
University of Leicester

Thesis submitted for the degree of
Doctor of Philosophy

Finitary Logics for
Coalgebras with Branching

Author:
Christian Kissig

Supervisor:
Dr. Alexander Kurz

Advisor:
Prof. Dr. Reiko Heckel

February 2012

2

i

February 2012, London
© Christian Kissig, 2007-2012

The author reserves all rights to produce and distribute copies of this thesis, earlier drafts, and
excerpts thereof.

ii

Abstract

The purpose of this dissertation is to further previous work on coalgebras as infinite state-

based transition systems and their logical characterisation with particular focus on infinite

regular behaviour and branching.

Finite trace semantics is well understood [DR95] for nondeterministic labelled tran-

sition systems, and has recently [Jac04, HJS06] been generalised to a coalgebraic level

where monads act as branching types for instance, of nondeterministic choice. Finite

trace semantics then arises through an inductive construction in the Kleisli-category of

the monad. We provide a more comprehensive definition of finite trace semantics, allow-

ing for finitary branching types in Chapter 5. In Chapter 6 we carry over the ideas behind

our definition of finite trace semantics to define infinite trace semantics.

Coalgebraic logics [Mos99] provide one approach to characterising states in coalge-

bras up to bisimilarity. Coalgebraic logics are Boolean logics with the modality ∇. We

define the Boolean dual of ∇ in the negation-free fragment of finitary coalgebraic logics

in Chapter 7, showing that finitary coalgebraic logics are essentially negation free. Our

proof is largely based on the previously established completeness of finitary coalgebraic

logics [KKV08].

Finite trace semantics induces the notion of finite trace equivalence. In Chapter 8 we

define coalgebraic logics for many relevant branching and transition types characterising

states of coalgebras with branching up to finite trace equivalence. Under further assump-

tions we show that these logics are expressive.

Coalgebra automata allow us to state finitary properties over infinite structures essen-

tially by a fix-point style construction. We use the dualisation of ∇ from Chapter 7 to

iii

iv ABSTRACT

prove that coalgebra automata are closed under complementation in Chapter 10. This re-

sult completes a Rabin style [Rab69] correspondence between finitary coalgebraic logics

and coalgebra automata for finitary transition types, begun in [Ven04, KV05].

The semantics of coalgebra automata is given in terms of parity graph games [GTW02].

In Chapter 9 we show how to structure parity graph games into rounds using the notion

of players power [vB02] and how to normalise the interaction pattern between the players

per round. From the latter we obtain the coinductive principle of game bisimulation.

Languages accepted by coalgebra automata are called regular. Regularity is com-

monly [Sip96, HMU03] disproved using the pumping lemma for regular languages. We

define regular languages of coalgebras and prove a pumping lemma for these languages

in Chapter 11.

Acknowledgements

First of all I thank Alexander Kurz. In his enthusiasm and dedication to the scholarly study

of mathematics he has become a role model for me in more than the research presented

in this dissertation. I also thank his research group at Leicester, which over the time

consisted of Nick Bezhanishvili, Tadeusz Litak, Daniela Petrişan, and Suzuki Tomoyuki.

My scientific work would not have been possible without the influence of some great

minds. Bart Jacobs sparked the definition of finite trace logics as it stands by a few notes

he passed to me during a workgroup meeting in the Sierra Nevada, Spain in 2008, and

after that he continued to support me with various comments and feedback. Yde Venema

was my supervisor during my MSc studies in Amsterdam. He invited me later on for a

research visit to the Institute of Logic, Language and Computation in 2008, at the end of

which we wrote the joint paper on the complementation lemma for coalgebra automata. I

am deeply grateful for all that I have learned from working with him.

I would also like to express my gratitude for the inspiring and helpful discussions with

Jiří Adámek, Fillippo Bonchi, Vincenzo Ciancia, Roy Crole, Lucas Dixon, Fabio Gad-

ducci, Neil Ghani, Ichiro Hasuo, Bartek Klin, Raul Leal, Alessandra Palmigiano, Dusko

Pavlovic, Dirk Pattinson, Petter Remen, Alexandra Silva, Ana Sokolova, Mehrnoosh

Sadrzadeh, Sam Staton, Emilio Tuosto, and Jacob Vosmaer.

During my time at Leicester, I helped in organising a series of seminars for PhD stu-

dents jointly with Stephen Gorton, Daniela Petrişan, Hong-Qi Yu, Martin Birks, Frank

Nebel, and Julien Lange. The generous financial support of the computer science de-

partment at Leicester enabled us to invite many speakers from various backgrounds and

countries.

v

vi ACKNOWLEDGEMENTS

Following a seminar of Alexander Kurz, I co-initiated a study group in category the-

ory. I would like to thank the other regular members Daniela Petrişan, Mauro Jaskelioff,

Ondřej Rypáček, Carl Forsell, and Rob Myers, as much as the lecturers Alexander Kurz,

Neil Ghani, and Dirk Pattinson.

In a parallel track I studied quantum logic from a categorical and topological view-

point. I would like to point out the great efforts of Bob Coecke and the quantum group at

Oxford. I gained much understanding of the matter from attending the Quantum, Physics

and Logic workshops 2008-2009 and the spring school in the Foundational Structures in

Quantum Computation and Information, 2010. I would like to thank the University of

Oxford and the University of Leicester for the financial support.

My interest in topological quantum field theories (TQFTs) began with the summer

school in Almeria of the Spanish topology meeting in 2009. I would like to thank the

organisers and the University of Leicester for the financial support to attend. In Almeria

I met Chris Kapulkin, who invited me to the University of Warsaw to give a talk on 3-

dimensional topological quantum field theories and knot theory in the QFT seminar, he

organised together with Marek Czarnecki. I shared the seminar day with Paweł Traczyk,

whose inspiring introduction to knot theory keeps echoing in my mind. Apart from the

organisers, I would like to thank the students union of the University of Warsaw and the

University of Leicester for the financial support to participate in the QFT seminar.

I finished my dissertation while working as a software developer at the Search Tech-

nology Center of Microsoft in London. I would like to thank my colleagues for their

understanding and encouragement, in particular Antonio Gulli and Mark Atherton.

The greatest gift I take away from Leicester are the friendships I have gained. I thank

Emilio, Eleonora, Julien, Frank, Tadeusz, Daniela, Uğur, Mark, João and Adwoa for the

opposite of everything else.

Above all, this work and my life during the last four years would not have been possi-

ble without two important women. My mother supported me generously, foremostly with

advice and attention. Laura struggled with me, if not more. She kept challenging me and

my points of view and at the end helped me understand about my reasons and priorities.

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Coalgebras in Computer Science . 1

1.2 Parity Graph Games . 4

1.3 Coalgebra Automata . 5

1.4 Branching Types and Monads . 7

1.5 The Semantics of Coalgebras . 8

1.5.1 Final T -Coalgebra Semantics and T -Bisimilarity 9

1.5.2 Finite Trace Semantics . 10

1.5.3 Infinite Trace Semantics . 11

1.6 Coalgebraic Logics . 13

1.7 Our Contributions in This Thesis . 16

1.8 Outline . 17

2 Notation 19

2.1 Set Theory . 19

2.2 Logic . 20

2.3 Category Theory . 21

vii

viii CONTENTS

I Foundations in Category Theory 23

3 A Review of Monads and Algebras over Set 25

3.1 Definition of Monads . 25

3.2 Categories of Algebras for Monads . 26

3.3 Eilenberg-Moore Categories of Commutative Monads 27

3.4 Examples . 30

3.5 Commutative Monads in Set . 35

4 Distributive Laws and Functor Liftings 37

4.1 Distributive Laws . 37

4.1.1 Examples of Distributive Laws 38

4.1.2 The Existence of Distributive Laws 38

4.1.3 Some Properties of Distributive Laws 39

4.2 Kleisli-Lifting of Functors on Set . 40

4.3 Continuous Extensions of Kleisli-Lifted Functors 42

II Semantics of Coalgebras with Branching 45

5 Finite Trace Semantics 47

5.1 A Review of Generic Trace Theory . 48

5.2 Non-Coinductive Finite Trace Semantics in Kleisli Categories 53

5.3 Finite Trace Semantics in Eilenberg-Moore Categories 58

6 Infinite Trace Semantics 61

6.1 Generic Infinite Trace Semantics . 62

6.1.1 Change of Perspective . 64

6.1.2 Generic Infinite Trace Equivalence 64

6.2 Plausible Continuations in Infinite Traces 65

6.3 Infinite Trace Semantics of Coalgebra Automata 69

6.4 Jacob’s Infinite Trace Semantics . 72

CONTENTS ix

III Coalgebraic Logics 75

7 The Complementation Lemma for Finitary Coalgebraic Logic 77

7.1 Preliminaries . 78

7.2 A Review of the Completeness of Finitary Coalgebraic Logic 79

7.3 One-Step Semantics of Coalgebraic Logic 80

7.4 Complementation Lemma . 81

8 Finitary Coalgebraic Logics for Finite Traces 87

8.1 Dual Adjunctions from Ambimorphic Objects 89

8.2 The Logic Functor . 91

8.3 Finite Trace Logics as the Initial Algebra of the Logic Functor 92

8.4 Examples of Finite Trace Logics . 94

8.4.1 An Example of a Logic Functor 94

8.4.2 Deterministic Streams . 95

8.4.3 Finitarily Nondeterministic Streams 96

8.4.4 Streams with Finitary Graded Branching 96

8.4.5 Finitarily Probabilistic Streams 98

8.4.6 Path-Minimising Streams . 99

8.5 Invariance of Finitary Trace Logics under Finite Trace Equivalence 100

8.6 Expressivity of Finitary Coalgebraic Logics for Finite Traces 101

IV Coalgebraic Automata Theory 109

9 Game Bisimulations in Parity Graph Games 111

9.1 Preliminary Definitions . 111

9.2 Unravelling Parity Graph Games . 114

9.3 Structuring Parity Graph Games . 115

9.4 Normalised Parity Graph Games . 119

9.5 Game Bisimulations . 120

x CONTENTS

10 Complementation of Coalgebra Automata 125

10.1 A Review of Nondeterministic Coalgebra Automata 125

10.2 Alternation . 127

10.2.1 Alternating Coalgebra Automata 128

10.2.2 Semi-Transalternating Coalgebra Automata 128

10.2.3 Transalternating Coalgebra Automata 129

10.2.4 Basic Positions in Acceptance Games 130

10.3 Equivalence of Coalgebra Automata of various Branching Types 130

10.3.1 From Transalternating to Semi-Transalternating Automata 131

10.3.2 From Semi-Transalternating to Alternating Automata 131

10.4 Closure under Complementation . 134

10.4.1 Complementation of Transalternating Coalgebra Automata 134

11 A Pumping Lemma for Regular Languages of Coalgebras in Set 137

11.1 Coalgebras in Set as Graphs . 139

11.1.1 Reachable States . 139

11.1.2 Generated Subcoalgebras . 141

11.1.3 Unravelling Coalgebras in Set 141

11.1.4 Pumping Length for Coalgebras in Set 143

11.2 Pumping Coalgebras in Set . 145

11.3 The Pumping Lemma . 149

V Conclusions 155

12 Conclusions 157

12.1 Summary of Contributions . 157

12.1.1 Finite Trace Semantics . 157

12.1.2 Infinite Trace Semantics . 157

12.1.3 Finitary Coalgebraic Logics . 158

12.1.4 Finite Trace Logics . 158

CONTENTS xi

12.1.5 Game Bisimulations for Parity Graph Games 158

12.1.6 Complementation Lemma for Coalgebra Automata 159

12.1.7 A Pumping Lemma for Regular Languages of Coalgebras in Set . 159

12.2 Some Open Questions and Directions for Future Work 159

12.2.1 Monads and Categories of Algebras 159

12.2.2 Finitary Coalgebraic Logics for Finite Traces 160

A Set Theory 161

A.1 Basic Set Theory . 161

A.2 Order Theory . 162

B Category Theory 163

B.1 Basic Category Theory . 163

B.2 Limits and Colimits . 168

B.2.1 Filtered Colimits and Finitary Functors 170

B.2.2 Equalisers and Coequalisers . 171

B.2.3 Pointwise Construction of Kan Extensions 172

B.3 Monoidal Categories . 173

B.4 Category Theory of Set . 173

B.4.1 Standard and Weak-Pullback Preserving Functors 174

B.4.2 Relations and Relation Liftings in Set 175

B.4.3 Bases and Redistributions . 178

C Coalgebras 181

List of Tables 185

List of Figures 187

Bibliography 187

Index 196

xii CONTENTS

Chapter 1

Introduction

1.1 Coalgebras in Computer Science

Algebraic Datatypes In computer science finite datastructures are classically described

inductively. Finite binary trees with labels from a set Act, for instance, are either leafs or

nodes with two successor binary trees, as in the following OCaml [Rem00] code.

type ’a bintree = Leaf of ’a | Node of ’a * ’a bintree * ’a bintree

The above type definition is algebraic in the sense that bintree assigns an operational

meaning to Leaf, a unary function on the extension of bintree, and to Node, a binary

function on the extension of bintree, for each label in a.

Coalgebras Coalgebraically, a binary tree t is a function σ : S → Act +Act×S ×S where

S is the set of subsets of t and σ assigns to each subtree s ∈ S either a label from Act, if s

is a leaf of t, or a label and two successor subtrees of s in t. The coalgebraic definition is

coinductive [Rut96].

Definition 1.1.1 (T -Coalgebras). Let C be a category, let S be an object in C, and let

T : C → C be a functor on C, a T -coalgebra is a structure S = 〈S , σ〉 where σ : S → TS

is a morphism in C. We call S the carrier and T the transition type of S.

State-Based Coalgebras Coalgebras have states if they live in concrete categories, such

as binary trees in Set. In our example above, the subtrees of t form the states of the

1

2 CHAPTER 1. INTRODUCTION

Algebras Coalgebras
Operations Observations
Congruence Behavioural Equivalence
Initial Algebra Final Coalgebra
Induction Coinduction

Table 1.1: Concepts from Algebra and Coalgebra

coalgebra 〈S , σ〉. There are coalgebras which have no states, for instance coalgebras over

locales. In state-based coalgebras we can distinguish states, and then call these coalgebras

pointed. Pointed coalgebras play a significant role as models of coalgebra automata as in

Chapter 10.

Definition 1.1.2 (Pointed T -Coalgebras). When we distinguish a state s in a T-coalgebra

S = 〈S , σ〉, we call S pointed and write S = 〈S , σ, s〉. Coalgebra morphisms f : S → S′

between pointed coalgebras S = 〈S , σ, s〉 and S′ = 〈S ′, σ′, s′〉 preserve the distinguished

state, that is s′ = f (s).

Coalgebras as Infinite Data Structures Unlike to the inductive definition, the coinduc-

tive definition allows us to define infinite binary trees. Table 1.2 shows examples of

coalgebras relevant in computer science, more of which can be found in [Rut96, RJ97,

Gum99]. More complex applications include

• communication protocols [HK07, Has08],

• object-orient programs [RTJ01, Kis05], and

• operating systems [HTS02].

Table 1.1 1 shows a comparison of concepts known in algebra and in coalgebras.

Next we give a preview of the essential definitions of coalgebras in Set, which can be

found in introductory texts, for instance [Rut96, Gum99, Jac05]. The following definition

is a straightforward concretisation of the definition of coalgebras above.

Definition 1.1.3 (T -Coalgebras in Set). A T -coalgebra in the category Set is a structure

S = 〈S , σ〉 consisting of a set S and a function σ : S → TS .
1Table 1.1 is an adaptation of Table 1.1 in [Kup06].

1.1. COALGEBRAS IN COMPUTER SCIENCE 3

Structure Example Transition Type

Streams ·
a // ·

b // ·
c // · · · Act × (−)

Infinite Binary Trees

·
a

��

b

��
·

c

��
d��

·

e ��
f

��...
...

...
...

Act × (−) × (−)

Graphs ·

a
��
·

b

^^
a // · · · P (Act × (−))

Non-Deterministic
Coalgebra Automata

(·)3

a
%%
(·)2

b

ee
a // · · · N × P (Act × (−))

Parity Graph Games (·)∃
%%
(·)∀ff

// · · · {∃,∀} × P(−)

Hidden Markov
Models

· //

&&

��

· //

''

��

· · ·

·

0.2·a
88

0.3·b //

0.4·c
&&

·

88

//

&&

·

77

//

''

· · ·

· //

88

@@

· //

77

??

· · ·

D≤1(Act × (−))

Table 1.2: Examples of Coalgebras

4 CHAPTER 1. INTRODUCTION

We choose a categorical framework for coalgebras in Set. Aczel [Acz88], Barwise

and Moss [BM04] established a theory of coalgebras over sets purely in set theory. Aczel

replaced the wellfoundedness axiom of Zermelo-Fraenkel set theory [Jec06] with the

non-wellfoundedness axiom and interpreted the resulting set theory in graph structures.

The graphs of coalgebras in Set, we use in Chapter 11, generalise the graph models of

Zermelo-Fraenkel theory with the non-wellfoundedness axiom from the categorical side.

Informally the transition type of a coalgebra S can be throught of as providing a struc-

ture on the sucessor states. Coalgebra morphisms preserve the structure given by the

transition type as follows.

Definition 1.1.4 (Coalgebra Morphisms). A T-coalgebra morphism between T-coalgebras

S = 〈S , σ〉 and S′ = 〈S ′, σ′〉 in Set is a function f : S → S ′ making the following com-

mute.

S
f
��

σ // TS
T f
��

S ′
σ′
// TS ′

(1.1)

1.2 Parity Graph Games

We briefly introduce parity graph games. For more details we refer the reader to Chap-

ter 9. Parity graph games are two-player graph games. The vertices of the graph are the

positions in the game, the edges the admissible moves. Positions, admissible moves and

initial position form the arena of a graph game.

Definition 1.2.1 (Graph Games). A graph game for two players, 0 and 1, is a structure

G = 〈V0,V1, E, vI ,Acc〉 consisting of

• disjoint sets V0 and V1 of positions assigned to 0 and 1 respectively,

• an edge relation E ⊆ V0 ∪ V1 × V0 ∪ V1 of admissible moves,

• an initial position vI ∈ V0 ∪ V1, and

• an acceptance condition Acc ∈ (V0 ∪ V1)ω.

1.3. COALGEBRA AUTOMATA 5

We have formulated the acceptance condition in the most general way. The acceptance

condition is typically formulated in terms of the Büchi, Rabin, Muller, or parity accep-

tance condition. It has been shown, that the Büchi acceptance condition is stricly less

expressive than the latter three acceptance conditions, and that the latter three are equally

expressive. The main advantage of the last is that graph games with parity acceptance

condition are historyfree determined [Mos91, EJ91, Zie98].

Definition 1.2.2 (Parity Acceptance Condition). The parity acceptance condition Acc for

a game G = 〈V0,V1, E, vI ,Acc〉 is given in terms of a priority function Ω : V0 ∪ V1 → N,

such that Acc contains precisely those infinite plays p ∈ (V0 ∪ V1)ω with the largest

infinitely often occurring priority from {Ω ∈ p(i) | i ∈ ω} being of parity 0.

1.3 Coalgebra Automata

Coalgebra Automata and Fix-Point Logics Coalgebra automata were introduced by

Venema in [Ven04] as an approach to introducing fix-point operators into Moss’ coal-

gebraic logic. Essential to this idea is a correspondence between automaton states and

formulas, which dates back to Rabin [Rab69] who used the correspondence to reduce the

decidability problem of monadic second order logic of binary (finitely branching) trees,

S2S, to the emptiness problem of binary tree automata.

Coalgebra Automata Generalising Classical Automata Venema observed that the clas-

sical types of automata, for instance word, tree, or graph automata, share a common

structure 〈Q, θ, qI ,Acc〉, where

• Q is a (finite) set of states,

• θ is a transition function,

• qI ∈ Q is a state distinguished as initial, and

• Acc is an acceptance condition

The transition function varies for each type of recognised input. The following are exam-

ples of transition functions for nondeterministic automata.

6 CHAPTER 1. INTRODUCTION

Type of Input Transition Function
Words θ : Q→ P(Act × Q)
Binary Trees θ : Q→ P(Act × Q × Q)
Graphs θ : Q→ P(Act × PQ)

Table 1.3: Examples of Transition Functions for Nondeterministic Automata

Table 1.4 lists branching types commonly used for automata. We will formally intro-

duce branching types in Chapter 3 as monads in Set.

Type of Choice Transition Function
Determinism θ : Q→ Act × Q
Nondeterminism θ : Q→ P(Act × Q)
Alternation θ : Q→ P∃P∀(Act × Q)
Probabilism θ : Q→ D≤1(Act × Q)

Table 1.4: Examples of Branching Types for Word Automata

The separation of the two powerset monads P∃ and P∀ is to emphasise, that the two are

treated separately for acceptance. Probabilistic automata play no role in this dissertation,

but have been added for completeness. The first three have been shown in [KV08, KV08]

to be equivalent for all transition types. In Chapter 10 we will introduce two further

branching types, which we will show equivalent to the first three.

Acceptance Behaviour of Coalgebra Automata The acceptance behaviour of a T -coalgebra

automaton in a pointed T -coalgebra is given in terms of an acceptance game, which is a

parity graph game played by players ∃ verifing acceptance and ∀ disproving acceptance.

The major advantage of this type of acceptance condition, is that it equally expressive to

Muller or Rabin acceptance condition, and that parity graph games are historyfree deter-

mined.

Coalgebra Automata as Coalgebras In particular in Chapters 6 and 11 we will take a

coalgebraic point of view on coalgebra automata. Looking at the definition we see that T -

coalgebra automata 〈Q, θ, qI ,Ω〉 contain a pointed PT -coalgebra 〈Q, θ, qI〉. We can regard

the acceptance condition induced by Ω as augmentation, which determines the semantics

of 〈Q, θ, qI〉 as we show in Chapter 6.

1.4. BRANCHING TYPES AND MONADS 7

1.4 Branching Types and Monads

In the case of coalgebra automata we have seen several examples of branching types and

anticipated that monads suitably formalise branching types. In the following we infor-

mally substantiate this claim and show how branching types can be added to coalgebras

in general.

1. Commutativity and Associativity Branching types allow to make choices about branch-

ing at any stage. Consequently we can take branching upfront.

//

$$

::

$$

::

//

$$

f

::

$$

::

//

(1.2)

2. Deterministic Subbehaviour Branching types should allow trivial branching, that is

where only one branching choice is possible.

//::

$$

::

$$

f

::

$$ //

(1.3)

3. Distributivity Branching distributes over transitions.

b //

a //
b
::

c $$

a
::

a $$
c
//

(1.4)

The above properties are faithfully represented by monads. A monad 〈B, µ, η〉 is a

functor B with an additional structure given by the natural transformations µ, the multi-

plication of the monad, and η, the unit of the monad. These natural transformations are

subject to axiom 1. and 2. below.

Axiom 3. determines the interaction of the branching type with the transition type T ,

in terms of a natural transformation π : T B⇒ BT , a distributive law of B and T .

8 CHAPTER 1. INTRODUCTION

The axioms correspond to the properties 1.-3. of branching types above.

1. Multiplication

BBB
µB +3

Bµ
�� �'

BB
µ

��
BB µ

+3 B

(1.5)

2. Unit

B

=
�$

ηB +3 BB
µ

��

B

=
z�

Bηoo

B

(1.6)

3. Distributive Law

T
Tη +3

ηT

��

T B

πx�

T BB π +3

Tµ
��

BT B Bπ +3 BBT
µT

��
BT T B π

+3 BT

(1.7)

1.5 The Semantics of Coalgebras

Coalgebras do not capture coalgebraic behaviour succinctly, as they may contain distinct

states with the same behaviour, and not comprehensively, as a single coalgebra may not

capture all behaviours admissible for the transition type. Coalgebra semantics takes the

role of a succinct and comprehensive structure capturing the behaviour of all coalgebras

for a particular transition type.

In this thesis we will consider the following three kinds of semantics for coalgebras:

1. final coalgebra semantics, which distinguishes coalgebra states up to T-bisimilarity,

2. finite trace semantics, which distinguishes coalgebra states up to finite trace equiv-

alence,

3. and infinite trace semantics, which distinguishes coalgebra states up to infinite trace

equivalence.

1.5. THE SEMANTICS OF COALGEBRAS 9

In the following we briefly introduce each kind of semantics. For details on finite and

infinite trace semantics we refer to Chapters 5 and 6 respectively.

1.5.1 Final T -Coalgebra Semantics and T -Bisimilarity

Recall that coalgebras and coalgebra morphisms for a transition type T over a base cate-

gory C form a category, CoalgT (C). If CoalgT (C) has a final object Z = 〈Z, ξ〉, we call Z

the final T-coalgebra. For each T -coalgebra S = 〈S , σ〉 then exists a unique T -coalgebra

morphism f : S→ Z.

S σ //

f
��

TS
T f
��

Z
ξ

// TZ

(1.8)

For coalgebras in Set, it turns out that f distinguishes states of S up to T -bisimilarity,

which is the largest T -bisimulation.

Being a final object, the final T -coalgebra is the limit of the empty diagram into

CoalgT (C). For C = Set and T finitary (accessible) we know [Wor05, AGT09] that the

final T -coalgebra is the limit of the final T -sequence. The finitary prefix SeqT of the final

T -sequence in the presence of a final object 1 is defined by

SeqT (n) := T n1 and SeqT (n ≤ n + 1) := T n!T1 for all n < ω (1.9)

as in the following diagram

1 T1
!T1oo · · ·oo T n1oo T n+11

T n!T1oo · · ·oo (1.10)

Definition 1.5.1 (T -Bisimulations in Set). Let S = 〈S , σ〉 be a T-coalgebra in Set. We

call a relation R ⊆ S × S a T -bisimulation on S, if there is a function r : R→ TR making

the following commute.

10 CHAPTER 1. INTRODUCTION

TS TR
Tπ1oo Tπ2 // TS

S

σ

OO

Rπ1
oo

π2
//

r

OO

S

σ

OO (1.11)

Definition 1.5.2 (T -Bisimilarity in Set). • T -bisimilarity on a T-coalgebra S is the

largest T -bisimulation on S.

• We say points s and s′ in a coalgebra S = 〈S , σ〉 are bisimilar, if there is a bisimu-

lation R ⊆ S × S with (s, s′) ∈ R.

• Pointed coalgebras S = 〈S , σ, s〉 and S′ = 〈S , σ, s′〉 are bisimilar if (s, s′) are bisim-

ilar in 〈S , σ〉 + 〈S ′, σ′〉.

In this dissertation we will use that T -bisimilarity over a T -coalgebra S = 〈S , σ〉 is con-

tained in the kernel of a cone of S over the final sequence of T , which is defined induc-

tively as follows.

f0 :=!S and fn+1 := T fn ◦ σ. (1.12)

as in the following diagram.

S σ //
f0

��
fn

��
fn+1

''

TS
T fn

��
{∗} · · ·oo T n{∗}oo T n+1{∗}

T n!T {∗}

oo · · ·oo

(1.13)

In Appendix C we prove the following lemma.

Lemma 1.5.3. For any T-coalgebra S = 〈S , σ〉, any T-bisimulation R on S is contained

in the kernel of the cone f : S ⇒ SeqT .

1.5.2 Finite Trace Semantics

Classically [DR95], finite traces in a nondeterministic labelled transition system are given

by words of consecutive labels. Recall that nondeterministic transition systems labelled

1.5. THE SEMANTICS OF COALGEBRAS 11

in a set Act are coalgebras of transition type P(
√

+ Act × (−)), where
√

+ Act × (−) is the

transition type of words as coalgebras. Some results about the latter case can be found in

[PT99].

When we generalise from words to coalgebras of other transition types T , T -coalgebras

assume the role of the finite traces of PT -coalgebras. This observation is due to Ja-

cobs [Jac04]. In finite trace semantics, we dinstinguish P and T as branching and transi-

tion type, respectively. As a branching type P embodies non-determinism.

Final coalgebra semantics is not suitable for coalgebras with branching, such as coal-

gebra automata accepting finite input, as it distinguishes states, which are not bisimilar

but have the same finite traces. The argument can be found in [BIM95]. For example the

states x and x′ in the coalgebras below are finite trace equivalent, but not bisimilar.

z0 y0
b // z0

x a // y

b
;;

c ##

x′
a
::

a $$
z1 y1 c

// z1

(1.14)

Jacobs [Jac04] defined finite trace semantics as a cone over the following ω-chain

SeqT , which is dually to SeqT defined as follows by

SeqT (n) := T n0 and SeqT (n ≤ n + 1) := T n¡T0 for all n < ω (1.15)

as in the following diagram

0
!T1 // T0 // · · · // T n0

T n¡T0 // T n+10 // · · · (1.16)

1.5.3 Infinite Trace Semantics

The definition of infinite traces relates to the one of finite traces in the following sense.

Recall that classically [DR95] finite traces in labelled transition systems are finite, that is

(
√

-)terminated, words of adjacent labels. Infinite traces may not be terminated. Infinite

traces are generalised to coalgebras analogously to finite traces. In this dissertation we do

12 CHAPTER 1. INTRODUCTION

not consider the limit case. In the case of labelled transition systems, we consider thus

only such words of length up to ω.

Böhm Trees In our definition of Chapter 6, infinite trace semantics assigns to the states

of a (B,T)-coalgebra the infinite traces. We begin with an inductive definition of infinite

trace semantics in the style of Böhm trees, which are used in lambda calculus [Bar81]

to give a semantics to terms which admit an infinite reduction. Consider the following

modification of the combinator Θ.

t := (λx.λ f .(xx))(λx.λ f .(xx)) (1.17)

The term t admits an infinite sequence of β-reductions as follows.

(λx.λ f .(xx))(λx.λ f .(xx)) →β

λ f .(λx.λ f .(xx))(λx.λ f .(xx)) →β

λ f .λ f .(λx.λ f .(xx))(λx.λ f .(xx)) →β

. . .

From these calculations it is obvious, that we can not give a finite semantics for t, that

is a normalised term. In Böhm trees one defines the semantics of lambda terms without

normal form to be ⊥. Applying this idea to the above β-reduction sequence yields the

following sequence.

⊥ →β

λ f .⊥ →β

λ f .λ f .⊥ →β

. . .

Coalgebra Automata and Infinite Trace Semantics Another example of infinite trace

semantics can be found in automata operating on infinite input. Recall that T -coalgebra

1.6. COALGEBRAIC LOGICS 13

automata are structures A = 〈Q, θ, qI ,Ω〉. Coalgebraically these automata can be con-

ceived as pointed coalgebras 〈Q, θ, qI〉 augmented with a priority function Ω. Without

loss of generality, the latter can be assumed to determine the acceptance behaviour of A

on strictly infinite input2 We argue that every such Ω determines an infinite trace seman-

tics.

Coinductive Infinite Trace Semantics Although we set out with an inductive definition

of infinite trace semantics, we argue that infinite trace semantics are not necessarily in-

ductively definable. Furthermore according to the example of coalgebra automata, infinite

trace semantics is not uniquely defined. We thus introduce a coinductive characterisation

of infinite trace semantics in terms of invariants on sequences such as the one of inductive

infinite trace semantics. Thereby we deviate from the previous approach of Jacobs [Jac04]

and the parallel work of Cirstea [C1̂0]. In Chapter 6 we will reconcile Jacobs’ approach

with ours in greater detail.

1.6 Coalgebraic Logics

Coalgebraic Logics Moss [Mos99] defined the formulas a of coalgebraic logic to be of

the following form.

a ::= > | ⊥ | ¬a |
∧

a |
∨

a | ∇a (1.18)

The semantics of ∇ in a coalgebra S = 〈S , σ〉 is defined by

S, s
 ∇α if and only if (σ(s), α) ∈ RelT (
) (1.19)

Coalgebraic Logics as Initial Algebras Kurz [Kur01b, Kur01a] made precise that coal-

gebraic logics and coalgebras, which are the models of coalgebraic logics, correspond

under Stone duality [Joh86]. Coalgebras live in the category Set of sets and functions,

whereas coalgebraic logics live in the category CABA of complete atomic Boolean alge-

bras. Coalgebraic logics is the initial algebra for a functor L, dual to the functor T , that is

2The meaning of infinite for Set-coalgebras will be introduced in Chapter 11.

14 CHAPTER 1. INTRODUCTION

2L(−) = T2(−). For finitary T , L can concretely be defined by Ind-Pro-completion from the

finitary case as in the following diagram.

Setop
2(−)

,,
T ;; CABA

Uf
ll Ldd

FinSetop
2(−)

,,?�
Pro

OO

Tω 88 FinBA
Uf
mm

?�
Ind

OO

2TωUfdd

(1.20)

We are particularly interested in the following properties of coalgebraic logics.

• Invariance under T -Bisimilarity We have seen that T -bisimilarity is a semantical

equivalence between T -coalgebra states. A coalgebraic logic is invariant under

T -bisimilarity, if T -bisimilar states satisfy the same formulas. Invariance under T -

bisimilarity has been established in [Mos99] for infinitary coalgebraic logics and

restricts to the finitary case.

• Expressivity Conversely to the invariance under T -bisimilarity, a coalgebraic logic

is expressive, if logically equivalent states of T -coalgebras are T -bisimilar. Expres-

sivity has been established in the infinitary case in [Mos99]. The finitary case is

more intricate, confere [Kup06]. Kupke, Kurz, and Venema proved [KKV04] that

Kripke polynomial functors T and T -coalgebras lift to the Vietoris functor in the

category of Stone spaces [Joh86] and Stone coalgebras. The latter form classes of

models which have expressive coalgebraic logics.

• Completeness Completeness is to be understood relative to an axiom system, and

means that formulas are valid in coalgebraic logics if they can be derived. The latter

makes sense only if the logics are finitary. Kupke, Kurz, and Venema defined the

set M of axioms for finitary coalgebraic logics and proved it complete in [KKV08].

Modal Logics Modal logics [BdRV01] allow us to describe properties of state based

transition systems in a finitary manner. The set of formulas of modal logics is defined as

follows.

φ ::= > | ⊥ | φ ∨ φ | φ ∧ φ | �φ | ^φ (1.21)

1.6. COALGEBRAIC LOGICS 15

where the semantics of � and ^ are given as functions functions

~�(−)�S , ~^(−)�S : 2S ⇒ 2PS (1.22)

where 2 = {true, false} is the set of truth values. For a detailed account of the variants of

modal logics, we refer to the established literature.

Modal Correspondence Theory In modal correspondence theory, van Benthem [vB77]

proved that modal logics is the bisimulation invariant fragment of first order logics aug-

mented with a binary relation symbol denoting transitions.

Coalgebraic Modal Logics Another approach to logics for coalgebras consists in coal-

gebraic modal logics [Pat01a, Pat01b, Pat03b, Pat03a, Pat04]. The idea underlying coal-

gebraic modal logics is the following. The semantics ~a� of a formula a of modal logics

is a subset ~a� ⊆ Q. Since implication on the logical side is contravariant to inclusion

on the semantical side, ~a� ∈ 2Q. Semantically, � and ^ are then natural transformations

2Q ⇒ 2PQ. The previous observation makes the generalisation to a coalgebraic level of

generality possible in coalgebraic modal logics.

• Invariance under T -Bisimilarity

• Expressivity [Sch05]

• Completeness

Coalgebraic Logics and Coalgebraic Modal Logics � and ^ can [BPV08] be translated

into coalgebraic logic such that

�a ∇∅ ∨ ∇{a} and ^a ∇{a,>} (1.23)

and backwards such that

∇a �(
∨

a) ∧
∧

^a (1.24)

Leal et alii [Lea07, Lea08, KL09] generalised the above translations to a coalgebraic level

of generality, and thereby showed that coalgebraic logic and coalgebraic modal logics are

16 CHAPTER 1. INTRODUCTION

interdefineable for accessible transition types.

1.7 Our Contributions in This Thesis

Finite Trace Semantics We adapted the definition of finite trace semantics from Generic

Trace Theory introduced by Jacobs by embedding into the Eilenberg-Moore category of

the branching type. Our finite trace semantics is applicable to finitary branching types.

Our definition of finite trace semantics uses continuous extensions of Kleisli-liftings of

functors suggested by Alexander Kurz. The work of Chapter 5 is joint with Alexander

Kurz.

Finitary Coalgebraic Logics for Finite Traces We define finitary coalgebraic logics for

finite traces using dual adjunctions in Eilenberg-Moore categories induced by ambimor-

phic objects. The latter idea was suggested by Bart Jacobs. We prove finitary coalgebraic

logics for for finite traces invariant under finite trace equivalence and expressive under

additional conditions. The work of Chapter 7 is joint with Alexander Kurz.

Infinite Trace Semantics We modify finite trace semantics from Generic Trace Theory

and obtain an inductively defined generic infinite trace semantics in the style of Böhm

trees. We then abstract properties of generic infinite trace semantics, and obtain a char-

acterisation of infinite trace semantics which applies to generic infinite trace semantics,

Jacob’s infinite trace semantics, and the acceptance behaviour of coalgebra automata.

Complementation Lemma for Moss’ Coalgebraic Logics In joint work with Yde Ven-

ema, we define the Boolean dual of ∇ in the negation-free fragment of finitary Moss’

coalgebraic logics, and thereby show that finitary Moss’ coalgebraic logics is essentially

negation-free. The result makes use of the completeness of Moss’ coalgebraic logics

proven by Kurz, Kupke, and Venema. The definition of the Boolean dual of ∇ originates

with Yde Venema, and has been refined by Alessandra Palmigiano and an anonymous

referee to our paper [KV09].

Game Bisimulations We abstract the notion of rounds known for acceptance games of

automata and find a structuring of parity graph games. Using the structure we define a

1.8. OUTLINE 17

congruence relation, preserving the semantics of parity graph games. The definition and

the results are joint with Yde Venema.

Complementation Lemma for Coalgebra Automata Using the complementation lemma

and game bisimulations we show that languages of coalgebras accepted by coalgebra au-

tomata are closed under taking complements. Together with earlier results of Venema

and Kupke, the latter result establishes a Rabin-style correspondence between coalgebra

automata and Moss’ coalgebraic logics augmented with fix-point operators. The results

of Chapter 10 are joint with Yde Venema.

Pumping Lemma for Coalgebra Automata We generalise pumping from words to arbi-

trary coalgebras in Set, and prove that languages of such coalgebras accepted by coalgebra

automata have the pumping property.

1.8 Outline

This thesis consists of five parts.

Foundations in Category Theory In Chapter 3 we review monads in Set, Eilenberg-

Moore algebras of monads, and distributive laws of monads with functors. In Chapter 4

we review categories of algebras, the Kleisli- and Eilenberg-Moore-categories of monads,

and the Kleisli-liftings of Set-functors and their continuous extension.

Semantics of Coalgebras with Branching In Chapter 5 we review Generic Trace The-

ory, and propose an alternative definition of finite trace semantics in Eilenberg-Moore

Categories, which will play a central role in Chapter 8. In Chapter 6 we adapt the basic

ideas of Generic Trace Theory to obtain a characterisation of infinite trace semantics.

Coalgebraic Logics In Chapter 7 we define the Boolean dual of Moss’ modality ∇ and

thereby show that Moss’ coalgebraic logic is essentially negation-free. In Chapter 8 we

propose generic coalgebraic logics characterising coalgebras with branching up to to fi-

nite trace equivalence. We prove the logics invariant under finite trace equivalence and

expressive under additional assumptions.

18 CHAPTER 1. INTRODUCTION

Coalgebraic Automata Theory In Chapter 9 we review parity graph games and introduce

game bisimulations. In Chapter 10 we show that language of coalgebras accepted by

coalgebra automata are closed under taking complements. Finally we show that languages

of coalgebras accepted by state-finite coalgebra automata have the pumping property.

Chapter 2

Notation

2.1 Set Theory

• We write Y ⊆ω X to mean, that Y is a finite subset of X.

• Let f : X → Y be a function, we denote by Gr (f) ⊆ X × Y its graph.

• Let f : X → X be a function, we write f n to denote the n-fold application of f , such

that f 1 = f and f n+1(x) = f (f n(x)) for all x ∈ X.

• Let X be a set, X∗ denotes the set of (finite) words over X.

• ε denotes the empty sequence.

• Let X be a set, X+ := X∗ \ {ε} denotes the set of finite non-empty words over X.

• Let X be a set, x ∈ X, and w ∈ X∗, then x.w denotes w with x prepended, and w.x

denotes w with x appended.

• Let f : X → Y be a function, and let x ∈ X and y ∈ Y , we denote by f {x 7→ y} the

function taking x 7→ y and x′ 7→ f (x′) for all x′ ∈ X \ {x}.

• Let Y be a set with a distinguished element 0, and let x ∈ X and y ∈ Y , {x 7→ y}

denotes the function X → Y taking x 7→ y and x′ ∈ 0 for all x′ ∈ X \ {x}.

19

20 CHAPTER 2. NOTATION

• We denote by X × Y := {(x, y) | x ∈ X, y ∈ Y} the cartesian product of X and Y . and

by πX : X × Y → X the projection morphism for X, and similarly for Y . If X = Y , it

may not be the case that πX = πY .

• We denote by X + Y := {(0, x), (1, y) | x ∈ X, y ∈ Y} the coproduct, that is disjoint

sum, of X and Y , and by κX : X → X+Y the injection morphism for X, and similarly

for Y . If X = Y , it may not be the case that κX = κY .

• Let X be a set, ∆X := {(x, x) | x ∈ X} denotes the diagonal relation.

For all sets X, Y , and X′ with X′ ⊆ X, and for all relations R ⊆ X × Y , we denote

• R[x] := {y ∈ Y | (x, y) ∈ R} for all x ∈ X,

• R[X′] := {y ∈ Y | ∃x ∈ X′.(x, y) ∈ R} for all X′ ⊆ X, and

• R|X′ := {(x, y) | x ∈ X′, (x, y) ∈ R} for all X′ ⊆ X.

For our convenience we adopt the notation from lambda calculus [Bar81].

• λx ∈ X.t denotes the function {x 7→ t | x ∈ X}.

• When X is clear from context we omit it and write λx.t for λx ∈ X.t.

2.2 Logic

In the following let φ and ψ be formulas of a modal logic.

• M |= φ means M is a model of φ.

• M, x
 φ means that φ holds in M in state x.

• φ ` ψ means that φ entails ψ.

• ` φ means that φ holds.

• ~φ�M := {x | M, x
 φ} is the semantics of φ in the model M.

2.3. CATEGORY THEORY 21

2.3 Category Theory

Below let C andD be categories and X an object of C.

• idX is the identity morphism.

• IdC is the identity functor on C.

• (×) Π is the (binary) categorical product.

• (+)
∑

is the (binary) categorical coproduct.

• We write X to denote the functor D → C taking all objects of D to X and all

morphisms to idX.

• Let T : C → C be a function, we write T n to denote the n-fold application, such

that T 0 = IdC and T n+1 = T (T n).

Suppose initial and final object exist in C, respectively.

• 0 denotes the initial object of C

• 1 denotes the final object of C.

• ¡X is the initial object morphism 0→ X.

• !X is the final object morphism X → 1.

Let 〈C,⊗, I〉 be a monoidal closed category.

• We write [−,+] for C(−,+).

Composition of Arrows

We write the composition of arrows f : X → Y and g : Y → X as g ◦ f (read "g after

f ") and f ; g (read f composed with g). We use the latter notation in Rel, the category

of sets and relation to comply with the standard notation in algebra, and the first notation

otherwise.

22 CHAPTER 2. NOTATION

Diagrams

Let D : I → C be a diagram over a category C indexed in a category I , then

• limD is the limit of the diagram D.

• colimD is the colimit of the diagram D.

• |D| is the discrete version of D, that is the restriction of D to |I|, the discrete version

of I.

Part I

Foundations in Category Theory

23

Chapter 3

A Review of Monads and Algebras over

Set

In the introduction we argued that functors are suitable transition types for coalgebras,

and monads are suitable branching types. In this section we introduce monads and their

algebras independently from coalgebras.

3.1 Definition of Monads

Monads are functors with the following additional structure.

Definition 3.1.1 (Monads). A monad 〈B, µ, η〉 on a category C consists of

• a functor B : C → C, and natural transformations

• η : Id ⇒ B (unit), and

• µ : BB⇒ B (multiplication)

subject to the following conditions.

B

=
�$

ηB +3 BB
µ

��

B

=
z�

Bηoo BBB
µB +3

Bµ
��

BB
µ

��
B BB µ

+3 B

(3.1)

25

26 CHAPTER 3. A REVIEW OF MONADS AND ALGEBRAS OVER SET

When the monad structure is clear from the context we omit mentioning the monad struc-

ture and denote the monad 〈B, µ, η〉 as B.

3.2 Categories of Algebras for Monads

Definition 3.2.1 (Eilenberg-Moore Algebras for a Functor). Let C be a category and

T : C → C a functor on C. An Eilenberg-Moore algebra for T is a morphism α : T X → X

for an object X in C. We call X the carrier of α. A T -algebra morphism α→ β between T-

algebras α : T X → X and β : TY → Y is a morphism f : X → Y such that β◦T f = f ◦α.

The Eilenberg-Moore algebras for a functor T and their morphisms form a category, the

Eilenberg-Moore category for the functor T .

The definitions of Eilenberg-Moore algebras for a functor and their category extend to

monads as follows.

Definition 3.2.2 (Eilenberg-Moore Algebras for a Monad). An Eilenberg-Moore algebra

for a monad B is an Eilenberg-Moore algebra α : BX → X for the functor B satisfying

the following additional conditions.

1. α ◦ ηX = idX

2. α ◦ Bα = α ◦ µX

Morphisms between Eilenberg-Moore algebras of a monad are defined as the morphisms

between the underlying Eilenberg-Moore algebras. The Eilenberg-Moore algebras for a

monad B and their morphisms form a category, the Eilenberg-Moore category of B.

Remark 3.2.3. Note that, the Eilenberg-Moore-category of the monad B embeds properly

into the Eilenberg-Moore-category of the functor B.

The category of Eilenberg-Moore algebras for a monad B over the category Set has a

forgetful functor U : B-Alg→ Set with a left adjoint F : Set → B-Alg. The adjunction

Set

F
**

⊥ B-Alg
U

hh (3.2)

3.3. EILENBERG-MOORE CATEGORIES OF COMMUTATIVE MONADS 27

is defined explicitly for all Eilenberg-Moore algebras α : BX → X and β : BY → Y , and

B-algebra morphisms f : α→ β by

• U(α) := X and U(f) := f , and

• F(X) := µX and F(f) := µY ◦ B f .

Definition 3.2.4 (Kleisli-Categories for Monads B). The Kleisli-category Kl(B) of a monad

B is the category of free Eilenberg-Moore algebras for the monad B.

The following can be found in greater generality in Chapter VI.3 of MacLane [Mac98].

Lemma 3.2.5. There is a unique embedding functor K : Kl(B) → B-Alg, such that

F = KF′ and U′ = UK.

3.3 Eilenberg-Moore Categories of Commutative Mon-

ads

Note that B-Alg may not be symmetric monoidal closed, but for commutative monads it

is. This is made precise in the following result, which is due to Kock [Koc70].

Theorem 3.3.1. The following are equivalent

1. B is a commutative monad.

2. B-Alg is symmetric monoidal closed with ⊗ being the Kleisli-lifting of ×.

We prove the two directions of this theorem separately below. In order to show that,

1 =⇒ 2, we use that commutative monads B admit a Kleisli-lifting of × as in Corol-

lary 4.2.3.

Proof. We prove the two directions separately. Let B be commutative, we show that the

Kleisli-lifting Kl(×) of × defines a symmetric monoidal structure on B-Alg.

28 CHAPTER 3. A REVIEW OF MONADS AND ALGEBRAS OVER SET

By definition F commutes with the Kleisli-lifting, such that FX (Kl(×)) FY = F(X ×

Y). For non-free algebras A and A′ we define the Kleisli-lifting as the continuous exten-

sion, that is the coequaliser of the following diagram.

FUFUA (Kl(×)) FUFUA′
FUεA,A′ //
εFUA,FUA′

// FUA(Kl(×))FUA′
εA,A′ // // A ⊗ A′ (3.3)

We need to verify the conditions of the symmetric monoidal closure.

1. There is an object I in B-Alg with natural isomorphisms λA : I ⊗ A → A and

ρA : A ⊗ I → A.

2. There is a natural isomorphism σA,B : A ⊗ A′ → A′ ⊗ A.

1. We choose I := F{∗} and observe the following.

FUFUA
εFUA //
FUεA

// FUA
εA // // A

F(UFUA × {∗}) // // F(UA × {∗})

FUFUA ⊗ I
εFUA⊗idI //
FUεA⊗idI

// FUA ⊗ I // // A ⊗ I

λA

WW (3.4)

and symmetrically,

FUFUA
εFUA //
FUεA

// FUA
εA // // A

F({∗} × UFUA) //// F({∗} × UA)

I ⊗ FUFUA
idI⊗εFUA //
idI⊗FUεA

// I ⊗ FUA
idI⊗εA

// // I ⊗ A

ρA

WW (3.5)

where λ and ρ exist because of the universal property of coequalisers.

3.3. EILENBERG-MOORE CATEGORIES OF COMMUTATIVE MONADS 29

2. Follows through similar considerations as follows.

FUFUA ⊗ FUFUA′ // // FUA ⊗ FUA′ // // A ⊗ A′

F(UFUA × UFUA′) // // F(UA × UA′)

F(UFUA′ × UFUA) // // F(UA′ × UA)

FUFUA′ ⊗ FUFUA // // FUA′ ⊗ FUA // // A′ ⊗ A

σA,A′

UU (3.6)

The converse direction follows in particular from the bilinearity of ⊗. We suppose B-Alg

is symmetric monoidal closed for ⊗ = Kl(×), and show that B is commutative.

Bilinearity means in particular, that

(idFX ⊗ εFY) ◦ (εFX ⊗ idFUFY) = (εFX ⊗ idFY) ◦ (idFUFX ⊗ εFY) (3.7)

commute natural in X and Y . Taking the adjoint transpose along F a U and using that

F(− × +) = F(−) ⊗ F(+), we obtain

FUFX ⊗ FUFY
εFX⊗idFUFY // FX ⊗ FUFY

idFX⊗εFY // FX ⊗ FY

F(UFX × UFY)
f

// F(X × UFY) g
// F(X × Y)

BX × BY
f †

// B(X × BY)
Bg†

// BB(X × Y) µX×Y
// B(X × Y)

(3.8)

and

FUFX ⊗ FUFY
idFUFX⊗εFY // FUFX ⊗ FY

εFX⊗idFY // FX ⊗ FY

F(UFX × UFY)
f

// F(UFX × Y) g
// F(X × Y)

BX × BY
f †

// B(BX × Y)
Bg†

// BB(X × Y) µX×Y
// B(X × Y)

(3.9)

�

30 CHAPTER 3. A REVIEW OF MONADS AND ALGEBRAS OVER SET

3.4 Examples

In this section we introduce monads on Set which are of interest as branching types, and

describe their Eilenberg-Moore algebras by means of axioms, which contribute to the

examples of trace logics in Chapter 8.

The simplest kinds of monads we consider are the identity monad and lift monad. The

commonly used finitary powerset and finitary multiset monad are subsumed by the semir-

ing monad for the boolean semiring and the natural numbers with the usual arithmetic

operations, respectively. The finitary multiset monad is also known as the Bag monad.

From the class of semiring monads we furthermore consider min semiring monads, which

played a role for instance in [Rut02].

In the following we define these examples of monads, and afterwards show syntax and

axiomatisation of their algebras.

Definition 3.4.1 (Monads in Set). Table 3.1 defines examples of monads, where

• {̇x}̇ denotes a multiset singleton containing x once and
⋃̇

denotes multiset union,

• S is a semiring S = 〈S ,+, ∗, 0, 1〉,

• Smin is a min semiring Smin = {S ,min,+,∞, 0} as in Example 3.4.4,

Name Functor B Unit η : Id ⇒ B Multiplication µ : B2 ⇒ B
Identity monad Id η = id µ = id

Lift monad {⊥} + Id ηX(x) = κ1x µX =


κ1⊥ 7→ κ1⊥

κ2κ1⊥ 7→ κ1⊥

κ2κ2x 7→ κ2x
(Finitary) powerset monad P (Pω) ηX(x) = {x} µX(X) =

⋃
X

Bag monad
(
N(−)

)
ω

ηX(x) = {̇x}̇ µX(M) =
⋃̇

M

Semiring monad
(
S(−)

)
ω

ηX(x) = {x 7→ 1} µX(M) = λx.
∑

m M(m) ∗ m(x)

Min semiring monad
(
S

(−)
min

)
ω

ηX(x) = {x 7→ 1} µX(M) = λx.MinmM(m) ∗ m(x)

(Sub-)distribution monad D=1 (D≤1) ηX(x) = {x 7→ 1} µX(D) = λx.
∑

d D(d) ∗ d(x)

Table 3.1: Examples of Monads

Notation 3.4.2. We denote the function X → N taking an element x ∈ X to 1 and every

other element of X to 0 by {x 7→ 1}.

3.4. EXAMPLES 31

The following axioms of semimodules for semirings can be found in the standard

literature, such as Chapter 14 of [Gol10].

Definition 3.4.3 (Semirings). A semiring is an algebraic structure S = 〈S ,+, ∗, 0, 1〉

satisfying the following axioms.

〈X,+, 0〉 is a commutative monoid, so that for all s, r, t ∈ S ,

1. Unit-Element: s = s + 0

2. Commutativity: s + t = t + s

3. Associativity: s + (r + t) = (s + r) + t

〈S , ∗, 1〉 is a monoid, so that for all s, r, t ∈ S

4. Unit-Element: s = s ∗ 1

5. Associativity: s ∗ (r ∗ t) = (s ∗ r) ∗ t

The additive and multiplicative monoids interact such that for all s, r, t ∈ S ,

6. Annihilation: 0 ∗ s = 0 = s ∗ 0

7. Distributivity: s ∗ (r + t) = (s ∗ r) + (s ∗ t)

An example of semirings are min semirings.

Example 3.4.4 (Min Semirings). A min-semiring is an algebra Smin = 〈S ,min,+,∞, 0〉

satisfying the following axioms.

The monoid 〈S ,min,∞〉 is idempotent

1. Idempotency: min(s, s) = s

The monoid 〈S ,+, 0〉 is commutative

2. Commutativity: s + r = r + s

0 is absorptive with respect to min,

32 CHAPTER 3. A REVIEW OF MONADS AND ALGEBRAS OVER SET

3. Absorption: min(0, s) = 0

Next we show syntax and axiomatisation of the Eilenberg-Moore algebras for the example

monads above.

Proposition 3.4.5 (Algebras for the Monads in Definition 3.4.1). 1. The Eilenberg-Moore

algebras for Id are sets X.

2. The Eilenberg-Moore algebras for Lift are pointed sets (X,⊥), where ⊥ ∈ X.

3. The Eilenberg-Moore algebras α : PX → X for the powerset monad are complete

(disjunctive) semilattices, satisfying the following axiom for all (Yi j ⊆ X)i∈I, j∈J.

(a) Bottom element: ⊥ :=
∨
∅.

(b) Associativity:
∨

i∈I
∨

j∈J Yi j =
∨

(i, j)∈I×J Yi j

4. The Eilenberg-Moore algebras α : PX → X for the finitary powerset monad are

(disjunctive) semilattices, satisfying the following axioms for all x, y, z ∈ X.

(a) Bottom-Element: ⊥: x ∨ ⊥ = x

(b) Idempotency: x ∨ x = x

(c) Commutativity: x ∨ y = y ∨ x

(d) Associativity: x ∨ (y ∨ z) = (x ∨ y) ∨ z

5. The Eilenberg-Moore algebras α :
(
NX

)
ω
→ X for the finite multiset monad are

semimodules satisfying the following axioms for all

(a) Unit-Element: 0 · x = 0 and 0 ⊕ n · x = n · x

(b) Commutativity: n · x ⊕ m · y = m · y ⊕ n · x

(c) Associativity: n · x ⊕ (m · y ⊕ o · z) = (n · x ⊕ m · y) ⊕ o · z

(d) Absorption: n · x ⊕ m · x = (n + m) · x

6. Algebras for a semiring monad
(
S(−)

)
ω

for a semiring S = 〈S ,+, ∗, 0, 1〉 are alge-

bras 〈M, 0M,⊕, (s · (−))s∈S 〉 satisfying the following axioms.

〈M, 0M,⊕〉 is a commutative monoid, so that

3.4. EXAMPLES 33

(a) Unit-element: 0M ⊕ m = m

(b) Commutativity: m ⊕ n = n ⊕ m

(c) Associativity: m ⊕ (n ⊕ o) = (m ⊕ n) ⊕ o

Such that the additive monoid and the semiring S are compatible, such that

(a) s · m ⊕ r · m = (s + r) · m

(b) s · (r · m) = (s ∗ r) · m

7. The algebras for the min-semiring monad
(
S(−)

)
ω

where S = 〈S ,min,+,∞, 0〉 are

structures 〈M, 0M,⊕, (s · (−))s∈S 〉 satisfying the following axioms.

〈M, 0M,⊕〉 is a commutative monoid, so that

(a) Unit-element: 0M ⊕ m = m

(b) Commutativity: m ⊕ n = n ⊕ m

(c) Associativity: m ⊕ (n ⊕ o) = (m ⊕ n) ⊕ o

Such that the additive monoid and the semiring S are compatible, such that

(a) Aggregation: s · m ⊕ r · m = min(s, r) · m

(b) Composition: s · (r · m) = (s + r) · m

8. The Eilenberg-Moore algebras for the sub-distribution monad are convex sets sat-

isfying the following axioms for all x ∈ X.

(a) Unit-Element: 0 · x = 0 and 0 ⊕ r · x = r · x

(b) Absorption: r · x ⊕ s · x = (r + s) · x

(c) Commutativity: r · x ⊕ s · y = s · y ⊕ r · x

(d) Associativity: r · x ⊕ (s · y ⊕ t · z) = (r · x ⊕ s · y) ⊕ t · z

The proof is a basic exercise in algebra. Nevertheless the validity of the propositon above

has been questioned by a reviewer of our submitted paper [KK10], so that we spell out

34 CHAPTER 3. A REVIEW OF MONADS AND ALGEBRAS OVER SET

the proof for semiring monads. Recall that the latter subsumes finitary powerset, finitary

multiset, semiring and min-semiring monads.

Proof. Soundness Let X be a set, S = 〈S ,+, ∗, 0, 1〉 a semiring, and M = 〈
(
S X

)
ω
, µX〉

the free semiring monad for the semiring S. We show thatM is closed under the oper-

ations of semimodules above, and that with these operations M satisfies the axioms of

semimodules. We define for all m, n ∈ M and s ∈ S ,

1. 0M := λx.0,

2. m ⊕ n := λx.m(x) + n(x), and

3. s · m := λx.s ∗ m(x).

Then 〈M,⊕, 0M〉 is an additive monoid, so that for all m, n, o ∈ M,

1. m ⊕ 0M = λx.m(x) + 0M(x) = λx.m(x) = m,

2. m ⊕ n = λx.m(x) + n(x) = λx.n(x) + m(x) = n ⊕ m, and

3. m⊕(n⊕o) = λx.m(x)+(n⊕o)(x) = λx.m(x)+(n(x)+o(x)) = λx.(m(x)+n(x))+o(x) =

λx(m ⊕ n)(x) + o(x) = (m ⊕ n) ⊕ o,

and the monoid 〈M,⊕, 0M〉 is compatible with the semiring S, so that for all m, n ∈ M and

s ∈ S ,

1. s · m ⊕ r · m = (λx.s ∗ m(x)) ⊕ (λx.r ∗ m(x)) = λx.(s + r) ∗ m(x) = (s + r) · m

2. s · (r · m) = s · (λx.r ∗ m(x)) = λx.s ∗ (r ∗ m(x)) = λx.(s ∗ r) ∗ m(x) = (s ∗ r) · m

It suffices to show soundness for free S-semimodules.

Completeness We show that any structure M = 〈M,⊕, 0M, (s · (−))s∈S 〉 for a semiring

S = 〈S ,+, ∗, 0, 1〉 satisfying the axioms of S-semimodules as above defines an algebra

for the monad
(
S(−)

)
ω

with the algebra map α :
(
SM

)
ω
→ M, such that

α(f) :=
⊕
{ f (m) · m | m ∈ M, f (m) , 0} for all f ∈

(
SM

)
ω

(3.10)

3.5. COMMUTATIVE MONADS IN SET 35

where
⊕
{m0, . . . ,mn} makes the ellipsis notation m0 ⊕ . . . ⊕ mn formal. The above defi-

nition is well-stated, since f has finite support by definition. It remains to show that α is

compatible with the monads laws.

• α ◦ ηM = idM follows from the definition of ηM since α(ηM(m)) = α({m 7→ 1}) =

1 · m = m.

• α ◦ µM = α ◦ (Sα)ω from the associativity and commutativity of ⊕ as well as the

compatibility ofM with S.

�

3.5 Commutative Monads in Set

Definition 3.5.1 (Strength Law). A strength law for a monad 〈B, µ, η〉 is a morphism

stX,Y : X × BY → B(X × Y) natural in X and Y such that the following commute.

X × BY
idX×ηY //

ηX×Y))

X × BY
stX,Y

��
B(X × Y)

(3.11)

X × B2Y
idX×µY //

stX,BY

��

X × BY

stX,Y

��
B(X × BY)

BstX,Y

// B2(X × Y) µX×Y
// B(X × Y)

(3.12)

Strong monads are monads with a strength law as above. Commutative monads are mon-

ads with a double-strength law.

Definition 3.5.2 (Double-Strength Law). A 〈B, µ, η〉 be a monad with strength law dst has

a double strength law, if the following diagram commutes.

BX × BY
stBX,Y //

stBY,X

��

dstX,Y

,,

B(BX × Y)
stY,X // B2(X × Y)

µX×Y

��
B(X × BY)

BstX,Y

// B2(X × Y) µX×Y
// B(X × Y)

(3.13)

36 CHAPTER 3. A REVIEW OF MONADS AND ALGEBRAS OVER SET

In the above diagram we omitted the bijection X × Y � Y × X. The double strength law

is the diagonal morphism dstX,Y : BX × BY → B(X × Y) natural in X and Y. We call a

monad 〈B, µ, η〉 with a double strength law commutative.

Commutative monads admit unique extensions of multihomomorphisms, as in the

following definition.

Definition 3.5.3 (Multihomomorphic Extensions). Let 〈B, µ, η〉 be a monad, a multi-

homomorphic extension of a morphism f : X0 × ... × Xn−1 → Y is a morphism f̂ :

BX0 × ... × BXn−1 → BY making the following commute

X0 × ... × Xn−1

ηX0×...×ηXn−1
��

f // Y
ηY

��
BX0 × ... × BXn−1

f̂ // BY

(3.14)

The equivalence stated in the following proposition above is proved by Manes and

Mulry in [MM07]. For the proof we refer to the orginal paper.

Proposition 3.5.4. Let B be a commutative monad, then each function f : X0 × X1 → Y

has precisely one multihomomorphic extension f̂ : BX0 × BX1 → BY.

Using Proposition 3.5.4 we can prove the following result, which will contribute to

our construction of trace logics later on.

Lemma 3.5.5. Let B be a commuative monad, then B∅ � ∅ or B∅ � 1.

Proof. Let π0 : B∅ × B∅ → B∅ and π1 : B∅ × B∅ → B∅ be the projection morphisms.

Both, π0 and π1 are multihomomorphic extensions of the isomorphism f : ∅ × ∅ � ∅ as

they both make π ◦ (η∅ × η∅) � η∅ ◦ f commute (π ∈ {π0, π1}). By Proposition 3.5.4, thus

π0 � π1, from which it follows that B∅ has at most one element. �

Chapter 4

Distributive Laws and Functor Liftings

In this chapter we review the basic definition of the Kleisli-lifting of Set-functors. The

new result of this chapter is a definition of the continuous extension of a Kleisli-lifting of

a Set-functor, which we will use in Chapter 5. The details originate with Alexander Kurz.

4.1 Distributive Laws

Distributive laws as studied by Beck [Bec69], and Manes and Mulry [MM07], were con-

nected to the question, whether the composition of two monads 〈B1, µ1, η1〉 and 〈B2, µ2, η2〉

yields a monad. B1B2 is a monad if B1 and B2 commute, that is have a natural transfor-

mation π : B2B1 ⇒ B1B2. π yields the multiplication of B1B2 as follows.

B1B2B1B2
B1πB2 +3 B1B1B2B2

B1B1µ2 +3 B1B1B2
(µ1)B2 +3 B1B2 (4.1)

In this dissertation we are interested in distributive laws between monads and functors.

Definition 4.1.1 (Distributive Laws). A distributive law for a functor T and a monad

〈B, µ, η〉 is a natural transformation π : T B ⇒ BT commuting with the monad structure

of B such that

T
Tη +3

ηT

��

T B

πx�

T BB π +3

Tµ
��

BT B Bπ +3 BBT
µT

��
BT T B π

+3 BT

(4.2)

37

38 CHAPTER 4. DISTRIBUTIVE LAWS AND FUNCTOR LIFTINGS

4.1.1 Examples of Distributive Laws

Distributive laws are not guaranteed to exist for all pairs of a monad and a functor. For

our purposes the following cases are of sufficient interest.

Example 4.1.2. A distributive law π : T B⇒ BT exists trivially, when

1. T = Id: π := idB, or

2. B = Id: π := idT

The properties of distributive laws from Definition 4.1.1 can easily be reduced to the

monad laws in Definition 3.1.1

Example 4.1.3. Let T (−) := {
√
} + Act × (−) be a Set-functor for a fixed set Act. T is the

functor which labels in Act or marks successful termination (
√

). With each of the monads

in Section 3.4 T has a distributive law.

1. π : TP ⇒ PT: πX(
√

) := {
√
}, πX(a,Y ⊆ X) := {(a, x) | x ∈ Y}.

2. π : T (N−)ω ⇒ (N−)ω T: πX(
√

) := η{∗}+Act×X(
√

), and πX(a,m)(a, x) := {(a, x) 7→

m(x), (b, x) 7→ 0, ∗ 7→ 0 | a ∈ Act, b ∈ Act, b , a, x ∈ X}

3. π : TD ⇒ DT: πX(
√

) := η{√}+Act×X(
√

), and πX(a, d) := {(a, x) 7→ d(x), (b, x) 7→

0,
√
7→ 0 | a ∈ Act, b ∈ Act, b , a, x ∈ X} whereD ∈ {D≤1,D=1}

The distributive laws of Example 4.1.3 are easy, because T is defined from coproducts.

In the next section we review the result that distributive laws exist also for functors made

up from binary products given the monad is commutative.

4.1.2 The Existence of Distributive Laws

When B is the powerset monad, the existence of a distributive law with a functor T is

closedly related to the existence of a relation lifting RelT (−) as the following proposition

shows. Jacobs [Jac04] has accredited this result to Power. For the proof we refer to

Jacobs’ paper.

4.1. DISTRIBUTIVE LAWS 39

Proposition 4.1.4. Let T : Set → Set be a functor preserving weak pullbacks, then there

is a distributive law π : TP ⇒ PT defined such that

πX(a) = {b ∈ T X | (a, b) ∈ RelT (∈)} (4.3)

Hasuo, Jacobs and Sokolova [HJS06] have also shown that the previous result gen-

eralises to commutative monads and shapely functors on Set. The latter uniformly cover

many types used in algebraic specification, such as words, streams, trees, graphs, and

lists. For details see also [Jay95].

Definition 4.1.5 (Shapely Functors). Shapely functors on Set are defined inductively as

follows

T ::= Id | Act | T × T |
∐

I

T (4.4)

where Act is the constant functor with value Act and I is a set.

The following is Lemma 2.7 in [HJS06]. The proof is by induction on the structure of

shapely functors. For the details we refer to the original paper.

Proposition 4.1.6. Shapely functors T and commutative monads B have distributive laws.

4.1.3 Some Properties of Distributive Laws

Distributive laws are in general not epic, and thus also not iso. The following lemma

provides an explanation.

Lemma 4.1.7. Distributive laws π : T B ⇒ BT for monads B and functors T are epic,

only if ηT : T ⇒ BT is epic.

Proof. This follows immediately from Axiom 4.2 of the definition of distributive laws.

�

Thus the following is the only monad among the examples we consider, which has an epic

distributive law.

40 CHAPTER 4. DISTRIBUTIVE LAWS AND FUNCTOR LIFTINGS

Example 4.1.8. Where B = Id, the distributive law π : T B⇒ BT for any functor T is idT

and thus iso. Similarly, if T = Id, the distributive law π : T B⇒ BT with any monad B is

idB and thus iso.

Nevertheless, we can find many examples of distributive laws, which are monic.

Example 4.1.9. The following distributive laws are monic.

1. π1+Act×(−)
P

: 1 + Act × P(−)⇒ P(1 + Act × (−)).

2. π1+Act×(−)

(N(−))ω
: 1 + Act ×

(
N(−)

)
ω
⇒

(
N(1+Act×(−))

)
ω

.

3. π1+Act×(−)
D

: 1 + Act ×D(−)⇒ D(1 + Act × (−))

4.2 Kleisli-Lifting of Functors on Set

A Kleisli-lifting of a functor commutes with the free B-algebra functor as in the following

definition.

Definition 4.2.1 (Kleisli-Liftings of a Functor). Let B be a monad and T a functor on Set,

and let F′ : Set → Kl(B) be the free functor into Kl(B). A Kleisli-lifting T of T in Kl(B)

is a functor T making T F′ � F′T commute.

Kleisli-liftings are commonly defined from distributive laws. Both concepts are mu-

tually interdefinable as in the following proposition.

Proposition 4.2.2. The existence of a distributive law π : T B ⇒ BT between a monad

B and a functor T is equivalent to the existence of a functor lifting of T into the Kleisli-

category Kl(B) of B.

Proof. Let π be a distributive law as above, we define the functor lifting T : Kl(B) →

Kl(B)

• on objects F′X of Kl(B) as T F′X := F′T X

• and on morphisms f : F′X → F′Y as T f :=
(
πX ◦ f †

)†1.

1(−)† yields the transpose of morphisms under the adjunction F′ a U′ : Set → Kl(B)

4.2. KLEISLI-LIFTING OF FUNCTORS ON SET 41

Given a Kleisli-lifting T with T F′ = FT , we define π :=
(
T εF

)†
= UT̃ εF ◦ ηT B. It

remains to verify the axioms of distributive laws from Definition 4.1.1. These axioms live

in Set, but we prove their adjoint transposes in B-Alg under the adjunction F a U, using

that the homsets B-Alg(F(−),+) � Set(−,U(+)) are in bijection.

1. We compute the following.

(π ◦ Tη)† = Definition of (−)†

εFT ◦ Fπ ◦ FTη = Definition of π

εFT ◦ FUT̃ εF ◦ FηTUF ◦ FTη = Naturality of η

εFT ◦ FUT̃ εF ◦ FUFTη ◦ FηT = FT = T̃ F

εFT ◦ FUT̃ εF ◦ FUT̃ Fη ◦ FηT = FT = T̃ F

εFT ◦ FηT = (ηT)† Definition of (−)†

2. We compute the following.

42 CHAPTER 4. DISTRIBUTIVE LAWS AND FUNCTOR LIFTINGS

(µT ◦ Bπ ◦ πB)† = Definition of (−)†

εFT ◦ F (µT ◦ Bπ ◦ πB) = Functoriality of F

εFT ◦ FµT ◦ FUFπ ◦ FπUF = Definition of π

εFT ◦ FµT ◦ FUFUT̃ εF ◦ FU
(
FηTUF ◦ T̃ εFUF

)
◦ FηTUFUF =

εFT ◦ FUT̃ εF ◦ FUT̃ εFUF ◦ FηTUFUF = εF ◦ εFUF = Fµ

εFT ◦ FUT̃ εF ◦ FUT̃ Fµ ◦ FηTUFUF = T̃ F = FT

εFT ◦ FUT̃ εF ◦ FUFTµ ◦ FηTUFUF = Naturality of µ

εFT ◦ FUT̃ εF ◦ FηTUF ◦ FTµ = Definition of π

εFT ◦ Fπ ◦ FTµ = (π ◦ Tµ)† Definition of (−)†

�

In conjunction with Proposition 4.1.6, the previous proposition induces the following

corollary. This result is part of the work [HJS06] of Hasuo, Jacobs, and Sokolova.

Corollary 4.2.3. Commutative monads admit the Kleisli-lifting of a shapely functor.

4.3 Continuous Extensions of Kleisli-Lifted Functors

As in Definition 4.2.1 the Kleisli-lifting of a Set-functor T into the Eilenberg-Moore cat-

egory B-Alg of the monad B is a functor T̃ commuting with the free functor F : Set →

B-Alg such that

T̃ F � FT (4.5)

As F = KF′2 and T F′ = F′T , the above can easily seen to be strengthened as

T̃ K = KT (4.6)

2K is the comparison functor Kl(B)→ B-Alg. See also Section VI.3 of [Mac98].

4.3. CONTINUOUS EXTENSIONS OF KLEISLI-LIFTED FUNCTORS 43

The latter characterises T̃ as the left Kan extension of KT along K, where the natural

transformation α : KT ⇒ T̃ K is a natural isomorphism. In the following we define the

aforementioned left Kan extension pointwise.

Every B-algebra A arises from a coequaliser

FUFUA
FUεA //
εFUA

// FUA
εA // // A (4.7)

in particular free B-algebras, A = FX.

FUFUFX
FUεFX //
εFUFX

// FUFX
εFX // // FX (4.8)

Using3 UK = U′ and F = KF′, the above appears equivalent to

KF′U′F′U′F′X
KF′U′εF′X //
KεF′U′F′X

// KF′U′F′X
KεF′X // // KF′X (4.9)

We do not make explicit that by ε in Diagram 4.9 and below we mean the preimage of ε

from Diagram 4.8 under the full and faithful embedding K : Kl(B) → B-Alg. Taking the

image of Diagram 4.9 under T̃ yields

T̃ KF′U′F′U′F′X
T̃ KF′U′εF′X //

T̃ KεF′U′F′X

// T̃ KF′U′F′X
T̃ KεF′X // T̃ KF′X (4.10)

We look for a natural transformation α : KT ⇒ T̃ K. In fact α arises, when we define T̃

as the coequaliser of KT F′U′ε′F′X and KT ε′F′U′F′X.

KT F′U′F′U′F′X
KT F′U′ε′F′X //

KT ε′F′U′F′X

// KT F′U′F′X // // T̃ KF′X (4.11)

The following shows that the above defines T̃ as the pointwise left Kan extension of KT

along K.

Lemma 4.3.1. Defined as above, T̃ A is colim f :KX→AKT X.

3We distinguish F : Set → B-Alg and U : B-Alg→ Set from F′ : Set → Kl(B) and U′ : Kl(B)→ Set.

44 CHAPTER 4. DISTRIBUTIVE LAWS AND FUNCTOR LIFTINGS

Proof. T̃ A has a cocone in the comma category4 (K ↓ A), in particular any object f :

KF′X → A of (K ↓ A) is transposed under F a U to f † : X → UA. KT F′ takes such a

f † to KT F′ f † : KT F′X → KT F′UA, which composes with the coequalising B-algebra

morphism into T̃ A. This yields a component KT F′X → T̃ A of the cocone of A.

For every cocone with object B there is a unique morphisms h : T̃ A → B, because

the component g : KT F′U′F′X of cocone B coequalises KT F′U′ε′F′X and KT ε′F′U′F′X. So

that the existence and uniqueness of h follows from the definition of T̃ A as the coequaliser

object in (4.11). �

Lemma 4.3.2. T̃ K � KT.

Proof. The proof is an immediate consequence of the definition of T̃ . �

Example 4.3.3. The continuous extension of the Kleisli-lifting of T (−) = {
√
} + Act × (−)

for any monad is T̃ (−) = F{
√
} + Act · (−).

4See Definition B.1.18.

Part II

Semantics of Coalgebras with

Branching

45

Chapter 5

Finite Trace Semantics

Finite trace semantics has been extensively studied for nondeterministic [vG90] and prob-

abilistic [Seg95] labelled transition systems, and finds application for instance in the

semantics of automata. In Generic Trace Theory [Jac04, HJS07] Jacobs, Hasuo and

Sokolova have generalised finite trace semantics not only to a coalgebraic [PT99] level of

generality in the transition type, but also to a wide range of branching types subsuming

the two previously mentioned. Their approach had several shortcomings, which we will

outline in Section 5.1. We suggest a slight modification in Sections 5.2 and 5.3, which

allows us to eliminate several assumptions made in [HJS07] and thereby not only further

increase the generality of the definition, but also clarify the construction.

Assumption 5.0.4. In this chapter we assume that

1. B is a monad on Set,

2. T is a functor on Set, and

3. there is a distributive law π : T B⇒ BT.

Henceforth we fix a distributive law π.

47

48 CHAPTER 5. FINITE TRACE SEMANTICS

5.1 A Review of Generic Trace Theory

In Generic Trace Theory [HJS06], finite trace semantics of (B,T)-coalgebras is defined

generically as cocones over the discrete ω-chain sequence |SeqT |
1 for the Kleisli-lifting T

of the functor T in Kl(B).

Hasuo, Jacobs, and Sokolova have shown that the colimit of SeqT coincides with the

limit of the sequence formed by the stepwise projections along the initial sequence for T ,

if the following assumptions are met. The resulting finite trace semantics and finite trace

equivalence are coinductive.

Assumption 5.1.1. 1. The Kleisli-category Kl(B) can be enriched in the category DCPO⊥

of directed complete partial orders ≤ with bottom element ⊥ and continuous mor-

phisms, such that the Kleisli-lifting T of T is a functor enriched in DCPO⊥.

2. Morphism composition is left-strict with respect to ⊥, that is ⊥ ◦ f = ⊥ for all

morphisms f .

Objects of DCPO⊥ are directed complete partial orders with bottom element.

Definition 5.1.2 (Directed Complete Partial Orders). A partial order with bottom element

is a set X augmented with a binary relation ≤⊆ X × X

1. reflexive, such that x ≤ x for all x ∈ X,

2. antisymmetric, such that x = y whenever x ≤ y and y ≤ x,

3. transitive, such that x ≤ z whenever x ≤ y and y ≤ z for any x, y, z ∈ X, and

4. there is a bottom element ⊥ ∈ X with ⊥ ≤ x for all x ∈ X.

A directed set in a partial order 〈X,≤〉 is a set Y ⊂ X, such that

1. Y is non-empty, and

2. for all x, y ∈ Y there is a z ∈ Y with x ≤ z and y ≤ z.

1See Definition B.1.13 for SeqT and Definitions B.1.3 and B.1.11 for discrete diagrams.

5.1. A REVIEW OF GENERIC TRACE THEORY 49

A partial order 〈X,≤〉 is directed complete, if all directed sets Y ⊆ X have a least upper

bound in X with respect to ≤. We denote the least upper bound of Y as
∨

Y.

Directed complete partial orders with bottom element and their morphisms form a cate-

gory.

Definition 5.1.3 (The Category DCPO⊥). The objects of DCPO⊥ are directed complete

partial orders with bottom element, and morphisms between directed complete partial

orders 〈X,≤X,⊥X〉 and 〈Y,≤Y ,⊥Y〉 with bottom elements are functions f : X → Y

1. commuting with the order such that f (x) ≤Y f (x′) whenever x ≤X x′,

2. preserving the bottom element f (⊥X) = ⊥Y , and

3. continuous such that f (
∨

X X′) =
∨

Y f [X′] for all directed sets X′ in 〈X,≤X〉.

Remark 5.1.4. In Remark 3.6 of [HJS06], Jacobs et alii point out that, for their result to

hold, T need not necessarily be continuous, in the sense that T (
∨

Y) need not be
∨

T [Y]

for any directed set Y ⊆ Kl(B)(X,Y) for any pair of objects X,Y in Kl(B).

We give an explicit description of DCPO⊥-enrichments.

Definition 5.1.5 (DCPO⊥-Enrichment of Kl(B)). An enrichment of the Kleisli-category

Kl(B) of a monad B in DCPO⊥ is characterised by the following axioms.

1. For every pair of objects X and Y, the homset Kl(B)(X,Y) is ordered by a directed

complete partial order ≤X,Y . We will write ≤, when X and Y are clear from context.

2. For every pair of objects X and Y, there is a bottom element ⊥ in C(X,Y) with

respect to ≤, such that ⊥ ≤ f for any morphism f ∈ C(X,Y).

3. Composition is left-strict with respect to ≤, that is ⊥ ◦ f = ⊥ for all morphisms f .

4. Composition is monotone with respect to ≤, that is g1 ◦h ≤ g2 ◦h and f ◦g1 ≤ f ◦g2

whenever g1 ≤ g2 for all compatible morphisms f ,g1,g2, and h.

T is DCPO⊥-enriched, if

50 CHAPTER 5. FINITE TRACE SEMANTICS

5. T is monotone with respect to ≤, that is T (g1) ≤ T (g2) whenever g1 ≤ g2

Under these assumptions the following classical result of Smyth and Plotkin [SP82] holds.

For the proof we refer to the original literature.

Theorem 5.1.6. In a category C enriched in DCPO⊥, the ω-colimit of the initial sequence

of an endofunctor T on C coincides with the ω-limit of the sequence formed by the step-

wise projections along the initial sequence of T , given either side exists.

Definition 5.1.7 (Finite Trace Semantics in Generic Trace Theory). In Generic Trace The-

ory, finite trace semantics trω of a (B,T)-coalgebra S = 〈S , σ, sI〉 is defined by inductive

construction of a cone
(
trωn

)
n<ω

trω0 = ⊥Kl(B)(S ,∅) and trωn+1 = Ttrωn ◦ σ (5.1)

as in the following diagram

S σ //
trω0

��
trωn ��

trωn+1 %%

TS
Ttrωn

��

∅ · · · T
n
∅ T

n+1
∅ · · ·

(5.2)

Let (dn)n<ω : SeqT ⇒ colim(SeqT) be the cocone of colim(SeqT) over |SeqT |.

colim(SeqT)

∅

d0
88

· · · T
n
∅

dn

gg

T
n+1
∅

dn+1
kk

· · ·

(5.3)

Composing
(
trωn

)
n<ω with (dn)n<ω componentwise, yields a family of morphisms

(
dn ◦ trωn

)
n<ω :

S → colim(SeqT). By enrichment in DCPO⊥, this family is a directed set in Kl(B)(S , colim(SeqT))

and has thus an upper bound. In Generic Trace Theory, finite trace semantics trω is de-

fined to be this upper bound.

Remark 5.1.8. Because ⊥Kl(B)(S ,∅) is uniquely defined, T
(
trωn

)
n<ω extends uniquely to a

cone, which by definition of
(
trωn

)
n<ω coincides with

(
trωn

)
n<ω.

5.1. A REVIEW OF GENERIC TRACE THEORY 51

Theorem 5.1.6 yields that the isomorphism colim(SeqT) � Tcolim(SeqT) is the final

T-coalgebra taken in the enriched setting and that trω is a T-coalgebra morphism, so that

finite trace semantics is coinductive.

Remark 5.1.9. The definition of finite trace semantics in Generic Trace Theory has sev-

eral drawbacks.

1. The enrichment in DCPO⊥ is not unique, in particular one may define Kl(B) to be

enriched over flat orders, and obtain finite trace semantics.

2. With the exception of trivial orderings, such as the flat ordering, the Kleisli-category

of finitary monads can not be enriched in partial orders directed complete. A com-

mon example is the finitary powerset monad, which as a branching type otherwise

has a well-understood finite trace semantics for many transition types.

The following example emphasises the dependency of finite trace semantics on the choice

of an order enrichment for Kl(B).

Example 5.1.10 (Subset-Ordering on Kl(P)). A natural choice for an ordering on mor-

phisms in Kl(P) is induced by the inclusion-ordering on subsets. Let X and Y be objects in

Kl(P), morphisms f , g : X → Y can be ordered such that f ≤ g if and only if f (x) ⊆ g(x)

for all x ∈ X. We need to verify that the above soundly defines an order enrichment on

Kl(P) as in Definition 5.1.5.

1. In the free algebras of P, ⊆ is a complete partial order.

2. For each pair of objects X and Y, ⊥X,Y(x) := ∅ defines a morphism as ⊥X,Y(x∪ y) =

⊥x ∪ ⊥y = ∅ ∪ ∅ = ∅.

3. For all f : Y → Z, f ◦ ⊥X,Y = ⊥X,Z.

4. For all f : X → Y and g, g′ : Y → Z with g ≤ g′, thus g(y) ⊆ g′(y) for all y ∈ Y, and

in particular for those y in the image of f . Thus for all x ∈ X, g(f (x)) ⊆ g′(f (x))

by functionality of f . For all g : Y → Z and f , f ′ : X → Y with f ≤ f ′, and for all

x ∈ X, f (x) ⊆ f ′(x) and thus g(f (x)) ⊆ g(f ′(x)) by monotonicity of g.

52 CHAPTER 5. FINITE TRACE SEMANTICS

The details of the following example appeared in [Has08].

Example 5.1.11 (Finite Trace Semantics for the Subset Ordering in Kl(P)). Let the branch-

ing type be B = P and the transition type T (−) = {
√
} + Act × (−) with Kl(P) enriched in

the subset ordering. Let S = 〈S , σ〉. For every n ≤ ω, trωn takes a state s ∈ S into the set

of finite traces, that is
√

-terminated Act-words, of depth at most n in σ beginning from s.

That trωn ≤ trωm means that trωn (s) ⊆ trωm(s) for all n ≤ m < ω. The colimit in ≤ then means

the union, so that trω(s) =
⋃

n<ω trωn (s).

Definitions analogous to the subset ordering yield natural order enrichments for Kleisli-

categories of the following monads.

Example 5.1.12. Common to the following examples is that the order on morphisms is

inherited from their codomain. Thus it suffices to describe the ordering on objects of the

Kleisli-category, which are the free algebras of the branching type.

1. For the Bag-monad
(
N(−)

)
ω

and a set X, let m, n ∈
(
NX

)
ω

. Then m ≤ n if and only if

m(x) ≤ n(x) for all x ∈ X.

2. Let D, E ∈ FX be sub-distributions over X, then D ≤ E if and only if D(x) ≤ D(x)

for all x ∈ X.

Remark 5.1.13. For many relevant monads B, we can not find such an ordering on objects

of Kl(B). Among these monads are the strict distribution monad D=1 and the identity

monad Id.

Example 5.1.14 (Finite Trace Semantics for Flat Orders on Kl(P)). An alternative to the

natural ordering above is an enrichment in flat orders, such that precisely ⊥X,Y ≤ f and

f ≤ f for all f : X → Y, where ⊥ is defined as for the natural order: ⊥X,Y(x) := ∅. The

following Hasse diagram depicts an example of a flat order.

f
��

f ′
��

f ′′
��

· · ·

⊥

gg OO 77

YY

(5.4)

5.2. NON-COINDUCTIVE FINITE TRACE SEMANTICS IN KLEISLI CATEGORIES53

1. Flat orders are directed complete partial orders.

2. Define ⊥ as above.

3. For all f : Y → Z, ⊥Y,Z ◦ f = ⊥X,Z, from which the following follows.

4. For all f : Y → Z and g, g′ : Y → Z with g ≤ g′, then either g = g′ from which

g ◦ f = g′ ◦ f follows trivially, or g = ⊥, so that g ◦ f = ⊥ and thus g ◦ f ≤ g′ ◦ f .

For all g : Y → Z and f , f ′ : X → Y with f ≤ f ′, either f = f ′, so that f ◦g = f ′◦g

and thus f ◦ g ≤ f ′ ◦ g, or f = ⊥Y,Z, so that ⊥Y,Z ◦ g = ⊥X,Z and thus f ◦ g ≤ f ′ ◦ g.

In our example let ⊥X,Y be the adjoint transpose of the function taking every element of X

into ∅ ∈ PY under F a U. The stepwise embedding of the cone trω yield a flat order as in

the following Hasse diagram.

⊥ = trω0
��

trω1
��

trω2
��

· · ·

⊥ = trω0

ii OO 66

TT

(5.5)

The colimit of trω is easily seen to be trωm for some m < ω, such that trωn = ⊥ for all

n < m, and trωn = trωm for all n ≥ m. Because trωn+1 := Ttrωn ◦ σ
†, trωn = ⊥ for all n < ω.

5.2 Non-Coinductive Finite Trace Semantics in Kleisli Cat-

egories

In this chapter we remove several assumptions from the definition of finite trace semantics

in Generic Trace Theory, and thereby loose the coinductive nature of finite trace semantics

and finite trace equivalence.

Remark 5.2.1. Our definition of finite trace semantics has several advantages over the

one in Generic Trace Theory, as it is

1. well-defined for finitary branching types, such as finitary non-determinism, and

54 CHAPTER 5. FINITE TRACE SEMANTICS

2. uniquely defined, that is independent from a choice of ordering.

Assumption 5.2.2. We assume that

1. B∅ is not empty, anid

2. there is for each set X a map ιX : X → B∅ factoring through the final object map

such that ιX = ι{∗}◦!X.

X
ιX //

!X

B∅

{∗}

ι{∗}

== (5.6)

3. There is a distributive law π : T B⇒ BT.

By the axiom of choice we may choose a candidate for ι{∗}, so that 2 implies 3. Henceforth

we fix a distributive law π.

Remark 5.2.3. The details of 2. of Assumption 5.2.2 replace the assumption in Generic

Trace Theory, that ιX† : FX → F∅ is the bottom element in the Kl(B)(FX, F∅).

Many relevant branching and transition types satisfy the above assumptions, as the fol-

lowing examples show.

Example 5.2.4. The following monads satisfy 1 and 2 of Assumption 5.2.2.

1. P satisfies the above conditions, as P∅ = {∅} and ιX : x 7→ ∅ for all x ∈ X, and for

a similar argument Pω, too.

2.
(
N(−)

)
ω

satisfies the above conditions, as
(
N∅

)
ω

= {∅̇} and ιX : x 7→ ∅̇ for all x ∈ X,

where ∅̇ denotes the empty multiset.

3. D≤1 satisfies the above conditions, as D≤1∅ = {∅} and ιX : x 7→ {∅} for all x ∈ X,

where ∅ is the empty distribution.

Proof. It remains to verify 2 of Assumption 5.2.2 for the examples above.

1. If X = ∅, ιX and !X are empty functions, so that Diagram 5.6 commutes trivially.

Otherwise, ιX(x) = ∅ = ι{∗}(∗) = ι{∗}!X(x) for all x ∈ X. The same argument is sound

for Pω.

5.2. NON-COINDUCTIVE FINITE TRACE SEMANTICS IN KLEISLI CATEGORIES55

2. The same argument applies to
(
N(−)

)
ω

. If X = ∅, ιX and !X are empty functions, and

Diagram 5.6 commutes. Otherwise, ιX(x) = ∅̇ = ι{∗}(∗) = ι{∗}!X(x) for all x ∈ X.

3. The same argument applies toD=1 as well. If X = ∅, ιX and !X are empty functions,

and Diagram 5.6 commutes. Otherwise, ιX(x) = ∅ = ι{∗}(∗) = ι{∗}!X(x) for all x ∈ X.

�

Example 5.2.5. Monads B with B∅ = ∅ do not satisfy 1 of Assumption 5.2.2. These

include Id andD=1.

Finite trace semantics is defined as a cocone over |SeqT | inductively from the morphism

ι†S : FS → F∅, the transpose of ιS under F a U. Henceforth we denote 0 := F∅.

Definition 5.2.6 (Finite Trace Semantics). The finite trace semantics of a (B,T)-coalgebra

S = 〈S , σ〉 is a cocone (trωn : S → T
n
0)n<ω inductively defined as

trω0 = ιS and trωn+1 := Ttrωn ◦ σ
† (5.7)

for all n < ω as in the following diagram

FS σ† //
trω0

��
trωn ��

trωn+1 &&

T FS
Ttrωn

��

0 · · · T
n
0 T

n+1
0 · · ·

(5.8)

Example 5.2.7. Consider the following example of a (B,T)-coalgebra S = 〈S , σ〉 with

the branching type B =
(
N(−)

)
ω

and the transition type T (−) = {
√
} + Act · (−).

x

1·a

�� 2·a
** y

3·b

jj
1·
√

// (5.9)

We compute the finite traces of x and y for a successively increasing depth as follows.

1. tr∞0 (x) = 0 and tr∞0 (y) = 0

2. tr∞1 (x) = 1 · a(tr∞0 (x)) + 2 · a(tr∞0 (y)) = 1 · a(0) + 2 · a(0) = 0 + 0 = 0 and tr∞1 (y) =

1 ·
√

+ 3 · b(tr∞0 (x)) = 1 ·
√

+ 3 · b(0) = 1 ·
√

56 CHAPTER 5. FINITE TRACE SEMANTICS

3. tr∞2 (x) = 1 · a(tr∞1 (x)) + 2 · a(tr∞1 (y)) = 1 · a(0) + 2 · a(1 ·
√

) = (2 ∗ 1) · a
√

= 2 · a
√

tr∞2 (y) and tr∞n for n > 2 can be computed similarly.

Finite trace semantics does in general not commute with the morphisms
(
T

n
¡T0

)
ω

of

SeqT , because T
n
¡T0 embeds traces of depth up to n into the set of potential traces of depth

up to n + 1.

Taking ιT∅ along BT n yields a sequence of morphisms (BT nιT∅ : BT n+1∅ → BT n∅)n<ω.

These morphisms are the stepwise projections of the morphisms
(
BT n¡BT∅

)
n<ω along USeqT .

Then we see that trω† commutes with the stepwise projections of the morphisms along

USeqT . The following proposition is based on 2 of Assumption 5.2.2.

Proposition 5.2.8. BT nιT∅ ◦ trωn+1
† = trωn

† commutes for all n < ω.

Proof. We prove the proposition by induction on n.

Because {∗} is final, !BT∅ ◦ trω1
† =!S commutes. By 2. of Assumption 5.2.2, ι{∗}◦!S =

trω0
† and ι{∗}◦!BT∅ = ιBT∅ commute, so that ιBT∅ ◦ trω1

† = trω0
† and ιBT∅

† ◦ trω1 = trω0 commute.

S σ //

!S

trω1
†

""
trω0
†

��

BTS
µT∅◦Bπ∅◦BTtrω0
��

B∅ BT∅ιBT∅
oo

!BT∅rr{∗}

ι{∗}

==

(5.10)

The induction step consists in the following chain of implications

trωn
† = BT nιT∅ ◦ trωn+1

† =⇒ 1.

µT n+1∅ ◦ BπT n∅ ◦ BTtrωn
† = µT n+1∅ ◦ BπT n∅ ◦ BT BT nιT∅ ◦ BTtrωn+1

† =⇒ 2.

µT n+1∅ ◦ BπT n∅ ◦ BTtrωn
† = BT n+1ιT∅ ◦ µT n+2∅ ◦ BπT n+1∅ ◦ BTtrωn+1

† =⇒ 3.

trωn+1
† = BT n+1ιT∅ ◦ trωn+2

†

by

5.2. NON-COINDUCTIVE FINITE TRACE SEMANTICS IN KLEISLI CATEGORIES57

1. functoriality of BT ,

2. naturality of µ and π, and

3. definition of trω,

respectively. �

Definition 5.2.9 (Finite Trace Equivalence). Let S = 〈S , σ〉 be a (B,T)-coalgebra. Finite

trace semantics trω for S induces an equivalence relation ∼trω⊆ S × S with

s ∼trω s′ if and only if ∀n < ω.trωn (s) =n trωn (s′) (5.11)

for all s, s′ ∈ S , where the equality =n is taken in the free B-algebra FT n∅. We call ∼trω

the finite trace equivalence over S induced by trω.

Remark 5.2.10. The statement of Definition 5.2.9 is equivalent to saying that finite trace

equivalence is the kernel ker trω of finite trace semantics trω.

In order to be able to use Definition C.0.23 of T -bisimilarity as the largest T -bisimulation,

we need to add the following assumption.

Assumption 5.2.11. We assume that T preserves weak pullbacks.

Proposition 5.2.12. In any (B,T)-coalgebra, BT-bisimilar states are finite trace equiva-

lent.

Proof. Recall from Lemma C.0.26 that BT -bisimilarity is contained in the kernel of the

cone f : S ⇒ SeqBT . We show that the adjoint transpose of trω : S ⇒ SeqT̃ under F a U

factors through f via a natural transformation g : SeqBT ⇒ BSeqT defined inductively as

g0 := ι{∗} and gn+1 := µT n+10 ◦ BπT n0 ◦ BTgn (5.12)

for all n < ω. It remains to show that
(
trωn

)†
= gn ◦ fn commutes for all n. In the base

case, n = 0, ι{∗}◦!S = ιS commutes by Assumption 5.2.2. The induction step consists in

58 CHAPTER 5. FINITE TRACE SEMANTICS

the following chain of implications.

(
trωn

)†
= gn ◦ fn =⇒ by functoriality of BT

µ ◦ π ◦ BT
(
trωn

)†
◦ σ = µ ◦ π ◦ BTgn ◦ BT fn ◦ σ =⇒ by definition of trω(

trωn+1
)†

= gn+1 ◦ fn+1

�

5.3 Finite Trace Semantics in Eilenberg-Moore Categories

In this section we mainly show that finite trace semantics for a branching type B defined

in the Kleisli-category Kl(B) embeds into the Eilenberg-Moore category B-Alg. In Chap-

ter 8 we consider finite trace semantics in Eilenberg-Moore categories, only. In Proposi-

tion 5.3.3 we recover finite trace semantics as a final coalgebra coalgebra semantics in the

case where the final T̃ -sequence has a limit after ω steps. Then finite trace semantics and

the induced finite trace equivalence are coinductive as under the limit-colimit coincidence

assumed in Generic Trace Theory [HJS07]. In this section we make the same assumptions

as in the previous one.

Assumption 5.3.1. We assume that

1. B∅ is not empty, and

2. there is for each set X a map ιX : X → B∅ factoring through the final object map

such that ιY = ι{∗}◦!Y .

X
ιX //

!X

B∅

{∗}

ι{∗}

== (5.13)

3. There is a distributive law π : T B⇒ BT.

Henceforth we fix a distributive law π.

5.3. FINITE TRACE SEMANTICS IN EILENBERG-MOORE CATEGORIES 59

Remark 5.3.2. The definition of finite trace semantics is embedded along K : Kl(B) →

B-Alg in B-Alg, since

1. K preserves the initial object, and

2. K preserves the initial sequence because KT = T̃ K commutes.

As B-Alg is complete, the final object 1 exists. In fact 1 is defined to be the B-algebra

〈{∗}, !B{∗}〉. From 1 we obtain the ωop-chain SeqT̃ inductively as in Equation (1.9). We

show that finite trace semantics trω commutes with SeqT̃ .

Proposition 5.3.3. For all n < ω, T̃ n!0 ◦ Ktrωn = T̃ n!T̃1 ◦ T̃ n+1!0 ◦ Ktrωn+1.

Proof. We prove the proposition by induction over n. In the base case n = 0, !T̃1 ◦ T̃ !0 ◦

tr1 =!0 ◦ trω0 by finality of 1. The induction step follows from the following chain of

implications.

T̃ n!T̃1 ◦ T̃ n+1!0 ◦ trn+1 = T̃ n!0 ◦ trn =⇒ by functoriality of T̃

T̃ n+1!T̃1 ◦ T̃ n+2!0 ◦ T̃ trn+1 ◦ σ = T̃ n+1!0 ◦ T̃ trn ◦ σ =⇒ by definition of trω

T̃ n+1!T̃1 ◦ T̃ n+2!0 ◦ trn+2 = T̃ n+1!0 ◦ T̃ trωn+1

�

Remark 5.3.4. If the limit lim(SeqT̃) exists, lim(SeqT̃) = T̃ lim(SeqT̃) are isomorphic,

and the isomorphism forms the final T̃ -coalgebra. Then there is a unique T̃ -coalgebra

morphism h : FS → lim(SeqT̃). If SeqT̃ terminates after ω steps, trω = h coincide, and

finite trace semantics and finite trace equivalence are coinductive.

60 CHAPTER 5. FINITE TRACE SEMANTICS

Chapter 6

Infinite Trace Semantics

In Chapter 5 we have defined finite trace semantics for (B,T)-coalgebras, which, infor-

mally speaking, assigns to each state of such a coalgebra a B-algebra term of its finite

traces. In this chapter we define infinite trace semantics for (B,T)-coalgebras which as-

signs to each state a B-algebra term of its infinite traces.

We will see that the acceptance behaviour of nondeterministic coalgebra automata

A = 〈Q, θ, qI ,Ω〉 forms an infinite trace semantics of the underlying transition structure

〈Q, θ, qI〉 conceived as a (P,T)-coalgebra parameterised in the priority function Ω. Con-

sequently, infinite trace semantics is not uniquely defined.

Our approach to infinite trace semantics differs from the “possibly infinite traces”

of Cirstea [C1̂0]. “Possibly infinite traces” are defined based on Assumptions 5.1.1 of

Generic Trace Theory, and the following.

• B is an affine monad [Jac94], so that that B{∗} = {∗} are isomorphic.

• T preserves the limit of SeqT , so that the final T -coalgebra exists.

Under these assumptions the assignment of “possibly infinite traces” to states in (B,T)-

coalgebras is coinductive and unique, unlike our definition of infinite trace semantics.

In Section 6.1 we begin with an inductively defined infinite trace semantics in the style

of Böhm trees [Bar81, Abr90], which is not necessarily coinductive. Then we characterise

the codomain of generic infinite trace semantics and obtain a coinductively defined infinite

trace semantics, which subsumes not only the generic infinite trace semantics, but also

61

62 CHAPTER 6. INFINITE TRACE SEMANTICS

the infinite trace semantics of Jacobs [Jac04] and the acceptance behaviour of coalgebra

automata.

Assumption 6.0.5. In this chapter we assume that

1. B is a monad on Set, and

2. T is a functor on Set, such that

3. there is a distributive law π : T B⇒ BT.

Henceforth we fix a distributive law π.

For later use in this Chapter, we define the following.

Definition 6.0.6. Let S = 〈S , σ〉 be a (B,T)-coalgebra, and let µ : BB ⇒ B be the

multiplication of B and π : T B ⇒ BT a distributive law for T and B, then we define for

all n < ω

• σn : S → (BT)nS such that σ0 := id and σn+1 := (BT)nσ ◦ σn,

• πn : T nB⇒ BT n such that π0 : idB and πn+1 := πT n ◦ Tπn,

• τn : (BT)n ⇒ BT n such that τ0 := η and τn+1 := µT n+1 ◦ BπT n ◦ (BT)τn, and

• µn : Bn ⇒ B such that µ0 := η and µn+1 = µ ◦ Bµn.

6.1 Generic Infinite Trace Semantics

We define generic infinite trace semantics tr∞ inductively over the depth of horizon, such

that tr∞n describes the prefixes of infinite traces up to depth n. Informally, prefixes are

traces terminated by ∗, which stands for unknown behaviour. At depth 0, tr∞0 assigns to

each state the unknown behaviour ∗.

Definition 6.1.1 (Generic Infinite Trace Semantics). Let S = 〈S , σ〉 be a (B,T)-coalgebra.

We define the generic infinite trace semantics of S to be the cone tr∞ : FS ⇒ |FSeqT |,

where F : Set → B-Alg is the free functor into B-Alg, SeqT is the final T-sequence

6.1. GENERIC INFINITE TRACE SEMANTICS 63

as in Definition B.1.14, and |SeqT | is the discrete version of SeqT . Then tr∞ is defined

inductively such that

tr∞0 := F!S and tr∞n+1 := Ttr∞n ◦ σ
† (6.1)

as in the following diagram.

FS σ† //
tr∞0

��

tr∞n
��
tr∞n+1

%%

T FS Ttr∞n

��

F{∗} · · · T
n
F{∗} T

n+1
F{∗} · · ·

(6.2)

Remark 6.1.2. In general tr∞ does not commute with the morphisms in FSeqT , intuitively,

because σ† appends to the front of traces, whereas FT n!T {∗} forgets at the end of trace

prefixes. However, tr∞ commutes laxly with the morphisms in FSeqT up to a relation,

which expresses that taking a step along σ† we can not forget within the current horizon.

We will introduce the relation as a span in the next section.

Before we abstract from tr∞, we consider an example of the generic infinite trace

semantics of a (B,T)-coalgebra, which we have computed the finite trace semantics for in

Example 5.2.7.

Example 6.1.3. Consider the following example of a (B,T)-coalgebra S = 〈S , σ〉 with

the branching type B =
(
N(−)

)
ω

and the transition type T (−) = {
√
} + Act · (−).

x

1·a

�� 2·a
** y

3·b

jj
1·
√

// (6.3)

We compute the infinite traces of x and y for a successively increasing depth as follows.

1. tr∞0 (x) = ∗ and tr∞0 (y) = ∗

2. tr∞1 (x) = 1 · a(tr∞0 (x)) + 2 · a(tr∞0 (y)) = 1 · a(∗) + 2 · a(∗) = 3 · a(∗) and

tr∞1 (y) = 1 ·
√

+ 3 · b(tr∞0 (x)) = 1 ·
√

+ 3 · b(∗).

3. tr∞2 (x) = 1 · a(tr∞1 (x)) + 2 · a(tr∞1 (y)) = 1 · a(3 · a(∗)) + 2 · a(1 ·
√

+ 3 · b(∗)) =

(1 ∗ 3) · aa(∗) + (2 ∗ 1)a
√

+ (2 ∗ 3) · ab(∗) = 3 · aa(∗) + 2 · a
√

+ 6 · ab(∗).

64 CHAPTER 6. INFINITE TRACE SEMANTICS

tr∞2 (y) and tr∞n for n > 2 can be computed analogously.

6.1.1 Change of Perspective

As infinite trace semantics captures forgetting at the end, we will have to shift perspective

in our definition of generic infinite trace semantics to identify it as a special case of infinite

trace semantics as in Theorem 6.2.5. This shift in perspective consists in unravelling

Definition 6.1.1 as follows.

S σ //

(tr∞0)†

��

· · · // (BT)nS
(BT)nσ //

(BT)n(tr∞0)†

��

(BT)nBTS //

(BT)nBT (tr∞0)†

��

· · ·

B{∗}

µ{∗}◦Bπ0
{∗}
◦τ0

B{∗}
��

(BT)nB{∗}

µTn{∗}◦Bπn
{∗}
◦τn

B{∗}
��

(BT)nBT B{∗}

µTn+1{∗}◦Bπ
n+1
{∗}
◦τn+1

B{∗}
��

B{∗} BT n{∗} BT n+1{∗}

(6.4)

Lemma 6.1.4. For all n < ω, (tr∞n)† = µT n1 ◦ Bπn
1 ◦ τ

n
B{∗} ◦ (BT)n(tr∞0)† ◦ σn.

Proof. By definition of tr∞, (πn)n<ω, (τn)n<ω, and (σn)n<ω. �

6.1.2 Generic Infinite Trace Equivalence

Generic infinite trace semantics induces the following equivalence, identifying states with

the same infinite traces.

Definition 6.1.5 (Generic Infinite Trace Equivalence). Let S = 〈S , σ〉 be a (B,T)-coalgebra

and tr∞ : FS ⇒ |FSeqT | the infinite trace semantics of S. We then define the generic infi-

nite trace equivalence ∼tr∞ in S as ∼tr∞:= ker tr∞.

In order to show that generic infinite trace equivalence contains T -bisimilarity as the

largest T -bisimulation as in Definition C.0.23, we need to add the following assumption.

Assumption 6.1.6. We assume that T preserves weak pullbacks.

Proposition 6.1.7. BT-bisimilar states are generic infinite trace equivalent.

6.2. PLAUSIBLE CONTINUATIONS IN INFINITE TRACES 65

Proof. Let S = 〈S , σ〉 be a (B,T)-coalgebra and let tr∞ : FS ⇒ |FSeqT | be the generic

infinite trace semantics of S. We show by induction of the trace depth that the cone

f : S ⇒ SeqBT of Definition 1.5.1 factors tr∞, such that tr∞n
† = τn

{∗}
◦ fn for all n < ω as

follows.

S σ //
(tr∞0)†

��

(tr∞n)†

��

f0

��

fn

��

BTS
(Ttr∞n)

†

!!

BT fn

��

B{∗} BT n{∗} BT n+1{∗}

{∗}

τ0
{∗}

OO

· · ·oo (BT)n{∗}

τn
{∗}

OO

oo (BT)n+1{∗}

τn+1
{∗}

OO

BT n!T {∗}

oo

(6.5)

In the induction base, n = 0, we obtain (tr∞0)† = τ0
{∗}
◦ f0 by definition of tr∞. The induction

step consists in the following chain of implications.

(tr∞n)† = τn
{∗} ◦ fn =⇒

µT n+1{∗} ◦ BπT n{∗} ◦ BT (tr∞n)† ◦ γ = µT n+1{∗} ◦ BπT n{∗} ◦ BT
(
τn
{∗} ◦ fn

)
◦ γ ⇐⇒

(tr∞n+1)† = τn+1
{∗} ◦ fn+1

where the second step follows from the definition of tr∞, τ, and f . �

6.2 Plausible Continuations in Infinite Traces

In Remark 6.1.2 we argued that infinite trace semantics does not commute with FSeqT ,

that is tr∞n = T F!T {∗} ◦ tr∞n+1 does not hold in general for all n < ω. In this section we

define for each n a relation ≤n on Nat(S , FSeqT) such that tr∞n ≤n T F!T {∗} ◦ tr∞n+1 induced

by a span on BT n{∗} defined as follows.

66 CHAPTER 6. INFINITE TRACE SEMANTICS

Definition 6.2.1. For each n < ω, we define the following span.

BT nBT {∗}

BT n!BT {∗}

��

Bπn
T {∗} // BBT nT {∗}

µTnT {∗} // BT nT {∗}

BT n!T {∗}

��
BT n{∗} ≤n BT n{∗}

(6.6)

Example 6.2.2. In tr∞2 (x) of Example 6.1.3 we find the following example of a span for

n = 1.

2 · a(3 · b(∗))_

BT !BT {∗}

��

� Bπ1
T {∗} // (2 ∗ 3) · ab(∗)) � µT2{∗} // 6ab∗_

BT !T {∗}

��
2a∗ ≤1 6a∗

(6.7)

We show that (≤n)n<ω defines a categorical enrichment of BSeqT [ω], that is the image1 of

BSeqT , in preorders2. The enrichment of BSeqT induces an enrichment of Nat(S , FSeqT)

by composition with the morphisms in BSeqT .

Proposition 6.2.3. For each n < ω, ≤n is a preorder and thus a category.

1. Reflexivity If B and T preserve epis, for all φ ∈ BT n{∗}, φ ≤n φ.

2. Transitivity For each n < ω and φ, ψ, ξ ∈ BT n{∗}, whenever φ ≤n ψ and ψ ≤n ξ,

then φ ≤n ξ.

Moreover, morphism composition commutes with (≤n)n<ω, proving (≤n)n<ω a categorical

enrichment of BSeqT .

3. Monotonicity (≤n)n<ω is left and right monotone with respect to morphism compo-

sition

Proof. 1. For each φ ∈ BT n{∗}, we need a ψ ∈ BT nBT {∗} such that φ = BT n!T {∗} ◦µT nT {∗} ◦

Bπn
T {∗}(ψ) and φ = BT n!BT {∗}(ψ). Since !T {∗} is surjective and, by the assumption, also its

lifting BT !T {∗}, there is a φ′ ∈ BT nT {∗} such that φ = BT n!T {∗}(φ′). Put ψ := BT nηT {∗}(φ′).

Since !T {∗} =!BT {∗} ◦ ηT {∗} commutes due to the finality of {∗} in Set, BT n!BT {∗}(ψ) = φ.

Moreover φ′ = µT nT {∗} ◦ Bπn
T {∗}. Hence ψ witnesses φ ≤n φ.

1See Definition B.1.12.
2Preorders are categories as in Example B.1.2.

6.2. PLAUSIBLE CONTINUATIONS IN INFINITE TRACES 67

2. Transitivity of ≤n can be shown by multiplying the second B of BT nBT {∗} in φ ≤n ψ

and the second B of BT nBT {∗} in ψ ≤n ξ. The following diagram clarifies what we mean.

BT nBBT {∗}
Bπn

BT {∗} //

BT nµT {∗}

��

BBT nBT {∗}
µTnBT {∗}

((
BT nBT {∗}

µTnT {∗}◦Bπn
T {∗}//

BT n!BT {∗}

��

BT nT {∗}

BT n!T {∗}

��

BT nBT {∗}
µTnT {∗}◦Bπn

Tn{∗}//

BT n!BT {∗}

��

BT nT {∗}

BT n!T {∗}

��
ϕ ∈ BT n{∗} ψ ∈ BT n{∗} ψ ∈ BT n{∗} ξ ∈ BT n{∗}

(6.8)

The upper row composes to (µT nT {∗} ◦ Bπn
T {∗}) ◦ BT nµT {∗}, which is equivalent to the

commutativity of the following diagram.

BT nBBT {∗}
Bπn

BT {∗} //

BT nµT {∗}

��

BBT nBT {∗}
µTnBT {∗} // BT nBT {∗}

Bπn
T {∗} // BBT nT {∗}

µTnT {∗}

��
BT nBT {∗}

Bπn
T {∗} // BBT nT {∗}

µTnT {∗} // BT nT {∗}

(6.9)

Proving the commutativity of the diagram boils down to a combinatorial argument on

the definition of πn, using the naturality of π and µ.

3. Composing with BT n!T {∗} preserves ≤, that is for all n < ω and φ, ψ ∈ BT n+1{∗}, if

φ ≤n+1 ψ, then BT n!T {∗}(φ) ≤n BT n!T {∗}(ψ). The following diagram depicts the monotonic-

ity property.

BT nT BT {∗}
Bπn+1

T {∗} //

BT nT !BT {∗}

��

BBT nT {∗}
µTnT {∗} // BT nTT {∗}

BT nT !T {∗}

��
BT nT {∗}

BT n!T {∗}

��

≤n+1 BT nT {∗}

BT n!T {∗}

��
BT n{∗} ≤n BT n{∗}

(6.10)

Intuitively, we obtain the witness for ≤n by taking the branching of the second B in

BT nBT {∗} on step to the front. We then obtain the span as depicted in the following

diagram.

68 CHAPTER 6. INFINITE TRACE SEMANTICS

BT nT BT {∗}

Bπn+1
T {∗}

,,

BT nπT {∗}

//

BT nT !BT {∗}

��

BT nBTT {∗}
πn
//

BT nBT !T {∗}

��

BBT nTT {∗} µTnT {∗}
//

BBT nT !T {∗}

��

BT nTT {∗}

BT nT !T {∗}

��
BT nT {∗}

BT n!T {∗} ((

BT nBT {∗}
Bπn

T {∗}

//

BT n!BT {∗}

��

BBT nT {∗} µTnT {∗}
// BT nT {∗}

BT n!T {∗}

��
BT n{∗} ≤n BT n{∗}

(6.11)

The pentagram on the left commutes because {∗} is the final object in Set, the triangle on

top by definition of πn+1, and both squares by naturality of πn and µ. �

Definition 6.2.4. A cone tr : FS ⇒ FSeqT is an infinite trace semantics if

1. tr is stable under T , that is trn+1 = Ttrn ◦ σ
†, and

2. tr is increasing, that is trn ≤n F!T {∗}trn+1 for all φ ∈ FS .

Theorem 6.2.5. Generic infinite trace semantics is an infinite trace semantics.

Proof. We verify the properties of infinite trace semantics for tr∞.

1. That tr∞ is stable under T is part of the definition of tr∞.

2. tr∞ is increasing with respect to ≤.

(BT)nS
(BT)nσ//

τn
S
��

(BT)nBTS
τn

BTS
��

BT nS
BT nσ

//

BT n(tr∞0)†

��

BT nBTS

BT nBT (tr∞0)†

��
BT nB{∗}

µTn{∗}◦Bπn
{∗}

��

BT nBBT {∗}
BT nB!BT {∗}

oo

µTnBT {∗}◦Bπn
BT {∗}

��
BT n{∗} BT nBT {∗}

BT n!BT {∗}

oo

Bπn
T {∗}

��≤
n BBT nT {∗}

µTnT {∗}

��
BT n{∗} BT nT {∗}

BT n!T {∗}

oo

(6.12)

All squares from the top commute in order

6.3. INFINITE TRACE SEMANTICS OF COALGEBRA AUTOMATA 69

(a) by naturality of τ,

(b) by finality of {∗}, and

(c) by naturality of µ and πn.

According to Lemma 6.1.4 the left side of Diagram 6.12 defines tr∞n . It remains to

verify that the right hand side composes to tr∞n+1.

µT n+1{∗} ◦ Bπn
T {∗} ◦ µT nBT {∗} ◦ Bπn

BT {∗} ◦ BT nBT (tr∞0)† ◦ τn
BTS = naturality of π and µ

µT n+1{∗} ◦ Bπn+1
{∗} ◦ BT n+1(tr∞0)† ◦ µT n+1S ◦ Bπn

TS ◦ τ
n
BTS = definition of (τn)n<ω

µT n+1{∗} ◦ Bπn+1
{∗} ◦ BT n+1(tr∞0)† ◦ τn+1

BTS

�

Remark 6.2.6. In Proposition 6.1.7 we have shown that bisimilar states are generically

infinite trace equivalent. This result does not generalise to infinite trace semantics. As a

technical reason we see that at depth 0 we may assign to bisimilar states different elements

of B{∗}.

6.3 Infinite Trace Semantics of Coalgebra Automata

In this section we revisit coalgebra automata [Ven04] from a purely coalgebraic perspec-

tive. We argue that nondeterministic T -coalgebra automata A = 〈Q, θ, qI ,Ω〉 are given by

their transition function θ, which is a pointed (P,T)-coalgebra 〈Q, θ, qI〉, and by their ac-

ceptance condition, which determines an infinite trace semantics of 〈Q, θ〉. In Chapter 10

we give a more detailed account of coalgebra automata.

Recall from the introduction, Section 1.3, that coalgebra automata are structures A =

〈Q, θ, qI ,Ω〉, where θ : Q → PT Q is the transition function of A. Ω assigns to each state

q ∈ Q a rank Ω(q) ∈ N. The semantics of such a coalgebra automaton A in a pointed T -

coalgebra S = 〈S , σ, sI〉 is given in terms of a two-player parity graph game G(A,S), the

70 CHAPTER 6. INFINITE TRACE SEMANTICS

acceptance game of A and S. The priority function Ω determines the outcome of infinite

plays.

In the original definition of coalgebra automata, acceptance is defined from the initial

states qI and sI of A and S as above. We may abstract from the initial states and say that

A accepts the state s ∈ S of S from a state q ∈ Q if 〈Q, θ, q,Ω〉 accepts 〈S , σ, s〉. The set

of such pairs (q, s) equals the winning region Win∃ of ∃ in the acceptance game G(A,S).

The latter gives rise to our coalgebraic definition of acceptance behaviour.

Definition 6.3.1 (Acceptance Behaviour). Let A = 〈Q, θ, qI ,Ω〉 be a nondeterministic T-

coalgebra automaton and let S = 〈S , σ, sI〉 be a pointed T-coalgebra, we define AccΩ
S :=

Q × S ∩Win∃(G(A,S)).

In this section we show that every T -coalgebra and every priority function Ω deter-

mines an infinite trace semantics of the (P,T)-coalgebra 〈Q, θ, qI〉 underlying A.

Lemma 6.3.2. For all T -coalgebra automata A = 〈Q, θ, qI ,Ω〉 and T-coalgebras S =

〈S , σ, sI〉, AccΩ
S is a coalgebra morphism from 〈Q, θ〉 → 〈S , σ〉, that is the following

commutes.

Q θ //

AccΩ
S
��

PT Q

PTAccΩ
S

��
PS

Pσ
// PTS PPTSµTS

oo PTPS
PπS

oo

(6.13)

Proof. A coalgebra S = 〈S , σ, s〉 is accepted by A = 〈Q, θ, q,Ω〉, that is s ∈ AccΩ
S (q), if

and only if ∃ has a winning in G(S,A) from (q, s). She can choose an element a ∈ θ(q)

and a set Z ⊆ Q × S with (a, σ(s)) ∈ RelT (Z), such that every element (q′, s′) ∈ Z is a

winning position for ∃, s′ ∈ AccΩ
S (q′). �

Theorem 6.3.3. The acceptance behaviour of a T-coalgebra automaton defines an infinite

trace semantics.

We prove the following more general Theorem subsuming Theorems 6.4.3 and 6.3.3.

Theorem 6.3.4. Let S = 〈S , σ〉 be a (B,T)-coalgebra and let S′ = 〈S ′, σ′〉 be a T-

coalgebra, such that h : σ† → (ηTS ′ ◦ σ
′)† is a T-coalgebra morphism in Kl(T), then

h† : S → BS ′ defines an infinite trace semantics tr.

6.3. INFINITE TRACE SEMANTICS OF COALGEBRA AUTOMATA 71

Proof. We argue that tr defined by its adjoint transpose (tr)† by

(tr0)† := B!S ′ ◦ h† and (trn+1)† := BT n+1!S ′ ◦ µT n+1S ′ ◦ BπT n ◦ BTtrn ◦ σ (6.14)

is an infinite trace semantics for θ. The above definition is inductive in the sense, that it

appends to the front. Since infinite trace semantics is defined by forgetting at the end, we

need to change perspective, and show that the above satisfies

(trn)† = BT n!S ′ ◦ µT nS ′ ◦ Bπn
S ′ ◦ τ

n
BS ′ ◦ (BT)nh† ◦ σn (6.15)

for all n < ω.

1. That tr is stable under T , so that (trn+1)† = µT n+1∅ ◦ BπT n∅ ◦ BT (trn)† ◦ σ commutes,

follows from the naturality of µ and π

2. The increasing sequence property follows from the commutativity of the four rect-

angles on the right in the diagram below for all n < ω.

S σ //

h†

��

· · · // (BT)nS
(BT)nσ //

(BT)nh†

��

(BT)n+1S

(BT)n+1h†
��

(BT)nBS ′

µTnS ′◦Bπn
S ′◦τ

n
BS ′

��

(BT)n+1BS ′

µTn+1S ′◦Bπ
n+1
S ′ ◦τ

n+1
BS ′

��

BT nT BS ′

BT nπS ′

��
BS ′ Bσ′ //

B!S ′

��

· · · // BT nS ′ BT nσ′ //

BT n!S ′

��

BT n+1S ′

BT n+1!S ′
��

BT nBTS ′
µTn+1S ′◦Bπ

n
TS ′

oo

BT nBT !S ′

��
B{∗} · · ·

!T {∗}

oo BT n{∗}oo BT n+1{∗}
BT n!T {∗}

oo BT nBT {∗}
µTn+11◦Bπ

n
T {∗}

oo

(6.16)

where

• the right top square commutes by definition of σn,

• the right bottom square commutes by naturality of µ and π

• the left bottom square commutes by Lemma C.0.26, and

72 CHAPTER 6. INFINITE TRACE SEMANTICS

• the left top square commutes by Lemma 6.3.2 as in Diagram 6.17 below.

The following diagram commutes.

(BT)nS
(BT)nσ //

(BT)nh†

��

(BT)nBTS

(PT)nBTh†

��
(BT)nBS ′

(BT)nBσ′
//

τn

��

(BT)nBTS ′

τn

��

(BT)nBBTS ′
(BT)nµTS ′
oo (BT)nBT BS ′

(BT)nBπS ′
oo

τn+1
BS ′

��

BT nBS ′ BT nBσ′ //

Bπn
S ′

��

BT nBTS ′

Bπn
TS ′

��
BBT nS ′

BBT nσ′
//

µTnS ′

��

BBT nTS ′

µTn+1S ′

��

BT n+1BS ′
Bπn+1

S ′

oo

BT nS ′
BT nσ′

// BT nTS ′

(6.17)

• The top rectangle commutes by Lemma 6.3.2;

• the three left squares commute by naturality of σ, µ, and π, respectively; and

• the bottom right rectangle commutes by definition of τ.

�

6.4 Jacob’s Infinite Trace Semantics

Jacobs [Jac04] defined infinite trace semantics for (P,T)-coalgebras S = 〈S , σ〉. where

T admits a final coalgebra Z = 〈Z, ξ〉. The final T -coalgebra contains all T -behaviours.

Jacob’s infinite trace semantics Tr of S is a relation Tr ⊆ S × Z, such that Tr[σ(s)] ⊆

ξ[Tr[s]] commutes. Such a relation is not unique. In Jacob’s infinite trace semantics we

choose the largest such relation Tr, which is bound to exist by the Knaster-Tarski theorem.

Definition 6.4.1 (Jacob’s Infinite Trace Semantics). Let S = 〈S , σ〉 be a (P,T)-coalgebra

for a transition type T admitting a final T-coalgebra Z = 〈Z, ξ〉. Jacob’s infinite trace

semantics is a relation Tr ⊆ S ×Z with the transpose Tr† : S → PZ, making the following

diagram commute.

6.4. JACOB’S INFINITE TRACE SEMANTICS 73

S σ //

Tr†
��

PTS

PTTr†
��

PZ
Pξ
// PTZ PPTZµTZ

oo PTPZ
PπZ

oo

(6.18)

Remark 6.4.2. That Diagram 6.18 commutes, means that Tr is a T-coalgebra morphism

σ† → (ηTZ ◦ ξ)†.

The following theorem is an instance of Theorem 6.3.4.

Theorem 6.4.3. Jacob’s infinite trace semantics is an infinite trace semantics in the sense

of Definition 6.2.4.

74 CHAPTER 6. INFINITE TRACE SEMANTICS

Part III

Coalgebraic Logics

75

Chapter 7

The Complementation Lemma for

Finitary Coalgebraic Logic

In this chapter we define the Boolean dual of ∇, the modality in Moss’ coalgebraic logic,

and thereby show that Moss’ coalgebraic logics is essentially negation free. ∇ furthermore

plays a role in the definition of coalgebra automata, so that the complementation lemma

for finitary coalgebraic logics in this chapter contributes to the complementation lemma

for coalgebra automata in Chapter 10.

This chapter is joint work of the author with Venema published in [KV09].

Notation 7.0.4. In this chapter we adopt the notational convention of [KKV08]. L de-

notes the set of formulas in the finitary coalgebraic logic under discourse.

a, b, . . . ∈ L α, β, . . . ∈ TωL

φ, ψ, . . . ∈ PωL Φ,Ψ, . . . ∈ TωPωL

A, B, . . . ∈ PωTω

Table 7.1: Notational Convention for Coalgebraic Logic

Assumption 7.0.5. Towards finitariness and completeness of coalgebraic logics, and to-

wards stability of its semantics we make the following assumptions.

1. T : Set → Set restricts to finite sets,

2. is standard 1, and
1See Section B.4.1 for detailed treatment of standardness for weak-pullback preserving functors in Set.

77

78CHAPTER 7. THE COMPLEMENTATION LEMMA FOR FINITARY COALGEBRAIC LOGIC

3. preserves weak pullbacks.

7.1 Preliminaries

Firstly we recall Moss’ coalgebraic logics from [Mos99]. Coalgebraic logics are parame-

terised in a functor T .

Definition 7.1.1 (Syntax of Coalgebraic Logic). Formulas a of a coalgebraic logic L are

defined by the following grammer.

a ::= > | ⊥ | ¬a | a ∧ a | a ∨ a | ∇a (7.1)

Definition 7.1.2 (Semantics of Coalgebraic Logic). The semantics of a formula a of coal-

gebraic logic in a T-coalgebra S = 〈S , σ〉 is given in terms of
, for which we read

S, s
 a as point s in S satisfies a.
 is inductively defined as follows.

1. S, s
 >

2. S, s 1 ⊥

3. S, s
 a ∧ b if and only if S, s
 a and S, s
 b

4. S, s
 a ∨ b if and only if S, s
 a or S, s
 b

5. S, s
 ∇α if and only if (σ(s), α) ∈ RelT (
)

When the modelling coalgebra is clear from the context, we omit of S.

Notation 7.1.3. We furthermore use the following abbreviations for T-coalgebras S =

〈S , σ〉 and formulas a and b of L.

1. ~a�S := {s ∈ S | S, s
 a}

2. a � b if and only if ~a�S ⊆ ~b�S

7.2. A REVIEW OF THE COMPLETENESS OF FINITARY COALGEBRAIC LOGIC79

{b1 � b2 | (b1, b2) ∈ Z}
{∇α � ∇β | (α, β) ∈ RelT (Z)} ∇1

{∇(T
∧

)Φ ≤ a | Φ ∈ SRD(A)}∧
{∇α | α ∈ A} � a ∇2

∇α � a | (α,Φ) ∈ RelT (∈)
∇(T

∨
)Φ � a ∇3

{a ∧ ∇α′ � ⊥ | α′ ∈ Tω(φ), α′ , α} > �
∨
φ

a � ∇α ∇4

Figure 7.1: Axiom System M for Finitary Coalgebraic Logics

7.2 A Review of the Completeness of Finitary Coalge-

braic Logic

When the models of a logic L admit complementation, negation is definable in L if the

axiomatisation of L is complete. In [KKV08] Kupke, Kurz, and Venema have shown an

axiomatisation of finitary coalgebraic logic, and have proved it complete. We review parts

of this result in this section, as it is relevant for the dualisation of ∇ and the complemen-

tation of coalgebra automata in Chapter 10.

Theorem 7.2.1. The axioms ∇(1−4) 2 as in Figure 7.2 soundly and completely axiomatise

finitary coalgebraic logics, that is

`M a � b ⇐⇒ a |= b (7.2)

for all formulas a, b ∈ L.

A stronger property than ∇3 tells us that disjunctions distribute over ∇ as in the fol-

lowing lemma. This result will play a role in Section 10.3.2.

Lemma 7.2.2.

∇
(
T
∨)

Φ ≡
∨
{∇α | (α,Φ) ∈ RelT (∈)} . (7.3)

for all Φ ∈ TPωQ and α ∈ T Q.
2See Definition B.4.17 for SRD.

80CHAPTER 7. THE COMPLEMENTATION LEMMA FOR FINITARY COALGEBRAIC LOGIC

Proof. We prove the lemma in two steps.

1. � is an instance of ∇3 for a =
∨
{∇α | (α,Φ) ∈ RelT (∈)}. ∇α �

∨
{∇α | (α,Φ) ∈

RelT (∈) for any (α,Φ) ∈ RelT (∈) is a fact of propositional logic.

2. It is a fact of propositional logic that ∈; Gr (
∨

) ⊆�. Because we assume T to be

standard, RelT (∈; Gr (
∨

)) ⊆ RelT (�) by 3. of Lemma B.4.12. Since (α,Φ) ∈

RelT (∈), (α, (T
∨

)Φ) ∈ RelT (∈; Gr (
∨

)) ⊆ RelT (�).

�

7.3 One-Step Semantics of Coalgebraic Logic

Many constructions in coalgebraic logic can be carried out in a one-step manner. We

introduce one-step syntax and semantics for coalgebraic logic. Therefore we need to

parameterise coalgebraic logic in a finite set Q of propositional variables.

Definition 7.3.1. Given a Set-functor T , we define the functor T∇.

T∇Q := {∇α | α ∈ T Q} (7.4)

Definition 7.3.2 (Depth One Formulas). Given a finite set Q of propositional variables

we define the set Lat1Q of depth one formulas over Q as Lat1Q := LatT∇LatQ.

We can define the one-step semantics of coalgebraic logics relative to a valuation of Q in

the modelling coalgebra.

Definition 7.3.3. Let V : Q → P(X) be a valuation of Q in a T-coalgebra 〈S , σ〉, we

define
V
0⊆ S × LatQ and
V

1⊆ TS × Lat1Q, as follows. For
V
0 , we define s
V

0 q if

s ∈ V(q), s
V
0

∧
τ (

∨
τ, respectively) if s
V

0 a for all a ∈ τ (some a ∈ τ, respectively);

and we define a relation
V
1 such that σ
V

1 ∇α if (σ, α) ∈ RelT

(

V

0

)
, while for

∧
and

∨
the same clauses apply as for
V

0 .

7.4. COMPLEMENTATION LEMMA 81

Notation 7.3.4. We abbreviate

~a�V := {s ∈ S | s
V
1 a} (7.5)

and for clarity of notation we write V, s
0 a instead of s
V
0 a, and V, s
1 a instead of

s
V
1 a.

7.4 Complementation Lemma

Finally, we can define the Boolean dual ∆ of ∇. By Boolean dual we mean the following.

Definition 7.4.1 (Boolean Duals of Depth One Formulas). Let a and b be depth one

formulas over a finite set Q, we say a is the Boolean dual of b if for any valuation V :

Q→ PS and its complement Vc, ~a�V is the set-complement of ~b�Vc
in S .

The idea underlying the following definition is of Venema. Alessandra Palmigiano and

an anonymous referee of [KV09] suggested a simplification, which lead to the following

definition.

Definition 7.4.2 (Boolean Dual of ∇). For each finite set Q of propositional variables,

and each α ∈ TωQ, we define the set D(α) ⊆ TωPQ as follows.

D(α) :=
{
Φ ∈ TωPωBase(α) | (α,Φ) < (RelT (<))

}
(7.6)

Define ∆α to abbreviate the following formula in Lat1.

∆α :=
∨{
∇

(
T
∧)

(Φ) | Φ ∈ D(α)
}
. (7.7)

Here we see the connective
∧

as a map
∧

: PωQ→ Q, so that T
∧

: TωPωQ→ TωQ.

Recall the definition of the set Lat1Q of depth one formulas over a set Q, to be the set

LatT∇LatQ. If we want to admit depth one formulas with ∆, the Boolean dual of ∇, we

need to consider the following.

82CHAPTER 7. THE COMPLEMENTATION LEMMA FOR FINITARY COALGEBRAIC LOGIC

Theorem 7.4.3. For all α, ∆α and ∇α are Boolean duals.

Proof. Fix an arbitrary set S , an arbitrary Q-valuation V in S , and an arbitrary element σ

of TS .

First assume that V, σ
1 ∆α, that is, V, σ
1 ∇(T
∧

)Φ for some Φ ∈ D(α). Then there

is some relation Y ⊆ P(Q×S) such that Y ⊆
(

V

0

)
˘; Gr (

∧
) and (Φ, σ) ∈ RelT (Y). In order

to show that Vc, σ 6
1 ∇α, suppose for contradiction that there is some relation Z such that

(σ, α) ∈ RelT (Z) and Vc, t
0 q for all pairs (t, q) ∈ Z. It follows that (σ, α) ∈ RelT (Z) and

Z ∩
V
0 = ∅.

Now consider the relation R := Z; Y ⊆ PQ × Q, then clearly (Φ, α) ∈ RelT (R) =

RelT (Z) ; RelT (Y). On the other hand, it follows from the definition of R that R ⊆ =,

because for any (φ, q) ∈ R there is an s ∈ S such that (i) (φ, s) ∈ Y implying V, s
0 p for

all p ∈ φ, and (ii) (s, q) ∈ Z meaning that V, s 6
0 q. But this gives the desired contradiction

since Φ ∈ D(α).

Conversely, assume that Vc, σ 6
1 ∇α. In order to show that V, σ
1 ∆α we need

to find some Φ ∈ D(α) such that V, σ
1 ∇(T
∧

)(Φ). For this purpose, define a map

φ : S → PBase(α) by putting, for any s ∈ S , φs := {q ∈ Base(α) | V, s
0 q}.

We claim that Φ := Tφ(σ) has the required properties. First of all, it follows by

construction that Gr (
∧
◦φ) ⊆
V

0 , so that Gr (T
∧

) ; Gr (Tφ) ⊆ RelT

(

V

0

)
. From this it is

immediate that V, σ
1 ∇T
∧

(Φ). It remains to show that Φ ∈ D(α). For that purpose,

consider the relation Z := =; Gr (φ) ⊆ S × Q. It is easily verified that Vc, s
0 q for

all (s, q) ∈ Z. Hence, we may derive from the assumption Vc, σ 6
1 ∇α that (σ, α) <

RelT (Z) = RelT (=) ; Gr (Tφ). But then it follows from (σ,Φ) ∈ Gr (Tφ) that (Φ, α) <

(RelT (=)), as required. �

Definition 7.4.4 (The Base Dualisation Map). Given a set Q we define the base dualisation

map δ0 : LatQ→ LatQ and the one-step dualisation map δ1 : Lat1Q→ Lat1Q as follows:

δ0(q) := q

δ0(
∧
φ) :=

∨
δ0[φ]

δ0(
∨
φ) :=

∧
δ0[φ]

δ1(∇α) := ∆(Tδ0)α

δ1(
∧
φ) :=

∨
δ1[φ]

δ1(
∨
φ) :=

∧
δ1[φ]

(7.8)

7.4. COMPLEMENTATION LEMMA 83

Example 7.4.5. With T = P and α = {q1 ∨ q2, q3 ∧ q4}, we may calculate that

δ1(∇α) = ∆{q1 ∧ q2, q3 ∨ q4}

= ∇∅ ∨ ∇{q1 ∧ q2} ∨ ∇{q3 ∨ q4} ∨ ∇{(q1 ∧ q2) ∧ (q3 ∨ q4),>}.

The following is a corollary of the one-step complementation lemma. For the sake of

completeness of our argument we carry out the proof.

Corollary 7.4.6. For any set Q of propositional variables and any a ∈ Lat1Q, the formu-

las a and δ1(a) are Boolean duals.

The corollary depends on the following easy lemma.

Lemma 7.4.7. For any lattice term a ∈ LatQ, a and δ0(a) are Boolean duals.

Proof. For any pointed T -coalgebra (S , σ, s) and valuation V : Q→ PS we show that (*)

V, σ
0 a if and only if Vc, σ 6
0 δ0(a) by induction on a.

1. If a is an element of Q, it is δ0(a) = a. As the point s is either in V(a) or Vc(a) but

not both, the property (*) holds.

2. Let φ ⊆ω Q and suppose that (*) holds for every formula b ∈ φ. If a =
∧
φ, then

δ0(a) =
∨

(Pωδ0)φ. Then V, σ
0 a if and only if V, σ
0 b for all b ∈ φ, if and

only if Vc, σ 6
0 δ0(b) for all b ∈ φ, if and only if Vc, σ 6
0
∨

(Pωδ0)φ, if and only if

Vc, σ 6
0 δ0(a).

3. Through a symmetric argument, we obtain for a =
∨
φ, that V, σ
0 a if and only if

V, σ
0 b for some b ∈ φ, if and only if Vc, σ 6
0 δ0(b) for some b ∈ φ, if and only if

Vc, σ 6
0
∧
δ0[φ], if and only if Vc, σ 6
0 δ0(a).

�

Proof of Corollary 7.4.6. For the following argument fix a depth one formula a ∈ Lat1Q.

Then a and δ1(a) are Boolean duals if for any T -coalgebra (S , σ) and valuation V : Q →

PS , V, σ
1 a if and only if Vc, σ 6
1 δ1(a).

In Theorem 7.4.3 set LatQ for Q. Every valuation V : Q→ PS extends uniquely to a

valuation V : LatQ→ PS such that

84CHAPTER 7. THE COMPLEMENTATION LEMMA FOR FINITARY COALGEBRAIC LOGIC

1. V(q) := V(q) for all q ∈ Q, and

2. V(a ∨ b) := V(a) ∪ V(b) and

3. V(a ∧ b) := V(a) ∩ V(b) for all a, b ∈ LatQ

For V , Lemma 7.4.7 means that the following are equivalent

s ∈ V(a) ⇐⇒

V, σ
0 a ⇐⇒

Vc, σ 6
0 δ0(a) ⇐⇒

s < Vcδ0(a) ⇐⇒

Then using Theorem 7.4.3, we obtain the following chain of implications.

V , σ
1 ∇α ⇐⇒(
V
)c
, σ 6
1 ∆α =⇒

V, σ
1 ∇α ⇐⇒

Vc, σ 6
1 ∆(T δ0)α

In the remainder of the argument, we extend the previous over the lattice operators.

V, σ
1 φ ∨ ψ ⇐⇒

V, σ
1 φ or V, σ
1 ψ ⇐⇒

Vc, σ 6
1 δ1φ or Vc, σ 6
1 δ1ψ ⇐⇒

Vc, σ 6
1 δ1φ ∧ δ1ψ

7.4. COMPLEMENTATION LEMMA 85

and

V, σ
1 φ ∧ ψ ⇐⇒

V, σ
1 φ and V, σ
1 ψ ⇐⇒

Vc, σ 6
1 δ1φ and Vc, σ 6
1 δ1ψ ⇐⇒

Vc, σ 6
1 δ1φ ∨ δ1ψ

�

86CHAPTER 7. THE COMPLEMENTATION LEMMA FOR FINITARY COALGEBRAIC LOGIC

Chapter 8

Finitary Coalgebraic Logics for Finite

Traces

In Chapter 5 we have given a definition of finite trace semantics, and have shown that

finite trace semantics induces a notion of finite trace equivalence. In this chapter we

define logics to describe states in coalgebras with branching up to finite trace equivalence

in the style of Moss coalgebraic logics [Mos99].

Recall, that Moss’ coalgebraic logics for T -coalgebras in Set consists of

1. a dual adjunction 2(−) a Uf between Set and CABA, the category of complete atomic

Boolean algebras, consisting of the contravariant powerset functor 2(−) : Set →

CABA taking a set X to the set 2X underlying the free Boolean algebra generated

from X, and of the functor Uf : CABA → Set taking Boolean algebras A to the set

Uf A of ultrafilters over A, and

2. a logic functor L on CABA with a denotation δ : L2(−) ⇒ 2T (−) defining respectively

the syntax and semantics of the operator ∇.

3. Given the above ingredients, Moss coalgebraic logics is the initial L-algebra1 in

CABA and its semantics in a T -coalgebra 〈S , σ〉 is the initial L-algebra map into the

L-algebra 2σ ◦ δ : L2S → 2S .

1See also Proposition 5 in [KKV08].

87

88 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

Moss’ Coalgebraic Logic Finite Trace Logics
Base Category, Semantics Set B-Alg
Base Category, Logics CABA B-Alg
Dual Adjunction 2(−) a Uf [−,Ω] a [−,Ω]
Functor, Semantics T T̃
Functor, Logics L L
Denotation L2(−) ⇒ 2T (−) L[−,Ω]⇒ [T̃ (−),Ω]

Table 8.1: Comparison of Moss’ Coalgebraic Logics and Finite Trace Logics

We define finite trace logics analogously. However, the Eilenberg-Moore category B-Alg

takes the role of the base category on the semantical and the logical side, and the Kleisli-

lifted functor T̃ takes the role of T above.

1. The dual adjunction [−,Ω] a [−,Ω] on the Eilenberg-Moore category B-Alg of the

branching type B generated from an ambimorphic object Ω takes the role of the

dual adjunction 2(−) a Uf in the definition of Moss’ coalgebraic logics.

2. The logic functor L on B-Alg comes with a denotation δ : L[−,Ω]⇒ [T̃ (−),Ω].

3. Finite trace logics is then the initial L-algebra and its semantics in a (B,T)-coalgebra

〈S , σ〉 is the initial L-algebra morphism into the L-algebra [σ†,Ω] ◦ δ : L[S ,Ω] →

[S ,Ω] where σ† : FS → T̃ FS is the adjoint transpose of σ under F a U.

Table 8.1 summarises the analogy between finite trace logics and Moss’ coalgebraic log-

ics.

The idea underlying the definition of finite trace logics was suggested by Bart Jacobs.

The approach lead to the definition of finite trace logics for semiring monads using a

Morita-type dual adjunction between categories of semimodules. Alexander Kurz sug-

gested to abstract from categories of semimodules to symmetric monoidal closed cate-

gories, which underlie the definition of finite trace logics in this chapter.

Assumption 8.0.8. In this chapter we assume that

1. the branching type B is a commutative finitary monad on Set, and

2. the transition type T is a finitary functor on Set, such that

8.1. DUAL ADJUNCTIONS FROM AMBIMORPHIC OBJECTS 89

3. finite trace semantics is definable for (B,T)-coalgebras as in Chapter 5.

Finite trace logics are parameterised in a dual adjunction on the Eilenberg-Moore

category of the branching type, a logic functor and its denotation. The logics then arise as

the initial algebra for the logic functor, its semantics by the logic functors denotation. In

this section we will construct these ingredients.

8.1 Dual Adjunctions from Ambimorphic Objects

Definition 8.1.1 (Ambimorphic Objects). An object Ω of a category C is said to be ambi-

morphic, if for all objects X of C, C(X,Ω) is an object of C.

In the situation of Definition 8.1.1 X 7→ C(X,Ω) defines a contravariant functor on C,

which we denote as [−,Ω]. Moreover, [−,Ω] forms a dual adjunction on C.

Proposition 8.1.2. Let C be a symmetric monoidal closed category and Ω an ambimor-

phic object in C, then [−,Ω] a [−,Ω].

Proof. C(X, [Y,Ω]) = C(Y, [X,Ω]) are isomorphic natural in X and Y , since C(X, [Y,Ω]) =

C(X ⊗ Y,Ω) = C(Y ⊗ X,Ω) = C(Y, [X,Ω]). �

Remark 8.1.3. As the adjunction [−,Ω] a [−,Ω] is dual, the unit υ : Id ⇒ [[−,Ω],Ω]

plays the role of the counit as well.

The above proposition is applicable to our argument if B is commutative. In this case

the Eilenberg-Moore category for B over Set is symmetric monoidal closed, which is an

instance of the following theorem proved by Kock [Koc70].

Theorem 8.1.4. The category of Eilenberg-Moore algebras for a commutative monad

over a symmetric monoidal closed category is symmetric monoidal closed.

Towards expressivity of finitary trace logics, we assume Ω to be a coseparator. In Chap-

ter VI of [Joh86] discusses the coseparator condition in greater generality and detail.

Definition 8.1.5 (Coseparators). A coseparator in a category C is an object Ω of C, such

that for any pair of morphisms f , g : X → Y in C with f , g, there is a morphism

h : Y → Ω, such that h ◦ f , h ◦ g

90 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

We use the following property of coseparators in the Eilenberg-Moore category B-Alg of

B over Set.

Lemma 8.1.6. An ambimorphic object Ω in B-Alg is a coseparator if and only if the unit

υ : (−)→ [[−,Ω],Ω] of the dual adjunction [−,Ω] a [−,Ω] is monic.

Proof. Let Ω be a coseparator. Two distinct points a, b in a B-algebra A can be separated

by functions f , g : {∗} → UA. Their adjoint transposes are B-algebra homomorphisms

f †, g† : F{∗} → A with f , g and in particular f ∗ , g∗. By the coseparator condition

there is a morphism m : A → Ω such that m ◦ f † , m ◦ g† and thus m(a) = m ◦ f †(∗) ,

m ◦ g†(∗) = m(b), so that υ is monic.

Suppose υ is monic. Let f , g : A → A′ be B-algebra morphisms such that f , g.

Then there is an element a ∈ UA such that f (a) , g(a). Because υ is monic, there is a

morphisms m : A′ → Ω such that m(f (a)) , m(g(a)) and thus m ◦ f , m ◦ g. �

The coseparator condition is not too restrictive for our purposes.

Example 8.1.7. For the branching types P,
(
N(−)

)
ω

andD≤1, F{>} is a coseparator.

Assumption 8.1.8. Below we assume the following

1. B is a commutative monad on Set, so that B-Alg is symmetric monoidal closed and

all objects of B-Alg are ambimorphic, and

2. there is a coseparator Ω in B-Alg.

We leave the question open which monads B admit a coseparating ambimorphic object in

B-Alg.

Remark 8.1.9. In most cases F{>} is a suitable coseparating ambimorphic object, be-

cause

1. F{>} exists uniformly for all branching types,

2. is a coseparator in most cases we consider, and

3. can be understood in terms of the operations and equations presenting B.

8.2. THE LOGIC FUNCTOR 91

The dual adjunction defined above is a dual equivalence only if the ambimorphic object

or the branching type are trivial. We leave the following remark without proof.

Remark 8.1.10. The dual adjunction induced by an ambimorphic object as above is not

a dual equivalence in many relevant cases, such as for the Eilenberg-Moore categories of

the monads in Section 3.4.

Notation 8.1.11. Henceforth in this chapter we abbreviate [−,Ω] by Q.

8.2 The Logic Functor

If the dual adjunction Q a Q is a dual equivalence, the logic functor is the dual of the

functor T̃ with LQ � QT̃ . However, since the dual adjunction in many cases is not a

dual equivalence, the logic functor is weakly dual, that is up to a natural transformation

δ : LQ⇒ QT̃ (−), which we call the denotation of L.

Definition 8.2.1 (Logic Functors). Let B be a branching type, T a transition type and let

T̃ : B-Alg → B-Alg be the continuous extension of T as in Section 4.3. We call a functor

L : B-Alg → B-Alg a logic functor for B and T if L comes with a natural transformation

δ : LQ⇒ QT̃ , the denotation of L.

For most B and T , L is not unique, and neither is the assignment of the denotation.

However, we can find a canonically defined logic functor, the free one.

Example 8.2.2 (Free Logic Functors). The functor L := QT̃ Q has a denotation δ : LQ⇒

QT̃ defined on objects X as δX := QT̃υX : QT̃ QQ ⇒ QT̃ where υ : Id ⇒ QQ is the unit

of the dual adjunction Q a Q.

Although, the free logic functor exists and is easily computed, it is unsuitable for our

definition of trace logics, as it not finitary for almost all B and T and hence likely does

not admit an initial algebra.

92 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

8.3 Finite Trace Logics as the Initial Algebra of the Logic

Functor

We define finite trace logics as the initial algebra for the logic functor L. Its semantics is

determined by the initial L-algebra morphism and the denotation δ which gives a seman-

tics to the modalities.

Definition 8.3.1 (Finite Trace Logics). Let B, T , and T̃ as above, L a logic functor and

δ : LQ ⇒ QT̃ a denotation of L. We define finite trace logics as the initial L-algebra in

B-Alg

LB,T,L,δ : LI → I (8.1)

The semantics ~−�S of finite trace logics is defined in the lifting σ† : FS → T̃ FS of a

(B,T)-coalgebra S = 〈S , σ〉 by the initial L-algebra morphism as follows.

LQFS
δFS // QT̃ FS

Qσ† // QFS

LI

L~−�S

OO

LB,T,L,δ

// I

~−�S

OO (8.2)

Notation 8.3.2. • For any φ ∈ I and s ∈ S , we denote φ
S s to mean s ∈ ~φ�S.

• When B, T , L, and δ are clear from the context, we omit the subscripts and denote

finite trace logic LB,T,L,δ by L.

The initial L-algebra L : LI → I does not exist in general, but whenever L is finitary,

then I is the colimit of the ω-chain SeqL
2, and L is the isomorphism LI → I. Let c :

I ⇒ SeqL denote the colimiting cocone of I over SeqL. The following is the standard

construction of the initial algebra of a functor and can be found in [AK79].

Lemma 8.3.3. For finitary L, the colimit I of SeqL exists and L : LI → I is an isomor-

2See Definition B.1.13.

8.3. FINITE TRACE LOGICS AS THE INITIAL ALGEBRA OF THE LOGIC FUNCTOR93

phism as in the following diagram.

I LILoo

0

c0

77

// · · · // Ln0

cn

hh

Ln¡L0

// Ln+10

cn+1

ll

// · · ·

(8.3)

Proof. Finitary L preserve finitary filtered diagrams. SeqL is finitary and filtered, so that

colim(LSeqL) = Lcolim(SeqL). Finally, since 0 is initial, Lc extends uniquely to a cocone

c′ over SeqL, such that c′ = c. �

Note that c satisfies cn+1 = L ◦ cn. We obtain the semantics of finite trace logics in a

(B,T)-coalgebra S = 〈S , σ〉 as follows. Similarly to I, I has a cocone d over SeqL, defined

explicitly as follows.

• d0 := ¡QFS

• dn+1 := σ† ◦ δFS ◦ Ldn

QFX LQFX
σ†◦δFXoo

0

d0

99

// · · · // Ln0

dn

hh

Ln¡L0

// Ln+10

Ldn
gg

dn+1

ll

// · · ·

(8.4)

Definition 8.3.4. We define a natural transformation e : SeqL ⇒ QSeqT̃ inductively as

e0 := ¡Q0 and en+1 := δLn0 ◦ Len (8.5)

Lemma 8.3.5. The cocone d factors through Qtrω, such that dn = Qtrωn ◦ en for all n < ω.

Proof. We prove the lemma by induction on n. For n = 0, d0 = Qtrω0 ◦ e0 because 0 is the

94 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

initial object in B-Alg. From dn = Qtrωn ◦ en we obtain the following chain of equations.

Qσ† ◦ δFS ◦ Ldn =

Qσ† ◦ δFS ◦ LQtrωn ◦ Len =

Qσ† ◦ QT̃ trωn ◦ δT̃ n0 ◦ Len =

Q(trω)n+1 ◦ en+1

�

The semantics ~−�S ofL in a modelling coalgebra S = 〈S , σ〉 coincides with the universal

morphism of the colimit I = colim(SeqL) as in the following diagram.

colimSeqL
~−�S // QFS

SeqL

c

KS

e
+3 Q|SeqT̃ |

trω

KS (8.6)

8.4 Examples of Finite Trace Logics

In this section we instantiate finite trace logics for common examples of branching types,

to show that the abstract categorical definitions yield concrete axiomatisations. The tran-

sition type is uniformly the labelling functor T = {
√
} + Act · (−) for a finite set Act of

labels. T is special as it is made up from colimits. Such functors have a straightforward

Kleisli-lifting and admit a straightforward definition of a logic functor, as Q preserves

colimits dually as limits. We emphasise that the definition of finite trace logics is not lim-

ited to functors built from colimits. We restrict ourselves to T , as T is the most common

example studied in classical trace theory [DR95] and yields an easy presentation.

8.4.1 An Example of a Logic Functor

For functors T̃ built from colimits we can find a logic functor easily, because Q preserves

colimits as limits. In our examples, we put Ω := F{∗} in Q := [−,Ω]. Let T be defined as

8.4. EXAMPLES OF FINITE TRACE LOGICS 95

follows.

T (−) := {
√
} + Act · (−) (8.7)

Recall that the Kleisli-lifting of T in B-Alg is the functor.

T̃ (−) = F{
√
} + Act · (−) (8.8)

For T̃ we obtain the logic functor

L(−) := QF{
√
} × (−)Act (8.9)

with the denotation δ : LQ⇒ QT̃ generated from

m ∈ QF{
√
} 7→ m and (a, φ) ∈ Act · A 7→ {a 7→ φ} ∈ AAct (8.10)

where {a 7→ φ} our short-hand notation for a function, which is zero everywhere but φ at

a. Below we will see, what zero means in concrete instantiations of B.

Remark 8.4.1. As defined in (8.9), L is finitary.

8.4.2 Deterministic Streams

The branching type of deterministic streams is the identity monad Id. Recall that the

Eilenberg-Moore algebras of Id are sets.

Definition 8.4.2 (Finite Trace Logics for Deterministic Streams). Formulas of finite trace

logics for deterministic streams are of the following form.

φ := φ ∧ φ | φ ∨ φ | > | ⊥ |
√
| 〈a〉φ (8.11)

Finite trace logics for deterministic streams satisfy the following axioms.

1. Unit-Element: > ∧ φ = φ and ⊥ ∨ φ = φ

2. Absorption: > ∨ φ = > and ⊥ ∧ φ = >

96 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

3. Idempotency: φ ∨ φ = φ and φ ∧ φ = φ

4. Associativity: φ ∨ (φ′ ∨ φ′′) = (φ ∨ φ′) ∨ φ′′ and φ ∧ (φ′ ∧ φ′′) = (φ ∧ φ′) ∧ φ′′

5. Commutativity: φ ∨ φ′ = φ′ ∨ φ′ and φ ∧ φ′ = φ′ ∧ φ′

6. Distributivity: φ∨(φ′∧φ′′) = (φ∧φ′)∨(φ∧φ′′) and φ∧(φ′∨φ′′) = (φ∨φ′)∧(φ∨φ′′)

for any formulas φ, φ′, φ′′.

8.4.3 Finitarily Nondeterministic Streams

The branching type for finitary nondeterminism is the finitary powerset monadPω. Recall

that the Eilenberg-Moore algebras of Pω are (join) semi-lattices.

Definition 8.4.3 (Trace Logics for Nondeterministic Streams). Formulas φ of finite trace

logics are are of the form

φ ::= > | φ ∨ φ | > | 〈a〉φ (8.12)

Trace logics for nondeterminism satisfies the following axioms of semi-lattices

1. Bottom-Element ⊥: x ∨ ⊥ = ⊥

2. Idempotency: x ∨ x = x

3. Commutativity: x ∨ y = y ∨ x

4. Associativity: x ∨ (y ∨ z) = (x ∨ y) ∨ z

and the following axiom of compatibility with the transition structure

5. 〈a〉(φ ∨ φ′) = 〈a〉φ ∨ 〈a〉φ′

8.4.4 Streams with Finitary Graded Branching

The bag monad (N−)ω is the type of finitary graded branching. Its Eilenberg-Moore alge-

bras are semimodules in the semiring 〈N,+, ∗, 0, 1〉 of natural numbers.

8.4. EXAMPLES OF FINITE TRACE LOGICS 97

Definition 8.4.4 (Finite Trace Logics for Streams with Graded Branching). Formulas of

finite trace logics for streams with graded branching are of the form

φ ::= 0 | φ ⊕ φ | n · φ |
√
| 〈a〉φ (8.13)

where n ∈ N and a ∈ Act.

Finite trace logics for streams with graded branching satisfy the following axioms of

the N-semiring 〈N,+, ∗, 0, 1〉 for any formulas φ, φ′, φ′′

1. Unit-Element: 0 · φ = 0 and 0 ⊕ n · φ = n · φ

2. Commutativity: n · φ ⊕ m · φ′ = m · φ′ ⊕ n · φ

3. Associativity: n · φ ⊕ (m · φ′ ⊕ o · z) = (n · φ ⊕ m · φ′) ⊕ o · φ′′

4. Absorption: n · φ ⊕ m · φ = (n + m) · φ

where n,m ∈ N, and the distributivity axiom, which stems from Act·I (in LI = F{
√
}+Act·I

being a semiring modules.

5. Aggregation: 〈a〉n · φ = n · 〈a〉φ

6. Branching: 〈a〉(φ ⊕ φ′) = 〈a〉φ ⊕ 〈a〉φ′

We obtain the language of trace logics for (N−)ω and T by iteration along the initial L-

sequence.

• UF∅ = {0} contains the empty linear combination 0

• ULF∅ = F{
√
} = {n ·

√
| n ∈ N} contains the formulas specifying with which grade

a successful termination can be reached

• UL2K∅ = U
(
F{
√
} + Act · (F{

√
})
)

= {n ·
√
, 〈a〉 · (n ·

√
) | n ∈ N, a ∈ Act} contains the

formulas specifying the grade of successful termination and for each label a ∈ Act,

the grade of successful termination after passing through a

• and so forth

98 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

8.4.5 Finitarily Probabilistic Streams

The branching type for finitary probabilism is the finitary sub-distribution monad (D≤1)ω.

Its algebras are finitary convex cones.

Definition 8.4.5 (Finite Trace Logics for Streams with Finitary Probabilistic Branching).

Formulas of trace logics for probabilistic labelled transition systems are then

φ ::=
√
| 〈a〉φ |

⊕
p · φ (8.14)

where p ∈ [0, 1] and a ∈ Act.

Finite trace logics for streams with finitary probabilistic branching satisfy the following

axioms of finitary convex cones

1. Unit-Element: 0 · x = 0 and 0 ⊕ r · x = r · x

2. Absorption: r · x ⊕ s · x = (r + s) · x

3. Commutativity: r · x ⊕ s · y = s · y ⊕ r · x

4. Associativity: r · x ⊕ (s · y ⊕ t · z) = (r · x ⊕ s · y) ⊕ t · z

and the following axiom of compatibility with the transition structure

5. Aggregation: 〈a〉n · φ = n · 〈a〉φ

6. Branching: 〈a〉(φ ⊕ φ′) = 〈a〉φ ⊕ 〈a〉φ′

The above axioms allow formulas of I to be normalised into linear combinations of

formulas specifying individual finite Act-traces.

Probabilistic branching cannot be modelled with a semiring monad, because instead of

binary linear combination, probabilism requires convex combinations. The sub-distribution

monad provides the type for probabilistic labelled transition systems.

We can find the following two definitions for L. First, L(−) = F{
√
} × (−)Act with

denotation δ : LQK ⇒ QKT being the natural isomorphism F{
√
} × [K(−), F{∗}]Act �

8.4. EXAMPLES OF FINITE TRACE LOGICS 99

[F{∗} + Act · (−), F{∗}]. Second, L(−) = F{
√
} + Act · (−) with the denotation δ defined

such that

δX(p ·
√
∈ F{∗}) :=


q ·
√
7→ (p ∗ q) ·

√

〈a〉x 7→ 0
| a ∈ Act, x ∈ X

 (8.15)

δX(〈a〉(f : X → F{∗}) ∈ Act · DAlg(X, F{∗})) :=


q ·
√
7→ 0

〈a〉x 7→ f (x)

〈b〉x 7→ 0

| b ∈ Act, b , a, x ∈ X


(8.16)

Because products and coproducts do not coincide in DAlg, we obtain in fact two dif-

ferent logics. We choose the more natural functor L(−) = F{
√
} + (−)Act. The initial se-

quence L resembles the one for graded labelled transition systems, because also for D≤1,

[F{∗}, F{∗}] � F{∗}. Note that the choice of L and δ has implications on the expressivity

of the so obtained trace logics.

8.4.6 Path-Minimising Streams

The branching type of path-minimising streams is the semiring monad
(
S(−)

)
ω

for the

min-semiring Smin = 〈N ∪ {∞},min,+,∞, 0〉. Labelled transition systems of cost optimal

paths are branching in the semiring monad for the min-semiring Smin. We read natural

numbers and∞ as costs, where∞ means unattainable. Costs accumulate along paths (+)

and at each node of branching, the cost optimal branch is chosen (min).

Definition 8.4.6 (Finite Trace Logics for Path-Minimising Streams). Formulas φ, (φi)i∈I

of finite trace logics for path-minimising streams are of the following shape.

φ ::=
⊕

i

ni · φi | 〈a〉φ (8.17)

where the indexing set I is a finite.

Finite trace logics for path-minimising streams satisfy the following axioms of min-semiring

semimodules

100 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

1. Unit-Element: 0 · φ = 0 and 0 ⊕ n · φ = n · φ

2. Commutativity: n · φ ⊕ m · φ′ = m · φ′ ⊕ n · φ

3. Associativity: n · φ ⊕ (m · φ′ ⊕ o · z) = (n · φ ⊕ m · φ′) ⊕ o · φ′′

4. Absorption: n · φ ⊕ m · φ = n · φ if n ≤ m

where n,m ∈ N, and the following axioms of compatibility with the transition structure

1. Aggregation: 〈a〉n · φ = n · 〈a〉φ

2. Branching: 〈a〉(φ ⊕ φ′) = 〈a〉φ ⊕ 〈a〉φ′

Formulas for generic trace logics for such transition systems inhabit (right) min-

semiring semimodules. The semantic map ~−� assigns to a formula and a point in the

modelling coalgebra the least grade with which that point satisfies the formula. In free

(unquotiented) trace logics, a formula can be thought of as a statement about the costs of

the cost-optimal finite paths with given labels.

8.5 Invariance of Finitary Trace Logics under Finite Trace

Equivalence

A logic is invariant under logical equivalence if semantically equivalent states are logi-

cally equivalent, that is satisfy the same formulas. The semantic equivalence in our case

is trace equivalence. If trace semantics is final coalgebra semantics for T̃ in B-Alg such as

in Generic Trace Theory [HJS06], invariance under finite trace equivalence follows from

~−�S factoring through the final coalgebra morphism trωσ.

Proposition 8.5.1. If the final T̃ -coalgebra Z = 〈Z, ξ〉 exists in B-Alg, finite trace logics

for any logic functor L and denotation δ is invariant under finite trace equivalence.

8.6. EXPRESSIVITY OF FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES101

Proof. We show that ~−�S factors through Qtrω as in the following diagram.

QFS QT̃ FS
Qσ†oo LQFS

δFSoo

QZ

Qtrω

OO

QT̃Z
Qξ

oo

QT̃ trω

OO

LQZ
δZ

oo

LQtrω

OO

I

~−�S

FF

~−�Z

==

LI
LB,T,L,δ

oo

L~−�S

CC

L~−�Z

99

(8.18)

The left square commutes, because it is the image of a commuting square; the right square

commutes by naturality of δ. Thus both squares prove that Qtrω is an L-algebra mor-

phisms from Qξ ◦ δZ to Qσ† ◦ δX. The initiality of LB,T,L,δ proves that the left and right

triangle commute. �

Where L and T̃ are finitary, the invariance under finite trace equivalence does not

depend on the existence of a final coalgebra, informally speaking, because finite trace

equivalence is defined inductively along the discrete initial T̃ -sequence.

Theorem 8.5.2. Finite trace logics are invariant under finite trace equivalence for all

logic functors L and denotations δ.

Proof. Recall that I = colim(SeqL) has a cocone c over SeqL. It follows from the universal

property of colimits that c is jointly epic. From the latter and Qtrω ◦e = ~−�S ◦c 3 follows

the invariance under finite trace equivalence at once. �

8.6 Expressivity of Finitary Coalgebraic Logics for Finite

Traces

Recall the definition of ~−�S from Diagram (8.2) as the initial L-algebra morphism. Finite

trace logics are expressive, if ~−�S : I → QFS is epic. However, epicness is unlikely, as

S is not restricted in its cardinality. It suffices to have L epic on Qtrω[QFS]. In our proof

of expressivity we use an argument with a similar rationale to the one in Klin [Kli07].

3e : SeqL ⇒ QSeqT̃ is defined in 8.3.4

102 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

Below we need the natural transformation δ∗ : T̃ Q⇒ QL defined from δ as follows.

T̃ Q
υT̃ Q // QQT̃ Q

QδQ // QLQQ
QLη // QL (8.19)

Theorem 8.6.1. LB,T,L,δ is expressive if

1. Ω is a coseparating ambimorphic object,

2. δ∗ is monic,

3. T̃ preserves monomorphisms, and

4. T̃ and L are finitary.

Proof. Let S = 〈S , σ〉 be a (B,T)-coalgebra, and let a, b ∈ FS be points in the lifted

T̃ -coalgebra σ†. Then expressivity of LB,T,L,δ means that a and b can be discerned by a

formula φ, such that a
S φ and b 1S φ, if trω(a) , trω(b). Abstractly, expressivity means

that
S factors through trω followed by a monomorphism m as in the diagram below.

T̃ FS
T̃ trω
//

T̃
S
++T̃ colim(SeqT̃) �

�

T̃m
// T̃ QI� _

δ∗

��
QLI

FS

σ†

OO

trω //

S

33colim(SeqT̃)

α

OO

� � m // QI

QL

OO

(8.20)

We carry out the details of the proof in the following order below.

1. We define m : colim(SeqT̃)→ Qcolim(SeqL) and prove it monic in Lemma 8.6.4.

2. We prove
S:= m ◦ trω the adjoint transpose of ~−�S in Lemma 8.6.5.

3. The left square commutes, α ◦ trω = T̃ trω ◦ σ†, by definition of trω.

4. The right pentagon commutes, δ∗ ◦ T̃m ◦ α = QL ◦ m, by definition of m.

�

8.6. EXPRESSIVITY OF FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES103

Since our proof of expressivity is situated on the semantics’ side, we begin with the defi-

nition of the adjoint transpose of δ : LQ⇒ QT̃ under Q a Q.

Definition 8.6.2 (Transpose of the Denotation). Define the transpose δ∗ : T̃ Q ⇒ QL of

the denotation δ : LQ⇒ QT̃ as

δ∗ := QLυ ◦ QδQ ◦ υT̃ Q (8.21)

Further below we will need the iterated version (δ∗)n : T̃ nQ⇒ QLn of δ∗ for all n < ω.

(δ∗)0 = idQ and (δ∗)n+1 := δ∗Ln ◦ T̃ (δ∗)n (8.22)

δ∗ gives us the explicit description of the adjoint transpose e† : SeqT̃ ⇒ QSeqL of e

defined in 8.3.4, such that

e†0 = ¡Q0 and e†n+1 = δ∗Ln0 ◦ T̃ e†n. (8.23)

Lemma 8.6.3. e† is the adjoint transpose of e, such that e†n = Qen ◦ υLn0 for all n < ω.

Proof. We prove the lemma by induction on n. In the base case n = 0, e†0 = ¡Q0 =

Q¡Q0 ◦ υ0 = Qe0 ◦ υ0 commutes by initiality of 0. As an induction hypothesis we suppose

104 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

e†n = Qen ◦ υT̃ n0 for some n < ω.

e†n+1 = definition of e†

δ∗Ln0 ◦ T̃ e†n = definition of δ∗

QLυLn0 ◦ QδQLn0 ◦ υT̃ QLn0 ◦ T̃ e†n = naturality of υ

QLυLn0 ◦ QδQLn0 ◦ QQT̃e†n ◦ υT̃ n+10 = induction hypothesis

QLυLn0 ◦ QδQLn0 ◦ QQT̃ Qen ◦ QQT̃υT̃ n0 ◦ υT̃ n+10 = naturality of δ

QLυLn0 ◦ QLQQen ◦ QLQυT̃ n0 ◦ QδT̃ n0 ◦ υT̃ n+10 = naturality of υ

QLen ◦ QLυQT̃ n0 ◦ QLQυT̃ n0 ◦ QδT̃ n0 ◦ υT̃ n+10 = Qυ ◦ υQ = idQ

QLen ◦ QδT̃ n0 ◦ υT̃ n+10 = definition ofe

Qen+1 ◦ υT̃ n+10

�

e† yields an explicit definition of the adjoint transpose
S: FS → QI of ~−�S : I → QFS .

FS
trω
//

trω !)

S
--

colim(SeqT̃) m
//

d◦

��

limQSeqL Qcolim(SeqL)

Qcs{
|SeqT̃ | e†

+3 QSeqL

(8.24)

where d◦ is defined as in Equation 8.26.

The morphism m : colim(SeqT̃) → QI = Qcolim(SeqL) = lim(SeqL) is defined as the

universal morphism for the limit lim(SeqL) with respect to the cone of colim(SeqT̃) over

SeqL in the following diagram.

8.6. EXPRESSIVITY OF FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES105

colim(SeqT̃) α //

d◦0

ww

d◦1~~
d◦n

$$
d◦n+1

))

T̃ colim(SeqT̃)
T̃ d◦n

##

0

e†0
��

T̃0

e†1
��

· · · T̃ n0

e†n
��

T̃ n+10

e†n+1
��

· · ·

Q0 = 1 QL0
Q¡L0

oo · · ·oo QLn0oo QLn+10
QLn¡L0

oo · · ·oo

(8.25)

where for all n < ω,

d◦0 := ιcolim(SeqT̃) and d◦n+1 := T̃ d◦n ◦ α. (8.26)

Lemma 8.6.4. m is monic.

Proof. The morphisms (en)n<ω are monic, because e0 = ¡Q0 is monic and, since en+1 :=

(δ∗)n+1
0 ◦ T̃ n+1e0, because (δ∗)n is monic for all n < ω. The latter follows inductively

from (δ∗)0 = idQ being monic and, since (δ∗)n+1 := δ∗Ln ◦ T̃ (δ∗)n, from T̃ preserving

monomorphisms and δ∗ being monic.

We show inductively that (*) Ln!LQ0 ◦ en+1 ◦ d◦n+1 ◦ α = en ◦ d◦n commutes for all n. In

the base case, n = 0, (*) commutes by finality of 1 = Q0. The induction step consists in

the following chain of implications.

QLn¡L0 ◦ en+1 ◦ d◦n+1 = en ◦ d◦n =⇒

δ∗Ln0 ◦ T̃ QLn¡L0 ◦ T̃ en+1 ◦ T̃ d◦n+1 ◦ α = δ∗Ln0 ◦ T̃ en ◦ T̃ d◦n ◦ α =⇒

QLn+1¡L0 ◦ δ
∗

Ln+10 ◦ T̃ en+1 ◦ d◦n+2 = δ∗Ln0 ◦ T̃ en ◦ d◦n+1 =⇒

QLn+1¡L0 ◦ en+2 ◦ d◦n+2 = en+1 ◦ d◦n+1

Since colim(SeqT̃) has a cocone over QSeqL, there is a unique morphism m : colim(SeqT̃)→

lim(QSeqL) commuting the with the cocone of colim(SeqT̃) and the cone of lim(QSeqL)

over QSeqL. The morphism m is monic, since the morphisms (en◦d◦n)n<ω : colim(SeqT̃)→

106 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

lim(QSeqL) are jointly monic, as for any object A of B-Alg with morphisms f , g : A →

colim(SeqT̃), it is m◦ f = m◦g if and only if e◦d◦◦ f = e◦d◦◦g which implies f = g. �

We define
S:= m ◦ trω, and prove
S the adjoint transpose of ~−�S under Q a Q.

Lemma 8.6.5.
S= Q~−�S ◦ υFS .

Proof. The proof is summarised in the following diagram.

FS υFS
//

trω

��

S
,,

QQFS
Q~−�S
//

QQtrω

��

Qcolim(SeqL)

Qc
��

|SeqT̃ |
υSeqT̃ +3

e†

/7QQ|SeqT̃ |
Qe +3 QSeqL

(8.27)

• The left square commutes because of the naturality of υ.

• The right square is the image of Diagram 8.6 under Q and thus commutes.

• We have shown the bottom triangle to commute in Lemma 8.6.3

• The outer quadrangle commutes by definition of
S.

Thus
S= Q~−�S ◦ υFS commutes. �

Example 8.6.6. In order to assert that finite trace logics for (B,T)-coalgebras as in The-

orem 8.6.1 are expressive, we assume that

1. Ω is a coseparating ambimorphic object,

2. δ∗ is monic.

3. T̃ preserves monomorphisms, and

4. T̃ and L are finitary.

We claim that these assumptions are met in common cases by the examples of finite trace

logics in Section 8.4. In all cases, T = {
√
} + Act · Id for a finite set Act of labels, so that

uniformly T̃ = F{
√
} + Act · Id and L = QF{

√
} × (−)Act and Ω = F{∗}.

8.6. EXPRESSIVITY OF FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES107

1. There are coseparating ambimorphic objects Ω as of Example 8.1.7.

2. δ∗ is monic, since δ is iso. We prove this claim separately below.

3. T̃ preserves monomorphisms.

4. T̃ and L are finitary.

We can show that δ∗ is monic generically for the examples of finite trace logics above.

Therefor we separate the claim into the generators δ∗X |κ0F{
√
} and δ∗X |κ1Act·QX. Recall that

Q = [−,Ω].

F{
√
} + Act · QX

υF{
√
}+Act·QX // QQ(F{

√
} + Act · QX)

QδQ(F{
√
}+Act·QX)

��
Q(QF{

√
} × XAct) Q(QF{

√
} × (QQX)Act)

Q(idQF{
√
}×υ

Act
X)

oo

κ0φ ∈ F{
√
}

� //
_

δ∗X |κ0F{
√
}

��

λm ∈ QF{
√
}.m(φ)

_

��
λm ∈ QF{

√
}.m(φ) λm ∈ QF{

√
}.m(φ)�oo

κ1κam′ ∈ Act · QX � //
_

δ∗X |κ1Act·QX

��

λM ∈ Q(F{
√
} + Act · QX).M(κ1κam′)

_

��
λg ∈ XAct.m(g(a)) λ(h ∈ QF{

√
}, f ∈ (QQX)Act). f (a)(m)�oo

(8.28)

Then

• δ∗X |κ0F{∗} is monic by Lemma 8.1.6 because Ω is a coseparator, and

• δ∗X |κ1Act·QX is monic because g ranges over the whole of XAct.

108 CHAPTER 8. FINITARY COALGEBRAIC LOGICS FOR FINITE TRACES

Part IV

Coalgebraic Automata Theory

109

Chapter 9

Game Bisimulations in Parity Graph

Games

In this chapter we briefly review the basic definitions of parity graph games, and show that

each parity graph game is equivalent to one, where we can distinguish some positions as

basic. These basic positions mark rounds in the plays of these parity graph games. Within

each round we can normalise the interaction pattern of the players using the notion of the

players power introduced by van Benthem in [vB02]. The normalisation lays foundation

to game bisimulations, which are congruence relations on basic positions. The work of

this chapter is joint with Yde Venema.

9.1 Preliminary Definitions

We recall the formal definition of parity graph games [GTW02].

Definition 9.1.1 (Parity Graph Games). A two-player parity graph gameG = 〈V0,V1, E, vI ,Ω〉

is played by two players, 0 and 1, on a bipartite graph 〈V0,V1, E, vI〉, the arena ofG, where

• V = V0 ∪ V1 with V0 ∩ V1 = ∅ is the set of positions,

• E ⊆ V × V is the edge relation of admissible moves, and

• vI ∈ V is distinguished as the initial position.

111

112 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

The priority function Ω : v → N assigns to each position v ∈ V a natural number, and is

image-finite. A position v is called terminal if E[v] = ∅.

Notation 9.1.2. We abbreviate V := V0 ∪ V1.

Definition 9.1.3 (Plays). A play of a parity graph game G = 〈V0,V1, E, vI ,Ω〉 is a finite

or infinite sequence p ∈ V∗ ∪ Vω of positions such that p(0) = vI and for all i ≤ |p|,

(p(i), p(i + 1)) ∈ E. The total plays of G are the infinite plays p ∈ Vω and the finite plays

p ∈ V∗ with E[last(p)] = ∅. The initial plays are the plays which are not total.

Definition 9.1.4 (Winning Condition). A total play p of a parity graph gameG = 〈V0,V1, E, vI ,Ω〉

is winning for player Π ∈ {0, 1} if and only if

1. p is finite and last(p) ∈ V1−Π, or

2. p is infinite and the largest priority occurring infinitely often is of parity Π.

Notation 9.1.5. Since we identify players with their assigned parity, we can write 1 − Π

for the opponent of Π.

We introduce strategies as partial functions on the set of positions, defined precisely

on the positions of one player. This definition is suitable because parity graph games

are history-free determined [Mos91, EJ91, Zie98]. The latter means, that a player has

a winning strategy in a parity graph game if and only if she has one which takes into

consideration the current position only. For the full details and the proof of the following

theorem we refer to the original literature.

Theorem 9.1.6. Parity graph games are history-free determined.

Definition 9.1.7 (Strategies). A strategy of a player Π in a parity graph game G =

〈V0,V1, E, vI ,Ω〉 is a partial function f
...V → V, which is

1. defined precisely on positions v from VΠ with E[v] , ∅ and

2. consistent with E, such that Gr (f) ⊆ E.

9.1. PRELIMINARY DEFINITIONS 113

Definition 9.1.8 (Plays Consistent with Strategies). A play p of a parity graph game

G = 〈V0,V1, E, vI ,Ω〉 is consistent with a strategy f of a player Π ∈ {0, 1}, if for all

i < |p| − 1, f (p(i)) is defined and f (p(i)) = p(i + 1) whenever p(i) ∈ VΠ.

Definition 9.1.9 (Winning Strategies). A strategy f of a player Π in a parity graph game

G = 〈V0,V1, E, vI ,Ω〉 is winning for Π if all plays consistent with f are winning for Π.

Definition 9.1.10 (Winning Positions). A position v in a game G = 〈V0,V1, E, vI ,Ω〉 is

winning for player Π if Π has a winning strategy in the parity graph game 〈V0,V1, E, v,Ω〉.

The set of winning positions for Π is called the winning region for Π in G, and is denoted

by WinG
Π

.

Definition 9.1.11 (Equivalence of Parity Graph Games). Two parity graph games G =

〈V0,V1, E, vI ,Ω〉 and G = 〈V ′0,V
′
1, E

′, v′I ,Ω
′〉 are called equivalent if each player Π has a

winning strategy in G if and only if she has one in G′.

Proposition 9.1.12. Any parity graph game G = 〈V0,V1, E, vI ,Ω〉 is equivalent to one

where each play is infinite.

Proof. Any play of G is finite if it ends in a position v ∈ VΠ of a player Π where Π

can not move, that is E[v] = ∅. G can be transformed into an equivalent game G′ =

〈V ′0,V
′
1, E

′, v′I ,Ω
′〉 by

• adding states v0 and v1 to V0 and V1, respectively,

• with edges (vΠ, vΠ) for both Π ∈ {0, 1}, and

• priorities Ω′(vΠ) := Π for both Π ∈ {0, 1}.

Then for each state v ∈ VΠ with E[v] = ∅ we add an edge (v, v1−Π) to E′. vΠ is a winning

position for player Π determined in an infinite play. E does not admit dead ends, so that

all plays in G are infinite. Moreover, instead of getting stuck, a player has to move into

the winning region of the opponent, so that indeed both games are equivalent. �

114 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

9.2 Unravelling Parity Graph Games

The unravelling of a graph is a tree, that is an acyclic root graph. In the following we show

that the unravelling of the arena of a parity graph games defines a parity graph game. The

unravelled parity graph game is equivalent to the original one.

Definition 9.2.1 (Unravelling Parity Graph Games). Let G = 〈V0,V1, E, vI ,Ω〉 be a parity

graph game, we define a parity graph game TG = 〈V ′0,V
′
1, E

′, v′I ,Ω
′〉 such that

• V ′ := {w ∈ V∗ | w , ε, w(0) = vI , ∀n < |w| − 1.(w(n),w(n + 1)) ∈ E}

• V ′
Π

:= {w ∈ V ′ | last(w) ∈ VΠ} for each Π ∈ {0, 1}

• (w,w′) ∈ E′ if |w′| = |w| + 1, w = w′||w|, and (last(w), last(w′)) ∈ E,

• v′I := (vI)1, and

• Ω′(w) := Ω(last(w)).

Unravelling a parity graph game preserves its semantics.

Proposition 9.2.2. Any G = 〈V0,V1, E, vI ,Ω〉 and its unravelling TG = 〈V ′0,V
′
1, E

′, v′I ,Ω〉

are equivalent.

This proposition can easily be proven by establishing a game bisimulation between G

and TG. The concept of game bisimulations will be introduced shortly, and specialises in

the case of Proposition 9.2.2 as follows.

Proof. Positions w in TG correspond to positions last(w) in G, in the sense (1) that each

player has choices w′ in TG corresponding to choices last(w′) in G. Thus every play

p′ = w0w1 . . . in TG corresponds to a play p = last(w0)last(w1) . . . of the same length l

such that at each index i < l, (2) Ω′(wi) = Ω(last(wi)) and thus p is winning for player Π

if and only if p is winning for Π. (1) and (2) are part of Definition 9.2.1. �

1(vI) denotes the one-character word vI .

9.3. STRUCTURING PARITY GRAPH GAMES 115

9.3 Structuring Parity Graph Games

We give a structure to parity graph games by distinguishing a set of positions, which

together with the terminal positions delimit rounds in parity graph games.

Definition 9.3.1 (Basic Sets of Positions). Given a parity graph gameG = 〈V0,V1, E, vI ,Ω〉,

call a set B ⊆ V of positions basic if

1. the initial position of G belongs to B;

2. any full play starting at some b ∈ B either ends in a terminal position or it passes

through another position in B; and

3. Ω(v) = 0 if and only if v < B.

We call positions in B basic.

Requiring a basic set of positions does not restrict the generality of parity graph games.

In particular we may choose the whole set of positions to be basic. The obtained structure

on the parity graph game is then trivial, however.

Proposition 9.3.2. Every parity graph game is equivalent to one which we can identify a

basic set of positions in.

Proof. LetG = 〈V0,V1, E, vI ,Ω〉 be a parity graph game, we defineG′ := 〈V0,V1, E, vI ,Ω
′〉

with Ω′(v) := Ω(v) + 2 for all v ∈ V . Then V itself forms a basic set B of positions, as we

show with the following argument concurrent to Definition 9.3.1.

1. vI ∈ B as Ω′(vI) , 0.

2. Any position v ∈ B is either terminal or E[v] , ∅, in which case E[v] ⊆ B. Thus

any play passing through a basic position v either terminates immediately after v or

passes through a basic position from E[v] next.

3. By definition of Ω′, Ω′(v) > 0 for all v ∈ V .

116 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

It remains to show G and G′ equivalent. First, we see that G and G′ have the same arena,

thus in every position v of G both players have the same choices as in v in G′, so that

strategies are transferable between the two games, and the set of plays consistent with a

strategy in one game coincides with the set of plays consistent with the same strategy in

the other game. Second, adding 2 uniformly to the priority of positions preserves their

parity. Thus a strategy for one player in one game is winning if and only if it is winning

for the same player in the other game. �

Basic positions delimit rounds of plays.

Definition 9.3.3 (Local Game Trees). Let B be a basic set of positions in a parity graph

game G = 〈V0,V1, E, vI ,Ω〉. The local game tree associated with a basic position b ∈ B

is defined as the following bipartite tree T b = 〈Vb
0 ,V

b
1 , E

b, vb
I 〉. Let Vb be the set of those

finite paths β starting at b, of which the only basic positions are first(β) = b and possibly

last(β). The bipartition of Vb is given through the bipartition of V, that is Vb
Π

:= {β ∈ Vb |

last(β) ∈ VΠ} for both players Π ∈ {0, 1}. The root vb
I is (b). The edge relation is defined

as Eb := {(β, βv) | v ∈ E[last(β)]}.

A node β ∈ Vb is a leaf of T b if |β| > 1 and last(β) ∈ B; we let Leaves(T b) denote the

set of leaves of T b, and put N(b) := {last(β) | β ∈ Leaves(T b)}.

For the semantics of a parity graph game, only the basic positions matter. Intuitively,

the local games delimited by basic and terminal positions can be normalised to local

games consisting of only one choice of each player. The normalisations makes use of the

concept of the power of players [vB02].

Definition 9.3.4 (Powers). Let B be a basic set related to some parity graph game G =

〈V0,V1, E, vI ,Ω〉, and let b be a basic position. By induction on the height of a node

β ∈ Vb, we define, for each player Π, the power of Π at β as a collection PG
Π

(β) of subsets

of N(b):

• If β ∈ Leaves(T b), we put, for each player Π,

PG
Π

(β) :=
{
{last(β)}

}
. (9.1)

9.3. STRUCTURING PARITY GRAPH GAMES 117

• If β < Leaves(T b), we put

PG
Π

(β) :=


⋃
{PG

Π
(γ) | γ ∈ Eb(β)} if β ∈ Vb

Π
,{⋃

γ∈Eb(β)Yγ | Yγ ∈ PG
Π

(γ), all γ
}

if β ∈ Vb
1−Π

.
(9.2)

Finally, we define the power of Π at b as the set PG
Π

(b) := PG
Π

((b)).

Perhaps some special attention should be devoted to the paths β in T b with Eb(β) = ∅.

If such a β is a leaf of T b, then the definition above gives PG
Π

(β) = PG1−Π
(β) =

{
{last(β)}

}
.

But if β is not a leaf of T b, then we obtain, by the inductive clause of the definition:

PG
Π

(β) :=


∅ if β ∈ Vb

Π
,

{∅} if β ∈ Vb
1−Π

.
(9.3)

Definition 9.3.5 (Local Games). Let G = 〈V0,V1, E, vI ,Ω〉 be a parity graph game with

basic set B ⊆ V. We define a game Gb local to a basic position b ∈ B in G as the (finite

length) graph game played by 0 and 1 on the local game tree T b = 〈Vb, Eb〉. Plays of this

game are won by a player Π if their opponent 1 − Π gets stuck, and end in a tie if the last

position of the play is a leaf of T b.

Definition 9.3.6 (Local Strategies). A local strategy of a player Π in a local game Gb =

〈Vb
0 ,V

b
1 , E

b, vb
I 〉 is a partial function f : Vb

Π
→ Vb defined on such β if and only if Eb(β)

is non-empty, then f (β) ∈ Eb(β). Such a local strategy for player Π is surviving if it

guarantees that Π will not get stuck, and thus does not lose the local game; and a local

strategy is winning for Π if it guarantees that her opponent 1 − Π gets stuck.

Consider the play of the local game Gb in which 0 and 1 play local strategies f0 and

f1, respectively. If this play ends in a leaf β of the local game tree, we let Res(f0, f1) denote

the basic position last(β); if one of the players gets stuck in this play, we leave Res(f0, f1)

undefined. Given a local strategy f0 for player 0, we define

X f0 := {Res(f0, f1) | f1 a local strategy for player 1 }, (9.4)

and similarly we define X f1 for a strategy f1 for player 1.

118 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

Proposition 9.3.7. Let G, B and b as in Definition 9.3.4, let Π ∈ {0, 1} be a player, and

let W be a subset of N(b). Then the following are equivalent.

1. PG
Π

(b) is non-empty.

2. Π has a surviving strategy f in Gb such that X f ∈ PG
Π

.

Proof. We prove the two directions separately.

Given a set W ∈ PG
Π

(b), we define a surviving strategy fW for Π in the local game

Gb such that each play consistent with fW will either end in win of Π, that is a default of

1 − Π, or in a position in W. We define fW partially and recursively over plays of T b, such

that in each position β along a play consistent with f (*) there is a set W ′ ∈ PG
Π

(β) with

W ′ ⊆ W. In the following let β be a position along a play consistent with fW .

• If β ∈ Vb
Π

, then there is a position β′ ∈ Eb(β) such that W ∈ PG
Π

(β) by definition of

PG
Π

. For each such β′, we can extend fW by fW(β) := β′.

• If β ∈ Vb
1−Π

, then for all positions β′ ∈ Eb(β), there is a set W ′
β′ ∈ PG

Π
(β′) with

W ′
β′ ⊆ W by definition of PG

Π
(β). If some W ′

β′ is empty, Π defeats 1 − Π in β′.

Moreover W =
⋃

β′∈Eb(β)(Wβ′).

As all plays of Gb are finite, each play consistent with f will end either in a win for Π or

in N(b). In the latter case, (*) will hold in a position in β with last(β) ∈ N(b), which by

definition of PG
Π

means that last(β) ∈ W. Finally, fW can be arbitrarily extended to a fully

defined local strategy.

Let Π have a surviving strategy f in Gb. Then each play of Gb consistent with f ends

either in a position β where PG
Π

= {∅}, or in a position β ∈ N(b), where PG
Π

(β) = {last(β)}.

Beginning with these positions, we prove by induction over the length of plays in Gb

consistent with f that (X f)β ∈ PG
Π

(β) for each position β in such a play.

• If β ∈ Vb
Π

, (X f)β = (X f)β′ ∈ PG
Π

(β) as PG
Π

(f (β)) ⊆ PG
Π

(β).

• If β ∈ Vb
1−Π

, there is a set (X f)β ∈ PG
Π

(β) define as (X f)β =
⋃

β′∈Eb(β)(X f)β′ by defini-

tion of PG
Π

.

9.4. NORMALISED PARITY GRAPH GAMES 119

In (b) put X f := (X f)(b). �

Proposition 9.3.8. Let b be a basic position in a parity graph game G and let U ⊆ N(b)

such that U < dPG
Π

(b)e, then there is a set V ∈ PG1−Π
(b) with U ∩ V = ∅.

Proof. We prove by induction on the length of plays in Gb, that for each position β in Gb,

(*) if there is a set U ⊆ N(b) with U < dPG
Π

(β)e, then there is a set V ∈ PG1−Π
(β) with

U ∩ V = ∅.

• Suppose β in N(b), if β ∈ Vb
Π

then dPG
Π

(β)e = N(b), and if β ∈ Vb
1−Π

, then PG
Π

(β) = ∅,

so that β satisfies (*).

• If otherwise β < N(b) and β ∈ Vb
Π

, every U < dPG
Π

(β)e does not occur in dPG
Π

(β′)e of

any β′ ∈ Eb[β]. Assuming (*) as the induction hypothesis, there is a corresponding

Vβ′ in PG1−Π
(β′) for any β′ with Vβ′ ∩ U = ∅. Their union

⋃
β′∈Eb[β] Vβ′ does not

intersect U either, and occurs in PG1−Π
(β) by definition of PG1−Π

.

• If β < N(b) and β ∈ Vb
1−Π

, U < dPG
Π

(β)e means that there is a successor β′ ∈ Eb[β]

such that U < dPG
Π

(β)e, so that there is a set V ∈ PG1−Π
(β′) with U ∩ V = ∅ taking (*)

as the induction hypothesis. Then V ∈ PG1−Π
(β) as PG1−Π

(β′) ⊆ PG1−Π
(β) by definition

of PG1−Π
.

�

9.4 Normalised Parity Graph Games

Previously we argued that the concept of a players power allows us to normalise the

interaction pattern between the players of a parity graph game. Formally, we obtain parity

graph games of the following shape.

Definition 9.4.1 (Normalised Parity Graph Games). Let G = 〈V0,V1, E, vI ,Ω〉 be a parity

graph game with a basic set B of positions, the normalised parity graph game of G has an

arena

〈B ∪ PPB,PB,Gr (P)0 ∪ ∈, vI ,Ω〉 (9.5)

120 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

In the above definition the edge relation is determined by P0. The basic set of positions

of G is basic in the normalised game. Every round in the normalised game consists of a

choice of 0 followed by one of 1.

Definition 9.4.2 (Normal Parity Graph Games). A normal parity graph game is a structure

〈B, P, bI ,Ω〉 with

• a single sort B of positions,

• a function P0 : B→ PPB,

• a position vI ∈ B distinguished as initial,

• a priority function Ω : B→ N.

Normalised parity graph games are normal, which we emphasise by using the same

notation in both definitions. The latter definition will provide a frame to prove game

bisimulations congruence relations in the next section.

9.5 Game Bisimulations

Definition 9.5.1 (Game Bisimulations). Let G = 〈V0,V1, E,Ω〉 and G′ = 〈V ′0,V
′
1, E

′,Ω′〉

be parity graph games with basic sets B and B′, respectively, and let Π and Π′ be (not

necessarily distinct) players in G and G′, respectively.

A Π,Π′-game bisimulation is a binary relation Z ⊆ B× B′ satisfying for all v ∈ V and

v′ ∈ V ′ with vZv′ the structural conditions

• (Π,forth) ∀W ∈ PG
Π

(v).∃W ′ ∈ PG
′

Π′
(v′).∀w′ ∈ W ′.∃w ∈ W. (w,w′) ∈ Z,

• (1 − Π,forth) ∀W ∈ PG1−Π
(v).∃W ′ ∈ PG

′

1−Π′
(v′). ∀w′ ∈ W ′.∃w ∈ W.(w,w′) ∈ Z,

• (Π,back) ∀W ′ ∈ PG
′

Π′
(v′).∃W ∈ PG

Π
(v).∀w ∈ W.∃w′ ∈ W. (w,w′) ∈ Z,

• (1 − Π,back) ∀W ′ ∈ PG
′

1−Π′
(v′).∃W ∈ PG1−Π

(v).∀w ∈ W.∃w′ ∈ W. (w,w′) ∈ Z,

and the priority conditions

9.5. GAME BISIMULATIONS 121

• (parity) Ω(v) mod 2 = Π if and only if Ω′(v′) mod 2 = Π′,

• (contraction) for all v,w ∈ V and v′,w′ ∈ V ′ with (v, v′) ∈ Z and (w,w′) ∈ Z,

Ω(v) ≤ Ω(w) if and only if Ω(v′) ≤ Ω(w′).

In Condition (parity) above we identify players with their characteristic parity. Note

that in fact there are only two kinds of game bisimulations: the (0, 0)-bisimulations co-

incide with the (1, 1)-bisimulations, and the (0, 1)-bisimulations coincide with the (1, 0)-

bisimulations.

Game bisimulations are congruence relations. This result follows immediately from

the definition of game bisimulations.

Proposition 9.5.2. Game bisimulations are congruence relations.

Proof. We verify the properties of equivalence relations.

• Reflexivity: Let G be a parity graph game with a basic set B of positions, then ∆B =

{(b, b) | b ∈ B} is a (Π,Π)-game bisimulation. ∆B meets the structural conditions

trivially as it is the diagonal relation on the basic positions of the same arena, and

meets the priority conditions as the basic positions on both sides have the same

priority.

• Symmetry: Let G and G′ be parity graph games with basic sets B and B′ of posi-

tions, and let Z ⊆ B×B′ be a (Π,Π′)-game bisimulation. Then Z−1 is a (Π′,Π)-game

bisimulation. That Z−1 meets the structural conditions follows from the symmetry

in the definition of game bisimulations, and that it meets the priority conditions

follows from Z meeting the priority conditions.

• Transitivity: Let G, G′, and G′′ be parity graph games with basic sets B, B′, and B′′

of positions, and let Z ⊆ B×B′ be a (Π,Π′)-game bisimulation and let Z′ ⊆ B′×B′′

be a (Π′,Π′′)-game bisimulation. Then Z; Z′ is a (Π,Π′′)-game bisimulation, as

Z; Z′ satisfies the structural compositions, as (Π,forth), (1 − Π,forth), (Π,back), and

(1 − Π,back) for Z and Z′ compose, and Z; Z′ satisfies the priority conditions as

(parity) and (contraction) compose.

122 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

Additionally, game bisimulations are compatible with transitions in parity graph games

as in Definition 9.4.2. Formally, let B be a basic set of positions in a parity graph game G,

then there is an operator taking setsW ∈ PPB to a normalised interaction pattern where

first Π chooses a set W ∈ W, and then 1 − Π chooses a basic position from W. Next we

show that game bisimulation is compatible with this operator.

• Congruence: Let G and G′ be parity graph games with basic sets B and B′ of po-

sitions, and let Z ⊆ B × B′ be a (Π,Π′)-game bisimulation between G and G′. Fix

an arbitrary pair (b, b′) ∈ Z of game bisimilar positions. For any W ∈ PG
Π

(b) there

is a set W ′ ∈ PG
′

Π′
(b′), such that for any p ∈ W there is a game bisimilar p′ ∈ W ′

and vice versa. Symmetrically, there is for any such W ′ such a W. Moreover, the

previous two conditions hold also for 1 − Π in place of Π. These four conditions

are the converses of (Π,forth), (1 − Π,forth), (Π,back), and (1 − Π,back).

�

In informal terms, the following theorem states that bisimilar games G and G′ are equiv-

alent in the sense, that any player Π has a winning strategy in G if and only if she has one

in G′. Thus the theorem confirms soundness of our definition of game bisimulations.

Theorem 9.5.3. Let G and G′ be parity graph games and let Π and Π′ be players in the

respective game. If the initial positions of G and G′ are in a (Π,Π′)-game bisimulation,

then Π has a winning strategy in G if and only if Π′ has one in G′.

Proof. Let G = 〈V0,V1, E,Ω〉 and G′ = 〈V ′0,V
′
1, E

′,Ω′〉 be parity graph games with initial

positions v0 and v′0 and basic sets B and B′ of positions, respectively. We show that for

every strategy f of Π in G from v0, there is a strategy f ′ of Π′ in G′ from v′0 winning if

f is. The converse direction will follow through the symmetry in the definition of game

bisimulation.

We define f ′ such that the basic positions in any play p of G from v0 consistent with

f are Z-related to the basic positions in some play p′ of G′ from v′0 consistent with f ′,

and vice versa. The latter direction will follow through the symmetry in the definition of

game bisimulation.

9.5. GAME BISIMULATIONS 123

Given f , we define f ′ inductively and show that all basic positions b and b′ in p and

p′ respectively meet the induction hypothesis that (b, b′) ∈ Z. Implicitly we make use of

Proposition 9.3.7.

Let the play of G be in the basic position b, let the play of G′ be in the basic position

b′, and let (b, b′) ∈ Z. Since f is winning, there is a set W ∈ PG
Π

(b) by definition of game

bisimulations Z[W] ∈ PG
Π′

(b′). By Proposition 9.3.7, Π′ has a local strategy f ′b
′

in G′b
′

such that X f ′b′ = Z[W]. Put f ′(last(β)) := f ′b
′

(β) for all β ∈ G′b
′

. That f ′ is consistently

defined on positions in the round after b′, follows by construction of G′ and in particular

by the definition of basic positions.

If Π wins p immediate after b, ∅ ∈ PG
Π

(b), so that Z[∅] = ∅ ∈ PG
Π′

(b′) and Π′ wins in

ps′ immediately after b′.

It remains to treat the situation, where p is infinite and thus where p′ is infinite. As

the basic positions in p and p′ are stepwise related via Z, the largest priority occurring

infinitely often in p are of parity Π if and only if the largest priority occurring infinitely

often in p′ are of parity Π′. Thus if Π wins p, then Π′ wins p′. �

124 CHAPTER 9. GAME BISIMULATIONS IN PARITY GRAPH GAMES

Chapter 10

Complementation of Coalgebra

Automata

Coalgebra automata were introduced by Venema in [Ven04] as an approach to adding fix-

point operators to Moss’ coalgebraic logic. The idea is manifested in a correspondence

between coalgebra automata and coalgebraic logic. The (initial) states of coalgebra au-

tomataA correspond to formulas φ, such thatA accepts precisely those pointed coalgebras

S = 〈S , σ, sI〉 satisfying φ at s.

In previous work, Kupke and Venema [KV05, KV08] have shown that coalgebra au-

tomata are closed under union, intersection, existential and universal projecting corre-

sponding to disjunction, conjunction, existential and universal quantification, respectively.

Then Venema and the author [KV09] have established that coalgebra automata are closed

under complementation, corresponding to negation on the logical side. The latter consti-

tutes the main contribution of this chapter.

Assumption 10.0.4. In this chapter we assume T : Set → Set to be a standard, weak-

pullback preserving functor which restricts to the category of finite sets.

10.1 A Review of Nondeterministic Coalgebra Automata

A well-studied form of automata are nondeterministic automata. Nondeterministic and

deterministic word automata are equally expressive. In fact the one can effectively be

125

126 CHAPTER 10. COMPLEMENTATION OF COALGEBRA AUTOMATA

translated into the other, as shown for instance in [Saf88]. Kupke and Venema [KV08]

have proved a similar result for coalgebra automata.

Definition 10.1.1 (Nondeterministic Coalgebra Automata). Let T be a Set-functor, a non-

deterministic T-coalgebra automaton is a tuple 〈Q, θ, qI ,Ω〉 consisting of

• a finite set Q of automaton states,

• a transition function θ : Q→ PT Q,

• an automaton state qI ∈ Q distinguished as initial, and

• a priority function Ω : Q→ N.

The transition function θ : Q→ PT Q takes automaton states q ∈ Q to sets θ(q) ⊆ T Q

of T -structured automaton states. The automaton is to choose from each subset nondeter-

ministically.

The subsets of T Q form the carrier of the free (disjunctive) semi-lattice over T Q. This

observation gives rise to the equivalent definition of nondeterministic coalgebra automata

with a transition function of type Q → SLat∨T∇Q. We call such automata coalgebra

automata in logical form.

The acceptance behaviour of coalgebra automata is given in terms of parity graph

games parameterised in a T -coalgebra automaton and a T -coalgebra to be recognised.

Definition 10.1.2 (Acceptance Games for Nondeterministic Coalgebra Automata). Let

A = 〈Q, θ, qI ,Ω〉 be a T-coalgebra automaton and let S = 〈S , σ, sI〉 a T-coalgebra.

The acceptance game G(A,S) is the parity graph game 〈V∃,V∀, E, vI ,ΩG〉 defined as in

Table 10.1.

Note that we may assign positions from Q × S to either player as there is only one

choice. Only if we assign a player, the game graph is bipartite and the acceptance game

is well-defined as a two-player graph game. However, in later arguments it will be handy

to leave the assignment ambiguous.

Because there is only one choice in positions from Q × S , we may easily merge the

first two lines and make the admissible moves of (θ(q), s) the admissible moves of (q, s).

10.2. ALTERNATION 127

Position Player Set of Admissible Moves ΩG

(q, s) ∈ Q × S - {(θ(q), s)} Ω(q)
(
∨
τ, s) ∈ SLat∨T∇Q × S ∃ {(a, s) | a ∈ τ} 0

(∇α, s) ∈ T∇Q × S ∃ {Z ⊆ Q × S | (α, σ(s)) ∈ RelT (Z)} 0
Z ⊆ Q × S ∀ Z 0

Table 10.1: Acceptance Games for Nondeterministic Coalgebra Automata

The presentation of the acceptance game as in Table 10.1 is to facilitate the presentation

of the acceptance game in logical form.

Definition 10.1.3 (Languages and Equivalence of Coalgebra Automata). We call the set

of coalgebras accepted by a coalgebra automaton A the language of A. Two coalgebra

automata with the same language are called equivalent.

10.2 Alternation

Nondeterminism means that ∃ makes a choice before the transition step. This type of

choice can be logically completed giving a choice to ∀ before the transition step. The so

obtained type of automata are alternating. Similarly, we may want to add a choice for ∃

and ∀ after the transition step. We call such automata transalternating. For our argument,

we need an intermediate form, called semi-transalternating automata. In addition to the

alternating choice before the transition step, only ∀ can choose after the transition step.

All of these kinds of coalgebra automata share a common structure, 〈Q, θ, qI ,Ω〉,

where only the branching type of θ may vary. Table 10.2 summarises the branching types

of transition functions, we consider.

Name Type of Transition Function
Deterministic Q→ T∇ Q
Nondeterministic Q→ SLat∨ T∇ Q
Alternating Q→ Lat T∇ Q
Semi-Transalternating Q→ Lat T∇ SLat∧ Q
Transalternating Q→ Lat T∇ Lat Q

Table 10.2: Branching Types of Coalgebra Automata

where

128 CHAPTER 10. COMPLEMENTATION OF COALGEBRA AUTOMATA

Position Player Set of Admissible Moves ΩG

(q, s) ∈ Q × S - {(θ(q), s)} Ω(q)
(
∧
τ, s) ∈ LatT∇Q × S ∀ {(a, s) | a ∈ τ} 0

(
∨
τ, s) ∈ LatT∇Q × S ∃ {(a, s) | a ∈ τ} 0

(∇α, s) ∈ T∇Q × S ∃ {Z ⊆ Q × S | (α, σ(s)) ∈ RelT (Z)} 0
Z ⊆ Q × S ∀ Z 0

Table 10.3: Acceptance Games for Alternating Automata

• SLat∨ (SLat∧) is the Set-functor assigning to a set X the carrier of the free disjunctive

(conjunctive) semi-lattice generated over X, and

• Lat is the Set-functor assigning to a set X the carrier of the free lattice generated

over X.

10.2.1 Alternating Coalgebra Automata

Definition 10.2.1 (Alternating Coalgebra Automata). An alternating coalgebra automaton

is a structure A = 〈Q, θ, qI ,Ω〉 where

• Q is the finite set of states,

• θ : Q→ LatT Q is the transition function,

• qI ∈ Q is the state distinguished as initial, and

• Ω : Q→ N is the priority function.

Definition 10.2.2 (Acceptance Games of Alternating Coalgebra Automata). The notion

of an alternating T-automata accepting a pointed T-coalgebra S = 〈S , σ, sI〉 is defined in

terms of the parity graph gameG(A,S) given by Table 10.5A accepts a pointed coalgebra

S if and only if ∃ has a winning strategy in the acceptance game G(A,S).

10.2.2 Semi-Transalternating Coalgebra Automata

Definition 10.2.3 (Semi-Transalternating Automata). A semi-transalternating T -automaton

A = 〈Q, θ, qI ,Ω〉 consists of

10.2. ALTERNATION 129

Position Player Set of Admissible Moves ΩG

(q, s) ∈ Q × S - {(θ(q), s)} Ω(q)
(
∧

i∈I ai, s) ∈ Lat1Q × S ∀ {(ai, s) | i ∈ I} 0
(
∨

i∈I ai, s) ∈ Lat1Q × S ∃ {(ai, s) | i ∈ I} 0
(∇α, s) ∈ T∇ LatQ × S ∃ {Z ⊆ LatQ × S | (α, σ(s)) ∈ RelT (Z)} 0
Z ⊆ LatQ × S ∀ Z 0
(
∧

i∈I ai, s) ∈ SLat∧Q × S ∀ {(ai, s) | i ∈ I} 0

Table 10.4: Acceptance Games for Semi-Transalternating Automata

• a finite set Q of states,

• a transition function θ : Q→ LatT∇SLat∧Q,

• a state qI ∈ Q distinguished as initial, and

• a priority function Ω : Q→ N.

Definition 10.2.4 (Acceptance Games for Semi-Transalternating Automata). Let A =

〈Q, qI , θ,Ω〉 be a semi-transalternating automaton and let S = 〈S , σ, sI〉 be a T-coalgebra.

The acceptance game G(A,S) is the parity graph game 〈V∃,V∀, E, vI ,ΩG〉 with vI =

(qI , sI) and V∃, V∀, E and ΩG given by Table 10.5.

10.2.3 Transalternating Coalgebra Automata

Definition 10.2.5 (Transalternating Automata). A transalternating T-automaton A =

〈Q, θ, qI ,Ω〉 consists of

• a finite set Q of states,

• a transition function θ : Q→ Lat1Q,

• a state qI ∈ Q distinguished as initial, and

• a priority function Ω : Q→ N.

Definition 10.2.6 (Acceptance Games for Transalternating Automata). LetA = 〈Q, qI , θ,Ω〉

be a transalternating automaton and let S = 〈S , σ, sI〉 be a pointed T-coalgebra. The

130 CHAPTER 10. COMPLEMENTATION OF COALGEBRA AUTOMATA

Position Player Set of Admissible Moves ΩG

(q, s) ∈ Q × S - {(θ(q), s)} Ω(q)
(
∧

i∈I ai, s) ∈ Lat1Q × S ∀ {(ai, s) | i ∈ I} 0
(
∨

i∈I ai, s) ∈ Lat1Q × S ∃ {(ai, s) | i ∈ I} 0
(∇α, s) ∈ T∇ LatQ × S ∃ {Z ⊆ LatQ × S | (α, σ(s)) ∈ RelT (Z)} 0
Z ⊆ LatQ × S ∀ Z 0
(
∧

i∈I ai, s) ∈ LatQ × S ∀ {(ai, s) | i ∈ I} 0
(
∨

i∈I ai, s) ∈ LatQ × S ∃ {(ai, s) | i ∈ I} 0

Table 10.5: Acceptance Games for Transalternating Automata

acceptance game G(A,S) is the parity graph game G(A,S) = 〈V∃,V∀, E, vI ,ΩG〉 with

vI = (qI , sI) and V∃, V∀, E and ΩG given by Table 10.5.

10.2.4 Basic Positions in Acceptance Games

In the acceptance games for coalgebra automata of any of the above branching types we

can distinguish certain positions as basic.

Definition 10.2.7 (Basic Positions in Acceptance Games). Let A = 〈Q, τ, qI ,Ω〉 be a T-

coalgebra automaton and S = 〈S , σ, sI〉 be a pointed coalgebra recognised by A. In the

acceptance game G(A,S), positions from Q × S are called basic.

Basic positions allow us to dissect plays of acceptance games into rounds. The struc-

ture of these rounds is indicated in Tables 10.1 and 10.3. The dissection facilitates coin-

ductive proofs on the semantics of coalgebra automata. We make use of the technique in

particular to prove the soundness of the complementation algorithm in Section 10.4. In

Chapter 9 we have introduced basic sets of positions in the more general context of parity

graph games.

10.3 Equivalence of Coalgebra Automata of various Branch-

ing Types

The classes of coalgebra automata of the previously mentioned branching types are equiv-

alent, and in fact effectively mutually indefinable.

10.3. EQUIVALENCE OF COALGEBRA AUTOMATA OF VARIOUS BRANCHING TYPES131

Embedding automata into a class of automata with richer structure, such as

Nondeterministic Alternating

Semi-Transalternating Transalternating,

obviously preserves their semantics. The equivalence between nondeterministic and al-

ternating automata, and in particular

Alternating Nondeterministic

has been established by Kupke and Venema in [KV05]. In [KV09] Venema and the author

have given effective translations

Transalternating Semi-Transalternating Alternating.

We repeat the argument in the remainder of this section.

10.3.1 From Transalternating to Semi-Transalternating Automata

Proposition 10.3.1. There is an effective algorithm transforming a given transalternating

automaton into an equivalent semi-transalternating one.

Definition 10.3.2. Let A = 〈Q, θ : Q → LatTLatQ, qI ,Ω〉 be a transalternating automa-

ton, we define a semi-transalternating automaton A◦ = 〈Q, θ◦, qI ,Ω〉 such that θ◦(a) :=

f ◦ θ where f : Lat1Q→ Lat T∇ SLat∧Q is the map in Lemma 7.2.2.

Then the following is a corollary of Definition 10.3.2 and Lemma 7.2.2.

Corollary 10.3.3. A and A◦ are equivalent, for any transalternating automaton A.

10.3.2 From Semi-Transalternating to Alternating Automata

In this section we prove, that semi-transalternating and alternating automata are equally

expressive. In particular we prove an effective transformation of the first into the second

as in the following theorem.

Theorem 10.3.4. There is an effective algorithm transforming a given semi-transalternating

automaton into an equivalent alternating one.

132 CHAPTER 10. COMPLEMENTATION OF COALGEBRA AUTOMATA

The transition function of the semi-transalternating automaton A is a function θ :

Q → Lat T∇ SLat∧Q, whereas the transition function of the alternating automaton A◦ is

a function θ◦ : Q◦ → Lat T∇Q◦. The idea underlying the transformation is to push the

transalternation choice over to the next transition step.

Figure 10.3.2 illustrates the idea on a play of the acceptance games G(A,S) and

G(A◦,S). The intervals on the left and right demark rounds of G(A,S) and G(A◦,S)

respectively.

In a first attempt, one may make
∧

k q′k,
∧

k q′′k , and so forth states of A◦, but then

we can not consistently assign priorities to
∧

k∈K q′k knowing {q′k | k ∈ K} alone. If we

assign the priority of the state seen before, we preserve the semantics of A. The following

definition contains these two ideas.

Definition 10.3.5. Let A = 〈Q, θ, qI ,Ω〉 be a semi-transalternating automaton. We define

the alternating automaton A◦ = 〈Q◦, θ◦, q◦I ,Ω
◦〉 by putting

• Q◦ := Q × SLat∧Q,

• q◦I := (qI , qI),

• Ω◦(a, b) := Ω(a), and

• θ◦ : (Q × SLat∧Q)→ Lat T∇(Q × SLat∧Q) is given by

θ◦(q, a) :=
∧
p≥a

Lat T∇κp(θ(p)). (10.1)

For any q ∈ Q, κq : SLat∧Q → (Q × SLat∧Q) is the map defined by κq(a) := (q, a) for all

a ∈ SLat∧Q.

Proposition 10.3.6. Let A be a semi-transalternating automaton, then A and A◦ are

equivalent.

Proof. Instead of provingG(A,S) andG(A◦,S) equivalent directly, we use Proposition 9.2.2

and prove TG(A,S) and TG(A◦,S) equivalent.

10.3. EQUIVALENCE OF COALGEBRA AUTOMATA OF VARIOUS BRANCHING TYPES133

_

_

s q
...

∨
i
∧

j ∇(T
∧

)Φi j

∇(T
∧

)Φ

∧
k q′k

_
_

_

_ s′ q′

∨
i
∧

j ∇(T
∧

)Φ′i j

∇(T
∧

)Φ′

...
∧

k q′′k

Figure 10.1: Transformation of Semi-Transalternating into Alternating Automata

134 CHAPTER 10. COMPLEMENTATION OF COALGEBRA AUTOMATA

Every strategy f of a player Π in TG(A,S) extends uniquely to a strategy f ◦ in TG(A◦,S) by

putting f ◦((vI),
∧
{(vI)}) := (vI), and conversely every strategy f ◦ of Π in TG(A◦,S) restricts

to a strategy in TG(A,S) such that every play p consistent with f corresponds to a play p◦

consistent with f ◦ such that p◦ = (
∧
{vT

I }).p. Then p◦ is finite if and only if p is finite.

If p◦ is finite, the last positions of p◦ and p belong to the same player. If p◦ is infinite,

the largest priorities occurring infinitely often in p◦ and p are the same and thus have the

same parity. Thus player Π wins p◦ if and only if she wins p, and f ◦ is winning for Π if

and only if f is, and TG(A,S) and TG(A◦,S) are equivalent. �

10.4 Closure under Complementation

Theorem 10.4.1 (Complementation Lemma for Coalgebra Automata). The class of alter-

nating coalgebra automata is closed under taking complements.

We prove the above theorem by devising an algorithm complementing transalternating

automata and using that alternating and transalternating automata are effectively mutually

translatable as in Section 10.3.

10.4.1 Complementation of Transalternating Coalgebra Automata

We treat states of transalternating coalgebra automata as formulas, thus the transition θ(q)

from an automaton state q is a depth one formula θ(q) ∈ Lat1Q over Q. Our definition of

complementing automata uses the step-wise dualisation which we introduced in Defini-

tion 7.4.4.

Definition 10.4.2 (Complements of Transalternating Automata). The complement of a

transalternating T-coalgebra automaton A = 〈Q, θ, qI ,Ω〉 is the transalternating au-

tomaton Ac = 〈Q, θc, qI ,Ω
c〉 defined with θc(q) := δ1(θ(q)) and Ωc(q) := Ω(q) + 1, for

all q ∈ Q.

Lemma 10.4.3. Let A be a transalternating T-automaton, and S a T-coalgebra. Given a

10.4. CLOSURE UNDER COMPLEMENTATION 135

basic position (q, s) in G(A,S), and a relation Z ⊆ Q × S , we have:

Z ∈ dP∃(q, s)e ⇐⇒ VZ, σ(s)
1 θ(q)

Z ∈ dP∀(q, s)e ⇐⇒ VZ, σ(s)
1 δ1(θ(q))

The following proposition shows, that Ac is indeed the complement of A.

Proposition 10.4.4. For every transalternating T-coalgebra automatonA, the automaton

Ac accepts precisely those pointed T-coalgebras that are rejected by A.

Proof. Clearly it suffices to prove for a given T -coalgebra S, state q of A, and point s in

S, that

(q, s) ∈ Win∃(G(Ac,S) if and only if (q, s) ∈ Win∀(G(A,S)). (10.2)

We prove the above by means of a game bisimulation.

First we note that Q×S is a basic set in both acceptance games, G(A,S) and G(Ac,S).

The main observation is that the diagonal relation IdQ×S := {(q, s), (q, s)) | q ∈ Q, s ∈ S }

is an ∀,∃-game bisimulation between G(A,S) and G(Ac,S). Since it is immediate from

the definitions that the diagonal relation satisfies the priority conditions, it is left to check

the structural conditions.

Leaving the other three conditions for the reader, we establish the condition (∃,forth)

as an immediate consequence of the following claim:

for all Z ∈ PG
∃

(q, s) there is a Z∀ ⊆ Z such that Z∀ ∈ PG
c

∀
(q, s), (10.3)

136 CHAPTER 10. COMPLEMENTATION OF COALGEBRA AUTOMATA

which can be proved via the following chain of implications:

Z ∈ PG
∃

(q, s)

⇒ VZ, σ(s)
1 θ(q) (Lemma 10.4.3)

⇒ (VZ)c, σ(s) 6
1 δ1(θ(q)) (Corollary 7.4.6)

⇒ (VZ)c, σ(s) 6
1 θ
c(q) (Definition of θc)

⇒ VZc , σ(s) 6
1 θ
c(q) (†)

⇒ Zc < dPG
c

∃
(q, s)e (Lemma 10.4.3)

⇒ there is a Z∀ ∈ PG
c

∀
(q, s) with Zc ∩ Z∀ = ∅ (Proposition 9.3.8)

⇒ there is a Z∀ ⊆ Z with Z∀ ∈ PG
c

∀
(q, s) (Elementary set theory)

In the above Zc denotes (Q×S) \Z, and in the implication marked (†) we use the fact that

(VZ)c = VZc . �

We conclude the complementation lemma with an observation about the size of automata

resulting from the complementation.

Theorem 10.4.5. For any alternating T-automaton with n states there is a complementing

alternating automaton with at most n ∗ 2n states.

We single out the following case, which suitably generalises tree automata, for which

significantly lower bounds have been established in [Rab69, Kis07].

Theorem 10.4.6. Let T be such that for any α ∈ TωQ, the formula ∇α has a dual ∆α ∈

LatT∇Q. Then for any alternating T-automaton of n states there is a complementing

alternating automaton with at most n + c states, for some constant c.

Chapter 11

A Pumping Lemma for Regular

Languages of Coalgebras in Set

Languages of words recognised by state-finite automata are called regular. In order to

show that a collection of words is not a regular language, one often [Sip96, HMU03]

uses the following pumping lemma for regular languages, which has been introduced in

[BHPS61].

Theorem 11.0.7 (Pumping Lemma for Regular Languages of Words). The collection L

of words accepted by a state-finite automaton, satisfies the following pumping property:

There is a natural number l, the pumping length of L, such that every word in L longer

than l can be decomposed into segments u, v and w, such that

1. |v| > 0,

2. |uv| ≤ l, and

3. uv+w is contained in L,

where v+ means any of {v, vv, vvv, . . .}.

Example 11.0.8. The pumping lemma is used to disprove regularity of the language L =

{anbn | n ∈ N} of words consisting of a substring of a’s followed by a substring of b’s of

the same length. The idea underlying the proof is informally the following. Any dissection

137

138CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

of a word anbn into uvw as in Theorem 11.0.7 must be such that v lies completely in an

or bn. Otherwise pumping v yields a substring ba and thus a word not contained in the

languageL. However pumping v in an or bn yields words an+|v|bn or anbn+|v|, not contained

in the language L either.

Any word anbn is a coalgebra Sn = 〈S , σ, sI〉 of transition type T (−) = {
√
}+{a, b}×(−)

with

• S := {akbn | k ≤ n} ∪ {bk | k ≤ n},

• σ(ak+1bn) := (a, akbn) and σ(bk+1) := (b, bk) and σ(ε) :=
√

, and

• sI := anbn.

We will revisit this example in later sections of this chapter.

In this chapter, we prove a pumping lemma for languages of state-finite T -coalgebra

automata. Before we can state a theorem analogous to Theorem 11.0.7 above, we need to

define analogues of pumping length and the pumping operation for coalgebras. We only

consider coalgebras in Set. We argue that these coalgebras may be regarded as graphs

with additional structure, and define pumping along paths through these graphs. Thereby

we effectively reduce the pumping lemma for coalgebras in Set to the pumping lemma for

words.

Assumption 11.0.9. Below we assume T : Set → Set

1. to be standard and

2. finitary, and

3. to preserve weak pullbacks.

In order to make sense of the pumping lemma we define languages of coalgebras.

Definition 11.0.10 (Languages of Coalgebras). Let T be a functor on a category C. A

language L of T -coalgebras is a set of equivalence classes of pointed T-coalgebras with

respect to T-bisimilarity1.
1See Definition C.0.25.

11.1. COALGEBRAS IN SET AS GRAPHS 139

11.1 Coalgebras in Set as Graphs

Recall that a T -coalgebra S = 〈S , σ, sI〉 in Set has a transition function σ : S → TS . An

element φ ∈ TS can be thought of as a T -term that “uses” a subset Y ⊆ S . The latter is

made formal by the notion of Base as in Definition B.4.13. We think of Base(σ(s)) as the

set of successor states of σ. For the base to be well-defined we need T to be standard as

in Assumption 11.0.9.

Composing σ with Base yields a graph, that is a function Base ◦σ : S → PS . Unless

T restricts to finite sets, Base ◦ σ may have an infinite out-degree.

Definition 11.1.1 (Graphs of Coalgebras). Let S = 〈S , σ, sI〉 be a T-coalgebra, we call

Base ◦ σ the graph of S.

Example 11.1.2. In Example 11.0.8, the graph structure arises as follows.

1. Base(σ(ak+1bn)) = Base(a, akbn) = {akbn}

2. Base(σ(bk+1)) = Base(b, bk) = {bk}

3. Base(σ(b0)) = Base(
√

) = ∅

The intuition of coalgebras as graphs provokes the definition of concepts that are com-

mon for graphs, such as

1. reachable states,

2. subcoalgebras rooted in a state,

3. generated subcoalgebras, and

4. the depth of a coalgebra.

We explore these concepts towards a definition of pumping.

11.1.1 Reachable States

The set ReachS(s) ⊆ S of states reachable from a state s ∈ S in a coalgebra S = 〈S , σ, sI〉,

can be computed by closing Base(σ(s)) under Base ◦ σ as in the following definition.

140CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

Definition 11.1.3 (Reachable States). Let S = 〈S , σ, sI〉 be a T-coalgebra and s ∈ S a

state of S, we define the set ReachS(s) of states reachable from s in σ as the least set Y ⊆ S

which contains Base(σ(s)) and is closed under union with Base(σ(y)) for all y ∈ Y.

Example 11.1.4. In Example 11.0.8 we obtain a definition of ReachS from the graph

structure in Example 11.1.2.

1. ReachS(ak+1bn) = {albn | l ≤ k} ∪ {bl | l ≤ n}

2. ReachS(bk+1) = {bl | l ≤ k}

3. ReachS(b0) = Base(
√

) = ∅

Lemma 11.1.5. For all standard functors T , T-coalgebras S = 〈S , σ〉 and states s ∈ S ,

the set ReachS(s) is well-defined.

Proof. The proof is an application of the Knaster-Tarski theorem, observing that PS

forms a complete lattice and Y 7→ Y ∪ Base[σ[Y]] is a monotone function on PS . �

As ReachS(s) is a fix point, it is also a pre-fix point. This observation is important as it

allows us to define generated subcoalgebras.

Lemma 11.1.6. ReachS(s) is a pre-fix point of σ in the following sense.

σ[ReachS(s)] ⊆ TReachS(s)

Proof. By definition, Base(σ[ReachS(s)]) ⊆ ReachS(s), so that by standardness of T ,

TBase(σ[ReachS(s)]) ⊆ TReachS(s), and using the definition of Base, σ[ReachS(s)] ⊆

TReachS(s). �

Reachability allows us to easily discriminate cyclic from acyclic coalgebras.

Definition 11.1.7 (Cyclic and Acyclic Coalgebras). A coalgebra S = 〈S , σ〉 is cyclic if

there is a state s ∈ S such that s ∈ ReachS(s), and acyclic otherwise.

Below we will need the following property, which informally means that the coalgebra is

nowhere confluent.

11.1. COALGEBRAS IN SET AS GRAPHS 141

Definition 11.1.8 (Tree-likeness). A coalgebra S = 〈S , σ, sI〉 is tree-like if for all s ∈

S and s0, s1 ∈ ReachS(s) with s0 , s1, s0 < ReachS(s1) and s1 < ReachS(s0), it is

ReachS(s0) ∩ ReachS(s1) = ∅

Below we will show that for every pointed coalgebra there is a bisimilar one, which is

acyclic and tree-like. We will make these properties assumptions for our pumping lemma.

11.1.2 Generated Subcoalgebras

We define generated subcoalgebras analogous to generated subgraphs using the notion of

reachability defined above.

Definition 11.1.9 (Least Subcoalgebra Rooted in a State). Let S = 〈S , σ〉 be a T-coalgebra

for a standard functor T and let s ∈ S be a point of S. We define the least subcoalgebra

rooted in s as the restriction of σ to ReachS(s).

Ss := 〈ReachS(s), σ |ReachS(s)〉 (11.1)

The definition above is well-stated. The following is a corollary of Lemma 11.1.6.

Corollary 11.1.10. For any T-coalgebra S and any state s of S bb as above, Ss exists and

is a T-coalgebra.

Proposition 11.1.11. For any T-coalgebra S and any state s of S as above, S and Ss are

bisimilar.

Proof. For the bisimulation relation, choose the diagonal relation ∆ReachS(s) := {(s′, s′) |

s′ ∈ ReachS(s)}, then as ReachS(s) is closed under Base ◦σ, all pairs of states in ∆ReachS(s)

are bisimilar. �

11.1.3 Unravelling Coalgebras in Set

The unravelling of a coalgebra is defined similarly to the unravelling of graphs.

142CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

Definition 11.1.12 (Unravelling of Set-Coalgebras). The unravelling of a pointed T-

coalgebra S = 〈S , σ, sI〉 is defined to be the T-coalgebra S+ = 〈S +, σ+ : S + → TS +, (sI)〉2

with the transition function σ+(w) := T ιw ◦ σ(last(w)), where ιw : S → S + takes s 7→ ws

for any w ∈ S +.

Unravelling a coalgebra preserves its semantics.

Proposition 11.1.13. For any T-coalgebra S = 〈S , σ : S → TS 〉 and state s ∈ S ,

(σ, s) � (σ+, (s))3 are bisimilar.

Proof. It suffices to show that Gr (last) ⊆ S + × S is a bisimulation, which follows from

the definition of σ+ and
⋃

w∈S + Gr (ι)w = (Gr (last))−1. �

We obtain the following as a corollary of Proposition 11.1.13 and Proposition 4.7 of

[Ven04], which states that if a coalgebra automaton A accepts a coalgebra S, then A

accepts any coalgebra bisimilar to S.

Corollary 11.1.14. A coalgebra automaton A accepts a coalgebra S if and only if A

accepts S’s unravelling S+.

Unravelling a coalgebra yields an acyclic tree-like coalgebra. The latter properties are

important for the proof of the pumping lemma in the next section.

Lemma 11.1.15. Let S = 〈S , σ, s〉 be a coalgebra and let S+ be the unravelling of S.

w ∈ S +. Then for any w,w′ ∈ S +, w′ ∈ ReachS+(w) if and only if w is a proper prefix of

w′.

Proof. We prove the lemma by structural induction over the definition of Reach. In the

base case,

Base(σ+(w)) = by definition of σ+

Base((Tκw) ◦ σ(last(w))) = by Lemma B.4.16

κw[Base ◦ σ(last(w))]

2S + is the set of non-empty words over S .
3(s) denotes the one-character word consisting of s.

11.1. COALGEBRAS IN SET AS GRAPHS 143

The induction step follows from the transitivity of being a proper prefix. �

The following is a corollary of the previous lemma.

Corollary 11.1.16. Let S = 〈S , σ〉 be a T-coalgebra, the unravelling S+ of S is acyclic

and tree-like.

The following is a corollary of Corollary 11.1.16.

Corollary 11.1.17. Every T-coalgebra is bisimilar to an acyclic tree-like T-coalgebra.

11.1.4 Pumping Length for Coalgebras in Set

The unravelling of coalgebras induces a natural notion of depth. Since we are looking

to discriminate coalgebra states by finite depth, it suffices to approximate the depth from

below as in the following definition.

Definition 11.1.18 (Depth of Coalgebra States). Let S = 〈S , σ〉 be a T-coalgebra, then

the depth of states in S can be approximated from below as follows.

• Every state s ∈ S is of depth at least 0.

• Every state s ∈ S is of depth at least n + 1, if there is a state s′ ∈ Base(σ(s)) of

depth at least n.

If a state s is of depth at least n for every finite n, we say s is of infinite depth.

Example 11.1.19. In Example 11.0.8, the depth of a state akbl for (k, l) ∈ {(k, n), (0, l) |

k, l ≤ n} is k + l.

Loops provide an immediate example of states of infinite depth.

Proposition 11.1.20. Let S = 〈S , σ〉 be a cyclic T-coalgebra with s ∈ ReachS(s) for some

state s ∈ S , then s is of infinite depth.

Proof. That s is reachable from itself, means that there is a finite sequence s0, ..., sn of

length greater than 1 consisting of states with s = s0, s = sn, and for each i < n, si+1 ∈

Base(σ(si)). By the definition of depth above, s is of depth at least strictly larger than s.

Using that s is of depth at least 0, it is easy to see that s is of infinite depth. �

144CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

The following lemma tells us that T -bisimilar states have the same depth. Consequentially

we can assign coherently a depth to equivalence classes of pointed T -coalgebras under T -

bisimilarity, such as in languages of T -coalgebras. The latter appears in the definition of

the Pumping Lemmma in Theorem 11.3.2.

Lemma 11.1.21. Let S = 〈S , σ〉 be a T-coalgebra and R ⊆ S × S a T-bisimulation on S.

For any pair of states (s0, s1) ∈ R and any n ∈ N, s0 is of depth at least n if and only if s1

is of depth at least n.

Proof. We prove one direction of the bi-implication, as the other follows through a sym-

metrical argument. Our proof proceeds inductively over n. In the base case, we show

for any pair (s, s′) ∈ R of states, that if Base(σ(s)) is non-empty, then so is Base(σ′(s′)).

Therefor we use the function r : R→ TR making Diagram (11.2) commute.

TS TR
TπS ′ //

TπS

oo TS ′

S

σ

OO

R

r

OO

πS ′ //πSoo S ′
σ′

OO (11.2)

Firstly if Base(σ(s)) is non-empty, then so is Base((m ◦ ρ)(s)). Since Base(σ(s)) ⊆ R

it suffices to prove non-emptiness for the projection to S .

πS ◦ Base ◦ r = Base ◦ TπS ◦ r = Base ◦ σ ◦ πS (11.3)

Then the same steps as above with S ′ in place of S and σ′ in place of σ yield the proof

that Base(σ′(s′)) is non-empty from the non-emptiness of Base(r(s, s′)).

The induction step proceeds as follows. Combining the previous yields (πS × πS ′) ◦

Base ◦ r = Base ◦ σ ◦ (πS × πS ′). Using that Base(r(s, s′)) ⊆ R, we see that for every

t ∈ Base(σ(s)) there is a t′ ∈ Base(σ′(s′)) with (t, t′) ∈ R. �

11.2. PUMPING COALGEBRAS IN SET 145

11.2 Pumping Coalgebras in Set

In the case of words, the pumping operation takes a word

s = u0 . . . ulv0 . . . vmw0 . . .wn ∈ Act∗ (11.4)

to the word

s′ = u0 . . . ulv0 . . . vmv0 . . . vmw0 . . .wn ∈ Act∗. (11.5)

The word s can be seen as a coalgebra σ : S → {
√
} + Act × S where S consists of all

suffixes of s andσ(∅) =
√

andσ(a.t) = (a, t) for a ∈ Act and t ∈ S . Pumping then replaces

each suffix vi . . . vmw0 . . .wn for 0 ≤ i ≤ m with a suffix vi . . . vmv0 . . . vmw0 . . .wn, and

adapts the transition function accordingly. The following definition makes this algorithm

precise in the broader context of coalgebras.

Definition 11.2.1 (Pumping Set-Coalgebras Once). Let S = 〈S , σ, sI〉 be a pointed T-

coalgebra. A pumping situation in S is a pair of states s0, s1 ∈ S such that s0 ∈ {sI} ∪

ReachS(sI) and s1 ∈ ReachS(s0). Pumping S once at (s0, s1) yields a T-coalgebra S =

〈S ′, σ′, s′I〉 as follows.

1. Put σ0 := σ.

// s0
// · · · // s1

// (11.6)

2. Define a function σ1 : S + Reach(σ0, s0)→ T (S + Reach(σ0, s0)) joining to σ0 the

least subcoalgebra of σ0 rooted in s0, σ1 := σ0 + (σ0)s0 .
4

// κ0s0
// · · · // κ0s1

//

κ1s0
// · · · // κ1s1

//

(11.7)

3. Define a functionσ2 : S +ReachS(σ, s)→ T (S +ReachS(σ, s)) such thatσ2(κ0s1) :=

4κ0 : S → S +Reach(σ0, s0) and κ1 : Reach(σ0, s0)→ S +Reach(σ0, s0) are the usual injection functions
for categorical coproducts as in Definition B.2.5.

146CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

σ1(κ1s0) and σ2(t) := σ1(t) for all t ∈ (S + ReachS(σ, s)) \ {κ0s1}.

// κ0s0
// · · · // κ0s1,

uu
κ1s0

// · · · // κ1s1
//

(11.8)

Finally, put S ′ := S + Reach(σ, s), σ′ := σ2, and s′I = κ0sI in S′ = 〈S ′, σ′, s′I〉.

Remark 11.2.2. The above algorithm is well-defined for standard T as X ⊆ X + S for all

sets X.

Example 11.2.3. We demonstrate pumping on ab. There are three ways to dissect ab into

uvw according to Theorem 11.0.7 with v ∈ {a, b, ab}. Each yields a pumping situation in

the corresponding coalgebra S1 of Example 11.0.8 as follows.

Pumping Situation
u v w s0 s1 uvvw

1. ε a b ab b aab
2. a b ε b ε abb
3. ε ab ε ab ε abab

Table 11.1: Example of Pumping

In each case pumping yields a T-coalgebra as follows. For the sake of a simple

presentation, we display the subcoalgebras
(
Sv|v∈{a,b,ab}

)
κ0ab rooted in the initial state κ0ab.

1. (Sa)κ0ab = 〈{κ0ab, κ1ab, κ1b, κ1ε}, σa, κ0ab〉 with σa := {κ0ab 7→ (a, κ1ab), κ1ab 7→

(a, κ1b), κ1b 7→ (b, κ1ε), κ1ε 7→
√
}

2. (Sb)κ0ab = 〈{κ0a, κ0b, κ1b, κ1ε}, σa, κ0ab〉withσa := {κ0a 7→ (a, κ0b), κ0b 7→ (b, κ1b), κ1b 7→

(b, κ1ε), κ1ε 7→
√
}

3. (Sab)κ0ab = 〈{κ0ab, κ0b, κ1ab, κ1b, κ1ε}, σa, κ0ab〉 with σa := {κ0ab 7→ (a, κ0b), κ0b 7→

(b, κ1ab), κ1ab 7→ (a, κ1b), κ1b 7→ (b, κ1ε), κ1ε 7→
√
}

The above coalgebras Sv|v∈{a,b,ab} are respectively bisimilar to the T-coalgebras corre-

sponding to the pumped words uvvw as in Example 11.0.8. These calculations show by

example how pumping in coalgebras restricts to pumping in words.

11.2. PUMPING COALGEBRAS IN SET 147

The following proposition shows as a corollary that pumping does not yield bisimilar

coalgebras in general.

Proposition 11.2.4. Let S = 〈S , σ, sI〉 be a T-coalgebra and let S′ = 〈S , σ′, s′I〉 be the

result of pumping S at a pumping situation (s0, s1). Then S and S′ are bisimilar if and

only if s and s′ are bisimilar in S.

Proof. By definition of pumping, it is s ∈ ReachS(sI). Thus S ' S′ only if s′ ' κ1s′ which

by definition of T -bisimilarity holds if and only if s′ ' s, since

σ(s′) RelT (') σ′(κ1s′) RelT (') (Tκ2)σ(s) RelT (') σ(s) (11.9)

�

Pumping a T -coalgebra S = 〈S , σ〉 once at a pumping situation (s, s′) yields a coalge-

bra S′ = 〈S ′, σ′〉. The same pumping situation (s, s′) can then be found as (κ1s, κ1s′) in

S′. Pumping S′ at (κ1s, κ1s′) yields a T -coalgebra S′′ = 〈S ′′, σ′′〉. In S′′ we find the same

pumping situation (s, s′) as (κ2s, κ2s′), and so forth. It is easy to see that pumping can be

iterated arbitrarily often.

Definition 11.2.5 (Iterated Pumping in Set-Coalgebras). Let S = 〈S , σ〉 be a Set-coalgebra

and (s0, s1) a pumping situation in σ. We define the iterated pumping S(n) for any n < ω

inductively as follows.

1. S(1) is defined as pumping S once at (s0, s1).

2. Given the n-fold pumping S(n) = 〈S (n), σ(n)〉 of S at (s0, s1), we define the (n+1)-fold

pumping S(n+1) = 〈S (n+1), σ(n+1)〉 of S at (s0, s1) as pumping S(n) once at (κns0, κns1).

We call pumping zero times in a T -coalgebra deleting in a T -coalgebra

Definition 11.2.6 (Deleting in a T -Coalgebra). Let S = 〈S , σ〉 be a T-coalgebra and

(s, s′) a pumping situation in S. Deleting in S at (s0, s1) yields a T-coalgebra S′ = 〈S , σ′〉

such that σ′(s0) := σ(s1) and σ′(t) := σ(t) for all t ∈ S \ {s}.

148CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

Figure 11.1: Examples for Deleting and Pumping Once and Iteratedly in Set-Coalgebras

· · · x b // y d // z
√

//

u
� �

v
� �

w
�

· · · x
√

//

u
� �

w
�

(11.10)

· · · x b // y d // z
√

//

u
� �

v
� �

w
�

· · · κ0x b // κ0y d // κ1x b // κ1y d // κ1z
√

//

u
� �

v
� �

v
� �

w
�

(11.11)

· · · x b // y d // z
√

//

u
� �

v
� �

w
�

· · · κ0x b // κ1x b // κ2x b // κ2y d // κ2z
√

//

u
� �

v
� �

v
� �

v
� �

w
�

(11.12)

11.3. THE PUMPING LEMMA 149

11.3 The Pumping Lemma

The pumping lemma states that regular languages have the pumping property.

Definition 11.3.1 (Pumping Property). A language L of pointed T-coalgebras is said to

have the pumping property if there is a natural number n, such that in all T -coalgebras S

in L of depth at least n we can find a pumping situation5 (s0, s1) in S, such that deleting

and pumping arbitrarily often at (s0, s1) yields a T-coalgebra in L.

We spend the remainder of this chapter on the proof of the following theorem.

Theorem 11.3.2. Languages of T-coalgebras accepted by state-finite T-coalgebra au-

tomata have the pumping property.

In the proof of the pumping lemma, we will need a property further strengthening

acyclicity and tree-likeness for coalgebras S = 〈S , σ, sI〉. Informally, we require that (*)

successor states of states s ∈ S do not occur more than once in σ(s). In the example of

the binary tree functor T (−) = Act × (−) × (−), we want that σ(s) = (s′, s′′) as opposed

to σ(s) = (s′, s′). However, Property (*) is not well-stated as we characterise successor

states by means of Base, which is defined up to isomorphism in Set, that is bijection. Thus

Base does not let us distinguish occurrences of the same states in σ(s).

For our proof it suffices to reduce Property (*) to the acceptance game G(A,S) as

follows. Recall that in basic positions (α, s), ∃ chooses a relation Z ⊆ Q × S such that

(α, σ(s)) ∈ RelT (Z). Instead of (*) we require, that if A accepts S, ∃ has a winning

strategy, such that f (α, s) ⊆ Q × S is left-unique for all positions (α, s) ∈ T Q × S in all

plays consistent with f .

Lemma 11.3.3. For every coalgebra automaton A and coalgebra S such that A accepts

S, there is a coalgebra T bisimilar to S such that ∃ has a winning strategy f in G(A,T)

with f (α, s) ⊆ Q × S left-unique for all positions (α, s) ∈ T Q × S in plays of G(A,T)

consistent with f .

Proof. In the following we fix a winning strategy f for ∃ in G(A,S). Then the proof

proceeds as follows.
5See Definition 11.2.1.

150CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

1. There is a coalgebra T = 〈BWin∃G(A,S), ρ, (qI , sI)〉.

2. T is bisimilar to S, so that A accepts T.

3. ∃ has a winning strategy f ′ in G(A,T) such that f ′(α, b) ⊆ Q × BWin∃G(A,S) is

left-unique at all positions (α, b) ∈ T Q × BWin∃G(A,S) in plays consistent with f ′.

1. By definition of the relation lifting RelT (−), there is an epimorphism e : TBWin∃G(A,S)→

RelT (BWin∃G(A,S)). By Lemma B.4.1 e has a section m : RelT (BWin∃G(A,S)) →

TBWin∃G(A,S) such that e ◦ m = idTBWin∃G(A,S). Note that m is not unique, and its def-

inition is subject to the axiom of choice. The restriction of the winning strategy of ∃ to

BWin∃G(A,S) is a function f |BWin∃G(A,S) : BWin∃G(A,S)→ RelT (BWin∃G(A,S)). From m

and f |BWin∃G(A,S) we define ρ := m ◦ f |BWin∃G(A,S). Then T = 〈BWin∃G(A,S), ρ, (qI , sI)〉 is a

T -coalgebra.

2. We show that R = {(s, (q, s)) | (q, s) ∈ BWin∃G(A,S)} is a bisimulation between S and

T. Then πTS ◦ (σ, (idT Q, σ) ◦ m ◦ f ◦ (θ, idS)) = σ ◦ πS and πTBWin∃G(A,S) ◦ (σ, (idT Q, σ) ◦

m ◦ f ◦ (θ, idS)) = (idT Q, σ) ◦ m ◦ f ◦ (θ, idS) ◦ πBWin∃G(A,S) as in the following diagram.

Thus R is a bisimulation between S and T.

TS RelT (R)
πTSoo

πTBWin∃G(A,S) // TBWin∃G(A,S)

e
		

RelT (BWin∃G(A,S))
' G

m

II

S

σ

OO

R

(σ,(idT Q,σ)◦m◦ f◦(θ,idS))

OO

πS
oo

πBWin∃G(A,S)
// BWin∃G(A,S)

(idT Q,σ)◦ f◦(θ,idS)

OO

(11.13)

3. Define f ′ such that

1. f ′(q, (q, s)) := (α, (q, s)) where (α, s) = f (θ(q), s) and

2. f ′(α, (q, s)) := {(q′, (q′, s′)) | (q′, s′) ∈ f (α, s)}

and let f ′ be defined arbitrary on all other positions of ∃.

In order to show that f ′ is well-defined we will use a function k : Q×S → Q× (Q×S)

defined such that k(q, s) := (q, (q, s)). k is an embedding. Since T is standard, RelT (−)

11.3. THE PUMPING LEMMA 151

preserves embeddings and RelT (k) is an embedding. By Lemma B.4.11 and the definition

of m as the section of e, it is RelT (k) = (idT Q,m)◦k′ where k′ : T Q×TS → T Q×(T Q×TS)

takes k′(α, β) := (α, (α, β)).

1. α ∈ θ(q) because f is well-defined.

2. That (α,m(α, σ(s)) ∈ RelT (f ′(α, (q, s))) follows from (α, σ(s)) ∈ RelT (f (α, s)).

Then every play p of G(A,T) consistent with f ′ will pass through basic positions only of

the form (q, (q, s)), since the initial position of G(A,T) is (qI , (qI , sI)) and all elements of

f ′ ◦ f ′(q, (q, s)) are of the form (q′, (q′, s′)).

It remains to show f ′ winning. By definition of f ′, ∃ looses with f ′ a finite play p′

of G(A,T) only if she looses a finite play p of G(A,S) with f , where the basic positions

in p′ are stepwise the image of basic positions of p. Finally since ΩG(A,T)(q, (q, s)) =

ΩG(A,S)(q, s), ∃ looses with f ′ an infinite play p′ of G(A,T) only if she looses an infinite

play p of G(A,S) with f , where the basic positions in p′ are stepwise the image of basic

positions of p. By contrapositivity f ′ is thus winning since f is. �

Proof of Theorem 11.3.2. Because pumping can be iterated, it suffices to show that for ev-

ery coalgebra automaton A there is a natural number n ∈ N, such that in any T -coalgebra

S = 〈S , σ, sI〉 of depth at least n there is a pumping situation (s, s′) such that deleting or

pumping once at (s, s′) yields a T -coalgebra S′ accepted by A. We will show that the

above holds for n = |Q| + 1.

Let S be a T -coalgebra accepted by A and of depth at least |Q|. By Corollary 11.1.17

we can assume without loss of generality that S is tree-like. As A accepts S, ∃ has a

winning strategy f in G(A,S). We distinguish the following cases.

1. In every play p of G(A,S) consistent with f every automaton state q occurs at most

once in basic positions.

2. There is a play p of G(A,S) consistent with f and an automaton state q, which

occurs twice in basic positions (q, s) and (q, s′).

In each case we select a pumping situation (s0, s1) as follows.

152CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

1. We choose s0, s1 ∈ ReachS(sI) such that s0 and s1 do not occur in any basic position

in any play of G(A,S) consistent with f and s1 ∈ ReachS(s0).

2. Put s0 = s and s1 = s′ for some pair (q, s) and (q, s′) of basic positions in p with the

same automaton state q.

We then prove that deleting or pumping once at (s0, s1) yields a coalgebra S′ accepted

by A, providing a winning strategy f ′ for ∃ in G(A,S′) in both cases.

Deleting Define f ′ := f {s0 7→ f (s1)}. Then f ′ is well-defined if in any play p of G(A,S)

consistent with f , s0 occurs in at most a unique basic position. If otherwise there were

basic positions (q, s0) and (q′, s0) with q , q′, it is not necessarily f ′(q′, s0) ∈ (θ(q′), s0).

By Lemma 11.3.3 the assumption does not restrict generality.

We then prove that f ′ is winning, showing that the plays of G(A,S′) consistent with f ′

correspond to plays of G(A,S) consistent with f under the forgetful function h : S ′ → S

defined by

h := idS {s0 7→ s1} (11.14)

The forgetful function h extends to a function from the positions of the acceptance game

G(A,S′) to the positions of the acceptance game G(A,S) such that

h(v) :=


(q, h(s)) if v = (q, s)

(q,Th(s)) if s = (q, α) ∈ Q × TS

〈idQ, h〉(v) if v ∈ P(Q × S)

(11.15)

and extends to initial plays of G(A,S) such that

h(pv) := h(p)h(v). (11.16)

Defined as above, h has the following properties.

1. h commutes with admissible moves, that is h(E[v]) = E[h(V)], so that p′ is total if

and only if h(p) is.

11.3. THE PUMPING LEMMA 153

2. h preserves the assignment to players, such that h(v) belongs to ∃ in G(A,S′) if and

only if v does in G(A,S).

3. h preserves the priority of board positions, Ω(h(v)) = Ω′(v) for all v where h is

defined.

4. h commutes with f and f ′, such that f ◦ h = h ◦ f ′.

Properties 1 and 2, if p′ is finite, and 1, 2, and 3, if p′ is infinite, entail that p′ is winning

for ∃ in G(A,S′) if h[p′] is winning for ∃ in G(A,S). Property 4 entails that f ′ is winning

for ∃ in G(A,S′) since f is winning for ∃ in G(A,S).

Pumping Once Define f ′ := (κ0 f + κ1 f){κ0s1 7→ κ1 f (s0)}. Then f ′ is only well-defined if

in any play of G(A,S) consistent with f there is at most a unique basic position with s1.

If otherwise there are basic positions (q, s1) and (q′, s1), it is not necessarily f ′(q′, κ0s1) ∈

(θ(q′), σ′(κ0s1)). By Lemma 11.3.3 the assumption does not restrict generality.

Similar to the argument above we show that the plays of G(A′,S) consistent with f ′

correspond to plays of G(A,S) consistent with f under a forgetful function h defined as

follows.

h(s) :=


s0 if s = κ0s1

s′ if s = κ0s′ and s′ , s1

s′ if s = κ1s′

(11.17)

The forgetful function h extends to positions and initial plays of G(A,S) as in (11.15) and

(11.16) above. Moreover h has properties 1.-4. as above, so that by a similar argument as

the one above we obtain that f ′ is winning, since f is. �

154CHAPTER 11. A PUMPING LEMMA FOR REGULAR LANGUAGES OF COALGEBRAS IN SET

Part V

Conclusions

155

Chapter 12

Conclusions

12.1 Summary of Contributions

With this dissertation we have made several contributions to the theory of coalgebras with

branching, within the theory of coalgebras over Set, Generic Trace Theory of Jacobs et

alii, coalgebraic logic, and the coalgebraic automata theory of Venema et alii.

12.1.1 Finite Trace Semantics

In Chapter 5 we have revisited Jacobs [Jac04, HJS06, HJS07] and presented a definition,

which does not depend on the order-enrichment of the Kleisli-category of the branching

type and is applicable to finitary branching types. In Chapter 5 we have seen that the

order enrichment is ambiguous. Finitary branching types are important for the definition

of finitary coalgebraic logics for finite traces as in Chapter 8.

12.1.2 Infinite Trace Semantics

In Chapter 6 we have adapted the basic ideas underlying the definition of finite trace

semantics and have obtained an inductive definition of infinite trace semantics in the style

of Böhm trees. Generalising the the inductive definition lead us to a coinductive notion

of infinite trace semantics which subsumes the inductive one, as well as the acceptance

behaviour of coalgebra automata.

157

158 CHAPTER 12. CONCLUSIONS

Both, inductive definition and coinductive characterisation differ substantially from

previous work of Jacobs [Jac04] and parallel work of Cirstea [C1̂0]. Both aim to give

a unique coinductive definition. Jacobs defined infinite trace semantics for the powerset

monad as the branching type and for transition types admitting a final coalgebra. Cirstea

generalises Jacobs work to affine monads assuming an order enrichment of the Kleisli-

category following Generic Trace Theory of Hasuo et alii [HJS06]. We show that Jacobs’

infinite trace semantics, acceptance behaviour of nondeterministic coalgebra automata are

instances of our coinductive characterisation of infinite trace semantics.

12.1.3 Finitary Coalgebraic Logics

In Chapter 7 we have defined in joint work with Yde Venema the Boolean dual of Moss’

modality ∇. Thereby we showed that finitary Moss’ coalgebraic logics is essentially nega-

tionfree. Our proof is largely based on the previously established [KKV08] completeness

of finitary Moss’ coalgebraic logic.

12.1.4 Finite Trace Logics

In Chapter 5 we have shown that finite trace semantics induces finite trace equivalence.

We have defined in Chapter 8 finitary coalgebraic logics in the style of Moss’ coalgebraic

logics classifying states in coalgebras with branching for many finitary branching and

transition types up to finite trace equivalence. Our logics are parameterised in a logic

functor and its denotation. We have shown that finitary coalgebraic logics for finite traces

are invariant under finite trace equivalence, and under further assumptions on the logic

functor and denotation expressive. In the latter we follow the more general framework of

Klin [Kli07].

12.1.5 Game Bisimulations for Parity Graph Games

Parity graph games play a role in the definition of the acceptance behaviour of classical

and coalgebra automata. In Chapter 9 we have introduced in joint work with Yde Venema

12.2. SOME OPEN QUESTIONS AND DIRECTIONS FOR FUTURE WORK 159

a structure to parity graph games into rounds and a normalisation of the interaction pattern

between the participating players, based on the power of players introduced by van Ben-

them [vB02]. We then define the congruence relation game bisimulation, which facilitates

proofs of the equivalence between games and between automata as in Chapter 10.

12.1.6 Complementation Lemma for Coalgebra Automata

Using the complementation lemma for finitary Moss’ coalgebraic logics, we define for

any coalgebra automaton A one accepting the complement of the language of A. To-

gether with previous results of Kupke and Venema [Ven04, KV08, KV08] we complete

the correspondence between coalgebra automata and coalgebraic logics augmented with

fixpoint operators following Rabin [Rab69]. We provide upper bounds on the size of

the complemented automata and reconciliate our observations with previous results in

[Kis07].

12.1.7 A Pumping Lemma for Regular Languages of Coalgebras in

Set

In Chapter 11 we have reviewed coalgebras in Set as graphs with additional structure, and

shown that each such coalgebra is bisimilar to one whose graph is acyclic and tree-like.

We have then reduced the pumping lemma for regular languages of coalgebras in Set to

the one for trees.

12.2 Some Open Questions and Directions for Future Work

In this dissertation we have left several questions unanswered.

12.2.1 Monads and Categories of Algebras

It remains an open question to characterise monads and functors, which admit distributive

laws.

160 CHAPTER 12. CONCLUSIONS

We have defined the continuous extension of the Kleisli-lifting of Set-functors in

Eilenberg-Moore categories. In particular for the existence of finite trace semantics and

finite trace logics the size of the Kleisli-lifting is important. We leave an understanding

of the latter to future work.

12.2.2 Finitary Coalgebraic Logics for Finite Traces

The definition of finite trace logics hinges on the dual adjunction induced by an ambi-

morphic object. We assumed that that the branching type B is commutative, so that every

object in B-Alg is ambimorphic. We leave open, whether non-commutative algebras ad-

mit an ambimorphic object in their Eilenberg-Moore algebras. We have furthermore left

open a characterisation of monads, which admit a coseparating ambimorphic object.

We have given several assumptions on the logic functor and its denotation under which

finitary coalgebraic logics for finite traces are expressive. We leave it to future work

as well to characterise branching and transition types allowing a logic functor meeting

these assumptions. In particular, we require that the branching type B is such that there

is a coseparating ambimorphic object in B-Alg. We leave the characterisation of such

branching types open.

Appendix A

Set Theory

A.1 Basic Set Theory

This dissertation is based on Zermelo-Fraenkel set theory with the Axiom of Choice.

Definition A.1.1 (Pointed Sets). A pointed set (X, x) consists of a set X and a distin-

guished element x ∈ X.

Definition A.1.2 (Relations). Let X and Y be sets, a relation between X and Y is a subset

R ⊆ X × Y.

Definition A.1.3 (Functions). A function f : X → Y from a set X to a set Y is defined

by its graph Gr (f) ⊆ X × Y such that for each x ∈ X, there is a unique y ∈ Y such that

(x, y) ∈ Gr (f). We denote y by f (x).

Definition A.1.4 (Functions With Finite Support). A function f : X → N into the natural

numbers is said to have finite support, if f is zero almost everywhere, that is {x ∈ X |

f (x) , 0} has a finite cardinality. We denote the set of such functions by
(
NX

)
ω

. The

definition extends to R instead of N and in fact all pointed sets (Y, 0).

Definition A.1.5 (Upward Closure). Given a set X ⊆ PX, define

dXe := {Y ⊆ X | Y ⊇ Z for some Z ∈ X}. (A.1)

161

162 APPENDIX A. SET THEORY

A.2 Order Theory

Definition A.2.1 (Preorders). A preorder on a set X is a binary relation (≤) ⊆ X × X,

which is

1. reflexive, so that x ≤ x, and

2. transitive, so that x ≤ z if x ≤ y and y ≤ z,

for all x, y, z ∈ X

Definition A.2.2 (Partial Orders). A partial order on a set X is a preorder ≤⊆ X×X, which

is

3. antisymmetric, so that x = y if x ≤ y and y ≤ x, for all x, y ∈ X.

Definition A.2.3 (Directed Sets). A set X is called directed, if it comes augmented with a

partial order ≤⊆ X × X, such that

1. X is non-empty, and

2. for every pair (y1, y2) of elements of X, with a common lower bound x, such that

x ≤ y1 and x ≤ y2, there is an element z ∈ X such that y1 ≤ Z and y2 ≤ Z.

Definition A.2.4 (Partial Orders (continued)). 1. A partial order (X,≤) is said to have

a bottom element, if there is an element ⊥ ∈ X such that ⊥ ≤ x for all x ∈ X.

2. A partial order (X,≤) is called complete, if all subsets Y ⊆ X have a least upper

bound.

3. A partial order (X,≤) is called directed complete, if all directed subsets Y ⊆ X have

an upper bound.

Appendix B

Category Theory

We review the basic definitions of category theory, we need in this dissertation. All re-

sults in this chapter are well known and we repeat proofs when they contribute to the

understanding of the content of the main chapters of this dissertation. For a more concise

exposition we refer to the established literature [Kel05, Mac98].

B.1 Basic Category Theory

Definition B.1.1 ((Locally Small) Categories). A category C consists of

1. a collection Obj(C) of objects,

2. for each pair objects X and Y a set C(X,Y) of morphisms, the homset between X

and Y,

3. for each object X a canonical morphism idX : X → X,

4. for each pair of morphisms f : X → Y and g : Y → Z a morphism g ◦ f (equiva-

lently, f ; g) such that idY ◦ f = f = idY ◦ f for all morphisms f : X → Y

Morphisms f and g as in 3. are called compatible.

Example B.1.2. 1. The natural numbers, N, and ≤ form a category.

2. The ordinal ω with ∈ forms a category.

163

164 APPENDIX B. CATEGORY THEORY

3. Any preordered set 〈X,≤〉 is a category.

4. Sets and functions form the category Set.

5. Sets and relations form the category Rel.

6. Directed complete partial orders with bottom element and order-preserving func-

tions form the category DCPO⊥.

7. The free algebras for a monad and their homomorphisms form the category Kl(B).

8. The Eilenberg-Moore algebras for a monad and their homomorphisms form the

category B-Alg.

Definition B.1.3 (Discrete Categories). A category C is discrete if for any pair of distinct

objects X and Y, C(X,Y) = ∅. Every category C has a discrete version, which we denote

by |C|.

Definition B.1.4 (Dual Categories). The dual Cop of a category C as above, is one where

all morphisms are inverted, that is for every pair of objects X and Y, Cop has a morphism

f : X → Y where C has a morphism f : Y → X.

Definition B.1.5 (Covariant Functors). A functor T : C → D between categories C and

D consists of

• a map T : Obj(C)→ Obj(D) on the objects of C andD

• a map T on the morphisms, preserving

– the identity morphisms, such that T idX = idT X

– and composition, such that T (g ◦ f) = Tg ◦ T f

Example B.1.6 (Covariant Functors). 1. Id : C is the identity functor taking objects

X 7→ X and morphisms (f : X → Y) 7→ f .

2. Let X be an object of C, we denote by X the functor taking all objects to X and

morphisms to idX.

B.1. BASIC CATEGORY THEORY 165

3. P : Set → Set is the covariant power set functor taking sets X to their powersets

and functions f to their direct-image lifting P f (Y ⊆ X) := { f (x) | x ∈ X}.

4. Lat : Set → Set taking sets X to the free lattices generated from X, and functions

f : X → Y to the free lattice morphism LatX → LatY.

5. SLat : Set → Set taking sets X to the free semi-lattices generated from X, and func-

tions f : X → Y to the free lattice morphism SLatX → SLatY. We will distinguish

the disjunctive semi-lattice functors as SLat∨ from the conjunctive semi-lattice func-

tor SLat∧, although the distinction is purely syntactic. functor

Definition B.1.7 (Contravariant Functors). A contravariant functor T : C → D is a

covariant functor T : C → Dop.

Example B.1.8 (Contravariant Functors). 1. The contravariant powerset functor takes

sets X to the sets of their predicates, that is functions m : X → {0, 1}, and functions

f : X → Y to Q f : QY → QX taking predicates n : Y → {0, 1} to their composition

with f , that is predicates (n ◦ f)(x) := n(f (x)).

Definition B.1.9 (Endofunctors). An endofunctor is a functor T : C → C, whose source

and target category coincide.

Definition B.1.10 (Natural Transformations). Let T,T ′ : C → D be functors. A natural

transformation α : T ⇒ T ′ is a collection of morphisms αX for each object X of C, such

that for all morphisms f : X → Y, T ′ f ◦ αX = αY ◦ T f commutes. Nat(T,T ′) denotes the

set of natural transformations T ⇒ T ′.

Definition B.1.11 (Diagrams). A diagram in a categoryD is a functor D : C → D, where

C is called the indexing category. A diagram is called discrete if C is a discrete category.

Definition B.1.12 (Images of Diagrams). Let D : C → D be a diagram. The image of D

is the subcategory ofD consisting of

• objects DX for each object X of C and

166 APPENDIX B. CATEGORY THEORY

• morphisms D f : DX → DY for each pair of objects X and Y in C and morphisms

f : X → Y in C.

Functoriality of D asserts, that the image of D satisfies identity and compositionality laws

of categories.

In this thesis we meet frequently the chain diagrams SeqT and SeqT for functors T . The

following definitions make the explanations in the introduction formal.

Definition B.1.13 (SeqT). Given a functor T on a category C with an initial object 0 with

initial object morphism ¡X For any object X of C, we define the ω-chain SeqT , which is

a diagram SeqT : ω → C, where ω is the category in 2. of Example B.1.2. Recall, that

objects of ω are elements of ω and morphisms are given by ∈. Then SeqT is generated

from

SeqT (n) := T n0 and SeqT (n ∈ n + 1) := T n¡T0 for all n < ω (B.1)

as in the following diagram

0
!T1 // T0 // · · · // T n0

T n¡T0// T n+10 // · · · (B.2)

Definition B.1.14 (SeqT). Given a functor T on a category C with an initial object 0 with

initial object morphism ¡X For any object X of C, we define the ωop-chain SeqT , which is a

diagram SeqT : ωop → C, where ωop is the dual of category ω as in 2. of Example B.1.2.

Then SeqT is generated from

SeqT (n) := T n1 and SeqT (n ∈ n + 1) := T n!T1 for all n < ω (B.3)

as in the following diagram

1 T1
!T1oo · · ·oo T n1oo T n+11

T n!T1oo · · ·oo (B.4)

Definition B.1.15 (n-Multi-Endofunctors). Let n ∈ N be a natural number. An n-multi-

endofunctor is a functor T , whose source consists of an n-tuple of categories. T consists

B.1. BASIC CATEGORY THEORY 167

of

• a map T : Obj(C)1 × · · · × Obj(C)n → D, and

• a map T on morphisms, preserving collectively

– identity morphisms, such that T : (idX1 , . . . , idXn) 7→ idT (X1,...,Xn), and

– composition component wise, such that T : (g1◦ f1, . . . , gn◦ fn) 7→ T (g1, . . . , gn)◦

T (f1, . . . , fn).

Definition B.1.16 (Natural Transformations). A natural transformation α : S ⇒ T

between functors S ,T : C → D is a collection of morphisms (αX)X∈Obj(C), such that

αY ◦ S f = T f ◦ αX commutes for all pairs of objects X and Y of C and morphisms

f : X → Y between them.

Definition B.1.17 (Adjunctions). Functors S : C → D and T : D → C are said to form

an adjunction such that S is left adjoint to T , written S a T, or equivalently T is right

adjoint to S , ifD(S (−),+) � C(−,T (+)) are in bijection. We denote the bijection by (−)†

without stating the direction, as this is usually clear from the context.

1. An adjunction S a T has a unit, that is a natural transformation η : Id ⇒ TS in C,

and a counit, that is a natural transformation ε : S T ⇒ Id inD, defined such that

• η := (idS)†

• ε := (idT)†

2. Conversely we can define (−)† from η and ε. Let f : X → TY and g : S X → Y, then

we define

• f † := εY ◦ S f

• g† := Tg ◦ ηX

Directions 1. and 2. are converse to each other.

Definition B.1.18 (Comma Categories). Let C and D be category, let D be an object of

D, and let T : C → D be a functor. (T ↓ D) denotes the category consisting of

168 APPENDIX B. CATEGORY THEORY

• objects which are morphisms TC → D inD for objects C of C,

• and for any pair of objects f : TC → D and f ′ : TC′ → D in (T ↓ D) morphisms

f → f ′, which are morphisms g : C → C′ in C such that f = f ′ ◦ Tg commutes.

B.2 Limits and Colimits

Definition B.2.1 (Monomorphisms). A morphism m : Y → Z is called monic or a

monomorphism if for any pair of morphisms f , g : X → Y, f = g whenever m◦ f = m◦g.

A natural transformation is called monic, if all of its components are monomorphisms.

Definition B.2.2 (Epimorphisms). A morphism e : X → Y is called epic or an epimor-

phism if for any pair of morphisms f , g : Y → Z, f = g whenever f ◦ e = g ◦ e. A natural

transformation is called epic, if all of its components are epimorphisms.

Definition B.2.3 ((Weak) Pullbacks). A (weak) pullback of a diagram X
g
−→ Y

g′
←− X′ as

in (B.5) below consists of an object Z with arrows f : Z → X and f ′ : Z → X′, making

g ◦ f = g′ ◦ f ′ commute. Moreover 〈Z, f , f ′〉 is universal such that for all objects Z′ with

morphisms k : Z′ → X and k′ : Z′ → X′, there is an arrow h : Z → Z′ making f ◦ h = k

and f ′ ◦ h = k′ commute. 〈Z, f , f ′〉 is a pullback if h is unique, and a weak pullback

otherwise.

Z′
h

k

##

k′

��

Z
f //

f ′
��

X
g
��

X′
g′
// Y

(B.5)

Definition B.2.4 (Products). Let X and Y be objects in a category C. Their product, X×Y,

is an object with morphisms πX : X × Y → X and πY : X × Y → Y universal in the sense,

that for every object Z with morphisms π′X : Z → X and π′Y : Z → Y, there is a unique

B.2. LIMITS AND COLIMITS 169

morphism h : X × Y → Z making the following diagram commute.

X X × Y
πXoo πY // Y

Z
π′X

bb

π′Y

<<

h

OO (B.6)

Coproducts are dual to products.

Definition B.2.5 (Coproducts). The coproduct X +Y of objects X And Y of a category C is

an object with morphisms κX : X → X + Y and κY : Y → X + Y such that for every object

Z with morphisms κ′X : X → Z and κ′Y : Y → Z, there is a unique morphism h : Z → X +Y

making the following diagram commute.

X
κX //

κ′X ##

X + Y

h
��

Y
κYoo

κ′Y||
Z

(B.7)

Powers and copowers generalise the notion of products and coproducts. In this thesis, we

only use the following notion copowers in sets.

Definition B.2.6 (Copowers in Sets). Let Act be a set and let X be an object of a category

C, the copower Act ·X is defined to be an object such that C(Act ·X,Y) � C(X,Y)Act natural

in Y for all objects Y in C.

Colimits subsume epimorphisms, coproducts and copowers.

Definition B.2.7 (Colimits). Let D : I → C be a diagram in C, then the colimit colimD

of D is the object satisfying

Nat(D,D′) � C(colimD,D′) (B.8)

for any object D′ in C.

Note that when we instantiate D′ := colimD in Equation B.8 and insert the identity mor-

phism idcolimD : colimD → colimD on the right hand side, we obtain a uniquely defined

170 APPENDIX B. CATEGORY THEORY

natural transformation c : D ⇒ colimD on the left hand side. We call this natural trans-

formation the cocone of colimD over D.

Proposition B.2.8. Let D be a diagram in C and let c : D ⇒ colimD be the colimiting

cocone over D, then c is jointly epic.

Proof. Epicness follows from the universal property of colimits, that Nat(D, X) = C(colimD, X)

are in bijection for all X. �

B.2.1 Filtered Colimits and Finitary Functors

For more details on filtered colimits and finitary functors we refer to [AR94] and [ARV10].

In this thesis, we only need Definition B.2.13.

Definition B.2.9 (Filtered Categories). 1. C is non-empty, that is C has an object.

2. For any pair of objects X,Y ∈ C, there exists an object Z ∈ C and morphisms X → Z

and Y → Z.

3. For any pair of parallel morphisms f , g : X → Y in C, there exists a morphism

h : Y → Z making h ◦ f = h ◦ g commute.

Definition B.2.10 (Filtered Diagrams). A diagram D : C → D is filtered, if C is a filtered

category.

Lemma B.2.11. SeqL is a filtered diagram.

Proof. SeqL is a chain diagram and thus filtered. See also Example 2.3 of [ARV10]. �

Definition B.2.12 (Filtered Colimits). A colimit colimD of a diagram D is called filtered,

if D is filtered.

Definition B.2.13 (Finitary Functors). A functor T : C → C is finitary if T preserves finite

filtered colimits.

The following proposition follows immediately from Lemma B.2.11 and Definition B.2.13.

Proposition B.2.14. Finitary functors T preserve the colimit of SeqT , so that the initial

T -sequence terminates after ω steps.

B.2. LIMITS AND COLIMITS 171

B.2.2 Equalisers and Coequalisers

Definition B.2.15 (Equalisers). The equaliser of a pair of morphisms f0, f1 : X → Y is a

morphism e : Z → X such that f0 ◦ e = f1 ◦ e such that for all objects Z′ and morphisms

e′ : Z′ → X with f0 ◦ e′ = f1 ◦ e′, there is a unique morphism h : Z′ → Z such that

e ◦ h = e′.

Y X
f0
oo

f1oo Zeoo

Z′
e′

``

h

OO (B.9)

A proof of the following can be found for instance in [Mac98].

Lemma B.2.16. Every equaliser is monic.

Coequalisers are dual to equalisers.

Definition B.2.17 (Coequalisers). The coequaliser of a pair of morphisms f0, f1 : X → Y

is a morphism c : Y → Z such that c ◦ f0 = c ◦ f1 such that for all objects Z′ and

morphisms c′ : X → Z′ with c′ ◦ f0 = c′ ◦ f1, there is a unique morphism h : Z → Z′ such

that c = c′ ◦ h.

X
f0 //
f1
// Y c //

c′

��

Z

h
��

Z′

(B.10)

The following lemma is the dual statement of Lemma B.2.16.

Lemma B.2.18. Every coequaliser is epic.

Lemma B.2.19. Let the following be coequaliser diagrams:

A
f1 //
f2

//� _

k
��

B
g //� _

l
��

C

h
��

A′
f ′1 //
f ′2

// B′
g′ // C′

(B.11)

such that

1. A→ B→ C and A′ → B′ → C′ are coequaliser diagrams

2. l ◦ fi = f ′i ◦ k for both i ∈ {1, 2}

172 APPENDIX B. CATEGORY THEORY

3. h is the unique arrow determined given by the lower coequaliser

Then h is monic.

Proof. Suppose h were not mono, then we could construct an object D into which C′

embeds such that there is not a unique morphism C′ → D contradicting the universal

property of the coequaliser C′. �

B.2.3 Pointwise Construction of Kan Extensions

Definition B.2.20 (Left Kan-Extension). Consider the following diagram, where A, B,

and C are categories, and K : C → A, T : C → B and L : A → B are functors.

A
L // B

C

K

OO

T

?? (B.12)

The left Kan-extension of T along K, denoted LanKT, is a functor L with a natural

transformation λ : T ⇒ LK universal such that for any other functor L′ : A → B and

natural transformation λ′ : T ⇒ L′K there is a unique natural transformation δ : L⇒ L′

such that δK ◦ λ = λ′.

The right Kan-extension is the defined dually.

Mac Lane [Mac98] gave a construction of the right Kan-extension as limit. Next we give

the dual construction for reference.

Definition B.2.21 (Point wise Left Kan-Extension). Let (K ↓ A) be the comma category

of arrows f : KC → A in A. Define the functor OA : (K ↓ A) → B as OA(f) := TC.

Then define LC := colimOA, given the colimit exists.

Definition B.2.21 is sound. The following is the dual of Theorem X.3.1 of [Mac98].

Theorem B.2.22. The functor defined in Definition B.2.21 is the left Kan-extension of T

along K.

B.3. MONOIDAL CATEGORIES 173

B.3 Monoidal Categories

Definition B.3.1 ((Strong) Monoidal Categories). A (strong) monoidal category 〈C,⊗, I〉

consists of

• a category C,

• a two-multi-endofunctor C ⊗ C → C, and

• a distinguished object I ∈ Obj(C)

such that

• I ⊗ X λ
= X

ρ−1

= X ⊗ I are isomorphic, natural in X

• (X ⊗ Y) ⊗ Z α
= X ⊗ (Y ⊗ Z) are isomorphic, natural in X, Y, and Z

Definition B.3.2 ((Strong) Symmetric Monoidal Categories). A (strong) monoidal cate-

gory C as above is symmetric, if X ⊗ Y and Y ⊗ X are isomorphic.

Definition B.3.3 (Closed Category). A category C is closed, if for each pair of objects X

and Y, C(X,Y) is an object of C.

Definition B.3.4 ((Strong) Symmetric Monoidal Closed Categories). A (strong) symmet-

ric monoidal closed category is a closed (strong) symmetric monoidal category 〈C,⊗, I〉

such that [X ⊗ Y,Z] = [X, [Y,Z]] are isomorphic natural in X, Y, and Z.

Example B.3.5. 〈Set,×, {∗}〉 is a strong symmetric monoidal closed category.

Definition B.3.6 (Faithful Functors). A functor T : C → D is faithful if T is injective on

C(X,Y) for all objects X and Y of C.

B.4 Category Theory of Set

Lemma B.4.1. In the presence of the axiom of choice, every epimorphism e : X → Y has

a monic section m : Y → X, such that e ◦ m = idY .

174 APPENDIX B. CATEGORY THEORY

Proof. Let c be a choice function c : {e−1[y] | y ∈ Y} → X, then define m(y) := c(e−1[y]).

Then m(y) ∈ e−1[y] and thus e(m(y)) = y. �

Definition B.4.2 (Finitarisation of Set-Functors). Let T : Set → Set be a functor, we

define the finitarisation Tω : Set → Set of T such that Tω(X) :=
⋃
{TY | Y ⊆ω X}.

B.4.1 Standard and Weak-Pullback Preserving Functors

We adopt the following definition of standardness for Set-functors, which has been used

in [Mos99, Ven04] for instance.

Definition B.4.3 (Standard Functors). A set functor T is standard, if T preserves inclusion.

if X ⊆ Y then T X ⊆ TY (B.13)

The above definition differs from the definition of standardness in [AT90]. The latter is

based on choice functors C1 : Set → Set and C01 : Set → Set defined such that

C1 : X 7→ {∗} C1 : (f : X → Y) 7→ id{∗} (B.14)

and

C01 : X 7→


∅ if X = ∅

{∗} otherwise
C1 : (f : X → Y) 7→


∅ if X = ∅

id{∗} otherwise
(B.15)

Definition B.4.4 (∅-Standard Functors). A functor T : Set → Set is called ∅-standard if

T is standard and every natural transformation C01 ⇒ T can be extended to a natural

transformation C1 ⇒ T.

The following lemma appears as Lemma A.2.12 in [Kup06].

Lemma B.4.5. Every standard weak-pullback preserving functor T : Set → Set is ∅-

standard.

Using Lemma B.4.5, Theorem III.4.5 in [AT90] implies the following theorem.

B.4. CATEGORY THEORY OF SET 175

Theorem B.4.6. Every weak-pullback preserving functor is naturally isomorphic to stan-

dard weak-pullback preserving one.

The following is Proposition III.4.6 of [AT90], and is necessary for Definition B.4.13 to

be sound.

Proposition B.4.7. Any standard functor on Set preserves finite intersections.

B.4.2 Relations and Relation Liftings in Set

Definition B.4.8 (Relations). A relation R is given by a span

R
πX

��

πY

��
X Y

(B.16)

which we denote by (πX, πY) : R → X × Y. The composition R; R′ of relations is a weak

pullback (πR, πR′) : R; R′ → R×R′ of πY and π′Y as in the following diagram, defined such

that R; R′ := {(x, z) | ∃y ∈ Y.(x, y) ∈ R and (y, z) ∈ R′}.

R; R′
πR

}}

πR′

""
R

πX

��

πY

""

R′
π′Y

||

π′Z

��
X Y Z

(B.17)

The relation lifting for a Set-functor T is a functor RelT (−) on the category Rel of sets

and relations between them. The following definition makes this precise.

Definition B.4.9 (Binary Relation Lifting in Set). Let T be a weak pullback preserving

functor on Set, the relation lifting for T is a functor RelT (−) on Rel defined on relations

(πX, πY) : R→ X × Y by the following epi-mono-factorisation.

TR
(TπX ,TπY) //

����

T X × TY

RelT (R)
(� (πT X ,πTY)

55 (B.18)

176 APPENDIX B. CATEGORY THEORY

Concretely, we obtain the following definition.

RelT (R) := {(x, y) ∈ T X × TY | ∃z ∈ TR.(TπX)(z) = x and (TπY)(z) = y} (B.19)

The preservation of weak pullbacks is necessary to make RelT (−) functorial, in that it

commutes with relation composition as shown in Lemma B.4.12

The definition of binary relation lifting by factorisation generalises to n-ary relations as

follows.

Definition B.4.10 (n-ary Relation Lifting in Set). Let T be a weak pullback preserving

functor on Set, the relation lifting for T is a functor RelT (−) on Rel defined on relations

(πX0 , . . . , πXn−1) : R→
∏

i∈n Xi by the following epi-mono-factorisation.

TR
(TπX0 ,...,TπXn−1)

//

����

∏
i∈n Xi

RelT (R)
(� (πT X0 ,...,πT Xn−1)

66 (B.20)

Concretely, RelT (R) := {(x0, . . . , xn−1) ∈
∏

i<n T Xi | ∃z ∈ TR.(TπXi)(z) = xi for all i < n}.

The preservation of weak pullbacks is necessary to make RelT (−) functorial, in that it

commutes with relation composition.

The definition of n-ary relation lifting for finite n does not add to the generality of the

definition of binary relation liftings. In general, (n + 1)-ary relation liftings reduce to

n-ary relation liftings. We show only the case for n = 2, as this is relevant in Chapter 11.

Lemma B.4.11. Let (πX, πY , πZ) : R → X × Y × Z be a ternary relation, then R is in

bijection with a binary relation (πX, πRYZ) : RXYZ → X×RYZ where (π′Y , π
′
Z) : RYZ → Y ×Z

with RYZ := {(y, z) | (x, y, z) ∈ R}, such that RXYZ := {(x, (y, z)) | (x, y, z) ∈ R}. Then

RelT (RXYZ) = (idX, eYZ)(RelT (R)) where eYZ : RelT (RYZ)→ TRYZ.

Proof. It is a fact of set theory that πY = π′Y ◦ πRYZ and πZ = π′Z ◦ πRYZ commute, so that

TπY = Tπ′Y ◦TπRYZ and TπZ = Tπ′Z ◦TπRYZ . Then the lemma reduces to the commutativity

of all triangles in the following diagram, which follows from the definition of relation

B.4. CATEGORY THEORY OF SET 177

liftings.

TR

TπX

TπRYZ

��

e // // RelT (R)

πT X

||

πTRYZvv
TRYZ

Tπ′Y
�� Tπ′Z ��

e′ // // RelT (RYZ)

π′TYtt Tπ′TZttT X TY TZ

(B.21)

�

The following lemma can be found for instance in [Kup06].

Lemma B.4.12. Let T be a standard functor preserving weak pullbacks, let X, Y and Z

be sets, and let R and R′ be relations as below.

1. RelT (∆)X = ∆T X.

2. Let (πX, πY) : R → X × Y and (π′Y , π
′
Z) : R′ → Y × Z, then RelT (() R; R′) =

RelT (R) ; RelT (R)′.

3. RelT (−) is monotone, so that RelT (R) ⊆ RelT (R′) if R ⊆ R′ for (πX, πY) : R→ X×Y

(π′X, π
′
Y) : R′ → X × Y.

4. RelT (−) commutes with taking converse RelT (R̆) = RelT (R) ,̆ where (πX, πY) : R→

X × Y.

Proof. 1. ∆X is a relation (πX, π
′
X) : ∆X → X ×X, where πX = π′X and thus TπX = Tπ′X.

Thus by definition of relation liftings, (πT X, π
′
T X) : RelT (∆X) → X × X is given by

πT X = π′T X, so that RelT (∆X) = ∆T X.

2. RelT (R; R′) = RelT (R) ; RelT (R′) follows from the commutativity of the following

diagram.

RelT (R; R′)

πTR

�� πTR′ **

T (R; R′)e∗oooo

TπRtt

TπR′

��
RelT (R)
πT X

�� πTY ++

TReoooo

TπXww

TπY

%%

TR′ e′ // //

Tπ′Y

zz Tπ′Z &&

RelT (R)′

π′TYtt

π′TZ
��

T X TY TZ

(B.22)

178 APPENDIX B. CATEGORY THEORY

3. Monotonicity of RelT (−) follows from the commutativity of the following diagram

and the definition of relation liftings, that is (B.19).

RelT (R)� t

(πT X ,πTY) ''

TReoooo � _

⊆

��

(TπX ,TπY)

yy
T X × TY

RelT (R′)
*

(π′T X ,π
′
TY)

77

TR′
e′

oooo
(Tπ′X ,Tπ

′
Y)

ee

(B.23)

4. The commutativity of RelT (−) with taking converses follows from the commutativ-

ity of the following diagram and the definition of relation liftings, that is (B.19).

RelT (R)� t

(πT X ,πTY) &&

(−)̆

��

TReoooo

T (−)̆

��

(TπX ,TπY)

yy
T X × TY

σ
��

TY × T X

RelT (R̆)
*

(πTY ,πT X)
88

TR′
e′

oooo
(TπY ,TπX)

ee

(B.24)

where σ : T X × TY → TY × T X takes (α, β) 7→ (β, α).

�

B.4.3 Bases and Redistributions

Definition B.4.13 (Base). Let T be a standard functor on Set, and let X be a set and

α ∈ TωX, we define the base of α, such that

Base(α) :=
⋂
{Y ⊆ω X | α ∈ TY} (B.25)

The following lemma is Lemma 2.3.6 of [Kup06].

Lemma B.4.14. Let X and α be as in Definition B.4.13, then Base(α) is the smallest finite

subset Y of X such that α ∈ TY.

B.4. CATEGORY THEORY OF SET 179

Example B.4.15. Let T := (−) × (−) × (−), the base of (1, 2, 1) ∈ TωN is {1, 2}.

The following lemma is known.

Lemma B.4.16. Base is a strict natural transformation T ⇒ P for all standard functors

T , in particular Base(T f) = (P f)Base for any function f .

Proof. Let X and X′ be sets, f : X → X′ a function, and let α ∈ T X.

(P f)Base(α) = (P f)
⋂
{Y | Y ⊆ X, α ∈ TY} =⋂

{(P f)Y | Y ⊆ X, α ∈ TY} =⋂
{Y | Y ⊆ (P f)X, (T f)α ∈ TY} =⋂
{Y | Y ⊆ X′, (T f)α ∈ TY} = Base ((T f)α)

�

Definition B.4.17 (Redistributions). A set Φ ∈ TPX is a redistribution of a set A ∈

PT X if (α,Φ) ∈ RelT (∈) for all α ∈ A. A redistribution Φ ∈ PωTωX is slim, if Φ ∈

TωPω
(⋃

α∈A Base(α)
)
. We denote the set of slim redistributions of a set A as SRD(A).

180 APPENDIX B. CATEGORY THEORY

Appendix C

Coalgebras

Definition C.0.18 (Coalgebras and Their Morphisms). Let T be a functor on a category

C and S an object of C. We call a morphism σ : S → TS in C a T-coalgebra and T the

transition type of σ. A T-coalgebra morphism between T-coalgebras σ : S → TS and

δ : Y → TY is a morphism f : S → S ′ making the following commute.

S σ //

f
��

TS
T f
��

S ′
δ
// TS ′

(C.1)

T-coalgebras and their morphisms form a category, which we denote by CoalgCT.

Definition C.0.19 (Final Coalgebras). The final object 〈Z, ξ〉 of CoalgCT is called the final

T-coalgebra.

Definition C.0.20 (Coproducts of Coalgebras). Let S = 〈S , σ〉 and S′ = 〈S ′, σ′〉 be T-

coalgebras in Set for a standard functor T , their coproduct S + S′ in CoalgSet is the T-

coalgebra, 〈S + S ′, σ+σ′〉 defined such that (σ+σ′)(s) = σ(s) and (σ+σ′)(s′) = σ′(s′)

for all s ∈ S and s′ ∈ S ′.

Pointed coalgebras are coalgebras in which we distinguish a point. Pointed coalgebras

are not necessarily rooted in the sense that every point is reachable from the distinguished

point as in Section 11.1.1. In this dissertation pointed coalgebras play mainly a role as the

structures recognised by coalgebra automata.

181

182 APPENDIX C. COALGEBRAS

Definition C.0.21 (Pointed Coalgebras). A pointed T -coalgebra is a structure 〈σ : S →

TS , s〉 where s ∈ S is a point of σ. A coalgebra morphism between pointed T-coalgebras

S = 〈S , σ, sI〉 and S′ = 〈S ′, σ′, s′I〉 is a T-coalgebra morphism f between 〈S , σ〉 and

〈S ′, σ′〉 preserving the distinguished point, that is f (sI) = s′I .

In the following we review a generic notion of bisimilarity valid in the category Set.

For an overview of other definitions of bisimilarity see Staton [Sta11].

Definition C.0.22 (Observational Equivalence). States s and s′ in T-coalgebras S =

〈S , σ〉 and S′ = 〈S ′, σ′〉, respectively, are said to be observationally equivalent, if there is

a T-coalgebra Z = 〈Z, ξ〉 with T-coalgebra morphisms f : S → Z and g : S′ → Z with

f (s) = g(s′).

If T preserves weak pullbacks, observational equivalence as above is equivalent to the

bisimilarity as the largest T -bisimulation as follows. The definition is due to Aczel and

Mendler [AM89].

Definition C.0.23 (T -Bisimilarity and T -Bisimulation between T -Coalgebras in Set). A

T -bisimulation between T-coalgebras S = 〈S , σ〉 and S′ = 〈S ′, σ′〉 in Set is a relation

R ⊆ S × S ′ such that there is a morphism r : R→ TR making both sides of the following

commute.

TS TR
Tπ1oo Tπ2 // TS ′

S

σ

OO

Rπ1
oo

r

OO

π2
// S ′

σ′

OO (C.2)

T -Bisimilarity between S and S′ is the largest T -bisimulation between S and S′.

Hermido and Jacobs [HJ97] observed that the previous definition can be reformulated

in terms of relation liftings as follows.

Definition C.0.24 (T -Bisimilarity and T -Bisimulation between T -Coalgebras in Set). A

T -bisimulation between T-coalgebras S = 〈S , σ〉 and S′ = 〈S ′, σ′〉 in Set is a relation

R ⊆ S × S ′ such that there is a morphism ρ : R → RelT (R) making both sides of the

183

following commute.

TS RelT (R)
πTSoo πTS ′ // TS ′

S

σ

OO

RπS
oo

r

OO

πS ′
// S ′

σ′

OO (C.3)

T -Bisimilarity between S and S′ is the largest T -bisimulation between S and S′.

Definition C.0.23 coincides with Definition 1.5.1 of T -bisimulation and T -bisimilarity

for standard functors T , as a T -bisimulation R between T -coalgebras S and S′ as above

is a T -bisimulation on S + S′. We need Definition C.0.23 for the following definition of

T -bisimulation between pointed T -coalgebras.

Definition C.0.25 (T -Bisimilarity and T -Bisimulation for Pointed T -Coalgebras in Set).

A T -bisimulation between pointed T-coalgebras S = 〈S , σ, sI〉 and S′ = 〈S ′, σ′, s′I〉 is a T-

bisimulation R between 〈S , σ〉 and 〈S ′, σ′〉 such that (sI , s′I) ∈ R. T -bisimilarity between

S and S′ is the largest T -bisimulation between S and S′.

In this dissertation we the presentation of T -bisimilarity in terms of a cone of S over SeqT .

Lemma C.0.26. For any T-coalgebra S = 〈S , σ〉, any T-bisimulation R on S is contained

in the kernel of the cone f : S ⇒ SeqT defined inductively such that

f0 :=!S and fn+1 := T fn ◦ σ. (C.4)

Proof. Similar to S, R has a cone over the SeqT , such that

g0 :=!S and gn+1 := Tgn ◦ r (C.5)

as in the following diagram.

R r //
g0

��
gn

��
gn+1

''

TR
Tgn

��
{∗} · · ·oo T n{∗}oo T n+1{∗}

T n!T {∗}

oo · · ·oo

(C.6)

184 APPENDIX C. COALGEBRAS

We use the commutativity of Diagram 1.11 to prove that R ⊆ ker fn for all n < ω for all n.

S σ //

fn

""

TS

T fn

{{

R

π1

bb

π2

bb

gn

��

r // TR

Tπ1

::

Tπ2

::

Tgn
��

T n{∗} T n+1{∗}
T n!T {∗}

oo

(C.7)

In the base case n = 0, g0 = f0 ◦ π0 = f0 ◦ π1 by finality of 1. The induction step we

obtain as follows.

ker fn+1 = ker(T fn ◦ σ) ⊇ r[TR] ⊇ R (C.8)

�

List of Tables

1.1 Concepts from Algebra and Coalgebra 2

1.2 Examples of Coalgebras . 3

1.3 Examples of Transition Functions for Nondeterministic Automata 6

1.4 Examples of Branching Types for Word Automata 6

3.1 Examples of Monads . 30

7.1 Notational Convention for Coalgebraic Logic 77

8.1 Comparison of Moss’ Coalgebraic Logics and Finite Trace Logics 88

10.1 Acceptance Games for Nondeterministic Coalgebra Automata 127

10.2 Branching Types of Coalgebra Automata 127

10.3 Acceptance Games for Alternating Automata 128

10.4 Acceptance Games for Semi-Transalternating Automata 129

10.5 Acceptance Games for Transalternating Automata 130

11.1 Example of Pumping . 146

185

186 LIST OF TABLES

List of Figures

7.1 Axiom System M for Finitary Coalgebraic Logics 79

10.1 Transformation of Semi-Transalternating into Alternating Automata . . . 133

11.1 Examples for Deleting and Pumping Once and Iteratedly in Set-Coalgebras 148

187

188 LIST OF FIGURES

Bibliography

[Abr90] Samson Abramsky. The lazy lambda calculus, pages 65–116. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[Acz88] Peter Aczel. Non-Well-Founded Sets. CSLI, Stanford, 1988.

[AGT09] Jiří Adámek, Heinz-Peter Gumm, and Vera Trnkova. Presentation of Set

Functors: A Coalgebraic Perspective. J Logic Computation, pages exn090+,

February 2009.

[AK79] Jiří Adámek and Václav Koubek. Least Fixed Point of a Functor. J. Comput.

Syst. Sci., 19(2):163–178, 1979.

[AM89] Peter Aczel and Nax P. Mendler. A Final Coalgebra Theorem. In David H.

Pitt, David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné,

editors, Category Theory and Computer Science, volume 389 of Lecture Notes

in Computer Science, pages 357–365. Springer, 1989.

[AR94] Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories,

volume 189 of London Mathematical Society Lecture Notes Series. Cam-

bridge University Press, 1st edition edition, 1994.

[ARV10] Jiří Adámek, Jiří Rosický, and Enrico M. Vitale. Algebraic Theories: A Cate-

gorical Introduction to General Algebra (Cambridge Tracts in Mathematics).

Cambridge University Press, December 2010.

[AT90] Jiří Adámek and Vera Trnkova. Automata and Algebras in Categories. Kluwer

Academic Publishers, Norwell, MA, USA, 1990.

189

190 BIBLIOGRAPHY

[Bar81] Henk Barendregt. The Lambda Calculus - Its Syntax and Semantics, volume

103 of Studies in Logic. North-Holland, 1981.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, vol-

ume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, 2001.

[Bec69] Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and

Categorical Homology Theory, volume 80 of Lecture Notes in Mathematics,

chapter 6, pages 119–140. Springer Berlin / Heidelberg, 1969.

[BHPS61] Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On formal properties

of simple phrase structure grammars. Zeitschrift für Phonetik, Sprachwis-

senschaft und Kommunikationsforschung, (14):143–172, 1961.

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced.

J. ACM, 42(1):232–268, January 1995.

[BM04] Jon Barwise and Lawrence S. Moss. Vicious Circles (Center for the Study of

Language and Information - Lecture Notes). Center for the Study of Language

and Inf, August 2004.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based con-

straint satisfaction and optimization. J. ACM, 44(2):201–236, 1997.

[BPV08] Marta Bílková, Alessandra Palmigiano, and Yde Venema. Proof systems for

the coalgebraic cover modality. In Carlos Areces and Robert Goldblatt, edi-

tors, Advances in Modal Logic, pages 1–21. College Publications, 2008.

[C1̂0] Corina Cîrstea. Generic Infinite Traces and Path-Based Coalgebraic Temporal

Logics. In Bart P. F. Jacobs, Milad Niqui, Jan J. M. M. Rutten, and Alexandra

Silva, editors, Coalgebraic Methods in Computer Science 2010, volume 264,

pages 83–103. Elsevier, 2010.

BIBLIOGRAPHY 191

[DR95] Volker Diekert and Grzegorz Rozenberg. The Book of Traces. World Scientific

Publishing Co., Inc., River Edge, NJ, USA, 1995.

[EJ91] E. Allen Emerson and Charanijt S. Jutla. Tree automata, mu-Calculus and

Determinacy. In Proceedings of the 32nd annual symposium on Foundations

of computer science, pages 368–377, Los Alamitos, CA, USA, 1991. IEEE

Computer Society Press.

[Gol10] Jonathan S. Golan. Semirings and their Applications. Springer, softcover

reprint of hardcover 1st ed. 1999 edition, December 2010.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Log-

ics, and Infinite Games: A Guide to Current Research. Springer-Verlag New

York, Inc., New York, NY, USA, 2002.

[Gum99] Heinz P. Gumm. Elements Of The General Theory of Coalgebras, 1999.

[Has08] Ichiro Hasuo. Tracing Anonymity with Coalgebras. PhD thesis, Radboud

Universiteit Nijmegen, March 2008.

[HJ97] Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a

Fibrational Setting. Information and Computation, 145:107–152, 1997.

[HJS06] Ichiro Hasuo, Bart P. F. Jacobs, and Ana Sokolova. Generic Trace The-

ory. In International Workshop on Coalgebraic Methods in Computer Science

(CMCS 2006), volume 164 of Elect. Notes in Theor. Comp. Sci., pages 47–65.

Elsevier, 2006.

[HJS07] Ichiro Hasuo, Bart P. F. Jacobs, and Ana Sokolova. Generic Trace Semantics

via Coinduction. ArXiv e-prints, October 2007.

[HK07] Ichiro Hasuo and Yoshinobu Kawabe. Probabilistic Anonymity Via Coalge-

braic Simulations. In ESOP’07 Proceedings of the 16th European conference

on Programming, pages 379–394. Springer-Verlag Berlin, Heidelberg, 2007.

192 BIBLIOGRAPHY

[HMU03] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to

automata theory, languages, and computation - international edition (2. ed).

Addison-Wesley, 2003.

[HTS02] Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Applying source-

code verification to a microkernel – The VFiasco project. In EW 10 Proceed-

ings of the 10th workshop on ACM SIGOPS European workshop. ACM, 2002.

[Jac94] Bart P. F. Jacobs. Semantics of Weakening and Contraction. Ann. Pure Appl.

Logic, 69(1):73–106, 1994.

[Jac04] Bart P. F. Jacobs. Trace Semantics for Coalgebras. Electronic Notes in Theo-

retical Computer Science, 106:167–184, December 2004.

[Jac05] Bart P. F. Jacobs. Introduction to Coalgebra. Towards Mathematics of States

and Observations. 2005.

[Jay95] C. Barry Jay. A Semantics for Shape. Science of Computer Programming,

25:25–251, 1995.

[Jec06] Thomas Jech. Set Theory. Springer, 3rd edition, April 2006.

[Joh86] Peter T. Johnstone. Stone Spaces (Cambridge Studies in Advanced Mathemat-

ics). Cambridge University Press, August 1986.

[Kel05] Gregory M. Kelly. Basic Concepts in Enriched Category Theory, 2005.

[Kis05] Christian Kissig. Introducing Modal Fixed-Point Operators into CCSL, Febru-

ary 2005.

[Kis07] Christian Kissig. Satisfiability of S2S. Master’s thesis, Universiteit van Ams-

terdam, August 2007.

[KK10] Christian Kissig and Alexander Kurz. Generic Trace Logics. 2010.

[KKV04] Clemens Kupke, Alexander Kurz, and Yde Venema. Stone coalgebras. Theor.

Comput. Sci., 327:109–134, October 2004.

BIBLIOGRAPHY 193

[KKV08] Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness of the

finitary Moss logic. In Carlos Areces and Rob Goldblatt, editors, Advances in

Modal Logic, 2008.

[KL09] Clemens Kupke and Raul A. Leal. Characterising Behavioural Equivalence:

Three Sides of One Coin. In Alexander Kurz, Marina Lenisa, and Andrzej Tar-

lecki, editors, CALCO, volume 5728 of Lecture Notes in Computer Science,

pages 97–112. Springer, 2009.

[Kli07] Bartek Klin. Coalgebraic modal logic beyond Sets. In In MFPS XXIII, volume

173, pages 177–201, 2007.

[Koc70] Anders Kock. Monads on symmetric monoidal closed categories. Archiv der

Mathematik, 21(1):1–10, December 1970.

[Kup06] Clemens Kupke. Finitary Coalgebraic Logic. PhD thesis, Universiteit van

Amsterdam, 2006.

[Kur01a] Alexander Kurz. Course on Coalgebras and Modal Logic, October 2001.

[Kur01b] Alexander Kurz. Logics for Coalgebras and Applications to Computer Sci-

ence. PhD thesis, Ludwig-Maximilians-Universität München, May 2001.

[KV05] Clemens Kupke and Yde Venema. Closure Properties of Coalgebra Automata.

In LICS ’05: Proceedings of the 20th Annual IEEE Symposium on Logic in

Computer Science (LICS’ 05), pages 199–208, Washington, DC, USA, 2005.

IEEE Computer Society.

[KV08] Clemens Kupke and Yde Venema. Coalgebraic Automata Theory: Basic Re-

sults. Computing Research Repository, November 2008.

[KV09] Christian Kissig and Yde Venema. Complementation of Coalgebra Automata.

In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, Calco 2009,

Lecture Notes in Computer Science, pages 81–96. Springer, September 2009.

194 BIBLIOGRAPHY

[Lea07] Raul A. Leal. Expressivity of Coalgebraic Modal Languages. Master’s thesis,

Universiteit van Amsterdam, August 2007.

[Lea08] Raul A. Leal. Predicate Liftings Versus Nabla Modalities. Electr. Notes Theor.

Comput. Sci., 203(5):195–220, 2008.

[Mac98] Saunders MacLane. Categories for the Working Mathematician. Graduate

Texts in Mathematics. Springer, New York, 2nd edition edition, 1998.

[MM07] Ernie Manes and Philip Mulry. Monad Compositions I: General Constructions

and Distributive Laws. Theory and Applications of Categories, 18(7):172–

208, 2007.

[Mos91] Andrzej Mostowski. Games with forbidden positions. Technical Report 78,

University of Gdansk, 1991.

[Mos99] Lawrence S. Moss. Coalgebraic Logic. Annals of Pure and Applied Logic,

96(1-3):277–317, 1999.

[Pat01a] Dirk Pattinson. Expressivity Results in the Modal Logic of Coalgebras. PhD

thesis, Universität München, 2001.

[Pat01b] Dirk Pattinson. Semantical Principles in the Modal Logic of Coalgebras. In

STACS ’01: Proceedings of the 18th Annual Symposium on Theoretical As-

pects of Computer Science, pages 514–526, London, UK, 2001. Springer-

Verlag.

[Pat03a] Dirk Pattinson. An Introduction to the Theory of Coalgebras, 2003.

[Pat03b] Dirk Pattinson. Coalgebraic Modal Logic: Soundness, Completeness and De-

cidability of Local Consequence. Theoretical Computer Science, 309, 2003.

[Pat04] Dirk Pattinson. Expressive Logics for Coalgebras via Terminal Sequence In-

duction. Notre Dame Journal of Formal Logic, 45(1):19–33, 2004.

BIBLIOGRAPHY 195

[PT99] John Power and Daniele Turi. A Coalgebraic Foundation for Linear Time

Semantics. In In Category Theory and Computer Science, volume 29, pages

2–9, 1999.

[Rab69] Michael O. Rabin. Decidability of Second Order Theories and Automata on

Infinite Trees. Transactions of the American Mathematical Society, 141:1–35,

1969.

[Rem00] Didier Remy. Using, Understanding, and Unraveling - The Ocaml Language

- From Practice to Theory and vice versa, 2000.

[RJ97] Jan J. M. M. Rutten and Bart P. F. Jacobs. A Tutorial on (Co)Algebras and

(Co)Induction. Bulletin of the EATCS, 62:222–259, 1997.

[RTJ01] Jan Rothe, Hendrik Tews, and Bart P. F. Jacobs. The Coalgebraic Class Speci-

fication Language CCSL. Journal of Universal Computer Science, 7:175–193,

2001.

[Rut96] Jan J. M. M. Rutten. Universal Coalgebra: A Theory of Systems, 1996.

[Rut02] Jan J. M. M. Rutten. Coinductive Counting With Weighted Automata. J.

Autom. Lang. Comb., 2002.

[Saf88] Shmuel Safra. On the Complexity of omega-Automata. In Proceedings of

the 29th Annual Symposium on Foundations of Computer Science FoCS ’88,

pages 319–327. IEEE Computer Society Press, 1988.

[Sch05] Lutz Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and

Beyond. In Vladimiro Sassone, editor, Foundations of Software Science And

Computation Structures, volume 3441 of Lecture Notes in Computer Science,

pages 440–454. Springer; Berlin; http://www.springer.de, 2005.

[Seg95] Roberto Segala. A compositional trace-based semantics for probabilistic au-

tomata. In 6th Intl. Conf. on Concurrency Theory (CONCUR ’95), volume

962 of Lecture Notes in Computer Science. Springer, 1995.

196 BIBLIOGRAPHY

[Sip96] Michael Sipser. Introduction to the Theory of Computation. PWS Pub. Co., 1

edition, December 1996.

[SP82] Michael B. Smyth and Gordon D. Plotkin. The category theoretic solution of

recursive domain equations. SIAM Journal of Computing, 11:761–783, 1982.

[Sta11] Sam Staton. Relating coalgebraic notions of bisimulation. CoRR,

abs/1101.4223, 2011.

[vB77] Johan F. A. K. van Benthem. Modal Correspondence Theory. PhD thesis,

Universiteit van Amsterdam, 1977.

[vB02] Johan F. A. K. van Benthem. Extensive Games as Process Models. Journal of

Logic, Language and Information, 11(3):289–313, June 2002.

[Ven04] Yde Venema. Automata and Fixed Point Logics for Coalgebras. Electronic

Notes in Computer Science, 106:355–375, 2004.

[vG90] Rob J. van Glabbeek. The linear time - branching time spectrum. pages 278–

297. 1990.

[Wor05] James Worrell. On the final sequence of a finitary set functor. Theoretical

Computer Science, 338(1-3):184–199, June 2005.

[Zie98] Wiesław Zielonka. Infinite games on finitely coloured graphs with applica-

tions to automata on infinite trees. Theoretical Computer Science, 200(1-

2):135–183, June 1998.

Index

DCPO, 122

DCPO⊥, 122

SRD, 134

Set-Coalgebras

Pumping, 108

Pumping Property, 110

Pumping Situation, 108

Unravelling, 106

DCPO⊥-Enrichment of Kleisli-Categories,

42

∅-Standard Functors, 130

SeqT , 125

SeqT , 125

(Strong) Symmetric Monoidal Categories,

130

(Strong) Symmetric Monoidal Closed Cat-

egories, 130

Acceptance Games

Basic Positions, 96

Acyclic Coalgebras, 105

Adjunctions, 126

Algebras, 2

Ambimorphic Objects, 68

Automata

Coalgebra Automata, 95

Base, 133

Base Dualisation Map, 64

Basic Positions in Acceptance Games, 96

Behavioural Equivalence, 2

Bisimilarity, 6, 136

Bisimilarity in Set, 7

Bisimulation, 136

Bisimulation in Set, 7

Categories, 123

Comma Categories, 126

Closed Categories, 130

Coalgebra Autoamta, 95

Coalgebra Automata, 55, 96

Acceptance Behaviour, 55

Acceptance Games, 94, 96

Algebraic Definition, 95

Alternating Coalgebra Automata, 95

Equivalence of Coalgebra Automata, 94

Languages of Coalgebra Automata, 94

Logical Form, 94

Semi-Transalternating Coalgebra Automata,

95

Transalternating Coalgebra Automata,

96

Coalgebra Semantics, 6

197

198 INDEX

Coalgebraic Modal Logics, 11

Coalgebras, 1, 2, 135

Pointed Coalgebras, 135

Coequalisers, 128

Coinduction, 2

Comma Categories, 126

Commutative Monads, 30

Comparison Functors K, 22

Compatible Morphisms, 123

Complete Partial Orders, 121

Congruence, 2

Contravariant Functors, 124

Copowers in Sets, 127

Coseparators, 69

Counits of Adjunctions, 126

Covariant Functors, 124

Cyclic Coalgebras, 105

Deleting in Coalgebras in Set, 110

Depth of States in Coalgebras in Set, 107

Depth One Formulas, 63

Diagrams, 124

Directed Complete Partial Orders, 121

Directed Sets, 122

Discrete Categories, 124

Discrete Diagrams, 124

Distributive Laws, 33, 34

Dual Categories, 124

Eilenberg-Moore-Algebras, 21, 22

Endofunctors, 124

Epimorphisms, 126

Equalisers, 128

Equivalence of Coalgebra Automata, 94

Faithful Functors, 130

Final Coalgebra, 2

Final Coalgebra Semantics, 6

Final Coalgebras, 7

Finitarisation of Set-Functors, 130

Finitary Functors, 128

Finite Trace Equivalence, 6, 46

Finite Trace Logics, 70

Finite Trace Semantics, 6, 45

Free Logic Functors, 70

Functions, 121

Functors

Faithful Functors, 130

Multi-Endofunctors, 125

Game Bisimulations, 89

Generic Trace Theory, 41

Graphs of Coalgebras, 104

Images of Diagrams, 125

Induction, 2

Infinite Trace Equivalence, 6

Infinite Trace Semantics, 6

Initial Algebra, 2

Kleisli Category, 22

Kleisli Construction, 22

Languages of Coalgebra Automata, 94

INDEX 199

Left Kan-Extension, 129

Logic Functors, 70

Denotation, 70

Modal Correspondence Theory, 11

Modal Logics, 11

Monads, 21

Commutative Monads, 30

Double Strength Laws, 30

Strength Laws, 30

Strong Monads, 30

Monic Natural Transformations, 126

Monomorphisms, 126

Multi-Endofunctors, 125

Multihomomorphic Extensions, 31

Natural Transformations, 125

Nondeterministic Coalgebra Automata, 55

Normal Parity Graph Games, 89

Normalised Parity Graph Games, 88

Observations, 2

Operations, 2

Parity Graph Games, 83–90

Arenas, 83

Basic Positions, 85, 90

Equivalence of Parity Graph Games, 84

Game Bisimulation, 89, 90

History-free Determinacy, 84

Initial Plays, 83

Local Game Trees, 86

Local Games, 87

Local Strategies, 87

Normal Parity Graph Games, 89

Normalised Parity Graph Games, 88

Plays, 83

Power of Players, 86

Strategies, 84

Terminal Positions, 83

Total Plays, 83

Unravelling, 85

Winning Condition, 83

Winning Positions, 84

Winning Regions, 84

Winning Strategies, 84

Partial Orders, 121

Pointed Coalgebras, 1

Preorders, 121

Pullbacks, 126

Pumping, 108

Pumping Lemma, 103

Pumping Property, 103

Pumping Situation, 108

Redistributions, 134

Regular Languages, 103

Relation Liftings, 131, 132

Relations, 121, 131

Semi-Transalternating Coalgebra Automata,

95

Set Coalgebras

200 INDEX

Reachable States, 105

Shapely Functors, 34

Slim Redistributions, 134

Standard Functors, 130

Strong Monads, 30

Strong Monoidal Categories, 129

Transition Types, 1

Tree-like Coalgebras, 105

Units of Adjunctions, 126

Universal Coalgebra, 135

Upward Closure, 121

Weak Pullbacks, 126

	Abstract
	Acknowledgements
	Introduction
	Coalgebras in Computer Science
	Parity Graph Games
	Coalgebra Automata
	Branching Types and Monads
	The Semantics of Coalgebras
	Final T-Coalgebra Semantics and T-Bisimilarity
	Finite Trace Semantics
	Infinite Trace Semantics

	Coalgebraic Logics
	Our Contributions in This Thesis
	Outline

	Notation
	Set Theory
	Logic
	Category Theory

	I Foundations in Category Theory
	A Review of Monads and Algebras over Set
	Definition of Monads
	Categories of Algebras for Monads
	Eilenberg-Moore Categories of Commutative Monads
	Examples
	Commutative Monads in Set

	Distributive Laws and Functor Liftings
	Distributive Laws
	Examples of Distributive Laws
	The Existence of Distributive Laws
	Some Properties of Distributive Laws

	Kleisli-Lifting of Functors on Set
	Continuous Extensions of Kleisli-Lifted Functors

	II Semantics of Coalgebras with Branching
	Finite Trace Semantics
	A Review of Generic Trace Theory
	Non-Coinductive Finite Trace Semantics in Kleisli Categories
	Finite Trace Semantics in Eilenberg-Moore Categories

	Infinite Trace Semantics
	Generic Infinite Trace Semantics
	Change of Perspective
	Generic Infinite Trace Equivalence

	Plausible Continuations in Infinite Traces
	Infinite Trace Semantics of Coalgebra Automata
	Jacob's Infinite Trace Semantics

	III Coalgebraic Logics
	The Complementation Lemma for Finitary Coalgebraic Logic
	Preliminaries
	A Review of the Completeness of Finitary Coalgebraic Logic
	One-Step Semantics of Coalgebraic Logic
	Complementation Lemma

	Finitary Coalgebraic Logics for Finite Traces
	Dual Adjunctions from Ambimorphic Objects
	The Logic Functor
	Finite Trace Logics as the Initial Algebra of the Logic Functor
	Examples of Finite Trace Logics
	An Example of a Logic Functor
	Deterministic Streams
	Finitarily Nondeterministic Streams
	Streams with Finitary Graded Branching
	Finitarily Probabilistic Streams
	Path-Minimising Streams

	Invariance of Finitary Trace Logics under Finite Trace Equivalence
	Expressivity of Finitary Coalgebraic Logics for Finite Traces

	IV Coalgebraic Automata Theory
	Game Bisimulations in Parity Graph Games
	Preliminary Definitions
	Unravelling Parity Graph Games
	Structuring Parity Graph Games
	Normalised Parity Graph Games
	Game Bisimulations

	Complementation of Coalgebra Automata
	A Review of Nondeterministic Coalgebra Automata
	Alternation
	Alternating Coalgebra Automata
	Semi-Transalternating Coalgebra Automata
	Transalternating Coalgebra Automata
	Basic Positions in Acceptance Games

	Equivalence of Coalgebra Automata of various Branching Types
	From Transalternating to Semi-Transalternating Automata
	From Semi-Transalternating to Alternating Automata

	Closure under Complementation
	Complementation of Transalternating Coalgebra Automata

	A Pumping Lemma for Regular Languages of Coalgebras in Set
	Coalgebras in Set as Graphs
	Reachable States
	Generated Subcoalgebras
	Unravelling Coalgebras in Set
	Pumping Length for Coalgebras in Set

	Pumping Coalgebras in Set
	The Pumping Lemma

	V Conclusions
	Conclusions
	Summary of Contributions
	Finite Trace Semantics
	Infinite Trace Semantics
	Finitary Coalgebraic Logics
	Finite Trace Logics
	Game Bisimulations for Parity Graph Games
	Complementation Lemma for Coalgebra Automata
	A Pumping Lemma for Regular Languages of Coalgebras in Set

	Some Open Questions and Directions for Future Work
	Monads and Categories of Algebras
	Finitary Coalgebraic Logics for Finite Traces

	Set Theory
	Basic Set Theory
	Order Theory

	Category Theory
	Basic Category Theory
	Limits and Colimits
	Filtered Colimits and Finitary Functors
	Equalisers and Coequalisers
	Pointwise Construction of Kan Extensions

	Monoidal Categories
	Category Theory of Set
	Standard and Weak-Pullback Preserving Functors
	Relations and Relation Liftings in Set
	Bases and Redistributions

	Coalgebras
	List of Tables
	List of Figures
	Bibliography
	Index

