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Highlights 

• Executed at runtime. The proposed approach can better manage time-varying workloads and 
system changes. 
• Hierarchical mapping approach. The proposed approach is implemented in a many-core 
managed in a hierarchical way. Such hierarchical system management improves system 
scalability by dividing the system into regions, each one with a manager responsible for actions 
inside it. Further, it reduces mapping decision computational effort, not compromising the 
system performance. 
• Induces to a better system reliability. The proposed approach aims to improve energy 
balancing, which are directly related to a better system reliability. 
• Hierarchical energy monitoring. The proposed approach does not employ physical sensors in 
the mapping decision, which increases area and energy costs. The energy data is obtained at 
runtime using a hierarchical monitoring approach. 
• Clock-cycle model for validation. The proposed mapping approach is validated in a large 
many-core system (up to 256 processing elements), modeled in SystemC. 
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Abstract – This work addresses a research subject with a rich literature: task mapping in NoC-based 
systems. Task mapping is the process of selecting a processing element to execute a given task. The number 
of cores in many-core systems increases the complexity of the task mapping. The main concerns in task 
mapping in large systems include (i) scalability; (ii) dynamic workload; and (iii) reliability. It is necessary to 
distribute the mapping decision across the system to ensure scalability. The workload of emerging many-
core systems may be dynamic, i.e., new applications may start at any moment, leading to different mapping 
scenarios. Therefore, it is necessary to execute the mapping process at runtime to support a dynamic 
workload assignment. The workload assignment plays an important role in the many-core system reliability. 
Load imbalance may generate hotspots zones and consequently thermal implications, which may generate 
hotspots zones and consequently thermal implications. More recently, task mapping techniques aiming at 
improving system reliability have been proposed in the literature. However, such approaches rely on 
centralized mapping decisions, which are not scalable. To address these challenges, the main goal of this 
work is to propose a hierarchical runtime mapping heuristic, which provides scalability and a fair workload 
distribution. Distributing the workload inside the system increases the system reliability in long-term, due to 
the reduction of hotspot regions. The proposed mapping heuristic considers the application workload as a 
function of the consumed energy in the processors and NoC routers. The proposal adopts a hierarchical 
energy monitoring scheme, able to estimate at runtime the consumption at each processing element. The 
mapping uses the energy estimated by the monitoring scheme to guide the mapping decision. Results 
compare the proposal against a mapping heuristic whose main cost function minimizes the communication 
energy. Results obtained in large systems, up to 256 cores, show improvements in the workload distribution 
(average value 59.2%) and a reduction in the maximum energy values spent by the processors (average 
value 32.2%). Such results demonstrate the effectiveness of the proposal.  

Keywords –Energy-aware task mapping; monitoring; load balance; energy consumption; many-core systems. 

1. INTRODUCTION 
Many-core systems have been employed to provide the high demands of performance while 

maintaining energy efficiency during the execution of concurrent embedded applications (e.g. video 
compressing, wireless communication standards, gaming). Such systems increase performance by using 
multiple homogeneous or heterogeneous processors. Many-core systems also integrate memories, dedicated 
hardware cores, and a communication infrastructure to interconnect the system components, as NoCs 
(Networks-on-Chip) and buses. Despite the higher design complexity of NoCs, such communication 
infrastructure offers better scalability, performance and power capabilities when compared to buses [1].  

Applications designed to execute in many-core systems may be partitioned into different tasks to 
execute in different cores, enabling its parallel execution [2]. A task is a set of instructions and data, 
containing information and constraints for its correct execution in a given core. Additionally, tasks exchange 
data with other tasks during the execution of the application. The definition in which system core each task 
will execute is a major issue in the design of many-core systems. In the literature, this issue is defined as task 
mapping [2]. 

Task mapping decision should be executed at runtime to deal with time-varying workloads caused by 
the most of the embedded system applications [3]. Such variations cannot be accurately predicted during 
design time, such as the scenarios when the system interacts with complex deployment environments or user-
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driven requests [4]. Runtime approaches (also referred as online or dynamic mapping approaches) require 
simple and fast mapping solutions since high time-consuming, and high computational algorithms may 
compromise the system performance. Further, runtime mapping can better lead with other system changes 
during runtime, such as cores availability and defective cores [2]. 

The increasing number of cores also requires scalable and hierarchical mapping solutions. Novel 
systems, with dozens of cores, are already present in the market [5][6] and ITRS roadmap [7] projects 
systems integrating thousands of cores by the end of the decade. In such systems, a centralized mapping 
decision compromises the system performance since a single core handles all mapping requests [8]. Also, 
centralized mapping contributes to increasing NoC congestion around the mapper leading to hotspot zones, 
which may result in system failures. 

Reliability is an important concern related to task mapping, tightly connected to the workload 
distribution [9][10][11]. Load imbalance decisions can generate hotspots zones (i.e. peaks of power 
dissipation) and thermal variations, which affects directly system reliability [9][10][12]. This issue is worse 
in many-core systems, increasing power densities and, consequently, system temperature. Further, mapping 
communicating tasks far from each other result in more data transfer through the system, increasing 
communication latency and energy consumption. Unusable cores induce mapping of applications onto other 
system cores, increasing their workload and, consequently, reducing their lifetime.  

To develop a hierarchical runtime mapping heuristic aiming a fair workload distribution it is necessary 
to have available accurate information (e.g. power, energy, temperature) to map the tasks. Reliability, 
temperature, and lifetime are tightly connected to the consumed energy into the system [13]. Thus, a 
monitoring scheme should provide energy data to the mapping heuristic. Therefore, the energy monitoring 
scheme is key for the effectiveness of the mapping heuristic. 

The main goal of the current work is to propose a new mapping heuristic tackling the following 
features: runtime execution (dynamic), scalability, and workload distribution. The mapping decisions are 
guided at runtime by a hierarchical energy monitoring scheme, not requiring application profiling or thermal 
sensors.  

This paper is organized as follows. Section 2 reviews the state-of-art in dynamic mapping heuristics, 
comparing qualitatively our proposal to the related works. Section 3 details the application model. Section 4 
presents the energy model. This model is integrated into the operating system of the processing elements, 
enabling the energy monitoring at runtime. The hierarchical energy scheme is detailed in Section 5. Section 6 
details the mapping heuristic. Section 7 presents results, and Section 8 concludes this paper. 

2. STATE-OF-ART  
Task mapping literature is wide, requiring a taxonomy considering different mapping criteria. Authors 

in [14][15] classifies the mapping process according to four criteria:  
(i) Target architecture. Task mapping can be executed in homogeneous (identical processing elements) 

or heterogeneous (e.g. DSPs, dedicated IPs, accelerators) systems. 
(ii) Number of tasks per PE: single or multi-task. Single-task assumes only one task assignment per PE 

while multi-task allows mapping more than one task per PE according to some criteria (e.g. 
communication, execution time, task deadlines). A multi-task approach can better explore system 
resources, enabling the execution of an increasing number of applications in parallel. 

(iii) The moment in which it is executed: design-time or runtime. Design-time approaches are not suitable 
to dynamic and unpredictable workloads imposed by the execution of different applications. Runtime 
task mapping enables different applications to be inserted into the system at runtime, enabling 
dynamic workloads. 

(iv) Mapping management: centralized or hierarchical. Centralized mapping uses a single core 
responsible for the overall management, which is suited for small systems due to scalability issues. 
In a hierarchical approach, the mapping management is distributed in different cores, increasing 
system scalability and reliability. 

This paper focuses on general-purpose many-core systems, able to execute several applications that 
are unknown in advance. This paper also assumes that underlying applications can be inserted into the 
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system in a non-deterministic way, according to user requirements. The literature contains several runtime-
mapping approaches. Table 1 summarizes the reviewed works according to the mapping taxonomy.  

Table 1 - State-of-the-art in dynamic mapping heuristics. 
Author / 

Year 
Multi/ 

Mono-task Architecture model Management Optimization Goal 

Smit et al. [16]  
(2005) Mono-task Heterogeneous Centralized Energy Consumption and 

QoS requirements 
Ngouanga et al. [17]  

(2006) Mono-task Homogeneous Centralized Communication volume, 
computation load 

Coskun et al. [18]  
(2009) Mono-task Homogeneous Centralized System Reliability 

Chou et al. [4] 
(2010) Mono-task Homogeneous Centralized 

Energy Consumption, 
Internal and external 
network contention 

Hölzenspies et al. [19] 
(2008) Mono-task Heterogeneous Centralized Energy consumption and 

QoS requirements 

Al Faruque et al. [8]  
(2008) Mono-task Heterogeneous Hierarchical 

Execution time, 
mapping time and 
monitoring traffic 

Wildermann et al. [20] 
(2009)  Mono-task Homogeneous Centralized Communication latency, 

energy consumption 
Schranzhofer et al. [21] 

(2009)  Mono-task Homogeneous Centralized Energy consumption 

Lu et al. [22] 
(2010) Mono-task Homogeneous Centralized Communication latency and 

energy consumption 
Carvalho et al. [23] 

(2010)  Mono-task Heterogeneous Centralized Network contention, 
communication volume 

Singh et al. [2][3][24] 
(2010) Multi-task Heterogeneous Centralized 

Network contention, 
communication volume and 

energy consumption 
Kobe et al. [25]  

(2011) Mono-task Homogeneous Hierarchical Execution time, 
 Communication traffic 

Cui et al. [26] Mono-task Homogeneous Hierarchical Communication traffic 
energy consumption 

Hartman et al. [27] 
(2012)  Mono-task Homogeneous and 

Heterogeneous Centralized System reliability 

Chantem et al. [9] 
(2013)  Mono-task Homogeneous Centralized System reliability 

Bolchini et al. [28] 
(2013)  Mono-task Homogeneous Centralized Energy consumption and 

system lifetime 
Das et al. [29] 

(2014) Mono-task Homogeneous Centralized Application deadlines and 
system lifetime 

Mandelli et al. [30] 
(2015) Multi-task Homogeneous Hierarchical Communication energy 

reduction 
Proposed  

work Multi-task Homogeneous Hierarchical Workload distribution and 
communication volume 

 

Only few works related to multi-task mapping were found in the literature, proposed by Singh et al. 
[2][3][24] and Mandelli et al. [30]. Multi-task techniques include clustering, which groups tasks to be 
executed in the same PE. A non-optimized clustering approach may lead to hotspots, reducing system 
lifetime and accelerating system wear out. Heterogeneous systems may have better performance for specific 
applications, and homogeneous systems are general-purpose platforms. As industrial examples [5][6], the 
present work focuses the research in homogeneous architectures. Another important feature is the 
hierarchical system management approach, as proposed in [25][26][30]. Such approach is scalable and can 
reduce the mapping algorithm computational effort, increasing system performance. 

The literature presents different runtime task mapping approaches to improve system reliability. All 
reviewed works use a centralized system management approach [9][18][27][28][29]. Among them, some 
works [28][29] produce mapping decisions at design time, which are stored in a database and used at runtime. 
This approach may reduce system performance due to its incapability of dealing with unpredictable system 
variations. Task mapping approaches proposed in [9][27], employ physical sensors to capture thermal or 
wear-state condition of cores at runtime. Included sensors provide accurate information to the mapping 
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decision at the cost of the additional system area and energy consumption. Huang et al. [31] use an abstract 
system to validate the proposed approach, which can produce inaccurate performance results.  

The literature presents hierarchical approaches to improve system reliability. However, such 
approaches use other techniques rather than task mapping [32][33][34]. Ge et al. [32] propose a task 
migration approach for thermal balancing. This approach uses thermal sensors, which aggregate hardware 
costs. Wu et al. [33] present a dynamic frequency scaling for thermal management, which may impose 
additional hardware costs. Liu et al. [34] also present a thermal management task migration approach, which 
does not consider performance costs. 

 Mandelli et al. [30] propose the LEC-DN (Lower Energy Consumption based on Dependencies-
Neighborhood) heuristic, a hierarchical mapping approach whose main function is to reduce the 
communication energy. To minimize communication energy, the LEC-DN heuristic aims to reduce the 
distance in hops between communicating tasks. When a given task ti is required to be mapped, this heuristic 
first analyzes the set of communicating tasks with ti already mapped. Then, the heuristic approximates ti to 
the tasks it has a higher communication volume. 

This paper proposes a task mapping approach that differs from literature since it includes all the 
following characteristics: 
x Executed at runtime. The proposed approach can better manage time-varying workloads and system 

changes. 
x Hierarchical mapping approach. The proposed approach is implemented in a many-core managed in a 

hierarchical way. Such hierarchical system management improves system scalability by dividing the 
system into regions, each one with a manager responsible for actions inside it. Further, it reduces 
mapping decision computational effort, not compromising the system performance. 

x Induces a better system reliability. The proposed approach aims to improve energy balancing, which is 
directly related to a better system reliability [9][10]. 

x Hierarchical energy monitoring. The proposed approach does not employ physical sensors in the 
mapping decision. The energy data is obtained at runtime using a hierarchical monitoring approach. 

x Clock-cycle model for validation. The proposed mapping approach is validated in a large many-core 
system (up to 256 processing elements), modeled in clock-cycle RTL SystemC. 

3. APPLICATION MODEL 
An application is modeled as a graph GApp = (T, E), where each vertex ti ∈ T represents an 

application task and each directed weighted edge eij ∈ E represents a communication dependence between 
tasks ti and tj. The weight of an edge eij is denoted by commij, representing the total data communication 
volume transferred between application tasks ti and tj. Figure 1 presents an example of an application 
modeled as a task graph. Applications may be periodic or aperiodic. If the application is periodic (e.g. video 
decoding), the task graph represents one iteration of the application. 

An application has initial tasks (e.g. t1 and t2) and non-initial tasks. Initial tasks are those that initialize 
the execution of the application when mapped in the system. Such tasks do not have dependencies on other 
tasks to start to execute. A task ti ∈ T contains a set Ci called communication task list. This set is defined as 
Ci = {(tj, commij); (tk, commik); … (tn, commin)}, where each element is a tuple containing a task tj that 
communicates with ti and the value commij, corresponding to the total volume transferred between ti and tj in 
both directions (i.e. ti to tj and tj to ti). 

230

t3

t4

t5

120

230

300

180160

t1

t2

t6

 
Figure 1 - Application modeled as a task graph GApp = (T, E). Initial tasks: t1, t2. Non-initial tasks: t3, t4, t5, t6 

 

Each application has an application description file containing information used to guide mapping 
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decision. Such file contains: (i) the application size, which corresponds to the total number of tasks of the 
application; (ii) list of initial tasks; (iii) the set Ci for each task ti, of the application. 

 All communication between tasks occurs through message passing. Inter-task communication uses 
send and receive MPI-like primitives.  

4. ENERGY MODEL 
The energy consumption in a many-core system is mainly due to three components: memory, 

processors, and NoC (routers and links). The number of memory accesses is identical for the same workload. 
Therefore, to fairly compare different mapping solutions using the same workload, we consider the energy 
consumption of both processor and NoC as main metrics.  

As described in the literature [35], the energy consumption (EC) of a processor pei is defined by its 
static and dynamic consumption. The processor EC related to the execution of a given task is a function of 
the number of executed instructions. In our model, the energy cost of each instruction is determined from a 
gate-level implementation of the processor, as proposed by Rosa et al. [36]. 

Each processor pei contains an instruction analyzer module, which counts the number of executed 
instructions for different classes at runtime. The set of classes is defined as C = {c0, c2,… ,c8}, with 9 different 
classes (e.g. arithmetic, logic, branch) [36]. Results show that the error of adopted instruction analyzer 
module varies from 0.06% to 8.05% when compared to a gate-level implementation [36]. The instruction 
analyzer module corresponds to nine instruction counters, included in the control part of the processor. If the 
hardware of the processor cannot be modified, a sniffer may be added in the address and instruction buses. 
The instruction counters are specific purpose registers containing the number of executed instructions per 
class. The instructions per class registers are continuously updated. The area overhead due to this module in 
the processor corresponds to 6.4%, and in the whole PE it is inferior to 2%. 

The processor energy consumption for a given monitoring period is obtained according to Equation 1. 

Eprocessor =  6  ( energy(ci)  * total_instructions(ci) ) (1) 

where: energy(ci), energy to execute a given instruction belonging to the class ci, value obtained by 
simulating the synthesized processor; total_instructions(ci), number of executed instructions belonging to the 
class ci in the monitoring period. 

The NoC EC is proportional to the number of transmitted flits at each router port [37]. A gate level 
description of the NoC is used to determine the energy consumption of the main router components: buffers, 
internal crossbar and control logic. Equation 2 gives the energy consumption for a given monitoring period.  

Erouter = nb_flits * Ebuffer + Ecrossbar + Econtrol_logic (2) 

where: nb_flits correspond to the number of flits transferred by the router during the monitoring period; 
Ebuffer, Ecrossbar, and Econtrol_logic to the energy consumption of the main router components during the 
monitoring period. 

Most of the time, the NoC consumes only static power, since the injection rate induced by the 
processors is typically inferior to 5% (similar injection rate was observed in [38]). Experimental results 
observed in [37] show that most of the consumed energy comes from processors (roughly 90%). Even if the 
injection rate is small, it is important to reduce the hop count to reduce the shared resources in the NoC. 
Increasing the number of shared resources in the NoC may lead to congestion and performance degradation 
due to increased latency. 

Each PE monitors the processor and router energy according to a parameterizable monitoring period. 
The monitoring scheme uses these values to guide the mapping heuristic. 

5. HIERARCHICAL MONITORING METHOD 
The many-core system adopted in this work is a general purpose homogeneous MPSoC in which 

processing elements (PEs) are interconnected through a NoC. The system uses distributed memory 
architecture, based on scratchpad memories rather than cache memory. The system adopts scratchpad as 

 
  8 
 
i=0 
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local storage memories due to its power efficiency and management facilities when compared to cache 
memories. Further, scratchpad memory is more predictable in terms of access time, and it does not require 
any coherence protocol, as required by cache-based architectures [39]. The adopted architecture does not 
contain shared memories. 

The MPSoC architecture can be defined as a directed graph GMPSoC = (PE, L). Each vertex pei ∈ PE 
is a processing element. An edge lij ∈ L is a NoC link interconnecting pei to pej. Each PE contains a processor, 
a local memory, a DMA module, a network interface and a router (Figure 2). An external memory, named 
application repository, contains the object code of the application tasks to execute in the system.  

The local memory of each PE, which default size is 32 KB, stores the Pkernel (simple operating 
system), the code and data for the tasks assigned to the PE. The local memory is organized into equally sized 
pages to simplify the memory management. The number of pages in SPs is defined as SP_PAGES. While the 
first page stores the Pkernel (9.5 KB), the remaining SP_PAGES are used to store the application tasks. If a 
given task does not fit on one page, the task should be partitioned into smaller tasks. The memory size is a 
design parameter, being possible to fit this parameter according to the workload to execute in the system. 

To enable the hierarchical system management, the system is divided into virtual regions, named 
clusters (Figure 2) [40]. For this purpose, processing elements may assume one of three roles: 

x Slave Processing Element (SPs). SPs execute application tasks. Each SP runs the Pkernel, which 
supports communication between PEs, multitask execution and software interrupts (traps). Each SP 
can execute MAX_SP_TASKS tasks simultaneously, which corresponds to SP_PAGES -1.  

x Local Manager Processing element (LMP). Responsible for cluster control, executing functions 
such as task mapping, task-migration, and re-clustering (process to requests SPs to neighbor clusters). 

x Global Manager Processing Element (GMP). A single PE responsible for the overall system 
management, such as defining application-to-cluster mapping, controlling external devices accesses 
(e.g. application repository). Further, the GMP manages one of the system clusters (for example, the 
bottom left cluster of Figure 2), executing all functions of an LMP. 

 

 
Figure 2 - Example of a 9x9 MPSoC instance, with hierarchical management. 

The definition of the clusters‟ size occurs at design time. When the system starts, the GMP handles the 
clusters‟ initialization, notifying the LMPs the region they will manage. Then, when an LMP knows the 
region it will control, it informs all SPs in this region that it will be their manager. This cluster and SPs 
initialization mechanism provide better system adaptability. For example, runtime re-clustering process 
enables the modification of the cluster size. The re-clustering process occurs when there are no available SPs 
inside a cluster to map an application task. The LMP checks the availability of cluster resources when a task 
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is requested to be mapped. If there is no SP available inside the cluster to receive the requested task, an SP is 
borrowed from neighbor clusters [40]. When the task finishes its execution, the borrowed SP is released to 
the original cluster.  

The proposed hierarchical monitoring approach comprises intra- and inter-cluster monitoring, as 
illustrated in Figure 3. 

SP
Mng.

SP
Mng.

SP
Mng....

Local Manager
PE 1

SP
Mng.

SP
Mng.

SP
Mng.

...

Local Manager
PE 2

SP
Mng.

SP
Mng.

SP
Mng....

Local Manager
PE 2

...

Global Manager
PE

INTRA-CLUSTER 
MONITORING

INTER-CLUSTER 
MONITORING

 
Figure 3 – Hierarchical monitoring method. 

Figure 4 illustrates the hierarchical monitoring protocol. SPs periodically send monitoring packets to 
their LMP with the consumed energy of the PE (processor and router), and the LMP updates its energy table. 
LMPs update the GMP when a task is requested to be mapped, when an application finishes its execution or 
periodically. 

 
Figure 4 - Hierarchical monitoring protocol. 

5.1 Intra-cluster Monitoring 
Intra-cluster monitoring is the process by which each LMP receives information related to the amount 

of energy each SP has consumed during the monitoring period, according to equations 1 and 2. The Pkernel 
periodically computes the energy spent at each SP, transmitting the obtained value to the LMP. Note that the 
LMPs know the workload (consumed energy) of each SP, which enables the LMPs to execute heuristics to 
distribute the workload evenly over the time. 

This process induces a small amount of traffic in the NoC, being local to each cluster. Also, as the 
number of SPs in each cluster is small (typically 16), the computational load to treat the monitoring packets 
in each LMP is small. On the one side, the number of monitoring packets increases with small monitoring 
periods, overloading the LMP. On the other side, large monitoring periods delay the computation of the 
consumed energy by the SPs, leading to wrong mapping decisions. Section 7.1 discusses this trade-off 
evaluating different monitoring periods. 

5.2 Inter-cluster Monitoring  
Inter-cluster monitoring is the process by which the GMP receives the information related to the 

amount of energy consumed within each cluster. Whenever an LMP to the GMP communication occurs, the 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

cluster energy is inserted in the packet. Such approach avoids overloading the GMP with monitoring 
messages. Two messages in which the monitoring information is inserted are: 
x NewTask – the LMP requests an allocation of a new task; 
x AppTerminated – the LMP reports to the end of a given application. The LMP sends this message when 

all tasks of a given application finished their execution. 
Tasks executing for long periods would not update the GMP, leading to a cluster energy 

underestimation. Therefore, each LMP notifies the GMP periodically with the consumed energy at each 
cluster. This inter-cluster monitoring period is larger than the intra-cluster monitoring. Note that the GMP 
only knows the total energy spent at each cluster, not having a detailed view of the energy distribution. 

6. HIERARCHICAL TASK MAPPING  
The mapping of the set of tasks T = {t1, t2, ..., tn} of GApp onto the set SP = {sp1, sp2, ..., spk} of 

GMPSoC is defined by the mapping function: T → SP, where �ti ∈ T, � spj ∈ SP. The hierarchical task 
mapping is divided into three main steps. (1) cluster selection, define a cluster to map a required application; 
(2) initial task mapping, select SPs to map the application initial tasks inside the cluster; (3) non-initial tasks 
mapping, select SPs to map the non-initial tasks. 

The GMP receives from the external world requisitions to execute new applications in the system („1 – 
New application‟, Figure 5). The GMP verifies if the system has available resources to map the application. 
If there are no available resources, the application is scheduled to be mapped later. Otherwise, the GMP 
selects a cluster to map the required application („2 – Cluster Selection‟, Figure 5). The heuristic to select a 
cluster is presented in section 6.1.1. Once a given cluster is selected, the GMP obtains the application 
description (section 5) from the application repository, transmitting it to the selected cluster LMP („3 – App. 
Desc.‟, Figure 5). The LMP of the selected cluster receives and stores the application description. Then, such 
LMP verifies the application description to obtain the initial tasks of the application. Next, the LMP map the 
initial tasks inside the cluster („4 – Initial Tasks Mapping‟, Figure 5). The mapping of initial tasks starts the 
application execution. Section 6.1.2 presents the heuristic to map the initial tasks. After selecting an SP to 
receive an initial task, the LMP sends a message to the GMP with the service task allocation request („5 – 
NewTask‟, Figure 5). Such message requests the allocation of the initial task object code in the selected SP. 
This happens since the GMP is the only PE with access to the application repository. Then, the GMP obtains 
the task object code from the application repository and transmits it to the selected SP („6 – Task Allocation‟, 
Figure 5). The SP will schedule the new task at the end of the “task allocation” packet reception. Also, the 
LMP keeps a data structure, named task table, with the address of all mapped tasks in the cluster.  

GMP LMP 1

3 – App. Desc.

5 – New Task

6 - Task Allocation

LMP 2

2 -Cluster Selection

4 - Initial Tasks Mapping

SPs

1 - New Application

2 -Cluster Selection

2 -Cluster Selection

3 – App. Desc.

4 - Initial Tasks Mapping

5 – New Task

6 - Task Allocation

6 - Task Allocation

4 - Initial Tasks Mapping

1 - New Application

1 - New Application

 
Figure 5 – Cluster selection and initial task mapping protocol. 
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Consider in Figure 5 the third application insertion. This situation illustrates a scenario where the 
selected cluster is the one managed by the GMP itself. In this case, the GMP also executes the initial task 
mapping algorithm. 

As explained before, the mapping of non-initial tasks occurs whenever a given task ti needs to 
communicate with a non-mapped task tj. Suppose the example of Figure 6, where task t1, mapped on SP1, 
needs to communicate with a non-mapped task t2. In this case, task t1 requests the mapping of t2 to its cluster 
LMP by sending a Task Request packet message („1 – Task Request‟, Figure 6). The LMP receives the task 
request and executes a mapping heuristic to select an SP to map task t2 („2 – Task Mapping Heuristic, Figure 
6). The mapping algorithm, described in section 6.1.3, selects SP2 to map task t2. Next, the LMP request the 
mapping of task t2 on SP2 to the GMP by sending a “Task Allocation Request” service packet („3 – 
NewTask‟ Figure 6). The LMP also uses a “Task Location” service packet to inform to SP1 the location of t2, 
and to SP2 the location of task t1 („4 – Task Location‟, Figure 6). These locations are stored in the SPs task 
tables. Finally, the GMP obtains task t2 object code from the application repository and transmits it to SP2 („5 
– Task Allocation‟, Figure 6).  

LMP SP 2

 1 - Task Request

 5 - Task Allocation

 4 - Task Location

SP 1

2 - Task Mapping
Heuristic

T
A
S
K

t1

3 - NewTask

 4 - Task Location

T
A
S
K

t2

GMP

 
Figure 6 – Non-initial task mapping protocol. 

6.1 “HEAT” MAPPING HEURISTIC 
This section describes the proposed HEAT (Hierarchical Energy-Aware Task) mapping heuristic. This 

heuristic makes a trade-off between workload distribution (processor and router energy) and communication 
volume reduction. The heuristic uses the following definitions: 
x Definition 1: application size (app.size) corresponds to the number of tasks of the application to be 

mapped. 
x Definition 2: MAX_SP_TASKS is the number of tasks a given SP may execute simultaneously 

(SP_PAGES - 1). 
x Definition 3: available_resources corresponds to the number of resources (a resource is a page in the 

memory) that do not have a task mapped on it. This information may refer to the whole system, 
available_resources(system), or to a given cluster ck, available_resources(ck). 

x Definition 4: available(spi) returns true if spi is available to receive a new task, otherwise false. An SP is 
available when the number of tasks mapped on it is smaller than MAX_SP_TASKS. 

x Definition 5: empty SP is an SP with no tasks mapped on it. Therefore, an empty SP can receive 
MAX_SP_TASKS tasks. 

x Definition 6: TE is the total consumed energy by a given SP, corresponding to the energy (Ei) consumed 
by all already executed tasks and the tasks that are currently being executed on this processor. The router 
energy consumption is also accounted in the TE value. Monitoring packets transmits the TE value of 
each SP to the corresponding LMP. 
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6.1.1 Cluster Selection 
This heuristic computes the consumed energy of each cluster ck, cl_energy(ck), using data sent by the 

monitoring packets. Then, the cluster with the smallest cl_energy(ck) is selected. This procedure avoids 
mapping an application in a high overloaded cluster, which improves the workload distribution. Algorithm 1 
presents the pseudo-code of the cluster selection heuristic.  

The heuristic in Algorithm 1 first verifies if the system has available resources to map the application 
(line 3). If there are no sufficient resources in the system, the application is scheduled to be mapped later. 
The first loop (lines 4-9) analyzes all clusters that have available resources to map the application, selecting 
the one with the smallest accumulated energy. If there are no clusters with available resources to map the 
application, a cluster with the smallest accumulated energy is selected, regardless the number of available 
resources (lines 11-16). Note that the application is mapped in the MPSoC iff the system has available 
resources for the application.  
Input: application size app.size 
Output: selected_cluster 
1.  selected_cluster Å -1  
2.  selected_cluster_energy Å +∞  
3.  IF available_resources(system) >= APP.size THEN  
4.   FOR EACH cluster ck in the system  
5,    IF available_resources(ck) >= APP.size AND cl_energy (ck)< selected_cluster_energy THEN  
6.    selected_cluster Å ck 
7.     selected_cluster_energy Å cl_energy (ck) 
8.    END IF 
9.    END FOR  
10.  IF selected_cluster = -1 THEN  
11.    FOR EACH cluster ck in the system 
12.    IF cl_energy (ck)< selected_cluster_energy THEN  
13.     selected_cluster Å ck 
14.      selected_cluster_energy Å cl_energy (ck) 
15.    END IF 
16    END FOR  
17  END IF 
18.   END IF  
19. return selected_cluster 

Algorithm 1 - Cluster selection heuristic, executed in the GMP. 

This heuristic aims to distribute the energy homogeneously when a new application arrives in the 
system. In the long-term, this procedure avoids hotspots, and processors stressed over the time. 

6.1.2 Initial Tasks Mapping 
The initial tasks mapping heuristic searches a region with smallest consumed energy in the cluster. 

The search space is limited by the parameter n_hops, obtained from sqrt(|PEcluster|/2), where |PEcluster| is the 
number of PEs in the cluster. The reasoning of this procedure is to map communicating tasks near to each 
other, in a set of PEs with the smallest accumulated energy.  

This heuristic divides the initial task process into two phases. The first phase selects an SP with the 
smallest region_energy to receive an initial task. A second phase is executed when the application has more 
than one initial task. In such phase, it is created a set with all SPs up to n hops from the selected SP, selecting 
the SP of this set with the smallest TE (definition 6).  

The function region_energy(spi, n_hops) returns the average TE from the set containing spi and all SPs 
up to n_hops hops from spi. Figure 7 shows a hypothetical example using a 7x7 cluster, where spi is the 
central SP spcentral (in green); and n_hops is 3 hops. In Figure 7, the numbers inside each rectangle represent 
the TE of each SP. The value of region_energy(spcentral, 3) corresponds to 64, since: (i) inside a region 3 hops 
far from spcentral there are 25 SPs; (ii) the sum of the TEs of the SPs in this area is equal to 4100; (iii) the 
average TE in this area is equal to 4100/25=64. 

Suppose a hypothetical example of an application with two initial tasks: ti and tj. The first initial task ti 
is mapped in spcentral of Figure 7. For the mapping of the tj is defined a region 3 hops from spcentral, as 
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delimited by the numbered SPs in Figure 7. Then, the SP with the smallest TE in this region is selected to 
map tj. In the example, such SP has TE equal to 66. 

 

   123    
  66 178 280   
 114 200 80 109 77  

120 210 120 200 110 350 327 
 124 156 85 413 95  
  149 123 189   
   102    
Figure 7 - Hypothetical example of region_energy. 

The pseudo-code of the first phase of the initial tasks mapping heuristic is detailed in Algorithm 2. The 
main loop (lines 3-8) selects an SP (selected_sp) with the lowest region_energy. This procedure ensures that 
application‟s tasks that will be mapped later will be assigned closer to the selected SP and in SPs with a 
lower accumulated energy. 

 

Input: n_hops 
Output: selected_sp 
1.  selected_sp Å -1  
2.  selected_region_energy Å +∞  
3.  FOR EACH SP spi in the cluster  
4.  IF available(spi) AND region_energy(spi, n_hops)< selected_region_energy THEN  
5.   selected_sp Å spi 
6.   selected_region_energy Å region_energy(spi, n_hops) 
7.  END IF 
8.  END FOR EACH  
9. return selected_sp 

Algorithm 2 - First phase of the initial tasks mapping, executed in the LMPs. 

 

If the application has only one initial task, the SP chosen by the heuristic of Algorithm 2 is selected to 
execute the task. Otherwise, the heuristic presented in Algorithm 3 is executed for each non-mapped initial 
task. In line 4 it is created a set neighbors_list with all SPs up to n_hops from selected_sp computed in the 
previous phase. The loop between lines 6-11 selects an available SP from the neighbors_list with the 
smallest TE. If there is no available SP inside the list, the search space increases 1 hop (lines 12-15), until 
visiting all SPs of the cluster (line 5). 

 

Input: SPaddress, n_hops   // SPaddress is the selected_sp address obtained in the 1st phase 
Output: selected_sp  
1.  selected_sp Å -1 
2.  selected_sp_energy Å +∞  
3.  // Get all neighbors of selected_sp within a distance n_hops 
4.  neighbors_list Å neighbors(SPaddress, n_hops)  
5.  WHILE all SPs in the cluster not evaluated AND selected_sp=-1 DO 
6.  FOR EACH SP spi IN neighbors_list 
7.    IF available(spi) = true AND TE(spi) < selected_sp_energy THEN 
8.    selected_sp Å spi 
9.    selected_sp_energy Å TE (spi) 
10.    END IF 
11.  END FOR 
12.   IF selected_sp = -1 THEN  
13.    n_hops Å n_hops +1 
14.    neighbors_list Å neighbors(SPaddress, n_hops)  
15.  END IF 
16.  END WHILE 
17. return selected_sp 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

Algorithm 3 - Second phase of the initial tasks mapping, executed in the LMPs. 

6.1.3 Non-initial task mapping 
Suppose a non-initial task ti is required to be mapped. The HEAT heuristic evaluates the set C(ti), and 

creates a bounding box containing all ti communicating tasks mapped within the cluster. Then, such 
bounding box is increased in one hop offering a large search space. The cluster boundaries limit the search 
space. Figure 8 illustrates the mapping search space in the cluster. This heuristic selects the SP inside the 
bounding box with the lowest TE. This heuristic makes a trade-off between workload balancing and 
communication volume reduction. The heuristic selects the SP inside the bounding box with the lowest TE.  

 

     

 

     

          
      tj    
  tj      tk  
          
          

(a)  (b)  
Figure 8 – Non-initial task mapping search space. (a) search space when one communicating tasks is already 

mapped (ti). (b) search space when more than one communicating task is already mapped (ti and tk). 

 

Algorithm 4 describes the algorithm used to select an SP to receive a non-initial task ti. The heuristic 
creates a list with all tasks communicating with ti already mapped onto the SPs of the cluster (line 3). In the 
sequel, it is defined a bounding box rectangle (line 4), with all mapped communicating tasks. This bounding 
box is increased by one hop (line 5), offering a larger search space to map ti. A list with candidate SPs is 
created (line 7). The available SP in the list with the smallest TE is selected (lines 8-13). If no SP can be 
selected, the bounding box is increased by one hop (lines 14-16). This process continues up to find an SP or 
to visit all SPs of the cluster. 

 

Input: ti , set C(ti)  
Output: selected_sp  
1. selected_sp Å -1 
2.  selected_sp_energy Å +∞  
3.  MC(ti)Å mapped_tasks(C(ti)) // all tasks communicating with ti already mapped 
4. bounding_box Å area(MC(ti)) 
5. increase(bounding_box, 1) 
6. WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO  
7.   neighbors_list Å search_SPs(bounding_box) 
8.   FOR EACH SP spi IN neighbors_list 
9.    IF available(spi) = true AND TE(spi)< selected_sp_energy THEN  
10.    selected_sp Å spi 
11.    selected_sp_energy Å TE(spi) 
12.   END IF 
13.  END FOR 
14.  IF selected_sp = -1 THEN  
15.   increase(bounding_box, 1) 
16.   END IF 
17. END WHILE 
18. return selected_sp 

Algorithm 4 - Mapping of non-initial tasks, executed in the LMPs. 

 

Algorithms 3 and 4 may return -1, meaning that the cluster has no available SP to receive the task. In 
this situation, the Pkernel borrows an SP from a neighbor cluster (process named reclustering), mapping the 
task in the borrowed SP. 
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7. RESULTS 
The experiments were executed in the reference MPSoC, using a clock cycle accurate model described 

in SystemC. Each SP can execute up to 2 simultaneous tasks, scheduled by the Pkernel. The main cost 
function of the proposed mapping heuristic, HEAT, is the energy distribution, as previously discussed. 

The reference mapping heuristic is the LEC-DN [30]. The LEC-DN heuristic considers the 
dependencies between all communicating tasks, using as the main cost function the minimization of the 
communication energy in the NoC. To minimize the communication energy, this heuristic uses the 
communication volume between tasks since the number of transmitted flits defines the communication 
energy. This heuristic is selected as the reference since its cost function is the one adopted in most NoC-
based systems: minimize the communication energy. 

Chantem et al. [9] use as part of their heuristic the largest task first (LTF) algorithm to slow down the 
wear process on the cores as much as possible. LTF is an energy-aware heuristic that attempts to balance 
spatially the system load in a non-increasing order of energy consumption and assign them to the core with 
the least total energy consumption. Once a task is assigned to a core, the core total energy consumption is 
updated. This heuristic does not divide the system into clusters, and the whole application is mapped at the 
moment it is required. LTF is also compared against the proposed heuristic, but not used as the reference 
because it is centralized and not consider in its cost function the communication energy. 

Five benchmarks, described in C language, are used: (i) DTW - Digital Time Warping (DTW), with 
10 tasks; (ii) MPEG decoder, with 5 tasks; (iii) DJK - Dijkstra, with 6 tasks; (iv) SYN1, synthetic application, 
with 12 tasks, which emulates the communication behavior of an MPEG4 full decoder; (v) SYN2, synthetic 
application, with 12 tasks, that emulates the communication behavior of VOP (Video Object Plane) decoder 
application. 

Experiments are conducted using the scenarios presented in Table 2. Scenarios 1 to 5 correspond to a 
many-core system with 64 PEs, executing a large number of tasks – from 250 to 1,000. Scenarios 1 and 2 
contain a mix of applications while scenarios 3 to 5 have identical applications. Scenarios with identical 
applications are expected to generate mapping solutions with a balanced workload distribution. Scenarios 6 
and 7 contain 256 PEs. The goal of these scenarios is to present the effectiveness of the proposed approach 
for large systems. The last column of Table 2 corresponds to the average number of tasks per SP. Scenarios 
with larger values in this column correspond to heavier workloads, favoring the proposed heuristic to 
produce a better workload distribution along the time.  

 

Table 2 – Characteristics of the evaluated scenarios. 

Scenario MPSoC 
Size 

Cluster 
Size Applications Total number 

of tasks 
Number of 

tasks per SP 

1 

8x8 
(60 SPs) 4x4 

20 x MPEG, 20 x DJK, 20 x SYN1, 
20 x SYN2, 20 x DTW 780 13 

2 10 x MPEG, 10 x DJK, 10 x SYN1, 
10 x SYN2, 10 x DTW 390 6.5 

3 50 x MPEG 250 4.17 
4 100 x DTW 1000 16.67 
5 100 x MPEG 500 8.33 

6 16x16 
(240 SPs) 4x4 

20 x MPEG, 20 x DJK, 20 x SYN1, 
20 x SYN2, 20 x DTW 780 3.25 

7 40 x MPEG, 40 x DJK, 40 x SYN1, 
40 x SYN2, 40 x DTW 1560 6.5 

 

7.1 Monitoring Period Evaluation 
Table 3 evaluates the consumed energy at each cluster, varying the monitoring period. With a small 

intra-cluster monitoring period, the number of monitoring packets increases, overloading the LMP. In such a 
case, several monitoring packets are delayed, and the LMP takes decisions with current and past data (i.e. 
some SPs were not updated since the monitoring packets were not treated), leading to wrong mapping 
decisions. On the other side, with large monitoring periods, SPs may receive new tasks since the energy 
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consumption was not yet updated. With an intermediate monitoring period, all monitoring packets are 
received and treated, without incurring in the long updating problem induced by long monitoring periods. 
Observe the DIFF row, which corresponds to the difference between the maximum and minimum 
consumption between clusters. The monitoring periods 1ms/3ms lead to the better load distribution among 
the clusters. 

 
Table 3 – Evaluation of the monitoring period, for scenario 1. TE: total energy consumed in the cluster (PJ). 
STDEV: standard deviation related to the consumed energy by the SPs in the cluster (PJ). DIFF: difference 

between the maximum and minimum consumption between clusters. 

 
LEC-DN 

HEAT - Monitoring period varying the intra/inter periods 

0.25ms / 3ms   0.5ms / 3ms  1ms / 3ms  2ms / 3ms 4ms / 8ms  

TE STDEV TE STDEV TE STDEV TE STDEV TE STDEV TE STDEV 

CL 0 2,086 130 4,247 46 3,818 51 2,607 30 2,609 56 2,567 34 

CL 1 2,245 114 2,512 28 2,215 31 2,479 22 2,196 31 2,412 22 

CL 2 2,508 99 2,408 37 2,434 33 2,433 36 2,541 40 2,788 31 

CL 3 2,470 127 1,676 26 2,083 15 2,476 33 2,390 27 2,592 42 

DIFF 422  2,571  1,735  174  413  376  
 

Table 4 evaluates different performance parameters for different monitoring periods. Scenario 1 was 
selected because it has a set of different applications, and an important workload to execute (780 tasks). The 
results in this Table shows: 
x Workload distribution (lines 1 to 3). The energy standard deviation between SPs drops from 119 PJ to 31 

PJ, while the maximum energy consumption drops from 432 to 234 PJ. Also, using LEC-DN several 
processors do not execute user tasks (min SP consumption line) while in the proposed heuristic all SPs 
execute user tasks.  

x Execution time (line 4). Small reduction. Next section discusses this result, evaluating all scenarios.  
x Energy consumption (line 5). Increases, because more SPs execute user task. Next section discusses this 

result, evaluating all scenarios. 
x NoC traffic (line 6). Increases, because the proposed heuristic reduces the CPU sharing to improve the 

workload distribution. Next section discusses this result, evaluating all scenarios. 
 

Table 4 – Evaluation of the monitoring period, for scenario 1, considering the total system energy, standard 
deviation between SPs and clusters, maximum and minimum energy consumption by SPs, and the execution 

time. 

 LEC-DN 
HEAT - Monitoring period varying the intra/inter periods 

0.25ms / 3ms   0.5ms / 3ms  1ms / 3ms  2ms / 3ms 4ms / 8ms  

STDEV all SPs (PJ) 119 72 58 31 41 34 

Max SP consumption (PJ) 432 390 372 234 269 249 

Min SP consumption (PJ) 0.33 66 98 111 88 68 
 Execution time (ms) 243 260 234 234 240 233  
Total System Energy (PJ) 9,310 10,842 10,549 9,996 9,736 10,358 

N# of flits (106) 10.443 18.815 16.655 15.666 15.539 14.887  
 

The current work adopts 1 and 3 ms as the intra- and inter-cluster monitoring periods respectively. 
These values are adopted because they present the best tradeoff between workload distribution and energy 
consumption.  
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7.2 Workload distribution 
 Figure 9 presents the workload distribution for scenario 1 (similar results are observed for the other 
scenarios), where each rectangle contains the total energy consumed by each SP (processor and router). The 
manager PEs are not included in the result because they do not execute user applications. As illustrated in 
Figure 9(a), the LEC-DN produces an unbalanced workload distribution with several “hot” processors, 
spending more than 300 PJ. The “hot” processors are placed in the center of the clusters, in such a way to 
reduce the distance between communicating tasks, and hence minimize the communication energy. On the 
other side, the HEAT mapping (Figure 9(b)) produces a uniform energy distribution. 

(a) LEC-DN mapping 
31 184 206 133 14 242 150 29 

138 376 347 255 261 399 391 146 
32 205 168 167 17 327 171 114 

LMP 39 132 98 LMP 79 75 56 
0 6 203 144 8 235 91 19 

125 432 298 73 140 350 343 142 
0 260 313 61 18 314 213 133 

GMP 112 59 0 LMP 35 133 71 

 (b) HEAT mapping 
122 196 212 163 135 162 141 165 
228 147 177 153 212 216 128 131 
116 111 143 203 155 130 234 159 
LMP 185 113 164 LMP 140 176 192 
197 148 198 142 134 153 153 181 
193 190 138 123 130 165 177 153 
225 171 150 224 159 206 194 158 

GMP 185 163 160 LMP 156 157 203 

Figure 9 – Workload distribution for scenario 1. Each rectangle is an SP, with the consumed energy in PJ. 
 

 Figure 10 presents the workload distribution histograms for scenarios 1 and 7, considering the 
number of SPs per energy interval. From the first histogram,  Figure 10(a), it is possible to observe the non 
uniform load distribution produced by the heuristic that minimizes only the communication energy – LEC-
DN. For scenario 1, 23 SPs consume less than 100 PJ, 15 SPs consume more than 240 PJ, and 22 SPs 
consume in the interval 100-240 PJ. The proposed HEAT heuristic has all 60 SPs consuming between 100 
and 240 PJ, showing its ability to distribute the workload along the time. A similar distribution is observed 
for scenario 7. 
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 (a) Scenario 1 – 60 SPs    (b) Scenario 7 – 240 SPs 

Figure 10 – Histogram related to the energy distribution for scenarios 1 and 7 (x-axis: energy interval, y-axis: 
number of SPs for each interval). 

 
Table 5 evaluates all scenarios, with summarized results. Figure 11 plots results normalized to LEC-

DN. The results in this Table shows: 
x Average consumed energy per SP. Considering that the workload applied for both mapping heuristics is 

the same for each scenario, a small variation is expected. Excepting scenario 4 (it executes a computation 
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intensive application – DTW), the proposed HEAT heuristic increases the average number of executed 
instructions by 8.7%. This is explained by the fact more processors are assigned to execute tasks, leading 
to additional Pkernel instructions execution. When a given processor is not executing any task, it enters 
in a hold state, dissipating only static power. 

x Total system energy: this column considers the energy consumed by the processors and the routers. As 
the number of executed instructions increased, the proposed HEAT heuristic increased the consumed 
energy in average by 4.4% (worst-case: 12.3%, scenario 7). Note that the total energy consumption does 
not increase in the same proportion to the SPs because the static energy is accounted. 

x Workload distribution (column STDDEV). This is the main cost function of the HEAT mapping. All 
scenarios presented expressive improvement in the workload distribution. As mentioned in the 
experimental setup, scenarios with identical applications (3-5) present the smaller standard deviation 
values. A smaller reduction is observed in scenario 6 because the load applied to it is lighter (smaller 
number of tasks per PE as shown in the last column of Table 2).  

x Maximum energy. This result is a parameter related to the system reliability. The average reduction of 
the maximum consumption per SP is 32.2% (best-case: -57.2%, scenario 5). 

x Execution time. Even if the goal is not to reduce the execution time, the average reduction in the 
execution time is 4.5%. This result is explained by the fact that more processors execute tasks, reducing 
the processor sharing induced by the LEC-DC heuristic. 

x Traffic in the NoC (column N# of flits). This column measures the number of flits (106) transferred 
through the NoC. As expected, LEC-DN, reduces the traffic in the NoC because the communication 
energy is the main goal of this heuristic. The proposed HEAT heuristic increased the number of 
transferred flints in average by 37.2% (worst case: 50.5%, scenario 2). 

 
Table 5 – Evaluation of the 5 scenarios, considering the monitoring periods equal to 1ms/3ms. 

Scenario 
Avg. consumed 

energy per SP (PJ) 
Total System 
Energy (PJ) 

STDEV Energy - 
all SPs (PJ) 

MAX Energy -  
all SPs (PJ) 

Execution time 
(ms) N# of flits (106) 

LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT 

1 155 167 11,922 12,412 119 31 432 234 243 234 10.443 15.666 

2 77 83 6,036 6,444 63 29 217 158 130 133 5.330 8.023 

3 37 39 3,007 2,975 43 17 152 78 68 59 2.159 2.870 

4 66 64 4,523 4,414 34 10 101 84 65 64 4.473 5.135 

5 73 81 5,921 6,064 79 21 304 130 134 115 4.259 5.797 

6 36 41 11,816 12,81 36 25 141 126 69 66 12.979 17.708 

7 73 86 23,711 26,622 64 31 238 192 134 139 26.366 36.843 

HEAT/LEC-DN:  +8.7%  +4.4%  -59.2%  -32.2%  -4.4%  +37.2 

 
 The column “all SPs STDDEV” of Table 5 reflects the cost function of the proposed heuristic: 
workload distribution. The energy is evenly distributed in the systems, with an important reduction in the 
number of hotspots, as shown in Figure 9(b) and column “all SPs MAX”. The column “N# of flits” reflects 
the traditional cost function of mapping heuristic: reduction of the NoC traffic. Even if the communication 
energy is reduced, processors are overload, compromising in the long term the system reliability. 
  Finally, Figure 11 compares the proposed HEAT and LTF heuristics (both heuristics use as cost 
function the energy consumption as main metric), normalized to the LEC-DN mapping. The behavior of the 
proposed HEAT heuristic was previously discussed, using as reference Table 5. The LTF heuristic presents a 
similar trend: higher energy consumption (up to 38%), better workload distribution (all SPs STDDEV), 
similar execution time (excepting scenario 4), and a larger number of flits transmitted in the NoC. 
 The LTF heuristic presents worse results than the HEAT heuristic for two main reasons. The first 
one is related to its centralized approach: one single PE to make mapping decisions (this explains why 
scenarios 6 and 7 for LTF are not presented in Figure 11). The second issue is the fact the only energy is 
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considered to take mapping decisions. The number of hops between communicating tasks increases, leading 
to an excessive increase in the number of flits transferred through the NoC (almost 3 times). Note that LTF 
in scenario 4 increased the maximum SP utilization and the execution time (51%). This scenario has a 
computation intensive benchmark, resulting in tasks from different applications sharing the same PE, 
increasing the execution time.  
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Figure 11 – Comparison of the proposed HEAT (scenario 1 to 7) and LTF (scenario 1 to 5) heuristics, normalized 

to the LEC-DN heuristic. 
 
 
 
 

8. CONCLUSION AND FUTURE WORKS 
The features included in the HEAT mapping include scalability, runtime execution, workload 

distribution. The hierarchical management of the mapping approach, which comprises three steps, ensures 
scalability. The workload distribution is ensured by the energy monitoring approach, which guides the 
mapper to select the processors less used. 

The proposed HEAT mapping achieved a better workload distribution, with minimal impact to energy 
consumption, and reduction in maximum processor energy. The NoC usage increases, being an expected 
result because the application tasks use more processors to execute the same job. An important feature of the 
proposal is its distributed nature, using several manager processors to map the tasks. Comparing our 
approach to a centralized approach, with a similar cost function, we observed that a centralized approach 
increases the total consumed energy and spread the tasks, increasing the NoC traffic. Consequently, this 
works enforces important features to consider in mapping heuristics: hierarchy, monitoring and multi-
objective cost function (in our proposal accumulated energy and distance among communicating tasks). 

Future works include to: (1) integrate of a lifetime model to evaluate MTTF; (2) include a temperature 
model to guide the mapping; (3) extend the mapping heuristic to cope with power constraints (i.e. limit the 
usage of processors according to a power budget assigned to the system); (4) couple the approach to a DVFS 
approach acting over PEs when a given power constraint is violated. 
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