DNA Diversity and Meiotic Crossover Distribution in the Xp/Yp Pseudoautosomal Region

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

by Michael Timothy Slingsby
Department of Genetics
University of Leicester
November 2003

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U179214
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Contents

Abstract vii
Acknowledgements viii
Abbreviations ix
Chapter 1 Introduction
1.1 Meiotic Recombination 1
1.1.1 The Prominent Features of Meiotic Recombination 2
1.1.1.a The Synaptonemal Complex and Cohesin 5
1.1.1.b: Chiasmata 7
1.1.1.c: Recombination Nodules 8
1.1.1.d: Premeiotic Pairing and Homologue Recognition 9
1.1.2: Models for the Mechanisms of Recombination 11
1.1.2.a: The Double Strand Break Repair Model 11
1.1.2.b: The Synthesis-Dependent Strand Annealing Model 17
1.1.2.c: Crossover and Gene Conversion During Meiotic Recombination 17
1.1.3: Distribution and Regulation of Meiotic Recombination Events 20
1.1.3.a: Meiotic Recombination Hotspots in Yeast 21
1.1.3.b: Global Regulation of Meiotic Recombination 24
1.2: Human Meiotic Recombination 28
1.2.1: Pedigree Analysis 28
1.2.2: Cytological Analysis 29
1.2.3: Single Sperm Typing 30
1.2.4: Linkage Disequilibrium Studies 30
1.2.4.a: Haplotype Blocks 31
1.2.5: High Resolution Analysis of Meiotic Recombination 32
1.2.5.a: The MS32 Hotspot 34
1.2.5.b: Recombination within the MHC class II region 36
1.2.5.c: Distribution of Human Meiotic Recombination Hotspots 36
1.2.5.d: Properties of Human Meiotic Recombination Hotspots 38
1.2.6: Mechanisms of Human Meiotic Recombination 39
1.3: The Pseudoautosomal Regions 40
1.3.1: A Brief Overview of PAR2 40
1.3.2: PAR1 40
1.3.2.a: The Structure of PAR 1 40
1.3.2.b: PAR1 Meiotic Recombination 43
1.3.2.c: Targeted High Resolution Analysis of Recombination in PAR1 44
1.4: Overview of this Thesis 46
1.4.1: Genomic Sequence in the PGPL Region 46
1.4.2: DNA Diversity and Recombination in the PGPL Region 47

Chapter 2 Materials and Methods

2.1: Materials 48
2.2: Methods 51
2.2.1: Selection and growth of bacterial cultures 51
2.2.2: Agarose gel electrophoresis 51
2.2.3: Methods of DNA preparation 52
2.2.4: Methods of DNA purification 54
2.2.5: DNA transfer to membrane 54
2.2.6: Hybridisation 55
2.2.7: Enzymatic manipulation of DNA 57
2.2.8: DNA amplification 57
2.2.9: Preparation of shotgun library 60
2.2.10: Sequencing 62
Chapter 3 Sequencing the PGPL Region
3.1: Introduction 75
3.1.1: Partial Characterisation of the $\mathrm{Xp} / \mathrm{Yp}$ Telomere- $P G P L$ Interval 75
3.1.1.a: Structures Adjacent to the PAR1 Telomere 75
3.1.1.b: Tandem Repeats in the Region Covered by 29C1, 3F3 and N043 77
3.1.1.c: Subtelomeric Interspersed Repeats 78
3.1.1.d: The PGPL Gene 79
3.2: Results 81
3.2.1: Assay for Insert Presence Within the Cosmids 81
3.2.2: Assays to Confirm Presence of PGPL within N0434 81
3.2.3: Restriction Enzyme Digest Assay of N0434 Sub-clones 83
3.2.4: Preparation of N0434.1 Shotgun Library 83
3.2.5: Sequencing of N0434.1 84
3.2.6: Identification of the $P G P L$ cDNA Sequences Within N0434.1 89
3.2.7: Orientation of N0434.1 Within PAR1 and Overlap with 3F3 89
3.2.8: In silico analysis of the N0434.1 sequence 91
3.3: Discussion 97
3.3.1: GC content of the N0434.1 Interval 97
3.3.2: Interspersed Repetitive Elements Within the N0434.1 Interval 97
3.3.3: Genes in the N0434.1 Interval 98
3.3.4: Overlap Between the N0434 and 3F3 Cosmids 99
3.3.5: Novel Tandem Repeats in the N0434.1 Interval 99
3.4: Concluding Remarks 100
Chapter 4 Extending and Characterising the Known Sequence in the PAR1 Telomere-PGPL Interval
4.1: Introduction 101
4.1.1: A Brief Reminder of the Properties of the 3F3 cosmid 101
4.2: Results 103
4.2.1: PCR Assay to Confirm Presence of Cosmid 3F3 DNA 103
4.2.2: Restriction Enzyme Digest Assay of 3F3 Sub-clones 103
4.2.3: Preparation of the 3F3.1 Shotgun Library. 105
4.2.4: Sequencing of 3F3.1 106
4.2.5: Distal PAR1 Sequences Produced at the Sanger Centre 110
4.2.5.a: The 3F3 Region 110
4.2.5.b: The 29C1 Region 115
4.2.5.c: Novel Sequence Proximal to N0434.1 119
4.3: Discussion 123
4.3.1: Sequencing of $3 F 3.1$ 123
4.3.2: Physical Map of a 100 kb Interval at the Distal End of PAR1 123
4.4: Concluding Remarks 129
Chapter 5 Analysis of Genes in the N0434.1 Interval
5.1: Introduction 130
5.1.1: Known Genes in PAR1 130
5.1.2: A Novel PAR1 Gene 135
5.2: Results 140
5.2.1: Genomic Organisation of the Genes in the N0434.1 Interval 140
5.2.2: Expression of PLCXL1 145
5.2.3: Conservation of PLCXL1 147
5.3: Discussion 148
5.3.1: PGPL 148
5.3.2: PLCXL1 148
5.4: Concluding Remarks 152

Chapter 6 DNA Diversity in the N0434.1 Interval

6.1: Introduction 153
6.1.1: Measures of Genetic Variation 153
6.1.2: Human Minisatellites 154
6.1.3: SNPs 156
6.2: Results 159
6.2.1: Variability of Tandem Repeat Arrays in the N0434.1 Interval 159
6.2.2: Identification and Analysis of SNPs in the N0434.1 Interval 167
6.2.3: Nucleotide Diversity Across the N0434.1 Interval 169
6.3: Discussion 173
6.3.1: PGMS1 and PGMS2 Variability 173
6.3.2: N0434.1 Pseudoautosomal STIR Array 174
6.3.3: Nucleotide Variability in the N0434.1 Interval 176
6.4: Concluding Remarks 177
Chapter 7 Linkage Disequilibrium in the N0434.1 Interval
7.1: Introduction 178
7.1.1: Measuring Linkage Disequilibrium 178
7.2: Results 180
7.2.1: Genotyping 180
7.2.2: Linkage Disequilibrium in the N0434.1 Interval 184
7.3: Discussion 191
7.3.1: Minor Allele Frequency Distribution of SNPs in N0434.1 191
7.3.2: Putative Boundary of Meiotic Recombination in PAR1 191
7.3.3: Gradual Decline of LD within the N0434.1 Interval 192
7.4: Concluding Remarks 193

Chapter 8 Sperm Crossover Analysis in the N0434.1 Interval

8.1: Introduction 194
8.1.1: Crossover Detection Strategy. 194
8.2: Results 195
8.2.1: Attempts to Detect Crossovers in a 10 kb PGMS2 Region 195
8.2.2: Crossover Analysis within a Truncated PGMS2 Region 199
8.3: Discussion 210
8.3.1: Crossover Assay Failure Within 10 kb Region Around PGMS2 210
8.3.2: Successful Detection of Crossovers 210
8.4: Concluding Remarks 215
Chapter 9 Discussion
9.1: Introduction 216
9.2: PGPL and PLCXL1 216
9.3: Tandem Repeats 218
9.4: High Resolution Analysis of Recombination 219
9.4.1: Evidence Against Ectopic Recombination 223
9.5: Final Comments 225
Appendix 1 Sequence of Cosmid N0434.1 227
References 235

Abstract

High resolution analyses indicate that meiotic crossovers in human autosomes tend to cluster into $1-2 \mathrm{~kb}$ hotspots separated by blocks of high LD tens to hundreds of kilobases long. In contrast, low resolution data suggest only modest regional variation in recombination efficiency across the $2.6 \mathrm{Mb} \mathrm{Xp} / \mathrm{Yp}$ pseudoautosomal region (PAR1), a male-specific recombination hot domain with a recombination rate about twenty times higher than the genome average.

Recent data suggest a more complex picture of PAR1 recombination. Around the SHOX gene, 500 kb from the telomere, LD decays extremely rapidly with physical distance, but nearly all crossovers cluster into a highly localised hotspot about 2 kb wide. In contrast, SNPs in a 1.5 kb region immediately adjacent to the PAR1 telomere are in intense LD, implying that this region is recombinationally inert and that male crossover activity terminates at a currently unidentified boundary in the distal region of PAR1.

To further investigate PAR1 recombination, the $P G P L$ gene, 80 kb from the telomere, was targeted for analysis. This region had to be sequenced prior to SNP discovery and recombination analysis, revealing a novel gene that is potentially the most telomeric gene in PAR1.

SNP analysis of a 33 kb PGPL interval showed that this region is in free association with the telomere, suggesting recombinational activity in the intervening region, which this study proved to be rich in tandem repeats. Within the PGPL region, LD decays slowly with physical distance at a rate consistent with randomly-distributed crossovers occurring at close to the genome average rate. However, sperm crossover analysis revealed it to be the most recombinationally active region of DNA yet identified. Moreover, the novel distribution of crossovers in the region, suggests that there is not a unified set of hotspot-based rules that govern meiotic recombination in the human genome.

Acknowledgements

First and foremost I would like to thank Alec. It has been a genuine privilege to work with him and I will always be grateful for his excellent insight and for the time he (somehow!) always managed to make for me.

Thanks to ALL those who have made life in the lab so much fun, but particularly big hugs and kisses or manly handshakes to the following: Maria, whose existence I have been aware of for some time now...; John Yauk (what? WHAT? What's all this shouting? We'll have no trouble here...); Carole Stead, "I'm gonna live forever...;" Hilda (do you want any food with your salt?); Yuri (who's a scientist and nobody loves him, but I wash my hands, it's all $\mathrm{b}^{* * * * * * *}$, so will you kindly please....?); Liisa, whose performance in The Loaded Dog will be talked about for years to come; Mark - thanks for all the terrible cocktails and, no matter what the others say, you are not a fat, gay, minger with a bony back; Kim -you've just nearly fallen off your chair as I write this, so I'll mention that here for posterity, Celia, thank you for all your help, you have been superb; Rita - we got there in the end! Foxy, tea and cake are two of life's important treasures - thank you for keeping me stocked up, Ila (who won't be going on holiday this year), Richard (a regular contender for geek of the week but an awful lot of fun too - how did you get in that dress?) and I dare not try and get away without mentioning Zoe - huge thanks to you for helping me remind everyone around Leicester that there is more than one kind of rugby! You have all been fantastic and I am lucky to know each one of you.

To all those who manage to get on the 5 -a-side pitch, particularly Alistair (are you SURE it was just whisky?), Colin (who has to run around in a shower to get wet), Marcus (I didn't know so many four-letter words could be put to so many uses before I met you), Ben (sorry I didn't get you an Ah-Ha ticket) and Gianni (I assume that you won't be coming to training on Tuesday....).

Thanks to all of the Accies - Sunday football's finest bunch. Particularly thanks to Jit (is it your turn to buy lunch again?), and to Amin (come to the good side of the force!). You have both become really good mates and I thank you for all your generosity and friendship over the past four years.

To Mum and Dad. Thanks for all of the opportunities you have given me, and all of the help you are always willing to give - even though I am often too proud to take it. You are by far and away the best parents anyone could wish for. To Maff and Diana, I am lucky to be your older brother and very proud of all that you do. Thank you for always being there.

Most of all, thanks to Nina. I know that it hasn't been easy for you, and goodness knows how you did it, but you have been my rock Neen. It's difficult to express just how much your support and encouragement has meant to me, but I cannot imagine how I would have got through this without you. So, thank you from the bottom of my heart. This thesis is for you.

Abbreviations

ASO allele-specific oligonucleotide
AS-PCR allele-specific PCR
CEPH Centre d'Etude du Polymorphisme Humain
dNTP deoxynucleotide triphosphate
DSB double-strand break
(d)HJ (double) Holliday Junction

LD linkage disequilibrium
LINE long interspersed nuclear element
$\mathrm{mAF} \quad$ minor allele frequency
$\mathrm{Mb}, \mathrm{kb}, \mathrm{bp} \quad$ mega-, kilo- base pair
MHC major histocompatibility complex
MVR-PCR minisatellite variant repeat mapping by PCR
$\mu \mathrm{g} \quad$ micro-gram
$\mu \mathrm{l}, \mathrm{ml}, \mathrm{l} \quad$ micro-, milli- litre
$\mu \mathrm{M}, \mathrm{mM}, \mathrm{M}$ micro-, milli- molar
PAR1 pseudoautosomal region at the ends of $\mathrm{Xp} / \mathrm{Yp}$
PAR2 pseudoautosomal region at the ends of $\mathrm{Xq} / \mathrm{Yq}$
PCR polymerase chain reaction
PI-PLC phosphatidylinositol-specific phospholipase C
RN recombination nodule
SC : synaptonemal complex
SDSA synthesis-dependent strand annealing model
SNP single nucleotide polymorphism
ssDNA single stranded DNA
STIR subtelomeric interspersed repeat
TF transcription factor
UTR untranslated region

Chapter 1

Introduction

Ultimately an individual is genetically unique as a consequence of three processes that operate on germline DNA. The first of these stems from Mendel's law of independent assortment and reflects the fact that each chromosome of any pair is free to combine with any chromosome from each of the remaining pairs during meiosis. Hence, as the human genome consists of 23 pairs of chromosomes, their separate distribution alone ensures that there are 2^{23} possible chromosomal combinations for the formation of each gamete. The second process, mutation, creates new variations in DNA that can be passed on to future generations. Most mutations are neutral in that they have no obvious effect on the individual but occasionally mutations are beneficial and lead to a selectively favoured characteristic or detrimental and lead to inherited disease. The third process is meiotic recombination, which increases diversity by shuffling pre-existing variation between chromosome pairs from one generation to the next. Obviously these processes must be strictly controlled if they are not to cause any highly deleterious effects. However, the level of control must be balanced against allowing a species to adapt and proliferate through the manipulation of new variants by population processes such as selection, migration and genetic drift. Throughout evolutionary time recombination ensures that chromosomes are merely temporary associations of particular alleles and thereby provides the population processes with new assortments of variants to be tested by selection. In addition, recombination is essential in the short-term as it is required for the proper segregation of homologous chromosomes during meiosis. Hence, recombination is a process that is vital to both the well being of an individual organism and to the survival of a species.

1.1: Meiotic Recombination

Essentially there are two kinds of meiotic recombination events; crossovers, which involve the reciprocal exchange of information between homologous chromosomes, and gene conversions, which are strictly non-reciprocal. Regions of both high and low meiotic recombination have been observed in several organisms (Lichten and Goldman, 1995; Wahls, 1998), so it is clear that there is no simple linear relationship between genetic and physical map distances. Understanding the rules that govern the distribution of recombination events will rely on mapping crossovers and gene conversions along the chromosomes, the
identification of the processes operating during recombination and an understanding of how the patterns and processes of recombination both influence sequence and haplotype diversity and ensure proper chromosome segregation during meiosis. This understanding will be of great value to those using genetic association analysis to identify susceptibility loci for complex disease (Jorde, 2000) and it will aid the study of aberrant recombination events such as unequal crossover, which are a major source of genome rearrangements, generating pathological variants in the human genome by exchanges in directly repeated genes (e.g. $\alpha-$ thalassaemia) (Higgs et al., 1989) or between distal dispersed repeats (e.g. Charcot-Marie Tooth 1A, CMT1A) (Pentao et al., 1992). It is further relevant to understanding the origins of human populations and the dynamics of human DNA evolution as the distribution of exchanges influences the probability of assembling new configurations of physically linked genes (Pääbo, 2003). Finally, an understanding of meiotic recombination could be relevant to studies of somatic mutation, particularly in cancer genetics (Feunteun, 1998) and it is likely that an understanding of areas of high and low recombination will be relevant to comprehending other DNA-related processes affected by chromosome context such as transcription and replication (Petes, 2001).

Currently, meiotic recombination is best understood in yeast as these lower eukaryotes allow the recovery and analysis of all of the products of individual meiotic recombination events. Consequently, the bulk of this first chapter will concentrate on what has been learned from the budding yeast Saccharomyces cerevisiae (S.cerevisiae). I will then discuss the types of analysis used to characterise human meiotic recombination and consider their relevance to this thesis.

1.1.1: The Prominent Features of Meiotic Recombination

A high level of recombination is usually a prominent feature of meiosis. Consequently, a review of meiotic recombination would not be complete without an overview of the early stages of the meiotic process itself. Meiosis is a specialised form of cell division that reduces chromosome number through a single round of DNA replication followed by two rounds of chromosome segregation (figure 1.1). It is through meiosis that haploid gametes are produced from diploid parental cells and it is during the lengthy prophase of meiosis I that doublestrand breaks (DSBs) are formed to initiate recombination. The prophase of meiosis I can be divided into several stages based on chromosome morphology (table 1.1).

Figure 1.1: Segregation of homologous chromosomes and sister chromatids during meiosis. The process is represented here by a single pair of homologous chromosomes, one of which is orange and the other blue. The simple exchange shown in this diagram has involved a reciprocal exchange between nonsister chromatids and so is a crossover.

Table 1.1. The five stages of meiosis I prophase

This is a generalisation of events and it should be noted that the precise sequence of events varies between organisms. The table is derived from Roeder (1997).

Stage of MI prophase	Chromosome morphology	Synaptonemal Complex (SC) formation	Recombination nodules	Chiasmata	Double strand breaks
Leptotene	Chromosomes are generally unpaired but telomeres begin to cluster. Sister chromatids are tightly bound	Axial elements begin to develop	early nodules	absent	appear
Zygotene	Homologous chromosomes are paired and telomeres are tightly clustered	Initiation of synapsis	early nodules	absent	disappear
Pachytene	Telomeres disperse	Chromosomes fully synapsed	late nodules	absent	
Diplotene	Chromosomes condense as homologues separate but remain held together by chiasmata Further compaction of chromosomes	SC disassembled	absent	present	
Diakinesis	absent	present			

1.1.1.a: The Synaptonemal Complex and Cohesin

The prominent structural change during the prophase of meiosis I is the formation of the synaptonemal complex (SC) (for review see Roeder, 1997; Paques and Haber, 1999; Zickler and Kleckner, 1999 and references therein). It is strictly meiotic and mediates the intimate connection of homologous chromosomes along their lengths. Its ribbon-like tripartite structure is built sequentially between homologues following premeiotic replication (figure 1.2). Assembly begins during the leptotene stage with the organisation of the two sister chromatids of each chromosome along a common proteinaceous core called the axial element. Synapsis between homologous chromosomes begins at zygotene, during which the axial elements become the lateral elements of the SC and are connected by transverse filaments that extend between them. Upon completion of synapsis in pachytene there is a central element within the central region that lies parallel to and equidistant between the lateral elements. The central region contains very little DNA (Vazquez Nin et al., 1993). The SC is dissociated during diplotene in order to allow diakinesis.

A different protein structure, the cohesin complex, is a major effector of sister chromatid cohesion in mitotic cells (Nasmyth et al., 2000). Recently, cohesin was shown to be required for chromosome pairing and segregation and for recombination in yeast meiotic cells (Watanabe and Nurse, 1999; Klein et al., 1999). Cohesion must be maintained in coordination with the deconstruction of the SC in order to allow the correct segregation of homologous chromosomes (Lee and Orr-Weaver, 2001).

1.1.1.a.i: Synaptonemal Complex and Cohesin Proteins

A number of components of the lateral SC elements have been identified. One of these is the mammalian Corl/SCP3, which is a primary determinant of axial element assembly and is required for the assembly of a second axial element protein, SCP2, which shapes the in vivo structure of the axial elements (Pelttari et al., 2001). In S. cerevisiae the Red1 and Hop1 proteins are part of the lateral elements of the SC (Hollingsworth et al., 1990; Smith and Roeder, 1997). Redlp localises discontinuously along the lateral elements and has been proposed to act as a 'catalyst' of lateral element formation - promoting the assembly of other proteins responsible for building the elements themselves (Smith and Roeder, 1997). For example, the product of the HOP1 gene requires Red1p for its assembly onto chromosomes (Smith and Roeder, 1997). However, whether Hoplp then contributes to lateral element assembly or not is unclear, as experiments have shown that, although both Red1p and Hop1p are required for synapsis, Hoplp is not required for axial element formation (Hollingsworth

Figure 1.2: The Synaptonemal Complex (SC)
and Byers, 1989; Roeder, 1997). In turn, the S. cerevisiae MEK1 gene encodes a kinase that is needed for Red1p localisation and hence correct SC assembly.

The S. cerevisiae protein Zip 1 is a component of the central element and appears to stitch the lateral elements together along the whole central element (Sym et al., 1993; Sym and Roeder, 1995). Zip2p may have a recruitment role in the central element similar to the lateral element function proposed for Redlp as it is required for the initiation of chromosome synapsis, has a punctate distribution along the SC and is required for normal Zip1p distribution (Chua and Roeder, 1998).

A number of cohesin proteins have also been identified. In S. cerevisiae these include Smc1, Smc3, Scc3/Irr1, Scc1/Mcd1/Rad21 (Guacci et al., 1997; Michaelis et al., 1997) and Rec8, which is meiosis-specific and acts in place of Rad21 (Klein et al., 1999). These proteins have been highly conserved through evolution, which has enabled identification of their homologues in other organisms (Lee and Orr-Weaver, 2001).

1.1.1.a.ii: Synaptonemal Complex / Cohesin Interaction

There is considerable evidence that the SC and cohesin act together to ensure proper meiotic chromosome segregation. For example, rec8 mutants of S. cerevisiae do not contain intact SCs and Red1p (part of the SC lateral elements, see above) cannot be detected (Klein et al., 1999). In addition, work with mammalian cells has shown that cohesin proteins colocalise with the SC (Eijpe et al., 2000). It has been suggested that the proper formation of axial elements depends on cohesin but that the organisation of cohesin complexes in mammalian meiotic cells is not affected by the SC (Lee and Orr-Weaver, 2000; Pelttari et al., 2001). However, it has been suggested that a mature SC is required for proper sister chromatid cohesion in maize (Maguire et al., 1991). This further suggests that the same meiotic structures and processes have variable importance in different organisms.

1.1.1.b: Chiasmata

Before detailed molecular analysis was possible, recombination was detected in many species by studies of chiasmata, which are the cytologically visible structures of meiosis I that correspond to a site of crossover between two non-sister chromatids. Chiasmata have been observed in many higher eukaryotes (e.g. Hultén, 1974; Herickhoff et al., 1993, LatosBielenska and Vogel, 1990, Morton et al., 1982; Nilsson and Pelger, 1991) and are clearly important structures; failure of homologous chromosomes to undergo at least one crossover results in elevated rates of nondisjunction and unviable gametes. As a result, each
chromosome pair in meiotic cells generally contains at least one obligate chiasma (Lawrie et al., 1995). Other than covalent bonds between the non-sister chromatids there is nothing particularly stable about the chiasma structure. Most evidence suggests that distal sister chromatid cohesion is the additional factor that locks chiasmata into place. This can be extrapolated to predict that terminal chiasmata will be relatively unstable. Therefore, studies that have shown that crossovers near the ends of chromosomes do not ensure proper meiosis I disjunction as effectively as exchanges close to the centromere provide very strong support for this model (Lamb et al., 1996; Ross et al., 1996). However, in male meiosis of both mice and humans, chiasmata show strong telomeric or subtelomeric localisation (e.g. Laurie and Hultén, 1985; reviewed in Lichten and Goldman, 1995; below, section 1.2.2). Furthermore, chiasmata are obliged to develop in the telomere-adjacent pseudoautosomal regions of the X and Y chromosomes during male meiosis (Burgoyne, 1982), suggesting that there is at least one other system of chiasma stabilisation.

Assuming that cohesion is required for chiasma stability, chromosomes that have undergone a reciprocal exchange would not be expected to disjoin properly if they were subjected to mutations that destabilise cohesin. In S. cerevisiae mutations to the RED1 and MEK1 genes, which are important for SC assembly and strongly suggested to be required for cohesion, result in premature separation of sister chromatids and the consequent random segregation of chromosomes at both meiotic divisions (Rockmill and Roeder, 1988, Bailis and Roeder, 1998). The same result is seen when maize, which needs a mature SC for correct sister chromatid cohesion, is subjected to mutations in which synapsis fails (Maguire et al., 1991). The strongest evidence that cohesion is vital to chiasma stability is derived from experiments in which the ORD gene of Drosophila was mutated; ord mutations lead to the visible separation of sister chromatids during prophase I and result in nondisjunction of exchange chromosomes (Miyazaki and Orr-Weaver, 1992; Bickel et al., 1997). The overall suggestion is that a stable chiasma, and hence crossover, is the feature of recombination required for proper chromosome segregation at meiosis I. The stability of chiasmata is reliant upon correct sister chromatid cohesion, which in turn is dependent on the SC and cohesin.

1.1.1.c: Recombination Nodules

Recombination nodules (RN) are multicomponent structures that are found in association with SCs from leptotene through to pachytene (Carpenter, 1975; for review see Zickler and Kleckner, 1999). They can be visualised through electron microscopy and have been identified in a number of organisms. Two classes of RN have been defined, based on their time of appearance, size, shape, relative number and distribution.

1.1.1.c.i: Early Nodules

Early nodules are present during leptotene or zygotene and it has been suggested that they have a significant role in deciding where recombination is or is not to occur (Anderson et al, 2001). Support for the hypothesis that early nodules are initiators of recombination is derived from the discovery that, in the lily, early nodules contain the Dmc1 and Rad51 proteins (Anderson et al., 1997). Both are homologues of RecA, a protein that promotes strand exchange and is required for nearly all homologous recombination events in E. coli (Kowalczykowski, 2000). However, a study of early nodule distribution in six different plant species has suggested a more complex model for early nodule activity; Anderson et al. (2001) proposed that early nodule distribution was random in each species tested but that a minority ($10-40 \%$) of early nodules attached to axial elements prior to synapsis, whilst the majority $(60-90 \%)$ attached at synaptic forks (the interface between the formation of the tripartite SC, as seen in figure 1.2, and two separated axial elements). In turn this suggests one of two possibilities. First, early nodules can be classified into two types, those that initially associate with axial elements and function in the initiation of synapsis and those that assemble at synaptic forks and might function in recombination. Alternatively early nodules may mature over time such that the youngest nodules are found at synaptic forks and the more mature nodules lie closer to the synaptic initiation sites.

1.1.1.c.ii: Late Nodules

Certain lines of evidence suggest that late nodules are derived from a subset of early nodules (Sherman et al., 1992; Plug et al., 1998; Zickler and Kleckner, 1999; Agarwal and Roeder, 2000). Late nodules are present during pachytene, are structurally distinct and 2 to 20 times less numerous than early nodules (Zickler and Kleckner 1999). The distribution pattern of late nodules correlates very strongly with the distribution and number of chiasmata, which has led to the proposal that late nodules are multi-enzyme complexes that resolve recombination intermediates as crossovers (Carpenter, 1987, Zickler et al., 1992; Zickler and Kleckner, 1999; Allers and Lichten, 2001). Components of late nodules in S. cerevisiae include two homologues of the E. coli MutS mismatch repair protein, Msh4 and Msh5, and Mlh1, a homologue of MutL, a second E. coli mismatch repair protein (Ross-Macdonald and Roeder 1994; Hollingsworth et al., 1995; Hunter and Borts, 1997).

1.1.1.d: Premeiotic Pairing and Homologue Recognition

How homologous chromosomes find each other prior to recombination is still not very well understood. In many organisms there is evidence to suggest that homologue pairing (the detectable coming-together of homologues, as opposed to synapsis, which is the intimate
association of chromosomes) in nonmeiotic cells contributes to pairing in meiosis. For example, observations in yeast cells suggest that nuclear architecture contributes to the apparent premeiotic pairing of homologous chromosomes; Scherthan et al. (1994) demonstrated that different homologue pairs occupy separate nuclear territories of Schizosaccharomyces pombe (S. pombe) diploid cells and that centromeric regions show a high level of pairing. In vegetative cells of S. cerevisiae centromeres are tightly clustered together and telomeres are distributed elsewhere in the nucleus (J. Loidl, cited in Roeder, 1997). The studies of Weiner and Kleckner (1994) indicated that homologues are paired via multiple interstitial interactions before meiosis, which must limit searches for homology once a DSB has formed and so prevent an excessive number of ectopic recombination events.

In many organisms, such as mice, humans and maize, chromosomes are not paired prior to meiosis (Scherthan et al., 1996; Bass et al., 1997), which indicates that there must be mechanisms for homologue searching in the very early stages of meiosis. The products of RAD17, RAD24 and MEC1 are essential for the maintenance of cell cycle arrest in dmcl mutants (see 'the recombination checkpoint,' below) (Lydall et al., 1996) but also appear to function in the correct choice of recombination partner, as their mutants result in a redirection of interhomologue events into pathways that favour ectopic recombination (Grushcow et al., 1999). Perhaps this is because rad17, rad24 and mecl strains fail to check that recombination is complete and allow the premeiotic separation of homologous chromosomes, thereby increasing the probability of intersister and ectopic events. Alternatively, fully functional RAD17, RAD24 and MEC1 could ensure recombination by maintaining the SC, which, through linking homologues together, promotes allelic over ectopic partner choice. (Goldman and Lichten, cited as unpublished results in Grushcow et al., 1999). This latter mechanism is unlikely as RAD17, RAD24 and MEC1 are also required to arrest mitotic progression, and so they are likely to have an indirect role common to both meiosis and mitosis, rather than tethering recombination events to the meiosis-specific SC.

Interhomologue interactions must restrict ectopic recombination events to some degree during S. cerevisiae meiosis, as allelic recombination is reduced by at least 100 -fold between homoeologous chromosomes in hybrid S. cerevisiae-carlsbergensis strains, whilst ectopic recombination is increased. Experiments demonstrate that this is due to the diverged chromosomes not undergoing end-to-end alignment during MI prophase (Goldman and Lichten, 2000). Therefore, in normal S. cerevisiae meiosis, homologous pairing must serve to direct repair towards allelic sequences and thus limit a potential genome-wide homology search that could otherwise lead to deleterious rearrangements (Goldman and Lichten, 2000).

As a loss of cohesion leads to defects in recombination (Lee and Orr-Weaver, 2001) models have been proposed in which the drive for meiotic repair between homologous chromosomes is mediated by a link between cohesin and recombination proteins (Pelttari et al., 2001; van Heemst and Heyting, 2000), and not by the SC as suggested by Goldman and Lichten.

1.1.2: Models for the Mechanisms of Recombination

It is clear from the data presented above that meiotic recombination is not a simple, linear process and that continual interaction between components and systems within the meiotic recombination machinery is vital for the initiation of recombination, the physical interaction of non-sister chromatids and the conclusion of the process via the correct disjunction of chromosomes. A number of models have been proposed to explain how DNA recombination occurs and current thinking favours the two that are discussed at length below.

1.1.2.a: The Double Strand Break Repair Model

The event initiating most, if not all, meiotic recombination events in S. cerevisiae has been unambiguously identified as a double strand break (DSB) (Sun et al., 1989). Paradoxically DSBs are also DNA lesions that, unless repaired, will trigger a cell's DNA-damage response systems to arrest the cell cycle or to induce apoptosis. Observations in mitotic cells led to the proposal of the DSB repair model of meiotic recombination (figure 1.3) (Szostak et al., 1983; Sun et al., 1991), in which double-strand cleavage is followed by the 5^{\prime} to 3^{\prime} resection of the ends to generate overhanging 3^{\prime} single-stranded termini. The single-stranded DNA tails then invade an intact homologous duplex, and prime repair synthesis. The accompanying branch migration results in long stretches of heteroduplex DNA and two Holliday junctions. Resolving the Holliday junctions in the same or opposite direction will then result in gene conversion or reciprocal crossover (between markers that flank the region of strand exchange) respectively. If mismatches contained within heteroduplex DNA are not repaired during meiosis, postmeiotic segregation (PMS) of gene conversions will be observed.

1.1.1.a.i: Initiation

In S. cerevisiae, premeiotic DNA replication is necessary for the formation of DSBs (Borde et al., 2000; Smith et al., 2001). It has been suggested that sites for DSB formation are marked by the addition of cohesin proteins, such as Rec8, as the replication fork passes through each potential DSB site (Mizuno et al., 2001; Watanabe et al., 2001). Various groups have demonstrated that at least 11 genes are then essential for the DSB formation step. These are

Figure 1.3: The double-strand break repair model of meiotic recombination (Szostak et al., 1983; Sun et al., 1991).

Shown are two double-stranded non-sister chromatids (one blue and one orange). The other two chromatids (sisters to the pair shown here) are not included in the diagram. Gene products are indicated at specific steps where they have been demonstrated to be important for proper meiotic recombination (see text).
(a) Recombination is initiated by a DSB in one duplex. (b) Each side of the break is subjected to extensive 5^{\prime} to 3^{\prime} degradation, which leaves overhanging 3^{\prime} single-stranded ends. (c) One 3^{\prime} end invades the intact homologous duplex and displaces one of the strands to form a D-loop and heteroduplex DNA. (d) The 3^{\prime} end of the invading strand then acts as a primer for the initiation of new DNA synthesis, which enlarges the D-loop and leads to annealing between the D-loop and the homologous sequences of the second 3^{\prime} single-stranded end. Repair synthesis from the second 3^{\prime} end then takes place. (e) Repair synthesis and branch migration results in two Holliday junctions. (f) Independent resolution of the Holliday junctions by cutting either inner (open triangles) or outer (filled triangles) strands then leads to noncrossover or (g) crossover configurations. In the diagram the crossover molecule was produced by resolution of the left Holliday junction inner strands and the right Holliday junction outer strands.

Note that the site at which recombination initiates via DSB formation is the recipient of genetic information.

Figure 1.3: The double-strand break repair model of meiotic recombination.

SPO11, RAD50, XRS2, MER2, MRE2, MRE11, MEI4, REC102, REC103, REC104 and REC114 (reviewed in Paques and Haber, 1999; Keeney, 2001; Peciña et al., 2002). It also appears that the RED1, HOP1 and MEK1 genes (important for SC morphogenesis, see above) and MER1 (Engebrecht and Roeder, 1990; Engebrecht et al., 1990, Storlazzi et al., 1995) are important for full levels of DSB formation (Mao-Draayer et al., 1996; Xu et al., 1997). Spo11 protein is the enzyme responsible for meiotic DNA cleavage activity and was identified as such when it was found covalently bound to the 5^{\prime} ends of DSBs in mutants such as rad50S that are defective for normal 5^{\prime} to 3^{\prime} resection of DSB termini (Keeney et al., 1997). It is thought that the active form of Spo11p is multimeric, requires Mg^{2+} (Diaz et al., 2002) and cuts DNA in a topoisomerase-like transesterification reaction as it has homology to the small subunit of the type II topoisomerase of the archaebacterium Sulfobolus shibatae (Bergerat et al., 1997). It has been demonstrated that targeting of Spol1p to specific sites is sufficient to stimulate meiotic recombination (Pecina et al., 2002), suggesting that Spo11p itself, or its activity, triggers the assembly of the rest of the recombination machinery. Functional Spol1 homologues have been identified in many species including S. pombe (Lin and Smith, 1994), C. elegans (Dernburg et al., 1998), Drosophila (McKim and Hayashi-Hagihara, 1998), mice (Baudat et al, 2000), humans (Romanienko and Camerini-Otero, 1999) and even in plants (Grelon et al., 2001), demonstrating that the role of Spo11p in promoting the initiation of meiotic recombination is widely conserved. The activity of Spo11p does depend on the presence of the other genes listed above whose exact functions are unknown, though it has been discovered that MER1 and MRE2 regulate the splicing of MER2 mRNA (Engebrecht et al., 1990, Nakagawa and Ogawa, 1997).

1.1.2.a.ii: Resection

In their development of the original DSB repair model the Szostak group provided the first physical evidence that the derivatives of meiotic DSBs are 3' overhanging single stranded tails and demonstrated that, like DSBs, these overhanging tails are obligatory intermediates in meiotic recombination (Sun et al., 1991). Mutations of RAD50 and MRE11 cause DSB resection to fail, indicating that these genes have roles in both formation and processing of DSBs (Alani et al., 1992; Nairz and Klein, 1997). Like rad50S, a mutation of MRE11 causes Spo11p to remain associated with DSB ends (Tsubouchi and Ogawa, 1998). It is not then unreasonable to assume that Rad50p and Mre11p remove Spol1p from DSB ends in order to stimulate resection. XRS2 also has a probable role in resection (Paques and Haber, 1999), as does the meiosis-specific SAE2/COM1 (McKee and Kleckner, 1997; Prinz et al., 1997).

1.1.2.a.iii Single strand invasion

In a detailed analysis of the transition from DSBs to double Holliday junctions (dHJs), Hunter and Kleckner (2001) identified single-end invasions (SEIs) as the primary products of strand exchange between one DSB end and its homologue. Consequently, SEIs have an asymmetric structure, which supports the idea that the two 3 ' ends of a resected DSB interact with a homologous partner via temporally distinct mechanisms; i.e. the first interaction (SEI formation) is a strand invasion step and, whilst the second end may also interact via strand invasion, it is probable that enlargement of the initial D-loop, caused by invasion of the first end, permits interaction of the second end via annealing (figure 1.3). RAD51, RAD55, RAD57 and DMC1 are required for the strand invasion step in S. cerevisiae (Bishop et al., 1992; Shinohara et al, 1992; Schwacha and Kleckner, 1997). All are homologues of the bacterial RecA strand exchange enzyme but DMC1 is the only gene to encode a meiosisspecific product. It is thus not inconceivable that other genes involved in the mitotic repair of DSBs also function in the DSB repair method of meiotic recombination. These genes include RAD52 and RAD54. RAD51 is conserved from yeast to humans with very high sequence similarity (Shinohara and Ogawa, 1999), providing clear evidence that its role in meiotic recombination is also widely conserved. The clear importance of Dmc1p in meiotic strand exchange is demonstrated by $d m c l$ mutants, which arrest in prophase with hyper-resected, unrepaired DSBs (Bishop et al., 1992).

Biochemical evidence suggests that a Rad55/Rad57 heterodimer, in the presence of RPA (the yeast single stranded DNA (ssDNA) binding protein) stimulates the Rad51 enzyme to promote ATP-dependent strand invasion (Sung, 1994; Sung, 1997). The situation in vivo is likely to be more complex; if RPA is pre-incubated with ssDNA, it prevents the binding of Rad51p to DNA and so the in vitro strand exchange reaction is inhibited. This effect can be overcome by the addition of Rad52p (Benson et al., 1998; New et al., 1998; Shinohara and Ogawa, 1998), which interacts with a subunit of RPA (Shinohara et al., 1998). This suggests that RPA and Rad51p are ordinarily in competition to bind with the overhanging ssDNA and that Rad52p limits the binding action of RPA, thereby allowing Rad51p to promote strand invasion. However, if RPA is added after Rad51p has bound DNA, it stimulates the strand exchange reaction. Therefore RPA is believed to remove secondary structures of ssDNA and thereby allows Rad51p and DNA to form a nucleoprotein filament, which is an essential intermediate of the strand exchange step (Shinohara and Ogawa, 1999). The inhibitory action of RPA is also alleviated by the Rad55/Rad57 heterodimer (Sung and Robberson, 1995; Sugiyama et al., 1997). Rad52p is required for nearly all recombination events but Rad55p and Rad57p are sometimes dispensable (Paques and Haber, 1999). Therefore, Rad52p is
likely to be the catalytic subunit of the strand exchange reaction in S. cerevisiae and the role of the Rad55/Rad57 heterodimer may not be to stimulate the activity of Rad51p but rather to direct it to the ssDNA tails in a manner similar to that of the RecO and RecR proteins, which direct RecAp to ssDNA in bacteria (Umezu and Kolodner, 1994).

1.1.2.a.iv: Meiotic recombination partner choice

Assuming that the homologous pairing discussed above greatly reduces the probability of ectopic interactions, at the point of strand exchange there has to be a decision with regard to using a sister or non-sister chromatid as the template for repair of the DSB. In mitotic cells most DSBs are likely to occur during replication, which means that the most conservative choice for a repair template is the sister chromatid (Kadyk and Hartwell, 1992). During meiosis, if repair of DSBs was to occur between sister chromatids there would be no interhomologue crossing over, a feature of the process that is essential for proper chromosome segregation. Therefore, meiotic cells direct repair to ensure that most recombination events occur between allelic sequences of non-sister chromatids (Schwacha and Kleckner, 1997). There is considerable evidence that the meiosis-specific Dmc1p is heavily involved in this step, as are Rad54p and its homologue Tid1p/Rdh54p. The indications are that Dmc1p and Tid1p act together to direct repair towards non-sisters and that Rad51p and Rad54p normally mediate exchange between sisters (Haber, 2000). During meiosis this latter type of exchange is presumably further suppressed by SC formation, as it has been shown that redl, mekl and hopl mutations that prevent normal formation of axial elements all increase sister chromatid recombination (Thompson and Stahl, 1999). As SEIs occur at the same time as full length SCs (Hunter and Kleckner, 2001), it is possible that events leading to SC formation concurrently direct DSBs to enter a DMC1-dependent interhomologue-only recombination pathway. In support of this, mutation of RED1 is actually thought to eliminate a highly specific interhomologue-only recombination pathway (Schwacha and Kleckner 1997; Xu et al., 1997).

1.1.2.a.v: Double Holliday Junctions

The DSB repair model predicts the formation of an intermediate containing two Holliday junctions (HJs) (figure 1.3). Schwacha and Kleckner (1994) showed that branched DNA molecules detected after DSB formation are indeed dHJs that can be resolved in vitro, by the E. coli HJ cleaving enzyme RuvC, into noncrossover and crossover products (Schwacha and Kleckner, 1995). The ratio of these products is approximately $1: 1$, as is seen is wild-type strains of S. cerevisiae, and as would be predicted from random resolution of dHJs.

1.1.2.b: The Synthesis-Dependent Strand Annealing Model

All of the evidence reviewed above, and particularly the demonstration of dHJs, appears to provide unequivocal support for the DSB repair model. However, the DSB repair model also predicts the formation of two regions of heteroduplex DNA, one on each side of the initiating DSB and each on different chromatids (figure 1.3). In the studies of Gilbertson and Stahl (1996) and of Porter et al. (1993) these expectations were not met; most events were onesided and, when two heteroduplex regions were detected, both were on the same chromatid. These results support a second type of recombination model; that of synthesis-dependent strand annealing (SDSA, figure 1.4) (reviewed in Paques and Haber, 1999). Inevitably the initiating event is once again the formation of DSBs and extensive 5^{\prime} to 3^{\prime} degradation takes place to leave 3^{\prime} overhanging single-stranded ends. The strand invasion and repair synthesis then takes place on only one side of the DSB. The newly synthesised DNA strand is displaced and extensive heteroduplex DNA is formed only at the initiating (recipient) locus by the annealing of the new strand to the other 3^{\prime} overhanging end. Heteroduplex DNA arises only at the time of resolution and only noncrossover products are formed, though Paques et al. (1998) do suggest a modification of the SDSA model containing a dHJ that can be resolved with or without crossover (figure 1.4). However, only one experiment, in which crossovers seemed to account for about 5% of DSB repair events, has suggested that SDSA associated with crossing over occurs in S. cerevisiae (Paques et al., 1998).

1.1.2.c: Crossover and and gene conversion during meiotic recombination

In all current models of meiotic recombination, and particularly the DSB repair model, there is an assumption that conversion and crossover products arise at the same time as a result of alternative resolution of a recombination intermediate. However, more recent experiments have indicated that there are distinct pathways of crossover and noncrossover meiotic recombination. In S. cerevisiae there are a number of genes that are required for normal frequencies of crossover that are not required for gene conversion. These include ZIP1 and ZIP2 (indicating a possible role for the SC in this choice), ZIP3, MSH4, MSH5, MLH1, MLH3 and MER3 (see Nakagawa and Kolodner, 2002). Mer3p is a meiosis-specific DNA helicase (Nakagawa and Kolodner, 2002). As MER3 is not required for gene conversion it is conceivable that its helicase activity is important for branch migration and/or the resolution of HJs (figure 1.3) once a decision between a noncrossover or crossover pathway has been made. It is worth noting, however, that mer 3 mutants accumulate DSBs, indicating that Mer3p has an earlier function in meiosis involving the transition of DSBs to later intermediates (Nakagawa and Kolodner, 2002). As gene conversion remains unaffected in mer 3 mutants, this suggests that the discrimination between a pathway of crossover and one

Figure 1.4: The synthesis-dependent strand annealing model of meiotic recombination (reviewed in Paques and Haber, 1999).

The basic feature of the SDSA model is that newly synthesised strands are displaced from the template and returned to the molecule that suffered the DSB. Furthermore, in contrast to the DSB repair model, heteroduplex DNA is found only at the recipient locus and the donor template remains unchanged.
(a) Recombination is initiated by a DSB in one duplex. (b) Each side of the break is subjected to extensive 5^{\prime} to 3^{\prime} degradation, which leaves overhanging 3^{\prime} single-stranded ends. (c) One 3^{\prime} end invades the intact homologous duplex, initiates DNA synthesis and forms heteroduplex DNA. (d) The newly synthesised strand is displaced and (e) anneals with the other DSB end. Repair of the break is completed by DNA synthesis and ligation. Note that in this model only noncrossover products are formed. However, as suggested by Paques et al. (1998), invasion of the template by the second 3^{\prime} end (f) may sometimes stabilise the strand displaced by the first 3^{\prime} end. DNA synthesis would become semiconservative (g) and two Holliday junctions would be formed (h), and subsequently cut, as shown in figure 1.3.

Figure 1.4: The synthesis-dependent strand annealing (SDSA) model of meiotic recombination

Figure 1.4: The synthesis-dependent strand annealing (SDSA) model of meiotic recombination
of conversion takes place at a relatively early stage of recombination. Allers and Lichten (2001) demonstrated that noncrossover products occur at the same time as HJ intermediates and that crossovers did not appear until these intermediates were resolved some considerable time later. This further suggests that the decision between crossover and noncrossover recombination takes place during the DSB to HJ transition, as also predicted by Hunter and Kleckner (2001) and reviewed by Zickler and Kleckner (1999), and argues that only crossover recombination involves a (detectable) HJ intermediate.

There is evidence to suggest that the choice of pathway occurs prior to the formation of SEIs, at the stage when DSBs and their homologous partners appear to be interacting before strand invasion (Weiner and Kleckner, 1994), and consequently that SEIs and dHJs are both intermediates of a crossover-specific pathway (Hunter and Kleckner, 2001). Further support for a separate pathway of noncrossover resolution that does not contain a HJ intermediate is given by the observations in S. cerevisiae ndt80 mutants (Allers and Lichten, 2001). Ndt80 is a meiosis-specific transcription factor that contributes to the exit from pachytene (Chu and Herskowitz, 1998), the stage at which homologues desynapse and chiasmata form to maintain a stable interhomologue connection (table 1.1). It is suggested that HJ resolvases are under Ndt80 control and has been demonstrated that ndt80 mutant strains show an accumulation of HJ intermediates and a five-fold reduction of crossovers, but an unaffected number of noncrossovers (Allers and Lichten, 2001).

As the simplest SDSA model of meiotic recombination does not predict formation of HJ intermediates, Allers and Lichten suggest that noncrossover products arise via SDSA, crossover products arise via the DSB repair model and, in agreement with Hunter and Kleckner (2001), that the decision takes place at the strand invasion step during the leptotene to zygotene transition. This is supported by cytological observations of RNs. Early nodules contain the Rad51 and Dmc1 strand exchange proteins and are postulated to mark the sites of all strand invasion events within the SC (Anderson et al., 2001). Late nodules do not contain strand exchange enzymes, are not seen until early nodules disappear and are distributed in patterns that correlate with those of crossovers (Carpenter, 1987, Zickler et al., 1992; Zickler and Kleckner, 1999; Allers and Lichten, 2001).

1.1.3: Distribution and Regulation of Meiotic Recombination Events

As part of recombination crossovers are required for proper chromosome segregation and the generation of diversity. Too few crossovers are therefore undesirable both in the long and the
short-terms and too many crossovers will almost inevitably lead to deleterious effects such as inherited disease. To compensate, the distribution and frequency of recombination events appears to be regulated by features of chromatin and by higher order chromosome structure. As a result, there are areas across chromosomes in which recombination is intense and highly localised. Such areas are known as recombination hotspots.

1.1.3.a: Meiotic Recombination Hotspots in Yeast

DSBs occur non-randomly along S. cerevisiae chromosomes; almost all occur in intergenic regions corresponding to gene promoters (Cao et al., 1990; Baudat and Nicolas 1997). As DSBs are initiators of recombination it is a natural consequence that yeast meiotic recombination hotspots correspond to these same regions. Each S. cerevisiae chromosome has at least four hotspots, as demonstrated by global mapping of meiotic DSBs for all 16 S . cerevisiae chromosomes (Gerton et al., 2000) and several have been identified, including those near the ARG4 (Nicolas et al., 1989; de Massy and Nicolas, 1993; Sun et al., 1991), HIS4 (White et al., 1991,1993; Detloff et al., 1992) and HIS2 (Malone et al., 1994) loci. Furthermore, the ectopic insertion of cloned yeast and bacterial sequences immediately downstream of the HIS4 gene created the HIS4LEU2 hotspot (Cao et al., 1990) and there exists a well-characterised hotspot in S. pombe that is caused by the ade6-M26 G to T transversion mutation (Schuchert et al., 1991; Fox et al., 1997). DSBs do not occur at a specific sequence but are dispersed through a region of $50-500 \mathrm{bp}$ (de Massy et al., 1995; Liu et al., 1995, Xu and Kleckner, 1995; Xu and Petes, 1996). The formation of DSBs is therefore not sequence-specific but is site-specific and, more often than not, these sites display increased meiosis-specific DNaseI- or micrococcal nuclease- (MNase) sensitivity (Fan and Petes, 1996; Ohta et al., 1994, Wu and Lichten, 1994), indicating that hotspots reflect the presence of open chromatin domains that allow the Spo11 endonuclease access to the DNA. Of course, the change in chromatin configuration may actually be provoked by a Spollpcontaining recombination complex as the open chromatin domains are observed prior to the formation of DSBs (Ohta et al, 1994; 1998) and the extent of nuclease-sensitivity seems to require functional MRE11, RAD50, XRS2 and MRE2 (Ohta et al., 1998). In the presence of nucleotide heterology at DSB hotspots, the frequency of meiotic DSBs is reduced (Goldman and Lichten, 2000), suggesting that interhomologue recognition is also important for DSB formation. RAD50, XRS2 and MRE11 have been implicated in this role (Ohta et al., 1998).

1.1.3.ai: α-Hotspots

The HIS4 hotspot region contains binding sites for the transcription factors (TFs) Rap1, Gcn4, Bas1 and Bas2 (Devlin et al., 1991; White et al., 1991; 1993). Loss of any, other than Gcn4,
leads to the loss of hotspot activity through the elimination of DSBs and the demise of any significant changes in chromatin structure (White et al., 1991; 1993). However, deletion of the upstream TATAA sequence, which substantially reduces transcription, has no effect on hotspot activity (White et al., 1992). Therefore, transcription factors, but not transcription, are required for HIS4 hotspot activity.

The activity of Raplp at the HIS4 hotspot has been studied most extensively demonstrating that, in order to fully stimulate hotspot activity, transcription factors require both intact DNA binding and activation domains (Kirkpatrick et al., 1999a). This suggests that the TF binds to DNA and opens chromatin thus allowing Spo11p access to the DNA. Alternatively, once the TF has opened the chromatin, its activation domain then recruits the Spoll endonuclease. This contact may be indirect; the Rad50, Mre11 and Xrs2 proteins have once again been implicated and are suggested to form a complex that binds to open chromatin and interacts with Spo11p (Johzuka et al., 1995; Raymond and Kleckner, 1993). This complex may be acting as a link between Spol1p and the TFs that open the chromatin (Fan and Petes, 1996). This also provides a reasonable explanation as to why RAD50, MRE11 and XRS2 are vital to DSB formation (figure 1.3).

Variation in hotspot activity could be explained by a varying ability of different TFs to efficiently recruit the Spo11 endonuclease and so stimulate recombination. This may also explain why all TF-binding regions in yeast do not represent hotspots (Baudat and Nicolas, 1997).

The $\mathrm{G} \rightarrow \mathrm{T}$ transversion at the S. pombe ade6-M26 hotspot creates a binding site for the Atf1/Pcr1 (Mts1/Mts2) transcription factor, which must attach before recombination activity begins (Kon et al., 1997). It has been suggested that hotspots whose activity depends on TFs may be common in eukaryotes. These have been termed α-hotspots (Kirkpatrick et al., 1999a).

1.1.3.a.ii: $\boldsymbol{\beta}$-Hotspots

Ectopic insertion of DNA sequences into yeast chromosomes can stimulate both hotspots of meiotic recombination and gene expression without the association of TFs (Cao et al., 1990; Wu and Lichten, 1995; Xu and Kleckner, 1995, Kirkpatrick et al., 1999a). It is possible that these discontinuities in chromosomal context create open chromatin domains that are accessible to the recombination machinery. Open chromatin domains are free of nucleosomes, the basic unit of DNA compaction. The presence of nucleosomes may thereby inhibit the
initiation of meiotic recombination. As the formation and positioning of nucleosomes is sensitive to DNA sequence (Kirkpatrick et al., 1999b) the ectopic DNA insertions must consist of sequences that exclude nucleosomes. This has clearly been demonstrated for tandem arrays of the 5^{\prime} CCGNN 3^{\prime} repeat (Wang and Griffith, 1996; Kirkpatrick et al., 1999b). As there is no TF known to bind to this sequence, and yet it stimulates transcription and meiotic recombination, it is clear that nucleosome-excluding sequences behave in cis to create hotspots of meiotic recombination, in contrast to the trans-acting TFs of α-hotspots. This second kind of hotspot has been termed a β-hotspot (Kirkpatrick et al., 1999a).

A naturally occurring β-hotspot may be located between LEU2 and CEN3 on chromosome III of S. cerevisiae. The majority of recombination events at this hotspot are dependent upon the presence of ARS307, a replication origin. The stimulation is independent of DNA replication and is likely to be caused by another feature of the ARS307, such as the relatively nucleosome free environment of ARS elements (Rattray and Symington, 1993). As subsequent studies have failed to find any significant association between the location of replication origins and hotspots (Gerton et al., 2000) the ARS307 hotspot may be due to a coincidence of factors; perhaps divergence from the ARS core consensus sequence has created a sequence at ARS307 that is particularly inhospitable to nucleosome formation or predisposed to creating an open chromatin domain.

1.1.3.a.iii: Identification of Yeast Hotspots

Blumenthal-Perry et al (2000) identified a motif, which they called the CoHR profile, that seemed to associate with S. cerevisiae recombination hotspots. The profile is 50 bp long with a poly(A) tract in its centre but it is also flexible, in that it can have several gaps of unrelated sequence that stretch its length out to 250 bp . The global study of Gerton et al (2000) could not identify a significant association between the CoHR profile and meiotic recombination hotspots suggesting that, at best, the CoHR profile tentatively identifies only a subset of hotspots. So, beyond examining every putative transcription factor binding sequence in every putative gene promoter region or testing every putative nucleosome-excluding sequence for hotspot activity, there is no simple primary sequence determinant that allows the quick and easy identification of meiotic recombination hotspots in S. cerevisiae. However, significant associations of hotspots with regions of high $\mathrm{G}+\mathrm{C}$ base composition have been observed (Gerton et al., 2000), which suggests that DSBs (and recombination activity) are regulated in part by global features of chromosome structure.

1.1.3.b: Global Regulation of Meiotic Recombination

It is clear that the distribution of recombination events is regulated to some extent at a local level through the requirement of an open chromatin domain, which in turn requires the activity of certain TFs or the exclusion of nucleosomes. However, it is clear that other factors, reflecting an imposition of more global controls upon local determinants, also affect hotspot activity. Experiments have shown that hotspots can be influenced by chromosomal location; Wu and Lichten (1995) showed that the frequency of DSBs and associated recombination at the ARG4 hotspot varied by a factor of between 3 and 10, depending upon the location of an ARG4-containing insert. Further evidence was provided by a study that used a recombinationproficient reporter to map meiotic recombination domains on chromosome III of S. cerevisiae (Borde et al., 1999).

The molecular basis of the global regulation of crossover events has not been elucidated but it has been demonstrated that targeting of Spol1p to specific sites is sufficient to stimulate meiotic recombination even in naturally 'cold' regions (Pecina et al., 2002). Spo11p was in a construct also containing the DNA binding domain of the Gal4 TF and the initiation of recombination required all other DSB gene functions, suggesting that the differential recruitment, assembly and/or maturation of Spo11p-containing recombination machinery is a part of the genome-wide level of recombination regulation (Pecina et al., 2002).

1.1.3.b.i: Chromatin Organisation

The DNA within a SC is organised into a series of chromatin loops (figure 1.2) and the rate of meiotic recombination appears to be influenced by the relative density of this chromatin packaging. The average rate of recombination per unit length of DNA in yeast is nearly 300 times that in humans but DNA is compacted about 25 times more in the SCs of human cells than it is in the SCs of yeast cells (Loidl et al., 1995); i.e. the tighter the packaging, the lower the rate of recombination. Evidence that this is regulated is seen when human DNA is introduced into yeast, where it adopts both the packaging and the rate of recombination typical of yeast DNA (Sears et al., 1992; Loidl et al., 1995). Therefore, meiotic chromatin organisation is not an inherent chromosomal property but appears to be evidence for a (hostspecific) nuclear level of recombination regulation.

1.1.3.b.ii: Competitive Inactivation

Insertion of a strong DSB site near a pre-existing DSB site reduces the hotspot activity of both sites without significantly altering chromatin structure, as assayed with DNaseI (Wu and Lichten, 1995; Fan et al., 1997; Xu and Kleckner, 1995; Ohta et al., 1999). This is called
competitive inactivation (Ohta et al., 1999) and its affect is stronger in cis than in trans (Fan et al., 1997), a feature that is perhaps most strongly demonstrated by observations at LEU2, where meiotic recombination was suppressed by the insertion of a strong DSB site 17 kb away (Wu and Lichten, 1995). Although chromatin structure is unaffected, there is a suppression of MNase hypersensitivity, suggesting that MNase hypersensitivity is a critical step in DSB formation (Ohta et al., 1999). If MNase hypersensitivity is a reflection of the binding of a multiprotein complex in preparation for DSB formation, competitive inactivation may then be a reflection of competition between adjacent hotspots for proteins contributing to this complex, and their distribution being controlled at the chromosomal or nuclear domain.

One interesting idea for the mechanics of this competition suggests that a critical density of these proteins must assemble non-cooperatively within a restricted region of DNA (presumably open chromatin domains) in order to catalyse a recombination event (Kirkpatrick et al., 1999b). Twelve copies of the 5^{\prime} CCGNN 3^{\prime} repeat act as a β-hotspot, but a (CCGNN) 48 tract is a coldspot. As the (CCGNN) 48 tract consists of four tandem copies of (CCGNN) ${ }_{12}$ it is possible that the (CCGNN) 48 tract behaves as four adjacent and competing hotspots. The ratelimiting protein(s) required for the initiation of recombination still bind to the longer tract but they do not reach the critical density required for recombination to proceed (Kirkpatrick et al., 1999b). Together with the observation that competitive inactivation is stronger in cis than in trans this implies that the diffusion of the recombination-initiating proteins is limited and cannot be recruited from other hotspots in the genome.

1.1.3.b.iii: Crossover Interference

The regulation of crossover distribution along a chromosome is further inferred from the observation of crossover interference (also known as chiasma interference), in which a crossover at one locus decreases the probability of another crossover in the vicinity. This suggests that there is an inhibitory signal from a site of crossover to nearby potential sites. The SC has been implicated in this role as mutations in the ZIP1 gene abolish interference (Sym and Roeder, 1995). In addition, organisms that do not form the SC, such as S. pombe and Aspergillus nidulans, do not exhibit interference (Egel-Mitani et al., 1982; Kohli and Bahler, 1994). Perhaps a signal is transmitted along the SC that causes the release of any late recombination nodules not already involved in a crossover event (Zickler et al., 1992 and references therein), an idea supported by observations of the putative late nodule component Msh4p. Mutant msh4 strains form the SC but interference is virtually eliminated (RossMcdonald and Roeder, 1994; Roeder, 1997). If late nodules do indeed represent those sites
that are resolved as crossovers, then Msh4p may well be acting as an acceptor or initiator of an inhibitory signal.

Recently, a simple reaction-diffusion model for the mechanism of interference has been proposed (Fujitani et al., 2002) in which "randomly-walking precursors" become immobilised and mature into crossover points. Interference could then be caused by the collision and subsequent destruction of two random walkers and by the collision of one random walker with an immobilised point. This is obviously not a genetic model and only serves to predict what might be happening physically. The randomly walking precursor could be anything from a premeiotic contact point, as identified by Weiner and Kleckner (1994), to an early RN or even a component of the putative Spol1p-containing recombination machinery.

It is tempting to suggest that competitive inactivation and crossover interference amount to one and the same thing. However, there are several reasons for caution. First, if the two processes were, at the very least, related, then all events initiated by DSBs ought to exhibit interference. This does not appear to be the case as gene conversion events look as though they are distributed without interference (Mortimer and Fogel, 1974). Second, crossover interference has been observed over much larger distances than the 17 kb representing the longest distance of competitive inactivation so far observed (Wu and Lichten, 1995). Third, zipl mutants, which abolish interference, have normal levels of gene conversion (Sym and Roeder, 1995). This leads to the conclusion that competitive inactivation occurs prior to DSB formation and that crossover interference operates at some stage after DSB formation, probably along the crossover-only recombination pathway. As suggested by Fan et al. (1997) a simple test of any link between inactivation and interference would be to determine if there is normal competitive inactivation in zipl mutant strains that are defective for interference.

1.1.3.b.iv: Obligate chiasma

In order to ensure proper chromosome segregation there has to be at least one crossover per chromosome, a phenomenon referred to as obligate chiasma. This is likely to be related to the observation that crossover frequency is regulated by chromosome size. Of the 300 DSBs that appear at every S. cerevisiae meiosis about 100 are resolved as crossovers distributed along 16 chromosomes of unequal size (Paques and Haber, 1999). As is the case with most organisms, the number of crossovers per kilobase increases with decreasing chromosome size, rather than remaining constant as would be expected if crossovers occurred randomly (Jones, 1984; Kaback et al., 1989). Furthermore, when a large chromosome of S. cerevisiae was bisected the two resulting smaller chromosomes underwent an increased number of
crossovers per kilobase (Kaback et al., 1992). It is likely that meiotic recombination hotspots contribute to these observations as it has also been noted that both the density and the recombinational activity of hotspots on smaller chromosomes is significantly greater than on the larger chromosomes (Gerton et al., 2000). Mutations that reduce interference also randomise the distribution of crossovers among chromosomes such that some homologous pairs fail to crossover and so nondisjoin (Egel, 1995; Sym and Roeder, 1995; Chua and Roeder, 1997). Global regulatory mechanisms, as reflected by interference, might therefore exist to ensure that large chromosomes do not undergo an excessive number of exchanges and that at least one crossover occurs per homologue pair.

1.1.3.b.v: The Recombination Checkpoint

As recombination is such an essential process it is inevitable that checkpoint machinery acts during meiosis to ensure that events are properly coordinated. Many mutants in which recombination is defective, including rad50S, rad51, dmcl and zipl are arrested at the pachytene stage of M1 prophase (Bishop et al., 1992; Xu et al., 1997; Shinohara et al., 1992; Storlazzi et al., 1996). The intermediates that activate checkpoint-mediated arrest (presumably unrepaired DSBs and/or unresolved HJs) can be bypassed by mutations to RAD17, RAD24 or MEC1 (Lydall et al., 1996), providing clear evidence that these are meiotic recombination checkpoint genes. The SC proteins RED1 and MEK1 also appear to be important to this checkpoint as deletions of either also alleviate the arrest of rad50S, rad51, $d m c 1$ and zipl mutants (Xu et al., 1997). If loss of Redlp does indeed result in the loss of a specific interhomologue-only pathway of meiotic recombination (Schwacha and Kleckner 1997; Xu et al., 1997) it is possible that any alternative pathway does not result in intermediates that activate the checkpoint. Recognition of these intermediates may involve the Mer3 helicase, which is suggested to have an important role in crossover resolution (Nakagawa and Kolodner, 2002). Mer3p has been suggested to trigger the checkpoint if it is not bound to DNA, perhaps at the stage of HJ resolution (Nakagawa and Kolodner, 2002).

1.2: Human Meiotic Recombination

Studies in yeast have demonstrated that meiotic recombination is a complex and highly regulated process involving a wide array of proteins and complexes. Determination of the functions that these proteins and complexes perform, together with the identification and study of structural intermediates, is likely to provide major insights into the process of meiotic recombination in humans, which have much larger and more repetitive genomes.

1.2.1: Pedigree Analysis

The detailed analysis of meiotic recombination in the human genome is very difficult because of the small size of human families and the low frequency of crossover events per unit of physical distance in the germline, which equates to a mean rate of only $1 \mathrm{cM} / \mathrm{Mb}$. Until recently this imposed a resolution limit of $0.1-1.0 \mathrm{cM}$ (typically $0.1-1.0 \mathrm{Mb}$) on crossovers studied through the traditional method of pedigree analysis. Nevertheless linkage maps so constructed have detected considerable large-scale variation in recombination event distribution across human chromosomes and between the sexes. (NIH/CEPH Collaborative Mapping Group, 1992; Weissenbach et al., 1992; Gyapay et al., 1994; Broman et al, 1998; Mohrenweiser et al., 1998).

The human genome sequencing project (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001) has since allowed the comparison of the genetic linkage maps with a detailed physical map, thereby providing a comparison of rates of crossover, rather than the absolute number of recombination events (Yu et al., 2001; Kong et al 2002). The Yu et al. study, based on 188 meioses within about 58% of the genome, estimated that recombination rate across the human genome varied from 0 to $8.8 \mathrm{cM} / \mathrm{Mb}$ and identified regions of up to 6 Mb in length with particularly low or high recombination rates, which they termed recombination deserts and jungles respectively. They also suggested that the average male recombination rate was $0.92 \mathrm{cM} / \mathrm{Mb}$, slightly more than half the female average rate of $1.68 \mathrm{cM} / \mathrm{Mb}$. This sex-specific variation is actually rather complex; there are areas of the genome, such as sub-telomeric regions, where the rate of recombination is particularly high in men but not in women, and other regions, near centromeres for example, where the reverse is true (Broman et al, 1998; Mohrenweiser et al., 1998; Kong et al., 2002).

More recently, Kong et al., (2002) were able to improve on the resolution of the Yu et al. map by approximately five times through looking at 1,257 meioses in 146 Icelandic families. There are some minor differences between the results of the studies, e.g. the Iceland map revealed a slightly lower sex averaged recombination rate of $1.13 \mathrm{cM} / \mathrm{Mb}$, but these can be attributed to the higher resolution of the Iceland map and the fact that the groups used drafts of the human genome sequence at different stages of development. Overall, the major conclusions of the studies are the same, but reveal nothing about fine-scale crossover activity across the chromosomes.

1.2.2: Cytological Analysis

Classically, meiotic recombination has been investigated directly in human spermatocytes by making use of chiasmata to determine the numbers and distributions of crossovers at diakinesis or metaphase I. More recently, an alternative approach has been developed to exploit the behaviour of the mismatch repair protein MLH1, which, as a component of late RNs (above, section 1.1.1.c.ii), forms discrete foci along the axes of homologous chromosomes prior to meiosis (Baker et al., 1996).

Cytological analyses have shown that, although chiasmata can arise at any position along an autosomal bivalent, they do show significant preferences. The preferential localisation of chiasmata must result, in part, from crossover interference (above, section 1.1.3.b.iii) but morphological features also appear to play a role. For example, both heterochromatin and the relative position of the centromere appear to effect the positions favoured for chiasma formation (Laurie et al., 1981; Saadallah and Hultén, 1983; Goldman and Hultén, 1993) and, in male meiosis, chiasma formation is favoured in telomeric and subtelomeric regions (Hultén, 1974; Laurie and Hultén, 1985). This distribution pattern is mirrored by MLH1 foci in pachytene spermatocytes (Barlow and Hultén, 1998). In contrast, it has been shown that chiasmata are more interstitial in oocytes (Wallace and Hultén, 1985; Hultén et al., 1990; Tease et al., 2002). Therefore, in agreement with pedigree analysis (above) this considerable intersex difference must be a reflection of a system that controls the localisation of crossovers. Unfortunately both pedigree analysis and detection of chiasmata suffer from low resolution and an inability to detect gene conversion events. Therefore, they do not provide any clues as to how this control might function.

1.2.3: Single Sperm Typing

As there is an almost unlimited number of sperm or meioses available from any male, sperm typing presents an opportunity to study recombination in individuals (Li et al., 1988). In addition, in regions with accurate physical maps, sperm-typing experiments are able to provide evidence for variation in recombination rates at a higher resolution than that obtained with either cytological or pedigree analyses, and have led to the identification of a putative recombination hotspot (in a DNA segment that is 280 kb long) near the locus for Huntington disease (Hubert et al., 1994). More recently, sperm typing has identified modest variation in recombination rate across the pseudoautosomal region at the ends of the short arms of the X and Y chromosomes (Lien et al., 2000) and has been used to produce a map of recombination across the major histocompatibility complex (MHC) (Cullen et al., 2002). In addition, by suggesting that reduced recombination in the pseudoautosomal region is a significant cause of XY nondisjunction, and thus Klinefelter syndrome (Shi et al., 2001), single sperm typing provided the first direct evidence that reduced recombination has an effect on nondisjunction in human gametes (above, section 1.1.1.b). However, single sperm studies are very technically challenging and, unfortunately, their resolution remains limited.

1.2.4: Linkage Disequilibrium Studies

The family-based approaches that have been successfully employed to identify the variants responsible for monogenic diseases are largely ineffective when faced with the complexity of common multifactorial diseases. Hence, the main method used to identify common low penetrance susceptibility alleles is a case-control association study, in which genetic and phenotypic variation is compared in large population samples. The ability to detect association between marker alleles and disease critically depends on the extent of linkage disequilibrium (LD) between disease-causing alleles and surrounding marker alleles. LD is the non-random association of alleles at closely linked loci and, in an ideal high LD scenario, an allele found at one locus would predict which allele would be found at the other, making one of the loci redundant for association mapping purposes.

The number of markers that have to be applied in association studies depends on the distance over which useful LD can be detected. A theoretical simulation, which assumed that crossovers were randomly distributed, predicted that useful LD extends to an average of only 3 kb (Kruglyak, 1999), implying that 500,000 SNPs would be required for a whole-genome
association study. In general, LD decays as distance increases and the main force that breaks down LD is recombination, so a genomic region in intense LD is expected to have been recombinationally inactive through human evolutionary history. LD studies thereby allow a higher resolution analysis of crossover through the use of haplotype diversity to infer the recombination events that have accumulated over thousands of generations in the history of a contemporary population. This has led to the identification of a number of putative human meiotic recombination hotspots, including at the β-globin gene cluster (Chakravarti et al., 1984) and at the PGM1 gene (Yip et al., 1999). Furthermore, the physical mapping of occasional recombination breakpoints detected in family studies revealed heterogeneity in recombination rates across the human major histocompatibility complex class II region (MHC II) (Cullen et al., 1995; 1997). This is not entirely unexpected given the important immunological role of the MHC ; high frequencies of recombination may indicate selective pressures in favour of haplotype diversification, which may eventually prove useful against an invading pathogen. Conversely, low frequencies of recombination could indicate selective pressure favouring specific allele associations.

Patterns of LD can be disrupted by factors that are specific to the genomic region, including recombination rate, recurrent mutation and demographic processes such as natural selection, genetic drift, population bottlenecks and admixture (Hedrick, 1987; Ardlie et al., 2002). Hence, a number of studies have shown that there is considerable variation in the extent of LD from one genomic region to another (Taillon-Miller et al., 2000; Abecasis et al., 2001; Reich et al., 2001; 2002). Variation in LD patterns has also been observed between populations (Laan and Pääbo, 1997; Frisse et al., 2001; Reich et al., 2001), as exemplified by the consistent observation that LD in non-African populations extends over longer distances than in Africans, a relatively ancient population that has had time to accumulate many recombination events. Therefore, the feasibility of association studies depends on an understanding of the rules that govern patterns of LD in the human genome.

1.2.4.a: Haplotype Blocks

The recent evidence suggesting that recombination events localise into hotspots (below; Jeffreys et al., 2001; Reich et al., 2002) indicates that human LD patterns may not be so complicated as they first appear; recombination hotspots might break the genome into a series of discrete blocks of high LD, $3-100 \mathrm{~kb}$ or more in length, in which there are just a few common haplotypes (Collins, 2000; Daly et al., 2001; Patil et al., 2001; Dawson et al., 2002; Gabriel et al., 2002; Reich et al., 2002). These "haplotype blocks" would reduce genotyping requirements for large-scale association studies because their high LD would render many
variant sites redundant (Johnson et al., 2001). However, it is also plausible that block patterns could arise solely as a result of random crossover and demographic processes (Subrahmanyan et al., 2001), resulting in inconsistent block boundaries within and between populations, and making haplotype blocks less useful for association studies. A recent study in the MHC II region suggested that it had been subjected to a high rate of haplotype turnover, but also demonstrated that three populations with different demographic histories (UK north Europeans, Saami and Zimbabweans) have very similar LD patterns (Kauppi et al., 2003). This suggested that the recombination hotspots in the region (Jeffreys et al., 2001), and not population history, do indeed direct the formation of haplotype blocks (Kauppi et al., 2003). However, as the MHC II region is under selective pressure to diversify, it cannot be regarded as a "typical" area of the genome. Therefore, analysis of LD patterns in other areas of the genome is required before it can be determined if the structuring of LD blocks in the MHC II region is reflective of processes operating in the genome as a whole.

1.2.5: High Resolution Analysis of Meiotic Recombination

An understanding of human meiotic recombination in molecular terms will require very high resolution data so that hotspots can be defined in terms of DNA sequence and chromatin structure, as they have been in yeast. Unfortunately, because of the many factors that disrupt LD patterns (above), LD studies are limited, and thus the conclusions drawn from them are contentious. Recently, an alternative method has been developed that is capable of analysing recombination events at a resolution of 0.0001 cM or less (figure 1.5). This is essentially a two-tier strategy in which single nucleotide polymorphism (SNP) genotypes are first subjected to LD analysis in order to screen the target region for evidence of localised historical recombination. This analysis can lead to one of several results: first, all markers may be in intense LD, suggesting that the whole region is recombinationally inert. Second, if LD declines slowly and uniformly with physical distance this suggests that recombination events have occurred randomly across the region. Third, there may be regions of intense LD separated by intervals of free association; this sudden breakdown of LD implies the possible existence of a localised recombination hotspot. Fourth, if there is no LD even between markers that are physically very close, there is an implication of extreme recombination activity over the whole region. It is worth re-emphasising that LD studies merely allow inference of historical recombination events. For instance, LD blocks can be generated, without the need to invoke hotspot activity, through chance clustering of a few historical crossovers (Wang et al., 2002). A picture of what is truly happening can only be gained

Figure 1.5: The two-tier strategy for high-resolution analysis of meiotic crossovers in human DNA. A chosen target region is subjected to high density SNP discovery, followed by genotyping of all SNPs in a reference human population. The haplotypes so revealed can be used to infer the recombination events that have occurred in the target region during the history of the population. The second stage begins with the identification of a man with multiple heterozygous SNPs across the target region. Two rounds of repulsion-phase allele-specific PCR are used to selectively amplify recombinant molecules from batches of sperm DNA and crossover events are mapped by ASO hybridisation.
through the second step of this strategy, in which the evidence gained from the LD analysis is used to direct allele-specific PCR to heterozygous SNPs in order to recover crossover molecules directly from sperm DNA. These methods were initially developed to explore the relationship between meiotic crossover and tandem repeat instability in the germline (Jeffreys et al., 1998b) and are discussed more thoroughly in chapters 7 and 8.

1.2.5.a: The MS32 Hotspot

MS32 is a GC-rich minisatellite located at 1q42-43. It is known that the major mode of repeat DNA instability at this locus is driven by meiotic recombination and that the mutational crossover and conversion events at MS32 show extreme polarity towards one end of the repeat array (Jeffreys et al., 1994). This implied that the array instability was in some way modulated by elements outside of the repeat array. The detection and analysis of crossovers allowed the identification of the MS32 meiotic recombination hotspot, the first human hotspot to be defined at the molecular level (Jeffreys et al., 1998a) (figure 1.6).

The MS32 hotspot is about 1.5 kb long and centred 200 bp upstream of the repeat array, demonstrating that there is significant exchange activity not only within the repeat array but also in the flanking DNA. The activity of the hotspot shows polymorphism, a particularly interesting allele being the O1C variant 48 bp upstream of the array, which was assayed in an O1C/G heterozygote. This shows suppression of conversion (Monckton et al., 1994; Jeffreys et al., 1997) and equal crossover (Jeffreys et al., 1998b) and absence of unequal crossover within the array (Jeffreys et al., 1998a). The flanking hotspot remains, albeit at a relatively low intensity compared to the other alleles (figure 1.6)

The evidence strongly suggests that, rather than the MS32 minisatellite creating the hotspot, it is the hotspot that is driving repeat instability. This also provides an explanation as to why the conversion and crossover events in the repeat array show such extreme polarity. A similar hotspot has been provisionally identified upstream of the MS31 minisatellite (C. Hollies, M. Panayi and A.J. Jeffreys, unpublished data) and significant levels of exchange activity have been detected within the repeat array and flanking DNA of the extremely unstable CEB1 minisatellite (Buard et al., 2000). It thus appears that minisatellites are occasionally generated as by-products of recombination hotspot activity.

Figure 1.6: The polymorphic activity of the MS32 meiotic recombination hotspot. Data taken from Jeffreys et al. (1998a). Flanking crossovers are shaded in red, equal and unequal crossovers within the repeat array are shaded in grey and green respectively. Positions of SNPs used to locate crossover breakpoints are marked at the bottom of the diagram.

1.2.5.b: Recombination within the MHC class II region

The discovery of the MS32 hotspot raised the possibility that human meiotic crossovers may in general concentrate into local hotspots interspersed with recombinationally inert regions. To test this a putative hotspot in the MHC II region was analysed (Jeffreys et al., 2000). Haplotyping of this region had already revealed domains of LD in free association across a 15kb interval between TAP1 and TAP2 (van Endert et al., 1992; Carrington et al., 1994). Cullen et al. (1995) localised two of eleven maternal crossovers to this 15 kb interval indicating a significant clustering. Furthermore, both co-localised to an 850 bp interval within the second intron of the TAP2 gene. However, it remained possible that the clustering of two crossovers to an 850 bp region within the 15 kb interval could have arisen by chance ($p=0.11$, Jeffreys et al., 2000) and that the whole 15 kb interval merely showed modest recombinational enhancement. Sperm crossover analysis was essential to define the TAP2 hotspot in intron 2 of the gene and showed that at least one, and probably both, of the maternal crossovers localised by Cullen et al (1995) are located within the sperm hotspot (Jeffreys et al., 2000), suggesting that the same hotspot functions in both male and female meiosis. The large-scale sexual dimorphism seen in recombination rates is also apparent at this finer scale as limited data suggest that the female recombination rate at the TAP2 hotspot is approximately 30 -fold higher than that seen in males (Jeffreys et al., 2000).

Given the work of Cullen et al. (1997), which had provided clear evidence for further clustering of crossovers in the MHC II region, the analysis was then extended to a 240 kb segment extending upstream of TAP2 (Jeffreys et al., 2001). This identified a further five human meiotic recombination hotspots, accounting for over 95% of crossovers in the region. The hotspots are not randomly distributed, but fall into clusters separated by blocks of LD that are 40 to 90 kb long, with $1-7 \mathrm{~kb}$ separating each hotspot within a cluster (figure 1.7). This study and others (above, section 1.2.4.a) provide growing evidence that recombination hotspots strongly influence patterns of LD and that structuring of diversity into LD blocks is common in the human genome.

1.2.5.c: Distribution of Human Meiotic Recombination Hotspots

Whereas nearly all yeast recombination hotspots are associated with transcriptional promoter regions (Cao et al., 1990; Baudat et al., 1997), this situation has only been seen for the weakest human hotspot so far identified (Jeffreys et al., 2001). The others are found in a wide variety of genomic locations. Furthermore, the hotspots do not share any obvious primary sequence similarity (Jeffreys et al., 2000; 2001), so it is currently impossible to predict hotspot location from human DNA sequences. However, in a low resolution analysis along

Figure 1.7: The LD pattern and location of meiotic recombination hotspots across the MHC II region (adapted from Jeffreys et al., 2001). $\left|D^{\prime}\right|$ measures (Lewontin, 1988) of complete LD between all pairs of markers with minor allele frequencies of at least 0.15 are shown in the bottom right triangle of the plot. $\left|D^{\prime}\right|=1$ for marker pairs showing only two or three haplotypes (shown in red), values of less than 1 indicate pairs with all four haplotypes and values of 0 (in black) indicate pairs in free association. The top left triangle shows the likelihood ratio in favour of significant association. These measures were determined from unphased diploid genotype data on 179 markers typed in a panel of 50 unrelated UK semen donors. Points are plotted as rectangles centred on each SNP (shown below and to the right of the plot) and extending half way to each marker. The very clear pattern of strong LD domains (indicated below the plot in red) that are abruptly separated by small intervals of free association implies the existence of local meiotic recombination hotspots. Sperm crossover analysis across the regions of complete or partial breakdown of LD identified a total of six hotspots across the MHC II region. Their positions and relative intensities are shown by the green arrows.
chromosome 22, Majewski and Ott (2000) did find a positive correlation between GT microsatellites and regions of high recombination. It may well be worth noting that, on this large scale and in agreement with the Gerton et al. (2000) study of S. cerevisiae, a small but significant amount of recombination rate variation could be explained by a positive correlation with GC content (Yu et al., 2001). However, on closer inspection, regions with a high CpG fraction, but low GC and poly $(\mathrm{A} / \mathrm{T})$ content tend to have the highest recombination rates (Kong et al., 2002). It is possible that hotspot location may reflect open chromatin domains, as in yeast (Fan and Petes, 1996; Ohta et al., 1994, Wu and Lichten, 1994). However, although this suggestion is tenuously supported by results gained from the sequence analysis of a putative male-specific sub-telomeric hotspot (Badge et al., 2000) it would be very difficult to confirm it through direct observation in meiotic cells as all human hotspots identified to date have been defined by mapping of crossover resolution points (compared to detecting DSBs in S. cerevisiae) and extend for only 1-2 kb.

1.2.5.d: Properties of Human Meiotic Recombination Hotspots

There are several features that appear common to the human meiotic recombination hotspots identified so far (Jeffreys et al., 2001). First, and most obviously, they share a common width of 1 to 2 kb , which is also seen at the two mouse hotspots characterised by sperm analysis (Guillon and de Massy, 2002; Yauk et al., 2003). This clearly points to common processes operating within these hotspots. Second, the vast majority of crossovers in hotspots are simple with a only a few (about 1\%) showing a patchwork of DNA from both haplotypes at the site of crossover. These rare, complex exchanges presumably result from patchy repair of heteroduplex DNA generated during recombination. Third, most hotspots show fully reciprocal exchange, with reciprocal products arising in sperm at the same rate and with the same distribution across the hotspot (see figure 1.5, reciprocal exchanges in this example would be recovered by using a forward primer directed to the "blue" haplotype and a reverse primer specific to the red haplotype). Fourth, the centres of hotspots can be mapped quite precisely (within $\pm 30 \mathrm{bp}$) due to the symmetrical distribution of exchanges across them. However, the peak intensity over different hotspots varies quite considerably, from $0.4 \mathrm{cM} / \mathrm{Mb}$ for the DNAI hotspot in the MHC II region to $300 \mathrm{cM} / \mathrm{Mb}$ for the $S H O X$ hotspot found within the pseudoautosomal region at the ends of the short arms of the X and Y chromosomes (Jeffreys et al., 2001, May et al., 2002). Furthermore, some hotspots show significant variation in crossover rates between men (Jeffreys et al., 1998a; May et al., 2002). High resolution analysis only identifies sites of crossover resolution, and so it remains possible that the initiating sites of recombination (presumably DSBs) occur remote from the hotspots, perhaps tens of kilobases away, as seen in S. pombe (Cervantes et al., 2000; Young
et al., 2002). However this is unlikely as preliminary data show that human hotspots are also very active in gene conversion and that this activity is focused on the centre of the hotspot as defined by resolution of crossovers (Jeffreys and Neumann, 2002; A.J. Jeffreys, C.A. May, manuscript in preparation). Since conversions and crossovers in yeast result from alternative pathways initiated by the same DSB, it is most probable that human hot spots contain the sites or zones of initiation of recombination that results in either crossover or conversion products.

1.2.6: Mechanisms of Human Meiotic Recombination

It is difficult to make generalisations as so few human hotspots have been mapped. However, hotspots do appear to dominate human recombination and it is probable that the mechanisms are very similar to those identified in yeast as numerous homologues of S. cerevisiae genes involved in DSB repair have been identified (Shinohara et al., 1993; Petrini et al., 1995; Dolganov et al., 1996; Romanienko and Camerini-Otero, 1999). It would also appear that human meiotic recombination is regulated at two levels; a global regulation, as evidenced by the male-specific enhanced recombination in sub-telomeric regions (Broman et al, 1998; Mohrenweiser et al., 1998; Kong et al., 2002) and chiasma interference (above, section 1.1.3.b.iii) and at a local level through properties of local sequence and chromatin structure.

Although the concordance of LD breakdown and the locations of sperm crossover hotspots strongly indicates that the same hotspots exist in females, little can actually be observed of the female recombination rates as the high-resolution analysis of recombination is limited to sperm DNA. This impedes quantitative analysis of the relationship between crossover distribution and the levels of LD. Therefore, analysing regions known to be proficient in male recombination ought to facilitate the analysis of recombination processes. Consequently, the high resolution analysis of human meiotic recombination has been extended to the pseudoautosomal region at the tips of the short arms of the X and Y chromosomes, and it is this that marks the basis of the work in presented in this thesis

1.3: The Pseudoautosomal Regions

The human X and Y chromosomes are morphologically and genetically distinct but they do share two terminal regions of homology whose sequences can crossover and be inherited as if they were autosomal (Cooke et al., 1985; Simmler et al., 1985; Freije et al., 1992). These areas are known as pseudoautosomal regions (PARs).

1.3.1: A Brief Overview of PAR2

PAR2 is only 320 kb in length and is at the ends of the long arms of the X and Y chromosomes (Freije et al., 1992). Recently the entire region has been sequenced revealing two distinct subregions, as defined by their GC content (Ciccodicola et al., 2000). The proximal PAR2 subregion (zone 1) stretches over 295 kb , has an average GC content of only 34.5% and is very rich in Alu and LINE sequences, which constitute 67% of the nucleotides. Its two known genes, HSPRY3 and SYBL1 are inactivated on both the Y and inactive X chromosomes (D'Esposito et al., 1996; Ciccodicola et al., 2000). In contrast, the distal 35 kb (zone 2) has a GC content of 51% and only 29% of its sequence consists of Alus and LINEs, though the density of Alu sequences in zone 2 is much greater than it is in zone 1. Furthermore, the two genes in the distal subregion, IL9R and CXYorf1, show the biallelic expression that is characteristic of autosomal genes (Vermeesch et al., 1997; Ciccodicola et al., 2000). The rate of recombination across the whole of PAR2 is six-fold higher than genome average (Li and Hamer, 1995), but much less than the rate across the $\mathrm{Xp} / \mathrm{Yp}$ PAR (PAR1), where recombination occurs at an average rate of $20 \mathrm{cM} / \mathrm{Mb}$, approximately twenty times faster than the genome average.

1.3.2: PAR1

1.3.2.a: The Structure of PAR1

PAR1 is at the tips of the short arms, is 2.6 Mb long (Brown, 1988; Petit et al., 1988) and is bounded at its proximal end by a Y-specific Alu sequence, followed by a 220 bp region of 78\% homology (Ellis et al., 1989). PAR1 contains thirteen known genes; PGPL, PPP2R3B, SHOX, XE7, CSF2RA, IL3RA, CRLF2, SLC25A6 (ANT3), ASMTL, DHRSXY, ASMT, ALTE (TRAMP) and CD99 (MIC2) plus the 5^{\prime} region of a fourteenth, $X G$ ($P B D X$) (Graves et al., 1998, Ried et al., 1998; Esposito et al., 1999; Schiebel et al., 2000; Gianfrancesco et al., 2001, Tonozuka et al., 2001) (figure 1.8a). There is a great deal of evidence to suggest that

Figure 1.8: PAR1 shown with the results of LD and sperm crossover analysis in the $S H O X$ region (May et al., 2002).
(a) PAR1, at the tips of the short arms of the X and Y chromosomes, is 2.6 Mb long and contains thirteen known genes plus the 5^{\prime} region of a fourteenth. (b) High resolution anlysis of PAR1 has initially been targeted to three regions; first, the telomere-adjacent 1.5 kb , which is SNP-dense and appears to be in very high LD. Second, the region around the SHOX gene, approximately 500 kb from the telomere and third, the $P G P L$ region, approximately 80 kb from the telomere. (c) Analysis of a 43 kb region within the $S H O X$ region initially revealed an extremely rapid decay of LD with physical distance. Sperm crossover analysis was still able to show that crossovers were not randomly distributed but clustered into the most active hotspot yet defined by sperm typing.

Terminal 1.5 kb is very rich in SNPs,
which show extreme LD, suggesting that this region is recombinationally
inert.

C

Figure 1.8: PAR1 shown with the results of LD and sperm crossover analysis in the SHOX region (May et al., 2002).

PAR1 contains a particularly high density of minisatellite sequences (Cooke et al., 1985; Simmler et al., 1985,1987; Rouyer et al., 1986a,b; Page et al., 1987; Klink et al., 1993; Vergnaud et al., 1993). Most of these minisatellites are highly variable and GC-rich. If GCrich minisatellites are indeed occasional by-products of hotspot activity (Jeffreys et al.,1998); then the tandem repeat arrays within PAR1 may serve as surrogate markers for some meiotic recombination hotspots.

1.3.2.b: PAR1 Meiotic Recombination

The possibility of recombination between the mammalian X and Y chromosomes was first proposed in 1934 (Koller and Darlington, 1934) but, even though RNs were later observed within the distal short arms of the human X and Y chromosomes (Solari et al., 1980), it was not until over 50 years later that recombination between human Xp and Yp was shown to be a frequent event (Cooke et al., 1985; Simmler et al., 1985; Rouyer et al., 1986a).

In the female germline the two X chromosomes can recombine along their entire length, whereas in male meiosis recombination between X and Y is restricted to the PARs. This has led to notable sex-specific differences in estimations of PAR1 genetic map length, which is 50 cM in male meiosis but only $4-18 \mathrm{cM}$ in female meiosis (Rouyer et al., 1986a; Page et al., 1987), and has defined PAR1 as a male-specific recombination hot domain with a mean crossover frequency that is twenty times higher than the genome average (Rappold, 1993).

1.3.2.b.i: Crossover Interference in PAR1

The original model for PAR1 recombination predicted a single obligatory crossover and marked crossover interference in every male meiosis (Burgoyne, 1982). Furthermore, much as crossover is necessary for proper disjunction of autosomal homologues, this PAR1 obligatory crossover is essential for proper $\mathrm{X}-\mathrm{Y}$ disjunction and is also crucial for male fertility (Burgoyne, 1982; Hassold et al., 1991). As there is an inherent assumption that interference depends upon physical distance this further predicts that there would not be a double crossover event in a region as small as PAR1. This was borne out by early studies, which showed 50% recombination between markers at each end of PAR1, so supporting the idea of a single (obligatory) crossover, and no double recombinants within PAR1 (Rouyer et al., 1986a, 1986b; Page et al., 1987). However, double crossovers have since been detected in PAR1 (Rappold et al., 1994; Lien et al., 2001) raising the possibility that, at least in this region, interference is a function of genetic distance rather than physical distance.

1.3.2.c: Targeted High Resolution Analysis of Recombination in PAR1

Current low resolution data from families and from typing single sperm (Lien et al., 2000) suggest that male crossovers are fairly randomly distributed across PAR1, with only modest regional variation in recombination efficiency. With very little known about the fine-scale distribution of crossovers within this region, coupled with a lack of primary sequence data, high resolution analysis was initially targeted to three regions (figure 1.8 b) and has suggested a rather more complex picture of recombination.

1.3.2.c.i: SHOX Gene

To see whether hotspotting as seen in the MHC II region also occurs in PAR1, the SHOX gene, located 500 kb from the telomere (Rao et al., 1997), was selected as it is one of the few PAR1 regions for which genomic sequence is available. Analysis of SNPs in a 43 kb interval around SHOX revealed an extremely rapid decay of LD with physical distance, with significant LD extending only a few kilobases at most, as expected for a region very active in (male) recombination (figure $1.8 c$). However, sperm crossover analysis in a 9.9 kb region that showed the strongest evidence for LD block structure accompanied by abrupt LD breakdown, demonstrated that crossovers were not randomly distributed. Instead, they clustered into a highly localised hotspot about 2 kb wide flanked by recombinationally much less active DNA (May et al., 2002) (figure 1.8 c). This hotspot shows a peak activity of $250 \mathrm{cM} / \mathrm{Mb}$, making it the most active hotspot yet defined by sperm typing but, like the autosomal hotspots, nearly all crossovers are simple and exchanges are fully reciprocal. This suggests that hotspots also play a role in crossover distribution in PAR1 but, even outside the hotspot, there is a rapid decay of LD with distance preventing the use of LD breakdown as a method to localise putative hotspots, at least around the SHOX gene.

1.3.2.c.ii: Telomere-Adjacent Region

The second PAR1 interval analysed was a 1.5 kb region immediately adjacent to the telomere repeat array. This region has an extremely high density of SNPs but shows intense LD, with very few diverged haplotypes in human populations (Baird et al., 1995). This implies that this region is recombinationally inert and that male crossover does not extend across the entire PAR1 but must instead terminate at a currently unidentified boundary proximal to the telomere.

1.3.2.c.iii: PGPL Region

To test whether recombination suppression extends further into PAR1, the PGPL gene, located approximately 80 kb from the telomere (Gianfrancesco et al., 1998) was selected as the third target. The extensive work on the PGPL region is presented in this thesis.

1.4: Overview of this Thesis

In yeast, initiating DSBs can be readily detected biochemically and provide a surrogate physical measure of genetic recombination activity applicable across the entire genome (Gerton et al., 2000). Unfortunately, an equivalent measure remains to be identified in the human genome and it is not possible to scale sperm typing (figure 1.5) to the genome level. Thus, despite there being a great deal of evidence to suggest that meiotic recombination hotspots are a common feature of the human genome, only those in the MHC II region, at SHOX and at the MS32 minisatellite have been identified at the molecular level. Therefore, the overall aim of this thesis is determine if the emerging pattern of hotspots that break the genome into a series of discrete haplotype blocks is also a feature of recombination around the PGPL gene. In addition, observations elsewhere in PAR1 provided at least three other questions that this work will aim to answer. First, analysis in the PAR1 telomere-adjacent region and in the PPP2R3B gene had suggested that PAR1 as a whole has a very high level of nucleotide variability (Baird et al., 1995; Schiebel et al., 2000). Consequently, analysing DNA diversity in the $P G P L$ region will help to establish if the genome-average level of variability seen at $S H O X$ (May et al., 2002) is actually a more accurate reflection of diversity in PAR1. Second, LD and sperm crossover analysis in the $P G P L$ region will ask if the observations at $S H O X$, where LD decays very rapidly with physical distance but crossovers still cluster into a hotspot, are applicable to the rest of PAR1. Third, the extreme LD in the telomere-adjacent region (Baird et al., 1995) suggested that there is a distal region of PAR1 where recombination shuts down. Thus, identifying the rate of recombination in the PGPL region, located approximately 80 kb from the telomere (Gianfrancesco et al., 1998), might narrow down the putative interval of recombinational inactivity.

1.4.1: Genomic Sequence in the PGPL Region

PAR1 was neglected by the Human Genome Consortium until very recently (June 2003). In fact, the limited amount of genomic sequence data that existed at the beginning of my work was restricted to the SHOX region. The PGPL gene was selected for analysis for two main reasons. First, its cDNA sequence had already been published (Gianfrancesco et al., 1998) and second, there was already a handle on the region because it had been mapped to a cosmid that was part of a contig covering the distal 750 kb of PAR1 (Rao et al., 1997; Gianfrancesco et al., 1998). Hence, Chapter 3 describes the strategies that were employed to identify and analyse the sequence of the cosmid reported to contain $P G P L$. The long-awaited production
of PAR1 sequence by the Human Genome Sequencing Consortium then allowed the genomic characterisation of a 100 kb interval between the PGPL gene and the PAR1 telomere. This work is described in Chapter 4 and includes the first accurate physical map of this region.

The genomic sequence around $P G P L$ not only revealed a very high density of both interspersed and tandem repeats but also led to the identification of a novel gene. This provided an interesting side project to the main aims of my work, and has therefore been included in this thesis (Chapter 5).

1.4.2: DNA Diversity and Recombination in the PGPL Region

Identifying and analysing the genomic sequence around the $P G P L$ gene provided the primary tool to answer the questions posed at the start of this section. Chapter 6 describes both the determination of nucleotide variability in the region of $P G P L$ and the preliminary analysis of the instability of three novel tandem repeat arrays. This latter study was performed as it has been suggested that unstable minisatellites can serve as occasional markers of local meiotic recombination hotspots (Jeffreys et al., 1998a).

Chapters 7 and 8 describe the high resolution analysis of recombination in the PGPL region. Not only does this analysis provide further insight into the putative distal PAR1 boundary of meiotic recombination, it also reveals a completely unexpected distribution of crossover events, which is considered at length both in Chapter 8 and in Chapter 9, the final discussion.

Chapter 2

Materials and Methods

2.1: Materials

2.1.1: Chemical reagents

Chemicals were supplied by Fisher Scientific (Loughborough, UK), Flowgen (Ashby de la Zouch, UK), FMC Bioproducts (Rockland, USA), and Sigma Biochemical Company (Poole, UK). Molecular biology reagents were obtained from ABgene (Epsom, UK), Ambion, Inc. (Austin, USA), Amersham Biosciences (Little Chalfont, UK), Applied Biosystems (Warrington, UK), Bio-Rad (Hemel Hemstead, UK), Invitrogen UK (Paisley, UK), Millipore (Watford, UK), NEN Life Sciences (Divison of PerkinElmer Life Sciences Ltd, Cambridge, UK), New England Biolabs (Hitchin, UK), Qiagen Ltd. (Crawley, UK), ResGen (Division of Invitrogen Ltd, Paisley, UK), Sigma-Aldrich Company Ltd (Poole, UK), Stratagene (Amsterdam, The Netherlands) and United States Biochemical Corp (USB) (Cleveland, USA)

2.1.2: Specialised Equipment

Specialised equipment was obtained from Bio-Rad (Hemel Hempstead, UK), Cecil Instruments (Cambridge, UK), Eppendorf (Hamburg, Germany), Fisher Scientific (Loughborough, UK), Genetic Research Instrumentation (GRI) (Braintree, UK), Helena Biosciences (Sunderland, UK), Heraeus Instruments (Hanau, Germany), Hybaid (Teddington, UK), MJ Research (Waltham, USA), Applied Biosystems (Warrington, UK), Thermo Shandon (Pittsburgh, USA), and Ultra Violet Products (UVP) Life Sciences (Cambridge, UK).

2.1.3: Oligonucleotides

Oligonucleotides for PCR amplification and ASO hybridisation were synthesised by the Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, UK. Hexadeoxyribonucleotides for random primed labelling were obtained from Pharmacia.

2.1.4: Enzymes

Restriction enzymes were supplied by Gibco-BRL, New England Biolabs and Boehringer Mannheim. T4 ligase, Pfu polymerase, calf intestinal alkaline phosphatase and React ${ }^{\text {TM }}$ buffers were obtained from Gibco-BRL. The Klenow fragment of DNA polymerase I of E. coli was supplied by Pharmacia. Taq polymerase was obtained from Advanced Biotechnologies. RNase and Proteinase K were obtained from Sigma and T4 polynucleotide kinase was supplied by New England Biolabs.

2.1.5: Molecular weight markers

1 kb ladder was supplied by Gibco-BRL. λ DNA digested with HindIII and ϕ X174 DNA cut with HaeIII were supplied by ABgene.

2.1.6: Bacterial strains

Escherichia coli strain XL1-Blue MRF' (supplied by Stratagene) was used in all cloning experiments. XL1-Blue is both recombination deficient (recA) and endonuclease deficient (endA1). These properties serve to increase the stability of inserts and improve the quality of purified plasmid DNA respectively. The hsdR mutation prevents the cleavage of cloned DNA by the EcoK (hsdR) endonuclease system and the $\operatorname{lacl}^{9} \mathrm{Z} \Delta \mathrm{M} 15$ gene on the F^{\prime} episome allows blue-white screening of recombinant vectors by α-complementation of β-galactosidase.

XL1-Blue MRF' genotype: $\Delta(m c r A) 183 \Delta(m c r C B-h s d S M R-m r r) 173$ endA1 supE44 thi-1 recAl gyrA96 relAl lac [F^{\prime} proAB lacl $\left.{ }^{\mathrm{q}} \mathrm{Z} \Delta M 15 \mathrm{Tn} 10\left(\mathrm{Tet}^{\mathrm{r}}\right)\right]$

2.1.7: Cosmid DNA

Gudrun Rappold (Heidelberg University) provided three overlapping cosmids from the distal end of a cosmid contig that covers the terminal 750 kb of PAR1 (Rao et al., 1997).

LLN0YCO3'M'29C1; LLN0YCO3'M'3F3; LLNLN0434

2.1.8: Cloning vector

DNA fragments were cloned into the EcoRV polylinker site of the pBluescript II SK^{+}vector (supplied by Stratagene).

2.1.9: Human DNAs

Genomic DNA from EBV-transformed lymphoblastoid cell lines was supplied by the Centre d'Etude du Polymorphisme Humain (CEPH, Paris, France). Semen samples from anonymous north European donors of UK origin were supplied by J. Blower (Leicester Royal Infirmary, Leicester, UK). Additional semen samples were provided by members of the Department of Genetics (University of Leicester, UK). All studies were granted Local Ethical Committee approval.

2.1.10: Standard solutions

Southern blot solutions (depurinating solution, denaturing solution, and neutralising solution), 20 x Sodium Chloride-Sodium Citrate (SSC) buffer, 10xTris-borate/EDTA (TBE) electrophoresis buffer, Luria-Bertani broth (LB) and Luria-Bertani agar (LUA) were as described by Sambrook (Sambrook et al., 1989), and were supplied by the media kitchen, Department of Genetics, University of Leicester. 11.1xPCR buffer was supplied by R. Neumann, Department of Genetics, University of Leicester, UK. SOC broth was as described by Sambrook et al. (1989).

2.1.11: Computers

This thesis was produced using a Power Macintosh G3 Minitower and an Epson Perfection 1250 scanner. It was printed on an HP4000 6MP LaserJet printer. DNA sequences were analysed by an IRIX Mainframe computer, operating the Genetics Computer Group (GCG) Sequence Analysis Software Package version 10.0 programs, developed at the University of Wisconsin (Devereux et al., 1984). Data were stored, analysed, and presented using the software packages Adobe Acrobat, Adobe Photoshop, Autoassembler, Clarisdraw, EndNote, Factura, Freehand, Microsoft Word, Microsoft Excel, and Microsoft Powerpoint all for Macintosh computers. Internet searches were performed using Microsoft Internet Explorer. All computer analyses were performed on Apple Macintosh computers.

2.2: Methods

The methods used during the course of this work are described below as general overviews of techniques. Where appropriate, detailed descriptions of novel or modified techniques are described, in context, in the Results chapters. Other techniques are very well described elsewhere and are referenced as such in the relevant Results chapters.

2.2.1: Selection and growth of bacterial cultures

All bacterial manipulations were performed under sterile conditions to minimise contamination of cultures.

2.2.1.a: Preparation of glycerol stocks

Each cosmid preparation provided by Gudrun Rappold was streaked on Luria-Bertani agar (LUA) containing kanamycin at $50 \mu \mathrm{~g} / \mathrm{ml}$ and incubated for 16 hours at $37^{\circ} \mathrm{C}$. Four individual clones of each cosmid were transferred to 3 ml of Luria-Bertani broth (LUB) containing kanamycin at $50 \mu \mathrm{~g} / \mathrm{ml}$ and grown for 16 hours at $37^{\circ} \mathrm{C}$ with shaking at 200 rpm . A 0.5 ml aliquot of overnight LUB bacterial culture was mixed with 0.5 ml of sterile $60: 40$ (v/v) glycerol/LUB solution and stored at $-80^{\circ} \mathrm{C}$.

2.2.2: Agarose gel electrophoresis

2.2.2.a: Electrophoresis conditions

Unless stated otherwise, agarose gel electrophoresis was carried out using 1% (w/v) LE (SeaKem ${ }^{\text {TM }}$) agarose gels in $0.5 \times$ TBE (44.5 mM Tris-borate $\mathrm{pH} 8.3,1 \mathrm{mM}$ EDTA) buffer containing $0.5 \mu \mathrm{~g} / \mathrm{ml}$ ethidium bromide. Electrophoresis tanks were manufactured in-house and power packs were supplied by Bio-Rad and Shandon Southern. DNA was visualised using a UV wand (Chromato-vue UVM-57, UVP Life Sciences) or a UV transilluminator (UVP High Performance transilluminator, UVP Life Sciences) or the GeneGenius analysis system (Syngene). The Dark Reader System (Clare Chemical Research) was used for band excision.

2.2.2.b: Gel photography

Photographic records of ethidium bromide-stained gels were generated by visualisation of the products on a UV transilluminator (UVP High Performance transilluminator) and
photography using a Mitsubishi video copy processor (Genetic Research Instrumentation) with camera (UVP Life Sciences) or by use of the GeneGenius analysis system and a Sony digital graphic printer (Syngene).

2.2.3: Methods of DNA preparation

DNA was extracted from venous bloods and semen samples under PCR clean conditions using phenol/chloroform extraction followed by ethanol precipitation, as described elsewhere (Jeffreys et al., 1990). DNA extractions from both sperm and blood were performed in a category II laminar flow hood under conditions designed to minimise contamination. Unless otherwise stated all centrifugation steps in this and subsequent sections were performed in either a Heraeus Septatech Biofuge 15 centrifuge or an Eppendorf 5415 D centrifuge.

2.2.3.a: DNA extraction from human sperm

Frozen semen samples were thawed on ice for 1 hour. 250μ l of semen was transferred to a 1.5 ml screw top tube and diluted to 1 ml with $1 \times$ SSC. $20 \mu \mathrm{l} 1 \%$ (w/v) SDS was added, mixed by flicking in order to lyse somatic cells including epithelial cells (sperm heads are not lysed by SDS alone) and centrifuged for 2 minutes. The supernatant was removed and lysis was repeated once by vigorous resuspension in $1 \mathrm{ml} 1 \times \operatorname{SSC}, 0.2 \%(\mathrm{w} / \mathrm{v})$ SDS. The pellet was washed in 1 ml 1 x SSC to remove any trace of SDS and non-sperm DNA and resuspended fully in a hypotonic solution of $450 \mu \mathrm{l} 0.2 \mathrm{xSSC}$ to aid lysis. Sperm heads were lysed by addition of SDS to a final concentration of $1 \%(\mathrm{w} / \mathrm{v})$ and 2-mercaptoethanol (final concentration of 1 M) and incubated at room temperature for 5 minutes. Proteinase K was added to a final concentration of $200 \mu \mathrm{~g} / \mathrm{ml}$ and incubated for 1 hour at $37^{\circ} \mathrm{C}$ with occasional mixing. Proteins were removed by addition of $350 \mu \mathrm{l}$ phenol/chloroform with gentle mixing to allow emulsification and centrifuged again for 2 minutes. The organic layer was reextracted once with $1 \times$ SSC and $0.2 \%(\mathrm{w} / \mathrm{v})$ SDS. DNA was ethanol precipitated using 2 volumes of 100% ethanol and gentle swirling. The supernatant was removed and the pellet washed with $1 \mathrm{ml} 80 \%(\mathrm{v} / \mathrm{v})$ ethanol and gently mixed. The pellet was dissolved in $90 \mu \mathrm{l}$ of distilled water; $10 \mu \mathrm{l} 2 \mathrm{M}$ sodium acetate (pH 7.0) was added followed by $200 \mu \mathrm{l} 100 \%$ ethanol and centrifuged for 1 minute. The supernatant was removed, the pellet air dried and dissolved at $4{ }^{\circ} \mathrm{C}$ in $50 \mu \mathrm{l} 5 \mathrm{mM}$ Tris- $\mathrm{HCl}(\mathrm{pH} 7.5)$.

2.2.3.b: DNA extraction from human blood

Venous blood samples (delivered into equal volumes of $1 \times \mathrm{SSC}$ and stored at $-80^{\circ} \mathrm{C}$), were thawed at $37^{\circ} \mathrm{C}$ and $500 \mu \mathrm{l}$ transferred into a 1.5 ml screw top tube. $800 \mu \mathrm{l} 1 \mathrm{xSSC}$ was added and gently mixed before centrifugation for 2 minutes. The supernatant, including haemoglobin from lysed erythrocytes, was removed and the pellet washed twice in 1 ml $1 \times$ SSC. The pellet was resuspended in $300 \mu \mathrm{l} 0.2 \times$ SSC and cells were lysed by adding $30 \mu \mathrm{l} 10 \%(\mathrm{w} / \mathrm{v})$ SDS and incubated at room temperature for 5 minutes. Proteinase K was added to a final concentration of $200 \mu \mathrm{~g} / \mathrm{ml}$ and incubated for 1 hour at $37^{\circ} \mathrm{C}$ with occasional mixing. Trace proteins were removed by addition of phenol/chloroform with gentle mixing to allow emulsification and centrifuged for 3 minutes. The organic layer was re-extracted twice with $1 \times$ SSC and $0.2 \%(\mathrm{w} / \mathrm{v})$ SDS. DNA was ethanol precipitated as above and dissolved in $20 \mu \mathrm{l} 5 \mathrm{mM}$ Tris- HCl (pH 7.5).

2.2.3.c: Extraction of cosmid DNA

An isolated positive colony or $5-10 \mu \mathrm{l}$ aliquot of glycerol stock, containing an appropriate recombinant cosmid, was cultured in 50 ml LUB with $50 \mu \mathrm{l} / \mathrm{ml}$ kanamycin at $37^{\circ} \mathrm{C}$ overnight. Next, 25 ml aliquots of the overnight culture were centifuged at 13000 rpm for five minutes at $4^{\circ} \mathrm{C}$. The cells from each aliquot were resuspended in 2 ml cosmid lysis solution (25 mM Tris-HCl; 10 mM EDTA, $\mathrm{pH} 8.0 ; 50 \mathrm{mM}$ glucose and freshly added $2 \mathrm{mg} / \mathrm{ml}$ lysozyme) and left for five minutes at room temperature. The cells were then lysed, and the DNA denatured, with $4 \mathrm{ml} 0.2 \mathrm{M} \mathrm{NaOH}, 1 \%(\mathrm{w} / \mathrm{v}) \mathrm{SDS}$. The mixture was left on ice for 4 minutes before adding 3 ml 3 M potassium acetate, pH 4.8 to neutralise and precipitate the chromosomal DNA and most of the proteins. After 8 minutes on ice the precipitate was pelleted by centrifugation as above, the supernatant collected and residual protein was precipitated by addition of equal volumes of phenol: chloroform: isoamyl alcohol (25:24:1). The DNA was collected by ethanol precipitation and dissolved in 5 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$. To prepare DNA for shotgun library construction (see below), a large-scale version of this method was used in which a $40 \mu \mathrm{l}$ aliquot of glycerol stock was cultured in 200 ml LUB with $50 \mu \mathrm{l} / \mathrm{ml}$ kanamycin at $37^{\circ} \mathrm{C}$ overnight, before the overnight culture was split into 25 ml aliquots and the extraction was completed as above. Where high quality cosmid DNA was required, it was prepared using a QIAGEN Plasmid Maxi Kit, which was employed according to the manufacturer's instructions.

2.2.4: Methods of DNA purification

2.2.4.a: Ethanol precipitation

Unless stated otherwise, double-stranded DNA was precipitated in microcentrifuge tubes by addition of $1 / 10$ volume 2 M sodium acetate pH 5.5 , and 2 volumes 100% ethanol followed by incubation on ice for $10-30 \mathrm{~min}$ and centrifugation for 15 min at 15000 rpm . The pellet was washed in 80% (v / v) ethanol and allowed to air dry. Single-stranded DNA was precipitated in microcentrifuge tubes by addition of $1 / 10$ volume 2 M sodium acetate pH 5.5 , and 2.5 volumes 100% ethanol followed by incubation at $-80^{\circ} \mathrm{C}$ for 30 min and centrifugation for 30 min at 15000 rpm . The pellet was washed in $80 \%(\mathrm{v} / \mathrm{v})$ ethanol and allowed to air dry. Oligonucleotides (section 2.1.3) were precipitated in microcentrifuge tubes by addition of $1 / 10$ volumes 2 M Sodium acetate pH 7 , and 3 volumes 100% ethanol followed by incubation at $-80^{\circ} \mathrm{C}$ for 30 min and centrifugation for 30 min at 15000 rpm . The pellet was washed in 80% ethanol, allowed to air dry and redissolved in $50 \mu 1$ of PCR-clean water.

2.2.4.b: Electroelution of DNA from agarose gels

Following electrophoresis under normal conditions (Sambrook et al., 1989), the fragment of interest was excised from the agarose gel using the Dark Reader system (Clare Chemical Research) for visualisation. The Dark Reader emits light only in the blue spectrum so there is no UV light that would damage DNA samples. The agarose bands excised from gels were transferred to a slot cut within a second gel, slightly wider than the excised fragment. A piece of dialysis membrane was prepared by boiling for 10 min in TE and inserted into the gel slot curled under, and folded over the excised band. The gel was run at $4 \mathrm{~V} / \mathrm{cm}$ allowing the DNA to electroelute onto the membrane. Electroelution was monitored using a Dark Reader wand. With continuous application of the current, the membrane was smoothly removed from the gel and placed into a microcentrifuge tube with a corner of the membrane trapped in the lid. Droplets of buffer containing the DNA fragment of interest were collected from the dialysis membrane by centrifugation at 15000 rpm for 30 seconds. DNA was recovered from the eluate by ethanol precipitation.

2.2.5: DNA transfer to membrane

2.2.5.a: Southern blot

Following electrophoresis, the region of agarose gel required for DNA transfer was excised. The gel was partially depurinated in 0.25 M HCl for 2×5 minutes (depurinated DNA is
cleaved more readily by NaOH), alkali-denatured in $0.5 \mathrm{M} \mathrm{NaOH}, 1 \mathrm{M} \mathrm{NaCl}$ for 8 minutes and 10 minutes (to cleave DNA into smaller fragments), and neutralised in 0.5 M Tris- HCl $\mathrm{pH} 7.5,3 \mathrm{M} \mathrm{NaCl}$ for 8 minutes and 10 minutes. DNA was transferred to Hybond ${ }^{\mathrm{TM}}-\mathrm{N}^{\mathrm{fp}}$ (Amersham International Plc.) nylon membrane (pre-soaked in 10xSSC) by the capillary transfer method using $20 \times$ SSC as the transfer buffer (Southern blotting (Southern, 1975)). Blotting was continued for $1-8$ hours, depending on the agarose gel concentration. The membrane was washed in $2 \times \mathrm{SSC}$, dried at $80^{\circ} \mathrm{C}$ for 15 min , and the DNA covalently linked to the membrane by exposure to $7 \times 10^{4} \mathrm{~J} / \mathrm{cm}^{2}$ of UV light in the RPN 2500 ultraviolet crosslinker (Amersham).

2.2.5.b: Dot blot

PCR amplification was performed so that each spot would contain the equivalent of $3-100 \mathrm{ng}$ DNA per 1 kb PCR product. Each reaction was then mixed with 0.25 volumes of dotblot loading mix $(30 \%(\mathrm{v} / \mathrm{v})$ glycerol, 0.5 x TBE and a trace of bromophenol blue - sufficient to give a blue spot on the dotblot for identification of spot locations during loading) followed by at least five volumes of denaturing mix $(0.5 \mathrm{M} \mathrm{NaOH}, 2 \mathrm{M} \mathrm{NaCl}, 25 \mathrm{mM}$ EDTA $)$ in order to obtain at least $30 \mu \mathrm{l}$ of solution per replica filter. A vacuum was applied to the assembled dotblot manifold harbouring one sheet of Hybond ${ }^{\mathrm{TM}}-\mathrm{N}^{\mathrm{fp}}$ (Amersham International Plc.) nylon membrane, plus two additional backing sheets of 3MM Whatman chromatography paper (all pre-soaked in $2 \times \mathrm{SSC}$). At leat $30 \mu \mathrm{l}$ of denatured DNA was loaded into each well and, once all samples were loaded, each well was washed with $150 \mu \mathrm{l} 2 \times$ SSC to neutralise the DNA. The dotblots were dried for 10 minutes at $80^{\circ} \mathrm{C}$ and the DNA covalently linked to the membrane by UV exposure as above.

2.2.6: Hybridisation

2.2.6.a: Southern blot hybridisation

Double stranded DNA (10 ng) generated (unless stated otherwise) by PCR amplification of the locus of interest was added to 2 ng of of λ DNA x HindIII and ϕ X174 RF DNA x HaeIII ladders and labelled by the random primed labelling reaction (Feinberg and Vogelstein, 1983; Feinberg and Vogelstein, 1984) which involves the use of random-sequence hexamers and the E. coli DNA polymerase I Klenow fragment to incorporate $\alpha-{ }^{32} \mathrm{P}$-dCTP (supplied by Amersham International Plc.) into the DNA. Labelling reactions were performed in $15 \mu \mathrm{l}$ reaction volume, and incubated at $37^{\circ} \mathrm{C}$ for $1-18 \mathrm{hr}$. The probe was recovered from unincorporated deoxyribonucleotides by ethanol precipitation using $100 \mu \mathrm{~g}$ high molecular
weight herring sperm DNA (Fluka, Sigma-Aldrich) as a carrier. Probes were dissolved in 0.5 ml distilled water and denatured by boiling for 3 min immediately prior to use. Membranes were pre-hybridised for at least 20 min at $65^{\circ} \mathrm{C}$ in $7 \%(\mathrm{w} / \mathrm{v}) \mathrm{SDS}, 0.5 \mathrm{M}$ sodium phosphate pH 7.2, 1 mM EDTA (modified from Church and Gilbert (1984)). Hybridisation was carried out at $65^{\circ} \mathrm{C}$ for $2-20 \mathrm{hr}$ in a Maxi 14 , or Mini 10 hybridisation oven (Hybaid). After hybridisation, the membrane was washed at $65^{\circ} \mathrm{C}$ in 4 changes of 40 mM sodium phosphate $\mathrm{pH} 7.2,1 \%(\mathrm{w} / \mathrm{v})$ SDS and then in high stringency wash solution $(0.1 \mathrm{xSSC}, 0.01 \%$ (w/v) SDS) at $65^{\circ} \mathrm{C}$ for fifteen minutes. The membranes were blot-dried and exposed to Fuji RX100 X-ray film, either at room temperature for strong signals, or at $-80^{\circ} \mathrm{C}$ with an intensifying screen, in order to visualise the hybridisation pattern.

2.2.6.b: Dot blot hybridisation

This method uses a TMAC (tetramethylammonium chloride, Sigma Biochemical Company) hybridisation protocol which essentially eliminates the dependence of allele specific oligonucleotide (ASO) melting temperature on base composition, thereby allowing all ASOs of equal length to hybridise at the same temperature. ASOs were end-labelled for one hour at $37^{\circ} \mathrm{C}$ in $10 \mu \mathrm{l}$ reaction volumes consisting of 8 ng ASO, $1 \mu \mathrm{l} 10 \mathrm{x}$ kinase buffer (700 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 100 \mathrm{mM} \mathrm{MgCl}_{2}, 50 \mathrm{mM}$ spermidine trichloride, 20 mM dithiothreitol), 3.5 units bacteriophage T4 polynucleotide kinase and $2 \mu \mathrm{Ci} \gamma-{ }^{32} \mathrm{P}-\mathrm{ATP}$. Following incubation, $20 \mu \mathrm{l}$ of kinase stop solution (25 mM diNa EDTA, $0.1 \%(\mathrm{w} / \mathrm{v}) \mathrm{SDS}, 10 \mu \mathrm{M}$ ATP) together with 20 -fold excess (160 ng) of unlabelled ASO for the other allele as competitor were added to the [$\left.\gamma{ }_{-}{ }^{32} \mathrm{P}\right]$-labelled ASO and the probe was used immediately for hybridisation. Dotblot membranes were soaked briefly in $3 \times$ SSC and pre-hybridised in 3 ml hybridisation solution (final concentrations: 3 M TMAC, 0.6% (w / v) SDS, 1 mM diNa EDTA (pH 8.0), 10 mM sodium phosphate (pH 6.8), $5 \times$ Denhardt's solution (50 x Denhardt's solution: $1 \%(\mathrm{w} / \mathrm{v}$) Ficoll $400,1 \%(\mathrm{w} / \mathrm{v})$ polyvinylpyrrolidone, $1 \%(\mathrm{w} / \mathrm{v}) \mathrm{BSA}), 4 \mu \mathrm{~g} / \mathrm{ml}$ yeast RNA) at $53^{\circ} \mathrm{C}$ for 5 minutes. The membranes were then incubated in 2.5 ml fresh hybridisation solution together with $7 \mu \mathrm{l} 3 \mathrm{mg} / \mathrm{ml}$ single stranded (heat-denatured) herring sperm DNA competitor at $53^{\circ} \mathrm{C}$ for a further 2-10 minutes. The $\left[\gamma{ }^{32} \mathrm{P}\right]$-labelled ASO/unlabelled competitor ASO mix was then added to the hybridisation solution and hybridised at $53^{\circ} \mathrm{C}$ for 1 hour. Following hybridisation, the membranes were washed in 3 changes of 2-3 ml TMAC wash solution (final concentrations: 3 M TMAC, $0.6 \%(\mathrm{w} / \mathrm{v}) \mathrm{SDS}, 1 \mathrm{mM}$ diNa EDTA $\mathrm{pH} 8.0,10 \mathrm{mM}$ sodium phosphate pH 6.8) at $56^{\circ} \mathrm{C}$ ($5-20$ minutes washing in total), followed by 4 ml TMAC wash solution at $56^{\circ} \mathrm{C}$ for a 15 minutes. The membranes were then rinsed twice in $3 \times \mathrm{SSC}$ at room temperature, blot-dried and exposed to Fuji RX100 X-ray film as above.

2.2.6.c: Removing probe for re-use of membranes

The membranes were washed in 2-4 changes of boiling $1 \%(\mathrm{w} / \mathrm{v})$ SDS (8-9 changes for dotblots) until monitoring of the membranes with a Geiger counter demonstrated complete probe removal.The membranes were then rinsed in $2 \times$ SSC at room temperature and stored damp at $4^{\circ} \mathrm{C}$ or used directly for re-hybridisation as above.

2.2.7: Enzymatic manipulation of DNA

Enzymatic manipulation of DNA was carried out in the reaction buffer supplied with the enzyme according to the conditions recommended by the supplier, unless stated otherwise.

2.2.8: DNA amplification

2.2.8.a: PCR Buffer

$11.1 \times$ PCR buffer (Jeffreys et al., 1990) was prepared by R. Neumann (Department of Genetics, Leicester) as indicated below. dNTPs and BSA were supplied by Pharmacia.

Component	Concentration of Stock Solution	Volume (arbitrary units)	Final Concentration in PCR Reaction
Tris-HCl pH 8.8	2 M	167	45 mM
Ammonium Sulphate	1 M	83	11 mM
MgCl $_{2}$	1 M	33.5	4.5 mM
2-mercaptoethanol	100%	3.6	6.7 mM
EDTA pH 8.0	10 mM	3.4	$4.4 \mu \mathrm{M}$
dATP	100 mM	75	1 mM
dCTP	100 mM	75	1 mM
dGTP	100 mM	75	1 mM
dTTP	100 mM	75	1 mM
BSA	$10 \mathrm{mg} / \mathrm{ml}$	85	$113 \mu \mathrm{~g} / \mathrm{ml}$
Total Volume			

2.2.8.b: PCR conditions

2.2.8.b.i: General PCR

DNA was amplified using the Polymerase Chain Reaction (PCR) (Saiki et al., 1988) on a PTC-225 DNA Engine Tetrad Peltier thermal cycler with heated lid (MJ Research). PCR amplifications were performed, unless stated otherwise, in $10 \mu \mathrm{l}$ reactions containing $0.9 \mu \mathrm{l}$ of $11.1 \times$ PCR buffer as described above, $0.25 \mu \mathrm{M}$ of each primer and $0.03 \mathrm{U} / \mu \mathrm{l}$ Taq polymerase
under normal amplification conditions. For amplification of DNA longer than 2 kb normal PCR conditions were supplemented with $0.0035 \mathrm{U} / \mu \mathrm{l}$ Pfu polymerase. Pfu has 3^{\prime} to 5^{\prime} exonuclease activity which can edit regions of depurinated DNA by removing base mismatches that would otherwise cause Taq polymerase to stall, resulting in incomplete products and allowing jumping PCR to occur. Where indicated $1 \mu \mathrm{~g} / \mathrm{ml}$ carrier herring sperm DNA was added to the reaction to preferentially coat the side of PCR tubes and prevent the target DNA being sequestered in this way. This was particularly important when using very low inputs ($<1 \mathrm{ng}$) of target DNA. To minimise contamination, precautions were taken to ensure that the reagents and materials used in the PCR reaction were kept separate from general laboratory chemicals, and PCR reactions were set up in a category II laminar flow hood. Details of specific PCR thermal cycling conditions and primer sequences are listed in the tables at the end of this chapter. Details of the templates used in the PCRs are included in the tables or appropriate chapters, where relevant.

2.2.8.b.ii: Vectorette PCR

The aim of vectorette PCR (vectorette walking) is to walk from a known sequence of DNA to an unknown, adjacent section using PCR. To do this vectorette linkers are ligated onto partially digested DNA, which is then amplified using a unique primer from the known sequence and a vectorette primer (figure 2.1). Vectorette PCR was used during the work presented in Chapter 3 of this thesis; N0434.1 cosmid DNA, in amounts of $1 \mu \mathrm{~g}$, was digested with $1.0,0.5,0.25,01.25$ or 0.0625 units of Hae III or RsaI restriction enzymes, for 30 minutes in 10μ l reaction volumes. The extent of the digests was then checked by agarose gel electrophoresis and the DNA from the tubes in which the digests were judged to have produced the best 'smear' (i.e. the digests were clearly partial) was purified by phenol/chloroform extraction and ethanol precipitation. Vectorette oligonucleotides were annealed to each other through the addition of $5 \mu \mathrm{~g}$ of each oligonucleotide to $1 \mu \mathrm{l}$ of 10 x annealing mix ($1 \mathrm{M} \mathrm{NaCl} ; 0.1 \mathrm{M} \mathrm{MgCl}_{2} ; 0.1 \mathrm{M} \mathrm{Tris-HCl}, \mathrm{pH} 7.5$) in a $10 \mu \mathrm{l}$ reaction volume and incubation at $60^{\circ} \mathrm{C}$ for 30 minutes. The final concentration of the annealed oligonucleotides (vectorette linkers) was adjusted to $200 \mathrm{ng} / \mu \mathrm{l}$ and they were stored at $-20^{\circ} \mathrm{C}$. Partially digested DNA $(0.2 \mu \mathrm{~g})$ was ligated to the vectorette linkers $(0.2 \mu \mathrm{~g})$ at $15^{\circ} \mathrm{C}$ for 16 hours in a final volume of $20 \mu \mathrm{l}$ using T4 ligase and its buffer as recommended by the supplier (New England Biolabs). The completed reactions were diluted with $80 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$ and stored at $-20^{\circ} \mathrm{C}$. This vectorette library was then used to seed PCR amplifications, which were subjected to electrophoresis and electroelution in order to isolate the amplicon that contained unknown sequence.

1: Anneal vectorette oligonucleotides; they have a region of non-homology resulting in a 20 bp single-stranded segment.

DENATURE

3: PCR amplification using Vec 1 prim and a unique primer from known DNA sequence.

Vec 1 prim
DENATURE

Figure 2.1: Vectorette PCR

Vec 1 prim is identical to one of the single strands in the vectorette linker and can only prime once a copy of the vectorette sequence has been made. Thus the whole system relies on the specificity of the unique primer

2.2.9: Preparation of shotgun library

2.2.9.a: Digestion and dephosphorylation of vector

$20 \mu \mathrm{~g}$ of uncut pBluescript II SK ${ }^{+}$vector was digested with 50 units of EcoRV in REact ${ }^{\mathrm{TM}} 2$ buffer for 2 hours at $37^{\circ} \mathrm{C}$, and dephosphorylated by the addition of 50 units of calf intestinal alkaline phosphatase (CIAP, Gibco) with incubation for 30 minutes at $37^{\circ} \mathrm{C}$. The reaction was stopped by addition of SDS and EDTA to concentrations of $0.5 \%(\mathrm{w} / \mathrm{v})$ and 5 mM respectively, followed by incubation at $65^{\circ} \mathrm{C}$ for 20 minutes for enzyme denaturation. The vector was collected by ethanol precipitation and redissolved in $50 \mu \mathrm{IE}(5 \mathrm{mM}$ Tris -HCl , pH7.5; 0.1 mM EDTA). Concentration of the stock solution was assayed by measuring A_{260} using a Cecil Instruments 2040 UV spectrophotometer, and adjusted to $100 \mu \mathrm{~g} / \mathrm{ml}$.

2.2.9.b: End-filling and ligation

$20 \mu \mathrm{l}$ aliquots of cosmid DNA were fragmented using a Pul 55 sonicator (Kerry Ultrasonics Limited). Fragments of size range $1.0-2.0 \mathrm{~kb}$ were selected by agarose gel electrophoresis, electroelution and ethanol precipitation and redissolved in $20 \mu \mathrm{l}$ of distilled water. Fragments for ligation were end-filled by addition of 5 mM of each dNTP with 2 units of Klenow in a 20 $\mu 1$ reaction volume with REact1 ${ }^{\mathrm{TM}}$ buffer (Gibco-BRL) and incubation at $37^{\circ} \mathrm{C}$ for 30 min . End-filled fragments were purified by gel electrophoresis, electroelution, and precipitation as described above.

Unless otherwise stated ligations were performed in a $10 \mu 1$ reaction volume containing 7.5 ng of EcoRV-digested and dephosphorylated pBluescript II SK ${ }^{+}, 75 \mathrm{ng}$ of sonicated and repaired cosmid DNA, 1 unit T4 DNA ligase and T4 DNA ligase buffer (New England Biolabs). Reactions were incubated for 16 hours at $16^{\circ} \mathrm{C}$. Ligation products were recovered by ethanol precipitation and redissolved in $10 \mu \mathrm{l}$ of distilled water.

2.2.9.c: Preparation of competent XL1-Blue MRF' cells

A single colony of XL1-Blue MRF' cells, grown at $37^{\circ} \mathrm{C}$ on LUA supplemented with $25 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline, was transferred to 5 ml of LB with $25 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline and incubated for 16 hours at $37^{\circ} \mathrm{C}$ with shaking at 300 rpm . A 0.5 ml aliquot of this culture was transferred to 50 ml of LB with $25 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline and incubated for 3-4 hours as above until cells reached a density of $\mathrm{OD}_{600}=0.5-0.6$. Aliquots of 1.4 ml were centrifuged at 13000 rpm for 30 seconds and the supernatant removed. The cells were gently resuspended in 0.5 ml fresh MR solution (10 mM MOPS $\mathrm{pH} 7.0,10 \mathrm{mM} \mathrm{RbCl}$) and centrifuged for 30 seconds at

13000 rpm . The supernatant was removed, the cells were resuspended in 0.5 ml fresh MRC solution (100 mM MOPS $\mathrm{pH} 6.5,10 \mathrm{mM} \mathrm{RbCl}, 50 \mathrm{mM} \mathrm{CaCl}$) and left on ice for 30 minutes. The cells were then centrifuged at 13000 rpm for 30 seconds before the supernatant was removed and the cells were reuspended in 0.15 ml MRC. The competent cells were then kept on ice prior to their use in transformation.

2.2.9.d: Transformation and selection of transformants

$5 \mu \mathrm{l}$ of ligation mix and $3 \mu \mathrm{l}$ of DMSO were added to the 0.15 ml MRC suspensions of competent cells, which were then left on ice for one hour. The cells were heat-shocked at $55^{\circ} \mathrm{C}$ for exactly 35 seconds and cooled on ice for one minute. 1 ml of SOC broth was immediately added and the cell suspension was incubated at $37^{\circ} \mathrm{C}$ for 45 minutes. Centrifugation at 13000 rpm for 30 seconds was followed by removal of the supernatant and the resuspension of the cells in $30 \mu \mathrm{l}$ of SOC broth. This culture was then plated onto LUA supplemented with $60 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, $25 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline, $40 \mu \mathrm{~g} / \mathrm{ml}$ X-gal and 0.5 mM IPTG. Plates were incubated for 16 hr at $37^{\circ} \mathrm{C}$. For each ligation, 10 white colonies and 2 blue colonies were selected, cultured in 2.5 ml LB, and DNA extracted by alkali lysis. The DNA was digested with PstI and HindIII and electrophoresed to check for insert presence.

2.2.9.e: Ligation reaction and transformation controls

For each newly prepared stock of either pBluescript II SK ${ }^{+}$vector or competent cells, the following controls were performed.

Plate	Control Insert	Digested Dephosphorylated Vector	Insert	Ligase	Unmodified Vector
1	x	x	x	\checkmark	x
2	x	\checkmark	\checkmark	\checkmark	x
3	x	\checkmark	x	\checkmark	x
4	x	x	x	x	x
5	x	\checkmark	\checkmark	x	\checkmark
6	x	\checkmark	\checkmark	\checkmark	x
7					x

2.2.9.e.i: Expected results from controls:

- The 1.35 kb band from the $\phi \times 174 \mathrm{x}$ HaeIII ladder was selected as the control insert fragment. Most colonies should be white due to disruption of the LacZ operon by the insert DNA. Tests the efficiency of the ligase.
- Ought to be no colonies due to the absence of the vector and hence the $\mathrm{amp}^{\mathrm{R}}$ gene. Tests that insert is not contaminated with vector DNA.
- Dephosphorylated vector should not re-ligate. A small number of blue colonies would be seen if dephosphorylation or digestion was incomplete.
- Linearised vector so no colonies should be present. Any colonies would indicate that uncut vector remains.
- Should produce many blue colonies and is an indicator of transformation efficiency
- Controls 6 and 7 (and onwards) vary the insert:vector ratio and should produce mostly white colonies, representing recombinants.

2.2.9.f: Picking colonies into ordered arrays

10 ml of $10 \times \mathrm{HMFM}\left(36 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 13 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 20 \mathrm{mM} \mathrm{Na}\right.$ citrate dihydrate, $10 \mathrm{mM} \mathrm{MgSO} .7 \mathrm{H}_{2} \mathrm{O}, 44 \%(\mathrm{w} / \mathrm{v})$ glycerol) was sterilised and added to 100 ml of LUB with $55 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $27.5 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline. White colonies were picked from plates and added to $100 \mu \mathrm{l}$ of HMFM:LUB mixture in the wells of a 96-well microtitre plate. Each plate also contained an aliquot of HMFM:LUB into which no colony was added and two wells into which a blue colony was picked. The plates were incubated at $37^{\circ} \mathrm{C}$ for 16 hours, frozen on a bed of dry ice and stored at $-80^{\circ} \mathrm{C}$.

2.2.9.g: Recovery of double stranded DNA directly from shotgun library clones

 Shotgun library clones were thawed (on ice) and $20 \mu \mathrm{l}$ aliquots were mixed with $500 \mu \mathrm{l}$ of distilled water before centrifuging at 13000 rpm for 2 minutes. The supernatant was then discarded and the pellet was resuspended in $9 \mu \mathrm{l}$ of distilled water. The mixture was then held at $100^{\circ} \mathrm{C}$ for 4 minutes, centrifuged at 13000 rpm for 4 minutes and stored at $4^{\circ} \mathrm{C}$. Each clone was then ready for PCR amplification using the commercially-available KS and SK primers (Stratagene).
2.2.10: Sequencing

2.2.10.a: Automated DNA sequence analysis

Following PCR amplification and agarose gel electrophoresis, the amplified DNA was recovered by electroelution onto dialysis membrane as previously described. The sample was ethanol precipitated and dissolved in $10 \mu \mathrm{l}$ of distilled water. Sequencing was then carried out using a PE Applied Biosystems Model 377 DNA Sequencing System, with the ABI PRISM BigDye ${ }^{\text {TM }}$ Terminator Cycle Sequencing Ready Reaction Kit, in accordance with the manufacturer's instructions. $10 \mu \mathrm{l}$ sequencing reactions were cycled at $96^{\circ} \mathrm{C}$ for 10 seconds, $50^{\circ} \mathrm{C}$ for 5 seconds and $60^{\circ} \mathrm{C}$ for 4 minutes for 25 cycles using $\sim 15 \mathrm{ng} / \mathrm{kb}$ of DNA template
and 3.3 pM sequencing primer. Sequencing products were purified by a modified ethanol precipitation protocol: 0.1 volumes 3 M sodium acetate (pH 4.6) and 2.5 volumes $95 \%(\mathrm{v} / \mathrm{v})$ ethanol were added to the finished reaction, followed by a 10 minute incubation on ice. The mixture was centrifuged for 20 minutes at 13000 rpm at room temperature, the pellet was washed with $70 \%(\mathrm{v} / \mathrm{v})$ ethanol, air dried and dissolved in $2 \mu \mathrm{l} 83 \%$ de-ionised formamide, 8.3 mM EDTA, prior to loading onto the sequencing gel. Gel electrophoresis and scanning was carried out in the Protein and Nucleic Acid Laboratory (PNACL), University of Leicester. Where appropriate sequence reads were assembled using ABI Autoassembler software.

Table 2.1: Oligonucleotides used in Chapter 3 (N0434.1 sequencing). All except those marked with an asterisk were used in sequencing reactions that took place under the conditions described in section $\mathbf{1 0 . b}$ of this chapter. A subset of these oligonucleotides were also used in a number of PCRs (table $2.2 a, b$). Note that here and elsewhere oligonucleotides are listed in 5^{\prime} to 3^{\prime} orientation.

Table 2.2a: The PCR conditions used to generate templates for the sequencing of cosmid N0434 (chapter 3)

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Other Comments
SK x KS	variable	Each N0434 shotgun library clone	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 24 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	Variable amplicon size as these conditions were employed to isolate shotgun library inserts prior to sequencing. These PCR conditions were also employed to amplify cosmid 3F3 library clones (Chapter 4).
N12.5F x N 15.1 R	2.5	10 ng of isolated N0434.1 DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 22 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	These PCRs were performed in order to generate amplicons across gaps in the sequence assembly of the N0434 cosmid. The amplicons were then sequenced and the gaps closed.
$\mathrm{N} 30.6 \mathrm{~F} \times \mathrm{N} 31.2 \mathrm{R}$	0.6			
N24.1F x N26.3R	2.2			
N18.4F \times N19.1R	0.6			
N19.4F \times N19.7R	0.4		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 66^{\circ} \mathrm{C}, 30^{\prime \prime} ; 72^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 68^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 12 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	
N11.8F \times N12.5R	0.7			
$\mathrm{N} 10.4 \mathrm{~F} \times \mathrm{N} 10.9 \mathrm{R}$	0.6			
N9.1F \times N9.9R	0.9			
N7.3F \times N9.1R	1.7			
N4.7F \times N 5.2 R	0.7			
N1.4F x N2.4R	1.2			
VEC1.PRIM \times N23.3R	variable	$1 \mu \mathrm{l}$ of HaeIII or Rsal vectorette libraries (see this chapter, section 2.8.b.ii, and chapter 3)	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 66^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 63^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 12 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 60^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	These were vectorette PCRs and were also employed as part of the strategy to close gaps in the sequence assembly of the N0434 cosmid.
VEC1.PRIM \times N9.1R				
VEC1.PRIM \times N9.1R				
SK x N 22.8 R	0.8 or 1.1	Shotgun library	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 60^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 12 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	In the final push to close gaps remaining in the N 0434 cosmid sequence assembly these PCRs were used to generate relatively small amplicons in an effort to clear any secondary structure that might have obstructed previous sequencing reactions.
SK x N22.86R	0.9 or 1.1	clone 1A5 or 1H2		
N12.5F x N12.8R	0.4	Shotgun library clone 2A9 or N12.5F x N15.1R amplicon		
N7.9F x N .5 F	0.6	Shotgun library clone 1 C 1 or 1 H 3		
N10.8F x N11.3R	0.5	Shotgun library clone 1B7 or 1C4		

Table 2.2b: The conditions employed for other Chapter 3 PCR amplifications

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Purpose of reaction
N23.5F x RN23.8R	0.295	1 ng of isolated N0434.1-. 4 DNA	```1x(96}\mp@subsup{}{}{\circ}\textrm{C},\mp@subsup{1}{}{\prime} 4x (960'C, 20"; 65'`, 30";70 4x (96 ' C, 20"; 63'`, 30"; 70 ' C, 90") 9x (960'C, 20"; 61 C C, 30";70 1\times(60 C, 1';70```	To confirm presence of PGPL within the N0434 cosmid
MVN15.3F x MVN17.6R		1 ng of isolated N0434.1 DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 64^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 15 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 63^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 6^{\prime}\right) \end{aligned}$	Estimation of the size of the PGMS2 minisatellite within the N0434.1 sequence

Table 2.3: The conditions employed for Chapter 5 PCR amplifications

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Purpose of reaction
RN21.6F x RN22.9R (see table 2.4)	1.33	1 ng of isolated N0434.1 DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 90^{\prime \prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 90^{\prime \prime}\right) \\ & 15 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 90^{\prime \prime}\right) \end{aligned}$	Production of novel gene probe for expression analysis.

Table 2.4: Primers and conditions used to investigate the variability of PGMS1, PGMS2 and the STIR element tandem repeat arrays (Chapter 5).
(a): Amplification of the tandem repeats

MVN15.3F GAT GGC ACA GAC TTA GTG CC
MVN17.6R CAC GTC GTA ACA CCG TGT GG
MVN24.8F CTT ATT GGT AGG GAG ACC TG
MVN25.9R GTA CAG ACG AGA TGA ATG GG
RN28.3F ACA GAG AAG GCC ACG TGG AG
RN29.5R CCA GAA AGC GGG AGC TGA CC

Primers Used	Template	Tandem repeat amplified	Cycling Conditions
MVN15.3F x MVN17.6R	10 ng of genomic DNA	PGMS2	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 11^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 64^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 6^{\circ}\right) \\ & 15 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 63^{\circ} \mathrm{C}, 30^{\prime \prime} ; 70^{\circ} \mathrm{C}, 6^{\prime}\right) \end{aligned}$
MVN24.8F x MVN25.9R		PGMS 1	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1\right) \\ & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 6^{\prime}\right) \end{aligned}$
RN28.3F x RN29.5R		STIR array	$\begin{aligned} & 5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime}, 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 61^{\circ} \mathrm{C}, 6\right) \\ & 15 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime}, 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 59^{\circ} \mathrm{C}, 6^{\circ}\right) \end{aligned}$

(b): Amplification of the probes for hybridisation to the amplified and blotted tandem repeats

KS	TGC AGG TCG ACG GTA TC
SK	CGC TCT AGA ACT AGT GGA TC

Primers Used	Template	Tandem repeat probed	Cycling Conditions
KS x SK	Shotgun library clone 1H5	PGMS2	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 11^{\prime}\right. \\ & 24 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$
MVN24.8F \times MVN25.9R	$\begin{aligned} & 25 \mathrm{pg} \text { of isolated } \\ & \text { N0434.1 DNA } \end{aligned}$	PGMS1	$1 \times\left(9^{\circ} \mathrm{C}, 1\right)$
RN28.3F x RN29.5R		STIR array	$\begin{aligned} & 3 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 61^{\circ} \mathrm{C}, 2\right) \\ & 9 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 59^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$

Table 2.5: Oligonucleotides used to amplify and resequence regions of the N0434.1 interval for the SNP discovery and genotyping strategies described in Chapters 6 and 7.

AMPLICON E (2.919KB)

RN0.2F	TTC ATT CTG GGC TCG AGA CC
RN0.7F	TCT AAG AGG AGG CCT CAG G
RN0.7R	TGT TGA TCT TGA GCC CAG
RN1.0F	CCG TAC ATA CAG CTG GGC AC
RN1.4R	GGG AAG TGA CCC TTT CCA TA
RN2.3F	CAA CGG TGG GAA TCG CCA TG
RN3.2R	CAT GTG TGC ATG CCT GTG TG

AMPLICON X (2.353 KB)
RN3.3F GCA TGT GCA TAC TGT GTT GG RN4.3F ACA CAC GTA GAC ACA CGT CC N5.2R GTT AGC TGA CAC ATG TAG CC RN5.6R CCC TTT AAA TCC CCT GAG GA

AMPLICON F (2.522 KB)

RN6.5F GTC AAG ATA TGG GCA GGA CC RN7.OF TCC TCT TGT GTC TTA GAC GG N7.3F TGC TTT GCT CTC AGG GAG CC RN8.OF GTG AGC ATC GCA GGC CTC CA RN8.1R GGT GTT GTC TCT GCT GGG AT RN8.4F GAC AAC CCC TTT CAT GCC TG N8.5R AAC TGC AGA CCC GCC TCA GG RN8.6R GCC TGT CTC CCT GTT TCC CA N8.8R CAA CAT GTT AGC CAG GAC GG N9.1R CCA CGG GGA CCT GCA TTT GG

AMPLICON Y (0.869 KB)
RN9.9F GGG GAT GAA ACA GCC ACA TG N9.9R TTA GCT GGG CGT GGT GTC CG RN10.5R CCG GCT GAC GCT GCA CAC AT

AMPLICON G (2.054RB)

N10.4F GAT CTG CTT CCC TTG ACG G N10.8F GCG GAT CAT GAG GTC AGG AC N11.3R ATC CCG GCT AGT CAG AAG GC N11.8F TGG AGA CCA TGA AGA GCT GC RN11.9R GTG AAG GCA AGT CCA TGT GG N12.5R TTC CAT GAA GCA GTC AGT CC

AMPLICON H (2.638 KB)

N12.5F
RN12.8F
N12.8R
RN13.4F
RN13.5R
RN13.8F
N14.4F
RN14.4R
N15.IR

GAG GGG AAA TGA GGA CTG AC AAA TTA GCG GGC ACA GGC CG CCT GAC CTC ATG atc CGC CC CAA ACT TCT GGG GTC AAG CG GCA CAA CTC GGC TGG GAA TG GGG tGT Gag gig cag aca gc TGA GCC ACG GTG CCA GGC GG CCG CCT GGC ACC GTG GCT CA GAT TCC ACG GCC AGA GAC GG

AMPLICON D (3.075KB)

RN17.8F	AGG AGG GTT GTT CGT GGC CG
RN18.2F	TGG TGA TCA TAG GAC CG
RN18.5F	CAG CCG AGT GTG CAG TGA C
RN19.0F	GAC AGC CCA CTT AGG AGC CG
N19.1R	GGC TTG GTG TGA GAA CTA GC
RN19.7F	CAC TGT GCC CAG CCG CCG A
N19.7R	TCG GCG GCT GGG CAC AGT G
RN20.2R	GGC GTT GAA GGT TAC AGT GA
RN20.7R	GAA CAC TTC AGT AGC ACT CC
RN20.9R	TTC CCG AGA GAA GAC GCT GC

AMPLICON C (2.946KB)

RN20.8F
RN20.9F
RN21.6F
RN21.7R
RN22.0F
RN22.5F
RN22.9F
RN22.9R
RN23.2F
RN23.4R

AMPLICON z (1.313KB)

N23.5F	GTT ACG GAA ACA TTC CGA GGG A
N24.1F	GTT CAA GTG ATT CTC CTG CC
RN24.3R	CGC AGT GGC TCA TGC CTG TC
RN24.8R	CAG GTC TCC CTA CCA ATA AG

AMPLICON B (3.528KB)

RN26.0F
RN26.2F
N26.3R
RN26.5F
RN27.0F
RN27.8F
RN27.8R
RN28.3F
RN28.3R
RN29.5R
ACA TCC TAA AGC TCT CGG GG GGC TGT ACC TGC AAG GGT GG CAG TGG ACT CCT GGG GAC C ACA GAA CGC TGC ATT TCT GG CTT ACA GGC AGG CTC CTT AC GTC GGG AGG AGT CGA AAG CG GCA AAT GTC CCA AAG AAC GG ACA GAG AAG GCC ACG TGG AG CTC CAC GTG GCC TTC TCT GT CCA GAA AGC GGG AGC TGA CC

AMPLICON A (2.730KB)

RN30.2F
RN30.5F
RN31.2F
RN31.3R
RN31.6F
RN31.6R
RN32. OF
RN32.7R

RN32.9R CTT GAA AAG GGA CGT CGC CC
AGA GGA AGC CGA TGG TGT CC TGG GAC AAA GCC ACC GTC GC GGG TGG TAA AGC TCT GGA TG TCC TGT GGT CTC TGT GTG GG CTT GCG AAG CCT GTC CAA GG TCG CAA GAA GAG GCA CCT GC GGG AAT GGG ACC TGA TTT GG GGA CAT AGG AGA CCC TCA GC

Table 2.6: The PCR conditions used to generate templates for the resequencing and genotyping strategies described in Chapter 6 and 7.

Primers Used	Name of amplicon	Size of Amplicon (kb)	Cycling Conditions	Other Comments
RN30.2F X RN32.9R	A	2.7	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 4^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 57^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 4^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 4^{\prime}\right) \end{aligned}$	Templates for resequencing were amplified from 10 ng of the genomic DNA of 8 UK semen donors in reaction volumes of $10 \mu \mathrm{l}$. Amplicons that were spotted on to dot blots were generated from 20 ng of the genomic DNA of 50 UK semen donors in reaction volumes of $20 \mu \mathrm{l}$ (see chapter 6).
RN26.0F X RN28.3R	B	3.5		
RN20.8F X RN23.8R	C	2.9		
RN17.8F X RN20.9R	D	3.1		
RN0.2F X RN1.4R	Ea	1.1	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 57^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	
RN2.3F X RN3.2R	Eb	0.8	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{1}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 57^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	
RN6.4F X N9.1R	F	2.6	$1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right)$	
N10.4F X N12.5R	G	2.1	$\begin{aligned} & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 66^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 61^{\circ} \mathrm{C}, 30^{\circ} ; 66^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 60^{\circ} \mathrm{C}, 30^{\circ} ; 66^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	
N12.5F X N15.1R	H	2.6	$1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right)$	
RN3.3F X RN5.6R	X	2.4	$\begin{aligned} & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\circ} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 57^{\circ} \mathrm{C}, 30^{\circ} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	
RN9.9F X RN10.5R	Y	0.9	$1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right)$	
N23.5F X RN24.8R	Z	1.3	$\begin{aligned} & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 57^{\circ} \mathrm{C}, 30^{\circ} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	
RN17.8F X N19.1R	Da	1.3	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 9 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 60^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 1^{\prime}\right) \end{aligned}$	Due to the plethora of both tandem repeat and Alu sequences in the N0434.1 interval, these "sub-amplicons" had to be generated in order to obtain clean sequence and/or unambiguous genotypes. In each case they were amplified from larger amplicons that had already been generated from genomic DNA as above (see Chapter 6, figure 6.6a for more detail)
N12.5F X RN13.5R	Ha	1.0	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 2 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 2 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & 8 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 57^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	
RN13.8F X N15.1R	Hc	1.3		
RN13.4F X N13.8R	Hb	0.4	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 9 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 60^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 1^{\prime}\right) \end{aligned}$	
N14.4F X N15.1R	Hd	0.7	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 9 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 57^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 1^{\prime}\right) \end{aligned}$	

Table 2.7: Allele-specific oligonucleotides for genotyping of the SNPs in the N0434.1 interval. The allele-specific sites are marked in blue. Degenerate nucleotide positions are marked in green. Nomenclature reflects the nucleotide position (in kb) of each SNP (and ASO) from the distal end of the N0434.1 interval. Hence, the ASOs for SNP 423C/T (table 6.1) are labelled NA0.42/T and NA0.42/C.

NAO. $42 / \mathrm{T}$
NAO. $42 / \mathrm{C}$
NA1. $10 / \mathrm{G}$
NA1.10/A
NA2.35/C
NA2. $35 / \mathrm{T}$
NA2.45/C
NA2.45/T
NA2.79/C
NA2.79/T
NA3.10/C
NA3. $10 / \mathrm{T}$
NA3.37/+
NA3.37/-
NA4. $38 / \mathrm{T}$
NA4. $38 / \mathrm{g}$
NA4.58/A
NA4.58/g
NA $4.72 / \mathrm{C}$
NA4. $72 / \mathrm{T}$
NA $4.82 /$ A
NA4. $82 / \mathrm{G}$
NA5. $23 / \mathrm{G}$
NA5. $23 / \mathrm{A}$
NA7. 22 /C
NA $7.22 / T$
NA7. $29 / \mathrm{A}$
NA7.29/G
NA8.02/C
NA8.02/T
NA8. $24 / \mathrm{C}$
NA8.24/T
NA8. $42 / \mathrm{C}$
NA8. $42 / \mathrm{G}$
NA9.77/C
NA9.77/G
NA11.50/A
NA11.50/G
NA12.23/A
NA12.23/G
NA12.65/G
NA12.65/A
NA13.35/T
NA13.35/C
NA13.64/A
NA13.64/G
NA13.99/A
NA13.99/G
NA14.05/A
NA14.05/G
NA14.20/C
NA14.20/T
NA14.53/G
NA14.53/A
NA14.56/G
NA14.56/A

TGG TGT GAT TGT GGC TCA TGG TGT GAT CGT GGC TCA AAG ACT AGC CTG ACC AAG AAG ACT AAC CTG ACC AAG AGG CTC GCA TTI GCA TAT AGG CTC GTA TTT GCA TAT AGG ACC CCT TTT CCT CTC AGG ACC CTT TTT CCT CTC TGA TGG GCG GGC AGG TGA TGA TGG GTG GGC AGG TGA gTG CAT ACA CAT atg tac GTG CAT ACA tat atg tac GGA CTC ACA GTT CCA CCT GGA CTC AGT TCC ACC TGG AAG GAA ATA AAC TTA GAC AAG GAA AGA AAC TTA GAC tGG CAT CAA GCA CTG ATC TGG CAT CGA GCA CTG ATC GGC TCC ACC TCA GCT CAT GGC TCC ATC TCA GCT CAT GCC TGG CTG ATT TTT GTA GCC TGG CTG GTT TTT GTA GTG GGG AAC GTG ACT GGG GTG GGG AAC ATG ACT GGG TGC TGT GGG CGG GCA GCA TGC TGT GGG TGG GCA GCA tGG TGA CAT GTC CGC GTG TGG TGA CGT GTC CGC GTG TGA GCA TCG CAG GCC TCC TGA GCA TTG CAG GCC TCC CTA CAG GCT CCC GCG ACC CTA CAG GTT CCC GCG ACC CTG CAC TCA AGA CAG ACA CTG CAC TGA AGA CAG ACA TCT TGC TCT GTC GCC CAG TCT TGC TGT GTC GCC CAG TGC GCC CAG CCA GAA TTT TGC GCC CGG CCA GAA TTT GGG GAA GGA TCA ACA AGG GGG GAG GGA TCA ACA AGG AGC CAG GTG CGG TGG CTC AGC CAG GTG CAG TGG CTC CCG AGA tTG AGC CAG TGT CCG AGA TCG AGC CAG TGT CAC CTG TAA TCC CAG CTC CAC CTG TGA TCC CAG CTC TCT TCA CAG CCG CGA GGG TCT TCA CGG CCG CGA GGG CGG GCA AAG GAG CAG GTT CGG GCA AGG GAG CAG GTT TCT CCC GGG TTC AAG CCA TCT CCT GGG TTC AAG CCA TCG AGC AGT TCT CCC GCC TCG AGC AAT TCT CCC GCC ACC ACG CCC GGC TAA TTT ACC ACG CCC AGC TAA TTY

NA14.89/G NA14.89/A NA18.53/C NA18.53/A NA18.61/C+ NA18.61/TNA18.63/T NA18.63/C NA18.66/C NA18.66/G NA18.97/A NA18.97/G NA19.96/C NA19.96/G NA20.72/G NA20.72/C NA21.30/G NA21.30/C NA22.03/G NA22.03/A NA22.14/A NA22.14/G NA22.16/C NA22.16/T NA23.13/G NA23.13/A NA23.48/A NA23.48/T NA23.75/G NA23.75/A NA24.15/C NA24.15/T NA26.64/T NA26.64/C NA26.90/G NA26.90/A NA27.68/C NA27.68/G NA27.91/G NA27.91/A NA30.38/T NA30.38/C NA31.67/C NA31.67/T NA31.69/T NA31.69/A NA31.70/C NA31. $70 / \mathrm{T}$ NA31.71/G NA31.71/C NA32.25/G NA32.25/A NA32.45/T NA32.45/C

TGG ATG TGT TTT TAC TAG tGG ATA TGT TTT TAC tAG CGC CTG TCA TCC CAG CAC CGC CTG TAA TCC CAG CAC GTG AAA CCC CGT CTC TAT GTG AAA CTC GTC TCT ATT CAA AAA TTA CCT GGG TGC CAA AAA CTA CCT GGG TGC CTG tag tcc cag cta ctc CTG TAG TGC CAG CTA CTC CIT ACA GAC CCA GGG AGA CTT ACG GAC CCA GGG AGA TCC TGG GCT CCA GTG ATC TCC TGG GCT GCA GTG ATC CCG GAG TGC TGC TGA AGT CCG GAG TCC TGC TGA AGT ATG TTT TGA GAC GGA GTT ATG TTT TCA GAC GGA GTT AAT CAC CGA ATT CAT ACA AAT CAC CAA ATT CAT ACA GCA CGC CAG AAG CAT CTT GCA CGC CGG AAG CAT CTT ATG TTA ACT CAG GAG GCC ATG TTA ATT CAG GAG GCC AGC AGA GGT GGG GIT TCA AGC AGA GAT GGG GTT TCA GAA GTA AAA ACA AAG GTT GAA GTA AAA TCA AAG GTT AGG CAG CGA TGC CCC CAC AGG CAG CAA TGC CCC CAC GAT TCT CCT GCC TCA GCC GAT TCT CTT GCC TCA GCC TGG TCC CTG ACC CCA AGC TGG TCC CCG ACC CCA AGC CCC AGG GGG TCT TCA TTC CCC AGG GAG TCT TCA TTC GAT CCA CCC GCC TCA ACC GAT CCA CGC GCC TCA ACC GTT TTC CTG CCT TGT TGC GTT TTC CTA CCT TGT TGC CTG CAG AGA TCC CTG CGT CTG CAG AGA CCC CTG CGT TGA GCC ACG CCG GGA AAG TGA GCC ATG CCG GGA AAG GCA CAA GTG CGG GYG GTG GCA CAA GAG CGG GYG GTG GCG GGC GGT GCC GCG GAG GCG GGT GGT GCC GCG GAG GCG GAG GGT CTG CGG GGG GCG GAG GCT CTG CGG GGG ACA TCC TGA TTC CCA GAA ACA TCC TAA TTTC CCA GAA GGA GTG ATG CGG CCA CAA GGA GTG ACG CGG CCA CAA

Table 2.8: Primers used in Chapter 8

Universal primers

| N12.5F | GAG GGG AAA TGA GGA CTG AC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| XOT13.0F | CCT GGG CGA CAG AGT GGA AC |
| XN13.5F | CAT TCC CAG CCG AGT TGT GC |
| RN13.5R | GCA CAA CTC GGC TGG GAA TG |
| RN13.8F | GGG TGT GAG GTG CAG ACA GC |
| N15.1R | GAT TCC ACG GCC AGA GAC GG |
| MVN15.3F | GAT GGC ACA GAC TTA GTG CC |
| MVN17.6R | CAC GTC GTA ACA CCG TGT GG |
| RN17.8F | AGG AGG GTT GTT CGT GGC CG |
| RN17.8R | TCT CCG TGA GGT TGA TGC CG |
| N18.4F | GCT CAG GCA GGA GAA CTG C |
| XOT18.5R | CTC ATG TTC CAC CCG CCT TC |
| N19.1R | GGC TTG GTG TGA GAA CTA GC |
| XN20.6R | CTG GCT CTA CTG GGC TGG GA |
| RN21.7R | CAC GAT TTG CTT GGG AAA GG |

Allele-specific primers

Selector sites are at the 3^{\prime} end of each allele-specific primer and are shown in red. Synthetic 5^{\prime} extensions are shown in lower case.

12237FA
12237 FG
12657 FG
12657 FA
c18610/RT
18970/RA
18970/RG
c21309RG
22145RA/Ad

```
TAC ATT GGC GGG GGG AA
TAC ATT GGC GGG GGG AG
TGG TGT CAG CCA GGT GCG
CTG GTG TCA GCC AGG TGC A
CCC CGT GTT TTT AAT AGA GAC GA
AGT GTC TCC CTG GGT CT
AGT GTC TCC CTG GGT CC
CCC CCG AGA GCG AAA CTC CGT CTC
gtc tac gta gtc agc tct ggC ATT TTC TAA AGA TGC TTC T
```

NB: Only the allele-specific primers that were used in assays that worked, and those used to identify linkage phase of particular semen donors are shown here. Many modifications of the primers directed towards these and other potential selector sites had to take place before a workable crossover molecule assay was achieved. Modifications included 5^{-}truncations and the addition of synthetic 5° extensions including CCCC and:

```
Adap gtc tac gta gtc agc tct gg
Tail tgc aca tgc cga cca tac gc
```

Table 2.9: The PCR conditions used to determine the optimal annealing temperatures of the allele-specific primers (AS-primers) used in the crossover assays described in Chapter 8.

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions		Other Comments
forward AS-primer x XN20.6R	6.6-9.8	10 ng genomic DNA from men known to be homozygous for one allele or the other.	then or or or	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 10^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 10^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 10^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 10^{\prime}\right) \end{aligned}$	These conditions were employed to optimise the primers used in the first crossover assays within the interval bounded by SNPs 12237A/G and 22145A/G (see figure 8.1).
XN13.5F x reverse AS-primer					
XN13.5F x XN20.6R					
forward AS-primer x RN17.8R	5.1-5.6		then or or or	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right) \end{aligned}$	These conditions were employed to optimise the primers used to detect crossovers within the interval bounded by SNPs 12237A/G and 18970C/G (sce figure 8.3).
XN13.5F x reverse AS-primer					
XN13.5F x RN17.8R					

Table 2.10: The PCR conditions used to establish linkage phase of semen panel donor 5 prior to the first crossover assay attempts described in Chapter 8.

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Other Comments
12237/FA \times RN13.5R	1.3	10 ng donor 5 genomic DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	Dot blotted and ASO hybridised for 12657/A or /G
12237/FG \times RN13.5R	1.3		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	
12657/FA x RN21.7R	8.6-8.9		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 19 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 10^{\prime}\right) \\ & 19 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 10^{\prime}\right) \end{aligned}$	Dot blotted and ASO hybridised for 21309/C or /G
RN17.8F $\times 22145 / \mathrm{RA} / \mathrm{Ad}$	4.3		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 5^{\prime}\right) \end{aligned}$	
N12.5F x RN13.5R	1.0	10 ng genomic DNA of homozygote	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	Control amplifications used the genomic DNA of two men; one that was homozygous for one allele of the relevant SNP and one that was homozygous for the other allele.
RN17.8F x RN21.7R	3.9		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 5^{\prime}\right) \end{aligned}$	

Table 2.11: The PCR conditions used to establish linkage phase of semen panel donor 7 prior to sperm crossover analysis within the interval defined by N0434.1 SNPs 12237A/G and 18970A/G (Chapter 8).

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Other Comments
12237/FA \times RN13.5R	1.3	10 ng donor 7 genomic DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	Dot blotted and ASO hybridised for 12657/A or /G
12237/FG \times RN13.5R	1.3		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	
12657/FA x N19.1R	5.9-6.1		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 19 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 7^{\prime}\right) \\ & 19 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 7^{\prime}\right) \end{aligned}$	Dot blotted and ASO hybridised for 18610/C or /T, $18634 / \mathrm{C}$ or /T and 18970/A or /G
RN17.8F $\times 18970 / \mathrm{RG}$	1.1		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	Dot blotted and ASO hybridised for 18610/C or /T and 18634/C or /T
MVN15.3F x 18970/RA	3.1 or 3.3		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 13 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 4^{\prime}\right) \\ & 13 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 4^{\prime}\right) \end{aligned}$	Agarose gel electrophoresis and comparison of product sizes allowed linkage of SNPs and PGMS2 allele sizes
MVN15.3F x 18970/RG			$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{1}\right) \\ & 26 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 4^{\prime}\right) \end{aligned}$	to be established.
N12.5F x RN13.5R	1.0	10 ng genomic DNA of homozygote	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	Control amplifications used the genomic DNA of two men; one that was homozygous for one allele of the relevant SNP and one that was homozygous for the other allele.
RN17.8F x N19.1R	1.3		$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	

Table 2.12: The two rounds of repulsion phase allele-specific PCR used to detect recombinant molecules from batches of donor 7 sperm DNA within the interval defined by N0434.1 SNPs 12237A/G and 18970A/G (Chapter 8).

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Other Comments
12237/FG $\times 18970 / \mathrm{RG}$	6.1-6.3	Donor 7 blood or sperm DNA in various known amounts (see Chapter 8, section for details)	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 23 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 7^{\prime}\right) \\ & 1 \times\left(65^{\circ} \mathrm{C}, 8^{\prime}\right) \end{aligned}$	Primary PCR. Low extension temperatures reduced the incidence of inter-haplotype-jumping PCR artefacts, which occasionally occur with $70^{\circ} \mathrm{C}$ extension (Jeffreys et al., 2000)
12657/FG x cl8610/RT			$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 6 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right) \\ & 23 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 56^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right) \end{aligned}$ $1 \times\left(56^{\circ} \mathrm{C}, 1^{\prime} ; 65^{\circ} \mathrm{C}, 6^{\prime}\right)$	Secondary PCR, which took place post-S1 nuclease digestion of primary PCR products.

Table 2.13: The PCR conditions used to determine SNP haplotypes across the PGMS2 region (Chapter 8).

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	Other Comments*
12657/FA \times N15.1R	2.5	10 ng donor 7 genomic DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 19 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 3^{\prime}\right) \\ & 19 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 65^{\circ} \mathrm{C}, 30^{\prime \prime} ; 65^{\circ} \mathrm{C}, 3^{\prime}\right) \end{aligned}$	Dot blotted and ASO hybridised for for 13351/C or /T; 13642/A or /G and 14051/A or/G.
RN13.8F x N15.1R	1.3	$1 \mu 1$ aliquots of completed 12657/FA or /FG x N15.1R	$1 \times\left(99^{\circ} \mathrm{C}, 1^{\prime}\right)$ $5 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 58^{\circ} \mathrm{C}, 30^{\circ} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right)$ $5 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; 57^{\circ}{ }^{\circ}, 30^{\circ \prime} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right)$ $10 \times\left(96^{\circ} \mathrm{C}, 20^{\circ} ; ; 6^{\circ} \mathrm{C}, 30^{\circ} ; 63^{\circ} \mathrm{C}, 3^{\prime}\right)$	Dot blotted and ASO hybridised for 14209/C or /T and 14893/A or /G.
RN17.8F x 18970/RA	1.1	10 ng donor 7 genomic DNA	$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 59^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \\ & \hline \end{aligned}$	Dot blotted and ASO hybridised for 18530/A or /C
RN17.8F x 18970/RG			$\begin{aligned} & 1 \times\left(96^{\circ} \mathrm{C}, 1^{\prime}\right) \\ & 38 \times\left(96^{\circ} \mathrm{C}, 20^{\prime \prime} ; 62^{\circ} \mathrm{C}, 30^{\prime \prime} ; 63^{\circ} \mathrm{C}, 2^{\prime}\right) \end{aligned}$	

Table 2.14: The PCR conditions used to reamplify positive secondary PCRs in order to map crossover points in the PGMS2 region (Chapter 8).

Primers Used	Size of Amplicon (kb)	Template	Cycling Conditions	
XOT13.0F x N15.1R	2.1		Other Comments	

*ASO hybridisations to determine SNP haplotypes and to map points of crossover were performed concurrently. Thus, the haplotype blots served as internal controls when dotblots of recombinant molecules were being scored (Chapter 8).

Chapter 3

Sequencing the PGPL Region

3.1: Introduction

Despite its clear biological importance, and the advanced stage of the human genome sequencing project, it was surprising that publicly available PAR1 genomic sequence data was limited to an interval around the $S H O X$ gene and the partial characterisation of a few minisatellites. As the limited amount of sequence data in and around the PGPL region was simply not adequate to begin a high resolution analysis of recombination, the generation of this data became an important first step.

3.1.1: Partial Characterisation of the $X p / Y p$ Telomere-PGPL Interval

A cosmid contig covering the distal 750 kb of PAR1 was constructed by Rao et al. (1997) (figure 3.1a) as part of their efforts to map a major locus involved in growth retardation. It is worth noting that the gene identified at the end of this study was the SHOX gene, which has already been subjected to a high resolution analysis of recombination as noted in Chapter 1 of this thesis and described more thoroughly by May et al. (2002). Gudrun Rappold (University of Heidelberg) was kind enough to provide three cosmids from the 750 kb contig that were purported to cover the region between $P G P L$ and an interval adjacent to the PAR1 telomere. These cosmids were LLN0YCO3'M'29C1, LLN0YCO3'M'3F3 and LLNLN0434, hereafter referred to as $29 \mathrm{C} 1,3 \mathrm{~F} 3$ and N 0434 respectively. Both 29 Cl and 3 F 3 were derived from the Lawrence Livermore Y-chromosome specific library (LLN0YCO3'M'), for which the cosmid vector is Lawrist 16 (GenBank accession number = L19898), while N0434, despite its prefix, appears to be derived from "a self-made library covering the entire genome" (Rao et al., 1997). The interval immediately adjacent to the PAR1 telomere and the region covered by the $29 \mathrm{C} 1,3 \mathrm{~F} 3$ and N0434 cosmids have been partially characterised and a number of structures have been identified (figure 3.1b).

3.1.1.a: Structures Adjacent to the PAR1 Telomere

Immediately adjacent to the telomere repeat array, in addition to the polymorphisms identified by Baird et al. (1995), there is a truncated copy of a short interspersed nuclear element (SINE)
a

Figure 3.1: Cosmid contig covering the distal 750 kb of PAR1. (a) Adapted from Rao et al., 1997. All cosmids were derived from the Lawrence Livermore X- and Y-chromosome specific cosmid libraries and the ICRF X-chromosome specific library. PGPL was suggested to reside on cosmid LLNLN0434 and SHOX was mapped to LLN0YCO3' M' 34F5, as shown by the red lines (Gianfrancesco et al., 1998). (b) The limited known loci in the region covered by the three cosmids provided to us by Gudrun Rappold (University of Heidelberg). Note that the lack of sequence data in this region has meant that each locus can only be shown at its estimated position relative to the telomere (position zero).
and a monomorphic PAR1-specific minisatellite consisting of four 63 bp repeat units (Brown, 1989; Royle et al., 1992).

3.1.1.b: Tandem Repeats in the Region Covered by 29C1, 3F3 and N0434

3.1.1.b.i: DXYS14

Proximal to the monomorphic PAR1-specific minisatellite is DXYS14, a hypervariable minisatellite that was originally isolated using a probe derived from the CY29 cosmid, part of a cosmid library constructed from 3E7, a mouse-human hybrid cell line containing multiple Ys as the only recognisable human chromosomes (Cooke et al., 1985). Cooke and colleagues mapped DXYS14 to within 20 kb of the telomere, Brown (1989) went as far as to suggest that the distance was about 13 kb but Baird and Royle (1997) performed PCR amplifications and sequence analysis to estimate the distance at only 3.6 kb . The actual distance might even vary between individuals as there is evidence to suggest that DXYS14 and/or its distal flanking sequence is duplicated in some individuals (Inglehearn and Cooke, 1990; M. Hills, personal communication). Further analysis revealed DXYS14 to consist of $31 \mathrm{bp}, 77 \%$ GC-rich repeat units in arrays that varied in length from 11 to 200 repeat units, i.e. approximately $0.3-6.2 \mathrm{~kb}$ (Inglehearn and Cooke, 1990).

3.1.1.b.ii: DXYS20

Tandem arrays of a 50% GC-rich, 61 bp repeat unit are found at locus DXYS20, whose length varies dramatically between individuals and has been suggested to stretch over $10-50 \mathrm{~kb}$ (Page et al., 1987). A probe known as 362A, used in an earlier study, also detected the highly variable DXYS20 tandem repeat and suggested that it was situated between 6 and 40 kb proximal to DXYS14 (Rouyer et al., 1986b), which ties in with the 1988 physical map of PAR1 that placed DXYS20 and DXYS14 only 12 kb from one another (Brown, 1988).

3.1.1.b.iii: The B4, CEB12 and CEB30 Intervals

B4, CEB12 and CEB30 are subclones of cosmid 362, which is proximal and contiguous to CY29 (Vergnaud et al., 1993). B4 contains a monomorphic minisatellite consisting of a 57\% GC-rich, 28 bp tandem repeat unit that spans approximately 900 bp . In contrast, the CEB12 interval contains two minisatellites, at least one of which is variable. The first has a 26 bp repeat unit that is 72% GC-rich. An initial analysis suggested that this array varied in size from $1-4 \mathrm{~kb}$. The second CEB12 tandem repeat array was discovered in the flanking sequence of the first. It has a 56% GC-rich 14 bp consensus unit but there appears to have been no investigation into its variability. CEB30 was found to contain a moderately variable minisatellite, with observed allele sizes of approximately $0.7-1.2 \mathrm{~kb}$ (Le Roux et al., 1994)
and a $19 \mathrm{bp}, 59 \%$ GC-rich consensus repeat unit (Vergnaud et al., 1993). The positions of the B4, CEB12 and CEB30 intervals as shown on figure $3.1 b$ are approximate. Not only is a calculation of their exact distance from the telomere made difficult by the lack of sequence data outside of the DXYS14 and DXYS20 tandem repeats, but the highly variable nature of these repeat arrays further complicates matters. Nevertheless, CEB30 has been placed about 55 kb from the PAR1 telomere (Vergnaud et al., 1993).

3.1.1.b.iv: DXYS78

A further minisatellite, DXYS78, of allele size range approximately $5-30 \mathrm{~kb}$ has been isolated and analysed by Armour et al. (1990). No sequence data is available for this locus but it is known that enzymes such as MboI and TaqI cut every few kilobases within the repeat array to give multi-band haplotypes for longer alleles and it is assumed that there is a HaeIII site in most repeats (J.A.L. Armour, personal communication). Furthermore, it has been localised to an interval $70-80 \mathrm{~kb}$ from the telomere (Henke et al., 1993). It has been suggested that DXYS78 may be one of the repeats within the CEB12 and CEB30 intervals (A.J. Jeffreys, personal communication). However, given the considerable differences in the reported array size of these loci and the respective differences in their apparent distance from the $\mathrm{Xp} / \mathrm{Yp}$ telomere, this seems unlikely. Obviously this matter can only be resolved fully when sequence data for the DXYS78 minisatellite become available.

3.1.1.c: Subtelomeric Interspersed Repeats

A member of a SINE family known as subtelomeric interspersed repeat elements (STIRs, previously DXYZ2) has also been identified in the PAR1 telomere-PGPL interval (Rouyer et al., 1990) (figure 3.1b). The first STIR elements were thought to be pseudoautosomal-specific (Simmler et al., 1985; Rouyer et al., 1986b) but, more recently, STIRs have been identified in the sex-specific parts of the X and Y chromosomes (Petit et al., 1990) and at the distal ends of many human autosomes (Rouyer et al., 1990). However, there are quite noticeable differences between the autosomal and the pseudoautosomal STIRs. In the loci analysed so far, the 350 bp pseudoautosomal STIRs are tandemly repeated two or four times, a situation that appears to have arisen through the duplication of individual elements. There are also two types of pseudoautosomal STIRs, which can be distinguished by differences in their first 80 bp . Both types then share a 55% GC-rich core of about 270 bp . In contrast, autosomal STIRs appear monomeric, are related to just one type of pseudoautosomal STIR and have a slightly longer homology that can extend up to 20 bp prior to the leader sequences defined by the pseudoautosomal elements. Furthermore, the sequence conservation between autosomal STIRs is much weaker than between the pseudoautosomal elements (Rouyer et al., 1990).

STIRs have been found in most orders of mammals (W. Schempp and B. Weber, cited in Petit et al., 1990), which argues in favour of a biological function. Considering that the pseudoautosomal STIRs appear to represent a more conserved and complex class of element, this raises two possibilities. Either the pseudoautosomal STIRs are involved in an additional or different function to the autosomal elements, or the correct mechanics and resolution of this putative function is much more important in the pseudoautosomal region than it is elsewhere. In this light, it is interesting to note that STIRs have been suggested to have a role in the recognition and initiation of pairing between homologues prior to meiotic recombination and that the STIR found at the distal end of Xq is an autosomal type element (Rouyer et al., 1990). However, many more sequence and recombination analyses will have to be performed in order to test the above hypotheses, especially as Petit et al. (1990) suggested that STIRs might have some kind of role in escape from X inactivation.

3.1.1.d: The PGPL Gene

Only the cDNA sequence of the $P G P L$ gene has been published (figure 3.2, GenBank accession number Y14391) and is believed to encode a putative GTP-binding protein of 442 amino acids (Gianfrancesco et al., 1998). GTP-binding proteins have a number of functions ranging from cell proliferation and signal transduction to protein synthesis and protein targeting and have been identified in many organisms (Kjeldgaard et al., 1996; Morimoto et al., 2002). The exact function of $P G P L$ is unclear, but the cDNA clone does hybridise to genomic DNA from a wide variety of species, from rodents to primates, and significant homology was observed with GTP-binding proteins of both E. coli and C. elegans, indicating that it has a conserved and important biological role (Gianfrancesco et al., 1998). PGPL was localised to cosmid N0434 (figure 3.1) suggesting that it resides in an interval approximately $80-110 \mathrm{~kb}$ from the telomere and so proximal to the repeat arrays described above.

It thus appears that the distal 100 kb of PAR1 is largely composed of unrelated, variable, GCrich tandem repeats. This is not in itself unusual, as it has been noted at the distal regions of many human autosomes (Royle et al., 1988; Flint et al., 1997a;b). However, considering the recombination hotspot-driven instability of the MS32 minisatellite (Jeffreys et al., 1998a), it is interesting to note that the $P G P L$ region, chosen for a high resolution analysis of recombination, lies just proximal to this distal PAR1 minisatellite-rich interval. Given the localisation of PGPL to N0434, this cosmid was chosen for initial analysis and sequencing.
gegggecgecgtacgeceggggetgeggetctcceqcqtgggecgeggecgetcggetce gcgggcagcegegceqtcctgecocgegegegegctagcogetgtcggecgeaggagccc cgggaatctggaggggcegtggggcggagggaggggcctgcgggcggaaggcggacgaaa acagaacggaagacgacaaggaggagccggaagatgcggacgagaacgccgaggaggagc tgctgcggggagagcctctgctgccggcggggacccagcgcgtgtgtctggttcaccetg acgtcaagtggggcccggggaagtcgcagatgactcgagccgagtggcaggtggcggagg $\begin{array}{llllllllll}M & T & R & \text { A } & \mathrm{E} & \mathbf{W} & \mathbf{Q} & \mathbf{V} & \text { A } & \mathrm{E}\end{array}$ ccacagcgetggtgcacacgctggacggctggtccgtggtgcagacaatggtcgtgtcca A T A L V H T I D G W S V V Q \quad I M V V ccaaaacgccggacaggaagctcatctttggcaaagggaactttgagcacctgacagaaa $\begin{array}{llllllllllllllllllll}T & K & T & P & D & R & \mathbf{K} & \mathbf{I} & I & F & G & K & G & N & F & E & H & L & T & E\end{array}$ agatccgagggtctccagacgtcacgtgegtcttcctgaacgtggagaggatggctgccc
 cgaccaagaaagaactggaagccgcctggggcgtggaggtgtttgaccgcttcacggtcg
 tcctgcacatcttccgctgtaacgeccgcacgaaggaggcceggcttcaggtggocctgg $\begin{array}{llllllllllllllllllll}V & I & H & I & F & R & C & N & A & R & T & K & E & A & R & L & 0 & V & A & L\end{array}$ cggagatgccgctgcacaggtcgaacttgaaaagggacgtcgcccacctgtaccgaggag $\begin{array}{llllllllllllllllllll}\text { A } & \mathbf{E} & \mathbf{M} & \mathbf{P} & \mathrm{L} & \mathbf{H} & \mathbf{R} & \mathbf{S} & \mathbf{N} & \mathbf{L} & \mathbf{K} & \mathbf{R} & \mathrm{D} & \mathbf{V} & \mathbf{A} & \mathbf{H} & \mathrm{L} & \mathbf{Y} & \mathbf{R} & \mathbf{G}\end{array}$ tcggctcgegetacatcatggggtcaggagaatccttcatgcagctgcagcagcgtctcc
 tgagagagaaggaggccaagatcaggaaggccttggacaggcttcgcaagaagaggcacc
 tgctccgecggcageggacgaggegggagttcccegtgatctccgtggtggggtacacca $\begin{array}{llllllllllllllllllll}\mathbf{L} & \mathbf{L} & \mathbf{R} & \mathbf{R} & \mathbf{Q} & \mathbf{R} & \mathbf{T} & \mathbf{R} & \mathbf{R} & \mathrm{E} & \mathbf{F} & \mathbf{P} & \mathbf{V} & \mathbf{I} & \mathbf{S} & \mathbf{V} & \mathbf{V} & \mathbf{G} & \mathbf{Y} & \mathbf{T}\end{array}$ actgcggaaagaccacgctgatcaaggcactgacgggcgatgccgccatccagccacggg $\begin{array}{llllllllllllllllllll}N & C & G & K & T & T & L & I & K & A & I & T & G & D & A & A & I & Q & P & R\end{array}$ accagctgtttgccacgctggacgtcacggcccacgcgggcacgctgccetcacgcatga D Q L F A T L D V T A H A G T L P ccgtcctgtacgtggacaccatcggcttcctctcccagctgccgcacggcetcatcgagt
 cottctccgccaccetggaagacgtggcccactcggatctcatcttgcacgtgagggacg S $\quad \mathbf{F} \quad \mathbf{S}$ A \quad T L L E D V A tcagccacccogaggeggagctccagaaatgcagcgttctgtccacgctgcgtggcctgc
 agctgcecgeccegctcetggactccatggtggaggttcacaacaaggtggacetcgtgc
 cegggtacagecccacggaaccgaacgtcgtgecegtgtctgccetgeggggccacgggc P G Y S P T E P N V V P V S A L R \quad I \quad H tccaggagctgaaagctgagctcgatgcggcggttttgaaggcgacggggagacagatcc
 tcactctccgtgtgaggetcgcaggggcgcagctcagctggctgtataaggaggccacag
 ttcaggaggtggacgtgatccctgaggacggggeggcegacgtgagggtcatcatcagca $V \quad Q \quad E \quad V \quad D \quad V \quad I \quad P \quad E \quad D \quad G \quad A \quad A \quad D \quad V \quad R \quad V \quad I \quad I \quad S$ actcagcctacggcaaattccggaagctctttccaggatgaacggacgeccacagaggce $\begin{array}{lllllllllllll}\mathbf{N} & \mathbf{S} & \mathbf{A} & \mathbf{Y} & \mathbf{G} & \mathbf{K} & \mathbf{F} & \mathbf{R} & \mathbf{K} & \mathbf{L} & \mathbf{F} & \mathbf{P} & \mathbf{G}\end{array}$ tgcggggtgggggcatcgctgcetggggagctgaggcgttaccgctgtgttgggggcagc ttggtgtcaggtgcagcagggtcctccttgtctggttctgcaccogtctcgctcccagcc atttgctgggatgaccgtgcaggccggtgacacggocgcacctgccecaaagcgggccgc cogagcgtccactccaagcetgagcatccacacaattccagtgggcectcggtgcetgct gtgaactgctttccctcggaatgtttccgtaacaggacattaaacctttgattttaaaaa aaaaaa

Figure 3.2: The cDNA sequence of $P G P L$ (Gianfrancesco et al., 1998) shown with the putative translation of the open reading frame. Primers used in the PCR to confirm the presence of PGPL in the N0434 cosmid are coloured pink. The position of the EagI restriction enzyme site, which was used in the digest assay of the PCR products is denoted by the yellow box. The segment of PGPL cDNA that was subsequently shown not to be in cosmid N0434 is underlined.

3.2: Results

3.2.1: Assay for Insert Presence Within the Cosmids

The first stage was to confirm the presence of an insert within cosmids 29C1, 3F3 and N0434 and, particularly, to confirm the presence of $P G P L$ within N0434. It remained possible that, for example, 90% of the N0434 glycerol stock provided by Gudrun Rappold was a contaminant. In this case, an assay for the presence of $P G P L$ might have worked very well but any subsequent sequencing assembly would have been impeded by the inclusion of nonN0434 sequence. To this end, an aliquot of each cosmid glycerol stock was cultured overnight in LUB and plated out on LUA. Four single colonies of each cosmid were then selected, labelled as (cosmid name).1-. 4 and stored as glycerol stocks at $-80^{\circ} \mathrm{C}$, as detailed in Chapter 2, section 2.1.a.

The N0434 vector was assumed to be Lawrist 16, as was known to be the case for 29 C 1 and 3F3. DNA was extracted from each cosmid "subclone" and digested with the $S f i I$ restriction enzyme, which cuts at each side of the multi-cloning site of Lawrist vectors. The digests were subjected to gel electrophoresis and were seen to have neatly separated the insert sequence from Lawrist 16, visible on the gel as a clean 5.2 kb band, in all cases apart from 29C1.1-. 4 (data not shown). None of the four colonies picked from 29 C 1 contained an insert, suggesting that the highly variable DXYS14 and DXYS20 loci make this cosmid particularly unstable.

3.2.2: Assays to Confirm Presence of PGPL within N0434

3.2.2.a: PCR Assay

In order to confirm that the N0434.1-. 4 inserts contained $P G P L$, the published cDNA sequence was used to design a simple PCR assay (table $2.2 b$) to amplify the putative 3^{\prime} untranslated region (3^{\prime} UTR), as this was expected to be intron-free. Cosmids 29 C 1 and 3 F 3 were used as negative controls in this amplification as these were not believed to contain PGPL. As can be seen from figure 3.2, the PCR was expected to generate an amplicon of 295 bp . The results are shown in figure $3.3 a i$, and clearly provided strong evidence that N0434 contains PGPL.

Figure 3.3: Assays to confirm the presence of PGPL in cosmid N 0434 presented with the digest assays of N0434 sub-clones. (a) (i) PCR assay to confirm the presence of PGPL in N0434 sub-clones .1-.4. Cosmids 29C1 and 3F3 were also assayed as negative controls. (ii) To confirm this result the PCR product was digested with EagI. The expected number and size of fragments are shown against undigested PCR product (b) Digestion of N0434. sub-clones .1-. 4 using DraI, HpaI, KpnI, PstI and PvuII restriction enzymes. In each case the profiles of .1 and .3 are identical but the profiles of .2 and .4 are different. This indicates that .2 and .4 have deletions of 2.2 kb and 0.8 kb respectively, relative to .1 and .3 and is denoted by the arrows over the DraI profiles. This pattern suggests that the N0434 cosmid contains at least one tandem repeat array that is unstable in E. coli.

3.2.2.b: Digestion of PCR Product

To be absolutely sure of the presence of PGPL in the N0434 cosmid, the PCR product was digested with EagI. The position of the EagI site within the PCR product has been marked in figure 3.2, demonstrating that an EagI digest should produce two fragments. Figure 3.3aii shows the results of this digest and clearly confirms that the putative 3^{\prime} UTR of the $P G P L$ gene is contained within the N0434 cosmid.

3.2.3: Restriction Enzyme Digest Assay of N0434 Sub-clones

Once N0434 was confirmed as containing $P(i P L$. and knowing about the highly variable nature of the interval distally adjacent to $P G P L$ region, the sub-clones of the N0434 cosmid were digested with the DraI, $H_{p} \subset \mathrm{I}$. Kp \quad I. PstI and $P \vee u \mathrm{II}$ restriction enzymes to determine the variability of N0434 inserts. The digests were then subjected to agarose gel electrophoresis with $\lambda \times$ HindIII and $\phi x 174 \times$ HaeIII standard weight molecular markers to produce a digest profile (figure $3.3 b$). The profiles immediately provided evidence of variability between N0434 inserts; in each case the digest profiles of N0434.1 and N0434.3 were identical but the profiles of N0434.2 and N0434.4 were different (but related to N0434.1 and N0434.3). As these digest profiles also enabled a reasonably accurate estimation of the length of DNA within the cosmid, this indicated that the rearrangements seen in N0434.2 and -. 4 were respectively deletions of 2.2 kb and 0.8 kb relative to the approximately 35.5 kb length of the N0434.1 and -.3 sequences. The differing profiles can be explained by the enzymes cutting outside of at least one variable length tandem repeat array, which is the same size in N0434.1 and -.3, but smaller in both N0434.2 and -.4. These digest profiles also provided a quality control assay as they could be used for comparison with digests of subsequent N0434 preparations.

3.2.4: Preparation of N0434.1 Shotgun Library

Given the heterogeneity of the N 0434 cosmid. it was decided that sequencing would focus exclusively on the N0434.1 subclone. First. $100 \mu \mathrm{~g}$ of N0434.1 DNA was prepared through the scaled-up version of the method described in Chapter 2, section 2.2.3.c. An aliquot of the DNA was then digested with the PstI and Drol restriction enzymes to confirm that the preparation had yielded the N0434.1 DNA, as defined by the restriction enzyme digest assay (above). A shotgun library of 192 colonies, containing 1-2 kb inserts was then prepared as Chapter 2, section 2.2.9. Before any colonies were picked into the ordered array that
constituted the library, twelve recombinant colonies were selected at random to check for the presence of an inserted N0434.1 fragment by plasmid DNA preparation (Sambrook et al., 1989) and restriction enzyme digestion with $K p n \mathrm{I}$ and BamHI to cut the insert out of the pBluescript SK^{+}vector. The digests were then subjected to agarose gel electrophoresis to determine the size of the insert (figure 3.4). All twelve recombinant colonies were shown to contain an insert providing strong evidence that most, if not all, of the 186 recombinant colonies within the N 0434.1 shotgun library contained an insert derived from the N 0434.1 subclone (table 3.1).

3.2.5: Sequencing of N0434.1

3.2.5.a: Sizing the shotgun library inserts

Initial attempts to produce single-stranded phagemid DNA using VCS-M13 helper phage (Stratagene) were not successful. Consequently, double-stranded DNA was prepared from the library clones and the inserts were amplified using the SK and KS primers. The sizes of the amplified inserts were then determined by agarose gel electrophoresis against standard molecular weight markers (figure 3.4. table 3.1).

3.2.5.b: Sequencing strategy

All of the amplified inserts were purified through electroelution and ethanol precipitation and first sequenced with the KS primer. As the preparation of the shotgun library would have inevitably led to the inclusion of a small proportion of Lawrist 16 fragments, all of the retrieved sequences were aligned, in silico, against the full Lawrist 16 sequence to ensure that no Lawrist 16 sequences were included in the assembly of the N 0434.1 sequence. If appropriate, the inserts were then sequenced with the SK primer. All sequence reads were assembled using ABI AutoAssembler software.

Unfortunately, the library was not quite large enough for full coverage of the N0434.1 sequence, which resulted in a small number of gaps in the sequence assembly. As the sizes of the shotgun library inserts had already been determined (table 3.1), it was possible to estimate the sizes of the gaps in the sequence assembly. which could then be filled by designing primers from the flanking sequence of a gap and then using these primers to PCR amplify the 'gap' from N0434.1 DNA (Chapter 2, table 2.2(1). The gap primers were then used to sequence the gap amplicon. In a few cases vectorette PCR (Chapter 2, section 2.2.8.b.ii) had to be used to close particularly problematic gaps. In these cases vectorette libraries were amplified (Chapter 2, table $2.2 a$) and the reactions were subjected to agarose gel
electrophoresis against standard molecular weight markers in order to separate and accurately size the amplified fragments. As the size of the problematic gaps could be estimated well, the fragments that were most likely to have one of their ends within the unknown sequence were separated by agarose gel electrophoresis, isolated by electroelution and sequenced with the vectorette primer, VEC1.PRIM (Chapter 2, table 2.1). A sequence interval was not considered to be 'complete' until it had been covered at least three times by sequence reads in the same direction but from different templates. or by two sequence reads in opposite directions.

3.2.5.c: Length and GC Composition of the Complete N0434.1 Sequence

Initial observations during sequence assembly had indicated the presence of at least three minisatellite arrays, which were provisionally named PGMS1, PGMS2 and PGMS3. It was not possible to sequence across PGMS2, the largest of the arrays, so its approximate size of 2.3 kb was estimated through a PCR amplification using primers designed within the PGMS2 flanking DNA (table $2.2 b$). This meant that the exact size of the insert within the N0434.1 cosmid could not be determined but, upon completion, the N0434.1 sequence assembly consisted of approximately 135 kb of sequence reads accumulated over a full length of about $33,400 \mathrm{bp}$ (Appendix 1), in very good agreement with the 35.5 kb estimate gained through the restriction enzyme assay (above). The average (GC content of the entire N0434.1 interval is 53.12%. As the $80-100 \mathrm{~kb}$ region that stretches from the $P G P L$ gene to the PAR1 telomere appears to be composed almost entirely of $50-77 \%$ GC-rich tandem repeats (see above) this suggests that the N0434.1 interval could be part of a larger subtelomeric region forming a fraction of the H 2 or H 3 isochore families, representing the GC-richest class of human DNA as defined by Bernardi (1989).

b

Figure 3.4: Determining the size of inserts in N0434.1 shotgun library clones (a) Amplifications of subsets of inserts from the shotgun library were subjected to gel electrophoresis against $\lambda \times$ HindIII and $\phi \times 174 \times$ HaeIII standard weight molecular markers. (b) A representation of the plasmid DNA within a recombinant shotgun library colony. This shows how the inserted N0434.1 DNA (shown in green) can be separated from pBluescript SK^{+}DNA (in blue) through digestion with the KpnI and BamHI restriction enzymes (whose sites are denoted by the red, vertical lines) or by amplification with the SK and KS primers.

Table 3.1: Sizes of inserts in the N0434.1 shotgun library. The bulk of the library is an ordered array of recombinant colonies picked into two 96 -well plates. Plate one colonies were labelled 1A1-1H12 and plate two colonies were marked 2A1-2H12. Internal controls are marked within the table as 'non-recombinant,' which denoted those colonies that did not contain recombinant pBl uescript SK^{+}vectors, or 'no colony,' which indicated those wells that did not have a colony picked into them. PCR amplification with the KS and SK primers demonstrated that 86% of the colonies within the library contained a N0434.1 insert. A small proportion of the colonies produced two fragments after amplification which were most likely due to mixture of two recombinant colonies as they grew. In these cases the fragments were separated by agarose gel electrophoresis and purified separately through electroelution and ethanol precipitation. The separated fragments were sequenced as normal and included in the N0434.1 sequence assembly.

Table 3.1: Sizes of inserts in the N0434.1 shotgun library

clone	insert size (kb)	comments	clone	insert size (kb)	comments	clone	insert size (kb)	comments
Tla	1.4	Stored as DNA preps at $-20^{\circ} \mathrm{C}$ as these were the colonies selected at random to check for the presence of an inserted N0434.1 fragment (see text)	1 Cl	2.1		1F1	2.0	
Tlb	1.4		1 C 2	2.1		1F2	1.3	
T2a	2.3		1 C 3	1.3		1F3	2.2	
T2b	1.9		1 C 4	1.2		1F4	1.3	
T3a	1.2		1 C 5	1.2		1F5	1.3	
T3b	1.3		$1 \mathrm{C6}$	1.9		1F6	2.0	
Ala	1.3		1 C 7	1.2		1F7	1.5	
Alb	1.4		1C8	1.4		1F8	0.9	
A2a	1.2		1 C 9	1.3		1F9	1.3	
A2b	1.0		1 C 10	1.4		1F10	1.7	
A3a	1.5		1 C 11	1.6/2.0	double	1F11	1.4	
A3b	2.1		1 C 12	1.3		1F12	1.3	
1A1		Non-recombinant	1D1	1.4		1G1	1.5	
1 A 2	-		1D2	1.5		1G2	2.5	
1 A 3	-		1D3	1.6		1G3	2.5	
1A4	2.2		1D4	1.2/1.4	double	1G4	1.2	
IAS	1.4		1D5	1.6		1G5	-	
1 146	1.2		1D6	1.2		1G6	2.3/2.6	double
1 A7	1.3		1 D 7	1.1		$1 \mathrm{G7}$	-	
1 A 8	1.3		1 D 8	2.0		$1 \mathrm{G8}$	-	
1 A 9	1.5		1D9	1.3		1G9	1.4	
1 A 10	1.4		1 D10	2.2		1G10	1.5	
$1 \mathrm{Al1}$	1.2		1 D 11	1.6		1G11	1.4	
1 A 12	1.6		1 D12	-		1G12	-	
1B1	1.3		1 E 1	1.5		1H1	1.2	
1B2	1.5		1E2	1.3		1H2	1.4	
1B3	1.5		1 E 3	1.9		1H3	2.0	
1B4	1.6		1E4	1.2		1H4	1.3	
185	1.7		1E5	1.6		1H5	1.3	
186	-		1E6	1.2		1H6	1.2	
1B7	1.2		1E7	1.6		1H7	1.3	
1B8	1.2		1E8	2.2		1 H 8	1.5	
189	1.8		1E9	1.6		1H9	1.2	
1B10	2.4		1E10	1.9		1H10	1.2	
1B11	-		1E11	2.2		1H11	-	Non-recombinant
1B12	0.8		1 E12	1.5		1H12	-	No colony

clone	insert size (kb)	comments	clone	insert size (kb)	comments	clone	insert size (kb)	comments
2 Al	-	Non-recombinant	2 C 9	1.4		2F5	-	
2A2	1.6		2 C 10	2		2F6	2.3	
2A3	1.6		2 C 11	2		2 F 7	-	
2A4	1.4		2 C 12	1.5		2 F 8	2.1	
2A5	1.4		2D1	1.3		2F9	-	
2A6	1.4		2D2	-		2F10	1.9	
2A7	2.2		2D3	1.8		2F11	2.3	
2A8	1.6		2D4	2.1		2 F 12	2.0	
2A9	1.9		2D5	-		2G1	1.6	
2A10	1.9		2D6	1.4		2G2	1.7	
2A11	1.4		2D7	1.4		2G3	1.3	
2A12	1.9		2D8	1.7		2G4	2.4	
$2 \mathrm{B1}$	-		2D9	-		2G5	1.9	
2B2	1.4		2D10	2.1		2G6	1.9	
2B3	1.6		2D11	1.4		2G7	-	
2B4	1.5		2D12	1.9		2G8	1.4	
2B5	1.3		2E1	0.8		2G9	1.6	
2B6	1.4		2E2	-		2G10	1.9	
2B7	1.3		2E3	1.9		2G11	2.4	
2B8	2.1		2E4	2.3		2G12	-	
2B9	-		2E5	2.2		2H1	1.3	
2B10	1.4		2E6	1.6		2H2	-	
2B11	1.4		2E7	-		2H3	2.7	
2B12	-		2E8	-		2 H 4	2.0	
2 Cl	1.4		2E9	2.2		2H5	2.0	
2 C 2	1.4		2E10	1.9		2H6	1.6	
2 C 3	-		2E11	1.8		2 H 7	1.8	
2 C 4	1.3		2E12	1.9		2H8	2.2	
2 C 5	2.1		2F1	1.6		2H9	2.4	
2C6	1.2		2F2	1.6		2H10	2.0	
2 C 7	1.6		2 F 3	-		2H11	-	Non-recombinant
2 C 8	1.6		2F4	-		$2 \mathrm{H12}$	-	No colony

3.2.6: Identification of the PGPL cDNA Sequences Within N0434.1

Although the presence of the PGPL 3' UTR had been confirmed within the N0434 cosmid, it was unclear whether all of the gene was contained within it. Therefore the completed N0434.1 sequence assembly was searched for the published $P G P L$ cDNA sequence. This was achieved by including small sections of the cDNA sequence into the assembly and using the ABI AutoAssembler software to align them in their correct positions. For the first time this allowed some of the genomic structure of $P G P L$ to be revealed but showed that a substantial proportion of the 5^{\prime} end of the published PGPL cDNA was not contained within the N0434 cosmid (figure 3.2). Incidentally, there were no sequence differences between the PGPL exons within N0434.1 and the published cDNA sequence.

3.2.7: Orientation of N0434.1 Within PAR1 and Overlap with 3F3

Given that the 3F3 cosmid was reported to partially overlap N0434 at its distal end (Rao et al., 1997), and because the exons at the 3^{\prime} end of $P G P L$ had been identified, the gap amplicons generated to close gaps in the N 0434.1 sequence assembly were also used to determine the orientation of both the N0434 interval and PGPL within PAR1. This was achieved through attempting to amplify each of the gaps from both the N0434.1 and 3F3 cosmids whilst using DNA isolated from the 29 Cl cosmid as a negative control. Clearly all of the gaps were expected to amplify from N0434.1 DNA, none were expected to amplify from 29 Cl DNA and only those intervals contained within the N0434/3F3 overlap should have amplified from 3F3 DNA. The results of this set of reactions are shown in table 3.2 and figure 3.5 and clearly indicate that 3 F 3 extends approximately 12 kb into N0434. However, it is also clear that the 5^{\prime} part of $P G P L$ that is missing from N0434 is centromeric to this interval and so resides in the only discernible gap in the cosmid contig covering the distal 750 kb of PAR1 (figure 3.1).

The products that arose from amplification of 3 F 3 using the G2 and G9 primer pairs are clearly not the same as those gained from N0434.1 DNA (table 3.2). This suggested two main alternatives; first, the N0434.1 G2 and G9 regions may be variable tandem repeat loci that are duplicated in the 3F3 interval. Second, the G2 and G9 primers may reside in a kind of interspersed repeat, which is present in the 3 F 3 interval and sufficiently similar to the repeat in N0434 to allow amplification.

Table 3.2: The PCR amplifications performed on isolated N $0434,3 F 3$ and 29 C 1 cosmid DNA in order to determine the orientation of the N 0434 and PGPL sequences within PAR1. All amplicons were successfully produced from N0434 DNA and not from 29C1, as expected. Those amplicons that were generated from 3F3 DNA corresponded to those from one end of N0434, thus enabling both the orientation of N0434 and an estimation of the degree of overlap between 3 F 3 and N0434., as shown in figure 3.6. The 3F3 amplicons generated with the G2 and G9 primers are discussed further in the main text. PCR cycling conditions were as described in table $2.2 a, b$.

Name of gap	Primers used	Amplicon produced			Comments
		N0434.1	3F3	29C1	
G1	N30.6F x N31.2R	\checkmark	X	X	
G2	N24.1F x N 26.3 R	\checkmark	(7)	x	N0434 amplicon was 2.2 kb (as expected) but amplicon generated from 3F3 cosmid was $\sim 1.4 \mathrm{~kb}$
G5	N20.2F x RN20.7R	\downarrow	x	x	This amplicon was not part of the N0434.1 gap-closing strategy.
G7	N18.4F \times N19.1R	\checkmark	x	x	
G8	N12.5F x N15.1R	\checkmark	x	x	
G9	N11.8F \times N12.5R	\checkmark	($\sqrt{ }$	x	N0434 amplicon was 0.7 kb (as expected) but amplicon generated from 3 F 3 cosmid was $\sim 5 \mathrm{~kb}$
G10	N10.8F x N11.3R	\checkmark	\checkmark	x	
G11	N10.4F x N10.9R	\checkmark	\checkmark	x	
G12	N9.IF \times N9.9R	\checkmark	\checkmark	x	
G14	N5.2R \times N7.3F	\checkmark	\checkmark	x	
G16	N1.4F x N 2.4 R	\checkmark	\checkmark	x	

Figure 3.5: The orientation of N0434 and PGPL within PAR1 and an estimation of the degree of overlap between the N0434 (green) and 3F3 (plum) cosmids. The positions of the PGPL exons identified within N0434.1 are shown in blue.

3.2.8: In silico analysis of the N 0434.1 sequence

Before moving on to the next stage of a high resolution analysis of recombination, it was important to establish a comprehensive view of the genomic structure of the N0434.1 interval. Therefore the completed sequence was subjected to a number of in silico analyses.

3.2.8.a: NIX analysis

NIX, accessed through the MRC UK Human Genome Mapping Project Resource Centre (http://www.hgmp.mrc.ac.uk/). subjects a DNA sequence to many different DNA analysis programs and allows their results to be viewed simultaneously. This facilitates the identification of those instances when many programs have a consensus about any particular sequence feature. Programs used in a NIX analysis include Fex, Hexon, Fgene and HMMGene, which predict whole genes or exons; RepeatMasker, which identifies repetitive elements; BLAST, which searches many databases for sequences similar to the query sequence and GRAIL, which can predict protein coding genes, certain types of promoters, polyadenylation sites and CpG islands. The NIX analysis of the whole N0434.1 sequence can be seen in figure 3.6. There is a very good agreement between most of the gene and exon prediction programs (the blue and purple colours) in two major areas; first, a number of exons are predicted in the forward sense from approximately $3000-20,000 \mathrm{bp}$ and second, there are suggested to be exons from $23.000-33,000 \mathrm{bp}$ in the reverse sense. The BLAST searches showed that the latter exons were over 99% identical to the PGPL cDNA (figure 3.2) and so were part of the PGPL gene. The remaining putative exons in the forward sense matched an as yet uncharacterised cDNA reported to be slightly similar to a 1 -phosphatidylinositol phosphodiesterase precursor. This clearly suggests the identification of a novel gene in the N0434 interval, distal to PGPL and thus the most telomeric gene discovered to date in PAR1.

In addition, the NIX analysis revealed a very high density of repetitive sequences within the N0434 interval. most of which are Alu elements.

3.2.8.b: Tandem Repeats Finder

As three minisatellite arrays had been provisionally identified within N0434.1, it was possible that the minisatellite-richness of the region distal to $P G P L$ actually extended to within the N0434 interval. To investigate this further, the entire N0434.1 sequence was examined with Tandem Repeats Finder, a program that locates and displays tandem repeats in DNA sequences (http://tandem.biomath.mssm.edu/trf/trf.html; Benson, 1999).

Figure 3.6: The NIX analysis of the entire N0434.1 sequence. N0434.1 is shown as the thick, central, green line. Those programs with similar purposes have generally been grouped together and given the same colour. Everything above the N0434.1 sequence line is a feature found in the forward sense and everything below is a feature in the reverse sense. Where colours are more intense, the quality or confidence of the prediction is stronger. Obviously, confirmation of these predictions requires a more focussed investigation of the individual DNA regions containing the putative features, and experimentation is usually essential. Also see appendix 1 and figure 3.7.

This analysis revealed at least 15 novel tandem repeat sequences, which together covered 22% of the N(0434.1 interval (table 3.3. figure 3.7 and appendix 1); these included PGMS1, PGMS2, PGMS3 and a tandemly repeated array of pseudoautosomal STIR elements very similar to those described by Rouyer et al. in 1990 (figure 3.7). Given the supposed proximity of PGPL to the DXYS78 locus (above and figure 3.1 b), it was conceivable that one of these novel tandem repeats might be DXYS78 itself. With no sequence data for DXYS78 available the simplest way to test this possibility was to screen the tandem repeats within the N0434.1 sequence for I/hol. TaqI and Harlil restriction enzyme sites (see section 1.1.b.iv, above). This examination revealed that HacIII cut a number of the novel tandem repeats reasonably often, but the MhoI and TaqI sites were present in only one or two of the tandem repeats and at no time were they found to occur together in the same repeat array (data not shown). This indicated that DXYS78 is not contained within the N0434.1 interval and, as there is about 23.5 kb of sequence between the distal end of $P G P L$ and the distal end of the N0434.1 interval (Figure 3.7, appendix 1). it further suggested that the distance between PGPL and DXYS78 is greater than previously thought. The relative distances between the novel N0434.1 tandem repeats and the PAR1 telomere were thereby calculated with the assumption that the distal (3^{\prime}) end of $P G P L$ was 110 kb from the telomere (table 3.3).

3.2.8.c: RepeatMasker

RepeatMasker (Smit, A.F.A. and (ireen. P.. http://repeatmasker.genome.washington.edu/cgibin/RepeatMasker) screens IDN sequences against a library of repetitive elements and is primarily a tool that can be used to remove interspersed repetitive elements from a query sequence prior to BLAST searches. As the NIX analysis had indicated that the concentration of repetitive clements within the N0434 interval was particularly high, it was decided to analyse the full No434.1 sequence using RepeatMasker to more closely identify what the repetitive elements might be. The vast majority of the interspersed repetitive elements in the N0434.1 interval were shown to be Alu sequences, as suggested by the NIX analysis. Numerous studies have demonstrated that human Alu sequences are composed of a small number of distinct subfamilies (e.g. Slagel et al.. 1987; Willard et al., 1987; Britten et al., 1988; Batzer el (Il., 1995) and RepeatMasker was able to determine that the following subfamilies are represented in N(0434.1: AluSx. AluY (10 copies of each), AluSq (5 copies), AluSp, AluSg (3 copies of each). AluSc. AluIb. Alu.Jo (2 copies of each) and AluYc (1 copy). In addition there are five Alu elements that RepeatMasker could not assign to a single family, plus three FLAM (monomers and one FRAM monomer. Therefore in total there are 47 Alu elements, which constitute 33% of N0434.1. As a typical Alu element is a dimeric structure about 300 bp long. only those over 280 bp were considered to be "full-length." This defined

25 of the Alu elements within $\mathrm{N}(0+34.1$. Most of the Alu sequences appear to be randomly distributed across the region. but their density does fall to only 10% in the proximal 8 kb of N0434.1. However, this decrease does not coincide with any significant alteration of the overall GC content in the region.

There is only one long interspersed nuclear element (LINE) within the whole N0434.1 region (figure 3.7). It is a member of the 1.1 family but is very truncated at its 5^{\prime} end, with only about 400 bp of sequence. derived from the 3 ' end of a full-length $6-7 \mathrm{~kb} \mathrm{~L}$, present in the N0434.1 sequence.

In addition there are a small number of medium reiteration frequency (MER) elements and one transposable human element (THE-1) within the N0434.1 sequence (not shown).

Table 3.3: The tandem repeat sequences identified within the N0434.1 sequence assembly, which corresponds to an interval of approximately 33 kb residing about $85-120 \mathrm{~kb}$ from the PAR1 telomere.

Name ${ }^{\text {a }}$	Distance from tclomere (kb)	Length of repeat (mit (hp)	Number of repeat units in N($)$ +34.1 ${ }^{d}$	$G C$ content (\%)
NMS1	87 (1)	14	2.8	16
N(TA)1	87 (11)	2	116	10
N(TG) 2	88 (iii)	2	15.5	45
NMS2	89 (m)	28	6.3	72
N(CA) 3	90 (w)	2	80.5	52
N(CA) 4	90(w)	2	61.5	52
NMS3	92 (w/)	29	2.4	51
NMS4	93 (rım)	29	11.8	13
PGMS3	96 (A)	(2)	3.9	74
PGMS2	$102(x)$	49	47	45
NMS5	106 (xi)	13	28.5	30
PGMS 1	111 (xai)	53	21	39
(STIRs)	115	339	3.6	53
NMS6	116 (.xiii)	$\therefore 1$	7.8	72
NMS7	117 (an)	98	6.6	51

a : Nomenclature sistem for the nowel tandem repeats is as follows: PGMS1, PGMS2 and PGMS3 are the structures that were discovered during $N 0+34.1$ sequence assembly and are named after the $P G P L$ region, MiniSatellite $1-3$. NMSI-8 were discovered after N $0+34.1$ assembly with Tandem Repeats Finder and are named $\underline{N} 0434.1$ MiniSatellite $1-7$. in a distal to proximal order. The names of microsatellites are $\underline{N} 0434.1$ (repeat unit) 1-4. in a distal to proximal order.
b : Distances were calculated with the assumption that the distal (3^{\prime}) end of $P G P L$ is 110 kb from the telomere
c : The italicised Roman numerals in this column refer to the positions of the tandem repeats within the N0434.1 sequence as shown in tieure 3.7.
d : The variable lengths of of PGMSI. P(iMS2 and the STIR repeat array have been analysed in a panel of unrelated UK men of North European descent. These results are presented in Chapter 6.

Figure 3.7: The genomic structure of the 0434.1 sequence. This diagram is presented in a similar manner to Figure 3.6. In this case N0434.1 is shown as the thick, central, orange line. Everything above the orange line is a feature found in the forward sense and everything below is a feature in the reverse sense. Alu elements are denoted by the red triangles and tandem repeats by the green blocks. The Roman numerals refer to descriptions of the tandem repeats within Table 3.3. The only LINE in the N0434.1 interval is marked by the black box and the position of the array of pseudoautosomal STIR elements is shown by the yellow box. The exon positions of both the PGPL and novel genes are marked with vertical blue bars.

Figure 3.7: The genomic structure of the N0434.1 sequence

3.3: Discussion

The initial analysis of the N0434 cosmid suggested that it contained at least one variable tandem repeat sequence and confirmed that it contained at least part of the PGPL gene, as suggested by Gianfrancesco el cll. (1998). The subsequent construction of a shotgun library and sequencing of the entire N 0434 cosmid revealed a number of interesting factors.

3.3.1: GC content of the N0434.1 Interval

N0434.1 contains an interval of approximately 33.4 kb from within the distal region of PAR1. This interval has a GC content of 53.12%. placing it in the most GC-rich $3-5 \%$ of the human genome (Bernardi, 1989). This, together with the partial characterisation of the region between N0434.1 and the PAR1 telomere (discussed above), agrees with previous studies that have proposed the distal regions of other human chromosomes to be GC-rich. For example, it has already been noted that the distal 35 kb of PAR2 has a GC content of over 51% (Ciccodicola et al.. 2000) and, furthermore. Holmquist (1992) performed cytogenetic analyses to demonstrate that the GC-richest regions are the terminal regions of most human chromosome arms.

3.3.2: Interspersed Repetitive Elements Within the N0434.1 Interval

The high concentration of Alu elements, which are the most abundant short interspersed nuclear element (SINE) in the human genome, seems to reflect the high GC-content of the N0434.1 interval. There are over 1 million Alu elements comprising more than 10% of the human genome (Smit, 1996 and International Human Genome Sequencing Consortium, 2001), so the observation of 47 Alu elements constituting 33% of the DNA within N0434.1 clearly demonstrates an over-representation of Alu sequences within this region. However, this over-representation is not entirely unexpected as it is known that Alu elements are not uniformly distributed in the human genome and that they do preferentially locate in GC-rich regions (Smit. 1996, 1999 and International Human Genome Sequencing Consortium, 2001). Conversely, L1 elements seem to accumulate preferentially in GC-poor regions, which provides a neat explanation as to why only one (severely truncated) L1 was found in the N0434.1 interval. It is not clear as to why there is a relative scarcity of Alu elements in the proximal 8 kb of the N 0434.1 interval. particularly as the average GC content of this region is actually higher than the N0434.1 interval as a whole. The region is far too small to be able to
conclude that this represents a boundary between two PAR1 zones, as noted in PAR2 (Chapter 1, section 3.1). It remains quite possible that the noted difference in Alu density between the proximal 8 kb and distal 25 kb of the N 0434.1 interval will not be quite so striking once sequence data for the surrounding region becomes available.

3.3.2.a: A Variety of Alu Subfamilies in the N0434.1 Interval

The variety of Alu subfamilies within the complete N0434.1 sequence is quite striking. The Alu family is primate-specific and is believed to have arisen from the tandem duplication of older 130 bp interspersed repeats called FLAM (free left Alu monomer) and FRAM (free right Alu monomer) (Jurka and Zuckerkandl, 1991; Quentin, 1992), both of which are represented in the N0434.1 interval. Dimeric Alu sequences are then classed as members of the AluJ or AluS subfamilies. based on nucleotide differences in at least 14 positions (Batzer et al., 1996 and references therein). The AluJ subfamily includes the oldest Alu elements, with the AluS subfamily arising more recently and giving rise to AluY, the youngest Alu subfamily (Kapitonov and Jurka. 1996 and references therein). As representatives from each Alu subfamily are present in the N0434.1 interval, a closer examination may provide useful clues as to the evolution of the human PAR1.

3.3.3: Genes in the N0434.1 Interval

3.3.3.a: PGPL

The availability of the $P(G P L$ cl)NA sequence allowed the identification of six $P(G P L$ exons, including the 3^{\prime} UTR. However. analysis also revealed that the $5^{\prime} 679 \mathrm{bp}$ of the full-length 1867 bp cDNA sequence (as defined by Gianfrancesco et al., 1998 and shown in figure 3.2) was not contained within the $\mathrm{N}(434$ cosmid. Orientation of the N 0434.1 sequences revealed that the missing portion of $P G P L$ is situated proximal to the region covered by the $29 \mathrm{C} 1,3 \mathrm{~F} 3$ and N0434 cosmids and thereby in the only identifiable gap in the cosmid contig that covers the distal 750 kb of PAR1 (figure 3.1a.h).

3.3.3.b: A Novel Gene

Perhaps the most interesting discovery made as a result of the in silico analyses was the identification of a novel gene. which reads in the opposite orientation to $P G P L$ and ceases within 1 kb of the PGPL 3' UTR. A BL.AST search (Altschul et al., 1990) provided strong evidence that this gene is transcribed as it revealed that the exonic sequences of the novel gene were identical to a cifNA that is reported to be weakly similar to a 1-
phosphatidylinositol phosphodiesterase precursor. No genomic DNA matches could be found for this novel gene. which has been analysed in greater depth and is discussed further in Chapter 5.

3.3.4: Overlap Between the N0434 and 3F3 Cosmids

The experiments that were performed in order to determine the orientation of the N0434.1 sequences also verified that the N0434 and 3F3 cosmids overlap, and suggested that 3F3 extends approximately 12 kb into N0434.1. The 3F3 amplicons generated with the G2 and G9 primer pairs (table 3.2) suggested either that the G2 and G9 regions are variable tandem repeat loci that are duplicated in the 3 F 3 interval, or that the G2 and G9 primers reside in a kind of interspersed repeat. which is present in the 3 F3 interval and sufficiently similar to the repeat in N0434 to allow amplification. Having identified the interspersed repeats within the N0434.1 interval, it was discovered that N24.1F, one of the G2 primers, resides in an Alu element and that N 12.5 R . one of the G9 primers. is located in the only L1 sequence in N0434.1. If the high density of interspersed repeats noted within N0434.1 continues into the interval covered by the 3F3 cosmid, this would provide ample opportunity for the N24.1F and N 12.5 R oligonucleotides to prime a P('R amplification within the 3 F 3 cosmid sequence, resulting in the amplicons noted in table 3.2. Clearly, this matter cannot be fully resolved without the complete sequence of the 3 F 3 cosmid itself.

3.3.5: Novel Tandem Repeats in the N0434.1 Interval

Fifteen novel tandem repeats have been discovered within the N 0434.1 interval (table 3.3). Four are microsatellite sequences and consist of dinucleotide repeat units that stretch for no more than 232 bp ; one is a tandemly repeated pseudoautosomal STIR element and the remaining ten tandem repeat arrays are minisatellites with repeat units of length $13-98 \mathrm{bp}$ and GC contents ranging from $13-72 \%$. It is interesting to note that the N0434.1 interval is an extension of the minisatellite-rich region that constitutes the distal 100 kb of $\mathrm{P} \backslash \mathrm{R} 1$, which suggests that the distal portion of PAR1. and perhaps PAR1 as a whole, is much more minisatellite-rich than previously thought. It also has further implications for a high resolution analysis of recombination within the N0434.1 interval, especially when considering the hotspot-driven instability of the MS32 minisatellite (Jeffreys et al., 1998a). The length variability and repeat unit diversity of a subset of these novel minisatellites has been examined, and the results are presented in Chapter 6.

The identification of a novel pseudoautosomal STIR element that is similar, but not identical, to those described by Rouyer el cll. (1990) raises further questions as to their putative role and supports a suggestion that the pseudoautosomal STIRs should be considered as a separate family to the autosomal STIRs. In light of this, the N0434.1 STIR has also been subjected to more analysis, the results of which are presented in Chapter 6.

3.4: Concluding Remarks

Sequencing of the N0434.1 cosmid has revealed some of the genomic structure of the PGPL gene and has putatively identified a novel gene that appears to be transcribed and is thus the most telomeric gene so far identified in PAR1. The N0434.1 interval is very (iC-rich, which is reflected by the high density of Alu sequences in the region, and contains a number of novel tandem repeats. Most importantly, the N0434.1 sequence provides a tool for the discovery of SNPs, which can then be subjected to LD analysis as part of the high resolution analysis of recombination in the $P G P L$ region.

Chapter 4

Extending and Characterising the Known Sequence in the PAR1 Telomere-PGPL Interval

4.1: Introduction

The work on the N0434.1 cosmid subclone, presented in Chapter 3, provided the first block of complete sequence information in the distal region of PAR1. This sequence provided the primary tool for an investigation of diversity in the $P G P L$ region prior to a high resolution analysis of recombination, as detailed in Chapters 6,7 and 8 , but did not contain any of the tandemly repeated elements previously reported to exist in the PAR1 telomere-PGPL interval (Chapter 3, sections 3.1.1.a-c) (figure 4.1). Therefore, in hope of finding these elements and thus delineating more of the genomic structure of the PAR1 subtelomeric interval, an attempt was made to extend the known sequence towards the PAR1 telomere by sequencing the 3F3 cosmid. As the 3 F 3 cosmid had already been shown to overlap the N0434 cosmid by approximately 12 kb (table 3.2, figure 3.5), it was also possible that a comparison of the N0434.1 and 3F3 sequences could lead to the identification of a number of polymorphisms that might be of use in a subsequent recombination analysis.

4.1.1: A Brief Reminder of the Properties of the 3F3 cosmid

Cosmid 3F3 is derived from the Lawrence Livermore Y-chromosome specific library (LLN0YCO3'M'), for which the cosmid vector is Lawrist 16 (GenBank accession number = L19898), and forms part of a cosmid contig covering the distal 750 kb of PAR1 (Rao et al., 1997). The 3F3 cosmid overlaps the distal part of N0434.1 (Rao et al., 1997 and Chapter 3, section 2.7) and so purportedly covers a region that is approximately $40-80 \mathrm{~kb}$ from the PAR1 telomere. Therefore 3F3 is expected to contain several of the structures reported to exist within the distal 100 kb of PAR1 (Chapter 3, figure 3.1b).

Figure 4.1: The consensus sequences of the partially characterised minisatellites within the $\mathrm{Xp} / \mathrm{Yp}$ telomere- $P G P L$ interval. The loci are presented from the most distal to the most proximal, corresponding to the order provided by Page et al. (1987) and Vergnaud et al. (1993). The sequences read distal to proximal, as defined in the references that have been noted next to the relevant locus name.

DXYS14 (Inglehearn and Cooke, 1989)

CTCGGGACCACCCCAGACCCCCGCTCCTCCC

DXYS20 (Page et al., 1987; Vergnaud et al., 1993)
AAGGTTGCACAGTCTGCTCTCTATCTGTCCTCAATGAGACCTAGGCCCAATGCAGACTCTA

B4 (Vergnaud et al., 1993)

TTGTCCCCACCAACATCCAGGGATGACC

CEB12 (repeat 2) (Vergnaud et al., 1993)
GGAGGATGCACATG

CEB12 (repeat 1) (Vergnaud et al., 1993)
CCCGAGACCCCCTCTTCCTGTCGCGG

CEB30 (Vergnaud et al., 1993)

AGCTAGAGACAGTGGGGGT

4.2: Results

4.2.1: PCR Assay to Confirm Presence of Cosmid 3F3 DNA

As noted in Chapter 3, section 3.2.1, four single colony glycerol "subclones" of cosmid 3F3 (3F3.1-.4) had already been prepared. In addition, DNA had been extracted from each subclone and digested with the $S f i \mathrm{I}$ restriction enzyme, a reaction that separates the Lawrist 16 vector from any insert sequence, thus demonstrating the presence of an insert within 3F3.1-.4. The PCR assays used to determine the extent of overlap between N0434.1 and 3F3 (Chapter 3, section 3.2.7) provided an assay to check that 3F3.1-. 4 had not been contaminated with N0434.1 DNA, as the G2 and G9 primer pairs produced amplicons of a significantly different sizes when amplifying 3F3 DNA compared to when N0434.1 DNA was used as a template (Chapter 3, table 3.2). As expected, DNA prepared from 3F3.1-.4. produced G2 amplicons of 1.4 kb and G9 amplicons of 5 kb , the control amplifications from N0434.1 DNA produced amplicons of 2.2 kb and 0.7 kb respectively and negative control amplifications, which used 29 C , did not produce any amplicons (data not shown). The PCR conditions were as described in Chapter 2, tables $2.2 a, b$ and Chapter 3, table 3.2. The assay demonstrated that 3F3 DNA had been successfully subcloned and was not contaminated with N0434 DNA

4.2.2: Restriction Enzyme Digest Assay of 3F3 Sub-clones

Given the number of tandem repeats that have been reported in the region (Cooke et al., 1985; Page et al., 1987; Armour et al., 1990; Vergnaud et al., 1993), and having already demonstrated the variability of N0434 inserts in E. coli (Chapter 3, section 3.2.3), the expected instability of the inserts in the 3F3 subclones was investigated by digestion of 3F3.1-. 4 with the BglI, DraI, PstI and PvuII restriction enzymes. The digests were then subjected to agarose gel electrophoresis in order to produce a digest profile (figure 4.2).

Figure 4.2: Digestion of 3F3 sub-clones .1-.4 using BglI, DraI, PstI and PvuII restriction enzymes. The digests have been subjected to agarose gel electrophoresis with $\lambda \times$ HindIII and $\phi \times 174 \times$ HaeIII standard weight molecular markers. The absence of bands in the $3 F 3.2$ lanes was explained in a subsequent assay of the concentrations of each subclone DNA preparation, which demonstrated that the preparation of 3 F3.2 was 25 times less concentrated than originally thought (data not shown). Nevertheless, the profiles of 3F3.1, .3 and .4 provide clear evidence for a level of variability between the 3 F 3 inserts. The PvuII profiles differ by just one band of variable size, marked by the white arrows, which is consistent with the presence of an unstable tandem repeat array. Digestion with $B g I I$ and DraI was only partial but these profiles are concordant with the presence of at least one variable tandem repeat locus. A suggestion to explain the identical profiles of the Pst I digests is provided in the main text.

4.2.2.a: Variability Between 3F3.1-. 4

The digest profiles, whilst similar to each other, showed differences that indicated a level of variability between 3F3 inserts that was consistent with the presence of at least one variable tandem repeat locus. For instance, the 3F3.1-.4 PvuII profiles differ by just one fragment, which varies in size from approximately 2.8 kb in 3 F 3.1 , to about 9.4 kb in 3 F 3.3 , and roughly 13 kb in 3F3.4 (figure 4.2). The BglI and DraI digests were incomplete but are also consistent with the presence of tandem repeat loci. In addition, the identical patterns obtained after digestion with PstI could be explained if 3F3 contained a large tandem repeat array in which each repeat unit contained a PstI site, a possibility that appears to be supported by the fact the the length estimations of $3 \mathrm{~F} 3.1-.4$ are significantly shorter using the PstI data than they are when using the profiles of the PvuII digests; e.g. for 3 F3.1, the PstI profile indicates a length of approximately 33 kb , compared to a length of 38 kb suggested by the $P v u \mathrm{II}$ digest profile.

4.2.3: Preparation of the 3F3.1 Shotgun Library

Given the heterogeneity of the 3 F 3 cosmid in E. coli, it was decided that the simplest way to sequence 3 F 3 would be to focus exclusively on the shortest 3 F 3 subclone, 3F3.1. The construction of the 3 F3.1 shotgun library followed much the same pattern as the assembly of the N0434.1 library (Chapter 3, section 3.2.4). As a result, only the differences between the two libraries, at specific stages of the construction process are included here. An aliquot of the 3F3.1 DNA preparation was digested with the $P s t \mathrm{I}$ and $P v u \mathrm{II}$ restriction enzymes to confirm that the preparation had yielded 3F3.1 DNA. As the N0434.1 shotgun library of 192 colonies was insufficient for full coverage of the N0434.1 sequence, a 3F3.1 library of 238 colonies, consisting of 15 controls and 223 recombinant colonies expected to contain a $1-2 \mathrm{~kb}$ insert, was constructed and should have been adequate for full sequence coverage of the 3 F3.1 sequence.

Before any 3F3.1 colonies were picked into the ordered array that constituted the library, twelve supposedly recombinant colonies were selected at random to check for the presence of an inserted 3F3.1 fragment by plasmid DNA preparation (Sambrook et al., 1989) and digestion with KpnI and BamHI to cut the insert out of the pBl uescript SK^{+}vector. The digests were then subjected to agarose gel electrophoresis to determine the size of the insert. Only ten of the twelve colonies were shown to contain an insert, suggesting that only about 80% of the 223 putatively recombinant colonies within the 3 F3.1 shotgun library actually contained an insert derived from the 3 F3.1 subclone.

4.2.4: Sequencing of 3F3.1

4.2.4.a: Sizing the shotgun library inserts

Double-stranded DNA was prepared from the library clones and the inserts were amplified using the SK and KS primers (Chapter 2, table $2.2 a$). The sizes of the amplified inserts were then determined by agarose gel electrophoresis (table 4.1). Only 70\% of the shotgun library recombinant colonies contained an amplifiable insert and four inserts (2A4, 2A7, 3C3 and 4A11) were only $0.2-0.3 \mathrm{~kb}$ in length. As the construction of the shotgun library involved selecting 1-2 kb DNA fragments of cosmid (Chapter 2, section 2.2.9.b) it was unclear as to what these short inserts represented. However, if 3 F3.1 does contain variable tandem repeat arrays, it is quite possible that $0.2-0.3 \mathrm{~kb}$ inserts were fragments of the putative tandem repeat that were unstable in the system used to construct the shotgun library.

4.2.4.b: Sequencing strategy

All of the amplified inserts were purified by electroelution and ethanol precipitation and first sequenced with the KS primer. As for the sequencing of N0434.1, all of the retrieved 3F3.1 sequences were aligned, in silico, against the full Lawrist 16 sequence to ensure that no Lawrist 16 sequences were included in the assembly of the 3 F3.1 sequence. In addition, novel $3 F 3.1$ sequences were aligned against the complete N0434.1 sequence in order to more accurately establish the amount of overlap between the 3 F 3 and N0434 cosmids, and also to identify any differences that might exist between the two cosmids in their overlapping regions. If appropriate, the inserts were then sequenced with the SK primer. All sequence reads were assembled using ABI AutoAssembler software.

Assembling the 3 F3.1 sequence was a difficult challenge, particularly as many inserts produced incomprehensible sequence reads. Evidently, repeat DNA was the source of this problem, as many sequence reads appeared to stutter and slip and superimpose on themselves. Up to this point all sequencing reactions had been carried out with an early version of the ABI PRISM BigDye ${ }^{\text {TM }}$ Terminator Cycle Sequencing Ready Reaction Kit (Chapter 2, section 2.2.10.a), which had been adequate for N0434.1 sequencing. However, in order to combat the problems that were arising during the assembly of 3 F3.1, the most problematic library clones were resequenced using BigDye ${ }^{\mathrm{TM}}$ version 3.1, which, according to the manufacturers, is able to read more effectively through regions of repetitive DNA and is usually able to extend a read beyond the upper limits of earlier BigDye ${ }^{\mathrm{TM}}$ versions. In many cases improved sequence
reads were obtained, but approximately 12% of the library clones that contained an amplifiable insert remained impossible to sequence.

4.2.4.c: The Final Assembly of the 3F3.1 Shotgun Library Sequences

Given these problems, the final assembly of 3 F3.1 sequences within the library did not produce a contiguous sequence that covered the whole of the 3F3.1 interval. Instead, approximately 75 kb of sequence reads accumulated into 14 contigs of length $0.5-3.0 \mathrm{~kb}$, and a further 10 kb of sequence reads did not align with any of the contigs. In some cases the KS and SK reads of one or more library inserts assembled at the ends of different contigs, which meant that the 14 contigs could be assembled into 9 non-contiguous reads that stretched over $0.5-6.5 \mathrm{~kb}$, the longest of which included a novel minisatellite array, provisionally entitled 3FMS1, which appeared to stretch over 3.3 kb . The length of 3 F 3.1 had already been estimated at 38 kb (section 4.2.1, above), which meant that the sum total of the 3 F 3.1 shotgun library assembly covered only 60% of the 3 F 3 interval. Despite the poor coverage it was possible to accurately determine that the amount of N0434.1 sequence overlapped by the 3F3.1 cosmid was $12,238 \mathrm{bp}$ (Appendix 1), in full agreement with the estimate of 12 kb drawn from the studies presented in Chapter 3, section 3.2.7. Therefore, with reference to Chapter 3, table 3.3, the 3 F3.1 sequence includes the nine most distal tandem repeat sequences identified within N0434.1 as well as at least one major minisatellite locus in the $25-26 \mathrm{~kb}$ portion of 3F3.1 that lies distal to the N0434.1 interval. At this stage, it was decided to move on from primary sequencing in order to concentrate on the analysis of recombination in the PGPL region. In the meantime, it was hoped that the Human Genome Sequencing Consortium would finally address PAR1. Therefore, conatct was made with Dr Mark Ross, head of the X chromosome sequencing project at the Sanger Centre, Cambridge, UK, with the understanding that he would provide updates on the progress of any PAR1 sequencing project with particular reference to the PAR1 telomere- $P G P L$ interval.

Table 4.1: Sizes of inserts in the 3F3.1 shotgun library. The library is an ordered array of recombinant colonies picked into five 96 -well plates. The name of a colony reflects its position within the ordered array. Each plate contained three internal controls, marked within the table as 'non-recombinant,' which denoted those colonies that did not contain recombinant pB luescript SK^{+}vectors, or 'no colony,' which indicated those wells that did not have a colony picked into them. PCR amplification with the KS and SK primers demonstrated that only 70% of the colonies within the library contained an amplifiable 3F3.1 insert. As was the case with the N0434.1 library, a small proportion of the colonies produced two fragments after amplification, which could have been caused through mixture of two recombinant colonies. In these cases the fragments were separated, sequenced as normal and included in the 3 F3.1 sequence assembly.

clone	insert size (kb)	comments	clone	insert size (kb)	comments	clone	insert size (kb)	comments
1 Al		Non-recombinant	3 C 7	1.4		4 C 5	1.2	
1A2	1.3		3C8	1.3		4C6	1.9	
1A3	1.2		3C9	1.4		4 C 7	1.4	
1 A 4	1.5		3 C 10	-		4C8	2.2	
1A5	1.2		$3 \mathrm{Cl1}$	-		4C9	1.8	
1A6	1.7		3 Cl 12	2.0		4 C 10	1.8	
1A7	1.2		3D1	1.1		4C11	1.7	
1A8	1.4		3D2	1.4		4 C 12	1.2	
1A9	-		3D3	1.1		4D1	1.5	
1A10	1.6		3D4	-		4D2	1.5	
1A11	-		3D5	-		4D3	1.9	
1A12	1.8		3D6	1.6		4D4	-	
1B1	1.4		3D7	1.6		4D5	1.5	
1B2	1.2		3D8	1.1		4D6	1.5	
1B3	1.6		3D9	1.4		4D7	1.1	
1B4	1.6		3D10	-		4D8	1.4	
1B5	1.6		3D11	0.8		4D9	-	
1B6	1.2		3D12	2.1		4D10	1.8	
1B7	1.5		3E1	-		4D11	1.7/2.0	double
1B8	1.7		3E2	1.9		4D12	1.7	
1H11	-	Non-recombinant	3E3	1.2		4E1	1.1	
1H12	-	No colony	3E4	1.2		4E2	1.6	
2 Al	-	Non-recombinant	3E5	1.2		4E3	1.9	
2A2	1.5		3E6	1.1		4E4	1.0	
2A3	1.1		3E7	1.3		4E5	1.5	
2A4	0.6		3E8	2.2		4E6	1.8	
2A5	1.8		3E9	-		4E7	1.4	
2A6	1.1		3E10	-		4E8	1.9	
2A7	0.2		3E11	1.1		4E9	1.4	
2 A 8	0.9		3E12	3.4		4E10	-	
2A9	1.1		3F1	-		4E11	1.4	
2A10	1.3/1.3	double	3F2	-		4E12	1.8	
2A11	1.4		3F3	-		4F1	1.8	
$2 \mathrm{Al2}$	1.7		3F4	-		4F2	1.4	
2B1	1.4		3F5	1.1		4F3	1.6	
2B2	1.5		3F6	1.1		4F4	1.3	
2B3	1.5		3F7	1.2		4H11	-	Non-recombinant
2B4	-		3F8	-		4H12	-	No colony
2B5	-		3F9	1.1/2.0	double	5A.1	-	Non-recombinant
2B6	2.0		3F10	1.1		5A2	1.0	
2 HII	-	Non-recombinant	3F11	1.0/2.2	double	5A3	-	
$2 \mathrm{Hl2}$	-	No colony	3F12	1.9		5A4	-	
3 Al	-	Non-recombinant	3H11	-	Non-recombinant	5A5	1.7	
3A2	1.2		3H12	-	No colony	5A6	1.2	
3A3	-		4A1	-	Non-recombinant	5A7	1.0	
3A4	-		4A2	1.2		5A8	1.8	
3A5	1.2		4A3	-		5A9	1.4	
3A6	-		4A4	-		5A10	1.9	
3A7	-		4A5	-		5A11	2.0/2.3	double
3A8	1.4		4A6	1.0		5A12	1.6	
3 A 9	1.2		4A7	-		5B1	-	
3A10	-		4A8	-		5B2	1.2	
3A11	-		4A9	-		5B3	-	
$3 \mathrm{Al2}$	-		4A10	-		5B4	1.8	
3B1	-		4A11	0.2		5B5	-	
3B2	-		4A12	1.3		5B6	1.1	
3B3	-		4B1	-		5B7	1.8	

Table 4.1 (continued): Sizes of inserts in the 3F3.1 shotgun library.

clone	insert size (kb)	Comments	clone	insert size (kb)	comments	clone	Insert size (kb)	comments
3B4	-		4B2	1.2		5B8	1.8	
3B5	1.3		4B3	1.6		5B9	-	
3B6	1.3		4B4	1.6		5B10	1.2	
3B7	1.8		4B5	-		5B11	-	
3B8	-		4B6	0.9/1.3	double	5B12	-	
3B9	1.3		4B7	1.2		5 Cl	-	
3B10	-		4B8	1.9		SC2	-	
3B11	-		4B9	1.8		5 C 3	1.3	
3B12	-		4B10	1.4		5C4	-	
3 Cl	1.3		4B11	1.3		5 C 5	1.2	
3 C 2	1.1		4B12	1.6		5C6	-	
3 C 3	0.3		4 Cl	-		5 C 7	-	
3 C 4	1.0		4C2	1.4		5C8	1.6	
3 C 5			4 C 3	1.3		5C9	1.5	
3C6	1.3		4C4	1.3		5 Cl 10	-	
5 C 11	-		5D7	-		SE3	-	
5 C 12	-		5D8	1.8		5E4	-	
5D1	1.3		5D9	-		5E5	1.1	
5D2	1.3		5D10	1.3		5E6	1.8	
5D3	2.1		SDI1	2.2		5H11	-	Non-recombinant
SD4	1.3		5D12	1.2		5H12	-	No colony
SD5	1.3		SE1	2.0				
5D6	-		5E2	1.3				

4.2.5: Distal PAR1 Sequences Produced at the Sanger Centre

Very recently (June 2003), the Sanger Centre produced sequence data for almost the entire PAR1. However, they too found that sequencing the region was problematic, and it was thus rather pleasing for me to note that the Sanger Centre had found the process sufficiently difficult and frustrating for Dr Mark Ross to include the phrase, "What a bugger!" in his latest update on the progress in and around the $P G P L$ region. The Sanger Centre sequences corresponding to the PAR1 telomere- $P G P L$ interval were isolated, aligned with the N0434.1 sequence in order to determine their orientation, and subjected to in silico analyses, as detailed below, in order to identify the structures shown in figure $3.1 b$.

4.2.5.a: The 3F3 Region

Attempts to sequence the entire 3F3 cosmid at the Sanger Centre also appear to have been unsuccessful (M. Ross, personal communication). This led them to use a fosmid clone to sequence this interval, which they called G248P86101C3 (hereafter referred to as C3), the sequence of which is available under the GenBank accession number BX537334.

4.2.5.a.i: Length, Orientation and GC Composition of the C3 Sequence

The ABI AutoAssembler software was used to align the C3 sequence against the 3F3.1 sequence reads and a number of overlapping 2 kb fragments from the N 0434.1 sequence. This established that the C3 sequence overlapped the distal end of N0434.1 by 19,518 bp and so included the PGMS2 and NMS6 minisatellites, in addition to the ten already shown to exist within 3F3.1 (this chapter, section 4.2.3.c). Given the fact that the orientation of the N0434.1 sequence had been determined (Chapter 3, section 3.2.7) it was also possible to ascertain that the database C 3 sequence read in a proximal to distal orientation. The C 3 sequence that did not overlap N0434.1 totalled $23,740 \mathrm{bp}$ and was found to have an average GC content of 58.69%, providing ample evidence that the distal 100 kb of PAR1 is part of the GC-richest class of human DNA (Bernardi, 1989), as suggested in the previous chapter. Only the $23,740 \mathrm{bp}$ of C3 DNA that did not overlap with N0434.1 was subjected to in silico analysis (this distal portion of C 3 is hereafter referred to as C 3 A).

4.2.5.a.ii: NIX Analysis

The results of the NIX analysis, again accessed through the MRC UK Human Genome Mapping Project Resource Centre (http://www.hgmp.mrc.ac.uk/), can be seen in figure 4.3. There are no strong predictions for the presence of any exonic sequences, but a closer examination of the C3A sequence did reveal a short (66 bp) exon, which corresponded to the most 5^{\prime} end of the uncharacterised cDNA that matched the putative gene in the N0434.1 interval. This short segment had not been identified in the N0434.1 sequence. Therefore, the novel gene is 26 kb long and consists of nine exons. The NIX analysis also revealed that the relatively high density of Alu elements observed in the N0434.1 interval stretches into the C3A region.

4.2.5.a.iii: Tandem Repeats Finder

The heterogeneity of the different 3 F 3 cosmid subclones and the problematic 3 F 3.1 sequencing project had already suggested that the C3A sequence contained at least one other major minisatellite locus, in addition to those in the proximal part of C3 that overlapped with N0434.1. For that reason, and in an attempt to locate previously characterised tandem repeat arrays, the C3A sequence was analysed using Tandem Repeats Finder (http://tandem.biomath.mssm.edu/trf /trf.html, Benson, 1999). This indicated that C3A contained another nine novel tandem repeat sequences, plus the CEB30 tandem repeat already identified by Vergnaud et al. (1993) (figure 4.4, table 4.2). Hence, tandem repeat arrays cover 39% of the C3A sequence, showing the region to be more minisatellite-rich than the proximal N0434.1 interval.

4.2.5.a.iv: RepeatMasker

RepeatMasker (Smit, A.F.A. and Green, P., http://repeatmasker.genome.washington.edu/cgibin/RepeatMasker) identified 20 different Alu elements within the novel C3A sequence, consisting of five members of the AluSx subfamily, four copies of both the AluY and AluSq subfamilies, three AluSg elements, two AluJo elements plus one AluS and one Alu element that RepeatMasker could not assign to a single family. The density of Alu elements within C3A is 21%, still significantly greater than genome average of approximately 10% (International Human Genome Sequencing Consortium, 2001) but also much less than the density of Alu elements in the N0434.1 interval, as indicated by the NIX analysis (figure 4.3). Of the 20 Alu elements within C3A, 14 are "full-length," as defined by the criteria described in Chapter 3, section 2.8.c. The majority of the Alu sequences within C3A are clustered in the most distal 10 kb of the region (figure 4.4), where their density is actually 41%. This does not correspond to a significant shift in GC content but is due to the fact that the proximal part of

Figure 4.3: The NIX analysis of the portion of the Sanger Centre fosmid clone G248P86101C3 that lies distal to the N0434.1 sequence. The relatively high density of interspersed repeats in each orientation is denoted by the cyan blocks. Also see figure 4.5.

Figure 4.4: The genomic structure of the C 3 A sequence. Everything above the orange line is a feature found in the forward sense and everything below is a feature in the reverse sense. Alu elements are denoted by the red triangles and tandem repeats by the green blocks. CEB30 (Vergnaud et al., 1993) is labelled and the Roman numerals refer to descriptions of the tandem repeats within table 4.2. The first exon of the novel gene identified during the sequencing of N0434.1 is marked by the vertical blue bar.

4.2.5.b: The 29C1 Region

Preliminary observations of the 29 C 1 cosmid suggested that it was highly unstable in E. coli (Chapter 3, section 2.1). Nevertheless, the Sanger Centre were able to fully sequence 29C1, producing a read of approximately 37.8 kb , available under GenBank accession number AL954722. As CEB30 was the only previously characterised locus in the PAR1 telomere-PGPL interval to have been identified within the C 3 sequence, 29 C 1 was also examined in the hope of identifying the other previously characterised loci as laid out in figure $3.1 b$.

4.2.5.b.i: Orientation and GC Composition of the 29C1 Sequence

Aligning the 29 C 1 sequence against the previously oriented C 3 sequence established that the 29 C 1 database sequence read in a distal to proximal direction and that it overlapped the distal end of C3 by 8252 bp . Consequently, only the proximal $29,522 \mathrm{bp}$ of 29 C 1 (hereafter referred to as 29 C 1 A) was subjected to the in silico analyses presented below. The GC content of 29 C 1 A is 53.12%, exactly the same as the GC content of the N0434.1 interval, and in keeping with the suggestion made above that the distal 100 kb of PAR1 is part of the most GC-rich class of the human genome, as defined by Bernardi (1989).

4.2.5.b.ii: NIX Analysis

The results of the NIX analysis, are shown in figure 4.5. This analysis has not provided any evidence for the presence of any more exonic sequences, suggesting that the novel gene identified in the N0434.1 interval is indeed the most telomeric in PAR1. The density of interspersed repetitive elements appears to be relatively low compared to the C3A and N0434.1 regions. Despite the high GC content of 29 C 1 A , a number of these repetitive elements are members of the L 1 family.

4.2.5.b.iii: Tandem Repeats Finder

Analysis of 29 C 1 A with Tandem Repeats Finder revealed the previously characterised DXYS14, DXYS20, CEB12 and B4 tandem repeat arrays (figure 4.1 and Chapter 3, figure $3.1 b$), plus two small, novel repeat arrays and the tandemly repeated array of pseudoautosomal STIR elements referred to as 362F by Rouyer et al. (1990) (figure 4.6, table 4.3). The DXYS20 array is particularly long, representing nearly 40% of the 29 C 1 A sequence and, altogether, the tandem repeat arrays cover 53% of 29 C 1 A . Assuming that the assembly of the 29 C 1 sequence is correct, this analysis has also revealed that the order and orientation of the CEB12 and B4 arrays, as defined by Vergnaud et al. (1993) and as presented in figures $3.1 b$ and 4.1 , is wrong. As shown in figure 4.6 , the distal to proximal order of these arrays is
actually CEB 12 repeat 1, CEB12 repeat 2 and then B4. Similarly, the consensus sequences of these repeats, shown in figure 4.1 as reading distal to proximal (as defined by Vergnaud et al., 1993), actually read in a proximal to distal direction. The original positioning of CEB12 and B4 took place via restriction enzyme mapping (Vergnaud et al., 1993) and, as CEB12 and B4 are BamHI fragments, it is quite conceivable that they were incorrectly oriented with respect to each other and the more centromeric 362 F pseudoautosomal STIRs and CEB30.

4.2.5.b.iv: RepeatMasker

RepeatMasker was used to more closely identify the repetitive elements indicated by the NIX analysis. A total of 19 different Alu elements, covering just 15% of the 29 C 1 A sequence was identified. As was the case for both the N0434.1 and C3A sequences, a wide range of Alu subfamilies were represented in the 29C1A sequence, including AluY (6 copies), AluSg, AluSq, AluSx (2 copies of each) and one copy each of the AluJb, AluJo, AluS and AluSp sequences. In addition there were two Alu elements that RepeatMasker could not assign to a single family and one FLAM_A monomer. Eleven of the 29C1A Alu elements are full-length. As was observed in the C3A sequence, the Alu elements are not randomly distributed in the 29 C 1 A interval but, as is clear from figure 4.6 , this is due to the large proportion of the 29 C 1 A sequence that is taken up by tandem repeat arrays. In addition to the Alu elements and tandem repeat arrays, there are four 5^{\prime}-truncated L1 elements (one of which is interrupted by an Alu sequence), which means that nearly 75% of 29 C 1 A is composed of repetitive sequences (figure 4.6).

Table 4.3: The tandem repeats identified within the Sanger Centre 29C1A sequence.

Name a	Length of repeat unit $(b p)$	Number of repeat units in $29 C l$	GC content (\%)
29(TYCC)1	4	14	61
DXYS14	31	44.5	72
29MS1	10	3.4	65
DXYS20	61	185	49
CEB12 (1)	26	49	67
CEB12 (2)	14	4	53
B4	28	34	51
(STIRs)	340	2	53

a : Nomenclature system for the novel tandem repeats is as follows: 29 MS 1 was named after the $\underline{29} \mathrm{C} 1$ region, $\underline{\text { MiniSatellite }} 1$. The microsatellite is $\underline{29}$ (repeat unit) 1 .

Figure 4.5: The NIX analysis of 29 ClA , which lies distal to the Sanger Centre fosmid clone G248P86101C3.

Figure 4.6: The genomic structure of 29C1A. Everything above the orange line is a feature found in the forward sense and everything below is a feature in the reverse sense. Alu elements are denoted by the red triangles and tandem repeats by the green blocks. The positions of L1 elements are marked with the black bars and the pseudoautosomal STIRs originally identified by Rouyer et al. (1990) are shown in yellow. Tandem repeat arrays that have already been characterised (see main text) are labelled and further information on these and the two small arrays that flank DXYS 14 is provided in table 4.3.

4.2.5.c: Novel Sequence Proximal to N0434.1

During the analysis of the N0434.1 sequence it was noted that a significant portion of the PGPL gene was centromeric to the N0434 cosmid, and was thus expected to reside in the only gap in the cosmid contig developed by Rao et al. (1997) (figure 3.1). However, a chromosome-specific BLAST of the Sanger Centre X chromosome sequence (http://www.sanger.ac.uk/HGP/ ChrX/ChrX_blast_server.shtml), revealed some unfinished sequence derived from clone RP11-1293H22 (hereafter referred to as H 22), which can be accessed through GenBank accession number BX546484. Currently, this clone consists of three unordered pieces, the largest of which overlaps the proximal end of the N0434.1 sequence and extends $10,259 \mathrm{bp}$ into the cosmid contig gap. The other two pieces are $5-6 \mathrm{~kb}$ in length, do not align with the N0434.1, C3 or 29 C 1 sequences and so appear to lie even more centromeric to N0434. The novel $10,259 \mathrm{bp}$ of H 22 (H22A) were subjected to the same in silico analyses as the N0434.1, C3A and 29C1A sequences in the hope of identifying the missing portion of $P G P L$, and so fully delineating its genomic structure.

4.2.5.c.i: GC content of H22A

As the H 22 sequence is unfinished and currently consists of three unordered pieces there was little point in orienting the sequence with respect to N0434.1 and the other PAR1 sequences. However, the GC content of H 22 A is 55.08%, which for the first time extends the very GCrich region at the distal end of PAR1 towards the centromere.

4.2.5.c.ii: NIX Analysis

The NIX analysis of the H22A sequence is shown in figure 4.7. A closer examination of the reverse sense sequences from $1-4100 \mathrm{bp}$, where there is very good agreement between the gene and exon prediction programs (the blue and purple colours in figure 4.7), identified the most 5' 679 nucleotides of PGPL (as defined by Gianfrancesco et al., 1998 and shown in figure 3.2) that were missing from the N0434.1 sequence. Aligning these nucleotides with the $P G P L$ cDNA (figure 3.2) revealed that they were split into four exons, meaning that the entire PGPL gene consists of ten exons spread over a genomic region of 14.3 kb . As has been the case for $29 \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 3 \mathrm{~A}$ and N0434.1, the NIX analysis has shown that H22A also has a relatively high density of Alu elements (the cyan colour). However, these Alu sequences are not randomly distributed and are clustered towards the proximal end of H22.

4.2.5.c.iii: Tandem Repeats Finder

This analysis identified another twelve novel tandem repeat arrays covering 33% of H22A (figure 4.8, table 4.4) and thereby provided compelling evidence that the minisatellite-rich region extends from the PAR1 telomere-adjacent interval and beyond PGPL towards the centromere.

4.2.5.c.iv: RepeatMasker

In order to identify the Alu subfamilies within H 22 A , the sequence was analysed with RepeatMasker, which recognised five AluJo elements and one copy each of the FLAM_A, AluJb, AluSg, AluSp and AluY subfamilies. As indicated by the NIX analysis (figure 4.7), these ten Alu elements were mainly clustered in the proximal 3.5 kb of H 22 A , which coincides with both a decrease in GC content to 43% and a lower density of tandem repeat arrays.

Table 4.4: The tandem repeats identified within the Sanger Centre H22A sequence.

Name ${ }^{a, b}$	Length of repeat unit (bp)	Number of repeat units in 29Cl	GC content $(\%)$
H22MS1 (i)	10	2.7	63
H22MS2 (ii)	65	16.1	48
H22(CACCC)1 (iii)	5	15	78
H22MS3 (iv)	38	6.4	63
H22MS4 (v)	90	3.2	68
H22(CGG)2 (vi)	3	9	96
H22MS5 (vii)	62	13.6	73
H22MS6 (viii)	36	2.6	39
H22(TATAA)3 (ix)	5	89	5
H22(TATAA)4 (x)	5	13	3
H22(TATAA)5 (xi)	5	28	6
H22(GGAA)6 (xii)	4	44	56

a : Nomenclature system for the novel tandem repeats is as follows: The minisatellites are named after the $\underline{\mathrm{H} 22}$ region, MiniSatellite 1-6 in a distal to proximal order. The microsatellites are $\underline{H 22}$ (repeat unit) 1-6 in a distal to proximal order.
b : The italicised Roman numerals in this column refer to the positions of the tandem repeats within the H 22 A sequence as shown in figure 4.9.

Figure 4.7: The NIX analysis of the H22A sequence, which lies proximal to N0434.1. The very good agreement between the gene and exon prediction programs (the blue and purple colours) indicated the positions of the PGPL nucleotides that were missing from N0434.1.

Figure 4.8: The genomic structure of H22A. Everything above the orange line is a feature found in the forward sense and everything below is a feature in the reverse sense. Alu elements are denoted by the red triangles and novel tandem repeats by the green blocks. The positions of the $P G P L$ exons are denoted by the vertical blue bars. Roman numerals refer to descriptions of the tandem repeats within table 4.4.

4.3: Discussion

4.3.1: Sequencing of 3F3.1

The restriction enzyme digest assay of 3F3.1-. 4 indicated that the 3 F 3 cosmid contained tandem repeat sequences that were unstable in E. coli. As this had also been suggested for the N0434 cosmid (Chapter 3, section 3.2.3), it was assumed that there would be relatively little difficulty in applying the methods used to sequence N0434.1 to sequencing 3F3.1. However, the complete assembly of 3F3.1 yielded only 60% coverage of the whole sequence, indicating that the number of unstable 3 F3.1 loci were much greater, or more problematic, than the N0434.1 loci. The E. coli strain used to clone cosmid fragments for the shotgun libraries was XL1-Blue MRF', which is recombination deficient and so ought to increase the stability of inserts (Chapter 2, section 2.1.6). However, there are other strains of E. coli, such as DH5 $\alpha \mathrm{MCR}$ and NM554, that have been reported to improve the stability of individual cosmids (see Sambrook and Russell, 2001) and so it would not be unreasonable to assume that they could also improve the stability of cloned plasmid inserts. Consequently, better sequence coverage of 3 F3.1 may have been achieved if a different strain of E. coli had been used for shotgun library preparation. Furthermore, it has recently been reported that CpG methylation modifies the stability of cloned repeat sequences (Nichol and Pearson 2002). Plasmids containing di- and trinucleotide elements were seen to have increased stability when they were cotransformed into E. coli with pAIT2, a plasmid that expresses the SssI CpG methylase. Using this system, over 90% of the CpG sites within the plasmids containing the repeat sequences become methylated (Renbaum et al., 1990, cited in Nichol and Pearson, 2002). If this system had been employed during construction of the 3 F 3.1 shotgun library it is conceivable that a greater number of library clones would have been amplifiable and, subsequently, a greater proportion of 3 F 3.1 would have been sequenced. However, when this system was tested with a plasmid clone containing a minisatellite (228 copies of a $17 \mathrm{bp}, 71 \%$ GC-rich repeat unit), the stability of the repeat unit was actually reduced (Nichol and Pearson 2002).

4.3.2: Physical Map of a 100 kb Interval at the Distal End of PAR1

The fact that, until recently, PAR1 had been largely overlooked by the Human Genome Sequencing Consortium was an undeniable source of frustration. The very recent production of PAR1 sequence data by the Sanger Centre was therefore most welcome, though the timing
could have been a lot more convenient! As presented in figure 4.9, the current publicly available sequence in the PAR1 telomere- $P G P L$ interval totals nearly 100 kb and has, for the first time, allowed the accurate physical mapping of a number of previously reported structures. The distance between the PAR1 telomere and the distal end of the known sequence (which is 2 kb distal to DXYS14) remains unclear, particularly as it is thought that DXYS14 and/or its distal flanking sequence is duplicated in some individuals at a point within the PAR1 telomere-DXYS14 interval (Inglehearn and Cooke, 1989; M. Hills, personal communication). Therefore, no attempt has been made to calculate the distances between the PAR1 telomere and any of the previously characterised or novel structures. However, this ought to be resolved relatively soon as the Sanger Centre is currently working on fosmid clone G248P87320F9, which reportedly extends towards the PAR1 telomere (M. Ross, personal communication).

4.3.2.a: Comparison of Regions Within the $\mathbf{1 0 0} \mathbf{~ k b}$ Interval

The 100 kb of sequence at the distal end of PAR1 was derived from the $29 \mathrm{C} 1, \mathrm{C} 3, \mathrm{~N} 0434$ and H 22 clones. As the sequences within these clones overlapped it was possible to define four different subregions for the in silico analyses presented above and in Chapter 3 (figure 4.9). A number of the properties of these subregions are compared in table 4.5.

Table 4.5: A comparison of the $29 \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 3 \mathrm{~A}, \mathrm{~N} 0434.1$ and H 22 A sequences.

	$29 C l A$	$C 3 A$	$N 0434.1$	$H 22 A$	Overall
Length (kb)	29.5	23.7	33.4	10.3	$\mathbf{9 6 . 9}$
GC content	53%	59%	53%	55%	$\mathbf{5 5 \%}$
Alu content	15%	21%	33%	21%	$\mathbf{2 3 \%}$
Tandem Repeat Content	53%	39%	22%	33%	$\mathbf{3 8 \%}$

4.3.2.a.i: GC Content

The GC content of $29 \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 3 \mathrm{~A}, \mathrm{~N} 0434.1$ and H 22 A varies from 53% to 59%, the most GCrich region being C3A. Over the whole interval, the average GC content is 55%, unambiguously placing the distal end of PAR1 in the H3 isochore family, the GC-richest $3-5 \%$ of human DNA (Bernardi, 1989).

LLNOYCO3'M' 29C1

Figure 4.9: The physical map of a 100 kb interval at the distal end of PAR1. The interval extends from the $D X Y S / 4$ locus, which has been suggested to be only 3.6 kb from the PAR1 telomere (Baird and Royle, 1997), to the proximal end of the PGPL gene. The regions that were subjected to in silico analysis, as detailed in this chapter and Chapter 3, are marked by the grey boxes at the top of the diagram. The green boxes denote the positions of the major minisatellite loci within the interval and the positions of the pseudoautosomal STIRs are shown by the yellow boxes. The positions of PGPL and the novel gene are shown by the cyan boxes and the directions in which they are transcribed are denoted by the black arrows. Finally, the blue lines at the foot of the diagram show the contiguous clones that were used to sequence this interval. The red line marks the extent of cosmid 3F3. The telomeric end of 3 F3 was not included in the 3 F3.1 assembly, so the uncertainty surrounding its relative position is represented by the dashed line.

4.3.2.a.ii: Alu Element Density

Alu elements represent approximately 10% of the genome but preferentially locate to GC-rich regions (Smit, 1996, Smit, 1999; International Human Genome Sequencing Consortium, 2001). Consequently, an average Alu density of 23% across the GC-rich $29 \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 3 \mathrm{~A}$, N0434.1 and H22A sequences is not entirely unexpected. However, the Alu density between the different regions does vary more widely than the GC content. For example, both 29C1A and N0434.1 have a GC content of 53%, yet N0434.1 has an Alu density that is over twice that of 29 C 1 A . This can easily be explained by the fact that a large fraction of 29 C 1 A is composed of tandem repeats. This pattern is repeated throughout the DXYS14-PGPL interval such that the distribution of Alu elements is essentially random, but their concentration is less dense in regions that are rich in tandem repeats. The variety of Alu subfamilies represented through the entire region is as mixed as was first noted within N0434.1 (Chapter 3, section 2.8.c). Altogether there are five FLAM or FRAM elements, believed to be the progenitors of the ancestral Alu element (Jurka and Zuckerkandl, 1991; Quentin, 1992), 14 members of the AluJ subfamilies, which include the oldest Alu elements, 36 members of the AluS subfamilies and 22 AluY elements, which are the youngest Alu subfamily (Kapitonov and Jurka, 1996 and references therein). There appears to be no trend for the oldest or youngest Alu elements to be in a particular distal PAR1 subregion.

4.3.2.a.iii: Tandem Repeat Content

The interval within the 3 F 3 cosmid, which proved so difficult to sequence, is covered by the C3 clone. It was suggested that the 3F3.1 interval was so problematic to sequence because it appeared to contain a relatively high concentration of unstable tandem repeats. The observation that C3A has a density of tandem repeats that is nearly twice that of N0434.1 supports this suggestion. Examination of the C3A tandem repeats revealed that the shorter length estimations of 3F3.1-4 that are gained when using the PstI data, rather than the profiles of the PvuII digests, could be explained by the fact that the C3MS2 tandem repeat array contains a PstI site in nearly every repeat unit (data not shown). Digestion of the 3F3 subclones with PstI results in the effective removal of C3MS2 from the digest profile, thus shortening it compared to the digest profiles obtained with other enzymes.

The highest density of tandem repeats is found in the 29C1A subregion, where they comprise 53% of the sequence, which might explain why none of the 29 C 1 subclones appeared to contain an insert (Chapter 3, section 2.1). Overall, the 29C1A, C3A, N0434.1 and H22 subregions contain 45 tandem repeats (tables 3.3, 4.2, 4.3 and 4.4) which make up over onethird of the sequences. There are a total of ten novel microsatellite sequences, two arrays of
pseudoautosomal STIRs and 23 novel minisatellites, most of which are GC-rich. Thus, the distal PAR1 region is much more minisatellite-rich and extends more proximally than previously thought.

4.3.2.b: Identification of Previously Characterised Minisatellites

Previously characterised tandem repeats were identified through comparing their sequence (figure 4.1) with the structures that were detected by Tandem Repeats Finder (figures 4.4, 4.6, 4.8 and 4.9). For the first time this has allowed the physical distances between the previously reported distal PAR1 structures to be defined. The distance between DXYS14 and DXYS20 is 6.7 kb , in agreement with the previous estimates of between 6 and 40 kb (Rouyer et al., 1986b; Brown, 1988) (Chapter 3, section 1.1.b.ii). Furthermore, the sizes of DXYS14 and DXYS20 in the 29 C 1 cosmid are 1.4 kb and 11.3 kb respectively, well within the size ranges observed in individuals (Inglehearn and Cooke, 1990; Page et al., 1987). Assuming correct assembly of the 29 C 1 sequence at the Sanger Centre, the analysis also revealed that the original orientation of the tandem repeats identified by Vergnaud et al. (1993) was incorrect. The actual layout is shown correctly in figure 4.9 and demonstrates that the largest CEB12 repeat is only 263 bp proximal to DXYS20 and just 40 bp distal to CEB12 repeat 2. The monomorphic B4 minisatellite is slightly less than 1 kb proximal to CEB12 repeat 2. CEB30 was found in both the C 3 and 29 C 1 sequences and is 5.8 kb proximal to B 4 .

4.3.2.b.i: Search for DXYS78

There is currently no sequence data available for the DXYS78 locus. However, it has been partially characterised and it is expected to be between 5 and 30 kb in length (Armour et al., 1990) and suggested to contain sites for MboI and TaqI in a minority of its repeats and a HaeIII recognition site in most repeats (J.A.L. Armour, personal communication). In addition, it was localised to an interval between 70 and 80 kb from the telomere (Henke et al., 1993) and was thus expected to be identified within the C3A sequence. The best candidates within this region are C3MS2 and 3FMS1 (table 4.2), which are relatively large and contain a HaeIII site in their repeat unit consensus sequences and an infrequently occurring MboI site. However, none of the C3MS2 and 3FMS1 repeat units within C3A contain a TaqI site, though some of the repeat units of 3FMS1 appear to have sequence that is only 1 bp removed from a TaqI recognition site. As it remained possible that the DXYS78 locus was actually more proximal than had been predicted, the novel tandem repeats of the H22A sequence were also searched for the aforementioned restriction enzyme recognition sites. Of these, the best candidate was H22MS5, which contained MboI, TaqI and HaeIII sites. However, the TaqI site was contained within the consensus sequence and would thus have cut too frequently for the
patterns seen by Armour et al. (1990) to be observed. In addition, HaeIII sites were observed in only a few H22MS5 repeat units.

DXYS78 has not been identified, though two very good candidates have been suggested. Final identification of DXYS78 will not be possible until the definitive DXYS78, which has been partially characterised, is sequenced and compared with the candidate sequences in the DXYS 14-PGPL interval. In this light, it is interesting to note that a plasmid subclone of DXYS78 is available for analysis (J.A.L. Armour, personal communication).

4.3.2.c: Relative Physical Positions of the Genes in the Distal 100 kb of PAR1

Analysis of the novel sequence in the PAR1 telomere- $P G P L$ interval has allowed the entire genomic structures of both $P G P L$ and the novel gene to be established (figure 4.9, also see Chapter 5). The physical position of the distal end of $P G P L$ can now be defined as 73.3 kb proximal to DXYS14, whilst the distal end of the novel gene resides only 44.7 kb proximal to DXYS14. No other identifiable gene sequences are in the interval covered by the 29 C 1 A , C3A, N0434.1 and H22A subregions. Hence, given the fact that DXYS14 may be as little as 3.6 kb from the PAR1 telomere (Baird and Royle, 1997), it is very probable that the novel gene is the most telomeric in PAR1.

4.4: Concluding Remarks

Extending and characterising the known sequence of the PAR1 telomere- $P G P L$ interval has resulted in nearly 100 kb of annotated PAR1 subtelomeric sequence. The patterns noted after sequencing of the N0434.1 interval are repeated throughout the whole region, in that it is very GC-rich and contains a high density of both Alu sequences and tandem repeat arrays.

It is expected that coverage of distal PAR1 will be completed very shortly by the sequencing of a fosmid that is reported to extend towards the PAR1 telomere. This ought to reveal the extent of the suggested DXYS14 duplication and will allow the physical distances between the PAR1 telomere and the structures of the PAR1 subtelomere to be defined. In addition, extending the sequence towards the telomere will, for the first time, allow an accurate comparison of the distal region of PAR1 with the subtelomeric regions of both PAR2 and the autosomes. This will be interesting, as previous studies have suggested that there are conserved structural features between human subtelomeric regions. For example, it has been demonstrated that the subtelomeres of the $4 p, 16 p$ and $22 q$ chromosomes consist of a mosaic of distal sequences that match many other chromosomes, and a more proximal region of longer uninterrupted matches to a few chromosome ends (Flint et al., 1997a). Flint and colleagues suggest that this structural organisation is common to all chromosome ends. However, all experiments on the characterised PAR1 subtelomeric repeat arrays have indicated that they are PAR1-specific (e.g. Cooke et al., 1985; Page et al., 1987; Inglehearn and Cooke, 1990, Baird and Royle, 1997). Furthermore initial analyses of the annotated DXYS14-PGPL sequence have not identified any significant matches to the subtelomeres of other chromosomes.

As the assembly of the 3F3.1 cosmid was not completed, the overlapping region between N0434.1 and 3F3.1 was not investigated for polymorphisms that might have aided an analysis of LD in the region prior to an investigation of recombination. However, the availability of the PAR1 sequences recently released by the Sanger Centre do provide an extension of the primary tool for the discovery of SNPs in PAR1, thus providing a means to extend the high resolution analysis of recombination in PAR1 towards the telomere and thereby allowing a greater chance of identifying the putative distal boundary of recombination mentioned in Chapter 1, section 1.3.2.c.ii.

Chapter 5

Analysis of Genes in the N0434.1 Interval

5.1: Introduction

Following the publication of the first draft of the human genome, two independent analyses that relied heavily on gene-finding algorithms revealed it to contain about 30,000-40,000 genes (International Human Genome Sequencing Consortium, 2001; Venter et al., 2001), much less than earlier estimates of $45,000-140,000$ that had been based on EST clustering and detailed chromosomal analysis (Fields et al., 1994; Dunham et al., 1999; Liang et al., 2000), and surprisingly similar to the number of genes in less complex organisms such as Arabidopsis and C. elegans (C. elegans Sequencing Consortium, 1998; Arabidopsis Genome Initiative, 2000). However, when the putative genes from the two human genome projects were compared, it was found that the numbers of novel genes predicted by both groups were largely nonoverlapping (Hogenesch et al., 2001). Furthermore, a slightly more recent and indepth study used all of the public database information on gene expression and estimated that the human genome contains $65,000-75,000$ "transcriptional units," a term that reflects the fact that the vast majority of putative genes are still to be validated (Wright et al., 2001). Still, as $4-22 \%$ of predicted genes are thought to be pseudogenes (Harrison et al., 2002) the human gene count remains largely unsettled and a final total is likely to require a more integrated approach that combines in silico predictions and experimental validation. Hence, the work presented in this chapter provides a very small step in this direction by analysing the sequences of the novel gene predicted by the Nix analysis described in Chapter 3, section 3.2.8. In addition, the genomic structure of $P G P L$ is described for the first time.

5.1.1: Known Genes in PAR1

Prior to the discovery of a novel gene in the N0434.1 interval (Chapter 3, section 2.8.a), thirteen complete genes plus the 5^{\prime} region of a fourteenth had been identified in PAR1 (Chapter 1, section 3.2.a; figure 1.8a) (table 5.1). Their genomic size is quite variable, from the single exon ALTE (TRAMP) gene (Esposito et al., 1999) to the CD99 (MIC2) gene that stretches over 52 kb of genomic DNA (Goodfellow et al., 1986; Rappold, 1993) but their mRNA sizes are fairly similar, ranging only from 1.3 kb to 4.5 kb .

Table 5.1: The PAR1 genes. The green text denotes those observations that have been made as part of the work presented in this thesis. The references from which the rest of the data were obtained are as follows: PGPL (Gianfrancesco et al., 1998); PPP2R3B (Schiebel et al., 2000); SHOX (Rao et al., 1997); XE7 (Ellison et al., 1992); CSF2RA (Rappold et al., 1992); CRLF2 (Tonozuka et al., 2001); IL3RA (Milatovitch et al., 1993); SLC25A6 (ANT3) (Schiebel et al., 1993; Slim et al., 1993); ASMTL (Ried et al., 1998); DHRSXY (Gianfrancesco et al., 2001); ASMT (Yi et al., 1993); ALTE (TRAMP) (Esposito et al., 1999); CD99 (MIC2) (Goodfellow et al., 1996); $X G$ (Ellis et al 1994a). The table is adapted from Rappold (1993).

Gene	Physical location $(k b)^{a}$	Orientation	Genomic size (kb)	Number of exons	Size of mRNA (kb)	Expression
Novel gene	90	tel-cen	26	9	2.087	ubiquitous
PGPL	100	cen-tel	14.3	10	1.867	Predominantly skeletal muscle and heart, but detectable expression in all adult tissues investigated
PPP2R3B	200	cen-tel	36	13	1.864	Predominantly skeletal muscle and heart, but detectable expression in all adult tissues investigated
SHOX	500		25	6	$\begin{array}{\|l} \hline \text { SHOXa }= \\ 1.89 \\ \hline \text { SHOXb }= \\ 1.349 \end{array}$	Not ubiquitous. SHOXb expression is more restricted than that of SHOX a
XE7			11	6	3.23	Ubiquitous
CSF2RA	1270		>45	>5	1.8	Haemopoietic cells
IL3RA		tel-cen		>4	1.5	Haemopoietic cells
CRLF2					1.579	Not ubiquitous, but seen in heart, skeletal muscle, kidney and liver
SLC25A6	1300	cen-tel	5.9	4	1.3	Ubiquitous
ASMTL	1300-1350	cen-tel	50	13	2.085	Ubiquitous
DHRSXY	1700				2.554	Ubiquitous
ASMT	1700-1800		>6	10	1.25	Pineal gland, retina
ALTE	2200		Single exon	1 10	4.537	Predominantly skeletal muscle and heart, but detectable expression in all adult tissues investigated
CD99	2470	tel-cen	52	10	1.24	Ubiquitous
XG	2600	tel-cen				Haemopoietic cells and skin fibroblasts

a : The genes are presented from the most distal to the most proximal. Their physical location is defined as the distance of each gene from the PAR1 telomere.

5.1.1.a: Function of Known Genes in PAR1

Partly as a consequence of the initial omission of PAR1 from the major human genome sequencing projects, many of the PAR1 genes have not been fully characterised, or even discovered yet, and so the functions of their products are not fully understood. However, in most cases, putative functions have been ascribed and there is strong evidence for involvement of at least one of the PAR1 genes in a common mutant phenotype.

5.1.1.a.i: $X G$

$X G$, which encodes the Xg^{a} blood group antigen, spans the boundary between PAR1 and the sex-specific part of the X chromosome, such that the three exons at the 5^{\prime} end of the gene are situated in PAR1 and the remaining exons are in the X-specific region (Ellis et al.,1994a,b).

5.1.1.a.ii: CD99

The CD99 gene product is a ubiquitous 32 kDa transmembrane glycoprotein (Gelin et al., 1989). It has been suggested to be involved in a number of cellular events, including cell adhesion during haemopoietic cell differentiation (Hahn et al., 1997), apoptosis of neuronal cells (Sohn et al., 1998) and T-cell activation (Wingett et al., 1999). In addition, it has been proposed that loss of CD99 is associated with the pathogenesis of Hodgkin's disease (Kim et al., 1998). The $X G$ and CD99 protein products are 48% similar to each other, indicating that they are evolutionarily related. Furthermore, $X G$ and $C D 99$ are arranged head to tail (Ellis et al., 1994a).

5.1.1.a.iii: ALTE

ALTE (originally referred to as Tramp) is a single-exon gene that appears to encode a protein of 694 amino acids that is similar to transposases of the Ac family (Esposito et al., 1999). The Ac family of transposable elements has similar transposons, terminal inverted repeats (TIRs) of 11 bp , a duplicated target site of 8 bp and is known to include at least four members in organisms as diverse as maize, Drosophila, and fish (studies cited in Esposito et al., 1999). Interestingly, the MER1 group of interspersed repeats (of which there are about 100,000 in the human genome) has TIRs and a duplicated site that is typical of the Ac elements so far described. Esposito and colleagues postulate that, if $A L T E$ is the only member of the Ac family in the human genome, it may be the element that is responsible for the spread of the entire MER1 group, as first alluded to by Smit and Riggs (1996). The function of $A L T E$ is yet to be described.

5.1.1.a.iv: ASMT

$A S M T$ is the acetylserotonin methyltranferase gene and catalyses the final reaction in the synthesis of the hormone melatonin, which is secreted from the pineal gland in the brain (Yi et al., 1993). Due to its tissue-specific expression in the brain and retina (table 5.1), ASMT is considered to be a candidate gene for psychiatric disorders, which is interesting in the light of several studies that have reported linkage of pseudoautosomal markers in schizophrenia patients (e.g. Collinge et al., 1991; d'Amato et al., 1992).

5.1.1.a.v: DHRSXY

DHRSXY encodes a putative protein of 330 amino acids, which shares homology with the short-chain dehydrogenase/reductase (SDR) family. Most SDR proteins are NAD- or NADPdependent oxidoreductases but the DHRSXY function is as yet unknown (Gianfrancesco et al., 2001).

5.1.1.a.vi: ASMTL

The 3^{\prime} part of $A S M T L$ (exons 7 to 13) shows significant homology to $A S M T$, and its 5^{\prime} end is similar to the entire length of the maf gene of Bacillus subtilis and the orfE gene of E.coli. (The orfE gene is suggested to have a role in the cell growth and division of E. coli and maf appears necessary for the filamentation of B. subtilis cells (Wachi et al., 1991; Butler et al., 1993)). The two distinct domains of the resultant Asmtl protein are separated by a stretch of approximately 80 amino acids that has no significant homology to any known sequence. Thus, $A S M T L$ appears to be the fusion product of two different full-length genes with different evolutionary origins (Ried et al., 1998). The conservation of the putative ASMT catalytic domains within $A S M T L$ argues for a methyltransferase activity of this enzyme too, but the significance of the maf/orfE domain is not clear.

5.1.1.a.vii: SLC25A6

Originally named $A N T 3, S L C 25 A 6$ is a member of the ADP/ATP translocase family that is involved in cellular energy metabolism and which is the most abundant protein of the inner mitochondrial membrane (Klingenberg, 1981, cited in Slim et al., 1993). SLC25A6 encodes a protein that catalyses the ATP/ADP exchange between the mitochondrion and the cytosol and thereby plays an essential role in the energy metabolism of a eukaryotic cell (Cozens et al., 1989).

5.1.1.a.viii: IL3RA

The ability of the IL3 cytokine to promote haemopoietic cell proliferation is dependent on it binding to its receptor (Lau and Zhang, 2000), which consists of an α and a β subunit. The interleukin receptor subunit $\alpha(I L 3 R A)$ gene is pseudoautosomal and is a characteristic member of the cytokine receptor family (Milatovich et al., 1993). Both IL3 and IL3RA have been shown to have some kind of role in T cell and other blood malignancies (Renauld et al., 1995) and may also contribute towards prostate cancer (Lau and Zhang, 2000).

5.1.1.a.ix: CSF2RA

Cells belonging to the monocyte/macrophage lineage are stimulated to grow and differentiate through the action of the haemopoietic growth factor, granulocyte-macrophage colonystimulating factor (GM-CSF) (Gough et al., 1990). The activity of GM-CSF is transduced through specific cell surface receptors that consist of an α and a β subunit. Interestingly, both the IL3 (above) and GM-CSF receptors share the same β subunit and the gene for the α subunit of the GM-CSF receptor (CSF2RA) is also in PAR1 (Gough et al., 1990; Rappold et al., 1992). In addition, it has been suggested that CSF2RA also has a role in prostate cancer, as it is expressed at an enhanced level in prostate carcinoma and is upregulated by androgen treatments in the prostatic cell line LNCaP (Rivas et al., 1998; Lau and Zhang, 2000).

5.1.1.a.x: CRLF2

CRLF2 is a type I cytokine receptor, which has been mapped to the same pseudoautosomal region as IL3RA and CSF2RA, to which it also shows significant homology (Tonozuka et al., 2001). The biological function of CRLF2 is under investigation but it may exist simply as a part of the receptor for the cytokine TSLP.

5.1.1.a.xi: XE7

XE7 was identified from an inactive X cDNA library (Ellison et al., 1992). Evidence suggests that two hydrophilic protein isoforms result from alternative splicing of $X E 7$ transcripts, though its function remains unknown.

5.1.1.a.xii: SHOX

SHOX is a highly conserved homeobox-containing gene, which has at least two alternative splice forms, SHOXa and $S H O X b$. The alternatively spliced products differ at their C-terminal ends and it is thought that this modifies the phosphorylation and binding properties of the protein. In addition, they do not have identical patterns of expression; SHOXa is widely expressed, but $S H O X b$ expression is more confined and mainly seen in bone marrow
fibroblasts. The data of Rao et al. (1997) clearly suggest that mutations in SHOX are a cause of both idiopathic growth retardation and the short stature phenotype of Turner syndrome patients. To this end it is quite possible that, in common with other homeodomain-containing proteins, SHOX functions as a transcription factor that regulates the activity of multiple target genes and so controls essential aspects of growth and development (Rao et al., 1997).

5.1.1.a.xiii: PPP2R3B:

Protein kinases and phosphatases regulate many cellular functions, including signal transduction and cell division, and are divided into subfamilies according to their specificity, sensitivity to inhibitors, expression pattern and sequence (Cohen, 1997). PPP2R3B (PPP2R3L) encodes a protein phosphatase regulatory subunit and is a member of the PPP2 phosphatase subfamily (Schiebel et al., 2000), which consists of Ser/Thr phosphatases that can be inhibited by okadaic acid. Schiebel et al. (2000) argue for an involvement of PPP2R3B in carcinogenesis, but its exact function remains unclear.

5.1.1.a.xiv: PGPL

Like IL3RA and CSF2RA (above), PGPL has also been suggested to play a role in or be influenced by oncogenesis in the prostate gland (Lau and Zhang, 2000). It is also worth noting that PGPL is the only human PAR gene that is highly conserved in the mouse genome, though the mouse homologue is autosomal (Gianfrancesco et al., 2001). The other mouse homologues of human PAR genes (dhrsxy, csf2ra and il3ra) are poorly conserved and are also autosomal (Gianfrancesco et al., 2001 and references therein). The PGPL gene has already been introduced (Chapter 3, section 1.1.d), but this discussion can now be developed (below) as sequencing of 100 kb at the distal end of PAR1 (Chapters 3 and 4) has, for the first time, enabled the genomic structure of $P G P L$ to be determined (table 5.1).

5.1.2: A Novel PAR1 Gene

Of all the PAR1 genes so far identified, only $X E 7$ appears to be a 'single' gene. The others either have close relatives in the genome or are duplicated within PAR1. In fact, as noted by Ried et al. (1998), gene duplication is a recurrent theme in PAR1 and is seen three times; between $X G A, C D 99$ and a PAR1 pseudogene MIC2R (Smith and Goodfellow, 1994), between IL3RA, CRLF2 and CSF2RA and between $A S M T$ and $A S M T L$. Initial analyses of the putative novel PAR1 gene (Chapter 3, section 3.3.3.b) indicated that it too has close relatives in the genome, as it matched an as yet unidentified cDNA reported to be slightly similar to a

1-phosphatidylinositol phosphodiesterase precursor (GenBank accession number $=$ AK002185) (figure 5.1).

5.1.2.a: Phosphatidylinositol-Specific Phospholipase C

A search of the databases showed that 1-phosphatidylinositol phosphodiesterase precursor is synonymous with phosphatidylinositol-specific (phosphoinositide-specific) phospholipase C (PI-PLC) (e.g. Swiss-Prot P14262). As the latter term is that which is most common in the literature, I will use that during the remainder of this thesis. Phosphodiesterases are actually an important group of enzymes that includes deoxyribonucleases, oxyribonucleases, restriction endonucleases and the exonuclease activity of polymerases (Griffith and Ryan, 1999).

Phosphatidylinositols (PIs) were first recognised as cellular signalling molecules during the 1950s (Hokin and Hokin, cited in Anderson et al., 1999). The classical pathway transforms PI to phosphatidylinositol 4,5-biphosphate (PIP_{2}) by the successive actions of PI 4-kinases and PI-4-P 5-kinases. Activation of PI-PLCs takes place in many cells in response to a large number of extracellular signalling molecules such as hormones, growth factors and neurotransmitters (Berridge and Irvine, 1984; Nishizuka, 1986; Rhee and Bae, 1997) and, as such, PI-PLCs play a key role in initiating receptor-mediated signal transduction. PI-PLCs hydrolyse PIP_{2} to generate two important second messenger molecules, inositol 1,4,5triphosphate $\left(\mathrm{IP}_{3}\right)$, which mediates the release of intracellular Ca^{2+}, and diacylglycerol (DAG), which activates protein kinase enzymes (Berridge and Irvine, 1989; Berridge, 1993).

PI-PLCs have been isolated from a wide array of organisms, including bacteria, yeast, plants, insects and mammals (Singer et al., 1997 and references therein; see Griffith and Ryan, 1999 for a review of bacterial PI-PLCs). Mammalian PI-PLCs are distinct from bacterial PI-PLCs due to the former's absolute requirement for Ca^{2+} and the latter's inability to hydrolyse the phosphorylated forms of PI, such as PIP $_{2}$. A number of mammalian PI-PLCs have been purified from a variety of tissues (Hoffman and Majerus, 1982; Ryu et al., 1986; Rhee et al., 1989) and they are currently divided into three subfamilies, PI-PLC $-\beta,-\gamma$ and $-\delta$ (Rhee et al., 1989) (figure 5.2). The β subfamily has been shown to interact with GTP-binding proteins (Taylor et al., 1991), which is potentially very interesting given the juxtaposition of the novel gene and of $P G P L$, which is thought to encode a GTP-binding protein (Gianfrancesco et al., 1998).

1 GTTTTTTAGGAAGAGTGTCCCGCAGAGACCCGGCGGGAGCTGCCAGGAGCTCTGGGATTC CAGCGGCTGGGAAGCCACCTGGGAAGCCTGGCCTCAGTGTGGAAGAGAAGGCAGCAGGATT ATTACAGAACCTTGTGAAGCCAACGCGGGCAGCCGCCAGGAGCTGCAGACCGAGAGGATC TCGTCCTTTCTTGCGGCCCAGGGAGACCAGGCCTTTCATTCTGGGCTCGAGACCAACAAT TCGAATTCCGAACTCCCCCTGCGTGTGGGACTCAAGGTTGCCCAGGGCTCACCTCTGATG M GGTGGGCAGGTGAGCGCTTCCAACAGCTTCTCGAGGCTGCACTGCAGAAATGCCAACGAG
 GACTGGATGTCGGCACTGTGTCCCCGGCTCTGGGATGTGCCCCTCCACCACCTCTCCATC
 CCAGGGAGCCACGACACGATGACGTACTGCCTGAACAAGAAGTCCCCCATTTCTCACGAG $\begin{array}{lllllllllllllllllll}\mathrm{P} & \mathrm{G} & \mathrm{S} & \mathrm{H} & \mathrm{D} & \mathrm{T} & \mathrm{M} & \mathrm{T} & \mathrm{Y} & \mathrm{C} & \mathrm{I} & \mathrm{N} & \mathrm{K} & \mathrm{K} & \mathrm{S} & \mathrm{P} & \mathrm{I} & \mathrm{S} & \mathrm{H} \\ \mathrm{E}\end{array}$ GAGTCCCGGCTGCTGCAGCTGCTGAACAAGGCCTTGCCCTGCATCACGCGCCCTGTCGTG
 CTGAAATGGTCCGTCACCCAGGCACTGGACGTCACAGAGCAGCTGGATGCCGGGGTGCGG
 TACCTGGACCTGCGGATAGCCCACATGCTGGAGGGCTCGGAGAAGAACCTGCACTTTGTC $\begin{array}{llllllllllllllllllll}Y & L & D & L & R & I & A & H & M & L & E & G & S & E & K & N & L & H & F & V\end{array}$ CATATGGTGTACACAACGGCGCTGGTGGAGGACACACTCACGGAAATCTCGGAGTGGCTG H M V \quad Y \quad T \quad T \quad A \quad L \quad V GAGCGGCATCCACGCGAGGTGGTCATCCTGGCCTGCAGAAACTTCGAGGGGCTGAGCGAG $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{R} & \mathrm{H} & \mathrm{P} & \mathrm{R} & \mathrm{E} & \mathrm{V} & \mathrm{V} & \mathrm{I} & \mathrm{L} & \mathrm{A} & \mathrm{C} & \mathrm{R} & \mathrm{N} & \mathrm{F} & \mathrm{E} & \mathrm{G} & \mathrm{L} & \mathrm{S} & \mathrm{E}\end{array}$ GACCTGCACGAGTACCTGGTCGCCTGTATCAAGAACATCTTCGGGGACATGCTGTGTCCT $\begin{array}{llllllllllllllllllll}\mathrm{D} & \mathrm{L} & \mathrm{H} & \mathrm{E} & \mathrm{Y} & \mathrm{L} & \mathrm{V} & \mathrm{A} & \mathrm{C} & \mathrm{I} & \mathrm{K} & \mathrm{N} & \mathrm{I} & \mathrm{F} & \mathrm{G} & \mathrm{D} & \mathrm{M} & \mathrm{L} & \mathrm{C} & \mathrm{P}\end{array}$ CGTGGGGAGGTGCCGACACTGCGGCAGCTGTGGTCCCGGGGCCAACAGGTCATCGTCTCC

 TGGGGAAACAGGGTGAAGACCGAGGCCCTCATCCGATACCTGGAGACCATGAAGAGCTGC
 GGCCGCCCAGGAGGGTTGTTCGTGGCCGGCATCAACCTCACGGAGAACCTGCAGTACGTT
 CTGGCGCACCCGTCCGAGTCCCTGGAGAAGATGACGCTGCCCAACCTTCCGCGGCTGAGC
 GCGTGGGTCCGAGAGCAGTGCCCGGGGCCGGGTTCACGGTGCACCAACATCATCGCGGGG $\begin{array}{llllllllllllllllllll}A & W & V & R & E & C & P & G & P & G & S & C & T & N & I & I & A & G\end{array}$ GACTTCATCGGCGCAGACGGCTTCGTCAGTGACGTCATCGCGCTCAATCAGAAGCTGCTG $\begin{array}{llllllllllllllllllll}D & F & I & G & A & D & G & F & V & S & D & V & I & A & L & N & Q & K & L & L\end{array}$ TGGTGCTGACGGGACCCTTCTGAAGTTCGGGACGCGGCGGCTGCAGTTTCACCCCCGAAT W C
TTCCAAATGGAGTTTCGCTCTCGTTGCCGAGGCTGGAGTGTAGTAGTGTGATCCTGGCTC ACTGCAACCTCCACCTCCCGGGTTCCAGCAAATTCTCCTGCCTCAGCCTCCCAAGTAGCT GGGATTGCAGGCGCCCGCCACCACGCCCGGATAATTTTTGTGTGTTTAGCAGAGACGGGG TTTCACCATGTTGGCCAGGCTGGTCTCGATCTCCTGACCTCAGGTGATCCACCCGCCTCG GCCTCCCAAAGTGCTGGGATGACAGGCGTGAGCCACCGCGCCCGGCCTATACCTCATTTT CTACATGTCGCTTGTTGGAGCTGCTGGTTCAAGTTCCCAGCCAGCCAATGGATGCCAGCA CCATTTTTACTCCCCTTTCCCAAGCAAATCGTGCATTTTTGTCTAACGAGAGACATCAGT TTCTCAGGATGATCCTCAAGAACGTTATGGAGTCCATGTTGCAATAGGTTCTCTTTGGGA CCTAATGACTCATTTTCCAAAAATCCGCTTCTACTTTTGGTACCCGGTTGCTACGGTGAA ATGAAGGTGCCCCGCATCCAGAAAGACGCACTCCTGGACCACAACCGGCGGCTACCTCAG CCCCACGGCTCTGCAGGATCAGGGCTCGGGCAGGCCCCGCGGAGATGAAGAATTTGCAGG GAGCCTCCCTGACTTCCGTCGGCTGTGAATCCTTGTCTGTCAGGGGCGTATCCACAAAAT CACCAAATTCATACAGATCGTTTAAATAAATGAACATCATTAAAGTC

Figure 5.1: The cDNA sequence of "hypothetical protein FLJ11323," the uncharacterised database sequence that is reported to be slightly similar to a 1-phosphatidylinositol phosphodiesterase precursor and which exactly matches the novel gene exons in the N0434.1 interval. The putative translation of the open reading frame is denoted by the blue letters and the PI-PLC-X domain is underlined (see main text). The region highlighted in grey denotes the sequence of the probe that was used for expression analysis and the pink and red sequences respectively show the primer and DraI site that were used to generate the probe (see main text).

Identification of the three-dimensional structure of PI-PLC- $\delta 1$ demonstrated that the two most highly conserved domains, the X and Y regions, converge to form two halves of an irregular TIM barrel (named after the more regular structure of this type first observed in triosephosphate isomerase) and thus form the catalytic core of PI-PLCs (Essen et al., 1996). Other regions include the pleckstrin homology (PH) domain, which is found in over 100 other proteins and is thought to be responsible for membrane binding (Ferguson et al., 1995). However, the isolated PH domain of PI-PLC- $\delta 1$ has a high affinity for PIP_{2}, indicating that these domains may have other functions (Lemmon et al., 1995; Singer et al., 1997). The function of the EF-hand region is yet to be identified (Rebecchi and Pentyala, 2000) but it has been determined that deletions in this region inactivate PI-PLC- $\delta 1$ (Nakashima et al., 1995). The C 2 motif contains Ca^{2+}-binding domains and may stabilise the structure of the catalytic unit (Essen et al., 1996; Singer et al., 1997; Rebecchi and Pentyala, 2000).

Considering this information, and given the fact that the sequencing projects described in Chapters 3 and 4 had allowed the identification of the novel gene's genomic structure, a small number of analyses were performed on the novel gene. It was hoped that these analyses would determine how similar the novel gene was to the PI-PLCs and that some clues as to its function would be obtained.

PI-PLC- $\boldsymbol{\gamma} \mathbf{1}$

PI-PLC- $\delta 1$

Figure 5.2: Linear representation of the three PI-PLC subfamilies and their different domains (adapted from Singer et al., 1997 and Rebecchi and Pentyala, 2000). The X and Y domains form the catalytic core of PI-PLCs and converge in the three-dimensional structure to form two halves of a TIM barrel motif (from triosephosphate isomerase). The PH domain is thought to have membranebinding capabilities. PI-PLCs have up to four EF-hand motifs but their fimction is yet to be identified. C2 motifs have been identified in many proteins and are known to bind calcium ions. The PI-PLC- γ isozymes contain additional SH2 and SH3 domains that oversee interaction with phosphorylated growth factors and other signalling mediators.

PI-PLC- $\boldsymbol{\gamma} \mathbf{1}$

PI-PLC- $\delta 1$

Figure 5.2: Linear representation of the three PI-PLC subfamilies and their different domains (adapted from Singer et al., 1997 and Rebecchi and Pentyala, 2000). The X and Y domains form the catalytic core of PI-PLCs and converge in the three-dimensional structure to form two halves of a TIM barrel motif (from triosephosphate isomerase). The PH domain is thought to have membranebinding capabilities. PI-PLCs have up to four EF-hand motifs but their fimction is yet to be identified. C2 motifs have been identified in many proteins and are known to bind calcium ions. The PI-PLC- γ isozymes contain additional SH2 and SH3 domains that oversee interaction with phosphorylated growth factors and other signalling mediators.

5.2: Results

5.2.1: Genomic Organisation of the Genes in the N0434.1 Interval

5.2.1.a: PGPL

PGPL consists of ten exons, which vary in length from 67 to 440 bp , and extends over at least 14.3 kb (figure $5.3 a$). The actual lengths of introns 6,7 and 9 may be quite variable in vivo as they each contain at least one tandem repeat (Appendix 1). The variability of the tandemly repeated pseudoautosomal STIR elements that are in intron 7 and PGMS1, which is in exon 9, is investigated in Chapter 6.

An alignment of the published PGPL cDNA sequence (Chapter 3, figure 3.2) with the exonic PGPL sequences derived from N0434.1 and H22A revealed 12 single nucleotide substitutions and two single nucleotide gaps in the N0434.1/H22A sequence (figure 5.4). The majority of these differences are in an isolated region of the putative 5^{\prime} UTR but three substitutions were observed in the translated region. All of the differences are in the 5^{\prime} region of $P G P L$ that was obtained from the Sanger Centre, the H22A sequence. As this sequence is unfinished, most, if not all, of the observed differences might not be real. However, at least two of the three putative substitutions in the translated region of $P G P L$ are worthy of consideration; the most 5^{\prime} of these mutations is a $\mathrm{G} \leftrightarrow \mathrm{C}$ transversion that would result in a glutamine to histidine replacement. The next mutation, at position 586 of the N0434.1/H22A sequence, is a $\mathrm{C} \leftrightarrow \mathrm{G}$ transversion that would cause a conservative change from aspartic acid to glutamic acid. The putative $\mathrm{T} \leftrightarrow \mathrm{C}$ transition at position 686 of the $\mathrm{N} 0434.1 / \mathrm{H} 22 \mathrm{~A}$ sequence is a silent substitution at a leucine codon.

5.2.1.b: Novel Gene

Sequences derived from cosmid N0434 and produced by the Sanger Centre have shown the novel gene to be 26 kb in length and consist of nine exons, which vary in length from 66 to 761 bp (figure 5.3 b). The genomic size of the novel gene is likely to vary between individual X and Y chromosomes, due to the presence of several tandem repeat arrays, as might be expected from a region that is rich in minisatellites (Chapter 3, section 3.2.8.b and Chapter 4, section 4.2.5.a.iii). Most notably intron 7, the largest novel gene intron, contains PGMS2, the variability of which is investigated in Chapter 6. The novel gene is predicted to encode a protein of weight 36.7 kDa .

(a) PGPL:

(b) NOVEL GENE:

Figure 5.3: Genomic organisation of (a) the $P G P L$ and (b) novel genes. Both are presented in a 5' to 3' orientation. However, in vivo, $P G P L$ reads from the centromere towards the short arm telomere whereas the novel gene, which is distal to $P G P L$, reads in the opposite direction and ceases within 1 kb of it. The exons of $P G P L$ and the novel gene that are not contained within the N0434 cosmid are shown in green. The PGPL exons that are within N0434 are shown in cyan and those of the novel gene are shown in purple. The extent of the PI-PLC-X domain within the novel gene (see main text) is shown by the red box. Exon and intron lengths are given in bp.

```
GCGGGCCGCCGTACGCCCGGGGCTGCGGCTCTCCCGCGTGGGCCGCGGCCGCTCGOCTCCGCGGGCAGCCGCGCCGTCCTGCCCCGCGCGCGCGCTAGCC 100 N0434/H22A
```

398 N0434/H22A

 LA:CACG GCG CHTC GAACG GGAGAGGA GGC GCCCCGACCAAGAABAACI GGAGCCGCC GGGGCG GGAGG G GACCGC CACGG:D Gin CACG GCG CIICC GAACG GGAGAGG GGCI GCCCCGACCAAGAAGAAC GGAAGCCGCC GGGGG GGAGG GMI GAGCGCMICACGGIL

400 CDNA

498 N0434/H22A

500 CDNA
598 N $0434 / \mathrm{H} 22 \mathrm{~A}$
600 cDNA

698 N0434/H22A
700 cDNA
cecccacc g acceagga cogc cgcec aca ca gegg caggagancc ca gcagc gcagcagce ctccigagagagaggaggccan
 GAI CAGGAGGCC GGACAGGC CGCAAGAAGAGGCACC GC CCECCGCAGCGGACGAGGCGGGA M CCCCG GA C CCG GG GGGG ACACC

PaC GCGGANAGACCACGC GA CAAGGCAC GACGGGCGA GCCGCCNTCCAGCCACGGGACCAGC GM GCCACGC GGACG CACGGCCCAOUOU2 $1|1| 1 \mid 11$ MCZ GCGGAAAGACCACGC GAMCAAGGCAC GACGGGCGM GCCGCCAI CCAGCCACGGACCAGC GMP GCCACGC GGACG CACGGCCCACGCG
 111

 111

798 N0434/H22A
800 CDNA
898 N0434/H22A
900 CDNA
998 N0434/H22A
1000 CDNA
1098 N0434/H22A
1100 CDNA
1198 N0434/H22A
1200 CDNA
 11

1300 CDNA
1398 N0434/R22A
1400 CDNA

1498 NO434/H22A

AAC CAGCC ACGGCAAAT CCGGAAGC C CGAGA TGAACGGACGCCCACAGAGGCCTGCGGGTGGGGCATCGCTGCCTGGGAGCTGAGGCGT 1598 N0434/E22A $1 \mid 111$ HC CAGCC ACGGCAAA CCGGAAGC C HCAGG TGAACGGACOCCCACAGAGGCCTGCGGGGTGGGGCATTGCTGCCTGGGGAGCTGAGGCGT 1600 CDNA

TACCGCTGTGTTGGGGGAGCTTGGTGTCAGGTGCAGCAGGGTCCTCCTTGTCTGGTTCTGCACCCGTCTCGCTCCCAGCCATTTGCTGGAAGACCGTG 1698 N0434/H22A
 TACCGCTGTGTTGGGGGCAGCTTGGTGTCAGGTGCAGCAGGGCCTCCTTGTCTGGTCTGCACCCGTCTCGCTCCCAGCCATTTGCTGGGATGACCGTG 1700 CDNA

CAGGCCGGTGACACGGCCGCACCTGCCCCAAAGCGGGCCGCCCGAGCGTCCACTCCMAGCCTGAGCATCCACACAATHCCAGTGGGCCCTCGGTGCCTGC 1798 N0434/E22A
 CAGGCCGGTGACACGGCCGCACCTGCCCCAAAGCGGGCCGCCCGAGCGTCCACTCCAAGCCTGAGCATCCACACAATTCCAGTGGGCCCTCGGTGCCTGC 1800 EDNA

TGTGAACTGCTHTCCCTCGGAATGTTTCCGTAACAGGACATTAAACCTTTGATTTTTA 1855 N0434/日22A

TGTGAACTGCTTTCCCTCGGAATGTTTCCGTAACAGGACATTAAACCTTTGATPTTTA 1857 CDNA

Figure 5.4: Alignment of the published cDNA sequence of $P G P L$ (Gianfrancesco et al., 1998) with the exonic PGPL sequences derived from N0434.1 (Chapter 3, section 2.8) and H22A (Chapter 4, section 2.5.c). Single nucleotide differences are marked by a red asterisk, gaps that appear to be in the N0434.1/H22A sequences are shown by short horizontal line and matches between the two reads are linked by a short vertical line. The sequence highlighted in grey denotes the putative translated region of $P G P L$, as defined by Gianfrancesco et al. (1998).

5.2.1.b.i: Identification of Conserved Domains

As the uncharacterised database cDNA (figure 5.1) that exactly matches the novel gene had been described as being weakly similar to a PI-PLC, the amino acid sequence of the putative protein product was used as a query in a search of the conserved domain database (CDD) (http://www.ncbi.nlm.nih.gov/structure/cdd/cdd.shtml) in order to identify any of the PI-PLC domains (figure5.2). Interestingly, only a putative X domain was identified, which extends from the 3^{\prime} end of exon 3 to exon 7 (figure $5.3 b$), indicating that the novel gene would be unable to function as a PI-PLC on its own due to its lack of Y domain and its resultant inability to form a catalytic TIM barrel. In light of this, and in keeping with the guidelines set out by the human genome nomenclature committee, the novel gene was named human phosphatidylinositol-specific phospholipase C X domain-like 1, and given the symbol PLCXL1.

5.2.1.b.ii: An Unusual Exon-Intron Boundary

It is well established that nearly all the nuclear genes coding for proteins in eukaryotes are split into exon and intron sequences. It is also well known that virtually all of the splice junction sites that separate these exons and introns conform to consensus sequences (Mount 1982; Zhang, 1998). The intron-exon splice site consensus (i.e. the sequence at the 3^{\prime} end of the intron, also known as the acceptor sequence) is (Y) ${ }_{\mathrm{n}} \mathrm{NYAG} \mid \mathrm{G}$ and the exon-intron splice site consensus (the donor sequence) is MAG|GTRAGT. The dinucleotides that have been highlighted in bold text, GT at the 5^{\prime} end of the intron and AG at the 3^{\prime} end, are essentially invariant.

Analysis of the N0434.1 sequence (Chapter 3) revealed that the PGMS3 minisatellite originates 9 bp upstream from the 3^{\prime} end of exon 5 of PLCXL1 (figure 5.5 , Appendix 1) and extends 238 bp into intron 5 . As defined by the database cDNA sequence (figure 5.1) the actual exon 5 -intron 5 splice site sequence is GAG|GTGCGG, which is no closer to the consensus than the sequence around the other GT dinucleotides within the PGMS3 array. Indeed, due to the repetitive nature of PGMS3, most of its GT dinucleotides are part of a sequence that is exactly the same as the putative donor splice site, which raises the question as to how the transcriptional machinery manages to avoid generating frame-shifted messages with large insertions of one or more 62 bp repeats. It is possible that the inclusion of PGMS3 in the coding sequence of PLCXL1 provides a mechanism for the generation of alternative gene products as there is an in frame stop codon (TGA) just 13 bp after the end of exon 5 (as defined by the database cDNA).

Figure 5.5: Overlap of exon 5 of the novel gene and the PGMS3 repeat array. The four repeat units of PGMS3 have been aligned. The boundary between the 5^{\prime} end of exon 5 and the preceding intron is marked by the green, closed arrow and the conserved AG dinucleotide (in green). Most of the exonic sequence (highlighted in blue) has been excluded from this diagram but the proposed donor sequence at the exon-intron boundary has been underlined and the actual donor splice site, as defined by the database cDNA and its putative protein sequence (figure 5.1), is marked with a red, open arrow. Virtually all donor splice sites include a GT dinucleotide at the 5^{\prime} end of the intron so all of the GT nucleotides within the repeat array have been marked in red. The in frame stop codons are denoted in bold.

5.2.1.b.iii: An Alu-Containing Exon

The ninth exon of PLCXL1 comprises the 3^{\prime} UTR and includes an AluSq element that spans the final exon-intron border (Appendix 1). This is not in itself unusual because, in human mRNAs, SINEs, LINEs, minisatellites or microsatellites are found in approximately 36% of 3^{\prime} UTRs (Mignone et al., 2002). However, it may be relevant to the post-transcriptional regulation of PLCXL1 expression.

5.2.2: Expression of PLCXL1

5.2.2.a: Isolation of PLCXL1 Probe

A PLCXL1 gene probe was designed so as not to include any of the conserved X domain, in order to ensure that any signals were not due to cross-hybridisation with other PI-PLC genes. Consequently, a fragment of 1329 bp , encompassing the last 460 bp of exon 9 and none of its AluSq element (above), was amplified from 1 ng of N0434.1 DNA (table 2.3) and then digested with DraI in order to produce a fragment of 435 bp that consisted entirely of exon 9 sequence (figure 5.1). The 435 bp fragment was purified by electroelution and ethanol precipitation.

5.2.2.b: Hybridisation

The isolated PLCXL1 probe was hybridised to a Human Multiple Expression ($\mathrm{MTE}^{\mathrm{TM}}$) Array (Clontech), as directed by the manufacturer's instructions. The results are shown in figure 5.6. All signals were very weak and only obtained after 3-5 days exposure, but expression was found in all tissues tested, suggesting that this novel gene is a housekeeping gene. The faint signals from the genomic DNA controls further suggest that the gene belongs to a multi-gene family, but could also indicate that the probe is binding non-specifically. Hybridisation to the E. coli DNA could also indicate non-specific binding but, as there is no signal for yeast total RNA, yeast tRNA or E. coli DNA, this is probably unlikely. The signal could be explained by the presence of E. coli sequences that are homologous to PLCXL1, which is quite conceivable, given the fact that PI-PLCs have been identified in a wide variety of organisms (section 5.1.2.a, above).

*paracentral gyrus

Figure 5.6: Hybri disation of a probe for the novel gene to a Human MTE ${ }^{\text {TM }}$ Array. The table shows the types of tissue on the array and their relative positions within it.

5.2.3: Conservation of PLCXL1

To investigate the possibility of PLCXL1-homologous sequences in other species, a search of the GenBank and EMBL databases was performed using the deduced PLCXL1 protein sequence as a query. A number of matches were observed, with those showing the strongest homology found in the house mouse, Mus musculus (GenBank accession number BC039627), the brown rat, Rattus norvegicus (GenBank accession number XM_222258) and the zebrafish, Danio rerio (GenBank accession number BC054605), which respectively showed $72 \%, 69 \%$ and 39% identity to PLCXL1 at the amino acid sequence level. A CDD BLAST search revealed that each of the putative orthologues contained a recognisable PI-PLC-X domain but none of the other conserved regions known to occur in PI-PLCs. Homology between PLCXL1 and genes in Xenopus laevis, Anopheles gambiae, D. melanogaster and C. elegans was also observed. Intriguingly, the BLAST search also unveiled a second putative human PLCXL1type gene, which is located at chromosome 3q13.13 (human hypothetical protein FLJ313579, GenBank accession number AK056141).

5.3: Discussion

5.3.1: PGPL

The characterisation of the genomic structure of PGPL, which is believed to encode a GTPbinding protein, into ten exons spread over at least 14.3 kb will allow a development of the analyses already performed on the PGPL cDNA sequence by Gianfrancesco et al. (1998). For example, Northern analysis detected three species of PGPL RNA in all human adult tissues tested. Now that the exon-intron structure of $P G P L$ has been ascertained it should be possible to identify the structure of these RNA species and so determine the pattern of posttranscriptional modification. In addition, a more detailed analysis of the sequence flanking the 5^{\prime} end of $P G P L$ would lead to the identification of its promoter sequences, which could then be used to determine if $P G P L$ has the same transcription start site in different tissues. As this sequence (H22A) has not yet been finished, it would be prudent to wait before continuing along this path, especially as a number of differences between the cDNA sequence, as defined by Gianfranceso et al. (1998), and the Sanger Centre H22A sequence have already been seen. However, the conservation and the expression pattern of PGPL does suggest that PGPL does not have a specific alternatively spliced product or phenotypic effect in a particular tissue type (Gianfrancesco et al., 1998).

5.3.2: PLCXL1

5.3.2.a: The Putative PI-PLC X Domain

There are at least five recognisable domains in mammalian PI-PLCs (figure 5.2) and, of these, only a putative X domain was identifiable in the amino acid sequence of the probable PLCXL1 gene product. Whilst it is not unusual for some PI-PLCs to lack a PH domain (Rebecchi and Pentyala, 2000), without a Y domain it is impossible for PLCXL1 to form the catalytic TIM barrel that is vital to the normal function of PI-PLCs. It is possible that PLCXL1 represents a novel type of PI-PLC gene that, in a manner similar to IL3RA, CSF2RA and $C R L F 2$ (above), only encodes one subunit of a functional protein, but it is also clear that PLCXLI does not conform to the structure of any previously defined PI-PLC subfamily. Therefore, the putative X domain may have a functional significance of its own, which is perhaps reflected by the fact that similarities between mammalian and bacterial PI-PLCs are limited to just the N -terminal half and the X region (Griffith and Ryan, 1999).

5.3.2.b: Conservation and Expression of PLCXL1

The detection of genes with significant homology to PLCXL1 in a variety of species suggests that PLCXL1 has an important biological role. Moreover, the identification of a putative human autosomal gene that, like PLCXL1 contains a PI-PLC X region as its only recognisable functional domain, indicates that $P L C X L 1$ is a member of a so far uncharacterised gene family, a supposition that is endorsed by the observation of putative PLCXL1 homologues in the rat and mouse in addition to those listed in section 5.2.3 (data not shown). This also continues the pattern, seen throughout PAR1, of pseudoautosomal genes either being duplicated within the region or having close relatives elsewhere in the genome (this chapter, section 5.1.2).
$P G P L$ was recently identified as being the only highly conserved PAR1 gene in the mouse genome (Gianfrancesco et al., 2001) but the 72% amino acid identity (rising to 78% over the PI-PLC X domain) between human PLCXL1 and the putative mouse plcxl1 is slightly higher than the 68% amino acid identity that was reported between human $P G P L$ and mouse pgpl. It thus appears as though there are at least two highly conserved human PAR1 genes in the mouse genome. As all of the previously identified mouse homologues of PAR1 genes have been shown to be autosomal (Gianfrancesco et al., 2001), it will be interesting to determine the chromosomal location of the putative mouse PLCXL1, as this might have some bearing on interpreting the apparently separate and puzzling (Rappold, 1993; Graves et al., 1998; Gianfrancesco et al., 2001) evolutionary origins of the mammalian pseudoautosomal regions.

It has been shown that the β subfamily of PI-PLCs interacts with GTP-binding proteins (Taylor et al., 1991) and that PGPL encodes a GTP-binding protein (Gianfrancesco et al., 1998). PLCXL1 is evidently not a member of the PI-PLC β subfamily but, given their similar expression patterns (table 5.1), their physical proximity and the identification of conserved mouse homologues, an investigation of the potential interaction between PGPL and PLCXL1 is warranted. Genes in close proximity appear to be quite common in the human genome (Adachi and Lieber, 2002 and references therein) and are arranged in one of three fashions, listed here in order of their relative frequency (Adachi and Lieber, 2002); bidirectionally divergent (head-to-head), bidirectionally convergent (tail-to-tail) and tandemly (in the same direction). Only the divergent configuration will allow the potential utilisation of common promoter elements, so it is unlikely that $P G P L$ and $P L C X L 1$, which are arranged in a tail-totail fashion (Chapter 3, section 3.3.3.b; Chapter 4, figure 4.9), are transcriptionally coregulated, though they could share enhancer elements.

5.3.2.c: Overlap of PGMS3 and PLCXL1 Exon 5

The overlap of the PGMS3 minisatellite and PLCXL1 exon 5 means that PGMS3 must be partially transcribed. Moreover, as the donor splice site of exon 5 forms part of the most upstream repeat unit, all subsequent repeat units provide potential splice donor sites that would effectively extend the length of exon 5, and consequently the size of the PLCXLI gene product. Whether these alternative splice sites are used or not is unknown as there are clearly a number of factors other than splice site consensus sequences that influence splicing; models proposed by Guo and Mount (1995) and McCullough and Berget (1997) have suggested that, in order to be recognised, a splice site must have a partner site an appropriate distance away, so that exon or intron definition is facilitated by the spacing. In addition, many sequences that match the consensus are incapable of acting as splice sites and there are many examples of active splice sites that match the consensus very poorly (Mount, 2000).

A tandem repeat overlapping an exon-intron border is by no means a unique phenomenon. Yang et al. (2000) observed a variable minisatellite in which the first 31 bp repeat unit originated 12 bp upstream of the 3^{\prime} end of exon 13 and extended into intron 13 of the human $C B S$ gene. In this case alternate splicing was apparently prevented by a $\mathrm{G} \rightarrow \mathrm{A}$ substitution (so altering CAG|GT to CAG|AT) at the potential donor splice site of the second repeat unit. However, there are also examples of minisatellites that do provide multiple splice donor sites; the human interferon-inducible gene 6-16 contains a partially expressed minisatellite, whose first repeat unit spans the splice donor site of exon 2 (Turri et al., 1995). The two downstream repeat units provide functional splice donor sites that extend exon 2 by 12 or 24 nt and insert four or eight amino acids respectively into the predicted gene product. The examples are not limited to human genes and have been observed in two amphioxus species, Branchiostoma lanceolatum and Branchiostoma floridae (Cañestro et al., 2002). The alcohol dehydrogenase loci (Adh3) of these species contain minisatellites, termed mirages, that span 75% of the exon-intron boundaries and so duplicate the splice sites. Intriguingly, despite the high density of mirages, splicing appears not to be disturbed as no abnormal mRNA species were detected.

The in frame stop codon just 13 bp downstream of PLCXL1 exon 5, and so upstream of the first potential alternate donor splice site, suggests that use of any of the alternate sites must be prevented in order to preclude the generation of nonsense messages. On the other hand, use of the first potential alternate donor splice site would include the in frame stop codon and so allow the translation of a truncated PLCXL1 product. However, this is thought unlikely as it would lead to the truncation of the only recognisable domain within PLCXL1 and the probable loss of function. Obviously this is worthy of further study, which could begin with
an investigation of the expression of PLCXL1 in human tissues by northern blot analysis; use of a probe derived from the 5^{\prime} end of the PLCXL1 cDNA sequence, but not including any of the PI-PLC-X domain, might reveal more than one RNA species that might in turn provide clues as to any pattern of alternative splicing.

5.3.2.d: PLCXL1 3' UTR

UTRs are very important in the post-transcriptional regulation of gene expression. They have been shown to influence the transport of mRNAs out of the nucleus (van der Velden and Thomas, 1999), modulate the subcellular localisation of mRNAs (Jansen, 2001) and it is known that mutations that alter the 3^{\prime} UTR can lead to serious pathology (Conne et al., 2000). Consequently, the presence of an Alu element in the 3^{\prime} UTR of PLCXL1 may have a functional significance. For example, analysis of the 3^{\prime} UTR of human MnSOD, which contains an Alu-like element, led to the suggestion that naturally occurring antisense RNA binds to Alu elements within mRNAs, and represses expression (Stuart et al., 2000). The antisense RNA that binds Alu elements is likely to be 7SL RNA, which is evolutionarily related to the ancestral monomers that comprise Alu repeats (Chapter 3, section 3.3.2.a) and is also a component of the signal recognition particle (SRP) (Hsu et al., 1995 and references therein). SRP also contains a complex of 9 kDa and 14 kDa polypeptide subunits (SRP9/14), which has been shown to bind with high affinity to synthetic mRNAs that contain interspersed Alu elements in their UTRs (Hsu et al., 1995), an activity that has been referred to as Alu RNA-binding protein (Alu RBP). As Hsu and colleagues note, the effects of human Alu RBP on Alu-containing mRNAs deserves further examination in vivo. Additionally, Alu and L1 sequences in the 5^{\prime} UTR of a zinc finger gene, ZNF177, appear to exert a positive transcriptional enhancer effect, but repress translation of the gene (Landry et al., 2001).

5.4: Concluding Remarks

The identification and localisation of PLCXL1 increases the number of known genes in PAR1 to 15 , including the 5^{\prime} region of $X G$ and displaces $P G P L$ from its previous position as the most telomeric PAR1 gene (Gianfrancesco et al., 1998). Furthermore, the previous reports of interactions between GTP-binding proteins and PI-PLCs and the apparent identification of a mouse homologue of PLCXL1, which seems to be as highly conserved as the mouse homologue of $P G P L$, together with their close physical proximity suggests that the products of PLCXL1 and PGPL may also associate in some way.

Although its function is as yet unknown, the availability of the complete cDNA sequence, and the detailed description of its genomic structure provided in this chapter, will allow further investigation of the biological role of PLCXL1, such as the detection of mutations related to human diseases. For example, PLCXL1 would provide another target for those who have reported linkage of PAR1 markers in schizophrenia patients (e.g. Collinge et al., 1991; d'Amato et al., 1992), even though this issue remains somewhat contentious (e.g. Asherson et al., 1992; Kalsi et al., 1995; Ponnudurai, 1996). Furthermore, Loupart et al. (1995), have demonstrated loss of heterozygosity (LOH) for markers in the distal 500kb of PAR1 in breast cancer patients. Therefore, an analysis of the genes in this region is warranted in order to determine their possible relevance in human cancers and schizophrenia.

It remains to be seen as to whether or not PLCXL1 represents a novel PI-PLC subfamily but, at the very least, it appears as though PLCXLI might provide a novel in vivo system for both the analysis of donor splice site choice and the exploration of UTR-mediated posttranscriptional regulation of gene expression.

Chapter 6

DNA Diversity in the N0434.1 Interval

6.1: Introduction

The N0434.1 sequence, obtained through the work presented in Chapter 3, provided an interval around the PGPL gene that could be targeted for the discovery of SNPs, an essential step in the high resolution analysis of recombination (Chapter 1, section 2.3). In addition, the variability of three N0434.1 tandem repeat arrays (table 3.3) was analysed to provide an indication of their instability as it has been suggested that unstable minisatellites can serve as occasional markers of local meiotic recombination hotspots (Jeffreys et al., 1998a). The tandem repeat arrays selected for analysis were PGMS1, PGMS2, which are both minisatellites, and the pseudoautosomal STIR array. Both the SNP data and the results of the tandem repeat array analyses are presented in this chapter.

6.1.1: Measures of Genetic Variation

There are two commonly used measures of nucleotide variability in a population. The first, nucleotide diversity, π, is the average number of nucleotide differences between two sequences drawn at random from a population (Nei and Li, 1979; Tajima, 1983) and depends on both the number and frequency of polymorphic sites. Second, Watterson's $\theta\left(\theta_{w}\right)$ is the proportion of polymorphic sites in a DNA segment, corrected for population sample size (Watterson, 1975) and, unlike π, does not depend on the frequency of SNPs. In addition, both π and θ_{w} can be used to indirectly estimate the mean population mutation rate according to the following relationship:
$H=\frac{4 N_{e} \mu}{1+4 N_{e} \mu}$
in which H is the heterozygosity (and is the factor estimated by θ_{w} and π), N_{e} is the effective population size and μ is the neutral mutation rate per base pair per generation. This relationship can also be applied to minisatellite variability data and so is pertinent to the analyses of PGMS1, PGMS2 and the STIR array (below). When $4 N_{e} \mu$ is significantly less than one the relationship approximates to $\mathrm{H}(\theta)=4 N_{e} \mu$. This is generally true in human populations, in which base mutation occurs at a frequency of 2×10^{-8} per nucleotide per
gamete (Drake et al., 1998) and N_{e} is usually estimated to be about 10,000 (Takahata, 1993; Zietkiewicz et al., 1998; Zhao et al., 2000).

Comparing the estimates of θ_{w} and π (and other measures of $\theta=4 N_{e} \mu$) can be used to assess departure from the standard neutral model of molecular evolution. This model assumes a hypothetical, randomly mating population of constant size in which genetic variation is neutral and follows the infinite sites model in which each new mutation occurs at a site not previously mutated (Kimura and Crow, 1964; Kimura, 1968; Kimura, 1985). One such assessment is Tajima's D, which compares values of θ_{w} and π from a single, non-recombining region of the genome (Tajima, 1989). A non-zero value of D indicates a departure from the neutral model and can occur if neutral polymorphisms are eliminated, and thus allowed to reach only low frequencies, as a result of the negative selection of deleterious mutations at linked sites (background selection). Alternatively, positive selection will remove older, highfrequency alleles and newer, low frequency alleles will hitchhike with the target of selection, which, like background selection, will result in a relative excess or deficiency of polymorphisms of various frequencies (Bamshad and Wooding, 2003).

6.1.2: Human Minisatellites

Minisatellites are generally GC-rich sequences of tandemly repeated DNA that consist of $6-100 \mathrm{bp}$ repeat units stretching over $0.5-30 \mathrm{~kb}$ (for review see Bois and Jeffreys, 1999; Jeffreys et al., 1999) and it has been shown that they include some of the most variable loci in the human genome (Buard and Vergnaud, 1994; Dubrova et al., 1997; Tamaki et al., 1999). Their variability stems, in part, from differences in the number of repeat units, and these length polymorphisms led to the discovery of minisatellites as highly informative markers for DNA fingerprinting (Jeffreys et al., 1985). Furthermore, minisatellites also provided the first highly polymorphic, multiallelic markers for linkage studies (Nakamura et al., 1987).

6.1.2.a: Instability at Minisatellite Loci

The instability of the most unstable minisatellites is strongly restricted to the germline (May et al., 1996; Jeffreys and Neumann, 1997) and typically involves gene conversion-like repeat transfers between alleles (Jeffreys et al., 1991; Armour et al., 1993; Neil and Jeffreys, 1993). Hence, it is most likely that this recombinational interaction operates during meiotic recombination itself (Jeffreys et al., 1998a,b; 1999). For most loci instability occurs preferentially in males, the most extreme example being the CEB1 locus, which has an
extraordinarily high mutation rate (to new length alleles) of 15% per sperm, but only 0.2% per oocyte (Vergnaud et al., 1991). Traditionally germline mutation at human minisatellites has been studied by pedigree analysis (e.g. Jeffreys et al., 1988). However, this is an inefficient method due largely to the very low mutation rates at minisatellites, which are usually of the order of 1% per gamete (Bois and Jeffreys, 1999). Two more recently-developed approaches, small-pool PCR (SP-PCR) (Jeffreys et al., 1994) and size-enrichment and SP-PCR (SESPPCR) (Jeffreys and Neumann, 1997; Jeffreys et al., 1997), allow the detection of new mutant molecules directly in genomic DNA and are therefore much more accurate and reliable tests of minisatellite mutation rates.

It has also been shown that minisatellite instability is not impeded by sequence variation between repeat units; e.g. two of the most unstable minisatellite loci detected to date, CEB1 and B6.7, can have 20 or more variant repeat types within a single allele array (Buard and Vergnaud, 1994; Tamaki et al., 1999). This is in direct contrast to the situation seen at trinucleotide expansions and other simple tandem repeat (STR) loci, where sequence homogeneity between repeat units encourages repeat instability (Warren, 1996). There is significant variation between minisatellite alleles in sperm mutation rate, an effect that appears to operate in cis; for CEB1 and B6.7 instability is strongly affected by array size and increases steadily up to $40-50$ repeats, above which it appears to reach a plateau (Buard et al., 1998; Tamaki et al., 1999). Minisatellites MS32 and MS205 show allele-specific variations that do not correlate with array length but appear to be associated with flanking haplotype (Jeffreys et al., 1994; May et al., 1996), such as the O1C variant at MS32, which has already been discussed (Chapter 1, section 2.3.a).

6.1.2.b: Minisatellites and Genes

The overlap between PGMS3 and exon 5 of PLCXL1 (Chapter 5, sections 2.1.b.ii and 3.2.c) provided another example of a minisatellite within a gene coding sequence, but there are also examples of minisatellites which generate alleles that can influence the expression of neighbouring genes. For example, the insulin (INS) minisatellite, located 600 bp upstream of the transcriptional start site of the $I N S$ gene (Bell et al., 1982), is likely to be the type 1 diabetes mellitus IDDM2 locus (Stead et al., 2000). Considering the high density of tandem repeat arrays in the N0434.1 interval, this may also be relevant to the expression of $P G P L$ and PLCXL1.

6.1.2.c: AT-Rich Minisatellites

A small number of AT-rich minisatellites have been described in humans, including the Y chromosome-specific MSY1 (Jobling et al., 1998) and the autosomal loci ApoB (Buresi et al., 1996) and FRA16B (Yu et al., 1997). They are quite different from GC-rich minisatellites, with internally palindromic repeat unit sequences, which have the potential to form hairpin structures that may contribute to repeat instability. In addition, their structure is typically modular, with similar variant repeats clustered into blocks, and not dispersed as in GC-rich minisatellites, indicating that mutation processes are likely to be different between the two types of loci.

6.1.3: SNPs

SNPs have only very recently gained favour as the marker of choice amongst molecular geneticists. In the 1990s, STRs (di-, tri- or tetranucleotide repeats) were employed in linkage analyses to identify a gene responsible for a monogenic disorder. STRs are ideal for this type of study as they show high levels of allelic variation in the number of repeat units, which can be typed by PCR amplification, and are distributed widely and evenly across the human genome (Gray et al., 2000). However, interest in monogenic disorders has waned and linkage analysis is a poor system for the detection of the small effects of multiple gene variants contributing to complex, common diseases (Lander and Schork, 1994; Risch and Merikangas, 1996). Moreover, STR loci are probably too sparse for the association-based studies that are required to observe these small effects (Lander and Schork, 1994) and, in addition, their high level of polymorphism is thought to reflect high mutation rates (Chakraborty et al., 1997), which would further hinder a population-based approach.

SNPs are the most common variable site and, as such, are expected to be present in the genome at a density high enough for a wide range of genetic studies. Indeed, there are at least three reasons for the recent upsurge of interest in SNPs. First, their high abundance, which is approximately one SNP every 1000-2000 nucleotides when comparing just two human DNA sequences (Li and Sadler, 1991; Nachman et al., 1998; Wang et al., 1998; Altshuler et al., 2000; The International SNP Map Working Group, 2001), means that SNPs can be used as markers for mapping polygenic disease loci (Chakravarti, 2001). Pertinent to this is the realisation that the usefulness of SNPs for these association studies is determined by the extent of LD between them, so an understanding of the frequency and underlying patterns of association among SNPs unrelated to disease is essential for interpreting patterns of LD between markers and candidate disease genes (Nachman, 2001). Second, and in further
contrast to STRs, SNPs have a relatively low rate of recurrent mutation, which means that two individuals sharing a variant allele can usually (but not exclusively) be marked with a common evolutionary heritage (Stoneking, 2001). SNPs are thereby stable indicators of human history and will greatly help in the identification of haplotypes for tracing migrations, relationships among ethnic groups and changes in population size of ancestral human populations. Third, the distribution of variation may shed light on the evolutionary processes at the molecular level by revealing the relative importance of selection, mutation, migration, recombination and genetic drift (Nachman, 2001). An added advantage, of course, is that SNPs are binary and so are well suited to high-throughput genotyping.

6.1.3.a: SNP Frequency Across the Human Genome

The average value of π in humans is approximately 7.5×10^{-4} (Li and Sadler, 1991; The International SNP Map Working Group, 2001; Reich et al., 2002) and individual autosomes have very similar levels of heterozygosity, though chromosomes 15 and 21 do have values of π that are more than 10% diverged from the genome average. Whether this is biologically meaningful or not will require further investigation (The International SNP Map Working Group, 2001). The sex chromosomes have relatively low levels of diversity, which can be largely attributed to their lower effective population sizes $\left(N_{e}\right)$ in $\theta=4 N_{e} \mu$ (The International SNP Map Working Group, 2001). When averaged across windows of 200 kb , amounts of heterozygosity show up to tenfold variation (The International SNP Map Working Group, 2001). However, on a finer scale, it has been observed that the amount of sequence variation is very similar between linked sites and, although this correlation declines with distance, it remains significant at distances of 100 kb (Reich et al., 2002). This creates regions of $10-100 \mathrm{~kb}$ within the human genome that have fundamentally different levels of nucleotide heterozygosity (Zhao et al., 2000; Reich et al., 2002). These are thought to be determined largely by recombination hotspots that create blocks of LD, in which the correlated fixation or extinction of SNPs will lead to periodic intervals of high and low nucleotide diversity (Reich et al., 2002; Kauppi et al., 2003).

6.1.3.a.i: SNPs and Alu Elements

SNPs that have arisen through transitional changes are more common than transversions, with CpG dinucleotides showing the highest mutation rate, presumably due to the frequent deamination of 5' methyl-deoxycytidine (Vogel, 1972; Duncan and Miller, 1980). Therefore, Alu elements, which have a high incidence of CpG dinucleotides (Batzer et al., 1996), are predisposed to point mutations. In addition, it has been suggested that Alu elements undergo a
large amount of gene conversion (Roy et al., 2000), which could further contribute to SNP diversity as has been seen throughout the genome (Ardlie et al., 2001; Frisse et al., 2001). Thus, the high concentration of Alu elements in the N0434.1 interval (Chapter 3, section 3.2) is likely to have a significant affect on the nucleotide diversity of the region.

6.1.3.a.ii: SNPs in PARI

Currently, very little is known about SNP density in PAR1. Very high levels of nucleotide diversity have been observed at both the telomere-adjacent region and at $P P P 2 R 3 B$ (Baird et al., 1995; Schiebel et al., 2000). Schiebel and colleagues proposed that the elevated diversity could be partially explained by a high GC content that favours mutation at CpG dinucleotides, or by base-mutagenic recombination. However, the normal diversity seen in the $S H O X$ region, which is recombinationally active and 53% GC-rich, suggests that differing levels of diversity cannot be explained by GC content or variable recombination rates, and they may instead reflect different population histories (May et al., 2002). Therefore, investigating the nucleotide variability in the GC-rich N0434.1 region is not only an important step towards analysing LD and meiotic recombination in the interval, but may also help to clarify the reasons behind the variability of SNP frequency across the human genome, and particularly in PAR1.

6.2: Results

6.2.1: Variability of Tandem Repeat Arrays in the N0434.1 Interval

The three largest tandem repeat arrays in the N0434.1 interval, PGMS1, PGMS2 and the pseudoautosomal STIR elements, were analysed in order to determine their length variability. Each of these is located in the proximal half of the N0434.1 interval (figures 3.7, 4.9 and Appendix 1). Each array was PCR amplified from 10 ng of genomic DNA from forty unrelated UK men of North European descent, using primers that were designed from the flanking DNA of the array (table $2.5 a$). The PCR products were subjected to agarose gel electrophoresis, Southern blotted and hybridised to probes consisting purely of the relevant repeat array (table $2.5 b$).

6.2.1.a: PGMS1 and PGMS2

Both PGMS1 and PGMS2 consist of variant repeat units that are about 40\% GC-rich and 50 bp in length (table 3.3, figure 6.1) and are thus typical minisatellite sequences.

6.2.1.a.i: Sizes of PGMS1 and PGMS2 Alleles

The hybridisation patterns of PGMS1 and PGMS2 are revealed in figure 6.2. Virtually all PGMS1 alleles are one of two sizes, which appear to differ by just one repeat unit. Alleles of the same size as the N0434.1 PGMS1 array, which is 1.13 kb (and 21 repeat units), have a relative frequency of 0.6 , whereas the smaller allele has a relative frequency of 0.39 . There is just one example of an allele outside of this size range, visible in donor 1 , where there is an allele of approximately 0.81 kb , which is equivalent to about 15 repeat units. PGMS2 is more variable than PGMS1, though there are just two common alleles, which are either about 2.21 kb or 1.67 kb , which equates to approximately 45 or 34 repeat units respectively. There are nine alleles that are 1.9 kb in length and the size range of PGMS2 alleles is $1.4-7.5 \mathrm{~kb}$, which is a considerably larger range than that seen at PGMS1, and suggests that PGMS2 can consist of about 150 repeat units in vivo.

6.2.1.a.ii: Estimation of Mutation Rates at PGMS1 and PGMS2

Under the standard neutral model of evolution (above), an estimation of the rate of mutation at minisatellite loci can be gained through the formula $H_{O}=1 /\left(1+4 N_{e} \mu\right)$, where H_{O} is the homozygosity, N_{e} is the effective population size (10,000 in humans, see above) and μ is the

Figure 6.1: The internal heterogeneity of PGMS1 and PGMS2 repeat sequences in the N0434.1 cosmid. The sequences are presented in a PAR1 telomere to centromere orientation. Each array is shown with 50 bp of flanking DNA (in lower case), within which are the primers (in pink) used to amplify the minisatellites from a panel of unrelated UK men of North European descent. It was not possible to sequence across the whole of PGMS2 (Chapter 3, section 2.5.c), thus the string of Ns shown within the PGMS2 sequence here represent approximately 900 kb , which is about 18 repeat units.

PGMS1

cggcatccagctggagcttgctttcttattggtagggagacetgtaccec TTGACTGGCA-GCACAGATTAGGCACCTGTTGTGCGCACAGTCAGAAATGTA--TT TTGACTGTCAAGTGCAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCAAGCGCAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCA-GCACAGATTAGGCACCTGTTGTATGCACAGTCAGAAATGTACATT TTGACTGTCA-GTGCAGATTAGGCACCTGTTGTATGCACAG----AAATGTACATT TTGGCTGTCAAGCACAGATTAGGCACCTGTTGTATGGTCAG----AAATGTACATT TTCACTGTCA-GCATA-ATTAGGCACCTGTTGTATCCACAGTCAGAAATGTACATT --GAGTGTCA-GCACACATTAGGCACCTGTTGTATGCACAGTCAGAAATGTACATT TTGTCAGCACAG-----ATTAGGCAACTGTTGTATGCA--GTCAGAAATGTA--TT TTTACTGTCAAGCACAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCA-GCACAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCA-GTGCAGATTAGGCACCTGTTGTATGCACAG----AAATGTACATT TTGGCTGTCAAGCACAGATTAGGCACCTGTTGTATGGTCAG----AAATGTACATT TTCACTGTCA-GCATA-ATTAGGCACCTGTTGTATCCACAGTCAGAAATGTATATT TTGAGTGTCA-GCACAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCA-GCACAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCA-GCACAGATTAGGCACCTGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCAAGCACAGATTAGGCAACTGTTGTATGCA--GTCAGAAATGTA--TT TTTACTGTCAAGCACAGATTAGGCACCCGTTGTATGCA--GTCAGAAATGTACATT TTGACTGTCA-GCACAGATTAGGCACCTGTTGTATGCACAGTCACAAATGTAGATT TTGACTCTCAAGCGCAGATTAGGCACCTCTTGTATGCACAGTCACAAATGTACATT Tatgcaaacccattcatctcgtctgtacatcctaaagctctcggggatctc

Consensus repeat, 53 bp
TTGACTGTCAGCACAGATTAGGCACCTTGTATGCACAGTCAGAAATGTACATT

PGMS2

agcctcataagagatggcacagacttagtgcccaagacaacagcattctt --CCT-GTCTATC-ACATGGGGGATAAGAATG-TGGACATGTTT-GGGGCCATATT ATTCT-GTCTCCC-ACATGGG--ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATCCT-GTCTACC-TCATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT AATCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATTCT-GTCTCCC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTCCC-ACATGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTATC-ACATGGGG-ATTACGACA-TGGACATCTTT-GGGGACA---T ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATTCT-GTCTCACCTCATGGGG-ATTAGGACG-TGGACATCTTTT-GGGGACA--TT ATTCTTGTCTATC-ACATGGGA-ATTAGGACGGTGGACATCTTTTTGGGGCCA--TT ATTCT-GTCTACC-TCATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTCCC-ACATGGGN-ATTAGGACG-TGGACATCTTTT-GGGGACA--TM ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-ATCTCCC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA-TT ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATTCT-GTCTACC-TCATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TI ATTCT-GTCTACC-TCATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTATC-ACATGGGA-ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATTCT-GNNN

NNTCT-GTCTCCC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTATC-ACATGGGG-ATTAGGATG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTCCC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTCCC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGACA--TT ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATTCT-GTCTATC-ACATGGGG-ATTAGGATG-TGGACATCTTT-GGGGACA--TI ATTCT-GTCTATC-ACATGGGG-ATTAGGACG-TGGACATCTTT-GGGGCCA--TT ATTCT-GTCTATC-ACATGGGG-ATTAGGATG-TGGACATCTTT-GGGGACA--TT ATTtctcccacacggtgttacgacgtgagcatctttggggttgtctactgccc

Consensus repeat, 49bp
ATTCTGTCTATCACATGGGGATTAGGACGTGGACATCTTTGGGGACATT

Figure 6.2: Variability of the PGMS1 and PGMS2 minisatell ites in 40 unrelated UK semen donors. Positive controls (+) were amplified from 1.3 pg of isolated N0434.1 DNA, and a reaction that had no input of template DNA was used as a negative control (-).
mutation rate. The observed homozygosity at PGMS1 is 0.525 and thus, the approximate rate of mutation at PGMS1 is 2×10^{-5} events per gamete. In contrast, the homozygosity at PGMS2 is 0.2 , which provides an estimate of the PGMS2 mutation rate at 1×10^{-4} events per gamete, an order of magnitude greater than that of PGMS1.

6.2.1.b: The N0434.1 Pseudoautosomal STIR Array

The sequence of the pseudoautosomal STIR array within the N0434.1 interval is shown in figure 6.3, together with the STIR element consensus sequence as defined by Rouyer et al. (1990). As previously stated (Chapter 3, section 1.1.c) there are two types of pseudoautosomal STIR, A-type and B-type, which can be distinguished by differences in their most 5' 80 bp . Previously reported pseudoautosomal STIR arrays are either dimers or tetramers and all include at least one B-type monomer that is usually preceded by at least one A-type monomer (Rouyer et al., 1990). The only known exception is found at the STIR array close to the DXYS 15 locus, where most of the first monomer has been deleted and the remaining elements within the array all appear to be derived from a single B-type monomer (Rouyer et al., 1990). Similarly, the N0434.1 STIR array consists of four tandemly repeated units, which are very alike, suggesting the amplification of a single type B element. However, the leader sequence of the first repeat unit and the most 3^{\prime} part of the last repeat unit appear to have been deleted

6.2.1.b.i: Allele Sizes of the Pseudoautosomal STIR Array

Surprisingly, the array is moderately variable (figure 6.4). However, like PGMS1 and PGMS2, there are two main allele sizes. Most alleles are about 1.4 kb , the same size as that found in N0434.1, and which is seen at a relative frequency of 0.625 . The second most common allele size is approximately 5.1 kb , which has a relative frequency of 0.275 , and is the equivalent of about 15 repeat units. All other alleles are contained within the range $1.0-5.5 \mathrm{~kb}$, and their sizes suggest that allele size differences result from the (multiple) gain or loss of whole repeat units. This further suggests that pseudoautosomal STIR arrays can consist of 16 tandemly repeated units, which would be four or eight times the size of the dimers and tetramers that have been reported so far (Rouyer et al., 1990).

6.2.1.b.ii: Estimation of N0434.1 Pseudoautosomal STIR Mutation Rate

The observed homozygosity at the N0434.1 pseudoautosomal STIR array is 0.475 (figure 6.4). Consequently, the formula $H_{O}=1 /\left(1+4 N_{e} \mu\right)$ provides an estimated mutation rate of 3×10^{-5} events per molecule, which is very similar to that of PGMS1.

Figure 6.3: Tandemly repeated STIR elements in the N0434.1 interval. The four different monomers (N0434.1/1-4) have been divided and read (5^{\prime} to 3^{\prime}) centromere to PAR1 telomere to ease comparison with the consensus sequence, shown above in lower case, and their sequences are continuous from the first line to the last. The consensus sequence derived by Rouyer et al., (1990) is divided over the first 80 bp to show the two different leader sequences. All type B leader sequences have been highlighted. The array is shown with 50 bp of flanking DNA (in grey). As previous experiments had shown that a generic pseudoautosomal STIR probe was also able to detect autosomal STIRs (Rouyer et al., 1990), two primers were designed in order to generate a probe that would only detect the N0434.1 array. Their positions are underlined.
aacaacagnaayttatyytctcccagtcctgnngaccaggagtctgagatcaaggrgtytcaggrccryrctccctcc--------

gaggctctagggga

-rggttctgggrrttagg-ayrtgracayrrctttyygrg---rrccactgttcaatcca-ttacaattgtatccagttccttct

cacaggaaccagctctaccacagttccagaaagegggagctgaccacagaCTCTAGGGGA
CAGGTTCCAGATGATCAATACATGGACAGGTCTTTT-GTGGGGGGCCACAGTTCAGTTCACTT-CAGTTGGATCCAGTTCCTTCTGGAGGCTCTAGGGGA CAGGTTCCAGATGATCAATACATGGACAGGTCTTTT-GTGGGGGGCCACAGTTCAGTTCACTT-CAGTTGGATCCAGTTCCTTCTGGAGGCTCTAGGGA CAGGTCCAGATGATCAATACATGGACAGGTCTTTT-GTGGGGGGCCACAGTTCAGTTCACTT-CAGTTGGATCCAGTTCCTTCTGGAGGCTCTAGGTGA
gggtccttcctgcctctcccagctcctgggggctccaggcrtccctgggcttgtggccgcatcactccagtctctgcctccgtctccacgtggccttctc
GGGTCCTTCCTGCCTCTCCCAGCTCCTGGGGGCTCCAGGCGTCCCTGGGCTTGAGGCCGCATCACTCCAGTCTCTGCCTCTGTCT----GTGGCCTTCTC GGGTCCTTCCTGCCTCTCCCAGCTCCTGGGGGCTCCAGGCGTCCCTGGGCTTGTGGCCGCATCACTCCAGTCTCTGCCTCTGTCT----GTGGCCTCCTC GGGTCCTTCCTGCCTCTCCCAGCTCCTGGGGGCTCCAGGCGTCCCTGGGCTTGTGGCCGCATCACTCCAGTCTCTGCCTCTGTCT----GTGGCCTTCTT GGGTCCTTCCTGCCTCTCCCAGCTCCTGGGGGCTCCAGGCGTCCCTGGGCTTGTGGCCGCACCACTCCAGTCTCTGCCTCCATCTCCACGTGGCCTTC--
ctctgtgtctgtgtctcctcttctgtctcttanaaggacacctgtcattggatttagrgyccacccta-at----ccargaygatytcatctcaagatcc СTCTGTGTCTGTGTCTCCTCTTCTGTCTCTTAGAAGGACAGTAGTCATTAGATTTAGGGTCCACCCTA-AT----CCAGGATGATCTCATTTC-AGATC СTCTGTGTCTGTGTCTCCTCTTCTGTCTCTTAGAAGGACACCTGTCATTAGATTTAGGGTCCACCCTA-AT----CCAGGATGATCTCATCTCCAGATCT СTCTGTGTCTGTGTCTCCTCTTCTGTCTCTTAGAAGGACAGTAGTCATTAGATTTAGGGTCCACCCTA-AT----CCAGGATGATCTCATTTC-AGATCT

type A
consensus
ype B
N0434.1/1
N0434.1/2
N0434.1/3
N0434.1/4
onsensus
N0434.1/1
N0434.1/2
N0434.1/3
N0434.1/4
consensus
N0434.1/1
N0434.1/2
N0434.1/3
N0434.1/4

ttracttaa--ttayatytgcaaagaccetatttccaaayrr----grtcycattcn	consensus
TCCACTTAA--TCACATCTGCAGAGACCCTGTTTCCAAATAA----TGTCCCATTCA	N04 $34.1 / 1$
TCCACTTAA--TCACATCTGCAGAGACCCTGTTTCCAAATAA----TGTCCCATTCA	N0434.1/2
TCCACTTAA--TCACATCTGCAGAGACCCTGTTTCCAAATAA----TGTCCCATTCA	N0434.1/3

Tctgcaaaaactccatttcca

Figure 6.4: The variability of the pseudoautosomal STIR array within the N0434.1 interval in a panel of 40 unrelated UK men of North European descent.

6.2.2: Identification and Analysis of SNPs in the N0434.1 Interval

Four methods are commonly used for SNP detection; the identification of single strand conformation polymorphisms (SSCPs) (Orita et al., 1989), heteroduplex analysis (Lichten and Fox, 1983), variant detector arrays (VDAs) (Wang et al., 1998) and direct DNA sequencing. Of these, the simplest and most efficient method for the identification of novel SNPs in a region the size of the N0434.1 interval is direct DNA (re-) sequencing.

6.2.2.a: Design and Amplification of N0434.1 Regions for Resequencing

The N0434.1 sequence (Appendix 1) was used as a template to design a series of primers for the PCR amplification of twelve regions of the N0434.1 interval. These regions were then resequenced to identify SNPs. As it had been established that at least a subset of the tandem repeat arrays within the N0434.1 interval are moderately variable (above), care was taken to ensure that the twelve amplicons did not encompass any tandem repeat array lest these would impede later alignments of sequences and thereby hinder SNP identification. This consideration had to be balanced against including as much sequence of the N0434.1 sequence as possible, which inevitably led to the overlap of a number of amplicons (figure 6.5). Each resequencing amplicon was PCR amplified from the genomic DNA of eight unrelated UK men of North European descent (tables 2.5 and 2.6) and purified by electroelution and ethanol precipitation whilst taking care to prevent cross-contamination between amplicons from different donor DNAs.

6.2.2.b: Resequencing and SNP Identification Strategy

All twelve resequencing amplicons were first sequenced with the primers that had been used in their amplification. The primary N0434.1 sequence then allowed design of further primers, listed in table 2.5, that were used to complete the resequencing of each of the twelve regions in each of the eight donors. However, as N0434.1 has a very high density of Alu elements, the resequencing strategy was impeded in two ways. First, it was very difficult to design locusspecific primers due to the sequence similarity of different Alu elements and, second, Alu elements contain poly (A) or poly (T) tails that are usually impossible to sequence through, although this problem can occasionally be surmounted if the sequencing reaction begins very close to the $\operatorname{poly}(\mathrm{A} / \mathrm{T})$ tail. Therefore, a number of resequencing amplicons were subamplified to create smaller and less complex intervals that could be sequenced more easily (figure 6.6a). Regrettably, some regions remained impossible to resequence completely. In total the sequence reads across all twelve regions in the eight donors amounted to over 200,000 bp and covered approximately 25 kb (75\%) of N 0434.1 . All sequence reads were assembled and

Figure 6.5: The amplicons used to resequence the N0434.1 interval in eight UK semen donors of North European origin. The grey bar represents the N0434.1 sequence, the light blue rectangles denote PLCXL1 exons, the dark blue rectangles mark the positions of PGPL exons and the green bars show the positions of the tandem repeat arrays. Alu elements are marked wth the red triangles above the N0434.1 sequence and the positions of the resequencing amplicons are represented by the orange bars.
aligned with the N0434.1 primary sequence using ABI AutoAssembler software (figure $6.6 b$), which allowed the identification of 55 evenly distributed SNPs (table 6.1, figure 6.7).

6.2.2.c: Characterisation of SNPs

The frequency of SNPs within the region is approximately 1 SNP per 600 bp , though the true figure is likely to be closer to one SNP per 450 bp as only 75% of N0434.1 was actually resequenced. Approximately 75% of the SNPs (42 of 55) are transitions, 21 of which are at CpG dinucleotides, plus there are twelve transversions and one insertion/deletion polymorphism (InDel), which is not strictly a SNP as it is a polymorphism for the presence or absence of a CpA dinucleotide. Only one SNP was identified in coding sequence, 2793C/T, which is a synonymous substitution at a glycine codon; a further three SNPs were identified in the 3^{\prime} UTRs of PGPL and PLCXL1 and 23 were found in Alu sequences (table 6.1).

6.2.3: Nucleotide Diversity Across the N0434.1 Interval

The resequencing of defiined regions in the N0434.1 interval resulted in the discovery of 55 SNPs. As the total length of resequenced DNA is also known, it is possible to estimate the nucleotide diversity across the interval by calculating θ_{w} and π.

6.2.3.a: Estimate of Nucleotide Diversity Using $\theta_{\mathbf{w}}$

Watterson's θ can be calculated in terms of K, the observed number of variant sites (SNPs), using the formula:
$\theta=\frac{1}{L} \frac{K}{\sum_{i=1}^{n-1} \frac{1}{i}}$
in which n is the number of chromosomes analysed and L is the total sequence length screened. In this way, θ_{w} across the whole N0434.1 interval is estimated to be 6.3×10^{-4}.
a

Donor 1

Donor 2
TGATCGTGG
Donor 3

Donor 4

Donor 5

Donor 6

Donor 7

Donor 8

Figure 6.6: An example of the resequencing strategy for SNP discovery used in the N0434.1 interval. (a) Resequencing amplicon H is denoted by the orange line. Alu elements are shown by the red boxes and their poly $(\mathrm{A} / \mathrm{T})$ tails are marked by green arrows. Sub-amplicons that had to be PCR amplified due to the high density of Alu elements are shown by the grey lines and the positions of primers used for amplifications and resequencing are marked by the purple arrows. (b) Three examples of SNP identification after resequencing the N0434.1 interval in eight unrelated men and aligning the sequence reads using AutoAssembler software. SNP positions are marked with black arrows .

6.2.3.a: Estimate of Nucleotide Diversity Using π

The nucleotide diversity of a region is estimated in terms of π with the following formula:
$\pi=\frac{1}{\mathrm{~L}} \frac{\mathrm{n}}{\mathrm{n}-1} \sum_{\mathrm{p}, \mathrm{q}} \mathrm{X}_{\mathrm{p}} \mathrm{X}_{\mathrm{q}} \Pi_{\mathrm{pq}}$
where L is the total number of SNPs in the characterised region, n is the number of sequences analysed to determine x_{p} and x_{q}, which are the frequencies of variants p and q (in this case, the major and minor allele frequencies, which were determined by the genotyping described in Chapter 7), and $\Pi_{p q}$ is the number of nucleotide differences between alleles, which is always 1 if individual SNPs are considered. Hence, the value of π for the N0434.1 interval is 4.4×10^{-4}, which is consistent with the value obtained for θ_{w}.

It is worth noting that the value of π is likely to be slightly underestimated as the resequencing of only eight men (16 chromosomes) means that SNPs of very low frequency will be missed. Nevertheless, it is 95% certain that all SNPs in the N0434.1 interval, with a minor allele frequency (mAF) of 0.17 or greater, have been detected.

Table 6.1: SNPs in the N0434.1 interval. All were identified in a panel of 8 UK semen donors of North European origin and are denoted as transitions (Ti), transversions (Tv) or insertion/deletion polymorphisms (ID). Transitions at CpG dinucleotides are underlined. SNP nomenclature reflects their nucleotide position from the most distal end of the N0434.1 sequence and the two possible alleles at that position.

SNPs telomeric to PGMS2			SNPs centromeric to PGMS2		
423C/T	(Ti)	in Alu	18530A/C	(Tv)	in Alu
1107A/G	(Ti)	in Alu	$18610 \mathrm{C} / \mathrm{T}$	(Ti)	in Alu
2357C/T	(Ti)		$18634 \mathrm{C} / \mathrm{T}$	(Ti)	in Alu
2458C/T	(Ti)		$18664 \mathrm{C} / \mathrm{G}$	(Tv)	in Alu
2793C/T	(Ti)	in coding sequence	18970A/G	(Ti)	
3103C/T	(Ti)		19963C/G	(Tv)	in Alu
$3370+/-$	(ID)		20723C/G	(Tv)	
4383G/T	(Tv)		21309C/G	(Tv)	in Alu
4589A/G	(Ti)		22030A/G	(Ti)	in PLCXL1 3^{-}UTR
4722C/T	(Ti)	in Alu	22145A/G	(Ti)	
4823A/G	(Ti)	in Alu	22168C/T	(Ti)	
5230A/G	(Ti)		23133A/G	(Ti)	in Alu
$7225 \mathrm{C} / \mathrm{T}$	(Ti)		23483A/T	(Tv)	in PGPL 3^{-}UTR
7298A/G	(Ti)		23757A/G	(Ti)	in PGPL 3^{-}UTR
8020C/T	(Ti)		24151C/T	(Ti)	in Alu
8248C/T	(Ti)	in Alu	$\underline{26645 C / T}$	(Ti)	
$8429 \mathrm{C} / \mathrm{G}$	(TV)		26901A/G	(Ti)	
9771C/G	(TV)		27689C/G	(Tv)	in Alu
11501A/G	(Ti)	in Alu	27919A/G	(Ti)	
12237A/G	(Ti)	in Alu	30381C/T	(Ti)	
12657A/G	(Ti)	in Alu	$31679 \mathrm{C} / \mathrm{T}$	(Ti)	
13351C/T	(Ti)	in Alu	31697A/T	(Tv)	
13642A/G	(Ti)	in Alu	31703C/T	(Ti)	
13994A/G	(Ti)		31717C/G	(Tv)	
14051A/G	(Ti)		32258A/G	(Ti)	
14209C/T	(Ti)	in Alu	32451C/T	(Ti)	
14537A/G	(Ti)	in Alu			
14567A/G	(Ti)	in Alu			
14893A/G	(Ti)	in Alu			

Figure 6.7: The distribution of SNPs in the N0434.1 interval. Adapted from figure 6.5. SNPs are shown by the vertical black lines between the N0434.1 sequence and the resequencing amplicons.

6.3: Discussion

The work presented in this chapter forms the first overview of diversity in the PGPL region. Not only did this include the identification of SNPs, which are essential for analyses of LD and recombination (Chapters 7 and 8), but also involved studies of tandem repeat DNA, which potentially associates with recombinationally active DNA.

6.3.1: PGMS1 and PGMS2 Variability

Strictly speaking, the minisatellite studies presented in this chapter were merely investigations into the different allele sizes that were present in a relatively small panel of unrelated men, and not a reliable system for determining mutation rates. Indirect population genetic estimates of the PGMS1 and PGMS2 mutation rates were obtained, demonstrating that both are likely to be only moderately unstable, as the mutation rates are well below the values of 1% or higher observed at classic unstable minisatellite loci. Furthermore, PGMS1 and PGMS2 both have a limited number of allele sizes compared to more unstable loci. Therefore, it appears as though the N0434.1 interval does not contain a highly variable minisatellite that might have evolved from a local meiotic recombination hotspot, or more generally from recombinationally active DNA, as has been shown at MS32 (Jeffreys et al., 1998a).

6.3.1.a: Future Development of Minisatellite Studies

The moderate variability suggested that further analyses of PGMS1 and PGMS2 would not be worthwhile at this stage. However, it was noted that if the region around the minisatellites was determined to be recombinationally active, and exchange points appeared to be within PGMS1 or PGMS2, it would be wise to return to the relevant array to determine both the positions of the exchange events and the structures of the crossover products. This could be investigated by minisatellite variant repeat PCR (MVR-PCR), which determines the interspersion patterns of variant repeats along the tandem array before and after mutation (Jeffreys et al., 1991; Armour et al., 1993; Neil and Jeffreys, 1993). Fortunately, the MVR diversity seen at PGMS1 and PGMS2 (figure 6.1) is typical for GC-rich minisatellites and would facilitate any future study of recombination events that map to these arrays.

There are twenty other novel minisatellites within N0434.1, C3A, 29C1A and H22A, for which nothing is known other than their sequence (tables 3.3, 4.2, 4.3, 4.4). Therefore, an initial investigation into their variability, such as that presented in this chapter for PGMS1 and

PGMS2, may provide further insights into the variability of the distal PAR1 region. For example, a continuing pattern of allele size variability, as has been seen at PGMS1, PGMS2 (this chapter), CEB12, CEB30 (Vergnaud et al., 1993), and more dramatically at DXYS14 and DXYS20 (Page et al., 1987; Inglehearn and Cooke, 1990), at most of the other novel tandem repeat loci in the region will have implications for the length of PAR1 as a whole. If PAR1 is significantly variable in its length, there must then be a system to constrain the variability and allow pre-meiotic pairing, for example, to proceed as normal. Clearly these points are only speculative and a study of minisatellite variability in PAR1 would only offer a part of the data needed to fully analyse the structure and mechanisms of this extremely important, yet relatively neglected, area of the human genome.

6.3.2: N0434.1 Pseudoautosomal STIR Array

The work presented in this chapter included the first investigation of length variability at a STIR array. The results were intriguing, but perhaps not surprising given the fact that the STIR array is essentially a GC-rich minisatellite with an unusually large repeat unit (figure 6.3). Therefore, its variability is suggested to be caused by the same kind of recombinational process that destabilises more typical minisatellites. In addition, it is noteworthy that even the limited internal heterogeneity of the STIR array repeats (figure 6.3) is sufficient to allow the molecular structure of the STIR array instability to be investigated by MVR-PCR. The study has also raised further questions as to a putative biological role for STIRs, particularly as these sequences have been discovered in most orders of mammals (W. Schempp and B. Weber, cited in Petit et al., 1990; see Chapter 3, section 3.1.1.c).

The protermini of chromosomes are the regions where initiation of homologue pairing preferentially takes place prior to meiotic recombination (e.g. Laurie and Hultén, 1985, see Chapter 1, section 1.2.2), and thus support high levels of meiotic recombination itself (NIH/CEPH Collaborative Mapping Group, 1992; Weissenbach et al., 1992; Mohrenweiser et al., 1998; Kong et al., 2002). The colocalisation of GC-rich minisatellites (Royle et al., 1988) and recombination nodules and chiasmata (Hulten, 1974; Maudlin and Evans, 1980; Solari, 1980) to the end regions of chromosomes, led to the suggestion that minisatellites are the sequences within proterminal regions that support homologue recognition (Ashley, 1994; Sybenga, 1999). However, in PAR1, this putative function could now be ascribed to pseudoautosomal STIRs, which appear to represent a more complex and conserved class of element than the monomeric autosomal STIRs (Chapter 3, section 3.1.1.c) (Rouyer et al., 1990) and might, therefore, have a role that is biologically more important. Due to the
restricted homology between the X and Y chromosomes, PAR1 is the site of an obligatory crossover during male meiosis (Burgoyne, 1982). Therefore, the increased sequence conservation between pseudoautosomal STIRs might be a reflection of their essential function within PAR1 to support homologous pairing of the X and Y chromosomes at male meiosis and thus allow recombination to proceed. This putative STIR function within the autosomes may not be so important as autosomal homologues can pair along their entire length. Alternatively, pseudoautosomal STIRs might serve to prevent exchanges between nonhomologous chromosome ends and thereby maintain the integrity of the essential PAR1 region from one generation to the next. In view of this, it is interesting to note the suggestion that chromosome ends can be exchanged at a low rate between non-homologous autosomes (Wilkie et al., 1991), which is likely to be mediated by conserved sequence features between subtelomeric regions such as those identified by Flint et al. (1997). However, this process has not been observed at PAR1 and, indeed, PAR1 does not even cross-hybridise to the subterminal repeats of other human chromosome ends (Royle, 1995).

Clearly, any homologue-recognition function that is attributed to pseudoautosomal STIRs must be reconciled with the variability that has been demonstrated for the N0434.1 STIR array. Perhaps as the variability and (inferred) instability are only very modest, any such function may not be impeded. Alternatively, the variability of STIRs may stem from their suggested role within meiotic recombination and, as initiators or supporters of homologous pairing, they may serve as occasional markers of recombination hotspots, as has been suggested previously for GC-rich minisatellites (Jeffreys et al., 1998a). These suggestions could be tested directly by charting the relationship between the location of STIRs and the positions of recombination initiation events, which could be mapped through a gene conversion assay (e.g. see Chapter 9, section 9.4 and figure 9.1).

6.3.3: Nucleotide Variability in the N0434.1 Interval

6.3.3.a: SNP Distribution

Approximately 25 kb of the N0434.1 interval was resequenced, identifying 55 SNPs and demonstrating that the frequency of SNPs across the region is approximately one per 450 bp . Over $40 \%(23 / 55)$ of the SNPs were identified within Alu elements but it would be misleading to think of this as significant, as Alu elements constitute approximately 40% of the nucleotides within the resequencing amplicons. Ordinarily, the high incidence of CpG dinucleotides within Alu elements (Batzer et al., 1996) predisposes them to point mutations and has been suggested as a mechanism for the prevention of Alu-mediated nonhomologous recombination events (Batzer and Deininger 2002). However, in the N0434.1 interval, only six of the 23 SNPs that are within Alu elements are at CpG dinucleotides (table 6.1), which suggests that the overall level of nucleotide diversity within the region is not actually influenced by the Alu elements.

6.3.3.b: Estimations of Nucleotide Variability

The estimations of diversity across the N 0434.1 interval ($\theta_{w}=6.3 \times 10^{-4} ; \pi=4.4 \times 10^{-4}$) are very similar to those obtained from large genome-wide surveys, in which $\pi=5.4 \times 10^{-4}$ (Cargill et al., 1999) to 8.5×10^{-4} (Halushka et al., 1999). Very little is known about the levels of nucleotide diversity in PAR1, but the values of θ_{w} and π within the N0434.1 interval and those determined for the SHOX region ($\theta_{w}=6.3 \times 10^{-4} ; \pi=8.7 \times 10^{-4}$) (May et al., 2002) contrast with the far higher levels of diversity reported at $P P P 2 R 3 B$ (figure $1.8 a$), where π was shown to be an order of magnitude bigger, at 5.4×10^{-3} (Schiebel et al., 2000), and at the $\mathrm{Xp} / \mathrm{Yp}$ telomere-adjacent region, which has a SNP frequency of one per 65 bp in Caucasians and one per 50 bp in Africans (Baird et al., 1995). Schiebel and colleagues (2000) suggested that levels of high diversity resulted from either high GC-content that favours mutation at CpG dinucleotides or from base-mutagenic recombination, a proposition that was later contradicted by the normal level of diversity around SHOX, which is situated in a recombinationally active and GC-rich region of PAR1 (May et al., 2002). The GC-rich N0434.1 interval is also expected to be recombinationally active (Lien et al., 2001) and has now been shown to have a normal level of nucleotide diversity, which argues further against GC-content and base-mutagenic recombination being the causes of differing levels of diversity in the genome. Although resolving this issue is far from complete, different evolutionary histories of genomic regions, rather than population genetic processes, are likely to have a major role in shaping nucleotide diversity profiles across the genome, as suggested
by May et al. (2002) and demonstrated at the MHC (Gaudieri et al., 2000; Kauppi et al., 2003). For example, in a recombinationally suppressed region of DNA (LD block), allele fixation or extinction at different SNPs will not occur independently; the loss of a haplotype from a population will result in loss of all variants restricted to that haplotype. Thus, recombinationally inactive LD blocks might occassionally be in periods of low or high diversity that are caused by chance or through processes such as selective sweeps (Kauppi et al., 2003). In contrast, recombinationally active DNA should show relatively stable levels of nucleotide diversity as SNPs would be able to escape correlated extinctions by being constantly reshuffled onto different haplotypes.

6.4: Concluding Remarks

The analysis of diversity in the N0434.1 region has shown that PGMS1, PGMS2 and the pseudoautosomal STIR array are variable and has provided an estimate of their mutation rates. The list of loci within PAR1 that have length variability continues to grow, but whether or not this causes significant length variability in PAR1 as a whole remains to be established. The first study of variability at a STIR array has suggested that pseudoautosomal STIRs could be destabilised by the same kind of recombinational processes that mutate more typical minisatellites to new length alleles and established that this could be investigated through MVR-PCR. In addition, the study has raised further questions as to a putative biological role for pseudoautosomal STIRs, which is suggested to be some kind of homologue-recognition or pairing role prior to meiotic recombination. However, it is clear that further analysis of other STIR arrays has to take place before drawing any firm conclusions.

It has been demonstrated that the GC-rich N0434.1 region has a genome-average level of nucleotide diversity, which is further evidence that PAR1 is not globally enriched in SNPs. With specific regard to this thesis, the novel SNPs have provided the tool for determining the pattern of LD across the N0434.1 interval, the next step in the analysis of meiotic recombination in the region.

Chapter 7

Linkage Disequilibrium in the N0434.1 Interval

7.1: Introduction

There are very few clues as to the overall linkage disequilibrium (LD) pattern and distribution of recombination events within PAR1, though low resolution data from families and from typing single sperm (Lien et al., 2000) do suggest that male crossovers are fairly randomly distributed across PAR1, with only modest regional variation in recombination efficiency. In addition, the intense LD immediately adjacent to the PAR1 telomere (Baird et al., 1995) suggests that there is a boundary of recombination proximal to the telomere, but this, and the work that led to the discovery of the SHOX meiotic recombination hotspot (May et al., 2002), remain the only high resolution surveys of LD within PAR1. Consequently, the SNPs within the N0434.1 interval (Chapter 6, table 6.1) were subjected to LD analysis to generate the first high resolution patterns of LD in the region; any evidence of a sudden decline of LD would suggest that hotspotting, as seen at SHOX (May et al., 2002) and in the MHC II region (Jeffreys et al., 2000; 2001), is also a feature of recombination around the PGPL and PLCXL1 genes. Also, SNPs in the N0434.1 interval could be analysed for association with those in the telomere-adjacent region to potentially narrow down the interval containing the putative boundary of recombination.

7.1.1: Measuring Linkage Disequilibrium

LD is the non-random association of alleles at closely linked loci (Chapter 1, section 1.2.4) and, although it is a relatively simple concept, a satisfactory single measure of LD has yet to be determined. Most measures of LD capture the strength of association between a pair of biallelic sites and the most widely used pairwise measures of LD are $\left|D^{\prime}\right|$ (Lewontin, 1988) and Δ^{2} (also denoted r^{2}) (reviewed in Devlin and Risch, 1995), which are derived as follows:

For two bi-allelic markers (such as a pair of SNPs), one with alleles A, a and the other with alleles B, b, the LD parameter is defined as $D=p_{A B}-p_{A} p_{B}$, where $p_{A B}$ is the population frequency of the haplotype $A B$, and p_{A} and p_{B} refer to the allele frequencies of the two loci. To avoid dependence on allele frequencies D can be scaled as $D^{\prime}=D / D_{\max }$, where $D_{\max }$ is the lesser of $p_{A} p_{B}$ or $p_{a} p_{b}$ if D is negative, or $p_{a} p_{B}$ or $p_{A} p_{b}$ if D is positive. As D (and thus D^{\prime}) is
positive or negative depending only on the arbitrary labelling of alleles, the absolute value, $\left|D^{\prime}\right|$, which varies from 0 to 1 , is normally used. The case of $\left|D^{\prime}\right|=1$ is known as complete LD and will only occur if two loci have not been separated by historical recombination (or recurrent mutation), meaning that a maximum of three out of the four possible two-locus haplotypes are observed. Free association of loci is indicated when $\left|D^{\prime}\right|=0$, and values of $\left|D^{\prime}\right|$ <1 indicate that the complete ancestral LD has been disrupted. However, the relative magnitude of $\left|D^{\prime}\right|$ values between 0 and 1 has no clear interpretation (Ardlie et al., 2002). Furthermore, $\left|D^{\prime}\right|$ is artificially inflated in small samples, particularly when rare alleles are examined, so intermediate values are of little use for measuring the strength of LD or comparing levels of LD between studies.

The measure Δ^{2} represents another scaling of D and is the statistical correlation between alleles at two sites. It is obtained by dividing D^{2} by the product of the four allele frequencies at the two loci. So, for the markers above, $\Delta^{2}=D^{2} /\left(p_{A} p_{a} p_{B} p_{b}\right)$. Perfect LD (the case of complete association) is indicated by $\Delta^{2}=1$, which cannot occur unless the allele frequencies at both loci are equal and only two of the possible four haplotypes are observed. The Δ^{2} measure has several properties that make it more useful than $\left|D^{\prime}\right|$. For example, under the standard neutral model of molecular evolution (Chapter 6, section 6.1.1), population genetics theory provides a simple relationship between Δ^{2}, the effective population size $\left(N_{e}\right)$, the recombination rate per unit distance (r) and inter-marker distance (d) as follows: $\Delta^{2}=1 /\left(1+4 N_{e} r d\right)$ (Ohta and Kimura, 1971). Furthermore, in contrast to $\left|D^{\prime}\right|$, intermediate values of Δ^{2} are easily interpretable as they are inversely proportional to the sample size required to detect statistically significant LD between two loci. Hence, a Δ^{2} value is related to the amount of information provided by one locus about the other (Kruglyak, 1999; Pritchard and Przeworski, 2001; Weiss and Clark, 2002). Δ^{2} also shows much less bias upwards in small samples but, due to its dependency on allele frequency, is typically lower than $\left|D^{\prime}\right|$ for any chromosomal distance (Weiss and Clark, 2002). However, measures of $\Delta^{2}<1$ can occur even without recombination but values of $\left|D^{\prime}\right|<1$ signal historical recombination events and are thus more useful for the analyses presented in this chapter and Chapter 8.

7.2: Results

7.2.1: Genotyping

Diploid genotypes of the SNPs in the N0434.1 interval were generated by allele-specific oligonucleotide (ASO) hybridisation in a panel of 50 unrelated UK semen donors of north European descent. Genotyping semen donors allows the identification of suitable individuals for sperm crossover analysis (Chapter 8).

The N0434.1 regions that were used to identify SNPs (Chapter 6, section 6.2.2.b) were PCR amplified from the genomic DNA of each man in the semen donor panel. As a high proportion of the N0434.1 SNPs are within Alu sequences (Chapter 6, table 6.1), the target sequences for some ASOs were duplicated, meaning that it was sometimes necessary to generate smaller, less complex amplicons to ensure unambiguous genotyping. Usually, these sub-amplicons were the same as those that had been generated to facilitate SNP identification, and are detailed in Chapter 2, table 2.6. ASOs were designed for both alleles of each SNP (table 2.7) and, for each SNP, a dot blot of the relevant PCR products was hybridised sequentially with one ASO followed by the other (figure 7.1). This approach provides full, internal control for differences in DNA loading per dot, and makes genotyping easier. Furthermore, the method is simple, robust and allowed the unambiguous genotyping of 98.6% of N0434.1 SNPs. The very few incidences in which the genotype could not be determined were a result of weak signals on the dotblots (probably caused by poor yield of the PCR product). This high accuracy is very important because even a modest error rate will create the appearance of "rare variant" haplotypes that do not exist in nature (Gabriel et al., 2002). The full diploid genotypes of all 55 N0434.1 SNPs in all 50 semen donors is shown in figure 7.2. None of the SNPs showed significant departure from Hardy-Weinberg equilibrium (data not shown).

7.2.1.a: Distribution of Minor Allele Frequencies

The minor allele frequencies (mAFs) at each N0434.1 SNP site were determined from the genotype data (table 7.1) and their distribution was compared to that of 35,989 SNPs discovered on chromosome 21 (Patil et al., 2001) (figure 7.3). Within N0434.1 nearly 75% of the SNPs have a mAF that is greater than 0.3 and SNP 4823A/G is the only example of a singleton, i.e. a SNP with a minor allele that is observed only once. Under the neutral model of molecular evolution, and given the estimation of nucleotide diversity within N0434.1

Figure 7.1: Examples of SNP genotyping in the N0434.1 interval by ASO hybridisation. Resequencing amplicons used in Chapter 6 to identify SNPs were PCR amplified from 50 unrelated UK semen donors. The PCRs were dot blotted in order $1-50$, reading left to right and top to bottom. As each resequencing amplicon contained multiple SNP sites, four dotblots of each am plicon were prepared. Single dotblots were then probed sequentially with the ASO for one allele of a relevant SNP followed by the other. Hence, in the top panel above, a dotblot of the Eb amplicon has been probed first with the ASO specific to $3103 / \mathrm{C}$ and then with the ASO for $3103 / \mathrm{T}$; donor 1 is a TT homozygote, donor 2 is a CC homozygote and donor 5 is a heterozygote.

 AAABAA

 HHAAAHAAA日HAHE日？$H A A A A G G A G A H E A A A H A A H A A A G A B G A H A H G H A G$

 TT甘T日月甘THTTTTTH日T日TTTTTTTHTTHTTTTHTTTTTTTTHETTTTTT

 GGGGHGGGGGHGGGGGGGGGGGGHGGGGGGGGGGGGGBGGGGGGHGGGGG

Figure 7．2：Genotype data for the 55 SNPs in the N0434．1 interval．Genotypes were determined for 50 unrelated UK semen donors of north European descent，labelled 1－50 （above）．The SNPs are listed from the most distal to the most proximal and their nomenclature reflects their nucleotide position counted from the distal end of the N0434．1 sequence （Appendix 1）．Letters denote the alternative alleles at each SNP，with homozygotes shown as a single base and heterozygotes marked with a red H ．Presence or absence polymorphisms are given the symbols＋or－．Uncertain genotypes are denoted by a question mark．

Table 7.1: Minor allele frequencies (mAFs) of SNPs in the N0434.1 interval.

SNPs telomeric to PGMS2			SNPs centromeric to PGMS2	
Name*	mAF	Name*	mAF	
$423 \mathrm{C} / \mathrm{T}$	0.33	$18530 \mathrm{C} / \mathrm{A}$	0.43	
$1107 \mathrm{G} / \mathrm{A}$	0.4	$18610 \mathrm{~T} / \mathrm{C}$	0.46	
$2357 \mathrm{C} / \mathrm{T}$	0.38	$18634 \mathrm{~T} / \mathrm{C}$	0.45	
$2458 \mathrm{~T} / \mathrm{C}$	0.35	$18664 \mathrm{C} / \mathrm{G}$	0.37	
$2793 \mathrm{C} / \mathrm{T}$	0.33	$18970 \mathrm{~A} / \mathrm{G}$	0.44	
$3103 \mathrm{C} / \mathrm{T}$	0.42	$19963 \mathrm{C} / \mathrm{G}$	0.36	
$3370+/-$	0.36	$20723 \mathrm{G} / \mathrm{C}$	0.4	
$4383 \mathrm{G} / \mathrm{T}$	0.36	$21309 \mathrm{G} / \mathrm{C}$	0.4	
$4589 \mathrm{G} / \mathrm{A}$	0.4	$22030 \mathrm{G} / \mathrm{A}$	0.36	
$4722 \mathrm{~T} / \mathrm{C}$	0.35	$22145 \mathrm{~A} / \mathrm{G}$	0.33	
$4823 \mathrm{~A} / \mathrm{G}$	0.01	$22168 \mathrm{~T} / \mathrm{C}$	0.38	
$5230 \mathrm{G} / \mathrm{A}$	0.12	$23133 \mathrm{G} / \mathrm{A}$	0.39	
$7225 \mathrm{C} / \mathrm{T}$	0.45	$23483 \mathrm{~T} / \mathrm{A}$	0.34	
$7298 \mathrm{G} / \mathrm{A}$	0.41	$23757 \mathrm{G} / \mathrm{A}$	0.13	
$8020 \mathrm{C} / \mathrm{T}$	0.48	$24151 \mathrm{C} / \mathrm{T}$	0.42	
$8248 \mathrm{C} / \mathrm{T}$	0.46	$26645 \mathrm{C} / \mathrm{T}$	0.48	
$8429 \mathrm{C} / \mathrm{G}$	0.15	$26901 \mathrm{G} / \mathrm{A}$	0.2	
$9771 \mathrm{C} / \mathrm{G}$	0.43	$27689 \mathrm{C} / \mathrm{G}$	0.16	
$11501 \mathrm{G} / \mathrm{A}$	0.42	$27919 \mathrm{G} / \mathrm{A}$	0.42	
$12237 \mathrm{~A} / \mathrm{G}$	0.47	$30381 \mathrm{~T} / \mathrm{C}$	0.13	
$12657 \mathrm{G} / \mathrm{A}$	0.25	$31679 \mathrm{C} / \mathrm{T}$	0.17	
$13351 \mathrm{C} / \mathrm{T}$	0.41	$31697 \mathrm{~A} / \mathrm{T}$	0.36	
$13642 \mathrm{~A} / \mathrm{G}$	0.23	$31703 \mathrm{C} / \mathrm{T}$	0.36	
$13994 \mathrm{~A} / \mathrm{G}$	0.32	$31717 \mathrm{G} / \mathrm{C}$	0.05	
$14051 \mathrm{~A} / \mathrm{G}$	0.16	$32258 \mathrm{~A} / \mathrm{G}$	0.4	
$14209 \mathrm{C} / \mathrm{T}$	0.15	$32451 \mathrm{C} / \mathrm{T}$	0.45	
$14537 \mathrm{G} / \mathrm{A}$	0.32			
$14567 \mathrm{~A} / \mathrm{G}$	0.45		$*$ minor allele	
$14893 \mathrm{G} / \mathrm{A}$	0.14			

Figure 7.3: The distribution of mAFs of all 55 SNPs in the N0434.1 interval (red) compared to the distribution of 35,989 SNPs discovered on chromosome 21 (blue) (Patil et al., 2001).
$\left(\theta_{w}=6.3 \times 10^{-4}, \pi=4.4 \times 10^{-4}\right)($ Chapter 6 , section 6.2.3), the observed number of singletons is significantly lower than expected (Fu and $\mathrm{Li}, 1993$).This reflects the fact that only eight men (16 chromosomes) from one population were used for SNP identification (Chapter 6, section 6.2.2.b), which inevitably reduces the power to identify rare as compared to common SNPs. The more complete SNP ascertainment on chromosome 21 performed by Patil et al. (2001) demonstrated that singletons accounted for 32% of the SNPs they identified (figure 7.3). However, compared to the Patil et al. data, it does seem as though the N0434.1 interval is actually a region where common markers are over represented; the probability of detecting all SNPs with a mAF ≥ 0.1 in 16 chromosomes is $\left.81 \%\left[P=\left(1-(0.9)^{16}\right) \times 100\right)\right]$. Furthermore, the relatively low number of SNPs that fall into the $0.21-0.3 \mathrm{mAF}$ bin indicates that they are curiously under represented compared to the Patil et al. data, as it is more than 97% probable that all SNPs with a $\mathrm{mAF} \geq 0.2$ can be detected in 16 chromosomes.

In terms of using LD analysis to screen N0434.1 for evidence of historical recombination, the fact that most of the N0434.1 SNPs are high frequency is actually advantageous; SNPs with low mAF tend to represent relatively recent mutations on young haplotypes that have not had time to recombine and so can give misleadingly high LD values.

7.2.2: Linkage Disequilibrium in the N0434.1 Interval

The construction of haplotypes from diploid data is complicated by the fact that the linkage phase between any two SNPs is unknown. For example, a number of the men in the semen donor panel are C/T heterozygous at positions 2357 and 31703 (table 7.1). In these cases, it is unclear whether PAR1 on one chromosome contains alleles 2357/C and 31703/C and the other copy of PAR1 contains 2357/T and 31703/T, or whether alleles 2357/C and 31703/T are on one copy of PAR1 and 2357/T and 31703/C are on the other. To solve the phase problem, haplotype frequencies can be calculated through statistical estimation, direct inference from family data, allele-specific PCR amplification or, as done by Patil et al. (2001), they can be directly determined by characterising SNPs on haploid chromosome copies held in hybrid cell lines.

7.2.2.a: Calculation of N0434.1 Haplotype Frequencies

Analysis software, written by A.J. Jeffreys in TrueBASIC 4.1, estimated N0434.1 haplotype frequencies from the unphased diploid genotype data (figure 7.2) via a maximum-likelihood approach. Considering the example provided above (section 7.1.1) for two bi-allelic markers, one with alleles A, a and the other with alleles B, b, the program works as follows: from the
observed allele frequencies at each locus pair it varies one haplotype frequency $\left(p_{A B}\right)$ from 0 to the lesser value of p_{A} or p_{B}. From this, the corresponding values for each of the other three possible haplotypes are defined. The probablities (P) of getting the observed genotype data at the two loci are then computed and the value of $p_{A B}$ that gives the maximum probability ($\mathrm{P}_{\max }$) of getting the observed genotype data is determined to produce the maximum likelihood values of all four possible haplotypes $p_{A B}, p_{A b}, p_{a B}$ and $p_{a b}$. These haplotype frequencies are then used to calculate $\left|D^{\prime}\right|$ and Δ. The probability (P) is then re-calculated for haplotype frequencies at linkage equilibrium (i.e. $p_{A B}=p_{A} p_{B}$, etc) to give a value of P at equilibrium $\left(\mathrm{P}_{\mathrm{eq}}\right)$. Calculating $\mathrm{P}_{\mathrm{eq}} / \mathrm{P}_{\text {max }}$ thus provides $L R$, the relative likelihood of obtaining the data under the most likely value of $\left|D^{\prime}\right|$ versus the probability of obtaining the data when $\left|D^{\prime}\right|=0$. LR is independent of $\left|D^{\prime}\right|$ and Δ measurements and thereby forms a statistical test of significance of association.

7.2.2.b: LD Analysis of N0434.1 with the PAR1 Telomere-Adjacent Region

LD analysis was initially restricted to the distal part of the N0434.1 region, using the SNPs telomeric to PGMS2 that have a mAF ≥ 0.18 (table 7.1), and three high frequency SNPs from the telomere-adjacent region (data provided by M. Hills). The LD plot (figure 7.4) shows that the distal 7.5 kb of the N 0434.1 interval forms a recognisable LD block that is in free association with the telomere-adjacent region. This suggests historical recombinational activity in the $50-60 \mathrm{~kb}$ long GC-rich intervening region that contains a high density of both Alu sequences and tandem repeats arrays (Chapter 4). To the right of this LD block (i.e. further into the N0434.1 interval), the extent of LD declines with physical distance forming a pattern that is quite different to that observed in both SHOX and the MHC II region. Across MHC II 40-90 kb blocks of strong LD are abruptly separated by small intervals of free association, corresponding to local meiotic recombination hotspots. (Jeffreys et al., 2001) (Chapter 1, figure 1.7). In contrast, the pattern throughout the SHOX region is one of very rapid decay of LD with distance, with many instances of closely linked ($<1 \mathrm{~kb}$) markers in free association, which typically prevents the use of LD breakdown as a method to localise putative hotspots (May et al., 2002) (Chapter 1, figure 1.8c). Within the N0434.1 region, there are two exceptions to the relatively close association observed between most markers. This could have been caused by inaccurate determination of genotypes, but this situation is highly unlikely as none of the SNPs deviate significantly from Hardy-Weinberg equilibrium (section 7.2.1, above).

Figure 7.4: The LD pattern across the 15 kb region that is immediately distal to PGMS2 and the demonstration that this region is in free association with markers near the telomere. The top part of the diagram is derived from figure 4.9 and has been included to define the telomere-adjacent and N0434.1 regions that have been included in this analysis. $\left|D^{\prime}\right|$ measures of complete LD between all pairs of markers with mAFs of at least 0.18 are shown in the bottom right triangle of the plot. $\left|D^{\prime}\right|=1$ for marker pairs showingonly two or three haplotypes (shown in red), $\left|D^{\prime}\right|$ values less than 1 indicate SNP pairs with all four haplotypes(and thus suggest historical recombinational activity), with values of zero (in black) indicating pairs in free association. The top left triangle shows the likelihood ratio (LR) of association versus linkage equilibrium and thus the significance of each comparison. Points are ploted as rectangles centred on each pair ofSNPs, shown below and to the right of the plot:

7.2.2.c: Gradual Decline of LD with Physical Distance in Distal N0434.1

To investigate the decay of LD within the N0434.1 region distal to PGMS2 more closely, Δ values were also calculated for all the SNP pairs within this region with a mAF ≥ 0.18. Assuming an effective population size of 10,000 , the simple relationship between Δ^{2}, the effective population size $\left(N_{e}\right)$, the recombination rate per unit distance (r) and inter-marker distance (d) $\left[\Delta^{2}=1 /\left(1+4 N_{e} r d\right)\right]$ was used to calculate best-fit values of r for the observed Δ and inter-marker distances, (figure $7.5 a$). Within the 15 kb region LD, as measured by Δ, decays slowly and monotonously with distance at a rate consistent with randomly-distributed crossovers occurring close to the genome average rate of $1 \mathrm{cM} / \mathrm{Mb}$. This is in direct contrast to the SHOX region (figure $7.5 b$) where, even outside the hotspot, there is a rapid decay of LD with distance.

7.2.2.d: LD Pattern Across the Whole N0434.1 Interval

To gain a broader view of LD, the analysis was extended across the whole N0434.1 interval, again using SNPs with a $\mathrm{mAF} \geq 0.18$ (figure $7.6 a, b$). The slow and gradual decline of LD, first observed in the distal part of N0434.1, appears to extend across the whole region, consistent with a mean recombination rate of just $2 \mathrm{cM} / \mathrm{Mb}$. However, in addition to the putative 7.5 kb LD block identified in the distal part of N0434.1, there also appears to be a 12 kb block of LD at the proximal end of the interval. Again, this in in marked contrast to the long LD blocks of the MHC II region (Jeffreys et al., 2001), and to the very rapid breakdown of LD with physical distance at $S H O X$, where the largest block of strong association is only about 3 kb (May et al., 2002). However, as the LD blocks in N0434.1 are at the ends of the interval, it remains possible that they actually extend much further into PAR1, and thus may well be comparable in size to the long haplotype blocks in the MHC II region. Although there is no indication of a very abrupt localised breakdown of LD between the two N0434.1 putative LD blocks, LD does decay relatively quickly with physical distance across the moderately variable minisatellite PGMS2. Using a subset of the N0434.1 SNPs, the decline of Δ with physical distance suggested that the rate of recombination across the PGMS2 region increases to about $13 \mathrm{cM} / \mathrm{Mb}$ (data not shown). It is possible that this indicates a localised region that has undergone historical recombination and might therefore contain a recombination hotspot.

Figure 7.5: Decline of Δ (a measure of absolute LD) with physical distance across (a) the distal 15 kb of the N0434.1 interval and (b) a 10 kb interval in the SHOX region. The red lines in each graph are the best-fit values of the sex-averaged recombination rate per unit distance, calculated using the relationship between Δ, effective population size (assumed to be 10,000), recombination rate per unit distance and inter-marker distance (see main text).

Figure 7.6: The patterns of LD across the N0434.1 interval and $S H O X$. As in figure 7.4, $\left|D^{\prime}\right|$ measures of LD between all pairs of markers with mAFs of at least 0.18 are shown in the bottom right triangle of each plot (a and c) and LR values are top left. Values of $\left|D^{\prime}\right|=1$ (in red) indicate pairs of SNPs in complete LD and values of zero (in black) indicates SNP pairs in free association. SNP positions are shown below and to the right of the plots. (a) LD across N0434.1. The top part of the diagram shows the relative positions of the strucures within N0434.1 (Chapter 3). PLCXL1 exons are pale blue, $P G P L$ exons are dark blue, tandem repeat sequences are shown in green and the STIR array in yellow. The positions of putative LD blocks are marked below the plot. (b) The decline of Δ with physical distance across the entire N0434.1 interval. The best-fit value of recombination rate across the interval, assuming an effective population size of 10,000 , is approximately $2 \mathrm{cM} / \mathrm{Mb}$, i.e. the same rate that was estimated for just the distal part of N0434.1 (figure $7.5 a$). (c) The LD pattern across SHOX, the only other region of PAR1 to be surveyed in this way at high resolution (Chapter 1, section 1.3.2.c.i), is very different to that of N0434.1 (see main text).

b

C

7.3: Discussion

The work presented in this chapter constitutes the first high resolution analysis of LD in the subtelomeric region of PAR1. Determination of the LD pattern was facilitated by the prevalence of high frequency SNPs.

7.3.1: Minor Allele Frequency Distribution of SNPs in N0434.1

In addition to the SNPs already identified in N0434.1 (Chapter 6, table 6.1), it is likely that the interval contains a significant number of rare SNPs, i.e. those with a mAF ≤ 0.1, that have yet to be discovered. However, as all SNPs with a mAF ≤ 0.17 were excluded from the LD analyses presented here, these rare polymorphisms would not affect the observed patterns of LD in the region. (In addition, the chance that a SNP with a mAF greater than 0.17 was not picked up is only 5%).

It appears as though high frequency markers are over represented in the N0434.1 interval. This can occur in LD blocks, where allele fixation or extinction at different SNPs will not occur independently; the loss of a haplotype from a population will result in loss of all variants restricted to that haplotype. Thus, recombinationally inactive LD blocks might occassionally be in periods of low or high diversity that are caused by chance or through processes such as selective sweeps (Reich et al., 2002; Kauppi et al., 2003). However, there is no evidence to suggest that all of N0434.1 constitutes an LD block as LD does significantly decay with physical distance in the interval, particularly across PGMS2, indicating that historical crossovers have occurred in this region.

7.3.2: Putative Boundary of Meiotic Recombination in PAR1

LD analysis of the SNPs in the distal part of N0434.1 showed it to be in free association with the telomere-adjacent region, suggesting recombinational activity in the intervening $50-60 \mathrm{~kb}$. In addition, the three markers at the telomere adjacent region (data provided by M. Hills) do not seem to be in complete LD (figure 7.4). Thus, it is quite possible that the supposedly recombinationally inert region of PAR1 extends no further than the telomere, though this cannot be confirmed without continuing the high resolution surveys of LD within the distal part of PAR1. The most obvious and seemingly least complex candidate regions for these
studies are the 6.7 kb region between DXYS14 and DXYS20, the 15 kb region between B4 and C3MS2 (see figure 7.4) and a re-evaluation of LD in the telomere-adjacent region itself.

7.3.3: Gradual Decline of LD within the N0434.1 Interval

Within the distal part of the N0434.1 interval, LD (as measured by Δ) decays slowly and reasonably monotonously with physical distance. Using the relationship $\Delta^{2}=1 /\left(1+4 N_{e} r d\right)$, the rate of meiotic recombination within this interval is estimated at $2.1 \mathrm{cM} / \mathrm{Mb}$, which is close to the genome average rate. Extending the analysis of LD across all of N0434.1 suggested that there is no significant deviation from this rate, other than across the PGMS2 minisatellite (below), and indicated that there is no abrupt breakdown of LD within the region, arguing against the existence of localised recombination hotspots observed previously at $S H O X$ and in the MHC II region. However, there is evidence suggesting the presence of two LD blocks, of length 7.5 kb and 12 kb . Block structure has not been observed at SHOX (May et al., 20020), but has been seen in the MHC II region, where blocks extend for up to 90 kb . It is possible that the whole N0434.1 region is part of an inter-hotspot region, which is potentially very interesting because the close-to genome average rate of recombination in the region, suggested by the gradual decay of LD, would be directly testable by high resolution analysis of crossover in sperm DNA. Therefore, for the first time, it might be feasible to determine how crossovers are distributed outside of a hotspot. This type of investigation is technically impossible in the LD blocks of the MHC II region (figure 1.7) as the extremely low rates of crossover would require the use of impractical amounts of sperm DNA to pick up the very few recombination events that are taking place and would cause serious PCR problems.

Across PGMS2 there is a greater breakdown of LD that is superimposed on the pattern of putative LD blocks and gradual LD decline seen throughout N0434.1. Therefore, if the N0434.1 interval does contain a hotspot of meiotic recombination, the LD pattern indicates that it is likely to be in, or close to, the moderately variable PGMS2 minisatellite. This is noteworthy as hotspot-driven minisatellite instability was observed at MS32, adjacent to the first human meiotic recombination hotspot to be defined at the molecular level (Jeffreys et al., 1998a) (Chapter 1, section 1.2.5.a).

7.4: Concluding Remarks

The genotyping and LD analysis of SNPs within the N0434.1 interval has indicated that the region is in free association with the telomere-adjacent region. This suggests that the putative boundary of PAR1 meiotic recombination is located in the intervening minisatellite-rich region, which is $50-60 \mathrm{~kb}$ long. Characterisation of this interval (Chapter 4) has revealed two regions that could be targeted for the further SNP identification and LD analyses that will be required if the supposed boundary is to be identified.

Prior to analysing LD within N0434.1, one might have expected to see a pattern very similar to that observed at $S H O X$ (figure $7.6 b$), where the very rapid decay of LD with physical distance is consistent with the evidence suggesting that PAR1 is a (male-specific) recombination hot domain (Rouyer et al., 1986a; Page et al., 1987; Rappold, 1993; Lien et al., 2000). However, within N0434.1, association declines gradually with physical distance, at a rate that appears to be consistent with randomly distributed crossovers occurring at a rate not dissimilar to the genome average rate of $1 \mathrm{cM} / \mathrm{Mb}$. This represents a kind of "halfway house" between the prodigious rate of LD decay at $S H O X$ and the much more gradual decline of LD within the MHC II haplotype blocks.

If meiotic recombination hotspots occur in the N0434.1 interval, the greater breakdown of LD across PGMS2 provides the most likely location. Crossover analysis of single sperm DNA molecules will determine whether hotspotting as seen at MHC II and SHOX is also a feature of recombination around the $P G P L$ and $P L C X L 1$ genes.

Chapter 8

Sperm Crossover Analysis in the N0434.1 Interval

8.1: Introduction

The analysis of SNP genotypes in the N0434.1 interval did provide some evidence of LD block structure, which does not occur in the SHOX region, but there was no indication of an abrupt breakdown of LD, as has been observed previously within the MHC II region. However, LD did appear to decay relatively quickly with physical distance across the PGMS2 minisatellite, which might suggest the existence of a localised recombination hotspot (figure 7.6). As LD patterns can only be used to indirectly infer the distribution of crossing-over events (Wall and Pritchard, 2003), a picture of what is truly happening can only be gained through the recovery of crossover molecules directly from sperm DNA. Thus far, LD and sperm crossover analyses have been successfully applied in the identification of recombination hotspots in the MHC II and SHOX regions (Jeffreys et al., 2001; May et al., 2002; also see Chapter 1, sections 1.2.5.b and 1.3.2.c.i). The earlier observation of hotspotdriven minisatellite instability at MS32 (Jeffreys et al., 1998a) suggested that the most interesting N0434.1 region (in terms of crossover) would be around the interval of greater breakdown of LD across the PGMS2 minisatellite. This chapter describes the assays that were used to detect crossover in this region.

8.1.1: Crossover Detection Strategy

An overview of the sperm crossover analysis strategy has already been provided in Chapter 1 (figure 1.5). The first and most obvious step is to use LD patterns to target a region for sperm crossover analysis. A man is then identified with multiple heterozygous SNPs across the target region and two rounds of allele-specific repulsion-phase PCR are used to selectively amplify recombinant molecules from multiple aliquots of sperm DNA. However, this technique is far from trivial, and there are a number of factors that must be accounted for, and steps that must be taken, before the actual experiment can take place.

8.2: Results

8.2.1: Attempts to Detect Crossovers in a 10 kb PGMS2 Region

8.2.1.a: Defining Primary PCR Interval and Selection of Suitable Donor

Defining the interval for the first (primary) round of repulsion-phase allele-specific PCR, and identifying the individual in which crossover analysis is to take place, must consider both the optimal size for primary PCR (about 7 kb) and inclusion of the maximum number of informative (heterozygous) SNPs. As it is essential that the sites used for both primary and secondary PCR are heterozygous, examination of the genotypes of men in the semen donor panel (Chapter 7, figure 7.2) very quickly rendered most individuals unsuitable for this particular crossover assay. Consideration of primary PCR amplicon size was also affected by the allele size variability of PGMS2 (Chapter 6, figure 6.2). As a result, a $9.3-9.8 \mathrm{~kb}$ interval within donor 5 , containing 16 informative SNPs, was considered the most suitable for sperm crossover analysis (figure 8.1a).

8.2.1.b: Allele-Specific Primer Optimisations

In order to design a highly efficient and very specific system for the detection of crossover molecules, allele-specific primers (AS-primers) were designed in the forward sense for $12237 \mathrm{~A} / \mathrm{G}, 12657 \mathrm{~A} / \mathrm{G}, 13351 \mathrm{C} / \mathrm{T}$ and in the reverse sense for $22168 \mathrm{C} / \mathrm{T}, 22145 \mathrm{~A} / \mathrm{G}$, $22030 \mathrm{~A} / \mathrm{G}, 21309 \mathrm{C} / \mathrm{G}$ and $20723 \mathrm{C} / \mathrm{G}$. The optimal annealing temperature of each AS-primer was determined (table 2.8; figure 8.1a) using individuals that had been shown by genotyping to be homozygous for one allele or the other (figure 7.2), and that had PGMS2 allele sizes similar those of donor 5 . The identification of a suitable crossover molecule detection system was complicated by the number of selector sites that are in Alu sequences (figure 8.1a), which impeded the efficiency and specificity of the AS-primers, presumably because they were also binding to other Alu sequences in the region, and elsewhere in the genome. Occasionally, it was possible to reduce this problem by the addition of a synthetic CCCC 5^{\prime} extension to the primer or by modifying the primer with a synthetic $20 \mathrm{nt} 5^{\prime}$ tail (see table 2.8) and using both the AS-primer and a primer identical to the 5' tail to drive amplification (Jeffreys et al., 1991). However, it remained impossible to amplify either efficiently or specifically from a number of SNP sites, despite trying up to six designs of certain AS-primers. Nevertheless, it appeared as though a workable system would involve a primary PCR selecting for 12237/A or G and 22145/A, and a secondary PCR that would detect crossovers taking place between 12657/A or G and 21309/G (figure 8.1b).

Figure 8.1: The optimisation of AS-primer annealing temperatures and the determination of donor 5 linkage phase within the crossover analysis interval. (a) The crossover analysis interval within donor 5. Informative SNPs are marked by green circles and homozygous SNPs are marked with grey circles, PLCXL1 exons are denoted by the blue rectangles and positions of Alu elements are shown by red rectangles. AS-primers were designed for all SNPs that are marked with a red arrow and the positions of the universal primers used in the annealing temperature optimisation experiments are shown by the black arrows. (b) Southern blots showing the results of the AS-primer annealing temperature optimisations. The interval defined by an AS-primer and the relevant universal primer (XN13.5F or XN20.6R) was PCR amplified at annealing temperatures $56,59,62$ and $65^{\circ} \mathrm{C}$ (shown left-to-right for each batch of four bands in the figure) from the genomic DNA of men known to be homozygous for one SNP allele or the other. As a positive control, and under the same conditions, the universal primers were also used in a PCR amplification. Thus, the top left blot shows that 12237/FA (and XN20.6R) can amplify across PGMS2 at temperatures of 56 and $59^{\circ} \mathrm{C}$ with reasonable efficiency, but at the lowest temperature there is a loss of specificity as the interval can also be amplified from a 12237 G homozygote. On the other hand, the results indicate that the efficiency and specificity of $12237 / \mathrm{FG}$ is excellent at all annealing temperatures between 56 and $65^{\circ} \mathrm{C}$, though there is a slight loss of specificity at $56^{\circ} \mathrm{C}$, shown by the positive signal after amplification at this temperature in a 12237 A homozygote. In the positive controls, the efficiency of amplification from both the 12237 A and 12237 G homozygote decreases with increasing temperature. (c) The AS-PCR and dotblotting strategy used to establish linkage phase between 12237, 12657, 21309 and 22145 in donor 5. (i) Allele-specific and universal primers were used to PCR amplify the intervals as shown (1,2 and 3) from donor 5. Each interval was then dotblotted and ASO-hybridised for the internal SNP. Universal primers (black arrows) were used to PCR amplify individuals homozygous for one or the other internal SNP allele, and these smaller intervals were also dotblotted and ASO-hybridised for use as positive controls. (ii) Linkage phase of donor 5 between the selector sites for crossover. Homozygous SNPs, and those between 21309 and 22145, are not shown. This determined that the primary PCR would involve 12237/FA and $22145 / \mathrm{RA} / \mathrm{Ad}$ and that the secondary PCR would use $12657 / \mathrm{FG}$ and c21309/RG.
a

b

cii

Figure 8.1: Optimisation of AS-primer annealing temperature and determination of donor 5 linkage phase within the crossover analysis interval.

8.2.1.c: Linkage Phase of Donor 5

It was essential to establish the linkage phase of donor 5 across the region of analysis so that the two rounds of PCR could take place in repulsion phase, and thus amplify crossover molecules only. As the AS-primer optimisations had defined the selector sites that had to be used, a simple allele-specific PCR and dotblotting strategy was used to identify linkage phase between sites 12237, 12657, 21309 and 22145 (figure 8.1c). This established that the best system for the detection of crossovers over the interval shown in figure $8.1 a$ included a primary PCR amplification using 12237/FA and 22145/RA/Ad, and a secondary PCR amplification with $12657 / \mathrm{FG}$ and c21309/RG.

8.2.1.d: Crossover Assays

Prior to the two rounds of repulsion-phase PCR, $20 \mu \mathrm{~g}$ each of donor 5 sperm and blood DNA were digested with ApaI, which cuts just outside of the test interval, to render the DNA fully soluble and amenable to quantitative dilution. In addition, release by digestion of the test interval was expected to increase PCR efficiency as Alu elements elsewhere in the genome can act as clamps, suppressing PCR.

Pilot primary PCRs, in sets of eight, were seeded with $100,300,1000,3000$ or 10,000 amplifiable blood or sperm DNA molecules (assuming 50% PCR efficiency, i.e. there are 1000 amplifiable molecules in 12 ng genomic DNA). Thus, 115,200 sperm DNA molecules were tested for crossover. In 115,200 molecules one would expect to see 11.52 crossover events across the 10 kb region of analysis (figure $8.1 a$), if recombination is occurring at the genome average rate ($1 \mathrm{cM} / \mathrm{Mb}$, or 10^{-5} events per molecule per kb). The completed reactions were subjected to S1 nuclease digestion, which removes single stranded DNA and PCR artefacts (Jeffreys et al., 1998a) and hence improves the specificity of the secondary PCR. Crossovers were detected by subjecting the completed secondary PCRs to agarose gel electrophoresis, followed by Southern blotting and hybridisation to a probe consisting purely of PGMS2 repeats.

The first attempt at crossover detection provided very weak signals that suggested the presence of only four molecules in which crossover might have taken place (data not shown). The experiment described above was repeated twice but it was not possible to detect any more crossover events. This suggested that either the AS-PCR system was not working, or that the rate of crossover in the region was very low. The AS-PCR system was assayed by doping 1000 and 3000 molecule inputs of donor 5 blood DNA with a series of positive control DNA inputs (i.e. $20,10,5,2,10.5$ and 0.2 molecules of blood DNA from a donor in recombinant
phase relative to donor 5 across the region of analysis). In parallel, 1000 and 3000 molecule inputs of donor 5 blood and sperm DNA that had not been doped were also subjected to ASPCR amplification. This assay not only provided signals in the positive controls, demonstrating that the AS-PCR system worked, but also identified a number of putative crossover molecules in sperm DNA (figure $8.2 b$). Unfortunately, there was also significant bleed-through of a signal from blood DNA. The quality of the assay was clearly erratic, which strongly suggested that it needed fine tuning before it could successfully be applied to crossover detection. A number of the conditions were altered in turn, including: (i) a reduction in the number of input molecules to decrease the bleed-through of signal from blood DNA; (ii) alterations to the number of primary and secondary PCR cycles in order to take advantage of the expectation that secondary PCR would be relatively more efficient (figure 8.1b); (iii) tertiary PCR amplifications with universal primers in an attempt to boost the overall efficiency of amplification (figure $8.2 a$); (iv) alterations to MgCl_{2} concentration; (v) the use of different Taq polymerases; (vi) the design and optimisation of AS-primers selecting for SNPs at 13642 and 20723. Occasionally it appeared as though an efficient and specific system of crossover detection had been identified (e.g. figure 8.2c) but it was impossible to develop a system that remained robust. It seemed as though the highly repetitive nature of the region, coupled with the length of the primary PCR interval, ensured that a PGMS2 crossover assay would remain frustratingly inconsistent at best, and impossible at worst.

As a system to successfully assay crossovers within the region defined by SNPs at 12657 and 21309 (figure 8.1a) was not identified (despite the many attempts alluded to above), none of the conditions employed in these assays have been fully described in this thesis. In addition, the strategies used to determine the optimal annealing temperatures of AS-primers used in subsequent crossover analyses (below) remained the same as those outlined above, and are not described again.

8.2.2: Crossover Analysis within a Truncated PGMS2 Region

Although a workable crossover assay appeared to be unattainable, there was clear evidence to suggest that crossovers were occurring within the region of analysis shown in figure 8.1a. However, the reliability of crossover detection was so inconsistent that it was impossible to

Figure 8.2: Crossover assays across the PGMS2 minisatellite in donor 5. (a) Linkage phase of donor 5. Positions of the primary PCR primers selecting for 12237/A and 22145/A are shown by the blue arrows and the secondary PCR primers are marked by the red arrows. Universal primers that were occasionally used to boost the overall efficiency of crossover assay attempts are marked by the black arrows. (b) Assays to determine the efficiency of the crossover detection system. DNA-free negative controls are marked with minus signs. The intense signals in sperm DNA for both 1000 and 3000 molecule inputs are presumably derived from genuine recombinant molecules, while the signals of decreasing intensity in the positive controls are due to decreasing inputs of positive control DNA (blood genomic DNA from a donor in recombinant phase relative to donor 5). The signal in one of the 3000 molecule blood DNA inputs (marked by the vertical arrow) could be a result of inconsistent specificity of the AS-primers, or be derived from PCR artefacts that arise by strand jumping between haplotypes. (c) Very occasionally, fine tuning of the crossover assay resulted in intense signals in sperm DNA, and little or no evidence of signals in blood DNA, indicating that an efficient and specific system of crossover detection had been achieved.
identify enough crossover molecules as to make a mapping strategy worthwhile. Therefore, the rate of recombination and the pattern of crossover distribution over the region of PGMS2 remained unknown. To surmount this problem, the region of analysis was truncated by 3.2 kb . The genotype of donor 5 proved unsuitable for the shortened analysis so donor 7, with PGMS2 allele sizes of 1.9 kb and 1.7 kb and with eleven informative SNPs within the assay interval, was selected as a replacement (figure 8.3a). Optimisation of AS-primer annealing temperature and determination of donor 7 linkage phase indicated that the best system for sperm crossover detection in the shortened region would be a primary PCR amplification between 12237/G and 18970/G and reamplification with nested primers selecting for 12657/A and 18610/T (figure 8.3b) (Chapter 2, table 2.12).

8.2.2.a: Detection of Crossover Molecules

The pilot crossover assay of 52 reactions, consisting of 8 inputs of 5000,3000 and 1000 amplifiable molecules of both BglII-digested sperm and blood DNA, plus four reactions with no DNA input, was remarkably successful. Recombinant DNA molecules appeared to have been amplified from nearly every reaction containing sperm DNA (data not shown) but not from blood DNA (figure $8.3 c$). This demonstrated that the system of crossover detection within the truncated PGMS2 interval was highly efficient, very specific and did not give rise to detectable PCR artefacts that might have arisen through strand jumping between haplotypes. Moreover, it strongly suggested that the rate of crossover in the region was much higher than $13 \mathrm{cM} / \mathrm{Mb}$, as had been suggested by the LD data (Chapter 7, section 7.2.2.c). Repeating the pilot assays, with reduced numbers of molecules, showed that the number of positive signals did not drop significantly until sperm DNA input was reduced to about 250 amplifiable molecules (3 ng genomic DNA) (figure 8.3c).

8.2.2.b: Mapping Crossover Break Points

Maximum likelihood analysis (software written by A.J. Jeffreys in TrueBASIC 4.1) applied to the results of the pilot assays, in which a total of 87,200 amplifiable sperm DNA molecules were analysed for crossover, suggested that the rate of exchange between 12657/A and 18610/T was approximately 5.5×10^{-3} crossovers per molecule (data not shown). Consequently, some PCRs, particularly those containing more than 200 molecules, are likely to contain more than one crossover event, which would impede mapping of crossover breakpoints. Therefore, 120 aliquots of digested sperm DNA, each expected to contain 0.4 , 0.5 or 0.66 crossover molecules (respectively $0.88 \mathrm{ng}, 1.1 \mathrm{ng}$ or 1.44 ng DNA inputs) were subjected to the two rounds of repulsion-phase AS-PCR shown in figure $8.3 b$. Positive

Figure 8.3: High resolution sperm crossover analysis across the PGMS2 region. (a) The truncated crossover analysis interval within donor 7 . Informative SNPs are marked by green circles and homozygous SNPs are marked with grey circles, PLCXLI exon 8 is denoted by the blue rectangle and Alu elements are shown by red rectangles. The positions of universal primers used in AS-primer optimisations (Chapter 2, table 2.9) and the determination of donor 7 linkage phase (Chapter 2, table 2.11) between 12237A/G, 12657A/G, 18610C/T, 18634C/T, 18970A/G and PGMS2 allele sizes are marked with black arrows. Note that these strategies were similar to those used in ascertainment of donor 5 linkage phase and AS-primer optimisations (figure 8.1). (b) Linkage phase of donor 7. The positions of first round AS-primers are marked with blue arrows and those used in the second round are denoted by the red arrows. (c) Examples of crossover detection in Bg/II-digested sperm and blood DNA (BgIII cuts much closer to this truncated test interval than ApaI, which was used to digest donor 5 DNA prior to earlier attempts to detect crossovers). Secondary PCR products were detected by agarose gel electrophoresis and Southern blot hybridisation using a probe consisting entirely of PGMS2 repeats. The signals in sperm DNA are derived from genuine recombinant molecules. No signals were observed in blood DNA, even when PCRs were seeded with 5000 amplifiable molecules.
secondary PCRs were reamplified using universal PCR primers, (figure 8.4a) and the status of internal SNP sites was determined by ASO typing (figure 8.4b). The number of molecules that had crossed from the 12657/A (green) haplotype to the 18610/T (yellow) haplotype clearly increases along the chromosome, such that virtually all molecules have crossed over before the SNP at 18530 . However, mixed signals (e.g. first line, third dot of the 13351 blots) demonstrate that some of the primary PCRs contained more than one identical recombinant, so the number of crossovers per interval was Poisson-corrected for these instances. Thus, for the same input of progenitor molecules, if N PCR amplifications yield R reactions positive for a given class of recombinant, the Poisson-corrected number of recombinants is given by $-N \ln [(N-R) / N]$ (Jeffreys et al., 1998a). These corrections led to increases of $0-62 \%$ in the estimated frequency of each class of recombinant (data not shown). The distribution of 109 crossovers detected in 26,520 sperm DNA molecules was successfully mapped across PGMS2 and is shown in figure 8.5a. All crossovers were simple, and mapped to a single interval between adjacent heterozygous SNPs, as seen previously at the MS32 hotspot (Jeffreys et al., 1998a), across the MHC II region (Jeffreys et al., 2001) and at SHOX (May et al., 2002). Overall the entire region is very recombinationally active, with a localised peak rate of over $500 \mathrm{cM} / \mathrm{Mb}$ between $14051 \mathrm{~A} / \mathrm{G}$ and $14209 \mathrm{C} / \mathrm{T}$, making this the most recombinationally active region yet identified at the molecular level.

8.2.2.b.i: Reproducing the Distribution of Exchanges in the PGMS2 Region

The assay was repeated in the same individual using multiple aliquots of amplifiable sperm DNA totalling 56,200 molecules, which determined that the pattern of crossover distribution was remarkably reproducible (figure $8.5 b$). Moreover, the intervals of 95% confidence are reduced and the results suggest that the peak crossover activity is closer to $300 \mathrm{cM} / \mathrm{Mb}$, but that this activity extends over a slightly wider interval ($13642 \mathrm{~A} / \mathrm{G}$ to $14209 \mathrm{C} / \mathrm{T}$) than previously suggested by the first assay (figure 8.5a).

8.2.2.b.ii: Identification of PGMS2 Allele Sizes After Crossover

Virtually all recombinant molecules cross from the green to yellow haplotype before reaching the SNP at 18530 (figure $8.4 b$). However, it was not known whether these crossovers occurred on the distal or the proximal side of PGMS2, or if they were taking place within the minisatellite itself. Therefore, as a preliminary investigation, the PGMS2 array was amplified from a subset of the positive secondary PCRs used to map the crossover events (above) and visualised by agarose gel electrophoresis with ethidium bromide staining (figure 8.6). Remarkably, nearly all of the PGMS2 alleles in recombinant molecules were either 1.9 kb or 1.7 kb , the respective lengths of the green and yellow haplotypes (figure 8.3 b).

Figure 8.4: Mapping of crossover breakpoints in the PGMS2 region. (a) Recombinant molecules amplified by the two rounds of AS-PCR (figure 8.3b) are bounded by alleles 12657/A (of the "green" parental haplotype) and 18610/T ("yellow" parental haplotype). Green and yellow haplotypes were revealed by AS-PCR and ASO-typing (Chapter 2, table 2.13). Alleles at internal SNP sites (lilac circles) were identified by tertiary PCRs between primer pairs XOT13.0F \& N15.1R; RN13.8F \& N15.1R and N18.4F \& XOT18.5R, dotblotting and ASO typing (Chapter 2, table 2.14), which thus mapped the point of crossover from the green to yellow haplotype. As most internal SNPs are in Alu sequences, tertiary PCRs were divided into three amplicons to avoid hybridisation of certain ASOs to the wrong Alu elements. (b) Examples of dotblots used to map crossover breakpoints. The last six spots on the bottom line of each blot were loaded with four tertiary PCRs from blood DNA and two reactions with no DNA input. Clearly, there has been no bleed through of either parental haplotype. Dotblots have been arranged top-to-bottom in order of the SNPs nearest to 12657 to those nearest 18610, and those dotblots detecting alleles of the green haplotype have been placed on the left. In a 12657 to 18610 direction, the dotblots show that the number of yellow haplotype alleles clearly increases such that the crossover breakpoint of virtually all the recombinant molecules detected in this assay occurs before the SNP at 18530.

Figure 8.4: Mapping of crossover breakpoints in the PGMS2 region.

Of the 96 crossovers that were originally mapped to the interval containing PGMS2 (figure $8.5 b$), only two appeared to have an allele that differed in size from the parental haplotypes. At face-value, six appeared to have crossed over in the 424 bp interval between 14893A/G and the start of the PGMS2 array and the remaining 90 crossovers have also avoided the minisatellite and occurred in the 916 bp interval between the end of the PGMS2 array and SNP 18530A/C. However, it is quite possible that crossovers have taken place within PGMS2 without altering array length. This has previously been observed at MS32, where alleles of different lengths can pair in-register over the beginning of the array, yielding a recombinant array equal in length to the progenitor allele (Jeffreys et al., 1998b).

Figure 8.5: Observed distribution of sperm recombinants across the PGMS2 test interval. Heterozygous markers are indicated above each plot. The observed numbers of crossovers mapping to each interval, shown above the histograms, were used to estimate the recombinational efficiency of each interval in $\mathrm{cM} / \mathrm{Mb}$. The error bars show the 95% confidence intervals. (a) Distribution of 109 crossovers amplified from an initial input of 26,520 donor 7 sperm DNA molecules (40×120 molecules; 40×91 molecules; 40×73 molecules; and the pilot assays of 8×1000 molecules; 8×500 molecules; 8×300 molecules and 8×100 molecules). (b) Distribution of 263 crossovers detected in 56,200 amplifiable sperm DNA molecules (144×250 molecules; 144×125 molecules; 40×55 molecules).

Figure 8.5: Observed distribution of sperm recombinants across the PGMS2 test interval

Figure 8.6: Amplification of PGMS2 alleles from recombinant molecules. PCR amplification of 186 positive secondary PCRs with an initial DNA input of 55,125 or 250 molecules took place between primers MVN15.3F and MVN17.6R (Chapter 2, table 2.14). PCR products were visualised by agarose gel electrophoresis with ethidium bromide staining. A subset of the PCR products are shown in this diagram.

8.3: Discussion

This chapter has presented the successful use of sperm crossover analysis to map the distribution of sperm crossover events in the PGMS2 region. However, the profile that emerged is unlike anything previously observed and, moreover, is widely different from the population-based value of recombination rate, which was estimated from LD decay (Chapter 7, section 7.2.2.c).

8.3.1: Crossover Assay Failure Within 10 kb Region Around PGMS2

The poor quality and consistency of the initial attempts to detect sperm crossover molecules in the minisatellite PGMS2 region were, at the very least, a clear demonstration of the technique's complexity. It is most likely that the early assays failed because of the low efficiency of the AS-primers used for the first round of PCR (figure 8.1b). Unfortunately, the linkage phase of the donor most suitable for this analysis, coupled with the even worse efficiency and lack of specificity of other AS-primers, meant that this situation was unavoidable. It is worth noting that this was the first time sperm crossover analysis had been attempted in such a large and Alu-dense region and, of course, continuing to design and optimise other AS-primers for the selector sites, or persisting with adjustments to the assay itself, may have eventually resulted in a workable system of crossover molecule detection. However, the number of attempts that were made suggests that this technique is not applicable within relatively long regions that are rich in repeat sequences.

8.3.2: Successful Detection of Crossovers

8.3.2.a: Distribution of Crossovers

The excellent efficiency and specificity of the assay used in the truncated PGMS2 interval allowed the recovery of recombinant molecules from several batches of sperm DNA. Even at relatively high inputs, no recombinant molecules were recovered from parallel analyses of blood DNA, indicating that those derived from sperm were genuine meiotic crossover molecules, and not PCR artefacts (figure 8.3c). In addition, the fact that no crossovers were picked up in nearly 100,000 molecules of blood DNA demonstrates that the rate of mitotic recombination across the PGMS2 region must be very low (and certainly less than $0.1 \mathrm{cM} / \mathrm{Mb}$). Initial quantification and mapping of 109 crossover breakpoints was impaired by the relatively wide 95% confidence intervals around the calculated rates of recombination
(figure $8.5 a$). However, the distribution pattern proved highly reproducible, as was shown by mapping a further 263 crossovers, amplified from 56,200 sperm molecules (figure 8.5b). Indeed, both Fisher's exact test $(P=0.25)$ and the Kolmogorov-Smirnov test $(P=0.912)$ showed that there was no significant difference between the two observed crossover distributions.

8.3.2.a.i: Rate of Recombination in the PGMS2 Region

The recombination frequency over the 6.2 kb region corresponds to a genetic length of 0.6 cM , equal to about $100 \mathrm{cM} / \mathrm{Mb}$. This is over 110 times the mean autosomal crossover rate at male meiosis, over five times higher than the average rate in PAR1 and very different from the sex-averaged population estimate of about $13 \mathrm{cM} / \mathrm{Mb}$ derived from LD decay (Chapter 7, section 7.2.2.c). A Chi-squared test showed that exchanges were not randomly distributed across the region (data not shown). It appears as though there is a $90-95 \mathrm{cM} / \mathrm{Mb}$ uniform crossover rate but an excess of exchanges between 13642A/G and 14209C/T, where activity is $260-280 \mathrm{cM} / \mathrm{Mb}$. There is therefore evidence for a very localised hotspot of meiotic recombination superimposed on a very high background rate. However, only 15% of the PGMS2 crossovers cluster into the 566 bp region of highest activity, compared to 81% and 95% of crossovers that respectively localise to the $1-2 \mathrm{~kb}$ hotspots in the TAP2 and SHOX regions. Thus, it is possible that crossovers within the PGMS2 region are more-or-less randomly distributed and that the reproducible narrow region of enhanced activity is a site of preferred crossover resolution.

8.3.2.a.ii: Crossover Activity in the PGMS2 Minisatellite

Within the MS32 minisatellite, equal crossovers occur at a frequency that is about 40% that of the unequal crossover rate (Jeffreys et al., 1998b). Therefore, if crossovers are taking place within the PGMS2 array, one would expect a significant proportion of them to associate with changes in array length. However, virtually all PGMS2 alleles in recombinant molecules are equal in length to the progenitor alleles, which suggests that crossovers are actually avoiding the PGMS2 minisatellite. This would be unprecedented as the three other minisatellite loci analysed so far show significant levels of exchange in both the flanking DNA and within the repeat array, leading to unequal and equal crossovers between alleles (Jeffreys et al., 1998a,b; Buard et al., 2000; M. Panayi, unpublished data). Furthermore, the points of exchange at one of these minisatellites define the MS32 hotspot, which extends into the polar end of the repeat array (Jeffreys et al., 1998a; Chapter 1, section 1.2.5.a) and there is provisional evidence for a very similar hotspot upstream of MS31 (M. Panayi, unpublished data). Furthermore, if crossovers do not occur within PGMS2, the relative rate of recombination in the flanking
regions would be very high indeed (figure 8.5). This is noteworthy because both the PGMS2 flanking regions and the 566 bp region of peak activity are the only extended intervals of single copy DNA within the region of analysis (figure 8.5). However, the possibility that a significant number of equal exchanges occur within PGMS2 cannot be discounted. An MVRPCR strategy (Chapter 6, figure 6.3.1.a), which would identify the internal structure of PGMS2 alleles in crossover molecules as compared to progenitor alleles, would determine whether exchanges were going into the repeat array without altering array length, or if they were avoiding the minisatellite.

8.3.2.a.iii: PGMS2 Region is Highly Recombinationally Active

The region around PGMS2 is the most recombinationally active region yet identified at the molecular level but there are few clues within the sequence as to why this is so. For example, there are no GT microsatellites in the region of PGMS2, which were found to have a positive correlation with regions of high recombination along chromosome 22 (Majewski and Ott, 2000) and nor was there any evidence for a palindromic sequence akin to that implicated in the elevation of recombination rate in a 12 kb region of the human adenosine deaminase gene (Cruciani et al., 2003). However, the PGMS2 region is 52% GC-rich and, as noted previously (Chapter 1, section 1.2.5.c), there is a significant positive correlation between recombination rate and GC content in both S. cerevisiae (Gerton et al., 2000) and humans (Yu et al., 2001). Furthermore, it was noted recently that regions with a high CpG fraction (but low GC and poly(A/T) content) tend to have the highest recombination rates (Kong et al., 2002). Within the PGMS2 crossover analysis interval CpG dinucleotides account for 15% of the sequence, which is notable as they are normally greatly under-represented in human DNA, occurring at a frequency of only 0.8% (International Human Genome Sequencing Consortium, 2001).

There is a particularly high concentration of Alu elements within the PGMS2 region, accounting for 43% of the sequence, as compared to 33% of the N0434.1 interval as a whole (Chapter 3, section 3.3.2) and just 10% of the human genome (Smit, 1996; International Human Genome Sequencing Consortium, 2001). Whether this is significant or not is not known, but Alu elements are known to facilitate unequal homologous recombination events (Batzer and Deininger, 1999) and two of the meiotic recombination hotspots within the MHC II region, including the DNA3 hotspot, which is the most active hotspot so far identified in MHC II, are centred on Alu elements. However, as already noted (above) the localised interval of peak activity within the PGMS2 region is actually centred on an interval of single copy DNA.

It is intriguing to wonder what conclusions might have been drawn had the results of the first crossover assay been reproducible. Only four putative recombinant molecules were amplified from 115,200 sperm molecules (section 8.2.1.d), suggesting a rate of crossover in the region that is both below genome average and well beneath the rate that was eventually determined. If the four putative crossovers had been subjected to a third round of amplification, it is possible that ASO-typing might have revealed the presence of more than one type of recombinant in each case, but it remains likely that the rate of crossover in the PGMS2 region would have been severely underestimated. Alternatively, the second assay may have revealed a localised, but extended, gene conversion hotspot contained within the interval defined by the selector sites of the first assay. Consequently, the first assay would have detected only a few crossovers and the number of events detected by the truncated (second) assay would have been inflated because one of the selector sites was within the interval of gene conversion (see Chapter 9, figure 9.1). However, the data indicate that the gene conversion tracts in the PGMS2 region would have to be over 4 kb , which is difficult to reconcile with observations at SHOX and in the MHC II region, where tracts are only 300 bp long (A.J. Jeffreys and C.A. May, manuscript in preparation).

8.3.2.a.iv: PCR Efficiency and Rate of Crossover

For any PCR amplification from which a rate of crossover or mutation has been invoked there are two variables that should be taken into account - the accuracy of quantification and the actual PCR efficiency. Therefore, in order to confirm the rate of crossover as calculated across the PGMS2 region, it would be necessary to determine the exact number of amplifiable molecules that were screened. For a SP-PCR experiment this would be resolved by the determination of single molecule PCR efficiency. A number of PCR reactions (60-90), each containing a known amount (equivalent to about one molecule) of the DNAs analysed by SPPCR would be amplified as in the SP-PCR reaction, and the PCR products would be detected by agarose gel electrophoresis and Southern blot hybridisation. Poisson analysis, applied to the number of reactions in which a PCR product is observed, would then provide a figure for the average number of amplifiable molecules per known amount of DNA. From this, the single molecule PCR efficiency per 6 pg DNA (assumed to be equivalent to one diploid genome) can be calculated (e.g. Jeffreys et al., 1994).

Correcting for single molecule PCR efficiency by Poisson analysis of single molecule dilutions is rather more difficult when faced with a crossover assay because the primers are designed to amplify only recombinant molecules. Hence, the vast majority of molecules are unamplifiable by definition. Therefore, if a Poisson correction is to take place, the variables of
the actual reaction have to be changed, i.e. at least one primer must be changed in order to have a system that, in an ideal world, would amplify all of the DNA molecules present. However, this primer would be in a slightly different location, would have a different nucleotide composition and almost certainly have an efficiency different to that of the ASprimer. The alternative is to assume that the DNA quantification (section 8.2.1.d, above) is correct and then to use an estimate of PCR efficiency. A large number of Poisson analyses over intervals of $5-10 \mathrm{~kb}$ have shown that there is approximately one amplifiable molecule per 12 pg of DNA, giving a single molecule PCR efficiency of 50%, and for intervals of less than 5 kb the PCR efficiency rises to approximately 80% (A.J. Jeffreys, personal communication). Therefore, given this precedent, it was thought reasonable to assume that the crossover assay, which took place over an interval of 6.2 kb , would also have a PCR efficiency of 50%.

However, the most interesting result gained through the work presented in this chapter is not the rate of crossover but how the crossovers are distributed. Importantly, conclusions with regard to the distribution of crossovers are not affected by the efficiency of the PCR reaction.

8.4: Concluding Remarks

Clearly the highly reproducible distribution of crossover events within the PGMS2 region is not one that fits the classic hotspot profile, but nor does it fit a pattern of random distribution. The evidence in favour of a meiotic recombination hotspot may have been strengthened had it been possible to develop a workable crossover assay over the longer initial interval of choice. If a hotspot of meiotic recombination has been revealed, it is much narrower than all previously identified hotspots, which are $1-2 \mathrm{~kb}$, and is flanked by DNA that is also very recombinationally active. As studies of hotspots outside of PAR1 have indicated that they are shared between males and females (Jeffreys et al., 2001), it could be that PAR1 recombination hotspots are also shared but that male-specific crossover occurs at very high rates in interhotspot regions. This might explain why low-resolution linkage analyses have consistently indicated that the female contribution to crossover proficiency in PAR1 is negligible (e.g. Rouyer et al., 1986a; Page et al., 1987), but is not totally compatible with the observations in the $S H O X$ region, where the rate of recombination outside of the hotspot drops to approximately 6% of the peak activity (C.A. May, personal communication).

As the data are also consistent with a relatively uniformly hot region in which crossovers are either avoiding PGMS2 or occurring within the array without altering its length, further analysis of the minisatellite, through an MVR-PCR strategy, is required before it can be confirmed whether or not crossover is taking place within the repeat array. Fortunately, the repeat unit variability of PGMS2 is amenable to MVR-PCR (Chapter 6, figure 6.1), so this would not present too great a challenge.

Finally, it would be useful to repeat the crossover analysis in at least one other man to determine whether or not the distribution pattern is reproducible between individuals. In addition, it would have been useful to perform a reciprocal crossover analysis (i.e. from the yellow to green haplotype in figure $8.3 b$) to see if crossing over in the PGMS2 region was fully reciprocal, as has been seen at all but one of the MHC II hotspots (Jeffreys and Neumann, 2002) and at SHOX (May et al., 2002). This should be feasible.

Chapter 9

Discussion

9.1: Introduction

Sequencing of the N0434.1 cosmid (Chapter 3) provided the primary tool for the variety of studies that have been presented in this thesis, the main objective of which has been to carry out a high resolution analysis of DNA diversity and recombination in the PGPL gene region. SNPs identified in the N0434.1 interval (Chapter 6) were genotyped in 50 unrelated UK semen donors of north European descent and used in a LD analysis to screen for evidence of historical recombination (Chapter 7). The LD pattern then led to the identification of a target region, which encompassed the novel and moderately variable PGMS2 minisatellite, for the recovery of sperm crossover molecules and mapping of exchange points (Chapter 8). In addition, the long-awaited production of PAR1 sequence data by the Human Genome Sequencing Consortium allowed analysis of the PAR1 subtelomeric sequence to be extended over an interval of nearly 100 kb (Chapter 4). This enabled the full establishment of the entire genomic structures of both the $P G P L$ gene and PLCXL1, a novel gene suggested to be related to the phosphatidylinositol-specific phospholipase C (PI-PLC) gene family (Chapter 5).

9.2: PGPL and PLCXL1

Although PAR1 had been neglected by the Human Genome Sequencing Consortium until very recently (June 2003), a relatively small amount of genomic sequence around the SHOX gene, located approximately 500 kb from the PAR1 telomere (Rao et al., 1997), had allowed markers within a 43 kb interval to be subjected to a high resolution analysis of recombination. This revealed an extremely rapid decay of LD with physical distance, as expected for a region very active in (male) recombination, but also showed that crossovers clustered into a highly localised hotspot about 2 kb wide, flanked by recombinationally much less active DNA (May et al., 2002). To see if this pattern held true for other regions in PAR1, the PGPL gene was selected for further study. PGPL had been mapped to the interval contained within the N0434 cosmid and the cDNA sequence of the gene had been published (Gianfrancesco et al., 1998). Sequencing of N0434, which was thought to be approximately $80-110 \mathrm{~kb}$ from the PAR1 telomere (Rao et al., 1997), revealed that most of the 5' end of PGPL lies proximal to the

N0434 interval and also led to the identification of PLCXL1, a novel gene that appears to be the most telomeric in PAR1.

PGPL, which appears to encode a GTP-binding protein (Gianfrancesco et al., 1998), consists of ten exons between 67 bp and 440 bp in length that are spread over about 14.3 kb . Similarly, there are nine exons, 66-761 bp long, in the PLCXL1 gene, which extends over approximately 26 kb . However, the genomic size of the each gene is likely to vary between individual X and Y chromosomes due to the presence of several intronic tandem repeat arrays. Specifically, both PGMS1 and the pseudoautosomal STIR array, which vary in size from $0.8-1.2 \mathrm{~kb}$ and $1.0-5.5 \mathrm{~kb}$ respectively (Chapter 6, figures $6.2 a ; 6.4$), are located within PGPL. Intron 7 of PLCXL1 contains PGMS2, which has been shown to vary in size from 1.4-7.5 kb (Chapter 6, figure $6.2 b$). These repeats must therefore be transcribed.

The genomic structure of PLCXL1 provided two other interesting features. First, the PGMS3 minisatellite overlapped the 3^{\prime} end of $P L C X L 1$ exon 5, suggesting that the minisatellite was not only transcribed but also, because each minisatellite repeat unit provided at least one additional potential splice donor site, that it could extend the length of exon 5 by up to 240 bp . Second, the 3^{\prime} UTR of PLCXL1 contains an Alu element, which potentially has a functional significance as UTRs are very important in the post-transcriptional regulation of gene expression (van der Velden and Thomas, 1999; Conne et al., 2000; Jansen, 2001). Both of these features have been described in other genes (see Chapter 5, sections 5.3.2.c and 5.3.2.d), and are therefore not unusual, but PLCXL1 may provide a novel system for their further analysis.

It was initially thought that PLCXL1 was a member of the phosphatidylinositol-specific phospholipase C (PI-PLC) gene family. PI-PLCs play a key role in initiating receptormediated cellular signal transduction, have been isolated from a wide variety of organisms and contain at least five recognisable domains, named X and Y (which combine to form the catalytic core of PI-PLCs), PH, EF-hands and C2 (Chapter 5, section 5.1.2.a). However, only a putative X domain was identified within PLCXL1, which indicated that PLCXL1 could be part of a so far uncharacterised gene family that is rather distantly related to PI-PLCs. In addition, the observation of a series of putative PLCXL1 homologues in a variety of organisms suggested that $P L C X L 1$ is likely to have an important biological function.

Finally, the close physical proximity of $P G P L$ and $P L C X L 1$, coupled with the previous reports of interactions between GTP-binding proteins and PI-PLCs (Taylor et al., 1991),
suggests that an investigation of a potential interaction between the PGPL and PLCXL1 products is warranted.

9.3: Tandem Repeats

Sequencing of the N0434 cosmid and analysis of sequences produced at the Sanger Centre confirmed previous reports that had suggested the distal 100 kb of PAR1 was largely composed of unrelated, variable, GC-rich tandem repeats (e.g. Cooke et al., 1985; Page et al., 1987; Vergnaud et al., 1993), a feature that has also been noted at the distal regions of many human autosomes (Royle et al., 1988; Flint et al., 1997a,b). Indeed, tandem repeats account for 38% of the DNA within the PAR1 subtelomeric region and, for the first time, it was possible to accurately define the physical distances between the previously reported distal PAR1 structures such as PGPL, DXYS14, DXYS20 and the CEB12 and CEB30 repeats (Chapter 4, figure 4.9).

Three of the novel tandem repeats within the N0434.1 interval, PGMS1, PGMS2 and the pseudoautosomal STIR array, were selected for investigation. Each had only a limited number of allele sizes and was moderately unstable, as indirect population genetic estimates of their mutation rates were well below the values of 1% or higher observed at classic unstable minisatellite loci. Thus, it appeared as though the N0434.1 interval did not contain a highly unstable minisatellite that might have served as a marker for a local recombination hotspot, as had been shown at MS32 (Jeffreys et al., 1998a). However, this was not an indication that the N0434.1 interval did not contain a region of localised intense recombination activity, as all of other hotspots identified so far are not associated with tandemly repeated DNA (Jeffreys et al., 2000, 2001; May et al., 2002).

The length variability of a STIR array had not been investigated prior to the study presented in Chapter 6. Essentially STIR arrays are GC-rich minisatellites with unusually large repeat units, and it is possible that the variability is caused by the same kind of recombinational processes that destabilise more typical minisatellites (Jeffreys et al., 1991; Armour et al., 1993; Neil and Jeffreys, 1993). The fact that STIRs have been observed in most orders of mammals (W. Schempp and B. Weber, cited in Petit et al., 1990) suggests that they have some kind of biological function. Rouyer and colleagues (1990) thought that STIR arrays were likely to have a role in the recognition and initiation of pairing between homologous chromosomes prior to meiotic recombination. As STIR arrays within pseudoautosomal
regions appear to be a more conserved and complex class of element than the autosomal STIRs (Chapter 3, section 3.1.1.c), I have suggested that a STIR-mediated homologuerecognition role may be specific to PAR1 and that pseudoautosomal STIRs, as well as highly variable GC-rich minisatellites, may serve as occasional markers of recombination hotspots (Chapter 6, section 6.3.2).

There are a number of variable minisatellites (e.g. Simmler et al., 1985, 1987; Rouyer et al., 1986a,b; Armour et al., 1990; Klink et al., 1993) and at least four other pseudoautosomal STIR arrays throughout PAR1 (Rouyer et al., 1990), which must have implications for the length variability of PAR1 as a whole. The much-needed PAR1 sequence data that has only very recently become available will allow the systems that must exist to limit the variability of PAR1 length to be investigated more completely.

9.4: High Resolution Analysis of Recombination

The two-tier strategy for the high resolution analysis of recombination (Chapter 1, figure1.5) in the PGPL region began with the identification of diploid genotypes of 55 N0434.1 SNPs in a panel of 50 unrelated UK semen donors of north European descent (Chapter 7, figure 7.2). The subsequent LD analysis did provide some evidence for LD blocks, of at least 7.5 kb and 12 kb , in the region but, overall, LD decayed gradually with physical distance at a rate that seemed consistent with randomly distributed crossovers occurring at close to the genome average autosomal rate of recombination.

LD analysis had suggested that the rate of recombination across the PGMS2 region increased to about $13 \mathrm{cM} / \mathrm{Mb}$ (Chapter 7, section 7.2.2.c), but sperm crossover analysis established that the true rate was closer to $100 \mathrm{cM} / \mathrm{Mb}$, five times higher than the PAR1 average rate of recombination and over 110 times faster than the mean autosomal rate at male meiosis. These observations cannot simultaneously be true and thus create an interesting paradox: The relationship between the LD measure Δ, and recombination frequency $r,\left(\Delta^{2}=1 /\left(1+4 N_{e} r\right)\right.$, Chapter 7, section 7.1.1), means that in order to match the recombination rate derived from LD measures with the much higher rate established by sperm crossover analysis, the effective population size, N_{e}, must be small. If true, the PGMS2 region must therefore have had a very recent common ancestor. If this were true, one would expect to see a low level of nucleotide diversity, but the PGMS2 region has a genome-average level of nucleotide diversity (Chapter 6, section 6.2.3), suggesting that the effective population size cannot be small. Linkage
analyses have consistently indicated that the female contribution to recombination in PAR1 is negligible (Rouyer et al., 1986a) but if the PGMS2 region is recombinationally active in females, then the overall rate of recombination in the region would be even higher. Therefore, one would need to invoke a greater decrease in population size in order to match the recombination rates derived from the LD and sperm crossover analyses.

The remarkably reproducible distribution of crossover events within the PGMS2 region does not match any of the patterns that have been observed previously either at $S H O X$, or in the MHC II region (Jeffreys et al., 2000; 2001; May et al., 2002). The crossover profile suggested that there might be a very narrow localised hotspot of meiotic recombination, of width 500 bp or less, where activity rises to at least $300 \mathrm{cM} / \mathrm{Mb}$, superimposed on a uniform rate of $100 \mathrm{cM} / \mathrm{Mb}$. However, all previously identified hotspots have a standard width of $1-2 \mathrm{~kb}$, in which recombination initiation sites, gap expansion (resection), repair and resolution by conversion or crossover (see DSB repair model, Chapter 1, figure 1.3) all appear to be contained (Jeffreys and Neumann, 2002; A.J. Jeffreys and C.A. May, manuscript in preparation). Furthermore, all previously identified hotspots are surrounded by recombinationally much less active DNA. The data that I have presented on crossover distribution in the PGMS2 region (Chapter 8, figure 8.5) only defines the sites of crossover resolution. Therefore it is possible that the narrow region of apparently enhanced recombination in the PGMS2 region is actually a preferred site for termination of events that have initiated elsewhere.

Analysis of previously identified recombination hotspots has shown that all gene conversion tracts are short (average length of 300 bp or less) and contained within the hotspots (Jeffreys and Neumann, 2002; A.J. Jeffreys and C.A. May, manuscript in preparation) Therefore, if the PGMS2 region had exhibited a clear LD block structure and if the distribution of crossovers in the region had matched the "classic" hotspot profile, then precedence would have suggested that all of the molecules detected by the crossover assay (Chapter 8, section 8.2.2) were genuine crossovers and not conversions. However, the unusual LD pattern and crossover distribution seen in the PGMS2 region requires the serious consideration of the possibility that lengthy gene conversion tracts are being scored as crossovers. Therefore, an essential next step in the analysis of recombination in the PGMS2 region will be to carry out a gene conversion assay.

A gene conversion assay is essentially half a crossover assay, in which AS-primers directed to two sites from one haplotype at one end of a target region and universal primers at the other
end of the target region are used to PCR amplify small pools of sperm DNA (figure 9.1). Intervening SNP sites are then typed by ASO hybridisation. There are three possible outcomes to a conversion assay in the PGMS2 region (figure 9.1a,b,c). First, conversion tracts might be very short, as has been observed before (Jeffreys and Neumann, 2002; A.J. Jeffreys and C.A. May, manuscript in preparation), and thereby not only indicate that the crossovers were genuine but also provide information on sites of initiation. This would help to resolve whether the narrow interval of enhanced recombination in the PGMS2 region was genuinely a narrow hotspot or if it was a preferred site for resolution of crossover events. Second, conversion tracts in the PGMS2 region might be relatively long, suggesting that some or all of the molecules that had been scored as crossovers were actually gene conversion events that had swept across 5^{\prime} or 3^{\prime} selector sites. Third, if the assay fails to detect any conversions this would indicate either that all crossovers in the region are genuine and are not accompanied by gene conversion, or that there are no crossovers in the region, but that conversion tracts are very long. If it is assumed that the interval of gene conversion is long, such that it includes the reverse selector sites of the truncated crossover assay (Chapter 8 , section 8.2.2), but is contained within the interval defined by the selector sites of the first crossover assay (Chapter 8, section 8.2.1), this could provide an alternative explanation for the poor results of the first assay. Thus, the very few events detected by the first assay could have been genuine crossovers, but most, if not all, of the events scored as crossovers by the second assay may actually have been gene conversions (figure 9.1).

The flanking DNA at the polar end of the MS32 minisatellite contains a meiotic recombination hotspot that extends into the repeat array itself (Chapter 1, figure 1.6) (Jeffreys et al., 1998a) and there is additional evidence for a similar hotspot at the MS31 minisatellite (M. Panayi, unpublished data). Within the MS32 minisatellite, equal crossovers that do not alter array length occur at a frequency that is about 40% that of the unequal crossover rate (Jeffreys et al., 1998b). Therefore, if crossovers are taking place within the PGMS2 array, one would expect a significant proportion of them to associate with changes in array length. However, as changes in array length are not seen (Chapter 8, section 8.2.2.b.ii), it appears as though crossovers are either avoiding the minisatellite or that PGMS2 alleles only undergo equal crossover. If crossovers are avoiding PGMS2, this would mean that the rate of recombination in the regions of flanking DNA would be much higher than $100 \mathrm{cM} / \mathrm{Mb}$ (Chapter 8, figure 8.5). Thus, the only significant intervals of single copy DNA in the PGMS2 region would also be the intervals of intense, localised recombination. However, like the region of enhanced activity that has been identified, the flanking DNA intervals are very narrow, and therefore do not fit the model in which initiation, repair and termination all occur

Figure 9.1: Possible results of a conversion assay in the PGMS2 region. The diagram has been simplified such that the distance between markers is not to scale and there has been no representation of conversion (or crossover) occurring within the repeat array. A representation of the crossover assay (Chapter 8, figure $8.3 b$), which used two rounds of AS-PCR (red and blue arrows), is shown in the top part of the diagram. Thus, exchange point mapping occurred in the interval bounded by the vertical dashed lines. The rest of the diagram shows the possible results of a conversion assay following PCR between the two selector sites on the left hand side and the universal primer marked by the black arrow. Selector sites are highlighted by red or blue outlines. (a) Very short conversion tracts, as observed previously (Jeffreys and Neumann, 2002; Jeffreys and May, manuscript in preparation), would provide information on recombination initiation sites and would indicate that a conversion model to explain the (assumed) crossovers is unlikely. (b) Observation of long, multiple-site conversions (i and $i i$) would suggest that molecules previously scored as crossovers may in fact be conversions that have swept across selector sites (e.g. iii and $i v$). (c) If the assay detects no conversions, either all molecules scored in the sperm crossover assay are genuine, and never accompanied by conversion (i), or crossovers do not actually occur in the PGMS2 region and, instead, conversion tracts are very long indeed (ii and iii). Interestingly, if conversion tracts are very long, this might explain why the first crossover assay (Chapter 8) detected so few crossover molecules and the truncated assay appeared to detect so many. Taking the SNP position marked by the star as the reverse selector site in the first crossover assay, only i would have been amplified and scored as a crossover, but $i, i i$ and $i i i$ would all have been scored as crossovers by the truncated assay.
in a "standard" $1-2 \mathrm{~kb}$ hotspot. A conversion assay (above and figure 9.1) would help to clarify this issue, particularly with respect to sites of initiation, but further analysis of the minisatellite, through an MVR-PCR strategy, will be required to confirm whether or not crossover is taking place within the repeat array.

Prior to the work presented in Chapter 6, nucleotide diversity had only been examined in three regions of PAR1. Measures of nucleotide variability within the SHOX region (May et al., 2002) were consistent with those obtained from large genome-wide surveys (Cargill et al., 1999; Halushka et al., 1999) but contrasted with the far higher levels reported at PPP2R3B (Schiebel et al., 2000) and the $\mathrm{Xp} / \mathrm{Yp}$ telomere-adjacent region (Baird et al., 1995). The observation of a genome-average level of nucleotide diversity in the N0434.1 interval (Chapter 6, section 6.2.3) is thereby further evidence that PAR1 is not globally enriched in SNPs. Moreover, the fact that the N0434.1 interval has a normal level of nucleotide diversity, despite being very GC-rich (Chapter 3, section 3.3.1) and extremely recombinationally active (Chapter 8, figure 8.5), is further evidence against the idea that high GC content and rates of recombination cause high levels of diversity (Schiebel et al., 2000). Indeed, recombinationally active DNA might be expected to show relatively stable, genome-average levels of nucleotide diversity as SNPs are able to escape correlated extinctions by being constantly reshuffled onto different haplotypes (Kauppi et al., 2003). In contrast, recombinationally inactive LD blocks will undergo correlated fixation or extinction of SNPs that lead to periodic intervals of high and low nucleotide diversity. This is supported by observations in the PPP2R3B region where, despite the very high level of nucleotide diversity (Schiebel et al., 2000), there is preliminary evidence for limited haplotype diversity; i.e. markers appear to be in strong LD (A. Webb, unpublished data).

9.4.1: Evidence Against Ectopic Recombination

Alu elements represent approximately 10% of the human genome and preferentially locate to GC-rich regions (Smit, 1996, 1999; International Human Genome Sequencing Consortium, 2001). The distal 100 kb of PAR1 is part of the most GC-rich fraction of the human genome, so it is not surprising that Alu elements are over-represented in this region. The average Alu density across the distal 100 kb of PAR1 is 23%, but rises to 33% in the N0434.1 interval, where the analysis of sperm crossover took place. It is clear that many crossovers are resolved within Alu elements in the PGMS2 region (Chapter 8, figure 8.5). Therefore Alu elements are not a barrier to resection and branch migration during recombination. Consequently, Alu elements will constitute a significant proportion of single-stranded DNA during
recombination and may thereby be able to promote ectopic recombination events either in the Alu-dense N0434.1 interval, leading to localised duplications and deletions, or elsewhere in the genome. However, there are two lines of evidence against this. First, the sperm crossover analysis provided no evidence whatsoever for crossover accompanied by rearrangement, which would have been reflected by differently-sized PCR amplicons during ASO-mapping of crossover breakpoints. Second, at the population level, 100 chromosomes were analysed to establish the diploid genotypes of 55 N0434.1 SNPs (Chapter 7, section 7.2.1) and the pattern of LD across the region. Again, all PCR amplicons generated were of the expected size, providing no evidence for a shift in haplotype structure. This latter observation can be used to determine that the upper limit of the frequency of selectively neutral Alu-promoted ectopic recombination events in the PGMS2 region is $1.5 \times 10^{-6 *}$, which is 4000 times less than the frequency of homologous recombination in the region (Chapter 8, section 8.3.2.a.i). Hence, there appears to be a mechanism that prevents ectopic exchanges between Alu elements. In humans, homologous chromosomes are not paired prior to meiosis (Chapter 1, section 1.1.1.d), but the apparent absence of ectopic exchanges between Alu elements does suggest that pairing occurs in the very early stages of meiosis, before crossover takes place. Alternatively, mismatch repair could act to reject ectopic exchanges between diverged Alus during the recombination process itself.

[^0]
9.5: Final Comments

Prior to the analysis of recombination in the $P G P L$ region, it appeared as though hotspots dominated human recombination by structuring human DNA diversity into haplotype blocks that are stable in different human populations (Jeffreys et al., 2001, May et al., 2002; Reich et al., 2002; Kauppi et al., 2003). However, the observation of a very recombinationally active region of the genome in which crossover events do not cluster into the "classic" hotspot profile, suggests that the same rules of recombination cannot be applied to the genome as a whole. In addition, the lack of correlation between LD and sperm crossover patterns in the PGPL region of PAR1 is not unique, as shown by a recent investigation at the MS32 hotspot. Despite a peak activity of nearly $120 \mathrm{cM} / \mathrm{Mb}$, this hotspot was found to be located within a large block of substantial LD (A.J. Jeffreys, unpublished). Together, these observations are further evidence that quantitative measures of LD cannot be used as a reliable substitute for quantitative measures of recombination rate. A specific consequence of this observation across the PGMS2 region must be that the extent of useful LD (Chapter 1, section 1.22) in the region of $P G P L$ and $P L C X L 1$ is likely to be relatively small, and an association study in this region would require a relatively dense set of markers.

Within this thesis I have described a series of analyses that culminated in determining the pattern of crossover distribution in a region close to the PGPL gene (table 9.1). I have discovered a novel gene and numerous novel minisatellites and been able to develop the first accurate physical map of the PAR1 subtelomere. In addition I have been able to establish that over 30 kb of the distal PAR1 region is in free association with the telomere, has a normal level of diversity and contains the most recombinationally active region of DNA that has so far been identified at the molecular level. However, the distribution of crossovers within this region is unlike anything that has seen before. Thus, rather than helping to establish unified hotspot-based rules that govern meiotic recombination in the human genome, it appears that situation is even more complex than previously thought.

Table 9.1: A summary of the main results of the work presented in this thesis

Chapter 3

Sequencing the PGPL Region

- N0434.1 is GC, Alu and tandem repeat rich.
- Identification of PLCXL1, a novel gene.
- 5^{\prime} end of $P G P L$ is not within N0434.1 interval.

Chapter 4

Extending and Characterising the
Known Sequence in the PAR1 Telomere-
PGPL Interval

- Not possible to sequence all of cosmid 3F3.
- Sanger Centre produced distal PAR1 sequence:
- All of distal PAR1 is GC, Alu and tandem repeat rich.
- Identification and physical mapping of previously reported distal PAR1 minisatellites.
- PLCXL1 is probably the most telomeric PAR1 gene.

Chapter 5

Analysis of Genes in the N0434.1 Interval

- Established complete exon-intron structure of PGPL and PLCXLI.
- PLCXL1 appears related to PI-PLC gene family.
- $\quad P L C X L 1$ is highly conserved in mouse.

Chapter 6

DNA Diversity in the N0434.1 Interval

- PGMS1 and PGMS2 minisatellites are only moderately variable.
- STIR array shows length variability.
- Nucleotide variability in region is normal.

Chapter 7

Linkage Disequilibrium in the N0434.1
Interval

- Region contains an over-representation of high frequency SNP markers.
- Some evidence of LD blocks.
- Overall LD pattern consistent with recombination occurring at a rate close to the autosomal genome average.

Chapter 8

Sperm Crossover Analysis in the

N0434.1 Interval

- Targeted PGMS2 region for analysis.
- Most recombinationally active region yet identified.
- Distribution of crossover events does not fit the classic hotspot profile.

Appendix 1

Sequence of Cosmid N0434.1

N0434.1 was sequenced as described in Chapter 3. Presented here is the entire sequence, which begins 53263 nt from the start of cosmid 29C1 (see Chapter 4) and has been annotated as follows:

Alu	L1 Exon STIR Fendom sereat SNP	
1	TGAGTTCATGTAGCTGGTGTTGGCTTAGGGTCTGGGAGGAAGGCTTTTGGGAAGATGTAAATAAGAACAAAATCTGCAG	80
81	ACCTGGGAAGCCTGGCCTCAGTGTGGAAGAGAAGGCAGCAGGATTATTACAGAACCTTGTGAAGCCAA	160
161	GCCAGGAGCTGCAGACCGAGAGGATCTCGTCCTTTCTYGCGGCCCAGGGAGACCAGGCCTTTCATTCTGGGCTCGAGACC	240
241	AACAATTCGAATTCCGAACTCCCCCTGCGTGTGGGACTCAAGGTGGGTTTGC.AGTTTGC.AGGCAGCTGAAGTTYGTCTCI	320
321	TСTCCAGGAGGCCGGGGCTTCTTCCCTTCCTCTCTGTCCCAYYCTHHTHCHTGAGACAGAGTCTCACHPIGMCACCCA $423 C / T$	400
401	GGCTGGAYTGCAATGGTGTGAT GTGGCTCACTACAGCCCCCGCCTCCCGGGTTCAAGCCTCAGCCTCCTGAGTAECTGG	480
481	GATTACAGGCGTGCGCCACCACGGCCGGCTACTTTTTGTACTTTTAGTAGAAATGGGGTTTCACCATGTYGGCCAGGCTG	560
561	GTCTCGAACCCCTGACCTCAGGTGATCCACCCACCTCAGCCTCCCAAAGTGATGGGATGACAGGCGTGAGCCACCGTGCC	640
641	CGGCCCCTCCAGGTCTCATTTCTAAGAGGAGGCCTCAGGTCCACCAGGAAACATTCCTCAGATGTGAAACTGTCAACAGG <--AluSx	720
721	NMS 1 CTGATTTCTGGGCTCAAGATCAACAATTCTAATTGATTTGATTAAATCAATTAG MTCWAREATMTEAATCTAATCAGM: AluSq-->	800
801	2TAATCTHWNGATTAAAAATCTTACATACATTGCCGGGCGTGGTGGCGGACGCCTGTAATCCCAGCTACTCTGGAGGCT	880
881	GAGGCAGGAGAATTGCTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATTGCATCATTGCACTCCAGCCTGGGTAA	960
	AluSq-->	
961	CAAGAGTGAAACCCTGTCTTTAAAAAAAACAAAACAAȦลAAAAAAAAAACCGTACATACAGCTGGGCACCGTGGCTCAC	1040
	1107G/A	
1041	GCCAGTAATCCCAGCACTTTGGGAGGCCGAGGCAGGCAGATCACCTGAGGTCAGGAGTTCAAGACTAGCCTGACCAAGAT	1120
1121	AGTGAAACCCCGTCTCTACCAAAAATACAAAAATTAAGCAGGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTCTGGAG	1200
1201	GCTGAGGCAGGAGAATTGCTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCCGCGATCGCGCCATPGCAGTCCAGCCTGGG	1280
1281	CAACGAGAGGGAAACTGTGTCAAAAAAAAAAAAAAAAGACCAACCAAAAAAGTTATATACACTTCAGAGGCAGAGAAAGA	1360
	N(TA) 1	
1361	ATTTACAAGTTGTCTAAAATGTCCTTATGGAAAGGGTCACTTCCCTTATTTTCAACAG	1440
1441	ITATGTATATATAGTGATGYATATATGTATATATGTHATGTATGTGTTATATATGTCTATAPTATATATGTATATATCTS	1520
1521		1600
	$\mathrm{N}(\mathrm{TG}) 2$	
1601	ATATGTTATATATATGTTATGTATATAATATGTATATATGTATATATTCTGTTATGTGTGTATGTGTGTGTGTGI	1680
	Aluy/Sp/	q-->
1681	GTFTG AGGCCACACGGACACACGTGGAGTGGTTTTAAGGAGCGGAGAGTTTAATAGGAAAGAAGGGAGGTCC¢@rex	1760
1761	GMYCGTCACGCCTGTAATCCCAGCACCGCGGAGGTTGCGGTGAGCCGAGATCGCGCCATTrCACTGCAECCMEGGCAACA	1840
1841	AGAGCGAAACTGCGTCTCAAAAAAAAAAAAACCAAGGCGAGAAGGCAGAAAGAAGTGGCTCCCCTGGACTGAGACAGAGG	1920
1921	GACGGGGGCTCCAAACCCCAGGCAGGAGACCAGCCCGTGTTATACGGTGCCTGGAGGAGGCGTGACTCATTTGCATAGCG	2000
2001	CTGAGGGGATTGGTCTGACCAGGCCTGTCATTCACGTAGCCCGCGAAAAACCTGGCCCGCCCACCCCAGTTCCGTAATAT NMS 2	2080
2081	GCAAATGTAGGGCGCCATGATGTTCCACACCCCTGAGGGTAGTGGGGGCGGCCGTGGTGTCAGGCCCGGGTGGGGGCGGC	2160
2161	PGTGTCAGGCCCGGGTGGGGGCGCCCGTrGGTGCCAAGCCCGGGTGGGGGTCGGCCGTGTPGCCAGGCCCGGGTGGQ	2240
2241	CGGCCTYGGTGICXGGCCCGGGTCGGGGCGGCCTTGGTGTCAGGCACGGGTGGGGGC AAGGGCAAGAGGGCAACGGTG	2320
	$2357 \mathrm{C} / \mathrm{T}$	
2321	GGAATCGCCATGTGGGCTGGACCAGCTAAAGGCTCGCATTTGCATATTAAAGGTTGCCAAGCCGGGTCTAAGAGCCAGGG $2458 \mathrm{C} / \mathrm{T}$	2400
2401	CTTTCACGCTAGACAAGAAACATTTTTTGGAGCTGCAAAAAATGCTTCCAAGGACCCCTTTTCCTCTCTCTCTCTCTCTT	2480
2481	WHWTHWHTCTWHTTGGATATGGAGTTTCACTCTTGTTGCCCAGCCTGGAGTGCAGTGGCGGGATCTCCGCTCACTGT	2560
2561	AACCTCCACCTCCCGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGATGACAGGTGCCACAGGTGCCCA	2640
2641	CCACCACGCCCAGCTAATTTTTGTATTTTTAGTAGAGATGGGGTTTTGTCAAGTTGGCCAGGCTGGTCTCGAACTCCTGA	2720
	PLCXL1 exon 3-> 2793C/T	
2721	CCTGAAGTCACCGTAAAAAACCTCTTTTCCTCTTCTCCTTCCTCAGGTTGCCCAGGGCTCACCTCTGATGGG GGGCAGG	2800
	<--Alusq	
2801	TGAGCGCTYCCAACAGCTTCTCGAGGCTGCACTGCAGAAATGCCAACGAGGACTGGATGTCGGCACTGTGTCCCCGGCR2	2880
2881	TGGGATGTGCCCCTCCACCACCTCTCCATCCCAGGTGAGGTTGGGGTGGGGCAGGGGCCGTTGCCTCTATCCCAGGTGAC	2960
2961	GGCAGGGTGGGGCGGGAGCTGTGGCGTCTGCATTCCCCAGTGGGGACGCTGGCTGTAGGAGCAATCCTGGGTGTAGGGAA $3103 \mathrm{C} / \mathrm{T}$	3040
3041	ATCCTAGAAAGCACACTGATGTGGACACACACATACACACAGTGCACACGTGTGTGCATACACATATGTACATAGTCATG $N(C A) 3$	3120
3121	GACATGCACAGACATGCATACACACAGGCATGCACACATGTGCACACATACACAGGCATACATGCACACACGCACACACG	3200
3201	ACACATGCACATPTGCACACGCACATCTGCACACACACATGCACATCTGCACACACACATGCACATCTGCACACATAC	3280
3281	IGTGCATACTGTGTTGGTCTGTTCTCACGCTGCTAACAAAGACATACCCGAGACTGGGTAATTTATAAAAGAGGTTTA	3360

GTGGCAGCCAACAGAGCGTGTGCTGGAGAACTGCCCTTTGTACAACCATCAGATCTCGTGAGACTTATTCACGATCACGA 3520 GAACAGCATGGGAAAGACCCGCCCCGTGATTCGGTGACCTCCCACCAGGTCCCTCCCATGACAGATGGGAATTATGGGAG 3600 N(CA) 4
CTACAATTCAAGATGAGATTTGGGTGGGGACACAGCCGAGCCATATCACATACATAGGTGCACATAGGCACACATGCAGE 3680 :ACACACAGACACATACATACACACACACATGCATGCGCACACACATACATGCATGCACACATGCACATCCCCACACATA 3760 JGGTGTACACACATGCAGGCACATGTATACATGGATGTAGGCACATACT 3840 AATGCACACATGTATACATGCACATAGGCTCATACACACATGGATGCACATACACATGCATGCACATGTGCGGGTGTGTA 3920 CACATGCACATGCACACGTGTACACATGTACACACATGCACACATGTATATATATATTTGCACCTATGCACACATATATA 4000 CACCTGCAGATATACACAGGTGTAGACATGTACATGCACAGACACACGTGCACACATAAACATTTGCACCTATGCACGCA 4080 GAGACACGTCTATGCAATGCATGTATACACGTGTACACACGTACATGCATGCACACAGACATACACATGTACACATTTGC 4160 ACCTATTCACATAGACATACATGAATGCACATATGCACACGTGTACACAGGCACACATGCACATGCACACGCGTGTACAC 4240 ACATGCACACACGTAGACACACGTCCATGCACACAGGAACACAGGTACATGTTTAAACACAGGCACACACATGCACACTC 4320 $4383 \mathrm{~T} / \mathrm{G}$
ACATATAGGCATACGGACACACATACACATGCACACAGATACGTATTGTCAACCTAAGGAAATAAACTTAGACAAAATTA 4400 ATATAAGTAGGGGGTTTCCTTGAGCCACATTTGAGGACTGCAGCCCAGGAAACCCTCCAACTCGCCTTAGGAAGTGGCTG 4480 TGGAGAACAACGTCGAGACGGGAGCTTCTAAAGAAAGTGCACATCAGGAGAGGGGGTGATGATGAAAGCTGTTTTTCAGG 4560

4589A/G
AATTCATGTGGGTTACTGAAGTGGCATCGAGCACTGATCGCGTTCTTCCTTGCAATGTAGGGAATGAGTTATGGTGCCCC 4640 AGTGTGACATCCTGAGGTTAATTTTTTTTTTTTGAGACGGAGTTPTGCTCTTATCGCCCAGGCTCGAGTGCAGIGGCTCC 4720 $4722 \mathrm{C} / \mathrm{T}$
ACCTCAGCTCATCGCAACCTCTGCCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGATTACAGG 4800 4823A/G
CACGCTCCACTATGCCTGGCTG TTTTTGTATTTTTAGCAGAGATGGGGTTTCACCATGTTGGTCAAGCTGGTCTCGAAC 4880 TCCCGACCTCAGGCAATCCACCTGCCTCGGCCTCCCAAAGTGCTGGCATTGCAGACATGAGCTATTGCACCCGACATCTT 4960 <--AluSp
AGGTTAATTTGTAGAGATGCGGGGCATCTGTCAGTCTAGAGCTGACCTAGTAAGTAGCTTCCAGGGGTGATACTGTAGCA 5040 GGACCAGCCGCAGACAAAACTCAGACACCGGATTAAAGAAAGAAGAGGTTTCTTTGGCCGGGAGCTTCGGCAGACTCACA 5120 TCTTAAGAGCCGAGCTCCTTAAAAAAGAAATTCTTGGCCTTTTTAAAGGCTTACAACTCTGAGGGGTCCACGTGAAGGGG 5200 5230A/G
TCGTGATAAATCAAGCAAGTGTGGGGAACGTGACTGGGGGCTACATGTGTCAGCTAACAGAACAGAAAGTTTTGTAACGC 5280 TTTTTCATACAACGTCTGGCATTTACAGATAACAGAAGTGGTTTAGGTTATGGATTGATATTATTTTAACTCCCAGGGCT 5360 GGGTGGTGGTGCCAAGGTTGTCTGGCTATTTATCTTACTTCTGTTTCTTTCCAACCTTTTGCTTTCTCCTGTCTTATAAA 5440 CTAGGCAAGGTGGGGGTAGGGGGCAGCAGGAGAAGTACTGGTCTCCTTCCTTAACACCTTAGCTCAAGATCGGGGGAGCA 5520 NMS 3
GGTGACTGTGGCTTCGTTCCAATGCCTCTCGGGGTCTGGFGATITAAAGGGGGTCCACGTTCGTCAGRGCATGMAAAGCK 5600
FLAM_C \rightarrow
GAAGGCCGGGCGTGGTGGCTCACGCCTGTAATCCCAGCACIITGGGAACC 5680 CAAGGCAGGAGGATCACTTGAGTTTAGGAGTTTGAGAGCAGCCTGGGCAACATAGTGAGGCCCCATCTCTGCAAATATGT 5760 ATATACACACACACATTTATATGTAAGTGTACATATTTATATATAAACATACATATTTATATTTATATATAATATATAAA 5840 TAAGTAAATGTAAAATATAAAATATATATCATATATTTATATAAATATATGATACATAAGTACATTTATATATTATATTT 5920 ATAAACATAATATGTGGATATATATTTTATATATTTATATAAATACATATTTATGCAAAAATATGTATTTATGTAAATAT 6000 NMS 4
 CAGGAAATGCAAACGTCAGCCATCAGTCAAACTCTACAAAGGTCTGTGTTTCTTGCGGTTACCATAACAAGTGAGCACAC 6480 GTCAGGAGGCGGCAAAGAACAGAAATTTACTCTCTCCCAGTTCTAGATACAGAAATCTGAAGTCAAGATATGGGCAGGAC 6560 CACACGTCCTCCTGAGGCTCTAGGGGAGGGTCCTTCCTGCCTCTCCCAGCTCCTGGGGGCTCCAGGCATCCCTGGGCTTG 6640 TGGCCGCATCACTCCAGTCTCTGCCTCCATCTCCACGTGGCCTCCTCCTCTGGGTCTGTGTCTCCTAAGGACACCTGTCA 6720 TPGCATTTAGGACCCAGCACAAAGCCAAGATGACTTCATCTTGAGCATTTTGAGAGCATGTGTAAAGACCCTATTTCCAA 6800 ACAGGATCCCATTCACAGGTTCTGGGCAGGGGGTTAGGACTTGAACAGCTCTTTTGGGGATCACCACTCAAGTCATTGAA 6880 ATTGTATTCAGTTCCTTCTAGAGGCTCTAGAGTGGGGGATCCTTCCTGCCTCTCCCAGCTCCTGGGGGCTCCAGGCATCC 6960 CTGGGCTTGTGGCCGCATCACTCCAGTCTCTGCCTCCGTCTCCACGAGGCCTCCTCCTCTGTGTCTGTCTCCTCCTCTTG 7040 TGTCTTAGACGGACACCTGTCACTGGATTTGGGGGCCCGCCCTACTCCAGGATGATCTCATTTCAACCTAATGATATCTG 7120 CAGAGACCCTGTTTCAACACGGGTCGTGTTCCCAGGTTCCAGTGGACGTGAGTTTTGGGGGTCAGCGTGCACCCCTCCCG 7200 $7225 \mathrm{C} / \mathrm{T}$
CCATACCTGTGCCTGTGCTGTGGGCGGGCAGCAGCCTGTGCTGTAGGCGGGCTGTGGAGCGACTCACAGCAGGTGGCGGG 7280

$$
7298 \mathrm{~A} / \mathrm{G} \quad \text { PLCXLI exon } 4-\rightarrow
$$

GACGGACTCGTGGTGACATGTCCGCGTGTGTGCTTTGCTCTCAGGGAGCCACGACACGATGACGTACTGCCTGAACAAGA 7360 AGTCCCCCATTTCGCACGAGGAGTCCCGGCTGCTGCAGCTGCTGAACAAGGCCTTGCCCTGCATCACGCGCCCTGTCGTV 7440 ЕТGAAATGGTCCGTCACCCAGGTACGGTCTGTGCCCCGTGCTGCTGACCTGGCCTGTCAGCTATGTGGGGCCCACGGCCC 7520 CGTGGTGCTGAAATGGCCCCTCACCCAGGTAGGGTTTGAGTGGTGCCCTGTGGGCTCAGGAGGCAGGTTCCTATCCCAGC 7600 TGCGGAGACAGGATTAAAACAAAACCTGCTGCCCACCCAGAACCCCTCCCCAGAGGTGGAAGAGAGGGGAACAGTGTH 7680
 ССТССGСTGССТGGGTTCAAGCGATTCTCCTGCCTCATCCTCCTAAGTACCTGGGTCTACAGGCACCTGTCACCACACCT 7840
GGCTAATTTTTTGTATTTTTAGTAGAGATGGGGTTTTACCGTGTTAGTCAGGATGGTCTTGATCTCCTGACCTCATGATC 7920
<--AluY

8481 CAGTTTGCAGTCAGGCATCTGCTAGTCCCTGGGAAACAGGGAGACAGGCCCCTTTCTCCCTAATAATCACATTCATTCAT 8560 TCCTHPAGAGATGGAGTCTCGCTCTCTCACCCAGACTGGAGTGCGGTGGTGCGATCTCAGCTTCCTGCAGCCTGGGCCTC 8641 CCAGGATCAAAGGATCCTCCTTCCTCAGCCTCCCGGGCAGCTGGGACTACAGGTGTACACCACCACACCCAGGCTGAHTH 8720 AluY-->

8020C/T

AAGCTAATGCCGTGAGCATCGCAGGCCTCCACTGAGAGCTGCAGAGGGAGAGGGTCTCGCCCTGTTGCATCCCAGCAGAG 8080 ACAACACCTTTCTHMNCTMTCTTTTCTTTTTTTTTTTTTTGAGACGGAGTCTCACTGCCACCCAGGCTGGAGTGCAGI 8160 TGGTGCCATCTCGGCTCACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCTGTCTCAGCCTCCTGAGTAGCTGGGA 8240 8248C/T
CTACAGGCTCCCGCGACCACGCCCGGCTAATTTTTGGTATTTTGAGTAGAGTCAGGGTTTCACTGTGTTAGCCAGGATGG 8320 TCTCGAACTCCTGACCTCGTGATCCACCCGCCTCAGCCTCCCAAAGTGCTGGGATTACAGGCGTCAGCCACCGCGCCCGG 8400 8429C/G
CCGAGACAACCCCTTTCATGCCTGCACTCAAGACAGACAAGGACTCATTTCTCGTGTCTTTAGGACCTGAGGCGGGTCTG 8480 IuY 8640

TIIAAAATTTTTAGTAGAGGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGTGGAIVA 8800
<--AluSg/x
CGAGGTCAGGAGATCGAGACCGTCCTGGCTAACATGTTGAAACCACATCTCTACTAAAAATACAAAACAAAATTAGCTGG 8880 GCGCGGTGGCGGGCGCCTGCAGTCCCAGCTACTGGGGAGGCTGAGGCAGGAGAACGGCATGAACCCGGGAGGCGGAGCTT 8960 GCAGTGAGCCCAGATTGCACCACTGCACTCCAGCCTGGGTGACAGAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAGGC 9040 CAGGTCCCCGGAGATGAGGTTTTCCAAATGCAGGTCCCCGTGGCTGCAGCGCTCCCAGCACATACAAACAGCTGTTGTTA 9120 CGACATCCACGTCCCAGTGGGCAGCAGGACATGCGGGTGGGCCAACCCCACAGCCCATTCCTGAGCCCCCCAGACGCGGC 9200 PLCXLI exon 5-->
GCTCAGCCAGGCAGACATGACAGCAGCCTCTGTCCACAGGCACTGGACGTCACAGAGCAGCTGGATGCCGGGGTGCGGTA 9280

AAGCTCCCGTGGGGATGAAACAGCCACATGCAGATGTGGACAGGAAACGCCCGGTCTTTAATGGAAGGGTGACGTCAC 9680 CTATACACCAGACAGGAGACACTGACCCCGCCAATCCGTTACGGAGATTTCTTTTTTTTTTGCTTTTTTTTTTMGGAGAT 9760 9771C/G
GGAGTCTTGCTGTGTCGCCCAGGCTGGAGTGCAGTGGTGCAATCTCAGCTCACTGCAACCTCTGCCTCCTGGGTTCAGGC 9840 AATTCTCCTGCCTCAGCCTTCCAAGTAGCTGGGATTACAGACGCCGGACACCACGCCCAGCTAATTTTTGTATMTTTAGT 9920 AGATACGGGGTTTCACCATGTTGGCTAGGCTGGTCTCAAACTCCTAACCTCAGGTGATCCACCCGCCTCGGCCTCCCAAA 10000 TTGCTGGGATGACAGGCGTGAGCCGCCACACCCCGCCTTCCCTGTGGTGITGGAGTCGTGCAGGACTCAGCCCAGCACCC 10080 <--AluSx
PLCXL1 exon 6-->
CCCTCCCCAGGACACACTCACGGAAATCTCGGAGTGGCTGGAGCGGCATCCACGCGAGGTGGTCATCCTGGCCTGCAGAA 10160 ACTTCGAGGGGCTGAGCGAGGACCTGCACGAGTACCTGGTCGCCTGTATCAAGAACATCTTCGGGGACATGCTGTGTCCI 10240 EGTGGGGTGAGGAGGGGAAGGATATCCGCACGTCTCTCCCGGGGCAGGGGCATCGTCAGCCTCAGACTCCATTTGCTGTG 10320 CCCTGGGTGTGGGTGCTGCCATGATTCCTGTAGCAGGTAAAGCCGTCGAACGGGGGCTGCCTGCTCTCCCGCAGTGTGGG 10400

AluSc-->
GGGCCCTGGCTGACCCGGTGGGGTGGCTCCTGGTGAGATCTGCTTCCCTTGACGGGTTTAGAAATGTGTGCAGCGTCAGC 10480 CGGGCGCGGTGGCTCACGCCTGTCATCCCAGCACTTTGGGAGGCCGAGGCGGGTGGATCACGAGGTCAAGAGATCGAGAC 10560 TATCCTGGCCAACATGGTGAAACCTGGTGTCTACTAAAAATACAACAATTAGGCTGGGTGTGGTGGCTCACGCTTGTCAT 10640 AluSc-->
CCCAGGACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAAGAGATTGAGACTATCCTGGCCAACATGGTGAAACCCC
10720
AluY-->
GTCTCTACTAAAAATACCAAAATTATCTGGGTGTGGCGGTGGGTGTGCCGGACGCAGTGGCTCACACCTGTCATCCCAGG 10800 ACTTTGGGAGGCCGAGGCGGGCGGATCATGAGGTCAGGACATCGAGACCATCCTGGCTAACACGGTGAAACCCCGTCTCT 10880 ACTAACACAAAATACAAACAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGA 10960 GAATGGTGTGAACCCGGGGGGTGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCATTCCAGCCTGGGAGACAGAGCAGG 11040 ATCCGTCTCAAAAAATAAAAAATAAAAATAAATAAATATATAAAAATAGAGACAGGGTCACCCTGTGCAGCCCAGGCTCG 11120 AATTCCTGGCCTCGAGTGATCCTCCCGCCGTGTCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCCCTGCACCYGACCA 11200
<--FLAM_C

TACTTAATHTATTTATTTATTTGAGAGGGAGTCTCGGTCTGTCTCCCAGGCTGGAGTGCAATAGCGAAACCTCGGCTCAC 11280
11281 CGCAACCTCTGCCTCCCAGGTTCAAACGATTCTCCTACCTCAGCCTTCTGACTAGCCGGGATGACAGGCGTGCACCACCG 11360 CACCCGECCAATTTTTGTATTTTTAGTAGAGATGGGGTTTCACCATGTTGCCCGGGCTGGTCTCAAACTCCTGACCTCAG 11440 11501A/G
11441 GTGATCCACCCACCTCGGCCTCCCAAAGTGCTGGGATGACAGGCGTCAGCCACTGCGCCC AGCLAGAATTTCATTTTTGG 11520 <--AluSx
11521 TTTATACTCGTGTTGGGCCGGTGTCCCGACTTCCCAGCCCTCCGCTCTCCCAGGTGCCCCCGGCTCTCCTCTCTCCCCTG 11600 PLCXL1 exon 7-->
11601 CACCCCTTAACTCTGGTCCTTTGCAGEAGGTGCCGACACTGCGGCAGCTGTGGTCCCGGGGCCAACAGGTCATCGTCTCL 11680
11681
11761

PATGAAGACGAGAGCTCCTTGCGCCGGCACCACGAGCTGTGGCCAGGAGTCCCCTACTGGTGGGGAACAGGGTGAAGAC 11760 EGAGGCCCTCATCCGATACCTGGAGACCATGAAGAGCTGCGGCCGCCCAGGTACCAGGTCGCCCCTCGTGGGGGTAGATT 11840

11841 CCACACAGCCTCCCGTGACGCCCTGCGGCAGGCCGGGTCCACATGGACTTGCCTTCACTTTTACGTGAAAACAATTTAAA 11920 AluSx-->

11921

AGGAATCCATGAGCTGGGCGTGGTAATCCCTGTACCTGTAATCCCAGCACTTCGGGAGGCCGAGGCGGGTGGATCACCTG 12000 AGGTCGGGAGTTTGAGACCAGCCTGGCCAACATAGTGAGACCCCAACTTTACTAGAAATAAAACTTAGCGGCCGGGCGCA 12080
AluSq/x-->
GTGGTTCATGCCTGTCATCCTAGCACTTTGGGAGGCTGAGGCGGGCAGATCACCTGAGGTCGGGAGTTCGAGACCGGCET 5^{-}truncated L1MB5 --> 12237A/G GACCAATGTGATGAAACCCTGTCTCTACTTAAGAAGCACCCAGGGAGAAAGCAGTCCATGTACATTGGCGGGGGGA:GGA 12240 PCAACAAGGTGTGGTCCATCCACGCGGTGGAATATTACACAGCCATGAAAAAGAACGAGGCTCTGACAAGGATGCAGCGE 12320 GCACAAACCTTAAGACATCACGCTCAGTGAGAGAAGCCAGACACAAAAGGACACGTAGTGTGTGAATCCATTTACAGGAA 12400 ATGCCCAGAACATGCCAATCCAGAGACAGAAAGAGGATTTGTGGTTGCCGGGGGCTGCGGAGGGGAAATGAGGACTGACT 12480 GCTTCATGGAAACAGGGTCTCTCCTTTTAGGACGATGAGAATGTTCTGGAACTAGGGAGAGGTCGGAGTTGCACAACGTG 12560 AATCCACTMTATTTTTTTTAGTTAATTCTTTGATTAGAGAAGGGGCTCACTGTGTTGGCCAGGCTGGTCTCAAACTCCT 12640 AluSx--> 12657A/G
GGTGTCAGCCAGGTGCGTGGCTCACACCTGTGATCACAGCACTTTGGGAGGCCAAGGTGGGTGGATCACCTGAGGTCAG 12720

AluY-->
GAGTITTGGAGACCAGCCTGGCCAACATGGCGAAACCTCTTCTCTAGCAAAAATACAAAAATTAGCGGGCACAGGCCGGGC 12800 ECGGTGGCTCACGCCTGTAATCCCAGCACTTCGGGAGGCCGAGGCGGGCGGATCATGAGGTCAGGAGATCGAGACCATCC 12880 CGGCTAACATGGAGAAACCCCGTCTCTACTAAAAATACAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAATCCCAG 12960 CTACTCCGGAGGCTGAGGTAGGAGAATGGTGTGAACTCGGGAGGCGGAGCTTGCAGTGAGCCGAGATCACGCCACTGAAC 13040

AluSx-->

TCCAGCCTGGGCGACAGAGTGGAACTCTGTCTCAAAAAAAAAAAAAAAATAGGCACCTGTAATCCCATCTACTTGGGAGG CTGAGGCAGGAGAAATGCTTGAATCCAGGAGGCGGAGGTTGCTGTGATCCATGGTCGCGCCACTTGCACTCCAGCCTGGG

13200

AluSg/x-->

CGACAGGAGCAAGACTCCATCTCAAAACAAAACAAAAAAGAGAAAAATTAGCCAGGCATGGTGATGCGCGCCTATAATCC $13351 \mathrm{C} / \mathrm{T}$
CAGCTACTCAGGAGGCTGAGGCAGGGGAATCACTTGAACCAGGAAGGCGGAGGTTGCAGTGGGCCGAGAT GAGCCAGTG 13360 TACTCCAGCCTGGGCAACAGAGCGAGACTCTGTCTCAAAACAAAACAAGACAAAATCAAACTTCTGGGGTCAAGCGATCT AluSx-->
GCTTGAACCACCATTCCCAGCCGAGTTGTGCAATTTAAAATCGTGAATTTCGGTGCAGTGGCTCACGCCTGTAATCCCAC 13520 CACTTTGGGAGGCCGAGGCAGGTGGATTAATTGAGATCAGGAGTTTGCGACCAGTCTGGTGAAACCCCATCTCTAGTAAA 13642A/G
AATACAAAAAGATTTAGCTGGGCGTGGTTGTGTGCACCTGT ATCCCAGCTCCTCAGGAGGGTTAGGCAGGAGAATTGCT 13680 TGAACCCGGGGGCGGAGGCTGCCGTGAACCGAAATCGGGCCACAGCACTCCAGCCTGGGCAACAGAGCGAGACTCCATCT 13760 TGGGAAAAAAAAAAAAAGGTAACTTTTTTGTACGTGAATTTCACCACAATTTTTGTAAAAAAGCCACCGACGGGGTGTGA 13840 GGTGCAGACAGCGTCGGCAGCCACGGCCCCGTGTCCTCCGGAGGCAGGAGCCTGAGGGAGGGAGGGAGGAAGGTCCTCCC 13920

13994A/G
CGCGGGGACGGTGGCAGGTGGGGCCGTCTCGGTCCTGCAGCCTGCGGCTGGGTTCTCTCAAGGTGATCTTCACAGCCGCG 14000 14051A/G
AGGGCTGCTTCCCACAGGGGCAGCATGAAACCCAGTCACGGGCCGGGCAAAGGAGCAGGTTTTTTCAACTTGGTCTCTTG
14080 СССTCACACAGGAACGAGGTTAGAGACTTCAGAAATGTGITTITTTTTTTTTGAGATGGAGTCTCACTCTTGTTGCCCC 14160 $14209 \mathrm{C} / \mathrm{T}$
GGTCGGAGTGCAGTGGCGCGATCTCGGCTCACTGCAACCTCCGTCTCCCGGGTTCAAGCCATTCTCCTGCCTCAGCCTCC 14240 TGAGTAGCTGGGACTACAGGCGCCCGCCACCACACCCGGCTAATTTTTTTTTTGTATTTTTAGTAGAGACAGGGTTTCACC 14320 ATGTTGGTCGGGCTGGTCTCGAACTCCTGACCTCATGATCTGCCCGTCTCAGTCTCCCAAAGTGCTGGGATGACAGGCGI 14400 GAGCCACGGTGCCAGGCGGAAAATTTTTTTGTTTGTGTGTTTGTTTTTTGAGACAGAGTTTTGCTCTTGTTGCCCAGGC. 14480
<--AluSq
$14537 \mathrm{G} / \mathrm{A}$
AGAGTGCAATGGCGCAATCTTGGCTCACTGCAGCCTTCGCCTCCTGGGTTCGAGCA THCTCCCGCCTCAGCCTCCCACC 14567G/A
ACGCCCGGCTAATTTTTTTTATTTTTAGTAGAGATGGGGTTTCTCCATGTTGATCAGGCTGGTCTCGAACTCCCGACCTC 14560 AGGTGATCTGCCCGCCTTGGCCTCCCAAACTGGTGGGATTACAGGCATGAGCCACTGCACCCGGCCTTTTMTTMTTGTT 14640
<--AluSp

TTGTTTTGTTTTTTGAGACAGAGTCTTGCTGTGTCACCCAGGCTGGAGTGCAATGGCGTGATCTCGGCTCACTGCAACACM
14800
CCACCTCCTGGATTCAAGTGATTCTCCTGCCTCAGCCTCCCGAGTAGCTGGGATTACGGGCACGTACCACCATGCTGAGC 14880 14893G/A
TAATTTTTGGATGTGTTTTTACTAGAGAAAGGGTTTCAGCGTGTTGGTCAGGCTGGTCTTGAACTCCTGACCTCAGATGA
14960
TCCACCGGCCTCAACCTCTCAACGTGCTGGGATGACAGGCATGAGCCACCGTGCCCAGCCTAGAAATACGTGTTAAAAAC
15040
<--AluSx

CACTGAGAGAACTTGGCCATAAACGTCTGTTGACTTTGCCGTCTCTGGCCGTGGAATCAGTCCAGCTGGTCAACACAGGG 15120 GCACTGGAACCTACCTCTGGGGGAGCTTCTTCAAATACGGCTTGCAGGAGATTCCGGCTCAGCAGATGTAGGTGGAGCCC 15200 CCAAATTTGCATTTCTAACTATTGCAGGGACCCCACTTTGAGAATCACTGGTCAACGTCAACCCTCTCTATAAGCCTCAT 15280

PGMS 2
AAGAGATGGCACAGACTTAGTGCCCAAGACAACAGCATTCTTCCTGTCTATCACATGGGGGATAAGAATGTGGACATGTH 15360

こGCCCATATTATTCTGTCTCCCACATGGOATTAGGACGTGGACATCTTTGGGECCATTATCCTGTCTACCTCATGGGC	15440
ATHAGGACGTGGACATCTTTGGGGACATTAATCTGTCTATCACATGGGGATTAGGACGTGGACATCTTTGGGGCCATTAT	15520
CTGTCTCCCACAFGGGGATTAGGACGTGGACATCTTTGGGGACATTATTCTGTCTCCCACATGGGGATTAGGACGTGGA	15600
THMGGGGACATTAMTCYGTCTATCACATGGGOATTACGACATGGACATCTTYGGQGACATTATTCTGTCTATCAC	15680

AluSg-->
 $18530 \mathrm{C} / \mathrm{A}$

18481 CATCTCAAAAGAAAAAAAAACAGCCGAGTGTGCAGTGACTCACGCCTGTCATCCCAGCACTTTGGGAGGCGAAGGCGGGT 18560 $18610 \mathrm{C} / \mathrm{T}$
$18634 \mathrm{C} / \mathrm{T}$

GGAACATGAGGTCAGGAGTTCGAGACCAGCCTGACCAACATGGTGAAAC CGTCTCTATTAAAAACACAAAAATTACCTG 18640 18664C/G

GGTGCGTGATGGGCACCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGTGGAGGTT 18720 GCATTGAGCTGAGATCGTGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCATCTCAAAAAAAAAAAAAAAAAAA 18800 GATGGGGTCTCTCTATGTTGGCCAGGTTGGTCTTGAACTCCTGGCCTCAAGTGATCCTCCCACCTCAGCCTCCCAGAGTG 18880 CTGGGATGACAGTCAAGAACCACCATGGCAGCCCATAATATGTTTTCTTATTTCTGTATTCTCCTTGCTGTGGCGTCTGG 18960

18970A/G
18961 AGCCCTTACAGACCCAGGGAGACACTATCCTCCCACAGCTCACTAATTACTAAACACAGTGACAGCCCACTTAGGAGCCG 19040 NMS5

rGGGGATTAGGACGTGGACATCTTTGGGGCATTATHCTGTCTCACCTCATGGGGATHAGGACGTGGACA:	760
PATTCTTGTCTATCACATGGGAATMAGGACGGTGGACATCTYTTGGGGCCATTRTYCTGTCTAC	0
GGACATCTTYGGGGACATTATTCTGTCTATCACATGGGGATTAGGACGTGGACATCTTTGC	15920
CGTGGACATCTTTGGGGACATTATTCTGICTATCACAT	16000
gecaca	16080
TTAGGACGTGGACATCTMTGGGCCATTATTCTGTCTACCTCATGGGGATTAGGACGTGGAC.	16160
	16240
ATCTHTGGGEACATTATTCTGTCTATCACATGGGATYAGGACG	16320
	16400
	164
	16560
	16640
NN:	16720
	16800
NNMNNENE	16880
	16960
TNNNNNNNNNNNNWNNTNNTTCTGTCTCCCACATGGGGATTAGGACGTGGACATCTUTGGGGACATPATMCTGTC	
GGATGTGGACATCTTTGGGGACATTATTCTGTCTCCCACATGGGGATTAGGACGTGGACA	
GTCTCCCACATGGGGATTAGGACGTGGACATCTTTGGGGACATTATTCTGTCTATCACATC	
GGACATCITTGGGGCCATT	
CACATGGGGZ	
CCACCACGCTTTATAA	
C	
CXLI exon	
GTTGCAGCAGGGTTGITCGTC	
GGCATCAACCTCACGGAGAACCTGCAGTACGTTCTGGCGCACCCGTCCGAGTCCCTGGAGAAGATGACGCTG	
CGCGGCTGAGCGCGTGGGTCCGAGAGCAGTGCCCGGGGCCGGGTTCACGGTGCACCAACATCATCGCGGG	
ATCGTCGCAGACGGCTTCGTCAGTGACGTCATCGCGCTCAATCAGAAGCTGCTGTGGTGCTGACGGGACCCTTCTGAA	

AGGACCGATGATAATACGTTTTCATTTTCTTTAAAATAGAGATGGGGTGECTGGGCGTGGTGACTTCGCCTGTCTTCCCA 18240 QCACTITGGGAGGCCGAGGTGGGTGGATCATGAGGTCAGGAGCTTGAGAGCAGCCTGACCAACATGGTGAAATCCCGTCT 18320 CTACTAAAAATACAAAACTTAGCTGGGTGTGTGGCAGGCGCCTGTAGTCCCAGTTACTCGGGAGGCTCAGGCAGGAGAAC 18400 TGCTTGAAGCCGGGAGGTGGAGGTTGCATTGAGCTGACATCGTGCCACTGCACTCCAGTCTGAATGATAGACCGAGACTC 18480
<--AluJo/FLAM

<--AluSx

19761 TTTCTGTCACCCAGGCTGGAGGGCAGTGGTACAGTCATAGCTCACTGCAGCCTCAACCTCCTGGGCTCAAGCGATCCTCT 19840
19841 CAGCTCAGCCTCCCGTGTAGCTGGGGCTCCAGGGACACACCCCCACTGCTGGCTAATTTTTGTATTTTTGGTAGAGTCA 19920 19963C/G
GGITTCACCACATGGCACAGTCTGGTCTCAAATTCCTGGGCTCCAGTGATCCTCCCACCTTAGCTTCCAGAGTGGCCAGG 20000
20001 ATCACAGGCAGGCACCACCATGCCCAGGTAAMYMATTTTTTTGTAGAGACGTGGTCTGGCTATGTTGTCCAGGGTGGTC 20080 <--AluJb
20081 TCAAACTCCTGGGCTCAACTGATCCTCCCACCTCAACCTCTGCCATAGCCAGGACCTCAGGTGTCAGCCACCACACCCAC 20160 <--FLAM_A

20161 AGCTAATHIHTMTGTAGAGATGGGGTCTGGCTCTGTTGCTCAGGCTGGTGTGTAGTAGGGGCACAGTCATAGCTCACTG

20401
20481
20561
20641
<--AluS
20723C/G
20721
20801
20881
20961
21041
21121
21201
TTTGTATTTGTATTTTTATTTATGTTTTGAGACGGAGTTTCGCTCTCGTTGCCGAGGCTGGAGTGTAGTAGTGTGATCCHP
GGСTСАСТGСААССТССАССТСССGGGTTCCAGCAAATTCTCCTGCCTCAGССТСССАAGTAGCTGGGATTGCAGGCGCC
21281 C
21361
21441
21521

21601
21681
21761
21841
21921

22001

22081

22161
22241

22321
22401

22481
22561
22641
22721
22801
22881
22961
23041

23121
23201
23281
GTGGCGCAGTCTCAGCTCACTGCAACCTCTGCCTCCCAGGTTCAAGCAATTCTTGTGCCTCAGCCTCCTGAGTAGCTGGG 20480 ATTACAGGCGCCCGCCACCGCGCCTGGCTAACTTTTGTATTTTTAGCAGAGATGGGGTTTCACCATGTTGCCCAGECTGG 20560 TCTTGAACTCCCGACCTCAGGTGATCCATCCGCATTGGCCTCCCAAAGTGCTGGGATCACAGGCGTGAGCCACCGCACCT 20640 GGCCTCAAGCCAGTATTTCCCTGGCCCTAAATCATTCCTGGCTGGGTCCCAGCCCAGTAGAGCCAGCCCCCCAGCCCGGA 20720

GTGCTACTGAAGTGTTCAAAAGTTGTCAATCCTCAGCCGTTCCCTAGTCCTGTTGCCCGGTTCTGCCGAAGCCCCTTGAA 20800 GGCTGTGGCCTGGGCTGTTCCCTCATTCATTCCTGCCTCCCGAGCCAAACCCAGGTATCCGCTTGTGCCCTGCGTGGTGT 20880 GGCAGCGTCTTCTCTCGGGAAGGGTCAGGAGTAATTTCTTCTTTCAGTGGCCTCTCTGTGCTAGTCCCGGTCACCTCCGT 20960 GAATTAAAGTCCTACAGGTACAAGGGAGACCCCCCCCCCACGGAAGGCGCCCCCAGTCCGTGTGGGAGACTCGCACACCG 21040 GTTTTCTGCACAGGTTTCTTTCTGCCTCTGAAGCGTGAACGGTCCTAGTTTCAGACGCAGATCCTGCAAATACTTTTTTT 21120 TGTTTTTTTGAGATGGATTTTCCCTCTTGTTGTTCAGGCTGGAGTGCAATGGCACGATCTCAGCTCACTGCAACCTCTGC 21200

CGCCACCACGCCCGGATAATTTTTGTGTGTTTAGCAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTCTCGATCTCCTV 21360 GGCTCACTGCAACCTCFACCTCCCGGGFTCCAGCAAATTC PCCTGCCTCAGCCTCCCAAGTAGCNGGGATTGCAGGCGCC 21440 CGCCACCACGCCCGGATAATTTTTGTGTGTTTAGCAGAGACGGGGTTTCACCATGT世GGCCAGGCTGGTCTCGATCTCCT 21520 EACCTCAGGTGATCCACCCGCCTCEGCCTCCCAAAGTGCTGGGATGACAGGCGTGAGCCACCGCGCCCGGCCRATACCTC 21600 <--AluSq
ATTTTCTACATGTCGCTTGTTGGAGCTGCTGGTTCAAGTTCCCAGCCAGCCAATGGATGCCAGCACCATTTTTACTCCCA 21680 TTTCCCAAGCAAATCGTGCATTTTTGTCTAACGAGAGACATCAGTTTCTCAGGATGATCCTCAAGAACGTTATGGAGTCE 21760 ATGTTGCAATAGGTTCTCTTTGGGACCTAATGACTCATTTTCCAAAAATCCGCTTCTACTTTTGGTACCCGGTTGCTACE 21840 ETGAAATGAAGGTGCCCCGCATCCAGAAAGACGCACTCCTGGACCACAACCGGCGGCTACCTCAGCCCCACGGCTCTGCA 21920 GGATCAGGGCTCGGGCAGGCCCCGCGGAGATGAAGAATTTGCAGGGAGCCTCCCTGACTTCCGTCGGCTGTGAATCCTMA 22000 22030A/G
TCTGTCAGGGGCGTATCCACAAAATCACC AATTCATACAGATCGTTTAAATAAATGAACATCATTAAAGTCAAATATGA 22080 22145A/G
GTATGAATTTTATTACCACCAATGCAGCCAAGACACCTCTGGCAGCTTTCAGGATAGCACGCCAGAAGCATCTTTAGAAA 22160 22168C/T AluSg-->
ATGTTAATTCAGGAGGCCGGGTGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCGGATCACAA 22240
GGTCAAGAGTTCGAGACCAGCCTGACCGACATGGTGAAAATACAAAAAATTACTAAATATACAAAAATAATATATAAATY 22320
AluY-->
ATAAATATATAAGAATACTAAAAATATAAAAAATTAGCCAGGCATGGTGGTGGGGCCTGTAGTCCCAGCTACTCAAGAG 22400 GCTGAGGCAGGAGNATGGTGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCCGAGACTGCACCACTGCACTCCAGCCIGCA 22480

AluSx-->
TGACAGAGTGACACTCATTCCGTCTAAAAAAAAAAAAAAAAGTTAATTCAGCCCGGGCACAGTGGCTCCGCCTGTAATCC 22560
CAGCACTITGGGAGGCCGAGTTGGGTGGATCACCTGAGGTCAGGAGTTTGAGACCAGCCTGACCGACATGCTGAAAACCC 22640
ATCTCTACTAAAAATGCAAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGTTGAGGCAG 22720
GAGAACTGTCTGAACTCAAGAGGCAGAGGTTGCAGTGAACTGAGATCGCACCACTGTACTCCAGCCTGGGTGACAEAGCG 22800 AGATTCTGTCTCAAAACATACAAGGCATTTTGTTTTCCCGTTGATGGAGACGGCTAATGTGCGTGTAACGGCTGCACAGC 22880 CTGGCCACACGCAGGTGAAATTCTCTCTCTGCATCTCTTAGTGGATGGTCTGTGACACATCACCGTCTGGTTTGTYTGTT 22960 TTGAGACGGAGTCTCGCTCTGTCTTCCAGGCTGGAGTGCAGTGGCGCGATCTTGGCTCACTGCAACCTCCGCCTCCCGGG 23040 TTCATGCCATCCTCCTGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCCGCCACCACCCCCGGCTAATTTTTTGTA 23120 23133A/G
TTTITAGCAGAGGTGGGGTTTCACCATGTTAGCCAGGATGGTCTGGATCTCCTGACCTCGTGATCCACCCACCTCAGCCT 23200 ETCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGTCETCACGGTCTGGTTTGAAGCTGCTTCTTTAGTAAAACT 23280 <--Aluy
ATTTGCTTTCCCTTCTACTTTTGTGGAAGGGTTCTCTGTGCTGCCGGGAAACCTGATTTTTCGTCATTTCCCCGACACCA 23360
CCATGGGAAACGAGACCATCTGTGAACACAGACAGCCGGGCGGAGGGGCCGTCGGTGCCCACCAGGGCCACGGCTCACGG 23440 23483A/T
CAGGTGCAGGAGGAACTGGAAATGCTGCTCACGGAAG WAAA CAAAGGTTTAATGTCCTGTTACGGAAACATTCCGAEC 23520
FAAAGCAGTTCACAGCAGGCACCGAGGGCCCACTGGAATTGTGTGGATGCTCAGGCTTGGAGTGGACGCTCGGGCGGCCA 23600 ECTTTGGGGCAGGTGCGGCCGTGTCACCGGCCTGCACGGTCATCCCAGCAAATGGCTGGGAGCGAGACGGGTGCAGAACA 23680

23757A/G
AGACAAGGAGGACCCTGCTGCACCTGACACCAAGCTGCCCCCAACACAGCGGTAACGCCTCAGCTCCCCAGGCAGC ATE 23760
ECCCCACCCCGCAGGCCTCTGTGGGCGTCCGTTCATCCTGGAAAGAGCTTCCGGAATTTGCCGTAGGCTGAGTTGCTGAM 23840 GATGACCCTCACGTCGGCCGCCCCGTCCTCAGGGATCACGTCCACCTCCTGAACTGTGGCCTCCTTATACAGCCACTCTGG 23920 <--PGPL exon 10
GCACAGATGCGCGTTGTATGGAGACAAGCAGAACCCGTAAGTATTTGCTTAGTTTCATGATAAATAATTACGCTAAAAAG 24000 AGCTTAGCTCAAACCATTCATCAGACCGTCCTGTTTCCTTTTGTTTTTTTTTTTTTTTGAGACGGAGTCTCACTCTGTCG 24080 24151C/T
CGTAGGCTGGAGTGCAGTGGCGCGATCTCAGCTCACTGCAAGCTCCACCTCCCGGGTTCAAGTGATTCTCCTECCTCAGC 24160 CTCCCGAGTAGCTGGGACTACAGGTGCATGCCACCACACCTGGCTAATTTTTTGTGTTTTTAGTAGAGACGGGGTTTCAC 24240 CGTGTHAGCCAGGATGGTCTCGATCTCCTGACTTCGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATGACAGGCA 24320
TGAGCCACTGCGCCCGGCTTTTTATTTTTTATTTTTTTTTTTGAGACAGAGTCTCGCTCTGTCGCCAGGCTGGGGTGCAG 24400
<--AluY
TGGCACGATCTTGGCTCACTGCAACCTCGGCCTCCTGGGTTCCAGCAATTCTCCGGCCTTAGCCTCCCGAGTAGCTGGGA 24480
CTACAGGTGCCCGCCACTGCGCCCGGCTAATTTTTTGTATTTTATTAGAGACGGGTTTCACCGTGTTAGCCAGGCTGG 24560
TCTCGATCTCCTGACCTTGTGGTCCGCCCACCTCGGCCTCCCAACGTGTTGGGATTACAGGTGTGAGCCACCCCACCTGG 24640

> <--AluY

24641
24721

GGTGGTAACTTTTTATTCTTTGTAGAGATGGGGTCTCACCATGTTGCCCAGCCTGGCCTCAAACTCCTCTCAGCTCAAG 24720 AATCCTCCTGCCTCGGCCTCCCAAAGTCTTGGGGTTACAGGCCTGTGCCACGGCATCCAGCTGGAGCTTGCTTTCTTATT 24800

26641 TCCCTGACCCCAAGCTTGCAGACAGGCCCAGGAGAGGGGCTCACACGAGCTCCCAACGACAGGCTGGGCATGGGAGGTAC 26720 GCCTGTGTGCAGGCCCCTCGGACACCCCAGGACGGGGGCTCCTAGACCAACAGTGGACGCGAGCCCACCCGGCTGCACTT 26800 ACCCAACCTTCCAAGCCACAGGCAGCAGCTCCGCACCCCCAGACCCACACGCAAGGGGGTGCCATATATGAGCACCCAAC 26880 26901A/G
CACCACCCACCCACCCAGGGGGTCTTCATTCAAAGCTTTAGGGCGGCTTCATCCTCCTGTGAAATGTCTTTTAACAGCGG 26960 AATTATTTCCTCTTTAAAGGATGCTTTTTTTCTCACGTTCAAAAAAAATCTTACAGGCAGGCTCCTTACACAAAATTTGA 27040 AAAACACAGGGAAAAAAAAATAAAGCCGTGTGTAATTCTCCAACTTATACTACCGGGGTATCCACGTCTACTTTTTGTTT 27120 AluJb-->
GTTTGGATGCACTTAATACAAATAATATTTTTCCTGTAACTGAGGCACTTTGGGAGGTGGCTTGAGCCCAGAAGTTTGAG 27200 ACCAGCCTGGGCAAGAGAGTGAGGCCGTTTCTACAGAAAGTACAAAAATTAGCCATGGCCTGGTTGTGCGTGTCTGTGGT 27280 CTCAGCTACTCAGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGAGGTCGAGGCTGCAGTGAGCCGAGATCATACCAC 27360 TGCGGTTCAGTCTGGGTGACAGAGCGAGACCCTGTCTCTAAAGAAGAAAAGTAAAAACAAAAAAAATAATTTCATCCCAG 27440 GAAAGTTTTACTTTTTTTTTTTTTTTTTTTTTGAGACGAGTCTCGCTCTGTCACACAGGCTGGAGTGCAGTGGCGCGATC 27520 TCAGCTCACTGCAAGCTCCGCCTCCCGGGTTCAGCCATTCTCCTGCCTCAGCCTCTCTTGAGTAGCTGGGACTACAGGCA 27600 CCCGCCACCATGCCTGGCTAATTTTTTATATTTTTAGTAGAGACGGGATTTCGCCGTGGTCTCGATCTCCTGACCTGAAG 27680 27689C/G
TGATCCACCGCCTCAACCTCCCAAAGTGCTGGGATTGCAGGCGTGAGCCACCACACCCGGTCCATAATTTATTGTCGGG 27760 <--AluY
AGGAGTCGAAAGCGGAGTCCAGGCTCCGGGCGGGGTTCAGTCCCATCTCCTCAAGGAGGTGGCAGCCGCGTCCGTTCTTT 27840 27919A/G GGGACATTTGCTGCTTCTCCCTCAGGGCAAAAAACAAAGCCGTAGCCTGAATGTGACAATCTCACACCTTGTTTTCCTGC 27920 CTTGTTGCTTGACAATATTTCCCCGTGCTCTTCATGCACTTGGAAAGTCTACGGTACGGATGGAGTGTGCAGCTCACTCA 28000 GCACCCTACGGCCGGGGGCAGTTCCGGAGCCAAACAGCACCCCGCCCCCAAATCCACATCCACCAGCAGCCTCAGAATGG 28080 GACCCTACCCAGAATTAAGATCTCTGCGGATGCAGCTGGTGAAGATGAGGTCAGGGTGGAGCAGAGTGGGCCTTAAATCC 28160 AACGACCGACCGGTATGTTTACGACAGAAAGAAAGAGATGTGGGGCAGACACAGAAGAGAAGGGGACCTTGCTTGGAAAT 28240 GGAGTTTTTGCAGATGTAGTTAAGATGAGGTTACCCTGGATTTATCTAGGTGGCCCCTAAATGCAATGACAGGTGTCCTA 28320 GGAGACACAGACACAGAGAAGGCCACGTGGAGATGGAGGCAGAGACTGGAGTGGTGCGGCCACAAGCCCAGGGACGCCTTG 28400 GAGCCCCCAGGAGCTGGGAGAGGCAGGAAGGACCCTCACCTAGAGCCTCCAGAAGGAACTGGATCCAACTGAAGTGAACT 28480 GAACTGTGGCCCCCCACAAAAGACCTGTCCATGTATTGATCATCTGGAACCTGTGAATGGGACATTATTTGGAAACAGGG 28560 TCTCTGCAGATGTGATTAAGTGGAAGATCTGAAATGAGATCATCCTGGATTAGGGTGGACCCTAAATCTAATGACTACTG 28640 TCCTTCTAAGAGACAGAAGAGGAGACACAGACACAGAGAAGAAGGCCACAGACAGAGGCAGAGACTGGAGTGATGCGGCC 28720 ACAAGCCCAGGGACGCCTGGAGCCCCCAGGAGCTGGGAGAGGCAGGAAGGACCCTCCCCTAGAGCCTCCAGAAGGAACTG 28800 GATCCAACTGAAGTGAACTGAACTGTGGCCCCCCACAAAAGACCTGTCCATGTATTGATCATCTGGAACCTGTGAATGGG 28880

28881
28961
29041
29121
29201
29281
29361
29441

29521
29601
29681

ACATTATTTGGAAACAGGGTCTCTGCAGATGTGATTAAGTGGAAGATCTGGAGATGAGATCATCCTGGATTAGGGTGGAC 28960 CCTAAATCTAATGACAGGTGTCCTTCTAAGAGACAGAAGAGGAGACACAGACACAGAGGAGGAGGCCACAGACAGAGGCA 29040 GAGACTGGAGTGATGCGGCCACAAGCCCAGGGACGCCTGGAGCCCCCAGGAGCTGGGAGAGGCAGGAAGGACCCTCCCCT 29120 AGAGCCTCCAGAAGGAACTGGATCCAACTGAAGTGAACTGAACTGTGGCCCCCCACAAAAGACCTGTCCATGTATTGATC 29200 ATCTGGAACCTGTGAATGGGACATTATTTGGAAACAGGGTCTCTGCAGATGTGATTAAGTGGAAGATCTGAAATGAGATC 29280 ATCCTGGATTAGGGTGGACCCTAAATCTAATGACTACTGTCCTTCTAAGAGACAGAAGAGGAGACACAGACACAGAGGAG 29360 AAGGCCACAGACAGAGGCAGAGACTGGAGTGATGCGGCCTCAAGCCCAGGGACGCCTGGAGCCCCCAGGAGCTGGGAGAG 29440 GCAGGAAGGACCCTCCCCTAGAGTCTGTGGTCAGCTCCCGCTTTCTGGAACTGTGGTAGAGCTGGTTCCTGTGGTTTCTG 29520 <--STIRs
GCCCCCATTTGTGGCCCCTTTTGCAGTGACAGCCTCAGGACCCCACAGGTGTTTCCAGGGTCTCGGTGTTCATCGATCCT 29600 CAGGCATCACCGTGCTGTGTCCGCCACTGCCCGCACGTCTGTGACACGAACGGTCACTCTGTCTGTCAGGGGTCTGTGAC 29680 GTGGAGCAGGTGCACCCGGGAACACGCTTATGTGTTCAGGCACATAAGCCGGGAGAGGACTGACGGCCGACTTCCTATTT 29760 CTACACGGGCTCACGGCGGCAAGAACATGGCCCTGAGTGTCGGTGAGGCTGGGGCAACCGCTCAGCCTCTCGCCCGGGGA 29840 NMS6
CGTGGGAGGCTTGGGGGACACTAAGTCTGAGCCCCAGGAGGCAGTTGTTGTTCCGGCCCCGAGTTGGGTGGGTGICTGAC 29920
 $\begin{array}{ll}\text { SAGTGGGTGTCCGAGGGCCCGGCCCCTGGGCTGAGTGGGTGTCCGAGGGCCCGACCCCTGGCTGTGTGTGTCTGAGTGCC } & 30080 \\ \text { CAGCCCCCGTGCCGAATGGGTGTCEGAGCACCCGATCCCCGGCCGTCCU2ZGCTCACEGAGTGGGCCACGTCTTCCAGGG } & 30160\end{array}$ FEGCGGAGAAGGACTCGATGAGGCCGTGCGGCAGCTGGGAGAGGAAGCCGATGGTGTCCACGTACAGGACGGTCATGCG1 30240 30381C/T

GCGCCGCAGCCAGGCCCTCCAAATGGAGACCACGGCACCCTCTGGGGGGCCGCACCCCGGGCTACACGGTCCCTGAGCTC 30480 CTCGGGCACCCCGGGCCAGACCCGACGCGTGGGACAAAGCCACCGTCGCTGTTCTCGGGCCGATGGAGCGGGGCCGCCGT 30560 NMS 7
 CCGGGAAAGGCACAAGTGCGGGCGGTGCCGCGGAGGGTCTGCGGGGGCCCGGGGCCTGCTCCCGCTCCAGCATCTGGGGG 31760 CCCGGCTGCTTTCCCCAGCAGCGGCCCCGACACGTCCTGTTCCATGAGAAAGGGCTCTGCTCGGCGGAACGGGATCTCGC 31840 CTCCGGGTGTCCACCCTGTGAGGTCAACGAGGGCTTCCCGTGACTCGGGGAGAAAGTAAAGGCCAGATCACTACGGAGGC 31920 CTCCGAGCGGGACACGGCCCAGGACGTCATCGTGAGCGGGCTCAGTGGGGCCCCTTTCACATCCGAAGTCCCAGAACCTG 32000 GGAATGGGACCTGATTTGGAAATATGGTCTTTGTAGGGTCTCAAAATATCACCCTAGGTTAGGGTGGGCCCTAAGGCAAC 32080 GACCTGTGTCCTTCTAAGAAGCAGAGACCGGAGTGACGAGGCCACAAGCCTGGGACGCCTGGAGCCCCCAGGAGCTGGGA 32160 GAGGCAGGAAGGACCCTGCCCTAGAGCCTCCAGAGGGAAGTGGATACAAGTGTAGCGGATTGAACTGTGGTCCTCCTAAA 32240

32258A/G

AGATCTGTCCACATCCTAATTCCCAGAACTGGTCAATGGGACCTTATTTGAAAATAAGGTGTTTGTCATAACTGAAGTAT 32320 CTAGAGATGCGACGATTCTGGATTAGGGCGGGCCATAAATGCAATGACATGTGTCCTTGTAAGAGACAGAAGAGGAGACA 32400 $32451 \mathrm{C} / \mathrm{T}$
CAGACACAGAGGAGGAGGCCACGTGGAGACGGAGGCAGAGACTGGAGTGACGCGGCCACAAACCCAGGGATGCCTGGAGC 32480 CCCCAGGAGCTGGGAGAGGCAGAAGGAGCCCCTGGAGGGAGCGCAGCCCTGTCCTCACCTTGATCTCAGAGTTTTGGTGT 32560 CCAGGAGGGGAGAGCATAGATCTCTGCTGTTTAAATCCCCAGTTTGTGGCTACTGATTTAGGCAAAACCTCCAAAAACCA 32640 CCAGCATCTCCTATCTCCTCAAATGCTACCAGACGGAGCCCCCAGCCAGCCCCCACCCTGTTGGAATCTTCCAGGGCTGA 32720 GGGTCTCCTATGTCCTCAAATGCTACCAGGAGACGGAGACCCCAGCTGGACCCCACCCTGTTGGAATCTTCCAGGGCTGA 32800 GAAGGGTGGCTGCCGCTGACAACCGCATTCCGAGGACCCTCTGGGACGCCGCGCCCGGCCCGAGTTAC TTGACCCCATCX 32880 TTTCAAGTTCGACC
GGTCTCTGCGGACGCTGTCTCCCTCCCGGCAGAGGTCGAGGTGAAGGTGAAGGGGGCACTGAGCTGGGCCTCTGGGCCGA 33040 AGGGAGGAGCCGCTGTTGCGGCCCCGCTCCGCGTGTAGCTCACACACTGTGAGTGACGCGTGTCCCGGGCCGAGGGGACC 33120 TGCCTAGTGGGGAGCCGGGGGCAGGCAGTGGGGGCAACGGGCCCCGGAGAGAGAGCCCACACGGGGCTTTTCTTCTTTTT 33200 HMWHPTHYMGACGGAGTCTCGCTCTGTCACCCAGGCTGGAGTGCAGTGGCGTGATCTCGGCTCACTGCAAGCTCCACC 33280 Overlap with H22-->
TCTGGGGTTCACGCCATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTTCAGGCGCCCGCCACCACGCCCGGCTAATM 33360 FTTTTCTTGTATTTTTAGTACAGACGGGGTTCACCGTGTTGGCCAGGATGGTCTCGATCTCGTGACCTCGM........ 33440

References

Abecasis, G. R., Noguchi, E., Heinzmann, A., Traherne, J. A., Bhattacharyya, S., Leaves, N. I., Anderson, G. G., Zhang, Y., Lench, N. J., Carey, A., Cardon, L. R., Moffatt, M. F. and Cookson, W. O. (2001). Extent and distribution of linkage disequilibrium in three genomic regions. Am. J. Hum. Genet. 68: 191-197.

Adachi, N. and Lieber, M. R. (2002). Bidirectional gene organization: a common architectural feature of the human genome. Cell 109: 807-809.

Agarwal, S. and Roeder, G. S. (2000). Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102: 245-255.

Alani, E., Thresher, R., Griffith, J. D. and Kolodner, R. D. (1992). Characterization of DNA-binding and strandexchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. J. Mol. Biol. 227: 54-71.

Allers, T. and Lichten, M. (2001). Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106: 47-57.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410.

Anderson, L. K., Hooker, K. D. and Stack, S. M. (2001). The distribution of early recombination nodules on zygotene bivalents from plants. Genetics 159: 1259-1269.

Anderson, L. K., Offenberg, H. H., Verkuijlen, W. M. and Heyting, C. (1997). RecA-like proteins are components of early meiotic nodules in lily. Proc. Natl. Acad. Sci. USA 94: 6868-6873.

Anderson, R. A., Boronenkov, I. V., Doughman, S. D., Kunz, J. and Loijens, J. C. (1999). Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274: 9907-9910.

Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

Ardlie, K., Liu-Cordero, S. N., Eberle, M. A., Daly, M., Barrett, J., Winchester, E., Lander, E. S. and Kruglyak, L. (2001). Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. Am. J. Hum. Genet. 69: 582-589.

Ardlie, K. G., Kruglyak, L. and Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3: 299-309.

Armour, J. A., Harris, P. C. and Jeffreys, A. J. (1993). Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. Hum. Mol. Genet. 2: 1137-1145.

Armour, J. A., Povey, S., Jeremiah, S. and Jeffreys, A. J. (1990). Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics 8: 501-512.

Asherson, P., Parfitt, E., Sargeant, M., Tidmarsh, S., Buckland, P., Taylor, C., Clements, A., Gill, M., McGuffin, P. and Owen, M. (1992). No evidence for a pseudoautosomal locus for schizophrenia. Linkage analysis of multiply affected families. Br. J. Psychiatry 161: 63-68.

Ashley, T. (1994). Mammalian meiotic recombination: a reexamination. Hum. Genet. 94: 587-593.
Badge, R. M., Yardley, J., Jeffreys, A. J. and Armour, J. A. (2000). Crossover breakpoint mapping identifies a subtelomeric hotspot for male meiotic recombination. Hum. Mol. Genet. 9: 1239-1244.

Bailis, J. M. and Roeder, G. S. (1998). Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev.. 12: 3551-3563.

Baird, D. M., Jeffreys, A. J. and Royle, N. J. (1995). Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. Embo J. 14: 5433-5443.

Baird, D. M. and Royle, N. J. (1997). Sequences from higher primates orthologous to the human Xp/Yp telomere junction region reveal gross rearrangements and high levels of divergence. Hum. Mol. Genet. 6: 2291-2299.

Baker, S. M., Plug, A. W., Prolla, T. A., Bronner, C. E., Harris, A. C., Yao, X., Christie, D. M., Monell, C., Arnheim, N., Bradley, A., Ashley, T. and Liskay, R. M. (1996). Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 13: 336-342.

Bamshad, M. and Wooding, S. P. (2003). Signatures of natural selection in the human genome. Nat. Rev. Genet. 4: 99-111.

Barlow, A. L. and Hultén, M. A. (1998). Crossing over analysis at pachytene in man. Eur. J. Hum. Genet. 6: 350358.

Bass, H. W., Marshall, W. F., Sedat, J. W., Agard, D. A. and Cande, W. Z. (1997). Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J. Cell. Biol. 137: 5-18.

Batzer, M. A. and Deininger, P. L. (2002). Alu repeats and human genomic diversity. Nat. Rev. Genet. 3: 370-379.
Batzer, M. A., Deininger, P. L., Hellmann-Blumberg, U., Jurka, J., Labuda, D., Rubin, C. M., Schmid, C. W., Zietkiewicz, E. and Zuckerkandl, E. (1996). Standardized nomenclature for Alu repeats. J. Mol. Evol. 42: 3-6.

Batzer, M. A., Rubin, C. M., Hellmann-Blumberg, U., Alegria-Hartman, M., Leeflang, E. P., Stern, J. D., Bazan, H. A., Shaikh, T. H., Deininger, P. L. and Schmid, C. W. (1995). Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J. Mol. Biol. 247: 418-427.

Baudat, F., Manova, K., Yuen, J. P., Jasin, M. and Keeney, S. (2000). Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spoll. Mol. Cell 6: 989-998.

Baudat, F. and Nicolas, A. (1997). Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. USA 94: 5213-5218.

Bell, G. I., Selby, M. J. and Rutter, W. J. (1982). The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31-35.

Benson, F. E., Baumann, P. and West, S. C. (1998). Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391: 401-404.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.. 27: 573-580.
Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A. and Forterre, P. (1997). An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386: 414-417.

Bernardi, G. (1989). The isochore organization of the human genome. Ann. Rev. Genet. 23: 637-661.
Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature 361: 315-325.
Berridge, M. J. and Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321.

Berridge, M. J. and Irvine, R. F. (1989). Inositol phosphates and cell signalling. Nature 341: 197-205.
Bickel, S. E., Wyman, D. W. and Orr-Weaver, T. L. (1997). Mutational analysis of the Drosophila sister-chromatid cohesion protein ORD and its role in the maintenance of centromeric cohesion. Genetics 146: 1319-1331.

Bishop, D. K., Park, D., Xu, L. and Kleckner, N. (1992). DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439-456.

Blumental-Perry, A., Zenfirth, D., Klein, S., Onn, I. and Simchen, G. (2000). DNA motif associated with meiotic double-strand break regions in Saccharomyces cerevisiae. Embo Reports 1: 232-238.

Bois, P. and Jeffreys, A. J. (1999). Minisatellite instability and germline mutation. Cell. Mol. Life Sci. 55: 16361648.

Borde, V., Goldman, A. S. and Lichten, M. (2000). Direct coupling between meiotic DNA replication and recombination initiation. Science 290: 806-809.

Borde, V., Wu, T. C. and Lichten, M. (1999). Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell Biol. 19: 4832-4842.

Britten, R. J., Baron, W. F., Stout, D. B. and Davidson, E. H. (1988). Sources and evolution of human Alu repeated sequences. Proc. Natl. Acad. Sci. USA 85: 4770-4774.

Broman, K. W., Murray, J. C., Sheffield, V. C., White, R. L. and Weber, J. L. (1998). Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63: 861-869.

Brown, W. R. (1988). A physical map of the human pseudoautosomal region. Embo J. 7: 2377-2385.
Brown, W. R. (1989). Molecular cloning of human telomeres in yeast. Nature 338: 774-776.
Buard, J., Bourdet, A., Yardley, J., Dubrova, Y. and Jeffreys, A. J. (1998). Influences of array size and homogeneity on minisatellite mutation. Embo J. 17: 3495-3502.

Buard, J., Collick, A., Brown, J. and Jeffreys, A. J. (2000). Somatic versus germline mutation processes at minisatellite CEB1 (D2S90) in humans and transgenic mice. Genomics 65: 95-103.

Buard, J. and Vergnaud, G. (1994). Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). Embo J 13: 3203-3210.

Buresi, C., Desmarais, E., Vigneron, S., Lamarti, H., Smaoui, N., Cambien, F. and Roizes, G. (1996). Structural analysis of the minisatellite present at the 3' end of the human apolipoprotein B gene: new definition of the alleles and evolutionary implications. Hum. Mol. Genet. 5: 61-68.

Burgoyne, P. S. (1982). Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum. Genet. 61: 85-90.

Butler, Y. X., Abhayawardhane, Y. and Stewart, G. C. (1993). Amplification of the Bacillus subtilis maf gene results in arrested septum formation. J. Bacteriol. 175: 3139-3145.

Cañestro, C., Gonzalez-Duarte, R. and Albalat, R. (2002). Minisatellite instability at the Adh locus reveals somatic polymorphism in Amphioxus. Nucleic Acids Res.. 30: 2871-2876.

Cao, L., Alani, E. and Kleckner, N. (1990). A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61: 1089-1 101.

Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie, K., Patil, N., Shaw, N., Lane, C. R., Lim, E. P., Kalyanaraman, N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A., Warrington, J., Lipshutz, R., Daley, G. Q. and Lander, E. S. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22: 231-238.

Carpenter, A. T. (1975). Electron microscopy of meiosis in Drosophila melanogaster females: II. The recombination nodule - a recombination-associated structure at pachytene? Proc. Natl. Acad. Sci. USA 72: 3186-3189.

Carpenter, A. T. (1987). Gene conversion, recombination nodules, and the initiation of meiotic synapsis. Bioessays 6: 232-236.

Carrington, M., Stephens, J. C., Klitz, W., Begovich, A. B., Erlich, H. A. and Mann, D. (1994). Major histocompatibility complex class II haplotypes and linkage disequilibrium values observed in the CEPH families. Hum. Immunol. 41: 234-240.
C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012-2018.

Cervantes, M. D., Farah, J. A. and Smith, G. R. (2000). Meiotic DNA breaks associated with recombination in S. pombe. Mol. Cell 5: 883-888.

Chakraborty, R., Kimmel, M., Stivers, D. N., Davison, L. J. and Deka, R. (1997). Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl. Acad. Sci. USA 94: 1041-1046.

Chakravarti, A. (2001). To a future of genetic medicine. Nature 409: 822-823.
Chakravarti, A., Buetow, K. H., Antonarakis, S. E., Waber, P. G., Boehm, C. D. and Kazazian, H. H. (1984). Nonuniform recombination within the human beta-globin gene cluster. Am. J. Hum. Genet. 36: 1239-1258.

Chu, S. and Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1: 685-696.

Chua, P. R. and Roeder, G. S. (1997). Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev.. 11: 1786-1800.

Chua, P. R. and Roeder, G. S. (1998). Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93: 349-359.

Ciccodicola, A., D'Esposito, M., Esposito, T., Gianfrancesco, F., Migliaccio, C., Miano, M. G., Matarazzo, M. R., Vacca, M., Franze, A., Cuccurese, M., Cocchia, M., Curci, A., Terracciano, A., Torino, A., Cocchia, S., Mercadante, G., Pannone, E., Archidiacono, N., Rocchi, M., Schlessinger, D. and D'Urso, M. (2000). Differentially regulated and evolved genes in the fully sequenced $\mathrm{Xq} / \mathrm{Yq}$ pseudoautosomal region. Hum. Mol. Genet. 9: 395-401.

Cohen, P. T. (1997). Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem. Sci. 22: 245-251.

Collinge, J., Delisi, L. E., Boccio, A., Johnstone, E. C., Lane, A., Larkin, C., Leach, M., Lofthouse, R., Owen, F., and Poulter, M. (1991). Evidence for a pseudoautosomal locus for schizophrenia using the method of affected sibling pairs. Br. J. Psychiatry 158: 624-629.

Collins, A. (2000). Linkage disequilibrium in maps of SNPs and other markers. GeneScreen 1: 59-61.
Conne, B., Stutz, A. and Vassalli, J. D. (2000). The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology? Nat. Med. 6: 637-641.

Cooke, H. J., Brown, W. R. and Rappold, G. A. (1985). Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317: 687-692.

Cooke, H. J. and Smith, B. A. (1986). Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb. Symp. Quant. Biol. 51: 213-219.

Cozens, A. L., Runswick, M. J. and Walker, J. E. (1989). DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J. Mol. Biol. 206: 261-280.

Cruciani, F., Bernardini, L., Santolamazza, P., Modiano, D., Torroni, A. and Scozzari, R. (2003). Linkage disequilibrium analysis of the human adenosine deaminase (ada) gene provides evidence for a lack of correlation between hot spots of equal and unequal homologous recombination. Genomics 82: 20-33.

Cullen, M., Erlich, H., Klitz, W. and Carrington, M. (1995). Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am. J. Hum. Genet. 56: 1350-1358.

Cullen, M., Noble, J., Erlich, H., Thorpe, K., Beck, S., Klitz, W., Trowsdale, J. and Carrington, M. (1997). Characterization of recombination in the HLA class II region. Am. J. Hum. Genet. 60: 397-407.

Cullen, M., Perfetto, S. P., Klitz, W., Nelson, G. and Carrington, M. (2002). High-resolution patterns of meiotic recombination across the human major histocompatibility complex. Am. J. Hum. Genet. 71: 759-776.
d'Amato, T., Campion, D., Gorwood, P., Jay, M., Sabate, O., Petit, C., Abbar, M., Malafosse, A., Leboyer, M., and Hillaire, D. (1992). Evidence for a pseudoautosomal locus for schizophrenia. II: Replication of a non-random segregation of alleles at the DXYS 14 locus. Br. J. Psychiatry 161: 59-62.

D'Esposito, M., Ciccodicola, A., Gianfrancesco, F., Esposito, T., Flagiello, L., Mazzarella, R., Schlessinger, D. and D'Urso, M. (1996). A synaptobrevin-like gene in the Xq28 pseudoautosomal region undergoes X inactivation. Nat. Genet. 13: 227-229.

Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J. and Lander, E. S. (2001). High-resolution haplotype structure in the human genome. Nat. Genet. 29: 229-232.

Dawson, E., Abecasis, G. R., Bumpstead, S., Chen, Y., Hunt, S., Beare, D. M., Pabial, J., Dibling, T., Tinsley, E., Kirby, S., Carter, D., Papaspyridonos, M., Livingstone, S., Ganske, R., Lohmussaar, E., Zernant, J., Tonisson, N., Remm, M., Magi, R., Puurand, T., Vilo, J., Kurg, A., Rice, K., Deloukas, P., Mott, R., Metspalu, A., Bentley, D. R., Cardon, L. R. and Dunham, I. (2002). A first-generation linkage disequilibrium map of human chromosome 22. Nature 418: 544-548.
de Massy, B. and Nicolas, A. (1993). The control in cis of the position and the amount of the ARG4 meiotic doublestrand break of Saccharomyces cerevisiae. Embo J. 12: 1459-1466.
de Massy, B., Rocco, V. and Nicolas, A. (1995). The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. Embo J. 14: 4589-4598.

Dernburg, A. F., McDonald, K., Moulder, G., Barstead, R., Dresser, M. and Villeneuve, A. M. (1998). Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: 387-398.

Detloff, P., White, M. A. and Petes, T. D. (1992). Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics 132: 113-123.

Devlin, B. and Risch, N. (1995). A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29: 311-322.

Devlin, C., Tice-Baldwin, K., Shore, D. and Arndt, K. T. (1991). RAP1 is required for BAS1/BAS2- and GCN4dependent transcription of the yeast HIS4 gene. Mol. Cell Biol. 11: 3642-3651.

Diaz, R. L., Alcid, A. D., Berger, J. M. and Keeney, S. (2002). Identification of residues in yeast Spollp critical for meiotic DNA double-strand break formation. Mol. Cell Biol. 22: 1106-1115.

Dolganov, G. M., Maser, R. S., Novikov, A., Tosto, L., Chong, S., Bressan, D. A. and Petrini, J. H. (1996). Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell Biol. 16: 4832-4841.

Drake, J. W., Charlesworth, B., Charlesworth, D. and Crow, J. F. (1998). Rates of spontaneous mutation. Genetics 148: 1667-1686.

Dubrova, Y. E., Nesterov, V. N., Krouchinsky, N. G., Ostapenko, V. A., Vergnaud, G., Giraudeau, F., Buard, J. and Jeffreys, A. J. (1997). Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident. Mutat. Res. 381: 267-278.

Duncan, B. K. and Miller, J. H. (1980). Mutagenic deamination of cytosine residues in DNA. Nature 287: 560-561.
Dunham, I., Shimizu, N., Roe, B. A., Chissoe, S., et al. ${ }^{\dagger}$ (1999). The DNA sequence of human chromosome 22. Nature 402: 489-495. ${ }^{\dagger}$ see paper for full list of 217 authors

Egel, R. (1995). The synaptonemal complex and the distribution of meiotic recombination events. Trends Genet. 11: 206-208.

Egel-Mitani, M., Olson, L. W. and Egel, R. (1982). Meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas 97: 179-187.

Eijpe, M., Heyting, C., Gross, B. and Jessberger, R. (2000). Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J. Cell Sci. 113: 673-682.

Ellis, N. A., Goodfellow, P. J., Pym, B., Smith, M., Palmer, M., Frischauf, A. M. and Goodfellow, P. N. (1989). The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature 337 : 81-84.

Ellis, N. A., Tippett, P., Petty, A., Reid, M., Weller, P. A., Ye, T. Z., German, J., Goodfellow, P. N., Thomas, S. and Banting, G. (1994a). PBDX is the XG blood group gene. Nat. Genet. 8: 285-290.

Ellis, N. A., Ye, T. Z., Patton, S., German, J., Goodfellow, P. N. and Weller, P. (1994b). Cloning of PBDX, an MIC2-related gene that spans the pseudoautosomal boundary on chromosome Xp. Nat. Genet. 6(4): 394-400.

Ellison, J. W., Ramos, C., Yen, P. H. and Shapiro, L. J. (1992). Structure and expression of the human pseudoautosomal gene XE7. Hum. Mol. Genet. 1: 691-696.

Engebrecht, J., Hirsch, J. and Roeder, G. S. (1990). Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell 62: 927-937.

Engebrecht, J. and Roeder, G. S. (1990). MER1, a yeast gene required for chromosome pairing and genetic recombination, is induced in meiosis. Mol. Cell Biol. 10: 2379-2389.

Esposito, T., Gianfrancesco, F., Ciccodicola, A., Montanini, L., Mumm, S., D'Urso, M. and Forabosco, A. (1999). A novel pseudoautosomal human gene encodes a putative protein similar to Ac-like transposases. Hum. Mol. Genet. 8 : 61-67.

Essen, L. O., Perisic, O., Cheung, R., Katan, M. and Williams, R. L. (1996). Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380: 595-602.

Fan, Q. Q. and Petes, T. D. (1996). Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol. Cell Biol. 16: 2037-2043.

Fan, Q. Q., Xu, F., White, M. A. and Petes, T. D. (1997). Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae. Genetics 145: 661-670.

Ferguson, K. M., Lemmon, M. A., Sigler, P. B. and Schlessinger, J. (1995). Scratching the surface with the PH domain. Nat. Struct. Biol. 2: 715-718.

Feunteun, J. (1998). Breast cancer and genetic instability: the molecules behind the scenes. Mol. Med. Today 4: 263267.

Fields, C., Adams, M. D., White, O. and Venter, J. C. (1994). How many genes in the human genome? Nat. Genet. 7: 345-346.

Flint, J., Bates, G. P., Clark, K., Dorman, A., Willingham, D., Roe, B. A., Micklem, G., Higgs, D. R. and Louis, E. J. (1997a). Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum. Mol. Genet. 6: 1305-1313.

Flint, J., Thomas, K., Micklem, G., Raynham, H., Clark, K., Doggett, N. A., King, A. and Higgs, D. R. (1997b). The relationship between chromosome structure and function at a human telomeric region. Nat. Genet. 15: 252-257.

Fox, M. E., Virgin, J. B., Metzger, J. and Smith, G. R. (1997). Position- and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc. Natl. Acad. Sci. USA 94: 7446-7451.

Freije, D., Helms, C., Watson, M. S. and Donis-Keller, H. (1992). Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258: 1784-1787.

Frisse, L., Hudson, R. R., Bartoszewicz, A., Wall, J. D., Donfack, J. and Di Rienzo, A. (2001). Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am. J. Hum. Genet. 69: 831-843.

Fu, Y. X. and Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133: 693-709.
Fujitani, Y., Mori, S. and Kobayashi, I. (2002). A reaction-diffusion model for interference in meiotic crossing over. Genetics 161: 365-372.

Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J. and Altshuler, D. (2002). The structure of haplotype blocks in the human genome. Science 296: 2225-2229.

Gaudieri, S., Dawkins, R. L., Habara, K., Kulski, J. K. and Gojobori, T. (2000). SNP profile within the human major histocompatibility complex reveals an extreme and interrupted level of nucleotide diversity. Genome Res. 10: 15791586.

Gelin, C., Aubrit, F., Phalipon, A., Raynal, B., Cole, S., Kaczorek, M. and Bernard, A. (1989). The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. Embo J. 8: 3253-3259.

Gerton, J. L., DeRisi, J., Shroff, R., Lichten, M., Brown, P. O. and Petes, T. D. (2000). Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97: 11383-11390.

Gianfrancesco, F., Esposito, T., Montanini, L., Ciccodicola, A., Mumm, S., Mazzarella, R., Rao, E., Giglio, S., Rappold, G. and Forabosco, A. (1998). A novel pseudoautosomal gene encoding a putative GTP-binding protein resides in the vicinity of the $\mathrm{Xp} / \mathrm{Yp}$ telomere. Hum. Mol. Genet. 7: 407-414.

Gianfrancesco, F., Sanges, R., Esposito, T., Tempesta, S., Rao, E., Rappold, G., Archidiacono, N., Graves, J. A., Forabosco, A. and D'Urso, M. (2001). Differential divergence of three human pseudoautosomal genes and their mouse homologs: implications for sex chromosome evolution. Genome Res. 11: 2095-2100.

Gilbertson, L. A. and Stahl, F. W. (1996). A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics 144: 27-41.

Goldman, A. S. and Hultén, M. A. (1993). Meiotic analysis by FISH of a human male 46,XY,t(15;20)(q11.2;q11.2) translocation heterozygote: quadrivalent configuration, orientation and first meiotic segregation. Chromosoma 102: 102-111.

Goldman, A. S. and Lichten, M. (2000). Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis. Proc. Natl. Acad. Sci. USA 97: 9537-9542.

Goodfellow, P. J., Darling, S. M., Thomas, N. S. and Goodfellow, P. N. (1986). A pseudoautosomal gene in man. Science 234: 740-743.

Gough, N. M., Gearing, D. P., Nicola, N. A., Baker, E., Pritchard, M., Callen, D. F. and Sutherland, G. R. (1990). Localization of the human GM-CSF receptor gene to the X-Y pseudoautosomal region. Nature 345: 734-736.

Graves, J. A., Wakefield, M. J. and Toder, R. (1998). The origin and evolution of the pseudoautosomal regions of human sex chromosomes. Hum. Mol. Genet. 7: 1991-1996.

Gray, I. C., Campbell, D. A. and Spurr, N. K. (2000). Single nucleotide polymorphisms as tools in human genetics. Hum. Mol. Genet. 9: 2403-2408.

Grelon, M., Vezon, D., Gendrot, G. and Pelletier, G. (2001). AtSPO11-1 is necessary for efficient meiotic recombination in plants. Embo J 20: 589-600.

Griffith, O. H. and Ryan, M. (1999). Bacterial phosphatidylinositol-specific phospholipase C: structure, function, and interaction with lipids. Biochim. Biophys. Acta 1441: 237-254.

Grushcow, J. M., Holzen, T. M., Park, K. J., Weinert, T., Lichten, M. and Bishop, D. K. (1999). Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153: 607-620.

Guacci, V., Koshland, D. and Strunnikov, A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47-57.

Guillon, H. and de Massy, B. (2002). An initiation site for meiotic crossing-over and gene conversion in the mouse. Nat. Genet. 32 296-299.

Guo, M. and Mount, S. M. (1995). Localization of sequences required for size-specific splicing of a small Drosophila intron in vitro. J. Mol. Biol. 253: 426-437.

Gyapay, G., Morissette, J., Vignal, A., Dib, C., Fizames, C., Millasseau, P., Marc, S., Bernardi, G., Lathrop, M. and Weissenbach, J. (1994). The 1993-94 Genethon human genetic linkage map. Nat. Genet. 7: 246-339.

Haber, J. E. (2000). Partners and pathwaysrepairing a double-strand break. Trends Genet. 16: 259-264.
Hahn, J. H., Kim, M. K., Choi, E. Y., Kim, S. H., Sohn, H. W., Ham, D. I., Chung, D. H., Kim, T. J., Lee, W. J., Park, C. K., Ree, H. J. and Park, S. H. (1997). CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J. Immunol. 159: 22502258.

Halushka, M. K., Fan, J. B., Bentley, K., Hsie, L., Shen, N., Weder, A., Cooper, R., Lipshutz, R. and Chakravarti, A. (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat. Genet. 22: 239-247.

Harrison, P. M., Hegyi, H., Balasubramanian, S., Luscombe, N. M., Bertone, P., Echols, N., Johnson, T. and Gerstein, M. (2002). Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res. 12: 272-280.

Hassold, T. J., Sherman, S. L., Pettay, D., Page, D. C. and Jacobs, P. A. (1991). XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am. J. Hum. Genet. 49: 253-260.

Hedrick, P. W. (1987). Gametic disequilibrium measures: proceed with caution. Genetics 117: 331-341.
Henke, A. and Rappold, G. (1993). PA2.1 detects a Taql polymorphism in the pseudoautosomal region. Hum. Mol. Genet. 2: 339.

Herickhoff, L., Stack, S. and Sherman, J. (1993). The relationship between synapsis, recombination nodules and chiasmata in tomato translocation heterozygotes. Heredity 71: 373-385.

Higgs, D. R., Vickers, M. A., Wilkie, A. O., Pretorius, I. M., Jarman, A. P. and Weatherall, D. J. (1989). A review of the molecular genetics of the human alpha-globin gene cluster. Blood 73: 1081-1104.

Hofmann, S. L. and Majerus, P. W. (1982). Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands. J. Biol. Chem. 257: 6461-6469.

Hogenesch, J. B., Ching, K. A., Batalov, S., Su, A. I., Walker, J. R., Zhou, Y., Kay, S. A., Schultz, P. G. and Cooke, M. P. (2001). A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes. Cell 106: 413-415.

Hollingsworth, N. M. and Byers, B. (1989). HOP1: a yeast meiotic pairing gene. Genetics 121: 445-462.
Hollingsworth, N. M., Goetsch, L. and Byers, B. (1990). The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61: 73-84.

Hollingsworth, N. M., Ponte, L. and Halsey, C. (1995). MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev.. 9: 1728-1739.

Holmquist, G. P. (1992). Chromosome bands, their chromatin flavors, and their functional features. Am. J. Hum. Genet. 51(1): 17-37.

Hsu, K., Chang, D. Y. and Maraia, R. J. (1995). Human signal recognition particle (SRP) Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Characterization of human SRP9. J. Biol. Chem. 270: 10179-10186.

Hubert, R., MacDonald, M., Gusella, J. and Arnheim, N. (1994). High resolution localization of recombination hot spots using sperm typing. Nat. Genet. 7: 420-424.

Hultén, M. (1974). Chiasma distribution at diakinesis in the normal human male. Hereditas 76: 55-78.
Hultén, M., Lawrie, N. M. and Laurie, D. A. (1990). Chiasma-based genetic maps of chromosome 21. Am. J. Med. Genet. Suppl. 7: 148-154.

Hunter, N. and Borts, R. H. (1997). Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 11: 1573-1582.

Hunter, N. and Kleckner, N. (2001). The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106: 59-70.

Inglehearn, C. F. and Cooke, H. J. (1990). A VNTR immediately adjacent to the human pseudoautosomal telomere. Nucleic Acids Res. 18: 471-476.

International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921.

Jansen, R. P. (2001). mRNA localization: message on the move. Nat. Rev. Mol. Cell Biol. 2: 247-256.
Jeffreys, A. J., Barber, R., Bois, P., Buard, J., Dubrova, Y. E., Grant, G., Hollies, C. R., May, C. A., Neumann, R., Panayi, M., Ritchie, A. E., Shone, A. C., Signer, E., Stead, J. D. and Tamaki, K. (1999). Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis 20: 1665-1675.

Jeffreys, A. J., Bois, P., Buard, J., Collick, A., Dubrova, Y., Hollies, C. R., May, C. A., Murray, J., Neil, D. L., Neumann, R., Stead, J. D., Tamaki, K. and Yardley, J. (1997a). Spontaneous and induced minisatellite instability. Electrophoresis 18: 1501-1511.

Jeffreys, A. J., Kauppi, L. and Neumann, R. (2001). Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29: 217-222.

Jeffreys, A. J., MacLeod, A., Tamaki, K., Neil, D. L. and Monckton, D. G. (1991). Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204-209.

Jeffreys, A. J., Murray, J. and Neumann, R. (1998a). High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2: 267-273.

Jeffreys, A. J., Neil, D. L. and Neumann, R. (1998b). Repeat instability at human minisatellites arising from meiotic recombination. Embo J. 17: 4147-4157.

Jeffreys, A. J. and Neumann, R. (1997b). Somatic mutation processes at a human minisatellite. Hum. Mol. Genet. 6(1): 129-32; 134-6.

Jeffreys, A. J. and Neumann, R. (2002). Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat. Genet. 31: 267-271.

Jeffreys, A. J., Neumann, R. and Wilson, V. (1990). Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell 60: 473-485.

Jeffreys, A. J., Ritchie, A. and Neumann, R. (2000). High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9: 725-733.

Jeffreys, A. J., Royle, N. J., Wilson, V. and Wong, Z. (1988). Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278-281.

Jeffreys, A. J., Tamaki, K., MacLeod, A., Monckton, D. G., Neil, D. L. and Armour, J. A. (1994). Complex gene conversion events in germline mutation at human minisatellites. Nat. Genet. 6: 136-145.

Jeffreys, A. J., Wilson, V. and Thein, S. L. (1985). Individual-specific 'fingerprints' of human DNA. Nature 316: 7679.

Jobling, M. A., Bouzekri, N. and Taylor, P. G. (1998). Hypervariable digital DNA codes for human paternal lineages: MVR-PCR at the Y-specific minisatellite, MSY1 (DYF155S1). Hum. Mol. Genet. 7: 643-653.

Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J., Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A., Dudbridge, F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C., Clayton, D. G. and Todd, J. A. (2001). Haplotype tagging for the identification of common disease genes. Nat. Genet. 29: 233-237.

Johzuka, K. and Ogawa, H. (1995). Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139(4): 1521-1532.

Jones, G. H. (1984). The control of chiasma distribution. Symp. Soc. Exp. Biol. 38: 293-320.
Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Res. 10: 1435-1444.
Jurka, J. and ZuckerkandI, E. (1991). Free left arms as precursor molecules in the evolution of Alu sequences. J. Mol. Evol. 33: 49-56.

Kaback, D. B., Guacci, V., Barber, D. and Mahon, J. W. (1992). Chromosome size-dependent control of meiotic recombination. Science 256: 228-232.

Kaback, D. B., Steensma, H. Y. and de Jonge, P. (1989). Enhanced meiotic recombination on the smallest chromosome of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86: 3694-3698.

Kadyk, L. C. and Hartwell, L. H. (1992). Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132: 387-402.

Kalsi, G., Curtis, D., Brynjolfsson, J., Butler, R., Sharma, T., Murphy, P., Read, T., Petursson, H. and Gurling, H. M. (1995). Investigation by linkage analysis of the XY pseudoautosomal region in the genetic susceptibility to schizophrenia. Br. J. Psychiatry 167: 390-393.

Kapitonov, V. and Jurka, J. (1996). The age of Alu subfamilies. J. Mol. Evol. 42: 59-65.
Kauppi, L., Sajantila, A. and Jeffreys, A. J. (2003). Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region. Hum. Mol. Genet. 12: 33-40.

Keeney, S. (2001). Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52: 1-53.
Keeney, S., Giroux, C. N. and Kleckner, N. (1997). Meiosis-specific DNA double-strand breaks are catalyzed by Spol1, a member of a widely conserved protein family. Cell 88: 375-384.

Kim, S. H., Choi, E. Y., Shin, Y. K., Kim, T. J., Chung, D. H., Chang, S. I., Kim, N. K. and Park, S. H. (1998). Generation of cells with Hodgkin's and Reed-Sternberg phenotype through downregulation of CD99 (Mic2). Blood 92: 4287-4295.

Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217: 624-626.
Kimura, M. (1985). Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, U.K.

Kimura, M. and Crow, J. F. (1964). The Number of Alleles That Can Be Maintained in a Finite Population. Genetics 49: 725-738.

Kirkpatrick, D. T., Fan, Q. and Petes, T. D. (1999a). Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain. Genetics 152: 101-115.

Kirkpatrick, D. T., Wang, Y. H., Dominska, M., Griffith, J. D. and Petes, T. D. (1999b). Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol. Cell Biol. 19: 7661-7771.

Kjeldgaard, M., Nyborg, J. and Clark, B. F. (1996). The GTP binding motif: variations on a theme. Faseb J. 10: 1347-1368.

Klein, F., Mahr, P., Galova, M., Buonomo, S. B., Michaelis, C., Nairz, K. and Nasmyth, K. (1999). A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98 : 91-103.

Klink, A., Wapenaar, M., van Ommen, G. J. and Rappold, G. (1993). AK1 detects a VNTR locus in the pseudoautosomal region. Hum. Mol. Genet. 2: 339.

Kohli, J. and Bahler, J. (1994). Homologous recombination in fission yeast: absence of crossover interference and synaptonemal complex. Experientia 50: 295-306.

Koller, P. C. and Darlington, C. D. (1934). The genetical and mechanical properties of the sex chromosomes. 1. Rattus norvegicus. J. Genet. 29: 159.

Kon, N., Krawchuk, M. D., Warren, B. G., Smith, G. R. and Wahls, W. P. (1997). Transcription factor Mts 1/Mts2 (Atfl/Pcrl, Gad7/Pcrl) activates the M26 meiotic recombination hotspot in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 94: 13765-13770.

Kong, A., Gudbjartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson, B., Sigurdardottir, S., Barnard, J., Hallbeck, B., Masson, G., Shlien, A., Palsson, S. T., Frigge, M. L., Thorgeirsson, T. E., Gulcher, J. R. and Stefansson, K. (2002). A high-resolution recombination map of the human genome. Nat. Genet. 31: 241-247.

Kowalczykowski, S. C. (2000). Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25: 156-165.

Kruglyak, L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139-144.

Laan, M. and Paabo, S. (1997). Demographic history and linkage disequilibrium in human populations. Nat. Genet. 17: 435-438.

Lamb, N. E., Freeman, S. B., Savage-Austin, A., Pettay, D., Taft, L., Hersey, J., Gu, Y., Shen, J., Saker, D., May, K. M., Avramopoulos, D., Petersen, M. B., Hallberg, A., Mikkelsen, M., Hassold, T. J. and Sherman, S. L. (1996). Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14: 400-405.

Lander, E. S. and Schork, N. J. (1994). Genetic dissection of complex traits. Science 265: 2037-2048.
Landry, J. R., Medstrand, P. and Mager, D. L. (2001). Repetitive elements in the 5 ' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency. Genomics 76: 110-116.

Latos-Bielenska, A. and Vogel, W. (1990). Frequency and distribution of chiasmata in Syrian hamster spermatocytes studied by the BrdU antibody technique. Chromosoma 99: 267-272.

Lau, Y. F. and Zhang, J. (2000). Expression analysis of thirty one Y chromosome genes in human prostate cancer. Mol. Carcinog. 27: 308-321.

Laurie, D. A., Hultén, M. and Jones, G. H. (1981). Chiasma frequency and distribution in a sample of human males: chromosomes 1, 2, and 9. Cytogenet. Cell Genet. 31: 153-166.

Laurie, D. A. and Hultén, M. A. (1985). Further studies on chiasma distribution and interference in the human male. Ann. Hum. Genet. 49: 203-214.

Lawrie, N. M., Tease, C. and Hultén, M. A. (1995). Chiasma frequency, distribution and interference maps of mouse autosomes. Chromosoma 104: 308-314.

Le Roux, M. G., Pascal, O., Lostanlen, A., Berard, I., Vergnaud, O. and Moisan, J. P. (1994). VNTR at the DXYS14 locus. Hum. Mol. Genet. 3: 389.

Lee, J. Y. and Orr-Weaver, T. L. (2001). The molecular basis of sister-chromatid cohesion. Annu. Rev. Cell Dev. Biol. 17: 753-777.

Lemmon, M. A., Ferguson, K. M., O'Brien, R., Sigler, P. B. and Schlessinger, J. (1995). Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92: 1047210476.

Lewontin, R. C. (1988). On measures of gametic disequilibrium. Genetics 120: 849-852.
Li, H. H., Gyllensten, U. B., Cui, X. F., Saiki, R. K., Erlich, H. A. and Arnheim, N. (1988). Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335: 414-417.

Li, L. and Hamer, D. H. (1995). Recombination and allelic association in the $\mathrm{Xq} / \mathrm{Yq}$ homology region. Hum. Mol. Genet. 4: 2013-2016.

Li, W. H. and Sadler, L. A. (1991). Low nucleotide diversity in man. Genetics 129: 513-523.
Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S. L. and Quackenbush, J. (2000). Gene index analysis of the human genome estimates approximately 120,000 genes. Nat. Genet. 25: 239-240.

Lichten, M. and Goldman, A. S. (1995). Meiotic recombination hotspots. Annu. Rev. Genet. 29: 423-444.
Lichten, M. J. and Fox, M. S. (1983). Detection of non-homology-containing heteroduplex molecules. Nucleic Acids Res. 11: 3959-3971.

Lien, S., Szyda, J., Schechinger, B., Rappold, G. and Arnheim, N. (2000). Evidence for heterogeneity in recombination in the human pseudoautosomal region: high resolution analysis by sperm typing and radiation-hybrid mapping. Am. J. Hum. Genet. 66: 557-566.

Lin, Y. and Smith, G. R. (1994). Transient, meiosis-induced expression of the rec6 and rec12 genes of Schizosaccharomyces pombe. Genetics 136: 769-779.

Liu, J., Wu, T. C. and Lichten, M. (1995). The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. Embo J. 14: 4599-4608.

Loidl, J., Scherthan, H., Den Dunnen, J. T. and Klein, F. (1995). Morphology of a human-derived YAC in yeast meiosis. Chromosoma 104: 183-188.

Loupart, M. L., Adams, S., Armour, J. A., Walker, R., Brammar, W. and Varley, J. (1995). Loss of heterozygosity on the X chromosome in human breast cancer. Genes Chromosomes Cancer 13: 229-238.

Lydall, D., Nikolsky, Y., Bishop, D. K. and Weinert, T. (1996). A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383: 840-843.

Maguire, M. P., Paredes, A. M. and Riess, R. W. (1991). The desynaptic mutant of maize as a combined defect of synaptonemal complex and chiasma maintenance. Genome 34: 879-887.

Majewski, J. and Ott, J. (2000). GT repeats are associated with recombination on human chromosome 22. Genome Res. 10: 1108-1114.

Malone, R. E., Kim, S., Bullard, S. A., Lundquist, S., Hutchings-Crow, L., Cramton, S., Lutfiyya, L. and Lee, J. (1994). Analysis of a recombination hotspot for gene conversion occurring at the HIS2 gene of Saccharomyces cerevisiae. Genetics 137: 5-18.

Mao-Draayer, Y., Galbraith, A. M., Pittman, D. L., Cool, M. and Malone, R. E. (1996). Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics 144: 71-86.

Maudlin, I. and Evans, E. P. (1980). Chiasma distribution in mouse oocytes during diakinesis. Chromosoma 80: 4956.

May, C. A., Jeffreys, A. J. and Armour, J. A. (1996). Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309). Hum. Mol. Genet. 5: 1823-1833.

May, C. A., Shone, A. C., Kalaydjieva, L., Sajantila, A. and Jeffreys, A. J. (2002). Crossover clustering and rapid decay of linkage disequilibrium in the $\mathrm{Xp} / \mathrm{Yp}$ pseudoautosomal gene SHOX. Nat. Genet. 31: 272-275.

McCullough, A. J. and Berget, S. M. (1997). G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 17: 4562-4571.

McKee, A. H. and Kleckner, N. (1997). A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146: 797-816.

McKim, K. S. and Hayashi-Hagihara, A. (1998). mei-W68 in Drosophila melanogaster encodes a Spoll homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12: 2932-2942.

Michaelis, C., Ciosk, R. and Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91: 35-45.

Mignone, F., Gissi, C., Liuni, S. and Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biol 3: 1-10.
Milatovich, A., Kitamura, T., Miyajima, A. and Francke, U. (1993). Gene for the alpha-subunit of the human interleukin-3 receptor (IL3RA) localized to the X-Y pseudoautosomal region. Am. J. Hum. Genet. 53: 1146-1153.

Miyazaki, W. Y. and Orr-Weaver, T. L. (1992). Sister-chromatid misbehavior in Drosophila ord mutants. Genetics 132: 1047-1061.

Mizuno, K., Hasemi, T., Ubukata, T., Yamada, T., Lehmann, E., Kohli, J., Watanabe, Y., Iino, Y., Yamamoto, M., Fox, M. E., Smith, G. R., Murofushi, H., Shibata, T. and Ohta, K. (2001). Counteracting regulation of chromatin remodeling at a fission yeast cAMP response element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators. Genetics 159: 1467-1478.

Mohrenweiser, H. W., Tsujimoto, S., Gordon, L. and Olsen, A. S. (1998). Regions of sex-specific hypo- and hyperrecombination identified through integration of 180 genetic markers into the metric physical map of human chromosome 19. Genomics 47: 153-162.

Monckton, D. G., Neumann, R., Guram, T., Fretwell, N., Tamaki, K., MacLeod, A. and Jeffreys, A. J. (1994). Minisatellite mutation rate variation associated with a flanking DNA sequence polymorphism. Nat. Genet. 8: 162170.

Morimoto, T., Loh, P. C., Hirai, T., Asai, K., Kobayashi, K., Moriya, S. and Ogasawara, N. (2002). Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148: 3539-3552.

Mortimer, R. K. and Fogel, S. (1969). Genetical interference and gene conversion. Mechanisms in Recombination pp. 263-275. Ed. Grell, R. F. Plenum Press, New York, N.Y.

Morton, N. E., Lindsten, J., Iselius, L. and Yee, S. (1982). Data and theory for a revised chiasma map of man. Hum. Genet. 62(3): 266-270.

Mount, S. M. (1982). A catalogue of splice junction sequences. Nucleic Acids Res. 10: 459-472.
Mount, S. M. (2000). Genomic sequence, splicing, and gene annotation. Am. J. Hum. Genet. 67: 788-792.
Nachman, M. W. (2001). Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 17: 481-485.

Nachman, M. W., Bauer, V. L., Crowell, S. L. and Aquadro, C. F. (1998). DNA variability and recombination rates at X-linked loci in humans. Genetics 150: 1133-1141.

Nairz, K. and Klein, F. (1997). mrellS - a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11: 2272-2290.

Nakagawa, T. and Kolodner, R. D. (2002). Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over. Mol. Cell Biol. 22: 3281-3291.

Nakagawa, T. and Ogawa, H. (1997). Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing. Genes Cells 2: 65-79.

Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E. and et al. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616-1622.

Nakashima, S., Banno, Y., Watanabe, T., Nakamura, Y., Mizutani, T., Sakai, H., Zhao, Y., Sugimoto, Y. and Nozawa, Y. (1995). Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta 1: effects on its activity. Biochem. Biophys. Res. Commun. 211: 365-369.

Nasmyth, K., Peters, J. M. and Uhlmann, F. (2000). Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288: 1379-1385.

Nei, M. and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273.

Neil, D. L. and Jeffreys, A. J. (1993). Digital DNA typing at a second hypervariable locus by minisatellite variant repeat mapping. Hum. Mol. Genet. 2: 1129-1135.

New, J. H., Sugiyama, T., Zaitseva, E. and Kowalczykowski, S. C. (1998). Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407-410.

Nichol, K. and Pearson, C. E. (2002). CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res. 12: 1246-1256.

Nicolas, A., Treco, D., Schultes, N. P. and Szostak, J. W. (1989). An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338: 35-39.

NIH/CEPH Collaborative Mapping Group (1992). A comprehensive genetic linkage map of the human genome. Science 258: 67-86.

Nilsson, N.-O. and Pelger, S. (1991). The relationship between natural variation in chiasma frequencies and recombination frequencies in barley. Hereditas 115: 121-126.

Nishizuka, Y. (1986). Studies and perspectives of protein kinase C. Science 233: 305-312.
Ohta, K., Nicolas, A., Furuse, M., Nabetani, A., Ogawa, H. and Shibata, T. (1998). Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc. Natl. Acad. Sci. USA 95: 646-651.

Ohta, K., Shibata, T. and Nicolas, A. (1994). Changes in chromatin structure at recombination initiation sites during yeast meiosis. Embo J. 13: 5754-5763.

Ohta, K., Wu, T. C., Lichten, M. and Shibata, T. (1999). Competitive inactivation of a double-strand DNA break site involves parallel suppression of meiosis-induced changes in chromatin configuration. Nucleic Acids Res. 27: 21752180.

Ohta, T. and Kimura, M. (1971). Behavior of neutral mutants influenced by asociated overdominant loci in finite populations. Genetics 69: 247-260.

Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. and Sekiya, T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86: 27662770.

Paabo, S. (2003). The mosaic that is our genome. Nature 421: 409-412.
Page, D. C., Bieker, K., Brown, L. G., Hinton, S., Leppert, M., Lalouel, J. M., Lathrop, M., Nystrom-Lahti, M., de la Chapelle, A. and White, R. (1987). Linkage, physical mapping, and DNA sequence analysis of pseudoautosomal loci on the human X and Y chromosomes. Genomics 1: 243-256.

Paques, F. and Haber, J. E. (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63: 349-404.

Paques, F., Leung, W. Y. and Haber, J. E. (1998). Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell Biol. 18: 2045-2054.

Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., Nguyen, B. T., Norris, M. C., Sheehan, J. B., Shen, N., Stern, D., Stokowski, R. P., Thomas, D. J., Trulson, M. O., Vyas, K. R., Frazer, K. A., Fodor, S. P. and Cox, D. R. (2001). Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294: 1719-1723.

Pecina, A., Smith, K. N., Mezard, C., Murakami, H., Ohta, K. and Nicolas, A. (2002). Targeted stimulation of meiotic recombination. Cell 111: 173-184.

Pelttari, J., Hoja, M. R., Yuan, L., Liu, J. G., Brundell, E., Moens, P., Santucci-Darmanin, S., Jessberger, R., Barbero, J. L., Heyting, C. and Hoog, C. (2001). A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol. Cell Biol. 21: 5667-5677.

Pentao, L., Wise, C. A., Chinault, A. C., Patel, P. I. and Lupski, J. R. (1992). Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat. Genet. 2: 292-300.

Petes, T. D. (2001). Meiotic recombination hot spots and cold spots. Nat. Rev. Genet. 2: 360-369.
Petit, C., Levilliers, J., Rouyer, F., Simmler, M. C., Herouin, E. and Weissenbach, J. (1990). Isolation of sequences from Xp22.3 and deletion mapping using sex chromosome rearrangements from human $\mathrm{X}-\mathrm{Y}$ interchange sex reversals. Genomics 6: 651-658.

Petit, C., Levilliers, J. and Weissenbach, J. (1988). Physical mapping of the human pseudo-autosomal region; comparison with genetic linkage map. Embo J. 7: 2369-2376.

Petrini, J. H., Walsh, M. E., DiMare, C., Chen, X. N., Korenberg, J. R. and Weaver, D. T. (1995). Isolation and characterization of the human MRE11 homologue. Genomics 29: 80-86.

Plug, A. W., Peters, A. H., Keegan, K. S., Hoekstra, M. F., de Boer, P. and Ashley, T. (1998). Changes in protein composition of meiotic nodules during mammalian meiosis. J. Cell Sci. 111: 413-423.

Ponnudurai, R. (1996). Failure to support a pseudoautosomal locus for schizophrenia. Psychiatry Res. 62: 281-284.

Porter, S. E., White, M. A. and Petes, T. D. (1993). Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics 134: 5-19.

Prinz, S., Amon, A. and Klein, F. (1997). Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146: 781-795.

Pritchard, J. K. and Przeworski, M. (2001). Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69: 1-14.

Quentin, Y. (1992). Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 20: 487-493.

Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., Mertz, A., Muroya, K., Binder, G., Kirsch, S., Winkelmann, M., Nordsiek, G., Heinrich, U., Breuning, M. H., Ranke, M. B., Rosenthal, A., Ogata, T. and Rappold, G. A. (1997). Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet. 16: 54-63.

Rappold, G., Willson, T. A., Henke, A. and Gough, N. M. (1992). Arrangement and localization of the human GMCSF receptor alpha chain gene CSF2RA within the X-Y pseudoautosomal region. Genomics 14: 455-461.

Rappold, G. A. (1993). The pseudoautosomal regions of the human sex chromosomes. Hum. Genet. 92: 315-324.
Rappold, G. A., Klink, A., Weiss, B. and Fischer, C. (1994). Double crossover in the human Xp/Yp pseudoautosomal region and its bearing on interference. Hum. Mol. Genet. 3: 1337-1340.

Rattray, A. J. and Symington, L. S. (1993). Stimulation of meiotic recombination in yeast by an ARS element. Genetics 134: 175-188.

Raymond, W. E. and Kleckner, N. (1993). RAD50 protein of S.cerevisiae exhibits ATP-dependent DNA binding. Nucleic Acids Res. 21: 3851-3856.

Rebecchi, M. J. and Pentyala, S. N. (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80: 1291-1335.

Reich, D. E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P. C., Richter, D. J., Lavery, T., Kouyoumjian, R., Farhadian, S. F., Ward, R. and Lander, E. S. (2001). Linkage disequilibrium in the human genome. Nature 411: 199-204.

Reich, D. E., Schaffner, S. F., Daly, M. J., McVean, G., Mullikin, J. C., Higgins, J. M., Richter, D. J., Lander, E. S. and Altshuler, D. (2002). Human genome sequence variation and the influence of gene history, mutation and recombination. Nat. Genet. 32: 135-142.

Renauld, J. C., Kermouni, A., Vink, A., Louahed, J. and Van Snick, J. (1995). Interleukin-9 and its receptor: involvement in mast cell differentiation and T cell oncogenesis. J Leukoc. Biol. 57: 353-360.

Rhee, S. G. and Bae, Y. S. (1997). Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272: 15045-15048.

Rhee, S. G., Suh, P. G., Ryu, S. H. and Lee, S. Y. (1989). Studies of inositol phospholipid-specific phospholipase C. Science 244: 546-550.

Ried, K., Rao, E., Schiebel, K. and Rappold, G. A. (1998). Gene duplications as a recurrent theme in the evolution of the human pseudoautosomal region 1: isolation of the gene ASMTL. Hum. Mol. Genet. 7: 1771-1778.

Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273: 15161517.

Rivas, C. I., Vera, J. C., Delgado-Lopez, F., Heaney, M. L., Guaiquil, V. H., Zhang, R. H., Scher, H. I., Concha, II, Nualart, F., Cordon-Cardo, C. and Golde, D. W. (1998). Expression of granulocyte-macrophage colony-stimulating factor receptors in human prostate cancer. Blood 91: 1037-1043.

Rockmill, B. and Roeder, G. S. (1988). RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosis. Proc. Natl. Acad. Sci. USA 85: 6057-6061.

Rockmill, B., Sym, M., Scherthan, H. and Roeder, G. S. (1995). Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9: 2684-2695.

Roeder, G. S. (1997). Meiotic chromosomes: it takes two to tango. Genes Dev. 11: 2600-2621.
Romanienko, P. J. and Camerini-Otero, R. D. (1999). Cloning, characterization, and localization of mouse and human SPO11. Genomics 61: 156-169.

Ross, L. O., Maxfield, R. and Dawson, D. (1996). Exchanges are not equally able to enhance meiotic chromosome segregation in yeast. Proc. Natl. Acad. Sci. USA 93: 4979-4083.

Ross-Macdonald, P. and Roeder, G. S. (1994). Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79: 1069-1080.

Rouyer, F., de la Chapelle, A., Andersson, M. and Weissenbach, J. (1990). An interspersed repeated sequence specific for human subtelomeric regions. Embo J. 9: 505-514.

Rouyer, F., Simmler, M. C., Johnsson, C., Vergnaud, G., Cooke, H. J. and Weissenbach, J. (1986a). A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature 319: 291-295.

Rouyer, F., Simmler, M. C., Vergnaud, G., Johnsson, C., Levilliers, J., Petit, C. and Weissenbach, J. (1986b). The pseudoautosomal region of the human sex chromosomes. Cold Spring Harb. Symp. Quant. Biol. 51: 221-228.

Roy, A. M., Carroll, M. L., Nguyen, S. V., Salem, A. H., Oldridge, M., Wilkie, A. O., Batzer, M. A. and Deininger, P. L. (2000). Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 10 : 1485-1495.

Royle, N. J. (1995). The proterminal regions and telomeres of human chromosomes. Adv. Genet. 32: 273-315.
Royle, N. J., Clarkson, R. E., Wong, Z. and Jeffreys, A. J. (1988). Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352-360.

Royle, N. J., Hill, M. C. and Jeffreys, A. J. (1992). Isolation of telomere junction fragments by anchored polymerase chain reaction. Proc. R. Soc. Lond. B. Biol. Sci. 247: 57-67.

Ryu, S. H., Cho, K. S., Lee, K. Y., Suh, P. G. and Rhee, S. G. (1986). Two forms of phosphatidylinositol-specific phospholipase C from bovine brain. Biochem. Biophys. Res. Commun. 141: 137-144.

Saadallah, N. and Hultén, M. (1983). Chiasma distribution, genetic lengths, and recombination fractions: a comparison between chromosomes 15 and 16. J. Med. Genet. 20: 290-299.

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487491.

Sambrook, J., Fritsch, E.F. and Maniatis T. (1989). Molecular Cloning, A Laboratory Manual, $2^{\text {nd }}$ edition. Cold Spring Harbour Laboratory Press, New York.

Sambrook, J. and Russel, D. W. (2001). Molecular Cloning, A Laboratory Manual $3^{\text {rd }}$ edition. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, N.Y.

Scherthan, H., Bahler, J. and Kohli, J. (1994). Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J. Cell Biol. 127: 273-285.

Scherthan, H., Weich, S., Schwegler, H., Heyting, C., Harle, M. and Cremer, T. (1996). Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J. Cell Biol. 134: 1109-1 125.

Schiebel, K., Meder, J., Rump, A., Rosenthal, A., Winkelmann, M., Fischer, C., Bonk, T., Humeny, A. and Rappold, G. (2000). Elevated DNA sequence diversity in the genomic region of the phosphatase PPP2R3L gene in the human pseudoautosomal region. Cytogenet. Cell Genet. 91: 224-230.

Schiebel, K., Weiss, B., Wohrle, D. and Rappold, G. (1993). A human pseudoautosomal gene, ADP/ATP translocase, escapes X-inactivation whereas a homologue on Xq is subject to X-inactivation. Nat. Genet. 3: 82-87.

Schuchert, P., Langsford, M., Kaslin, E. and Kohli, J. (1991). A specific DNA sequence is required for high frequency of recombination in the ade6 gene of fission yeast. Embo J. 10: 2157-2163.

Schwacha, A. and Kleckner, N. (1994). Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76: 51-63.

Schwacha, A. and Kleckner, N. (1995). Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83: 783-791.

Schwacha, A. and Kleckner, N. (1997). Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90: 1123-1135.

Sears, D. D., Hegemann, J. H. and Hieter, P. (1992). Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 5296-5300.

Sherman, J. D., Herickhoff, L. A. and Stack, S. M. (1992). Silver staining two types of meiotic nodules. Genome 35: 907-915.

Shi, Q., Spriggs, E., Field, L. L., Ko, E., Barclay, L. and Martin, R. H. (2001). Single sperm typing demonstrates that reduced recombination is associated with the production of aneuploid 24,XY human sperm. Am. J. Med. Genet. 99: 34-38.

Shinohara, A., Ogawa, H., Matsuda, Y., Ushio, N., Ikeo, K. and Ogawa, T. (1993). Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4: 239-243.

Shinohara, A., Ogawa, H. and Ogawa, T. (1992). Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457-470.

Shinohara, A. and Ogawa, T. (1998a). Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404-407.

Shinohara, A. and Ogawa, T. (1999). Rad51/RecA protein families and the associated proteins in eukaryotes. Mutat. Res. 435: 13-21.

Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S. and Ogawa, T. (1998b). Rad52 forms ring structures and cooperates with RPA in single-strand DNA annealing. Genes Cells 3: 145-156.

Simmler, M. C., Johnsson, C., Petit, C., Rouyer, F., Vergnaud, G. and Weissenbach, J. (1987). Two highly polymorphic minisatellites from the pseudoautosomal region of the human sex chromosomes. Embo J. 6: 963-969.

Simmler, M. C., Rouyer, F., Vergnaud, G., Nystrom-Lahti, M., Ngo, K. Y., de la Chapelle, A. and Weissenbach, J. (1985). Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317: 692697.

Singer, W. D., Brown, H. A. and Sternweis, P. C. (1997). Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66: 475-509.

Slagel, V., Flemington, E., Traina-Dorge, V., Bradshaw, H. and Deininger, P. (1987). Clustering and subfamily relationships of the Alu family in the human genome. Mol. Biol. Evol. 4: 19-29.

Slim, R., Levilliers, J., Ludecke, H. J., Claussen, U., Nguyen, V. C., Gough, N. M., Horsthemke, B. and Petit, C. (1993). A human pseudoautosomal gene encodes the ANT3 ADP/ATP translocase and escapes X-inactivation. Genomics 16: 26-33.

Smit, A. F. (1996). The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6: 743-748.
Smit, A. F. (1999). Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9: 657-663.

Smit, A. F. and Riggs, A. D. (1996). Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443-1448.

Smith, A. V. and Roeder, G. S. (1997). The yeast Redl protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136: 957-967.

Smith, K. N., Penkner, A., Ohta, K., Klein, F. and Nicolas, A. (2001). B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis. Curr. Biol. 11: 88-97.

Smith, M. J. and Goodfellow, P. N. (1994). MIC2R: a transcribed MIC2-related sequence associated with a CpG island in the human pseudoautosomal region. Hum. Mol. Genet. 3(9): 1575-1582.

Sohn, H. W., Choi, E. Y., Kim, S. H., Lee, I. S., Chung, D. H., Sung, U. A., Hwang, D. H., Cho, S. S., Jun, B. H., Jang, J. J., Chi, J. G. and Park, S. H. (1998). Engagement of CD99 induces apoptosis through a calcineurinindependent pathway in Ewing's sarcoma cells. Am. J. Pathol. 153: 1937-1945.

Solari, A. J. (1980). Synaptosomal complexes and associated structures in microspread human spermatocytes. Chromosoma 81: 315-337.

Stead, J. D., Buard, J., Todd, J. A. and Jeffreys, A. J. (2000). Influence of allele lineage on the role of the insulin minisatellite in susceptibility to type 1 diabetes. Hum. Mol. Genet. 9: 2929-2935.

Stoneking, M. (2001). Single nucleotide polymorphisms. From the evolutionary past. Nature 409: 821-822.
Storlazzi, A., Xu, L., Cao, L. and Kleckner, N. (1995). Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc. Natl. Acad. Sci. USA 92: 8512-8516.

Storlazzi, A., Xu, L., Schwacha, A. and Kleckner, N. (1996). Synaptonemal complex (SC) component Zipl plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. USA 93: 9043-9048.

Stuart, J. J., Egry, L. A., Wong, G. H. and Kaspar, R. L. (2000). The 3' UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Biochem. Biophys. Res. Commun. 274: 641-648.

Sugiyama, T., New, J. H. and Kowalczykowski, S. C. (1998). DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl. Acad. Sci. USA 95: 6049-6054.

Sun, H., Treco, D., Schultes, N. P. and Szostak, J. W. (1989). Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87-90.

Sun, H., Treco, D. and Szostak, J. W. (1991). Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64: 1155-1161.

Sung, P. (1994). Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265: 1241-1243.

Sung, P. (1997). Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11: 1111-1121.

Sung, P. and Robberson, D. L. (1995). DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82: 453-461.

Sybenga, J. (1999). What makes homologous chromosomes find each other in meiosis? A review and an hypothesis. Chromosoma 108: 209-219.

Sym, M., Engebrecht, J. A. and Roeder, G. S. (1993). ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72: 365-378.

Sym, M. and Roeder, G. S. (1995). Zipl-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128: 455-466.

Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. and Stahl, F. W. (1983). The double-strand-break repair model for recombination. Cell 33: 25-35.

Taillon-Miller, P., Bauer-Sardina, I., Saccone, N. L., Putzel, J., Laitinen, T., Cao, A., Kere, J., Pilia, G., Rice, J. P. and Kwok, P. Y. (2000). Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nat. Genet. 25: 324-328.

Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics 105(2): 437-60.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3): 585-95.

Takahata, N. (1993). Allelic genealogy and human evolution. Mol. Biol. Evol. 10: 2-22.
Tamaki, K., May, C. A., Dubrova, Y. E. and Jeffreys, A. J. (1999). Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum. Mol. Genet. 8: 879-888.

Taylor, S. J., Chae, H. Z., Rhee, S. G. and Exton, J. H. (1991). Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 350: 516-518.

Tease, C., Hartshorne, G. M. and Hultén, M. A. (2002). Patterns of meiotic recombination in human fetal oocytes. Am. J. Hum. Genet. 70: 1469-1479.

The International SNP Map Working Group (2001). A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409: 928-933.

Thompson, D. A. and Stahl, F. W. (1999). Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153: 621-641.

Tonozuka, Y., Fujio, K., Sugiyama, T., Nosaka, T., Hirai, M. and Kitamura, T. (2001). Molecular cloning of a human novel type I cytokine receptor related to delta1/TSLPR. Cytogenet. Cell Genet. 93: 23-25.

Tsubouchi, H. and Ogawa, H. (1998). A novel mrell mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell Biol. 18: 260-268.

Turri, M. G., Cuin, K. A. and Porter, A. C. (1995). Characterisation of a novel minisatellite that provides multiple splice donor sites in an interferon-induced transcript. Nucleic Acids Res. 23: 1854-1861.

Umezu, K. and Kolodner, R. D. (1994). Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 269: 30005-30013.
van der Velden, A. W. and Thomas, A. A. (1999). The role of the 5 ' untranslated region of an mRNA in translation regulation during development. Int. J. Biochem. Cell Biol. 31: 87-106.
van Endert, P. M., Lopez, M. T., Patel, S. D., Monaco, J. J. and McDevitt, H. O. (1992). Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes. Proc. Natl. Acad. Sci. USA 89: 11594-11597.
van Heemst, D. and Heyting, C. (2000). Sister chromatid cohesion and recombination in meiosis. Chromosoma 109: 10-26.

Vazquez Nin, G. H., Flores, E., Echeverria, O. M., Merkert, H., Wettstein, R. and Benavente, R. (1993). Immunocytochemical localization of DNA in synaptonemal complexes of rat and mouse spermatocytes, and of chick oocytes. Chromosoma 102: 457-463.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., et al., ${ }^{\dagger}$ (2001) The sequence of the human genome. Science 291: 1304-1351.
${ }^{\dagger}$ see paper for full list of 273 authors
Vergnaud, G., Gauguier, D., Schott, J. J., Lepetit, D., Lauthier, V., Mariat, D. and Buard, J. (1993). Detection, cloning, and distribution of minisatellites in some mammalian genomes. DNA Fingerprinting: State of the Science pp. 47-57. Eds. Pena, S. D. J., Chakraborty, R., Epplen, J. T., Jeffreys A. J. Birkhauser Verlag Basel, Switzerland.

Vergnaud, G., Mariat, D., Apiou, F., Aurias, A., Lathrop, M. and Lauthier, V. (1991). The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11: 135-144.

Vermeesch, J. R., Petit, P., Kermouni, A., Renauld, J. C., Van Den Berghe, H. and Marynen, P. (1997). The IL-9 receptor gene, located in the $\mathrm{Xq} / \mathrm{Yq}$ pseudoautosomal region, has an autosomal origin, escapes X inactivation and is expressed from the Y. Hum. Mol. Genet. 6: 1-8.

Vogel, F. (1972). Non-randomness of base replacement in point mutation. J. Mol. Evol. 1: 334-367.
Wachi, M., Doi, M., Ueda, T., Ueki, M., Tsuritani, K., Nagai, K. and Matsuhashi, M. (1991). Sequence of the downstream flanking region of the shape-determining genes mreBCD of Escherichia coli. Gene 106: 135-136.

Wahls, W. P. (1998). Meiotic recombination hotspots: shaping the genome and insights into hypervariable minisatellite DNA change. Curr. Top. Dev. Biol. 37: 37-75.

Wall, J. D. and Pritchard, J. K. (2003). Assessing the performance of the haplotype block model of linkage disequilibrium. Am. J. Hum. Genet. 73: 502-515.

Wallace, B. M. and Hultén, M. A. (1985). Meiotic chromosome pairing in the normal human female. Ann. Hum. Genet. 49: 215-226.

Wang, D. G., Fan, J. B., Siao, C. J., Berno, A., Young, P., Sapolsky, R., Ghandour, G., Perkins, N., Winchester, E., Spencer, J., Kruglyak, L., Stein, L., Hsie, L., Topaloglou, T., Hubbell, E., Robinson, E., Mittmann, M., Morris, M. S., Shen, N., Kilburn, D., Rioux, J., Nusbaum, C., Rozen, S., Hudson, T. J., and Lander, E. S. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082.

Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. and Jin, L. (2002). Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 71: 1227-1234.

Wang, Y. H. and Griffith, J. D. (1996). The [(G/C)3NN]n motif: a common DNA repeat that excludes nucleosomes. Proc. Natl. Acad. Sci. USA 93: 8863-8867.

Warren, S. T. (1996). The expanding world of trinucleotide repeats. Science 271: 1374-1375.
Watanabe, Y. and Nurse, P. (1999). Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400: 461-464.

Watanabe, Y., Yokobayashi, S., Yamamoto, M. and Nurse, P. (2001). Pre-meiotic S phase is linked to reductional chromosome segregation and recombination. Nature 409: 359-363.

Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7: 256-276.

Weiner, B. M. and Kleckner, N. (1994). Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77: 977-991.

Weiss, K. M. and Clark, A. G. (2002). Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18: 19-24.

Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G. and Lathrop, M. (1992). A second-generation linkage map of the human genome. Nature 359: 794-801.

White, M. A., Detloff, P., Strand, M. and Petes, T. D. (1992). A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21: 109-116.

White, M. A., Dominska, M. and Petes, T. D. (1993). Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90: 6621-6625.

White, M. A., Wierdl, M., Detloff, P. and Petes, T. D. (1991). DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc. Natl. Acad. Sci. USA 88: 9755-9759.

Wilkie, A. O., Higgs, D. R., Rack, K. A., Buckle, V. J., Spurr, N. K., Fischel-Ghodsian, N., Ceccherini, I., Brown, W. R. and Harris, P. C. (1991). Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64: 595-606.

Willard, C., Nguyen, H. T. and Schmid, C. W. (1987). Existence of at least three distinct Alu subfamilies. J. Mol. Evol. 26: 180-186.

Wingett, D., Forcier, K. and Nielson, C. P. (1999). A role for CD99 in T cell activation. Cell Immunol. 193: 17-23.
Wright, F. A., Lemon, W. J., Zhao, W. D., Sears, R., Zhuo, D., Wang, J. P., Yang, H. Y., Baer, T., Stredney, D., Spitzner, J., Stutz, A., Krahe, R. and Yuan, B. (2001). A draft annotation and overview of the human genome. Genome Biol. 2: 1-18.

Wu, T. C. and Lichten, M. (1994). Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263: 515-518.

Wu, T. C. and Lichten, M. (1995). Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140: 55-66.

Xu, F. and Petes, T. D. (1996). Fine-structure mapping of meiosis-specific double-strand DNA breaks at a recombination hotspot associated with an insertion of telomeric sequences upstream of the HIS4 locus in yeast. Genetics 143: 1115-1125.

Xu, L. and Kleckner, N. (1995). Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. Embo J. 14: 5115-5128.

Xu, L., Weiner, B. M. and Kleckner, N. (1997). Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11: 106-118.

Yang, F., Hanson, N. Q., Schwichtenberg, K. and Tsai, M. Y. (2000). Variable number tandem repeat in exon/intron border of the cystathionine beta-synthase gene: a single nucleotide substitution in the second repeat prevents multiple alternate splicing. Am. J. Med. Genet. 95: 385-390.

Yauk, C. L., Bois, P. R. and Jeffreys, A. J. (2003). High-resolution sperm typing of meiotic recombination in the mouse MHC E_{β} gene. Embo J. 22: 1389-1397.

Yi, H., Donohue, S. J., Klein, D. C. and McBride, O. W. (1993). Localization of the hydroxyindole-Omethyltransferase gene to the pseudoautosomal region: implications for mapping of psychiatric disorders. Hum. Mol. Genet. 2: 127-131.

Yip, S. P., Lovegrove, J. U., Rana, N. A., Hopkinson, D. A. and Whitehouse, D. B. (1999). Mapping recombination hotspots in human phosphoglucomutase (PGM1). Hum. Mol. Genet. 8: 1699-1706.

Young, J. A., Schreckhise, R. W., Steiner, W. W. and Smith, G. R. (2002). Meiotic recombination remote from prominent DNA break sites in S. pombe. Mol. Cell 9: 253-263.

Yu, A., Zhao, C., Fan, Y., Jang, W., Mungall, A. J., Deloukas, P., Olsen, A., Doggett, N. A., Ghebranious, N., Broman, K. W. and Weber, J. L. (2001). Comparison of human genetic and sequence-based physical maps. Nature 409: 951-953.

Yu, S., Mangelsdorf, M., Hewett, D., Hobson, L., Baker, E., Eyre, H. J., Lapsys, N., Le Paslier, D., Doggett, N. A., Sutherland, G. R. and Richards, R. I. (1997). Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 88: 367-374.

Zhang, M. Q. (1998). Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7: 919-932.
Zhao, Z., Jin, L., Fu, Y. X., Ramsay, M., Jenkins, T., Leskinen, E., Pamilo, P., Trexler, M., Patthy, L., Jorde, L. B., Ramos-Onsins, S., Yu, N. and Li, W. H. (2000). Worldwide DNA sequence variation in a 10 -kilobase noncoding region on human chromosome 22. Proc. Natl. Acad. Sci. USA 97: 11354-11358.

Zickler, D. and Kleckner, N. (1999). Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33: 603-754.

Zickler, D., Moreau, P. J., Huynh, A. D. and Slezec, A. M. (1992). Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora. Genetics 132: 135-148.

Zietkiewicz, E., Yotova, V., Jarnik, M., Korab-Laskowska, M., Kidd, K. K., Modiano, D., Scozzari, R., Stoneking, M., Tishkoff, S., Batzer, M. and Labuda, D. (1998). Genetic structure of the ancestral population of modern humans. J. Mol. Evol. 47: 146-155.

[^0]: * $(95 \%$ confidence intervals applied to the observation of zero ectopic crossover events in 100 chromosomes means that the maximum number of such events is three. Therefore, according to Hardy-Weinberg equilibrium, $2 p q=(2 \times 0.03 \times 0.97)=0.058$. This value of heterozygosity was then be applied to the relationship $H_{o}=\left(1 /\left(1+4 N_{e} \mu\right)\right.$ (Chapter 6, section 6.2.1.a.ii) to obtain an estimate of μ, assuming N_{e} to be 10,000$)$

