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A b stra c t

This thesis is concerned with a number of problems relating to mass outflow in active galactic 

nucleii. A number of authors have discussed radiation pressure driven winds, and some have 

discussed the spectral evolution in such a wind, but under restricted conditions, e.g. the 

radiation spectrum is thermal at high frequencies. A number of authors have discussed the 

Comptonization of an arbitrary input spectrum in a stationary medium. In Chapter 2, I 

consider the evolution of an arbitrary input spectrum by a supercritical outflow. I consider 

outflows that contain a number of e^ pairs, these flows are supercritical for modest mass 

outflows. I find that the input spectrum is not significantly distorted, but tha t the high 

frequency cut off moves to a lower frequency. There is a major flaw in the model: most of the 

radiation energy is carried by photons of energy larger than 0.5 MeV; however, the Kompaneets 

equation, which is central to the model, is not valid for photons of this energy. There is also 

an indication tha t pair production is an important process in the inner regions of the system, 

a process which has been ignored.

The second problem is concerned with the broad Une region. The ‘standard model’ requires a 

two-phase equiUbrium between a hot intercloud medium and cool clouds. This is incompatible 

with the radiative heating impUed by observed spectra. In Chapter 3, I introduce generalUsed 

two body heating into the intercloud wind. I find that both the dynamics and thermal equiUbria 

of the system are compatible with the observed velocities of broad Une clouds confined by an 

outflowing medium at 10  ̂ K.

Many BLR theories require the presence of a wind, probably created in the nuclear region. 

VariabiUty observations suggest that the X-ray spectrum is also created in this region, this 

spectrum is often described as a universal power law. It is unreasonable to assume tha t this 

ubiquitous slope can be produced by arbitrary tuning of the input parameters. In Chapter 4 , 1 

describe a model where the wind dynamics and spectral slope are related: the disk atmosphere 

is heated by UV radiation and by injected e^ pairs, causing it to form a wind. The mass loss 

limits the optical depth of the atmosphere and hence the evolution of the X-ray spectrum, so 

th a t the system is tuned by the dynamics to produce the canonical power law. Unfortunately, 

some of the approximations used in the model produce a set of equations tha t severely limit 

the range of physical parameter space tha t may be sensibly investigated, one or more of these 

approximations must be relaxed for the model to be of greater use.



C h a p ter  1

In tro d u ctio n

In this thesis I am concerned with a number of problems relating to mass outflows in active 

galactic nuclei.

In recent years, much work has concentrated on the production of radiatively driven winds 

in active galaxies. Arguments have been given in several cases (Drew and Boksenberg, 1984, 

Krolik et a i ,  1984, Perry and Dyson, 1985) that active galaxies contain winds with high 

mass fluxes. A number of authors have discussed the generation of such winds by radiation 

pressure (e.g. Meier, 1982a, b and c). Some have discussed the processing of the input 

radiation spectrum by such a wind (e.g. Becker and Begelman, 1986a), albeit for a limited 

range of initial conditions, though a number of authors have investigated Comptonisation of 

an arbitrary input spectrum in a stationary medium (Katz, 1976, Ross, 1979, Sunyaev and 

Titarchuk, 1980, Guilbert, 1981). In addition, many authors have discussed the affects of the 

presence of electron-positron pairs in a stationary medium, e.g. the e^-cauldron (Bonometto 

and Rees, 1971, Guilbert et aL, 1983).

The particular problems addressed here have a rather different motivation. In Chapter 2 , I 

am concerned with the spectral distortion that might be introduced by Compton interactions 

in a wind. This differs from previous work in that the radiation is not assumed to originate 

solely from the outflowing material, but is injected by some unspecified process at small radii 

(in contrast to Becker and Begelman (1986a)). This would be relevant to, for example, an 

electron-positron cauldron model for the source spectrum produced at small radii (Guilbert et 

aL, 1983). Such models, treated with dynamical consistency, would be expected to lead to large 

mass outflows in the absence of a confining structure since the energy densities in the large



optical depth material of the source are necessarily large compared with the gravitational 

potential energy density. Another example is a synchrotron origin for the radiation in an 

electron-positron plasma. Such a plasma avoids the problem of Faraday rotation tha t would 

be associated with a cool proton component. These models are only self-consistent if the 

spectrum is not distorted in the outflow. Alternatively, a different parameter range may be 

appropriate in the model to match the observed spectra.

I shall consider outflows which contain a signiflcant component of electron-positron pairs. 

These flows will be supercritical for modest mass outflow rates. I find that, for hard X-ray 

spectra with photon number index less than 1 and cut off at high energy, the initial spectrum 

is not distorted by Comptonisation in the moving atmosphere, except that the cut-off moves 

to lower frequency. Thus, an overproduction of 7 - ray photons in the bare source need not be 

a problem for models of the nuclear energy generation.

The second problem concerns outflow in the broad line region. In the standard model (Krolik, 

McKee and Tarter, 1981) the BLR clouds result from a two phase equilibrium confined by 

the pressure of the hot phase. There are several well known problems (Frank, King and 

Raine, 1992). The radiation spectrum from the central source does not give rise to a two 

phase equilibrium at the pressure required for equilibrium with the BLR clouds {nT  ~  10 '̂*) 

assuming the clouds are at distances from the source given by the ionisation parameter deduced 

from line ratios. The BLR clouds are supersonic at the Compton temperature of the radiation 

and hence unstable to outflow through the flanks. Now, it is possible that we do not see the 

same radiation spectrum as the clouds if the cloud distribution is non-spherical. It is also 

clear tha t the distances deduced from the ionisation parameters are too large in comparison 

with the size of the BLR region obtained from variability arguments. (Essentially time lags 

between the observed continuum and line variations.) But changes to the standard model 

along these lines cannot overcome all of the objections listed here. The simplest change would 

be an extra component of heating in the BLR such that the two phase equilibrim is restored 

and the equilibrium temperature of the hot phase is raised so that the X-ray absorption is 

negligible and the cloud motion is subsonic (Mathews and Ferland, 1987). It is easy to add 

ad hoc heating terms to achieve this. The problem is that the inter-cloud medium is not then 

gravitationally bound.

In Chapter 3, I go one step further. I add a general two-body heating term such as might 

be expected from cosmic rays. I show that a consistent dynamical picture can be achieved of 

a hot outflowing wind in two phase equilibrium with cool clouds. The line ratios from these



clouds, despite the extra heating, are not significantly different from the standard model (i.e. 

the extra heating has only a marginal effect on the cloud temperature.)

Many theories of the BLR (e.g. Dyson and Perry, 1987, Smith and Raine, 1988, Cassidy and 

Raine, 1993) have as an essential ingredient a wind. This outflow is assumed to arise in the 

nuclear region. Also arising in this region is the X-ray spectrum. This spectrum is often 

described as a universal power law with slope 0.7 for radio loud sources (Turner and Pounds, 

1989); for radio quiet sources a slope nearer 0.9 is a better description (Shastri et al,  1993). 

While there is a non-negligible spread in the spectral shape, it is clear tha t something like this 

power law is a reasonable first approximation to a universal spectrum. It is unreasonable to 

ascribe this spectrum to a picture that requires arbitrary tuning of parameters to produce the 

required slope.

In Chapter 4 ,1 investigate a model in which these two aspects of active nuclei are related. The 

tuning of the spectrum is supposed to be derived from the dynamics. I make a first attempt 

to describe a new picture for the nuclear engine which gives the radiation spectrum and is 

dynamically consistent. I envisage a disk which consists of an optically thick cool ‘filling’ 

between a top and bottom  layer of hot atmosphere. The cool layer radiates UV into the 

atmosphere where it is Compton scattered to give the X-ray spectrum. Thus accretion energy 

is extracted from the atmosphere by Compton scattering of injected photons rather than by 

its own radiation. (This is in contrast to Hardt and Maraschi, 1993.) I do not consider here 

the mechanism by which energy is deposited in the atmosphere except tha t it is supposed to 

lead to an electron-positron component. The source is therefore Eddington limited even at 

rather modest luminosity and mass is expected to be lost from the disk surface. The idea is 

tha t mass loss should limit the optical depth in the atmosphere and hence the Comptonisation 

of the spectrum, i.e. the system is automatically tuned by the dynamics to yield the observed 

ubiquitous power law in X-rays. The results, for a highly simplified representation of the 

physics (essentially a spatially averaged column instead of a disc atmosphere), suggest it might 

be possible to obtain the observed spectrum and mass outflow in this way but it is not a source 

of (chaotic) oscillitory behaviour.



C h a p ter  2

S p ectra l E v o lu tio n  in  a  

S u p ercr itica l e^-Pair W in d

2.1 Introduction

In a supercritical plasma outflow radiation may be trapped by electron scattering. If the re­

peated Compton shifts in frequency are signiflcant such a system might be expected to impress 

characteristic spectral features on the radiation spectrum. Arguments have been advanced in 

several cases (Drew and Boksenberg, 1984, Krolik et al,  1985, Perry and Dyson, 1985) that ac­

tive galaxies contain winds with high mass fluxes. If such winds contain electron-positron pairs 

(Lightman 1982) then even modest mass outflow rates will correspond to  supercriticality. The 

generation of these winds by radiation pressure has been discussed by a number of authors (e.g. 

Meier, 1982a, b and c) with a view to determining a relation between mass flux and observed 

luminosity at inflnity. Becker and Begelman (1986a) drew attention to  the need to consider 

self-consistent spectra in supercritical winds but only for a restricted range of initial conditions 

such tha t the radiation spectrum is thermal at high frequencies. Many authors have, of course, 

discussed Comptonization of an arbitrary input spectrum in the case tha t the radiation has 

no dynamical role in the wind region (e.g. Katz, 1976, Ross, 1979, Sunyaev and Titarchuk, 

1980, Guilbert, 1981) This leaves open the question whether a supercritical wind necessarily 

impresses spectral features on an arbitrary input spectrum. I have in mind here particularly 

the possibility tha t a supercritical outflow be compatible with the observation of a ‘canonical’ 

X-ray spectrum generated deep in the potential well of a supermassive black hole. Thus, in 

this chapter, I look at the Comptonization in a radiation pressure driven spherical wind of



a power law spectrum oc I take this to be representative of a power law spectrum

harder than oc and thus includes, qualitatively, the possibility that the true primary 

AGN spectrum is The limits on the 7 -ray background (Bassani, et ai,  1985) require

th a t the spectrum be cut off at some high v =  Umax- In contrast to Becker and Begelman, 

this input cut-off is taken to be related to the primary radiation mechanism generating the 

canonical power law and not to the electron temperature in the wind.

As a result of my numerical computations I find that the effect of the wind is to move the cut­

off at i/max to a lower frequency without significantly perturbing the power-law slope below the 

cut-off. Thus my main result is tha t a standard synchrotron or Compton origin for the canonical 

spectrum is compatible with the existence of a supercritical wind. Indeed, in the presence of 

such a wind, the electron-positron cauldron model (Bonometto and Rees, 1971, Guilbert el, 

1983) can be viable for a range of compactness parameters (those for which the unbroken power 

law spectrum extends to 7 -ray energies) without violating the 7 -ray background constraints 

(because Comptonisation moves the break in the spectrum to hard X-rays). Of course, such 

models may also be viable for other reasons (Done and Fabian, 1989); the point I am making 

here is tha t if an active nucleus contains a supercritical mass outflow the allowed range of 

compactness parameters is effectively unconstrained by the 7 -ray background.

I remark that the observation of short term variability in X-rays provides a restriction on the 

possible mass outflow rates. If timescales of ~  10® s are indicative of a radius of 10 ®̂ cm for 

the X-ray region, then a mass outflow rate of IM q yr~^ is indicated. If the outflow contains 

a large fraction of electron-positron pairs this mass flow rate is highly supercritical.

In the following sections I set up the equations of motion for the radiation transfer in a given 

outflow and the equations of motion of the matter in a given radiation field following Becker 

and Begelman (1986a). These equations are manipulated to separate the dynamics from the 

spectral evolution. I set up a finite difference scheme in section 2.4 which solves the integral 

equation for the spectral evolution iteratively. This gives the spectrum of the radiation field 

as a function of the Compton parameter y (section 2.2) which enables me to solve for the 

dynamics and hence determine the mass outflow rate. Finally, I calculate the observed spectra 

from these results using the method of Becker and Begelman.

I also apply my results to a conical outflow where the observed radiation would be th a t emitted 

from the side of the cone. This introduces a curvature into the X-ray spectrum. Thus I argue 

th a t the X-ray emission in sources which do not show evidence of superluminal motion could



result from Comptonization in an optically thick, radiation pressure driven, mildly relativistic 

jet. (The highly relativistic jets appropriate to the superluminal sources cannot be driven by 

radiation pressure so the self-consistency between the spectrum and the dynamics addressed 

here is not relevant.)

2.2 R adiative Transfer in a W ind

My discussion follows that of Becker and Begelman (1986a). From Blandford and Payne (1981) 

we can write down the modified Kompaneets equation for Compton scattering in an optically 

thick moving fluid under the diffusion approximation in a co-moving frame:

(" +
The first, second and third terms on the right hand side of equation (2.1) represent the spatial 

diffusion of photons, adiabatic cooling and interactions due to Compton processes, respectively. 

The velocity of the fluid is u (r), measured in units of the speed of light, c;ne(r) and Te(r) are 

the electron density and tem perature respectively. The photon occupation number (the density 

of photons in phase space) n{u,r)  is related to the total photon density by

8? / !/^ü(y,r)d!/. (2 .2 )
Jo

I am interested here in situations where the radiation is trapped in the flow: the balance of 

energy between photons and electrons is determined entirely by adiabatic cooling and inelastic 

Compton scattering. Also the outward flow velocity of the photons is the same as the flow 

velocity of the electrons, so spatial diffusion of photons, in the co-moving frame, is negligible 

and the first term on the right hand side of (2 .1) can be neglected, yielding, assuming spherical 

symmetry
dn 1 d , 2 . necrrh 1 d
dr 3r^ dr dv m.c^ dv

This is a first order partial differential equation for n{v,r), but involves the unknown functions 

describing the dynamics, w(r), ««(r) and T«(r). However, by suitable changes of variable, 

equation (2.3) can be written in a form such that this information is not required to find a 

solution. I follow Becker and Begelman (1986a) by defining



where Nga is the average number of scattering per photon between radii r, and r. Equation 

(2.4) defines a dimensionless frequency % and equation (2.5) defines the frequency independent 

Compton y parameter, written in a form more useful to moving fluids. Generally, significant 

changes in the spectral shape are expected as y exceeds unity (Rybicki and Lightman 1979).

Upon making these changes of variable, I obtain a dimensionless equation representing the 

radiation transfer in the trapped region of the flow:

dn  dn d , f  . 1 d

I now define a tem perature function f{y )  such that

where the subscript i denotes quantities measured at some initial radius, r,, from which the 

calculation is started. (I do not consider the production mechanism within this radius.) The 

function f { y )  is a measure of the deviation of the electron temperature from photon dominated 

adiabatic behaviour. Setting

f"(y) =  ^ k i / ( y ) ,  (2 .8)

the radiative transfer equation (2 .6 ) can be written as

/  r t n \
(2 .9 )

Now, the function f{y )  is determined by the transfer of energy between the radiation field and 

the plasma. Consider the photon energy density

% x^"(x ,yX x- (2 .10)

By operating on equation (2.6) by /q°° x^dx  and integrating by parts twice, I obtain a differ­

ential equation governing the photon energy density

where Tc is the Compton temperature (the temperature of a thermal distribution of electrons 

at which there is no net energy exchange between the electrons and the ambient radiation field 

by Compton scattering):
Tc i C x M x , v } ‘ix  
T,-JCx^n(x,v)dx



Integration of equation (2.11) gives

I: (̂ ) ' = [r “ " I) 4=
On inspection of equation (2.11) I write down a differential equation for the electron energy 

density; replacing the photon adiabatic index with the electron adiabatic index and 

changing the sign of the last term, since energy lost by the photons due to Compton processes 

is gained by the electrons. Note that there is a factor of two difference between the term in 

each equation tha t represents the Compton processes: this is because the total gas energy 

density is twice the electron energy density:

Dividing by f/g. =  3neikTej2  and using equations (2.7) and (2.13) gives

where

If Un IUSi >  1 then equation (2.14) indicates tha t the electron temperature is driven rapidly 

towards the Compton temperature and that while this occurs, the density of the electrons re­

mains essentially unchanged. So the second term  in equation (2.15) can be ignored. Integrating 

equation (2.15) thus gives

/(y )  =  1 -  ^  [Z)(y) -  1] =  A -K l -  A)D(y). (2.17)

Note tha t by combining equations (2.7), (2.10) and (2.13), D{y) can be written:

giving the tem perature function

From equation (2.15)

-j- = {I — R ) - ^ ,  (2 .20)
dp ^



and from equation (2.13) I write

D dy

Using equations (2.8) and (2.17) gives us

i ^  =  F ( r t  = 4 ( l - ^ ) ( l - | ) ,  (2 .22 )

which finally becomes

_ (4 J T  x̂ A(x,y)dx -  J T  (1 -  A) f
rx^"(x,o)dx -

The spectra of the radiation is given by the solution of the radiative transfer equation (2.9) 

with F{y) given by (2.23) and the relation between the temperature Te{y) and density ««(y) 

as given by equations (2.7) and (2.19). The dynamics of the wind will determine how the 

y-parameter depends on radius. The problem of the radiative transfer and the dynamics can 

thereby be separated.

2.3 T he W ind D ynam ics

To obtain the temperature, density and velocity in the wind as functions of radius I use the 

method of Becker and Begelman (1986b), but with a modification that simulates the effect of 

including electron-positron pairs in the gas.

First, I follow Becker and Begelman (1986b) by defining a number of dimensionless variables: 

X =  r/rg ,the radius in units of the Schwarzschild radius of the central black hole; a dimen­

sionless temperature T  = Pr/Q  where Q = pc^ , the radiation pressure divided by the rest 

mass energy density of the gas; and the spatial component of the four-velocity of the gas, as 

measured by a stationary observer at infinity, ü = ( l /c )d r /d r  ( r  is the proper time in the 

Schwarzschild metric). In the following, the subscript ‘i ’ refers to quantities measured at the 

initial radius and the subscript ‘c’ refers to quantities measured at the critical point where the 

velocity equals the adiabatic sound speed.

Becker and Begelman (1986b) use equations derived by Michel (1972) and revisited by Begel­

man (1978) that describe the steady state, radiation dominated, spherical flow of an ideal fluid 

in the Schwarzschild metric,

(2.24)



+  =  (2.25)

Equation (2.24) comes from the conservation of mass in spherically symmetric flow and is 

equivalent to the more usual form, M  =  4irr^ûcp. Equation (2.25) is Bernoulli’s equation and 

comes from (conservation o f momentum) 4- (conservation of mass); here (j, is the total energy 

density. The radiation is trapped within the flow so the photon pressure decreases adiabatically 

as

A  oc p : , (2.26)

for which

A  + g =  4 fr , (2.27)

were e is the internal energy. Now fj. = Q + s so

A  +  A* =  Q +  4T;. = Q(1 +  4T), (2.28)

and so equation (2.25) becomes Becker and Begelman (1986b) equation (2.2)

(1 +  4T )' ^1 -  g  +  ûA  =  (2.29)

Integration of equations (2.24) and (2.29) and eliminating dQ gives the wind equation

I  ('"’ -  i r j T i î )  + T

where

= 3 ( ï f i f ) -

There is a  critical point in equation (2.30) when both bracketed terms vanish simultaneously, 

which occurs when
« 2  _

4zc' 

1 - 3 Û

(2 .3 2 )

= (2.33)
'Cc

The dimensionless flow velocity measured by a stationary observer is

u2

( i - i  + t f )

a t the critical point Xc this becomes

1 ’ (2 .3 4 )

-  =  V, (2.35)
(1 -  36^): 
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and so V  is clearly the adiabatic sound speed at Xc- Combining equations (2.31), (2.32) and

(2.33) gives

*
16 (zc -  #)

The constant on the right hand side of equation (2.29) can be found using equations (2.32) 

and (2.36):

B i  =  (2.37)
Ze (Zc -  # j

Now Tc =  Prlpc^, so from equation (2.26)

T
^ ( ê ) ’ ’

also, equation (2.24) may be written

}u^x^ =  QcügZg =  =  constant (2.39)

and using equation (2.28)

P Zc
Pc 2üx^ ' (2 .4 0 )

Using equations (2.37) in (2.29) and combining (2.36), (2 .3 8 ) and (2.39) I arrive at the following 

two equations

(1 +  i T f  ( l  -  i  +  (2.41)

^ (2.42)
16 ( i .  -  I )  (2«i7)i '

Equations (2.41) and (2.42) are solved as follows: I choose a suitable electron tem perature, 

Tg;, at the injection radius and also a suitable value for UrJUei (which is a parameter for the 

spectral evolution calculation). Now T  =  Pr/pc^ and the gas pressure Pg =  pkTe/ (m); also 

Pr = \Ur  and Pg =  §f7g. The initial value of T  is then

(2.43)

For a given T ,  Xc decreases as z, increases, until the two are coincident at z,- =  Zg =  z„,.,. 

Using equation (2.42) along with «,• =  ûg in equation (2.32)

( l  +  g j : )  • (2.44)
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If Xi decreases for a given T,, more energy is required to propel a given mass out to infinity, 

causing a smaller terminal velocity, which leads to a smaller ûg and therefore to a larger sonic 

radius. As x, decreases, Zg -* oo, so for Zg < z„(„ the flow never passes through a critical 

point. To estimate x„i„ note that if Zg >  1, from equation (2.37) 5 i(zg ) ~  1, while from 

equation (2.32) ûg and hence ûj is negligibly small, so equation (2.41) becomes

(1 +  47)) j  — 1, (2.45)

or

z „ , . - ( l - ( l  +  4 T , ) - ' ) " \  (2.46)

Equations (2.41) and (2.42) are solved for tk and Zg given the initial conditions 2 ^ , UnfUei 

at Zj. This is done by rearranging equation (2.42) to get in terms of T,-, z,- and Zg, and

substituting the result into equation (2.41), from which Zg is found by numerical solution using

the HYBRD non-linear equation solving method (Garbow et a i,  1980). The initial value % is 

then evaluated using equation (2.42).

I now have Zg and can solve the equations for T(z) and w(z). This time I substitute (2.42) 

into (2.41) giving an equation in terms of Ü, z and Zg, which is solved numerically as before; 

T  is evaluated by substituting the results back into equation (2.42).

The electron density Ue(z) is evaluated by considering the mass outflow rate, which must be 

constant in a steady flow;

M  =  dTrgTUpcngUZ .̂ (2.47)

It is convenient to define the Eddington limited mass outflow rate Me  =

=  (2.48)CfrpC

Rearranging equations (2.47) and (2.48) yields

4(TtG M \ M e )  ÜZ
(2.49)

Ug =  2.54 X 10^  ̂ I p- j %—2 ^ 8  (2.50)

Next, I evaluate the Compton y parameter as a function of z, from equations (2.5) this is

, ( , ) =  (2.51)
txi mgC 

12



which may be written

n g ,(7 r tT ;,a ; ir g  n ,  7), /  û  ^

i Using the temperature function f{y )  defined by equation (2.7)

» W  =  a ) ^ ' ‘ / w ( ^ ) ’ ( ^ )  h i  (2 .5 3 )

where

from equation (2.49). Following equation (2.39)

- 2

Mg. \ X i J  \ ü i
(2 .5 5 )

and so
dt

/ .  ® = * f ( 0 " O " ' ( S

Hence, the electron temperature can be found from the definition of f{y):

T g (z )  =  r g , / ( y ( z ) ) ( : ^ ^ y  . (2 .5 7 )

In this discussion I have assumed that the optical depth below the critical radius is sufficiently 

large tha t the flow velocity exceeds the diffusion velocity of the photons. Thus the critical 

radius must be significantly smaller than the trapping radius r, (the radius below which the 

photons are trapped in the flow). Given tha t r« is defined by

T g .( n ) u ( r ( )  =  1, (2 .5 8 )

where Tg. is the optical depth to Compton scattering, and also considering equations (2.47) 

and (2 .4 8 ) ,  this condition becomes

r<= <  n  s  (2 .5 9 )
^ M e

Therefore allowed values of { M j M ^  in equations (2.49) and (2 .5 0 ) are governed by Zg cal­

culated previously; conversely, for a given mass outflow rate there is a maximum Xc such that 

these calculations are valid. It is clear that [ M j M ^  is required to be very large but it is 

unlikely tha t the majority of AGN have such supercritical outflows. This constraint can be

relaxed if the wind contains a significant number of electron-positron pairs.

13



I assume that the pair density is specified at the injection radius; I do not consider the mecha­

nism by which they are produced, this mechanism could be via mechanical processes, alfvenic 

dissipation or relativistic electrons from the synchrotron emitting region. For simplicity, I ne­

glect pair annihilation. This is reasonable as far as the dynamics are concerned if the energy 

in the pairs is comparable with that in the gamma radiation since, in the region near where 

most of the dynamical evolution occurs, the pair density will be in equilibrium. Once the radia­

tion is no longer trapped the pair annihilation will be small. This assumption is verified by the 

results in section 2.7. Neglecting pair annihilation is therefore valid as a first approximation. 

However, any spectral features due to pair annihilation are being ignored.

There are two ways in which the inclusion of pairs effects the model. First, there is an effective 

decrease in Mg. For a gas with z pairs per proton, M b is decreased by a factor (1 -f z):

^  (2.60) 
OrC 1 +  2

Thus for a given M , { M j M ^  will be larger by a factor (1 +  2), easing the condition given 

by equation (2.59). This is because the energy transfer from the radiation to the m atter is 

proportional to the density of electrons, but the inertia of the wind is proportional to the 

protons, therefore when there are more electrons per proton, the radiation transfer required 

to accelerate the proton by a given amount is less, and so the effective Eddigton limit in the 

wind is decreased by a factor (1 +  2). Therefore the quantity n ,, as calculated using equation 

(2.50), will be smaller by this same factor.

The second effect can be seen by examining equation (2.43). The mean particle mass (m) is 

mp/2  for a hydrogen plasma, but for a gas with 2 pairs per proton this becomes:

This has the effect of increasing T,, which will shorten the acceleration scale length.

2.4 N um erical M ethod

From the work of Becker and Begelman (1986a), there are the three equations (2.9), (2.19), 

and (2.23) that describe the spectral evolution of the radiation as a function of the Compton 

y  parameter. To solve these equations I make two further changes of variable:

IV(x,y) =  R (x ,y ) f  ( y ) x \  (2.62)
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z  =  I n x .  (2 .6 3 )

First consider the reason for the change defined by equation (2.62): N d x  is proportional to 

the number of photons per electron with energy hu/kTg between and % +  d%, and is therefore 

a useful way of representing the spectrum. The total photon number density becomes

=  (2.64)

and N d x  is constant in a trapped flow. It also becomes easier to evaluate f(y);  from 

equation (2.20) I obtain

noting that /(O) =  1.

W ithout the second change of variable, defined by equation (2.63), a numerical method of 

solution would require non-uniform grid, with a higher gridpoint density at the smaller values 

of X- This substitution allows a uniform grid for all z, though in practise more information is 

required at the larger values of z , so the gridpoint density can be low for large, negative z.

After making the two substitutions defined above, equations (2.9), (2.19) and (2.23) become 

d N  d'^N dN
= + + + nv)) JV, (2 .66)

;:% ^e3.^(z,0)dz ’

While the integrals in the equations above have an infinite range, in practice N (x ,y )  —» 0 as 

z —» œ  and e°'^N{x,y)dx —̂ 0 as z -» —oo, so finite bounds may be used for the numerical 

method.

Having chosen an input spectrum iV(z,0), the coupled equations (2.66) and (2.68) are used to 

evolve the spectrum numerically in the direction of increasing y, such that at any point y a  

self consistent solution N{x, y) and F{y) has been calculated before evolving to a larger value 

of y.

15



2 .4 .1  T h e  B a s ic  S c h e m e

Assume that N { x , y )  is known at some y  = yj  for all Zg < z < Z&. I represent N { x , y )  as the 

values IVij at discrete points Zi, z ,, ..., zi, ..., z»; yi, y,, ..., y ,, ..., I.e. W (z,y) is represented

as N i j  V i. I know the value of F{ y j )  = Fj .  To evaluate V i and at ÿj+i =  yj +  Ay, 

I carry out the following steps:

( 1 ) Calculate a first guess for iVjj+i V i, which I call V i, where I =  0, using the value

Fj  and a discretised version of equation (2.66):

dy Ay \^dx'^ J . . ' \ a... / .  . ' w

(2.69)

(2) Calculate a first guess for T(yj+i) =  oFj+i using the values oNij+i calculated in step (1)

and equation (2 .68).

(3) Using the values and Tj+i calculate the next guess for A ,j+i using the discretised

version of equation (2 .66):

= 0 1 .  + ('*' -1

(4) Calculate the next guess for T(yj+i) =  f ,+ i using the values ,+ilVij+i calculated in step

(3) and equation (2.68).

(5 ) If the following accuracy check is false increment I by one and repeat steps (3), (4) and

(5):
-  (f)+i < g ^  1 (2.71)

i-lj+i

When the solution V i is such that equation (2.71) is true, then I have self consistent

solutions A (z,y j+ i) and f(y j+ i). Now f{yj+i) can be evaluated using equation (2.67), so that 

the relationship between Tg^y) and Ug.(y) can be established.

2 .4 .2  E v a lu a t in g  th e  D e r iv a t iv e s

A second order difference scheme is used to evaluate the x  derivatives of N { x , y )  at the grid 

point ( i , j ) .  For a uniform grid, Az =  Zi+, -  z, and is constant for all i, and

16



For a non-uniform grid, the difference scheme is more complex and is written

d N \  _  ^A ,+ij(z,' — Zs_i) — — z,_i) +  — Xi) ^

/ _  ^, +w(z, '  -  Z,_i)^ -  Wij[(z, -  -  (Z(+1 -  Z{)Z] -
W i / i j  ( z ,+ i - Z i ) ( a : i+ i - Z i_ i ) ( z i - Z i _ i )  - I  - 1

Generally a first order scheme is used to evaluate the y derivative of iV(z, y) at the grid point 

(j, j  +  1). This scheme has already been shown in equations (2.69) and (2.70):

' ^ )  =  (2.76)
y '  i,j+i

However, because a second order scheme has been used to evaluate the first order x derivative 

of N  at ( i , j ) ,  using equation (2.76) can result in equations (2.69) and (2.70) becoming uncon­

ditionally unstable if f j C  1. Hence, where there is a positive gradient in the x direction a 

second order scheme is used instead:

here (iV,j) is the average of N i- i j  and iV,j, weighted according to the differences (z,+, -  x,) 

and {xi -  Zj_i):
( N -  ~  ~  ~  ^ i )  f i) JQ\

2 .4 .3  B o u n d a ry  C o n d it io n s

Becker and Begelman (1986a) chose initial spectra that were all of the form ü(%,0) = 

it is relatively easy to derive analytical approximations to the solutions to use as boundary 

conditions. Their initial spectra can all be written as a  power law, modified by a Wien

spectrum, i.e. the characteristic temperature of the photons in the Wien spectrum was

the same as the electron temperature since x  =  hv/hTe- At large % these spectra tend towards 

pure Wien spectra, which makes the analytical solution much easier than for a spectrum 

without this property. However, for an arbitrary initial spectrum an analytical approach does 

not work. I chose the following numerical approaches.
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n - 2n - 4 n - 3 n - i n + i n + 3I n

Figure 2.1: An illustration of the behaviour a t N( x , y )  a t the upper boundary, showing the first two steps in the 

ÿ-direction: j = 0 gives the initial spectrum, when y = 0, with a  cutoff above Xn; j  = 1 and j = 2 show the initial 

evolution of the cutoff to ÿ =  A y  and y = 2Ay ,  respectively.

As X increases, for any reasonable spectrum A  -»■ 0 , so the grid is extended to above the point 

where N { x ,  y)  = 0, and the photons are simply allowed to diffuse upwards in x ,  with additional 

grid points being added as necessary, see figure 2 .1.

There are two potential problems with this approach. First as y  increases the number of grid 

points increases as the photons diffuse upwards in x.  This is not as bad as it may seem because 

the rate of addition of grid points decreases as y  increases, and eventually stops as the spectrum 

at large x  tends towards a Wien spectrum.

The second problem is tha t the density of grid points at larger x  must increase to prevent the 

numerical solution becoming unstable, and because of this a correspondingly larger grid point 

density in the y  direction is required, since numerical stability requires Ay ~  (A z)'. This 

results in the calculation slowing down by a cubic factor, and eventually, if the highest value 

for X is large enough, it is no longer practical to continue.

For the lower boundary, one of two methods is used. If the initial spectrum is such that the 

gradient ^ ( I n  N )  < Ï for gridpoints near the lower x  boundary, and N { x i , y )  > 0 (for example

18



a power law spectrum «  u~°‘ with the energy index a  < 1), then the lower boundary at z, 

is simply extrapolated from the values of Æ at z ,, Zg and z«. This is satisfactory if z, <  z„, 

i.e. the frequency of the photons at the lower boundary is much less than than the frequency 

region of interest. For this kind of initial spectrum a non-uniform grid is used: a much lower 

grid point density is needed for low values of x than for the region of interest. The grid has 

to be extended to x values much lower than the region of interest to maintain accuracy while 

evaluating the integrals in equations (2.68) and (2.67).

However, for other initial spectra such as steep power laws (energy index a  > 1) or black body 

spectra, this extrapolation is invalid: for black body spectra, iV(z, y) 0 as z decreases, and 

for steep power laws there must be a low frequency cutoff because most of the energy in the 

spectrum resides in the lowest frequency photons. In these cases a diffusive boundary identical 

to the large x  boundary is used: points with Æ =  0 are added at the bottom end of the grid 

as the photons diffuse downwards. For this second kind of initial spectrum, more detail is 

required for low values of x to maintain the stability of the solution at the lower boundary, 

and so a uniform grid is used.

Neither of the methods outlined above is really ideal, but it is possible to produce results for a 

useful range of y, for some initial spectra, by simply throwing a lot of computer power at the 

problem!

2.5 Spectral R esults

I have computed spectral evolution for the following cases;

A  W (x,0) =  for X < 10, (Cfr/[f.)i =  100.

B W (x,0) =  for % < 10, (ffr/f/,), =  1000.

C W (x,0) =  for % < 90, (ffr/C^,), =  100.

Cases A and B correspond to a flux power law <x with a high energy cutoff at 1 

MeV when the initial temperature Tĝ  =  10® K (or 10 MeV for =  10^° K). Case C has 

an optically thin bremsstraUung initial spectrum, as used by Becker and Begelman (1886a): 

n(x , 0) =  with a high energy cutoff at approximately 10 MeV.
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Figure 2.3: Case B results for y =  0 (lower lefthand line), through y =  0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, to  y =  0.74 

(upper righthand line)
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Figure 2.4; Case C results for y = 0 (lower line), through y = 2, 4, 6, 8 to y = 10 (upper line)
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The spectral evolution was computed to y = 1.04 for case A, and to y = 0.74 for case B. The 

evolution was not continued any further because the calculations become more computationally 

expensive; as the photons diffuse to higher frequencies, the grid points become so dense that 

to continue is no longer practical. To evolve to these values of y required approximately 1000 

hours of CPU time on a VAX 8650; each further 0.01 step in y would have required more 

than 10 hours. However, later calculations that determine the properties of the wind and the 

emergent spectra show that it was not necessary to carry on computing the evolution of the 

spectrum any further. The results obtained for cases A and B are shown in figures (2.2) and 

(2 .3 ) .

The spectral evolution in case C was computed to y = 10, to compare my numerical method 

with the one used by Becker and Begelman (1986a). The results from these calculation are 

shown in figure (2.4) which gives N (x ,  y) for various y.

The spectral evolution calculated for case C matches that produced by Becker and Begelman 

(1986a) which gives credence to the results for cases A and B.

I also attempted to compute the spectral evolution for the following initial spectra;

# A power law as in cases A and B combined with a black body at a temperature of 10  ̂ K,

with equal energy in each component;

y2g-XT^/TBB
JV(x,0) = x - ‘-' +  A ^ L ; 5^  (2.79)

A  was chosen such tha t the energy in each component was the same. The power law has 

a high energy cutoff at 1 Mev and {UrfUe)i =  100.

•  iV(x,0) =  for —10 < X < 10, (Ur/Ug): =  100. This corresponds to a flux power law

jPy oc s with a low energy cutoff around 1 eV and a high energy cutoff at 1 MeV 

w d m n i ; ,  =  10» K .

These computations failed for the following reasons;

(a ) The spectrum is too steep so that the change in N  between grid points in x  is large

compared with N  itself. This leads to instability.

(b ) The method does not work for positive gradients d N jd x  unless the spectrum is Wien-like.

(c) There are discontinuties in ^  which cannot be handled by this method.
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Figure 2.5: The allowed range of r; vs. z for Tt^UrJUt- = 10̂ ,̂ 10̂ * and 10̂ ®.

2.6 Dynam ics Results

La order to obtain the physical characteristics of the wind I use the method described in section 

2.3. In all cases I assume that the mass of the central black hole is 10®M©. I first specify the 

initial temperature T^-, the initial ratio of radiation energy density to matter energy density 

UnlUei and the ratio of pairs to protons z. I choose initial temperatures of 10® K and 10 °̂ K, 

so that the gas would be hot enough for electron-positron pairs to exist. UrJUsi is a parameter 

to the spectral evolution computations. I choose a number of values for z  as shown by tables

2.1 (for the cases A and B spectra) and 2.2 (for case B).

I then calculate the initial dimensionless temperature Ti, defined by equation (2.43), and hence 

i„ i„  and from equations (2.46) and (2.44), which define the range of values that I can 

choose for the initial radius Xi- The shaded regions in figure 2.5 show the allowed range of x,- 

plotted against z for various values of Te^UrJUei- For each z I choose one value of ij  that was 

approximately in the middle of of this range.

I then calculate the critical point radius Zg and the initial four-velocity ui of the wind, from
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Figure 2.6: M against z  for cases A and C, the numbers separated by vertical dashed lines refer to M/Me-
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Table 2.1: Param eters for Cases A and C

=  100

z Xi M -
Me Xc M ÜÎ Ug-

(K) (M© yr“‘) (c m -:)

10® 0 35. 200 47.27 44.39 0.0648" 6 .4 2  X 1 0 "

0.1 32. 200 43.05 40.36 0.0679" 6 ^ 5 x 1 # ^

0.5 2 4 . 200 31.78 29 .59 0.0791" 7 .4 4  X lO *

1 18. 100 22.45 11.10 0 .0888" 4 4 2 x 1 ^ 4

2 12. 100 17.09 7 J 9 9 0.103 & N , x l # o

5 6 .3 50 9.48 L 8 5 0 0 .128 4 T 7 x l# A

10 4 .2 50 1 .009 0 .168 3 2 0 x l # w

100 1.6 50 1.98 0.1099 & # 6 2 .1 8  X 10^®

lOW 0 4 .5 30 6.05 I id 5 9 0.166 2 .2 8  X 1 0 "

0.1 4 .2 30 5 .63 6.053 0 .170 2 .3 1  X 1 0 "

0 .5 3.4 20 4.51 2.959 0 T 8 5 1 .5 8  X 1 0 "

1 2 .8 20 3.77 2 .220 0 T 9 2 1 .6 9  X 1 0 "

2 2.3 20 3.00 1.480 11209 1 .5 3  X 1 0 "

5 1.7 20 2 .25 0.7399 0.199 1 / 1 7 x 1 0 "

10 1.5 20 1.91 0.4036 0 2 0 5 1 .0 0  X 1 0 "

The initial four-velocity û; exceeds the escape velocity.
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Table 2.2; Param eters for Case B

UnlUci  =  1000

Tg, z Xi Mb Xc M Ü,-

(K ) (on - ')

10® 0 4 .5 50 6 2 5 11.09 0.166 3 .7 9  X 1 0 "

0.1 4 .2 50 5.63 10.09 0.170 3 .8 5  X 1 0 "

0.5 3.4 50 4 2 2 7 2 9 9 0.185 3 .9 6  X 1 0 "

1 2 .8 30 3.77 3.329 0.192 2 J M X 1 0 "

2 2 .3 20 3.00 1.480 0.209 1.53 X 1 0 "

5 1.7 20 2.25 0.7399 0.199 1 .4 7  X 1 0 "

10 1.5 20 1.91 0.4036 0.205 1.00 X 1 0 "

IQi® 0 1.5 20 1 .94 4.439 0.195 1 .1 6  X 1 0 "

0.1 1.5 20 1.90 4.036 0.206 9 2 6 x 1 0 "

equations (2.41) and (2.42). I define a value for { Ù j M ^  that is as small as possible such 

tha t [ m / M ^  >  \xc,  the condition shown in equation (2.59). I then obtain the mass outflow 

rate M  using equation (2.60), and hence the initial particle density nĝ  using equation (2.47). 

Figures 2.6 and 2.7 show the values chosen for { m I M ^  with the corresponding M.  The 

dashed line shows M  =  \ x c M s ,  which is the lowest limit for M  such th a t the trapping radius

Xf ^

Using the initial conditions and the temperature function f{y)  evaluated during the spectral 

evolution computations I then compute ü(x), y{x), Tg{x) and n ,( i )  which are required to 

obtain the emergent spectrum.

The dynamic results are illustrated graphically in figures 2.8 to 2.13 which show û(x), y ( i) , 

Te(x) and n ,(x).
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Figure 2.8: Case A dynamics showing u{x), y{x),  Te(x) and n«(x), for Tci =  10® and z  as shown.
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Figure 2.9: Case A dynamics showing u(x),  y{x), T«(r) and rie(x), for T,- = 10̂ ° and z  as shown.
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Figure 2.10: Case B dynamics showing u(x) , y(x), Te{x) and n«(r), for =  10® and z  as shown.
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Figure 2.12: Case C dynamics showing u(x), y{x), T«(z) and n«(r), for =  10® and z  as shown.
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Figure 2.13: Case C dynamics showing u{x), y(x), Te(x) and n«(z), for Te^ =  10*® and  z  as shown.
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2.7 Observable Spectra

The emergent spectrum can be described by the specific luminosity measured by an observer 

a t infinity. This is given by Becker and Begelman (1986b) equation (4.6)

32/i7r^r^
(2.80)

where % = hiz/kTeirfs); r ,  is the photospheric radius, rp is the Comptonization radius (beyond 

which Compton scattering has little effect on the spectrum) and Uoo is the dimensionless flow 

velocity measured by a observer at infinity, who is stationary with respect to the metric,

" - ( 1 +  «3)1/2-

Becker and Begelman (1986a) describe how the spectrum evolves from rp to Tp, which they 

call the diffusive regime. The spectral evolution in this region is minimal, so I make the

simple approximation that the spectrum does not evolve beyond rp, i.e. n{x,rp)  =  n (x ,r^ ).

The Comptonization radius is where y{rp) -* j/oo, so I take rp to be the point at which

The photospheric radius is evaluated from Becker and Begelman (1986a) equations (5.11) and 

(5.12)

where

% =  (2.83)

Equation (2.82) is solved for % using the HYBRD non-linear equation solving method (Garbow 

et a l ,  1980). Then equation (2.83) gives fp in terms of r«, the trapping radius, where

n  =  (2.84)
^ M e

which leaves

The specific luminosity defined in equation (2.80) is written in terms of n(%, r) and u. I have 

calculated the spectra N{x , y) ,  from an arbitrary initial spectrum N{x,0).  From equation 

(2.62) the real spectrum can be written

" (x ,r )  =  (2.86)
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Table 2.3: Results for Case A

=  100

Te,

(K)

z ÿoo «00 T .W )

(K)

nte(Zf) Xp (m .Zpr,

10» 0 0 .616 0 .1 2 8 t b 2 6 x l O ' 3 .02  X 10» 805

0.1 0 .616 0 .1 3 4 9 J 2 x l ^ 3 .13  X 10» 768 0 .9 4

0.5 0 .612 0 T 5 7 9 .5 5  X 10* 3 .4 7  X 10» 659 O J l

1 0 .538 0 T 8 9 L M I x l ^ L ^ i x l ^ 276 O j J

2 R M 7 0 .219 L M x l ^ Z M x l ^ 240 0 J 3

5 0 .480 0 .3 0 4 & M x l ^ L M x l ^ 8 7 ^ 0 T 8

10 0 .4 5 6 0 .4 1 4 & M x l ^ L M c X l ^ 6 5 J O^W

100 0 .8 6 9 & M x l ^ L W x l ^ 3 & 3 0 4 T

lOio 0 0 .657 R W 8 I j ^ x l ^ A 4 0 .8

0 .1 0 .656 0 .417 6 .8 7  X 10* 1.26 X lO '» 3 9 2 1199

0.5 R M 7 L M x B f R # x l ^ 2 2 9 0 .7 7

1 0 .610 0 .543 L M x l f I j W x l ^ w 2 R 4 0 .5 0

2 0 .5 9 9 0 .6 3 8 1.17 X 10^ 1 7 ^ R 3 0

5 0 .6 0 9 1.18 X 10? 1.20 X 10^» 14.5 1112

10 0 .5 9 4 0 .891 L W x l ^ 9 .27  X 10» 13.0 0 4 5
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Table 2.4: Results for Case B

=  1000

T«,

(K)

2 ÿoo tioO T . ( z f )

(K)

ne(x^) crneXpTg

10» 0 f r # 0 (1398 3 .4 6  X 10* 1 .43 X 10^» 6 & 1

0.1 0.449 0.417 3 .6 4  X 10* 1.62 X 10^° 6 5 .3 1 T 6

0 .5 0.445 0.480 & M x l ^ 1.54 X 10^° 57.2 0 4 9

1 0.392 0 .543 5.82 X 10* 1.02 X 10^° 30.7 0 .4 8

2 0.338 0.638 6.23 X 10» 17.6 0.30

5 0.348 9.30 X 10* ^ M x l ^ 14.5 0.12

10 0.334 0.891 1.08 X lO’’ 5.59 X 10» 13.0 0.05

lOW 0 0.600 & % 2 1.28 X lO’’ 1.07 X 1 0 " 13.1

0.1 0 .588 0.894 L # x l ^ 9.22 X IQi* 1 3 .0 0 .5 3

where .4 is a  normalisation calculated as follows: the initial radiation energy density is, from 

equation (2 .10),

or, since /(O) =  1,

U,

Now, UrJUei is a parameter to the problem, and Usi can be written as

3

SO t h e  n o r m a l i s a t i o n  m a y  b e  w r i t t e n

/C /.A  in„kT„
U . , j

Thus the specific luminosity in terms of N(x , y )  is

A t

(2.87)

(2.88)

(249)

(2.90)

(2.91)

Values for ÿoo, «@o, Te(x^) and Xp are obtained from tables 2.3, 2.4 and 2.5. Figures 2.14 to 

2.19 show X„ for the several cases.
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Table 2.5: Results for Case C

=  100

Te,

(K)

z ÿoo 1*00

(K)

Xp aUeXpTg

10» 0 2 .8 9 6 0.128 7 .33  X 10* 1.11 X 10» 805

0.1 & M 6 0 .134 1 ^ 3 5 x 1 0 * 1 .15  X 10» 768 0 4 4

0.5 Z M O 0.157 ^ W x l ^ 1 .27  X 10» 659 O J l

1 2 .162 11189 ! 1 8 8 x lO * 9 .4 8  X 10* 276 0 4 7

2 2 .2 3 0 0 .219 9.51  X 10* L W x l ^ 240 0 4 3

5 1 .807 0.304 1 .27  X 10^ L M x l ^ 8 7 4 0 T 8

10 1 .694 0 .4 1 4 1.42  X 10^ 1.43  X 10» 6 5 J 0 4 9

100 1.567 0 .869 1.80  X 10^ L M x l ^ 3 & 3 0.01

101» 0 3 .428 0 .398 6 .71  X 10^ ^ M x l ^ 40 .8

0.1 3 .441 O A ^ 6 .68  X 10^ 4 .4 6  X 10» 3 9 4 0 4 9

0 .5 8 .33  X 10^ & M x l ^ 22 .9 0 .68

1 Z M 6 R M 3 8 .30  X 10? ^ W x l ^ 20.4 R 5 0

2 0 .638 R M x U f 4 .1 3  X 10» 1 7 4 0 4 0

5 2 .8 1 7 0.791 9 .28  X 10? ^ M x l ^ 1 4 4 0 T 2

10 2 .656 0.891 1.10  X 10* ^ M l x l ^ 13.0 0 4 5
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Tables 2.6, 2.7 and 2.8 show the distribution of the energy transport between the gas and 

the radiation: Èb̂ D, is the energy transported radially by the gas, including thermal and bulk 

kinetic energy, and is shown at the injection radius and at the photospheric radius; X(n) is 

the radiation luminosity in ergs s"^ at the injection radius and Too is the luminosity observed 

at infinity, evaluated by integrating equation (2.91).

There are several points to note in these results. The final velocity of the outflow is a large 

fraction of the speed of light (although still non-relativistic). In most cases, the initial velocity 

of the outflow is less than the escape velocity, and so the wind is driven by the radiative 

processes. There is very little transfer of energy between the radiation and the matter. This 

differs from the conclusions reached by Flammang (1982) because the wind is only slightly 

supercritical (since I have defined a wind where the mass loss ~  1M@ yr~^ and where the 

supercriticality is due to the number of e^-pairs present) and also because Flammang deals 

with an optically thick system in thermal equilibrium.

Tables 2.3, 2.4 and 2.5 also show the ratio of the flow time to the pair annihilation time. 1 

estimate the pair annihilation time as ajfd the flow time as Ugjc/rp, so the ratio of

the flow time to the annihilation time is a-rUeTp. In most cases this is less than unity and so 

it is consistent to neglect the annihilation of pairs.

Thus 1 conclude tha t an optically thick, supercritical, pair wind is compatible with a power 

law spectral slope with a cut-off, determined by the dynamics of the outflow, in the hard X-ray 

region.

X-ray variablility over ~  10® s has been observed in many sources, which indicates a photo­

spheric radius of ~  lOOrg. Tables 2.3, 2.4 and 2.5 shows that one or more of the following is 

required to meet this constraint: a high initial electron temperature (Te; =  10^° K), a high pro­

portion of electron-positron pairs (z > 5) or highly radiation dominated flow {UrJUei =  1000). 

Cross referencing with tables 2.1 and 2.2 shows that the mass outflow rate M  < 10M@yr"^, 

but the presence of pairs in most cases makes this outflow highly supercritical.

2.8 P ro b le m s  A ssocia ted  w ith  th e  M odel

1 have calculated the evolution of the spectrum using the Kompaneets equation, which is only 

valid when the transfer of energy as a result of a collision between a photon and an electron
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Table 2.6: Energy transport in  Case A, ergs s~*

Te,

(K)

z Èbuik{T i) Ébutki.'^p') L o o

10* 0 3 T 9 X 1 W * 5 .5 2  X 1 0 * 8 .77  X 1 0 * 5 .5 5  X 1 0 *

0.1 2 .9 0  X 1 0 * 4 .7 8  X 1 0 * 7.73 X 1 0 * 4 .8 0  X 1 0 *

0.5 2 T 5 X 1 & W 3 4 U x l ^ ^ 6.03 X 1 0 * 2 j f x l f n

1 7 .79  X 1 0 * I j T x l ^ ^ 2 .04  X 1 0 * 9 .9 3  X 1 0 *

2 4 j # x l & w 5 ^ 1  X I f * I j U x l f * 5 .7 2  X 1 0 *

5 1.09  X 1 0 * l T 6 x l f * 3 j l x l f w 1 .1 4  X 1 0 *

10 6 .3 0  X 1 0 * 4 .8 3  X 1 0 * 1.78 X 1 0 * 4 .7 2  X 1 0 *

100 4 .2 8  X 1 0 * 3 .9 2  X 1 0 * e ^ F x l f W 3 .9 0  X 1 0 *

101° 0 4 .3 3  X 1 0 * 3 .2 4  X 1 0 * 1.07 X 1 0 * 3 T 8 x l f ^

0.1 3 .8 5  X 1 0 * 2 j G x l f ^ L M x l ^ 2 .8 0  X 1 0 *

0.5 1.82 X 10* 1 .28  X 1 0 * 4 ^ 9 x l f * 1 .25  X 1 0 *

1 1.28  X 1 0 * 9 j T x l f * 3.15 X 1 0 * 9 T 2 x l f *

2 8 T 3 x l ^ * 5 j # x l f * 5 .5 8  X 1 0 *

5 3.23 X 10* 6 ^ 4  X I f * 2 .9 5  X 1 0 *

10 1 .51  X 1 0 * 1 .58  X 1 0 * L M ' x l ^ * L M i x l ^
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Table 2.7: Energy transport in Case B, ergs s ^

Tci z

(K)

Z '(n ) .^6uïfc(^p) Too

10® 0 

0 .1  

0 .5  

1 

2 

5 

10

6 .2 9  X 10^» 5 .39  x  10^^ 

5 .59  X 1 0 ^  4 .7 7  X lO^^ 

3 .9 4  X 10"** 3 .22  x  1(1*^ 

1 .64  X IC*^ 1.40 X 1Q47 

6 J 6 x l p M  5 ^ 8 x 1 ^ *  

2 ^ 3 x 1 0 "  2 ^ 8 x 1 ^ *  

I j W x l & M  1 ^ 8 x 1 0 *

1 .89 X 1 0 ^  5 .2 6  X 10*? 

2 j 9 x l ? *  4 8 0 x 1 ? "  

l T 9 x l ? *  3 T 4 x l ? "  

5 8 7 x 1 ? *  1 8 6 x 1 ? "  

1 8 9 x 1 ? *  5 8 6 x 1 ? *  

6 8 0 x 1 ? *  2 8 4 x 1 ? *  

2 8 0 x 1 ? *  1 8 7 x 1 ? *

IQ io  0

0 .1

1 T 5 X 1 & W  1 8 3 x 1 ? "  

1 8 4 x 1 ? *  1 8 7 X 1 ? *

2 .6 9  X 1 0 ^  1 .58  X lO ^f 

2 8 0 x 1 ? *  1 8 6 x 1 ? *
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Table 2.8: Energy transport in  Case C, ergs s~^

Tei  •Z

(K)

È b u i k { n ) 6 ( n ) Èbulki '^p) Too

10^  0 3 T 9 x l & * 5.52  X 1 0 * 2 .3 0  X 1 0 * 5 .5 3  X 1 0 *

0.1 2 .9 0  X 1 0 * 4 .7 8  X 1 0 * 7 .73  X 1 0 * 4 .8 0  X 1 0 *

0 .5 2 T 5 X 1 & * 3 j T x l P " 6 .0 4  X 1 0 * 2 j ^ X l & "

1 7 .79  X 1 0 * I j U x l P " 2 .0 4  X 1 0 * 9 ^ 8 x 1 ^ *

2 4 j W x l ^ w 5 ^ 1 x 1 ^ * I J l x l p w & ^ l x l ^

5 I j W x l ^ w l T 6 x l f * 3 j l x l ^ w l T 4 x l f *

10 6 .3 0  X 1 0 * 4 a 3 x l f W L ^ x l ^ 4 .7 2  X 1 0 *

100 4 .2 8  X 1 0 * 3 .92  X 1 0 * 6 .4 2  X 1 0 * 3 .9 0  X 1 0 *

10^° 0 ^ M x l ^ 3.24 X 10* 1 .07 X 1 0 * 3.19 X 1 0 *

0.1 3 j & x l ^ * Z M x l ^ f L M x l ^ & M x l ^ f

0 .5 L M x l ^ * L M x l ^ 4 .2 3  X 1 0 * 1.26  X 1 0 *

1 1.28  X 1 0 * 9 J l x l ^ * & M l x l ^ * 9 T 2 x l ^ w

2 8 T 3 x l ^ 4 & M ; x l ^ * L M x l ^ B 5 j # x l ^ *

5 3 .2 3  X 1 0 * & M x l ^ * O ^ T x l ^ w 2 j # x l ^ w

10 1.51 X 1 0 * L M x l ^ * 2.20 X 1 0 * 1 .57  X 1 0 *
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is small when compared to the energy of the photon. However, when the photon energy is 

as high as the electron rest mass energy, this energy transfer is very large, the photon losing 

a significant part of its energy to the electron and the Kompaneets equation is not valid. I 

calculated the spectral evolution from initial spectra described by power laws with a cut-off 

at 1 MeV or higher, the electron rest mass energy is 511 KeV, so the high frequency end of 

my initial spectra are above the point at which the Kompaneets equation breaks down. This 

means that the high frequency end of the spectrum is calculated incorrectly. In addition, the 

dynamical evolution is dependant on the Compton temperature which should be calculated 

including relativistic effects. The results here cannot be relied upon unless this factor is taken 

into account

If I assume tha t the observed spectrum is as calculated, then because there are significant 

numbers of 7 -ray photons the compactness parameter must be evaluated to estimate whether 

pair production is important. The compactness parameter is defined (Guilbert, Fabian and 

R ees,1983)

where L~f is the 7 -ray luminosity and R  is the size of the region concerned. The calculated 

observed spectra can all be approximated by a power law with energy index between 0 and -1, so 

most of the energy is carried by the highest energy photons and I estimate the 7 -ray luminosity 

to be the specific luminosity measured at the point the spectrum steepens. Note tha t for some 

observed spectra the maximum photon energies are less than 511 keV, but the initial spectra 

all include a significant portion of energy in photons above 511 keV, so I take the specific 

luminosity at the point where the spectrum steepens to be indicative of 7 -ray luminosities at 

radii smaller than r ,.  I evaluate the compactness assuming R  = Tp (the photospheric radius) 

and R  =  r,- (the injection radius) using the same luminosity in each case. The results are 

summarised in tables 2.9, 2.10 and 2.11, where for R =  r ,  the compactness parameter is 

negligible for z > 0.5 and for R = ri the it is negligible for z > 2. Thus pair production is 

im portant when z is small and the corresponding mass outflow rate is very large; as I increase 

z  and decrease the mass outflow rate it is still important to consider pair production at small 

radii, but not throughout the whole region. In those regions where the compactness is high 

the effective electron density wiU be increased, the wind will be more highly supercritical and 

will tend to accelerate over a shorter distance to a higher velocity. This will feed back into the 

spectral evolution and the results cannot be relied upon; the effects of pair production must ' 

be included in a proper calculation. In addition, as a result of pair production, there will be a 

loss of 7 -ray photons from the spectrum and the spectrum will steepen at a lower energy.
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Table 2.9: Estim ate of compactness for Case A

=  100

Te,

(K)

z

erg s ^
Zp Ip Xi k

10» 0 & 5 x l ^ * 805 2.8 35. 6& .

0.1 Z O x l f A 768 2. 4 32. 57.

0.5 L S x l ^ w 659 0 .18 24. 4 .9

1 & O x l f G 2 76 0.066 18. 1.0

2 L S x l ^ a 2 40 0 .049 12 . 0 .9 9

5 L 6 x l f w 8 7 ^ 0.016 6 .3 0 .2 3

10 4 ^ x l # A 6 & 7 ! x 5 x l O - 3 4. 2 1X087

100 L O x l f * 3 & 3 ^ 7 x 1 0 - 4 1.6 ! X 7 x l O - 3

IQ io 0 L 6 x l # G 4&8 0.36 4.5 3. 2

0.1 L S x l f W 3&2 OJO 4. 2 2.8

0.5 & 2 x l ^ a 2&9 0 T 3 3.4 o a e

1 &O xl# G 2 & 4 0.089 2.8 Oj&

2 1.3 X 1 0 * 17.6 &M7 2 .3 O^T

5 5 .0  X 1 0 * 14 .5 &M1 1.7 027

10 Z O x l f w 13.0 0.014 1.5 0 T 2
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Table 2.10; Estim ate of compactness for Case B

=  1000

Tc, z Ip X{ k

(K) erg s~^

10» 0 6& 1 0.84 4 .5 13.

0.1 f l f l X l f f K 6 5 2 0 2 0 4 .2 11 .

0.5 Z 5 x l f 3 5 7 2 0.40 3 .4 6 .7

1 T f l x l ^ w 30.7 0.23 2 .8 2 .3

2 2 2 x 1 ^ 2 1 7 2 OTO 2.3 0 2 9

5 1 2  X I f f * 1 A5 0.082 1.7 0 2 0

10 & O x l f f w 13.0 0 2 % 1.5 0.30

lOW 0 A O x l f f G 13.1 2 .8 1.5 24 .

0.1 5 .0  X 1 0 * 13.0 0 2 5 1.5 3 .0

2.9 T he Spectrum  E m itted from th e Side o f a C one

I have calculated the dynamics of a spherically symmetric wind and the emergent spectrum 

as observed at infinity. Now I consider the case where the wind is funneled into a cone and 

I evaluate the spectrum tha t emerges from the side of the cone. I assume tha t all the wind 

motion is radial, i.e. the wind material at the edge of the cone does not expand outwards in 

a  non-radial direction, and tha t the physical state at the edge of the cone, at a  distance r 

from the apex, is the same as the physical state a t radius r  from the centre of the spherically 

symmetric outflow. Therefore the dynamical results that I have already calculated still apply.

I assume that radiation is emitted from the side of the cone. The spectrum of the radiation 

emitted at a point on the cone will depend on the distance from the apex. An observer will see 

a spectrum made up of all the spectra emitted at different distances from the apex of the cone. 

Consider an annulus on the surface of the cone at a  distance r from the apex. The surface 

area of tha t annulus is proportional to r , so the number of photons emitted from th a t annulus 

is proportional to r, i.e. the number of photons of frequency u emitted from the surface of an 

annulus of width 6r a t a  distance r  from the apex is

6no{p,r) = Cn^{r)r6r,  (2.93)

where C is some constant tha t depends, among other things, on the opening angle of the cone.
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Table 2.11; Estim ate of compactness for Case 0

=  100

Te,

(K)

z T-r
erg s~^

Xp Ip Xi h

10» 0 2 2 x l f f W 805 2.3 35. 52.

0.1 1 2 x M * 768 1.9 32. 46 .

0.5 7 2 x l f f K 659 0.11 24. 3.0

1 2 2 x l f f G 276 ff0 6 6 18. 1.0

2 1 2 x l f f * 240 0 .049 12. 0 2 9

5 2 2 x M * 8 7 2 0 2 2 1 6 .3 0 2 9

10 5 2 x l f f " 6 5 2 1 X 9 x 1 0 - 3 4. 2 0 2 1

100 Z O x l f f W 3 3 3 5 .5  X lO-"* 1.6 0 2 1 1

10^» 0 7 2 x l f f W 40 .8 180 4 .5 1600 .

0 .1 1 2 x K ^ 3 9 2 0 .23 4 .2 2.2

0 .5 2 2 x l f f * 2 2 2 0.099 3 .4 0 2 7

1 1.6 X 1 0 * 2 0 .4 0 .071 2.8 0 .5 2

2 1 2 x M * 17.6 0.052 2 .3 0 .4 0

5 4 2 x W ^ 14.5 0 .025 12 0.21

10 1.0 X 1 0 * 13.0 7.0 X 10-3 1.5 0 .061
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Integrating equation (2.93) between r  =  0 and r  =  r« gives the observed spectrum (since 

radiation is no longer trapped when r > r*),

no{v) =  fiu{r)rdr. (2.94)

Figures 2.20 to 2.25 show the spectra produced by integrating (2.94) for various dynamical 

results.

I note tha t conical outflow introduces a curvature into the X-ray spectrum, reminiscent of BL 

Lac spectra. While a direct comparison is not possible, since the BL Lac systems are usually 

assumed to  be relativistic in order to suppress excessive X-rays from Comptonisation of the 

radio emission, my results suggest that spectral curvature may be a consequence of Compton 

processing in a conical outflow. However, further investigation is beyond the scope of this 

thesis.
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C h a p ter  3

T w o  P h a se  O utflow  as a  M o d el for  

th e  B road  L ine R eg io n

3.1 In tro d u c tio n

The “standard model” of the broad hne region in active galaxies consists of clouds confined in 

pressure equilibrium with a high temperature intercloud medium (Krolik, McKee and Tarter, 

1981). However, there are a number of problems with this two phase picture. First, if the 

coexistence of the two phases results from radiative heating then the input spectrum required 

is different from that observed (Fabian et a l, 1986, Mathews and Ferland, 1987). Second, the 

observed Doppler broadening of the emission lines indicates that the clouds have velocities tha t 

are supersonic at the Compton temperature, Tc- If the intercloud medium does not move with 

the clouds and if it is radiatively heated to the Compton temperature then the relative motion 

is supersonic; the clouds are quickly disrupted by Rayleigh-Taylor instabilities and cannot exist 

for more than a fraction of the crossing time of the broad line region (Dyson and Perry, 1987).

Mathews and Ferland (1987) asked whether this and other problems could be solved by having 

an intercloud medium heated non-radiatively to a temperature much greater than T q- Yaqoob 

(1990) has shown that a two phase system can result if the heating is non-radiative. However, 

the confinement or dynamics of such a system must be considered, and the cloud motion must 

be consistent with the observed line profiles.

In this chapter I study the dynamics of the intercloud medium heated by some mechanism
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in addition to radiation. There are a number of possibilities for this additional heating: for 

example, mechanical processes, alfvenic dissipation, “cosmic rays” (perhaps associated with 

the relativistic electron component of the synchrotron emitting region). I shall not be specific 

because the aim is simply to discover whether a consistent solution is possible. I shaU assume 

that the energy injection is effectively a two-body process (i.e. proportional to the local m atter 

density) and suffers geometrical dilution with radius. For consistency I shall also assume that 

there is a momentum component to the injection. The hot intercloud medium is not confined 

by the gravity of the central black hole, so I wiU be considering an outflowing wind. The clouds 

will move with the wind to avoid break up by Rayleigh-Taylor instabilities. If T < 10® K then 

the wind must be supersonic to account for the broadest observed line profiles; thus, I shah 

only consider solutions in which the wind passes through a sonic point.

3.2 T he M odel

Consider a stationary cloud of fully ionized hydrogen gas centred on a supermassive black 

hole, of mass M  =  mg x lO^M©, in an active galactic nucleus. The cloud is in hydrostatic 

equilibrium at the Compton temperature of the surrounding radiation field. Assume the cloud 

is spherically symmetric. At some arbitrary radius, let us “kick” the gas by injecting heat 

and/or subjecting it to some force. This heat and/or force is due to an unspecified process, 

but could be the effect of the injection of high energy particles such as electron positron pairs. 

Continue to heat up and/or apply force on the gas by an appropriate function of radius, r.

As a result of this injection, the material at the edge of the cloud expands and accelerates 

outwards. Observations imply that in some AGNs there are high tem perature winds that 

have supersonic velocities, so models of interest are where the heating and force are sufficient 

to drive the wind to supersonic velocities while remaining at high temperatures. Clearly the 

wind is subsonic at r^^ ,, since the velocity is close to zero, so the model wind must contain a 

transonic point, a radius Vc where the velocity is the same as the local speed of sound.

Assume that Compton processes are the only important mechanisms of energy and momentum 

exchange between the radiation and the gas; also assume that the material of the outflow is 

optically thin to Compton processes, so any change in the radiation spectrum as a result of its 

interaction with the gas can be neglected. Also observations of the variability of AGNs point 

towards the central optically thick region being quite small, and therefore an extended wind 

must be optically thin.
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3.3 Equations o f M otion

To model the system mathematically, consider the three conservation laws of gas dynamics. I 

consider steady state flows so the time derivatives are equal to zero. Given a gas of density

p(r) and temperature T{r) moving out from the centre with a velocity t>(r), the conservation

laws for mass, momentum and energy can be derived.

3 .3 .1  T h e  E q u a t io n  fo r  th e  C o n s e rv a t io n  o f  M a ss  

T M sk

V.(/n,) =  0 (3.1)

= (3.2)

Equation (3.2) can be integrated to give r^pv = constant. The outward flux of mass is pv, so

this constant is related to the mass outflow rate

M  = Awr'^pv. (3.3)

3 .3 .2  T h e  E q u a t io n  fo r  th e  C o n s e rv a t io n  o f  M o m e n tu m

This is

pv.Vv = —VP +  / •  (3.4)

This has the form (mass density)x (acceleration) =  (force density). The right hand side includes 

a  term for gradients in the gas pressure, P , which are forces because momentum is transferred; 

the other term, / ,  represents any external forces applied to the gas, per unit volume. The left 

hand side represents the steady convection of momentum by velocity gradients. For this model 

the external forces are due to gravity, radiation pressure and our extra, unspecified force m (r):

f  -  _  riearPrad^ + Tn(r). (3.5)

Here m (r)  is the force per unit volume applied (or alternatively, the momentum added to the 

gas per unit time, per unit volume).
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Combining (3.4) and (3.5) and remembering spherical symmetry we obtain

dv dP G M p  _ , . / \
p f  -  " j T  p r "  +  (3 .6 )

3 .3 .3  T h e  E q u a tio n  fo r  th e  C o n s e rv a t io n  o f  E n e rg y  

TM sw

V. [u +  [/ +  P ^ ]  =  _  V .frad -  V.g. (3.7)

Here the left hand side is the sum of the energy fluxes in the gas (kinetic energy density |pu^, 

internal energy U) and the flux of the work done by the pressure.

The first term on the right hand side, / .u ,  is the work done on the gas by the external forces / .  

Although in equation (3.5) there are terms due to gravity, radiation pressure and momentum 

injection, here f . v  contains only the contribution due to work done against gravity. This 

is because the work done on the gas by radiation pressure is included in -V .Frad, and the 

momentum injection m  is going to be considered exactly that: any work done by this extra 

force can be assumed to be part of the extra energy injection é.

The second term on the right hand side, -V .g , is the conductive flux of heat, which can be 

neglected here.

The third term on the right hand side, —V.Frad, is the rate at which energy is transferred 

between the gas and the radiation field. I consider only inverse Compton cooling and Compton 

heating.

Given a thermal distribution function for the electrons, I use the kinetic equation for the 

Compton interaction of thermal electrons with photons in the non relativistic limit, <  1,

<  1, (Kompaneets, 1957)

where n is the photon occupation number (the density of photons in phase space).

The last term in the brackets on the right hand side describes stimulated Compton scattering, 

which is only important for high photon fluxes at radio frequencies. This term is negligible in 

comparisom with the other terms and is dropped. The first term in the brackets is the energy * 

exchanged per scattering from the electron to  the photon, and the second term is the energy 

exchange per scattering from the photon to the electron.
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The total photon energy density is

Urad =  v^ndv, (3.9)

so operating on (3.8) by /q°° u^dv and integrating by parts twice produces

dt TUgC

where the Compton temperature

Equation (3.10) is a  useful expression for the exchange of energy between the radiation spec­

trum  and the gas. It is obvious that

dt dt

so th a t the energy gain of a unit volume of gas per unit time due to radiation processes is

(3.12)

-  V .fr.d  =  -  r)[7r.d. (3.13)

Now, rewriting equation (3.7) including the work done against gravity:

^  +  [An +  P n ) =  +  ^ ^ ^ ( T c  -  T)[7r.d +  Ê(r) (3.14)

where é{r) is the extra energy input (energy added per unit volume per unit time).

3 .3 .4  E q u a t io n s  o f  S ta te

In addition to the three conservation laws, there is also an equation of state for the gas: the 

ideal gas law,

where p  is the mean molecular weight (the mean mass of the particles in units of nip, the 

proton mass). The gas is fully ionized hydrogen so p =  |  and P  =

The internal energy density of the gas is U. From elementary kinetic theory each degree of 

freedom for each particle has an energy associated with it of ^kT . Since the particles are 

monatomic (or rather a single proton or a single electron) each particle has three degrees of 

freedom and ^

2 finip nip
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I shall also write mass density in terms of the electron number density and the radiation

pressure in terms of the radiation energy density which can also be written in terms of the

source luminosity:

p — UgTUp, (3.17)

Prad =  (3.18)

3 .3 .5  T h e  I n je c t io n  te r m s

Finally, consider an appropriate functional form for the extra terms e(r) and rh{r). I have 

defined the gas to be optically thin to the radiation, so it seems reasonable to impose the 

condition tha t the gas is optically thin to whatever injection process(es) produce é{r) and 

m (r) , i.e. so tha t the gas does not effect the ability of the injection process to heat or apply 

force on the gas. It seems reasonable to include a factor proportional to the number density 

of the wind particles, and also include a ^  geometric dilution. So I have defined:

m =  /m " , and Ê =  , (3.20)

where rg is the gravitational radius of the central black hole, described by the Schwarzschild 

metric.

There are many ways to modulate this injection, but I have decided to consider the following 

cases:

(A ) No injection (Ê(r) =  0, m (r)  =  0, for all r); i.e. a basic radiation pressure driven optically 

thin wind.

(B ) Injection defined by (3.20) above for r^m  < r < oo.

(C ) As case B but the injection is stopped when the wind velocity becomes supersonic, i.e. 

£ =  0 and m  =  0 for all r  > Tg. The cutoff at rg is not entirely arbitrary, if it occurred 

at a  radius less than Tg then this would essentially be the same as case A.
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3 .3 .6  S u m m a ry  o f  E q u a tio n s

Combining equations (3.15) to (3.20) with equations (3.2), (3.6) and (3.14), I obtain:

=  9' (3 21)

, (3.22)

^  +  SugATn) =  -  T ) ^  +  / . n ,  . (3.23)

The velocity and the density are related by the mass outflow rate, from (3.3):

M =  4Tr'nempU. (3 24)

These equations describe the model, and their solution will give velocity, temperature and 

density as functions of radius, given a suitable choice of the parameters M , L, Tc, M , / ,  and

3 .3 .7  M a n ip u la t in g  th e  E q u a tio n s

Using equation (3.24) to replace Ug by functions of v and r  in equations (3.21), (3.22), and 

(3.23), I obtain two coupled ordinary differential equations for the velocity v and the adiabatic 

sound speed u, defined

These equations are:

=  +  p -26)

 1 (  C t L  AotTc \  2/.
3r^t) \ zmpvl j  m .

(3.27)

1 /  CrL (w k T c  \  / . r g \
r'̂ v y lOxmgC^ \ Zmpvl j  rripv"̂  j  '

Here M  is the Mach number of the wind, M  = ■—. Note that the mass outflow rate, M, does 

not appear in either of equations (3.26) or (3.27), since the term n , appears in every term of 

equations (3.22) and (3.23); M  is simply a scaling factor for Ug.
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To simplify the solving of these equations it is convenient to scale the variables and parameters:

X = — , u = Us =  (3.28)
Tg PC /3c

Here P is the velocity, in units of the speed of light c, at a point where v = Vs — Vc, the 

transonic point. Also

(3 .3 1 )

(3 .3 2 )

Scaling (3.26) and (3.27) using the above equations produces

- 0Z x ' ^ P u  \ h j J L  x P ' ^ u ' ^  J  P ' ^ u l

+ 11
3 j  dx"^Pu \5 p

Here p  =  the ratio of the mass of the electron to the mass of the proton.

It is clear from these equations tha t the mass of the black hole effects only the radial scale 

of the system. This is only to be expected, both the Schwarzchild radius and the Eddington 

luminosity of a black hole are proportional to its mass, as is the critical mass outflow rate, 

such th a t the outflow is not supercritical.

In equation (3.33) the external forces acting on the gas particles are represented by the term

^  (3 .3 5 )Zx‘̂ P'^u\ \6

This implies that if the extra force due to rh is equivalent to the radiation pressure force then 

4*m — g .
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Again, in equation (3.33) the terms from the equation of conservation of energy tha t represent 

the extra heating ê and the transfer of energy between the gas and the radiation field appear 

as

/  A
Zx'^Pu \5 p

Here, if the energy gain in the gas due to the extra heating is equivalent to the energy gain
M
5 # 'due to Compton heating (ignoring inverse Compton cooling), then <pe ^  —

These two equivalences will be useful when I consider the <f>c and (f>m parameter space.

з .4  T he Transonic Point

In order to solve equations (3.33) and (3.34) a choice has to be made for the initial values of

и, Us and x. In principle I can choose any set of numbers and integrate from there, but I am 

looking for a particular kind of solution: i.e. where there is a radius such tha t the velocity 

is the same as the sound speed; it is sensible therefore to use u =  u , =  1 at a: =  Zg for the 

initial conditions. At this point the denominator of g  and (A4^ -  1), is zero, implying 

tha t the transonic point is a critical point of the system and must be treated carefully to avoid 

complications occurring in the solution. So Zg is determined by the requirement tha t u and u , 

pass smoothly (i.e with finite derivatives) through the sonic point.

Substituting u =  1, u , =  1, and z =  Zg in either equations (3.33) and (3.34)

Rearranging

i.e. given a choice for the parameters A, 0, d>e, 4>m and /3 there is only one point where u = Us

The condition u =  u . =  1 at z =  Zg cannot be used as the initial condition, because at tha t 

point both equations (3.33) and (3.34) revert to 0 =  0; i.e. ^  § and ^  = § which gives

no information about the system at values of x other than Zg.

Any function can be represented by an infinite Taylor series, expanded about a given point. If 

the region of that function is sufficiently small the Taylor series can be truncated to the first
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few terms. In this situation, the region is so small that the series can be truncated to a linear 

equation. For example, writing u{x) as a Taylor series expanded about the point Zg,

du
u{x) =  u(xc) + {x -  Zg) dx +

If (z — Zg) is sufficiently small

U (z )  =  tt(Z g )  +  (Z  -  Zg)

Now «(Zg) =  1, and also writing (z -  Zg) =  6x and gives

u(x) = 1 +  u'6x.

Similarly, % (z) can be expanded about Zg to give

Us{x) =  1 +  u'gSx

(3.39)

(3.40)

(3.41)

(3.42)

Rearranging equations (3.33) and (3.34) I obtain

a /  2 2\ du 2 M /A . \  2 /  A

'u. 2 o n  uu? . 5u^ /  A

) ,  (3.43)

+ 1 1 2 ( 1  + ( 3 - 4 4 )

Substituting equations (3.41) and (3.42) and into equations (3.43) and (3.44), using z =  Zg+6z 

and ignoring second and higher powers of 6x, gives:

(z^ 4- 2zgf z )  ((1 +  2%'6z) -  (1 +  2u^6z)) n ' =  2 (zg +  6 .) ( l  +  u'6z) (1 +  2u^6z) (3.45)

(1 +  u'dz) 5 (1 +  w'6z) /  A
+  + — ( i  +  ■*” ) -  ^  ( ^  +  2 < « x ))  + | | )  ,

(x l  +  2zg6z^ ((1 +  2u'g6x) -  (1 +  2u'Sx)) ( l +  u'6x) (1 +  u'^êx) w'

=  ^  (Zg +  f . )  (1 +  3 u 'f z )  (1 +  2 w ^ fz ) -

, 5 ( l  +  3 w 'f z )  /A  ,
+  9 -------- 3 3 -( g + <

(3.46)

+  +  2ti'5z) -  -  (1 +  2u'6x)'j —  -  (1 +  2Ug6z) j  +

Each equation (3.45) and (3.46) can be written in the form ai +  ogfz =  0, which can only be 

true if oi =  0 and ag =  0, hence examining the coefficients of (6z)° and (6z)^ will provide
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useful information about the system of equations. Examining the the coefficients of {6x)° in 

either equation (3.45) or (3.46) is the same as setting 6z =  0 and just gives the critical point 

condition, equation (3.38). However examining the coefficients of (6z)^ yields two equations 

with two unknowns u' and u^:

2Zg («' -  «é) «' =  2 (2zgU  ̂+  +  1) -  2 ^  +  ^  4- (3 47)

2Zg («' -  u') u's = -  {2xcu's 4- 3xcu' 4 -1 )------^  1- 4- 4>n  ̂ (3.48)

Rearranging equation (3.47):

, -  u'xc -  1 -  ^  (e  +  4- - ^ u '

Substituting this into equation (3.48) and rearranging, gives an equation of the form

(3.49)

where the coefficients uq to % depend only upon the values of the parameters A, 0, <f>m 

and p. This equation can be solved for u' numerically using a suitable method, from which 

the value of « ' can be calculated using equation (3.49). There are three solutions for u' from 

that satisfy (3.50) of which two may be complex. The solutions of interest are where u' is real, 

where u' > u' and u' > 0, i.e. a solution is required where the wind is subsonic for x < Zg, 

supersonic for z > Zg and accelerating. In principle, there may be solutions of equation (3.50) 

where u' > u'̂  bu t the wind is decelerating, but these solutions are of no interest here.

3.5 T he O ptical D epth

To simplify the numerical method, I decided to calculate the optical depth in the wind from 

the point of view of an observer at the transonic point, fg. The optical depth between a point 

at radius r , and the observer at Zg is:

r ( r)  =  — /  a^nedr. (3.51)
Jrc

Here I have defined a convention such that if the point r  < Zg, then the optical depth calculated 

is a  positive quantity; while if z > Zg, then it is a negative quantity. Hence, the optical depth 

between a point at radius z, and an observer at radius Vgbs is:

To6,(r) =  T(r) -  r(ro&,). (3.52)
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The electron number density is related to the wind velocity by equation (3.24) which can be 

scaled using equations (3.28) to give:

M  =  iwrgmpcnex'^uP. (3.53)

Rearranging this equation in terms of n ,, and substituting for r from equations (3.28), equation 

(3.51) can be rewritten

(id̂) i  r
It is convenient to scale r(z):

T*(z) =  mgT(z) ( , (3.56)

so th a t now

4.506 dx

3.6 T he Energy Injection

From equation (3.20) the extra heating per unit volume per unit time is

 ̂ W  '
so the total energy injected into the whole wind per unit time is, for Case B:

E  = f  Awr^édr =  /  ATTr^gf r̂iedr. (3.58)

Now, consider the optical depth to Compton scattering between r^m  and an observer at an

infinite distance. This is

Too =  /  (3.59)
Jrmin

or, referring back to equations (3.51) and (3.52)

Too =  T(rmm) -  T(r oo). (3.60)

Therefore, if is a constant, equation (3.58) becomes

jB =  4Trg/eToo/(rT. (3.61)
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From the scaling equation (3.31), tt>t = and

£  = (3.62)
CTr

The Eddington limit for the luminosity of a massive object is Lmdd =  AitGMmpcIaT and the 

gravitational radius is Tg =  this means tha t E  can be scaled:

7 —— = 2(f)tToo- (3.63)
l^Eid

A realistic order of magnitude limitation is that the wind should contain no more energy than 

an Eddington limited source can supply in all forms (whether it is radiation or high energy 

particles); thus the maximum value of should be limited by E  < Tg*,.

Considering case C, the extra heating stops once the wind reaches supersonic velocities so now

E  =  /  4 x r ^ g d r  =  4 f r^ /g T (rm m )/(^ T , (3 .6 4 )
^mtn

and the scaled energy input is

^  — 2^gT(a:;^;^). (3.65)

3.7 T he Param eter Space

The freedom to choose parameters is constrained by referring to observations of active galaxies. 

The Compton temperature, Tc ~  lO^K, is obtained from the observed spectrum (Mathews and 

Ferland, 1987), this is equivalent to 6 = 3.06 x 10“ ®. I have chosen luminosities L  =  LEdd and 

L  =  O.lTgjd, equivalent to A =  1.0 and A =  0.1.

The tem perature at the sonic point is T(xc) =  3.266 x lO^^jS^K, so a reasonable range is, say,

10“ ® < /3. This still allows fairly cool winds with T{xc) Z  3 x  10®K.

W hat sort of values is it sensible to choose for and (f>m̂  Referring back to the discussion 

after equations (3.35) and (3.36) the energy injection is e q u iv a le n t to the Compton heating 

when <pe = ^  and the momentum injection is equivalent to the radiation pressure force when 

<f>m = Therefore choosing and >  g g  seems sensible. The method I adopted

was to experiment with various values of and <l>m, which indeed showed that as or <f>m 

became smaller than these lower limits, there were no changes to the final solutions. Figures

3.1 to  3.4 show Xc is essentially unchanged for smaller values of 4>e or <f>m-
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From the discussion after equation (3.63), the maximum value of 4>s is set by the energy 

injection rate and the optical depth. If the source is Eddington limited and optical depth 

r  < 0.1, say, then 4>e < 0.1. To allow for smaller optical depths I used the constraint (j)̂  < 100. 

The results will show that the solutions of interest have small values of hence the upper 

limit of this parameter is not important; I used the constraint < 100.

The parameter space is further constrained by physical limitations, §3.4 states that

only those solutions where the wind accelerates from a subsonic region to a supersonic region 

are of interest. If (3 is large, given and 4>m-, these conditions are not obeyed, reducing the 

useful range of /?.

The sonic point, Æc, must occur within a range of radii that will produce interesting solutions. 

Clearly Xc > Xg otherwise the sonic point is inside the black hole. The critical point condition, 

equation (3.38), shows tha t this tends to occur with large /3. At the other extreme, small values 

of j3 result in critical radii so large that the supersonic region is well outside the volume of 

space of interest; hence I have chosen the constraint Xc < lO’̂ (equivalent to < lO^^mgcm), 

with a corresponding minimum value for j3, found by substituting Xc =  10^ in equation (3.37) 

and solving for /? numerically. This constaint is only necessary for large <f>e, it turns out that 

when 4>s is small Xc < 10  ̂ for all /? such th a t 10“  ̂ < / ? < ! .

Figures 3.1 to 3.4 show the (<^s,<^m,)9) parameter space for Tc = lO'^K, A =  1.0 and A =  0.1. 

The dashed lines represent contours of Xc in the parameter space, calculated from equation 

(3.38). In each graph, the left most dashed line (lowest /?) represents the loci of points where 

Xc =  10^. Moving to the right (/? increasing), each dashed line represents the loci of points 

where Xc =  10^,10^,10^,10^,10^,10 and 1 respectively. The continuous line represents the 

maximum value of /? such that the constraints of the previous paragraph are obeyed.

There is a particular region of the (<^e,<^m,j )̂ parameter space which obeys all the above 

restrictions, but in practice when solving equations (3.33) and (3.34) does not produce useful 

results. After choosing values for 4>c and is large equation (3.37) indicates tha t Xc is

small. The implication is that the gradient u'{xc) is very large, and also tha t Ug{xc) is large. 

I have also found that u'{xc) u'^{xc). The large gradients mean that the functions u{x) and 

Us{x) are rapidly changing and because the gradients are almost the same, any small error in 

a numerical calculation can drive the system away from the “correct” result. The practical 

effect here is to further reduce the maximum useful value that can be chosen for /3, given a 

choice of <6, and èm-
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3.8 T he N um erical M ethod

To solve equations (3.33) and (3.34), I use the NAG Fortran Library routine D02EBF, which 

integrates stiff systems of first order ordinary differential equations using backward differenti­

ation formulae. Having chosen values for the parameters A, 0, (j)^ and /?, Xc is calculated

from the critical point condition, equation (3.38). Next u' and u' are found by solving equa­

tion (3.50), and substituting the result into equation (3.49). Then setting x x^ — 6x, where 

6x < , the values of u{x) and Us{x) are calculated using equations (3.41) and (3.42),

the Taylor series truncated to a linear form. Using these values for æ, u and Ug as the initial 

conditions, equations (3.33) and (3.34) are integrated until the point when u ~  10"^ is reached, 

the integration proceeding in a negative x direction. I then define x^in  as the value of x where 

u ~  10-4.

In the analogous problem where the unknowns are functions of time, this would be equiva­

lent to integrating backwards in time, where equations can become unstable, using backward 

differentiation formulae counteracts this effect.

After completing the inward integration, the values of u(x) and Us{x) at æ =  Xc -f 6x are 

calculated and these values used as the initial conditions for an integration tha t proceeds in 

the positive x direction, until u(x) reaches its asymptotic value.

On completion of both integrations, numerical functions have been calculated for u(x) and 

Us{x) for the region between x^in  (where u ~  10~4) and where u is approximately constant at 

large x. It is now possible to calculate the optical depth of the wind to Compton scattering, 

and also make some estimate of the total energy injected by the extra heating term  ê. The 

optical depth calculation is important: it is one of the major assumptions of the physical model 

th a t the wind is optically thin, so the solution must be consistent with that assumption. It is 

also im portant to know the energy budget required for a particular solution.

3.9 R esults

The equations were solved with Tc = lO^K, and A =  1.0 and A =  0.1. Values for 4>e and ^rn 

were chosen from the set 10%, 1, 10"^, lOr^, 10“ ® and 0. Given values for Tc, A, 4>s, <f)m, there 

is a range of values that can be chosen for /?, as discussed in §3.7. The equations were solved 

for u(x), Ug{x) and r*(z), using the methods described in §3.8, with three choices of /?, one
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Table 3.1: Values of parameters used in figures 3.9 and 3.16.

In each case Tc =  10^.

(a) A =  1.0,<;èm = 0 for various

(b) A =  1.0, =  100 for various (j)m.

(c) A =  1.0, =  1 for various (f>rn

(d) A =  0.1, = ^ for various 4>e

(e) A =  0.1,4>c =  100 for various

(f) A =  0.1, =  1 for various (j)m

each from the lower, middle and higher ends of this range of values. In addition, the functions 

/5(®mm) and /3(xc) were evaluated over this range of /?.

Figures 3.5 to 3.8 show ^{xmin) and j3{xc) for various values of the other parameters. In figures

3.5 and 3.6 A =  1.0, in figures 3.7 and 3.8 A =  0.1. Figures 3.5 and 3.7 show how /3{xmin) and

P{xc) vary as (j)^ decreases, with (f>e set at the values 10  ̂ and 1. In each set of graphs, it is

clear that the results are the same when <pm = 10“  ̂ and (j)m = 0. Figures 3.6 and 3.8 show the

results for different values of 4>e with <?!>„, =  0. With (j)̂  decreasing, the functions (3{xmin) and

fi{xc) remain the same when ÿs < 10“4. Thus for < 10“ 4 and (pm ^  10“ ^, f3(xmin) and 

/3{xc) are approximately the same as for =  0 and (f>m = 0.

Figure 3.9 shows xdxm in  versus (3 for various (pe and (pm- It is apparent tha t the subsonic 

region extends over a region no more than a few times rmin for values of <pe and (pm tha t are 

significantly different from their lower limits.

In each case, whatever the choice of (p̂ , (pm or (3, the functional forms of n(æ), Ug{x) and r*(œ) 

shown in figures 3.10 to 3.15 are basically the same: the velocity rises rapidly to begin with and 

tends to a constant value at large x,  the sound speed rises from a low value to a maximum near 

Xc and then falls. Choosing (3 essentially chooses the maximum tem perature since

3 .9 .1  C ase  A ; N o  e x tr a  h ea t or force

In this case (pc = (pm = 0. Some results are given in figures 3.10 and 3.11, which show the 

functions u(æ), Ug{x) and r*(æ) for various values of A and (3. In figure 3.10 A =  1.0 and 

/3 =  4 X 10-4, 1.2 X 10-3 1.24 X 10-3. In figure 3.11 A =  0.1 and /? =  2.5 x 10-4, 3.5 x lO"*

and 5 X 10-4. addition, j3{xmin) and /3{xc) are represented in figures 3.6 and 3.8.
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For A =  1.0 I find tliat /? < 10~^ (equivalent to T{xc) =  < 3 X 10®K), Xc > 10® and

Xmin ^  5 X 10^. For A =  0.1, jS < 5 x 10“  ̂ (equivalent to T, < 7 x 10®K), Xc > 10® and 

Zmin ^  10®. At the edge of the cloud Us <  1 which implies that transonic solutions can only 

occur by heating a cold gas to a temperature Tg at Xc that is much less than Tc- There are 

no transonic solutions where T{xmin) = 3.266 x j3'^Us{xminŸ is as high as Tc- Forcing the 

solution to be transonic gives the result tha t only low temperature winds can form, and these

winds are some distance away from the central region.

I therefore recover the well known result that Compton processes alone cannot drive a wind 

from a gravitationally bound, stationary cloud of gas at the Compton temperature. If, instead 

of using u{xc) =  Ws(æc) as the initial conditions, I impose u{xmin) <  1 and T{xmin) — 

Tc at some x — Xmini the gas would remain subsonic. Alternatively the gas might remain 

optically thick to x-rays and perhaps be driven out. However, observations of timescales of 

x-ray variability require the gas to be optically thin except for a small central region.

Note tha t there is a solution of equations (3.33) and (3.34) such tha t T  — Tc (i.e. when

6 — /3'^u'l). For this to be true we find that the velocity must be zero (u = 0) and ^  ̂  =  0

for all X. This is equivalent to having a stationary cloud of gas at the Compton temperature 

of the radiation. Indeed in Cases B and C this is the solution for x < Xmin and then extra 

heating and force is added at x^in-

3 .9 .2  C ase  B: In jec tio n  for a ll x >

Some results are given in figures 3.12 and 3.13, which show the functions u{x), Ug{x) and r*(x) 

for A =  1.0 and /? =  0.02,0.1 and 0.49.

The winds produced are hotter and faster at much smaller radii {x^in < 10^) than the Case 

A winds.

Each set of parameters produces a result tha t is one of two kinds:

1 . u(x) becomes unphysical by plummeting to zero and reaching a negative value at some

2 . Ug(x) falls asymptotically to zero at large x.

The models where ^  lO^e and /? is large tend to fall into the first group. For a given <pe, as
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<t>m increases the point xq falls closer to the value for Xc and eventually there is no region above 

the critical point where the sound speed is positive. The large value of implies tha t there is 

a large force on the gas making it expand and therefore cool: here the force is so great tha t the 

expansion and cooling occurs much more rapidly than the heating and so the temperature falls 

to zero. An alternative explanation is tha t the gas is being accelerated rapidly and therefore 

needs to acquire some kinetic energy, which must come from the internal (thermal) energy of 

the gas; the kinetic energy requirement is much greater than the amount of thermal energy 

available. Choosing a large (3 means tha t the wind must move more rapidly, expands more 

rapidly and therefore cools more rapidly.

The other kind of result where n ,(z) falls asymptotically occurs when the heating is not 

dominated by the injection of momentum.

The conclusion to be drawn is this: driving a stationary gas to form a hot supersonic wind 

requires extra heating rather than acceleration. The wind becomes supersonic by expansion 

and the continual heating prevents the expansion cooling the wind too rapidly.

The Case B results provide part of the answer to why Compton processes alone cannot create 

hot supersonic winds at small radii: the radiation pressure accelerates the gas too rapidly 

for the heating to stop the wind cooling by expansion. Because the heating and radiation 

pressure are linked, increasing the luminosity cannot help. There is an additional effect: as 

the gas heats up towards Tc, the actual heating rate (proportional to To -  T)  falls, making 

the problem worse. But here, where the gas can be heated without increasing the force, the 

situation has improved. These results point towards the kind of process that is needed: an 

interaction where energy is gained by the gas but where there is only a small momentum 

exchange.

Therefore these results point to a model of the inner region as a stationary cloud of gas at 

the Compton temperature which is suddenly “kicked” at some radius by injecting heat and 

momentum. The solutions produced are all such that u ,( i )  < ««(xc) for all a: < Xc- In this 

subsonic region the gas is heated rapidly, so T{xc) =  Tg >> Tc- This therefore means that 

the choice of ^  is limited so that Tc =  3.266 x >  Tc, otherwise the solutions do not

represent the physical model. In Case A this situation is not possible: u ,(z  < z^) < u,(zc), 

but Tc < Tc- Now choosing ^  ensures that 3.266 x >  Tc. Ignoring cooling by

expansion for the moment, it is clear tha t the gas temperature would reach equilibrium when
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This is clearly much higher than Tc when Of course this tem perature is never reached

in practise, because the wind is also cooling by expansion.

Figure 3.16 shows x^ooi (the point at which the temperature has fallen by a factor 10 from 

its value a t Xc, close to its maximum) as a multiple of Xc. This region extends over a factor 

greater th a t 10 in radius provided 4>e ^  lO^m-

3 .9 .3  C a s e  C : In je c t io n  fo r  Xmin < x < Xc

Some results are given in figures 3.14 and 3.15, which show the functions u(x), Us{x) and t * ( x ) 

for A =  1.0 and 13 = 0.02,0.1 and 0.49.

Here the inner region is the same as for Case B. Also the criteria that 4>e > ■^ and <j>m ̂  lO^k

are the same: so tha t a hot supersonic wind is produced at small radii.

Because all the injection is turned off at Xc the situation at x > is different. Now the wind 

is Compton driven, and is already supersonic. At these radii the Compton processes become 

less im portant and expansion is dominant: the wind coasts away with the temperature falling 

adiabaticaUy. The cooling is more rapid than for Case B, so the hot region is much smaller. 

The cooling is not as catastrophic for large and large ^  as in Case B though there are still 

values for these parameters where w, falls to zero.

The tem perature falls by a factor 10 over a much smaller region than in Case B, this region

extends over a factor of the order of x^.

3.10 Im plications for th e two phase m odel o f th e  BLR

The results of the gas dynamics show that an extended high temperature intercloud medium 

will only be possible if the non-radiative energy injection occurs throughout the broad line 

region, otherwise the wind cools to below the Compton temperature within a small fraction of 

Tc. Therefore the extra energy will be injected into the line emitting clouds and this will alter 

the conditions for two phase equilibrium.

The effects of the extra energy on the clouds was investigated as follows (Raine and O’Reilly, 

1993). The photoionisation code ’’CLOUDY” (Ferland and Rees, 1990) was used to compute

92



(a) 50.0

40.0

10030.0

10.0

100
0.0

(d) 60.0

50.0

40.0
10.1oool o

30.0
100

20.0

10.0
IOC

. f -0.0

50.0

40.0

20.0

10.0 1100

.10,01000.0

(e) 40.0

30.0 10-

ooot. e

20.0

too
10.0

0.0

(c) 60.0

40.0

oool o 
30.0

10.0

0.0
|(T*

(f) 50.0

40.0

10.0

0.0
10^

F i g u r e  3.16. ^cooll^c against /3 for the vaines of and A shown in table 3.1. The solid lines show the results for
Case B, the dashed lines show the results for Case C.

93



-12

-11

Heat Ing 

and 
Coo 11ng 

R a tes

97 85 64

l°9,oT

Figure 3.17: Heating ra te  (dashed line) and cooling rate (solid line) in  units of ergs cm“ ® s~* p lo tted  against 

tem perature for gas with tieT  =  5 x 10^® cm~®.

heating and cooling rates at the face of a plane parallel cloud for a range of densities including 

the extra energy injection. The average quasar spectrum was used (Mathews and Ferland, 

1987), i.e. two phase equilibrium was not possible without this extra heating. Figure 3.17 

shows the heating and cooling rates against temperature for a gas in a typical broad line 

environment at a distance of 10 ®̂ cm from an ionising source of radiation of 10 ®̂ ergs s“ ^. 

The figure shows rates for gas a t a pven pressure, obtained by plotting data a t constant UgT, 

chosen for consistency with the pressure in broad line clouds. The parameter defining the 

additional energy injection, <j>e, was taken as 100, implying that the non-radiative heating was 

around 20 times greater than the Compton heating in the low density phase. The figure shows 

th a t two stable phases may coexist: a  cool phase with a tem perature of order 10  ̂ K and a  

density of 5 x 10® cm"® and a hot phase at around 10® K. I conclude that, in principle, the 

existence of a non-radiative energy injection in the broad line region allows existence of cool 

clouds in a hot outflow.

The additional heating must also be taken into account when computing line ratios. However, 

the actual effect of this addional heating on the line ratios is expected to be minimal. The
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extra heating was chosen to dominate Compton heating in the intercloud medium by a factor 

20, where it provides the main heating mechanism. In the clouds the main heating comes from 

photoionisation and neither Compton heating, nor the extra heating have a significant effect. 

This may be confirmed by direct computation of line ratios. Note, however, tha t only the 

direct heating efiect of the non-radiative energy injection has been considered: any possible 

contribution to the ionisation balance has been neglected. The changes to the ionisation 

balance would depend on the precise nature and the spectrum of the injected energy.

3.11 D iscussion

I have shown that spherical supersonic two phase outflow with the properties of the broad line 

region can exist around an AGN provided there is additional non-radiative heating tha t injects 

sufficient energy but not momentum. A thermally driven wind can be generated in this way if 

is constrained such that the dynamical timescale of the wind material is greater than 

the thermffi timescale. This also avoids the problems of a cool wind and the associated but 

unobserved x-ray absorption. One way of satisfying this constraint is if the extra heating is 

due to relativistic electrons, possibly associated with leakage from the synchrotron emitting 

plasma.

Two problems remain. First, the full effects of the ionisation balance in the clouds and the 

consequences for the line ratios must be investigated. More im portant is the problem of 

cloud formation. It is unlikely tha t the modified heating function will alter the conclusions 

of Mathews and Doane (1990) who show that the growth time for thermal instabilities in the 

wind exceeds the crossing time of the broad line region. Thus, though clouds are stable, they 

cannot be formed in this model of the broad line region and therefore must be injected into 

the region in some way.
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C h a p ter  4

W in d  G en era tion  by th e  In jec tio n  

o f  e^-P airs in to  th e  A ccre tio n  D isc  

C oron a  - A n  In itia l In v estig a tio n

4.1 Introduction

The accretion disc around a supermasive black hole is widely thought to be the source of 

the power-law X-ray spectra of active galaxies (Frank, King and Raine, 1992). Such a source 

cannot be modelled as a thin a-disk (Pringle, 1981) or one of its two temperature variants 

(Shapiro et a l, 1976, Rees et a l, 1982) because of the similarity of variability timescales in 

UV and X-rays. (In the standard disc the UV is produced at large radii with correspondingly 

longer viscous timescales.) This observation in fact suggests tha t the UV and X-ray regions are 

radially co-extensive and that the observed spectrum is providing information of the vertical 

structure of the disc.

On the other hand, progress has been made in emission models by concentrating on the inter­

action between radiation and m atter under the assumption th a t the energy is injected in some 

form and without regard to the dynamics of the source material (Guilbert, et a l, 1983). A 

popular model is the e^-cauldron (Bonometto and Rees, 1971, Guilbert et a l, 1983): observed 

energy fluxes and timescales suggest a production region in which the compactness parameter, 

I = arL/m eC ^R  is large (> 30). Under these circumstances scattering of 7 -rays on soft photons 

can produce pairs which annihilate to 7 -rays. The whole process is kept going by injection
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of pairs (or 7 -rays) and a soft photon background. The emergent spectrum, partly reprocessed 

by reflection from a cold disc, can produce the observed X-ray spectra without violating the 

observational upper limits on the 7 -ray background (Rothschild et a l, 1983). Nevertheless, 

this deduction from the ‘observed’ compactness to 7 -7  scattering assumes spherical symmetry. 

For a disc geometry, with height H  at radius R, the effective I is reduced by H /R  and 7-7  

scattering is not important.

An at first sight apparently unrelated point is tha t many quasar models assume a supersonic 

nuclear outflow. Such an outflow must be optically thin down to < 10^  ̂ cm, so tha t electron 

scattering does not smear out the X-ray variability, and optically thick within the radius 

at which it attains the escape speed, so tha t it can contain a significant mass flux. These 

requirements are readily met if the outflow is from the surface of a disc.

In this chapter 1 attempt to build a highly simplified model in which these two aspects - the 

production of the power law X-ray spectrum and the supersonic outflow - are brought together. 

This should be viewed as an initial investigation of the possible behaviour rather than a finished 

picture. The model of the vertical structure (at fixed R) of the atmosphere of an accretion 

disc is described in the following sections. The basic ingredients are a soft photon flux from 

the geometrically thin optically thick ‘filling’ of the disc comptonised on e’̂ -pairs injected into 

the corona of the disc (by unspecified dissipative processes). The result is a supersonic outflow 

which is stable only for optical depths of order unity or less. This suggests tha t the soft photon 

input may be comptonised to a power law of roughly the right power law form (a slope around 

-1) (Hardt and Maraschi,1993). Thus the spectrum is driven by the dynamics of the model. 

However, in the simplified form presented here, I do not find any self-sustaining oscillations, 

so the time dependence is not satisfactory.

4.2 T he Physical M odel

Consider the inner region of an accretion disc (distance from the central black hole, R  < 10"̂ Rg, 

where Rg is the Schwarzchild radius). This disc may be some kind of thin disc, or a thick disc; 

later I shall assume that it is a thin alpha-disc. Above the body of the disc sits an optically 

thin corona of hot gas in pressure equilibrium with the cooler material below. For simplicity I 

shall assume a pure hydrogen plasma.

An ultra-violet black body spectrum shines through the corona, the precise mechanism or
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location of the generation of this radiation need not be considered here. This spectrum would 

form the blue bump/soft X-ray excess observed in many sources.

Now, suppose high energy electron-positron pairs are injected into the corona. The mechanism 

for the production of these pairs is beyond the scope of this discussion, but might perhaps 

be due to some non-thermal heating processes in the atmosphere of the disc (for example 

instabilities or shocks), or may be a consequence of the fact tha t an optically thin corona 

cannot radiate aU the energy generated locally, resulting in local heating and the production 

of pairs.

As a result of this injection the gas is heated, expands and accelerates away from the disc until 

the speed is such that the escape velocity is reached and a wind has formed. At large distances 

the wind will appear as a spherically symmetric outflow from the central region of the active 

nucleus.

The purpose of the subsequent work is to investigate the broad features of this model, not to 

produce detailed solutions. I shall examine the long term stability of the system and also the 

radiation spectrum that one would expect to observe.

The flve most important energy exchange processes to consider, the only ones considered here.

1. Comptonisation of the UV photons by the electrons in the corona and also by the injected 

pairs.

2. Inverse Compton cooling of the electrons and positrons.

3. The exchange of energy between the gas and the injected particles.

4. Annihilation of pairs.

5. Creation of pairs.

Momentum is transferred to the gas by radiation pressure, gravity and pressure gradients.

In fact, further investigation will show that the further creation of pairs (beyond the initial 

input) is negligible, since not enough high energy photons are produced for the process to be 

im portant (section 4.9).
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I neglect the radial dependence of the disc region under consideration. The region is therefore 

represented as an effectively one dimensional system; a column of gas with its base situated 

close to the body of the disc and with its top situated at the point where the gas escapes from 

the gravitational attraction of the central black hole. The height of the column is represented 

by the quantity Zesc while the distance of the column from the central black hole is A. As 

long as Zesc <  Æ it is sufBcient to consider the spatial part of the problem in this way.

I now assume that the total energy introduced into the column is tha t produced by the dis­

sipation of gravitational energy from the matter accreting onto the central black hole; i.e. all 

the gravitational energy dissipated at a given radius goes into the atmosphere/corona/wind 

above the disc at tha t point.

Rather than representing the electron-positron and photon distributions as continuous func­

tions of energy, these distributions have been split into several components. Consider the 

electrons and pairs first: the corona consists of a hot gas with the additional injection of high 

energy pairs. For simplicity I split the electrons and pairs into two separate components each 

represented entirely by a number density Ua and a temperature Tq. So at the base of the column 

(z = zo — 0 ) the electrons are entirely represented by the coronal component, = Mg(zo) 

and Teo =  ?e(zo)- Throughout the column, mono-energetic pairs are injected at a rate n+ with 

an energy kT±^ . At any height z the electron and pair distributions are represented by a cool 

component ‘e’ with a density n , and a temperature Te, and also a hot component ‘± ’ with 

density n± and temperature T±.

It is reasonable to assume that the particles in the cool component will have a thermal dis­

tribution; the energy density of a thermal distribution of particles is a  simple function of the 

density and temperature, in this case Ue =  ^UekTg. However, the hot component is made up 

of cooling mono-energetic pairs and some pairs are lost due to annihilation, so it is unlikely 

th a t the energy distribution will be anything like thermal. I write the energy density of the 

hot component as U± = n±kT±f{T±) where this defines T±, i.e. T± is the temperature the 

pairs would have if the energy were distributed according to a relativistic thermal distribution. 

I follow Fukue (1986) by adopting the equation of state derived from the relativistic MaxweU- 

Boltzmann distribution (Cox and Giuli 1968). For electrons of positrons the energy density 

function f{T±) is defined

where the KnS  are the modified Bessel functions of second kind of order n. Below, I shall take 

f{T ± ) = 3, the relativistic limit.
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Figure 4.1: An illustration of the assumed output spectrum: a  UV black body spectrum  (the unprocessed p a rt of the 

initia l spectrum ), a  soft X-ray power law (from Comptonisation by the cool component) and a  hard  -ray/'y-ray power law 

(from Comptonisation by the hot component).

I now consider the radiation spectrum. I assume that the initial spectrum a t z =  0 can be 

represented by a black body, with a temperature of ~  10® K. The electron and pair distributions 

have been split into two components, both of which have a temperature hotter than this and 

so a proportion of UV photons are Comptonised by the hotter electrons. For the purposes of 

the model I have divided the spectrum into three energy bands: a low energy band where the 

spectrum is a UV black body, a soft X-ray band and a hard X-ray/'y-ray band. I assume that 

the spectrum in the two higher energy bands can each be described by a single power law, the 

index of which is dependant on the density and temperature of one component of the electrons, 

figure 4.1 illustrates these three spectral components.

4.3 The Basic Equations of the M odel

The basic equations tha t define the model are derived by considering the conservation of 

m atter, momentum and energy as the material flows through the column, using the equations 

of gas dynamics.
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4 .3 .1  T h e  C o n serv a tio n  o f  M ass F lu x

The equation for the conservation of mass flow in the column is

Op
at

+ V .{pv) = S. (4.2)

Here 5 is the sum of all sources and sinks of mass. Because I have divided the gas into two 

components it is better to write this conservation law as two equations:

~dt^ +  ^  (^±^) =  S±. (4.4)

The ‘e’ population refers to the normal m atter, fully ionized hydrogen; the ‘± ’ component 

refers to the injected m atter, the electron positron pairs. The quantity S±(z,t) represents the 

injection of pairs and the annihilation of pairs, and can be written:

(z, t) =  2Û+ -  (z, t ) , (4.5)

where is the number of positrons injected per unit volume. Note tha t the number density 

of electrons and positrons in this population is n ± {z,t), so the number density of electrons or 

positrons is |n ± (z ,t ) .  Therefore the number of electrons and positrons annihilating per unit 

time is 2cTaCn+n_ =  ^Oacn'^ where cTq is the annihilation cross section.

4 .3 .2  T h e  C o n s e rv a t io n  o f  M o m e n tu m  F lu x

For momentum I consider the gas as a whole, so there is only the single equation:

^  ^  ^  (4.6)

Here the mass density p = pe + p± =  rUpUe-I- meU±; the number density n = + n±\ p is

the gas pressure, prad the radiation pressure and g is the acceleration due to gravity in the z 

direction.

4 .3 .3  T h e  C o n s e rv a t io n  o f  E n e rg y  F lu x  fo r  th e  G a s

Again, this is divided into two equations, one representing each component of the gas:

I ^ (4.7)
+<7i’Cfc [T± — Te) UeUi,
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  ̂ j  +  -qI  ~  -P±9V + (Tc -  r± )  Urnd (4.8)

-(Trct (2 ± -  7^) ReMi +  2n+&Tj:( -  ^<yacn±tl± / (7 ± ) ,

where Ur ad is the total radiation energy density, Ur ad =  Uuv + Ux + U~̂', Tc is the inverse 

Compton tem perature of the radiation field (chapter 2, equation(2.11). The second term on 

the right hand side of each equation represents the exchange of energy between the electrons 

and the radiation. The third term is an estimate of the energy exchange between the two 

components of electrons due to collisions, based on the equation for two body relativistic 

collisions between protons and electrons (Stepney and Guilbert 1983). For simplicity I assume 

tha t the cross section for this process is a constant of the order of the Thomson cross section. 

This neglects a temperature dependant factor; I do not expect this to affect my results. The 

fourth term on the right hand side of (4.8) is the energy added by the injection of pairs at an 

energy kT± .. The fifth term is the energy lost due to pair annihilation.

4 .3 .4  T h e  F lo w  o f  R a d ia t io n  E n e rg y

The flow of radiation energy is described by three equations, one for each energy band. Consider 

the equations for the soft X-ray, the hard X -ray/7 -ray and the UV components (energy densities 

Ux, U~f and U w )  respectively:

=  (4.9)

+  = (4.10)

^  ^  (% vc) = -  ^ 0 ^  (T, -  r , )  £7„a -  (T± -  T^) I f ..,. (4.11)

To compute the output spectrum I assume, for simplicity, tha t the spectrum within the soft 

X-ray band can be described by a power law and has been formed from UV photons inter­

acting with the cooler of the two electron components, as if the hotter component were not 

actually present, though any particular photon will have interacted with electrons from both 

components. I also assume that the spectrum in the hard X -ray/7 -ray band can be described 

by a  power law and has been formed from UV photons interacting with the electrons in the 

hotter component, as if the cooler component were not present. I estimate the index of this 

power law using the numerical results obtained by Katz (1976).
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In principle, U.̂  also contains a contribution from pair annihilation, but the amount of energy 

generated in this way is relatively small. The photons produced by annihilation are of very 

high energy: the Klein-Nishina effect reduces the cross section at higher energies, and so the 

photons are more likely to completely escape from the column, before interacting with any 

electrons.

4.4 M anipulation o f th e  Equations

I now have a system of eight equations tha t represent the model (4.3, 4.4, 4.6, 4.7, 4.8, 4.9, 

4.10, 4.11), with variables that are functions of height within the column and time. For the 

purposes of this work, I am interested in the time dependent behaviour and the observed 

features of the model. Since the emitted spectrum depends on interactions over the whole 

column, for simplicity I consider the various quantities averaged over height. Therefore, I 

replace the quantities ne(z,t), n± (z ,t), etc., by %,(/), n±(t), etc. The resulting equations are 

not mathematically identical to the set from which they are obtained, since I am replacing 

averages of products by products of averages, but the broader features should remain. Thus 

from equation (4.3) I replace ^  with ^  and ^(n g v ) by ^ (A g fe .c  -  »eo%) where terms 

subscripted ‘0’ are the original z dependent functions evaluated at z =  0. Barred quantities 

denote averages over z between z =  0 and z =  Ze*c where, as stated above, z«,c is the height 

at which v =  U eso the escape velocity, v^sc = Equations (4.3) to (4.10) become,

respectively:

dtlQ TIqqVq TIqVçsc
dt z, (4.12)

dt Zeac ^2n+ -  , (4.13)

^  ( ^ e ^ )  +  ^  (4.14)
dl ^esc \  ^ /  ^esc

Â  4- 4" ^ +  Pe^ese ~ ^ ~  Ve^Vo — Pep^O  ̂ = (4.15)

( T c -  n )  +  a rck  ( T ±  -  r . )  f t . n ± ,
TTleC \ \ /

4  + F * )  +  0  =  (4.16,

+  2â + tr± , -  (T ±)
2

(Ta -  T ± ) F „ j  -  „rck (T± -  T .)  R,«±, 
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(4.17,

dUa (4.18)

^  = % '.  -  ^  h  ( r .  -  T a)  +  »± ( r ±  -  r , ) ]  F „ 4  -  (4 .19)
CIT TTlçC •• '  '  '  '  J  Z g g g

Here (7, =  and XJ± — n ± kT ± f{T ± )  and also z =  Zesc-

I evaluate z^ac using (4.14):

(ûe 4" MU.±) "̂ esc 4" ^60^0 ~ ‘̂ '^eo’̂esĉ O 4" (j^eo'^eo ~  ~

2 (n« +  /in±) -  (»e 4- ^ ) ï 7 ' r a j ^  -  4" 2n+/iUe.cj

where p  =  me/rrip. Hence equations (4.15) and (4.16) can be manipulated to give:

3^e*c^z 3T =  "eo^o -  neo%Ug,g 4- — TegnggWo (4 21)iTbp UtZ TTvp
3k j=  2fc -=  _ -
"" ' J- e^eo^O e^e^esc ê@ĉ eac

4(7 î’Â/
TTlemp

+2nen± ( r ± - T e ^  - ^ —^esc

n±kdT± _  1

2k

m A  '  2(T.cn^Ze,cuLc/^ -  2û+Ze,cU^,c/i (4.22)

2̂^i^esc^± 6H-|-2 ±j|Zggg “h 6ifi4.r±2^esc  ̂ 2Zeac/iÿî7gag?%̂

-2 S ± 2 .„ ^ 2 h 4 -  (T± -  T a)  F „ 4  -  2n.n±  (7 ±  -  T .)
rrieTnpC \ / \ / m .

Energy is introduced into the column of gas in four forms: ultra-violet radiation, injection of 

high energy pairs, and the thermal and kinetic energy of the ionised hydrogen entering the 

column through its base. The total energy flux into the column is:

froT  =  4- 4- %»eo''o":p +  2n+kT±(Ze,c. (4 23)

The flux of UV radiation into the column is

Fuvq =  ÙuvqZcsc- (4.24)

Rearranging equation (4.23) gives

Ûtrv =  —  ffTOT -  neoUokTeo -  -  2n+kl±(^e«:l - (4.25)Zesc \  Z, /
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Now equation (4.23) becomes

dU UV 1
d t~  ~̂ ^FxoT ~  UeoUokTeo — 2 ^eo^O^P ~ U w ^ ]  ~  2h^kT±- (4.26)

4(Trk
mgc ( r .  -  T c) +  ü± ( r ±  -  T c)]

I now have a  set of seven ordinary differential equations describing the functions üg(t), n±{t), 

Te{t), T±{t), Ux{t), U^{t) and Uvv- There are also seven free parameters: W ,  "eo, 7 =0,

n+, T±i and Ftot- I t is a fairly trivial m atter to integrate the equations using a numerical 

method from some arbitrary starting point, but what should the starting point be? W ith a 

seven dimensional vector for the starting point and an additional seven numbers to chose, the 

topography of the solution will be incredibly complicated. To examine the broader features 

of the model, this system of equations needs to be simplified, I define a set of dimensionless 

quantities and rewrite equations (4.12), (4.13), (4.17) to (4.22) and (4.26).

I first define the following variables:

1/1 (z

1/3 ( r  

î/3(z 

1/4 (z 

1/5 (z

1/6 (z

1/7 ( z

êo
n± (t)

r.0 '

kTgQ TlgQ
F.y(t) 

Fcrv (f)
kTgQ UgQ 
O’T'TlgQ Vasct'

(4.27)

I also define the following constants: 

Ftote = 10
Tie -1

"«Q&Z;,!, -  '"V lQ iO cm -s j llQ B K j

A. =  10-3

Aa =

(Trneo%c

%

-=o
10» KV \ 10=A

( l i f e ) " .

3 X 10-' no
lO S c m s -V y iO 'A g / '
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( î l% )  ( î^ k) ’ (4.28)

^  =  10'As =  -=-^ — 10
I L  -  VlOio KV U 0« K

(  _  a T n .« z . .g  =  6 X 10 3 '

^ "  <TT«gor,.c -  (lO« cm ^=g-i) ( ï Ô i ô ^ = â )  ( ï ô ^

The estimated value of the constant e comes from considering the likely value of Ftot- A

typical luminosity for an AGN is ~  10^ e rg s" ' for a  cental black hole has a mass ~  10®M©. 

The flux F  of radiation at a distance R  from a source of luminosity L is

(4-29)

Writing the luminosity as

^  =  “ “ ( 10̂ )  (4 4 "))

and R  in units of Rg, the total flux of energy into the column is

'  ( ï ô & )  ■ (4 -31 )

The escape velocity «esc =  and the Schwarzchild radius Rg =  2 ^ ^ ,  so I write

R  ■ (4 .3 2 )

To estimate a value for Ag consider the acceleration due to gravity in the z  direction, g:

( 4 3 3 )

To estimate ( ^ )  I assume that the disc is an a-disc. The height H  of an a-disc at a  radius 

R  is given by (Prank, King and Raine, 1992)

f  .  2.3 X 1 0- . - *  ( îô & ) '*  ( î ô # ^ ) ' -  (4.34)

Assumming Zesc <  ü ,  I also assume that ^  ~  and so ( ^ )  ~  10“ ®.
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The equations (4.12), (4.13) and (4.17) to (4.22) become:

t  =  V ’ (4 .3 5 )

^  (4-36)
^ _   PV2 +  A§ -  2A3 + Vi + 2À1 (1 -  yiys +  2/23/4)________

2A2 (j/i +  /ij/2) -  |A i (s/i +  J/2) (j/7 +  J/5 +  3/6) — ^ 1/2 +

t  -  +  ( 4 3 3 )

^  = ( % ) # ' - ^ + B ( 3 3 ' - 3 9 , - 0 ) - ( 0  (4.39)

 /T ^  ~  +  Î/5 +  J/e) -  ^  (2/4 -  2/3),

^  (1/3 -  A4) (y ?  +  2/5 +  y e )  -  ( 4 .40)

(fl/6 _  4^ A iy z  ^  yg ^  y g ) _  ( 4 .41)

gAg (4.42)dî/7 _  1
dx Ç

A§ \  2/7
4 - 3 3 ( l + 2 A , y  13

[%/i (2/3 -  A 4) +  2/2 (2/4 — A4)] (2/7 +  2/5 +  2/e) •

R e d u c tio n  o f th e  E q u a tio n s to  Show  th e  Im p o rta n t T erm s

I now examine the equations to determine the important terms. Equation (4.35) clearly shows 

th a t as z  —» 00, 2/1 —» A3. Examining the estimate of the value of A3 shows tha t 2/1 <  1. 

Equation (4.36) shows that for estimated values of the constants C, 9 and 0  (with o-q =  ctj-) as 

X —»• 0 0 , 2/2 must have a value of the order of unity. So it is valid to assume that 2/1 <  2/2-

Examination of equation (4.38), with suitable values for the constants, tends to show tha t 2/3 

will increase and decrease with 2/4, but with 2/3 always less then 2/4.

Looking at equation (4.40) in the steady state

2/1% (1/7 +  2/5 +  2/6) =  (4 .4 3 )

assuming that ^  ~  1 and yd ~  Also 2/4 >  A4. Rearranging to isolate %:

Now 2/1 = A3 <  1, C ~  1 and 2/3 ~  1: this is because (  is a measure of optical depth, which 

is likely to be near unity. Also t/3 will tend towards unity (or less) because of the balance
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between the electrons cooling due to Compton processes and the transfer of energy from the 

hotter pairs. This implies 2/5 <  2/7 +  2/6, i.e. the soft X-ray component is unim portant when 

compared with the hard X-ray/7 -ray component.

As expected, the im portant features are due to the injection of hot pairs and the presence 

of the cooler matter is relatively unimportant. Now consider equation (4.37). Ignoring the 

smaller terms

(  = +  (4.45)
M9  -  3 Ai2/2 (2/7 +  2/e)

In the numerator of (4.45) there is a positive term, 2*2/2, aJid a negative term , 2Ai(l -  2/22/4) -  A3, 

(negative since 2/2 ~  1 and 2/4 >  1). In the denominator there is a positive term, pq, and a 

negative term, |A i2/2(2/7 +  2/e). Each of these terms is of similar order of magnitude, so I could 

write C as

(  =  or (  =  (4.46)
9  Î/7 +  %

Choosing (  =  ^  and substituting into equation (4.36) gives the equation

d%/2 _  1/2 /

i.e. 2/2 — 0 as z —» 00. This removes what must be an im portant term: the pair injection rate 

9 ; in fact equation (4.47) represents the decay of an initial population of pairs by annihilation. 

The pair injection is the whole basis of the model, so using equation (4.47) reduces (4.36) to 

an inappropriate form. Hence I have chosen the second approximation in equation (4.46):

C =  —• (4.48)
2/7 +  2/6

I shall briefly investigate the validity of this assumption in section 4.10.

From the estimated typical values for the constants (equation (4.28)), it is clear that:

+

where I assume tha t F t o t  is due to dissipation of gravitational energy in a  thin a-disc

8xR3 ' (4 .5 0 )

Using the assumptions 2/1 <  2/2; 2/3 <  2/4: 2/s <  2/7 +  2/6 and equation (4.49) the system is 

reduced to four equations, with four functions of time, representing the pair density, the pair
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temperature, the hard X -ray/7 -ray energy density and the UV energy density;

~  (As -  Va) -  4 j/4 (2/7 + y e ) , (4.52)

=  42/22/4 ( 2/7 +  2/e) -  ̂  ^  -  9 A5 -  42/22/4 ( 2/7 +  2/e) (4 .5 3 )

and C is defined by equation (4.48). Equation (4.52) comes from (4.39): the first two terms on

the right hand side of (4.39) are of the same magnitude and will therefore tend to cancel one

another out. The gravity term (A2) is small since Zesc <  Æ, as is the recoil term  ^ ( 2/4 -  2/3) 

when compared to the other terms in the equation (the main result of the recoil term is so 

tha t 2/3 tracks the value of 2/4, so I assume that equation (4.38) is unimportant).

The very complicated system of equations (4.35) to (4.41) has now been reduced to the four 

equations:

_  I /2 (2 /7  +  2/6) 1/2

dx 32/4 2/3 ’

'4 (2/7 - 

2/6 (2/7 +  %)

^  ^  (-̂ 5 -  2/4) -  42/4 (2/7 +  2/s), (4.54)

d y r  2/7 +  2/6 /  2/7
— 9A5 — 42/22/4 (2/7 +  2/e) 'dx 3 2/4

with four free parameters: 9 , the pair injection rate; {3, the escape velocity in units of the speed 

of light; As, the ratio of the pair injection temperature to the electron tem perature at 2 =  0 ; 

and £, which is the ratio of the total available energy to the thermal energy of the electrons at 

2 =  0.

4.5 T he Effect o f th e  M edium  on the R ate o f Injection

I now consider ways in which the pair injection may be modulated by the conditions in the 

gas. I assume that the pair injection rate depends on the local pressure in the column. There 

are many ways in which 9 can depend on the gas pressure or the radiation pressure, but I 

have chosen three. Firstly, I look at a system where the injection rate is constant; secondly, 

I assume that the injection rate is proportional to the gas pressure; finally I assume that the 

injection rate is proportional to the local radiation pressure; i.e. there are three systems:

I 9 =  Q; =  constant.
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II q =  Qny 2 yA-

III q = QuiVs-

S y s t e m  I

Examination of the equations (4.54) suggests the following substitutions: y^ =  2/4 =  v,

2/6 =  2/7 = pVWii E =  Eym~i and x — (where p, u, v, w, and t  are dimensionless

quantities representing the mean pair density, temperature, the photon energy density and 

time, respectively, and are not in any way related to p, v and t used earlier).

W ith these substitutions equations (4.54) become:

du u (p  + w) u '
A "  3^

^  —— - 4 v ( p  + w ), (4.55)

—  =  4«u (p +  w) -  —  (p 4- w ),

dp p + w f „  p \  . _ . . ,
Â  -  - ^ ( ^ E - - j - A 5 - 4 u n ( p  +  in).

S y s t e m  II

R eplacing 9 and substituting % =  wQ;; , P4 =  1), % =  wQrr, 2/7 =  p Q ;;, E =  .BQ;; and z  =  ^

I find tha t equations (4.54) become

du u (p  +  w) u '
dt "  3̂ ; ^

—  = 3v (As -  v) - 4 v { p  + w ) , (4.56)

—  =  4uv {p + w) - {p + w ) ,

dp p + w f  p
dt 3v — tiuAs — 4uv (p 4- w ) ,

S y stem  II I

Replacing 9 and substituting p; =  uQ ;;;, P4 =  v, p@ =  wQ;;;, 2/7 =  pQ ;;;, E =  E Q ;;; and

X = I find tha t equations (4.54) become

du u (p  + w) u '
dt "  3Ü
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^  — Hi -  4v (p +  w ), (4.57)

dw . . , . ty , , ,
—  = 4uu (p +  ty) -  (p +  w ),

dp _  p +  ty 
dt 3v ^E  -  -  tyAg -  Auv (p +  w ) .

Q i, Q jj and Q m  are simply scale factors in the problem, the equations show that As is an 

im portant actor, i.e. the relative energy of the injected pairs to the electrons at z =  0.

4.6 T he Steady State Solutions

The solutions are found for each system by employing a suitable numerical method. 

S ystem  I

The solutions of equations (4.55) in the steady state ^  =  ^  =  ^  =  ^  =  0, n is  given by 

'As — V

where

and then;

=  (4,59)

w =  (4.60)

P =  — — -  w. (4.61)
4uu  ̂ ^

Equations (4.58) and (4.59) are solved together using a simple bisection method from Numerical 

Recipes (Press et a l, 1985). to find all the positive real values of u and v that satisfy both 

equations. Then values for w and p are found using equations (4.60) and (4.61). These 

solutions are found subject to the constraint that w and p must have positive real values. Any 

solutions tha t have negative or non-real values for w or p are to be ignored since they represent 

physical quantities. Solutions that disobey this constraint are outside the bounds imposed by 

the approximations used to obtain the equations.
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System  II

The solutions of equations (4.56); v is given by:

■̂̂ +  ( T +  J;-;..I u ' +
3 \  3As E

and also:

4  32)g2A5y VS/gAs 4  1 6 /3 V  ^  32/)2

4u ' +  V -  A s \  ^
2t,

w =  12/3uu ',

3 , ,  ,p — — (Ag — V)  — w.

0, 4 .6 2 )

4 .6 3 )

4 .6 4 )

4 .6 5 )

Equation (4.62) is solved for v using the POLYROOT method from Numerical Recipes (Press 

et a l, 1985) to find the positive real roots. The equations (4.63), (4.64) and (4.65) are used to 

find u, w and p, again with the constraint that the values are all real and positive.

S ystem  I I I

The solutions of equations (4.57); v is given by:

» < + ( i

and then:

I I +  ( —-— I— y'  +  , , .
4  32/32A5V ^  4 /  ^  \96)92A 6 ' 32 j9 'V^ ^  ^  =  0 , (4 .6 6 )

I = 6/3' (av^ +  V -  Aĝ  , 

w =  1 2 fiuv^, 

p =  9/31; (Ag -  v) -  w.

(4 .6 7 )

(4 .6 8 )

(4 .6 9 )

Equation (4.66) is also solved for v using the POLYROOT method to find the positive real 

roots. Then equations (4.67), (4.68) and (4.69) are used to find u, w and p. Again u, w and p 

must all have real positive values.

There is only a smaU range of the (E,,5, Ag) parameter space for which valid solutions exist , 

for system III and checks for stability of these solutions (section 4.7) show that none of these 

solutions are stable.
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Figure 4.2: System  I steady state solutions for various E  when 0  = 0.1, showing u, v, w  and p. The bold lines show

stab le  solutions (section 4.7), the faint lines show unstable solutions
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Figure 4.3: System  I steady state solutions for various E  when P =  0.2, show ing u, v, w  and p. The bold lines show

stable solutions (section 4.7), the faint lines show unstable solutions
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4 .6 .1  R e su lts

The values chosen for the parameters were ,8 =  0.1, 0.2 and 0.5 (corresponding to R /R g  =  100, 

25 and 4) and 1.0 < JE < 100.0.

The steady state solutions for systems I and II are illustrated in figures 4.2 to 4.7. There is 

a  large range of As and E  where two steady state solutions exist, though as E  increases, the 

range of As where this is so decreases. For large values of E  there is only one solution.

Having two solutions existing for a given set of parameters could lead to an interesting situation: 

do the solutions co-exist as some kind of multiple state system, or does the system flip between 

the two in some way? However, the first thing to do is check whether any solutions are stable 

to small perturbations.

4.7  T he Stability  o f the Steady State Solutions

The stability of the solutions given by equations (4.58) to (4.61), (4.62) to (4.65) and (4.66) 

to (4.69) can be determined by a linear stability analysis. In general form, equations (4.55), 

(4.56) and (4.57) can be written as

^  =  Fli(z) (4.70)

where i can have values from 1 to 4. Linearizing the equations (4.70) about the critical point 

(z i,a :2,Z3,Z4) yields:

dt SX3

\  6z4 y

m  m  m  #dxi dX2 OXz 0X4
m  m  m  mdxi dx2 oxz dx4

where all the are evaluated at the critical point. 1 shall write (4.71) as

— 6 x  =  VF 6 x . 
dt

Now, solve for êx  by substituting

fz  =

and then

(VF — k I ) 6 x  = 0,
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i.e. K is an eigenvalue of VF, which can be found numerically; there will be four such eigenvalues 

since this is a four dimensional system. The critical point is stable if and only if all four 

eigenvalues are negative, if any one is positive then the critical point will be locally unstable 

to any small fluctuations.

To evaluate the eigenvalues k first all the are calculated at the critical point under investi­

gation. These values are entered into the matrix VF and the eigenvalues of the matrix found 

using routine F02AGF from the NAG software library.

For System III, none of the values (F ,/l, Ag) chosen produced stable solutions. For Systems 

I and II, for a given choice of E  and 13 there were always values of Ag that produced a single 

stable solution. There was never more than one stable solution. In figures 4.2 to 4.7, the stable 

solutions are shown as bold lines, while the unstable solutions are shown as faint lines.

The graphs for System I show that Ag can have a maximum value of ~  50, with a minimum of

1. The graphs for System II show that for a given choice for {E,j3) there is only a small range 

of Ag that produce a stable solution, and the values of Ag range betweed 1 and 10 depending 

on P and E. Note tha t there are no stable solutions for System II when P =  0.5.

The implication is that the energy of the injected pairs must not be that much higher than 

the initial energy of the electrons at the base of the column. There may be a stable situation 

at larger values of Ag, but the approximations made to produce equations (4.54) are such that 

these values do not produce physically sensible results. However, note that for System I, as Ag 

increases, the solutions are at first stable, then unstable and then physically unsuitable. This 

suggests that there may be no stable solutions at larger Ag, though of course there is no proof 

for this statement.

4.8 O bservab le  Im plications: T h e  O p tica l D e p th  to  C o m p to n  

Scattering

As stated earlier, I have assumed that the hard X -ray/7 -ray band of the spectrum can be 

represented by a power law, calculated from the quantities n± and T±. Observations of AGN 

spectra show that the spectrum in this energy band is generally a power law with energy index 

~  0.9 (Shastri et a l, 1993).

1 2 0



The optical depth to Compton scattering due to the pairs is

T =  ^  n±{z)(7Tdz ~  n±OTZesc- (4.75)

Using the substitutions as before, equations (4.27 and 4.28)

r  =  y2(- 0^76)

Now, using equation (4.48) to substitute for (  yields

^ ^ 4 (4.77)
A +  ÿe

The substitutions used to produce the equations (4.55), (4.56) and (4.57), for either of the 

Systems I, II and III, give

"  =

i.e. the optical depth to Compton scattering is independant of the number of pairs being 

injected, under these approximations.

The optical depth in terms of physical quantities is found by substituting for y-i. Va, Vb and y? 

in equation (4.77) using the changes of variable equations (4.27):

Zn±kT±
Uuv +  U.y'

This is the same as

energy density in pairs

(4.79)

T  =
energy density in radiation ’

i.e.r"^ is an ‘ionisation parameter’.

The optical depths for various Ag and E  are shown in figures 4.8 to 4.13, in all cases r  < 1.

I assume that the spectrum in the hard X -ray/7 -ray band is a power law, and I use the results 

obtained by Katz (1975) to estimate the index. Katz defined a critical radius,

where the distance R  is measured in units of the photon mean free path to spontaneous 

Thomson scattering. A numerical method was then used to deduce the emergent spectrum 

from a cloud of radius R and a table of R /R c  against a , the power law index was produced, 

see table 4.1. Katz assumed the photons were scattered by hot but nonrelativistic electrons, 

so using those results here gives only an approximate idea of the power law index.
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Table 4.1: Variation of power law index a  w ith the Com ptonisation factor R / R c ,  reproduced from K atz (1975).

A / A c 0 .3 0 .4 0.5 0.6 0.7 0.8 0.9 1.0 1 .3 1.6 2.0

a 4.1 2 .9 2.2 1.7 1.3 1.1 0 .9 0.8 0.6 ~ 0 J ~ 0 T

In terms of my units, the column height in units of the photon mean free path is

R =  n±CTTZesc =  T

and ^

n -  -  (  ^

So, to estimate the index of the power law, I evaluate

( 4 .8 1 )

( 4 .8 2 )

(4 .8 3 )

Figures 4.8 to 4.13 show, in addition to r  and ( ,  R /R c  for 2 ^  = 10® K and 10^° K. If 2 ^  =  10® 

then R /R c  < 0.2 and from table 4.1 it is clear that the spectral index a  > 4 .1  and very little 

spectral evolution has occurred. However, if 2 ^  =  10^° K then R /R c  ~  1 which corresponds 

to a  ~  1, i.e close to the observed value. More detailed consideration of the model will be 

required to establish whether this can lead to detailed agreement with observation.

4.9 e=^-Pair Creation by 7 -7  Interactions

Pairs are only created by 7 -7  interactions if the compactness parameter (Guilbert, Fabian and 

Rees, 1983) I is large. In a spherical cloud, the compactness parameter is defined as

gtL
I =

where R is the radius of the cloud. Here, the depth of the region is Zesc and the luminosity 

L ~  U~ycR, where R is taken as the width of the column. I make the following changes of 

variable from equations (4.27), (4.28) and (4.32):

F .,( t )
3k (z)

c ^T Reo

R  ’

(4.85)
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Table 4.2: Range of ù+/Z for system  I

0.1

0.2

0.5

n+/ f ( cm

10^  ̂ to 7 X ICd? 

2 x 1 ^ ^  to 3 x 1 ^ ^  

4 x 1 0 ^  to 2 x 10^

to give 

Writing

■gRep-̂ eo V6
(4.86)

r  =  _  2 2 X io -« % 2 .r .*eô «o (4 87)

and using equation (4.48) to represent C in terms of other variables, the compactness parameter 

may be evaluated as
w(p +  w) 

3u/32

for system I, or

for system II.

7 _  w b  +  w)

(4.88)

0L89)

In order to estimate the compactness I write equation (4.88) in terms of physical values using

from equation (4.28) to obtain

1 =  2.2 X 10-' '̂TcoTi+-31m w(P +  w)
3%/^ '

(4.90)

(4.91)

Assuming 2 ^  =  10^° and taJdng values for v, w and p from figures 4.2, 4.3 and 4.4 I find 

h+ /l > 10^  ̂ cm"® s" i, table 4.2 shows more detailed results.

Similarly, for system II, I rewrite equation (4.89) to get

-i7 3lo"4. w( p+ w) 
3%̂ ® '

Z =  2.2 X 10- (4.92)

and assuming 2 ^  =  10^° and taking values for v, w and p from figures 4.5, 4.6 and 4.7 I find 

n+/V ? > lOugg s" i, table 4.3 shows more detailed results.

I conclude tha t the rate of production of pairs by 7 -7  interactions is negligible for both systems 

I and II, when compared to the rate of injection of pairs.
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Table 4.3: Range of n+/v7 for system  II

13 fi+/\/Z (s- ' )

0.1 18»% to 48»%

0.2 175»% to 675»%

Table 4.4: Estim ated values of compactness, 1

System T.0 13 Rep Q w c z
I 10® 0.1 10'® 100 2 1 4 X 10“®

10® 0.2 101® 10 10 0 ^ 4 X 10“®

10® 0.5 lOi® 10 15 O j 1 x 1 0 “ ®

II 10® 0.2 lOi® 4 10"® 2 1 X 10""

To estimate the value of the compactness parameter, I go back to equation (4.86) and use the 

transformations ye = w \ / ^  and ye — Q n  for systems I and II respectively:

Z =  2 . 2 x l O - '^ » : , T c c - ^ ,  

Z =  2.2 X

(4.93)

(4.94)

Examination of figures 4.8 to 4.13 indicates that 0.1 < (  < 10. In equation (4.28) I estimated 

C ~  6 X 10“® (ïôirran=^) ( io ^ c m ) '  implies tha t 10^  ̂ cm“ ® < Ueo < 10̂ ® cm"® if I 

assume that Zesc =  10̂ ® cm; taking values for w and (  from figures 4.2 to 4.13 and evaluating 

the compactness from equation (4.93) or (4.94) as appropriate indicates that the compactness 

Z <  1 and so the production of pairs by 7-7  interactions is negligible. Estimates of compactness 

are summarised in table 4.4.

4.10 D iscussion

The results of the stability analysis in section 4.7 imply that the injection energy of the pairs is 

not much higher than the energy of the electrons at the base of the column. Because Ag ~  10 

or less, the pair injection temperature T±. ~  lOTeo, i e. if =  10® K then the characteristic 

temperature of the injected pairs T±^ ~  10® K. The stable solutions at these values of Ag and 

E  have T± ~  Teg (j/4  = u  ~  1) so the pairs cool to the initial electron tem perature and the 

energy lost by the pairs fuels the acceleration of the wind. I have, however, constrained the 

solution such that the wind velocity must reach the escape velocity, the results clearly show
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th a t under this constraint a solution is possible but there is no obvious physical process driving 

the wind (since the material is optically thin). If, however, T% ~  IQi® K, the pair injection 

tem perature T±, ~  10" K or more and the average column temperature T± ~  10" K; now 

the optical depth r  > 1 and the UV spectrum is comptonised to a power law with index ~  1.

The major flaw in this model is the way in which I arrive at the approximation for (  (equations

(4.45) to (4.48)), for example there may be solutions where the denominator of equation (4.45) 

is close to zero. To check this approximation I first rewrite equation (4.45) in terms of u, v, w, 

p  and 5 =  Q j for system I, using to avoid confusion with (  calculated earlier:

r -  ~ -  A3s* — /  o \ ’ (4.yoj

and q = Q iiy 2 y4  for system II:

A   2 X1 {1 -  uvQ 1 1 ) + puQII -  X3
s* — / _ \ * (4.96)

Qr; (/fWU -  3 A1U (p +  w)j

From equation (4.28) I assume A% = 10“®Teô ® and A3 =  0.3 /3. For various values of Qj and 

Q ii I can evaluate ( .  using u, v, w and p previously calculated. I find that when 2^, =  IQi® K 

there are no cases where (* ~  (. For system I when 2 ^  =  10® K, there are a small number of 

cases where C* C- when Ag has the largest values possible such tha t the solutions are stable 

and when = 0.1, Qi ~  100 and E  > 25; (3 = 0.2, Qj ~  100 and J5 > 35; or /? =  0.5, Qi ~  10 

and E  > 20; for a given set of (0 ,Q i,E )  the functional form of (,(Ag) is different from the

form of ((Ag). For system II when T'en =  10® K, the only cases where C» ~  C is when /3 =  0.2

and Q // ~  4, for any E , and the functional forms of C*(Ag) and ((Ag) are the same.

It is clear th a t the only conditions when equation (4.48) is a good approximation for equation

(4.45) is when 2 \, =  10® K using system II when 0  =  0.2 and Q u  ~  4, plus a few system I 

cases. Essentially, this approximation restricts the range of physical parameters th a t may be 

investigated. Should this work be continued, the next step must be to calculate the solutions 

using equation (4.45) to evaluate (.
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