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Linear logics have been shown to be able to embed both rewriting-based approaches and
process calculi in a single, declarative framework. In this paper we are exploring the
embedding of double-pushout graph transformations into quantified linear logic, leading
to a Curry-Howard style isomorphism between graphs / transformations and formulas /
proof terms. With linear implication representing rules and reachability of graphs, and the
tensor modelling parallel composition of graphs / transformations, we obtain a language
able to encode graph transformation systems and their computations as well as reason about
their properties.

1 Introduction

Graphs are among the simplest and most universal models for a variety of systems, not just in
computer science, but throughout engineering and life sciences. When systems evolve, we are
generally interested in the way they change, to predict, support, or react to evolution. Graph
transformation systems (GTS) combine the idea of graphs, as a universal modelling paradigm,
with a rule-based approach to specify the evolution of systems. The double-pushout approach
(DPO) [8] is arguably the most mature of the mathematically-founded approaches to graph
transformation, with a rich theory of concurrency comparable to (and inspired by) those of
place-transition Petri nets and term rewriting systems.

The fact that graph transformations are specified at the level of visual rules is very important
at the intuitive level. However, these specifications are still operational rather than declarative.
In order to reason about them, and to prove their properties at a realisation-independent
level, a logics-based representation is desirable. Intuitionistic linear logic (ILL) allows us to
reason about concurrent processes at a level of abstraction which can vary from statements on
individual steps to the overall effect of a longer computation. Unlike operational formalisms,
linear logics are not bound to any particular programming or modelling paradigm and thus
have a potential for integrating and comparing different such paradigms through embeddings
[10, 1].

What makes ILL well applicable to GTS is the handling of resources and the way this allows
for expressing creation/deletion of graph components. However, expressing the notion of
pattern matching used in DPO in logic terms is not straightforward — to this purpose we extend
ILL with a form of resource-bound quantification. In this paper we propose an embedding of
DPO-GTS in a variant of quantified intuitionistic linear logic with proof terms (QILL). Our
translation relies on a preliminary algebraic presentation of DPO-GTS in terms of an SHR-style
formalism [9], which gives us syntactic notions of graph expression and transformation rule.
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QILL is based on linear λ-calculus [2, 5, 14], and is obtained by adding to ILL standard
universal quantification (∀), and a form of resource-bound existential quantification (∃̂), asso-
ciating a linear resource to each variable — in this respect quite different from the intensional
quantifiers in [16]. In order to deal with the nominal aspect, we use non-quantifiable constants,
treated as linear resources, to which individual variables may refer — unlike nominal logic
[15, 4], where names can be treated as bindable atoms.

We translate algebraic graph expressions to linear λ-calculus, so that component identity is
represented in the proof-terms, whereas typing information and connectivity is represented in
the logic formula. We obtain a Curry-Howard style isomorphism between graph expressions
and a subset of typing derivations, and between graphs and a subset of logic formulas (graph
formulas) modulo linear equivalence. This can be extended to a mapping from GTS runs into
typing derivations, and from reachable graphs into logic formulas. We hope that this approach
will offer the possibility of applying goal-directed proof-methods [12, 7] to the verification of
well-formedness and reachability properties in GTS.

2 Basic concepts and intuition

Here we give a brief introduction of the main concept and the ideas behind the approach we
are working on, before getting further into details.

2.1 Hypergraphs and their Transformations

Graph transformations can be defined on a variety of graph structures, including simple edge
or node labelled graphs, attributed or typed graphs, etc. In this paper we prefer typed hyper-
graphs, their n-ary hyperedges to be presented as predicates in the logic.

A hypergraph (V,E,s) consists of a set V of vertices, a set E of hyperedges and a function
s : E→ V∗ assigning each edge a sequence of vertices in V. A morphism of hypergraphs is a
pair of functions φV : V1→ V2 and φE : E1→ E2 that preserve the assignments of nodes, that is,
φ∗V ◦s1 = s2 ◦φE.

Typed hypergraphs are defined in analogy to typed graphs. Fixing a type hypergraph
TG = (V,E,ar) we establish sets of node types V and edge types E as well as defining the
arity ar(a) of each edge type a ∈ E as a sequence of node types. A TG-typed hypergraph is a
pair (HG, type) of a hypergraph HG and a morphism type : HG→ TG. A TG-typed hypergraph
morphism f : (HG1, type1)→ (HG2, type2) is a hypergraph morphism f : HG1→ HG2 such that
type2 ◦ f = type1.

A graph transformation rule is a span of injective hypergraph morphisms s = (L l
←− K r

−→ R),
called a rule span. A hypergraph transformation system (GTS) G = 〈TG,P,π,G0〉 consists of a
type hypergraph TG, a set P of rule names, a function mapping each rule name p to a rule span
π(p), and an initial TG-typed hypergraph G0.

A direct transformation G
p,m
=⇒H is given by a double-pushout (DPO) diagram as shown below,

where (1), (2) are pushouts and top and bottom are rule spans. If we are not interested in the

match and/or rule of the transformation we will write G
p

=⇒H or just G =⇒H.
For a GTS G = 〈TG,P,π,G0〉, a derivation G0 =⇒ Gn in G is a sequence of direct transforma-

tions G0
r1

=⇒G1
r2

=⇒ ·· ·
rn

=⇒Gn using the rules in G. The set of all hypergraphs reachable from G0
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via derivations in G is denoted by RG.
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Intuitively, the left-hand side L contains the structures that must be present for an application
of the rule, the right-hand side R those that are present afterwards, and the gluing graph K
specifies the “gluing items”, i.e., the objects which are read during application, but are not
consumed.

Operationally speaking, the transformation is performed in two steps. First, we delete all
the elements in G that are in the image of L \ l(K) leading to the left-hand side pushout (1) and
the intermediate graph D. Then, a copy of L \ l(K) is added to D, leading to the derived graph
H via the pushout (2).

It is important to point out that the first step (deletion) is only defined if a built-in application
condition, the so-called gluing condition, is satisfied by the match m. This condition, which
characterises the existence of pushout (1) above, is usually presented in two parts.

Identification condition: Elements of L that are meant to be deleted are not shared with any
other elements, i.e., for all x ∈ L\ l(K), m(x) = m(y) implies x = y.

Dangling condition: Nodes that are to be deleted must not be connected to edges in G, unless
they already occur in L, i.e., for all v ∈ VG such that v ∈mV(LV), if there exists e ∈ EG such
that s(e) = v1 . . .v . . .vn, then e ∈mE(LE).

The first condition guarantees two intuitively separate properties of the approach: First,
nodes and edges that are deleted by the rule are treated as resources, i.e., m is injective on
L \ l(K). Second, there must not be conflicts between deletion and preservation, i.e., m(L \ l(K))
and m(l(K) are disjoint.

The second condition ensures that after the deletion of nodes, the remaining structure is
still a graph and does not contain edges short of a node. It is the first condition which makes
linear logic so attractive for graph transformation. Crucially, it is also reflected in the notion of
concurrency of the approach, where items that are deleted cannot be shared between concurrent
transformations.

There is a second, more declarative interpretation of the DPO diagram as defining a rewrite

relation over graphs. Two graphs G,H are in this relation G
p

=⇒ H iff there exists a morphism
d : K→ D from the interface graph of the rule such that G is the pushout object of square (1)
and H that of square (2) in the diagram above. In our algebraic presentation we will adopt this
more declarative view.

As terms are often considered up to renaming of variables, it is common to abstract from
the identity of nodes and hyperedges considering hypergraphs up to isomorphism. However,
in order to be able to compose graphs by gluing them along common nodes, these have to be
identifiable. Such potential gluing points are therefore kept as the interface of a hypergraph, a
set of nodes I embedded into HG by a morphism i : I→HG.

An abstract hypergraph i : I→ [HG] is then given by the isomorphism class {i′ : I→ HG′ |
∃ isomorphism j : HG→HG′ such that j◦ i = i′}.

If we restrict ourselves to rules with interfaces that are discrete (i.e., containing only nodes,
but no edges.), a rule can be represented as a pair of hypergraphs with a shared interface I,
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i.e., ΛI.L =⇒ R, such that the set of nodes I is a subgraph of both L,R. This restriction does not
affect expressivity in describing individual transformations because edges can be deleted and
recreated, but it reduces the level concurrency. In particular, concurrent transformation steps
can no longer share edges because only items that are preserved by both rules can be accessed
concurrently.

2.2 Linear logic

ILL is a resource-conscious logic that can be obtained from intuitionistic logic, in terms of
sequent calculus, by restricting the application of standard structural rules weakening and con-
traction. ILL formulas can be interpreted as partial states and express transitions in terms of
consequence relation [6]. Tensor product (⊗) can be used to represent parallel composition,
additive conjunction (&) to represent non-deterministic choice, and linear implication (() to
express reachability. Unlimited resources can be represented via !.

ILL has an algebraic interpretation based on quantales and a categorical one based on
symmetric monoidal closed categories [2], it has interpretations into Petri-nets, and for its ∨-
free fragment, it has a comparatively natural Kripke-style semantics based on a ternary relation
[11] in common with relevant logics. ILL can be extended with quantifiers. It can also be
enriched with proof terms, thus obtaining linear λ-calculus [2, 14], where linear λ-abstraction
and linear application require that the abstraction/application term is used only once. We are
going to rely on an operational semantics in terms of natural deduction rules, following [14].

Proofs can be formalised in terms of natural deduction, based on introduction/elimination
rules closely related to the constructor/destructor duality in recursive datatypes [17]. Proof
normalisation guarantees modularity, meaning that detours in proofs can be avoided, i.e. one
does not need to introduce a constructor thereafter to eliminate it. Proof normalisation shows
that introducing a constructor brings nothing more than what it is taken away by eliminating
it.

2.3 GTS in QILL

We are going to give a representation of graphs and transformations in terms of provable
sequents. Graphs can be represented by formulas of form ∃̂x : A.L1 (x1)⊗ . . .⊗Lk (xk) where x : A
is a sequence x1 : A1, . . . ,x j : A j of typed variables and x1, . . . ,xk ⊆ x. A DPO rule (we consider
rules with interfaces made only of nodes) can be represented as ∀x : A.α( β where α,β are
graph expressions. Given rules

P1 = ∀x1.α1( β1, . . . , Pk = ∀xk.αk( βk

a sequent G0,P1, . . . ,Pk  G1 can express that graph G1 is reachable from the initial graph
G0 by applying them, abstracting away from the application order, each occurrence resulting
into a transformation step. A sequent G0, !P1, . . . , !Pk  G1 can express that G1 is reachable from
G0 by the same rules, regardless of whether or how many times they must be applied. The
parallel applicability of rules ∀x1.α1 ( β1, ∀x2.α2 ( β2 can be represented as applicability of
∀x1,x2.α1⊗α2( β1⊗β2.

Logic formulas can be used also to specify graphs according to their properties — such
as matching certain patterns. Additive conjunction (&) can then be used to express choice,
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Figure 1: Transformation example

and additive disjunction (∨) to express non-deterministic outcome — as from quantale-based
interpretations of ILL [1]. The formula G1&G2 represents a graph that can match two alternative
patterns — hence a potential situation of conflict in rule application. The formula G1 ∨G2
represents a graph that may have been obtained in two different ways — hence a situation of
non-determinism.

Negative constraints can be expressed using the intuitionistic-style negation¬. The formula
¬α expresses the fact that α must never be reached — in the sense that reaching it implies
an error. In a weaker sense, the system satisfies the constraint if α does not follow from the
specification. To make an example (Fig. 1), given

α =d f ∃̂xyz : A.(b(x, y)⊗b(x,z))∨ (b(x, y)⊗b(z,x))∨ (b(y,x)⊗b(z,x))

the formula ¬α says that in the system there must be no element of type A which is
bound with two distinct ones (graphically represented in the upper part of the picture). The
transformation rule in fig. 1 can be represented with ∀xy : A.1( b(x, y); the initial graph with
∃̂xyz : A.b(z,x). These two formulas specify our system. The graph transformation determined
by the application of the rule to the initial graph can be expressed in terms of logic consequence
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as

p =d f ∃̂xyz : A. b(z,x),∀x1x2 : A. 1( b(x1,x2)  ∃̂xyz : A. b(z,x)⊗b(x, y)

When the constraint ¬α is added to the premises, a contradiction follows — as α already
follows from the specification.

3 An algebraic presentation of DPO transformation of hypergraphs

Let V be an infinite set of nodes n1,n2, . . . typed inV, and E an infinite set of edges e1,e2, . . . typed
in E, as before. In general, we assume typing to be implicit — each element x associated to its
type by type(x). Making type explicit, we use A,B, . . . for node types.

3.1 Graph expressions

We introduce a notion of constituent

C = e(n1, . . . ,nk) | Nil | C1 ‖ C2 | νn.C

where e(n1, . . . ,nk) is an edge component with type(e) = Le(A1, . . . ,Ak) when type(n1) =
A1, . . . , type(nk) = Ak, where Nil is the empty graph and C1 ‖ C2 is the parallel composition of
components C1 and C2, and where νn.C is obtained by restricting node name n in C.

We say that a constituent is normal whenever it has form νn.G, where n is a (possibly empty)
sequence of node names, and G is either Nil or else it does not contain any occurrence of Nil.

Given a constituent C, the ground components of C are the nodes and the edge components
that occur in C. We say that fn(C) are the free nodes (unrestricted), bn(C) are the bound nodes
(restricted), and the set of all nodes is n(C) =d f fn(C)∪ bn(C). We denote by cn(C) the connected
nodes of C, i.e. those which occur in ground components of C. We say that ibn(C) =d f bn(C)/cn(C)
are the isolated bound nodes of C.

A graph expression is a pair E = X�C where X ⊆ V are nodes and C is a constituent such that
fn(C)⊆X. We call X the interface of E, or the free nodes of E. The nodes of E are n(E) =d f X∪bn(C).
The isolated free nodes are ifn(E) =d f X/fn(C). The isolated nodes of E are i(E) =d f ifn(E)∪ ibn(C).
In general, X = fn(E) =d f ifn(E)∪ fn(C), and n(E) = i(E)∪ cn(C). We can say that graph expression
E is ground whenever bn(C) = ∅, that E is weakly closed whenever fn(C) = ∅, that E is closed
whenever X = ∅, that E is normal whenever C is normal. For simplicity, we are going to identify
closed graph expressions with their constituents.

Let E1 = X1�C1,E2 = X2�C2 be graph expressions in the following. Structural congruence
between E1 and E2, written E1 ≡ E2, holds iff X1 = X2 and C1 ≡ C2, where ≡ is defined over
constituents according to the following axioms.

• The parallel operator ‖ is associative and commutative, with Nil as neutral element.

• νn. C ≡ νm. C[m/n], if m does not occur free in C.
νn.νm.C ≡ νm.νn.C
νn.(C ‖ C′) ≡ C ‖ (νn.C′) if n does not occur free in C

We do not require νn.C ≡ C for n not occurring free in C (we can also say that we do not
require ν to satisfy η-equivalence). This allows us to keep isolated nodes into account.
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For E = X � C, we denote by ec(E) the edge components of C, and by gc(E) = n(E)∪ ec(E) the
set of the ground components of E. It is not difficult to see the following, with respect to E1 and
E2.

Obs. 1 E1 ≡ E2 if and only if fn(E1) = fn(E2) and there is a renaming σ of bn(E1) such that
gc(E1)σ = gc(E2).

One can also see that for each graph expression there is a congruent normal one, and that
congruent normal expressions are the same up to reordering of prefix elements and ground
components.

We say that E1 is a heating of E2 (conversely, that E2 is a cooling of E1), and we write E1 << E2,
whenever there is a graph expression E3 = X3 � νn.C1 such that X3 = X2/{n} (for n possibly
empty sequence of node names) and E3 ≡ E2 — i.e. when E2 can be obtained from E1 modulo
congruence by restricting node names. Therefore, intuitively, E1 is one of the smallest patterns
E2 can match with, and conversely, E2 is one of the largest graphs that can match with E1. This
essentially means that, although not congruent, as operationally different, E1 and E2 share the
same structure.

An abstract hypergraph in the sense of section 2.1 is represented by an equivalence class of
graph expressions up to structural congruence. Intuitively, the free names correspond to nodes
in the interface while bound names represent internal nodes.

We will often refer to these equivalence classes as graphs, while reserving the term hyper-
graph for the real thing. We say that a graph expression represents a graph (is a representative
of the graph) when it belongs to the equivalence class. A graph is (weakly) closed whenever it
is represented by a (weakly) closed graph expression. Clearly, every closed graph has a closed
normal representative.

It is not difficult to see that a graph can also be represented as the class of all the heatings
of its representatives — leading to a semantics based on partial orders rather than equivalence
relations. We will refer to heatings of graph expressions that represent subgraphs of a given
expression E as heating fragments of E (conversely, their cooling compound).

3.2 Transformation rules

In order to represent transformation rules we need to deal with the matching of free nodes. To
this purpose we introduce variables x, y, . . . ranging over nodes, substitution of nodes for free
variables (E[m/x], where m does not contain occurrences that become bound), variable binding
(by Λ) and application.

For E1,E2 closed graph expression, E1 =⇒ E2 denotes the transformation that goes from E1
to E2. Given graph expressions E1 = K�L and E2 = K�R sharing the same interface and no free

isolated nodes, we represent the transformation rule π(p) = L l
←− K r

−→ R by the rule expression
Λx.L

p
=⇒ R, where x = x1, . . . ,xk is a sequence of variables associated to the node names in K.

Essentially, we represent rules by replacing each free node with a bound variable.
Given a closed graph representative G, a match for π(p) in G (as pictured in section 2.1)

is determined by a graph homomorphism d : K→ n(G) which determines the left hand-side
morphisms m : L→G, with components mv : bn(L)→ n(G) and me : ec(L)→ ec(G), as well as right
hand-side morphism m∗ : R→H, with components m∗v : bn(R)→ n(H) and m∗e : ec(R)→ ec(H).

The dangling edge condition means that if n is in the domain of mv and occurs in component
c, then c must be in the domain of me. The identification condition requires that mv and me are
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injective, and that the images of d and mv are disjoint. The injectivity of m∗v and m∗e follows, as
well as the disjointness of the images of d and m∗v.

The injective components can be represented in terms of inclusion, whereas the in-
terface morphism d can be represented in terms of substitution, i.e. we represent d by

[n d
←− x] = [x1/n1, . . .xk/nk], where n = {n1, . . . ,nk} ⊆ n(G). The following operational rule (applica-

tion schema) represents the application of the transformation rule p with match m (determined
by d)

π(p) = Λx.L
p

=⇒ R G ≡ νn.L[n d
←− x] ‖ C H ≡ νn.R[n d

←− x] ‖ C

G
p,d

=⇒H

〈p,m〉
=⇒

where G is a closed graph expression — and therefore H is, too.

Obs. 2 The application schema satisfies the DPO conditions.

Let L′ = L[n d
←− x], R′ = R[n d

←− x]. The definition and the injectivity of component
morphisms mv,me,m∗v,m∗e follows from the inclusion of L′ and R′ as subexpressions in
refactorings of G and H, respectively. The disjointness condition holds by the fact that the
variables in x are substituted with nodes that are free in L′ and R′, and therefore cannot
be identified with bound nodes in either constituent. The dangling edge condition holds
by the fact that, for each node n ∈ bn(L′), edge components depending on n can only be in
ec(L′).

4 Linear lambda-calculus

We rely on a constructive presentation of intuitionistic linear logic, based on the labelling of
logic formulas, in a way that gives rise to a form of λ-calculus. Linear λ-calculus [1, 2, 5, 14]
has been introduced in association with intuitionistic linear logic and with the notion of linear
functions, by interpreting linearity as consumption of arguments. Linear implication (() can
be used to type linear functions, as much as intuitionistic implication (→) is used to type generic
ones.

We rely on a two-entry sequent presentation of linear logic [13, 14], and we follow the con-
vention to use different sorts of variable identifiers for linear resources (u,v, . . .) and non-linear
ones (p,q, . . .). We denote linear abstraction by λ̂ (with ˆ for linear application), to distinguish it
from standard one (λ) — though the difference between the two can actually be determined by
whether the abstraction variable is linear. For the purpose of the translation, we find it further
useful to distinguish individual variables (x, y, . . ., non-linear), and node variables (m,n, . . ., lin-
ear). Whether λ is typed by ∀ depends on whether the abstraction is over an individual variable
that occurs in the type. We use let expressions to abstract over patterns. We assume standard
forms of α-renaming, β- and η-congruence for λ and λ̂ (with linearity check for the latter).

N :: α is a typing expression (typed term) where N is a term (the label) andα is a logic formula
(the type). Two-entry sequents have form Γ;∆ ` N :: α, where ∆ is a multiset of typed linear
variables (linear context), with ∆N ⊆ ∆ a multiset of typed node variables, and Γ is a multisets
of typed non-linear variables (non-linear context), with ΓI ⊆ Γ a multiset of typed individual
variables. We use sequence notation — modulo permutation and associativity, and a dot (·) for
the empty multiset.
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A natural deduction systems is given by a set of axioms and a set of primitive inference rules,
each associated as either introduction or elimination operational rule to a logical operator. A
sequent is provable, and represents a typing derivation, when it can be derived from the axioms
by means of inference rules. We say that a rule

Σ1 . . .Σn
Σ

is derivable whenever it can be proved that, if Σ1, . . . ,Σn are provable sequents, then also
Σ is. When we “forget” all about labels we are left with logic formulas and the consequence
relation — then we use  instead of `.

4.1 A system with restriction

We consider a system with standard propositional intuitionistic linear operators(,⊗,1,>,⊥,→
,∨,∧, ! and standard universal quantifier ∀. Each of these can be associated to a linear λ-calculus
operator [1, 14]. We also allow for syntactical type equality (=), stronger than linear equivalence
(≡̂, which can be defined in terms of( and ∧). We assume standard rules for =. However, we
only need to prove instances of type equality arising from substitution as side conditions, and
we do not actually use the proof-term — therefore for simplicity we associate = to an axiom
and a dummy term nil=.

We extend this system by adding resource-bound existential quantification (∃̂) and an aux-
iliary modifier to express reference (�). The extension is meant to answer two issues. First —
nodes need to be treated linearly from the point of view of transformation, though their names
occur non-linearly in graph expressions. Second — we need to associate a type to name restric-
tion in the context of graph expressions. The resource-boundedness of ∃̂ makes it possible to
treat nodes linearly, whereas the freshness conditions on ∃̂ and � make it possible to interpret
operationally ∃̂ as restriction type.

The modifier � is meant to express reference of an individual variable (a node name) to a
linear one (a node) as part of the node type. The typed linear variable n :: α�x is referred to by
the typed non-linear one x :: α — we will also say that n is a reference variable, and that x is the
referring variable in α�x. We require, as operational constraint, that each individual variable
may occur as referring variable no more than once in the linear context of a sequent (uniqueness
constraint). This constraint entails that the reference relation between reference variables and
individual free variables is one-to-one, and also that reference variables can only be linear.

We use ε̂ to denote the restriction-like operator associated with ∃̂, that can be defined as

ε̂(n|y).M :: ∃̂x : α.β =d f y⊗n⊗M

where n :: α�y and therefore y refers to n. The definition of ε̂ is essentially based on that of
proof-and-witness pair associated with the interpretation of existential quantifier, in standard
λ-calculus [17] as well as in its linear version [5, 14].

The inference rules guarantee that there is a one-to-one relation between referring variables
in the context of a sequent and variables that may be bound by ∃̂ (naming property), under the
assumption that ∃̂ does not occur in the axioms. The property is preserved by the ∃̂ elimination
rule — similar to the standard existential quantifier rule, requiring that the instantiated term
(a referring variable) as well as the associated reference are fresh variables. We force the
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naming property to be preserved by the ∃̂ introduction rule, by requiring that the new bound
variable replaces all the occurrences of the instantiated term in the consequence of the derivation
(freshness condition of ∃̂ introduction). The naming property follows for any provable sequent,
under the given assumption, by induction over proofs. Given the uniqueness constraint, it also
follows that there is a one-to-one relation between reference variables in the context of a sequent
and variables that may be bound by ∃̂ (linear naming property).

The freshness condition of ∃̂I is expressed formally, in terms of substitution and syntactical
type equality (Γ,x :: β; · ` nil= :: α#(x, y)). In fact, as we define α#(x, y) =d f (α[y/x])[x/y] = α, the
typed term nil=α#(x, y) can be used to express that y does not occur free in ∃̂x.α. However, this is
essentially just the formalisation of a side condition for the rule. From the freshness condition it
also follows that the formula ∃̂x.α obtained by ∃̂ introduction is determined, modulo renaming
of bound variables, by the instance α[y/x] in the hypothesis.

The linear naming property ensures that ∃̂ can be used to bind free variables, hiding them,
though without allowing any derivation of instantiations that can alter irreversibly the structure
of the formula, and that therefore these variables can be treated as names, preserved through
inference — and moreover, that these names are associated with linear resources. In chemical
terms, with reference to section 3.1, borrowing a suggestion from [3], ∃̂ allows us to understand
derivation as cooling process.

A normal proof is intuitively speaking one in which there are no detours — no operators that
are introduced to be thereafter eliminated. A system is normalising whenever every provable
sequent has a normal proof. All provable sequents in ILL have normal proofs [1] and this result
can be extended to the logic with standard quantifier (see [14], though an unpublished). A proof
that our system is complete with respect to normal proofs goes beyond the scope of the present
paper. However, it is informally arguable that completeness holds essentially, by translation
to a sequent calculus system, for which it is comparatively easier to see that the fragment
⊗,(,1,∀, ∃̂ enjoys the cut elimination property, closely associated with proof normalisation.

4.2 Quantification and DPO properties

We have introduced resource-bound quantification in order to express more easily the injective
character of the pattern-matching morphism components associated with deletion and creation
of graph elements. It is not difficult to see that the following, closely associated properties hold
— in clear contrast with what happens with standard existential quantification.

Obs. 3 (1) 1 (∃̂x : β. α(x,x)) ( ∃̂xy : β. α(x, y)
the resource associated to x cannot suffice for x and y.
(2) 1 ∀x : β. β�x⊗α(x,x) ( ∃̂y : β.α(y,x)
y and x should be instantiated with the same term — but this is prevented by the freshness
condition in ∃̂ introduction
(3) 1 (∃̂yx : β. α1(x)⊗α2(x)) ( (∃̂x : β.α1(x))⊗∃̂x : β.α2(x)
the two bound variables in the consequence require distinct resources and refer to distinct
occurrences

In particular, (1) and (2) can be regarded as a properties associated with the identification
condition, whereas (3) has a more general structure-preserving character.

The following properties show a relationship between linear equivalence and the congruence
relation defined in section 3.1.
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Obs. 4 ∃̂ satisfies properties of α-renaming, exchange and distribution over ⊗, i.e.

 (∃̂x : α.β(x)) ≡̂ (∃̂y : α.β(y))
 (∃̂xy : α.γ) ≡̂ (∃̂yx.γ)
 (∃̂x : α.β⊗γ(x)) ≡̂ (β⊗∃̂x : α.γ(x)) (x not in α)

In general ∃̂does not satisfy logical η-equivalence, i.e. it cannot be proved thatα is equivalent
to ∃̂x. αwhen x does not occur free in α (neither sense of linear implication holds). This is useful
though, in order to represent graphs with isolated nodes. Note that, in order to match the
notion of congruence introduced for graph expressions at the term level, term congruence in
the lambda-calculus should be extended with α-renaming, exchange, and distribution over ⊗
for ε̂. However this is not needed here, insofar as we can reason about congruence at the type
level, in terms of linear equivalence.

4.3 Proof systems (QILL)

α = A | L(N1, . . . ,Nn) | 1 | α1⊗α2 | α1( α2 |!α1 | > | ⊥ | α1&α2 | α→ β | α∨β | ∀x : β.α | ∃̂x : β.α | α�x |
α = α

M = x | p | n | u | nil | N1 ⊗N2 | ε̂(N1|N2).N3 | λx.N | λp.N | λ̂u.N | N1ˆN2 | N1N2 | errorα M | 〈〉 |
〈N1,N2〉 | fst N | snd N | case N of P1.N1;P2.N2 | inrα N | inlα N | nil=

let P = N1 in N2 =d f (λP.N2)N1 where P is a variable pattern

α≡̂β =d f (α( β)&(β( α) ¬α =d f α(⊥ α#(x, y) =d f (α[y/x])[x/y] = α

Γ;u :: α ` u :: α Id
Γ,p :: α; · ` p :: α UId

Γ,x :: α;n :: α�x ` n :: α�x NId
Γ; · ` idα :: α = α

Eq

Γ;∆1 `M :: α Γ;∆2 `N :: β
Γ;∆1,∆2 `M⊗N :: α⊗β ⊗I

Γ;∆1 `M :: α⊗β Γ;∆2,u :: α,v :: β `N :: γ
Γ;∆1,∆2 ` let u ⊗v = M in N :: γ ⊗E

Γ;∆,u :: α `M :: β

Γ;∆ ` λ̂u : α. M :: α( β
( I Γ;∆1 `M :: α( β Γ;∆2 `N :: α

Γ;∆1,∆2 `MˆN :: β ( E

Γ; · ` nil :: 1 1I
Γ;∆ `M :: 1 Γ;∆′ `N :: α

Γ;∆,∆′ ` let nil = M in N :: α 1E

Γ;∆ `M :: α Γ;∆ `N :: β
Γ;∆ ` 〈M,N〉 :: α&β &I

Γ;∆ `M :: α∨β Γ;∆′,u :: α `N1 :: γ ∆′,v :: β `N2 :: γ
Γ;∆,∆′ ` case M of inl u. N1; inr v. N2 :: γ ∨E

Γ;∆ `M :: α&β
Γ;∆ ` fst M :: α &E1

Γ;∆ `M :: α&β
Γ;∆ ` snd M :: β &E2
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Γ;∆ ` inlβM :: α∨β
Γ;∆ `M :: α ∨I1

Γ;∆ ` inrαM :: α∨β
Γ;∆ `M :: β ∨I2

Γ;∆ ` 〈〉 ::> >I
Γ;∆ `M ::⊥

Γ;∆,∆′ ` errorα M :: α ⊥E

Γ; · `M :: α
Γ; · ` !M :: !α !I

Γ;∆1 `M :: !α Γ,p :: α;∆2 `N :: β
Γ;∆1,∆2 ` let p = M in N :: β !E

Γ,p :: α;∆ `M :: β
Γ;∆ ` λp. M :: α→ β

→ I
Γ;∆ `M :: α→ β Γ; · `N :: α

Γ;∆ `MN :: β → E

Γ,x :: β;∆ `M :: α
Γ;∆ ` λx. M :: ∀x : β. α ∀I

Γ;∆ `M :: ∀x : β. α Γ; · `N :: β
Γ;∆ `MN :: α[N/x] ∀E

Resource-bound quantifier

Γ;∆ `M :: α[y/x] Γ;∆′ ` n :: β�y Γ,x :: β; · ` nil= :: α#(x, y)

Γ;∆,∆′ ` ε̂(n|y).M :: ∃̂x : β.α
∃̂I

Γ;∆1 `M :: ∃̂x : β. α Γ,x :: β;∆2,n :: β�x,v :: α `N :: γ
Γ;∆1,∆2 ` let ε̂(n|x).v = M in N :: γ ∃̂E

5 Linear encoding of GTS

We are going to define a translation of graph expressions to typing derivations. Intuitively, the
translation is based on a quite straightforward mapping of graph expressions into proof terms,
with Nil mapped to nil, ‖ to ⊗, and ν to ε̂. However, we need to distinguish nodes as ground
components (nodes) from node occurrences in constituents (node names). Given E = X � C, we
can translate a node n ∈ X with type(n) = A as n :: A�x (typed node), and the occurrences of n in
C as xn :: A, where A is an unbounded resource type (therefore equivalent to !A).

Semantically, it is more convenient to take edge components as primitive, rather than edges.
In principle, we can introduce a notion of edge interface as linear resource, e :: ∀x1 : A1, . . . ,xk :
Ak.Le(x1, . . .xk), translate an edge type Le(A1, . . . ,Ak) as ∀x1 : A1, . . . ,xk : Ak.Le(x1, . . .xk), and a
component e(n1, . . . ,nk) as ce = e x1 . . .xk. For all its functional clarity, however, the notion of
edge interface is hard to place in GTS. Therefore, we prefer to introduce the notion ce :: L(x1, . . .xn)
of typed edge component as primitive, which can be translation of the original component under
the premises x1 :: A1, . . .xk :: Ak. Following this approach, component connectivity does not
result from the term, rather from the type.

We call graph formulas those in the 1,⊗, ∃̂,� fragment of the logic containing only primitive
graph types (node and edge types). We say that a graph formula γ is in normal form whenever
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γ = ∃̂(x : A). α, where either α = 1 or α = L1(x1)⊗ . . .⊗Lk(xk), with x :: A a sequence of typed
variables. The formula is closed if xi ⊆ x for each 1 ≤ i ≤ k. A graph context is a multiset of typed
nodes and typed edge components.

A graph derivation is a valid sequent Γ;∆ ` N :: γ, where γ is a graph formula, ∆ is a graph
context and Γ contains only individual variables. A graph derivation uses only axioms and the
introduction rules 1I, ⊗I, ∃̂I — therefore it is trivially normal.

We can now define formally the translation as function ~� from graph expressions to typing
derivations. We use the notation AxiomName [Γ; ; f orm] to abbreviate axiom instances and
deduction rules with empty hypothesis (by giving the non-linear context and the principal
formula, if there is one), and RuleName [hyp1; ; . . . ; ; hypn] to abbreviate instances of inference
rules (by giving the hypothesis). We also define MainType(Γ;∆ `N :: α) = α, MainTerm(Γ;∆ `N ::
α) = N, and LinearContext(Γ;∆ `N :: α) = ∆ as auxiliary functions.

Constituents

~ei(m, . . . ,n) : Li(Am, . . . ,An)� =d f Id [Γ; ; ci :: Li(xm, . . . ,xn)]
~Nil� =d f 1I [Γ]
~M ‖N� =d f ⊗ I [~M�; ; ~N�]
~νn : A.N� =d f ∃̂I [ ~N�; ;

NId [Γ; ; n :: A�xn]; ;
Γ, y :: A; · ` nil= :: MainType(~N�)[y/xn]#(y,xn) ]

Graph interfaces

~n : A� =d f NId [Γ; ; n :: A�xn]
~{n : A}� =d f ~n : A�
~{n1 : A1}∪X� =d f ⊗ I [~{n1 : A1}�; ; ~X�]

Graph expressions

~X � C� =d f ⊗ I [~X�I; ; ~C�]

5.1 Properties of the translation

We first consider the following induced mapping, taking graph expressions into QILL formulas
(~�T), and into multisets of typed variables associated to ground components (~�C). In fact, let
~E�T = MainType~E� and ~E�C = LinearContext~E�.

Obs. 5 1) ~�T results in an extension of the original typing of nodes and edges, based on the
association of ⊗ with ‖, 1 with Nil, and ∃̂ with ν, where the free connected nodes are
represented as free variables occurring in the consequence (which, by definition of ~�, are
all referring), whereas other free referring variables represent free isolated nodes.
2) ~E�C = ∆ determines a bijection between ∆ and gc(E) — dependant types contain
the information about basic graph types and component dependencies, whereas terms
preserve component identity.
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Prop. 1 There is an isomorphism between graph expressions and graph derivations.
For each E graph expression, ~E�= Γ;∆ `N : γ defines a graph derivation. By construction,
N and Γ are as required, ~E�T gives a graph formula, ~E�C a graph context. Vice-versa,
for each graph derivation δ = Γ;∆ ` N : γ, one can define a graph expression E such that
~E� = δ, relying on Obs. 5.

Prop. 2 There is an isomorphism between graphs and graph formulas modulo linear equiva-
lence.
Given graph expressions M,N, if M ≡ N then  ~M�T

≡̂~N�T. This follows from the
monoidal characterisation of ⊗ and Obs. 4.
On the other hand, assume γ1,γ2 are graph formulas and  γ1≡̂γ2. Then, for each graph
expressions E1,E2 such that γ1 = ~E1�

T, γ2 = ~E2�T, it holds E1 ≡ E2. By property of
linear equivalence, there is a graph derivation δ1 = Γ;∆ ` N1 :: γ1 iff there is a graph
derivation δ2 = Γ;∆ ` N2 :: γ2. By Prop. 1, there are graph expressions E1,E2 such that
~E1� = δ1,~E2� = δ2. From Obs. 5(2), gc(E1) = gc(E2). Since γ1 and γ2 are equivalent they
share the same free variables, and so do E1 and E2, by Obs. 5(1). Hence follows E1 ≡ E2,
by Obs. 1.

The propositions above state that there is a Curry-Howard isomorphism between graph
expressions and graph derivations on one side, and between graphs and QILL formulas modulo
equivalence on the other. They also state that our translation of graph expressions is adequate
with respect to their congruence.

By an argument similar to that of Prop. 2 and the definition of heating (section 3.1), we can
prove also the following.

Obs. 6 Given graph expressions M,N, the sequent  ~M�T( ~N�T is provable if and only if M
is a heating of N.

This observation has wider semantical consequences, by noting that all the inference rules
involved in graph derivation, if read backward, lead to graph derivations that represent heating
fragments of the graph expression represented by the conclusion.

5.2 DPO transformations

We can now shift from congruence of graph expressions to reachability in a GTS, extending the
translation to deal with graph transformation. We consider transformation up to isomorphism,
and therefore we start from the type level, relying on Prop. 2 — i.e. we define directly the map
~�T from graph expressions to QILL formulas. We do this by associating transformation to linear
implication, and the binding of node variables in rule interfaces to universal quantification.

~M =⇒N�T =d f ~M�T( ~N�T

~Λx : A.N�T =d f ∀x : A.~N�T

Transformation rules are meant to be primitive in a GTS, so they can be introduced as
premises (as with nodes and edge components). They have to be regarded as unbounded
resources, in order to account for their potentially unlimited applicability, and moreover they
must be associated with closed formulas (as there are neither free nodes nor free variables
in transformation rule expressions). Reasoning at an abstract level, it seems appropriate to
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forget about proof terms and consider only the types of the formulas associated with the graph
expressions in the algebraic definition of the rule.

The translation of a rule π(p) = Λx.L =⇒ R can therefore be defined as follows

~π(p)� =d f FId [Γ; ; p :: ∀x : Ax.~L�T( ~R�T]

At an intuitive level, in terms of natural deduction and of a proof built from the bottom,
the application of rule p to a graph G involves deriving the matching subgraph L′ from gc(L′) ⊆
gc(E). The application of p to L′ can be understood as an instantiation of the rule interface,
corresponding to ∀ elimination proof steps; followed by an application of the instantiated rule
to L′, corresponding to a( elimination step, and resulting into a conclusion that represents R′;
followed by a graph derivation of H from premises that represent gc(R′)∪ (gc(E)/gc(L′)).

From a more goal-oriented perspective, assuming normalisation, the application of p to G
can be seen as a process leading to a heating fragment of G, which in turn is a heating of rule
match.

More formally, the application of p to a closed graph formula αG = ∃̂y : Ay.βG determined by
morphism m relies on the fact that the following application schema is a derivable rule (proof
along the lines of the above intuitive explanations)

Γ; ·  αG≡̂αG′ αG′ = ∃̂z : Az.αL[z : Az
d
←− x : Ax]⊗αC

Γ; ·  αH≡̂αH′ αH′ = ∃̂z : Az.αR[z : Az
d
←− x : Ax]⊗αC

Γ;∀x : Ax.αL ( αR  αG( αH

p,m
=⇒

where the interface morphism d associated with m is represented by the multiple substitution

[z : Az
d
←− x : Ax], with z : Az ⊆ y : Ay.

Along these lines, it is possible to see that a hypergraph transformation system G =
〈TG,P,π,G0〉 can be translated to QILL, and that it is possible to obtain an adequacy result
for QILL with respect to reachability in GTS

Prop. 3 The translation is complete and correct with respect to reachability in DPO-GTS (re-
stricting to rules with only nodes in the interface).
For the completeness side — given that we can represent every graph, it is not difficult to
see that we can also simulate every rule application in QILL.
For the correctness side, we need to show that every provable sequent expressing a trans-
formation from a graph formula to another one by means of transformation rule formulas,
can be simulated in the algebraic formalism. We can focus on a single transformation rule
application as inductive step case, i.e. considering a sequent Γ;R,G1 G2 where G1,G2 are
graph formulas and R a transformation rule formula. Assuming that we have a normal
proof, we can argue that each backward step gives heating fragments of G2 (introduction
rules) and of G1 (elimination rules) — therefore preserving structure. It is a matter of
routine — induction on number of variables and graph nodes — to show that the instanti-
ations of R correspond, up to isomorphism, to the matches of the corresponding algebraic
tranformation rule R′. Therefore the sequent is provable only if the algebraic graph G′2
can be reached from the algebraic graph G′1 by application of R′.

The following may give an idea of the level of expressiveness.
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Obs. 7 Given a linear logic context ∆0 = [α|α= ~s�T,s ∈ gc(G0)] (types of the ground components
of G0), a multiset Γ including the referring typed variables for ∆0, and a multiset ΓP =
[ρ|ρ = ~π(p)�T,p ∈ P] (types of the transformation rules), for every graph G reachable in
the system

Γ,ΓP;∆0  ~G�T

Given a multiset R of transformations inG, let ∆R = [τ|τ= ~t�T, t ∈R]. Then, for each graph
G which is reachable from G0 by executing the transformations in R, in some order

Γ;∆0,∆R  ~G�T

If G is reachable by executing at least the transformations in R, in some order

Γ,ΓP;∆0,∆R  ~G�T

A further topic that we would like to investigate is concurrency. The expressiveness of
linear logic makes it comparatively natural to represent parallel application of rules, choice and
indeterminism, and therefore to compare this embedding with classic graph transformation
approaches [8].

6 Conclusion

We have defined a translation of DPO GTS, formulated in algebraic terms, with a restriction
to rules that have only nodes in the interface, into a quantified version of ILL, based on linear
λ-calculus, extended with a resource-bound existential quantifier that we have used to type
name restriction in graph expressions. We have proved informally that the translation is sound
and complete with respect to graph expressions and adequate with respect to reachability in
GTS. We believe that a line of research that relates models based on graph transformation and
proof theory along lines such as those of the Chemical Abstract Machine [3] is probably worth
further investigation. Related work on the translation of multiset rewriting into ILL has been
discussed for example in [6]. We would like to mechanise the logic on a theorem prover, and
we are considering Isabelle, for which there is already a theory of ILL [7].

References

[1] S. Abramsky (1993): Computational interpretation of linear logic. Theoretical Computer Science 111.
[2] N. Benton, G. Bierman, V. de Paiva & M. Hyland (1993): Linear lambda-calculus and categorical models
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