical arguments find that planet–disc in-
teractions lead to exponential damping of the planet’s eccentricity
(Tanaka & Ward 2004; Cresswell et al. 2007; Bitsch & Kley 2010).
We apply eccentricity damping in a similar fashion to that described
above, with the damping rate given by

de

dt
= − Ke

τ (Mp)
. (4)

We therefore assume that the eccentricity damping rate de/dt is
proportional to the migration rate da/dt; K is the constant of pro-
portionality. This assumption is motivated by several theoretical
studies. Tanaka & Ward (2004) used a linear analysis for low-mass
planets to show that τ ecc ≈ (H/r)2τmig, suggesting a K ∼ 102 for
canonical disc models. Similarly, Lee & Peale (2002) found that a
value in the range K = 10–100 is required to form the GJ 876 sys-
tem (although the planets in GJ 876 are notably more massive than
those considered here). Hydrodynamical simulations performed by
Cresswell et al. (2007) and Bitsch & Kley (2010) both show ex-
cellent agreement with the results of Tanaka & Ward (2004) in
the low-e regime, finding eccentricity damping time-scales to be
a few tens of orbits. We treat K as an input parameter which sets
the strength of the eccentricity damping, and consider values in the
range K = 100.5–102.5. Note that no inclination damping is included
in these simulations, since all planets are initialized on co-planar
orbits.

2.3 Disc turbulence

Protoplanetary discs are turbulent, and in addition to transporting
angular momentum and driving accretion, this turbulence results
in stochastic fluctuations in the local gas density. These local den-
sity variations lead in turn to stochastic variations in the planet–
disc torque, which cause the planet’s orbit to undergo a random
walk (Nelson & Papaloizou 2004; Nelson 2005; Oishi, Mac Low &
Menou 2007). Full magnetohydrodynamic simulations of planet–
disc interactions in a turbulent disc remain extremely computation-
ally expensive, with some authors choosing to apply a stochastic
potential to the disc to perform such simulations in an efficient
manner (e.g. Laughlin, Steinacker & Adams 2004; Baruteau & Lin
2010; Pierens, Baruteau & Hersant 2012). Previous work has shown
that this process can also be well approximated in N-body calcula-
tions by applying stochastic forcing to the planets. Following the
method of Rein & Papaloizou (2009), we use a modified discrete
time Markov process to generate stochastic forces in both the φ and
r direction at every point along the planet’s orbit, hence adding noise
to the acceleration of each planet and sending its orbital elements
on a random walk (around the smooth net migration rate described
in Section 2.1). The standard Markov process is zero-mean and
Gaussian, and is defined by two parameters: the root-mean-square
(rms) force-per-unit-mass

√
〈F 2〉 and the autocorrelation time τ c.

The rms force is a free parameter in our model, whilst the auto-
correlation time is set to �−1 for each planet. We note that this is
a high estimate of τ c and that numerical simulations show that it
can be as low as 0.5�−1 (Oishi et al. 2007). We characterize the
strength of the stochastic forcing in terms of the dimensionless pa-
rameter β =

√
〈F 2〉/Fg, where Fg is the gravitational acceleration

due to the star’s gravity. This means that the absolute magnitude

of the stochastic forces grows as planets move inwards, so strictly
our distribution of forces is no longer Gaussian (though it remains
zero-mean). We vary β between 10−5 and 10−8 in all simulations
presented here.

Our parametrization of the turbulence can be compared to
previous works for scaling. Paardekooper, Rein & Kley (2013)
parametrize their noise according to the scale F0 = πG�/2, with
� = 1.5 × 104 g cm−2, varying

√
〈F 2〉/F0 between 0.01 and 0.1.

The corresponding range for our β parameter (required to repro-
duce the absolute magnitude of the forces) is β = 2.5 × 10−7 to
2.5 × 10−6 at 0.1 au.

2.4 Simulation set-up

Our simulations have three free parameters: the migration time-scale
τ , the eccentricity damping constant K, and β, which characterizes
the strength of the disc turbulence. Predicted values of all three of
these parameters span at least 2–3 orders of magnitude, so in order
to span this vast parameter space we perform 10 000 simulations
of each system, each with randomly chosen values of τ , K and β.
The values of each parameter are sampled uniformly in log-space in
order to understand how order of magnitude changes in their values
affect the evolution of each system.

We apply our model to three well-known systems (Kepler-11,
-32 and -80), the parameters of which are given below. We initially
place all planets on circular, co-planar orbits with randomly chosen
orbital phases. All planets are present at the start of the simulation
and migrate together – the consequences of which we discuss briefly
in Section 4.3. We expect that planets form beyond the snow-line,
so we place initially place the innermost planet in each system
at a = 1 au (a typical location for the snow-line in protoplanetary
discs; e.g. Garaud & Lin 2004). Beyond this we place the remaining
planets in their observed order, with separations motivated by an
oligarchic spacing argument (e.g. Kokubo & Ida 1998). In this
scenario protoplanets form with separations of 5–10rH, where rH is
the mutual Hill radius of the two planets

rH =
(

M1 + M2

3M�

)1/3
a1 + a2

2
. (5)

We note, however, that for the masses considered here this typically
places planet pairs inside the 2:1 mean-motion resonance. Observa-
tions suggest that many planet pairs are captured into this resonance,
and as we expect most of our planets to undergo convergent migra-
tion we instead require a somewhat wider initial spacing. We assign
initial separations by randomly sampling a Gaussian distribution,
with mean 30rH and standard deviation 5rH. This results in most,
but not all, planet pairs starting off outside the 2:1 resonance. This
setup is essentially the simplest set of realistic initial conditions that
could plausibly reproduce the observed planetary systems. We rec-
ognize, however, that our choice of initial conditions is (necessarily)
rather arbitrary, and discuss the consequences of these choices in
Section 4.3. Note also that because the separations, initial phases
and turbulent forcing are all randomly chosen, simulations with
the same free parameters can have very different outcomes. Con-
sequently, a large number of runs is required to characterize the
parameter space adequately.

We halt our simulations when one of four criteria are met: (i) a
planet is ejected from the system; (ii) two planets physically col-
lide; (iii) the simulation time exceeds 15τ ; or (iv) a planet attains
a semimajor axis that is less than that of the innermost observed
planet in a system. The first two criteria represent failed models
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(i.e. runs which do not reproduce the observed system architectures).
Due to the tight packing and high multiplicity of these systems, typ-
ically a large number (approximately 70 per cent) of simulations
are ended for this reason. The third criterion (a time limit of 15τ )
accounts for the fact that a small number of runs evolve into config-
urations where little or no migration occurs (usually where resonant
torques dominate over migration); systems which satisfy this crite-
rion have essentially stopped evolving. The final stopping criterion
is deemed to be a ‘successful’ outcome, inasmuch as the innermost
planet has migrated to its observed position before any ejections or
collisions occur in the system. This stopping criterion is somewhat
arbitrary, but there is good reason to believe that the migration of
super-Earths might be stopped at small orbital radii in real discs
(e.g. Masset et al. 2006). We discuss the possible physical origins
of such a stopping mechanism in further detail in Section 4.3.1.

2.5 Simulations

We use the method presented above to model the assembly of three
systems: Kepler-11, Kepler-32 and Kepler-80. The parameters we
adopt for each of these systems are given in Table 1. We summarize
the properties of each individual system below.

2.5.1 Kepler-11

Kepler-11 is the prototype tightly packed planetary system, and
consists of six super-Earth- to Neptune-size planets orbiting an ap-
proximately solar-mass star Lissauer et al. (2011b). All six (known)
planets orbit within 0.5 au of the host star. The innermost five planets
are within the orbit of Mercury, having periods between 10 and 47 d,
and eccentricities confirmed by dynamical studies of less than 0.02
(Lissauer et al. 2013). These planets also appear to exhibit no mean-
motion resonances, although the innermost pair of planets is near to
the 5: 4 resonance. The outermost planet is somewhat anomalous,

Table 1. Simulation parameters for each of our three
systems. Units relative to the Sun are used for stellar
components of systems, units relative to the Earth are
used for their planetary companions. See Section 2.4 for
a detailed description of the origin of these values.

Object M (M�/M⊕) a (au) r (R�/R⊕)

Kepler-11* 0.961 – 1.053

Kepler-11 b 1.9 0.091 1.8
Kepler-11 c 2.9 0.107 2.87
Kepler-11 d 7.3 0.155 3.11
Kepler-11 e 8.0 0.195 4.18
Kepler-11 f 2.0 0.25 2.48
Kepler-11 g 8.09 0.466 3.33

Kepler-32* 0.57 – 0.53

Kepler-32 f 0.65 0.013 0.81
Kepler-32 e 2.31 0.0323 1.50
Kepler-32 b 5.07 0.0519 2.20
Kepler-32 c 4.17 0.067 2.00
Kepler-32 d 7.74 0.128 2.70

Kepler-80* 0.72 – 0.637

Kepler-80 f 1.46 0.017 1.2
Kepler-80 d 2.31 0.037 1.5
Kepler-80 e 2.63 0.049 1.6
Kepler-80 b 7.16 0.065 2.6
Kepler-80 c 8.34 0.079 2.8

due to its large separation from the others, and its properties are less
well constrained.

We adopt the parameters for this system from Lissauer et al.
(2013), who used dynamical fits to the observed transit timing vari-
ations (TTVs) to determine the planetary masses. The inner four
planets are mass-ordered, with more massive planets orbiting at
larger distances from the star, while the fifth planet is less massive.
The mass of the outermost planet (Kepler-11g) is not well con-
strained by the TTVs, and the dynamical analysis of Lissauer et al.
(2013) yields only a weak upper limit to its mass. In our models,
this large value leads to unrealistically rapid migration of the outer
planet, so we instead adopt a mass of 8M⊕ for planet g, as assumed
in the dynamical fitting models in Lissauer et al. (2013).

2.5.2 Kepler-32

Kepler-32 is one of the most compact multiplanet systems dis-
covered to date, with five planets in orbital periods ranging from
0.7–22.8d (Swift et al. 2013). It also exhibits what appears to be
an interlocking mean-motion resonance; planets e and b are appar-
ently in (or very close to) a 1:2 resonance, whilst planets b and c
are similarly close to a 2:3 resonance. The planets are well ordered
in planetary radius, with the planets becoming progressively larger
further away from the star. We adopt the stellar parameters, orbits
and planetary radii from table 3 of Swift et al. (2013). However, in
this case, the masses of the planets have not been measured directly.
We therefore infer masses from the measured planetary radii, using
a simple power-law scaling

Mp

M⊕
=

(
rp

r⊕

)2.06

, (6)

derived from a fit to the Earth and Saturn (Lissauer et al. 2011a).
There are likely to be large inaccuracies in these mass estimates:
Lissauer et al. (2013) note that even after reducing their size esti-
mates, the planets in the Kepler-11 system are all significantly less
massive that one would estimate from this relation.

2.5.3 Kepler-80

Kepler-80 (also known as KOI-500) is an extreme example of a
tightly packed system, with four planets in orbital periods that
range from just 3.0–9.5d. As with Kepler-32 the planets are well
ordered in size, and there is a possible four-body interlocking
resonance of 4: 6: 9: 12 between the outer four planets (Xie
2013). Parameters for this system are drawn from the NASA
Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), apart
from planet f, whose period and radius are taken from Xie (2013).
Only radii and orbital periods are available for the planets of Kepler-
80, so we derive semimajor axes from the orbital periods (using the
provided stellar mass), and again use the scaling relation (equation
6) to obtain mass estimates for the planets.

3 R ESULTS

As described in Section 2.5, we ran 10 000 models for each of
the three systems. Given the chaotic nature of the models, and
our arbitrary choice of initial conditions, we initially take a very
simple view of the results. We define a model as ‘successful’ if the
innermost planet migrates to its observed position or the simulation
time reaches 15τ without any ejections or collisions occurring in
the system. We further split this group of successful runs into two,
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Figure 1. Fractions of successful runs as a function of our free parameters τ (migration time-scale), K (eccentricity damping) and β (‘turbulent’ forcing). Top
row: Kepler-11; middle row: Kepler-32; bottom row: Kepler-80. Our calculations generally favour strong eccentricity damping and weak to modest levels of
stochastic forcing, but do not show a strong dependence on migration rate.

depending on whether or not the order of the planets was preserved
or not. The numbers of successful/unsuccessful runs for each system
are given in Table 1, while Figs 1 and 2 show how the fraction of
successful runs for each system varies as a function of the input
parameters.

While the overall fraction of successful models is rather low,
Fig. 1 shows that this is essentially an artefact of the large param-
eter space we consider; in each case there is always a region of

parameter space where most of the models are successful. It is im-
mediately clear from Figs 1 and 2 that our models show a clear
preference for stronger eccentricity damping and lower stochastic
forcing. The reason for this is clear: the close packing of the plan-
ets means that even small perturbations can lead to orbit crossing
and subsequent collisions or ejections. A lower level of stochas-
tic forcing reduces the probability of orbit crossing, as does more
efficient eccentricity damping. All three sets of models require

MNRAS 445, 749–760 (2014)
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Figure 2. Historgrams showing success rate for each region of flattened parameter space across all simulations. Red (light grey): Kepler-11, dashed-red
(dashed light grey): as with red line but allowing planets 5 and 6 to maintain order or switch positions with one another, green (grey): Kepler-32, blue (black):
Kepler-80. The vertical axis shows the fraction of systems run in each bin that fulfilled the success criteria, normalized to a maximum of 1 for easy comparison.
The shapes of the distributions are very similar for all three sets of models. Colour versions of all figures available online.

β � 10−6.5, suggesting that modest or low levels of turbulence
are required in discs that form compact systems. Similarly, we re-
quire the eccentricity damping parameter K � 101.5 in order to form
tightly packed systems effectively. This is towards the upper end
of the range of values found in previous numerical calculations, as
discussed above, but is certainly plausible for planets in the Type I
migration regime.

When we consider the migration time-scale τ , however, there
is a distinct difference in the results for Kepler-11 compared to
the other two systems. Our models of Kepler-32 and -80 models
show no strong variations with τ : the fraction of successful runs is
essentially constant across the range of migration time-scales we
consider, and shows only a weak decline for very short migration
time-scales (τ < 104 yr). By contrast, for Kepler-11 we find a strong
preference for τ � 105 yr, and see essentially no successful models
with τ � 104.5 yr.

On closer inspection, however, we find that the preference for
longer migration time-scales in Kepler-11 is almost entirely due to
the ordering of the outer two planets (f and g). Kepler-11 is the only
system we consider where the planets are not ordered in increasing
size. If we relax our criteria to include models where planets f and g
are allowed to switch positions (see the dashed histogram in Fig. 2),
then we again find that the fraction of surviving systems is approxi-
mately constant with τ , as for Kepler-32 and -80. This behaviour is
again readily understood. In our models, planet g is approximately
four times more massive than planet f, so the planets’ orbits con-
verge rapidly as they migrate. If migration is relatively slow, then
the probability of capture into a mean-motion resonance is high (see
e.g. Mustill & Wyatt 2011), but resonant capture becomes progres-
sively less likely for faster migration rates, making it much more
likely that planet g ‘overtakes’ planet f. The mass of planet g is
poorly constrained by current observations (Lissauer et al. 2013),
however, so it is not clear whether this result is significant. Oth-
erwise, we find that migration time-scales τ � 104–106 yr readily
lead to successful assembly of these compact systems. This range
of migration time-scales is broadly consistent with the predictions
of Type I migration models, but in general our calculations do not
set strong constraints on the required migration rate.

Fig. 3 shows the distribution of final semimajor axes for each
planet in each system at the end of our successful runs. Also shown
are some ‘best-fit’ models, in which the final positions of the plan-
ets are close to their observed locations. Generally, the systems

produced by our models are indeed very tightly packed, with the
majority of systems in the Kepler-11 case containing all six planets
within 1 au. In most cases, our models end with the outer three
planets in the Kepler-11 system exterior to their true positions, but
even in these cases the tightly packed nature of the system is clearly
maintained. By contrast, our models of Kepler-32 and Kepler-80
tend to produce systems that are in fact more tightly packed than
the real systems, particularly with regards to the spacing of the
first and second planets. Thus, although the precise orbital config-
urations of the observed systems are somewhat unusual outcomes,
our models show that it is clearly possible to assemble systems of
five or more tightly packed at sub-au radii through simultaneous,
disc-driven migration.

3.1 Mean-motion resonances

Further insight into our results can be obtained by considering the
occurrence of mean-motion resonances in the successful runs. Cal-
culating the resonant argument for multiple planet pairs in thousands
of individual simulations is computationally expensive, so we in-
stead perform a simple analysis on the period ratios in the final
orbital configuration of each run to establish if planets are in reso-
nance. We take the ratio of periods between each pair of adjacent
planets, find the closest integer ratio, and consider it a possible res-
onance actual ratio is within 0.5 per cent of this integer value. We
acknowledge that resonant behaviour can be observed even between
planets that are ∼5 per cent away from the exact commensurability
(see e.g. Raymond et al. 2008b). However, we found that for our
low-eccentricity systems the 0.5 per cent tolerance was sufficient,
since resonant pairs tend to remain very close to exact commen-
surability, while non-resonant pairs are typically very far from the
nearest first-order resonance. This analysis is performed in each of
the final 10 output snapshots from each run (i.e. over 100 yr), and
the planets are considered to be in resonance if the nearest integer
ratio is the same across all 10 snapshots, and always falls within the
0.5 per cent tolerance.

We find that vast majority of runs end with each pair of adjacent
planets in resonance, as shown in Fig. 4. However, non-resonant
configurations are by not uncommon: for each pair of adjacent
planets in Kepler-11, a few per cent of runs end with no resonance.
In our Kepler-11 models, the outer two planets are almost invari-
ably trapped in one of several different resonances at the end of the
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Figure 3. Histograms showing distribution of each planet in each system
across all successful runs. Each colour represents a specific planet in a spe-
cific system. Solid lines show the actual positions of the planets in each
system, whilst points plotted above show planetary positions in some rep-
resentative ‘best-fit’ models, fitted by semimajor axis. From top to bottom:
Kepler-11, Kepler-32, Kepler-80. Note that a small fraction of models are
cut off the right of each plot.

Figure 4. Fractions of adjacent pairs of planets that are in each resonance
at the end of our successful runs for Kepler-11 (top), Kepler-32 (middle) and
Kepler-80 (bottom). Pairs are numbered in order of increasing semimajor
axis. The ‘Other’ bar is a sum over all resonances that contain less than 3
per cent of the total number of pairs. The letters in each key refer to which
two adjacent planets are represented by each colour.
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simulations. This is a result of the strongly convergent migration
described above, and partly explains the difficulty our models have
in keeping these planets as well spaced as they are in reality. More-
over, this same mechanism explains the difficulty in spacing planets
e and f correctly: planet f is completely dominated by its resonant in-
teraction with g, allowing planet e to migrate inwards unperturbed.
This in turn accounts for the dearth of resonances between planets
e and f seen in Fig. 4 – these being the only two planets that are
outside of a resonance in the majority of our runs. However, given
the large uncertainty in the mass of planet g (discussed above), the
significance of this behaviour is unclear.

In general, our models of Kepler-32 and -80 show similar be-
haviour to Kepler-11, with the caveat that in reality a number of
(possible) mean-motion resonances are observed in these systems.
In both of these systems, the period ratio of the innermost pair of
planets at the end of our simulations is significantly smaller than
in reality (see Fig. 3), but otherwise our models have some success
in reproducing the observed MMRs in these systems. In Kepler-32,
34 per cent of successful runs end with planets e and b in a 2: 1
resonance, and 33 per cent with planets b and c in a 3: 2 resonance;
the 1:2:3 resonance in Kepler-32 occurs 52 times in 1964 successful
runs (i.e. 2.6 per cent of the time). In Kepler-80, the interlocking
resonance between planets d through c occurs only once in our
successful runs, though the individual resonances occur separately
many times. The 3:2 resonances between planets d and e and planets
e and b occur 49 per cent and 40 per cent of the time, respectively,
whilst the 4:3 resonance between planets b and c occurs 20 per cent
of the time.

The prevalence and population of resonances depends weakly on
the model parameters. For Kepler-11, the innermost pair of planets is
twice as likely to be found out of resonance for values of β above the
median (10.8 per cent of successful runs) than below (5.7 per cent).
Rein (2012) similarly found that increased stochastic forcing could
reduce the number of observed resonances in systems. This effect
is not as pronounced in our results as in those of Rein (2012), how-
ever, with the majority of our planet pairs still found in first-order
resonances even in simulations with higher-than-median values of
β. When we consider the dependence on the migration time-scale
τ , we see similar behaviour to that found by Paardekooper et al.
(2013): faster migration leads to planets crossing first-order res-
onances such as 2: 1 and 3: 2, and instead becoming trapped in
small-period ratio first-order resonances such as 4: 3 and 5: 4. For
instance, in Kepler-32, the innermost pair of planets are found in the
3: 2 resonance at the end of 22 per cent of successful simulations
for values of τ above the median. For values below the median, just
4 per cent appear to be in this resonance, with the corresponding
percentage for the 4: 3 resonance jumping from 7 per cent to 15 per
cent. A similar trend is seen in the other two systems. Additionally,
we find that τ can affect the percentage of planet pairs that finish
the simulation in no resonance. In Kepler-32 simulations with τ

larger than the median, 1 per cent of all planetary pairs are in no
perceivable resonance, this figure jumping to 5.2 per cent for values
of τ below the median. However, it is still clear that our models in
general overpredict the occurrence of MMRs, and we discuss this
issue further in Section 4.2.

Interestingly, whilst the overall prevalence of resonances is sim-
ilar across all three systems, Fig. 4 shows that there are marked
variations in which resonances are preferred. For instance, over 25
per cent of adjacent pairs end trapped in the 2:1 resonance in Kepler-
32, with less than half this number ending in the same resonance
in Kepler-80. This is particularly curious given the striking simi-
larities between these two systems. Our models of both Kepler-32

Table 2. The number of runs ending in a particular outcome
for each set of 10 000 runs. S: runs that finished without a
collision or ejection event. S/O: subset of S that finished with
the planets correctly ordered. S/U: as S/O but for incorrectly
ordered planets. T: total number of runs from S that were
stopped due to running for longer than 15τ . C: total number
of runs ending in a collision of two bodies. E: total number
of runs ending in the ejection of a body.

System S S/O S/U T C E

Kepler-11 3270 2089 1181 1 5753 977
Kepler-32 1964 1916 48 153 7140 896
Kepler-80 2106 2031 75 40 6907 987

and Kepler-80 generally favour the 3: 2 resonance, while Kepler-11
favours instead the 2:1 resonance, with the 3:2 resonance occur-
ring much less often. It is clear that the minor differences between
these systems (e.g. in planet mass or initial spacing) can make a
large difference to the preferred configurations of resonances in our
models.

3.2 Stability

A key additional consideration is the orbital stability of the con-
figurations – it is entirely possible that many of our systems will
become unstable once the damping and forcing due to the disc is
no longer present. Simulations of super-Earth embryos conducted
by Cossou et al. (2014) suggest that this indeed may be the case,
with the removal of disc-driven damping leading to instability and
collisions in their calculations. We performed basic stability tests
on the successful Kepler-11 models by taking the final results of
each and evolving them using the fourth-order integrator described
by Yoshida (1990) for 5Myr.2 We consider models to be unsta-
ble if they undergo an ejection or collision during this time, or if
they show signs of Lagrange instability. Following Deck, Payne &
Holman (2013), we define Lagrange instability to be a change in
the semimajor axis of any planet by more than 5 per cent from its
initial value over the course of the 5Myr. Of the 2089 successful
Kepler-11 models, 5.03 per cent underwent an ejection or collision
event within the 5Myr integration. A further 0.24 per cent were
found to be Lagrange unstable. Generally, we find that the unstable
models are those with little eccentricity damping, since they have
higher eccentricities at the beginning of the stability test which can
quickly lead to orbit crossing. A small percentage (1.82 per cent)
of the models required time-steps which were prohibitively short,
and hence were not completed. The remaining 92.92 per cent of
the models were stable for the full 5Myr. This rudimentary analysis
shows that the majority of our models are stable on � Myr time-
scales, and consequently that the stability of our models does not
affect our results significantly.

4 D I SCUSSI ON

4.1 Simulation outcomes and preferred parameter values

Table 2 shows the total number of runs that ended in each type
of outcome for each system. The tiny fraction of runs which are

2 We restrict this analysis to Kepler-11 since we expect the stability of
Kepler-32 and Kepler-80 to be dominated by the uncertainty in their plane-
tary masses.

MNRAS 445, 749–760 (2014)

 at U
niversity of L

eicester on O
ctober 13, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Assembling compact planetary systems 757

ended due to the simulation time limit implies that this criterion
has little effect on our results, and a manual inspection of the
final states of these models reveals that they are generally very
close to reaching the normal, position-based stopping criterion any-
way. In general, runs which end without a collision or ejection
event end with the planets in the same order. Kepler-11 is the
notable exception to this trend, with 20.89 per cent of runs end-
ing successfully and a further 11.50 per cent ending without any
catastrophic event but with planets f and g having swapped posi-
tions. The apparent ease with which this planets switch positions
suggests that these systems may not have formed in the orders
that they are currently observed, particularly given that planet f in
Kepler-11 does not follow the otherwise prevalent trend of mass
ordering. Instead the planets could have formed in a different or-
der, with the combination of strong damping, convergent migration
and disc turbulence facilitating their rearrangement without violent
interactions.

As previously stated, our results set no specific constraints on the
migration time-scale required for the assembly of these systems.
This suggests that limits on disc parameters are instead set by our
allowed values of K and β, and also means that any realistic Type
I migration time-scale allows the assembly of these systems via
disc-driven migration. This is convenient since it allows a num-
ber of potential migration stopping mechanisms to be invoked in
ending the migration of the planets (see Section 4.3.1). The eccen-
tricity damping parameter K is much more strongly constrained,
with values K < 101.5 almost always ending in a collision or ejec-
tion. Stronger damping naturally allows for easier assembly, since
the combination of tight-packing and resonant configurations in our
results can lead to orbit crossing if left unchecked. In spite of this,
the preferred range of K values is broadly consistent with those
found in previous studies (see Section 2.2) and thus compatible
with typical Type I migration models.

The preferred range of β values in our simulations is β � 10−6.5,
with larger values usually leading to collisions, ejections or planet
reordering. To obtain some insight into the meaning of this value,
we calibrate our β parameter against previous magnetohydrody-
namical studies of migration in turbulent discs. For a disc with
Shakura & Sunyaev (1973) viscosity parameter α = 0.007 and as-
pect ratio h = 0.07, Nelson & Papaloizou (2004) found the rms of
the fluctuating specific torque to be σ � 2 × 10−5. In our units
this corresponds to β � 6 × 10−5. However, the disc aspect ra-
tio adopted by Nelson & Papaloizou (2004) is significantly larger
than expected at the sub-au radii we consider here: for a 1 M�
star, a gas temperature of 1000 K yields h � 0.02 at r = 0.1 au.
Since the strength of turbulent fluctuations scales approximately
as h2, a realistic value of β at these orbital radii is likely to be at
least an order of magnitude lower: we estimate that the torque
fluctuations in the calculations of Nelson & Papaloizou (2004)
correspond to β ≈ 10−6 at r ≈ 0.1 au. This is around the up-
per limit of suitable values in our simulations, and suggests that
modest levels of disc turbulence (α ≈ 10−3–10−2) are compatible
with the assembly of compact planetary systems by simultaneous
migration. We note, however, that in real discs the Shakura & Sun-
yaev (1973) α-parameter depends on fluctuations in the velocity
and magnetic fields (e.g. Balbus 2011), while the migration torque
varies due to fluctuations in the gas density. Establishing a relation-
ship between the turbulent stresses which drive angular momentum
transport and the density fluctuations that give rise to stochastic
migration (i.e. between α and β) therefore requires detailed mag-
netohydrodynamic calculations, and is beyond the scope of this
work.

4.2 Mean-motion resonances

One of the principle arguments against forming this class of systems
(in particular Kepler-11) via convergent migration is that many of
the adjacent pairs of planets within them do not appear to be in
MMRs. As discussed above, our models have significant difficulty
replicating this dearth of resonances. It is clear from Fig. 1 that
stronger turbulence does not reduce the incidence of resonances
significantly, but instead simply reduces the survival rate of systems.
An alternative explanation for the paucity of resonances, especially
in Kepler-11, is hence required. Mechanisms that could lead to the
breakdown of resonances have already been studied in great detail,
largely in an attempt to explain an observed pile-up of planetary
pairs that have period ratios slightly larger than the closest MMR
(Lissauer et al. 2011a; Fabrycky et al. 2014).

Goldreich & Schlichting (2014) have suggested that the paucity
of resonances observed in exoplanetary systems may be a side effect
of disc-driven eccentricity damping. However, the presence of this
effect in our simulations appears to have had little effect on the long-
term maintenance of resonances. Given that Kepler-11 is estimated
to be 8.1Gyr old (Lissauer et al. 2013) and protoplanetary disc
lifetimes are of order several Myr, long-term dynamical evolution
of these systems could play an important role in finalizing their
architectures. For instance, the excitation of eccentricity in the post-
disc phase can cause orbit crossing and close-encounters, leading to
the breakdown of resonances (Ida & Lin 2010). A cursory analysis
of MMRs present at the end of our Kepler-11 stability analysis
suggests that this effect is not significant after 5Myr for our models.

Several authors have investigated the possibility that the paucity
of resonances can be attributed to tidal interactions. Lee, Fabrycky
& Lin (2013) find that tidal dissipation can drive some planets out
of resonances, but that the effect is generally not strong enough to
account for all resonance breaking. Lithwick & Wu (2012) show that
tidal dissipation alone can only explain the complete distribution of
period ratios if the damping is unexpectedly strong. They propose
instead that planets can be repulsed from a resonance by a dissipative
process such as tidal damping acting on the forced eccentricity
which is driven by the resonance. Baruteau & Papaloizou (2013)
show that planets with periods larger than 10 d are unlikely to be
repulsed from resonance by tidal interactions. Instead, they propose
that the wake generated by a companion planet while the two are
migrating in resonance can reverse convergent migration. Another
promising possibility was suggested by Chatterjee & Ford (2014),
who found that interactions with a disc of planetesimals can lead to
migration of pairs of resonant planets. This can in turn disrupt the
MMR and leads to the final period ratio between the two planets
being slightly larger than that of the initial MMR. Whatever the
mechanism, there is clearly a fine balance to be struck between
breaking resonances in systems such as Kepler-11, and maintaining
them in systems such as Kepler-80.

4.3 Limitations of the model

First, we note here that caution should be used when considering
the outcome of models with low τ and high K values (i.e. those
with very rapid eccentricity damping). The simulations of Cresswell
et al. (2007) suggest that eccentricity damping occurs on several
tens of orbital time-scales, while our formalism assumes only that
all effects happen on time-scales greater than the orbital period
(see Appendix A). For models in which the outermost planets are
initially placed far from their host star, extreme values of low τ and
high K can result in an initial eccentricity damping time-scale of
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less than one orbital period. However, this occurs only in a minority
of our models, and even our strongest eccentricity damping acts
on times-scales no smaller than �10yr – far longer than the orbital
time-scale at the final orbital radii. Hence we still consider these
models to be valid on the basis that the most important period of
migration (when the planets are most tightly spaced) is unaffected.

Naturally, for the sake of this simplified calculation, we have
made several assumptions which are not valid for actual planetary
systems. For instance, the parametrization used here is evidently
not self-consistent; previous studies such as those discussed in Sec-
tion 2.2 have shown that eccentricity damping and migration time-
scales are not independent. Given the uncertainties in these values
however, it is not possible to perform a more realistic calculation at
this time without reverting to full hydrodynamical models. In spite
of this, it is encouraging that the range of τ and K values for which
our models are successful is broadly consistent with the results of
these more sophisticated calculations.

The initial conditions in our models have been chosen on the
basis of simple physical arguments, but the planets considered here
most likely did not form concurrently with their current masses. Ac-
cording to the standard core-accretion model of planet formation,
these planets would have spent considerable time as lower mass
planetary embryos, accreting material from a protoplanetary disc
(Raymond et al. 2013) and even merging with other embryos. In
particular, several planets in Kepler-11 have bulk densities which
are consistent with a gaseous atmosphere component, while the
planets themselves are sub-Jupiter mass. This suggests that they
underwent a phase of relatively slow accretion from the gas disc
(Lissauer et al. 2013). If the planets formed at different times, then
one would expect that the innermost planets would have formed be-
fore their further-out counterparts and hence begun migrating first.
This sort of sequential migration could vastly alter the final spacing
of the planets, and therefore the landscape of resonances seen in
Fig. 4. Allowing for different formation times and periods of slower
migration with lower planetary masses may alleviate some of the
difficulties with spacing the planets in our models. Furthermore, we
have seen in our results for Kepler-11 that the order of planets in such
systems is not necessarily fixed, and allowing the planets to begin
in different orders may alter the preferred region of parameter space
or the resulting distributions of period ratios and semimajor axes.

4.3.1 Stopping

The largest simplification in the calculations presented here is that
planet migration is halted arbitrarily. In reality it is not clear how
Type I migration comes to an end, or indeed why it should end so
much closer to the host star for these planets than in other planetary
systems. There are, however, two mechanisms that are commonly
suggested to halt Type I migration, and the large range of possible
migration time-scales allowed in our models suggests that either of
them may be viable.

The first of these mechanisms is disc clearing (see e.g. Alexander
et al. 2013, and references therein). Protoplanetary disc dispersal
is driven by processes (disc accretion and mass-loss due to winds)
which are largely independent of planet formation, and removal of
the disc gas inevitably halts disc-driven planet migration. The role of
disc clearing in halting Type II migration has been studied in detail
by various different authors (e.g. Armitage et al. 2002; Alexander &
Pascucci 2012), but the implications for the Type I regime are largely
unexplored. Typical protoplanetary disc lifetimes are 1–10 Myr, but
final disc clearing occurs rather more rapidly (in ∼105 yr). Once disc

clearing begins, material at sub-au radii is simply accreted on to the
star, resulting in an exponential decline in the disc surface density
(on time-scales ≈105 yr) which simply ‘strands’ migrating planets
at their current positions. This is therefore a plausible mechanism
for halting relatively slow Type I migration (i.e. τ � 104–105 yr),
but is difficult to reconcile with shorter migration time-scales. In
addition, disc dispersal at sub-au radii is essentially scale-free, so (to
first order) we do not expect disc clearing to alter the architectures
of compact planetary systems dramatically.

The alternative to disc clearing is the presence of ‘traps’ in the
disc: sharp radial changes in the disc structure which result in loca-
tions at which an embedded planet experiences no net torque. Such
traps may occur at the edges of a dead zone in an partially ionized
disc (e.g. Gammie 1996), where the inner disc is truncated by the
stellar magnetic field (typically at a few stellar radii; e.g. Hartmann,
Hewett & Calvet 1994; Bouvier et al. 2007) or at the dust subli-
mation radius (which occurs at r ≈ 0.2 au; e.g. Eisner et al. 2005).
This mechanism is more plausible for the shorter migration time-
scales that we consider (τ � 104 yr), when the migration phase is
less likely to overlap with the end of the disc lifetime. Moreover, as
traps occur at specific locations in the disc, they are likely to alter the
architectures of migrating planetary systems significantly. Masset
et al. (2006) show via hydrodynamical simulations that this mech-
anism is effective for planets in the super-Earth to sub-Neptune
regime out to 5 au in an MMSN-style disc. The aforementioned
migration simulations by Terquem & Papaloizou (2007) invoked
magnetospheric truncation of the disc as a method of halting mi-
gration. Ida & Lin (2010) conduct population synthesis models of
super-Earth systems and find that a magnetospheric cavity in the
disc can halt the migration of planetary embryos as they approach
the disc edge at around 0.1 au, leading to multiple super-Earths
in short-period orbits. Planet–planet interactions may then break
any resonances that have formed. This magnetospheric truncation
trap has the advantage of stopping the innermost planet in each
system approximately at their observed locations, but it is not clear
why only some systems contain such short-period planets. Alternate
traps further out in the disc and their evolution with time have been
considered in some detail by Hasegawa & Pudritz (2011), showing
that different traps move in distinct fashions as the disc evolves.
Once a planet is caught in one of these traps, it moves in lock-step
with the trap as the disc evolves. This typically occurs on a time-
scale much longer time-scale than that of Type I migration, and
could allow the planets to survive in the disc until the end of its life-
time (e.g. Lyra, Paardekooper & Mac Low 2010; Bitsch, Boley &
Kley 2013b). As mentioned earlier, the larger planets in our simula-
tions may also experience periods of outward migration, depending
on their masses and locations at various points during the disc’s
evolution. Cossou et al. (2014) show that embryos that are large
enough to end up in these zones of outward migration generally end
up further out as the cores of giant planets, which suggests that the
planets in the systems we consider here spent the vast majority of
their lifetimes migrating inwards. Overall it is clear that halting the
migration of super-Earths and their progenitors is indeed possible,
but further work is required to understand these processes in detail.

4.3.2 Tides

The proximity of the planets in our models to their stellar hosts
suggests that tidal interactions could be a significant contributor to
their long-term evolution. Tides cannot only circularize planetary
orbits, but also shrink them (e.g. Ogilvie 2014). As a result, it may
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not be necessary for the innermost planet in each of these systems
to have reached its observed position as a result of disc-driven mi-
gration. Instead, the planets may have migrated part-way towards
their present positions in a disc, with the rest of the migration being
a result of tidal dissipation on Gyr time-scales (Hansen & Murray
2014). Tidal forces would damp eccentricity in this long phase of
evolution, which could in turn affect the results of our stability anal-
ysis. As mentioned above, many studies have suggested that tidal
forces may also play a role in shaping the distributions of reso-
nances in exoplanetary systems. However, given the uncertainties
in the composition of these planets, it is difficult to conduct a more
comprehensive study of tidal effects on them at this time.

5 SU M M A RY

We have performed N-body simulations of the formation of the
tightly packed planetary systems Kepler-11, Kepler-32, and Kepler-
80, using parametrized forces to investigate the feasibility of assem-
bling these systems through traditional, disc-driven migration. We
find that forming this class of systems via this method is possi-
ble under the right circumstances for realistic disc parameters. Our
models generally favour strong eccentricity damping and modest
levels of disc turbulence, but place no strong constraints on the
migration time-scales. In general, we overpredict the incidence of
mean-motion resonances, but the significance of this discrepancy
is not clear. We find that disc turbulence cannot explain the low
incidence of resonances in compact systems, however, since in-
creased levels of turbulence result in catastrophic disturbances to
the systems. Further work is required to understand the paucity of
resonances in these systems, and also to investigate the impact of
more realistic formation and migration models.
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A P P E N D I X A : DA M P I N G F O R C E S

We implement the damping of semimajor axis and eccentricity via
velocity-dependent forces which, when averaged over undamped
Kepler orbits, effectuate

ȧ = −a/τa and ė = −e/τe. (A1)

While there are many different possible functional forms for such
forces, a simple choice is

r̈ = − ṙ
2

1

τa

+ 2

3

(μ

h
ĥ ∧ r̂ − ṙ

) 1

τe

. (A2)

To integrate these forces along with gravity, we extend the kick-
drift-kick leapfrog integrator. The latter can be expressed as

K

(
�t

2

)
D (�t) K

(
�t

2

)
, (A3)

where �t is the time step, K the kick operator (which evolves the
particles exactly under the gravitational forces for ṙ = 0), and D the
drift operator (which evolves the particles exactly for r̈ = 0). We
implement the damping by extending the leapfrog whilst keeping
its time symmetry, hence preserving its second-order accuracy and
long-term stability. To this end, we introduce a new operator E(�t)
which solves equation (A2) exactly for ṙ = 0 and write the new
integrator as

E

(
�t

2

)
K

(
�t

2

)
D (�t) K

(
�t

2

)
E

(
�t

2

)
. (A4)

In terms of the radial and azimuthal velocities equation (A2) reads

v̇r = −
(

1

2τa

+ 2

3τe

)
vr (A5)

vφ v̇φ =
(

1

2τa

+ 2

3τe

) [
v2

e − v2
φ

]
, (A6)

where

v2
e = μ

r

(
1 + 3τe

4τa

)−1

, (A7)

with solution (implementing operator E)

vr (t + �t) = vr (t) exp

(
− �t

2τa

− 2�t

3τe

)
(A8)

v2
φ(t + �t) = v2

e + (
v2

φ(t) − v2
e

)
exp

(
−�t

τa

− 4�t

3τe

)
. (A9)

The resulting damped orbits actually deviate slightly from the ideal
(A1), by an amountO(Torbit/�t). However, these deviations are – to
some degree – physically necessary. For example, semimajor axis
damping implies some radial motion and hence eccentricity, even
if the orbit was initially circular. In this respect the method differs
from that of Lee & Peale (2002), which simply changes a and e
independently, potentially allowing unphysical situations such as
a shrinking orbit with e = 0. We also note that this method can
provide considerable efficiency improvements compared to alterna-
tives since the orbital elements do not need to be calculated at each
time-step.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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