
T2: Temporal Property Verification

Marc Brockschmidt1, Byron Cook2, Samin Ishtiaq1, Heidy Khlaaf2, and Nir
Piterman3

1Microsoft Research Cambridge, 2University College London, 3University of Leicester

Abstract. We present the open-source tool T2, the first public release
from the TERMINATOR project [9]. T2 has been extended over the past
decade to support automatic temporal-logic proving techniques and to
handle a general class of user-provided liveness and safety properties.
Input can be provided in a native format and in C, via the support of
the LLVM compiler framework. We briefly discuss T2’s architecture, its
underlying techniques, and conclude with an experimental illustration of
its competitiveness and directions for future extensions.

1 Introduction

We present T2 (TERMINATOR 2), an open-source framework that implements,
combines, and extends techniques developed over the past decade aimed towards
the verification of temporal properties of programs. T2 operates on an input
format that can be automatically extracted from the LLVM compiler framework’s
intermediate representation, allowing T2 to analyze programs in a wide range
of programming languages (e.g. C, C++, Objective C, . . . ). T2 allows users to
(dis)prove CTL, Fair-CTL, and CTL∗ specifications via a reduction to its safety,
termination and nontermination analysis techniques. Furthermore, LTL specifi-
cations can be checked using the automata-theoretic approach for LTL verifica-
tion [26] via a reduction to fair termination, which is subsumed by Fair-CTL.

In this paper we describe T2’s capabilities and demonstrate its effectiveness
by an experimental evaluation against competing tools. T2 is implemented in F#
and makes heavy use of the Z3 SMT solver [11]. T2 runs on Windows, MacOS,
and Linux. It is available under the MIT license at github.com/mmjb/T2.

Related work. We focus on tool features of T2 and consider only related pub-
licly released tools. Note that, with the exception of KITTeL [13], T2 is the only
open-source termination prover and is the first open-source temporal property
prover. Similar to T2, ARMC [23] and CProver [19], implement a TERMINATOR-
style incremental reduction to safety proving. T2 is distinguished from these
tools by its use of lexicographic ranking functions instead of disjunctive termi-
nation arguments [10]. Other termination proving tools include FuncTion [25],
KITTeL [13], and Ultimate [16], which synthesize termination arguments, but have
weak support for inferring supporting invariants in long programs with many
loops. AProVE [14] is a closed-source portfolio solver implementing many suc-
cessful techniques, including T2’s methods. We know of only one other tool able
to automatically prove CTL properties of infinite-state programs:4 Q’ARMC [2],

4 We do not discuss tools that only support finite-state systems or pushdown automata.



int main() {
int k = nondet();

int x = nondet();

if (k > 0)

while (x > 0)

x = x - k;

return 0; }

`0

`1

`2

`3

k := nondet();
x := nondet();

assume(k > 0);

assume(k ≤ 0);

assume(x > 0);
x := x− k;

assume(x ≤ 0);

Fig. 1: (a) C input program. (b) T2 control-flow graph of the program in (a).

however Q’ARMC does not provide an automated front-end to its native input
and requires a manual instantiation of the structure of the invariants. We do not
know tools other than T2 that can verify Fair-CTL and CTL∗ for such programs.

Limitations. T2 only supports linear integer arithmetic fragments of C. An exten-
sion of T2 that handles heap program directly is presented in [1].5 As in many
other tools, numbers are treated as mathematical integers, not machine integers.
However, our C front-end provides a transformation [12] that handles machine
integers correctly by inserting explicit normalization steps at possible overflows.

2 Front-end

T2 improves on TERMINATOR by supporting a native input format as well as
replacing the SLAM-based C interface by one based on LLVM.

Native Format. T2 allows input in its internal program representation to facilitate
use from other tools. T2 represents programs as graphs of program locations L
connected by transition rules with conditions and assignments to a set of integer
variables V. The location `0 ∈ L is the canonical start state. An example is
shown in Fig. 1(b). We assume that variables to which we do not assign values
remain unchanged. For precise semantics of program evaluations, we refer to [3].

C via LLVM. In recent years, LLVM has become the standard basis of program
analysis tools for C. We have thus chosen to extend llvm2kittel [13], which auto-
matically translates C programs into integer term rewriting systems using LLVM,
to also generate T2’s native format. Our implementation uses the existing dead
code elimination, constant propagation, and control-flow simplifications to sim-
plify the input program. Fig. 1(a) shows the C program from which we generate
the T2 native input in Fig. 1(b). Further details can be found in [4].

3 Back-end

In T2, we have replaced the safety, termination, and non-termination procedures
implemented in TERMINATOR by more efficient versions. In addition, we added
support for temporal-logic model checking.

Proving Safety. To prove temporal properties, T2 repeatedly calls to a safety
proving procedure on instrumented programs. For this, T2 implements the Im-
pact [21] safety proving algorithm, and furthermore can use safety proving
techniquesimplemented in Z3, e.g. generalized property directed reachability

5 Alternatively, the heap-to-integer abstractions implemented in Thor [20] for C or the
one implemented in AProVE [14] for C and Java can be used as a pre-processing step.

2



Preproc.

Instrumentation

Safety RF Synth. RS Synth.

Termination Nontermination

Fail
Simplif. Counterex.

Safe

Fail

Refine

Fail

Succ.

Fig. 2: Flowchart of the T2 termination proving procedure

(GPDR) [17] and Spacer [18]. For this, we convert our transition systems into sets
of linear Horn clauses with constraints in linear arithmetic, in which one predicate
p` is introduced per program location `. For example, the transition from `2 to `2

in Fig. 1(b) is represented as ∀x, k, x′ : p`2(x′, k)← p`2(x, k)∧ x′ = x− k∧ x > 0.

Proving Termination. A schematic overview of our termination proving procedure
is displayed in Fig. 2. In the initial Instrumentation phase (described in [3]),
the input program is modified so that a termination proof can be constructed
by a sequence of alternating safety queries and rank function synthesis steps.
This reduces the check of a speculated (possibly lexicographic) rank function
f for a loop to asserting that the value of f after one loop iteration is smaller
than before that iteration. If the speculated termination argument is insufficient,
our Safety check fails, and the termination argument is refined using the found
counterexample in RF Synth. We follow the strategy presented in [10] to construct
a lexicographic termination argument, extending a standard linear rank function
synthesis procedure [22],6 implemented as constraint solving via Z3. The overall
procedure is independent of the used safety prover and rank function synthesis.

In our Preprocessing phase, a number of standard program analysis techniques
are used to simplify the remaining proof. Most prominently, this includes the
termination proving pre-processing technique presented in [3] to remove loop
transitions that we can directly prove terminating, without needing further sup-
porting invariants. In our termination benchmarks, about 80% of program loops
(e.g. encodings of for i in 1 .. n do-style loops) are eliminated at this stage.

Disproving Termination. When T2 cannot refine a termination argument based on
a given counterexample, it tries to prove existence of a recurrent set [15] witnessing
non-termination in the RS Synth. step. A recurrent set S is a set of program
states whose execution can eventually lead back to a state from S. T2 uses a
variation of the techniques from [5], restricted to only take a counterexample
execution into account and implemented as constraint solving via Z3.

Proving CTL. CTL subsumes reasoning about safety, termination, and nontermi-
nation, in addition to all state-based properties. T2 implements the bottom-up
strategy for CTL verification from [7]. Given a CTL property ϕ, T2 first com-
putes quantifier-free preconditions precondi for the subformulas of ϕ, and then
verifies the formula obtained from ϕ by replacing the subformulas by their pre-
conditions. Property preconditions are computed using a counterexample-guided
strategy where several preconditions for each location are computed simultane-
ously through the natural decomposition of the counterexample’s state space.

6 T2 can optionally also synthesize disjunctive termination arguments [24] as imple-
mented in the original TERMINATOR [9].

3



Proving Fair-CTL. T2 implements the approach for verification of CTL with
fairness as presented in [6]. This method reduces Fair-CTL to fairness-free CTL
using prophecy variables to encode a partition of fair from unfair paths. Although
CTL can express a system’s interaction with inputs and nondeterminism, which
linear-time temporal logics (LTL) are inadequate to express, it cannot model
trace-based assumptions about the environment in sequential and concurrent
settings (e.g. schedulers) that LTL can express. Fairness allows us to bridge said
gap between linear-time and branching-time reasoning, in addition to allowing
us to employ the automata-theoretic technique for LTL verification [26] in T2.

Proving CTL∗. Finally, T2 is the sole tool which supports the verification of CTL∗

properties of infinite-state programs as presented in [8]. A precondition synthesis
strategy is used with a program transformation that trades nondeterminism in
the transition relation for nondeterminism explicit in variables predicting future
outcomes when necessary. Note that Fair-CTL disallows the arbitrary interplay
between linear-time and branching-time operators beyond the scope of fairness.
For example, a property stating that “along some future an event occurs infinitely
often” cannot be expressed in either LTL, CTL nor Fair-CTL, yet it is crucial when
expressing “possibility” properties, such as the viability of a system, stating that
every reachable state can spawn a fair computation. Contrarily, CTL∗ is capable
of expressing CTL, LTL, Fair-CTL, and the aforementioned property. Additionally,
CTL∗ allows us to express existential system stabilization, stating that an event
can eventually become true and stay true from every reachable state. Note that
for properties expressible in Fair-CTL, our Fair-CTL prover is relatively (to safety
and termination subprocedures) complete, whereas our CTL∗ prover is incomplete.

4 Experimental Evaluation & Future Work

We demonstrate T2’s effectiveness compared to competing tools. We do not know
of other tools supporting Fair-CTL and CTL∗ for infinite-state systems, thus we
do not present such experiments and instead refer to [6] and [8]. Note that T2’s
performance has significantly improved since then through improvements in our
back-end (e.g. by using Spacer instead of Impact). We refer to [4] for a detailed
discussion of the properties and programs that these logics allowed us to verify.

Termination Experiments. We compare T2 as termination prover with the par-
ticipants of the Termination Competition 2014 and 2015 using the collection
of 1222 termination proving benchmarks used at the Termination Competition
2015 for integer transition systems. These benchmarks include manually crafted
programs from the literature on termination proving, as well as many examples
obtained from automatic translations from programs in higher languages such
as Java (e.g. from java.util.HashSet) or C (e.g. reduced versions of Windows
kernel drivers). The experiments were performed on the StarExec platform with
a timeout of 300 seconds. Our version of T2 uses the GPDR implementation in Z3
as safety prover. Furthermore, we also consider three further versions of T2, using
the three different supported safety provers. For these configurations, we use no
termination proving pre-processing (NoP) step and only use our safety proving-
based strategy, to better evaluate the effect of different safety back-ends. The

4



Tool Term Nonterm Fail Avg. (s)

AProVE 641 393 188 49.1
CppInv 566 374 282 65.5
Ctrl 445 0 777 80.0

T2-GPDR 627 442 153 23.6

T2-GPDR-NoP 589 438 195 31.4
T2-Spacer-NoP 591 429 202 33.5
T2-Impact-NoP 529 452 241 37.2

0.5 1 5 10 3060 300
0.5

1

5
10

30
60

120

300

T2-GPDR (s)

A
P
ro
V
E

(s
)

(a) (b)

Fig. 3: Termination evaluation results. (a) Overview table. (b) Comparison of T2 and
AProVE. Green (resp. blue) marks correspond to terminating (resp. non-terminating)
examples, and gray marks examples on which both provers failed. A � (resp. a 4)
indicates an example in which only T2 (resp. AProVE) succeeded, and ◦ indicates an
example on which both provers return the same result.

overall number of solved instances and average runtimes are displayed in Fig. 3(a),
and a detailed comparison of AProVE and T2-GPDR is shown in Fig. 3(b).7 All
provers are assumed to be sound, and no provers returned conflicting results.

The results show that T2’s simple architecture competes well with the portfo-
lio approach implemented in AProVE (which subsumes T2’s techniques), and is
more effective than other tools. Comparing the different safety proving back-ends
of T2 shows that our F# implementation of Impact is nearly as efficient as the
optimized C++ implementations of GPDR and Spacer. The different exploration
strategies of our safety provers yield different counterexamples, leading to differ-
ences in the resulting (non)termination proofs. The impact of our pre-processing
technique is visible when comparing T2-GPDR and T2-GPDR-NoP.

0.51 5 10 30 100
0.5

1

5
10

30

100

T2 (s)

Q
A
R
M
C

(s
)CTL Experiments. We evaluate T2’s CTL verifica-

tion techniques against the only other available tool,
Q’ARMC [2] on the 56 benchmarks from its evalua-
tion. These benchmarks are drawn from the I/O sub-
system of the Windows OS kernel, the back-end in-
frastructure of the PostgreSQL database server, and
the SoftUpdates patch system. They can be found at
http://www.cims.nyu.edu/~ejk/ctl/. The tools were executed on a Core i7
950 CPU with a timeout of 100 seconds. Both tools are able to successfully
verify all examples. T2 needs 2.7 seconds on average, whereas Q’ARMC takes 3.6
seconds. The scatterplot above compares proof times on individual examples.

Future work. We wish to integrate and improve techniques for conditional ter-
mination, which will improve the strength of our property verification. We also
intend to support reasoning about the heap, recursion, and concurrency in T2.

7 All experimental data can be viewed on https://www.starexec.org/starexec/

secure/details/job.jsp?id=11121.

5



References

1. A. Albarghouthi, J. Berdine, B. Cook, and Z. Kincaid. Spatial interpolants. In
ESOP’15.

2. T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified
horn clauses. In CAV’13.

3. M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through
cooperation. In CAV’13.

4. M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: Temporal
property verification. 2015. http://arxiv.org/abs/1512.08689.

5. M. Brockschmidt, T. Ströder, C. Otto, and Jürgen Giesl. Automated detection of
non-termination and NullPointerExceptions for Java Bytecode. In FOVEOOS’11.

6. B. Cook, H. Khlaaf, and N. Piterman. Fairness for infinite-state systems. In
TACAS’15.

7. B. Cook, H. Khlaaf, and N. Piterman. Faster temporal reasoning for infinite-state
programs. In FMCAD’14.

8. B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL∗ verification for
infinite-state systems. In CAV’15.

9. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI’06.

10. B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination proving.
In TACAS’13.

11. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS’08.
12. S. Falke, D. Kapur, and C. Sinz. Termination analysis of imperative programs

using bitvector arithmetic. In VSTTE’12.
13. S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler

intermediate languages. In RTA’11.
14. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,

P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termina-
tion of programs automatically with AProVE. In IJCAR’14.

15. A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and R. Xu. Proving
non-termination. In POPL’08.

16. M. Heizmann, J. Hoenicke, and A. Podelski. Termination analysis by learning
terminating programs. In CAV’14.

17. K. Hoder and N. Bjørner. Generalized property directed reachability. In SAT’12.
18. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-based model checking for recursive

programs. In CAV’14.
19. D. Kroening, N. Sharygina, A. Tsitovich, and C. Wintersteiger. Termination analysis

with compositional transition invariants. In CAV’10.
20. S. Magill, M. Tsai, P. Lee, and Y. Tsay. Automatic numeric abstractions for

heap-manipulating programs. In POPL’10.
21. K. McMillan. Lazy abstraction with interpolants. In CAV’06.
22. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI’04.
23. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model

checking with abstraction refinement. In PADL’07.
24. A. Podelski and A. Rybalchenko. Transition invariants. In LICS’04.
25. C. Urban. The abstract domain of segmented ranking functions. In SAS’13.
26. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput.,

115(1):1–37, 1994.

6


