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Abstract

Let A  be a finite-dimensional algebra given by quiver and monomial relations. In [18] 
we see that the Ext-algebra of A  is finitely generated only if all the Ext-algebras of 
certain cycle algebras overlying A are finitely generated. Here a cycle algebra A is a 
finite-dimensional algebra given by quiver and monomial relations where the quiver 
is an oriented cycle. The main result of this thesis gives necessary and sufficient 
conditions for the Ext-algebra of such a A to be finitely generated; this is achieved 
by defining a computable invariant of A, the smo-tube. We also give necessary and 
sufficient conditions for the Ext-algebra of A to be Noetherian.

Let A be a triangular matrix algebra, defined by algebras T  and U and a T-U- 
bimodule M. Under certain conditions we show that if the Ext-algebras of T  and 
U are right (respectively left) Noetherian rings, then the Ext-algebra of A is a right 
(respectively left) Noetherian ring. An example shows the hypotheses used cannot 
be improved. We also specialise to the case where A is a one-point extension: we 
give a specific presentation of a result that parallels a similar theorem for the more 
general case above.
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Introduction to the thesis

In this thesis we study the homological properties of finite-dimensional algebras. 
In particular we present methods whereby certain classes of algebra quickly yield 
the information of whether their Ext-algebras are Noetherian, finitely generated or 
infinitely generated.

The use of cohomology to study topological spaces began in the first half of 
the twentieth century as a powerful way to classify such spaces. Not soon after, 
Eilenberg and others realised the parallel applications to algebraic structures [8]: 
the subject then exploded onto the scene, and is used today in almost every branch 
of algebra.

The two most used objects in this area are the cohomological Ext and the ho­
mological Tor: they come from applying respectively the adjoint functors Horn and 
tensor product to a projective resolution of a module over some ring. The Ext- 
groups appear almost everywhere to the algebraist, and have become an essential 
tool. From the study of modular representation theory [7] to tilting theory [19] 
and to the study of the derived category [25] the Ext-groups are fundamental. In 
particular, for some ring R, the Ext-groups of mod-i? can be realised precisely as 
homomorphism groups of certain degree in the derived category. The importance 
of the derived category cannot be understated. For instance, a derived equivalence 
between algebras often relates information from one to the other (see [26], where 
derived equivalent self-injective algebras are shown to have the same representation 
dimension). This demonstrates how vital the Ext-groups are to fundamental math­
ematical concepts. All this being said, there is more to Ext than the Ext-groups on 
their own. If we collect all the Ext-groups together then we have a graded Abelian 
group, which we denote E x t f o r  some ring R  and some i?-modules M  and 
N . We can take this group structure to be an additive structure. If, however, we 
further have that M  = N , we can define a multiplication. This is called the Yoneda 
product and is given as:

Ext%(M,M) x Extr (M ,M )  — ► Ext”+m(M ,M )
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The direct sum of Ext-groups together with the Yoneda product defines a non­
negative Z-graded ring, when A is a k-algebra, E (A) is a k-algebra. This multiplica­
tion gives a new level to the information on Ext. One of the most important cases 
is when the module M  is the direct sum of one copy of each of the simple modules; 
it is this which we call the Ext-algebra. When A is a k-algebra, E( A) is a k-algebra. 
An interesting development is the study of Koszul algebras. The Ext-algebra of the 
Ext-algebra of a Koszul algebra A is isomorphic as an algebra to A. Koszul rings 
must be quadratic [5], but knowing you have this Koszul-duality can lead to other 
results about your algebra; see for instance Mori’s paper [22], where, for a Koszul 
algebra, the Poincare series of certain modules is shown to be a rational function.

In group-theory, group-algebras have long been studied, and the support-variety 
of a finite-dimensional module over a group-algebra has been defined using the Ext- 
algebra. More recently Snashall and Solberg have extended this definition to all 
finitely generated modules over an Artin algebra: the definition still utilises the 
Ext-algebra. However, the Ext-algebra of a finite-group algebra is always finitely 
generated: this is certainly not always so for Artin algebras in general. Thus, in 
computing the support-variety of a module over an Artin algebra, one must tackle 
the issue of whether or not, for your algebra, the Ext-algebra is finitely generated.

It is well known that a Noetherian ring has many desirable properties; and also 
that Noetherian and finitely generated are distinct but closely related conditions. 
Thus the problem of when one can say that the Ext-algebra of a certain algebra will 
be Noetherian, finitely generated or infinitely generated is the motivation for this 
thesis.

The class of Artin algebras is a huge one. In order to get a handle on just what 
conditions might affect the Ext-algebra in the ways described above, we want to 
consider a subclass of algebras that is easy to work with and at the same time of 
sufficient complexity to allow us to generalise any results might we get. The class 
of monomial algebras is that which we choose to study. By the results of Green and 
Zacharia [18], and others before, we have a very nice description of the Ext-algebra 

of a monomial algebra. However, as can be seen from Theorems 2.4.17 and 2.5.1, 
the Ext-algebra of a monomial algebra can still display a wide range of behaviour.

One of the main results of this thesis, Theorem 2.4.17, gives necessary and 

sufficient conditions for the Ext-algebra of a cycle algebra to be finitely generated. A 
cycle algebra is a finite-dimensional algebra given by quiver and monomial relations 
where the quiver is an oriented cycle. In building up to Theorem 2.4.17 we present a
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fast method for determining if these conditions hold. This is motivated by Green and 
Zacharia’s result [18, Proposition 1.6] (but see also Section 1.2 of this thesis), which 

states that the Ext-algebra of an arbitrary monomial algebra given by quiver and 

relations is finitely generated only if the Ext-algebras of certain cycle algebras are 

all finitely generated. Using the same machinery that we use for finite generation of 

the Ext-algebra, we also give necessary and sufficient conditions for the Ext-algebra 

of A to be Noetherian. Other main results are Theorems 4.2.5 and 4.2.9. These 

respectively detail conditions under which the Ext-algebra of a triangular matrix 
algebra can be said to be right or left Noetherian.

The thesis is structured as follows. In Section 1.1 we introduce A as a cycle 

algebra and E (A) as its Ext-algebra; we set up a lot of the notation. Section
1.2 expands upon Green and Zacharia’s comments in [18] and explains exactly the 
known relationship between the Ext-algebra of a monomial algebra and its overlying 

cycle algebras. In Section 2.1 we return our focus to cycle algebras, and present a 

convenient way of representing the basis elements of E{A): the smo-tube T \. This is 
improved in Section 2.2, where Theorems 2.2.3, 2.2.5 and 2.2.12 give conditions on 

the smo-tube that speed-up its calculation. Section 2.3 demonstrates the existence 
of natural constraints on 7a, culminating in Theorem 2.3.14, which serves to reduce 

computational work even further. This section paves the way for Section 2.4 where 

our first main result, Theorem 2.4.17, gives necessary and sufficient conditions for 
the finite generation of E (A). We then give some special cases of this result. In 

Section 2.5 we give necessary and sufficient conditions for -E'(A) to be a Noetherian 

ring. In Section 3.1 we introduce the triangular matrix algebra and two categories 

that conveniently represent the module category. In Section 3.2 the notion of a 

triangular matrix algebra is specialised to a one-point extension. We also construct 

a one-point extension “from the ground up” . Section 3.3 contains some useful results 

from ring theory. In Section 4.1 we prove Theorem 4.1.2, which states that if the 

Ext-algebra of a finite-dimensional algebra is right Noetherian then so is the Ext- 

algebra of a one-point extension. We also give a lengthy example. In Section 4.2 we 
generalise Theorem 4.1.2 to produce our final main results: Theorem 4.2.5 and its 

dual Theorem 4.2.9. We then give an example demonstrating that Theorems 4.2.5 
and 4.2.9 are in some sense as much as we could hope for. In the final chapter we 

give problems of interest generated by this thesis, and some ideas for the future.
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Chapter 1

Introduction to maximal 
overlap sequences

1.1 Background & Preliminaries

Here we introduce notation to be used throughout this chapter and the next.

Let Q be an oriented cycle with n  vertices and n arrows. Label the vertices 
with the natural ordering 1 , . . . ,  n  so that there is one arrow from i to i  +  1 for 

1 < i < n  and one arrow from n  to 1. Let lk be an algebraically closed field, X 
an admissible ideal of the path algebra kQ with a minimal generating set p  of m  

monomial relations, which we fix, such that kQ/X is a finite-dimensional algebra. 
We say that a path in kQ is a relation if and only if it is in the set p. Hereinafter we 

let A =  kQ/X, reading paths from left to right. Let r  denote the Jacobson radical 

of A, and let A =  A / r .  Then the Ext-algebra of A, denoted E (A), is the graded 

k-algebra Ext^(A,A) =  ® ^ o  Ext\(A ,A ), with multiplication the Yoneda product.
We now give some further notation that will be required. Let p  be a path in kQ. 

We denote by £(p) the length of p  and by o(p) and t(p) the start and end vertices of 
p  respectively. A path q is an ini t ial  subpath of p  if p  =  qs  for some path s £ kQ. 

A path q is a terminal  subpath of p  if p  = rq  for some path r  £ kQ.
Define a cycle algebra A to be a quotient of a path algebra that has an oriented 

cycle Q for a quiver, and that has monomial relations. Then we have a very nice 

description of the Yoneda product for E{A) via maximal overlaps of these relations. 

We recall the basic definitions from [13] and recursively define certain sets of paths 
denoted Qz+ Let Qo be the set of trivial paths of Q, Qi the set of arrows and 

set, 0,2 =  p. Let B  be the usual basis of kQ consisting of all finite paths, and let 
M. =  {b £ B  : no subpath of b lies in p) .  For 2 > 1, a path p  in kQ is a z-prechain  if
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p  =  qwu, where q £ Qz- i ,  qw £ Qz , u € M  — Qo, and wu has a subpath in p. Call 
a 2-prechain a z -chain  if no proper initial subpath is a 2-prechain. Then Qz+\ is 

defined as the set of all 2-chains, 2 > 1. Note that the previous definition of Q2 = p 

is consistent with this inductive definition.
These 2-chains correspond to the paths of maximal overlap sequences of [12], 

[18] and also [4]. The terminology is understood in the following way. Let s ,t  £ p. 

The relation t is said to overlap the relation s if there are paths X , Y  in kQ such 

that Y t  = sX , with 1 < £(Y) < £(s) and 1 < £{X) < £(t). This is illustrated in the 
following diagram.

3

It is then clear that if t overlaps s, the path s X  is a 2-prechain. Moreover we 
say t maximally overlaps s if t overlaps s and, further, t is the only relation, apart 

from s, that is a subpath of Y t. If t maximally overlaps s then (s , t ) is a maximal 

overlap sequence and s X  is the underlying path of (s , t ). In this case the path sX  

is a 2-chain and so sX  £ Q3 . More generally, for 2 > 3 and S2 ,s z , . . .  ,s z £ p, 
(S2, S3 , . . . ,  sz) is a maximal left overlap sequence with underlying path X 2X 3 ■ ■ • X z 
if

(i) X 2 = S2 ,

{ii) 1 < £{Xi) < £{si) for i =  3 , . . . ,  2 ,

(in) There exist paths Y3 , . . . ,  Yz with X{Xi+\ =  Y^+iSj+i for i =  2 , . . . ,  2 — 1,

(iv) S3 is the only relation, apart from S2, that is a subpath of Y3S3 ,

(v) S{ is the only relation that is a subpath of YiSi, for i = 4 , . . . ,  2 .

The above conditions are visualised thus:

v, 33 ^5 35 Sz- 1
■<—̂ 1  > M x4 <— J  I .J  X,
I________ UJ* 3 --"------*5 ••• I____________ leJ X s - r8—-*1

S2= X  2 $z  — 2 Vz  3 Z

The path X 2X3 • • • X z is a (2 — l)-chain and is thus an element of Qz. The degree

of the maximal left overlap sequence (s2,S3, . . .  ,s z) is 2 . Throughout the thesis a
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maximal left overlap sequence will be used interchangeably with its underlying path 
and will usually be illustrated thus:

S 3  S 5  S 2 fc— 1

82 84 S2(fc_l) S2k

Note that if for some 2 > 3, P z =  (S2, S3, . . . ,  sz) is a maximal left overlap sequence 
with underlying path X 2X 3 • ■ • X z then so is P z~l =  (52, S3, ,  s2_i) with under­
lying path X 2A3 • • • X z- \ .  We call X z the path of unoverlapped arrows of P z. Note 
that P z = P Z~1X Z.

E xam ple  1.1.1 Let A =  k Q /J  be a monomial algebra with kQ containing the 
following path:

1 —^  2 —^  3 —^  4 —^  5 6 7 8 9

and suppose further that t\ — r}\772̂ 3^4 , h  =  h  =  t?4^5^6^7 and U =
7]e7]YT}8 are the relations of A that lie wholly along this path. Let S* be the simple 
module corresponding to the vertex i. Then the path t\ =  771̂ 2^3^4 is a maximal 
overlap sequence of degree 2 (and hence a 1-chain) and represents a basis element 
in Ext2(S i,S 5), illustrated thus

The path 771772773774775776 is a maximal overlap sequence of degree 3 (and hence a 
2-chain) and represents a basis element in Ext3(S i,S 7), illustrated thus

t2

ti

The path 771772773774775776777/78 is a maximal overlap sequence of degree 4 (and hence 
a 3-chain) and represents a basis element in Ext4 (S i, £9), illustrated thus

t2
I I

I__________I I_______I
II £4

The path 771772*73774775776777 is not a maximal overlap sequence and so is not a 2- 
chain for any 2 > 0. It is however an overlap sequence and so it is a 2-prechain. 
The diagram below shows the overlap

<3
I I

6



There is an analogous concept of a maximal right overlap sequence. In fact from 
[4] we know that the underlying path of a maximal left overlap sequence of degree 
2 is also the underlying path of a maximal right overlap sequence of degree 2 and 
vice versa. Henceforth we refer to such a path as the underlying path of a maximal 
overlap sequence; however the construction will always be considered as from the 

left. We comment further in Section 2.5.
These maximal overlap sequences are of major importance, since they describe 

a minimal projective resolution of A. Following our notation, for 2 >  0 the 2-th 
projective Vz in such a resolution is given in [12] as

where ep is the trivial path at t(p). For each p G Qz there is a corresponding 
element ez in Ext^(A,A). This element £z is represented by the A-homomorphism 
hp G H on^P^A ) given by

where A is the image of A under the canonical surjection A —» A. Each set Qz is 
identified with a k-basis of Ext^(A, A) in the obvious way by taking p in Qz to ez 
in Ext^(A, A).

The set Qz := {ez : p G Qzj  is a basis for ExtA(A,A) and from [18] we have 
that the union of all the Qz, for 2 > 0, forms a multiplicative basis for E{A). This 
means that for ep G Qz and e™ G Qw, either =  0, or £ze™ G Gz+W. The one- 
to-one correspondence between Qz and Qz, for each 2 > 0, given in [18], means 
that for the remainder of the thesis we may deal with maximal overlap sequences as 
if they themselves form the multiplicative basis of E{A). With this identification, 
a maximal overlap sequence of degree 0 is a trivial path, and a maximal overlap 
sequence of degree 1 is an arrow. If P Zx and QZ2 are maximal overlap sequences of 
degree z\ and 22 respectively, then P Zx QZ2 represents a non-zero element of E (A) if 
and only if the product of paths P Z1QZ2 in kQ is the underlying path of a maximal 
overlap sequence of degree z\ +  22. In this case P ZXQZ2 represents an element in 

E{A) of degree z\ + 22.
In particular, with this description we can avoid the lifting of maps usually associ­

ated to the Yoneda product. Therefore maximal overlap sequences are fundamental 
to the results presented in Chapter 2 .

peQz
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The definitions of the above paragraphs work for a general quiver Q with mono­
mial relations, but in this chapter and the next we restrict Q to an oriented cycle. 
This is a special case where, given a (2 — l)-chain p, there is at most one 2-chain of 
the form pr. We can thus form a sequence of 2-chains defined as follows. Let v be 
the start vertex of some relation r, and for 2 > 2 let A% be the unique (2 — l)-chain, if 
it exists, starting at v. Note that =  r. Then we say the sequence A v := (A z ) z>2  

is the extending sequence of A starting at v. We define o(Ai,) as being the vertex v. 
The suffix will often be omitted if the start vertex itself is clear from the context or 
if it is unspecified. Thus A v is formed from the sequence of maximal overlaps

S 3  S 5  a 2 k  —1

S 2 a 4 a 2 { k  — 1) s 2 k

with o(s2) =  v and A% being the maximal overlap sequence (S2 , 53, . . . ,  sz). We 
also define the lower half of A v\ this is the sequence of relations {s2j)j> \, where 
each S2j is the unique relation such that t(s2j) =  t(A ^). The upper half of A v is 
the sequence of relations (s2j+ i)j> i, where each S2j+i is the unique relation such 
that t(s2j+ i) =  t(A^J+1). We may also define the maximum degree attained by A v, 
denoted maxdeg A„. If the sequence A v terminates at some degree 2 > 2 (that is 
A zv is a (2 — l)-chain but A z+l does not exist) then maxdegAy =  2 ; it is defined as 
00 otherwise. Note that maxdeg A v must always be at least 2 .

1.2 M onomial algebras and cycle algebras

Here we review the results that show the fundamentality of cycle algebras in the 
study of the Ext-algebra of a monomial algebra. We draw our material from [18] 
and from a discussion with the authors of [18] that took place in June 2004.

Definition 1.2.1 [18] Let B  be a monomial algebra and let Q be a quiver consisting 
of a single oriented cycle in the quiver T of B. (Q may be “larger” than T since Q is 
allowed to go through the same vertex or arrow more than once). Let /  : Q —> T be 
a map of quivers (i.e. /  sends vertices to vertices and arrows to arrows). We take 
the relations on Q by pulling back the relations on T, i.e. a path in Q is a relation 
if its image in T is a relation in B. Let Z q  be the algebra with quiver Q and with 
the above relations on Q. Then Z q  is said to be a cycle algebra overlying B. We 
say that Z q  is a minimal cycle algebra overlying B  if Z q  is not a finite covering of 
a smaller overlying cycle algebra.



Here we mean that, for oriented cycles Q and Q!, Z q / is a finite covering of Z q  

if there is a surjective quiver map Q' —► Q that takes relations to relations and each 

relation in Q lifts to one in Q'.
The reason we consider minimal cycle algebras is due to the following result from 

[18]. As no proof was given in [18], for completeness we provide a more detailed 
proof here.

Proposition 1.2.2 [18] Let Q be the quiver of a minimal cycle algebra Z q and 

let Q' be the quiver o f a cycle algebra Z q > overlying Z q . Then E ( Z q >) is finitely 

generated i f  and only if  E ( Z q ) is finitely generated.

Proof. Let Q have q vertices and q arrows. Then there exists a positive integer d 
such that Q! has dq vertices and dq arrows.

Let E { Z q ) be finitely generated, with &i, . . . ,  6/ a complete set of generators from 

our usual basis described in the previous section. Each b{ in E ( Z q ) lifts to one of d 

different paths in Q1. Since the relations on Q' are taken from Q we get that each 

b( corresponds to a set of d basis elements of E ( Z q >), denoted b[ =  {b[ p . . .  ,b'{ d}. 

We will now show that E ( Z q >) is finitely generated with generating set [ j [=1 6-.

Let a' be an element from the usual basis of E ( Z q >). The underlying path in 
Q! of a! corresponds to a path a in Q. Since the relations on Q' are taken from Q 

we have that a is a basis element of E ( Z q ). Write a as a finite product of the bds. 

For each copy of a generator that appears in this product there is a single natural 

choice 1 < j  < d so that a' is written as a non-zero product of the ^ j ’s. We can be 
certain of obtaining a non-zero product because the relations of Q' are taken from 

Q. Since a' was arbitrary, E ( Z q >) is finitely generated.

Similarly, if we assume that E ( Z q >) is finitely generated, then an arbitrary basis 

element a in E ( Z q ) corresponds to some a' in E ( Z q >), and thus it is shown that 

E ( Z q ) is finitely generated. □

We now consider the following claim from [18].

Claim 1.2.3 [18, Proposition 1.6] Let B  be a monomial algebra. Then the Ext- 

algebra E ( B )  is finitely generated if and only if the Ik-algebras E ( Z q )  are finitely 

generated for all minimal cycle algebras Z q  overlying B.

We give a proof for one direction stated in the following proposition.

9



Proposition 1.2.4 Let B  be a monomial algebra and let the Ext-algebra E (B ) be 

finitely generated. Then the k-algebras E ( Z q ) are finitely generated for all minimal 
cycle algebras Z q overlying B.

Proof. Let B  be a monomial algebra with quiver T and let E (B ) be finitely gen­

erated with (basis) generators 61, . . . ,  6/. Also let Z q be an overlying minimal cycle 
algebra of B. Reordering if necessary, let 61, . . .  , 6  ̂ be precisely those generators of 

E(B) whose underlying paths lie on the closed path in V that is the image of Q. 
Since the relations of Z q are lifted from B  we have that are corresponding

basis elements of E ( Z q ).

Now let a* be a basis element of E ( Z q ). Then we have a as the corresponding 

basis element of E (B ), so a can be written as a product of 61, . . . ,  6/. However, if bi 
is a subpath of a  then b* is a path in Q, thus a is a product of 61, . . .  , b  ̂ and so a* 

is a product of 6*, . . . ,  b*k.
Since a* was arbitrary we get that E ( Z q ) is finitely generated. □

The details of the proof of this proposition are not given in [18]. Following 
discussion with the authors of [18], we state here that the reverse implication of 

the claim above is false. They have provided a counter-example which we give as 

Example 2.4.25 in Section 2.4, where we can treat it more fully.

However, it is the direction proved in Proposition 1.2.4 above that is most useful 

to us. With it, it is clear that finding just one overlying cycle algebra with infinitely 

generated Ext-algebra gives us the Ext-algebra of B  infinitely generated. Hence 
studying the Ext-algebras of cycle algebras is fundamental. Of course B  has finite 

global-dimension if its quiver has no oriented cycles: then E (B) is trivially finitely 

generated.
We note here that a similar result exists for the respective Ext-algebras being 

Noetherian. In Section 2.5 we look at when the Ext-algebra of a cycle algebra is 

Noetherian, and Proposition 2.5.9 is the Noetherian analogue to Proposition 1.2.4.

This finishes our foundation chapter. In the next chapter we will see an efficient 
way to view the Ext-algebra of a cycle algebra, and subsequently how to use this to 

determine if the Ext-algebra is Noetherian, finitely generated or infinitely generated.
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Chapter 2

Ext-algebra of cycle algebras

2.1 The sm o-tube

For this chapter we turn exclusively to the study of the Ext-algebra of a monomial 
cycle algebra A, that is A =  kQ/X, where Q is an oriented cycle and X has monomial 
generators. In this section we give the basic definition of the smo-tube and show 
how it relates to the extending sequences of A. We begin by giving some notation 
that will be used throughout the chapter.

If v and w are vertices let v —> w denote the path in kQ from v to w with 
length in the range 0 to n — 1 inclusive. The arrow will only ever be used with this 
precise meaning. Let v be a vertex, 2 some integer. Then v + z is a vertex where 
the addition is integer addition modulo n. We identify the vertex v with the trivial 
path ev in kQ of length 0 at v. Let p be a path in kQ. If p € kQdkQ for some path 
x  of length 0 (or 1), then we say that £ is a vertex in p (respectively arrow in p). 
Likewise if p G J x J , where J  is the 2-sided ideal of kQ generated by the arrows, we 
say that x is a vertex (respectively arrow) strictly in p.

Label the relations r \ , . . . ,  rm such that the concatenation of m  paths H\ —> 
H2 —* • • • —> Hm —> Hi has length n, where Hi — o(r^). Likewise let T{ = t(rj). 
Here we work modulo m. We call Hi the head vertex or head, and Tj the tail vertex 
or tail of the relation r*. An arrow is called a head arrow of rj if its start vertex is 
Hi. Let oti be the head arrow of r*, so o(ai) = Hi, and let be the arrow that ends 
at Ti, so t(wi) =  Ti. A head vertex H  is said to follow a tail vertex T  if the path 
T  —> H  is of minimal length among all paths starting at T  and ending at a head 
vertex. If a tail vertex T  is also a head vertex H  then we also say H  follows T.

Our first results give us some control over the behaviour of maximal overlap 
sequences.
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Proposition 2.1.1 Let A have m  relations n , . . .  ,rm with the path Hi 
Hm —> H i of length n. Then the path Ti —>■■■—> Tm —> T\ is also of length n.

Proof. We will use induction on m .  For m  = 1 or m  =  2 the result is trivially 
true. Suppose then that m =  3 and that the three relations are such that H \ —> 

H2 —► Us —► H\ is of length n. Let ri =  Oj • • • u>i, for 1 < i < 3. Note that we 
do not restrict the length of any of the r*. First write r\ as a path and then write 

r2  as a path underneath r\ so that the first arrow in r2 , 0 2 , lines up with the first 
occurrence of 02 in r \ :

r 1 =
r 2 =

ot 1
Ot2

Ul
U>2

Certainly the last arrow of r2 must be to the right of the last arrow of n ,  otherwise 

r2 would be a subpath of r \ . Also the last arrow of r2 must in the diagram be less 

than n arrows to the right of the last arrow of r \ , or else r\ would be a subpath of 
T2- Thus the diagram above is the only case possible.

We note here that the above diagram may be misleading only in that we allow 
the relations to have length less than n. In this case the two lengths marked “n” 

would overlap.
Now, to place r% in the diagram we use the same reasoning as above:

r 1 =  
r2 = 
r3 =

71 n

A l ................ ■U) 1*-*1

'-XJ .............. ......... I

^ 0 ...................

that is, the last arrow of r$ must be to the right of the last arrow of r 2, but less 

than n  arrows to the right of the last arrow of r\. We thus get that the path 
T\ —» T2 —► T3 —» T\ is of length n.

For the inductive hypothesis suppose that if we have m — 1 relations with the 
path Hi —> • • ■ —► Hm- 1 —> H\ of length n, then the path T\ —> • • • —> Tm_i —> T\ 
is of length n.

12



For the inductive step suppose we have m  > 4 relations r \ , . . .  ,r m with the path 
H j _> . . .  Hm _> }j\ of length n. By considering the first m  — 1 relations we use 

the inductive hypothesis and get a diagram:

r i
n n

= a q ............................... ■U)\

= OL2 ..................... ......... W2

1 = O t m —1 ............. ^ m — 1

We now place rm on the diagram as shown below. Note that, to avoid respectively 
rm being a subpath of r m_i or r\ being a subpath of r m, the last arrow of r m must 

be to the right of the last arrow of r m_ i but less than n  arrows to the right of the 
last arrow of r \ .

r i =  
r 2 =

I'm— 1 =
f 'm .  =

Ct2

Hence by induction we get our result. □

Proposition 2.1.2 The path of unoverlapped arrows at the end of an odd-degree 

maximal overlap sequence always has length less than or equal to n.

Proof. Let P 2l+l be an odd-degree maximal overlap sequence of degree 2i + 1. The 
proof will proceed by induction on i. First let i =  1. Then we have a maximal 

overlap sequence of the form

P 3 =
J< P>

where i{q) < n  by definition of P 3 being a maximal overlap sequence. If £(p) > n 

then t2 would be a subpath of £ 3 . Since this cannot happen we get that £(p) < n  as 
required.

13



Now suppose that P 2l+l is a maximal overlap sequence such that P 2l_1 has its 

right-hand path of unoverlapped arrows (ga in the diagram below) of length less 

than or equal to n.

S3 S2i-1 S2i+1
p 2i+i = i i i g x~\ h i p i

i i ■" i r — *■S2 S2i-2 S2i

We will show that the length of the path ah cannot exceed n. First note that since 

a is a (terminal) subpath of ga  we have £(a) <  £{ga) < n. Thus if £(ah) > n  then 

£{h) > 0 and a copy of c*2i must lie in h. This is a contradiction since by maximality 
of the construction of P 2t+ l the path h must be free from head arrows. Hence 

£{ah) < n. Therefore we must have £(p) < n to avoid being a subpath of S2i+i.D

L em m a 2.1.3 Let P 2t be a maximal overlap sequence of degree 2i with last relation 

S2i- I f i ( s 2i) > n then one can always overlap P 2% on the right with another relation.

P roof. If % =  1 the result follows since a relation of length greater than n  has to 

overlap itself. For i > 1, P 2x takes the form:

S3 S2t-1
P 2i =  I I I 9""l P

i i "■ i________ i
s  2 s 2( t - l )  s 2i

If there are n or more unoverlapped arrows at the end of P 2x then we are done, so 

set p equal to the path of unoverlapped arrows and suppose £(p) < n; let q be such

that S2i = qp• Now, since £(s2i) > n  we must have at least two copies of the head
arrow of S2i appearing in S2i- By Proposition 2.1.2 only one copy can appear in q 

and so we must have at least one copy in p. □

We will use the following two examples throughout the chapter to illustrate our 

method.

Exam ple 2.1.4 Let Q be an oriented cycle with 25 vertices labelled 1, . . . ,  25. Label 

an arrow rji if it starts at vertex i. Let X =  ( r i , r 2>P3)P4>r 5>r 6>P7>r'8)) where:

n  =  771 • • -7713, r 2 =  777 • • • 7715, r3 =  % •••7717, 7*4 =  779 ••-7721,
7*5 =  7714 • - • 7724, r 6  =  7720 • • •  774, r 7 =  7721 • •  -7710 , r s  =  7723 ■ • • 7 7 1 1 ,

14



with i(r) < n , for all relations r. Then let A = kQ /X. We thus have head vertices 
H\ =  1, H2 =  7, H3 =  8 etc, and tail vertices T\ = 14, T2 =  16, T3 =  18, etc. The 

following diagram illustrates which vertices are head or tail vertices in our example.

Note that H 2 is the head vertex that follows Tq, and H 5 follows T7, Tg and ^i-

E xam ple  2.1.5 Let Q be an oriented cycle with 30 vertices labelled 1, . . . ,  30. Label 

an arrow r)i if it starts at vertex i. Let X =  ( r i , r 2, . . .  , 7*13), where:

n  =  771 • • - 7 7 1 1 ,  7*2 =  773 • • • 7712,  r 3 =  %  • • • 7 7 1 4 .  r 4 =  V7 • • • 7715, r 5 =  779 • • - 7 7 1 9 ,

^ 6  =  T?12 • • • 7?2 0 > r 7 =  r)\4  ■ ■- 7)23 , r 8 =  7718 • • • 7725,  r g  =  7719 • ■ • 7727,  n o  =  f?22 • • • 7729,

n i  =  7̂25 • ■ • 7?3 , r i 2 =  V27 ■ ■- m ,  r i s  =  7729 • • • 777

and where each relation r  is such that n < £(r) < 2n.  Let A =  kQ /X . We thus

have head vertices H\ =  1, # 2  =  3, H3 =  6 etc, and tail vertices T] =  12, T2 =  13,

T3 =  15, etc. Note that H 2 does not follow any tail vertex, and H 8 follows X3 and 
T4 . It is important for the reader to note that the number of vertices in Q and the 

spacing between head and tail vertices is unimportant. It is the relative positions 

of the head and tail vertices that matter.

D efin ition  2 .1 .6  A semi-maximal-overlap-sequence  or smo-sequence  of a tail ver­

tex Tj is a sequence of indices (01 , 02 , . . . )  from the set X m — { l , . . . , 77i}. It is 

defined inductively in the following way.

(i) a\  =  i.

(ii) For A: > 1, 0^+1 =  I where Hi is the head vertex that follows Tak.
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The smo-function of the algebra A, /a  : X m —> X m, is defined as /a(p) =  q, where 
is the head vertex that follows Tv. Thus /  moves us one place along an smo- 

sequence.

Since entries in an smo-sequence are taken from a finite set and an entry is 
dependent only on its direct predecessor, we have that after a certain stage the 
sequence will repeat.

D efin ition  2.1.7 Let {a{) be an smo-sequence. Then a subsequence 
(<2j, <2j+1, . . . ,  a,i+j - 1) is a repetition in A if j  > 1 is minimal such that Gq =  ai+j. The 
order of this repetition is j .  If ak is a component of a repetition, i.e. i < k < i+ j  — 1 
as above, call ak a repetition index and rak a repetition relation. We say two rep­
etitions are equal if they share a common component, that is they have respective 
components a/, and by such that a*, =  by. It is clear that if two repetitions share one 
component in this way, they share all components. The connective path for repeti­
tion relations rak and rak+l is the path Tak —* Hak+l, denoted cflfc+1. The connective 
paths of a repetition R  =  (a*, ai+\ , . . . ,  ai+j- i)  are the paths cfli+1, cai+2, . . . ,  cfli+j 
and the connective paths of A are those of all the repetitions of A. If a: is a component 
of R  then the head vertex H x is said to be R-indexed.

The lower half of an extending sequence starting at the vertex H ai may be 
illustrated as below, with a* the first repetition index in the sequence (a*,).

H a , 7 a , H a i T a .H a i+1 T * i+ f la .i+ 2  T a i+ 2
I I I I ’ ' * I I I U >J \< >1--------- 1

ra, r a2 r<it-l Vai Cai+1 r“i+ 1 Cat+2 r a i+2

Note that no vertex of Q can be in two distinct connective paths of A.

E xam ple  2.1.8 In Example 2.1.4 we have two distinct repetitions, each of order 2: 
R l = (1,5) and R 2 = (2,6). We have four connective paths, 7725 and ei4 associated 

with R \ , 775776 and T]i6'ni7rl\8'n\9 associated with R 2 . The smo-sequences of T\ and 
T2 are (1,5,1,5, . . . )  and (2,6 , 2 ,6 , . . . )  respectively.

E xam ple  2.1.9 In Example 2.1.5 we have two distinct repetitions, each of order 3: 
R\ =  (1,6,10) and R 2 = (3,8,12). We have six connective paths, 7730, ei2 and 7721 

associated with J?i, 775, 771577167717 and 7726 associated with R 2 . The smo-sequences of 
T\ and T3 are (1 ,6 ,10 ,1 ,6 ,10 ,...) and (3,8 ,12 ,3 ,8 ,12, . . . )  respectively.

Lem m a 2.1.10 All repetitions o f A are of the same order.
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P ro o f. If A has precisely one repetition, and this is of order 1, we are immediately 
done. We treat all other cases together. Thus let R x be a repetition of order k with 
connective paths cXl, c/A(Xl) , . . . ,  and let Ry be a repetition of order I with

connective paths cyi,c /A(Vl)»■ • • >c/'v- 1(yi)- Reca11 that f \ i x \) = x \ and =  V\
and that cXl is the path Tjk-i^x^  —> HX1 and cyi is the path Tji- \ ^  —> Hyi. 
Relabelling if necessary, suppose that cxi and cyi are adjacent on the quiver, that 
is, they are the only distinct connective paths of R x and R y respectively that are 
subpaths of the path T ^ - i ^  —> Hyi. We will show that c /A(Xi) and CyA(yi) are 
the only connective paths of R x and Ry respectively that are subpaths of the path 
Txi —> /fyA(yi).

Xl
■X\

Let <7 C p be the set of relations whose indices appear in R x or R y. In particular 
the head vertex of each of these relations is the end vertex of a connective path of 
either R x or Ry. By hypothesis we have no head vertex indexed by a relation in a 
in the path HX] —> H m except the start and end vertices. Thus by Proposition 2.1.1 
there is no tail vertex indexed by a relation in a in the path Tx j —► Tm except the 
start and end vertices. Hence c /A(Xl) and c /A(yi) are the only connective paths of 
R x or R y that are subpaths of the path TX1 —> H fA(yiy  Inductively it follows that 
k = /, giving equality of the orders of R x and R y. □

Rem ark 2.1.11 The above proof gives us some insight not present in the statement 
of the lemma: we will thus refer to the proof itself later in the chapter. In particular 
we note here a consequence. Suppose that A has two or more repetitions, of order A, 
and let cXl and cyi be any two distinct connective paths, with no other connective 
paths in the path —» H m . Then cxi and cyi are in different repetitions.

The reader may like to note that diagrams of the sort in the proof above can be 
drawn to illustrate most of the proofs in this chapter.
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We now define the smo-tube (by first defining the smo-array), which is a combi­
natorial description of the maximal overlap sequences of A.

D efinition 2.1.12 1. A degeneration path is a path Tp —► Hq, denoted dq, with
no head or tail vertices strictly in the path d q and such that, unless dq is of 
zero length, o ( d q )  is not a head vertex and t ( d q )  is not a tail vertex. Then 
Hq follows Tp and we call Tp and Hq respectively degeneration tail and head 

vertices. Notice that every connective path has exactly one degeneration path 
as a terminal subpath: this means that every repetition index is also the index 
of a degeneration head vertex. Let D be the set of degeneration paths of 
A, with elements labelled d 9 l  , d q 2 , . . . ,  d 9 | D |  so that p \  <  P2 < ■ • • < P\d\ with 
respect to the ordering of the relations of A, where TPi = o ( d 9 i )  for 1 < i < \D\.

2. Place the smo-sequence of TPl in the 2-th row of an array where row 1 is at 
the bottom. We call this array the smo-array.

In practice one need only write down the first L columns, for L = M  + A + 1 , where 
the M -th column is the first to contain only repetition indices and A is the order 
of the repetitions. We can bound the size of L  as follows. Consider any row i in 
the smo-array that has entry (z,M — 1) not a repetition index. Since there are m 
relations, at least A of which are repetition relations, we have M  — 1 < m — A. This 
yields a bound o fL  =  M  +  A-l-l < m  + 2 . Since |D| < m we can have no more 
than m{m  +  2) entries in the first L columns of the smo-array.

Fix the above definitions of A, M  and D for the remainder of the chapter. We 
consider the top row of the above array to be joined to the bottom, and so, once 
the flags of the next definition have been placed, we will call this array the smo-tube 
and denote it 7a. In this spirit we will refer to the jjth column as band j . Henceforth 
entry (i , j ) refers to the entry of the smo-tube (or array) in row i, band j .  Thus if 
(ajfc) is an smo-sequence such that as =  (i , j ), for some s , i , j , then as+i =  ( i , j  +  1).

E xam ple 2.1.13 In Example 2.1.4 we have 5 degeneration paths: 77251 V5V6 , ^14, 
7?i877i9 and 7722- We thus have the smo-array:

1 2 3 4 5 6  .......................

5 6 2 6 2 6 2  .......................

4 5 1 5 1 5 1  .........
3 4 8 5 1 5 1  .........
2 3 6 2 6 2 6  .........
1 1 5 1 5 1 5 ............
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Here we have M  — 3 and A =  2, giving L — 6 . Let us look again at extending 
sequences to see how they relate to the smo-array. The extending sequence A  has 

lower half ( r i , 7’5, 7’i , 7’5, . . .) and upper half (r2, vq, r^, tq, . . .),  yielding the overlaps

r2 re r2 re
I I I I I I I I

I______ II______ II______ II______ I
r\ re r\ re

However, the extending sequence A h2 terminates almost immediately, that is at 
degree 3, with the maximal overlap sequence

I I 
I______ I

r  2

It is clear that the reason for this degree 3 termination is that T2 is not the start 
of a degeneration path. We also view the overlaps from which A h 3 is formed: 

r \  rg rg n

I I I I I I I I
I______ II______ II______ II______ I

J~3 rg r2 re

Note that in all but position 1, the upper half of Ah-i is the same as the lower half 
of A h 3. This occurs because the same head vertex, H q , follows T2 and T3 .

E xam ple  2.1.14 In Example 2.1.5 we have 10 degeneration paths: e i2 , 7713, 7716̂ 17, 

7721, 7724, 7726, 7728, 7730, 775 and 773. We thus have the smo-array:

1 2 3 4 5 6 7 8 •

10 13 5 10 1 6 10 1 6  •

9 12 3 8 12 3 8 12 3 •
8 10 1 6 10 1 6 10 1 •
7 9 13 5 10 1 6 10 1 •
6 8 12 3 8 12 3 8 12 •
5 7 11 3 8 12 3 8 12 •
4 6 10 1 6 10 1 6 10 •
3 4 8 12 3 8 12 3 8 •
2 2 7 11 3 8 12 3 8 •
1 1 6 10 1 6 10 1 6 •

Here we have M  =  4 and A =  3, giving L  =  8 .

Example 2.1.13 well illustrates what happens for general A, inasmuch as two 
things go. Firstly, if Tfc is not a degeneration tail vertex then A n k terminates at



degree 3. This is clear since if is not a degeneration tail vertex then it is immediate 
that we have no head arrows in the path Tfc —> Tk+\. By Proposition 2.1.2 this path 
is equal to the path of unoverlapped arrows in the maximal overlap sequence

rie+l

rk

This maximal overlap sequence therefore cannot be overlapped by a relation on the 
right. Note that can always be overlapped by rfc+i if T*. is not a degeneration tail 
vertex. This is why we include only degeneration tail vertices in the first band of 
the smo-array: all other tail vertices give rise to extending sequences that terminate 

at degree 3.
Secondly, we have the following result.

Lemma 2.1.15 Suppose that Ta and Tb are degeneration tail vertices. I f  A has 
only one degeneration path take Ta =  Tb, otherwise take Ta and Tb such that the 
path Ta —> Tb is of positive length (so Ta ^  Tb) and contains no other degeneration 

tail vertices. Consider the upper-half of A n a, (^a+i, r /A(a+i)> r / 2(a+i)> ■ • ■)> an(f  the 
lower-half of A Hb, ( rb, r fA(b) , r f 2(b), . . .). Then r f k{a+l) = r f k{b) for all k >  1.

P roof. If A has only one degeneration path then this is immediate since # / A(b) is 
the head vertex that follows all tail vertices, and thus follows Ta+\ . So suppose Tb 
is different from Ta, as above, and consider Ta+\. By hypothesis there cannot be a 
head vertex in the path Ta+1 —> Tb, other than possibly Tb itself, else we would have 
a degeneration tail vertex strictly in the path Ta —» Tb. Hence we have that H fK(b) 
is the head vertex that follows both Ta+1 and Tb, giving r^A(a+1) =  r jh(b)- It follows 
immediately that = r j k ^  for all k > 1, and hence that the upper-half of

A ua 1S identical to the lower-half of A n b in all places but the first. □

For this reason we include only the lower halves of extending sequences A n k, 
where 7*, is a degeneration tail vertex, as rows in the smo-array. We then get the 
upper halves automatically from the row above. This simplifies matters a great deal, 
as long as we keep track of what’s really happening in band 1.

The above reasoning has shown that the smo-array contains all the information 
needed to build the infinite extending sequences of A. However, with the smo-array 
as it stands, we are unable to tell which, if any, of the extending sequences terminate. 
The problem is that smo-sequences are infinite whilst extending sequences can be
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finite, terminating in a maximal overlap sequence that cannot be overlapped on the 
right by a relation. We solve this problem by introducing flags to the smo-array. 

The position of a flag in some row i of 7a indicates that the extending sequence with 

lower half associated to row i terminates; the exact point of termination depends on 
the type of flag. For an extending sequence A v of A, Theorem 2.1.19 gives the exact 

values of maxdeg(A^) for each position and type of flag. The following definition 

gives the rules for marking the smo-array with the different types of flag. Recall 

that a.k is the first arrow of the relation 7+

D efin ition  2.1.16 0. Flags of type 0. For 1 < i < |D|, entry (i, j)  is marked

flagO if and only if j  — 1, £( r^ ^ )  < n  and contains no head arrow other 

than Q(j!).

1. Flags of type 1. If |D| =  1 then no entry is marked flagl.

If |D| > 1, then for 1 < i < |D| and 2 < j  < I, entry (i , j ) of the smo-tube 
is marked flagl if and only if (i, j )  ^  (i +  1, j )  and no head arrow lies in the 

path —> T(i+1j). Note that if i = \D\ then i +  1 =  1.

2. Flags of type 2 .  If \D\ =  1 take (2,1) =  (1,1) +  1, and (2, j)  = (1, j)  for j  > 2.

If |D| > 1 and i = \D\ then take 2 + 1  =  1. Let N ( i , j ) be the number of

occurrences of in r ^ j y

(i) For 2 < i < \D\, 2 < j  < I, entry (i, j)  is marked flag2 if and only if

£ G i  N(i  + l ,k)  = £ j .=i N(i,  k) and

* for j  = 2 we have (i , 1) 4- 1 ^  (i,2) and no head arrow lies in the
path T(i,1)+1 —>

* for 3 < j  < I we have (i , j ) 7  ̂ (i +  1, j  — 1) and no head arrow lies in 
the path > T^ jy

(ii) Entry ( l ,j ) ,  for 2 < j  < /, is marked flag2 if and only if 1 +

E t \ N { 2 , k )  = E i= iJ V ( l ,* ) a n d

* for j  = 2 we have (1, 1) +  1 ^  (1, 2) and no head arrow lies in the 

path —> T(1]2),

* for 3 < j  < I we have (1, j)  7  ̂ (2 ,j — 1) and no head arrow lies in the 

path T(2,j-i) ~^
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E xam ple 2.1.17 In Example 2.1.4 the only entry to be marked with a flag is entry
(3.2): it is a flagl. In Example 2.1.5 the entries marked with a flag are (2,3), (5 , 2),
(7.3) and (10,2): they are all flagls. We return to these examples in Section 2.2 
with more detail.

The above definition is a very slow way to calculate flags and so Section 2.2 will 
present three theorems which speed up this calculation. However, we do have the 
following corollary of Lemma 2.1.3.

C orollary  2.1.18 I f  all relations r are such that £(r) > n, then no flagOs or flag2s 
can be placed in the smo-tube.

We complete this section by proving that the flags defined in Definition 2.1.16 
really do give us precisely the termination points of the finite extending sequences.

Theorem  2.1.19 Let A be an extending sequence with o(j4) =  H a and let 7a be 
the smo-tube of A. Then

1. maxdeg A = 2 if and only if  a =  (z, 1) for some row i o fT\ ,  and (z, 1) is marked 
flagO,

2. maxdeg A = 3 if and only if  a ^  (i, 1) for all rows i,

3. maxdeg A =  2j ,  some j  > 2 , if and only i f  a =  (z, 1) for some row i, and (i , j )
is marked flag2 and is the first flagged entry in row i,

4. maxdeg A = 2j + 1, some j  > 2, if  and only if a = (z, 1) for some row i, and
(i,j) is marked flagl and is the first flagged entry in row i,

5. maxdeg A = oo if and only if a = (z, 1) for some unflagged row i.

Proof. Let us look in turn at the different ways in which an extending sequence 
might terminate.

(1) Let A  be an extending sequence; by definition A attains at least degree 2. 
The degree 2 maximal overlap sequence is just a single relation, r^ say. Thus by 
previous reasoning, A  terminating at degree 2 is equivalent to k equalling (z, 1), for 
some row z in 7a, and r not having any relation overlapping it. This in turn is 
equivalent to k equalling (z, 1), for some row z in 7a, and r& containing no head 
arrows other than a^ once at the start: exactly the condition needed to mark entry 
(z, 1) with a flagO.
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(2) We have seen already how 7a excludes precisely those extending sequences 
that terminate at degree 3.

(3) Whether the extending sequence A terminates at degree 2j ,  for some j  > 2, 
is, a priori, more difficult to determine. We know already that this condition is 
equivalent to the degree 2j  maximal overlap sequence of A

S3 S5 S2j -1
A *  = I

I I L
S 2  S 4 S 2 ( j - 1 )  S2 j

having no head arrows in the path of unoverlapped arrows p. The problem is that 
p may have length less, greater or equal to n. If i(p) > n then there will be a 
head arrow in p, and we can conclude that A  does not terminate at degree 2j .  If 
£(p) < n  then p equals the path t(s2j_ i) —► t(s2j)- We then just need to check the 
path t(s2j —i) —> t(s2j) for head arrows to determine whether or not A terminates 
at degree 2j. We calculate whether £(p) < n  with a counting argument. Let A 2i be 
the maximal overlap sequence shown above, with o(A2i) =  o(s2).

Suppose first that the lower half of A 2i  is not in row 1 of 7a- Consider the two 
paths in kQ that consist of A 2i~ l and A 2i with the path a i  appended to the start 

of each, where £{ai) < n, o(azJ =  # ( 1,1), t (cll) = 0 (52) and au is the path as shown 
below.

S 3  S5 S 2 j _ l

I I I I I
II________ I I________ II________ I

L  u  r

: a L 1—
H { h l )  32 34 S2 ( j - 1) S2j

Let U = cllA2̂ 1 and L = cllA2! . We visualise the paths U and L respectively in 
the following natural way.

h— - — h________ 11________ 1 •••____ 1______
IT S 3 S 5 S 2 j  —1
" ( 1 , 1 )

: ajr, I------------------- '--I-------------------1 1-------------------' 1------------------- 1
/ / ( 1  J) 3 2  3 4  S2 ( j - 1 ) s 2 j

Write U = ckq, where c is the cycle such that £(c) =  n, o(c) =  t(c) =  and q
is such that i{q) < n, 0(9 ) =  ^ ( 1,1), t(<?) =  t(s2j - i ) .  Then L =  Up =  ckqp. We will 
count the number of occurrences of in U and in L. Then, if <*(1,1) occurs more
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often in L than in U, we can conclude that at least one <2 (1,1) is in p. Since <*(1,1) is 
a head arrow we would know that A  does not terminate at degree 2j .  Otherwise, if 

<2(1,1) occurs the same number of times in U as it does in L then we know it cannot 

occur in p. Thus £(p) < n  and so we check the path t(s2j_ i) —> t(s2j) for head 
arrows as detailed above.

For any finite path v 6  kQ let N{v)  be the number of occurrences of <2 (i,i) in 

v. Then N(L)  = 1 +  £ j =1 N( s 2z) and N(U) = 1 +  N ( s2z- i ). For firstly
the “gaps” between the relations (the paths Yz, 4 < 2: < 2j, in the Preliminaries 
section) contain no head arrows by maximality of the construction of A 2j, and 

secondly, since o(s2) # ( 1 , 1 )  the paths a\j and ai  contain exactly one copy of

<*(1 ,1) . Thus Z L i  N(S2Z) = E i = 2 N( s 2z - 1 )  ^  N(L)  = N( U )  = »  £{p) <  n ;  and 
1 N ( s 2 z ) > 2 N( s 2z - i ) N(L)  > N ( U) =$■ p contains a head arrow. Note

that the function N  here is an extension to all paths of the function of the same name 
in Definition 2.1.16. By Lemma 2.1.15 it remains to see that N(s^)  = N( i  +  1 ,1), 

where s2 = ^(i,i)- If S3 =  r(j+11) this is immediate, so suppose they are different. 
Now, the same head vertex follows t(s3) and T(i+1 j ) ,  and since T(i+11) is the start of 

a degeneration path we get the following diagram, which is not necessarily a maximal 
overlap sequence itself, but where we do minimise the length of the left-hand path 
of unoverlapped arrows.

r (»+l,l)

S3

Note that the right-hand path of unoverlapped arrows does not contain a head 

arrow. If the left-hand path of unoverlapped arrows contained <2 (i,i) then, since 
t(s3) does not start a degeneration path, the right-hand path of unoverlapped arrows 
would contain W(i,i). Since is the start vertex of a degeneration path we must 

have <2(i,2) in the right-hand path of unoverlapped arrows. This cannot happen. 
Hence neither path of unoverlapped arrows contains <*(1,1), giving us N(ss) = N( i  +
1, 1).

This shows that marking entry (i , j ) with a flag2 via Definition 2.1.16, part 2(i), 
is equivalent to the corresponding maximal overlap sequence terminating at degree

2 j.
The case where o ( s 2 )  =  - ^ ( 1 , 1 )  is almost identical to above; the only change is 

that now £{ai) = 0 and we have N ( a [J) =  0 , N(au)  = 1. This is left to the reader.
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(4) This part follows part 3 above, but without the necessity for the counting 

argument, since by Proposition 2.1.2 the path of unoverlapped arrows p is always 
such that i(p) < n.

(5) It is clear that there are only three ways an extending sequence can terminate: 

if its first relation cannot be overlapped on the right, or if it contains a maximal 

overlap sequence of either odd or even degree greater than or equal to 3 that has no 

head arrows in its right-hand path of unoverlapped arrows. We have shown that the 
presence of each of the three types of flag in 7a is equivalent to a termination, in one 
of the above ways, of the associated extending sequence. Hence a row without flags 
corresponds to an extending sequence A  that does not terminate, that is maxdeg A = 

oo. □

2.2 Calculating Flags

In this section we present three theorems that speed up calculation of the smo-tube 

with its flags: for this reason the section becomes rather technical. Note that certain 

of the auxiliary results presented here will be drawn upon throughout the remainder 
of the chapter. We will illustrate calculation of the smo-tube with two examples.

Lemma 2.2.1 For any entry (i , j ) in an smo-tube, we have that the concatenation 

of paths ► . . .  > # ( |d |j)  * ^ ( l j )  * • • • * ^  ^
length n.

P roof. Using Proposition 2.1.1 and the discussion in Definition 2.1.12, the result 

follows by induction on j. □

Lemma 2 .2 . 2  I f  x is some repetition index, then for all j  greater or equal to 2, 
there exists some row i in T \ such that x  =  (i , j ).

P roof. Recall that band 1 contains the indices of all degeneration tail vertices. By 

definition the next entry in the smo-sequence of a such a tail vertex is the index of 
a degeneration head. We get all degeneration head indices this way; these appear in 

band 2 . As remarked in Definition 2.1.12, each repetition index is also a degeneration 

head index, and so each repetition index appears in band 2. Immediately we get 

that each repetition index appears in band j , for all j  > 2 . □
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Theorem  2.2.3 I f  an entry (i , j ) of T \ is assigned a flagl then (i , j ) ^  (i +  1 ,j)  
and (i , j  + 1) =  (z +  l , j  +  1).

Moreover, if  A has more than one repetition index then (i , j ) is assigned a flagl 
i f  and only i f ( i , j ) ^  (i +  1 , j )  and (i , j  +  1) =  (i +  1 , j  +  1).

Proof. If entry (i, j)  is marked with a flagl then by definition (z+ 1 , j )  ^  (i , j ) and 
there is no head arrow in the path —> T(i+ lj). This means that follows
both T{iJ) and T(i+1J) giving = H(i+hj+l) and so (i, j  +  1) =  (i +  1 , j  +  1).

Conversely suppose that (i, j )  is such that (i, j)  j^ (i+  1 ,j)  and (i , j  -f 1) =  (i + 
1 , j  +  1); this means that either the path or the path T(i+l j ) —>
is free from head arrows. Suppose also that A has more than one repetition index. 
By Lemma 2.2.2 all repetition indices occur in band j  +  1 so, since A has more 
than one repetition index, there must be a third row in T \, row k say, such that 
(i + 1 , j  +  1) /  (k, j  +  1). This gives us (i + 1 , j)  ±  (k , j ) and (i, j)  ±  {k, j) . Thus 
we have that j) —> T^i+\j)  —» is a path of length n by Lemma 2.2.1
and Proposition 2.1.1. Since a different head vertex follows T^,j) than follows 
and there is a head vertex, namely in the path —» T^ jy
Thus there must no head arrow in the path T(zj) —̂ T(i+Xj y  and so (i , j ) will be 
assigned a flagl. □

Proposition 2.2.4 The number o f rows in 7a that do not have a flagl is equal to 
the number of distinct repetition indices of A.

Proof. Recall that the M -th band of 7a is the first to contain only repetition 

indices. If A has p > 2 repetition indices then by Lemma 2 .2.2 there must be some 
row i such that (i, M  + l) ^  (i +  1, M +  l). By Lemma 2.1.10 we get (i, j)  ^  ( i+l , j ) ,  
V? > 1. Thus by Theorem 2.2.3, row i will never be marked flagl. Lemmas 2.2.1 
and 2.2.2 give us exactly p  rows i in 7a such that ( i ,M + 1) 7  ̂ (i +  1, M  +  1), which 
gives us at least p  rows without a flagl by above. By Theorem 2.2.3, any row i with 

(i, M  +  1) =  (i + 1, M  +  1) has a flagl. This gives us precisely the same number of 
unflagged rows as we have repetition indices.

Suppose then that A has only one repetition index. We get our result immedi­
ately if |D| =  1, so suppose \D\ > 2. All entries of band M  are equal to the same 
repetition index, x  say. Prom the proof of Lemma 2.2.2, band 2 contains at least 2 

distinct indices and so we have M  > 3. Now, all entries of band M  — 1 index tail 
vertices that are followed by H x , so by Lemma 2.2.1 and Proposition 2.1.1 there
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exists exactly one row, i say, such that the path T ^m -i) —* T(i+i,M-i) contains 
a head arrow. It follows from Theorem 2.2.3 that row i will not get a flagl. Let 
row k be different to row i. Then there exists j,  with 1 < j  < M  — 1, such that 
(k, j )  7̂  (k + 1 , j)  and (k, j  + 1) =  (k + l , j  + l). We will show (k , j ) is marked flagl. 
To seek a contradiction suppose it is not. Then by definition, T ^ j )  —► T^k+ij) 
contains a head arrow. Since both T(k,j) and T(k+ij) are followed by H^, j+1), this 
means the path —> T^,j)  must contain no head arrows. Hence by Lemma
2.2.1 we must have j  = M  — 1, but since k ^  i, we get a contradiction. Thus entry 
{k, j)  is marked flagl for all k /  i. □

Theorem  2.2.5 I f  entry (i , 1) of T \ is marked flagO then (i, 1) 4-1 =  (i, 2) modulo 
m.

Moreover, i f f ( r ^ ^ )  < n, entry (i, 1) is marked HagO if and only if (i, 1)+1 =  (i, 2) 
modulo m.

Proof. Suppose (i , 1) is marked flagO. This means no head arrow li6s in except 
q ^ j)  once at the start. Therefore is the head vertex that follows and
hence (i , 1) 4-1  =  (i , 2).

Conversely, suppose (i , 1)4-1 =  (z, 2) and that < n. We have that H ^ ^ +i
is the head vertex that follows T(ij) and so the path —*■ ~> H(i,i)+i must,
have length less than or equal to n. Suppose is not the only relation, else 
we are done. This means (i , 1) 7  ̂ (i , 1) +  1 and so is the only head arrow in
the path #(j,i) —► Since < n, must be an initial subpath of
H(i,\) —■► Thus contains no head arrow other than a ^ i) .  Hence (z,l)
gets marked with a flagO. □

To prove a similar theorem concerning flag2s we need access to a few more 
results. Recall that A is the order of the repetitions.

Proposition 2.2.6 I f  A > 2, and r Xl and rX2 are two distinct relations, then the 
path HXi —» TX1 —* TX2 —► HX2 —> i7xi has length greater than n.

Proof. We proceed by contradiction. Assume that rXl and rX2 are distinct relations 
such that the path HXI —> TXi —> TX2 —> HX2 —> HXl is of length n. Since A > 2 , 
HX2 cannot follow TX2. We therefore have a third relation, rX3 say, distinct from 
rxj and rX2, such that HX3 is in the path TX2 —» HX2 — 1. By Proposition 2.1.1, TX3 
must lie in the path TXl —» TX2.

It is clear that each time this argument is applied to rXl and rXi, for some z > 2, 
we get a new relation rXi+1 distinct from all the others. Since T  has a fixed finite 
generating set, we get our contradiction. □
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Corollary 2.2.7 Suppose A > 2 and let r b e  a relation such that cn < £{rk) < 

(c+  l)n, for some non-negative integer c. Then cn < £(r) < (c+ 1 )n for all relations 
r.

Proof. Let be a relation such that cn < £{rk) < (c 4 - l)n , for some positive 
integer c and let r/ be a relation such that (c — l)n  < £{ri) < cn. To ensure that 

ri is not a subpath of it is clear that the path —> Ti —► Hi —> H & must

have length n. This contradicts the above proposition. □

Definition 2.2.8 Let r yi, . . . ,  ryi be the repetition relations of A, ordered such that 
the concatenation of I paths H m —► H y2 —> • • • —> H yi —> Hm is of length n. Then 

we call the path Hyi —> Hyi+, the repetition path byi+1, where I + I =  1. Clearly 

every arrow in kQ is in precisely one repetition path.

Example 2.2.9 In Example 2.1.4 the repetition relations are r i, r 2, r$ and rQ\ the 

repetition paths are rj\ • • • tjq, r]7 • ■ • V\3 , Vu m "  Vi9 and m o ’"  ma­
in Example 2.1.5 the repetition relations are r\, 7*3, tq r&, rjo and r \2 \ the repe­

tition paths are m ■ - m , m  - ■ m i, m 2 • • ■ m i, -■ ■ m \ , m 2 ---mo and m i ■■■ mo-

Lemma 2.2.10 Suppose A > 2. Let Hi be a degeneration head vertex with ri not a 

repetition relation, and let Hi and Ti lie in the repetition path ba, with Ti 7 = o(ba). 
Then t(ba) = Ha is the head vertex that follows T/.

Proof. Let the set-up be as above and let H *. =  o(ba), so that, ba is the path

Hie —> Ha- To seek a contradiction suppose H a does not follow T). Firstly, 7} lies 

in the path H^ +  1 —> Hi — 1 otherwise the path Hi —> 7/ —► Tk —* H & —* Hi would 
have length n, since 7fc is a repetition tail vertex. This would contradict Proposition 

2.2.6. Now A > 2, so H a may not follow Ta and so Ta, since it is a repetition tail 
vertex, is in the path Ha —> H *.. By the ordering imposed by Proposition 2.1.1 we 

get that the path Ha —► Ta —> Tk -+ Hk —► H a is of length n. This contradicts 
Proposition 2.2.6 and we get our result. □

Lemma 2.2.11 Suppose A > 2 and let (i , j ) be an entry o f T \ .  Then

1. i f j  = 2 the path H {iA) -* H {ul)+l -+ H ^ 2) -> #(i+ i,2) #(i,i) has length n,

2. if  j  > 3 the path H ^ j_\^ > 1 —1) * has
length n.
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Proof. (1) Suppose that j  = 2. Since #(*,2) and # ( 1+1,2) are both degeneration head 

vertices, the path #(i,i) —> #(i,2) —► ^(i,i)+i ““*■ # (i+ 1,2) ~ 5’ #(i,i) is °f length n. Also 
#(i+1,2) must be in the path #(*+1,2) +  1 —» #(i,i) since A >  2. Now, Ty  2) must be in 
the path #(i,i) —> T(i+1 2) else we contradict Proposition 2.2.6 with r(j+ i 2) and r y 2y 

Since A > 2, T(i 2) 7  ̂ #(i,i) so in fact #(*,2) is in the path T(i,i)+i —> Ty+1,2)- Thus 
the path #(i,i) —> T(j+)+1 —> #(i,2) —> #(1+1,2) —* T y y  has length n  and Proposition
2 .1.1 yields our result.

(2) Suppose now that j  > 3. We show that the path H y —> 

#(i,j) —'> #(i+ ij) —► # ( i , j - 1) has length n. Note that if (z, j  — 1) =  (z +  1, j  — 1) then 
(i, j )  =  (z + 1, j)  and we immediately get our result. Thus we assume (z, j  — 1) /  

(z + 1, j  -  1). Consider the two vertices H y j _ y  and #/(i+1  ̂— i), the terminating 
vertices of the degeneration paths and d(i+i J _ 1) respectively.

We first wish to place # ( ij)  in the path —> H y j _ y .  Wc assume

(h j )  7̂  (* +  “  1) and (Lj)  7̂  i h j  ~  !)• To seek a contradiction suppose #(i,j) is
in the path +  1 —> — 1. Then by Lemmas 2.2.1 and 2.2.2, d y j y
and therefore d(ij _ 1), cannot be a repetition degeneration path. By Lemma 2.2.10 
this means H y j _ ^  and 1) cannot be in the same repetition path. Thus there 

must be a repetition head vertex in the path +  1 —> — 1, contradicting
Lemmas 2.2.1 and 2.2.2 regarding band j  — 1. Hence must lie in the path

#(i+l,j —1) * — 1) — T
It remains only to locate H y +i^  in the path Hyj^  —> # ( i j - 1)- Assume (z + 

1) j) 7̂  i hj )  and (* +  l>j) 7̂  {hj  ~  !■)• There are two cases to consider.

(z) If lies in the path H y j _ y  —> H y +lj _ y  then so does Ty+i j _ y .  Two

sub-cases arise. If is a repetition head then so is # (i+ ij)- This
is contradicted by Lemmas 2.2.1 and 2.2.2. If H y +ij _ y  is not a repetition 

head then we must have a repetition head in the path H y +lj)  —» Hy +ij _ ^  or 
Lemma 2.2.10 will be contradicted. However, the existence of this repetition 

head again contradicts Lemmas 2.2.1 and 2.2.2.

(zz) If # ( j+ij)  lies in the path H y +i j _ ^  -f 1 —> H y ^  — 1 then so does Ty+i j _ xy  
Proposition 2.2.6 on relations r(,-j_j) and r(j+ l j _j) provides the contradic­

tion. □

Hence # (i+ ij)  must lie in the path # ( ij)  —> # ( i j - 1)- This completes the proof.

We can at last prove our final theorem of this section.
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T h eo rem  2.2.12 I f  an entry (i , j ) o f T \  is assigned a flag2 then

1. for j  = 2 we have (i , 1) +  1 ^  (i , 2) and (i +  1,2) =  (i, 3),

2. for j  > 3 we have (i + 1 , j  — 1) ^  (i, j) and (i + 1 , j) — (i , j  +  1).

Moreover, if  A > 2 and £(r) < n for all relations r, then (i , j ) is assigned a flag2 if  
and only if  the appropriate condition 1. or 2 . holds.

Proof. If (i , j )  is assigned a flag2 then showing the appropriate condition 1 . or 2. 

is easy.

For the reverse direction, suppose A > 2 and £(r) < n  for all relations r. Suppose 

also that j  > 3 and the conditions from 2. hold. For a contradiction assume that 

no flag2 is assigned to entry (i , j ). As £(r) < n  for all relations r , and by Theorem 

2.1.19, no flag2 assigned to entry (i , j )  is equivalent to the existence of a head arrow 

in the path of unoverlapped arrows T(i+x,j-\) —* However, since and

are both followed by the same head vertex, we have the path —> T^+\,j_i)

free from head arrows. As A > 2 we must have in the path ^ +  1 —►

T(j j) — 1. This means the path T(i+Xj _ i) —> T^j )  —> has length greater than

n, contradicting Lemma 2.2.11.

The case of j  = 2 is similar. □

Exam ple 2.2.13 For our algebra of Example 2.1.4, we have a single flagl in the 

smo-tube. There are no flagOs or flag2s. The position of the flagl is indicated by 

the square box.

1 2 3 4 5 6 .......................

5 6 2 6 2 6 2 ............
4 5 1 5 1 5 1  .........
3 4 0 5  1 5 1 .........
2 3 6 2 6 2 6 ............
i 1 5 1 5 1 5  .........

Theorem 2.2.3 was used to mark the flagl: notice above that (3,2) 7  ̂ (4,2) but that

(3,3) =  (4,3). Since here £(r) < n, for all relations r, and A > 2 we may use the
full equivalences of Theorems 2.2.5 and 2.2.12 to conclude that there are no flagOs

or flag2s present in 7a.
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E xam ple  2.2.14 For our algebra of Example 2.1.5, we have four flagls in the smo- 

tube. Again there are no flagOs or flag2s.

1 2 3 4 5 6 7 8 •

10 13 10 1 6 10 1 6 •
9 12 3 8 12 3 8 12 3 •
8 10 1 6 10 1 6 10 1 •
7 9 13 M 10 1 6 10 1 •
6 8 12 3 8 12 3 8 12 •
5 7 tm 3 8 12 3 8 12 •
4 6 10 1 6 10 1 6 10 •
3 4 8 12 3 8 12 3 8 •
2 2 7 [ID 3 8 12 3 8 •
1 1 6 10 1 6 10 1 6 ■

Since here t(r) > n , for all relations r, we may not use the full equivalences of 

Theorems 2.2.5 and 2.2.12. However, this smo-tube still has the respective conditions 

required to conclude that there are no flagOs or flag2s present.

Exam ple 2.2.15 Let us consider a different example. We keep the same quiver of

25 vertices and 25 arrows, but this time put on 6 relations:
n = r ? i - - - 7?6 , r2  = m • • - 77i o ,  r3  =  774 - 7 7 1 3 ,

7-4 =  77i o  • • • 7715, r 5 =  7715 • • - 7 7 2 2 ,  r 6 =  7)1 8 -• • 7]2 4 -
We get a different smo-tube; this time all rows have a flag. The position of a

flagO or flag2 is indicated by a circle; the flagl by the square.

1 2 3 4 5 6 7  ..............................

4 © 1  4 6  1 4 6  .........
3 4 ©  1 4 6 1 4 ...........
2 3 0 1  4 6 1 4  ...........
1 1 4 ©  1 4 6 1 ...........

Notice in each example that the number of rows without a flagl is equal to the 

number of repetition indices, as stated in Proposition 2.2.4. It is no fluke that all the 

rows have flags in the second example above. The next section, while introducing

the notion of shifts, shows that if an smo-tube has any flagOs or flag2s at all, then

all rows have a flag.
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2.3 R epetition  shift

The aim of this section is to present some further structure of the smo-tube, the so- 

called repetition shift, and we see how important the repetition shift is in governing 

the placement of flags. This importance is shown in Theorem 2.3.14, which gives 

exact conditions for when and how the different types of flag will be present on the 

smo-tube. We begin with a definition. Recall that the M -th band of T \  is the first 

to contain only repetition indices and that f A is the smo-function of A.

D efinition 2.3.1 Let a and b be rows in TA that share the same repetition. Then 

row a is said to have a b-shift of N  if (a, M  +  N ) =  (6, M ) and N  > 0 is minimal 

with this property.

Lem m a 2.3.2 Let R  be a repetition o f A with order A > 2. Let X ] , . . .  , x A be the 

repetition indices of R  with the path H XJ —>• • •—> HXx —> Hx, of length n. I f  N  > 0 

is minimal such that f A {x\) = X2 , then N  is minimal such that f A {xi) =  Xi+\, for 

all i = 1, . . . ,  A. Note that i f  i =  A we take i + 1 =  1.

Proof. Pick 2 < k < A. Let / be minimal such that f lA{x\) = Xk• Thus f lA N{x i) =  

f A {xk) giving f A(x2) =  f A {xk)- Now the proof of Lemma 2.1.10, applied / times, 

gives us no i?-indexed head vertex in the path H /^(X1) —5*• Hfih{x2) except the start and 
end vertices. Hence there is no i?-indexed head vertex in the path H Xk —> H ^ X2̂  

except the start and end vertices. Thus f lA{x2) =  Xk+i, and so f A {xk) = %k+i- 
Minimality of N  follows since x\ was arbitrary. □

Motivated by this result, we now make the following definition.

D efinition 2.3.3 Let R  be a repetition of A, with X\ and X2 repetition indices of

R  such that no i?-indexed head vertex lies in the path H x, —► HX2 except the start

and end vertices. The repetition shift of R  is the least positive integer N  such that 

f ^ { x i )  =  x 2.

Exam ple 2.3.4 We take the usual oriented cycle Q with 25 vertices and 25 arrows, 

and let A =  k Q/ I ,  where 1  is generated by the 8 relations:

r i = r ? i ” ' Wi 6 , r 2 =  rj3 • ■ ■ r)19, r3 =  775 • • •  7 7 2 1 , U  =  m  ■ • • ^ 2 2 ,

7̂ 5 =  m 2 - ■ -V24, r6 = rjU "-r]4, r7 = 7719 • • • 7711, r 8 =  7721 -f7i4-
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The only flags on this smo-tube are flagls:

1 2 3 4 5 6 7  .......................

5 7 5  1 7 5  1 7 .........
4 6 @ 1  7 5 1 7 .........
3 5 1 7 5 1 7 5 ............
2 2 [8] 7 5 1 7 5 .........
i 1 7 5 1 7 5 1  .........

There is only one repetition here, R = (1,7,5). The repetition shift N  of R  is 

equal to 2.

The repetition shift can be observed in the smo-tube by taking a flagl-free row 

containing R: the 6-shift of that row gives the repetition shift, where row b is the 

next flagl-free row up that contains R.

Exam ple 2.3.5 The algebras in Examples 2.1.4 and 2.1.5 both have a repetition 

shift of iV = 1.

Lem m a 2.3.6 Let A have a repetition with repetition shift N . Then all repetitions 

of A have repetition shift N .

Proof. If A has only one repetition we are done, so let R x and R y be two distinct 

repetitions of A with and the respective repetition indices of

Rx and R y, ordered so that the paths H x, H Xx —> Hx, and H m

Hyx —> Hm have length n. Also let R x have repetition shift N . Relabelling if 

necessary, let c /a(;Ei) =  TXi ->  t f / A(Xl) and C /A(y i) =  Tm -► H f ^ m )  be connective 

paths of R x and R y respectively, so that the only connective paths of A that lie in the 

path TX1 —> are c /A(Xl) and cyA(yi) themselves. By definition c /^ (Xl) =  cX2

and so by the proof of Lemma 2.1.10, c — cy2. Hence Ry has repetition shift 

N. This process can be iterated to show that all repetitions have repetition shift 

N. □

For the remainder of the chapter, fix N  as the repetition shift of all the repetitions 
of A.

P ro p o sitio n  2.3.7 Suppose A has only one repetition R, and this is of order A > 2. 

Then for each i, row i of the smo-tube of A has (i +  l)-shift equal to 0 or N .
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P roof. If we have only 2 degeneration paths then, since A > 2, the indices of both 

paths must be repetition indices. So clearly R  has a repetition shift of N  = 1. Now, 

since there are only 2 rows in 7a, we get immediately from Lemma 2.2.2 that each 

row z has (z -I- l)-shift of 1.

Thus assume A has at least 3 degeneration paths. Let x x, . . . ,  x \  be the repetition 

indices of R , with the path i7Xl HXx —► HX] of length n. Let y and 2 be

distinct degeneration head indices such that no degeneration head vertices lie in the 

path Hy —► Hz other than the start and end vertices. Then for some k G {1, . . . ,  A} 

(with A + 1 =  1) we have that H y and Hz lie in the path HXk —» HXk+l. We will 

show that either f f f {y)  = f™{z)  or f}? +N{y) =
By applying Proposition 2.1.1 M  times we get that the path —> H j m ^  —>

HfM(z) —► HjM(Xk+̂  has length less than or equal to n. By M  applications of the 

proof of Lemma 2.1.10 we have no repetition head vertices in this path except the 

start and end vertices. Since by the definition of A/, f j ^ ( y )  and f j ^ ( z )  are repetition 

indices, three possibilities occur:

1. = =

2- f ^ i y )  =  / a 4 { z ) =  f f ? ( x k + l ),

3- f s { y )  =  I a M ,  I a {z ) =  f ( f ( x k+i ) .

Let i be such that y = (i, 2), and so by hypothesis z = ( i+ 1,2). If either possibility

(1) or (2) occurs then row i has an (i +  l)-shift of 0, since (z, M  +  2 ) =  f j ^ (y)  = 

= (z +  1, M  +  2) and hence (z, A7 +  A) =  (z 4-1, M  +  A), so (z, M)  =  (z-f 1, M).  

If possibility (3) occurs then f ™+N(y) = f A +N(xk) = f™{xk+x) = f f f ( z ) ,  and by 
a similar argument (z, M  +  N)  = (z + 1, M); so row z has an (z +  l)-shift of N.  □

We can bring the above results together to form the next proposition, which 

builds upon Proposition 2.2.4. First though we have the following result.

Lem m a 2.3.8 There is an ordering on the repetitions of A: R \ , . . . ,  Ri such that 

whenever (i, j)  ^  (z +  l , j ) ,  for some j  > M , we have (i, j)  e  R k and ( z+l , j )  G R k+\, 

some k 6  {1 , . . . , / }  with I + 1 =  1.
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P roof. Let A have smo-tube 7a and I repetitions of order A and let (z, j)  be an 
element of 7a, where j  > M, and such that (z, j)  7  ̂ (i + 1 , j).  Prom Lemma 2.2.1 we 
have that the path H {iJ) -* H (i+XJ) -* . . .  # ( |d |j)  H {hj) H {i_ XJ)

is of length n. Now, since j  > M  we have that each head vertex above 
is a repetition head vertex and moreover that, by Lemma 2.2.2, every repetition 
head vertex of A is in this list. Therefore, since (z, j )  7  ̂ (z -f- 1, j ) ,  we have two 
distinct connective paths c a n d  with no other connective paths in the
path o(C(jj)) —> t(c(i+ij)) . Define the index (z,j )  to be in repetition Rk,  for some 
k € {1,. . .  J )  with Z -f- 1 =  1, and the index (i + 1 , j )  to be in repetition Rk+\- 
By the proof of Lemma 2.1.10 every R ^-indexed connective path c is followed on 
the quiver by a -indexed connective path c', that is c' is such that the only 
connective paths that are subpaths of the path o(c) —► t(c') are c and c' themselves. 
Continuing in this way for each entry in band j  of T \  yields our required order on 
the repetitions. □

R em ark  2.3.9 Notice that in the case of Example 2.3.4 we have only one repetition. 
This renders Lemma 2.3.8 somewhat trivial in that / =  1, giving an ordered list of 
one element. Thus Rk+i =  Rk and the lemma is then obvious in this case.

P roposition  2.3.10 Suppose A > 2. I f  the following conditions all occur:

1. A has only one repetition R,

2. R  has repetition shift N  = 1,

3. £(r) < n for all relations r,

then all rows in T \ are flagged.
Otherwise the number of un flagged rows is equal to the number of distinct rep­

etition indices.

Proof. If conditions (1) and (2) hold then by Proposition 2.3.7, for each i, row i 
has (i+  l)-shift either 0 or 1. If this shift is 0 then, since A > 2, we can use Theorem
2.2.3 to get a flagl in row i. If the (z +  l)-shift is 1 then by condition (3) we can 
use Theorems 2.2.5 and 2.2.12 to get a flagO or flag2 in row z. Hence all the rows 
are flagged.

Otherwise Proposition 2.2.4 states there are the same number of rows without 
a flagl as there are repetition indices. Thus we need to show there are no flagOs or 
flag2s in 7a whenever one of the three conditions above fails.
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If condition (1) fails we have 2 or more repetitions. Let (z, j )  be an entry of Ta, 

with j  > 3. Suppose for a contradiction that (z,j) =  (z 4- 1, j  — 1); then we have 

(i, j  + M)  =  (z+1, j  +  M —1) and so, since A > 2, this gives (i , j  + M)  ^  (i + l , j  + M ) 

with (z, j  4- M)  and (z -f 1 , j  + M)  in the same repetition. This is prohibited by 
Lemma 2.3.8. We can thus assume that (z, j)  ^  (i +  1, j  — 1) for all z, j ,  and so by 

Theorem 2.2.12 we have no flag2s. A similar argument in the case j  =  2 shows that 

(z,2) 7  ̂ (z, 1) + 1 and hence by Theorem 2.2.5 that there are no flagOs.

If condition (2) fails then for all z and for all j  > 3 we have (z, j )  ^  (z +  1, j  — 1) 

and (z,2) ^  ( z + l , l )  +  l. Theorems 2.2.5 and 2.2.12 then give us no flagOs or flag2s. 

If condition (3) fails wc get our result by Corollaries 2.2.7 and 2.1.18. □

We now focus our attention to the case where the order of the repetitions is 1.

Lem m a 2.3.11 Let X = 1 and let rx be a repetition relation. I f  (a — l)rz < f {rx) < 

an for some positive integer a, then (a — l)n  < £(r^) < (a +  l)rz for all relations r^.

Proof. Let a E Z be such that (a — l)n  < £{rx) < an and let r*. be some relation. 

Clearly we must have £{rk) < (a + l )n  else rx would be a subpath of r^.
Now, since Hx must follow Tx , we must have in the path H x —► Tx . The 

following three diagrams show the possible relative positions of T&: note that we 

allow Tx = Hx and Tc =  Hx or H\. where appropriate. By looking at each diagram 

in turn it is not hard to see that we must have £{rk) > {a — l)rz to prevent being 

a subpath of rx.

C orollary  2.3.12 Let X = 1 and let rx and ry be a repetition relations. I f ( a—l)n < 

£(rx) < an for some positive integer a, then (a -  l)rz < £{ry) < an.

P ro p o sitio n  2.3.13 Suppose X = 1. I f  the following conditions both occur:

1. A has only one repetition relation rx,

2. £{rx) < n,
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then all rows in T \ are flagged.
Otherwise the number of un flagged rows is equal to the number of distinct rep­

etition indices.

Proof. Suppose both conditions hold and yet we have an unflagged row in the 
smo-tube of A. This gives rise to a degree 2M  4-1 maximal overlap sequence ending 
with rx

Tx

which contradicts condition (2 ), since the head arrow of rx appears here in rx twice.

For the converse we will show that if either condition (1) or (2) fails then the 
number of unflagged rows in T \  is equal to the number of repetition indices.

Suppose (1) fails. Then we have k > 2 repetition relations. We know from 

Proposition 2.2.4 that there are k rows in 7a with no flagl: let row i be one of 
these. To seek a contradiction suppose that entry (i, j)  has a flag2 and that j  > 3. 

By Theorem 2.2.12 we have (z, j )  ^  (i -f 1 , j  -  1) and (z, j  +  1) =  (z +  1 , j) . Thus 

(i,j + M + l )  = (z + 1, j  +  M)  and so, since A =  1, ( i , j  + M  + l) =  (i + l , j  + M  + l). 
By Theorem 2.2.3 row i has a flagl, contradicting our hypothesis. The cases where 
j  =  1 or 2 are similar to the above, with the case j  = 1 prohibiting flagOs.

Finally, if (2) fails then Lemma 2.3.11 and Corollary 2.1.18 show that there are 
no flagOs or flag2s in 7a. Thus by Proposition 2.2.4, the number of unflagged rows 

is equal to the number of distinct repetition indices. □

Putting the last two propositions together gives us the theorem of this section. 

Using Theorem 2.1.19 we follow with a useful corollary.

T heorem  2.3.14 The smo-tube T \ has every row flagged if and only if  one of the 

following occurs:

1. A >  2 , there is only 1 repetition, N  = 1, and £(r) < n for all relations r.

2. A =  1, there is only 1 repetition relation rx , and f (rx ) < n.

Otherwise the smo-tube has the same number of un flagged rows as it does distinct 
repetition indices.

C oro lla ry  2.3.15 I f  A has an infinite extending sequence, then T \ has no flagOs or 

flag2s.
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2.4 Finite generation of the Ext-algebra

The previous sections have given us a method to identify exactly those extending 

sequences that are infinite in extent. In this section we bring together these results 

to determine precisely when E (A) is finitely generated: Theorem 2.4.17, our main 

result, does this for us. Toward the end of this section there are a number of 

propositions each of which, for different conditions on E{A), give an explicit finite 

generating set. As noted in the Chapter 1, we will freely interchange a maximal 

overlap sequence and its underlying path. However, when we talk about products of 

maximal overlap sequences, we refer to the corresponding product as basis elements 

in E (A). Thus the product of two maximal overlap sequences may be zero in E(A),  
whilst the product of their underlying paths may be non-zero in kQ. We recall here 

that, for A a cycle algebra, A is the order of the repetitions, N  is the repetition shift, 

and M  is the first band of 7a to contain only repetition indices.

Our first three results, for certain conditions on A, give us restrictions on the 

behaviour of the maximal overlap sequences. These results will aid us when deter­

mining finite generation of E(A).

Lem m a 2.4.1 (1) I f  A > 2 and £(r) > n for all relations r, then there are always

n or more unoverlapped arrows at the end of any even-degree maximal overlap 

sequence.

(2) I f  A =  1, rx and ry are repetition relations, and £{r) > n for all repetition 

relations r, then there are always n or more unoverlapped arrows at the end 

of any even-degree maximal overlap sequence which ends

rx Tx

P roof. (1) If the degree of the maximal overlap sequence is 2 then it is a relation 

and there is nothing to prove. Thus suppose the degree is > 4. If £(r) > 2n for all 

relations r the result is immediate using Proposition 2.1.2. So by Corollary 2.2.7 we 

may suppose n < £(r) < 2n, for all relations r. Let

Tj
I I

I I I________ I
Ti rk
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be the end of the even-degree maximal overlap sequence. Note that ri 7  ̂ rk by 
hypothesis. If rj =  rk then the result is immediate, so assume rj 7  ̂ r^. By Theorems
2.2.3 and 2.1.19 we may assume ri 7  ̂ rj. The diagram below is a copy of the one 
above, but with the relative positions of certain arrows marked; the order in which 
an arrow has been marked is indicated below that arrow. Recall that for a relation 
r/ we have ai as the start arrow and ui as the end arrow.

|Q j___________I a j  U l j  Qfc Qj U / j  |<  > |qfc v )  U k ______________L J j  O t k

3 2 1 9 5 4 1

Once the start and end arrows of each relation have been marked on the diagram 
above, we know we can mark the other arrows for the following reasons, given by 
order of marking.

Note that from Lemma 2.2.11 and Proposition 2.1.1 the paths Hi —♦ Hj  —► 
Hk —> Hi and Ti —> Tj —> T*. —> Ti each have length n.

1. As £(ri) > n, ri contains two copies of ai. One copy must lie in the overlapped 
part of ri and rj, by Proposition 2.1.2 if the degree of the maximal overlap sequence 
is greater than or equal to 6 , or trivially if the degree is 4. By the same reasoning a 
copy of ak must lie in the unoverlapped part of r^. We remark that ai 7  ̂u>i since a 
copy of aj  must lie between ai and ait, but cannot lie in the path g. At this stage 

we allow the possibility that a it = Wk-
2. By the note above, a copy of ak lies in ri between aj and the copy of ai 

placed in 1.
3. H/t is the head vertex that follows Ti by maximality of the overlap sequence, 

so u>i sits as marked in the overlapped part of and rj.
4. Three copies of Ui cannot lie in rj, but a copy of Ui must lie in r^, since 

n < £(rj),£(rit) < 2n. Thus there is a copy of as shown.
5. By the note above, a copy of Uk lies in between Uj and

The presence of two copies of Uk in the unoverlapped part of yields our result.

(2) If the degree of the maximal overlap sequence is 2 then it is a relation and 
there is nothing to prove. Thus suppose the degree is > 4. If t{r) > 2n for all 
relations r  the result is immediate using Proposition 2.1.2. So by Corollary 2.3.12 
we may suppose n < £{r) < 2n, for all repetition relations r. Let

rv

rx rx
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be the end of the even-degree maximal overlap sequence. Note that if r x = ry then 
the result is immediate, so assume rx ^  ry. The diagram below is a copy of the one 
above, but with the relative positions of certain arrows marked; the order in which 
an arrow has been marked is indicated below that arrow. Recall that for a relation 
ri we have a/ as the start arrow and u/ as the end arrow.

1. As £{rx) > n, rx contains two copies of a x. One copy must lie in the 
unoverlapped part of the second rx by Proposition 2.1.2.

2. Since A =  1, Hy is the head vertex which follows Ty. This means a copy of 
Qy is located between u y and a x , as shown.

3. Similarly, since A =  1, H x is the head vertex which follows Tx. This means a 
copy of ujx is located between a y and a x , as depicted.

The presence of two copies of u x in the unoverlapped part of rx yields our 
result. □

Proposition  2.4.2 A maximal overlap sequence P 2k, k > 2, cannot be written as 
a product of maximal overlap sequences P 2a+l p 2l+lQ2b, some a > 0, / > M  4- 1, 

b > 0 , if one of the following occurs:

(1) A > 2, A has > 3 repetitions,

(2) A > 2, A has 2 repetitions and N  ^  1,

(3) A > 2 , A has only 1 repetition and 2N  ̂  1 (mod A),

(4) A > 2, £(r) > n for all relations r,

(5) A = 1, A has 2 repetition relations rx and ry, and £(rx ),£(ry) > n,

(6) A =  1, A has > 3 repetitions.

Proof. If P 2k is to be written as such a product, we at least need the product in 
k Q of the three underlying paths to be non-zero: thus we assume this now. Suppose 
for a contradiction that P 2k can be written as the above product. Consider the 
underlying path of F 2l+X, represented thus

|Qx_____Qy <JJx Ot-x
3 1

P2q+3 P 2 a+ 5 P 2a+ 2J+ 1

P 2a+ 4 P2a+2Z P 2 a+ 2 i+ 2
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where the relations are from P 2k, in the same positions that they appear in the 

corresponding part of the underlying path of P 2k.

Let us also construct F 2l+l as a maximal overlap sequence, starting at o(??2a+3):

S3 S2 I - 1  P 2 a + 2 Z+ 2

P 2 a + 3  P 2 a + 2 J -1  P 2 a+ 2 i +  l

Now look at 7 a . If P2a+2i+i = P2a+2i+2 then two cases arise. Either S3 =  P2a+3 , in 
which case p2a+3 is the only relation of A by maximality of the overlap sequence, or 

s3 ^  P2a+3 ) in which case by Theorems 2.2.3 and 2.1.19 there is no such maximal 
overlap sequence of degree 21 + 1. Both cases give a contradiction to the hypothesis.

So assumeP2a+2i+\ ^  P2a+2i+2 • Let / ,  g and h be integers such that 1 < f , g , h  < 

m  and 77 =  p2a+2i, rg =  P2a+2/+i and rh =  P2a+2i+2 -
The two diagrams above, along with Lemmas 2.2.1 and 2.2.2, mean that we have 

part of the smo-tube taking the form

  9 .........
  f  h .........  (t)
  9............

(1) By the remark following Lemma 2.1.10 the two indices g and h are in different 

repetitions, respectively R t and R s say. By Lemma 2.3.8 we have a special ordering 

on the repetitions, which says that R 3 follows Rt. However, since the index /  is 

in R s we have that Rt follows R s. Since there are more than two repetitions this 

contradicts Lemma 2.3.8. Hence P 2k cannot be written as such a product.

(2) By the remark following Lemma 2.1.10 the two indices g and h are in the 

two different repetitions, respectively Rt and R s say. However this means, using the 

index g in the part of the smo-tube at (f), that the repetition shift is equal to 1. 

This contradicts the hypothesis.
(3) Here / ,  g and h are all in the one repetition. Using the index g in the part 

of the smo-tube displayed at (f) we see that the twice the repetition shift is equal 

to 1 (modA). This contradicts the hypothesis.

(4) Let F 21 be the maximal overlap sequence of degree 21 that has underlying 

path an initial subpath of the underlying path of F 2l+]. Then F 21 can be viewed as
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the maximal overlap sequence F 2l+l above, but with the relation p 2a+2i+2 missing. 
By Lemma 2.1.2 we have £(F2l+l) < £(F21) -f n. However, consider the maximal 
overlap sequence p 2a+2l+2 = p 2a+i p 2i+\ gy Lcmma 2 .4.1 the right-hand path of 

unoverlapped arrows has length greater or equal to n. This gives us £(F2l+1) > 
£(F21) + n , a contradiction.

(5) As in (4), let F 21 be the maximal overlap sequence of degree 21 that has 

underlying path an initial subpath of the underlying path of F 2/+1. By Lemma 2.1.2 

we have £{F2l+x) < £(F21) + n. However, consider the maximal overlap sequence 
p 2a+2i+2 _  p 2a+i j?2i+i gy  gemma 2 .4.1 the right-hand path of unoverlapped 

arrows has length greater or equal to n. This gives us £(F2l+x) > £(F21) +  n, a 

contradiction.

(6) This is identical to (1). □

Lem m a 2.4.3 Let A be such that £(r) < n for all repetition relations r and suppose 

one of the following occurs:

1. X > 2, A has precisely 2 repetitions, N  = 1,

2. X > 2, A has only 1 repetition, 2N  = 1 (mod A),

3. X = 1, A has precisely 2 repetition relations.

Let P k be a maximal overlap sequence and let S  be the subpath (but not necessarily

a maximal overlap sequence):

P2a+3  P 2 a+ 5  P 2 a + 2 1 - 1  P 2 a + 2 i+ l

I I I I I I I I
I______ I ■" I______ II______ II______ I

P 2 a+ 4  P 2 a + 2 ( - 2  P 2 a + 2 ( P 2 a+ 2 J+ 2

for some I > M. The relations above are from P k, in the same positions that they 

appear in the corresponding part o f the underlying path of P k. Then the path S  

can be constructed as a maximal overlap sequence if  and only if a maximal overlap 

sequence exists starting at o(p2a+3) of degree 21+1.

P roof. If the path S  can be formed as a maximal overlap sequence then it must 

take the form:

S3 S2(_  1 P2a +  2f+2

I I I I I I
I______ I I______ II______ I

P 2 a +  3 P 2 a + 2 Z- 1  P 2 a + 2 Z +  1
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which is a maximal overlap sequence of degree 21 4 - 1 .

We now prove the converse. Suppose there exists a maximal overlap sequence 

of degree 21 + 1 starting at o(p2a+3)- It will take the form:

S3 821-1 «2Z+1

P 2 a + 3  P 2a+ 2Z -1  P2a+2Z+1

Since i{r) < n for all relations r, it is enough to show that S2/+1 =  P2a+2/+2- It 

is clear that S2/+1 7̂  P2a+2i+\ and P2a+2/+2 i 1 P2a+2/+i- We now consider each case 
separately.

(1) In 7a, having 2 repetitions and N  = 1 is equivalent to having (i , j ) =  

(i + 2 + k(i) , j  — 1) for every unflagged row i and for j  > M, where k(i ) is the 
number of flagged rows counting up from row i to the next but one unflagged row. 

Consider band a + I of 7a. From the maximal overlap sequence P k, and using 

Lemma 2.2.1, we can see this means that the index of P2a+2/+2 is the next different 

one in band a + l up from the index of P2a+2/+i- Since S2Z+1 7̂  P2a+2/+i we thus get 

that S 2 l + \  = P2a+2l + 2-
(2) In 7a, 2N = 1 (mod A) is equivalent to having (i, j )  = (i + 2 + k( i ) , j  -  1) 

for every unflagged row i and for j  > M,  where k(i ) is the number of flagged rows 
counting up from row i to the next but one unflagged row. The argument now 

follows that of (1).
(3) In 7a, having 2 repetitions and A =  1 is equivalent to having (i, j) = (i + 

2 + k(i), j  -  1) for every unflagged row i and for j  > M,  where k(i) is the number 

of flagged rows counting up from row i to the next but one unflagged row. The 
argument now follows that of (1). □

The following definition and proposition are fundamental to the finite generation 

of E{A).

D efinition 2.4.4 Let ev be a zero-length connective path of some repetition R. For 

ease of notation, we write R  =  ( a j , 0,2 , ■ ■ ■, a\)  and cfll =  ev, with o(rai ) =  t(rflA) =  v 

and /a(gi)  — &{+1, for all 0 < i < A. The multiplication path of cai is the path in 
kQ

9v  =  r a \  C a 2 r a 2 ^ a s  ’ '  '  r a x ~  1 C a . \ f ' a \

If a multiplication path can be formed as a maximal overlap sequence then it is 
called a generative multiplication path. Note that if this is the case, deg(<7„) =  2A.
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R em ark  2.4.5 If gv =  r a i c a 2 r a 2 c a3 • • • r aA _ 1 c a A r aA is a generative multiplication 

path then r a i c a 2 r a 2 c a3 • • • rai_^cairai is also a maximal overlap sequence, for any 

i <  A.

Proposition 2.4.6 L e t  A b e  s u c h  t h a t  n o  f l a g O s  o r  f l a g 2 s  a r e  p r e s e n t  i n  TX and 

l e t  P 2t a n d  Q2j b e  e v e n - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e s  ( o f  d e g r e e  2i a n d  2j  

r e s p e c t i v e l y )  s u c h  t h a t  t h e  p r o d u c t  o f  u n d e r l y i n g  p a t h s  P 2lQ2i i s  n o n - z e r o  i n  kQ. 

T h e n  t h e  p a t h  P 2lQ2i i s  a l s o  a  m a x i m a l  o v e r l a p  s e q u e n c e ,  o f  d e g r e e  2i  +  2j .

Proof. Consider two maximal overlap sequences P 2t and Q2j :

P3 P5 P 2 ( « - l)  +  l
>2 i =

P 2 P 4 P2(i — 1) P2i

<73 <75 < 7 2 (j-l) +  l

Q2j =  I I I I . . .  I I
92 <74 9 2 0 - 1 )  92 j

S u p p o s e  t h a t  P 2 t Q 2 j  i s  n o n - z e r o  a s  a  p a t h  i n  k Q ;  t h e n  t ( P 2 * )  =  o ( Q 2 j ) .  W e  n e e d  t o  

b u i l d  t h e  p a t h  P 2 lQ 2i  a s  a  m a x i m a l  o v e r l a p  s e q u e n c e .  W e  s t a r t  w i t h  P 2% a s  a b o v e :

P3 P 2 ( i - 1 )  +  1

I I I I
I I I_________II________ I

P2 P2(i—1) P2i

B y  h y p o t h e s i s  a n d  T h e o r e m  2 . 1 . 1 9  w e  k n o w  w e  m a y  o v e r l a p  w i t h  a n o t h e r  r e l a t i o n ,  

P 2 i + i  s a y .  S i n c e  t ( p 2 i )  =  o f a ) ,  a n d  u s i n g  t h e  h y p o t h e s i s  a n d  T h e o r e m  2 . 1 . 1 9  a g a i n ,  

w e  h a v e  t h e  m a x i m a l  o v e r l a p  s e q u e n c e :

P3 P2(i —1) +  1 P2i+1 P 2 i+ 3

I I I I I I I I
l________ l ■"__l_________II________ I________

P2 P2(t —1) P2t P2(t + 1)

w h e r e  P 2 ( i + i )  =  Q2 a n d  p  i s  t h e  p a t h  o f  u n o v e r l a p p e d  a r r o w s .  I n  t h e  f o l l o w i n g  

d i a g r a m  w e  c a n  s e e  t h e  p a t h  p  w i t h i n  Q 2K
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| P 2 i+ 3 |
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T h u s  p  h a s  a s  a n  i n i t i a l  s u b p a t h  t h e  p a t h  o f  u n o v e r l a p p e d  a r r o w s  o f  Q 3  a n d  

h e n c e  w e  m a y  o v e r l a p  o u r  m a x i m a l  o v e r l a p  s e q u e n c e  a b o v e  w i t h  t h e  r e l a t i o n  q 4 .  

U s i n g  t h e  h y p o t h e s i s  a n d  T h e o r e m  2 . 1 . 1 9  w e  g e t  t h e  m a x i m a l  o v e r l a p  s e q u e n c e

P3 P 2 ( t - 1 )  +  1 P 2 i+ 1  P 2 i+ 3  P 2 t+ 5

I I I I I I I I I I
1______ I I______ II______ I______ ||_____ I

P2 P2 (i — 1) P2i P2(i+1) P2(i+2)

w h e r e  P 2 ( i + 2 )  '■= <E- W e  c o n t i n u e  i n d u c t i v e l y  s e t t i n g  P 2 ( * + f c )  =  Q2k f o r  1 <  k <  j .  □

Corollary 2.4.7 L e t  A  b e  s u c h  t h a t  n o  f l a g O s  o r  f l a g 2 s  a r e  p r e s e n t  i n  T \ .  I f  g v  i s  

a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h  t h e n  g lv  E E { A) i s  n o n - z e r o  f o r  a l l  I >  1.

O n c e  w e  h a v e  s t a t e d  t h e  f o l l o w i n g  d e f i n i t i o n  w e  w i l l  b e  i n  a  p o s i t i o n  t o  s t a r t  

d e c i d i n g  i f  E ( A )  i s  o r  i s  n o t  f i n i t e l y  g e n e r a t e d .

Definition 2.4.8 I f  A w  i s  a n  e x t e n d i n g  s e q u e n c e  o f  E ( A )  s t a r t i n g  a t  t h e  v e r t e x  

w  t h e n ,  a l o n g  w i t h  w  a n d  t h e  a r r o w  s t a r t i n g  a t  w ,  i t  n a t u r a l l y  c o r r e s p o n d s  t o  

E w  : =  E x t ^ S ^ A ) ,  w h e r e  S w  i s  t h e  s i m p l e  A - m o d u l e  o c c u r r i n g  a t  w .  T h e n  E w  

i s  a  ( p o s s i b l y  n o n - u n i t a l )  s u b r i n g  o f  E ( A ) .  W e  a l s o  l e t  E ™  : =  E x t ^ S ' u , ,  A )  =  

0 ^ 0  E x t ^ S y , ,  A )  b e  t h e  ( p o s s i b l y  n o n - u n i t a l )  s u b r i n g  o f  E w  c o n s i s t i n g  o f  t h e  e v e n -  

d e g r e e  e l e m e n t s .

S a y  t h a t  a  n o n - u n i t a l  s u b r i n g  7Z  o f  E ( A )  h a s  a  f i n i t e  g e n e r a t i n g  s e t  i f  t h e r e  i s  

a  f i n i t e  s u b s e t  S  o f  E ( A )  i n  w h i c h  e v e r y  e l e m e n t  o f  TZ m a y  b e  e x p r e s s e d  a s  a  f i n i t e  

p r o d u c t  o f  e l e m e n t s  f r o m  S .

A  m a x i m a l  o v e r l a p  s e q u e n c e  a o f  d e g r e e  2  i s  s a i d  t o  b e  i n  a n  e x t e n d i n g  s e q u e n c e  

A  i f  a =  A z  f o r  s o m e  z >  2 . A  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h  g v  i s  i n  t h e  l o w e r  h a l f  

( r e s p e c t i v e l y  u p p e r  h a l f )  o f  a n  i n f i n i t e  e x t e n d i n g  s e q u e n c e  A  i f  t h e r e  i s  s o m e  d e g r e e  

2  >  2  a n d  s o m e  e v e n - d e g r e e  ( r e s p e c t i v e l y  o d d - d e g r e e )  m a x i m a l  o v e r l a p  s e q u e n c e  p  

i n  A  s u c h  t h a t  A z  =  p g v , w i t h  t h e  p r o d u c t  i n  E ( A ) .

U s i n g  t h i s  d e f i n i t i o n  w e  g e t  t h a t  E ( A )  i s  f i n i t e l y  g e n e r a t e d  a s  a  k - a l g e b r a  i f  a n d  

o n l y  i f  E w  h a s  a  f i n i t e  g e n e r a t i n g  s e t  f o r  a l l  w  s u c h  t h a t  A w  i s  a n  i n f i n i t e  e x t e n d i n g  

s e q u e n c e .
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Remark 2.4.9 O n c e  a n d  f o r  a l l  w e  t a k e  c a r e  o f  t h e  b a s i s  e l e m e n t s  o f  E (A) o f  d e g r e e  

0  a n d  1 ;  f r o m  C h a p t e r  1 w e  k n o w  t h e s e  c o r r e s p o n d  r e s p e c t i v e l y  t o  t h e  v e r t i c e s  a n d  

a r r o w s  o f  A. T h e  q u e s t i o n  w e  r e s o l v e  h e r e  i s  t h a t  o f  w h e t h e r ,  t o  h a v e  a  f i n i t e  

g e n e r a t i n g  s e t  S  f o r  E x t ^ 2 ( A , A ) ,  w e  n e e d  S  t o  i n c l u d e  e l e m e n t s  o f  E ( A )  o f  d e g r e e  

0  o r  1 . T h e  a n s w e r  i s  t h a t  i t  d o e s  n o t ,  a s  t h e  n e x t  p r o p o s i t i o n  s h o w s ,  w h e n  u s e d  

w i t h  s u b s e q u e n t  p r o p o s i t i o n s .

Proposition 2.4.10 L e t  A w  b e  a n  i n f i n i t e  e x t e n d i n g  s e q u e n c e  a n d  l e t  a  b e  a  m a x ­

i m a l  o v e r l a p  s e q u e n c e  i n  A w  o f  d e g r e e  g r e a t e r  t h a n  o r  e q u a l  t o  2 M .  L e t  77 b e  a n  

a r r o w  i n  k Q ;  t h e n  77 c o r r e s p o n d s  t o  a  b a s i s  e l e m e n t  o f  E( A )  o f  d e g r e e  1 a n d  w e  h a v e  

t h e  f o l l o w i n g .

( 1 )  I f  d e g ( a )  i s  e v e n  a n d  <277 G k Q  i s  n o n - z e r o  i n  E ( A )  t h e n  A w  h a s  a  g e n e r a t i v e  

m u l t i p l i c a t i o n  p a t h  i n  i t s  l o w e r  h a l f .

( 2 )  I f  d e g ( a )  i s  o d d  a n d  <277 €  kQ i s  n o n - z e r o  i n  E ( A )  t h e n  A w  h a s  a  g e n e r a t i v e  

m u l t i p l i c a t i o n  p a t h  i n  i t s  u p p e r  h a l f .

Proof. L e t  A w , a  a n d  77 b e  a s  a b o v e .

( 1 )  L e t  d e g ( a )  b e  e v e n  a n d  a p  b e  n o n - z e r o  i n  E ( A ) ;  w e  l e t  021 a n d  < 2 2 /+ i  b e  

t h e  l a s t  r e l a t i o n s  o f  a  a n d  <277 r e s p e c t i v e l y .  T h e n  s i n c e  77 i s  a  p a t h  o f  l e n g t h  1 a n d  

d e g ( a )  >  2 M ,  A w  m u s t  t a k e  t h e  f o r m

« 2 i+ l  3 3  S2A +  1 S2A+3

I 1 I------------ 1 I I I I
1 \n 1 1_________m________1

0-21 s 2 S2A S2A+2

w i t h  S 2 A + 2  =  s 2 a n d  5 2 A + 3  =  S3 .  I t  i s  i m m e d i a t e  t o  s e e  t h a t  t h e  m u l t i p l i c a t i o n  p a t h  

s t a r t i n g  a t  0 (7 7 )  i s  a  m a x i m a l  o v e r l a p  s e q u e n c e  s i n c e  c l e a r l y  S 3  i s  t h e  r e l a t i o n  t h a t  

m a x i m a l l y  o v e r l a p s  S 2 :  i f  77 w e r e  a  l o n g e r  p a t h  t h i s  n e e d  n o t  b e  t r u e .  W e  c o n t i n u e  

b u i l d i n g  t h e  m a x i m a l  o v e r l a p  s e q u e n c e  u p  t o  d e g r e e  2 A  i n  t h e  o b v i o u s  w a y  u s i n g  t h e  

r e l a t i o n s  f r o m  A w . T h u s  A w  h a s  a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h  i n  i t s  l o w e r  h a l f .

( 2 )  N o w  l e t  d e g ( a )  b e  o d d  w i t h  <277 n o n - z e r o  i n  E ( A )  a n d  l e t  a , 2 i - \  a n d  0 2 1 b e  

t h e  l a s t  r e l a t i o n s  o f  a  a n d  ar)  r e s p e c t i v e l y .  T h e n  s i n c e  77 i s  a  p a t h  o f  l e n g t h  1 a n d  

d e g ( a )  >  2 M ,  A w  m u s t  t a k e  t h e  f o r m

G2Z-1 3 2  S 2 \  «2A +  2

I------------- 1 I I I I
I 3 1 I I______ 31________ I

&2l S3 S2A +  1 52A+3

w i t h  S 2 A + 2  =  s 2 a n d  S 2 A + 3  =  5 3 .  A s  b e f o r e ,  i t  i s  i m m e d i a t e  t h a t  t h e  m u l t i p l i c a t i o n  

p a t h  s t a r t i n g  a t  0 (7 7 )  =  o ( s 2 )  i s  a  m a x i m a l  o v e r l a p  s e q u e n c e  a n d  h e n c e  a  g e n e r a t i v e  

m u l t i p l i c a t i o n  p a t h  i n  t h e  u p p e r  h a l f  o f  A w . □
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Rem ark 2.4.11 I f  A  s a t i s f i e s  o n e  o f  t h e  s i x  c o n d i t i o n s  i n  P r o p o s i t i o n  2 . 4 . 2  t h e n  

t h e  s e c o n d  d i a g r a m  i n  t h e  p r o o f  a b o v e  y i e l d s  t h e  e x i s t e n c e  o f  a n  a r b i t r a r i l y  l o n g  

o d d - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e  i n  t h e  p o s i t i o n  o f  t h e  F 2 /+ 1  f r o m  P r o p o s i t i o n

2 . 4 . 2 . T h i s  c o n t r a d i c t s  t h a t  p r o p o s i t i o n  a n d  s o  w e  m a y  c o n c l u d e  t h a t  c o n d i t i o n

( 2 )  o f  P r o p o s i t i o n  2 . 4 . 1 0  n e v e r  o c c u r s  u n d e r  a n y  o f  t h e  c o n d i t i o n s  f r o m  P r o p o s i t i o n

2 . 4 . 2 .

I n  P r o p o s i t i o n  2 . 4 . 2  w e  s h o w e d  t h a t ,  g i v e n  o n e  o f  s i x  c o n d i t i o n s ,  a  m a x i m a l  

o v e r l a p  s e q u e n c e  c o u l d  n o t  b e  w r i t t e n  a s  a  p r o d u c t  w i t h  a  s e c o n d  o d d - d e g r e e  f a c t o r  

o f  d e g r e e  g r e a t e r  t h a n  o r  e q u a l  t o  2 M  +  3  ( c a l l e d  F 2l+ X  i n  P r o p o s i t i o n  2 . 4 . 2 ) .  N o n ­

e x i s t e n c e  o f  t h i s  f a c t o r  i s  u s e d  a s  a  h y p o t h e s i s  i n  p a r t  o f  t h e  n e x t  P r o p o s i t i o n .  T h e  

r e a s o n  f o r  t h i s  i s  t h a t  w e  w a n t  t o  e x a m i n e  t h e  c a s e s  w h e r e  w e  c a n n o t  u s e  a r b i t r a r y  

p o w e r s  o f  a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h  f o u n d  i n  t h e  u p p e r  h a l f  o f  a n  e x t e n d i n g  

s e q u e n c e ,  t o  g e t  a  f i n i t e  g e n e r a t i n g  s e t .

Proposition 2.4.12 L e t  A w  b e  a n  i n f i n i t e  e x t e n d i n g  s e q u e n c e  o f  A .

I f  t h e r e  i s  a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h  g v  i n  t h e  l o w e r  h a l f  o f  A w  t h e n  

h a s  a  f i n i t e  g e n e r a t i n g  s e t .

M o r e o v e r ,  i f  n o  c v c n - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e  A ^  i n  A w  m a y  b e  w r i t t e n  

a s  a  p r o d u c t  o f  m a x i m a l  o v e r l a p  s e q u e n c e s  A ^ + x  F 2 l + l  Q 2 b , f o r  a n y  a  >  0 , /  >  M + l ,  

b  > 0, t h e n  t h e r e  i s  a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h  g v  i n  t h e  l o w e r  h a l f  o f  A w  i f  

a n d  o n l y  i f  h a s  a  f i n i t e  g e n e r a t i n g  s e t .

Proof. L e t  A w  b e  a n  i n f i n i t e  e x t e n d i n g  s e q u e n c e  w i t h  a  g e n e r a t i v e  m u l t i p l i c a t i o n  

p a t h  g v  i n  i t s  l o w e r  h a l f .  L e t  G v  b e  t h e  i n f i n i t e  e x t e n d i n g  s e q u e n c e  s t a r t i n g  a t  v ,  s o  

t h a t  g v  i s  i n  G v . D e f i n e  p w  a s  t h e  m a x i m a l  o v e r l a p  s e q u e n c e  o f  l e a s t  e v e n - d e g r e e  i n  

A w  s u c h  t h a t  d e g Q ^ )  >  2M  a n d  t(pu,) =  v .  W e  t a k e  a s  o u r  g e n e r a t i n g  s e t  f o r  E % f :

1 . T h e  t r i v i a l  p a t h  e v .

2 .  A l l  e v e n - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e s  i n  A w  w i t h  d e g r e e  l e s s  t h a n  o r  

e q u a l  t o  d e g Q ^ ) .

3 . T h e  m a x i m a l  o v e r l a p  s e q u e n c e  g v  o f  t h e  h y p o t h e s i s .

4 . A l l  e v e n - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e s  i n  G v  t h a t  h a v e  d e g r e e  l e s s  t h a n  

t h e  d e g r e e  o f  g v .
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Let a be an even-degree maximal overlap sequence in A w. We show how to get a 
from the above set by considering the degree of a.

• If deg(a) < deg(pu;), then a is in the chosen generating set.

• If deg(a) > deg(pu;) then, using the remark following Definition 2.4.4, we may 

write a = PwPvfh f°r some k > 0 , and where q is a maximal overlap sequence 
in Gv of even-degree less than or equal to deg(<7„). We show this below:

Piv a k q
i*V

The above product is non-zero in E{A) by Proposition 2.4.6.

C o n v e r s e l y ,  s u p p o s e  t h a t  w e  d o  h a v e  s o m e  f i n i t e  g e n e r a t i n g  s e t  S  f o r  E a n d  t h a t  

n o  m a x i m a l  o v e r l a p  s e q u e n c e  i n  A w  m a y  b e  w r i t t e n  a s  a  p r o d u c t  o f  m a x i m a l  

o v e r l a p  s e q u e n c e s  A ^ + l  F 2l+X Q2b, f o r  a n y  a >  0, /  >  M  +  1, b >  0. W e  c o n s i d e r  a  

m a x i m a l  o v e r l a p  s e q u e n c e  i n  A w  o f  s u f f i c i e n t l y  h i g h  e v e n - d e g r e e  s u c h  t h a t ,  i n  a n y  

e x p r e s s i o n  o f  i t  a s  a  p r o d u c t  o f  e l e m e n t s  o f  S ,  a t  l e a s t  o n e  e l e m e n t  o f  S  o f  d e g r e e  

>  2 o c c u r s  w i t h  m u l t i p l i c i t y  a t  l e a s t  2 . W i t h o u t  l o s s  o f  g e n e r a l i t y ,  w e  m a y  c h o o s e  

a  m a x i m a l  o v e r l a p  s e q u e n c e  a i n  A w  w i t h  a =  h o d h \ d ,  w h e r e  d  €  5, d e g ( d )  >  2 , 

e a c h  h i  i s  a  p r o d u c t  o f  g e n e r a t o r s ,  i =  0,1, a n d  d e g ( h \ )  >  2 M  +  1. N o w ,  s i n c e  

d e g ( / l i d )  >  2 M  +  3  a n d  d e g ( a )  i s  e v e n ,  w e  h a v e  b y  h y p o t h e s i s  t h a t  d e g ( / i i d )  i s  e v e n .  

T h u s  d e g ( f i o ^ )  i s  e v e n .  T h e r e f o r e ,  s i n c e  t ( d )  =  o ( / i i ) ,  w e  h a v e  t h a t  t h e  m a x i m a l  

o v e r l a p  s e q u e n c e  h \ d  i s  e i t h e r  a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h ,  o r  s o m e  p o w e r  ( w i t h  

m u l t i p l i c a t i o n  i n  E (A)) o f  a  g e n e r a t i v e  m u l t i p l i c a t i o n  p a t h ,  i n  t h e  l o w e r  h a l f  o f  A w . □

T heorem  2.4.13 I f  each infinite extending sequence of E (A) contains a generative 

multiplication path in its lower half, then E (A) is finitely generated as a k-algebra.

Proof. Let A w be an infinite extending sequence with gv, pw and Gv as in Propo­

sition 2.4.12. Then by Corollary 2.3.15, Ta has no flagOs or flag2s. Note also that 

deg(gv) = 2A and 2M  < d e g ^ )  < 2M  + 2A -  2. From the first part of Proposition
2.4.12 we get all the even-degree maximal overlap sequences in A w with the finite 
generating set for E*v as given there. Now augment that generating set by including 
the following elements.

5. The arrow starting at w.
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6 . A l l  o d d - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e s  s i n  A w s u c h  t h a t  d e g ( s )  <  d e g ( p u , ) 4 - 

2 M  +  1 .

7 . A l l  o d d - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e s  t  i n  Gv s u c h  t h a t  2 M + 1  <  d e g ( t )  <  

2 M  +  2 A  +  1 .

W i t h  t h i s  s e t  w e  n o w  d e s c r i b e  h o w  t o  g e t  a n y  o d d - d e g r e e  m a x i m a l  o v e r l a p  s e q u e n c e  

b i n  Aw. N o t e  t h a t  t h e  d e g r e e s  a r e  l a r g e r  h e r e  t h a n  i n  t h e  g e n e r a t i n g  s e t  o f  t h e  l a s t  

p r o p o s i t i o n  f o r  t h e  f o l l o w i n g  r e a s o n .  L e t  q b e  a  m a x i m a l  o v e r l a p  s e q u e n c e  i n  G v o f  

o d d - d e g r e e  l e s s  t h a n  d e g ( p l ) ) .  T h e n  t h e  u n d e r l y i n g  p a t h  o f  q i s  a n  i n i t i a l  s u b p a t h  o f  

t h a t  o f  g v . N o w ,  i f  6 i s  o f  h i g h - d e g r e e ,  i t s  l a s t  r e l a t i o n  m u s t  b e  a  r e p e t i t i o n  r e l a t i o n .  

H o w e v e r ,  t h e  l a s t  r e l a t i o n  o f  q n e e d  n o t  b e .  W e  m u s t  t h e r e f o r e  c h o o s e  t h e  r i g h t - m o s t  

f a c t o r  o f  6 , d e n o t e d  t  b e l o w ,  t o  b e  o f  s u f f i c i e n t l y  h i g h  d e g r e e  t o  e n d  w i t h  a  r e p e t i t i o n  

r e l a t i o n .  W e  t h e n  u s e  L e m m a  2 . 2 .1  a n d  T h e o r e m  2 . 2 . 3  t o  g i v e  u s  t h e  c o r r e c t  e n d  

r e l a t i o n  f o r  t h e  p r o d u c t  ( t h i s  i s  t r i v i a l  i f  A  h a s  o n l y  1 r e p e t i t i o n  r e l a t i o n ) .

•  I f  d e g ( 6 )  <  d e g ( p w ) +  2 M  +  1 , t h e n  b i s  i n  t h e  c h o s e n  g e n e r a t i n g  s e t .

•  I f  d e g ( 6 )  >  d e g Q ^ )  +  2 M  +  1 , t h e n  b =  p w g ^ t ,  f o r  k  > 0 a n d  w h e r e  t  i s  s o m e  

m a x i m a l  o v e r l a p  s e q u e n c e  o f  G v  a s  i n  7 . a b o v e ,  s o  t h a t  d e g ( t )  =  d e g ( 6 )  —  

d e g ( p t y )  — k d e g ( g v ) .  W e  i l l u s t r a t e  p w g y t  b e l o w  a n d  t h e n  p r o v e  t h a t  s u c h  a  

m a x i m a l  o v e r l a p  s e q u e n c e  b m a y  i n d e e d  b e  e x p r e s s e d  i n  t h i s  w a y .

Pw n k tVv

Firstly, pwgyt' is non-zero in E (A) by Proposition 2.4.6, where t' is the even-degree 

maximal overlap sequence in Gv of degree deg(t) — 1. By maximality of our overlap 

sequences, and using the remark following Definition 2.4.4, we have that the last 

relation of t' is the same as that of b', where b' is the even-degree maximal overlap 

sequence in A w of degree deg(6) -  1. By Proposition 2.1.2 it is enough to show that 

the last relation of t is the same as the last relation of 6. If A has only 1 repetition 

relation then this is immediate, so suppose A has more than 1 repetition relation. 

Then, since Gv and A w are infinite extending sequences, Theorem 2.2.3 says that 

t (t) 7  ̂ t ( t ' )  and t ( 6 )  ^  t ( f e ' ) .  Moreover, since deg(t) > 2M  + 1, we have that the last 

relation of t is a repetition relation. By Lemmas 2.2.1 and 2.2.2 we have that the
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last relation of t is equal to that of b. Thus pwgyt is non-zero in E{A) and is equal 
to b.

Since there are only finitely many such A w, taking the union of the above sets 

over each infinite A w, along with all other trivial paths, arrows and maximal overlap 

sequences in finite extending sequences, gives us a finite generating set for ■E'(A). □

The next two propositions examine the cases where arbitrary powers of a gen­

erative multiplication path in the upper half of an extending sequence can also be 

used to get a finite generating set.

Proposition 2.4.14 Let A be such that f(r) < n for all repetition relations r. 

Suppose one of the following occurs:

1. A > 2, A has precisely 2 repetitions, N  — 1,

2. A > 2, A has only 1 repetition, 2N  =  1 (mod A),

3. A =  1, A has precisely 2 repetition relations rx and ry.

Let Aw be an infinite extending sequence. Then E w has a finite generating set if  
and only if there is a generative multiplication path gv in the lower or upper half of  

Aw.

Proof. Suppose first that E w has a finite generating set S, which we fix. We 
consider a maximal overlap sequence in A w of sufficiently high even-degree such 

that, in any expression of it as a product of elements of S, at least one element of 

S  of degree > 2 occurs with multiplicity at least 3. W ithout loss of generality, we 

may choose a maximal overlap sequence a in A w with a =  hodhidh2d, where d G S, 
deg(d) > 2, each hi is a product of generators, 2 =  0,1,2, and deg(h\) > 2M  +  1.

We have that t (hi) — o(d), for i = 0, 1 and 2. Thus o(d) is a zero-length 

connective path. We need to show that o(d) has a generative multiplication path.

Since at least one out of dh \ , dh<i and dh\dh2 is of even degree, one of the three will
be a generative multiplication path or a power of one. Thus A w has a generative 

multiplication path in its lower or upper half.

Conversely, suppose A has a zero-length connective path ev that has a generative 

multiplication path gv. If gv is in the lower half of A w then by the proof of Theorem

2.4.13 we get, a finite generating set for E w. Thus suppose gv is in the upper half 
of A w. Note that for condition (2), since we have only 1 repetition, gv being in the
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upper half of Aw is equivalent to gv being in the lower half of A w. Thus we get our 

result immediately for condition (2). Define sw as the maximal overlap sequence 

of least odd-degree in A w, such that deg(su,) > 2M  +  1 and t(sw) =  v. Let Gv be 

the extending sequence starting at v, a sequence infinite by Corollary 2.3.15 and 

Proposition 2.4.6. For condition (1) we take as a finite generating set for E w:

1. The trivial path ew and the arrow starting at w.

2. All even-degree maximal overlap sequences in A w with degree less than or

equal to deg(stu) -I- 2M  — 1.

3. All odd-degree maximal overlap sequences in A w with degree less than or equal 

to deg(su,).

4. All even-degree maximal overlap sequences in Gv with degree less than or 

equal to that of gv.

5. All odd-degree maximal overlap sequences t in Gv, such that 2M+1 < deg(t) < 

2M + 2A +  1.

Let b be an odd-degree element of E w, of degree 21 -I- 1. If / =  0 then b is an 

arrow and so is itself a member of our generating set, so suppose that I > 1. Then 

6 is a maximal overlap sequence in A w.

• If deg(6) < deg(sw), then b is itself in the generating set.

• If deg(6) > deg(su;), then using the remark following Definition 2.4.4, we may

write b = swg%q, for some k > 0 , and where q is a maximal overlap sequence 

in Gv of even-degree less than or equal to deg(g,;). We show this below:

SW gk <7

The above product is non-zero in E (A) because A is an infinite extending 

sequence.

Let a be an even-degree element of E w, of degree 21. If I =  0 then a is a trivial 

path and so is itself a member of our generating set, so suppose that I > 1. Then a 

is a maximal overlap sequence in A w.
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• If deg(a) < deg(5u;) +  2M  — 1, then a is itself in the generating set.

• If deg(a) > deg(su;) -I- 2M  — 1, then we write b = swg%q, for some k > 0, and 
where q is a maximal overlap sequence in Gv of even-degree less than or equal 
to deg(<7„). We show this below:

V f

The above product is non-zero in E (A) for the following reason. Firstly, due 
to the maximality of the construction of a , the penultimate relation r f  in 
t, shown in the diagram above, is also the penultimate relation of a. Since 

the length of all repetition relations is less than or equal to n, we need only 
show that the last relation of a is equal to rg. Consider the maximal overlap 

sequence t:
r 9

I I I I 
I I I I

r j

We can now deduce from the position of r j  and rg in t, and the fact that 
iV = 1, that rg is the last relation of a.

Hence for condition (1) the given set is a finite generating set for E w.
For condition (3) we take:

1. The trivial path ew and the arrow starting at w.

2. All even-degree maximal overlap sequences in A w with degree less than or 

equal to deg(sul) +  2M  — 1.

3. All odd-degree maximal overlap sequences in A w with degree less than or equal 
to deg(s^).

4. The (degree 2) maximal overlap sequence gv,

5. The maximal overlap sequence in Gv of degree 2M  -f 1, which we will denote 

by pv.

Let b be an odd-degree element of E w, of degree 21 -f 1. If / =  0 then b is an 

arrow and so is itself a member of our generating set, so suppose that / > 1. Then 

b is a maximal overlap sequence in A w.
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• If deg(6) < deg(su;), then b is itself in the generating set.

• If deg(6) > deg(su;), then we may write b = swg£, for some k > 0. We show 
this below:

9v  9 v  9v

The above product is non-zero in .E'(A) because A is an infinite extending 

sequence.

Let a be an even-degree element of E w, of degree 21. If I =  0 then a is a trivial 

path and so is itself a member of our generating set, so suppose that I > I. Then a 

is a maximal overlap sequence in A w.

• If deg(a) < deg(su;) +  2M  — 1, then a is itself in the generating set.

• If deg(a) > deg(5lu) -I- 2M  — 1, then we write b = swg%p, for some k > 0, and 

where pv is a maximal overlap sequence in Gv of degree equal to 2M  +  1. We 

show this below:

9v Qv T x —Qv

Sw nk PvVv

The above product is non-zero in .E(A) for the following reason. Firstly, due 

to the maximality of the construction of a, the penultimate relation r x in pv, 
shown in the diagram above, is also the penultimate relation of a. Since the 

length of both repetition relations is less than or equal to n, we need only 

show that the last relation of a is equal to ry. Since rx and ry have to be in 

different repetitions, Lemma 2.3.8 gives us the last relation of a equal to r y.

Hence for condition (3) the given set is a finite generating set for E w. □

Proposition 2.4.15 Let A be such that £(r) < n for all repetition relations r. 

Suppose one of the following occurs:

1. A > 2, A has precisely 2 repetitions, N  = 1,

2. A > 2, A has only 1 repetition, 2N = 1 (mod A),
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3. A =  1, A has precisely 2 repetition relations rx and ry.

Then E (A) is finitely generated as a k-algebra if and only if  each infinite extending 
sequence has a generative multiplication path in either its lower or upper half.

Proof. This follows immediately from Proposition 2.4.14 since E{A) is finitely gen­
erated as a k-algebra if and only if for each infinite extending sequence A w, we have 
a finite generating set for E w. □

The last proposition in this section deals with a special case.

P roposition  2.4.16 Let A have only one order 1 repetition relation, r x , with 
£(rx) > vi, and let A w be the single infinite extending sequence. Then E (A) is 
finitely generated as a k-algebra i f  and only i f  w = o(rx) =  t(rx).

Proof. If rx is the only repetition relation then from Theorem 2.3.14 we have a 
single unflagged row in T\,  which corresponds to A w. Thus finite generation of 
E(A) is equivalent to Ew having a finite generating set. If w = o(rx) = t(rx) then 
we take as generating set:

1. All odd-degree maximal overlap sequences in A up to degree 2M  +  1,

2. The (degree 2) maximal overlap sequence rx.

Clearly this is a finite generating set for E w.
Conversely, suppose E w has a finite generating set. As there is only one repetition 

relation, and by Proposition 2.4.10, we must have a generative multiplication path 
in the upper or lower half of A w. Since rx is the only repetition relation this means 
we must have o(rx) = t(rx). Now, rx is a maximal overlap sequence (of degree 
2), and by hypothesis there are no flagOs or flag2s in 7a. We may therefore apply 
Proposition 2.4.6 to get o(rx ) the start of some infinite extending sequence G. By 
hypothesis G = Aw\ hence w = o(rx). □

The following theorem is our main result and provides the classification of the 
finite generation of E (A) as a k-algebra.

We put Theorem 2.3.14 with Corollary 2.2.7, and Propositions 2.4.15 and 2.4.16 
together to form conditions (l)-(6) in Theorem 2.4.17 below. Any conditions other 
than those of (l)-(6) are captured by Proposition 2.4.2. Proposition 2.4.12 and 
Theorem 2.4.13 then yield the stated result for these.

It is remarked here that, for any of our algebras A, Theorem 2.4.13 gives sufficient 
conditions for E (A) to be finitely generated.
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T heo rem  2.4.17 Let A = kQ/X be a finite-dimensional algebra, with Q an ori­
ented cycle and X an admissible ideal, with the notation of the previous section. 
Then E(A) is finite-dimensional if and only if  one of the following occurs:

(1) A > 2, there is only 1 repetition, N  — 1 and £(r) < n for all repetition relations 

r,

(2) A =  1, there is only 1 repetition relation rx and £(rx) < n.

I f  E (A) has infinite dimension and one of the following occurs:

(3) A > 2, A has precisely 2 repetitions, N  = 1 and £(r) < n for all repetition 

relations r,

(4) A > 2, A has only 1 repetition, 2N  = 1 (mod A) and £(r) < n for all repetition 

relations r,

(5) A = 1, A has precisely 2 repetition relations rx and ry, and £(rx),£(ry) < n,

then E (A) is finitely generated as a k-algebra if and only if  each infinite extending 
sequence has a generative multiplication path in either its lower or upper half.

I f  E (A) has infinite dimension and the following occurs:

(6) A = 1, A has only 1 repetition relation rx and £(rx ) > n,

then E(A) is finitely generated as a k-algebra if and only i f  o(A) = o(rx) =  t (rx), 
where A is the single infinite extending sequence of A.

Otherwise, if  E( A) has infinite dimension, then E{ A) is finitely generated as a Ik- 

algebra if and only if each infinite extending sequence has a generative multiplication 
path in its lower half.

We can now use the above theorem to yield an immediate result in some special 

cases; many of these algebras are considered in the literature. It should be noted that 
the bound on the size of the smo-tube given after Definition 2.1.12 does not grow 
too large next to the size of the algebra. Therefore any reasonably sized examples 

can easily be checked by hand.

C oro llary  2.4.18 Let A have only one relation r and let £(r) = kn-h c, for k > 0, 
0 < c < n and £{r) > 2 .

1. If  k = 0, then E( A) is finite-dimensional.
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2. I f  c = 0, then E (A) is finitely generated as a k-algebra (with E (A) finite­
dimensional if  k = 1).

3. I f  k ^  0 and c ^ O ,  then E’(A) is infinitely generated as a k-algebra.

Proof. If /c = 0 or if A; =  1 and c =  0 we are in condition (2) of the Theorem. If 
k > 2 and c =  0 we have condition (6) in Theorem 2.4.17, with o(r) =  t(r). If k ±  0 
and 0 we have condition (6) again, but this time o(r) t(r). □

The algebras covered in the following corollary are those A which are self- 
injective.

Corollary 2.4.19 Let J  be the 2-sided ideal o fk Q  generated by the arrows and 
let A = k Q /J l, so that A has m  = n relations, each of length I > 2. Then E(  A) has 
infinite dimension but is finitely generated as a k-algebra.

Proof. Since the tail of any relation is the head of another, any relation is the start 
of some infinite extending sequence. This also means each extending sequence has 
a generative multiplication path in its lower (and upper) half. □

Corollary 2.4.20 Let A have m  relations, each of length kn > 2, for some fixed 
k > 1. Then E(A) is finitely generated as a k-algebra. Moreover, if  m  = 1 and 
k = 1 then E (A) is finite-dimensional.

Proof. If m =  1 and k = 1 then we are in case (2) of the theorem. If m 7  ̂ 1 or 
k ^  1 then since t(r) =  o(r) for all relations r, every extending sequence is infinite 
so we cannot have any flags in T\.  Every relation r is then the start of an infinite 
extending sequence that has r  as a (degree 2) generative multiplication path in its 
lower half. □

Example 2.4.21 From its smo-tube, the algebra in Example 2.1.4 can be identified 
as having 2 repetitions of order A =  2. The repetition shift is N  =  1 and the length 
of all repetition relations is less than or equal to n. We thus have condition (3), 
so by Theorem 2.4.17 we need to find a zero-length connective path ev that has a 
generative multiplication path gv. From Example 2.1.8 and an inspection of the 
quiver we see that e\\ is a zero-length connective path, with multiplication path 

9v  =  ^5^25^1 • In this case gv is generative. Checking the smo-tube we find gv is in 
either the upper or lower half of each of the 4 infinite extending sequences. This 
gives E (A) finitely generated as a k-algebra.
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E xam ple 2.4.22 The algebra in Example 2.1.5 can be identified as having 2 repe­

titions of order A =  3. The repetition shift is N  = 1 and the length of all repetition 

relations greater than n. We thus fall into the “otherwise” condition of Theorem 

2.4.17 and need to find two zero-length connective paths each with a generative mul­
tiplication path. From Example 2.1.9 and an inspection of the quiver we see that 

e\2 is a zero-length connective path, with multiplication path gv = 7̂ 772 i7'io773o7'i • 

We observe that gv is generative since it starts an unflagged row in 7a. Also gv 
is the only generative multiplication path. Checking the smo-tube we find gv is in 

(unflagged) rows 1, 4 and 10. However, the remaining unflagged rows do not con­

tain a generative multiplication path. This means E{A) is infinitely generated as a 

k-algebra.

Exam ple 2.4.23 By slightly modifying Example 2.1.5 we can produce a markedly 

different Ext-algebra.

• Let A have the same quiver and relations as in Example 2.1.5, but we change 

r i2 to the path 7727 • - ■ 775, where we still have n < i(r  12) < 2n. We still have 

the same smo-tube: all we have done is reduced a connective path from length 

1 to length 0. This means we are still in the “otherwise” condition of Theorem 
2.4.17 and so need a zero length connective path with generative multiplication 

path in every unflagged row of 7a . As can be seen from 7a, this example has 

a zero-length connective path in every unflagged row, but not a generative 

multiplication path. Hence E( A) is still infinitely generated.

• This time let A have the same quiver and relations as in Example 2.1.5, but we 

change rg to the path 7718 • • • 7726, where we still have n < £(rg) < 2n. Again, 

we still have the same smo-tube: all we have done is reduced a connective path 

from length 1 to length 0. So we are still under the “otherwise” condition of 

Theorem 2.4.17. It is easy to see that this time every unflagged row of T \  

has a zero-length connective path with a generative multiplication path. Thus 

now we have E(A) finitely generated.

We close this section with a remark on generalising to monomial algebras. We 

also give the counter-example, provided by the authors of [18] in our June 2004 

discussion, to their claim of the reverse implication of Proposition 1.2.4.
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R e m a rk  2.4.24 Let T be any finite quiver; we form the path algebra k l \  Recall 

that if X is an admissible ideal of kT generated by a finite set of paths such that 

B  := k r /T  is finite-dimensional, then we say that B  is a monomial algebra. Prom 

Proposition 1.2.4, to determine if E(B)  is infinitely generated it is enough to find 
one infinitely generated E (A) for any minimal cycle algebra A overlying B. We can 

now use Theorem 2.4.17 on each overlying minimal cycle algebra A to determine 

whether or not E{A) is infinitely generated. The bound on the size of the smo-tube 

means that for each cycle-algebra A this determination can be quickly made.

We now present an example of a monomial algebra with infinitely generated 

Ext-algebra, but with all overlying minimal cycle algebras having finitely generated 

Ext-algebra.

E xam ple 2.4.25 [E.L.Green, D.Zacharia] Let B  be the k-algebra with quiver

and relations abed, beda, cdab, dabc, xab, daby and byz. This algebra has only one 

overlying minimal cycle algebra and by Theorem 2.4.17 this has finitely generated 

Ext-algebra. To show E(B)  is infinitely generated we consider basis elements in 

E(B)  with underlying path x(abcd)nabyz, for n  > 1. Such an element takes the 

form
a b ed  a b e d  a b ed  a b ed  bVz

I 1 ! I I I I I
I 1 I I I_______ I_______ I

x a b  cd a b  cd a b  cd a b  cdab

Since multiplication relies on concatenation of paths, to non-trivially factor an 

element of the above form we need to split its underlying path in two at a vertex 

that is both the start of a relation and the end of one. So far we have many choices. 

However, it is clear that no m atter where one chooses the split to be, the right hand 

path will not be a maximal overlap sequence. Thus maximal overlap sequences of 

the sort above cannot be non-trivially factored. Since we have infinitely many such 

maximal overlap sequences, E(B)  is infinitely generated.
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2.5 N oetherian Ext-algebras

Now that we have determined precisely when E(A) is finitely generated as a k- 

algebra, we determine for which cycle algebras A the Ext-algebra is a Noetherian 

ring. In doing so we produce a class of examples for which the Ext-algebra is finitely 

generated but not Noetherian, and a further class that have Noetherian Ext-algebra 

with A k Q /J n for any n > 2, where J  is the 2-sided ideal of kQ generated by 

the arrows (algebras of the form k Q /J n are very well studied in the literature: our 
results do not have this restriction).

We may immediately state the main result of this section.

T h eo rem  2.5.1 Let A =  k Q /J  be a finite-dimensional algebra, with Q an oriented 

cycle, X an admissible ideal. Suppose further that the Ext-algebra E (A) has infinite 

dimension. Then E ( A) is a Noetherian ring if and only if every connective path of 
E(  A) is of zero length.

Before we can prove this theorem we need the following.

R em ark  2.5.2 So far in this chapter we have talked of connective paths. In fact, 

just as a maximal overlap sequence is considered to be a left maximal overlap se­

quence if it is constructed from the left, so a left connective path and a left repetition 

come from an extending sequence constructed from the left. In the preceding sec­

tions, connective paths and repetitions have both been constructed from the left. 

This left construction of the extending sequences naturally shows the right E(A)- 

module structure of E(A), which we exploit in Theorem 2.5.1. However, we also 

need to show how E (A) behaves as a left £'(A)-module: this is done by constructing 

right maximal overlap sequences. From [4] we know that left and right maximal 

overlap sequences have the same underlying path. In general however, the left and 

right repetitions need not be the same and so the left and right connective paths 

need not be the same. The following proposition gives us conditions under which 

the left and right repetitions do coincide.

P ro p o s itio n  2.5.3 Let A be such that E (A) has infinite dimension and suppose 

all left connective paths are o f zero length. Then the set of left repetition relations 

is equal to the set of right repetition relations. In particular, all right connective 

paths are also of zero length.
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P ro o f. Suppose E (A) is of infinite dimension and that all left connective paths are 
of zero length. Let r a i , ra2, . . . ,  rax be the left repetition relations of ( a i , 0,2 , . . . ,  a\), 
one of the left repetitions of E (A). Then raira2 •••rax is a non-zero path in kQ. 
Since each rai is a degree 2 left maximal overlap sequence, and E (A) has infinite 
dimension, we may use Theorems 2.1.19 and 2.3.14 and Proposition 2.4.6 to conclude 

that the path h := r air a2 • • •rax is also a left maximal overlap sequence. Similarly 
1 • • ' raxhk is a left maximal overlap sequence for all 1 < i  < A and k > 0. 

Hence we can construct a left maximal overlap sequence beginning at the vertex 
o(rai) for all 1 < i < A, of degree greater than 2M.  From [4] we have that, as a path 
in kQ, each left maximal overlap sequence of degree I is also a right maximal overlap 

sequence of degree I. Thus the path r air Qi+] •••raxhk is a right maximal overlap 
sequence for all 1 < i < A and k > 0 and so rai is a right repetition relation for all 
1 < i < A. We thus have that all left repetition relations are also right repetition 
relations. By an identical argument we get that all right repetition relations are also 

left repetition relations. It follows immediately that all right connective paths are 
of zero length. □

A dual argument yields the following corollary.

C o ro lla ry  2.5.4 All left connective paths are of zero length i f  and only i f  all right 
connective paths are of zero length.

We can now prove Theorem 2.5.1.

P ro o f, (of Theorem 2.5.1). Assume first that all left connective paths of E (A) are 
of zero length. We will show that E (A) is a Noetherian right £(A)-module. Let 

>r 62> • • • >r 6/i be repetition relations of A. Since all left connective paths
are of zero length, and E (A) has infinite dimension, we have by Theorems 2.1.19 and
2.3.14 that every left repetition relation is the start of a generative multiplication 

path. Let g^ be the generative multiplication path such that o(gbi ) =  ^(r^). Set
£ =  gbl +gb2 H 1 - M £ E(A). Then by Lemma 2.1.10, £ is a homogeneous element

of E ( A) in degree 2A and has the property that £* =  glbi +glb2 H 1-glb for all Z > 1.
We thus have that 1 and £ in E ( A) generate a graded subalgebra of E{A) which is 

isomorphic to the polynomial ring in one variable, which we denote by k[£].
Consider the usual basis of E{A) consisting of trivial paths, arrows and maximal 

overlap sequences constructed from the left. Since k[£] is a subring of E{A) we con­
sider E (A) as a right k[£]-module. Let S '  — {Az : A is an infinite extending sequence
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of E (A), 2 < 2 < 2M  +  2A — 1} and let S  =  S '  U {trivial paths and arrows of A}. 
We will show that S  is a (finite) generating set for E (A) as a right k[£]-module.

Let A y be a maximal overlap sequence of degree y > 2M  +  2A, in some infinite 
extending sequence A  of E{A). Then t(Ay) =  t ^ )  for some 1 < i < //. Write 
y — 2M  = c(2A) +  k ' , for some 0 < k' < 2A, c > 1, so that y — c(2A) +  k, for some 
2M  < k < 2A + 2M  — 1, c > 1. Then A y = Akgli = Ak£c, with A k € S.  Since 
A y was arbitrary we get all maximal overlap sequences of degree greater or equal to 
2M  + 2A in this way. Hence E(A)  is finitely generated as a right k[£]-module with 
generating set S. As k[£] is a Noetherian ring, we get that E (A) is a Noetherian 
right k[£]-module. Hence E (A) is a Noetherian right £(A)-module.

Now we must show that E(A)  is a Noetherian left i?(A)-module. By Proposition 
2.5.3 since the left connective paths of E (A) are of zero length, so are the right ones. 
Also the right repetition relations are the same as the left. By a similar argument 
to that above, it follows that E(A) is finitely generated as a left k[£]-module. That 
E (A) is a Noetherian left £ ’(A)-module then follows. Hence E(A) is a Noetherian 
ring.

Conversely, assume now that there exists a connective path of E (A) that has 
positive length. We can take this to be a left connective path by Corollary 2.5.4. 
Suppose this path starts at t(rai_1) and ends at o(rai), for rai_̂  and rai repetition 
relations in some left repetition. The connective path is then denoted c ai. By 
taking the basis of E ( A) of left maximal overlap sequences, we view ii’(A) as a right 
£ ’(A)-module. We now construct a strictly ascending chain of right submodules of 
E{A) that is of infinite length. First consider some special basis elements of F/(A), 
namely those left maximal overlap sequences of degree greater than 2M  that end at 
t(rai_1). Since rai_l is a left repetition relation, there is some extending sequence A 
in which there are infinitely many of these maximal overlap sequences. Label these 
left maximal overlap sequences in A  that end at the vertex t(rai_1) by £i ,£2> • • • in 
increasing order of degree.

Now let q be an element from our basis of E(A): then q corresponds to a vertex, 
an arrow or a left maximal overlap sequence of degree > 2. Pick j  > 1; then, since 
t(£j) =  o(cQi) and £(cai) > 0, we get that the product £jq is zero in E(A), for all 
q ^  t(rai_1). Thus deg(^a) < deg(^), for all a e E(A), j  > 1. We now construct 
our chain of submodules. Let 7o =  {0} and for j  > 1 let Ij =  (£i)£2) . . .  ,€j)E(A). 
Then 7o C I\ C h  C • • • is clearly an infinite, strictly ascending chain of right 
£ ’(A)-submodules of E{A). Hence i?(A) is not right Noetherian and therefore not 
Noetherian. □

61



Recalling the definition of a minimal cycle algebra from Definition 1.2.1, we have 
the following corollary.

C o ro lla ry  2.5.5 Let Z q / be a cycle algebra overlying a minimal cycle algebra Z q . 

Then E ( Z q > ) is Noetherian if and only E ( Z q ) is Noetherian.

P ro o f. The result is immediate since by definition all the connective paths in E ( Z q ) 
are of zero length if and only if all the connective paths in E ( Z q> ) are of zero length.□

Notice that Theorem 2.5.1 says nothing about the relations on A being of equal 

length if E (A) is Noetherian. The following example shows they need not be. Note 
that in both examples below, E{A) has infinite dimension.

E xam ple  2.5.6 Let Q be an oriented cycle with 9 vertices labelled 1 , . . . , 9 .  Let 

rji be the arrow which starts at the vertex i. Let 1  = {r\ , r 2 , r$, t\i, r$), where r\ —

mmm, r2 = mvwns, n  = mmmve, ^  n = mmmvs'ni- Let a  =

kQ/T.  Then the repetition relations of A are r i ,  7̂ , r4 and r^; the connective paths 

are the trivial paths ej, e2 , e4 and ee. By Theorem 2.5.1, since E (A) has infinite 

dimension, we get that E (A) is Noetherian (and hence also finitely generated).

E x am p le  2.5.7 Let A be as in Example 2.5.6, with the exception that here =  

V4r]57l6T)7rl8 • We have the same left repetition relations as above, but now the left 
connective paths are 779, e2 , and ee- Thus from Theorem 2.5.1, E{A) is not 

Noetherian. The positive length left connective path 779 means that the £ / s from the 

proof of Theorem 2.5.1 arise, each ending at the vertex 9. However, from Theorem 

2.4.17, we get that E{A) is finitely generated.

R e m a rk  2.5.8 It is clear that using Theorems 2.4.17 and 2.5.1 we can extend

Examples 2.5.6 and 2.5.7 in both cases to a large class of examples with the same 

finiteness conditions on the Ext-algebra.

Lastly we return to our discussion on monomial algebras.

P ro p o s itio n  2.5.9 Let B  be a monomial algebra and let the Ext-algebra E(B)

be Noetherian. Then the k-algebras E (Zq) are Noetherian for all minimal cycle 

algebras Z q overlying B.
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P ro o f. Let Z q  be a minimal cycle algebra overlying B and let E ( Z q ) be non- 
Noetherian. Let B  have quiver T. We will show that E(B)  is non-Noetherian. By 

Theorem 2.5.1 we have a connective path of E ( Z q )  of positive length, so in particular 

E { Z q )  is not right Noetherian. We thus have the infinite strictly ascending chain 

of right ideals of E ( Z q )  constructed in the proof of Theorem 2.5.1. Recall that 

an ideal from this chain was written I j Q = ( £ * •  • • ^ j ) E { Z q ) .  We use the *- 

notation to remain consistent with Proposition 1.2.4. As discussed in the proof of 

Proposition 1.2.4, each £* in E ( Z q )  corresponds to a maximal overlap sequence 

in E(B).  We can thus form an infinite ascending chain of right ideals of E(B)\  
Iq C C 7<f C • • •, where Iq — {0} and I?  = (£i,£2> • • • ,£j)E(B).  It remains 
to show that this chain is strictly ascending. Fix some j  > 0 and consider the 

basis element £j+i- To seek a contradiction suppose 7® =  l f + \ .  Then since £j+1 
is one maximal overlap sequence (not a linear combination), =  £*6 , for some 

1 < i < j  and b some basis element of E(B).  Then the underlying path of b is a 

terminal subpath of 1 and so lies along the path in T that is covered by Q. Thus 

b corresponds to a basis element b* in E ( Z q ) .  This gives us £^+1 =  £*b*, and so 

I j Q = if+i- This is a contradiction and therefore we conclude that 7® 7  ̂ tf+i- Since 
j  was arbitrary we have that our chain of right ideals of E{B)  is strictly ascending. 

Hence E(B)  is not Noetherian. □

As a counter-example to the reverse implication, Example 2.4.25 gives a mono­

mial algebra with non-Noetherian Ext-algebra that has all its overlying minimal 

cycle algebras possessing Noetherian Ext-algebras.

We have now come to the end of our work on cycle algebras. The remainder 

of the thesis takes a different approach to looking at finiteness conditions for the 

Ext-algebra. We also consider algebras more general than monomial algebras.
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Chapter 3

Introduction to one-point 
extensions and triangular 
matrix algebras

3.1 Triangular m atrix algebras

The thesis now takes a different approach. We no longer restrict ourselves to mono­

mial algebras; instead we broaden our outlook to all finite-dimensional associative 

k-algebras, for some field k. Our results now become comparison results, that is, 

given an algebra A  and some extension (like a one-point extension) B  of A, if we 

have some Noetherian condition on E(A),  what can be said about the same condi­

tion for E ( B )? Here we introduce the concept of a triangular matrix algebra and of 

a one-point, extension. Most of what follows in this section is taken from [3, III.2].

We start in some generality and specialise later.

' T  MD efin ition  3.1.1 A ring A is a triangular matrix ring if we can write A =  . ^

where T  and U are rings and t M u is a T-f7-bimodule. Addition and multiplication
* , i i • • (  ti m\ \  (  t2 77*2in A are given by the usual operations on matrices: I ^ ^ ~ \  0 u

t i + t 2 m\  -f m 2 \  , /  t\ m\ \  (  t2 m 2 \  (  t \ t2 t \m 2 + m \u 2and —0 U\ +  u2 J  y 0 u\ J  \  0 u2 J  \  0 u \u 2

We now look at a special case of the above. Let A be an Artin algebra with 

identity 1 =  e 4 - (1 — e) for some idempotent e 7  ̂ 0,1. We do not require e or (1 — e) 

to be primitive, but since they are both non-zero we have two new algebras, eke
and (1 — e)A(l — e), and two bimodules, eA(l — e) and (1 — e)Ae. If eA(l — e) =  0
. . . .  , .  . , . . (  (1 — e)A(l — e) (1 — e)Aethen A is isomorphic to a triangular matrix ring I
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and we say A is a triangular matrix algebra. If A is a path algebra or a quotient of 
one then (conversely to [3]) we will write paths from left to right, as we have done 
throughout, the thesis.

The category mod-A is described via an equivalence with the categories C\ and 
Ca, given in [3] and which we describe now.

D efin ition 3.1.2 [3] Let A be a triangular matrix k-algebra as in Definition 3.1.1. 
Let C\ be the category whose objects are the triples (A , B , f ) with A  in mod-T, B  
in mod-[/ and /  : A<g)TM —► B  a morphism of right [/-modules. The morphisms 
between two objects (A , B , f ) and (A ' , B ' , f ') are pairs of morphisms (a,/?) where 
a  : A —> A' is a T-morphism and f3 : B  —* B '  is a [/-morphism such that the diagram

A ® t M ^ - A ' ® t M

f  S'
P

B -------------► B'

commutes. If (qi,/?i) and (0 2 , ^ 2) are morphisms in C\ then their sum is defined as 
summing componentwise: (a\,(3\) +  (a 2 , # 2) =  (^1 +&2 ,P\ + @2)-

We also define a second category C\. Note that, in the definition below, the 
k-vector space Hornu (M ,B )  can be considered as a right T-module by setting 
(St)(m) := 5(tm), for 8 € Hornu (M ,B ) ,  t in T  and m in M. We thus have the 
adjoint functors

- ® 7'M  : mod-T — > m od-U

Hom^(M, —) : mod-[7 — > mod-T 
giving the adjoint isomorphism ijj : Horni/(A<g>TM, B) —> Homj^A, Hom[/(M, B)), 
where A is a right T-module and B  is a right [/-module.

D efinition 3.1.3 [3] Let A be a triangular matrix k-algebra as in Definition 3.1.1. 
Let Ca be the category whose objects are triples (A ,B ,g ), where A  is in mod-T, 
B  is in mod-[/ and g : A  —► Hornu (M ,B )  is a morphism of right T-modules. The 
morphisms between two objects (A ,B ,g ) and {A ',B ',g ')  are pairs of morphisms 

where a : A —> A' is a T-morphism and (5 : B  —> B'  is a [/-morphism such 
that the diagram

H o r n B ) ------   ^ HornV(M, B')

commutes, where (3* is induced from (3. As in C a ,  summing of morphisms in C a  is 
defined as summing componentwise.
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The composition of morphisms in C\ and in Ca is given by ( a i , P\){ct2, P2 ) =  
(a xa 2,p xp2).

D efin ition 3.1.4 A preadditive category (sometimes called an Ab-category) is a 
category such that every Hom-set Hom(A, B) is an Abelian group and composition 
distributes over the operation of addition. Thus if we have a diagram

f  9' hA — B '----
9

then f (g  +  g')h = fg h  -I- fg 'h  in Hom(A, D). This is equivalent to the composition
map Hom(X, Y )  x Horn(Y, Z) —> Hom(X, Z) being bilinear.

A k -category is a preadditive category where the bilinear map associated with 
morphism composition is k-bilinear.

Lemma 3.1.5 [3] The categories Ca and Ca are k-additive categories.

Proof. It is easily checked that Ca and Ca are categories. Now let the following be 
a diagram in either Ca c>r Ca-

( A  V  \  ( a 2 l / 3 ^  ( r . v  u \ ^ a 4 ' ^ 4 h n  T J /  7(A, X , f ) ----- (B , Y, g) = x  (C, Z, h )  (D, W, I)
(<*3,03)

Note that for a scalar k £ k and a morphism ( a , / ? )  in Ca or Ca, we have k(a,P) = 
(ka,k/3). This, along with the definition given for addition of morphisms, means 
the Hom-sets in Ca and the Hom-sets in Ca inherit a k-vector space property from 
Hom-sets in mod-T and mod-U. For scalars k2 and /c3, we now just need the 
identity:

(au  pi)[k2(a2, P2 ) +  k3(oc3,p 3)](a4,p 4)

=  {ai,Pi)[(k2a 2,k 2{32) +  (fc3a 3, k3p3)](a4, Pa)

= (a i ,p i ) (k 2a 2 +  k3a 3,k 2p2 + k3p3)(a4, p4)

= (a i(k2a 2 +  k3a 3)a4,pi{k2p2 +  k3p3)p4)

=  {k2a xa 2a 4 +  k3a xa 3a 4, k2p xp2p4 +  k3p xp3p4)

=  (k2a \ a 2a 4, k2p \p2p4) +  {k3a xa 3a 4, k3p xp3p4)

= k2(axa 2a 4,p ip 2p4) +  k3{axa 3a 4, p xp3p4)

= k2(otu Px)(a2p2)(ot4, p4) +  k3(ax, p x)(a3, p3)(a4, p4)

Thus Ca and Ca are k-categories. □
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We will now see that there is an equivalence between the categories mod-A and 

Ca, and an isomorphism of categories between Ca and C\. The functors defining 

these equivalences are given in the definition below. Let A be as in Definition 3.1.1.

D efin ition  3.1.6 [3]

(1) Let F : Ca mod-A be the functor defined as follows. For (A , B , f ) in Ca 

we define F(A, B, f )  = A  ® B  as an Abelian group under addition, and with 

the A-module structure given by (a, 6) f ^ ^  J =  (at, f(a<S)m) +  bu), for

a morphism in C a  then F(a, (3) =  a  ® (3 : A  ® B  —» A' ® B ' .

( 2 )  Let H  : C a  — > C a  be the functor defined by H ( A , B , f )  =  (A, B ,ip(f))  on ob­
jects and H(ot,(3) = (ct,/3) on morphisms, where ip is the adjoint isomorphism 

described earlier.

We now get the following result, referring the reader to [3] for the proof. 

Proposition 3.1.7 [3]

(1) The functor F  : Ca —► mod-A defined above is an equivalence of categories.

(2) The functor H  : Ca —> Ca defined above is an isomorphism of categories.

Armed with these categorical equivalences we will be well positioned to present 

our main results about triangular matrix algebras in Chapter 4. In the next section 

however, we will specialise to discuss one-point extensions.

3.2 One-point extensions

We now give the definition of a one-point extension, which is a specialisation of a 

triangular matrix ring.

rings, M  a T-A-bimodule). If T  is a division ring then B  is a one-point extension 

of A  by the bimodule In this case we write A[M] := B.

Q 6  A, b e  B, t £ T, u £ U and m  £ M. If (a, (3) : (A, B, f ) —> (A ' , B ' , / ' )  is

D efin ition  3.2.1 Let B
M
A be a triangular matrix ring (so A  and T  are
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In the context of finite-dimensional algebras over a field Ik we have T  =  Ik. Since 

M  is a lk-vector space we have that is a left k-module, and so in this way ^M& 

is a Ik-A-bimodule. The quiver of B = A[M] has a source vertex i (no arrows going 

in to i) coresponding to the Ik in the upper left corner of the matrix of B.  We say 

that B  is a one-point extension of the algebra A, where the quiver of A  is that of 

B  but with the source vertex i (and therefore any arrows leaving i) removed. The 

relations for A are those of A[M], less any that start at i. More concretely, let e* be 

the primitive idempotent corresponding to the vertex i. Then, since i is a source, 

we have ejA[M]ei =  Ik and (1 — ei)A[M]ej =  0. As seen in Section 3.1, we can now 

write A[M] =  ^ q ^  so that. A[M] is a one-point extension of A.

It happens that there is a natural way to view A-modules as A[M]-modules. We 

formalise this with the following functor.

D efin ition  3.2.2 Define a functor T  : mod-A —> mod-A[M] by T{ X )  =  (0,X), 

for X  G mod-A, and F ( f )  = ^ q  ^ ^ > f°r /  : X —> Y a morphism in mod-A.

The A[M]-action on (0, X )  is given by (0,X)A[M] = (0,X) ^ ^ ^4 )  =

and so is the same as the A-action on X.  Also for all /  G H om ^X , Y)  we have

(0 , X ) F ( f )  = (0, X )  (  ° ° \  =  (0 , ( X ) f )  and so F(J)  6  Hom^|M| (T(X) ,  F(Y) ) .

L em m a 3.2.3 T  is a full, faithful and exact functor.

P ro o f. To show T  is a functor we observe first that F ( X)  exists for all X  G mod-A 

and that F ( f )  exists in BomJ\ ^ ^ { F{ X ) , F { Y ) )  for all /  G Hom^AT,V) as above. 

Now, given id : X  —> X  we have /"(id) : T ( X )  —> F{X) .  Let (0,x) be an arbitrary 

element of F{X) .  Then (0,a:)J'(id) =  (0,:c) ^ id )  =  ~  (0,rr). Hence

T  takes identity morphisms to identity morphisms. Now let % — Y  — Z

a diagram in mod-A. This gives rise to a diagram F{X)  F j Y )  — i- T( Z )  *n 
mod-A[M]. Let (0,x) be an arbitrary element of F{X) .  Then (0,x)F( f )F{g)  =

(0 , x ) (  0 /  )  (  0 °g )  =  {0’ { x ) f )  (  0 °g )  =  (° ’ ((* ) / )f f )  =  (° ’ ( x ) ( f 9 ) )  =  

(0,a:) (  q fg  J  =  Thus T  is a functor.

Clearly T  is faithful and full. To show that T  is exact, consider a short exact 

sequence in mod-A: q  *. % * > Y  g—*~ Z  ► 0 • T ^is &ives rise t0  a diagram
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in mod-,4[M]: q  =*. ^  x ) (0 , Y)  ^ 9> (0, Z )  >■ 0 ’ we show it is a short
exact sequence. Now

ker T { f )  =  {(0 , x ) e ( 0 , X) : ( 0 , x ) ^ ( / ) = 0}

=  { ( 0 , x ) e ( 0 , X ) : ( 0 , ( x ) f )  = 0}

=  { ( 0 , : r ) G ( 0 , X )  : ( * ) /  =  ()}

= T { x  G X : [x) f  =  0}

=  JF(ker/) =  JF(0 ) =  0

and

imF(g)  =  {(0, z) G (0, Z)  : 3(0, y) G (0, Y)  with (0, y)F{g)  =  (0 ,2 )}

=  {(0,  z) G (0, Z) :3y  G Y  with (0, {y)g) = (0, z)}

= {(0) z ) € (0, Z)  : By G Y  with (y)g = z]

= T { z  G Z  : 3y G Y  with (y)g = z}

= ^ (im  g) =  ^"(0, Z),

so we have exactness at (0, X) and (0, Z).  To get exactness at (0, Y)  we just have 
to observe that ker(J^(^)) =  .F(ker(<?)) =  ^ ( im (/))  =  im(^r( /)) . Hence T  is a fully 
faithful, exact functor. □

Let us now look at how we construct a one-point extension of a k-algebra A — 
k Q / 1  and an ^-module Ma-  We want to describe A[M] by quiver and relations. 
Let Qq and Q\ be the vertices and arrows of Q respectively, and let the relations of 
A  be 7*1, . . . ,r t . Then M  has a minimal projective presentation over A:

® ”1, wjA  ®»=, ViA  ► M  ► 0

where the 1/  s and Wj’s are trivial paths in A. We can describe 0 as a matrix. 

Consider the action of 4> on some wj. We have <f>(wj) = YH=\ vifiji f°r some f y  G 
V{A. Note the / i / s  might themselves be linear combinations. Since </> is defined 
by its action on the generators of the domain, it is defined by the / i / s .  Now, 
since 4> is a homomorphism and Wj is an idempotent, we have the non-zero equality 

YJi=\vifij  =  <f>(wj ) =  = 51i=\vi fi jwji for each 3- This means
that Vifij = VifijWj, for each i, and so fij  G ViAwj, for all i and j.
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To get the quiver for A[M] from that of A we add a single new source vertex, v*, 
and n  new arrows a * ,. . . ,  a* , with each a* starting at v* and ending at the vertex 

Vi in Q; thus there is one new arrow for each generator of the projective cover of M.  
The extra relations come from the second projective in the presentation of M.

More precisely, the one-point extension A[M) has quiver with vertices Qq U {u*} 

and arrows Q\ U {a*}, where a* is an arrow from v* to Uj, for i = 1 ,. . .  ,n . The 

relations on A[M)  are { r i , . . .  , r j  U {s*}, where s* =  £)"=! f° r j  =  1 , . . .  , m.

The ^4-module M  naturally becomes an ^4[M]-module and is the radical of the 
new projective module v* A[M].

3.3 Useful results

We first give two results from ring theory. The proof of the first, can be found in [1]; 

we give the proof of the second for completeness.

P ro p o sitio n  3.3.1 [1, 10.12] Let R  be a ring and let 0 —> K  —> M  —> N  —> 0 be 

an exact sequence o f R-modules. Then M  is Noetherian if and only if both K  and 

N  arc Noetherian.

P ro p o s itio n  3.3.2 [1, 10ex7] Let 4> : Q —» R  be a ring homomorphism and let M  

be a right R-module. Then M  is a right Q-module via 0, and moreover, if M q  is 
Noetherian then so is M r .

P roo f. Firstly, the action of Q on M  is given by m  • q := m  • 4>{q), for m  G M , 

q G Q. It is easy to check that since 0  is a ring homomorphism we get that M  is a 

Q-module.

Secondly, let iVo C N\ C N 2 C ■ • • be an ascending chain of i?-submodules of 

M r . Via (j) we get that every i?-module is also a Q-module. Hence Nq C. N \ C. N 2 C.
• • • is an ascending chain of Q-submodules of M q . Since M q  is Noetherian we get 

that Ni =  N i+P, for some i > 0 and for all p > 0. Hence M r  is Noetherian. □
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Chapter 4

Ext-algebras of one-point 
extensions and of triangular 
matrix algebras

4.1 One-point extensions

In this chapter we present some results found on comparing the Ext-algebra of a 

finite-dimensional algebra with that of its one-point extension, and then a slight 

generalisation where we look at how the Ext-algebra of a triangular matrix algebra 

compares to those of its two constituent algebras. The quality we study is that of 

the Ext-algebra being left or right Noetherian as a k-algebra. We begin with some 

preliminary constructions.

Let A  be a finite-dimensional k-algebra and let M a be a finitely generated right 

A-module. We can thus form the one-point extension of A  with respect to M, de­

noted by B = A[M] := ^ q ^  ^ ^  1S clear that due to the operations of addition

and multiplication for B,  we have a subalgebra ^ ^  ^ which is isomorphic to

A.
Let E(A)  be the Ext-algebra of A  and E(B)  be the Ext-algebra of B.  Let r  and 

r' be the Jacobson radicals of A  and B  respectively. Then using our functor T  from 

Definition 3.2.2 we have B /r ' = !F(A/r) © Sw, where we now write w := v* for the
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extra vertex. Recall that Q.(SW) = fF(M).  We then have as vector-spaces:

E(B)  = Ext*B{ B /r ',B /r ()

s  Ext%{F(A/ r ) , r {A/ r ) )  0  Ext*B(SW, Sw) © E x t ^ A / r ) ,  Sw) 0  Ext*B(Sw, E{A/r) )  

*  E x t^ ( i / r M / r ) 0 H o m s (5U))SUJ) 0 O 0 © “  ExTB(Sw,E(A/ r ) )

“  E(A)  0  S w) 0  © £ 0 Ext iB(Jr(M) ,Jr(A/r))

= £(A) 0  H o r n e d ,  5 W) 0  Ext^(M , A /r).

The first thing we notice is that Ext*A(M, A/ r)  is naturally a right E/A^module.

In the following proposition we will show that if E(A)  is a right Noetherian ring 

then Ext*A( M, A/ r )  is finitely generated as a right £(A)-module, by proceeding by 

induction on the radical length of M.  Note first that M  is a finitely generated 

module over the (right) Noetherian ring A. This means M  is a Noetherian A- 

module. We will need the following well-known proposition, the proof of which we 

include for completeness.

P ro p o s itio n  4.1.1 Let A be a finite-dimensional algebra with E(A)  a right Noethe­

rian ring, and let N  be a finitely generated right A-module. Then E x tA( N, A/ r )  is 
a finitely generated right E(A)-module.

P ro o f. As noted above, Ext*A( N, A/ r )  is naturally a right £(A)-module. We show 

that it is finitely generated as a right £(A)-module by proceeding by induction on 

the radical length of M.
If N r  =  0 then N  is the direct sum of finitely many simple right A-modules. 

Therefore Ext*A( N, Aj r )  E Add^ [E(A)b^ ) ,  the category of finite sums of sum­

mands of the right regular £(A)-module. This means Ext*A( N, A/ r )  is finitely gen­

erated as a right E(A)-module.
For the inductive hypothesis, suppose 3n > 2 such that if N  is a finitely generated 

right A-module with N r n~ l = 0, then ExtA(N, A/ r)  is a finitely generated right 

£(A)-module.

For the inductive step suppose N  is some finitely generated A-module with 

N r n =  0. We form the short exact sequence

0  ^ N r  >- N  >- N / N r  ► 0
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Applying the contravariant functor HonM(—, A /r)  we get a long exact sequence in 

cohomology:

0 -----*- Horn ,4 (iV/iVr, A/r)  ——*■ Horn (TV, A/r)  — Horn {Nr,  A/ r )

c E x t \ ( N / N r , A / r )  ——► E xt1 (A', A /r) — E xt1 (Nr,  A/ r)

c
3

- Ext2 (TV/Nr, A/r)  — ^ Ext2(TV, A/r)  Ext2{Nr, A / r )  ^ • • •

which yields the exact sequence

Ext^ {N/Nr,  A/ r )  Ext^ (TV, A/r)  —^  Ext^ {Nr, A/ r)

with /* and g+ acting componentwise. For ease of notation let R  — E{A),  K  = 

ExtA(N/Nr ,  A/r) ,  L = Ext*A{N, A/ r )  and Q = Ext*A{Nr, A/r) .  This gives us the 

exact sequence of T?-modules

K - ^ L - ^ Q

from which we get the diagram

K  -  - I    - Q

im /* im g*

Since im /* =  K / k e r f * by the first isomorphism theorem, and ker#* =  im /* by 

exactness, we have the short exact sequence

0 -----► K /  ker / *  ► L ------► im #*------- 0

Using the induction hypothesis, K  is a finitely generated T?-module and so we 

have that K /  ker /* is a finitely generated 72-module and hence is Noetherian. Also 

by the inductive hypothesis, Q is a finitely generated 72-module and since R  is 

Noetherian this means the submodule im #* is finitely generated and hence Noethe­

rian. We now apply Proposition 3.3.1 to get L Noetherian as a right 72-module and 

hence finitely generated. Thus Ext*A(N, A/r)  is a finitely generated 7?(A)-module.

Hence by induction if TV is a finitely generated right A-module then Ext ̂  (TV, A/r)  

is a finitely generated right £(A)-module. □

73



We now come to the theorem of this section.

T heorem  4.1.2 Let A be a finite-dimensional k-algebra and let M  be a finitely- 
generated right A-module. Let B  = A[M] be the one-point extension of  A by M.

I f  E(A)  is a right Noetherian ring then E (B ) is a right Noetherian ring.

Proof. To show that E(B)  is a right Noetherian ring we start by finding a right

Noetherian unital subring. The subring E(A)  has unit 1 = e\ H Ken, where e*

is the identity map in H om ^(5i,5i), each simple ^4-module Si, 1 < i < n. However 

E(B)  has unit I e (R) = e i +  • • • +  en +  ew, where ew is the identity on the extra 
simple module S w. We thus consider the subring R = E(A)  © Hom(5ty, Sw), with 

multiplication defined componentwise. This is a unital subring of E(B).  We need 
to show R  is right Noetherian as a ring, that is, it is a Noetherian right module 

over itself. First consider E(A)  as a right i?-module. The action of R  on E(A)  is 

identical to that of E(A)  on E{A),  since there are no non-zero products between 

E{A)  and Hom(5ul, S w). Hence if E{A) E(a ) is Noetherian then E{A) r is Noetherian. 
Similarly since Horn^S^,, Sw) is a right Noetherian Hom e(5ul, S^-m odule we have 

that it is a right Noetherian ^-module. Thus we have a short exact sequence of 

right iNmodules

0 ----->• Hornb (Sw, Sw)  ► R  »- E ( A )  ► o

with the first and third terms Noetherian i?-modules. By Proposition 3.3.1 R  is a 

Noetherian right i?-module. Hence R  is a right Noetherian unital subring of E(B).  
Now, since Ext*A(M, A/ r )  is a finitely generated right £(,4)-module, it is certainly 

finitely generated as a right i?-module. We thus have that E(B)  =  i?©Ext^(M , A/r)  

is finitely generated as a right ^-module, and so £ (£ )/?  is Noetherian.
<f> .

Using Proposition 3.3.2 with the injective unital ring homomorphism R  c— ->■ E(B)  

we get that E(B)  is a right Noetherian £(£)-m odule. Therefore E(B)  is a right 

Noetherian ring. □

The above theorem is quite general, so although we illustrate it with the following 

example, the reader should note that we could have chosen any finitely generated 

module M .
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E x a m p le  4.1.3 Let A  be the algebra given in Example 2.5.6. This has quiver Q 
given by

and relations n  =  ^ 772773, r2 = 772773774775, r3 =  773774775776, r 4 =  r 5 =
r]er}7T]sr]gTi\ . Thus A  =  kQ/X, where X =  (t’1, 7’2 , 7’3 , 7’4 , 7'5). By Theorem 2.5.1 we 

have that E (A ) is a right Noetherian ring. We can decompose A as a right A-module 

into the indecomposable projective A-modules:

1 2 3 4 5 6 7 8 9  
2 © 3 © 4 © 5 © 6 ® 7 © 8 © 9 © 1  
3 4 5 6 7 8 9 1 2  

5 6 7 8 9 1 2 3
8 9 1 2  3
9 1 3

As with all monomial cycle algebras, the indecomposable modules are all uniserial. 

Label the trivial paths e*, for 1 < i < 9, in the usual way, so that the right A-modules 

e{A are the indecomposable projective modules. Let

M  =  e2A®(e4A/r}4A)®(e6A/riGr)7r)87)QA)®(e7A/r]7r)8A).

Then M  is a right A-module with composition series:

2 4 6 7
3 © © 7 © 8
4 8
5 9

and with a projective A-presentation:

esA©ei AtBegA — e2A®e4A®eQA®e7A  >■ M  ^ 0
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This gives us the following matrix for 0:

/ 0 0 0 \
r)4 0 0
o m m m m  o 

V o o 77777s /
Thus A[M) has quiver as follows. We label the a^s in accordance with the end 

vertex of each, so that oti ends at i +  1.

ai

1*V

7

6

and the relations are those of A  together with <23774, ochr]Qr}7r]srlQ and 0^777778. The new 
indecomposable projective module, ev*A[M],  has composition series shown below.

We can now use Theorem 4.1.2 to conclude that E(A[M\)  is a right Noetherian ring.
To produce a non-monomial algebra we can repeat the one-point extension con­

struction. Let B  := A[M] and consider the right J5-module

N  = (ev*Be ( e 2B/7]2mV4B))/((a3, -772773 +  772773774#)).

Then N  has composition series shown below.

2
u* 3

7 4
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We will now show that N  is indecomposable; this will be done by showing that 
the quotient module of N,  which we call N'  (and give its composition series below), 
is indecomposable.

2
N'  = v* 3

The non-zero part of the representation for N'  comes from the following part of 
the quiver of A[M}\

and is given as

for some non-zero maps a, b and c. Computing the endomorphism ring below, we 
see that all connecting maps must equal the first we choose:

Thus End«(Ar/) =  k. Since a field is local we have that N'  is an indecomposable 
right B-module. It follows immediately that N  is also an indecomposable right 

B-module.
We have the projective B-presentation of N:

e<\ B  ^ > ev* B@e2B  >- N  >- 0

This gives us the following matrix:

c*3
7?27?3
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Thus B[N] has quiver

Ql

6 5

with extra relation (3\r]2flz +  /?2^ 3- The new indecomposable projective module, 
ew»B[N]y has composition series shown below.

w *

3 7 8
4 8
5 9

Since the radical is indecomposable, and has the shape it does, we get that B[N] is 

not isomorphic to a monomial algebra. A second application of Theorem 4.1.2 gives 

us E(B[N])  right Noetherian.

4.2 Triangular m atrix algebras

We now present a generalisation of the work in the preceding chapter.
(  T  t M t j  \Following the notation of 3.1.1 we let A =  ( ^  1, be a triangular matrix

algebra, where T  and U are finite-dimensional algebras and tM [/ is a T-f/-bimodule, 

finitely generated as a T-module and as a [/-module.

We will show that, given certain conditions, properties of E( A) can be inferred 

from properties of E(T)  and E(U).

From [3] we have a description of the simple modules, projective modules and 

injective modules of A. Modules in the first row come from Ca, those in the second
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from C\.

Simple
Modules

Indecomposable 
Projective Modules

Indecomposable 
Injective Modules

( s ,  o ,o)
where 5  is a simple 

T-module

(P , P ® t M,  1 P8Tm ) 
where P  is an indecomposable 

projective T-module

( / , 0 , 0 ) 
where I is an indecomposable 

injective T-module

(0, S ', 0)
where S' is a simple 

U- module

(0 ,Q ,0 )
where Q is an indecomposable 

projective {/-module

(Hornu ( M,  J),J,4>) 
where J  is an indecomposable 
injective P-module and (f) is 

some explicit map

Note that (A, B, f )  © {A\  B' ,  / ')  = ( A ® A ' , B @  B \  / © / ') •

D efin ition  4.2.1 Let R  be a ring and A  some //-module. Then we define 

to be the projective cover of A  and 3RA  to be the injective envelope of A. More 

generally, let tyRA  be the projective cover of the i-th syzygy in a minimal projective 

//-resolution of A,  and let J ^ A  be the injective envelope of the i-th cosyzygy in a 

minimal injective //-resolution of A.

We now prove some results that will convenience us.

Lem m a 4.2.2 Let N  be a finitely generated U-module and L be a finitely generated 

T-module. Then f}3A(0, N, 0) =  (0,<#UN ,0) and 3A(T, 0,0) =  (aTL,0,0).

P ro o f. Let N  — -»• N  be the projective cover of N  in mod-f/. Then (0, UN,  0)

is a projective object in Ca ■ We consider the surjection (0, tyu N,  0) °̂’ (0, N,  0) .

Which we write in the following way:

0<S*7iA/ ——>• O ^ M  —— 0 % M  

o o o  

ker 7r̂ ---- -—>■ N  —  ---- *• N

Since ker-zr is superfluous in N  it is clear that (0,ker7r,0) is superfluous in 

(0,^P^/V,0). Hence 0) is the projective cover of (0,iV,0) in C\.
Now consider the T-module L. Let L — 3TL be the injective envelope of L 

in mod-T. Then (3T L, 0,0) is an injective object in Ca . We consider the injection

79



(L ,0,0) ■ > ( 3 t L , Q ,  0) . Which we write in the following way:

L im 77 

0

3t L

0

Homf/(M, 0) — Hom[/(M, 0) — Horn c/(M, 0)

Since im r) is essential in 3TL it is clear that (im 77, 0 , 0) is essential in (3TL,0,0). 
Hence (3TL,0,0) is the injective envelope of (L ,0 ,0) in Ca. □

Lem m a 4.2.3 Let  TV and TV' be right U-modules and let L and L' be right T- 
modules. Then

HomA ((0, TV, 0), (0, TV',0)) =  Hom^TV, TV')
a n d

HomA ((L, 0,0), (7/, 0,0)) =* HomT(L, V ). 

Proof. We get isomorphisms:

TV TV' L 1

and

0 % M

TV

0(&t M

TV'

L V

Hornu(M,  0) - 2 — HornV(M,  0)

by using the categories CA and CA respectively. □

Using the previous two lemmas we can give some identities. Let • • • —> P2 —■> 
Pi —> Pq and 7o —> / - i  —> I - 2  —> • • • be a minimal projective [/-resolution of U and 
a minimal injective T-resolution of T  (recall that for any algebra A with radical r, 
we have A =  A/r). Then for a l i i  > 0

E xt^((T , 0,0), ( T , 0,0))

S* HomA( ( f ,0 ,0 ) ,a ^ ( f ,0 ,0 ) )  

=  HomA((f ,0 ,0 ) ,( /- i ,0 ,0 ))

=  HomT(P, 7_j)

^  Ext*T( r ,T )
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so we have an isomorphism of k-vector spaces v  : Ext,lA((T, 0,0), (T ,0,0)) —►
E(T) .  In a similar way, we have

Ext\((0, U ,0), (0, U,0))

“  HomA(<p,A(0,£/,0),(0,t7,0))

=  HomA((0,P„0),(0 ,(?,0))

S' Horn [/(Pj, U)

S' Ext\j(U, U)

so ExtA((0, U, 0), (0, t/,0 )) is isomorphic as a k-vector space to E{U).
We also have that they are isomorphic as k-algebras by the following argument 

by E. L. Green.

Lemma 4.2.4 The k-algebras ExtA((T, 0,0), (T, 0,0)) and E(T)  are isomorphic as 
rings, and the k-algebras ExtA((0, U, 0), (0, U, 0)) and E(U) are isomorphic as rings.

Proof (E. L. G reen). Recalling the descriptions of the indecomposable projective 
modules of A, let

   (P2, {Pi ®M)®Q2, 1 )------  (P i, (Pi <8>M)©Qi, 1 )------ - CT , T ® M , 1)

be a projective A-resolution of (T, 0,0). Write the n-th differential as:

(Pn, (P„ 1) {U'9n) > (P„_,, (P„_i 1)

Note that (P*,/*) is a projective T-resolution of T.  Now let

(a,0) : (Pn ,(Pn<8>M)©Qn, l ) -----^ (T, 0,0)

and
(/3, 0) : (Pm, (Pm ®M)©Qm, 1 )------ (T, 0,0)

be arbitrary elements of Ext,A((T, 0,0), (T ,0,0)) and ExtAl((T ,0,0), (T ,0,0)) re­
spectively. In order to multiply (a,0) and (/?, 0), we lift (a,0) in the usual way, to 
get

(o/j'y) : {Pnjrtn, (Pn+m ®M)©Qn+m, 1) *• (Pmi {Pm ®Af)®Qm, 1)

Then we have (a'/3, 0) =  ( ^ , 7 ) • (/?, 0). Thus the product is exactly as if we had 
taken the product a/3 in E(T) .

Hence ExtA((T, 0,0), (T, 0,0)) and E{T)  are isomorphic as rings.
It is immediate that E xtA((0, U, 0), (0, U , 0)) and E{U)  are isomorphic as rings.□

81



Note that (as vector spaces)

oo oo
©  Ext*A((0, U,  0), ( f , 0,0)) =  0  HomA((0, Pu 0), ( f ,  0,0)) =  0
1=0 i = 0

by Lemma 4.2.3.

We thus have E{A) =  E(U)(BExt*A((T, 0,0), (0, U,Q))(BE(T).  We now prove the 

first of our finiteness results. As demonstration to the necessity of the hypothesis, 

the reader is directed to Example 4.2.11.

T h e o rem  4.2.5 Let E(U) and E(T)  be right Noetherian rings and suppose that 
f lA (T, 0,0) =  (0, N, 0) for some finitely generated right U-module N  and some n > 1. 

Then E (A) is a right Noetherian ring.

P roof. We will show that E{A) is a Noetherian right L'(A)-module. Let V  = 

E (U ) 0  E x t ^ T ,  0,0), (0, U, 0)), so that E{A) =  V  0  E(T).  It is clear that V  is 

a right E(C/)-module. Now let L =  0 ”TO1 E xt\((T , 0,0), (0, [7,0)). Using Lemma

4.2.3, dimension-shifting and [6, 2.5.4] we have the following identity.

E x t( ( T ,  0,0), (0, U ,0))

=  © £ 0 Ext*A ((T ,0,0),(0,C /,0)) 

a* L 0 © ^ n ExtlA((f,O,O),(O,U,O)) 

a  £ ® ® ” „E x t\-"(n £ (7 \0 ,0 ),(0 ,!y ,0 ))

=  i ® ® S 0Ext’A(Q ^ (f ,0 ,0 ) ,(0 ,t/,0 ))

=  i 0 ® “ o Ext\((O,iV,O),(O,i7,O))

=  i ® 0 “ oEx% W &)

a  L®Ext£,(AT,C/)

Note that L is finite-dimensional by linearity of Horn and Schur’s Lemma. By 

Proposition 4.1.1 we have that Ext ^ (N,  U) is a finitely generated right £(Z7)-module. 

Since L is finite-dimensional this means L 0  Ext^(A ”, U) is a finitely generated 

right E(U)~module (note that we do not say L is a right L'(L’)-module). Thus 

V = E(U)  0  L 0  Extu(N,  U) is a finitely generated right £'(t/)-module. Since 

E(U)  is a right Noetherian ring, V  is a Noetherian right E'(L’)-module. Now, since

82



the right action of HomA(T,T) is zero on V,  we get that V  is a Noetherian right 
(E{ U ) 0  T))-module. However E(U)  0Hom A {T,T)  is a unital subring of
E ( A) and so V  is a Noetherian right £(A)-module.

Now, by definition, E ( T ) is a Noetherian right J5(T)-module. As the right 
action of Uom\(U,U)  is zero on E(T),  we get that E(T)  is a Noetherian right 
(E ( T ) 0  HomA(U, t7))-module. However E(T)  0  U) is a unital subring of
E ( A) and so E(T)  is a Noetherian right £(A)-module. Hence E( A) =  7 0  E(T)  is 
a Noetherian right .E(A)-module and so E(A)  is a right Noetherian ring. □

Rem ark 4.2.6 It is important to note how Theorem 4.2.5 above is related to The­
orem 4.1.2. For basic algebras it is in fact an encapsulation of what happens if 
one iterates Theorem 4.1.2. To explain, let U° be a finite-dimensional algebra with 
quiver Q° and with E(U°)  a right Noetherian ring, and let U l be a one-point exten­
sion of U°. Then by Theorem 4.1.2, E ( U l ) is a right Noetherian ring. Continuing 
this process, let Ul+1 be a one-point extension of Ul and let Ul have quiver 
for i > 0. Then continued application of Theorem 4.1.2 says that E( Ul) is a right 
Noetherian ring for all i >  0. Consider now the quiver Ql of U% for some i >  1. 

We have a copy of Q° inside that of Ql, but by the nature of a one-point extension 
there are no new oriented cycles in Ql: it contains only those found in Q°. In this 
way it is clear that, for A := Ul and U := U°, we fulfill the hypothesis in Theorem 
4.2.5 which says that there must exist some n > 0 such that the composition series 
of the n-th syzygy (T) contains only simple modules corresponding to vertices 
in Q°, where T  is the direct sum of simple modules corresponding to the vertices of 
Q 1 not in Q°. In fact we must have n  < i. This puts f ^ ( T )  in the image category 
of the functor T  of Section 3.2.

Exam ple 4.2.7 Consider the final algebra in Example 4.1.3, which here we will 
call A. This has quiver

6 5
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and relations 7717727/3 , 772773774775, 7/37747757/6, 7/47/5776777778779, 7/6777778779771, <23774, ot5r)6r}7ri8r)Q, 

^67777/8 and /?i 772773+ ^ 2<̂3- This is a triangular matrix algebra, where T  is the algebra 
with quiver

and no relations; where U is the algebra with quiver

and relations 771772773, 7/27/37/4775, 7/37/47757/6 , 7/47757/6777778779, 7/67777/8779771; and where M  =  

(e^Aef/), where e j1 =  ev* +  ew. and ejy =  ei -f e2 +  • • • +  eg.

Since T  is hereditary, and U appears already in Example 2.5.6, we have that both 

E(T)  and E(U)  are right Noetherian rings. Further, the projective A-resolutions of 

Sw* and Sv* below show that there is some ^/-module N  such that Q^(T, 0,0) =  

(0, N,  0), some n > 1.

   -----»- e4A ev* A©e2A ew*A. S w*  0

• ■  -----e<2,A®64 A©e6A®e7A  ev*A  ► Sv*  ► 0

We see that n = 2 in this case. Now we can use Theorem 4.2.5 to conclude that 

E (A) is right Noetherian.

To prove the companion to Theorem 4.2.5 we need the following companion to 

Proposition 4.1.1.

Proposition 4.2.8 Let A  be a finite-dimensional algebra with E ( A ) a left Noethe­

rian ring and let B  be a finitely generated right A-module. Then E x t^ (A /r, B ) is a 

finitely generated left E(A)-module.
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P ro o f. We first note that Ext*A(A /r ,B )  is naturally a left i?(A)-inodule. We show 
that it is finitely generated as a left £'(>l)-module by proceeding by induction on 
the radical length of B.

If AT is a finitely generated right A-module with N r  =  0 then N  is the di­
rect sum of finitely many simple right A-modules. Therefore Ext*A( A / r , N)  E 
Add-^ (e (a )E(A))  , the category of finite sums of summands of the left regular E(A)~ 
module. This means Ext*A(A /r, N ) is finitely generated as a left £'(A)-module.

For the inductive hypothesis, suppose there exists some n > 2 such that if iV is a 
finitely generated right A-module with N r n~l =  0, then Ext*A( A / r , N)  is a finitely 
generated left E'(A)-module.

For the inductive step suppose N  is some finitely generated A-module with 
N r n = 0. We form the short exact sequence

0 -----► N r  >- N  ► N / N r  ^ 0

Applying the covariant functor Horn a (A/r,  —) we get a long exact sequence in ho­
mology:

0 -----► Hom^(A/r,  Nr)  > Hom(A/r, N)  — Hom(A/r ,  N/ Nr )

c E x tlA (A/r ,  Nr)  E xt1 (A/r,  N)  — ^  Ext,1 {A/r,  N / Nr )
3

ExtA(A/r,  Nr)  Ext2(A /r, N)  —^  Ext2{A/r,  N / N r ) -----» • • ■

which yields the exact sequence

Ext*A{A /r, N r)  E x t^(A /r, N) Ext*A(A /r, N / Nr )

with /* and g* acting componentwise. For ease of notation let R  = E(A),  K  = 
Ext*A( A/ r ,Nr) ,  L =  E x t*A( A / r , N )  and Q =  Ext*A(A /r, N/ Nr) .  This gives us the 
exact sequence of i?-modules

from which we get the diagram



Since im /* =  i f /k e r /*  by the first isomorphism theorem, and ker <7* =  im /* by 

exactness, we have the short exact sequence

0  i f /  ker / * ----->- L  ► im <7* ----->- 0

As i f  is a finitely generated left i?-module we have that i f /k e r /*  is a finitely 

generated left i?-module and hence is Noetherian. Also Q is a finitely generated 

left i?-module and since R  is left Noetherian this means the submodule img* is 

finitely generated and hence Noetherian. We now apply Proposition 3.3.1 to get L 

Noetherian as a left i?-module and hence finitely generated. Thus Ext*A(A /r , N ) is 

a finitely generated £ ’(A)-module.

Hence by induction if B  is a finitely generated right A-module then Ext A (A /r, B ) 

is a finitely generated left £ l(A)-module. □

We can now prove the companion to Theorem 4.2.5.

Theorem  4.2.9 Let E (U ) and E (T ) be left Noetherian rings and suppose that 
f lAn(0, U,0)  =  (N' , 0 , 0 ) for some finitely generated right T-module N ' and some 

n > 1. Then E (A) is a left Noetherian ring.

Proof. We will show that E (A) is a Noetherian left i?(A)-module. Let W  = 

ExtA((T, 0,0), (0, U ,0)) © E{T),  so that E{A) =  E(U)  © W.  It is clear that W  

is a left E(T)-module. Now let L = ® ”T01 E x t\( (T ,0 ,0), (0, C/,0)). Using Lemma

4.2.3, dimension-shifting and [6, 2.5.4] we have the following identity.

Ext^((T, 0,0), (0, U ,0))

=  © £ o ExtA ((^°> °),(0 ,U ,0))

=  ^ © 0 S n ExtlA((f,O,O),(O,C7,O))

= L ® © “ „ E x t p ( ( f , 0,0), S l \  (0,0,0))

= £ ® © ” oExt^((r,0,0),fi*n(0,£/,0))

=  £ ® ® “ o E x t A ( ( f . O , 0 ) > ( A f ' , 0 , 0 ) )

^ i ® © “ 0ExtV(f,iV')

= L ® E x t^ T , N ’)
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Note th a t L  is finite-dimensional by linearity of Horn and Schur’s Lemma. By 

Proposition 4.2.8 we have that Ext^(T, N')  is a finitely generated left £(T)-module. 

Since L is finite-dimensional this means L © Ext^(T, N f) is a finitely generated 

left E ( T )~module (note that we do not say L is a left E(T)~module). Thus W  = 

L © E xt^(T , N f)®E(T)  is a finitely generated left E(T)-module. Since E(T)  is a left 

Noetherian ring, W  is a Noetherian left £(T)-module. Now, since the left action of 

HomA(f/, U) is zero on W,  we get that W  is a Noetherian left ( E ( T ) ®R o m \ ( U , U))- 

module. However E { T ) ©  H o iu a  is a unital subring of E( A) and so W  is a
Noetherian left ^(Aj-module.

Now, by definition, E(U)  is a Noetherian left ^ (^ -m o d u le . As the left action 

of HomA(T’,T) is zero on E{U),  we get that E{U)  is a Noetherian left (E( U) © 

HomA(T, T))-module. However E(U)  ©HomA(T, T) is a unital subring of E( A) and 

so E(U)  is a Noetherian left £(A)-module. Hence E{A) =  E( U) ®W  is a Noetherian 

left i?(A)-module and so E{A) is a left Noetherian ring. □

In the following example, E( A) is left Noetherian but not right Noetherian, 

whereas E( U ) and E(T)  are both right and left Noetherian. To see that -E'(A) is 

not right Noetherian, we need only consider that it has a basis element (maximal 

overlap sequence) of the form clr]\r)2 ')x for each I > 0 , where c = ?7177277377477577677777sT79. 
These elements can now be used to construct an ascending sequence of right ideals 

exactly as in the proof of Theorem 2.5.1.

E xam ple  4.2.10 Let A be the finite-dimensional k-algebra with quiver

*w

v

7

6 5
15
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and relations 772773774775, W 5 W 7 W 9 , m ,m m rl9r)u m m ix  and r]4r]5aQP3.
This is a triangular matrix algebra, where T  is the algebra with quiver

and relations 771772773, 772773774775, 773774775776, 774775776777773779, 776777773779771; where U is the 
algebra with two-component, quiver

and no relations; and where M  =  (e^Aeu), where =  ei +  e2 +  • • • +  eg and 

ey  7 ev* -(- ew* +  ex .
Since T  appears already in Example 2.5.6, and U is hereditary, we have that both 

E(T)  and E(U)  are left Noetherian rings. Further, the injective A-resolutions of S w*, 
Sv* and Sx below show that there is some T-module N '  such that f2^n(0, U, 0) =  
(iV ',0,0), some n > 1. We denote as Ia the injective A-module with simple socle 

Sa.
0 -----^ S x  >■ Xx  ► X3  >- ■ ■ •

0 -----^ Sy*  Xy* ----► T2 ©T4 ©Xg0 X7  >■ • • •

0 Syj* Xy)* >• X2©Xy* X/\ ►

We see that n = 2 in this case. Now we can use Theorem 4.2.9 to conclude that 

E{A) is left Noetherian.

We now present an example demonstrating that the hypothesis in Theorem 4.2.5:

^a (T , 0,0) =  (0, N, 0) for some finitely generated right U-module N  and some n > l

cannot be removed.



E x a m p le  4 .2.11 Let Q be the quiver

1

and form the path algebra kQ. Let I  = ((a/3)2, afir^S, (7 <5)2) be a two-sided ideal 

of kQ and let A =  k Q/X.  Then A is a triangular matrix k-algebra where

_ , Q n
T  has quiver 1 < » 2 with relation (a8Y

P

7
U has quiver 3 <   4 with relation (7 J )2

s

and M  =  (ei +  e2)A(e3 +  64). Since A is a monomial algebra we may use (left) max­

imal overlap sequences to calculate E (A), E( U) and E(T).  By Theorem 2.5.1 E(T)  

and E(U)  are Noetherian. We get infinitely many basis elements in Ext^((T , 0,0), (0, U, 0)) 
of the form

(cx0)2 (<*/3)2 a 0 r r fS  ( r f ) 2 (7<5)2

I I I I I I I I
I I ” ■ I I I I I_____ I

(a 0 ) 2  (a 0 )2 oc0T) 7<5 (7 <5 ) 2  (7 <5 ) 2

Now, E x t^ ((T ,0,0), (0, 0)) is a right E(A)-submodule of E ( A). Right multi­

plication of an element of the above form can only concatenate more of the re­

lation (7 (3)2 on the right. Thus we need infinitely many elements to generate 

Ext^((T, 0,0), (0, £/, 0)) as a right E(A)-module. Thus E(A) has an infinitely gen­

erated right submodule and so is not a right Noetherian ring.

In summary of this and the previous chapter, we have seen in Theorems 4.2.5 

and 4.2.9 how a Noetherian property shared by E(U)  and E(T)  is, under the right 

conditions, transfered to -E(A). The penalty we have had to impose in each case is 

that, for some finite n, respectively the n-th syzygy or n-th cosyzygy of a certain 

semi-simple module is well-behaved. In the context of transferring finiteness condi­

tions, such a penalty perhaps should not come as a surprise. Indeed, in Example 
4.2.11 we see that it is necessary.
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Chapter 5

Summary and further study

This thesis has set out with the following problem in mind:

When is the Ext-algebra of a ring finitely generated or Noetherian?

The problem is vast in scope, which no one researcher could hope to answer with 

a lifetime’s study, let alone complete in a single thesis. The rather more realistic 
goal for this thesis has been to answer as much of the above question, and in as 

much variety, as time allows. In this, success has been three-fold. Firstly, we have 

completely solved the problem for an important class of finite-dimensional algebras: 

the cycle algebras. From previous work by Green and Zacharia [18] this has led 

to a partial answer for all monomial algebras. Secondly, we have related the Ext- 

algebra of a triangular matrix algebra with the Ext-algebras of its two component 

algebras. Thus if one has smaller algebras with the above question answered, these 
results can be used to answer, at least partially, the same question for a larger 

algebra constructed from them. This second part of the thesis has quite a different 

philosophy from the first, and this is our second success. Finally, the thesis is not 

two divided halves, but two united parts. Whereas each part can stand alone, and 

they will be published as such in due course, the two parts complement each other, 

just as do the two philosophies. That is: prove directly for some class of algebra, 

then prove comparison results to construct many new examples from your original 

class.

A number of continuations of this project come to mind, although in some ways 

(happy ones I hope!) this chapter is a victim of the project’s success. In the first 

part of the thesis we have used the smo-tube and a description of the Ext-algebra 

of a monomial algebra to classify the Ext-algebras of the class of cycle algebras.
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Since this classification was complete, we must ask now whether our methods can be 

generalised to a different or wider class. It is difficult to see how we could easily adapt 

this work to solving directly our problem for any class of non-monomial algebras. 

There is still some work left to be done in the monomial case, however: answering 

the question raised by the (now known to be) false direction of the Green-Zacharia 

proposition, which we have treated in Section 1.2. That is, solving the problem 

of when the Ext-algebra of an arbitrary monomial algebra is finitely generated or 

Noetherian. This will require some new ideas, not just adaptations of the material 

presented here. One approach might be comparing the Auslander-Reiten quiver of 
a cycle algebra to the finiteness condition of its Ext-algebra given in this thesis. The 

Auslander-Reiten quiver of a cycle algebra has a natural shape to it, and there is a 

result by Dag Madsen that suggests some link between the shape of the Auslander- 

Reiten quiver and finiteness conditions of its Ext-algebra.

A different and exciting direction for the study of finiteness conditions of the Ext- 

algebra is the study of Aoc-algebras. The Ext-algebra has a natural Aoo-structure 

(this consists of a set of “higher homotopy” products), and so can be considered as 

an Aoo-algebra. It should be interesting to study the Aoo-structure to see if there is 

any bearing on whether the Ext-algebra is finitely generated or Noetherian.

For the second part of the thesis we can depart from the main problem alto­

gether. We showed in Section 4.2 that the two theorems presented there, were all 
that could be hoped for from the triangular matrix construction (which is a gener­

alisation of the one-point extension). However, the Hochschild cohomology ring is 

very closely related to the Ext-algebra. It should be that some of the results can be 

adapted to produce, or at least inspire, similar comparison results for the Hochschild 

cohomology ring of an algebra.
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