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1 Introduction and Statement of the Main Results

In this paper we investigate the following nonlinear Schrödinger equation

i~∂tψ = (i~∇−A)2ψ + c
1

|x|
ψ + C1(| · |−1 ∗ |ψ|2)ψ − a|ψ|σψ. (1.1)

The coefficients c, C1, a and the exponent σ are assumed to be nonnega-
tive and ~ is supposed to be a scaled version of the Planck constant, which -
w.l.o.g. - shall be set equal to 1 in the sequel. A solution ψ of this Schrödinger
equation can be considered as the wavefunction of an electron beam, inter-
acting self-consistently through the repulsive Coulomb (Hartree) force with
strength C1, the attractive local Fock approximation with strength a (later
on we shall comment on the exponent σ) and interacting repulsively with an
atomic nucleus, located at the origin, of interaction strength c. The vector-
field A represents an external electromagnetic field, which we shall assume to
depend on time t only (not on position x). Clearly, this Schrödinger equation
is time-reversible, but for the sake of notational simplicity we consider t > 0.
For physical reasons we shall only consider the three-dimensional case here,
i.e. the spatial variable x is assumed to be in R3.
Nevertheless, because of the sole dependence of A on time, by a simple change
of coordinates and a phase shift, we see that equation (1.1) can be trans-
formed into a similar nonlinear Schrödinger equation, where the electromag-
netic Laplacian is replaced by the standard one, but on the other hand a
time-dependent Coulomb potential appears. Indeed, by defining

u(t, x) = ψ(t, x+ b(t))ei
∫ t
0
|A(s)|2ds, (1.2)

where b(t) = 2
∫ t
0
A(s)ds, then we can see that u satisfies

i∂tu = −∆u+ V u+ C1(| · |−1 ∗ |u|2)u− a|u|σu, (1.3)

where now the potential is given by

V (t, x) =
c

|x− b(t)|
.

In this paper we are interested in studying the case when A(t) is rapidly
oscillating and we investigate the asymptotic behaviour of solutions of (1.3)
in the highly oscillating regime. Then the equation (1.1) can be considered
as a model for XFEL (X-Ray Free Electron Laser), cf. [3].
As an example we can think of b(t) = e sin(ωt), where ω � 1 is the oscillation
frequency, and e is a constant vector in R3, but as we will show this can be
extended to the case where the field b can be written as

b(t) = e(t)f(ωt), (1.4)

where e : R→ R3 is a smooth vector field and f is an arbitrary continuous,
2π−periodic function.
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To this end, we shall point out the ω dependence of functions with a super-
script, bω(t) = e(t)f(ωt), and

V ω(t, x) =
c

|x− bω(t)|
. (1.5)

We will then study solutions of the Cauchy problem{
i∂tu

ω = −∆uω + V ωuω + C1(| · |−1 ∗ |uω|2)uω − a|uω|σuω
uω(0) = u0,

(1.6)

and their convergence to solutions of the averaged equation{
i∂tu = −∆u+ 〈V 〉u+ C1(| · |−1 ∗ |u|2)u− a|u|σu
u(0) = u0,

(1.7)

where 〈V 〉 is the limiting potential and is given (see Section 2 for details) by

〈V 〉(t, x) :=

∫ 1

0

c

|x− e(t) sin(2πωτ)|
dτ. (1.8)

The main theorem we will prove in this paper is the following one

Theorem 1 Let 0 < σ < 4/3, u0 ∈ L2(R3), uω, u ∈ C(R;L2(R3)) be the
unique global solutions of (1.6), (1.7), respectively (see Theorem 6 below).
Then for each finite time 0 < T < ∞ and for each admissible Strichartz
index pair (q, r), we have

‖uω − u‖Lq([0,T ];Lr(R3)) → 0 as |ω| → ∞.

Remark 1 For the statement of this Theorem we restrict ourselves to the case
when the power-type nonlinearity is mass-subcritical (see [10], [1]). Anyway
the physically interesting exponent for this model, i.e. σ = 2

3 , is included in
the Theorem. However, for its mathematical interest, the case of a energy-
subcritical nonlinearity will be the object of a future investigation.

By means of formula (1.2), the main result gives us the asymptotic behavior
for ψ, solution of (1.1).

Corollary 1 Let 0 < σ < 4
3 , ψ0 ∈ L2(R3), A = Aω(t) be such that

2

∫ t

0

Aω(s)ds = bω(t) = e(t)f(ωt),

as in (1.4) and let ψω ∈ C(R;L2(R3)) be the unique global solution of the
Cauchy problem (1.1). Then for each finite time 0 < T < ∞ and for each
admissible Strichartz index pair (q, r) (see Section 2), we have(∫ T

0

(∫
R3

∣∣∣ψω(t, x)− e−i
∫ t
0
|Aω(s)|2dsu(t, x− bω(t))

∣∣∣r dx) q
r

dt

) 1
r

= o(1),

as |ω| → ∞, where u ∈ C(R;L2(R3)) is the solution to (1.7).
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In Section 2 we review some results about periodic functions and weak conver-
gence. We also recall the Strichartz inequalities associated to the Schrödinger
group, in the spirit of [7] (see also [4]). Such estimates will be then used in Sec-
tion 3 to perform a fixed point argument and to show the local well-posedness
for the Cauchy problems (1.6) and (1.7). By using the conservation of mass
in the case of a L2−subcritical power-type nonlinearity we also prove the
global well-posedness (see the seminal paper by Tsutsumi [11], and also the
monographs [1], [10], [8]), by obtaining some uniform bounds for {uω} in ω.
In Section 4 we prove the main result of this paper, Theorem 1. The idea
for the proof is as in [2] and can be easily explained in the following way:
if we consider the Duhamel’s formula for equation (1.6), then the oscillating
potential (1.5) appears inside the time integral, thus the weak convergence
for (1.5) can be improved to the strong one for {uω}. This is indeed possible
thanks to the uniform bounds in ω we have for {uω}.

2 Preliminary results and notations

In this Section we first recall some basic facts about weak convergence and
periodic functions, which will then be extended to adapt them to our analysis.
Finally, we will also give a very quick overview on dispersive estimates for
the Schrödinger equation and on local and global analysis of its solutions.
First of all, let us recall the following theorem about weak limits of rapidly
oscillating functions.

Theorem 2 Let 1 ≤ p ≤ ∞ and f be a 2π−periodic function in Lp(0, 2π).
Let us define

fn(t) := f(nt), n ∈ N.
Then for 1 ≤ p <∞,

fn ⇀
1

2π

∫ 2π

0

f(t)dt in Lp(I), for any bounded Ω ∈ R,

and for p =∞ we have

fn ⇀
1

2π

∫ 2π

0

f(t)dt in L∞(R),

where the convergence is weak−∗ in L∞(R).

Another very basic fact is that weak convergence is basically the convergence
in average for the sequence: indeed the following theorem holds.

Theorem 3 Let {fn} ⊂ Lp(RN ) be a uniformly bounded sequence in Lp(RN ).
Then the following are equivalent:

1.
fn ⇀ f in Lp(RN );

2.
fn ⇀ f in D′(RN );
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3. for each Borel set E ⊂ RN , 0 < |E| <∞ we have

lim
n→∞

1

|E|

∫
E

fn(x)dx =
1

|E|

∫
E

f(x)dx;

4. for each cube E ⊂ RN , 0 < |E| <∞ we have

lim
n→∞

1

|E|

∫
E

fn(x)dx =
1

|E|

∫
E

f(x)dx;

Remark 2 The above Theorem holds for each exponent 1 ≤ p ≤ ∞: obviously
in the p =∞ case one has to change the weak convergence with the weak−∗
convergence in L∞.

Furthermore, the same result is also valid in the more general case of a
function g ∈ Lp(R;X), where X is an arbitrary Banach space. Clearly we
are interested in the case when X is a Lebesgue space Ls(Rd). Let g ∈
Lp(R;Ls(Rd)), such that g(t+ 2π, ·) = g(t, ·) in Ls(Rd), for each t ∈ R, then
let us define the sequence {gn} ⊂ LptLsx in the following way:

gn(t, x) := g(nt, x).

Then we can prove

gn ⇀
1

2π

∫ 2π

0

g(t, ·)dt in LptL
s
x.

Indeed, to prove the validity of this weak limit it suffices to prove the con-
vergence in average on sets (a, b)×E ⊂ R×Rd, where E ⊂ Rd is a bounded
Borel set in Rd. Since g ∈ LptLsx, then the function

t 7→ 1

|E|

∫
E

g(t, x)dx

is in Lp(R), is 2π−periodic, thus it weakly converges to its average,

1

|E|

∫
E

gn(·, x)dx ⇀
1

2π

∫ 2π

0

1

|E|

∫
E

g(t, x)dxdt in Lp(R).

Hence, by the convergence in average, we have that for all (a, b) ⊂ R

1

(b− a)|E|

∫ b

a

∫
E

gn(t, x)dxdt→ 1

(b− a)|E|

∫ b

a

∫
E

1

2π

∫ 2π

0

g(t′, x)dt′dxdt,

and this clearly means

gn ⇀
1

2π

∫ 2π

0

g(t, ·)dt in LptL
s
x.

Now, let us consider a double scale function, i.e. a function depending on a
slow and a fast variable. To best adapt the discussion below to our analysis
we consider only a special class amongst those functions, namely

g̃(t, τ) = g(e(t)f(τ)).



6 Paolo Antonelli et al.

In our specific case t will be the slow variable and τ the fast one. We assume
f to be 2π−periodic as before, e ∈ C∞(R) (or just regular enough) but not
periodic in general, and g continuous and such that, as it is defined, it lies in
Lp(R). Let us define the sequence

gn(t) := g̃(t, nt) = g(e(t)f(nt)), n ∈ N,

then we can show that

gn ⇀ 〈g〉(t) :=
1

2π

∫ 2π

0

g(e(t)f(τ))dτ in Lp,

where the convergence is weak−∗ if p =∞. Indeed, let us consider an interval
(a, b) ⊂ R, we have∫ b

a

g(e(t)f(nt))dt =
1

n

∫ nb

na

g

(
e

(
t

n

)
f(t)

)
dt

=
1

n

[n(b−a)
2π ]−1∑
k=0

∫ na+2(k+1)π

na+2kπ

g

(
e

(
t

n

)
f(t)

)
dt+

1

n

∫ nb

na+[n(b−a)
2π ]2π

g

(
e

(
t

n

)
f(t)

)
dt.

Now, because of the continuity hypothesis on g and e, for n big enough we
can approximate the integrals in the sum by

1

n

[n(b−a)
2π ]−1∑
k=0

∫ 2(k+1)2π

na+2kπ

g

(
e

(
a+

2kπ

n

)
f(t)

)
dt+

1

n

∫ nb

na+[n(b−a)
2π ]2π

g

(
e

(
t

n

)
f(t)

)
dt

=
1

n

[n(b−a)
2π ]−1∑
k=0

∫ 2π

0

g

(
e

(
a+

2kπ

n

)
f(t)

)
dt+

1

n

∫ nb

na+[n(b−a)
2π ]2π

g

(
e

(
t

n

)
f(t)

)
dt.

Again, by the continuity hypothesis on g we have, for n going to infinity we
can see the expression above converges to∫ b

a

1

2π

∫ 2π

0

g(e(t)f(τ))dτdt.

Consequently, for each open set (a, b) we show

lim
n→∞

1

b− a

∫ b

a

gn(t)dt =
1

b− a

∫ b

a

1

2π

∫ 2π

0

g(e(t)f(τ))dτdt.

This clearly implies the same convergence for each Borel set E ⊂ R:

lim
n→∞

1

|E|

∫
E

gn(t)dt =
1

|E|

∫
E

1

2π

∫ 2π

0

g(e(t)f(τ))dτdt,

and this, plus the uniform bound on the sequence {gn} ⊂ Lp(R) proves that

gn ⇀
1

2π

∫ 2π

0

g(e(t)f(τ))dτ in Lp(R).
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Now, in a similar way as before, we can extend the same result to the case
of g ∈ Lp(R;X), where X is a Banach space.
In our specific case, we consider

V ω(t, x) =
c

|x− e(t) sin(ωt)|
. (2.1)

First of all, we notice V ω ∈ L∞(R : Lp1(R3) + Lp2(R3)), where p1, p2 are
two Lebesgue exponents such that p1 < 3 < p2 and are sufficiently close to
3. Indeed, let Bt be the unit ball in R3 centered at the point e(t) sin(ωt),
and let χBt the its characteristic function. We then write V ω = V ω1 + V ω2 :=
V ωχBt + V ω(1 − χBt), and V ω1 ∈ L∞(R;Lp1(R3)), V ω2 ∈ L∞(R;Lp2(R3)),
where p1 = 3

1+3ε , p2 = 3
1−3ε , for some small ε > 0. Let us furthermore notice

that the norm ‖V ω‖L∞(R:Lp1 (R3)+Lp2 (R3)) does not depend on ω.
Consequently, from what we said above, we see the sequence {V ω} converges
weakly to the function

〈V 〉(t, x) :=
1

2π

∫ 2π

0

c

|x− e(t) sin(ωτ)|
dτ, (2.2)

in L∞(R : Lp1(R3) + Lp2(R3)).
Here and throughout the paper we shall set p1 := 3

1+3ε , p2 := 3
1−3ε .

Finally, let us consider also when g is a regular function, in which case we
have further convergence properties. More in particular, we consider a smooth
function ζ ∈ C∞(R3), such that it is in L∞(R3), together with all its deriva-
tives. Let

g(t, τ, x) = ζ(x− e(t) sin(τ)), (2.3)

where t ∈ [0, T ], τ ∈ R, x ∈ R3, 0 < T < ∞ is fixed. We state a Lemma
which will be useful later on this article.

Lemma 1 Let g be defined as in (2.3). Then

sup
(t,x)∈[0,T ]×R3

∣∣∣∣∫ t

0

(
ζ(x− e(t′) sin(ωt′))− 1

2π

∫ π

−π
ζ(x− e(t′) sin(τ)dτ

)
dt′
∣∣∣∣→ 0,

as |ω| → ∞.

Proof Let us define

gl(t, x) =
1

2π

∫ π

−π
g(t, τ, x)e−ilτdτ, l ∈ Z,

so that we can write
g(t, τ, x) =

∑
l∈Z

gl(t, x)eilτ ,

and we have
1

2π

∫ π

−π
|g(t, τ, x)|2dτ =

∑
l∈Z
|gl(t, x)|2.

Furthermore, we use the Fourier transform for the slow time variable. For this
purpose we extend the function g from [0, T ]×R×R3 to R×R×R3, such that
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it is smooth in R×R×R3 and it vanishes outside the slab (−1, T+1)×R×R3.
Thus we have

g(t, τ, x) =
∑
l∈Z

eilτ
∫
R
eiσtĝl(σ, x)dσ =

∑
l∈Z

∫
R
ĝl(σ, x)ei(σt+lτ)dσ.

where

ĝl(σ, x) =
1

2π

∫
R
e−iσtgl(t, x)dt.

It is straightforward to see that we can write∫ t

0

(
ζ(x− e(t′) sin(ωt′))− 1

2π

∫ π

−π
ζ(x− e(t′) sin(τ))dτ

)
dt′ =

∫ t

0

g(t′, τ, x)−g0(t′, x)dt′.

Conseuqently, to prove the statement of the Lemma, we must prove∫ t

0

∑
l 6=0

∫
R
ĝl(σ, x)ei(σ+lω)t

′
dσdt′ → 0,

as |ω| → ∞, uniformly in (t, x) ∈ [0, T ]× R3.
Let us swap the integration order in the above expression, we then obtain

∑
l 6=0

∫
R
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ. (2.4)

Let us consider for the moment each integral in the sum,∫
R
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ,

without loss of generality we can consider now the case when ω > 0 and
l > 0. We split the above integral in two regions, inside and outside the ball
centered at the origin of radius 3

4 lω.

∫
R
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ

=

∫
{|σ|≤ 3

4 lω}
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ +

∫
{|σ|≥ 3

4 lω}
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ.

For the first one we have that, in this region, |σ + lω| ≥ 1
4 lω, hence∣∣∣∣∣

∫
{|σ|≤ 3

4 lω}
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ

∣∣∣∣∣ ≤ 8

lω

∫
R
|ĝl(σ, x)|dσ.
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Now we have

∫
R
|ĝl(σ, x)|dσ ≤

(∫
R

1

(1 + |σ|2)
1
2+ε

dσ

)1/2(∫
R

(1 + |σ|2)
1
2+ε|ĝl(σ, x)|2dσ

)
.

(∫
R
|〈Dt〉

1+ε
2 gl(t, x)|2dt

)1/2

. (2.5)

Consequently,∣∣∣∣∣
∫
{|σ|≤ 3

4 lω}
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ

∣∣∣∣∣ . 1

lω

(∫
R
|〈Dt〉

1+ε
2 gl(t, x)|2dt

)1/2

,

which tells us that the sum of those terms is O( 1
ω ), as we will see more

precisely later on. On the other hand, for the second integral we use the
fact that the Fourier transform of a C∞ function decays faster than any
polynomial, consequently we have that for each N ∈ N, hence those integrals
give us a contribution which is smaller than any power of ω.

∣∣∣∣∣
∫
{|σ|≥ 3

4 lω}
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ

∣∣∣∣∣ .
∫
{|σ|≥ 3

4 lω}
|ĝl(σ, x)|dσ

.
1

(1 + (lω)2)N/2

∫
R

(1+|σ|2)N/2|ĝl(σ, x)|dσ .
1

(1 + (lω)2)N/2

(∫
R
|〈Dt〉

N+1+ε
2 gl(t, x)|2dt

)1/2

,

where the last inequality follows from (2.5). Thus, by taking the modulus of
the sum in (2.4), we obtain

∣∣∣∣∣∣
∑
l 6=0

∫
R
ĝl(σ, x)

ei(σ+lω)t − 1

σ + lω
dσ

∣∣∣∣∣∣
.

1

ω

∑
l 6=0

(
1

l

(∫
R
|〈Dt〉

1+ε
2 gl(t, x)|2dt

)1/2

+
1

(1 + (lω)2)1/2

(∫
R
|〈Dt〉

3+ε
2 gl(t, x)|2dt

)1/2
)
.

By Cauchy-Schwartz inequality in the sum above we get

∣∣∣∣∣∣
∑
l 6=0

∫
R
ĝl(x, σ)

ei(σ+lω)t − 1

σ + lω
dσ

∣∣∣∣∣∣ . 1

ω

∑
l 6=0

1

l2

1/2∑
l 6=0

∫
R
|〈Dt〉

3+ε
2 g(x, t)|2dt

1/2

.
1

ω

(∫ π

−π

∫
R
|〈Dt〉

3+ε
2 g(x, t, τ)|2dtdτ

)1/2

.
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Hence we can conclude that

sup
(t,x)∈[0,T ]×R3

∣∣∣∣∫ t

0

(
ζ(x− e(t′) sin(ωt′))− 1

2π

∫ π

−π
ζ(x− e(t′) sin(τ))dτ

)
dt′
∣∣∣∣

.
1

ω
sup
x∈R3

(∫ π

−π

∫
R
|〈Dt〉

3+ε
2 g(t, τ, x)|2dtdτ

)1/2

=
1

ω

(
sup
x∈R3

∫ π

−π

∫ T+1

−1
|〈Dt〉

3+ε
2 g(t, τ, x)|2dtdτ

)1/2

.
2π(T + 2)

ω
‖〈D〉

3+ε
2 ζ‖L∞(R3),

which proves the Lemma. ut

2.1 Review of Strichartz estimates and Local and Global Theory for
Schrödinger Equations

In this subsection we quickly review some basic facts about dispersive esti-
mates for the Schrödinger equation and their application to local and global
existence theory of solutions to nonlinear Schrödinger equations.
Let U(t) := eit∆ denote the free Schrödinger group, i.e. if u is solution to{

i∂tu = −∆u
u(0) = u0,

then u(t) = U(t)u0.

Definition 1 We say (q, r) is an admissible pair of exponents if 2 ≤ q ≤
∞, 2 ≤ r ≤ 6, and

1

q
=

3

2

(
1

2
− 1

r

)
.

Here and throughout the paper we will say ‖ · ‖LqtLrx is a Strichartz norm to

mean that it is a norm taken in a space such that (q, r) is an admissible pair
in the sense of Definition 1. We will also use the notation

‖f‖S(I) := sup
(q,r)

‖f‖LqtLr(I×R3), (2.6)

where the sup is taken over all admissible pairs (q, r).
Furthermore, we also need

‖f‖S1(I) := ‖f‖S(I) + ‖∇f‖S(I).

Now we write the Strichartz estimates we will need in our paper. Such esti-
mates go back to Strichartz [9] which proved them in a particular case for the
wave equation, then Ginibre, Velo [4], through a TT ∗ argument, extended
the result and finally Keel, Tao [7] proved the endpoint estimate and general
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dispersive estimates in an abstract setup. Such estimates hold for a general
dispersive equation in arbitrary space dimensions, but for our study we will
use (and state) them only for the Schrödinger equation in R3.

Theorem 4 (Keel, Tao [7]) Let (q, r), (q̃, r̃) be two arbitrary admissible
pairs and let U(·) be the free Schrödinger group. Then

‖U(t)f‖LqtLrx . ‖f‖L2

‖
∫ t

0

U(t− s)F (s)ds‖LqtLrx . ‖F‖
Lq̃
′
t L

r̃′
x

‖
∫
U(−s)F (s)ds‖L2 . ‖F‖

Lq̃
′
t L

r̃′
x
.

Strichartz estimates are very useful to prove existence of local solutions to
nonlinear Schrödinger equations through a fixed point argument.
Indeed, let us consider the following Schrödinger equation{

i∂tu = −∆u+ F1 + . . .+ FM
u(0) = u0,

for some functions F1, . . . , FM , then by Duhamel’s formula we can write

u(t) = U(t)u0 − i
∫ t

0

U(t− s)(F1 + . . . FM )(s)ds.

Then, by applying Strichartz estimates to the above formula we obtain

‖u‖LqtLrx . ‖u0‖L2 + ‖F1‖
L
q′1
t L

r′1
x

+ . . .+ ‖FM‖
L
q′
M
t L

r′
M
x

,

where (q, r), (q1, r1), . . . , (qM , rM ) are admissible pairs. Hence it is clear that

we can bound each term Fj in an arbitrary dual Strichartz space L
q′j
t L

r′j
x .

If now the Fj ’s are different nonlinearities, we further estimate each term
‖Fj‖

L
q′
j
t L

r′
j
x

to close the fixed point argument. The reader should see the

monographs [1], [10] and references therein for details.

3 Local and Global Well-Posedness

In this Section we state the local and global well-posedness results we have for
equations (1.6) and (1.7). We first prove a local well-posedness result for (1.6)
in the space of energy (i.e. H1(R3)), then global well-posedness in the space of
mass (i.e. L2(R3)). Furthermore we show some uniform bounds on the S(0, T )
(see (2.6)) norm of solutions to equation (1.6). As we already mentioned in
Section 2, both V ω and 〈V 〉 belong to the space L∞(R : Lp1(R3) +Lp2(R3)),
where p1 = 3

1+3ε , p2 = 3
1−3ε , with ε > 0 sufficiently small, and the norm

‖V ω‖L∞(R:Lp1 (R3)+Lp2 (R3)) does not depend on ω. However, here we want to
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show a local well-posedness theory in H1, hence we also need to estimate
their gradient. We see that

∇V ω,∇〈V 〉 ∈ L∞(R;L
3

2+3ε (R3) + L
3

2−3ε (R3)).

Indeed, let us consider again the characteristic function χBt of the unit ball

Bt centered at e(t) sin(ωt) ∈ R3, then χBt∇V ω ∈ L∞(R;L
3

2+3ε (R3)) and (1−
χBt)∇V ω ∈ L∞(R;L

3
2−3ε (R3)). Again, the norm ‖∇V ω‖

L∞(R;L
3

2+3ε (R3)+L
3

2−3ε (R3))

does not depend on ω. Consequently, by the weak convergence, we can say

that 〈V 〉 is in L∞(R;L
3

2+3ε (R3) + L
3

2−3ε (R3)), too.
Consequently here we investigate the Cauchy problem{

i∂tu = −∆u+ V u+ C1(| · |−1 ∗ |u|2)u− a|u|σu
u(0) = u0,

(3.1)

where V is a general potential such that V = V1+V2, where V1 ∈ L∞(R;Lp1(R3))

and V2 ∈ L∞(R;Lp2(R3)), and∇V = ∇V1+∇V2, where∇V1 ∈ L∞(R;L
3

2+3ε (R3))

and ∇V2 ∈ L∞(R;L
3

2−3ε (R3)). In this way we have the well-posedness results
below apply both to equation (1.6) and (1.7).

Theorem 5 Assume 0 < σ < 4, u0 ∈ H1(R3). Then, there exists a unique
local solution to (3.1). Furthermore, we have u ∈ S1(0, T ).

The proof of the Theorem above is standard, based on a fixed point argument,
see for example [1], [10], [5], [6]. Nevertheless, for the sake of clarity and
completeness, we sketch the main steps.
For this purpose. let us first write two techincal lemmas which will be used
in what follows.

Lemma 2 Let k = 0, 1. Then

‖∇k(| · |−1 ∗ |f |2)f‖L1
tL

2
x([0,T ]×R3) . T

1
2 ‖f‖

L6
tL

18/7
x
‖∇kf‖

L6
tL

18/7
x

; (3.2)

‖∇k(|f |σf)‖
L

4(σ+2)
σ+8

t L
σ+2
σ+1
x

. T
2(σ+2)
4−σ ‖f‖σL∞t H1

x
‖∇kf‖

L

4(σ+2)
σ+8

t Lσ+2
x

; (3.3)

‖(| · |−1 ∗ |f |2)f − (| · |−1 ∗ |g|2)g‖L1
tL

2
x([0,T ]×R3)

. T
1
2

(
‖f‖2

L6
tL

18/7
x

+ ‖g‖2
L6
tL

18/7
x

)
‖f − g‖

L6
tL

18/7
x

; (3.4)

‖|f |σf − |g|σg‖
L

4(σ+2)
σ+8

t L
σ+2
σ+1
x

. T
2(σ+2)
4−σ

(
‖f‖σL∞t H1

x
+ ‖g‖σL∞t H1

x

)
‖f − g‖

L

4(σ+2)
σ+8

t Lσ+2
x

; (3.5)
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Proof (3.2) is a consequence of the following inequality

‖(| · |−1 ∗ (f1f2))f3‖L1
tL

2
x
. T

1
2

3∏
i=1

‖fi‖L6
tL

18/7
x

, (3.6)

which can be proved by using Hölder’s inequality and Hardy-Littlewood-
Sobolev inequality.
In a similar way by Hölder’s inequality we get

‖|f1|σf2‖
L

4(σ+2)
σ+8

t L
σ+2
σ+1
x

. T
2(σ+2)
4−σ ‖f1‖σL∞t Lσ+2

x
‖f2‖

L

4(σ+2)
σ+8

t Lσ+2
x

, (3.7)

and then, since 0 < σ < 4, we can use Sobolev embedding to show that

‖|f1|σf2‖
L

4(σ+2)
σ+8

t L
σ+2
σ+1
x

. T
2(σ+2)
4−σ ‖f1‖σL∞t H1

x
‖f2‖

L

4(σ+2)
σ+8

t Lσ+2
x

.

Now, (3.3) follows from the fact that |∇(|f |σf)| . |f |σ|∇f |.
The proof of inequalitites (3.4) and (3.5) are similar to (3.2) and (3.3), respec-
tively. In particular, by using some algebra and (3.6) yields (3.4), whereas
(3.5) follows from (3.7) and

||f |σf − |g|σg| . (|f |σ + |g|σ) |f − g|. (3.8)

ut
The second technical lemma estimates the terms with the Coulomb poten-
tials, both in (1.6) and in (1.7).

Lemma 3

‖∇V f‖
L2
tL

6/5
x ([0,T ]×R3 ≤ T

3ε
2 ‖∇V1‖

L∞t L
3

2+3ε
x

‖f‖
L

2
1−3ε
t L

6
1+6ε

; (3.9)

‖V1(1 + |∇|)f‖
L2
tL

6/5
x
≤ T

1−3ε
2 ‖V1‖

L∞t L
3

1+3ε
x

‖(1 + |∇|)f‖
L

2
3ε
t L

2
1−2ε
x

; (3.10)

‖V2(1 + |∇|)f‖L1
tL

2
x([0,T ]×R3 ≤ T

1+3ε
2 ‖V2‖

L∞t L
3

1−3ε
x

‖(1 + |∇|)f‖
L

2
1−3ε
t L

6
1+6ε
x

.

(3.11)

Remark 3 Let us notice that the pair of exponents (6, 187 ),
(

4(σ+2)
3σ , σ + 2

)
,(

2
1−3ε ,

6
1+6ε

)
,
(

2
3ε ,

2
1−2ε

)
, are all Schrödinger admissible, thus the norms in

those spaces are all bounded by the S(I) norm.

We can now sketch the proof of Theorem 5

Proof Let u0 ∈ H1(R3) be given. By the Duhamel’s formula we have

u(t) = eit∆u0 − i
∫ t

0

ei(t−s)∆
[
V u+ C1(| · |−1 ∗ |u|2)u− a|u|σu

]
(s)ds.
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We want to show that, for 0 < T sufficiently small,

Φ(w) := eit∆u0 − i
∫ t

0

ei(t−s)∆
[
V u+ C1(| · |−1 ∗ |u|2)u− a|u|σu

]
(s)ds

maps a ball BR ⊂ S1(0, T ) (the radius R will be chosen later) into itself, and
that in this ball Φ is a contraction in the S(0, T ) metric.
By Strichartz estimates we have

‖Φ(w)‖S1(0,T ) . ‖u0‖H1+‖∇V w‖
L2
tL

6/5
x

+‖V1(1+|∇|)w‖
L2
tL

6/5
x

+‖V2(1+|∇|)w‖L1
tL

2
x

+ ‖(1 + |∇|)
(
(| · |−1 ∗ |w|2)w

)
‖L1

tL
2
x

+ ‖|w|σ(1 + |∇|)w‖
L

4(σ+2)
σ+8

t L
σ+2
σ+1
x

.

Now we use inequalities (3.9), (3.10), (3.11), (3.2), (3.3) to obtain

‖Φ(w)‖S1(0,T ) . ‖u0‖H1 + T
3ε
2 ‖∇V1‖

L∞t L
3

2+3ε
x

‖w‖S1

+ T
1−3ε

2 ‖∇V2‖
L∞t L

3
2−3ε
x

‖w‖S1

+ T
1−3ε

2 ‖V1‖
L∞t L

3
1+3ε
x

‖w‖S1

+ T
1+3ε

2 ‖V2‖
L∞t L

3
1−3ε
x

‖w‖S1

+ T
1
2 ‖w‖3S1

+ T
2(σ+2)
4−σ ‖w‖σ+1

S1 .

Thus, if we take 0 < T ≤ 1 sufficiently small, we have Φ : Br → BR ⊂
S1(0, T ), for some radius depending on ‖uo‖H1 . Furthermore, by using (3.4)
and (3.5), we also have

‖Φ(w1)− Φ(w2)‖S1(0,T ) . + T
3ε
2 ‖∇V1‖

L∞t L
3

2+3ε
x

‖w1 − w2‖S(0,T )

+ T
1−3ε

2 ‖∇V2‖
L∞t L

3
2−3ε
x

‖w1 − w2‖S(0,T )

+ T
1−3ε

2 ‖V1‖
L∞t L

3
1+3ε
x

‖w1 − w2‖S(0,T )

+ T
1+3ε

2 ‖V2‖
L∞t L

3
1−3ε
x

‖w1 − w2‖S(0,T )

+ T
1
2

(
‖w1‖2S1 + |w2‖2S1

)
‖w1 − w2‖S(0,T )

+ T
2(σ+2)
4−σ (‖w1‖σS1 + ‖w2‖σS1) ‖w1 − w2‖S(0,T ).

Once again, if we take 0 < T ≤ 1 small enough, then we have Φ : BR → BR
is a contraction in the S(0, T ) metric. Thus there exists a fixed point for Φ
which is hence a local solution for (3.1).
ut
Next Theorem deals with the well-posedness issue in L2(R3) for (1.6) and
(1.7). We show that when the power σ is mass-subcritical, i.e. 0 < σ < 4

3 ,
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then for any initial datum in L2 we have a global solution. We also stress
here that the uniform bound we obtain for the S(0, T ) norm of the solution
does not depend on ω.

Theorem 6 Assume 0 < σ < 4/3 and consider u0 ∈ L2(R3). The solution
for (3.1) is global, u ∈ C(R : L2(R3)). Furthermore for each finite time
0 < T <∞ we have

‖u‖S(0,T ) ≤ C(‖u0‖L2(R3), T ), (3.12)

where the constant in the right hand side depends only on the L2-norm of the
initial datum and the time T , in particular it does not depend on ω.

Proof The proof works as for Theorem 5 at a local level and then we use the
conservation of mass to extend the solution globally.
Let us consider the Duhamel’s formula

u(t) = eit∆u0 − i
∫ t

0

ei(t−s)∆
(
V u+ C1(| · |−1 ∗ |u|2)u− a|u|σu

)
(s)ds,

then by applying the Strichartz estimates to the expression above in the time
interval [0, T1], we get

‖u‖S(0,T1) . ‖u0‖L2(R3)+T
1−3ε

2 ‖V1‖
L∞t L

3
1+3ε
x

‖u‖S(0,T1)+T
1+3ε

2 ‖V2‖
L∞t L

3
1−3ε
x

‖u‖S(0,T1)

+ T
1/2
1 ‖u‖3S(0,T1)

+ T
4−3σ

4
1 ‖u‖σ+1

S(0,T1)
.

Now we can see that if we choose T1 = T1(‖u0‖L2) small enough, then by a
standard fixed point argument we have

‖u‖S(0,T1) ≤ C‖u0‖L2 . (3.13)

Furthermore, the total mass is conserved at all times, ‖u(t)‖L2 = ‖u0‖L2 .
Thus we can repeat the argument to continue the solution also in the time
interval [T1, 2T1], and so on. Consequently the solution is global, and for any
finite time 0 < T < ∞, we consider [0, T ] ⊂ [0, T1] ∪ . . . ∪ [(N − 1)T1, NT1],

N =
[
T
T1

]
+ 1, where here [·] denotes the integer part of the number. Thus

‖u‖S(0,T ) ≤ CN‖u0‖L2(R3),

where C is the constant appearing in (3.13). Consequently

‖u‖S(0,T ) ≤ C(‖u0‖L2(R3), T ),

for each finite time 0 < T <∞. ut

Remark 4 Here is a couple of remarks about the Theorem above.

– Regarding the case when the power nonlinearity is mass-supercritical,
energy-subcritical (i.e. 4

3 < σ < 4), we cannot establish a global well-

posedness result in H1(R3), not even in the defocusing case (i.e. a < 0),
because the energy is not conserved in our model, and the bound on the
H1-norm of the solution u(t) at time t in general would depend on ω.
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– On the other hand, the time dependence of the constant in (3.12) is
unavoidable, because of the mass-subcriticality of the power-type nonlin-
earity. This is indeed what also happens for the usual NLS equation (see
[10] for instance).

4 Convergence Result

In this Section we will prove the main result of this paper, namely Theorem
1. As already introduced in Section 1, we want to show the convergence of
solutions for{

i∂tu
ω = −∆uω + V ωuω + C1(| · |−1 ∗ |uω|2)uω − a|uω|σuω

uω(0) = u0,
(4.1)

where V ω is defined in (2.1), to solutions of{
i∂tu = −∆u+ 〈V 〉u+ C1(| · |−1 ∗ |u|2)u− a|u|σu
u(0) = u0,

(4.2)

where the averaged potential 〈V 〉 has been defined in (2.2).
Let us recall the definition of the Strichartz space, already given in Section
2, which is

‖f‖S(0,T ) := sup
(q,r)

‖f‖LqtLrx([0,T ]×R3),

where the sup is taken over all admissible pairs (q, r).
The key point of the convergence result stated in Theorem 1 is the Lemma
below: indeed the weak convergence of V ω towards 〈V 〉 improves to strong
convergence for uω towards u because, by considering the difference of the
Duhamel’s formulas for (4.1) and (4.2), the term V ω − 〈V 〉 appears inside
the time integral, and thus the convergence in average for the oscillating
potential yields the strong convergence for the solutions. This fact, together
with the uniform bounds (3.12), provides us the right convergence result. A
similar result is considered also in [2], where the authors study the solutions
of a nonlinear Schrödinger equation with an oscillating nonlinearity and their
asymptotic behavior when the oscillations are increasing more and more. The
Lemma above is heavily inspired by Proposition 2.5 in [2].

Lemma 4 Let 0 < T <∞, f ∈ S(0, T ), and let V ω, 〈V 〉 be defined in (2.1),
(2.2). Then

‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)f) (s)ds‖S(0,T ) → 0, (4.3)

as |ω| → ∞.
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Proof First of all let us point out that the norm appearing in (4.3) is uni-
formly bounded. Indeed by using Strichartz estimates we have

‖
∫ t

0

ei(t−s)∆(V f)(s)ds‖S(0,T ) . ‖V1f‖L2
tL

6/5
x

+ ‖V2f‖L1
tL

2
x

. T
1−3ε

2 ‖V1‖L∞t Lp1 ‖f‖
L

2
3ε
t L

2
1−2ε
x

+ T
1+3ε

2 ‖V2‖L∞t Lp2x ‖f‖L
2

1−3ε
t L

6
1+6ε
x

. Tα‖V ‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3))‖f‖S(0,T ). (4.4)

where V can be either V ω or 〈V 〉, and α > 0. For the integral in (4.3) we
have the following uniform bound

‖
∫ t

0

ei(t−s)∆ [(V ω − 〈V 〉)f ] (s)ds‖S(0,T ) .

Tα(‖V ω‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3))+‖〈V 〉‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3)))‖f‖S(0,T ).

Thanks to this a priori bound, by using a standard density argument it
suffices to prove (4.3) only for V ω, 〈V 〉, f ∈ C∞0 (R × R3). For the sake fo
clarity we explain the last statement more in detalis. Let {fn} ⊂ C∞0 (R1+3)
be a sequence of compactly supported smooth functions such that fn → f in
S(0, T ). Furthermore, set

V ωn := φ 1
n
∗ V ω,

where φ 1
n

(x) is a Gaussian with variance equal to 1
n , and the convolution is

only in space. The following properties for {V ωn } hold true:

– V ωn ∈ C∞(R× R3) and DαV ωn ∈ L∞(R3), for each multlindex α;
– V ωn → V ω in L∞(R;Lp1(R3) + Lp2(R3)), as n→∞;
– V ωn ⇀ 〈V 〉n, where 〈V 〉n = φ 1

n
∗ 〈V 〉 is the regularisation of the averaged

potential.

Clearly we also have 〈V 〉n ∈ C(R × R3), 〈V 〉n → 〈V 〉 in L∞(R;Lp1(R3) +
Lp2(R3)), as n → ∞. We now consider the integral in (4.3), we split it into
four parts

‖
∫ t

0

ei(t−s)∆ [(V ω − 〈V 〉)f ] (s)ds‖S(0,T )

≤‖
∫ t

0

ei(t−s)∆ [(V ω − 〈V 〉)(f − fn)] (s)ds‖S(0,T )

+ ‖
∫ t

0

ei(t−s)∆ [(V ω − V ωn )fn] (s)ds‖S(0,T )

+ ‖
∫ t

0

ei(t−s)∆ [(〈V 〉n − 〈V 〉)fn] (s)ds‖S(0,T )

+ ‖
∫ t

0

ei(t−s)∆ [(V ωn − 〈V 〉n)fn] (s)ds‖S(0,T )

=:I1 + I2 + I3 + I4.
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Let us apply the estimate (4.4) to the terms I1, I2, I3, we then obtain

I1 ≤Tα(‖V ω‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3)) + ‖〈V 〉‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3)))‖f − fn‖S(0,T ),

I2 ≤Tα‖V ω − V ωn ‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3))‖fn‖S(0,T ),

I3 ≤Tα‖〈V 〉n − 〈V 〉‖L∞([0,T ]:Lp1 (R3)+Lp2 (R3))‖fn‖S(0,T ).

Thus it only remains to estimate the integral∫ t

0

ei(t−s)∆ [(V ωn − 〈V 〉n)fn] (s)ds. (4.5)

By integrating by parts we have∫ t

0

ei(t−s)∆
{
d

ds

[∫ s

0

V ωn − 〈Vn〉ds′fn(s)

]
−
∫ s

0

V ωn − 〈Vn〉ds′∂sfn(s)

}
ds,

and then again we have∫ t

0

d

ds

[
ei(t−s)∆

(∫ s

0

V ωn − 〈Vn〉ds′fn(s)

)]
ds

+i

∫ t

0

ei(t−s)∆∆

(∫ s

0

V ωn − 〈Vn〉ds′fn(s)

)
ds−

∫ t

0

ei(t−s)∆
(∫ s

0

V ωn − 〈Vn〉ds′∂sfn(s)

)
ds.

Hence, we get the integral in (4.5) equals∫ t

0

V ωn − 〈Vn〉ds fn(t)

+ i

∫ t

0

ei(t−s)∆
[ ∫ s

0

∆V ωn −∆〈Vn〉ds′ fn(s) + 2

∫ s

0

∇V ωn −∇〈Vn〉ds′ · ∇fn

+

∫ s

0

V ωn − 〈Vn〉ds′∆fn(s)
]
ds

−
∫ t

0

ei(t−s)∆
(∫ s

0

V ωn − 〈Vn〉ds′∂sfn(s)

)
ds.

Now we estimate each term in the expression above in the space S(0, T ). By
Strichartz estimates the first term is bounded by

‖
∫ t

0

V ωn − 〈V 〉dsfn(t)‖S(0,T ) ≤ ‖
∫ t

0

(V ωn − 〈Vn〉) ds‖L∞t,x([0,T ]×R3)‖fn‖S(0,T ).

The other terms are estimated similarly, let us consider the next one for
example

‖
∫ t

0

ei(t−s)∆
[ ∫ s

0

∆V ω − 〈∆Vn〉ds′fn(s)
]
ds‖S(0,T )

. ‖
∫ t

0

(∆V ωn − 〈∆Vn〉) ds‖L∞t,x([0,T ]×R3)‖fn‖Lq̃′t Lr̃′x ,
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for some admissible pair (q̃, r̃).
Consequently, by putting everything together we obtain

‖
∫ t

0

ei(t−s)∆ [(V ωn − 〈V 〉n)fn] (s)ds‖S(0,T )

.‖
∫ t

0

V ωn − 〈V 〉nds‖L∞t,x([0,T ]×R3‖fn‖S(0,T )

+ ‖
∫ t

0

∆V ωn −∆〈V 〉nds‖L∞t,x([0,T ]×R3‖fn‖Lq̃′t Lr̃′x

+ ‖
∫ t

0

∇V ωn −∇〈V 〉nds‖L∞t,x([0,T ]×R3‖∇fn‖Lq̃′t Lr̃′x

+ ‖
∫ t

0

V ωn − 〈V 〉nds‖L∞t,x([0,T ]×R3‖(i∂t +∆)fn‖Lq̃′t Lr̃′x .

We notice that thanks to the properties of V ωn , 〈V 〉n, we can apply Lemma
1 to say that

‖
∫ t

0

V ωn − 〈V 〉nds‖L∞t,x([0,T ]×R3) → 0, as |ω| → ∞.

Furthermore, the same Lemma applies to any derivatives of V ωn , 〈V 〉n,

‖
∫ t

0

DαV ωn −Dα〈V 〉nds‖L∞t,x([0,T ]×R3) → 0, as |ω| → ∞,

for any multi-index α ∈ N3.
Consequently, for each fixed n ∈ N, the term I4 converges to zero in S(0, T )
as |ω| → ∞.
Now, let ε > 0 be arbitrarily small, thus we can choose n∗ ∈ N big enough
so that

I1 + I2 + I3 ≤ ε, ∀ n ≥ n∗.

Thus, for the integral in (4.3), we have

‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)f) (s)ds‖S(0,T ) ≤ ε+ I4,

and in the limit as |ω| → ∞, we obtain

lim
|ω|→∞

‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)f) (s)ds‖S(0,T ) ≤ ε, ∀ ε > 0.

Hence the limit is zero and the Lemma is proved.
ut
We are now ready to prove Theorem 1.
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Let uω, u be solutions to (4.1), (4.2), respectively, with the same initial da-
tum, and let us consider the equation for the difference v := uω − u, which
reads{
i∂tv = −∆v + (V ω − 〈V 〉)u+ V ωv + C1[(| · | ∗ |uω|2)uω − (| · | ∗ |u|2)u]− a[|uω|σuω − |u|σu]
v(0) = 0.

(4.6)
By the Duhamel’s formula and by applying Strichartz estimates to each term
we obtain By applying Strichartz estimates we obtain

‖v‖S(0,T ) .‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)u) (s)ds‖S(0,T )

+ ‖V ω1 v‖L2
tL

6/5
x ([0,T ]×R3)

+ ‖V ω2 v‖L1
tL

2
x([0,T ]×R3)

+ ‖(| · |−1 ∗ |uω|2)uω − (| · |−1 ∗ |u|2)u‖L1
tL

2
x([0,T ]×R3

+ ‖|uω|σuω − |u|ωu‖
L

4(σ+2)
σ+8

t L
σ+2
σ+1
x

.

Now we use inequalities (3.10), (3.11), (3.4), (3.5), to get

‖v‖S(0,T ) .‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)u) (s)ds‖S(0,T )

+ T
1−3ε

2 ‖V ω1 ‖
L∞t L

3
1+3ε
x

‖v‖S(0,T )

+ T
1+3ε

2 ‖V ω2 ‖
L∞t L

3
1−3ε
x

‖v‖S(0,T )

T
1
2

(
‖uω‖2S(0,T ) + ‖u‖2S(0,T )

)
‖v‖S(0,T )

T
2(σ+2)
4−σ

(
‖uω‖σS(0,T ) + ‖u‖σS(0,T )

)
‖v‖S(0,T )

.‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)u) (s)ds‖S(0,T ) + TαC(‖uω‖S(0,T ), ‖u‖S(0,T ))‖v‖S(0,T ).

Let us now recall that, by (3.12), the norms ‖uω‖S(0,T ) are uniformly bounded,
indipendently on ω. Consequently the constant C in the inequality above de-
pends only on T and ‖u0‖L2(R3). Thus we can use Gronwall’s inequality to
obtain

‖v‖S(0,T ) . ecT ‖
∫ t

0

ei(t−s)∆ ((V ω − 〈V 〉)u) (s)ds‖S(0,T ).

By applying Lemma 4 we finally prove that

‖uω − u‖S(0,T ) → 0, as |ω| → ∞,

for all finite times 0 < T <∞. Hence the Theorem is proved.
ut
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