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ABSTRACT
Accretion discs are common in binary systems, and they are often found to be misaligned
with respect to the binary orbit. The gravitational torque from a companion induces nodal
precession in misaligned disc orbits. We calculate whether this precession is strong enough to
overcome the internal disc torques communicating angular momentum. For typical parameters
precession wins: the disc breaks into distinct planes that precess effectively independently.
We run hydrodynamical simulations to check these results, and confirm that disc breaking is
widespread and generally enhances accretion on to the central object. This applies in many
cases of astrophysical accretion, e.g. supermassive black hole binaries and X-ray binaries.
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1 IN T RO D U C T I O N

Accretion discs (e.g. Pringle & Rees 1972; Pringle 1981; Frank,
King & Raine 2002) appear in many astrophysical systems. In
most cases, these discs are probably not completely axisymmetric.
Discs may be locally tilted by the Lense–Thirring effect of a central
misaligned black hole (Bardeen & Petterson 1975), by radiation
(Pringle 1996, 1997) or by the gravity of a companion (e.g. Lubow &
Ogilvie 2000). Discs in or around supermassive black hole (SMBH)
binaries formed by galaxy mergers may be misaligned with respect
to the binary orbit through the chaotic nature of AGN accretion
(King & Pringle 2006, 2007). The effect on the disc in all these cases
is similar. The lack of symmetry produces a torque on misaligned
rings of gas which makes their orbits precess differentially. Given a
sufficiently strong viscosity communicating the precession between
the rings, the disc warps. Papaloizou & Pringle (1983) showed that
warps can propagate in two distinct regimes: wave-like for α � H/R,
and diffusive for α � H/R where α is the Shakura & Sunyaev
dimensionless viscosity parameter (Shakura & Sunyaev 1973) and
H/R is the disc angular semithickness. In this paper, we focus on
diffusive systems with α > H/R, which typically holds for accretion
discs around black holes.

For diffusive discs subject to differential precession, the expected
evolution is that dissipation through viscosity allows the inner parts
of the disc to align, joined by a smoothly warped region to the
still misaligned outer parts. In the case of a misaligned disc around
a spinning black hole, this is often called the Bardeen–Petterson
effect. Until recently it was implicitly assumed that this is what
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always occurs in a diffusive disc, i.e. that the internal disc torques
would always be able to communicate the precession. However, an
analytic study by Ogilvie (1999) pointed out that the effect of a
disc warp was to weaken the communication of angular momentum
in the disc, and so weaken the disc’s ability to hold itself together.
Although his study assumed a locally isotropic viscous process,
there appears no reason to assume this behaviour does not hold
for a viscosity driven by turbulence, such as the magnetorotational
instability (MRI; Balbus & Hawley 1991). Indeed for a viscosity
driven by magnetic fields it is likely that the vertical viscosity, asso-
ciated with keeping the disc flat, is weaker than that of an isotropic
model, as the vertical gas shear is probably oscillatory whereas the
azimuthal shear grows secularly as gas parcels continually move
apart (Pringle 1992).

We note that it is conventional to use the term isotropic viscosity,
but that this can be misleading. For a warped disc this term means
that the horizontal and vertical shear in the warp are assumed to
be damped by viscous dissipation at the same average rates (cf.
Lodato & Pringle 2007, equation 40). This assumption, made by
Papaloizou & Pringle (1983) and Ogilvie (1999), leads to the re-
sult that the azimuthal shear viscosity ν1 ∝α, but that the vertical
viscosity ν2 ∝ 1/α, quite contrary to any naive belief that ν1 and
ν2 might end up roughly equal. This apparently paradoxical result
comes about because a small value of isotropic viscosity α allows a
large resonant radial velocity vR in the warp: the viscous dissipation
rate goes as αv2

R ∝ 1/α and so increases as α decreases. A warped-
disc isotropic viscosity explicitly does not assume that ν1 = ν2, as
was the case in the early work on warped discs by e.g. Bardeen &
Petterson (1975).

An α viscosity that acts isotropically, as described above, appears
to hold for viscosity arising from turbulence induced by the MRI
(King et al. 2013). However, very little effort has been directed
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towards estimating the effective viscosities in magnetized warped
discs. Torkelsson et al. (2000) performed shearing box calculations
to follow the decay of an imposed epicyclic shearing motion, which
mimics a warp. Their results are in approximate agreement with
an isotropic viscosity (which predicts α2 ∼ 1/α; Papaloizou &
Pringle 1983). Further, Ogilvie (2003) developed an analytic model
for the dynamical evolution of magnetorotational turbulent stresses
which predicts agreement with the conclusions of Torkelsson et al.
(2000). Both of these investigations, numerical and analytic, allow
the effective viscosity from magnetohydrodynamic turbulence to be
anisotropic, but both conclude that it is close to isotropic.

The realization that the viscosity may not be strong enough to
hold the disc together has significant implications. If the viscosity
is too weak, or the external torque on the disc too strong, the disc
may instead break into distinct planes with only tenuous gas flows
between them (Nixon & King 2012). If in addition these planes are
sufficiently inclined to the axis of precession, they can precess until
they are partially counterrotating, promoting angular momentum
cancellation and rapid infall – disc tearing. Tearing occurs in discs
inclined to the spin of a central black hole (Nixon et al. 2012) and
in a circumbinary disc around a misaligned central binary system
(Nixon, King & Price 2013).

In this paper, we want to find out if tearing can happen inside
a binary, i.e. if a disc around one component can be disrupted by
the perturbation from a companion. This would have significant
implications for all binary systems: e.g. fuelling SMBH during the
SMBH binary phase (cf. figs 6 and 7 of Nixon et al. 2013) and
accretion outbursts in X-ray binaries. In the Lense–Thirring and
circumbinary disc cases, disc breaking starts from the inside
and works its way outwards. But we also want to know if breaking
and tearing can instead start from the outer edge of a disc inter-
nal to a binary, and work its way inwards. To do this we consider
binary systems with an initially planar disc around one component,
misaligned with respect to the (circular) binary orbit. Following the
methods of our earlier papers on disc tearing, we first compare the
disc precession torque with the disc viscous torque to determine
whether the disc should warp or break. Then we check our findings
by comparing this result with hydrodynamical simulations.

2 T E A R I N G U P T H E D I S C

The disc precession caused by the presence of a binary companion
is retrograde, and has frequency (Bate et al. 2000)

�p = 3

4

M0

M1

(
R

a

)3

� cos θ. (1)

Here, θ is the inclination angle between the disc and the binary, M0

& M1 are the masses of each component of the binary with the disc
around M1, a is the binary separation, R (assumed �a) is the disc
radius and � = (GM1/R3)1/2 is the disc orbital frequency.

We get an idea of whether the disc tears by estimating the disc
precession frequency in a typical case. The disc cannot extend past
the Roche lobe radius (more precisely the tidal truncation radius
Rtide ∼ 0.87RRL; Frank et al. 2002), so we take M1 = M0 and
Rmax ≈ 0.35a. Putting this into equation (1) gives

�p,max ≈ 0.03� cos θ. (2)

So in this case the precession time is only ∼30 dynamical times,
suggesting that tearing is possible, as the viscous communication
in the disc is likely to be significantly slower than this.

We expect the disc to break when the precession induced in the
disc is stronger than any internal communication in the disc. This

communication can be due to the usual planar disc viscosity (ν1),
the viscosity arising from vertical shear in a warped disc (ν2) or
pressure. In the simulations presented here we are focusing on the
regime with α > H/R and therefore the communication due to
pressure is small and we return to this point in Section 4.

We can write the magnitudes of the viscous torques per unit area
as (Papaloizou & Pringle 1983)

∣∣Gν1

∣∣ = 3πν1�R2�

2πRH
(3)

and

∣∣Gν2

∣∣ = 2πR�R2� 1
2 ν2 |∂l/∂R|

2πRH
. (4)

Here, � is the disc surface density and l is the unit angular momen-
tum vector. For Keplerian rotation and a Shakura & Sunyaev (1973)
viscosity ν i = αiH2� we can write the total as

|Gtotal| = ∣∣Gν1

∣∣ + ∣∣Gν2

∣∣ = �R2�2

2

H

R
[3α1 + α2 |ψ |] , (5)

where |ψ | is the warp amplitude and defined as |ψ | = R |∂l/∂R|
(Ogilvie 1999).

We can compare this to the magnitude of the precession torque
per unit area

∣∣Gp

∣∣ = ∣∣�p × L
∣∣ = 3

4

M0

M1

(
R

a

)3

�R2�2 cos θ sin θ (6)

to give an idea of where in the disc we expect breaking to occur.
Here, L is the angular momentum density vector. To break the disc
the precession must be stronger than its viscous communication,
i.e. |Gp| � |Gtotal|, giving

Rbreak �
[

4
(
α1 + α2

3 |ψ |)
sin 2θ

H

R

M1

M0

]1/3

a. (7)

This break radius accounts for both the azimuthal and vertical vis-
cosities in a warped disc. In contrast, the previous disc tearing papers
(Nixon et al. 2012, 2013) used α1 = α and considered the initial
conditions of a flat disc with |ψ | = 0.

It is not straightforward to evaluate equation (7) as both α1 and
α2 are strong functions of the warp amplitude |ψ | (Ogilvie 1999,
2000) and the warp amplitude itself is unknown before performing
a full 3D calculation of the disc evolution. In previous work, it has
sufficed to conservatively use α1 = α, but to exclude the α2 term.
For large α � 0.1 this is reasonable, but for smaller α the vertical
viscosity is clearly important. Proceeding with the method of the
earlier papers we get

Rbreak �
(

4α

sin 2θ

H

R

M1

M0

)1/3

a, (8)

but we caution that this equation is not relevant for α � 0.1 and small
inclination angles where the strong vertical viscosity can result in
rapid disc alignment. In such cases, the total internal torque must
be considered (equation 7), but we note that this is not trivial to
evaluate beforehand.

We can evaluate equation (8) for typical parameters, giving

Rbreak � 0.16a
( α

0.1

)1/3
(

H/R

0.01

)1/3 (
M1

M0

)1/3

(sin 2θ )−1/3 .

(9)
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Companions tear accretion discs 1253

This disc tearing criterion is equivalent to requiring a minimum
inclination of the disc to the binary orbit, θmin, defined by

sin 2θmin � 4α
H

R

M1

M0

(
a

Rbreak

)3

. (10)

We can simplify this formula in two limits. If the disc is around the
less massive component we have M1 < M0 and the tidal limit on the
disc size requires

a

Rbreak
> 2.5

(
M

M1

)1/3

, (11)

where M = M1 + M0 is the total binary mass, so equation (10)
becomes

sin 2θ � 0.06
( α

0.1

) (
H/R

0.01

)
(M1 < M0) (12)

since M � M0 in this case.
If instead the disc is around the more massive binary compo-

nent we have M1 > M0 and the disc size is approximately 0.6a
(Artymowicz & Lubow 1994). In this case, breaking occurs if

sin 2θ � 0.18
( α

0.1

) (
H/R

0.01

) (
M1/M0

10

)
(M1 > M0).

(13)

For typical black hole disc parameters α = 0.1, H/R � 10−2

almost all discs with a reasonable misalignment should break (cf.
equations 12 and 13). However, a very large mass ratio M1/M0 � 1
makes the perturbation by the smaller black hole so weak that
breaking would occur only after a very long interval.

For X-ray binaries breaking can clearly be avoided in some cases,
but probably occurs in others. First, if mass is transferred by Roche
lobe overflow, the accretion disc forms closely aligned to the binary
plane. So to get any disc inclination to the binary plane1 in a close
stellar-mass binary requires a torque to tilt the disc out of the plane.
Here, Her X-1 is interesting, as this system is known to have a tilted
precessing disc (Katz 1973), which sets limits on the viscosity coef-
ficient α (cf. King et al. 2013). The disc tilt is plausibly attributed to
radiation warping (Petterson 1977a; Petterson 1977b; Pringle 1996;
Wijers & Pringle 1999; Ogilvie & Dubus 2001) provided that the
mass input occurs at small disc radii. Wijers & Pringle (1999) es-
timate α � 0.3, H/R � 0.04, M1/M0 � 0.5 and R/a � 0.24. From
equation (10) these give the requirement sin 2θ > 1.7 for breaking to
occur, which is of course impossible. This is reassuring, as the disc
in Her X-1 appears to precess as a single body. However, slightly
larger or thinner discs, or ones with lower viscosity, could easily
have values of sin 2θ allowing for disc breaking.

We note that Rbreak is the radius outside which we expect the
disc to break. This is the opposite of the Lense–Thirring (Nixon
et al. 2012) and circumbinary (Nixon et al. 2013) cases, and raises
new possibilities. If for example a disc ring broken from the outer
edge contained more angular momentum than everything inside,
the outer disc might be able to sweep the entire inner disc in to
the accretor and leave behind a single misaligned ring. This would
presumably spread viscously and possibly repeat the process.

1 Note that the binary orbital plane and the spin plane of the black hole may
be misaligned and so a disc aligned to the binary plane could still experience
Lense–Thirring tearing (e.g. Nixon & Salvesen 2014).

3 SI M U L AT I O N S

To check our analytical reasoning above, we perform 3D hydrody-
namical numerical simulations using the PHANTOM smoothed particle
hydrodynamics code (Price 2012), as in previous studies of warped
discs (e.g. Lodato & Price 2010; Nixon 2012) and broken discs
(Nixon et al. 2012, 2013). Disc breaking has also been observed in
the circumbinary simulations of Larwood & Papaloizou (1997), and
the unforced warped-disc simulations of Lodato & Price (2010).

We follow the method of Nixon et al. (2013), but simulate
discs around one component of the binary rather than circumbi-
nary discs. The specific parameters used here can be summarized
as follows: the disc is initially planar and extends from Rin = 0.1a
to Rout = 0.35a with a surface density profile � = �0(R/Rin)−p and
locally isothermal sound speed profile cs = cs,0(R/Rin)−q, where we
have chosen p = 3/2 and q = 3/4. This achieves a uniformly re-
solved disc with the shell-averaged smoothing length per disc scale-
height 〈h〉/H ≈ constant (Lodato & Pringle 2007). �0 and cs,0 are set
by the disc mass, Md = 10−3M and the disc angular semithickness,
H/R = 0.01 (at R = Rin) respectively. Initially the disc is composed
of 4 million particles, which for this setup gives 〈h〉/H ≈ 0.5. The
simulations use a disc viscosity with Shakura & Sunyaev α � 0.1
(which requires artificial viscosity αAV = 1.9; cf. Lodato & Price
2010) and a quadratic artificial viscosity βAV = 2. We assume that
the binary components, represented by two Newtonian point masses
with M1 = M2 = 0.5M, accrete any gas coming within a distance
0.05a of them, and so remove this gas from the computation. The
simulations differ only in the initial inclination angle between the
disc and the binary orbit. We perform our simulations for θ = 10◦,
30◦, 45◦ and 60◦.

Fig. 1 shows the simulation with an initial inclination of 10◦.
Here, the precession torque caused by the companion is weak, so
the disc evolves with a mild warp. We know from equation (6)
that the strength of the precession torque is higher when θ = 30◦,
and it has its maximum value when θ = 45◦. This agrees with
equation (8) which shows that disc breaking is more likely when
sin 2θ is high. We find strong disc breaking in our simulations with
initial inclinations of 30◦ and 45◦. Fig. 2 shows a simulation with
an initial inclination of 30◦. Here, the disc becomes significantly
warped after a few orbits. Then the outer disc breaks off to form
a distinct outer ring. Similarly, the disc with an initial inclination
of 45◦ is disrupted by the strong precession torque and initially
breaks into two distinct planes. Then a third ring is broken off,
but quickly interacts with the outer ring. The two outermost rings
merge after another ∼10 binary orbits, as shown in Fig. 3. The inner

Figure 1. 3D surface rendering of the warped disc after 0 and 6.5 binary
orbits. The disc was initially inclined at 10◦ to the binary plane with no
warp. The disc is viewed along the binary orbital plane and the arrow points
in the direction of the companion.
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Figure 2. 3D surface rendering of the disc which was initially inclined at 30◦ to the binary plane with no warp. These snapshots are taken after 0, 6.5, 17.5
and 25.5 binary orbits. The disc is viewed along the binary orbital plane and the arrow points in the direction of the companion. In this simulation the disc
breaks into two distinct planes after ∼8 binary orbits.

ring develops a strong warp, aligning somewhat towards the binary
plane, while the outer ring remains highly inclined and precessing.
The θ = 60◦ simulation evolves quite differently from those with
smaller θ . This is shown in Fig. 4. The simulated disc appears as if
it is about to tear after a few binary orbits, but the outer regions of
the disc become quite eccentric. The inner and outer disc interact
strongly at pericentre, causing enhanced dissipation (cf. Fig. 5) and
merging the two rings into a single eccentric disc. The remaining
eccentric disc persists over the duration of the simulation, which is
approximately 50 binary orbits.

The simplified criterion (8) derived in Section 2 predicts the
breaking found in the simulations with inclination angle ≥30◦.
However, it suggests that the disc with inclination angle 10◦

should also break with Rbreak � 0.23, within the disc outer radius
(Rout = 0.35). Instead of breaking the disc, we find that the 10◦

simulation aligns to the binary plane after ∼20 binary orbits. This
alignment suggests that the vertical viscous torque (4) is dynami-
cally important on short time-scales. In this case, the simplifications
made between equations (7) and (8) are not relevant. We also note
that the outer disc radius in the 10◦ simulation shrinks slightly to
Rout ≈ 0.3a due to disc–binary resonances (Artymowicz & Lubow
1994).

The importance of the vertical viscous torque for the 10◦ simula-
tion can easily be shown by estimating the α2 term in equation (7).
Analysing this simulation we find the warp amplitude grows to
|ψ | ≈ 0.1 which gives α2 ≈ 52 (Ogilvie 1999). From these val-
ues we find Rbreak � 0.41a by considering the vertical viscosity
(see equation 7). The breaking radius predicted by the vertical vis-
cous torque exceeds the disc outer radius and this is in agreement
with the simulations. Therefore, we can conclude that the simpli-
fied criterion (8) is not relevant for this case. However, for the 30◦

simulation we find that the warp amplitude grows to |ψ | ≈ 1.5

which gives α2 ≈ 0.4 (Ogilvie 1999). From these values we find
that the disc should break with Rbreak � 0.2a, within the disc outer
radius, again in agreement with the simulation. Further we find that
the 30◦ simulation breaks at a minimum radius of 0.205a, whereas
the 45◦ simulation breaks at a minimum radius of 0.195a. From
our estimate in Section 2, we expect Rbreak to differ between these
two simulations by a factor of [sin 60/sin 90]−1/3 = 1.05, which is
remarkably similar to the difference found in the simulations. These
numbers give the smallest radius at which the disc was deemed to
have broken, occurring at t = 19 in the 30◦ simulation and t = 16
in the 45◦ simulation.

The accretion rate through tearing discs is generally significantly
enhanced. The top panel of Fig. 5 shows the accretion rates for
the simulations with θ = 10◦, 30◦ and 45◦. The accretion rate is
higher for the broken discs (θ = 30◦, 45◦) than for the warped disc
(θ = 10◦). The disc with θ = 60◦ produces highly variable accretion,
as shown in the lower panel of Fig. 5, varying by approximately three
orders of magnitude. The high accretion rate for this simulation
results from the enhanced dissipation between the inner disc and
the eccentric outer regions. The remaining eccentric disc shows a
nodding motion which produces the peaks in accretion rate seen in
the bottom panel of Fig. 5.

The nodding motion (oscillations in the disc tilt) are accompanied
by oscillations in the disc eccentricity. We attribute this to the Kozai–
Lidov mechanism recently discovered by Martin et al. (2014) to also
act in fluid discs. The Kozai–Lidov mechanism induces antiphase
oscillations in the orbital inclination and eccentricity of particles
highly inclined to a binary companion (Kozai 1962; Lidov 1962).
Martin et al. (2014) are the first to show that this process also occurs
in a fluid disc. In our 60◦ simulation the disc quickly becomes a
narrow ring (through a strong interaction induced by tearing, which
drives particles outside the ring into the accretion radius of the
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Figure 3. 3D surface rendering of the disc which was initially inclined at 45◦ to the binary plane with no warp. These snapshots are taken after 0, 6, 20.5 and
31 binary orbits. The disc is viewed along the binary orbital plane and the arrow points in the direction of the companion. In this simulation, the disc initially
breaks into two distinct planes after ∼7 binary orbits. Then a third ring is broken off, but quickly interacts with the outer ring.

primary). This narrow ring then goes through strong Kozai–Lidov
cycles. When the disc has its peak eccentricity the pericentre of the
ring approaches the accretion radius and creates the strong accretion
rate shown in Fig. 5. Martin et al. (2014) were the first to show that
this behaviour occurs more generally for extended discs, and is
therefore probably important in many astrophysical scenarios.

The increase in accretion rate for the broken discs here is only a
factor of a few, rather than the orders of magnitude found in Nixon
et al. (2013). The main reason for this is the weaker precession here
(cf. equation 1 compared with Nixon et al. 2013, equation 7). In
the present case, the inner disc evolves significantly faster, reaching
a degree of alignment before tearing happens (see Fig. 3). This
makes the internal disc inclination angle smaller than 2θ . Another
important difference is that resonances hold out a circumbinary
disc, but in our case resonances do not slow accretion. We note
that for smaller mass ratios (M0 < M1) the resonances driving
superhump behaviour (Whitehurst 1988) appear in the disc, and
we will investigate this in a further paper. We note finally that
significantly higher accretion rates might well appear in the disc for
other parameters, e.g. if the viscosity driving alignment was smaller.

3.1 Waves

In this section, we report a single simulation performed with a
thicker disc, H/R = 0.05 and lower dissipation, α = 0.01, but oth-
erwise identical parameters to the 45◦ simulation above. For these
parameters 〈h〉/H = 0.17 and therefore αAV = 0.56. For this simu-
lation, the differential precession induced by the binary is expected
to be communicated through pressure waves, propagating at a ve-
locity vw ≈ cs/2, induced by a warped disc (Papaloizou & Lin
1995; Lubow & Ogilvie 2000). For the parameters of the simula-
tion, the wave travel time across the disc is tw ≈ Rout/cs(Rout) = 1.3
binary orbits. However, the fastest precession time induced in the
disc is tprec(Rout) = 2π/[�p(Rout)] = 6.4 binary orbits, and so we
expect the disc to be able to communicate the precession efficiently
throughout the disc by pressure waves. This leads to global preces-
sion of the disc as seen by previous investigations (Larwood et al.
1996). Fig. 6 shows half a precession period taking ≈13 orbits, so
the global precession period observed in the simulation is approxi-
mately 25 binary orbits. The predicted global precession time can
be calculated by dividing the integral of the angular momentum by
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Figure 4. 3D surface rendering of the disc which was initially inclined at 60◦ to the binary plane with no warp. These snapshots are taken after 0, 2.5, 3.5 and
5.5 binary orbits. The disc is viewed along the binary orbital plane and the arrow points in the direction of the companion in the snapshots. Four stages are
shown: (i) the initial inclined disc, (ii) the disc is disrupted by the precession torque, (iii) the disc breaks into two distinct rings, but the outer ring is growing
more eccentric and (iv) the outer ring and inner ring merge, causing enhanced dissipation and leaving behind an inclined eccentric disc.

the integral of the torque across the disc. For the parameters cho-
sen here, this gives 34 binary orbits, which is consistent with the
observed period as the calculation is highly sensitive to the inner
and outer disc radii and the surface density profile for our parameter
choices and these can change somewhat during the simulation due
to viscous spreading of the disc and accretion.

The global precession observed in this simulation reiterates our
comment above that the criterion derived in Section 2 should not be
applied to scenarios for which the equations are invalid. This sim-
ulation is in the wave-like warp propagation regime with H/R > α.
Therefore, the internal disc communication is dominated by waves
rather than viscosity. Therefore, it is no surprise that this simulation
does not agree with equation (8) as this was derived assuming that
warps propagate diffusively. If we instead consider the internal disc

communication due to waves, it is clear that the disc should not
tear as the wave communication across the whole disc occurs faster
than any local precession time in the disc. This is confirmed by our
simulation shown in Fig. 6.

4 D I SCUSSI ON

We have simulated misaligned accretion discs in a binary system
to explore the process of disc tearing, where the precession torque
induced in the disc can overwhelm its internal viscous communi-
cation. Here, a misaligned binary companion gravitationally drives
the precession torque. We have shown that sufficiently thin and suf-
ficiently inclined discs can break so that their outer rings precess
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Companions tear accretion discs 1257

Figure 5. The accretion rates with time for different inclination angles of
the disc. The accretion rate is calculated in time bins of half a binary orbit.
The accretion rate is in code units of binary mass per binary dynamical time,
and the time axis is in units of the binary dynamical time where a full orbit
of the binary is 2π.

effectively independently. This process can enhance the dissipation
in the disc and promote stronger accretion on to the central object.

In our analytical estimates in Section 2, we compared the pre-
cession torque to the internal viscous torques arising from both az-
imuthal and vertical shear. As it is not straightforward to calculate
the vertical torque, which is strongly dependent on warp amplitude,
we simplify the full criteria (7) and (8). This simplification is rele-
vant for moderate to large values of the disc viscosity parameter α

and large inclination angles. We note that an exact calculation of a
tearing criterion would require knowledge of ∂l/∂R as a function of
both position and time, so that the viscosity coefficients and hence
the viscous torques can be calculated and compared to the preces-
sion torque. For these reasons one has to perform three-dimensional
hydrodynamic simulations of this process to find out exactly what
the disc does. The simplest approach to a criterion for disc tearing
is given by equation (8), which has the advantage of being readily
calculable, but is not applicable to all regions of parameter space.
We shall explore this further with a focused investigation in a future
publication.

We note that the criteria we have derived should not be used
when the disc viscosity is smaller than the disc angular semithick-
ness (α < H/R) as this allows the efficient propagation of waves
(Papaloizou & Pringle 1983) and this distinct internal disc com-
munication is not included in our analysis in Section 2. We have
performed one simulation of such a disc with H/R = 0.05 and
α = 0.01 (Section 3.1). If we were to naively apply the diffusive
tearing criterion (8) to this pressure dominated simulation we would
expect the disc to tear similarly to Figs 3 & 4. However, we instead
find that the disc precesses as a solid body. This happens because
the differential precession induced by the binary is communicated
across the whole disc by pressure waves, which propagate at a ve-
locity vw ≈ cs/2 (Papaloizou & Lin 1995; Lubow & Ogilvie 2000).
This leads to global precession of the disc, as seen in previous in-
vestigations (Larwood et al. 1996). We note that if we consider a
criterion which takes account of wave communication in the disc
(Nixon et al. 2013), then we instead predict that the disc should not
break, consistent with this simulation.

5 C O N C L U S I O N S

We have shown that tilted discs inside a binary are susceptible to
tearing from the outside in, because of the gravitational torque from

Figure 6. 3D surface rendering of a thick (H/R = 0.05) disc in the wave-like warp propagation regime (H/R > α = 0.01). The disc was initially inclined at
45◦ to the binary plane and becomes slightly eccentric over the duration of the simulation. The left-hand panel shows the initial conditions and then the middle
and right-hand panels show the disc after a quarter and a half of a precession period, respectively, i.e. a precession of 90◦ and 180◦. The disc is viewed along
the binary orbital plane.
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the companion star. If the disc inclination is small the disc warps
(Fig. 1), and if there is nothing to maintain the tilt, the disc even-
tually aligns with the binary plane. For larger inclinations the disc
can be torn, the outer ring breaking off and precessing effectively
independently (Figs 2 and 3). For some inclinations the eccentricity
of the outer disc grows (Fig. 4).

The behaviour we have discussed in this paper is relevant to a vari-
ety of astrophysical systems, for example X-ray binaries, where the
disc plane may be tilted by radiation warping (e.g. Wijers & Pringle
1999; Ogilvie & Dubus 2001), SMBH binaries, where accretion
of misaligned gas can create effectively random inclinations (e.g.
Nixon et al. 2013) and protostellar binaries, where a disc may be
misaligned by a variety of effects such as binary capture/exchange,
accretion after binary formation (Bate, Lodato & Pringle 2010) and
stellar flybys (Nixon & Pringle 2010).
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