
DESIGN AND EVALUATION OF A PREDICTABLE 

EMBEDDED PROCESSOR FOR USE IN TIME-

TRIGGERED APPLICATIONS 

 

A thesis submitted in fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

By 

 

Zemian Hughes 

 

Embedded Systems Laboratory 

University of Leicester 

 

2009 



Design and Evaluation of a Predictable Embedded Processor 

for use in Time-Triggered Applications 

 

ABSTRACT 

Embedded processors play a key role in many safety-critical applications including 

medical, automotive and aerospace systems. In such systems an inability to provide 

guarantees that the design will meet its requirements can have catastrophic consequences. 

To ensure that guarantees can be made, it must be possible to predict both the functional 

and temporal properties of the system at design time.  

The trend in modern embedded system design is currently leading towards unpredictable 

processor architectures in order to achieve increased performance. This trend presents 

fundamental challenges for the designers of timing analysis tools who are finding the 

accuracy and safety of timing estimations produced by new tools are getting worse. The 

consequence of this is that it is increasingly becoming harder to provide guarantees that 

the system requirements will be met. The primary causal factor is put down to the 

developments in modern processor architecture. 

This thesis attempts to address these problems with a novel, highly predictable 

embedded processor design for systems with a “time-triggered” (TT) system architecture. 

Even with a predictable processor, a real-time operating system (RTOS) implemented in 

software can itself complicate the temporal predictability of the system. To address this 

issue a predictable hardware TT scheduler is implemented in hardware. 

In order to overcome the possibility of the application programmer writing temporally 

unpredictable code, a set of software-based error-detection (and recovery) mechanisms is 

implemented as a “task guardian” to deal with issues of task overruns in TT systems. The 

performance and complexity of the initial software implementation leads to an 

innovative hardware task guardian solution. 

Overall, the implication of the studies presented in this thesis provide the system 

developer with an effective set of software and hardware components which are shown 

to provide a highly-predictable platform for the execution of time-triggered tasks sets. 



 

 

 

 

I dedicate this thesis to my parents 

Michael & Sue Hughes 

and to my brothers and sister 

Kerry, Javan and Naomi Hughes 

 



Acknowledgements 

This thesis would not have been possible if it were not for the help and support of many 

people.  

Firstly I would like to express my thanks and gratitude to my supervisor, Professor 

Michael J. Pont, for his guidance, help and enthusiasm throughout the past few years. I 

am very grateful for the support and opportunities he has provided. I am also fortunate 

to be able to see parts of this work having application outside of this work. 

I would like to thank the Engineering and Physical Sciences Research Council (EPSRC) 

who provided funding throughout the first few years of this work. 

I owe a great deal of thanks to both Adi Maaita and Devaraj Ayavoo for their friendship 

and support on numerous occasions, especially during times when I felt bit 

overwhelmed. This work would not have been possible if it were not for their help and 

nowhere near as much fun without them.  

I am indebted to my many of my friends that have supported me over the years. Special 

thanks goes out to David Ridley, Robin Hughes, Rich Elliott-Skene and Phil Clark for 

their friendship and kindness that saw me through some of the darkest hours and pushed 

me forwards to the end. I am very grateful for all the enjoyable times together and for 

their determination to make sure that I went out to play.  

Furthermore, I would like to thank all my colleagues from the Embedded Systems 

Laboratory. I have enjoyed working with you all and have many fond memories, 

especially the afternoon coffees, BBQ’s and very wet trips to Wales. 

I owe my deepest gratitude to my family for their support, encouragement and unfailing 

belief that I could achieve goals that would not have ordinary seemed possible. I am very 

thankful for the many battles and hard times that my parents, Michael and Sue Hughes, 

have endured throughout my upbringing, especially times when they were told that I 

would not make it into state education. It is an honour to be part of such a loving and 

caring family. It is also difficult to overstate my gratitude to my brothers Kerry, Javan 

and sister Naomi Hughes for their support and good times together. I have had a great 

time growing up with you all. 



I am very thankful for my grandparents, Edith Hughes and Leslie Handford, who have 

made available their generous support in a number of ways. I would also like to show my 

gratitude to my further family who have encouraged and cared for me throughout the 

years. 

It is a pleasure to thank the numerous teachers throughout my education that have 

inspired me and played a vital role in helping me to develop to where I am now. In 

particular I would like to thank the teachers at Eccles Hall School and the inspirational 

lecturers at Peterborough Regional College. 

I also feel God has had a hand in this, to which I am very thankful. 

 



i 

 

Table of Contents 

TABLE OF CONTENTS ............................................................................................................................... I 

LIST OF FIGURES .................................................................................................................................... VI 

LIST OF TABLES ..................................................................................................................................... IX 

LIST OF LISTINGS .................................................................................................................................... X 

LIST OF PUBLICATIONS .......................................................................................................................... XI 

ABBREVIATIONS .................................................................................................................................. XII 

CHAPTER 1 INTRODUCTION ................................................................................................................ 1-1 

1.1 EMBEDDED SYSTEMS ........................................................................................................................ 1-2 

1.2 CHALLENGES OF REAL-TIME EMBEDDED SYSTEMS ................................................................................... 1-4 

1.3 PREDICTABLE COMPUTER SYSTEMS ...................................................................................................... 1-5 

1.4 BUILDING REAL-TIME SYSTEMS ............................................................................................................ 1-7 

1.5 PROBLEMS MAKING REAL-TIME SYSTEMS PREDICTABLE ............................................................................ 1-8 

1.6 AIMS OF THIS THESIS ......................................................................................................................... 1-9 

1.7 KEY CONTRIBUTIONS ......................................................................................................................... 1-9 

1.8 THESIS OVERVIEW .......................................................................................................................... 1-10 

1.9 CONCLUSIONS ............................................................................................................................... 1-10 

CHAPTER 2 SOFTWARE ARCHITECTURES FOR EMBEDDED SYSTEMS ................................................... 2-1 

2.1 INTRODUCTION ................................................................................................................................ 2-1 

2.1.1 Timing constraints ............................................................................................................. 2-1 

2.1.2 Precedence constraints ...................................................................................................... 2-2 

2.1.3 Resource constraints .......................................................................................................... 2-2 

2.2 REAL-TIME TASK SCHEDULING ............................................................................................................. 2-3 

2.2.1 Time-triggered versus event-triggered .............................................................................. 2-3 

2.2.2 Offline versus online .......................................................................................................... 2-3 

2.2.3 Co-operative versus pre-emptive ....................................................................................... 2-4 

2.2.4 Fixed-priority versus dynamic-priority ............................................................................... 2-4 

2.3 THE TIME-TRIGGERED CO-OPERATIVE SCHEDULER ................................................................................... 2-5 

2.3.1 Implementation ................................................................................................................. 2-6 

2.4 THE TIME-TRIGGERED HYBRID SCHEDULER ........................................................................................... 2-7 

2.5 CONCLUSION ................................................................................................................................... 2-8 

 



ii 

 

CHAPTER 3 THE CHALLENGES INVOLVED IN CREATING “PREDICTABLE” MICROPROCESSOR HARDWARE3-1 

3.1 INTRODUCTION ................................................................................................................................ 3-1 

3.2 DIFFICULTIES IN WCET ANALYSIS ........................................................................................................ 3-2 

3.3 PRINCIPLES FOR A TIME PREDICTABLE PROCESSOR ................................................................................... 3-3 

3.4 ISSUES WITH CURRENT PROCESSOR ARCHITECTURE .................................................................................. 3-4 

3.4.1 Instruction Set .................................................................................................................... 3-4 

3.4.2 Pipelines ............................................................................................................................. 3-5 

3.4.3 Branch Prediction .............................................................................................................. 3-6 

3.4.4 Cache Predictability ........................................................................................................... 3-7 

3.4.5 DRAM ................................................................................................................................. 3-9 

3.4.6 Direct Memory Access (DMA) ............................................................................................ 3-9 

3.4.7 Memory Management Unit (MMU) ................................................................................ 3-10 

3.4.8 Comprehensive Documentation ...................................................................................... 3-10 

3.5 SYMPTOMS OF UNPREDICTABLE HARDWARE ........................................................................................ 3-10 

3.6 WORK THAT HAS BEEN DONE TO IMPROVE TIME PREDICTABILITY .............................................................. 3-12 

3.7 CONCLUSION ................................................................................................................................. 3-13 

CHAPTER 4 DESIGN OF A PREDICTABLE TT PROCESSOR ...................................................................... 4-1 

4.1 INTRODUCTION ................................................................................................................................ 4-1 

4.2 DESIGN CHOICES .............................................................................................................................. 4-1 

4.3 SELECTING A PROCESSOR PLATFORM .................................................................................................... 4-4 

4.4 CONSIDERING EXISTING SOFT CORES ..................................................................................................... 4-7 

4.5 THE PH PROCESSOR ......................................................................................................................... 4-9 

4.6 MAKING THE PH PROCESSOR PREDICTABLE ......................................................................................... 4-10 

4.6.1 Implementing the interrupt system ................................................................................. 4-11 

4.6.2 Dealing with Multi-cycle Instructions .............................................................................. 4-16 

4.7 MAKING THE PROCESSOR TT ............................................................................................................ 4-22 

4.7.1 Detailed Description ........................................................................................................ 4-24 

4.8 RESULTS ....................................................................................................................................... 4-26 

4.8.1 Test Case 1 Strategy ........................................................................................................ 4-26 

4.8.2 PH Core – Test Case 1 ...................................................................................................... 4-29 

4.8.3 Test Case 2 Strategy ........................................................................................................ 4-31 

4.8.4 PH Core – Test Case 2 ...................................................................................................... 4-32 

4.8.5 PH-Predictable Core - Test Case 1 .................................................................................... 4-36 

4.8.6 PH-Predictable Core - Test Case 2 .................................................................................... 4-38 

4.9 DISCUSSION .................................................................................................................................. 4-41 

4.10 CONCLUSION ................................................................................................................................. 4-42 



iii 

 

CHAPTER 5 TTC HARDWARE SCHEDULER ............................................................................................ 5-1 

5.1 INTRODUCTION ................................................................................................................................ 5-1 

5.2 RELATED WORK ............................................................................................................................... 5-4 

5.3 TTC SOFTWARE SCHEDULER IMPLEMENTATION ..................................................................................... 5-6 

5.4 TTC HARDWARE SCHEDULER ............................................................................................................. 5-8 

5.5 THE PROCESSOR INTERFACE ............................................................................................................... 5-9 

5.6 OVERHEAD REDUCTION ................................................................................................................... 5-10 

5.7 RESULTS ....................................................................................................................................... 5-14 

5.7.1 Test Case 1 ....................................................................................................................... 5-14 

5.7.2 Test Case 2 ....................................................................................................................... 5-17 

5.8 ANALYSIS BETWEEN HARDWARE AND SOFTWARE .................................................................................. 5-21 

5.9 DISCUSSION .................................................................................................................................. 5-25 

5.10 CONCLUSION ................................................................................................................................. 5-26 

CHAPTER 6 SOFTWARE TASK GUARDIAN ............................................................................................ 6-1 

6.1 INTRODUCTION ................................................................................................................................ 6-1 

6.2 RELATED WORK ............................................................................................................................... 6-2 

6.2.1 Normal operation .............................................................................................................. 6-3 

6.2.2 Co-operative task overrun ................................................................................................. 6-3 

6.2.3 Pre-emptive task overrun .................................................................................................. 6-4 

6.3 ADDING TASK GUARDIANS ................................................................................................................. 6-5 

6.3.1 Co-operative task overruns ................................................................................................ 6-5 

6.3.2 Pre-emptive task overruns ............................................................................................... 6-12 

6.3.3 Overview of Task Guardian timing .................................................................................. 6-14 

6.4 EVALUATING THE BASIC TG MECHANISM............................................................................................. 6-14 

6.4.1 Overview of the study ...................................................................................................... 6-14 

6.4.2 Timing behaviour ............................................................................................................. 6-15 

6.4.3 Implementation costs ...................................................................................................... 6-17 

6.5 ADDING SUPPORT FOR BACKUP TASKS AND “ALLOWED OVERRUNS” .......................................................... 6-17 

6.5.1 Backup Tasks ................................................................................................................... 6-18 

6.5.2 Allowed Overruns ............................................................................................................ 6-19 

6.6 EVALUATING THE EXTENDED TG MECHANISM ...................................................................................... 6-19 

6.6.1 Overview of the study ...................................................................................................... 6-20 

6.6.2 Timing behaviour ............................................................................................................. 6-20 

6.6.3 Implementation costs ...................................................................................................... 6-21 

6.7 FURTHER APPLICATIONS OF THE TG APPROACH .................................................................................... 6-22 

6.7.1 A TTC implementation ..................................................................................................... 6-22 



iv 

 

6.7.2 Dealing with the underlying causes of task overruns ...................................................... 6-24 

6.8 DISCUSSION .................................................................................................................................. 6-24 

6.9 CONCLUSIONS ............................................................................................................................... 6-25 

CHAPTER 7 HARDWARE TASK GUARDIAN ........................................................................................... 7-1 

7.1 INTRODUCTION ................................................................................................................................ 7-1 

7.2 TASK GUARDIAN COMPONENT ........................................................................................................... 7-2 

7.2.1 Task information block ...................................................................................................... 7-2 

7.3 RESULTS ......................................................................................................................................... 7-8 

7.4 EXPANSION OF TG ......................................................................................................................... 7-12 

7.5 COMPARISONS OF THE HARDWARE CORES ........................................................................................... 7-13 

7.6 DISCUSSION .................................................................................................................................. 7-17 

7.7 CONCLUSION ................................................................................................................................. 7-18 

CHAPTER 8 DISCUSSIONS AND CONCLUSIONS .................................................................................... 8-1 

8.1 INTRODUCTION ................................................................................................................................ 8-1 

8.2 SUMMARY ...................................................................................................................................... 8-1 

8.2.1 Design of a predictable processor...................................................................................... 8-1 

8.2.2 Hardware approach to predictable TTC Scheduling .......................................................... 8-3 

8.2.3 Dealing with task overruns in software ............................................................................. 8-3 

8.2.4 Hardware approach to task overruns ................................................................................ 8-4 

8.3 DISCUSSIONS ................................................................................................................................... 8-4 

8.4 LIMITATIONS ................................................................................................................................... 8-6 

8.5 FUTURE WORK ................................................................................................................................ 8-7 

8.6 CONCLUSIONS ................................................................................................................................. 8-8 

REFERENCES ........................................................................................................................................ R-1 

APPENDIX A: INSTRUCTION SET OF PH PROCESSOR ............................................................................A-1 

APPENDIX B: PH PROCESSOR CONTROL AND DATA PATHS ................................................................. B-1 

APPENDIX C: ADDITIONAL FIGURES .................................................................................................... C-1 

APPENDIX D: THE EVOLUTION OF THE MODERN MICROPROCESSOR ................................................. D-1 

D.1 INTRODUCTION ............................................................................................................................... D-1 

D.2 THE EVOLUTION OF EARLY CPU ARCHITECTURE ..................................................................................... D-3 

D.2.1 CISC architecture............................................................................................................... D-3 

D.2.2 Load/Store architecture .................................................................................................... D-4 

D.2.3 Microcode ......................................................................................................................... D-6 



v 

 

D.2.4 RISC architecture .............................................................................................................. D-7 

D.2.5 Pipelining .......................................................................................................................... D-7 

D.2.6 Compilers, registers and high level languages ................................................................. D-8 

D.3 POST RISC .................................................................................................................................... D-8 

D.3.1 Superscalar pipeline .......................................................................................................... D-9 

D.3.2 Very Long Instruction Word ............................................................................................ D-10 

D.3.3 Out-of-order pipelines .................................................................................................... D-11 

D.3.4 Branch Prediction ........................................................................................................... D-11 

D.3.5 Exceptions ....................................................................................................................... D-12 

D.3.6 Modern CISC-RISC ........................................................................................................... D-17 

D.4 MEMORY .................................................................................................................................... D-17 

D.4.1 Von Neumann ................................................................................................................. D-17 

D.4.2 Harvard ........................................................................................................................... D-18 

D.4.3 Performance ................................................................................................................... D-19 

D.4.4 Cache .............................................................................................................................. D-20 

D.4.5 Direct memory Access..................................................................................................... D-21 

D.4.6 Memory management unit............................................................................................. D-21 

D.5 CONCLUSIONS .............................................................................................................................. D-22 

 



vi 

 

List of Figures 

FIGURE 1: APOLLO GUIDANCE COMPUTER (IMAGE COURTESY OF COMPUTER HISTORY MUSEUM) ........................................... 1-2 

FIGURE 2: AVAILABLE ELECTRONIC DEVICES IN HIGH-END CARS (LEEN, HEFFERNAN ET AL. 1999) ............................................. 1-3 

FIGURE 3: EXECUTION TIME MEASUREMENTS, REPRODUCED FROM (ENGBLOM 2002) .......................................................... 1-6 

FIGURE 4: EXAMPLE TIME-TRIGGERED CO-OPERATIVE SCHEDULE ...................................................................................... 2-6 

FIGURE 5: ILLUSTRATING THE OPERATION OF A TTH SCHEDULER ........................................................................................ 2-8 

FIGURE 6: MISMATCH BETWEEN CODE INPUT AND ANTICIPATED TEMPORAL BEHAVIOUR ........................................................ 3-1 

FIGURE 7: FPGA DESIGN STARTS WITH EMBEDDED µP - SOURCE: GARTNER, AUGUST 9, 2005 ............................................. 4-7 

FIGURE 8: TYPICAL 5-STATE MIPS PIPELINE  (PATTERSON AND HENNESSY 2005) ................................................................. 4-9 

FIGURE 9: PH PROCESSOR IMPLEMENTATION ............................................................................................................... 4-10 

FIGURE 10: INSTRUCTIONS FLUSHED FROM 4 PIPELINE STAGES WHEN AN EXCEPTION OCCURS ................................................ 4-11 

FIGURE 11: TIMER INTERRUPTS COULD BE ALLOWED TO OCCUR IN THE FIRST PIPELINE STAGE ................................................. 4-12 

FIGURE 12: AN EXCEPTION COULD BE PENDING AT THE TIME WHEN THE TIMER INTERRUPT OCCURS ........................................ 4-12 

FIGURE 13: PROBLEMS OF INTERRUPT ON A BDS INSTRUCTION ....................................................................................... 4-13 

FIGURE 14: STORE BRANCH CONDITION AND BRANCH ADDRESS ....................................................................................... 4-13 

FIGURE 15: INTERRUPT PAUSED BY MULTI-CYCLE INSTRUCTION ....................................................................................... 4-13 

FIGURE 16: POST INTERRUPT JITTER ........................................................................................................................... 4-14 

FIGURE 17: INTERRUPT LATENCY JITTER ...................................................................................................................... 4-15 

FIGURE 18: SERIAL MULTIPLY AND DIVIDE UNIT ............................................................................................................ 4-17 

FIGURE 19: MULTI-CYCLE INSTRUCTIONS RUNNING IN PARALLEL TO INTEGER INSTRUCTIONS ................................................. 4-18 

FIGURE 20: STALL THE PIPELINE WHEN THERE IS NO TIME TO COMPLETE A MULTI-CYCLE INSTRUCTION. .................................... 4-19 

FIGURE 21: PREDICTABLE PROCESSOR PIPELINE ............................................................................................................ 4-21 

FIGURE 22: MULTIPLY AND DIVIDE UNIT WITH CONTROLLABLE SHADOW REGISTERS ............................................................ 4-22 

FIGURE 23: INTERRUPT SOURCE SELECTOR .................................................................................................................. 4-23 

FIGURE 24: CO-PROCESSOR STATUS AND CAUSE REGISTERS ............................................................................................ 4-25 

FIGURE 25: INTERRUPT SOURCE SELECTOR .................................................................................................................. 4-25 

FIGURE 26: THE PH PROCESSORS INTERRUPT LATENCY OVER A MIXTURE OF MULT, DIV AND NOP INSTRUCTIONS ................... 4-29 

FIGURE 27: PH CORE INTERRUPT LATENCY SIMULATION ................................................................................................ 4-30 

FIGURE 28: TIMING MEASUREMENTS FOR TEST 2 ......................................................................................................... 4-31 

FIGURE 29: PH CORE TASK EXECUTION TIME ............................................................................................................... 4-33 

FIGURE 30: MULTIPLY INSTRUCTION (33 CPU CLOCK CYCLES) ........................................................................................ 4-34 

FIGURE 31: INTERRUPT OVERHEAD (10 CPU CLOCK CYCLES) .......................................................................................... 4-35 

FIGURE 32: INTERRUPT ON A BRANCH DELAY SLOT INSTRUCTION (11 CPU CLOCK CYCLES) ................................................... 4-35 

FIGURE 33: PH-PREDICTABLE CORE INTERRUPT LATENCY ............................................................................................... 4-37 

FIGURE 34: PH-PREDICTABLE CORE INTERRUPT LATENCY SIMULATION .............................................................................. 4-38 

FIGURE 35: PH-PREDICTABLE TASK EXECUTION TIME .................................................................................................... 4-39 



vii 

 

FIGURE 36: MULTIPLY INSTRUCTION PAUSED AS THE INTERRUPT HANDLER IS EXECUTED ....................................................... 4-40 

FIGURE 37: COMPARISONS OF LOGIC UTILISATION FOR THE PREDICTABLE MULTI-PIPELINED CORE ........................................... 4-41 

FIGURE 38: DETAILED TIME-TRIGGERED CO-OPERATIVE SCHEDULE .................................................................................... 5-3 

FIGURE 39: PERIODIC CO-OPERATIVE SCHEDULING .......................................................................................................... 5-7 

FIGURE 40: GENERIC TIMER OPERATION ....................................................................................................................... 5-7 

FIGURE 41: HARDWARE SCHEDULER FUNCTIONAL OVERVIEW ............................................................................................ 5-8 

FIGURE 42: HARDWARE SCHEDULER UPDATE FUNCTIONAL OVERVIEW ................................................................................ 5-8 

FIGURE 43: HARDWARE SCHEDULER DISPATCH FUNCTIONAL OVERVIEW .............................................................................. 5-9 

FIGURE 44: TTC HARDWARE SCHEDULER INTERFACE OVERVIEW ...................................................................................... 5-10 

FIGURE 45: INITIAL SOLUTION ................................................................................................................................... 5-11 

FIGURE 46: EXAMPLE SOLUTION 1 OVERHEAD ............................................................................................................. 5-11 

FIGURE 47: ALTERNATE SOLUTION ............................................................................................................................. 5-11 

FIGURE 48: EXAMPLE SOLUTION 2 OVERHEAD ............................................................................................................. 5-12 

FIGURE 49: REDIRECTING INSTRUCTION FLOW WHEN ‘ENDTASK’ INSTRUCTION IS DETECTED .................................................. 5-12 

FIGURE 50: SIGNALLING THE END OF TASK TO THE HARDWARE SCHEDULER ........................................................................ 5-13 

FIGURE 51: OVERHEADS WHEN USING THE HARDWARE SCHEDULER .................................................................................. 5-13 

FIGURE 52: SETUP FOR TEST CASE 1 ........................................................................................................................... 5-15 

FIGURE 53: MEASURED OFFSET TIME BETWEEN TICK AND FIRST TASK REACTING .................................................................. 5-16 

FIGURE 54: HARDWARE SCHEDULER OFFSET DELAY ....................................................................................................... 5-17 

FIGURE 55: SETUP FOR TEST CASE 2 ........................................................................................................................... 5-19 

FIGURE 56: MEASURED TIME BETWEEN FIRST AND SECOND TASK ..................................................................................... 5-19 

FIGURE 57: SIMULATED BETWEEN TASK OVERHEAD ....................................................................................................... 5-20 

FIGURE 58: SOFTWARE SCHEDULER LOADS ON STANDARD AND PREDICTABLE CORES ............................................................ 5-22 

FIGURE 59: VARIABLE SOFTWARE SCHEDULER OVERHEAD BETWEEN TASKS......................................................................... 5-23 

FIGURE 60: HARDWARE AND SOFTWARE SCHEDULER CODE AND DATA SIZES ....................................................................... 5-24 

FIGURE 61: COMPARISONS OF LOGIC UTILISATION FOR THE HW TTC CORE ....................................................................... 5-25 

FIGURE 62: TYPICAL CO-OPERATIVE SCHEDULE UNDER NORMAL CONDITIONS ....................................................................... 6-4 

FIGURE 63: OVERRUNNING OF TASK A CAUSES TASK B TO BE RELEASED LATE ....................................................................... 6-4 

FIGURE 64: OVERRUNNING PRE-EMPTIVE TASK CAUSES CO-OPERATIVE TASKS TO BE BLOCKED ................................................. 6-4 

FIGURE 65: TASK SCHEDULING DIAGRAM WITH CO-OPERATIVE TASK GUARDIAN. ................................................................... 6-6 

FIGURE 66: PAUSED TICK OFFSET TO ALLOW BLOCKED TASKS TO EXECUTE BEFORE THE SYSTEM CONTINUES ................................ 6-6 

FIGURE 67: FLOWCHART OF SCH_CHECK_TASK_OR() WHEN INTERRUPTING AN EXECUTING TASK .......................................... 6-9 

FIGURE 68: FLOWCHART OF SCH_CHECK_TASK_OR() WHEN INTERRUPTING SLEEP MODE .................................................. 6-10 

FIGURE 69: FLOWCHART OF SCH_CHECK_TASK_OR() WHEN INTERRUPTING SCHEDULER BETWEEN TASKS ............................. 6-11 

FIGURE 70: FLOWCHART OF PRE-EMPTIVE TG ............................................................................................................. 6-13 

FIGURE 72: COMPARISON OF CODE AND DATA MEMORY CONSUMPTION FOR THE SOFTWARE TTH AND TTC SCHEDULERS ......... 6-23 

FIGURE 73: COMPARISON OF CPU LOADS FOR THE SOFTWARE TTH AND TTC SCHEDULERS .................................................. 6-23 



viii 

 

FIGURE 74: SCHEMATIC OVERVIEW OF THE HARDWARE TASK GUARDIAN UNIT ...................................................................... 7-4 

FIGURE 75: FLOWCHART OF THE HARDWARE TASK GUARDIAN OPERATION. .......................................................................... 7-7 

FIGURE 76: EXECUTION OF TIMES OF THE LED TASK ...................................................................................................... 7-10 

FIGURE 77: HARDWARE TTC SCHEDULER OVERHEADS ................................................................................................... 7-11 

FIGURE 78: HARDWARE TG TASK SHUTDOWN OVERHEADS ............................................................................................. 7-11 

FIGURE 79: MODELSIM SIMULATION OF THE HARDWARE TASK GUARDIAN UNIT IN ACTION .................................................... 7-12 

FIGURE 80: XILINX SPARTAN 3 – 400 FPGA LOGIC USAGE............................................................................................. 7-14 

FIGURE 81: CODE AND DATA SIZES OF SOFTWARE AND HARDWARE SYSTEMS ...................................................................... 7-15 

FIGURE 82: EXTENDED SOFTWARE TASK GUARDIAN AND HARDWARE TASK GUARDIAN OVERHEADS ......................................... 7-16 

FIGURE 83: SOFTWARE AND HARDWARE TASK OVERRUN OVERHEADS ............................................................................... 7-17 

FIGURE 84: PH CORE INTERRUPT LATENCY SIMULATION .................................................................................................. C-1 

FIGURE 85: MULTIPLY INSTRUCTION (33 CPU CLOCK CYCLES) .......................................................................................... C-2 

FIGURE 86: INTERRUPT OVERHEAD (10 CPU CLOCK CYCLES) ............................................................................................ C-3 

FIGURE 87: INTERRUPT ON A BRANCH DELAY SLOT INSTRUCTION (11 CPU CLOCK CYCLES) ..................................................... C-4 

FIGURE 88: PH-PREDICTABLE CORE INTERRUPT LATENCY SIMULATION ................................................................................ C-5 

FIGURE 89: MULTIPLY INSTRUCTION PAUSED AS THE INTERRUPT HANDLER IS EXECUTED ......................................................... C-6 

FIGURE 90: DETAILED TIME-TRIGGERED CO-OPERATIVE SCHEDULE .................................................................................... C-7 

FIGURE 91: HARDWARE SCHEDULER OFFSET DELAY ......................................................................................................... C-8 

FIGURE 92: SIMULATED BETWEEN TASK OVERHEAD ......................................................................................................... C-9 

FIGURE 93: MODELSIM SIMULATION OF THE HARDWARE TASK GUARDIAN UNIT IN ACTION .................................................... C-10 

FIGURE 94: LOAD/STORE HIERARCHY, REPRODUCED FROM (HANNIBAL 2004) ................................................................... D-5 

FIGURE 95: SUPERSCALAR PIPELINE WITH PARALLEL FLOATING POINT UNIT ......................................................................... D-9 

FIGURE 96: SUPERSCALAR PIPELINE WITH MULTIPLE PARALLEL EXECUTION UNITS ............................................................... D-10 

FIGURE 97: FLUSHED PIPELINE STAGES DUE TO A BRANCH INSTRUCTION ........................................................................... D-12 

FIGURE 98: FLUSHED PIPELINE STAGES DUE TO AN EXCEPTION OR INTERRUPT .................................................................... D-13 

FIGURE 99: PROBLEM WHEN TWO EXCEPTIONS OCCUR AT THE SAME TIME ....................................................................... D-15 

FIGURE 100: PROBLEM WHEN EXCEPTIONS OCCUR OUT OF ORDER .................................................................................. D-15 

FIGURE 101: VON NEUMANN ARCHITECTURE ............................................................................................................. D-18 

FIGURE 102: HARVARD ARCHITECTURE ..................................................................................................................... D-18 

FIGURE 103: THE GAP IN PERFORMANCE BETWEEN PROCESSORS AND MEMORY OVER TIME (PATTERSON AND HENNESSY 2005) D-19 

FIGURE 104: MEMORY HIERARCHY MODEL (PATTERSON AND HENNESSY 2005) ............................................................... D-20 

 



ix 

 

List of Tables 

TABLE 1: COMPARISON OF MIPS AND SPARC, REPRODUCED FROM (ROBERT, SHING ET AL. 1991) ........................................ 4-6 

TABLE 2: PREDICTABLE PROCESSOR REQUIREMENTS ...................................................................................................... 4-15 

TABLE 3: PH CO-PROCESSOR ZERO REGISTERS .............................................................................................................. 4-24 

TABLE 4: MEASURED INTERRUPT LATENCY TIME BREAKDOWN ......................................................................................... 4-29 

TABLE 5: PH CORE TASK EXECUTION MAXIMUM AND MINIMUM TIMES ............................................................................. 4-33 

TABLE 6: PH CORE TASK EXECUTION OVERHEAD BREAKDOWN ......................................................................................... 4-34 

TABLE 7: PH-PREDICTABLE INTERRUPT LATENCY TIME BREAKDOWN ................................................................................. 4-37 

TABLE 8: PH-PREDICTABLE CORE TASK EXECUTION MAXIMUM AND MINIMUM TIMES........................................................... 4-39 

TABLE 9: PH-PREDICTABLE CORE TASK EXECUTION OVERHEAD BREAKDOWN ...................................................................... 4-40 

TABLE 10: DETAILED MEASURED OFFSET TIME BETWEEN TICK AND FIRST TASK REACTING ...................................................... 5-16 

TABLE 11: BREAKDOWN OF THE MEASURED OFFSET RESULTS .......................................................................................... 5-17 

TABLE 12: DETAILED MEASURED TIME BETWEEN FIRST AND SECOND TASK ......................................................................... 5-20 

TABLE 13: BREAKDOWN OF THE MEASURED BETWEEN TASK TIME .................................................................................... 5-20 

TABLE 14: MEASURED TIMES DURING KEY EVENT IN THE BASIC TG OPERATION ................................................................... 6-16 

TABLE 15: MEASURED OVERHEADS DURING NORMAL CONDITIONS OF THE BASIC TG ........................................................... 6-16 

TABLE 16: SCHEDULER LOADS DURING TASK OVERRUN CONDITIONS ................................................................................. 6-16 

TABLE 17: CODE AND DATA MEMORY REQUIREMENTS FOR THE “BASE” AND “TASK GUARDIAN” TTH SCHEDULERS ................... 6-17 

TABLE 18: SCHEDULER LOADS PER TICK INTERVAL ......................................................................................................... 6-17 

TABLE 19: MEASURED TIMES DURING KEY EVENT IN THE EXTENDED TG OPERATION ............................................................ 6-20 

TABLE 20: MEASURED OVERHEADS DURING NORMAL CONDITIONS OF THE EXTENDED TG ..................................................... 6-20 

TABLE 21: SCHEDULER LOAD DURING TASK-OVERRUN CONDITIONS .................................................................................. 6-21 

TABLE 22: SCHEDULER OVERHEAD EQUATIONS ............................................................................................................. 6-21 

TABLE 23: CODE AND DATA MEMORY REQUIREMENTS FOR THE BASE AND TASK GUARDIAN SCHEDULERS................................ 6-22 

TABLE 24: CPU LOADS FOR THE VARIOUS TTH SCHEDULERS ........................................................................................... 6-22 

TABLE 25: TT HARDWARE SCHEDULER UNIT TASK INFORMATION BLOCK ............................................................................. 7-2 

TABLE 27: DETAILED EXECUTION OF TIMES OF THE LED TASK .......................................................................................... 7-11 

TABLE 28: EXCEPTIONS THAT CAN OCCUR IN THE MIPS PIPELINE (HENNESSY AND PATTERSON 2006) ................................... D-14 

 



x 

 

List of Listings 

LISTING 1: MULTI-CYCLE INSTRUCTIONS UNDER TEST FOR TEST 1 ..................................................................................... 4-27 

LISTING 2: SETTING OF THE VARIABLE TIMER TIMEOUT VALUES ........................................................................................ 4-27 

LISTING 4: MULTI-CYCLE INSTRUCTIONS UNDER TEST FOR TEST 2 ..................................................................................... 4-32 

LISTING 5: INTERRUPT HANDLER CODE FOR TEST 2 ........................................................................................................ 4-32 

LISTING 6: PH-PREDICTABLE CORE INTERRUPT HANDLER ................................................................................................ 4-38 

LISTING 7: ASSEMBLY WRAPPER FOR THE FIRST TASK IN TEST CASE 1 ................................................................................. 5-15 

LISTING 8: ASSEMBLY WRAPPER FOR THE FIRST TASK IN TEST CASE 2 ................................................................................. 5-18 

LISTING 9: ASSEMBLY WRAPPER FOR THE SECOND TASK IN TEST CASE 2 ............................................................................. 5-18 

LISTING 10: OVERRUN DETECTION IN DISPATCH() ........................................................................................................... 6-7 

LISTING 11: RETURN ADDRESS KNOWN BY USE OF CODE LABEL IN DISPATCH(). ................................................................... 6-12 

LISTING 12: PRE-EMPTIVE TASK WILL GENERATE A TASK OVERRUN EVERY 500 TIMES IT IS CALLED ........................................... 6-15 

LISTING 13: SCHEDULING THE TASKS AND BACKUP TASKS ................................................................................................ 6-20 

LISTING 14: HARDWARE TG LED TASK PARAMETERS ...................................................................................................... 7-8 

LISTING 15:  HARDWARE TG LED TASK ASSEMBLY WRAPPER ............................................................................................ 7-8 

LISTING 16: HARDWARE TG LED TASK ......................................................................................................................... 7-9 

LISTING 17: HARDWARE TG LED BACKUP TASK ASSEMBLY WRAPPER ................................................................................. 7-9 

LISTING 18: HARDWARE TG SEVEN SEGMENT TASK ASSEMBLY WRAPPER ........................................................................... 7-10 

LISTING 19: MULTIPLY IN ASSEMBLY LANGUAGE USING LOAD/STORE ADDRESSING ............................................................... D-5 

LISTING 20: MULTIPLY IN ASSEMBLY USING COMPLEX ADDRESSING ................................................................................... D-5 

 



xi 

 

List of Publications 

 

Hughes, Z. M. and Pont, M. J. (2008), "Reducing the impact of task overruns in resource-

constrained embedded systems in which a time-triggered software architecture is 

employed", Transactions of the Institute of Measurement and Control. 

 

Hughes, Z. M. and Pont, M. J. (2005), "Time-triggered co-operative hardware scheduler", 

patent application filed (UK), 9 September 2005. 

 

Hughes, Z.M., Pont, M.J. and Ong, H.L.R. (2005) “The PH Processor: A soft embedded core 

for use in university research and teaching". In: Koelmans, A., Bystrov, A., Pont, M.J., 

Ong, R. and Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum 

(Birmingham, UK, October 2005), pp.224-245. Published by University of Newcastle 

upon Tyne [ISBN: 0-7017-0191-9]. 

 

Hughes, Z.M., Pont, M.J. and Ong, H.L.R. (2005) “Design and evaluation of a “time-

triggered” microcontroller”. Poster presentation at DATE 2005 (PhD Forum), Munich, 

Germany, March 2005. 

 

Hughes, Z.M. and Pont, M.J. (2004) "Design and test of a task guardian for use in TTCS 

embedded systems". In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of 

the UK Embedded Forum 2004 (Birmingham, UK, October 2004), pp.16-25. Published 

by University of Newcastle upon Tyne [ISBN: 0-7017-0180-3]. 

 



xii 

 

Abbreviations 

AOT  Allowed Overrun Time 

ASIC  Application-Specific Integrated Circuit 

BCET  Best Case Execution Time 

BDS  Branch Delay Slot 

BTFN  Backward Taken, Forward Not taken 

CISC  Complex Instruction Set Computer 

COTS  Commercial Off The Shelf 

CPU   Central Processing Unit  

CRPD  Cache Related Pre-emption Delay 

DRAM  Dynamic Random Access Memory 

EX   Execute 

FIFO  First In, First Out 

FPGA  Field Programmable Gate Array 

GPIO  General Purpose Input Output 

GPT  Guaranteed Processor Time 

ID  Instruction Decode 

IF  Instruction Fetch 

ILP  Instruction Level Parallelism 

IRQ  Interrupt Request 

ISA  Instruction Set Architecture 

ISR   Interrupt Service Routine  



xiii 

 

LED  Light Emitting Diode 

LTE  Long Timing Effects 

LUT  Look Up Table 

MEM  Memory 

MIPS  Microprocessor without Interlocked Pipeline Stages 

MMU  Memory Management Unit 

NOP  No Operation 

RAM  Random access Memory 

RISC  Reduced Instruction Set Computer 

ROM  Read Only Memory 

RTOS   Real-Time Operating System  

SRAM  Static Random Access Memory 

TG  Task Guardian 

TLB  Translation Lookaside Buffer 

TT   Time-Triggered  

TTC   Time-Triggered Co-operative  

TTH   Time-Triggered Hybrid  

VLIW  Very Long Instruction Word 

VLSI  Very-Large-Scale Integration 

WB  Write Back 

WCET  Worst-Case Execution Time 

 



Introduction 

1-1 

 

Chapter 1 Introduction 

Beginning with Cantor, mathematicians have shown the uncertainty of mathematics and 

human logic (Dauben 1990; Davis 2004). Boltzmann showed the disorder of physics 

through fluid dynamics and that things can only be described in terms of probability 

(Boltzmann and Brush 1995). Gödel showed the incompleteness of pure mathematics 

proving that all systems of mathematical logic were limited, that there would be things that 

while true, would never be able to be proved true (Smullyan 1992). Turing recast 

incompleteness in terms of computers and showed that since they are logic machines, 

incompleteness meant there would always be some problems they would never solve 

(Turing 1939). A machine fed one of these problems would never stop and furthermore, 

Turing proved there was no way of knowing beforehand which problems these were. This 

condition was defined as ‘incomputable’ (Boolos, Burgess et al. 2007). Turing then related 

this to the human mind and the limitations of logic and stated that “mathematical reasoning 

may be regarded rather schematically as the combination of two faculties, which we may call intuition and 

ingenuity” (Turing 1939). The then notions that there was a perfect logic that governed a 

world of certainties had unravelled itself, that logic had revealed the limitations of logic and 

certainty had revealed uncertainty (Malone 2008).  

This may appear to be obvious to us in the current modern world, especially where many 

software projects appear to be plagued by numerous bugs. However, this is a serious 

problem when designing safety critical systems where the failure or malfunction may result 

in death, injury, loss or damage to equipment and environmental harm. It is therefore 

desirable to achieve some form of certainty to determine if a particular machine will 

operate correctly.  

Whilst there exist many mechanisms and formalisms that attempt to describe, model and 

test safety critical systems (Bowen and Stavridou 1993), it is not always possible to be 

completely certain that these machines are indeed safe (Isaksen, Bowen et al. 1997). This is 

because logic machines like computers have a subset of mathematical logic to which 

software programs can exist and they will often have to interact with their environment, 

which as fallible humans we often struggle to describe. 



Introduction 

1-2 

 

It is because of a range of human factors (Beaty 1995) and reasons such as those just 

described, that many safety critical systems don’t rely solely on testing or formal 

specifications but on a combination of systems including redundancy and fault tolerant 

techniques (Nett, Streich et al. 1996; Lundqvist, Srinivasan et al. 2005; Boussemart, Ouimet 

et al. 2006; Short and Pont 2007). As such it will be argued in this thesis that, if the 

probability of an error occurring as a result of a systems design is to be reduced, designers 

must strive to eliminate as much uncertainty as possible. Therefore it is pertinent to 

develop systems based on highly predictable components. This becomes particularly 

significant as the complexity of a system increases (Wolfgang 2004). 

The emphasis throughout this thesis will be focused on the issues of predictability when 

designing and building applications where safety is critical. In particular, this issue will be 

examined in regard to the field of embedded systems. 

1.1 Embedded Systems 

An embedded system is defined as a system in which a computer is encapsulated by the 

device it controls (Wolf 2008).  In short, an embedded system is typically a computer that 

does not look like your conventional desktop PC (Pont 2002). In many cases the user may 

even be unaware that a computer exists within the device.  

One of the first recognizably modern embedded systems was the Apollo Guidance 

Computer which was used for the NASA missions to the moon (Figure 1) (Hoganson 

2007). 

 

Figure 1: Apollo Guidance Computer (Image courtesy of Computer History Museum) 



Introduction 

1-3 

 

Today embedded systems can form a core component of a vast range of everyday items 

(cars, aircraft, medical equipment, factory systems, mobile phones, DVD players, music 

players, microwave ovens, toys etc). Over the recent years, the embedded systems market 

has increased significantly. For instance, in 1999 it was estimated that for every desktop 

computer sold, there were approximately 100 embedded processors sold (Turley 1999). 

Estimates state that in 2010 there will be 3 embedded devices per person on earth 

(ARTEMIS 2004).  

A large portion of the embedded market serves the safety critical sector. This can be 

highlighted by the predictive growth of the automotive industry which has been the fastest 

growing European semiconductor consumer (Leen, Heffernan et al. 1999).  

Initially embedded processors were first used in cars for engine management units (EMU) 

after stringent legislations in California 1961 to reduce exhaust emissions (Flis 1983). Now 

they can be found throughout the car from anti-lock braking systems, active suspension, 

adaptive cruise control, to GPS navigation and environmental climate control (Figure 2).  

 

Figure 2: Available electronic devices in high-end cars (Leen, Heffernan et al. 1999) 



Introduction 

1-4 

 

For modern luxury vehicles the cost of electronics can amount to more than 23% of the 

total manufacturing cost. Analysts estimate that more than 80% of all automotive 

innovation now stems from electronics (Leen and Heffernan 2002). 

To support these systems, the number of microprocessors in the average modern car has 

increased to about 40 - 100 (Turley 2003).  So much so that the weight of the wiring looms 

to connect these devices together and the electrical power requirements are becoming a 

significant design issue (Leen and Heffernan 2002). 

The automotive sector is an example of one area where the use of embedded systems is 

gaining greater emphasis - not just in a multimedia capacity - but also in a safety critical 

role. Many of these safety critical systems, such as drive-by-wire, have their heritage born 

in the aviation sector where a new aircraft such as the Airbus A380 can cost around 205 

million GBP (Kaminski-Morrow 2008). However, the modern day car is just a fraction of 

the cost and meeting similar safety requirements within a competitive price point can be 

particularly challenging. This can be highlighted by the number of safety standards that a 

modern car must now conform to and still attain a relatively low time to market (SAE 

1993; SAE 1994; Hardung, Kölzow et al. 2004; MISRA 2004). 

The problem is further compounded as the complexity of the applications continues to 

increase. Unfortunately the scale of the problem of reliably developing safety critical 

embedded systems can be highlighted by the number of incidents that have occurred in the 

space and aviation industries, which by comparison generally have tighter more stringent 

standards, greater budgets and development times (Garman 1981; Carlow 1984; Fernando 

1991; Reeves 1998; Stewart 2001; Driscoll, Hall et al. 2003; Charette 2005).  

1.2 Challenges of Real-time Embedded Systems 

Many safety critical embedded systems are generally categorised as real-time systems in 

which the system must be responsive to its environment.  

By definition a real-time system is a computer-based system where the timing of a 

computed result is as important as the actual value (Liu 2000). Real-time systems do not 

always require that the value must be produced as quickly as possible, in many cases the 

desired property is steady and predictable behaviour (Stankovic 1988). 



Introduction 

1-5 

 

Hard real-time systems are a type of real-time system where the penalty incurred for 

missing a deadline can lead to catastrophic consequences (Buttazzo 2005). Examples of 

hard real-time systems are the devices used for protecting transformers from lightning 

surges on overhead power lines. These systems have to take the transformer offline within 

a millisecond from detecting a lightning strike. If the system meets this deadline then the 

transformer is protected. If the deadline is not met, then severe damage can occur. In this 

example, there is no extra value gained from the system being faster than required to meet 

the deadline (Engblom 2002). 

For other hard real-time systems the computation time should have minimal variance 

(jitter) in producing the result. For example, the control systems in engine controller units 

(ECU) must regulate the amount of fuel and control the timing of spark plugs. If the spark 

plugs fire too early then the engine could be damaged. If they fire too late then the engine 

performance will decrease. Therefore the control algorithms should compute results at a 

precise time from when the measurements are taken as this is necessary in order to 

maintain good controller performance (Marti, Villa et al. 2001). Throughout this thesis, we 

will be concerned with these types of hard real-time system. 

In order to guarantee that these systems operate correctly, the worst case behaviour must 

be analyzed and accounted for. Therefore it must be shown that all tasks can meet their 

respective deadlines even in the case that all tasks consume the maximum amount of time.  

For completeness, a distinction is sometimes made between “hard” designs and “soft” 

real-time systems (Liu 2000). In soft real-time systems, the occasional failure to meet a 

deadline does not usually result in severe effects. For instance, skipping a frame in video 

playback is not fatal and might not even be noticeable by the user. Therefore, missing soft 

real-time deadlines often means that the system still provides a useful service but that the 

quality of the service is reduced. 

1.3 Predictable Computer Systems 

When describing the timing behaviour of a program, there are a number of common 

measures used. The best-case execution time (BCET) is the shortest time the program can 

ever take to execute. The worst-case execution time (WCET) is the longest time that a 



Introduction 

1-6 

 

program can take to execute. The average case execution time is a value that lies between 

the BCET and WCET (Figure 3). 

 

Figure 3: Execution time measurements, reproduced from (Engblom 2002) 

Since a program can receive a number of inputs at run time, it can often be very difficult to 

determine the exact BCET and WCET values. It is often even harder to determine the 

average times as these can depend on the distribution of data and not just the extremes of 

program behaviour (Engblom 2002).   

When building hard real-time systems to specification, timing analysis tools aim to produce 

estimates of the actual WCET and BCET values. In order for a WCET estimate to be safe, 

it must be greater than, or ideally, equal to the actual WCET. Similarly, the BCET has to be 

less than or equal to the actual BCET. This is shown by the estimates lying within the safe 

regions on Figure 3, any other WCET or BCET estimate is unsafe. This is because 

producing an underestimate WCET or overestimate BCET will result in the system relying 

on a false assumption which can ultimately fail (Engblom 2002; Puschner 2002; Wilhelm, 

Engblom et al. 2008). 

For timing estimates to be useful they should be conservative and close (or tight) to the 

actual values, as shown by the ‘tighter’ arrows in Figure 3. An over estimated WCET value 

may be safe but can lead to an incredible waste of resources. However, large variation in 

the execution times and control flow of software can make producing estimates very 

complex. Therefore great care must be taken when producing safe and optimum values. 

A system that has variable execution times and accurately defined BCET and WCET’s, can 

be considered as predictable. However, within this thesis, predictability in the first place 

will be defined as the ability of the system to provide guarantees that its tasks will meet 

their designated timing constraints. Secondly, predictability must provide for minimal 



Introduction 

1-7 

 

timing deviations from the optimal timing scenario in which the system state can be 

accurately predicted down to the instruction execution level at any instance of time.  

Therefore the temporal predictability of a system can be quantified as the jitter or variation 

in execution, and the summation of various causes of jitter which make it very hard to 

predict accurate execution times. 

1.4 Building real-time systems 

When building real-time systems, two types of models are commonly used, event-based 

and time-based. An event-based system is triggered by external events, whist time-based 

systems read their input signals periodically (usually driven by some clock). Another 

definition of time-triggered systems is that it is possible to determine in advance what the 

system is doing at every moment of time during the lifetime of the system (Pont 2002). 

This makes time-triggered systems particularly attractive for applications requiring high 

predictability. 

Time-triggered (TT) architectures are often promoted for use in safety critical applications. 

For instance, Kopetz reports that “the control system for Japan’s Shinkansen bullet train uses a large 

time-triggered fault-tolerant system”, and he claims that “Safety-critical real-time computer applications 

for flight control, nuclear power plant shutdown, and so on, have to be fault tolerant and are therefore based 

on the time-triggered paradigm” (Kopetz and Grünsteidl 1994). 

A drawback of building TT real-time systems is that the synchronous execution of tasks 

needs more preplanning in the design phase and is less flexible than asynchronous tasks in 

event-based systems. For instance, care has to be taken to ensure that the system is both 

responsive to its environment and that each task is has enough available CPU time 

available to it. In the case that a task exceeds its allocated WCET the resulting effect may 

cause the other tasks in the system to miss their respective deadlines. These conditions are 

known as task overruns. 

On the other hand, TT designs tend to have a very simple architecture which makes them 

easy to understand and maintain (Liu and Layland 1973 ), thus the maintenance costs can 

be substantially reduced. Furthermore, due to the predictable nature of TT designs, 

certification authorities (and company lawyers) tend to look favourably on systems using 

this architecture for safety-critical applications (Pont 2001). 



Introduction 

1-8 

 

TT scheduling architectures can differ between pre-emptive and co-operative (or non-pre-

emptive) algorithms. Rate monotonic (TTRM) and deadline monotonic (TTDM) define 

scheduling algorithms that are fully pre-emptive, whilst cyclic executives and time-triggered 

co-operative (TTC) algorithms define co-operative based systems (Bate 1998; Pont 2001). 

A key benefit of co-operative algorithms is the absence of deadlock situations and the 

associated complexity from dealing with shared resources among concurrent tasks. As a 

result, TTC architectures are often regarded as one of the simplest forms of time-triggered 

scheduling which are easier to use due to its low complexity and has been shown to be 

highly effective for a wide range of applications (Pont 2001; Kopetz 2008). 

Overall, the focus of this thesis is on predictability and therefore the rest of the document 

will be based on time-triggered co-operative architecture. A more detailed discussion of the 

TTC architecture is given in Chapter 2. 

1.5 Problems making real-time systems predictable 

As discussed in the previous section, TT architectures can be expected to provide highly-

predictable behaviour. However, assumptions about such behaviour rely (often implicitly) 

on knowledge of the operating characteristics of the underlying hardware. For instance, 

Engel. et al. notes that: “Fulfilling an embedded application's real-time requirements depends largely on 

knowing the timing properties of the underlying hardware and OS.” (Engel, Kuz et al. 2004). It is 

therefore essential - that if predictable timing behaviour is to be obtained - that the 

temporal characteristics of the systems hardware can be easily understood. 

Often embedded systems are built upon highly predictable electronics driven by a high 

precision oscillator to provide accurate and synchronous clock signals. However, as the 

layers of abstraction (such as processor architecture, operating system and application 

software) are applied, the predictable timing behaviour generally appears to decrease 

(Edwards and Lee 2007). 

The developments in microprocessor architectures have often been designed to meet the 

classical objective of maximising (average) resource utilisation. Embedded processors are 

slowly following this trend by integrating some of the features commonly found on 

desktop and server architectures, where the goal is performance rather than predictability. 

As a result, these architectures are displaying greater variations in the execution time of 



Introduction 

1-9 

 

tasks and can make determining the systems temporal properties highly complex. Features 

that contribute to this complexity include caches, DMA, pipelines, branch prediction and 

instruction level parallelism (Berg, Engblom et al. 2004). 

Due to these temporal complexities, modern timing analysis tools are struggling to keep up 

with modern computer design (Rapita 2008; Wilhelm, Engblom et al. 2008). The difficulty 

is being able to accurately model the processor hardware for static analysis or take timing 

measurements that are known to be both accurate and safe (as described in Section 1.3). 

This results in reduced confidence in the guarantees that the system will meet its 

objectives.  

The problem can then be summarised as follows: if time-triggered systems are to be 

considered as predictable but run on processors that are regarded as hard to predict, it 

follows that in essence that time-triggered systems cannot be predictable.  

Therefore, a predictable processor architecture is required in order to allow time-triggered 

co-operative systems to run predictably and alleviate the problems associated in providing 

reliable guarantees that the system will meet its requirements. 

1.6 Aims of this thesis 

The aim of this thesis is to design and evaluate a highly predictable embedded processor 

specifically suited for time-triggered co-operative systems in which each instruction has a 

single temporal response under all conditions in order to facilitate simple static program 

analysis and highly accurate time predictability. 

1.7 Key contributions 

• Development of a novel processor core for time-triggered systems. 

• Development of a hardware-based scheduler for use with TT systems. 

• Development of a set of software-based error-detection (and recovery) 

mechanisms to deal with issues of task overruns in TT systems. 

• Translation of the above task overrun solution into hardware, thereby improving 

performance and reducing software complex 



Introduction 

1-10 

 

1.8 Thesis Overview 

The rest of this thesis is organized as follows: 

• Chapter 2 gives an overview of the key parameters and characteristics involved in 

selecting a predictable scheduler for hard real-time embedded systems. 

• Chapter 3 reviews how the features in modern processor architecture have an 

impact on the ability of the system designer to predict how the system will behave. 

• Chapter 4 presents a design for a predictable processor by first considering the 

architectural decisions and then adding new features to support predictable 

execution of TT architectures. 

• Chapter 5 presents a design for a hardware-based TTC scheduler which minimises 

the complexities of scheduling overheads. 

• Chapter 6 presents a set of software-based error-detection (and recovery) 

mechanisms to deal with issues of task overruns in TT systems. 

• Chapter 7 presents a hardware solution to the task overrun problem in order to 

improve performance and reduce software complexity. 

• Chapter 8 draws conclusions from the work presented throughout this thesis and 

discuss the future work in the area of increasing predictability in embedded 

systems.  

1.9 Conclusions 

This chapter introduced the challenges involved with creating predictable embedded 

systems and reviewed the main contributions of the research presented in this thesis. These 

contributions are centred on achieving highly predictable behaviour for time-triggered real-

time embedded systems. 



Software architectures for embedded systems 

2-1 

 

Chapter 2 Software architectures for embedded systems 

2.1 Introduction 

Chapter 1 discussed that for embedded systems and in particular for hard real-time systems 

to be predictable, the underlying architecture must be predictable. In software this relates 

to the way code is executed. 

For many systems the functional requirements are often broken down into a group of 

smaller tasks. For hard real-time systems, these tasks must then be proved to be correct 

(Section 1.4).  

In order to achieve the required system behaviour, a scheduler algorithm can be used to 

execute the tasks in the system in a specific order based on a set of constraints. Buttazzo 

breaks these constraints down into three key areas; timing, precedence and resource 

constraints (Buttazzo 2005). 

2.1.1 Timing constraints 

For each task in the system there are a number of commonly used timing parameters to 

define its temporal behaviour. These parameters can be met by an appropriate scheduling 

algorithm.  

The “arrival time” or “release time” parameter is defined as the time at which the task is 

ready for execution. The start time defines the point when the task actually begins 

execution. The finishing time is the time in a particular run where the task actually finishes 

execution. The relative deadline is the maximum delay from the release time at which the 

task must complete. BCET and WCET parameters are described in Section 1.3. 

Tasks are further broken down based on their arrival characteristics into periodic and 

sporadic.  

For periodic tasks a new instance is executed periodically after a fixed duration between 

each task release (Buttazzo and Caccamo 1999). A benefit for periodic systems is that the 

future release times of tasks are known in advance. Also many real-time applications are 

periodic in nature such as data acquisition and control systems (Halang and Stoyenko 1994; 



Software architectures for embedded systems 

2-2 

 

Krishna and Shin 1997; Buttazzo 2005). Periodic systems are often promoted for hard real-

time systems (Spuri, Buttazzo et al. 1995; Pont 2001). 

Sporadic tasks differ from periodic tasks in that the tasks are activated at irregular rates 

(Jeffay, Stanat et al. 1991). Examples of sporadic tasks are non-periodic device interrupt 

handlers and user requested task activations such as graphical user interfaces (GUI) (Spuri, 

Buttazzo et al. 1995; Nolte 2003; Buttazzo 2005). Sporadic tasks are also generally 

considered to be unpredictable (Kopetz 1991). 

2.1.2 Precedence constraints 

Another requirement is that tasks are executed in a particular order. This relation is known 

as the precedence (Mohammadi and Akl 2005). An example could be a data acquisition 

system in which there might be an input sensor task and computational task followed by an 

output task. This characteristic is common in systems such as simple cruise control 

(Ayavoo, Pont et al. 2005). 

For groups of tasks that have precedence relations, the temporal behaviour is not just 

based on the individual task but by the set of tasks in the relation. Therefore all tasks must 

complete before the overall deadline (Halang and Stoyenko 1994; Ramamritham and 

Stankovic 1994). Precedence can also apply to task sets across multiple processors (Jensen, 

Locke et al. 1985). 

2.1.3 Resource constraints 

Tasks can also be classified as independent or dependent. Discounting the CPU, 

independent tasks do not share any other resources (Blake 1992; James, Hawick et al. 

1999). Alternatively, dependant tasks require mutually exclusive access to shared resources 

(Cottet, Delacroix et al. 2002; Merrick, Wang et al. 2005). Shared resources are considered 

to have negative impacts on temporal predictability due to the need to consider the timing 

impacts of the locking mechanisms and the associated tasks that also share the resource 

(Audsley and Burns 1990).  



Software architectures for embedded systems 

2-3 

 

2.2 Real-time task scheduling 

In order to manage the various task constraints a suitable scheduling mechanism can be 

used. This section will discuss the differences in scheduling approaches and the impact 

they have on the predictability of the system. 

2.2.1 Time-triggered versus event-triggered 

Scheduling architectures can be broken down into time-triggered and event-triggered 

systems. A time-triggered system releases tasks based on specific time instances which are 

known before the systems starts (Liu 2000). Event-triggered systems release tasks based on 

a set of events such as external interrupts. 

Event-triggered systems are useful for applications requiring high responsiveness, flexibility 

and the capability to handle sporadic events (Kopetz 1997). However, since the frequency, 

timing and possibility for simultaneous events are hard to predict, the run-time behaviour 

is unknown until the system starts and therefore the system is unpredictable (Kopetz 

1991). 

Time-triggered systems detect external events by polling the event sources periodically 

(Pont 2001). The responsiveness of the system is then dependent on how frequently the 

polling tasks are called. If the tasks are called very frequently then the system may be 

loaded unnecessarily (Pont 2001). Therefore, in time-triggered systems more pre-planning 

is required in the design stage. However, since the task executions are based on static pre-

determined schedules, the system loads and systems response times are known in advance 

(Locke 1992; Kopetz 1997; Liu 2000). The state-synchronisation on time-triggered systems 

is also better as the tasks are based around a synchronised global clock (Obermaisser 2004). 

2.2.2 Offline versus online 

Schedulers also differ in the time at which scheduling decisions are made. Scheduling 

decisions can be made using either offline or online algorithms (Liu 2000; Cottet, 

Delacroix et al. 2002). Offline algorithms contain a static plan of task parameters which 

can be stored as a table of procedure calls (Stankovic, Spuri et al. 1995; Nolte 2003). The 

availability of the pre-runtime schedule makes the system more predictable and easier for 

the designer to ensure that the constraints of the system will be met (Xu and Parnas 1993). 



Software architectures for embedded systems 

2-4 

 

Online algorithms differ in that the task schedule is determined dynamically based on the 

parameters that are known at runtime (Cottet, Delacroix et al. 2002). A benefit to this 

behaviour is that the schedule is flexible and can evolve to the demands of varying 

environmental conditions, especially where the future system loads are unknown. 

However, online algorithms are unpredictable and require the additional overhead of 

calculating the schedule between task activations (Liu 2000). 

2.2.3 Co-operative versus pre-emptive 

Scheduling strategies can differ between co-operative and pre-emptive systems (Liu 2000). 

In co-operative scheduling, tasks are given control of the processor and must co-operate 

with the system by returning control to the scheduler once the task has completed (Pont 

2001). Therefore since tasks are not interrupted and run to completion complex locking 

mechanisms are not required as resources are not shared. 

In pre-emptive scheduling a task may be interrupted whilst higher priority tasks are given 

control of the processor (Audsley, Burns et al. 1995; Nissanke 1997). This involves saving 

the current tasks state so that it can be paused and restarted once the higher priority tasks 

have completed (Liu 2000). 

2.2.4 Fixed-priority versus dynamic-priority 

Real-time scheduling schemes execute tasks based on a set of priorities. The priority 

assignment for tasks can be fixed or dynamic in nature (Audsley, Burns et al. 1991; 

Buttazzo 2005).  

In fixed priority assignment, tasks are given a priority that is maintained throughout the 

lifetime of the system (Burns 1991). Since the priority of tasks are known before the 

system runs, fixed priority systems are promoted for the use in hard real-time systems (Tia, 

Liu et al. 1996). 

Dynamic priority assignment allows tasks to be given different priorities during the lifetime 

of the system (Liu 2000). These systems will adapt the task schedule to the conditions of 

the environment to meet the required demands. Whilst dynamic priority is more flexible 

than static priority, it is also less predictable (Bini and Buttazzo 2004). 



Software architectures for embedded systems 

2-5 

 

2.3 The time-triggered co-operative scheduler 

Based on the criteria in the previous sections, a predictable hard real-time system should 

contain a time-triggered co-operative (TTC) scheduler with offline and statically prioritized 

tasks. In fact, in literature this type of system is known as a cyclic executive (Baker and 

Shaw 1988; Locke 1992; Bate 1998) and is widely used in the design of safety critical 

systems in areas such as the automotive and avionics sector (Carlow 1984; Kopetz and 

Grünsteidl 1994; Tindell, Kopetz et al. 2003). 

There are a few drawbacks to TTC scheduling. For instance, whilst the implementation is 

simple, the structure can be considered to be rigid and inflexible (Locke 1992), 

implementing tasks to handle sporadic events through polling can be expensive (Bate 1998) 

and the schedule has to be re-analysed for every change made. However, the TTC 

scheduling framework is highly predictable and has been shown to be suitable for a wide 

range of applications (Pont 2001; Kopetz 2008).  

While such a scheduler is not suitable for all systems, when compared to other 

architectures, time-triggered, co-operative scheduled (TTC) systems are known to provide 

a simple, low-cost and highly predictable platform. For instance, various studies have 

demonstrated that when compared to pre-emptive schedulers, co-operative schedulers 

have a number of desirable features, particularly for use in safety-related systems. For 

example, (Nissanke 1997) notes: “[pre-emptive] schedules carry greater runtime overheads because of 

the need for context switching – storage and retrieval of partially computed results. [Co-operative] 

algorithms do not incur such overhead. Other advantages of [co-operative] algorithms include their better 

understandability, greater predictability, ease of testing and the inherent capability for guaranteeing exclusive 

access to and shared resource or data.”. (Allworth 1981) notes: “Significant advantages are obtained 

when using this [co-operative] technique. Since the processes are not interruptible, poor synchronisation does 

not give rise to the problem of shared data. Shared subroutines can be implemented without producing re-

entrant code or implementing lock and unlock mechanisms”. Also (Bate 2000) identified the 

following four advantages of co-operative scheduling when compared to pre-emptive 

alternatives: The scheduler is simpler; The overheads are reduced; Testing is easier and 

Certification authorities tend to support this form of scheduling. 



Software architectures for embedded systems 

2-6 

 

Within this thesis, the most important constraint is predictability and therefore the TTC 

scheduler will be used throughout the work described here2. 

2.3.1 Implementation 

The particular TTC scheduler implementation which will be used throughout this thesis is 

be based around the design described in (Pont 2001). This is because the source code is 

well documented and the subject of a number of research papers (Pont 2003; 

Phatrapornnant and Pont 2006; Vidler and Pont 2006; Gendy and Pont 2008). An 

additional benefit is that the source code is freely available for use in research projects.  

A TTC scheduler is characterised by a periodic scheduler tick in which one of more tasks 

can execute as long as they return in a time less than the tick interval. In Figure 4, a 

scheduler tick is denoted by the upward arrows indicating the points when the system is 

interrupted. The tick interval is the periodic time between the scheduler ticks. Tasks are 

scheduled after a tick and must return before the end of the current tick interval. 

 

Figure 4: Example Time-Triggered Co-operative schedule 

The scheduler tick is often implemented through a periodic timer interrupt which calls a 

scheduler interrupt service routine (ISR) called Update. The Update function will 

increment a tick count value which is required by a scheduler Dispatch function in order to 

determine when a task can be released. At runtime the Dispatch function is called from the 

main function inside an infinite while loop. Using the tick count value, a task queue is 

updated and the tasks are released based on the their period and fixed priority. An example 

of a typical TTC schedule is shown in Figure 4. 

                                                 
2 It is noted that other less predictable and more flexible pre-emptive scheduling architectures such as rate-

monotonic, deadline-monotonic, earliest deadline first and least laxity first could be considered but is 

felt to be out of the scope of the work presented here. 



Software architectures for embedded systems 

2-7 

 

2.4 The Time-Triggered Hybrid Scheduler 

An alternative to TTC can be to include support for an optional single pre-emptive task 

and allow the co-operative tasks to extend beyond the tick interval. This allows for a 

mixture of long and short task executions in order to further expand the range of 

applications that can be supported. 

For instance, whilst the TTC architecture has many attractive features, the solution is not 

always appropriate. As Allworth has noted:  “[The] main drawback with this [co-operative] 

approach is that while the current process is running, the system is not responsive to changes in the 

environment. Therefore, system processes must be extremely brief if the real-time response [of the] system is 

not to be impaired.” (Allworth 1981). This concern can be expressed slightly more formally by 

noting that if a system is being designed which must execute one or more tasks of (worst-

case) execution time e and also respond within an interval t to external events then, in 

situations where t < e, a pure co-operative scheduler will not generally be suitable.  

In such circumstances, it is tempting to opt immediately for a fully pre-emptive design. 

Indeed, some studies seem to suggest that this is the only alternative (Locke 1992; Bate 

1997). However, another design option is to include the support for a single, time-

triggered, pre-emptive task that can be added to a TTC architecture, to create a “time-

triggered hybrid” (TTH) scheduler (Pont 2001; Maaita and Pont 2005).  

Use of a TTH scheduler allows the system designer to create a static schedule made up of 

(i) a collection of tasks which operate co-operatively and (ii) a single – short - pre-emptive 

task. In many designs, the pre-emptive task will be used for periodic data acquisition, 

typically through an analogue-to-digital converter or similar device: such requirements is 

common in, for example, a wide range of control systems (Buttazzo 2005). 

The operation of the TTH architecture is illustrated schematically in Figure 5.  This figure 

shows the situation where a single short pre-emptive task is executed every millisecond, 

while a co-operative task (with a duration greater than 1 ms) is “simultaneously” executed 

every 3 milliseconds. Note that pre-emptive task will interrupt the co-operative task when 

it is due to run and therefore shared resources must be handled with care. 



Software architectures for embedded systems 

2-8 

 

 

Figure 5: Illustrating the operation of a TTH scheduler 

The TTH architecture will, in many cases, be used to implement a common “rate-

monotonic” schedule: although it should be emphasised that this architecture only 

supports a single pre-emptive task.  As a consequence, in a resource-constrained embedded 

system, it is a very attractive proposition because it allows creation of a scheduler with 

minimal resource requirements which is precisely matched to the needs of many practical 

applications. However, for the most part, this thesis will be concerned with TTC 

scheduling since a TTH framework reduces the predictability slightly due to the inclusion 

of pre-emption and the issue of dealing with shared resources. 

2.5 Conclusion 

This chapter has discussed some of the key parameters and characteristics involved when 

selecting an appropriate scheduler for high-reliability embedded systems. By taking the 

most predictable design choices an offline and static priority time-triggered co-operatively 

scheduled system was selected in order to provide highly predictable and deterministic 

system behaviour. Therefore the rest of this thesis will be primarily based around the TTC 

scheduling architecture.  

The next chapter considers the issues of temporal predictability in the design of 

microprocessor architecture. 



The challenges involved in creating “predictable” microprocessor hardware 

3-1 

 

Chapter 3 The challenges involved in creating 

“predictable” microprocessor hardware 

This chapter reviews the challenges in designing predictable microprocessors and the 

current work that has been done to improve temporal predictability. Anyone not familiar 

with modern processor architecture may wish to take a look through Appendix D which 

describes how computer hardware has developed over the past 50 years. 

3.1 Introduction 

This chapter aims to demonstrate the problems of understanding and predicting the 

temporal properties of software as it executes on modern processor hardware. Figure 6 

illustrates this problem where an application programmer will typically combine a set of 

tasks and an RTOS to form the code that will run on the processor. However, the 

temporal properties of executing that code is often unknown, leading to an output 

behaviour that is difficult to predict. 

 

Figure 6: Mismatch between code input and anticipated temporal behaviour 

As mentioned in Section 1.3, one of the key temporal properties required for hard real-

time systems is WCET, therefore this chapter begins by considering the challenges 

involved in WCET analysis. 



The challenges involved in creating “predictable” microprocessor hardware 

3-2 

 

3.2 Difficulties in WCET analysis 

One of the key issues in timing analysis is attempting to solve the problems of obtaining 

accurate and tightly bounded execution times. For hard real-time systems, the most crucial 

of these is to obtain the upper bounds (WCET) of a program in order to guarantee that 

deadlines can be met. 

In fact, Wilhelm and colleagues have argued that “Unfortunately, it is not possible, in general, to 

obtain upper bounds on execution times for programs.” (Wilhelm, Engblom et al. 2008). Whilst 

using a restrictive form of programming by bounding loops and removing recursion can 

help, they argue that determining the worst case inputs to the system can be very complex 

to derive. They state that even if the worst case inputs can be derived then the state space 

is often too large to explore all possible executions. 

A common approach to obtain timing estimates is to take measurements for a set of test 

cases. However, these values will usually under estimate the correct BCET or WCET. The 

problem is knowing if the worst case or best case times have indeed been measured. 

Therefore, measurement based techniques are not guaranteed to be safe and are generally 

unsuitable for hard real-time systems, especially as a primary source of timing analysis. 

The only way to achieve accurate bounds on execution times is to explore the computed 

time for all possible task executions. However, since the state space is so large, a more 

feasible approach is to abstract the system model (Rapita 2008). A problem with this form 

of static analysis is that while safe, the abstraction loses information about the system states 

and will usually produce overestimated timing values. 

The way this relates to the processor hardware is that in order to obtain safe and tight 

bounds, all the system states must be explored or abstracted conservatively. This therefore 

requires an accurate model of the underlying hardware and its features. In some cases the 

best model of the processor is the processor itself (Bernat, Davis et al. 2007). 

The ability to create accurate models of the hardware depends largely on the complexity 

and temporal predictability of the techniques used. Some of these features can reduce 

predictability due to the use of speed-up mechanisms like caches, instruction pipelines, 

parallel instruction-execution units, and branch-prediction. Some of these mechanisms are 

complex in their implementation and have mutual interferences in their timing. In addition, 



The challenges involved in creating “predictable” microprocessor hardware 

3-3 

 

the timing properties are rarely documented to protect the manufacturer’s intellectual 

property. These issues make it very difficult to build static WCET analysis tools for 

modern processors that can be guaranteed to model the timing of the processor correctly 

(Puschner 2002).  

This chapter aims to explore some of the underlying temporal predictability problems in 

modern processor architecture. 

3.3 Principles for a time predictable processor 

Identifying the complexities in temporal predictability for modern processor architecture 

are best described through the principles for a time predictable processor. 

(Thiele and Wilhelm 2004) identified 4 key threats to predictability in processor 

architectures: 

Non-Deterministic behaviour - A significant cause for low temporal predictability can arise 

through the systems sensitivity to interfering and non-deterministic behaviour. For 

example, through the reception of sporadic interrupts. 

High Variability – A number of features such as caches, pipelines and out of order 

execution can cause a high variation in execution times. These variations can combine 

together to have a larger impact on the temporal properties of the system. 

Non-Analysable – Some components can exhibit properties which are non-analysable and 

can make determining accurate execution times impossible.  

Complexity - There are some components that can be analysed but the computational 

effort to do so results in such high complexity and low performance that the effort 

required is not practical. 

These properties have been observed and found to be responsible for temporal 

predictability in a number of system components (Heckmann, Langenbach et al. 2003) and 

will be described in more detail in the following sections. 



The challenges involved in creating “predictable” microprocessor hardware 

3-4 

 

3.4 Issues with current processor architecture 

Some of the problems with timing analysis have been shown to come about due to the 

following processor features: 

• Instruction Set 

• Pipelines 

• Branch Prediction 

• Memory systems 

• Documentation 

These issues will be discussed in more detail in this section. 

3.4.1 Instruction Set 

Often one of the early decisions in a processor design is to choose an appropriate 

instruction set architecture (ISA) (Patterson and Hennessy 2005). Instructions sets can 

differ between size, CISC and RISC, and modern instruction sets also differ between 

variable and fixed length.  

Current embedded system trends indicate that variable length instruction sets have a better 

code density which is an important design parameter for many real-time systems. Examples 

of processors with variable length instruction sets can include some incarnations of ARM 

and MIPS processors. These processors can contain a mixture of 16bit and 32bit 

instructions. 

A problem with variable length instruction sets is that they can make the predictability for 

cache analysis more complex, for instance by adding extra instruction cycles for branches 

to misaligned instructions when only part of the instruction is cached. Due to the code 

density of variable length instruction sets the number of memory cycles are decreased, 

giving better average performance than fixed length instruction sets. 



The challenges involved in creating “predictable” microprocessor hardware 

3-5 

 

3.4.2 Pipelines 

A design feature that can link closely to the instructions set is the option to utilize a 

pipelined architecture. 

The predictability of a particular pipeline system can depend on the power of the available 

analysis methods. With pipeline analysis two levels of complexity have been defined,  one-

shot and fixed-point analysis (Berg, Engblom et al. 2004). 

One-shot analysis is a fast method which is only suitable for simple pipelines as each 

instruction is assumed to have a single and deterministic pipeline behaviour. Fixed-point 

analysis uses a collection of abstracted pipeline states which are used to evaluate all 

possible states. This makes fixed-point analysis more suitable for complex pipeline 

architectures but entails higher computational costs. Some architectures feature 

characteristics that are not suitable for either methods. For example, a PowerPC 755 

processor was found to have cases where an instruction could have up to 1000 states 

(Heckmann, Langenbach et al. 2003). Furthermore, some systems suffer from long timing 

effects (LTEs) and can cause an unmanageable amount of complexity in fixed point 

analysis and render one-shot analysis completely infeasible. 

LTEs are the effect when the timing behaviour of the current instruction depends on the 

execution history of previous instructions which are not its direct neighbour in the 

instruction flow. This effect can range from between a few machine cycles in simple 

pipelines to propagating for potentially unbounded sequences of instructions, for example 

in caches (Engblom and Jonsson 2002). The result is high variability and local non-

determinism which can affect the execution times of tasks and the ability to meet 

deadlines. 

A more alarming problem is the issue of timing anomalies which display a counterintuitive 

influence on the expected timing behaviour between the local execution of instructions and 

its effect on the global execution of tasks (Lundqvist and Stenstr 1999; Reineke, Wachter et 

al. 2006). An example of this is the condition where a cache hit would normally translate 

into faster system execution, but in fact leads to the opposite. The ColdFire 5307 processor 

was observed to have this behaviour (Heckmann, Langenbach et al. 2003). 



The challenges involved in creating “predictable” microprocessor hardware 

3-6 

 

The first timing anomaly to be observed was in the instruction scheduler of superscalar 

out-of-order pipelines (Graham 1969). In such architecture, a speed up in one instruction 

could lead to a less efficient schedule which can affect many future instructions. The state 

space for such a system becomes very large and thus becomes a highly computational 

heavy problem for analysis tools. 

The potential for timing anomalies has a large effect on the ability of timing analysis tools 

to provide accurate and safe estimates (Heckmann, Langenbach et al. 2003).  

3.4.3 Branch Prediction 

Dynamic branch prediction is generally considered unsuitable for use in real-time systems 

(Heckmann, Langenbach et al. 2003). This is because a number of the employed 

techniques break the recovery requirement which states that it is possible to recover the 

knowledge of the ISA or timing behaviour when it becomes unknown (Berg, Engblom et 

al. 2004). For dynamic branch prediction this is a problem because the history of previous 

branches affects the predictions of future branches (Engblom 2003). 

When combined with caches, branch prediction has also been shown to be a cause of 

timing anomalies (Ferdinand, Heckmann et al. 2001). In such cases, executing a loop for 

more iterations could result in a reduction of execution time (Engblom 2003).  

Dynamic branch prediction is also shown to break the non-interference principle where 

the prediction can cause parts of the cache contents to be replaced by instructions that are 

not executed. A large quantity of branches in a program can result in a significant 

disruption to the cache analysis and consequently the timing estimates (Berg, Engblom et 

al. 2004). 

On modern processors such as the AMD Athlon, dynamic branch prediction is shown to 

make WCET analysis very difficult (Petters 2002). An alternative approach is to use static 

prediction based on statically known information, such as branch direction or special hint 

bits in the instruction. An example of a static predictor is the BTFN (backward branches 

taken, forward branches not taken) which is shown to be 60-70% accurate for typical 

embedded applications (Gwennap 1995; Levy 2002). 



The challenges involved in creating “predictable” microprocessor hardware 

3-7 

 

3.4.4 Cache Predictability 

According to (Basumallick and Nilsen 1994; Sebek 2001) there are two main types of cache 

behaviour, intrinsic and extrinsic. Intrinsic behaviour is the condition where two parts in 

the same task compete for the same area in cache. As a result the two parts invalidate each 

other and the performance is reduced. Extrinsic behaviour is the result of separate tasks 

invalidating each other, mainly due to pre-emption where the contents of the cache are 

replaced with the contents of a new task. This is also known as the cache related pre-

emption delay (CRPD) (Sebek 2001). 

A common perception is that the use of cache is not suitable for applications requiring 

predictable behaviour. As a result it can be common practice to disable cache for critical 

sections of code where predictability is required (Mueller, Whalley et al. 1993). 

An alternative solution to the problem is the use of a locally fast on-chip RAM area in 

which the compiler or programmer can selectively map key sections of code and data. 

However, the use of large amounts of on-chip RAM comes at a cost penalty and 

performance depends on the effectiveness to map values that will provide a maximum 

benefit. 

Despite some of the negative aspects for the predictability of cache, there are some 

researchers who argue that modern techniques can provide accurate estimates. For instance 

once the cache is loaded with the values then the analysis is said to model the real 

behaviour accurately (Ferdinand, Heckmann et al. 2001). Instruction caches can also be 

predicted quite accurately when the program flow and memory accesses are known 

(Mueller, Whalley et al. 1993). However, the assumption is usually made that the code 

being analysed is between two points (such as context switches) where the cache is 

assumed to be invalidated. 

There are also claims of confidence in the predictability of data cache (Berg, Engblom et al. 

2004). For example, one study  (Ferdinand, Heckmann et al. 2001) shows that in 

benchmarks supplied by Airbus found over 90% of the data accesses to be predictable. 

However, for systems in which the instruction and data accesses share a unified cache, an 

interference problem occurs. This is where instruction and data accesses can invalidate 



The challenges involved in creating “predictable” microprocessor hardware 

3-8 

 

each other and like the similar problem in branch prediction it can affect the overall 

performance (Berg, Engblom et al. 2004).  

Cache are also known for exhibiting timing anomalies on out-of-order pipelines where a 

cache hit can result in the worst case timing. Furthermore a miss penalty can be higher 

than expected due to its effect on the instruction scheduler which can cause older 

instructions to execute earlier than normal (Lundqvist and Stenstr 1999). 

A few solutions have been provided to get round the problems of extrinsic cache 

behaviour from task pre-emption. A simple solution is to flush the cache on each context 

switch so that each execution run starts in a known condition (Niehaus, Nahum et al. 

1991). However the performance can be significantly impacted if pre-emption occurs very 

frequently. An alternate solution to flushing the cache after every context switch is to make 

the pre-emption points known so that the disruption to cache can be modelled in the 

analysis (Simonson and Patel 1995).  Kirner and Puschner used this idea in combination 

with an instruction counter rather than a timer to identify the exact points in the code 

where the pre-emption would occur (Kirner and Puschner 2007). This solution was shown 

to be predictable but it does require that the task schedule be static or deterministic so that 

it can be included within the model. 

Another approach to increasing the cache predictability is the use of partitioning to split 

the cache into segments which can be assigned to individual tasks (Kirk 1989; Kirk and 

Strosnider 1990; Mueller 1995). This can be achieved either through hardware or in 

software by carefully mapping the tasks to memory locations that do not compete for the 

same cache lines. A problem with cache partitioning is that each task is only given a small 

portion of the available cache and the task scheduler must incorporate mechanisms for 

protecting and allocating the cache resource.  

A solution proposed by (McFarling 1989) uses a dedicated bit in the instruction set to 

indicate if a particular instruction should be cached. This provides a solution for systems 

where only certain portions of the code contain time critical sections and where the rest of 

the system can benefit from the full use of the cache. (Chi and Dietz 1989) used a similar 

technique in load and store instructions to indicate if data should be cached. 

Another approach is the use of cache locking mechanisms where values are loaded into the 

cache and locked to prevent further change (Akgul and Mooney 2002). Two methods exist, 



The challenges involved in creating “predictable” microprocessor hardware 

3-9 

 

static and dynamic cache locking. Static cache locking allows the values to be loaded once 

during system start up and are then never changed during the systems lifetime (Campoy, 

Ivars et al. 2001). Dynamic cache locking allows the values to be loaded and then changed 

at specific points, for instance when tasks are pre-empted (Campoy, Ivars et al. 2002). 

Experiments show that static locking is more predictable but has limited performance 

gains compared to dynamic locking (Campoy, Perles et al. 2003; Vera, Lisper et al. 2003; 

Vera, Lisper et al. 2007). 

3.4.5 DRAM 

Unlike SRAM, DRAM can cause problems to temporal predictability due to its need to 

refresh the capacitors that it uses to store data. Unfortunately the refresh cycles occur 

asynchronously to program execution and are an example of a non-analysable component. 

If the refresh occurs on the same data that is being accessed then the processor will be 

halted until the refresh is complete. The problem is being unable to know when the refresh 

cycles will collide with the data accesses and how often. Therefore assuming the worst case 

time on each memory access will usually result in a large overestimation of the WCET 

(Atanassov and Puschner 2001). 

Initial measurements on the impact of DRAM refreshes showed that the effects were 

larger than expected (Park and Shaw 1990). However, more recent studies have shown the 

average effect to be about a 2% increase on execution time (Atanassov and Puschner 

2001). 

A proposed method to increase DRAM predictability includes a compiler based system to 

synchronise memory accesses with refresh cycles (Panda, Dutt et al. 1997). However, this 

knowledge of when the refresh occurs is unknown. 

3.4.6 Direct Memory Access (DMA) 

For DMA transfers there are two modes of operation, cycle stealing and burst mode 

(Colnaric and Halang 1993). In cycle stealing mode the DMA takes its turn with the CPU 

to make use of the data bus. In order to predict when the DMA operation will finish 

requires knowing the arbitration scheme of the bus. A more predictable approach is the 

burst mode where the CPU is paused until the transfer operation is complete. However, 

during this period it will reduce the processors ability to react to external events. Therefore 



The challenges involved in creating “predictable” microprocessor hardware 

3-10 

 

the DMA must be factored into the timing analysis much like any other task in the system 

(Pitter and Schoeberl 2007). 

3.4.7 Memory Management Unit (MMU) 

Memory management units provide two main functionalities. These are to make the main 

memory appear larger than the physical memory by offloading less frequently used pages 

to a slower memory medium, and to provide memory protection (Berg, Engblom et al. 

2004). For hard real-time systems the features of memory protection are of most practical 

use as expanding the memory area beyond the physical memory is usually unpredictable in 

hardware and slow in software. Some recent work has been done to increase the 

predictability on directing the MMU page transfers through a compiler (Puaut and Hardy 

2007). Another issue with using an MMU is the translation lookaside buffer is a form of 

cache memory for holding page table entries and therefore suffers from the similar 

problems as cache (Bennett and Audsley 2001). If all the relevant table entries are located 

in the TLB before the task starts then the behaviour is said to be predictable (Niehaus 

1994).  

3.4.8 Comprehensive Documentation 

Processor documentation is scarcely catered for hard real-time systems in which deep 

information for the processors states and temporal qualities are required (Berg, Engblom et 

al. 2004). The reasons behind this lack of information might be due to competitive reasons. 

In some case even the documented information has been found to be incorrect, as 

(Atanassov and Puschner 2001) found in the case of DRAM timing. The hardware 

documentation for the C167 processor was also found to be inaccurate, leading to a 5% 

difference in measured and estimated times (Atanassov, Kirner et al. 2001). 

If predictability is to be maintained and analysis tools are to provide safe and accurate 

estimates, then the processor hardware states should be both predictable and well 

documented. 

3.5 Symptoms of unpredictable hardware 

In the previous section the reduced predictability in processor architectures are shown to 

be the result of speed-up mechanisms such as caches, pipelines, branch prediction, 



The challenges involved in creating “predictable” microprocessor hardware 

3-11 

 

instruction level parallelism and out-of-order execution. This problem is made worse when 

the effects of these mechanisms combine to produce LTEs and timing anomalies. 

Furthermore the documentation rarely provides adequate information to produce accurate 

processor models. These combined issues then make it difficult to build static WCET tools 

and make guarantees that deadlines will be met (Puschner and Burns 2002). This also 

relates to a further problem in the ability to validate that the WCET tools are themselves 

correct (Engblom, Ermedahl et al. 2001). 

When using static tools the analysis for a simple processor may take in the order of a few 

minutes, however the analysis of a complex processor, even when using an abstract model, 

has been shown to take about a day (Souyris, Pavec et al. 2005). As a result, the complexity 

and size of abstract models are increasing. With regard to modern tools, Wilhelm, 

Engblom et al. state that: “Benchmarks published earlier offer better results regarding the degree of 

overestimation, although significant methodological progress has been made in the meantime” (Wilhelm, 

Engblom et al. 2008). This is put down to the divergence between unpredictable processor 

architectures and the capabilities of modern static analysis tools. Therefore if applications 

use modern hardware and software architectures the complexity of making timing 

guarantees are inescapable (Puschner 2002). 

If the analysis tools can provide safe WCET times for a modern processor, then the 

problem of increasingly large variation between the average and worst case execution times 

means that for a large proportion of the time the CPU is just idling. This leads to an 

underutilised processor and a waste of resources. One approach to the problem is to mix 

hard and soft real-time tasks so that the hard real-time tasks will always have the available 

CPU time and the soft real-time tasks will benefit when the hard real-time tasks perform 

the average or best case times. However, this can have limited appeal as some hard real-

time designers may prefer to physically separate soft real-time tasks onto a separate 

hardware in order to simplify the verification process. 

The next section looks at some of the work that has been carried out to help improve the 

predictability of processors. 



The challenges involved in creating “predictable” microprocessor hardware 

3-12 

 

3.6 Work that has been done to improve time predictability 

Research is currently being undertaken in various areas to help improve the timing analysis 

of processors. These include techniques to generate formal specifications from hardware 

descriptive languages (Wilhelm 2004); model based software design (Feiler, Lewis et al. 

2000) and single path programming techniques (Puschner and Burns 2002; Puschner 2003; 

Gendy and Pont 2007); to formal verification of pipelines (Ravi, Ganesh et al. 2003) and 

full processor models such as the ARM6 (Anthony 2003). 

A few techniques have been used to improve the predictability of specific hardware 

components. These include work by (Stankovic, Niehaus et al. 1991) to provide a means in 

which sporadic interrupts can be handled through the use of a master processor core to 

schedule appropriate tasks on a collection of slave cores.  Work has also been done to 

improve the predictability of cache (Kirk 1989; Stärner 1998; Akgul and Mooney 2002; 

Vera, Lisper et al. 2007) and memory systems (Pitter and Schoeberl 2007). 

There are number of papers which highlight the design decisions for a predictable 

processor (Colnaric and Halang 1993; Ortega 1994; Colnaric, Verber et al. 1995; Berg, 

Engblom et al. 2004; Thiele and Wilhelm 2004). However, only a few complete processors 

have been designed with predictability at the forefront of the architectural decisions.  

(Whitham and Audsley 2006) produced a processor design, named MGREP, as an 

alternative to high performance superscalar ILP through the use of microcode controlled 

reconfigurable logic. Whilst the system is shown to provide a high throughput, the design 

assumes that the reconfigurable logic can be reconfigured in a predictable and fast manner. 

However, they state that runtime reconfiguration is not well documented and that the 

system could be unresponsive during reconfiguration. 

The CAR-SoC project builds on a multithreaded core design to run hard real-time tasks in 

a separate hardware thread than soft real-time tasks (Uhrig, Maier et al. 2005). This helps to 

increase responsiveness and partitioning between tasks although they state that the address 

pipeline is made complicated by the microcode engine. What the work does not do is to 

resolve the problems of execution times for individual threads. 

The SPEAR processor design represents a 3-stage simple pipelined processor where data 

hazards are resolved by a forwarding unit and control hazards result in a pipeline stage 



The challenges involved in creating “predictable” microprocessor hardware 

3-13 

 

being flushed (Delvai, Huber et al. 2003). Each instruction is one word in length and has 

deterministic execution times. The processor utilizes separate on chip memory for both 

instruction and data accesses with the option to allow the use of lock cache memory. 

Interrupts have a maximum jitter of one clock cycle and a latency of 3 clock cycles. One of 

the key features that make this architecture appealing for timing analysis is that it provides 

support to help with single path programming by utilizing instruction condition codes. 

However, this architectures predictability relies on each instruction executing within a 

single cycle and therefore it does not include more advanced instructions like multiply or 

divide which are becoming more commonly used in embedded processors (Heath 2002; 

Großschädl and Savaş 2004). 

Another approach to the problem is the virtual simple architecture (VISA) which will 

execute hard real-time tasks on a complex processor and will switch to a simpler processor 

if it does not finish in time (Anantaraman, Seth et al. 2003; Muller 2004). While this 

mechanism will provide safe upper limits to the WCET, the variations of the execution 

time could be large due to the difference in performance between the complex core and 

the simple core. Therefore the WCET values will not be optimal if considering the 

condition where all tasks miss there deadlines and must execute on the simple core.  

A different approach is the design of a precision timed machine (PRET) which aims to 

implement a MIPS based processor with the inclusion of special timeout (deadline) 

instructions which ensure constant time periods between sections of code (Ip and Edwards 

2006; Edwards and Lee 2007). If a section of code completes faster than expected, the 

deadline instruction will halt the processor for the requested number of clock cycles from 

the last deadline instruction. A problem with this approach is that it cannot handle 

interrupts and multitasking very well as the clock cycle counter may exceed the deadline 

amount by the time the interrupt has returned. 

3.7 Conclusion 

As described in Chapter 2, time-triggered software architectures can be used in a wide 

range of systems where high predictability is required. However, one of the problems is 

that its predictability is determined and in some cases undermined by the underlying 

hardware architecture. 



The challenges involved in creating “predictable” microprocessor hardware 

3-14 

 

This chapter has reviewed how many of the features in modern processor architectures 

have an impact on the ability of the system designer to know how the system will behave at 

any particular point in time. The un-deterministic temporal characteristics of these 

architectures reduce the ability of static analysis tools to obtain both accurate and safe 

timing estimates. It was shown that some architectures exhibit the presence of LTEs and 

timing anomalies which can make static timing analysis infeasible. These problems were 

found in components such as pipelines, branch prediction and cache memory. As a result, 

modern timing analysis tools are struggling to keep up with modern processor designs 

(Rapita 2008; Wilhelm, Engblom et al. 2008). Therefore in order to achieve “ultimate 

predictability” and reduce the complexities required by timing analysis, it is important that 

the execution of the instructions in the processor can ‘in all circumstances’ be predicted 

right down to the clock cycle level. 

As discussed in Section 3.6, a few microprocessor designs have tried to address some of 

the issues of temporal predictability. However not all designs provide a full solution or 

include the support for multi-cycle instructions which are common for control and data 

acquisition tasks. Some of the widely used instructions in this category are integer multiply 

and divide. 

The aim of the work presented in this thesis is to ensure that the processor will be 

predictable at the instructions level (even when incorporating multi-cycle instructions such 

as multiply and divide which can result in variable latencies). Previous designs have not 

achieved this level of predictability. In addition, the work here is focused on processors 

which support time-triggered architectures: previous studies have not considered the needs 

of such systems. 

The next chapter will present a novel processor design which will be used throughout the 

remainder of this thesis to support predictable execution of time-triggered systems. 

 



Design of a predictable TT processor 

4-1 

 

Chapter 4 Design of a predictable TT processor 

4.1 Introduction 

This chapter aims to explore the design for a highly predictable multi-cycle capable 

processor design targeted towards supporting time-triggered systems after reviewing the 

various architectural design choices by a using a bottom up approach. This implementation 

will put predictability as the highest design criterion before performance or cost. In some 

cases it may be simpler to adopt an archaic architecture. However, an archaic design is 

unlikely to meet the performance requirements of modern systems. The emphasis here will 

be on finding a balance between performance and cost without impinging on the first 

criterion of predictability. 

4.2 Design choices 

A summary of the design requirements for a predictable processor based on the 

architectural details laid out in Section 3.4 is listed below and will be described in greater 

detail within this Section. 

• Fixed Length RISC Instruction Set 

• Simple scalar pipelined architecture 

• Static branch prediction 

• Pipeline forwarding unit 

• Harvard architecture for separate data and instruction buses 

• Static access time SRAM 

Due to the current trend and popularity for higher performance 32-bit embedded 

processors, the design here will be based on a 32-bit architecture. In Section 3.4.1, it was 

clear for reasons of simplicity which in turn relate to ease of analysis and predictability 

(Wolfgang 2004) that a fixed length RISC instruction should be used.  



Design of a predictable TT processor 

4-2 

 

Whilst RISC is not always synonymous with pipelined architectures, it is possible to utilize 

a pipeline as long as it’s possible to employ one-shot analysis and reduce the effect of long 

timing effects. Part of these requirements is that there must be no hardware interlocks 

which are made easier by keeping the pipeline length fairly shallow. The number of 

pipeline stages with variable length should also be kept to a minimum and the use of 

parallel pipelines should be avoided to prevent an explosion of potential instruction 

combinations. Using a simple pipeline will enable the processor to reach the kinds of levels 

of performance found in many modern processor architectures and can also help to keep 

power consumption low. 

A common issue with pipelined architectures is that structural hazards can occur. This is 

when an instruction cannot be executed because the hardware is unable to support the 

current combination of instructions. An example of this can be when a data and 

instruction fetch occurs in the same cycle over a single bus. Therefore a conflict arises due 

to multiple pipeline stages fighting for memory access along the single shared resource. As 

a result, one of the pipeline stages must be paused until both stages can complete their 

memory accesses. To avoid such a conflict, the use of a true Harvard architecture with 

separate memory buses is proposed. This has the added benefit of isolating the program 

and data memory and can also be particularly useful in preventing attacks such as buffer 

overflows and accidental memory writes. 

In memory hierarchies there are a number of arguments stating that cache flow can be 

modelled under certain conditions. Although many of these solutions are highly complex 

and are often not practical as they rely on clauses such as ‘no use of interrupts’ or ‘multi-

path programming’. However, as described in Section 3.4.4 there are some techniques such 

as cache locking and cache partitioning which avoid some of these problems. If used 

correctly, these techniques can also provide a reasonable speed increase. For reasons of 

simplicity, the use of caches will not be used at this stage. 

Ideally the memory technology used for the processor should run at the processors clock 

speed. This is often possible in the form of on chip SRAM. Nevertheless, it’s recognised 

that this can be costly especially if required in large quantity. Cheaper slower memory 

systems can also be used as long as the access times are constant.  This is not the case for 

the popular DRAM chips which are known to suffer delays due to unpredictable memory 

refreshes. Using slower memory will have a significant impact on the overall systems 



Design of a predictable TT processor 

4-3 

 

performance and as such, some memory chips make use of a pre-fetch buffer. Whilst the 

pre-fetch buffers can reduce the performance loss, care must be taken to understand fully 

the features of the particular implementation to ensure that it can be modelled correctly.  

Since the design here is intended for highly predictable safety critical systems and cache 

will not be used at this stage, the cost of using fast on chip SRAM is deemed acceptable as 

an initial solution. 

The use of a single cycle instruction set which is of fixed length can make analysis far 

simpler and can allow for fixed interrupt response times as is the case in the SPEAR 

design. Where possible this will be used, although as will be described later, it is not always 

practical to implement all instructions into a single cycle implementation. 

Another effect of pipelined systems is the issue of control hazards. This occurs when an 

instruction has been fetched into the pipeline which is not going to be executed due to a 

flow control change. For example, when the outcome of branches are unknown until a 

later pipeline stage. In this scenario, any instructions that have already been fetched which 

do not follow the branch path will be flushed. Due to this problem, many modern 

processor architectures employ forms of branch prediction to reduce the wasted cycles 

from loading unwanted instructions.  

As described in Section 3.4.3 dynamic branch prediction reduces predictability as its 

prediction relies on a history of previous branches which is difficult to model. On the 

other hand static branch prediction will make the same prediction on all instances of 

execution but at the cost of performance. 

A method to guarantee an equal execution time, regardless if the branch is taken or not, is 

to pause subsequent instruction fetches until the branch outcome is known. However, this 

method always imposes the worst case performance and has the added requirement of 

hardware to pause instruction fetch stage. Thus it is advantageous to determine the branch 

direction in an early as possible pipeline stage. 

An alternate method which also guarantees equal execution time across branches is the 

branch delay slot technique. This technique relies on the compiler placing a suitable 

instruction directly after the branch which will be executed regardless if the branch is taken 

or not. If no suitable instruction can be found, then a NOP instruction is used instead. The 



Design of a predictable TT processor 

4-4 

 

performance for this method is based on the number of delay slots and the compilers 

ability to reorder instructions into these slots. This technique will be used in the design 

here as it simplifies the analysis process. 

One final effect of a pipelined architecture is data hazards. A data hazard occurs when an 

instruction cannot execute because a previous instruction holds data that it requires to 

complete execution. In most cases this problem can be resolved by the use of a forwarding 

unit to make the most recent data value available to the execution pipeline stage. However, 

if an instruction relies on data that is currently being fetched from memory by the previous 

instruction, then it must wait until the value is ready. In such a scenario the instruction is 

often paused and is generally avoided by the compiler. However, when such a condition 

occurs, the execution time can be modelled by simple analysis of the object code. Other 

architectures can use the compiler to insert an instruction after the load which is not 

dependant on the value being fetched. This process is known as the load delay slot. 

4.3 Selecting a processor platform 

A key aspect of a processors design is the ISA. This is because the ISA links closely to the 

underlying hardware and the abstraction that it provides for software programs to run. A 

common requirement is to provide enough data, logical and conditional instructions to 

efficiently support and run a high level language such as C. The complexity of making this 

possible also comes from developing supporting tools such as compilers and debuggers. It 

is therefore advantageous to base the processor design around an existing ISA in order to 

reduce the design effort required for providing appropriate tools. 

Some of the common and well known RISC ISAs are Alpha, PA-RISC, PowerPC, ARM, 

Thumb, SuperH, SPARC, M32R and MIPS. However, a number of these ISAs are the 

intellectual property of various companies, therefore only open ISAs can be considered. 

Out of this list, SPARC and MIPS are commonly used as templates for a number of 

processor designs. The SPARC ISA is an open standard and the MIPS ISA was born out 

of research by Patterson and Hennessy before being taken up by MIPS Technologies Inc. 

As a result, most of the MIPS instruction set is open apart from a few patented 

instructions which relate to unaligned memory accesses.  



Design of a predictable TT processor 

4-5 

 

The MIPS architecture is fairly well understood due to the many books published about it, 

in particular by its creators Patterson and Hennessy (Patterson and Hennessy 2005; 

Hennessy and Patterson 2006), whilst SPARC which is also well documented has an open 

specification and certification procedure. 

For the most part, both SPARC and MIPS have more architectural similarities than 

differences. One of the main differences between the architectures is the use of register 

windows. MIPS has a fixed 32 x 32-bit register file, whereas SPARC has 24 of its 32 

registers overlapped by different register windows. The aim was to reduce register to 

memory traffic on procedure calls through the use of register windows. Thus the SPARC 

ISA allows for cores to be synthesised with 2 - 32 register windows, where only 32 of the 

registers are accessible at any one time. Another defining feature is that early MIPS 

architectures make use of the BDS instruction whereas SPARC will always flush out the 

BDS instructions in the case when the branch is taken. Early incarnations of SPARC also 

did not have hardware multiply and divide instructions. 

Table 1 gives a more detailed overview of the architectural differences between the 

architectures. 

 

 

 

 

 

 

 

 

 

 



Design of a predictable TT processor 

4-6 

 

MIPS SPARC 

32 x 32bit registers 8 global + 24 overlapping register windows. 

Integer to Floating Point register move instructions Integer to Floating Point load/store instructions 

Single precision FP Single + Double precision FP 

Single load/store addressing mode Two load/store addressing modes 

Compare and branch in one instruction Requires two instructions to do the same 

Instruction in delay slot is executed Hardware will flush the instruction if branch is taken 

Requires compiler to avoid a load data instruction 

directly before an instruction using that data. 

Hardware will pause the pipeline in such a scenario. 

Can move values between single and double FP 

registers 

Can only move values between single FP registers 

Has integer multiply and divide/remainder instructions Not available in SPARC 

No FP square root instruction Has square root instructions 

No conditional trap instruction Has conditional trap instructions 

TLB managed in software Memory management done in hardware 

Immediate constant field is 16bits Immediate constant field is 13bits 

32-entry, 32bit FP register file which can hold up to 16 

double precision values 

Can hold a mixture of 32 single-precision values, 16 

double precision values or 8 quad precision values 

Table 1: Comparison of MIPS and SPARC, reproduced from (Robert, Shing et al. 1991) 

When taking into account the architecture requirements for predictability, as was 

highlighted in Section 5.2, it can be seen that both architectures could be used.  

Throughout this thesis the MIPS ISA was chosen as template for the processor design for 

the following reasons. 

• One of the benefits of using MIPS over SPARC is that branch instructions do not 

incur additional cycles when the branch is taken. Instead the MIPS compiler will, 

where possible, insert a useful instruction into the branch delay slot which will be 

executed regardless if the branch is taken of not, and thus will always incur the 

same number of CPU cycles. For SPARC, the branch delay slot instruction is 

flushed when the branch is taken and hence performance is reduced. A similar 



Design of a predictable TT processor 

4-7 

 

problem exists in SPARC for load hazards. In this scenario the pipeline is paused 

until the load hazard no longer exists. On the other hand the MIPS compiler will 

reorder instructions to avoid such occurrences. 

• The MIPS architecture is also not bounded by the complexity that comes from 

SPARCs use of register windows which adds another dimension to modelling and 

timing analysis, even though it can help performance for code with many 

subroutine calls. 

• Early and simple incarnations of the SPARC architecture did not include the 

multiply and divide instructions until the more complex SPARC v8, where as MIPS 

have had these instructions since the early MIPS R2000.  

4.4 Considering existing soft cores 

With the reduction in cost and greater popularity of FPGAs against the escalating costs of 

ASIC designs, there has been an increase in building systems-on-chip with embedded 

processor cores (Figure 7). 

Since this project began there has been a flurry of new soft processor cores which were not 

previously available. It is therefore appropriate to consider if some of the more recent 

cores would have been a better starting point. 

 

Figure 7: FPGA Design Starts With Embedded µP - Source: Gartner, August 9, 2005 



Design of a predictable TT processor 

4-8 

 

A number of open MIPS like soft cores are based on the DLX architecture which were 

born out of the books published by Patterson and Hennessey (Patterson and Hennessy 

2005) and contains a subset of MIPS instruction set. However, modern DLX compilers are 

not currently being kept up-to-date. Another incarnation of the DLX architecture is the 

closed source 32-bit Xilinx Microblaze soft core which includes a number of additional 

instructions. Whilst there exists an open source Microblaze clone, it was decided that the 

simplest solution would be to design a soft core based on a very simple, early and 

unmodified version of the MIPS ISA. For this reason the R2000 ISA was chosen as it 

includes the multi-cycle multiply and divide instructions which were not present on the 

DLX. 

There are a number of advantages to the MIPS design approach. As its name MIPS 

(Microprocessor without Interlocked Pipeline Stages) suggests, the aim was to increase 

dramatically the speed of a processor by the use of deep instruction pipelining whilst 

reducing interlocks that were required for multi-cycle instructions. The motivation then 

was that the hardware required to set up these locks were generally large and complicated 

which had a significant impact on the speed of processors (Hennessy, Jouppi et al. 1982). 

Therefore Hennessy’s approach was to create a simple RISC instruction set by eliminating 

a number of useful complex instructions such as multiply and divide that take multiple 

clock cycles to execute, and create an instruction set where all instructions take only one 

clock cycle (Hennessy, Jouppi et al. 1981). In doing so the pipeline no longer required the 

complex interlock mechanisms and formed an efficient processor design. Such a design is 

at the heart of many modern MIPS and RISC processors designs used in areas of research 

and devices such as Sony Playstations, PDA’s and large physics processing computers 

(MIPS-Technologies 2009). 

Whilst the instruction set has a bearing on the architectural characteristics of the hardware, 

the same ISA can result in a differing number of implementations. Therefore it was 

decided that the core would be built from the ground up. This would also have the added 

benefit of being able to fully control and understand all the architectural implementation 

decisions. 



Design of a predictable TT processor 

4-9 

 

4.5 The PH Processor 

For the purposes of this research, the PH processor3 IP core was create as an 

implementation of a cut-down version of the original MIPS R2000 processor. The core is 

compatible with the MIPS I ISA (Instruction Set Architecture) (Kain and Heinrich 1992), 

except for the few patented non-aligned memory access instructions. The design was based 

on the architecture and organization outline provided by Patterson and Hennessy 

(Patterson and Hennessy 2005) and is therefore named the “PH Processor”. Briefly, it is a 

32-bit processor with 32 registers, a 5-stage pipeline, and separate instruction and data 

memory banks.  

 

Figure 8: Typical 5-state MIPS pipeline  (Patterson and Hennessy 2005) 

The 5 pipeline stages of the PH core are shown in Figure 8. These stages execute in parallel 

and as one instruction finishes in its current stage it moves onto the next stage. The 5-

stages of the processor are, the instruction fetch (IF), Instruction Decode (ID), Execution 

(EX), Memory (MEM) and Write Back (WB) stages. A more detailed diagram of the 

control and data paths of the processor is available in Appendix B. 

Figure 9 shows an outline of the PH core and peripheral components which was 

implemented in VHDL on a Xilinx Spartan 3 400 FPGA. The tools used in this process 

consisted of the Xilinx ISE and Modelsim toolsets. 

                                                 
3 A version of this PH core has been commercialised through TTE Systems Ltd. 



Design of a predictable TT processor 

4-10 

 

 

Figure 9: PH processor implementation 

Whilst the PH - MIPS R2000 based – processor core retains many of the key features for a 

predictable processor design as was outlined in Section 4.2, there are still a few adverse side 

effects in this architecture that need to be resolved. These effects relate to task execution 

and interrupt latency variation which is made complicated when using a pipelined 

architecture. The aim is to have static execution times and a predictable and known 

interrupt overhead. The processor should also have support for at least standard integer 

multiply and divide operations which can in certain implementations take multiple cycles to 

complete as these operations can be common in embedded applications. These issues will 

now be explained in the following Sections. 

4.6 Making the PH processor predictable 

Often the terms interrupts and exceptions are interchanged in text, however here 

exceptions will be defined as internal interrupts that occur often due to some sort of 

hardware malfunction. Interrupts will be used to describe externally triggered hardware 

interrupts. 



Design of a predictable TT processor 

4-11 

 

It is common in modern architectures to implement precise exceptions. Precise exceptions 

are defined as a situation where the pipeline can be stopped such that the instructions 

before the faulting instruction are completed, and those after it are restarted when the 

handler returns. This has many benefits such as making the debugging of code far easier. 

Also, paging, virtual memory and IEEE arithmetic handlers strongly motivate the support 

for precise exceptions (Hennessy and Patterson 2006). 

Further details on precise exceptions can be found in Section D.3.5. 

4.6.1 Implementing the interrupt system 

As highlighted in Section D.3.5, in order to implement precise exceptions - which are 

beneficial for predictable interrupt handling - a solution can be to service the exception 

only when the instruction reaches the MEM stage before any state changes are committed. 

This can be seen in Figure 10 where an exception only gets raised when the instruction 

enters the memory pipeline stage which causes the instructions in that stage and all the 

previous stages to be flushed. 

When this is implemented, it leads to the problem that the instructions which were flushed 

before entering into the exception handler must be re-executed on return from interrupt. 

This in turn means that the interrupted code execution time has been extended by several 

additional cycles to reload the pipeline. 

 

Figure 10: Instructions flushed from 4 pipeline stages when an exception occurs 

For error conditions, the additional CPU cycles may be acceptable. Although, ideally for 

normal timer interrupts there should be no hidden overhead to the interrupted mechanism 

other than that of the interrupt handler instructions.  



Design of a predictable TT processor 

4-12 

 

 

Figure 11: Timer interrupts could be allowed to occur in the first pipeline stage 

At first glance, a solution might be to move the timer interrupt handling response to the 

first pipeline stage and leave the other exceptions to be handled as normal in the later 

MEM stage. This scenario is depicted in Figure 11 where the timer interrupt will allow the 

instructions in all the pipeline stages to continue and will redirect the program counter to 

the interrupt handler address on the next cycle. However, in certain scenarios the timer 

interrupt may start to be handled either at the same time or before a pending exception has 

reached the MEM stage, as shown in Figure 12.  

Since it is regarded that exceptions are error conditions which in the most case will not be 

recoverable, this may not be such a serious problem. 

 

Figure 12: An exception could be pending at the time when the timer interrupt occurs 

A problem that is not addressed so far is the scenario when an interrupt occurs on an 

instruction in the branch delay slot, see Figure 13. The normal behaviour in MIPS is to re-

execute the previous branch instruction on return from the interrupt handler in order to 

re-evaluate if the branch should have been taken. However, this means that the overhead 

imposed by the interrupt mechanism is no longer constant as there will be cases when an 

instruction must be executed twice. 



Design of a predictable TT processor 

4-13 

 

 

Figure 13: Problems of interrupt on a BDS instruction 

A way to avoid re-evaluating the branch condition might be to automatically store the 

branch condition and the branch address into architectural registers when the interrupt 

occurs, see Figure 14. 

 

Figure 14: Store branch condition and branch address 

Whilst the method above provides a reasonable solution, albeit with some slightly 

unnatural behaviour when exceptions and interrupts occur at the same time, there is a 

fundamental problem when it comes to supporting multi-cycle instructions. 

 

Figure 15: Interrupt paused by multi-cycle instruction 

The problem arises when an interrupt occurs whilst a multi-cycle instruction is executing 

or is about to be executed in the EX stage. This can be seen in Figure 15, where the EX 



Design of a predictable TT processor 

4-14 

 

stage processes for a number of cycles by pausing the previous pipeline stages. Since the 

interrupt response has been moved from the MEM stage to the IF stage, the interrupt can 

no longer abort the multi-cycle instruction. Instead, it must wait for the multi-cycle 

instruction to complete before it can respond and begin loading the interrupt handler 

instructions into the pipeline. 

Both conditions of aborting the currently executing instruction or waiting for the 

instruction to complete are not ideal. When an instruction is aborted, the processor can 

respond to an interrupt no variation to the interrupt latency. However, this is at the cost of 

additional cycles which are passed on to the interrupted code because of the need to reload 

and re-execute the aborted instructions. In Figure 16 the variation of reloading and 

executing the flushed instructions is depicted by the time variation between points ‘a’ and 

‘b’.  

 

Figure 16: Post interrupt jitter 

For the scenario when the interrupt occurs in the IF stage and the instructions which are 

loaded into the pipeline are no longer aborted, then the interrupt response time can still be 

variable due to the need to wait for the current instructions in the pipeline to complete. 

This time may vary depending on which instructions are loaded in the pipeline at that 

particular time when the interrupt occurred. This is because different instructions may take 

a different number of clock cycles to execute. This variation of the interrupt latency can be 

shown by the time between points ‘a’ and ‘b’ in Figure 17.  



Design of a predictable TT processor 

4-15 

 

 

Figure 17: Interrupt latency jitter 

Both the scenarios shown in Figure 16 and Figure 17 add a variable amount of additional 

execution time to the overall task length which is above that of the interrupt handler 

instructions. Therefore, a solution must be found to implement precise exceptions whist 

obtaining static interrupt latency time and a constant post interrupt overhead which is 

imposed on the interrupted task. At the same time, it is important to support the use of 

commonly used multi-cycle instructions such as multiply and divide as these operations are 

popular in many embedded systems. 

To summarise the modifications required to make the PH processor core predictable, 

especially when dealing with precise exceptions, are outlined in Table 2. 

Requirements 

1. Precise exceptions 

2. No interrupt latency jitter 

3. Constant post interrupt overhead 

4. Support for multi-cycle instructions 

Table 2: Predictable processor requirements 



Design of a predictable TT processor 

4-16 

 

4.6.2 Dealing with Multi-cycle Instructions 

For architectures which support integer multiply/divide and floating-point operations, it is 

generally impractical to create a fully single-cycle design. Whilst it could be possible to 

accept a slower clock rate or use large amounts of silicon, the normal approach is to 

support multi-cycle operations (Patterson and Hennessy 2005). The use of multi-cycle 

instructions is likely to increase as “spare logic” found surrounding intellectual property 

(IP) cores in FPGAs can be used to implement application-specific operations. For 

instance, it may be desirable in some applications to include some form of Fast Fourier 

Transform (FFT) instructions which can execute much faster in hardware than a software 

library but still require a number of cycles to compute. 

The implementation of integer multiply/dividers can vary from completely serial designs 

normally requiring the number of cycles as bits to multiply, to fully parallel designs which 

can operate in one cycle. The implementation largely depends on the amount of silicon 

usage deemed acceptable and the strength of desire for speed. In FPGAs, the 

implementation might be based on available leftover logic or number of available on chip 

multiplier blocks.  

For simplicity and the purposes of demonstration, the PH processor was designed with a 

fully serial multiplier/divider which takes 33 cycles to complete an operation. Figure 18 

shows the basic outline of the architecture where the values are placed in the 

multiplicand/divisor and LO register.  The result appears in the HI and LO registers after 

33 cycles. 



Design of a predictable TT processor 

4-17 

 

 

Figure 18: Serial multiply and divide unit 

If the processor follows the rule of servicing an interrupt only after the current instruction 

has completed, then in the case of interrupting the MUL or DIV operation, there can be a 

significant amount of jitter from the latency varying between 1 and 33 cycles.  The amount 

will depend on how much of the operation is left at the time when the interrupt occurs. 

In an attempt to solve this problem there are a number of solutions that could potentially 

be considered. 

4.6.2.1 Abort the instruction 

As mentioned previously, one way to get round the problem of interrupt response jitter is 

to abort the currently executing instruction mid execution and restart the instruction on 

return from the interrupt. This has the benefit of eliminating the response time jitter but at 

the cost of shifting that jitter to the interrupted task. 

There are also situations where implementing this type of solution is not possible due to 

instructions that modify the processor state during execution and therefore the changes 

cannot be undone if aborted.  If this occurs, certain registers or memory locations may 

become corrupt. 



Design of a predictable TT processor 

4-18 

 

In addition, some memory bus systems may not allow an instruction to be aborted once a 

memory request has already been started.  

4.6.2.2 Run in parallel 

Another method might be to service the interrupt immediately, but instead of aborting the 

instruction, it could be allowed to complete in parallel (Figure 19). In certain situations, this 

results in speeding up the interrupted code execution time. The increase in speed is not 

desirable for predictability where the interrupted code is impacted in a positive way but by 

an unknown quantity.  

 

Figure 19: Multi-cycle instructions running in parallel to integer instructions 

This method also runs on the assumption that handler code will not require use of the 

multi-cycle execution unit before the instruction has had time to complete. In the scenario 

when the execution unit is required, a resource conflict arises requiring the handler to stall 

until the current multi-cycle operation has completed. The system also needs to ensure that 

the previous result values in the execution unit remain present on return from interrupt. 

4.6.2.3 Execute if time 

Another method might be to look ahead to an earlier stage in the pipeline and prevent the 

multi-cycle operation from being executed when there are less than the required cycles 

until the timer overflows (Figure 20). This would give zero jitter to servicing the interrupt 

but consequently add additional cycles to the interrupted code leading to the same effect as 

the instruction abort method. It also relies on there being a timer which is driving the 

interrupt signal and its registers are accessible to the processor control unit. 



Design of a predictable TT processor 

4-19 

 

  

Figure 20: Stall the pipeline when there is no time to complete a multi-cycle instruction. 

4.6.2.4 Fixed maximum interrupt latency 

A similar solution might be to always incur the maximum delay from when the interrupt is 

generated to the point when it gets serviced by using a similar technique to code balancing. 

This technique is far from efficient and not easily expandable as it requires knowledge of 

the worst case execution time of the included execution units. In some processors, 

additional instructions are added as external or on-chip co-processors, therefore the 

WCET instruction time might not be known at processor design time. However, this 

method does solve the problem of interrupt response jitter and impacts the interrupted 

code by a fixed amount. 

4.6.2.5 Multithreaded pipeline 

While the previous methods have found solutions to some of the problems, only the fixed 

maximum interrupt latency method provides a solution to solve both variable interrupt 

response and task overhead latencies but at a significant cost to performance. There is also 

the issue of dealing with the variability of interrupting on a BDS instruction. 

One of the modern techniques for increasing performance by making greater use of silicon 

rather than an increase in core frequency is the design of multi-threaded cores (Gulati and 

Bagherzadeh 1996). The idea is to speed up multithreaded systems by providing a way in 

which the processor can change task contexts at the instruction level. This is implemented 

in hardware with very little switchover time. Each thread is given its own register file and 

instruction counters, but shares the pipeline and execution units.  

The uses of multithreaded pipelines are common in modern desktop processors such as 

Intel’s Hyperthreading technology (Marr, Binns et al. 2002). They are also beginning to be 



Design of a predictable TT processor 

4-20 

 

implemented in various new embedded processors such as the MIPS MT core (Kissell 

2008). 

One of the benefits of using a multithreaded core is that it can avoid the performance 

problems from various pipeline hazards by automatically switching to another thread until 

the pipeline hazard for the current thread has been resolved. As a result, maximum pipeline 

usage can be obtained in all pipeline stages. According to Intel, this can result in a 30% 

increase on Pentium processors (Bulpin and Pratt 2004). 

Whilst the intention is to seek performance through greater pipeline utilization and support 

fast context switching times between threads, a similar idea could be used for increasing 

predictability of switching between a single task and interrupt handler.  

The idea would be to allow the interrupt to be handled in the MEM stage and in addition 

to the duplicate instruction counter and register file the pipeline stages would also be 

mirrored. The mirroring of the pipeline stages would avoid the need for flushing pipeline 

stages during an interrupt. Instructions such as branch could then remain in the pipeline 

and continue execution on return without the need for re-execution. In essence, one 

pipeline would be used for normal task execution whilst the other is used for the interrupt 

handler (Figure 21). The result, is that the interrupted task could be paused so that the 

interrupt handler could run immediately and the task could resume execution at the exact 

point where the interrupt occurred leaving the task pipeline stages intact. This is generally 

only possible for time-triggered type systems where there is only one interrupt, as 

supporting multilevel or nested interrupts would require duplicate numbers of 

multithreaded pipelines. 



Design of a predictable TT processor 

4-21 

 

 

Figure 21: Predictable processor pipeline 

Whilst the solution maybe more silicon intensive compared to the previous methods, it 

does solve the problem of response and overhead jitter and removes the variation of 

interrupting on a BDS instruction. The method therefore reduces the complexity of 

factoring interrupt overheads to timing analysis. However, to enable this technique to work 

for multi-cycle instructions the additional execution units must also have a way of pausing 

and resuming their state. This can be achieved by implementing shadow registers which are 

switched in when the processor enters and returns from the interrupt thread (Figure 22). 



Design of a predictable TT processor 

4-22 

 

 

Figure 22: Multiply and Divide unit with controllable shadow registers 

In summary, through selective design choices and the techniques described above a 

predictable pipelined processor with reasonable performance can be achieved. Some 

sacrifices have been made in performance by abstaining from ILP, caches and branch 

prediction. Also, silicon usage has been increased through the implementation of a 

multithreaded like system. However, it is believed that the performance of the processor 

will still be respectable when compared with many common embedded COTS processors. 

4.7 Making the processor TT 

The interest throughout this thesis has been on the development of a processor which is 

not only predictable but also supports time-triggered (TT) architectures.  

Currently, many generic COTS processors support a wide range of interrupt sources, while 

the use of a (pure) time-triggered software architecture generally requires that only a single 

interrupt be supported by each processor. This then leads to software design ‘guidelines’, 

like the ‘one interrupt per micro-controller rule’ (Pont 2001). Such guidelines can be 

adhered to by the use of appropriate tools in software creation. However, it is possible for 

changes to be made in the software (for example, during software maintenance or 

upgrades) that lead to the creation of unreliable systems. 



Design of a predictable TT processor 

4-23 

 

More specifically, it is possible that developers of time-triggered software designs (or 

people who subsequently maintain or upgrade systems based on time-triggered software 

designs) may be unaware of the need to employ only a single interrupt source with such 

designs.  If (as a result of this lack of knowledge or lack of experience) an attempt is made 

to use multiple interrupts in such a system, then this may lead to highly ‘unpredictable’ 

behaviour. The aim is therefore to improve the processor hardware in supporting time-

triggered software by removing the chance and possibility for more than one interrupt 

being enabled. Note, that the use of general software exceptions is not appropriate in such 

a design: instead, only serious faults (such as page faults, arithmetic errors and undefined 

instructions) should be handled in this manner. 

The operation of a time-triggered system generally operates by a source of periodic “ticks” 

to which the processor will schedule one or more periodic tasks to execute, see Section 

2.3.1. The design should allow for the tick interrupts to be obtained from only 1 of a 

number of different sources, depending on the nature of the system (see Figure 23). 

 

Figure 23: Interrupt source selector 

For single processor designs, the ticks will generally be derived from an on-chip timer. 

However, in multiprocessor designs, the ticks may be derived from the arrival of messages 

from a suitable communication bus (e.g. CAN bus, UART). As a failsafe option, it may be 

necessary for the system to be able to switch interrupt sources on-the-fly, to for instance a 



Design of a predictable TT processor 

4-24 

 

backup CAN bus. The hardware must then ensure that only a single source of interrupts is 

active at any one time during the operation of the system.  

Interrupt sources which are not used to generate periodic system ticks can be monitored 

by polling (under the control of the system scheduler) at an appropriate rate. 

4.7.1 Detailed Description 

By restricting the number of interrupt sources (to 1) in a TT embedded system, the “one 

interrupt per microcontroller” design guideline can be met and thus the system behaviour 

can be made more predictable. 

The modifications are implemented through the standard MIPS co-processor zero registers 

which are ordinarily used for configuring interrupts. The coprocessor unit is part of the 

internal processor core and has among others, the following registers derived from MIPS 

(Table 3). 

Register Number Register Name 

R12 Status 

R13 Cause 

R14 Exception Program Counter (EPC) 

R15 Processor ID (PRId) 

R16 Config 

Table 3: PH co-processor zero registers4 

The coprocessor is setup to be similar to the MIPS convention in that the registers have 

the same name and that they perform similar operations to those found in a MIPS 

processor. However the structure and operation of these registers are slightly different. For 

instance, the status and cause registers which deal with interrupts are modified so that only 

the interrupt source number is held in the interrupt mask register rather than using 

                                                 

4 The EPC and PRId registers are the same as in MIPS.  However the PRId register 

contains version numbers pertaining to the PH processor.  The Config register has a low-

power bit (only) which is used to place the processor in idle/sleep mode. 



Design of a predictable TT processor 

4-25 

 

individual bits to represent each source. Also the status register includes a global interrupt 

enable bit which allows the single interrupt source to interrupt the processor (Figure 24).  

 

Figure 24: Co-processor status and cause registers 

To enforce the one interrupt rule the hardware is made using a simple 3 to 8bit decoder 

(for 8 interrupt sources) which can never have more than one output bit enabled at any 

time (Figure 25). The IM (Interrupt Mask) register holds the binary number of the enabled 

interrupt source. Since there are 8 possible interrupt sources the IM register is only 3 bits 

wide in the current implementation. 

 

Figure 25: Interrupt source selector 

The hardware takes the binary number from the IM register and runs it through a 3 to 8 bit 

decoder. The incoming interrupt sources are AND together with the decoder output, 

allowing only the relevant bit to pass through.  The final output is then AND with the IE 

(interrupt enable) bit before being allowed to interrupt the processor core. 



Design of a predictable TT processor 

4-26 

 

In addition to the above circuit, the interrupt sources will also be flagged in the cause 

register where each bit will represent an interrupt source. Polling applications can then 

monitor these bits and reset the individual flags by writing a 1 to the relevant bit. 

Whilst the implementation is rather simplistic, it is very effective in preventing the 

possibility of enabling more than one interrupt source.  

4.8 Results 

In this section results were obtained to show the interrupt latency jitter and the interrupt 

overhead time for two versions of the PH core. By way of comparison, the first core is 

setup to represent a COTS microprocessor, which in this scenario will abort the current 

instruction on interrupt and enter into the interrupt handler immediately. The second – 

multi-pipelined – core implements the architecture described throughout Section 4.6.2.5, 

which on interrupt, will pause the current pipeline state and return directly to that state 

after the handler code has completed. For ease of reference, the first core will be known as 

the ‘PH’ core whilst the second will be referred to as the ‘PH-Predictable’ core. 

 

The aim of the results will be to demonstrate that it is easier for a programmer to predict 

how long a particular piece of code will take to run on the PH-Predictable core. More 

specifically this will include the scenario when that code is interrupted by a simple interrupt 

handler. To achieve this objective, a test bed was setup as follows. 

4.8.1 Test Case 1 Strategy 

Each core will boot up and run its initialisation code, once done, the core will execute a set 

of instructions repeatedly in a loop. An example of this can be seen in Listing 1. Within 

this loop there is a single cycle ‘NOP’ instruction as well as a multiply and divide 

instruction as these are the longest running instructions on the core. On the both cores the 

multiply and divide instructions can consume 33 CPU clock cycles per calculation. 

 

 

 

 

 



Design of a predictable TT processor 

4-27 

 

 

int main () 

   { 

   // Set up IO 

   LED_Init(); 

   SEG_Init(); 

 

   while (1) // Super Loop 

      { 

    // Set output pin to low 

    GPO_pin = 0; 

 

    // Multiply 2 * 3 

    asm("li $2,2\n" 

   "li $3,3\n" 

   "multu $2,$3" 

     :::"$2","$3"); 

 

    // Divide 6 / 2 

    asm("li $2,6\n" 

      "li $3,2\n" 

      "divu $2,$3" 

        :::"$2","$3"); 

 

    // No operation 

    asm("nop"); 

      } 

 

   // Should never reach here ... 

   return 0; 

   } 

Listing 1: Multi-cycle instructions under test for test 1 

The first test will be to measure the time between an interrupt signal being triggered and 

the core entering and executing the interrupt handler code. 

To achieve this objective, an interrupt mechanism had to be devised to ensure that 

different instructions in the loop would get interrupted, rather than the same instruction 

consistently. Therefore, the period between consecutive interrupts should observe a 

random like behaviour. To keep the implementation simple, interrupts would be generated 

by an external source which would be driven by a timer whose timeout values will be based 

on the first 4000 digits of PI. On each timeout, the next digit in the table will be loaded 

into the timer for the next interrupt. 

 
   // Change timer match register to a number  

   // based on the next digit of PI 

   TMR0TMAT = (1000-5) + digitsOfPi[pIndex]; 

Listing 2: Setting of the variable timer timeout values 



Design of a predictable TT processor 

4-28 

 

The timeout values were based around a 1 millisecond interval as interrupting too 

frequently would make it hard to record measurements and running slower would provide 

no benefit and consume unnecessary time.  

At first glance it may seem rather ineffective to vary each timer timeout value between 995 

and 1004 microseconds, however, the timing effect is accumulative. For instance, after 50 

timeouts the time could vary as much as 49.75 milliseconds to 50.2 milliseconds which 

could amount to a difference of up to 11,250 CPU clock cycles at 25MHz. It is recognised 

that this mechanism may not necessarily provide truly random behaviour; however, it 

provides enough variation to ensure that various instructions in the loop will be 

interrupted. 

Having created a means to generate interrupts at different points in time, the recorded 

measurements must be taken from when the external interrupt source goes high and until 

the interrupt handler on the core has begun executing (see Figure 17). This could be 

achieved by using an external hardware counter which counts at a rate of a 100MHz. This 

is equivalent to 4 clock cycles for each a CPU clock cycle with a core frequency of 25MHz. 

The counter will be started as soon as the external interrupt source is active and stopped 

when a GPIO signal received from the target core becomes active. This GPIO signal is set 

high immediately at the beginning of the interrupt handler code (Listing 3). 

 

handler: 

      # Set output pin to high 

 li    $26, 0x00030008 

 li    $27, 1 

 sw    $27, 0($26) 

 

 # Read CP0 EPC return address Reg 

 mfc0 $26, $14 

 

 # Enable Interrupts 

 li    $27, 0x0F 

 mtc0 $27, $12   

 

 # Return from handler 

 j $26 

 nop 

Listing 3: Interrupt handler code for test 1 

 

 

 



Design of a predictable TT processor 

4-29 

 

4.8.2 PH Core – Test Case 1 

 

Figure 26: The PH processors interrupt latency over a mixture of MULT, DIV and NOP 

instructions 

When recording the interrupt latency for a number of interrupts, the standard PH core was 

observed to have a fixed latency of 0.4µs (Figure 26). This amounts to 10 CPU cycles and 

can be broken down as shown in Table 4. 

Event Instructions CPU Cycle Count 

Internal Response Time  1 

Pipeline Flush  3 

Interrupt Vector  j handler 

 nop 
2 

Interrupt Handler to write monitoring 

pin 

 lui $26, 0x03 

 ori $26, 0x08 

 li  $27, 1 

 sw  $27, 0($26) 

4 

 Total 10 

Table 4: Measured interrupt latency time breakdown 



Design of a predictable TT processor 

4-30 

 

For greater clarification, the latency breakdown can be explained as follows. The time from 

the external interrupt signal going high and the system co-processor 0 latching the 

interrupt state is one clock cycle. For reference, on MIPS based cores the co-processor 0 

contains and deals with interrupt enable and status flags and thus the interrupt passes 

through the co-processor 0 before interrupting the main CPU core. When the CPU core is 

interrupted, the three instructions in the IF, ID and EX stages are flushed. Therefore, it 

takes 3 clock cycles before the first interrupt handler instruction reaches the end of the 

execution stage and begins to do some work. The first two instructions that are executed 

come from the interrupt vector address which contains a jump to the interrupt handler and 

its subsequent branch delay slot. At the beginning of the interrupt handler, the first four 

instructions deal with setting the GPIO pin high which is used to stop the external 

counter. 

To ensure the explanation of the interrupt latency time was correct, the processor was 

simulated in Modelsim which is an industry standard tool for hardware for simulating 

hardware designs (Mentor Graphics 2010). The simulations were undertaken using a test 

bench file which loads the processor with the same binary code file as was used in the real 

world tests. Figure 27 shows the time taken from sensing an external interrupt signal going 

high to then setting a GPIO pin high. 

 

Figure 27: PH Core interrupt latency simulation5 

From the first test it can be seen that the standard PH processor has a static zero jitter 

interrupt response time due to its ability to abort the currently running instructions. This 

already appears promising for the development of a predictable processor. However, the 

                                                 
5 A larger version of this diagram is available in Appendix C, Figure 84. 



Design of a predictable TT processor 

4-31 

 

next test will look at what the potential side effects of aborting the instruction might be 

when considering the overhead imposed on the task that has been interrupted. 

4.8.3 Test Case 2 Strategy 

 

Figure 28: Timing measurements for test 2 

The next test is similar to the first test apart from some minor changes. The most 

significant change is that the time measured by the external counter is now set to between 

the start of one iteration of the instruction loop and the end of that iteration (Figure 28). 

The purpose of this was to make the instruction loop represent a task that would be 

interrupted occasionally. The measurements would then record the execution time of that 

task. However, in order to make the main instruction loop execute for a duration large 

enough to get significant measurements, an internal loop was added to re-execute the set of 

assembly instructions (Listing 4). 

 

 

 

 

 

 



Design of a predictable TT processor 

4-32 

 

    while (1) // Super Loop 

     { 

     // Set output pin 1 to high 

     GPO_pin = 1; 

 

     for(i=0; i<2048; i++) 

      { 

      // Multiply 2 * 3 

      asm("li $2,2\n" 

       "li $3,3\n" 

       "multu $2,$3" 

        :::"$2","$3"); 

 

      // Divide 6 / 2 

      asm("li $2,6\n" 

       "li $3,2\n" 

       "divu $2,$3" 

        :::"$2","$3"); 

 

      // No operation 

      asm("nop"); 

      } 

 

     // Set output pin 2 to high 

     GPO_pin = 2; 

      }  

Listing 4: Multi-cycle instructions under test for test 2 

The job of the interrupt handler was then modified so that it simply re-enabled the 

interrupts and returned to the interrupted code. Since the handler doesn’t do much, it 

wasn’t necessary to save and restore registers as would normally be done in most interrupt 

handlers. This would also make understanding the interrupt overhead a bit easier. 

 

handler: 

 # Read CP0 EPC return address Reg 

 mfc0 $26, $14 

 

 # Enable Interrupts 

 li    $27, 0x0F 

 mtc0 $27, $12   

 

 # Return from handler 

 j $26 

 nop 

Listing 5: Interrupt handler code for test 2 

4.8.4 PH Core – Test Case 2 

When running the system on hardware, the task execution time varied quite a bit (Figure 
29). 



Design of a predictable TT processor 

4-33 

 

 

Figure 29: PH Core task execution time 

Looking at Figure 29 a steady line can be seen at the lower end of the graph. This line 

represents the base task execution time when the task has not been interrupted. From this 

base line there is a gap of 10 CPU cycles which represents the interrupt handler execution 

time. Above the additional 10 CPU cycle interrupt handler time there are a number of 

varied measurements which peak upto a 43 CPU cycle time above the base uninterrupted 

task execution time (Table 5). 

 Execution Time (ms) CPU Cycles 

Max 7.04741 176185 

Min 7.04569 176142 

Difference 0.00168 43 

Table 5: PH Core task execution maximum and minimum times 

It can therefore be seen that the standard PH core with its instruction abort mechanism 

provides a stable low jitter interrupt latency time. However, the jitter that would normally 

come from waiting for the current instruction to complete is replaced by jitter due to the 

need to re-execute any instructions that have been aborted. In effect, the instruction abort 



Design of a predictable TT processor 

4-34 

 

design gives the interrupt handler a higher priority over the currently executing task by 

running immediately, however, the overhead imposed on the interrupted task is still 

variable. In some ways this design might lead to a misunderstanding of the interrupt 

overhead if not fully understood by the application designer who may be concerned about 

timing effects withing their system. 

Event Instructions CPU Cycle Count 

Pipeline Flush  3 

Interrupt Vector j handler 

nop 
2 

Interrupt Handler mfc0 $26,$14 

 

# Enable Interrupts 

li    $27,0x0F 

mtc0 $27,$12   

 

# Return from handler 

j $26 

nop 

5 

Max Instruction cycle time MUL or DIV 33 

 Total 43 

Table 6: PH Core task execution overhead breakdown 

Table 6 gives a breakdown of the overhead that was observed in the measurements in 

Figure 29. However, to give more justification to where these results may have come from, 

the next few figures were obtained from Modelsim simulations of the PH core using the 

same code that was used in the tests. 

 

Figure 30: Multiply instruction (33 CPU clock cycles)6 

Figure 30 demonstrates the execution time for a multiply instruction consumes 33 CPU 

cycles. This execution time is the same regardless of the size of the operands which in 

                                                 
6 A larger version of this diagram is available in Appendix C, Figure 85. 



Design of a predictable TT processor 

4-35 

 

other processors can lead to variable computational times. The PH core is also different to 

some standard MIPS cores in that multiply and divide instructions do not execute in 

parallel to normal integer instructions, but rather execute sequentially. 

 

Figure 31: Interrupt Overhead (10 CPU clock cycles)7 

Figure 31 shows the overhead of the interrupt mechanism and the interrupt handler code. 

It is worth noting that the delay of sensing the interrupt signal and latching it in the co-

processor 0 does not affect the interrupt overhead since the interrupt is sensed in parallel 

to the pipeline. Therefore the interrupt overhead time starts from when the vector is 

executed. 

 

Figure 32: Interrupt on a Branch Delay Slot instruction (11 CPU clock cycles)8 

Although not represented in the measurements, there is a further variation to the interrupt 

overhead which can come from interrupting on a branch delay slot. If such a condition 

should occur, then the previous branch instruction must be executed again in order to re-

                                                 
7 A larger version of this diagram is available in Appendix C, Figure 86. 

8 A larger version of this diagram is available in Appendix C, Figure 87. 



Design of a predictable TT processor 

4-36 

 

evaluate if the branch should have been taken or not. This would result in the overhead 

time consuming a futher CPU cycle as can be shown in Figure 32. 

In summary, the modelsim figures show that an interrupt overhead time of 10 CPU cycles 

could be expected with the potential need to re-execute a 33 CPU cycle multiply or divide 

instruction which would consume upto 43 CPU cycles. The worst case scenario would be 

if the multiply or divide instruction occured in a branch delay slot where a maximum 

overhead of 44 CPU cycles would be observed. If the interrupt handler code is not 

included, then the processor could be said to have an interrupt overhead of 5 to 38 CPU 

cycles. 

In many applications, a varation as small as this may not seem a big concern. However, 

since this thesis is concerned with making a predictable processor down to the instruction 

level, then the next set of results show how the PH-Predictable core differs from the 

standard PH core. 

4.8.5 PH-Predictable Core - Test Case 1 

As in the standard PH Core, the first test was to measure the interrupt latency between an 

external interrupt signal going high and the interrupt handler responding by setting a 

GPIO pin high. As in the standard PH Core, the PH-Predictable core had no jitter in the 

interrupt latency time (Figure 33). Furthermore, the duration of the interrupt latency was 

also exactly the same. It may therefore appear that the PH-Predicatable core offers no real 

speed increase over the standard PH Core. However, for a normal interrupt handler in the 

standard PH Core many of the registers would have to be saved on the stack. Alternatively, 

the PH-Predictable core has two register files and therefore avoids the need to execute 

these additional instructions to save and restore the interrupt context. 



Design of a predictable TT processor 

4-37 

 

 

Figure 33: PH-Predictable core interrupt latency 

The interrupt latency time can be broken down to the same actions as in the standard PH 

core. First there is a single clock cycle delay as the interrupt signal is latched by the co-

processor 0. Although the pipeline is not flushed, 3 clock cycles are required to load the 

interrupt handler instructions to the EX stage where they begin to do some work. The 

interrupt vector code then consumes 2 CPU cycles followed by 4 CPU cycles for writing to 

the GPIO peripheral. 

Event Instructions CPU Cycle Count 

Internal Response Time  1 

Load Pipeline  3 

Interrupt Vector j handler 

nop 
2 

Interrupt Handler to write monitoring pin lui $26, 0x0003 

ori $26, $26, 0x0008 

li $27, 1 

sw $27, 0($26) 

4 

 Total 10 

Table 7: PH-Predictable interrupt latency time breakdown 



Design of a predictable TT processor 

4-38 

 

Figure 34 shows the simulation of an interrupt on the PH-Predictable core. It can be seen 

that the value ‘1’ which is written to the GPIO port is present on the peripheral bus (pdata) 

10 clock cycles after the interrupt occured. 

 

Figure 34: PH-Predictable core interrupt latency simulation9 

Having shown that both the standard and the predictable core have zero jitter latency, the 

main difference should come in the next test where the hardware interrupt overhead on 

the predictable core should be static and not contain jitter as was seen on the standard PH 

core. 

4.8.6 PH-Predictable Core - Test Case 2 

The second test undertaken on the PH-Predictable core was similar to the test completed 

on the standard core, apart from the interrupt handler was modified since there was no 

need to re-enable interrupts and get the return address, instead a new instruction was 

added. The purpose of the ‘retint’ instruction was to signify to the processor that it should 

switch pipelines from the interrupt pipeline to the task pipeline. To add a bit more weight 

to the interrupt handler, a few ‘NOP’ instructions were added (Listing 6). 

handler: 

 nop 

 nop 

 

 # Return from handler 

 retint 

 nop 

Listing 6: PH-Predictable core interrupt handler 

                                                 
9 A larger version of this diagram is available in Appendix C, Figure 88. 



Design of a predictable TT processor 

4-39 

 

When measuring the task execution time there was a base line which represented the task 

duration without being interrupted. The upper line represented the execution time when 

the task was interrupted. From the results it can be seen that when an interrupt occurred, 

the overhead was a constant 6 CPU cycles longer (Figure 35). 

 

Figure 35: PH-Predictable task execution time 

The exact measured values are shown in (Table 8). 

 Execution Time (ms) CPU Cycles 

Max 7.04592 176148 

Min 7.04568 176142 

Difference 0.00024 6 

Table 8: PH-Predictable core task execution maximum and minimum times 

Justifying the 6 CPU clock cycle overhead time can be done by simply adding up the 

interrupt vector and interrupt handler instructions (Table 9).  

 

 



Design of a predictable TT processor 

4-40 

 

Event Instructions CPU Cycle 

Count 

Interrupt Vector j handler 

nop 
2 

Dummy Interrupt Handler Code nop 

nop 
2 

End of Handler Instruction retint 

nop 
2 

 Total 6 

Table 9: PH-Predictable core task execution overhead breakdown 

Also of interest is that the interrupt overhead was static even when interrupting a multiply 

and divide instruction. This can be seen in Figure 36 where a multiply instruction has 

executed for 8 clock cycles when it is then interrupted by an interrupt handler whose code 

consumes a further 6 cycles. On return from the interrupt handler the multiply instruction 

completes the rest of the instruction by taking only a further 25 cycles. As a result the 

multiply instruction did not need to be re-executed and produced the correct result on 

completion. 

 

Figure 36: Multiply instruction paused as the interrupt handler is executed10 

On the standard PH core, interrupting a multiply instruction resulted in a variable interrupt 

overhead which would vary by as much as 33 CPU cycles, or 34 CPU cycles if combined 

with a branch delay slot. The PH-Predictable core displayed predictable interrupt 

behaviour regardless of which instruction was interrupted. 

                                                 
10 A larger version of this diagram is available in Appendix C, Figure 89. 



Design of a predictable TT processor 

4-41 

 

 

Figure 37: Comparisons of logic utilisation for the predictable multi-pipelined core 

Making the processor predictable did come at a cost and resulted in the multi-pipelined 

design being 1.72 times larger than the standard processor core (Figure 37). The extra 

hardware utilisation is primarily from the need to duplicate the pipeline registers. 

4.9 Discussion 

This chapter has described a design for a predictable processor by making decisions to 

build on some existing architectural features and avoiding others which would lead to 

unpredictability. A choice was made to base the design around a MIPS pipelined processor. 

A solution to the problems of dealing with interrupt mechanisms, which are a requirement 

in most real-time operating systems, was provided. It was shown that the interrupt 

mechanisms in pipelined processors present a number of complications, especially when 

maintaining precise exceptions, dealing with branch delay slots and multi-cycle instructions. 

In Section 4.6, a number of design choices were considered however only one design using 



Design of a predictable TT processor 

4-42 

 

a multi-pipelined solution solved all the problems in a practical way which would not 

impinge on performance.  

To support time triggered architectures, the interrupt system on the processor was 

modified to conform to the ‘one interrupt per microcontroller’ rule. The new processor 

design was then compared against a similar processor design without the aforementioned 

features. The results demonstrated that even when comparing against a processor which 

uses an instruction abort mechanism, the predictable core produced no jitter in handling 

interrupts. The predictable core also imposed a static overhead over the code that it had 

interrupted. Furthermore, the interrupt overhead could be calculated by simply counting 

the instruction cycle times of the interrupt vector and interrupt handler code. This 

provides a more predictable and simple way of determining execution times when using an 

interrupt mechanism which would otherwise be non-obvious in systems using an 

instruction abort mechanism. 

4.10 Conclusion 

In Chapter 3, the causes for unpredictability in processor hardware were discussed and this 

led to the design and implementation of the predictable processor architecture described 

throughout this chapter. The unique multi-cycle instruction capable processor design was 

specifically aimed towards time-triggered architectures and included support for the one 

interrupt per microcontroller rule. The result was a highly predictable hardware platform 

with fixed and small interrupt overheads. 

This chapter has demonstrated that a processor design with reasonable performance and 

very high predictability can be achieved. However, there remains a potential for the 

predictability to be lost by the implementation of the system code. This code can contain 

various control paths and loops. The variations in the control flow can then result in large 

differences in execution times and hence reduce temporal predictability. The next chapter 

looks at trying to solve this problem. 



TTC Hardware Scheduler 

5-1 

 

Chapter 5 TTC Hardware Scheduler 

This chapter aims to address the issue of ensuring that the implementation of the TTC 

scheduler provides both predictable and easy to understand CPU overheads. 

5.1 Introduction 

When using a predictable processor there still remains a potential for a variance in 

execution times to be generated by the software implementation. The source of this 

unpredictability can be due to variations of program flow throughout the code. These can 

arise due to loops and conditional statements. For instance, on a predictable processor it 

may be possible to know the exact time when a task begins execution. However, it may not 

necessarily be possible to determine which paths and loops the code will take and thus 

when the task will actually finish. Consequently the overall CPU loads become unknown 

and the timing variation can then have knock-on effects on subsequent tasks. 

The difficulty of predicting code execution times is not a new problem. One approach 

outline by (Puschner and Burns 2002) are techniques such as code balancing and single 

path programming. These may help to increase the predictability of code execution times. 

However, this method can result in a significant performance hit and thus it may not 

always be efficient or even practical to implement all code in this manner. An alternate 

solution can be to use bounded loops and obtain bounded WCETs rather than static 

execution times. Program control flow analysis and simulation can then be utilised to 

speculate when and how frequently different paths might be taken. However, this can 

result in a large variation between the best case and worst case execution times. A further 

problem exists if a piece of code is waiting on an external signal or event, and thus a 

relation between the code and external system properties must be factored in. 

Often, embedded systems make use of a scheduler or RTOS in order to obtain 

synchronization and support multitasking. In general, these systems are built by combining 

three core components, a processor, RTOS and user tasks. The RTOS or scheduler may be 

built in-house or licensed from a third party and used in a variety of applications. 

Therefore, whilst it may not always be possible to control the way a programmer 



TTC Hardware Scheduler 

5-2 

 

implements their application code and tasks, it can be possible to control the 

implementation of the scheduler and RTOS on which the system is built. 

Since a number of real-time applications do required some knowledge of system response 

times, many RTOS manufactures often aim to produce low task release jitter. This then at 

least gives a reference point on which to estimate task response times. Although on some 

systems this is generally applicable to higher priority tasks. It is then up to the application 

programmer to take a measured approach based on the particular system requirements on 

how they implement their individual tasks for predictability. Consequently, there is a limit 

to how predictable their task can be if not implemented on predictable hardware. 

A similar problem is faced by RTOS designers where in order to achieve the minimal jitter 

and system overheads, the implementation of the software scheduler mechanism has to be 

undertaken carefully. This can prove to be complicated as the software implementation 

may not reflect the final output accurately, for instance due to compiler optimizations. As 

such, assembly code may often be used and as a side effect can result in the RTOS being 

less portable and have different timing properties across a wide number of COTS 

processors. 

A key issue is that even if the final scheduler implementation can be made predictable, then 

a further problem exists if the application programmer does not have a clear of 

understanding of the scheduling mechanism and its complete system overheads. This may 

result in the tasks themselves being unpredictable. For instance, it may not be possible to 

know when and how much of the CPU time will be consumed by the scheduler and how 

much will be available for each task. Also the scheduler or RTOS loads may be related to 

the properties of the tasks in the system. As a result it is common practice in safety 

certifications to reassess the whole system even when a small part in a single task has been 

altered. 

It is therefore desirable that the programmer and verification team can - without too much 

difficulty - understand and anticipate how the underlying scheduling technique, system 

architecture and system loads will be affected with each new program task. This in turn 

means that in addition to making the RTOS predictable it is generally desirable to keep the 

system implementation as simple as possible.  



TTC Hardware Scheduler 

5-3 

 

As described in Section 2.3, one of the simplest forms of multitasking scheduling 

architectures is a time-triggered co-operative approach (Pont 2001). However, when 

looking at scheduler implementation techniques, (Katcher, Arakawa et al. 1993) argues that 

there is a wide gap between scheduling theory and its implementation in operating system 

kernels running on specific hardware platforms. They also note that the implementation of 

a particular algorithm can introduce costs which must be taken into account when 

validating the timing correctness properties of a real-time system. 

For instance, considering a simple time-triggered co-operative scheduling model as shown 

in Figure 4, time is split up into 1ms tick intervals in which one or more periodic tasks may 

execute as long as they return in a time less than the tick. However, the implementation 

becomes rather more complicated as the scheduling overhead and nature of the 

functionality for the particular microcontroller is introduced.   

 

Figure 38: Detailed Time-Triggered Co-operative Schedule11 

An example of this can be seen in Figure 38 which shows that the time left for the tasks to 

complete is no longer easy to determine and can largely depend on the conditions of the 

system. For instance, the number of tasks in the system may affect the time required for 

the scheduler to decide which task is to be executed next. Therefore taking into account all 

the overheads for what should in theory be a very simple scheduler, can actually become a 

rather complicated procedure. As a result, the aim is to attempt to achieve the execution as 

perceived and expected in the first diagram. 

As previously mentioned, when implementing schedulers, some designers may use code 

streamlining by programming in assembly in an attempt to reduce the overhead impact and 

make calculating the system loads more deterministic. However, another approach can be 

to implement the scheduling system on hardware. This can have a number of benefits, 

including protecting the scheduler from being inadvertently modified and increasing 

system performance. 

                                                 
11 A larger version of this diagram is available in Appendix C, Figure 90. 



TTC Hardware Scheduler 

5-4 

 

For instance, (Andrews, Peck et al. 2005) notes that: “Specifically, developing an operating system 

with minimal jitter, deterministic behaviour, and fine scheduling granularity have by far been the most 

challenging goals for real-time operating systems designers. To achieve the best and tightest bounds on 

application program scheduling, migration of both the scheduler processing as well as the management of 

state information must be moved off of the CPU and into hardware components.” 

Whilst the speed of silicon transistors appear to be no longer increasing as rapidly as it 

once use to, Moore’s law on the increasing number of transistors is still being steadily 

applied. This then leads to the consideration of utilizing a custom hardware approach 

which is made more practical through the use of FPGA’s. The intention is to make the 

system run in a simple and predictable way which can be easily understood by the 

application programmer. As a result, the scheduling overhead can be removed making it 

easier to determine CPU loads.  

In scheduler implementations the following design features are desirable: 

• Zero task jitter 

• Constant and predictable system overhead 

• Predictable schedule 

• Efficient and simple design 

5.2 Related Work 

Before continuing, this section gives a brief overview of the work in literature on the 

development of hardware scheduling units. 

A popular goal in literature is to increase system performance for pre-emptive kernels by 

implementing various system features into hardware units (Furunäs 2000; Lee, Ingström et 

al. 2003). Examples include, a System-on-Chip Dynamic Memory Management Unit 

(SoCDMMU) (Shalan and Mooney 2000), Multiprocessor synchronization support (Akgul 

and Mooney 2001), System-on-a-Chip Deadlock Detection Unit (SoCDDU)  (Shiu, Tan et 

al. 2001), System-on-a-Chip Lock Cache (SoCLC) (Akgul and Mooney 2002), hardware 

support for priority inheritance (Akgul, Mooney et al. 2003), resource locking and message 

passing (Mooney and Blough 2002; Sun, Blough et al. 2002). 



TTC Hardware Scheduler 

5-5 

 

Many hardware scheduling units are based on pre-emptive scheduling algorithms as the 

overhead of context switching can be costly (Garcia, Vila et al. 1999; Saez, Vila et al. 1999; 

Kohout, Ganesh et al. 2003).  

Some system include the support for a range of scheduling architectures such as round-

robin, priority based, rate monotonic and earliest deadline first (Andrews, Niehaus et al. 

2004; Andrews, Niehaus et al. 2004). Whilst others systems can modify the scheduling 

architecture in real-time (Kuacharoen, Shalan et al. 2003; W. Peck, J. Agron et al. 2004; 

Andrews, Peck et al. 2005).  

Some features are scalable in the design phase (Lindh, Klevin et al. 1999) and lead to the 

developments in hardware and software workflows (Young and Wilde ; Niehaus and 

Andrews 2003; Issacson and Wilde 2004; Klingler and Wilde). 

For many systems, the ability to perform context switching in hardware has been shown to 

have higher performance and improved determinism (Adomat, Furunäs et al. 1996; Stärner 

1998). However the interest of the work in this thesis is on increasing the predictability of 

embedded systems. 

A set of projects - based on pre-emptive schedulers - starting with FASTCHART showed 

that it was possible to get deterministic execution time through a CPU and real-time kernel. 

(Lindh and Stanischewski 1991; Lindh and Stanischewski 1991). However, in order to 

obtain this predictability the system had excluded the use of pipelines, caches, DMA and 

interrupts.  

In order to improve performance, FASTHARD improved on FASTCHART by adding the 

support for interrupts. However the system was built as a purely hardware real-time kernel 

which would be interfaced with standard COTS processors (Lindh 1992; Lindh 1993). 

They showed that performance and determinism was better than software, however the 

use of a COTS processor meant that the predictability of the tasks was reduced. 

The Real Time Unit 94 (RTU94) improved on FASTHARD by its capability to control 

multiprocessor systems (Furunäs, Stärner et al. 1995; Lindh, Furunäs et al. 1995; Adomat, 

Furunäs et al. 1996; Lindh, Stärner et al. 1998). The unit also includes semaphores, event 

flags and watchdogs. Tasks could either be fixed to a local processor or be dynamically 

scheduled on any processor. The RTU implements a priority based pre-emptive scheduler 



TTC Hardware Scheduler 

5-6 

 

for each CPU, with a local queue for each processor and a global queue for global tasks 

which can dynamically balance the load in the system. The emphasis of this work moved 

from predictability towards performance which was greatly improved. 

The Hard Real-Time Compact Kernel (HARETICK) project presented a solution for 

executing co-operative tasks in a high priority mode (Micea, Cretu et al. 2005). The 

hardware scheduling unit was interfaced to a COTS processor where they stated that the 

WCET must be overestimated slightly to encounter for unpredictability. This resulted in a 

decrease in operating efficiency. Therefore, their solution was to include soft real-time 

tasks which would consume any leftover slack time. These tasks would operate in a low 

priority mode and be pre-empted when a hard real-time task is released. A problem with 

this solution is that the pre-emption on an unpredictable processor would incur variable 

overhead. Also the verification process will be more complicated when mixing hard and 

soft real-time tasks on the same system. 

Through the literature it has been shown that most work has been focused on increasing 

the performance and determinism of hardware based pre-emptive systems. The 

HARETICK solution was found to be the closest to the work in this thesis. However, the 

focus of the work here is towards the support of the TTC scheduler architecture to be built 

around a predictable processor in order to meet the objectives of reduced system overhead 

complexity and increased temporal predictability which can be predicted down the 

instruction cycle level. It is thought that this architecture is novel and has not been 

undertaken before12. 

5.3 TTC Software Scheduler Implementation 

Before describing a hardware scheduling solution, this section will described the operation 

of the time-triggered co-operative software mechanism as presented by (Pont 2001). 

The time-triggered co-operative (TTC) scheduling system operates by splitting up the 

available processor time into “Tick” intervals, often with a typical duration of 1ms.  Most 

tasks in the system will illustrate periodically: for example, every 3 ms (see Figure 39).  In a 

                                                 
12 A Patent application for the TTC hardware scheduler has been filed. Please see the list of publications. 



TTC Hardware Scheduler 

5-7 

 

TTC design, each task must finish and pass control back to the scheduler before the next 

task is run. 

 

Figure 39: Periodic co-operative scheduling 

To obtain this behaviour, a periodic timer linked to an interrupt service routine is required, 

plus (usually) a separate “dispatch” function e.g. see (Pont 2001).  To achieve this, a 

conventional timer often has a set of count registers configured to generate the periodic 

interrupts. In the example shown in Figure 40, a prescaler register is used to bring down 

the high onboard clock frequency to a reasonable value for the timer registers. The 

prescaler count register is decremented with every pulse from the onboard clock source. 

On an underflow, a tick signal is set high upon which the prescaler reload value is then 

placed back into the count register and the process continues. The timer registers operate 

in a similar manner, but are instead driven by the tick clock from the prescaler. On a timer 

count register underflow an interrupt pin is set high where a processor then loads the 

default interrupt vector. 

 

Figure 40: Generic timer operation 

 



TTC Hardware Scheduler 

5-8 

 

5.4 TTC Hardware Scheduler 

Like the software scheduler the TTC hardware scheduler contains two major components, 

Update and Dispatch connected together by a task FIFO.  Update feeds the FIFO with 

new task ID’s when they are scheduled to execute. The dispatch unit executes these tasks 

until the FIFO becomes empty. Figure 41 shows an overview of the internal structure of 

the hardware scheduler. 

 

Figure 41: Hardware scheduler functional overview 

Driven by a timer, the Update component waits until a new tick has been signalled where it 

then decrements each tasks delay value as long the respective task enable bit is set.  When 

the tasks delay value underflows, the delay value is reloaded with the period and the task id 

is inserted into the FIFO queue. In one view, the update unit can be considered as a timer 

with multiple count and reload registers which contains one per task. When a task is due 

for execution it is added to the task FIFO queue. 

 

Figure 42: Hardware scheduler Update functional overview 



TTC Hardware Scheduler 

5-9 

 

The dispatch component waits until the FIFO queue contains tasks to be executed.  If the 

queue is not empty then dispatch executes the first task. The dispatch unit then waits until 

current task has completed where it then continues by executing any remaining tasks. 

 

Figure 43: Hardware scheduler Dispatch functional overview 

5.5 The Processor Interface 

The first problem with the hardware scheduler mechanism is to find a way to instruct the 

processor to execute a task from a specific location in memory. The solution bears 

resemblance to an interrupt mechanism, since in a similar manner an interrupt directs the 

processor to execute a portion of code from a vector address. The main difference here is 

that the vector address for the task to be executed comes externally from the hardware 

scheduler. 

Using this technique there must also be a means by which the hardware scheduler is 

notified of the tasks completion so that it may instruct the processor to execute the next 

task. This is achieved by implementing an ‘endtask’ instruction which is to be placed at the 

end of each task. 



TTC Hardware Scheduler 

5-10 

 

 

Figure 44: TTC Hardware scheduler interface overview 

After the power up initialisation routine the processor is only required to execute tasks as 

instructed by the hardware scheduler (Figure 44). As a result, there is no need for the tasks 

to save and restore registers or even return back to any code. Instead, when the end task 

instruction is executed, the processor sends an end task signal to the hardware scheduler 

core - which assuming no further tasks are to be executed - places the processor into a 

suitable low power sleep mode. The processor then remains in the low power sleep mode 

until eventually signalled to execute another task. 

One benefit to this system is that since the core instructs tasks to execute directly, there is 

no real software interrupt handling mechanism needed apart from exception handlers to 

deal with erroneous conditions. As a result, the predictable multiple pipeline method as 

presented in Chapter 4 for the software scheduler is no longer required. Consequently this 

simplifies the processor design. 

5.6 Overhead Reduction 

In the simplest implementation, when the ‘endtask’ instruction reaches the instruction 

decode pipeline stage the processor sends the end task signal to the hardware scheduler 

core (Figure 45). 



TTC Hardware Scheduler 

5-11 

 

 

Figure 45: Initial solution 

However, there are two problems with this method. The first problem is that the 

instruction immediately following the ‘endtask’ instruction is loaded into the pipeline and 

therefore there exists at least one CPU clock cycle overhead before the next task might be 

loaded into the pipeline (Figure 46). Secondly, the instructions in execution and instruction 

fetch stages could potentially raise an exception which would not get serviced until the 

MEM stage. This would result in an exception being raised after the end task signal has 

already indicated that the task has finished. 

 

Figure 46: Example solution 1 overhead 

A quick fix to the problem might be to move the end task signalling to the execution stage 

at which point the previous instructions can no longer generate exceptions (Figure 47). 

 

Figure 47: Alternate solution 

However, this puts the constraint on the system that an ‘endtask’ instruction must be 

padded by two no-operation instructions since they do not generate exceptions in the 

pipeline. Consequently this then increases the overhead to 2 CPU clock cycles between 

tasks (Figure 48). 



TTC Hardware Scheduler 

5-12 

 

 

Figure 48: Example solution 2 overhead 

Since the NOP instructions do not provide any useful work, it would be advantageous to 

attempt to get tasks to run back to back without any additional overhead. Starting each task 

with an interrupt type signal would also flush the first 3 pipeline stages and consequently 

waste CPU time. Instead, in order to meet the demands of removing the between task 

overheads, a solution to run tasks back to back with correctly ordered exceptions and end 

task signals is required.   

A modification can be made to the hardware scheduler to output the task vector for next 

task whilst the current task is still executing. A small amount of logic in the instruction 

fetch stage could detect an end task instruction and redirect the program counter from 

fetching the next instruction to fetching instructions for the next task (Figure 49). 

 

Figure 49: Redirecting instruction flow when ‘endtask’ instruction is detected 

When the ‘endtask’ instruction propagates down to the execution stage where the previous 

task can no longer generate an exception, the hardware scheduler core can then be notified 

of the end of task where it would either output the task vector for any following tasks or 

send the processor to a low power sleep mode (Figure 50). 

 



TTC Hardware Scheduler 

5-13 

 

 

Figure 50: Signalling the end of task to the hardware scheduler 

In the scenario where there are no more tasks to be executed and the processor is sent to 

sleep, the instructions in the pipeline stages IF and ID would be the first two instructions 

of task 1. Since task 1 may not be due to run next and that the sleep mode is deactivated by 

an interrupt signal from the hardware scheduler, then the first two instructions of task 1 

will be flushed out of the pipeline. 

The sequence of events starting at the beginning of a tick interval is as follows. When the 

tick begins and assuming that there are tasks to be executed, the hardware scheduler sends 

an interrupt signal along with the task vector of the task to be executed. This interrupt 

signal flushes the first three stages of the pipeline to remove any potentially unwanted 

instructions. The first instruction of the task to be executed takes 3 CPU clock cycles 

before it reaches the end of the execution stage and begins to change the system state 

(Figure 51). If there are tasks that follow the currently executing task then at the point 

when the ‘endtask’ instruction is loaded, the first instructions of the next task are preloaded 

into the pipeline. When the ‘endtask’ instruction reaches the execution stage, the hardware 

scheduler allows the new task to execute. If there are no further tasks to be executed and 

the now currently executing task reaches its ‘endtask’ instruction, the hardware scheduler 

puts the processor to sleep. 

 

Figure 51: Overheads when using the hardware scheduler 

Essentially, each tick starts with a three CPU clock cycle delay and each task must be 

terminated by an ‘endtask’ instruction. However, the hardware scheduler unit does require 



TTC Hardware Scheduler 

5-14 

 

some time to compute the task schedule and therefore requires some clock cycles. 

Although, this doesn’t affect the CPU load as the schedule is calculated in parallel to the 

processor. What happens is there is an offset between the timer signal going into the 

hardware scheduler and the first task being executed on the processor. This isn’t visible to 

the processor, just that the timing on the processor is offset slightly from the timer. 

However, this offset is kept constant so that the first task in a tick always executes the 

same time at the beginning of each tick interval. 

5.7 Results 

To demonstrate that the hardware scheduler and processor are predictable as intended, two 

test cases were devised. The first test case shows the offset time by measuring the duration 

from the timer tick being raised to the point where hardware scheduler actually executes 

the first task. The second test case shows the back to back execution of tasks by measuring 

the time between one task finishing and the next task beginning. 

5.7.1 Test Case 1 

To measure the offset time, a second FPGA was loaded with a measuring core which will 

be used to generate periodic tick signals. These tick signals are fed into the hardware 

scheduler and processor core (Figure 52). When directed by the hardware scheduler, the 

first few instructions of the first task will set a GPIO pin high. The measuring core will 

then measure the time between the tick signal going high and this GPIO pin going high. 

This interval is recorded by a hardware counter which is clocked at 100MHz. 



TTC Hardware Scheduler 

5-15 

 

 

Figure 52: Setup for test case 1 

For this test the tick period is set to 10ms to allow time for the counter values to be sent to 

a host computer for storage.  A simple flashing LED task will be used for this test and is 

called by an assembly wrapper (Listing 7). The first few instructions of the wrapper set the 

GPIO pin high before calling the task. Once the task returns, the GPIO pin is set low 

again and the ‘endtask’ instruction is executed. 

first_task: 

 # Set GPIO pin1 high 

lui $26, 0x3 

ori $26, $26, 0x8 

 li  $27, 1 

 sw  $27, 0($26) 

# Call the LED Task 

   jal LED_Update 

 nop 

# Set GPIO pin1 low 

lui $26, 0x3 

ori $26, $26, 0x8 

 sw  $0, 0($26) 

   # End of task 

endtask 

Listing 7: Assembly wrapper for the first task in test case 1 

When measuring the test case it can be seen through the scatter diagram in Figure 53 that 

the offset time is constant throughout each run. 



TTC Hardware Scheduler 

5-16 

 

 

Figure 53: Measured offset time between tick and first task reacting 

From Table 10 it can be seen that there is a 16 clock cycle offset from when the tick signal 

is fed into the hardware scheduler and the first task executing the instructions required to 

set the GPIO pin high. 

 Offset Time (µs) CPU Cycles 

Measured 0.640 16 

Table 10: Detailed measured offset time between tick and first task reacting 

Table 11 shows a breakdown of where these 16 clock cycles come from. For this test the 

hardware scheduler component was synthesised for up to 8 tasks. By design, the dispatch 

part of the hardware scheduler will not execute the first task until 8 cycles has passed 

(Figure 54). This delay is based on the number of tasks the unit can handle and ensures the 

update part of the hardware scheduler has enough time to update each of the task count 

values. It also ensures that the first task, whether it is Task 1 or Task 8, will always start 

after a fix period after the tick signal has been received. 



TTC Hardware Scheduler 

5-17 

 

 

Figure 54: Hardware scheduler offset delay13 

Following the 8 clock cycle delay, there is a single cycle consumed by the processor sensing 

and responding to the execute task signal. The processor then loads the pipeline with the 

tasks instructions which takes 3 clock cycles until the first instruction reaches the end of 

the execution stage. Four instructions must then be executed to set the GPIO pin high so 

that the measurement can take place (Table 11). 

Event Instructions CPU Cycle 

Count 

Hardware Scheduler offset  8 

Internal Response Time  1 

Load Pipeline  3 

Set GPIO Pin High lui $26, 0x3 

ori $26, $26, 0x8 

li  $27, 1 

sw  $27, 0($26) 

4 

 Total 16 

Table 11: Breakdown of the measured offset results 

From these measurements it can be deduced that there is a hardware offset time of 9 clock 

cycles plus a 3 clock cycle overhead before the first task is executing. The 9 clock cycle 

offset time means that the processor is offset from the tick signal by 9 cycles, however, this 

may not appear as CPU overhead as the task in the previous tick can run right up until the 

end of these 9 clock cycles. 

5.7.2 Test Case 2 

This test aims to demonstrate the overhead between one task completing and the next task 

starting. Two tasks are therefore required which are called by means of an assembly 

                                                 
13 A larger version of this diagram is available in Appendix C, Figure 91. 



TTC Hardware Scheduler 

5-18 

 

wrapper. The first task is a simple flashing LED task which before completion will set a 

GPIO pin high and execute the end task instruction (Listing 8).  

led_task: 

# Call the LED Task 

   jal LED_Update 

 nop 

 # Set GPIO pin1 high 

lui $26, 0x3 

ori $26, $26, 0x8 

 li  $27, 1 

 sw  $27, 0($26) 

# End of task 

endtask 

Listing 8: Assembly wrapper for the first task in test case 2 

The second task is a seven segment task which sets a different GPIO pin high before 

calling the main task function and executing the end task instruction (Listing 9). 

 

seg_task: 

# Set GPIO pin2 high 

lui $26, 0x3 

ori $26, $26, 0x8 

 li  $27, 2 

 sw  $27, 0($26) 

# Call the SEG Task 

   jal SEG_Update 

 nop 

# End of task 

 endtask 

Listing 9: Assembly wrapper for the second task in test case 2 

The test will use a similar setup as described in the previous chapter with the main 

difference being that the counter will measure the time between the first and second GPIO 

pin going high (Figure 55). 



TTC Hardware Scheduler 

5-19 

 

 

Figure 55: Setup for test case 2 

In Figure 56 it can be seen that the time between the tasks is constant and does not vary. 

 

Figure 56: Measured time between first and second task 



TTC Hardware Scheduler 

5-20 

 

From Table 12 it can be seen that there is a 5 clock cycle duration between the first GPIO 

pin going high and the second GPIO pin going high. 

 Execution Time (µs) CPU Cycles 

Measured 0.200 5 

Table 12: Detailed measured time between first and second task 

The breakdown of the 5 clock cycle duration is broken down in Table 13 where 4 of the 

measured clock cycles come from setting the GPIO pin high and only 1 clock cycle from 

executing the ‘endtask’ instruction. 

Event Instructions CPU Cycle 

Count 

Task 1: End of Task endtask 1 

Task 2: Set GPIO Pin 2 High lui $26, 0x3 

ori $26, $26, 0x8 

li  $27, 2 

sw  $27, 0($26) 

4 

 Total 5 

Table 13: Breakdown of the measured between task time 

Figure 57 shows the whole process from when the tick signal enters the hardware 

scheduler component to when the GPIO pin is set high demonstrating the 5 clock cycles 

as observed in the measurements. 

 

Figure 57: Simulated between task overhead14 

                                                 
14 A larger version of this diagram is available in Appendix C, Figure 92. 



TTC Hardware Scheduler 

5-21 

 

In summary, the execution of tasks showed a 9 cycle offset from when the tick signal is fed 

into the hardware scheduler and an execute task signal is received by the processor. There 

was then a 3 cycle overhead to load the first task into the pipeline. It was then shown that 

there is a single cycle overhead between tasks because of the need to execute an ‘endtask’ 

instruction. In addition, it was observed that there was no jitter or variance to the 

measurements. 

5.8 Analysis between hardware and software 

When comparing the hardware scheduler core against the standard PH and predictable 

cores as introduced in Section 4.8.1, it can be seen that the overheads to the first executing 

task are significantly reduced (Figure 58). The reason why the predictable core has less 

overhead than the standard PH core is because the interrupt handler does not need to save 

and restore registers. It is worth point out that the loads measured for the software 

schedulers are based on the time to execute Task 1 at the beginning of the tick. If time was 

measured between the interrupt and the Task 2 as the first task in the tick, then the 

overhead would be slightly larger due to the software mechanism needing to iterate once 

more around a loop. This problem is not faced in the hardware scheduler which will always 

have fixed load regardless of which task is executed first in the tick. 



TTC Hardware Scheduler 

5-22 

 

 

Figure 58: Software scheduler loads on standard and predictable cores 

The overheads between tasks is also variable in the software mechanisms as can be seen in 

Figure 59. However, the hardware scheduler has a fixed one cycle overhead between tasks 

which is due to the need to execute an end task instruction. 

 

 



TTC Hardware Scheduler 

5-23 

 

 

Figure 59: Variable software scheduler overhead between tasks 

When comparing the code and data sizes between the software and hardware schedulers, it 

can be seen that the hardware mechanism consumes much less memory (Figure 60). The 

memory that is consumed for the hardware scheduler are for helper functions to load the 

hardware scheduler registers when the system is first started. 

 

 



TTC Hardware Scheduler 

5-24 

 

 

Figure 60: Hardware and software scheduler code and data sizes 

Some of the other benefits from using a hardware scheduler are not only is the 

predictability better, but also the hardware provides protection from the user code and 

software bugs whilst enhancing system performance. 

Due to the complexity of understanding the software scheduler loads, this chapter looked 

at moving the scheduling mechanism from software to hardware. A large benefit of this 

was that the processor core no longer required the need for an interrupt handler as the 

tasks executions are directed from hardware. As a result, the multi-pipelined core presented 

in Section 4.6.2.5 for the support of predictable interrupts was no longer necessary. This 

resulted in the processor core including the hardware TTC scheduler and support for up to 

8 tasks being 13.5% smaller than the multi-pipelined core (see Figure 61). However, the 

new processor core was still 51.2% larger than the standard unpredictable processor core.  



TTC Hardware Scheduler 

5-25 

 

 

Figure 61: Comparisons of logic utilisation for the HW TTC core 

Even though the logic consumption was larger, the design ensured that the scheduler loads 

were now much smaller and fixed. These loads were fixed with a 3 clock cycle overhead 

for the first task in a tick interval and had a between task overhead of 1 CPU cycle due to 

the inclusion of an ‘endtask’ instruction. 

5.9 Discussion 

This chapter has dealt with the issue of unpredictable scheduler loads on the processor by 

adopting a hardware solution. By comparison, the use of a scheduler implemented in 

software resulted in variable execution times before the first task is executed in a tick 

interval. Also the scheduler exhibited variable overheads when switching between tasks due 

to variations in the control paths. This was noticeable when comparing the load when 

switching between the first and second task to the load between the first and third task 

which had an increase of 44.5%. 



TTC Hardware Scheduler 

5-26 

 

The very nature of a scheduler being implemented in software can also give rise to timing 

which is a more complex to understand. For instance, compiler optimizations could alter 

the order and the amount of the generated code and thus lead to different scheduler loads. 

The hardware scheduler mechanism described in this chapter produced loads that were 

both fixed in duration and easy to understand. These loads would not be affected by 

changes to the software. Furthermore the core size was smaller than the predictable core 

and the code and data sizes were reduced whilst the performance was increased. 

The simplicity of the overheads in the hardware scheduler makes it easier to prevent 

mistakes being made in the calculations. By moving the scheduling mechanism from 

software to hardware the system offers better protection from malicious and accidental 

alterations to the system code. This means that changes to the functionality of the 

scheduler are restricted unless the hardware can be regenerated. However, verifying 

systems in hardware are considered to be easier than verifying software systems, thus 

hardware designs can more suitable for safety critical type systems. 

5.10 Conclusion 

This chapter has presented a novel design for a hardware TTC scheduler which has 

minimised the scheduling overhead and increased the predictability of embedded systems. 

This design is unique because it provides very small overheads for a pipelined processor 

based on the TTC scheduling architecture, with just 3 CPU cycles before the execution of 

the first task in a tick interval and the inclusion of a single cycle instruction at the end of 

each task.  

Whilst a hardware TTC scheduler can provided a very predictable platform, there remains 

a key failure mode in TTC scheduling that has the potential to cause the system to become 

completely unresponsive. The next chapter will discuss this problem and provide a 

solution for this failure mode. 



Software Task Guardian 

6-1 

 

Chapter 6 Software Task Guardian 

This chapter describes the design of a software task guardian mechanism to protect against 

the problems of task overruns in both TTC and TTH scheduling architectures. 

6.1 Introduction 

In Chapter 2 it was discussed that the predictability for real-time systems not only relies on 

functional requirements but also on the guarantees that the system will meet its deadlines. 

Due to this importance for temporal predictability and a common need to execute more 

than one task in a system, a time-triggered co-operative scheduling solution was chosen.  

Whilst a time-triggered scheduler can have many benefits when it comes to temporal 

predictability, there exists one major failure mode which has the potential to greatly impair 

the system performance: this failure mode relates to the problem of task overruns. 

In the event of a task overrun a problem may not even be detected (let alone resolved). 

This may have a serious impact on the system behaviour. For example, as Buttazzo has 

noted: “[Co-operative] scheduling is fragile during overload situations, since a task exceeding its predicted 

execution time could generate (if not aborted) a domino effect on the subsequent tasks” (Buttazzo 2005). 

A minimal task overrun may only generate a tick offset error where the scheduler 

sequencing has been shifted by a small amount, however the remaining schedule recovers 

and may not be apparent to the user. A task overrun that is longer but still returns to the 

scheduler, often results in the system appearing very slow and sluggish. The worst case 

scenario is where a task overrun does not return and causes the system to hang indefinitely. 

In summary, for a co-operatively scheduled system, any task that overruns has the potential 

to bring the whole system down to its knees. In a similar situation, a pre-emptive system 

may still be able to execute the higher priority tasks whilst the lower priority tasks remain 

blocked. As a result this can make a TTC system a less attractive solution, especially when 

considering safety critical systems. This chapter therefore aims to address the problem of 

task overruns by means of a flexible framework which provides a variety of mechanisms 

for dealing with overruns. 



Software Task Guardian 

6-2 

 

Before continuing, this chapter not only provides a task guardian solution for TTC 

architectures, but also includes the mechanisms to support a TTH scheduler which is 

described in Section 2.4. This is to allow the system to be used in a wider range of 

applications such as data acquisition systems which may require tasks that have short and 

long execution times to be scheduled within the same system. 

6.2 Related work  

There has been a considerable amount of work on the scheduling of systems in which 

there is an overload situation (Caccamo, Buttazzo et al. 2002; Cervin, Henriksson et al. 

2003; Buttazzo 2005).  

When considering the use of backup tasks which are called when a task overruns, some 

interesting work has previously been carried out in this area building on Jane Liu’s 

publications on imprecise computations (Liu, Lin et al. 1987). This work involves running 

a simple version of a task first: this will be followed by a more complete version if there is 

time. One key difference between Liu’s work and the approach presented here is that a 

static task schedule is used and backup tasks will only be employed if the main task fails.  

Another related publication – with a focus on the Ada Ravenscar Kernel (Puente and 

Zamorano 2003) - outlines a technique for using a timer ISR routine to run a recovery task 

in the event of an overrun in a co-operative scheduler. Few details are provided but the 

approach appears to be similar to the original TTC Task Guardian design (Hughes and 

Pont 2004).  

In relation to the Time-Triggered communication Protocol (TTP), a time-triggered 

network architecture has been designed for the supervision and protection of network 

communications (Bauer, Kopetz et al. 2003). The idea is to detect and recover from 

network errors in distributed systems. The work here differs because the intention is to 

detect and recovery from task errors and not just on the network communications. 

However, the failure of tasks may themselves lead to network errors and thus the proposed 

solution here may help to prevent against some of these errors.  

In existing system designs, the main alternative to the techniques described here involve 

the use of a simple watchdog timer (Douglass 1997). For example, previous studies have 

described a set of design patterns which allow watchdog timers to be used in conjunction 



Software Task Guardian 

6-3 

 

with TTC embedded designs (Pont and Ong 2003). Such techniques can be useful in TTC 

designs, but cannot provide precise timing behaviour during recovery due to the long 

restart times to boot the system back into a working state. 

6.2.1 Normal operation 

In order to understand the effects of task overruns in the software TTC and TTH 

scheduling implementations the normal operations of the scheduler is described in this 

section. 

During normal operation of systems using the TTC/TTH scheduler implementations, the 

first function to be run (after the startup code) is main().  Function main() then calls 

Dispatch() which in turn launches the co-operative task(s) currently scheduled to execute: 

it will be assumed in this discussion that a (co-operative) task - C_Task() - may be called.  

Once any co-operative tasks have completed their execution, Dispatch() calls Sleep(), 

placing the processor into a suitable “idle” mode. A timer-based interrupt occurs every 

millisecond (in typical implementations) which either wakes the processor up from the idle 

state or pre-empts a long co-operative task.  In either case, the ISR Update() is invoked, by 

means of an assembly-language “wrapper” (in the version of this system used here).  For 

TTH systems, Update() then directly calls the pre-emptive task (here it will be assumed 

that this is P_Task()).  Once the pre-emptive task is complete, Update()  increments a tick 

counter.  The function calls then “unwind” back to main(), and Dispatch() is called again.  

The cycle thereby continues.   

Please note that, in most designs, it would generally be expected that the pre-emptive task 

would occupy no more than approximately 10% of the tick interval. 

6.2.2  Co-operative task overrun 

As previously mentioned, the hybrid scheduler differs from the co-operative scheduler in 

that the assumption that co-operative tasks will complete within a tick interval is relaxed: 

that is, co-operative tasks are permitted to have a duration greater than a tick interval.  

However if there is more than one co-operative task scheduled to execute at any instant of 

time then the current task must finish before any other (co-operative) task can run (Figure 

62). 



Software Task Guardian 

6-4 

 

 

Figure 62: Typical co-operative schedule under normal conditions 

When a co-operative task overrun occurs, then - instead of Sleep() being interrupted by 

the ISR - the overrunning task is interrupted.  The pre-emptive task will still run at every 

tick, but all other co-operative tasks will be blocked (Figure 63). 

 

Figure 63: Overrunning of task A causes task B to be released late 

6.2.3  Pre-emptive task overrun 

If a pre-emptive task overrun occurs, then the co-operative tasks lose processing time 

within the tick interval(s).  As a consequence, the co-operative tasks will have their 

execution delayed until the pre-emptive task returns (if ever) (Figure 64). 

 

Figure 64: Overrunning pre-emptive task causes co-operative tasks to be blocked 



Software Task Guardian 

6-5 

 

6.3 Adding Task Guardians 

In the TTH architecture, two Task Guardians are required: one for the co-operative tasks 

and one for the pre-emptive task.  Ways in which these Guardians can be implemented are 

discussed in this section. 

6.3.1  Co-operative task overruns 

The Task Guardian for co-operative tasks is described first. 

6.3.1.1 Providing WCET information 

In a TTC scheduler, a task overrun can be detected comparatively easily, since - if a task is 

still executing when the next Tick occurs - the task has overrun.  In a TTH scheduler, the 

situation is more complicated because one or more of the (co-operative) tasks may have 

been designed to execute for longer than a Tick interval: some additional information is 

therefore required if an overrun situation is to be detected.  

The implementation presented in this chapter will assume that the user will provide the 

required information by indicating the expected WCET of each task (in µs) as it is added to 

the scheduler. Tasks will then be allowed to execute up to its expected WCET, where if 

found to exceed this time, the task is then shutdown. This WCET information is then 

checked by the Task Guardian implemented through a function called 

SCH_Check_Tasks_OR().  

To perform these checks, two timer match registers are employed to generate two 

interrupts on the timer IRQ line. Both interrupts are periodic and have the same period 

(equal to the Tick Interval: 1 ms in the studies discussed in this chapter). The Pre-Tick 

Interrupt occurs just before the Tick Interrupt: the interval between these events is the 

Pre-Tick Offset (and is set to 50 µs in the studies discussed in this chapter).   

The Pre-Tick Interrupt is used to execute the SCH_Check_Tasks_OR() function and the Pre-

Tick Offset period is set to a value such that the checks in the SCH_Check_Tasks_OR() 

function can be completed before the main Tick Interrupt occurs. The purpose of the pre-

tick interrupt is to avoid the jitter and variable overhead that would be caused by 

SCH_Check_Tasks_OR() function. This concept is a similar technique to the planned pre-

emption mechanism presented by (Maaita and Pont 2005). 



Software Task Guardian 

6-6 

 

The interrupt behaviour is implemented by means of an “IRQ wrapper” (in assembly 

language): this code is used to save (and restore) registers and call the appropriate function 

when a timer ISR is invoked (Figure 65). 

 

Figure 65: Task scheduling diagram with co-operative task guardian. 

6.3.1.2 Desired behaviour 

In the co-operative Task Guardian, the aim is to shut down any (co-operative) task found 

to have exceeded its predetermined WCET when the IRQ Wrapper is invoked.  However 

if – as the result of a task overrun – some tasks in the tick interval have not been executed, 

these tasks need to be allowed time to execute.  To allow this, the schedule is paused (for 

one Tick Interval), to allow any “blocked” tasks to execute. This then creates a predictable 

recovery time before the normal schedule continues. 

 

Figure 66: Paused tick offset to allow blocked tasks to execute before the system continues 



Software Task Guardian 

6-7 

 

6.3.1.3 Overview of the Task Guardian mechanism 

The co-operative Task Guardian is implemented as follows: 

• The IRQ Wrapper – when invoked by the “Pre-tick offset” interrupt – will call 

SCH_Check_Task_OR() 

• SCH_Check_Task_OR()will check the WCETs of the tasks and (if necessary) flag that 

a task must be shut down. 

• The IRQ Wrapper then places the processor into sleep mode.  

• The tick interrupt then wakes the processor up from sleep mode and calls 

Update() 

• For TTH implementations Update() then calls the pre-emptive task. 

• Finally - based on the result flagged from the previous call to 

SCH_Check_Task_OR() - the IRQ Wrapper will either shut down the currently 

overrunning task or return normally from the interrupt. 

 

The two main stages of the task guardian (detecting task overruns and returning from the 

IRQ wrapper), are considered in more detail in the following sub-sections. 

6.3.1.4 Detecting task overruns (general mechanism) 

In order for the SCH_Check_Task_OR()function to determine that an overrun has occurred 

and take appropriate action, a simple but reliable method is required to detect overruns.  

Modifying the code in Dispatch(), where the co-operative tasks are launched, enables this 

to be achieved.  First the start and stop times of tasks are stored (before and after the task 

is called) so that the task duration can be recorded. A (single) variable 

(Co_op_Task_Overrun_G) is also used to indicate if a task is still running when the timer 

interrupt occurs and to identify the task concerned (see Listing 10).  Note that the value 

255 is used here as a reserved ID to indicate successful task completion (the value is 

arbitrary). 

Co_op_Task_Overrun_G = Index;   // Store task ID 

Start_Time = TMR0_TC();         // Get Start time of Task 

EnableInt();                    // Enable timer interrupt 

(*SCH_tasks_G[Index].pTask)();  // Run the task 

DisableInt();                   // Disable timer interrupt 

Stop_Time = TMR0_TC();          // Get Stop time of Task 

Co_op_Task_Overrun_G = 255;     // Task completed 

Listing 10: Overrun detection in Dispatch() 



Software Task Guardian 

6-8 

 

Due to the problem that an interrupt could occur anywhere in the scheduler code resulting 

in numerous systems states, there are three main areas in which an interrupt has been 

allowed to occur: (i) while a co-operative task is still executing; (ii) whilst Dispatch() is 

“between tasks”;  and (iii) during sleep mode, when all the tasks in the tick have completed.  

Interrupts are – therefore - only enabled in pre-determined areas of the code for these 

specific conditions (before and after the task is called, before and after sleep and once in a 

suitable place in dispatch between task calls).   

By detecting which of the three conditions the scheduler was in when the interrupt 

occurred, it becomes possible to take appropriate action.  This is discussed in the following 

sub-sections. 

6.3.1.5 Detecting task overruns 1 (interrupt an executing task) 

In the condition where a task is still executing at the time when an interrupt occurred, the 

currently executing task is checked to see if it has exceeded its WCET, and if so, 

appropriate action is taken (Figure 67).  To ensure this condition was not the result of a 

previous error the recently executed tasks are then checked to see if they had exceeded 

their WCETs.  Finally another check is done to see if there are any tasks that have missed 

their execution deadlines as a result of this condition: if so, the co-operative tick is paused 

(for 1 Tick Interval) to allow the unexecuted tasks to run.  After this “pause”, the normal 

schedule continues. Under certain conditions an optional error report may be generated 

which is sent to a buffer which can be transmitted over a communication medium such as 

a UART. 

 



Software Task Guardian 

6-9 

 

 

Figure 67: Flowchart of SCH_Check_Task_OR() when interrupting an executing task 

6.3.1.6 Detecting task overruns 2 (Interrupt the scheduler in sleep mode) 

When interrupting the scheduler in sleep mode, the system does a check on the previously 

executed tasks to identify if any tasks may have exceeded their WCETs when they ran 

(Figure 68). 



Software Task Guardian 

6-10 

 

 

Figure 68: Flowchart of SCH_Check_Task_OR() when interrupting sleep mode 

6.3.1.7 Detecting task overruns 3 (Interrupt the scheduler between tasks) 

If a timer interrupt occurs when the dispatcher is “between tasks” this may mean that a 

particular task has overrun slightly, causing delayed execution of later tasks in this interval.  

If a “between tasks” event is detected, all previously-executed tasks are checked for 

overruns and the schedule is examined to see if there are unexecuted tasks remaining to be 

run.  In the latter situation, the scheduler is paused (again for 1 Tick Interval) in order to 

allow the outstanding tasks to execute.  The normal schedule then continues (Figure 69). 



Software Task Guardian 

6-11 

 

 

Figure 69: Flowchart of SCH_Check_Task_OR() when interrupting scheduler between 

tasks 

6.3.1.8 Returning from the IRQ Wrapper 

Once the SCH_Check_Task_OR()function has completed and the system has been awakened 

from sleep mode (by the timer interrupt), Update()and the pre-emptive task are then 

executed.  Following this, Update() then returns to the IRQ wrapper where the decision 

to shut down a task is made, based on the value of the Shutdown_Task variable (which was 

set in the SCH_Check_Task_OR() function). 

If the decision is made to shut down the task, then the IRQ Wrapper must alter its return 

address so that - instead of returning to the overrunning task - it returns to Dispatch() 

(Listing 11).  This can be achieved by loading the address of a code label (pointing to the 

appropriate place in the Dispatch() function), into a general purpose register (such as 

‘r26’).  Then, to perform a return, the program counter (‘pc’) register is loaded with the 

contents of ‘r26’ through a jump instruction. 



Software Task Guardian 

6-12 

 

 

# Load the dispatch return vector 

 la $26, Disp_Return_Ptr 

 lw $26, 0($26) 

 nop 

 

 # Return from handler 

 jr $26 

 nop 

Listing 11: Return address known by use of code label in Dispatch(). 

Since the code returns to Dispatch() directly, there is no way of knowing which registers 

have been altered or been placed on the stack by the overrunning task.  The Dispatch() 

function therefore contains two assembly macros which save the processor state before 

and after the task calls, allowing the Dispatch() function to continue regardless of any 

register changes. 

6.3.2 Pre-emptive task overruns 

With pre-emptive tasks, it is clear that – if the task is still executing at the time of the next 

Tick - it has overrun.  In practice, detecting and handling such overruns requires care 

because pre-emptive tasks execute from a timer ISR: if the task overruns, subsequent 

interrupt requests (from this source) can be blocked.  To resolve this, a second timer is 

used: this is set to an overflow time which is (i) slightly longer than the WCET of the pre-

emptive task, and (ii) slightly shorter than the tick interval.   

Overflow of this timer is linked to a separate interrupt which must be allowed to interrupt 

the current timer ISR. 

Overall, the aim is to provide an effective TG mechanism without increasing the levels of 

task jitter under normal operating conditions.  Using the methods described below, this is 

achieved by ensuring that there is always a fixed amount of tick available for the co-

operative tasks. 



Software Task Guardian 

6-13 

 

 

Figure 70: Flowchart of pre-emptive TG 

The second ‘pre-emptive’ timer is started before a pre-emptive task is called.  Once the 

timer match value is reached, the IRQ Wrapper is invoked which in this instance calls 

SCH_Check_PTask_OR().  If the (pre-emptive) task is found to be executing then its overrun 

flag is updated and an error report is created (Figure 70).  If however the (pre-emptive) 

task returned before the timer finished, then the processor is placed in sleep mode for the 

remainder of the timer duration.  Either way, the SCH_Check_PTask_OR() is called and the 

ISR shuts down the code it has interrupted.  Control is then passed back to Update(). 

It is worth noting that, just before Update() finishes, the processor is once again placed 

into sleep mode.  This encapsulates the pre-emptive task and pre-emptive task guardian 

into a fixed pre-emptive time frame which reduces the likelihood of jitter in the timing of 

the first co-operative task (Figure 71). 

The remaining techniques used to create the pre-emptive Task Guardian are the same as 

those described for the co-operative version. 



Software Task Guardian 

6-14 

 

6.3.3 Overview of Task Guardian timing 

For ease of reference, a summary of the timing measurements associated with the task 

guardian is given in (Figure 71). The large arrows represent the tick interrupts and the 

smaller dotted arrows represent the pre-tick and pre-emptive interrupts to create a fixed 

time frame which encapsulates the pre-emptive task. This process means that the co-

operative task is interrupted by a fixed amount of time which is predictable and could be 

factored into timing analysis. 

 

a. Tick interval b. Pre-emptive time 
frame 

c. Pre-tick offset d. Actual execution 
time for a pre-
emptive task  

e. Pre-emptive task 
sandwich delay 

f. Jitter compensation 
delay 

g. Maximum 
allowed 
execution time 
for a pre-emptive 
task 

h. Slack time 
(available for co-
operative tasks) 

 

Figure 71: Task scheduling diagram showing low jitter solution 

6.4 Evaluating the basic TG mechanism 

In this section results are presented from a study which was intended to assess the speed 

and response of the system in the event of a task overrun.   

6.4.1  Overview of the study 

In this design, a Tick interval of 1ms was used and a fixed period of 20 µs was allocated in 

each Tick interval for processing the pre-emptive task. 

For test purposes, two tasks were created to generate task overruns at pre-determined 

times.  



Software Task Guardian 

6-15 

 

The co-operative task was set to alternate one of the LEDs on the development board 

every time it was called.  This function will also count the number of times it was called, 

when a count value of 5 was reached, an infinite while loop is executed to generate a task 

overrun.  Note that, under normal conditions, the execution time of the co-operative task 

was approximately 2.36 µs. 

The pre-emptive task simply pauses for a short while to represent some load and a variable 

counts the number of times the task was called: after 500 calls, an infinite loop is executed 

(Listing 12).  Please note that “Function_A()” is used to demonstrate that the Task 

Guardian can successfully shut down tasks with sub functions. 

void Premp_Update(void)  

  { 

   Function_A(); 

  } 

 

  void Function_A()  

  { 

   volatile int i; 

 

   for (i = 0; i < 10; i++); 

 

   if (++State == 500)  

   { 

    State = 0; 

    while (1); 

   } 

  } 

Listing 12: Pre-emptive task will generate a task overrun every 500 times it is called 

Please note that the code in these tests was compiled using the GCC 3.3.3 compiler 

without optimizations set. 

6.4.2  Timing behaviour 

Timing measurements were taken at key points in the systems execution by using a 

hardware CPU cycle counter and sending its values over a serial connection to the host. 

These values contain the cycle time from the beginning of the tick interrupt to the 

associated event, as can be seen in Table 14. One of the more prominent values is the time 

to the beginning of the first co-operative task as this reflects the overhead of the scheduler 

and any pre-emptive tasks before the CPU time is handed over to standard TTC tasks. 

 



Software Task Guardian 

6-16 

 

Event Measured Time (µs) 

Start of Pre-emptive Task 7.56 

End of Pre-emptive Task 13.44 

End of Update 61.80 

Start of 1st Co-operative Task 74.52 

End of 1st Co-operative Task 76.88 

Table 14: Measured times during key event in the basic TG operation 

In addition, values were recorded for the time between the first and second co-operative 

tasks as well as the overhead imposed by check task overrun function (Table 15). 

Event Measured Time (µs) 

Time between 1st and 2nd Co-operative Task 14.20 

Check Task Overrun Overhead 12.52 

Table 15: Measured overheads during normal conditions of the basic TG 

When testing the basic task guardian mechanism under different overrun conditions it can 

be seen that the time until the first co-operative tasks is unaltered (Table 16). 

Condition Scheduler Load (µs) 

No Overrun 74.52 

Pre-emptive Overrun 74.52 

Co-operative Overrun 74.52 

Both Overrun 74.52 

Table 16: Scheduler loads during task overrun conditions 

When examining the results shown in (Table 16), it should be noted that – in all cases – 

20 µs of the load comes from the fixed available execution time for the pre-emptive task 

and a further generous 30 µs arises from the Jitter Compensation Delay.  Even including 

this fixed (50 µs) load, the scheduler can shut down an overrunning pre-emptive and / or 

co-operative task within 74.52 µs from the beginning of the tick.  More specifically, the 

shut down time is 24.52 µs greater than the fixed available pre-emptive execution time and 

has no effect on the jitter behaviour of the first executing co-operative task.   

For almost all practical applications, this represents an extremely fast (and highly 

predictable) response time.   



Software Task Guardian 

6-17 

 

6.4.3  Implementation costs 

The focus in this thesis is on applications which must have highly predictable patterns of 

behaviour and ideally low resource requirements. Both the memory and CPU requirements 

of the modified software scheduler are considered in this section. 

Table 17 compares the memory requirements for the Base and Task Guardian schedulers.  

It can be seen that the implementation of the Task Guardians requires a significant amount 

of additional code for the main scheduler functions. However, even with this additional 

code, the total data memory requirement is 318 bytes, and the total code requirement is 

6352 bytes. 

Scheduler Code Size (bytes) Data Size (bytes) 

Base 2216 108 

Basic Task Guardian 6352 318 

Table 17: Code and data memory requirements for the “Base” and “Task Guardian” TTH 

schedulers 

It is also important to consider the CPU load imposed by adding the Task Guardians. To 

illustrate this, Table 18 shows the amount of the tick interval used to process the scheduler 

code in normal conditions (with empty tasks and no task overruns). As previously noted, 

the Task Guardian in this case study fixes 20µs of the tick interval to process the pre-

emptive task and 30µs for a short pause at the end of Update(). Even taking this into 

account, the modified framework requires only a total of 74.52 µs of the available CPU 

time in a tick interval (under normal conditions). 

Scheduler Scheduler Load (µs) 

Base 8.60 

Basic Task Guardian 74.52 

Table 18: Scheduler loads per tick interval 

6.5 Adding support for backup tasks and “allowed overruns” 

The ability to shut-down tasks that overrun and exceed their WCET (as described in 

Section 6.3), has the potential to improve the reliability of TTC and TTH designs.  

However, avoiding scheduler “jams” may not address the underlying problem: indeed, if a 

critical operation is rendered inoperative through the shutdown process, the system 

reliability may not be improved (at all). 



Software Task Guardian 

6-18 

 

There are a number of ways in which the functionality of the Task Guardian can be 

extended in order to address this problem: 

• Support for “Backup tasks” can be provided (such tasks to be invoked in the event 

of the failure of a critical task). 

• A task that is still running at the next tick interval can be shut down even if it has 

not exceeded its WCET but its continued execution would prevent another task 

from starting on time. 

This section describes these features in more detail. 

6.5.1  Backup Tasks 

To support backup tasks, a second function pointer is required in the task array (for each 

task).  This will hold the address to the backup task (if one exists). When – in the 

SCH_Check_Task_OR() function – a co-operative task overrun is detected, the backup-task 

address is checked.  If a non-zero value is found, the original task address is replaced with 

the address of the backup.  The scheduler then executes the backup task immediately 

(before running any other pending tasks).   

To reduce the problems of a domino effect (caused by the insertion of a new task in what 

may be a full schedule), a period of grace (of 1 Tick Interval) is allowed for the backup task 

and the completion of tasks which may have been unable to execute in the same tick 

interval as the offending task. 

Please note that, in the framework described here, the recovery time is known (1 Tick 

Interval, from the task overrun being detected to the return to the normal schedule).  It is 

also known that the worst case overrun detection time is also 1 Tick Interval.  Therefore in 

the case where a co-operative task has overrun by a small amount (measured in 

microseconds), it is only possible to react within the period of 1 Tick Interval.15 

The pre-emptive backup task operates slightly differently.  Recall that, if the pre-emptive 

task exceeds its pre-determined WCET value, it will be shut down and control will be 

                                                 
15  This behavior is not ideal.  However, the cost of supporting more rapid detection of overruns of the 

co-operative task would be considerable (it would be necessary to perform overrun checks – for 

example – ten times in every tick interval: this would impose a substantial CPU load). 



Software Task Guardian 

6-19 

 

passed back to Update(). At this point, to reduce jitter in the timing of the co-operative 

tasks, the scheduler goes to sleep mode for a short period (the Pre-emptive Delay).  This 

results in a pre-emptive time frame which will always have a duration equal to the WCET 

of the pre-emptive task plus the Pre-emptive Delay (30 µs in the present system).  If a pre-

emptive backup task (labelled Pb in these discussions) is included in the schedule then - in 

the case where the pre-emptive task exceeds its WCET - the backup will be run 

immediately and will take up exactly two pre-emptive time frames. For example, if the 

system has a pre-emptive task and backup which each have WCET values of 50 µs, then 

the “double pre-emptive frames” slot would have a total duration of 160 µs (that is, WCET 

times of the two tasks + 2 x Jitter Compensation Delay).  This worst-case figure should be 

taken into account when setting the schedule for the co-operative tasks. 

6.5.2  Allowed Overruns 

As has been discussed, incorporating backup tasks without causing some disruption to the 

schedule is a practical impossibility.  One way around this problem is referred to here as an 

“Allowed Overrun” mechanism for co-operative tasks.  What this means is that, if a co-

operative task overruns, the designer may opt to allow it to carry on until either its WCET 

is reached or another (co-operative) task is due to execute.  The aim is to allow tasks to 

continue to run, so long as it does not impact on other tasks. This might be particularly 

useful if (because of inaccurate WCET estimates) a task may overrun by a small amount. 

For a task to be allowed to overrun, the scheduler must be able to determine when the 

next task is due to execute.  The framework in the TTC and TTH schedulers determines 

the execution times by decrementing delay counters for each task in the Dispatch() 

function: when a delay of 0 is reached, the task is executed and the delay counter is reset.  

By keeping a running count of how many ticks a task has overran and comparing this with 

the delay values of the tasks in the SCH_Check_Task_OR()function, it is possible to 

determine when a task will next be executed. 

6.6 Evaluating the extended TG mechanism 

As with the basic Task-Guardian framework in Section 6.4, a study was conducted with the 

extended framework, described in Section 6.5, in order to assess the speed of response in 

the event that there are one or more task overruns.   



Software Task Guardian 

6-20 

 

6.6.1  Overview of the study 

The study was conducted in the manner described in Section 6.4 using the same basic task 

set.  Please note, however, that in this study, backup tasks were also employed. 

The co-operative and pre-emptive tasks were set to run (with no offset) every 2 ms, as 

shown in Listing 13.  Both tasks were scheduled to execute in the same time slot so that 

measurements could be taken for the worst-case situation (in which both tasks overrun 

simultaneously). 

// Def: SCH_Add_Task(Task, BackupTask, Delay, Period, WCET, Premp); 

 

// Pre-emptive task 

SCH_Add_Task(Preemptive_Task, Preemptive_Task_Bkp, 0, 2, 20, 1); 

 

// Co-operative task 

SCH_Add_Task(Cooperative_Task, Cooperative_Task_Bkp, 0, 2, 100, 0); 

Listing 13: Scheduling the tasks and backup tasks 

6.6.2  Timing behaviour 

When looking at the times of the key events in the extended task guardian it can be seen 

that the overhead is slightly increased to accommodate the extra functionality (Table 19). 

Event Measured Time (µs) 

Start of Pre-emptive Task 7.08 

End of Pre-emptive Task 14.08 

End of Update 61.32 

Start of 1st Co-operative Task 77.56 

End of 1st Co-operative Task 79.16 

Table 19: Measured times during key event in the extended TG operation 

In addition, the overhead between co-operative tasks and the check task overrun function 

has also increased slightly (Table 20). 

Event Measured Time (µs) 

Time between 1st and 2nd Co-operative Task 16.32 

Check Task Overrun Overhead 14.92 

Table 20: Measured overheads during normal conditions of the extended TG 

Unlike the basic task guardian mechanism, the extended task guardian has some additional 

overheads when backup tasks are executed (Table 21). In the case of a pre-emptive backup 

task being executed, the additional overhead is predictable in that it requires exactly one 

extra pre-emptive time frame. When a backup co-operative task is run the additional 



Software Task Guardian 

6-21 

 

overhead is less obvious but is static and can be measured or calculated by static code 

analysis. In this study this overhead was measured as 3.04 µs. 

Condition Scheduler Load (µs) Difference (µs) 

No Overrun 77.56 0 

Pre-emptive Overrun 77.56 0 

Pre-emptive Overrun + Backup 127.56 +50 

Co-operative Overrun 77.56 0 

Co-operative Overrun + Backup 80.6 +3.04 

Both Overrun 130.4 +53.04 

Table 21: Scheduler load during task-overrun conditions 

As the table makes clear, the additional features lead to a very small increase in the 

scheduler load (3.04 µs under normal operating conditions).  The loads for the various 

overrun conditions are summarised in Table 22. Note that the Dispatch Delay load may 

vary if the first task in a tick interval is not the same.  

Condition Load Equations 

Normal Conditions Scheduler load = (Pre-emptive Time Frame) + Dispatch Delay  

Pre-emptive Backup Scheduler load = (2 × Pre-emptive Time Frame) + Dispatch Delay 

Co-operative Backup Scheduler load = (Pre-emptive Time Frame) + Co-operative Backup Overhead + Dispatch Delay 

Both Backup Scheduler load = (2 × Pre-emptive Time Frame) + Co-operative Backup Overhead + Dispatch Delay 

16Table 22: Scheduler overhead equations16 

The user should use the load equations to predict the worst case scenario for a schedule 

and apply this with the WCET information to ensure that the scheduler is not overloaded 

under normal or task overrun conditions.   

6.6.3  Implementation costs 

As noted in Section 6.4.3, it is important to understand the implementation costs of the 

mechanisms required to implement backup tasks and allowed overruns. 

                                                 
16 Measured values for scheduler overhead equations: Dispatch Delay = 27.56µs; Co-operative Backup 

Overhead = 3.04µs 



Software Task Guardian 

6-22 

 

Table 23 shows the impact on the memory requirements from the addition of the backup 

function and allowed overrun features.  Again there is a significant increase in code size, 

however there is only a small increase in data requirements. 

Scheduler Code Size (bytes) Data Size (bytes) 

Base 2216 108 

Basic Task Guardian 6352 318 

Extended Task Guardian 8648 366 

Table 23: Code and Data memory requirements for the Base and Task Guardian 

Schedulers 

Although there is additional code, the CPU requirements (in normal operation) are 

increased by only a very small amount (see Table 24).  

Scheduler Scheduler Load (µs) 

Base 8.6 

Basic Task Guardian 74.52 

Extended Task Guardian 77.56 

Table 24: CPU loads for the various TTH schedulers 

6.7 Further applications of the TG approach 

In this section TTC and TTH implementation of the techniques described in this chapter 

are compared. 

6.7.1  A TTC implementation 

The process to convert between the complete TTH framework (with support for backup 

tasks and allowed overruns) into a TTC Scheduler framework can be done simply through 

the use of a compiler ‘#define’ directive.  In the TTC version, there is no support for pre-

emptive tasks (and, therefore, no Task Guardian for such tasks). 

The memory requirements of the TTC and TTH designs are compared in Figure 72. The 

comparisons of the CPU loads are shown in Figure 73. 



Software Task Guardian 

6-23 

 

 

Figure 72: Comparison of Code and Data memory consumption for the software TTH and 

TTC schedulers 

 

Figure 73: Comparison of CPU loads for the software TTH and TTC schedulers 



Software Task Guardian 

6-24 

 

6.7.2  Dealing with the underlying causes of task overruns 

Task overruns do not only arise from inaccurate estimates of WCET. For example, 

electromagnetic interference can cause code and data corruption (Ong and Pont 2002) 

which could lead to task overruns. In many cases, hardware features on the processor may 

be employed to detect such errors and could make use of the TG mechanisms to handle 

them. A similar form of generic error-handling mechanism (for watchdog timers) has been 

described (Pont and Ong 2002). 

The PH processor used in the examples in this chapter has four main “exception” 

mechanisms: Undefined Instruction, Arithmetic error, Instruction Abort and Data Abort.17 

The Task Guardian implementation described in this chapter can be set to deal with all 

four exceptions in the same manner that it deals with task overruns. On entering an 

exception the handler will record the return address of the instruction that generated the 

exception (which is printed along with the exception type by a generated error report). The 

handler then flags an exception has occurred and places the processor into sleep mode to 

await the next SCH_Check_Task_OR()interrupt: this function then checks the exception flag 

and shuts down the offending task.  The TG treats the exception in the same manner as a 

normal overrun, and therefore backup tasks (if any) are executed. All other TG features 

remain available when this form of exception handling is employed. 

6.8 Discussion 

When a TTC scheduler is used the behaviour can be very predictable. However, in order to 

expand the range of applications that a TTC scheduler can be used, a “time-triggered 

hybrid” (TTH) scheduler can be employed as an alternative to a fully pre-emptive design. 

Both systems can suffer due to the condition of task overruns. To address this problem, 

this chapter presented a Task Guardian mechanism which can be employed to deal with 

both co-operative and a single pre-emptive task. The task guardian provided a way to 

shutdown an overrunning task and execute - if requested - a backup task. The benefit of 

                                                 
17  Data Abort errors occur when an attempt is made to load data from (or store data in) an invalid 

memory location.  Instruction Abort errors occur when an attempt is made to fetch an instruction from 

an invalid memory location.  An Undefined Instruction errors occur when an attempt is made to 

execute an invalid instruction. An Arithmetic error occurs when a signed value overflows.   



Software Task Guardian 

6-25 

 

the backup task was that the user could define a specific recovery mechanism for each task. 

The resulting framework has been shown to have predictable behaviour, even in the event 

of task overruns. 

Inevitably, there are costs involved in applying these approaches. For example, knowledge 

of task execution times and timing characteristics of the scheduler are required in order to 

apply the equations presented in Table 22.  In particular, for the basic TG mechanism, the 

developer needs to ensure that the pre-tick interval and the jitter compensation delay are 

sufficiently large for the guardian to execute. For the extended TG mechanism, the Pre-

emptive Time Frame, Pre-emptive Backup Overhead, Dispatch Delay, and Co-operative 

Backup Overhead need to be defined. If these measurements are not accurate then the 

reliability of the system could be compromised. 

Even though the task guardian provided a number of useful features, this came at a high 

price. For instance, the code size was 3.9 times larger than the software scheduler and the 

data size was approximately 3.36 times larger. This not only represented a large increase in 

memory requirements but also a significant amount of complexity. A timer with 2 match 

registers was also required in order to provide a low jitter solution by running a ‘check task 

overrun’ function in a separate interrupt handler before the main tick interrupt occurred. 

The result was that the scheduler overhead was 2.2 times larger without including the extra 

time required for the ‘check task overrun’ function. The between task overhead was also 

increased by 3.4 times than that of the software scheduler.  

Whilst the software task guardian was large and complex, it was designed to achieve a good 

level of temporal predictability. However, it could be considered that because the system is 

large and complex the the effort required to verify the system meets its safety standards 

could render the use of a software task guardian to be impractical. 

6.9 Conclusions 

Throughout this thesis the goal has been to provide a way of constructing highly 

predictable embedded systems. This chapter has sought a software solution to the task 

overrun problem through the implementation of a task guardian. The software mechanism 

achieved this goal but has substantially increased the amount of code required to 

implement the system. This in turn increases system costs and complicates both the 



Software Task Guardian 

6-26 

 

development and maintenance processes for the system. In addition, the developer must 

correctly configure the software mechanism or they may actually reduce the system 

reliability rather than improve it. Furthermore, the implementation is tied tightly to the 

features of the microcontroller.  

The work in this chapter differs from most previous approaches in that no attempt is made 

to create an on-line scheduling algorithm which can adapt to deal with an overload 

situation: instead, the aim is to follow a pre-determined (static) schedule as closely as 

possible and to either shut down (or replace) a task that does not meet its pre-determined 

WCET constraints. Providing this kind of mechanism is advantageous so that the error 

detection and recovery times can be done quickly and in a known predictable time. 

Due to all the associated complexities of the software task guardian mechanism, the next 

chapter looks at providing a hardware solution which can be integrated with the hardware 

scheduler mechanism as described in Chapter 5. 

 



Hardware Task Guardian 

7-1 

 

Chapter 7 Hardware Task Guardian 

This chapter aims to look at a hardware alternative to the software task guardian solution. 

The solution presented here will be integrated with the predictable processor and hardware 

scheduler designs as outlined in the previous chapters. A comparison will be then drawn 

between the hardware solution and the software mechanism presented in Chapter 6. 

7.1 Introduction 

One of the main goals of a task guardian component is to guarantee task execution time by 

ensuring each tasks allocated block of CPU time will always be available to it, especially if 

any other task attempts to exceed its allocated time. To minimise the effect of an 

overrunning task on subsequent tasks, involves the need for quick error detection. Thus 

preventing CPU overload and ensuring that the recovery mechanism is fast so that the 

tasks can collectively meet their deadlines. This highlights one of the problems with the 

software task guardian mechanism where a task overrun is only checked at the end of each 

tick interval. As such, a task may overrun by up to 1 millisecond before being detected. 

This may result in several slack stealing tasks being forced to run in the next tick interval in 

order to catch up with the desired schedule. In hardware, this issue is no longer a problem 

as the overrun detection mechanism can occur in parallel to the executing task. As such, 

this presents some interesting design choices to the way the hardware task guardian can be 

implemented. 

With the ability of the hardware to see what tasks are due to run next and quickly respond 

to an overrun event and take the appropriate action, the need to shutdown the task 

immediately can be relaxed. For instance, the guaranteed processor time (GPT) might be 

set to the task’s WCET. However, the design can have the additional flexibility in that it 

does not require precise information about the WCETs for the tasks that it is monitoring. 

This is because the task may be allowed to keep running (even if this execution takes 

longer than might have been predicted – i.e. longer that the guaranteed processor time) 

while no other task requires access to the CPU. Accordingly, this feature can help to 

simplify the system design process.  In addition, it may help to ensure that a system 

operates in a reliable way and could also significantly reduce the opportunities for 

programming errors to affect the system. 



Hardware Task Guardian 

7-2 

 

While the advantages of allowing a task to exceed its guaranteed processing time when it 

will have no impact on other task can have many benefits, there does come a point or 

upper time limit where the user would prefer a recovery action to be taken. For example, if 

a task has a WCET of 100µs but the next task in the schedule does not execute until 

500ms away, then the task could overrun for a substantial amount of time before anything 

is done about the problem. Therefore, the hardware mechanism can be provided with an 

additional variable, the maximum allowed overrun time (AOT). This means recovery will 

be guaranteed to happen between the GPT and AOT times. 

Finally, the hardware mechanism will include the ability to execute a backup task after the 

current task has exceeded its GPT time. If no backup task is provided, then if specified the 

task can run up to its AOT. 

7.2 Task Guardian Component 

This section briefly describes the functionality of the core of the hardware task guardian 

mechanism. 

7.2.1 Task information block 

The task guardian registers are interfaced to the processor through the address and data 

bus to load the task information along with the TT hardware scheduler unit. The current 

layout of the task information block for the TT hardware scheduler unit contains the 

information detailed in Table 25. 

Task Variable Type Description 

Vector Long Task address vector 

Delay Short Delay until task executes 

Period Short Period between task executions 

Enable Bit Enable task to be scheduled 

Table 25: TT Hardware Scheduler unit task information block 

To support the task guardian unit three additional variables must be added to the task 

information block. These include a guaranteed processor time ‘GPT’ variable, which 



Hardware Task Guardian 

7-3 

 

contains the maximum execution time that the specified task will be guaranteed in each 

task period. The second variable is an allowed overrun time ‘AOT’ up to which the 

specified task may run when its additional execution time (i.e. that over and above its GPT) 

does not coincide with any pending tasks18. The third additional variable is a backup task 

vector address ‘bVector’.  When this contains a non-zero value the backup task at the 

specified address will be executed in the event that the original task does not manage to 

complete within its GPT time limit. The backup task is then allowed to execute for the 

duration specified in the AOT. These variables are contained together with the TTC 

hardware scheduler to form the task information block detailed in Table 26.  

Task Variable Type Description 

Vector Long Task address vector 

Delay Short Delay until task executes 

Period Short Period between task executions 

Enable Bit Enable task to be scheduled 

GPT Long Guaranteed Processor execution Time (CPU cycles) 

AOT Long Allowed Overrun execution Time (CPU cycles) 

bVector Long Backup task address vector 

Table 26: TT Hardware Scheduler + Task Guardian task information block 

Whilst these three extra variables appear to the programmer as part of the hardware 

scheduler unit, they are actually contained within registers of the task guardian unit. Figure 

74 illustrates the structure and some key input and output control signals involved in the 

operation of the hardware task guardian unit. 

                                                 
18 Note, that the GPT and AOT are specified in CPU cycles as these are the types of values that can be 

obtained by static analysis and are not affected if features like dynamic frequency scaling are used. For a 

CPU clock frequency of 25MHz, the maximum duration that can be specified is 2.86 seconds. 



Hardware Task Guardian 

7-4 

 

 

Figure 74: Schematic overview of the hardware task guardian unit 

In order to fully appreciate how the task guardian works it is important to review the basic 

operation of the hardware scheduler as presented in Chapter 5. The hardware scheduler 

contains two major components referred to as ‘Update’ and ‘Dispatch’. A timer generates 

tick intervals (typically 1 ms in duration) by sending signals to the Update component. On 

receipt of each signal, the Update component checks if there are any tasks due to run in 

the current tick interval.  Upon detecting that a task is due to run, the task is added to a 

First In First Out (FIFO) queue. The role of the Dispatch component is to then execute 

each task as it comes out of the FIFO queue until the queue becomes empty. The tasks are 

executed by sending a task execute signal to the processor which causes its program 

counter (PC) to be loaded with the vector address of the current task. An example of a 

resulting schedule is shown in Figure 4 for tasks A, B, C and D. 



Hardware Task Guardian 

7-5 

 

To support the task guardian, the task IDs which are stored in the FIFO queue are also 

used to reference the current task’s GPT, AOT and backup task vector. In addition, the 

task execute signal from the Dispatch component causes the task guardian timer to be 

loaded with the stored GPT and AOT values and the timer is then started. 

If the AOT is set to zero, two conditions can occur - either the task completes before the 

GPT is reached or the GPT is reached and an error-recovery mechanism steps in. 

When a task completes, an ‘endtask’ instruction is executed signifying to the Dispatch 

component that it can proceed to execute the next task in the FIFO queue. In the scenario 

when a task completes in time, the end task signal is also routed to the task guardian 

component where it causes the task guardian timer to be stopped. 

Alternatively, in the scenario when the GPT has been reached, the task overrun signal 

indicates to the Dispatch component that the task should have ended.  The next action 

then depends on the outcome of the ‘shutdown / backup’ signal.  If this simply indicates 

that the task is to be shutdown then the Dispatch component stops the current task and 

continues to execute the next task in the FIFO list. However, if no tasks are due to run, the 

processor is put into sleep mode. 

If the task guardian indicates that a backup task should be executed, the Dispatch 

component then sends another task execute signal to the processor, but this time loading 

the program counter with the backup task address. 

If the AOT is not equal to zero then, in the event that the GPT has been exceeded, the 

task guardian timer will keep running until either the AOT is reached or a task pending 

signal is received.  In either case the recovery mechanisms described above will operate 

unless the task ends before either event (i.e. before the AOT is reached or before a task 

pending signal is received).   

Note that identifying pending tasks is achieved by reading the ‘queue not empty’ signal 

from the task FIFO in the hardware scheduler unit.  

Figure 75 represents the above functionality of the task guardian, in terms of a flow 

diagram.  The actions in the flow diagram execute every tick interval. 



Hardware Task Guardian 

7-6 

 

The task guardian component may also include a “task overrun register” for each task.  

This can be configured to maintain a value that indicates the number of times that the task 

has exceeded its GPT and/or AOT. 



Hardware Task Guardian 

7-7 

 

 

Figure 75: Flowchart of the hardware task guardian operation. 



Hardware Task Guardian 

7-8 

 

7.3 Results 

The following section demonstrates the overhead that occurs when the hardware task 

guardian shuts down the current task or runs a backup task.  

A flashing LED task was added to the hardware scheduler with its subsequent backup task 

along with the following values (Listing 14). The task was given a 100 CPU cycle 

guaranteed execution time and a 100 CPU cycle allowed overrun time, which in this case 

(because a backup task is provided) would be the maximum time the backup task is 

allowed to run before it too would be shutdown. The task was set to execute with a 1ms 

delay and a period of 50ms. 

 

    SCH_Add_Task(led_task, led_bk_task, 1, 50, 100, 100); 

Listing 14: Hardware TG LED task parameters 

Before the main LED task is run, an assembly wrapper was used to set a GPIO pin high 

(for measuring purposes), load the stack pointer with the base address and execute the 

‘endtask’ instruction once the task completed. 

led_task: 

     # Set GPIO pin1 high 

 lui $26, 0x3 

 ori $26, $26, 0x8 

 li  $27, 1 

 sw  $27, 0($26) 

 # Set stack pointer register 

     la $29, 0x00011FF0 

 # Call the LED Task 

   jal LED_Update 

 nop 

 # End of task 

 endtask 

Listing 15:  Hardware TG LED task assembly wrapper 

The LED_Update function that is called by the assembly wrapper will alternate the LED 

pin and on every other execution it will execute a ‘while 1’ loop. 

 

 

 

 



Hardware Task Guardian 

7-9 

 

void LED_Update(void) 

{ 

 LED_pin = LED_state; 

 LED_state = ~LED_state; 

 

 if (++overrun_state == 2) 

 { 

  overrun_state = 0; 

  while (1); 

 } 

} 

Listing 16: Hardware TG LED task 

When the LED_Update task executes the while 1 loop, the hardware task guardian will 

shutdown the overrunning LED task and execute its backup task. The backup task also has 

an assembly wrapper which differs from the normal task wrapper in that it sets a different 

GPIO pin which is used for measurements. 

 

led_bk_task: 

 # Set GPIO pin2 high 

 lui $26, 0x3 

 ori $26, $26, 0x8 

 li  $27, 2 

 sw  $27, 0($26) 

 # Set stack pointer register 

la $29, 0x00011FF0 

 # Call the LED Backup Task 

   jal LED_Backup 

 nop 

 # End of task 

endtask 

Listing 17: Hardware TG LED backup task assembly wrapper 

In addition to the LED tasks there is also a seven segment task. The purpose of the seven 

segment task is that when the LED task does not overrun a GPIO pin is set high so that a 

measurement can be taken to show the difference between normal execution and when the 

LED task overruns. 

 

 

 

 

 



Hardware Task Guardian 

7-10 

 

 

seg_task: 

 # Set GPIO pin2 high 

 lui $26, 0x3 

 ori $26, $26, 0x8 

 li  $27, 2 

 sw  $27, 0($26) 

 # Set stack pointer register 

la $29, 0x00011FF0 

 # Call the SEG Task 

   jal SEG_Update 

 nop 

 # End of task 

 endtask 

Listing 18: Hardware TG seven segment task assembly wrapper 

When comparing the time between the beginning of the LED task and beginning of the 

next task (the Seven Segment task) or backup task, the following was observed (Figure 76). 

Figure 76: Execution of times of the LED task 

It can be seen that when an overrun occurs there is precisely 100 CPU clock cycles 

between the start of the LED task and its backup task (Table 27). Whilst correct, this result 

is slightly offset from the actual time the LED task starts and the backup task runs. This is 



Hardware Task Guardian 

7-11 

 

due to the 4 instructions required before the GPIO pin is set in both instances. However, 

what is not directly apparent is the overhead required to shutdown the task and force the 

next one to begin. 

 Execution Time (µs) CPU Cycles 

Normal 1.40 35 

Overrun 4.00 100 

Table 27: Detailed execution of times of the LED task 

As described in Chapter 5, the first task to execute in a tick has a 3 clock cycle delay whilst 

its instructions are loaded into the pipeline and reach the end of the execution stage. An 

interrupt type signal is used to direct the program counter to the vector address of the task. 

This also has the effect of flushing out the contents of the first three pipeline stages. From 

then on, tasks are separated by a 1 clock cycle ‘endtask’ instruction until there are no more 

tasks to execute and the processor is put to sleep (Figure 77). 

 

Figure 77: Hardware TTC scheduler overheads 

In the scenario when Task 1 overruns and must be shutdown, the same interrupt signal can 

be used to flush out the unexecuted instructions and direct the processor to either the 

backup task (if one exists) or to execute the next task. Therefore, instead of a single 

‘endtask’ instruction overhead as in normal execution, there is a 3 clock cycle delay whilst 

the pipeline is loaded with the next task. If the backup task completes within its allotted 

time, then normal execution continues. If however the backup task also overruns, then it 

too is shutdown and the same 3 clock cycle delay is required to force the next task to 

execute. 

 

Figure 78: Hardware TG task shutdown overheads 

As can be seen in Figure 78, both Task 1 and the backup task have a 3 clock cycle delay 

before they are executed. It is because of this identical delay that the measured overrun 

time in Table 27 has the same offset to give an exact value of 100 CPU cycles. This 



Hardware Task Guardian 

7-12 

 

measured value is identical to the GPT value entered in for the task parameters. To clarify 

how this is possible, the task guardian execution time counter starts as soon as the task is 

given control of the processor. Therefore in the case of Task 1, the counter is started when 

the processor begins to load Task 1 into the pipeline (e.g. at ‘Pre1’). Similarly for the 

backup task the counter restarts at its ‘Pre1’. However, assuming that previous task did not 

overrun and the current task is not the first task in the tick, as is the case for Task 2 in 

Figure 77, then the counter starts as soon as the first instruction is executed. This in 

essences means that the GPT and APT values should be set to 3 CPU cycles longer than 

the expected worst case times to cover the potential overhead to load each task into the 

pipeline. 

 

Figure 79: Modelsim simulation of the hardware task guardian unit in action19 

To verify the task guardian component the unit was simulated in Modelsim. Figure 79 

shows the scenario where two tasks and their respective backup tasks overrun. The end 

result is that the final backup task is shutdown and the processor is immediately sent to 

sleep. 

7.4 Expansion of TG 

The description of the task guardian so far has related mainly to a time guardian. However 

there are many other conditions in which it is suitable to employ the task guardian recovery 

                                                 
19 A larger version of this diagram is available in Appendix C, Figure 93. 



Hardware Task Guardian 

7-13 

 

mechanism.  For instance, when exceptions generated from processor detect errors such as 

mathematical and invalid instructions can be linked into the task guardian. 

For instance it might be advantageous for a software engineer to include their own ‘divide 

by zero’ error handler as a back-up task for a specific task containing important 

mathematical routines. Features such as these can be provided and processed through the 

use of the TG unit. 

One key aspect to ensuring a task is operating within its bounds is to check for invalid 

memory accesses and program flow errors.  These could be detected through a memory 

guardian designed to interface with the task guardian unit in order to employ its error 

recovery mechanisms. 

Overall, the various aspects of the task guardian mechanism allow for predictable 

behaviour in the event of task overruns without unnecessarily restricting processor time for 

task executions. 

7.5 Comparisons of the hardware cores 

When observing the FPGA logic utilisation it is apparent that the hardware task guardian 

mechanism consumes a fair bit more logic than the other cores (Figure 80). This may in 

part be due to the number of task variables which are synthesised into registers made out 

of FPGA logic. The cores containing hardware schedulers in Figure 80 were synthesised 

for 8 tasks, however for larger numbers of tasks it may be advantageous to store the task 

variables in FPGA block RAMs to conserve the logic resources. 



Hardware Task Guardian 

7-14 

 

 

Figure 80: Xilinx Spartan 3 – 400 FPGA logic usage 

Whilst the hardware logic consumption is increased quite substantially, the consequence is 

that the code and data sizes are dramtically reduced when using the hardware schedulers 

and task guardians (Figure 81). 



Hardware Task Guardian 

7-15 

 

 

Figure 81: Code and data sizes of software and hardware systems 

In addition, the hardware scheduler overheads for executing tasks are significantly reduced 

and the between task overheads are made static when compared to the software solutions 

(Figure 82). 



Hardware Task Guardian 

7-16 

 

 

Figure 82: Extended software task guardian and hardware task guardian overheads 

For the hardware task guardian the overheads due to a task overrun and executing an 

optional backup task are also significantly reduced (Figure 83). These values are static and 

not affected by code changes or optimisations. There is also a significant improvement in 

the responsiveness to detecting and taking action on a task overrun. By comparison, the 

software mechanism has to wait until just before the end of the tick interval before 

discovering if a task has overrun, whereas the hardware mechanism detects the error 

immediately because it runs in parallel to the processor. 



Hardware Task Guardian 

7-17 

 

 

Figure 83: Software and hardware task overrun overheads 

7.6 Discussion 

Due to the large overhead and complexity of the software task guardian in Chapter 6, this 

chapter has presented a hardware solution. A significant drawback of the software solution 

was that task overruns would not be detected until the end of the tick interval by which 

time the remaining schedule may have been adversely affected. In order to prevent a 

domino effect and make the recovery time predictable, there were conditions when the 

schedule might be paused for a whole tick to allow the blocked tasks time to catch up. 

These issues could be avoided by the hardware task guardian which could run in parallel to 

the executing tasks. The hardware solution also provided a means for relaxing the WCETs 

entered into the task guardian by allowing tasks to overrun up to an upper bound as long 

as it would not interfere with any other tasks. 

When comparing the hardware task guardian core which is synthesised with support for up 

to 8 tasks, the core was 2.5 times larger than the standard processor core and 1.7 times 



Hardware Task Guardian 

7-18 

 

larger than the hardware TTC core. This represented a significantly larger increase in 

silicon area. However, the overhead was dramatically reduced especially under overrun 

conditions where a task could be shutdown in 3 CPU cycles. In context, this overhead was 

157 times smaller than the software task guardian. The code and data sizes were also much 

smaller as the code for the hardware task guardian was only required to implement helper 

functions to load the appropriate task guardian registers. When compared to the software 

task guardian, the code size was 14.2 times smaller and the data size was 43.6 times smaller. 

Most importantly, the timing characteristics of the hardware task guardian are simple and 

easy to understand and remain statically in line with the CPU frequency. This can be 

particularly useful in power conscious systems that could take advantage of dynamic 

frequency and voltage scaling (Phatrapornnant and Pont 2006). 

It has also been discussed that the hardware TG can be expanded to operate on a variety 

of system errors providing the programmer flexibility to apply their own recovery code for 

a variety of conditions. 

7.7 Conclusion 

This chapter has provided an overview of the functionality of the hardware task guardian 

unit in which one of the key goals is to guarantee task processing time.  This is principally 

produced by a timer unit that checks if a task exceeds its WCET.  In the event that the 

WCET is exceeded two recovery mechanism are employed, task shutdown and backup 

tasks.   

A key aspect that the hardware unit has over software alternatives is its very fast error 

detection and resolution without adding a large amount of complexity to system code and 

CPU overhead. The hardware task guardian complements the predictable processor and 

hardware scheduler by contributing to the predictability and reliability of a time triggered 

systems. This design is unique because of its fast error detection and predictable recovery 

mechanisms which can be factored into timing analysis. The outcome of this work is that it 

helps to make TTC systems more favourable in safety related applications where previous 

concerns about task overruns may lead to designers adopting alternative and less 

predictable systems. 



Discussions and Conclusions 

8-1 

 

Chapter 8 Discussions and Conclusions 

8.1 Introduction 

This chapter reflects on the novelty claims drawn from the research throughout this thesis 

and discusses where they are applicable. Limitations and recommendations for future work 

are also provided. 

8.2 Summary 

As introduced in Chapter 1, the key concern throughout this thesis has been temporal 

predictability for the reliable and successful development of embedded systems. In 

particular, temporal predictability helps to provide some form of guarantee that deadlines 

will be met. These deadlines are a crucial requirement for the correct operation of hard 

real-time systems, especially where safety critical applications are concerned. However, as 

argued in Chapter 3, one of the problems facing modern embedded systems is that new 

processors are exhibiting less predictable behaviour. This is due to the modifications made 

to the internal architecture to increase average case performance. In some cases these 

modifications can lead to completely unpredictable states and the consequences can be far 

reaching. 

In physics and engineering, many details are known about the temporal properties of 

electrons, electronic devices, analogue circuits, digital circuits and logic. However, when it 

comes to the microprocessor architecture the internal state space can become very large 

and complex. In addition, the properties of an RTOS can further increase the temporal 

complexity of the system. This complexity is then present before adding the application 

tasks which are required to provide the desired functionality. This thesis has explored the 

idea that it could be possible to develop highly predictable embedded systems without 

impinging greatly on performance. As a result this led to a bottom up approach to address 

the temporal predictability problem. 

8.2.1 Design of a predictable processor 

The first step to the temporal predictability issue was the design and development of a 

predictable processor which would have comparable performance to many of today’s 



Discussions and Conclusions 

8-2 

 

embedded microprocessors. Instead of considering an archaic type of architecture, an 

assessment was made of which modern features could be included in the design. The end 

result was to base the processor around a 5-stage pipelined design implementing the MIPS 

I instruction set (without patented instructions). 

For the design to support a real-time scheduler, the processor not only had to be 

predictable for the sequential execution of instructions but also required the ability to 

handle interrupts in a predictable manner. Section 4.6 considered the potential ways 

interrupts could be implemented whilst conforming to the precise exceptions rule. This 

meant that exceptions and interrupts would occur in the correct order with regards to the 

sequential flow of instructions. 

When the MIPS processor design was invented, the original principle was that each 

instruction would take only one clock cycle to complete. In practice, there are a few 

instructions that are either not possible or impractical to fit into the one clock cycle per 

instruction model. This then led to the inclusion of multi-cycle instructions in many 

modern RISC processors. Therefore one of the ways the work in this thesis differs from 

others is that the processor was designed to be predictable even when interrupting on 

multi-cycle instructions. To achieve this, Section 4.6.2.5 introduced a multi-pipeline design 

using some similar techniques as employed in multi-threaded and hyper threading 

processors. 

Another running theme throughout this thesis has been the use of a highly predictable 

scheduling algorithm. In Chapter 2 it was argued that a time-triggered co-operative design 

is well suited for systems requiring very high temporal predictability. One of the 

requirements for the TTC scheduling design is that only one interrupt should be enabled 

per microcontroller. To enforce this rule and protect against accidental or malicious 

reconfiguration, a hardware mechanism was employed to allow only one interrupt at any 

particular time.  

The outcome was a novel predictable processor design that had a fixed interrupt latency 

and interrupt overhead whilst supporting multi-cycle instructions and enforcing the one 

interrupt per microcontroller rule which is required for TTC systems. 



Discussions and Conclusions 

8-3 

 

8.2.2 Hardware approach to predictable TTC Scheduling 

When using a predictable processor there still remains a problem of unpredictable 

scheduler loads on the processor. A software scheduler implementation can result in 

complex timing which may be based on the number of tasks in the system, complex 

control flow and compiler optimizations which can lead to different amounts of generated 

code. This was shown in Section 5.8 where the scheduler exhibited variable loads even 

when switching between different tasks. 

Due to the complexity of understanding the software scheduler loads, Chapter 5 presented 

a design to move the scheduling mechanism from software to hardware. A large benefit of 

this was that the processor core no longer required the need for an interrupt system. As a 

result, the multi-pipelined core presented in Section 4.6.2.5 for the support of predictable 

interrupts was no longer necessary. This resulted in the processor core including the 

hardware TTC scheduler and support for up to 8 tasks being 13.5% smaller than the multi-

pipelined core. However, the new processor core was still 51.2% larger than the standard 

unpredictable processor core.  

Even though the logic consumption was larger, the design ensured that the scheduler loads 

were now much smaller and fixed. This design is unique because it provides very small 

overheads for a pipelined processor based on the TTC scheduling architecture, with just 3 

CPU cycles before the execution of the first task in a tick interval and the inclusion of a 

single cycle instruction at the end of each task.  

8.2.3 Dealing with task overruns in software 

With a predictable processor and hardware scheduler, the design had predictable 

performance and very low overhead. However, there remained a problem with the TTC 

scheduling principle which contained an inherent failure mode that could have catastrophic 

consequences on the reliability of an embedded system. This problem related to the 

potential for task overruns. A task overrun could prevent other tasks from executing on 

time and thus meeting their respective deadlines. This situation was not ideal as it meant 

that any task could affect any other task in the system. In order to address this problem, 

Chapter 6 presented a software solution through the implementation of a task guardian. 

The unique task guardian implementation provided a way to shutdown an overrunning task 



Discussions and Conclusions 

8-4 

 

and execute - if requested - a backup task. The benefit of the backup task was that the user 

could define a specific recovery mechanism for each task. 

Even though the task guardian provided a number of useful features, this came at a high 

price. For instance the code size was 3.9 times larger than the software scheduler and the 

data size was approximately 3.36 times larger. This not only represented a large increase in 

memory requirements but also a significant amount of complexity.  

Nevertheless, whilst being large and complex, the software task guardian was designed to 

achieve a good level of temporal predictability. However, in order to predict some of the 

loads, measurements of the scheduler overhead would be required. If these measurements 

were not accurate then the reliability of the system could be compromised. It could be 

considered that because the system is large and complex, the effort required to verify if the 

system meets safety standards could render the software task guardian to be impractical. 

8.2.4 Hardware approach to task overruns 

Due to the large overhead and complexity of the software task guardian, Chapter 7 

presented a hardware solution. A significant drawback of the software solution was that 

task overruns would not be detected until the end of the tick interval by which time the 

remaining schedule may have been adversely affected. These issues could be avoided by 

the hardware task guardian which could run in parallel to the executing tasks. The 

hardware solution also provided a means for relaxing the WCETs entered into the task 

guardian by allowing tasks to overrun to an upper bound as long as they would not 

interfere with any other tasks. Most importantly, the timing characteristics of the hardware 

task guardian are simple and easy to understand and remain statically in line with the CPU 

frequency. This can be particularly useful in power conscious systems that take advantage 

of power saving techniques such as dynamic frequency and voltage scaling 

(Phatrapornnant and Pont 2006). No other design has provided such features in relation to 

TTC scheduled systems as part of a complete processor design to maintain predictable and 

safe execution of tasks.  

8.3 Discussions 

For an embedded system to be predictable, the functional and temporal properties must be 

deterministic. However, predictability in a practical sense also includes the complexity and 



Discussions and Conclusions 

8-5 

 

human factors involved in constructing a system that is verifiable and will operate as it is 

intended to do. With the gap widening between what static analysis can achieve and the 

complexity due to the advancements in modern processor designs, it can therefore be 

advantageous for safety critical systems to make use of a predictable processor to alleviate 

these problems. 

An inadvertent issue arising throughout this thesis is the hardware versus software 

argument. On the one hand, there is a predictable processor core that can support a 

software TTC scheduler and can be modified slightly if new functionality is required. On 

the other hand, there is the smaller fixed hardware TTC scheduler which will not suffer 

from the maintenance and verification costs associated with software.  

Even with the use of reconfigurable FPGAs gaining popularity, the price point and power 

requirements for an FPGA can be less favourable than prefabricated chips. If the hardware 

TTC processor core is to be fabricated then the functionality cannot be modified and this 

then raises the question of the appropriate number of tasks that the hardware should 

support. In some circumstances, the inability to modify the functionality can also be an 

attractive feature as it prevents the system being unintentionally modified. 

The hardware TTC core has many advantages over the software TTC core, such as better 

memory requirements, overheads and better silicon real-estate. On the other hand, the 

advantages and disadvantages between the hardware and software task guardians are more 

complex.  

A significant balance can be seen between accepting either a large amount of memory 

usage versus a significant increase of silicon real-estate. Accepting the increase in logic area 

has the additional benefits of increased predictability, reduced overhead and 

responsiveness to overruns. Nevertheless, the resulting hardware task guardian core is 

more than double the size of the standard processor core and 46% bigger than the 

predictable core. In some cases this might seem a less cost effective way of achieving 

reliable and predictable performance. However, if predictability is the key concern then the 

hardware solution along with the benefits of decreased complexity and maintainability 

makes it more suitable for safety critical systems where cost may be a slightly less 

significant factor. 



Discussions and Conclusions 

8-6 

 

Another interesting issue could be power and performance factors. With the hardware 

cores exhibiting less overhead and thus better performance, this may - under some 

circumstances - translate into comparable power requirements, despite the additional logic. 

For instance, when used with dynamic voltage and frequency scaling, the available CPU 

time could be translated into power savings (Phatrapornnant and Pont 2006). However, 

under full load the power will be more demanding for the hardware cores. 

8.4 Limitations 

This thesis has demonstrated the design of a predictable embedded processor and 

hardware scheduling architecture. However, there are a number of limitations to the work 

presented here. 

In Chapter 3 the issues of the processor memory architecture were described. This 

involved the problems of using cache, DRAM, DMA and other memory systems. As such, 

the processor cores used throughout this thesis adopted a true Harvard memory 

architecture. This memory was implemented through SRAM which is clocked at the 

processor core frequency. This then places the limitation that the cost of memory will 

increase as the frequency the processor core is increased. Another issue from utilizing a 

true Harvard memory architecture is that memory can be underutilized. For instance, an 

application requiring more code RAM cannot take advantage of any available data RAM. 

Therefore both the code and data memories must be adequately sized to meet all demands. 

The hardware cores in this thesis have focused primarily on supporting a TTC scheduling 

architecture. While a number of applications can fit comfortably into a TTC schedule, 

there are also a few applications which require the ability to pre-empt. For instance, in a 

real-time Fast Fourier Transform (FFT) there may need to be a small, but very frequently 

called, data acquisition task to obtain samples which are then processed by the long 

running and less frequent called FFT task. Since the TTC schedule does not allow for pre-

emption, the FFT task would have to be broken into smaller tasks so that the tick interval 

could occur at the rate required for the sampling task. This can be a less attractive 

proposition for an application programmer which could benefit from a small amount of 

pre-emption to make the development process easier. However, pre-emption does come 

with its own associated costs such as maintaining synchronisation and issues involved 



Discussions and Conclusions 

8-7 

 

around locking mechanisms. Therefore, the work presented here is limited to systems that 

can operate within a TTC schedule.  

Although the processor core has been targeted towards safety critical applications, the 

designs are still applicable to soft real-time systems where the predictability may not apply 

to safety but can increase reliability of the system and help to protect against software 

errors. The implication of this is that it can help to reduce development costs by detecting 

bugs early and protect against problems that might result in expensive recalls from the 

need to change the system firmware. 

8.5 Future Work 

The work in this thesis is just the start of many new developments that could be added to 

increase the functionality and usability of the core in a predictable way. For instance, work 

could be undertaken in finding an appropriate predictable memory hierarchy so that larger 

and cheaper memory chips could be used. Adding the support for a TTH scheduling 

architecture would also increase the number of potential applications that could take 

advantage of the core. 

Research work could then look into applying suitable static analysis tools based on the 

predictable nature of the processor in order to provide highly accurate WCETs. 

Programming methodologies and languages such as ADA could be supported through the 

hardware to ensure loops are bounded and that the numbers of control paths are limited. 

This could then help to tighten the bounds between BCET and WCET times. 

Further enhancements to the task guardian could also include memory and IO guardians to 

prevent tasks from interfering with one another whilst providing a suitable inter task 

communication system. Function guardians could also be employed for critical functions 

to increase the responsiveness and traceability of problems in the system. 

Work could also be undertaken in attempting to increase performance of the processor 

core by adding more sophisticated architectural features in a predictable way. For instance, 

VLIW could be used to support parallel functional units and systems on FPGAs could 

make use of configurable processing elements as a co-processor device. 



Discussions and Conclusions 

8-8 

 

The use of this work could also apply to FPGAs in the ways which similar hardware 

mechanisms could be used to schedule logic blocks and detect for problems when using 

reconfigurable computing. 

A version of the PH core is currently being used in studies for predictable ways multi-core 

systems can be constructed (Athaide, Pont et al. 2008). 

8.6 Conclusions 

This thesis has presented a solution to the problem of predictability through four main 

contributions to the field of embedded systems.  

The first contribution is the design and assessment of a predictable processor core for 

software based TTC scheduled systems. 

The second contribution is a predictable hardware TTC scheduler and associated processor 

core to reduce the complexity of scheduling overhead. 

The third contribution is a software task guardian and recovery mechanisms to deal with 

the problem of task overruns in TTC and TTH scheduled systems. 

The fourth contribution is a hardware task guardian with associated hardware TTC 

scheduler unit for very high predictability even during recovery mechanisms. 

If guarantees are to be made on whether a system will meet its temporal requirements, then 

the predictable processor design described throughout this thesis will ease the process of 

providing such guarantees. With the combination of a predictable processor, hardware 

scheduler and hardware task guardian, the only source of unpredictability that can arise in 

the system will be from the user tasks. 

It has been recognised that the trends of modern processor designs have been leading away 

from predictability and towards higher performance. As a consequence, the safety of future 

embedded systems will be put at risk as these modern architectures are adopted. The 

designs in this thesis have attempted to address some of these issues and are just the 

beginning of a new wave of processor designs which are aimed specifically to improve the 

safety of future high performance hard real-time embedded systems. 

 



References 

R-1 

 

References  

Adee, S. (2008), "The data: 37 Years of Moore's Law", Spectrum, IEEE, vol. 45(5), p. 56. 

Adomat, J., J. Furunäs, L. Lindh and J. Stärner (1996), "Real-Time Kernel in Hardware RTU: 
A Step Towards Deterministic and High-Performance Real-Time Systems", in The 8th 
Euromicro Workshop on Real-Time Systems, L'Aquila, Italy, IEEE. 

Akgul, B., V. Mooney, H. Thane and P. Kuacharoen (2003), "Hardware Support for Priority 
Inheritance", in Proceedings of the IEEE Real-Time Systems Symposium (RTSS'03), 
pp. 246-254. 

Akgul, B. E. S. and V. J. Mooney (2001), "System-on-a-Chip Processor Synchronization Support in 
Hardware", in Design Automation and Test in Europe (DATE'01), pp. 633-639. 

Akgul, B. E. S. and V. J. Mooney (2002), "The System-on-a-Chip Lock Cache", International 
Journal of Design Automation for Embedded Systems, vol. 7(1-2), pp. 139-174, 
September 2002. 

Allworth, S. T. (1981), "An Introduction to Real-Time Software Design": Macmillan, London., 
ISBN. 

Anantaraman, A., K. Seth, K. Patil, E. Rotenberg and F. Mueller (2003), "Virtual simple 
architecture (VISA): exceeding the complexity limit in safe real-time systems", presented at the 
Proceedings of the 30th annual international symposium on Computer 
architecture, San Diego, California. 

Andrews, D., D. Niehaus and P. Ashenden (2004), "Programming Models for Hybrid 
CPU/FPGA Chips", Computer, IEEE Computer Society, vol. 37(1), pp. 118-120. 

Andrews, D., D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Ortiz, E. Komp and 
P. Ashenden (2004), "Programming Models for Hybrid FPGA-CPU Computational 
Components: A Missing Link", IEEE Micro, vol. 24(4), pp. 42-53. 

Andrews, D., W. Peck, J. Agron, K. Preston, E. Komp, M. Finley and R. Sass (2005), 
"hthreads: A Hardware/Software Co-Designed Multithreaded RTOS Kernel", in 
Proceedings of the 10th IEEE International Conference on Emerging 
Technologies and Factory Automation Facolta' di Ingegneria, Catania, Italy, pp. 19-
22. 

Anthony, F. (2003), "Formal Specification and Verification of ARM6", in Theorem Proving in 
Higher Order Logics, 2003, pp. 25-40. 

ARTEMIS (2004), "Building ARTEMIS", Report by the High-level Group on Embedded 
Systems: European Communities 2004, ISBN:  92-894-8632-5. 



References 

R-2 

 

Atanassov, P., R. Kirner and P. Puschner (2001), "Using Real Hardware to Create an Accurate 
Timing Model for Execution-Time Analysis", in Proc. IEEE Real-Time Embedded 
Systems Workshop, held in conjunction with RTSS 2001. 

Atanassov, P. and P. Puschner (2001), "Impact of DRAM Refresh on the Execution Time of Real-
Time Tasks", in Proc. IEEE International Workshop on Application of Reliable 
Computing and Communication, pp. 29-34. 

Athaide, K. F., M. J. Pont and D. Ayavoo (2008), "Shared-Clock Methodology for Time-Triggered 
Multi-Cores", in The thirty-first Communicating Process Architectures Conference 
CPA 2008, York, IOS Press, pp. 149-162. 

Audsley, N. and A. Burns (1990), "Real-time System Scheduling", University of York, YCS 134. 

Audsley, N. C., A. Burns, R. I. Davis, K. Tindell and A. J. Wellings (1995), "Fixed Priority 
Pre-emptive Scheduling: A Historical Perspective", Real-Time Systems, vol. 8(2), pp. 173 -
198. 

Audsley, N. C., A. Burns, M. F. Richardson and A. J. Wellings (1991), "Hard Real-Time 
Scheduling: The Deadline Monotonic Approach", in The 8th IEEE Workshop on Real-
Time Operating Systems and Software, Atalanta, pp. 133-137. 

Ayavoo, D., M. J. Pont, J. Fang, M. Short and S. Parker (2005), "A 'Hardware-in-the Loop' 
testbed representing the operation of a cruise-control system in a passenger car", in Proceedings 
of the Second UK Embedded Forum, Birmingham, UK, Published by University 
of Newcastle upon Tyne, pp. 60-90. 

Baker, T. P. and A. Shaw (1988), "The cyclic executive model and Ada", in Proceedings of the 
Real-Time Systems Symposium Huntsville, AL, USA, pp. 120-129. 

Bardeen, J. and W. H. Brattain (1947), "The transistor, a semi-conductor triode", Phys. Rev., vol. 
74, pp. 230-231. 

Basumallick, S. and K. Nilsen (1994), "Cache Issues in RealTime Systems", in ACM SIGPLAN 
Workshop on Language, Compiler, and Tool Support for Real-Time Systems. 

Bate, I., P. Conmy and T. Kelly (2001), "Use of Modern Processors in Safety-Critical Applications", 
Computer Journal, vol. 44(6), pp. 531-543. 

Bate, I. J. (1997), "An architecture for Distributed Real-time Systems", University of York, 
Department of Computer Science, University Technology Centre (UTC), YUTC 
file, YUTC/TR/97.2. 

Bate, I. J. (1998), "Scheduling and Timing Analysis for Safety Critical Real-Time Systems", Doctor 
of Philosophy, Department of Computer Science, University of York, York, 1998. 

Bate, I. J. (2000), "Introduction to scheduling and timing analysis", in The Use of Ada in Real-
Time System, IEE Conference Publication 00/034. 

Bauer, G., H. Kopetz and W. Steiner (2003), "The central guardian approach to enforce fault 
isolation in the time-triggered architecture", in Autonomous Decentralized Systems, 2003. 
ISADS 2003. The Sixth International Symposium on, pp. 37-44. 



References 

R-3 

 

Beaty, D. (1995), "The Naked Pilot: The Human Factor in Aircraft Accidents": The Crowood 
Press Ltd, ISBN:  1853104825. 

Bennett, M. D. and N. C. Audsley (2001), "Predictable and efficient virtual addressing for safety-
critical real-time systems", in Real-Time Systems, 13th Euromicro Conference on, 
2001., pp. 183-190. 

Berg, C., J. Engblom and R. Wilhelm (2004), "Requirements for and Design of a Processor with 
Predictable Timing", in Proc. of the Dagstuhl Perspectives Workshop on Design of 
Systems with Predictable Behaviour Schloss Dagstuhl, Germany, Internationales 
Begegnungs und Forschungszentrum fuer Informatik (IBFI). 

Bernat, G., R. Davis, N. Merriam, J. Tuffen, A. Gardner, M. Bennett and D. Armstrong 
(2007), "Identifying Opportunities for Worst-Case Execution Time Reduction in an Avionics 
System", Ada User Journal, vol. 28(3), pp. 189-194. 

Bini, E. and G. C. Buttazzo (2004), "Schedulability Analysis of Periodic Fixed Priority Systems", 
IEEE Transactions on Computers vol. 53(11), pp. 1462-1473   November 2004. 

Blake, B. A. (1992), "Assignment of independent tasks to minimize completion time", Softw. Pract. 
Exper., vol. 22(9), pp. 723-734. 

Boltzmann, L. and S. G. Brush (1995), "Lectures on Gas Theory": Dover Publications, ISBN:  
0486684555. 

Boolos, G. S., J. P. Burgess and R. C. Jeffrey (2007), "Computability and Logic": Cambridge 
University Press, ISBN:  9780521701464. 

Boussemart, Y., M. Ouimet, S. Gorelov and I. K. Lundqvist (2006), "Non-Intrusive System-
Level Fault Tolerance for an Electronic Throttle Controller", in To appear in: International 
Conference on Systems ICONS 2006. 

Bowen, J. and V. Stavridou (1993), "Safety-critical systems, formal methods and standards", 
Software Engineering Journal, vol. 8(4), pp. 189-209. 

Bulpin, J. R. and I. A. Pratt (2004), "Multiprogramming performance of the Pentium 4 with Hyper-
Threading", in In Third Annual Workshop on Duplicating, Deconstruction and 
Debunking (at ISCA'04), pp. 53-62. 

Burns, A. (1991), "Scheduling Hard Real-Time Systems: A Review", Software Engineering 
Journal, vol. 6, pp. 116-128. 

Buttazzo, G. C. (2005), "Hard Real-Time Computing Systems: Predictable Scheduling Algorithms 
and Applications", Second edition ed.: Springer, ISBN:  0-387-23137-4. 

Buttazzo, G. C. (2005), "Rate monotonic vs. EDF: judgment day", Real-Time Syst., vol. 29(1), 
pp. 5-26. 

Buttazzo, G. C. and M. Caccamo (1999), "Minimizing Aperiodic Response Times in a Firm Real-
Time Environment", IEEE Trans. Softw. Eng., vol. 25(1), pp. 22-32. 

Caccamo, M., G. Buttazzo and L. Sha (2002), "Handling Execution Overruns in Hard Real-Time 
Control Systems", IEEE Trans. Comput., vol. 51(7), pp. 835-849. 



References 

R-4 

 

Campoy, A., A. Ivars and J. Mataix (2002), "Dynamic Use Of Locking Caches In Multitask, 
Preemptive Real-Time Systems", in The 15th World Congress of the International 
Federation of Automatic Control, Barcelona, Spain. 

Campoy, A. M., A. Perles, F. Rodriguez and J. V. Busquets-Mataix (2003), "Static use of 
locking caches vs. dynamic use of locking caches for real-time systems", in Canadian 
Conference on Electrical and Computer Engineering,  IEEE CCECE 2003., 
Canada, pp. 1283-1286  

Campoy, M., A. Ivars and J. Busquets-Mataix (2001), "Static use of locking caches in multitask 
preemptive real-time systems", in The IEEE/IEE Real-Time Embedded Systems 
Workshop. 

Carlow, G. (1984), ""Architecture of the Space Shuttle Primary Avionics Software System"", CACM, 
vol. 27(9), September 1984. 

Ceruzzi, P. E. (2003), "A History of Modern Computing", 2nd Edition ed.: The MIT Press, 
ISBN:  978-0-262-53203-7. 

Cervin, A., D. Henriksson, B. Lincoln, J. a. Eker and K.-E. Arzen (2003) "How does control 
timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime", 
IEEE Control Systems Magazine. pp. 16-30.  

Charette, R. N. (2005) "Why Software Fails", IEEE Spectrum. Available: 
http://www.spectrum.ieee.org/sep05/1685 

Chi, C.-H. and H. Dietz (1989), "Unified management of registers and cache using liveness and cache 
bypass", SIGPLAN Not., vol. 24(7), pp. 344-353. 

Colnaric, M. and W. A. Halang (1993), "Architectural support for predictability in hard real time 
systems", Control Engineering Practice, vol. 1(1), pp. 51-57, February 1993. 

Colnaric, M., D. Verber and W. Halang (1995), "Supporting high integrity and behavioural 
predictability of hard real-time systems", Informatica, Special Issue on Parallel and 
Distributed Real-Time Systems, vol. 19(1), pp. 59-69, Feb 1995. 

Cottet, F., J. Delacroix, C. Kaiser and Z. Mammeri (2002), "Scheduling in Real-Time Systems": 
Wiley, ISBN:  0-470-84766-2. 

Dauben, J. W. (1990), "Georg Cantor - His Mathematics and Philosophy of the Infinite": Princeton 
University Press, ISBN:  9780691024479. 

Davis, M. (2004), "The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems 
and Computable Functions": Dover Publications, Incorporated, ISBN:  0486432289. 

Delvai, M., W. Huber, P. Puschner and A. Steininger (2003), "Processor Support for Temporal 
Predictability -- The SPEAR Design Example", in 15th Euromicro Conference on Real-
Time Systems. 

Deshmukh, A. V. (2005), "Microcontrollers: Theory and Applications": McGraw-Hill, ISBN:  
0070585954. 



References 

R-5 

 

Douglass, B. P. (1997), "Real-Time UML: Developing Efficient Objects for Embedded Systems": 
Addison-Wesley Longman Publishing Co., Inc., ISBN:  0201325799. 

Driscoll, K., B. Hall, H. Sivencrona and P. Zumsteg (2003), "Byzantine Fault Tolerance, from 
Theory to Reality", 2003, pp. 235-248. 

Edwards, S. A. and E. A. Lee (2007), "The case for the precision timed (PRET) machine", 
presented at the Proceedings of the 44th annual Design Automation Conference, 
San Diego, California. 

Engblom, J. (2002), "Processor Pipelines and Static Worst-Case Execution Time Analysis", PhD 
thesis Dissertations from the Faculty of Science and Technology 36, Dept. of 
Information Technology, Uppsala University, Acta Universitatis Upsaliensis, 2002. 

Engblom, J. (2003), "Analysis of the execution time unpredictability caused by dynamic branch 
prediction", in Proceedings of the The 9th IEEE Real-Time and Embedded 
Technology and Applications Symposium, pp. 152-159. 

Engblom, J., A. Ermedahl and F. Stappert (2001), "Validating a Worst-Case Execution Time 
Analysis Method for an Embedded Processor", Dept. of Information Technology, 
Uppsala University, Technical Report 2001-030, December 2001. 

Engblom, J. and B. Jonsson (2002), "Processor pipelines and their properties for static WCET 
analysis", in Proceedings of the Second International Conference on Embedded 
Software, London, UK, Springer-Verlag, pp. 334-348. 

Engel, F., I. Kuz, S. M. Petters and S. Ruocco (2004), "Operating Systems on SoCs: A good 
idea?", in Embedded Real-Time Systems Implimentation (ERTSI 2004) Workshop, 
Lisbon, Portugal. 

Feiler, P. H., B. Lewis and S. Vestal (2000), "Improving predictability in embedded real-time 
systems", Software Engineering Institute, Carnegie Mellon University, Pittsburgh. 

Ferdinand, C., R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. 
Thesing and R. Wilhelm (2001), "Reliable and Precise WCET Determination for a Real-
Life Processor", in Embedded Software, 2001, pp. 469-485. 

Fernandez-Leon, A., A. Pouponnot and S. Habinc (2002), "ESA FPGA Task Force: Lessons 
Learned", in presented at MAPLD 2002, Laurel, MD. 

Fernando, J. C. (1991), "On building systems that will fail", Commun. ACM, vol. 34(9), pp. 72-
81. 

Fiddler, J., E. Stromberg and D. N. Wilner (1990), "Software considerations for real-time RISC", 
in Compcon Spring '90. Intellectual Leverage. Digest of Papers. Thirty-Fifth IEEE 
Computer Society International Conference., pp. 274-277. 

Flis, T. J. (1983), "The Use of Microprocessors for Electronic Engine Control", Industrial 
Electronics, IEEE Transactions on, vol. IE-30(2), pp. 75-87. 

Furunäs, J. (2000), "Benchmarking of a Real-Time System that utilises a Booster", in International 
Conference on Parallel and Distributed Processing Techniques and Applications 
(PDPTA2000), LasVegas, USA. 



References 

R-6 

 

Furunäs, J., J. Stärner, L. Lindh and J. Adomat (1995), "RTU94 - Real Time Unit 1994 - 
Reference Manual", Mälardalen University. 

Garcia, A., J. Vila, A. Crespo and S. Saez (1999), "A Binary-Tree Architecture for Scheduling 
Real-Time Systems with Hard and Soft Tasks", sbcci, vol. 00, p. 0078. 

Garman, J. R. (1981), "The "BUG" heard 'round the world: discussion of the software problem which 
delayed the first shuttle orbital flight", SIGSOFT Softw. Eng. Notes, vol. 6(5), pp. 3-10. 

Gendy, A. K. and M. J. Pont (2007), "Towards a Generic "Single-Path Programming" Solution 
With Reduced Power Consumption", in Proceedings of the ASME 2007 International 
Design Engineering Technical Conference & Computers and Information in 
Engineering Conference, Las Vegas, Nevada, USA. 

Gendy, A. K. and M. J. Pont (2008), "Automatically Configuring Time-Triggered Schedulers for Use 
With Resource-Constrained, Single-Processor Embedded Systems", IEEE Transactions on 
Industrial Informatics, vol. 4(1), pp. 37-46. 

George, A. D. (1990), "An overview of RISC vs. CISC", in System Theory, 1990., Twenty-
Second Southeastern Symposium on, pp. 436-438. 

Graham, R. L. (1969), "Bounds on Multiprocessing Timing Anomalies", SIAM Journal on 
Applied Mathematics, vol. 17(2), pp. 416-429. 

Großschädl, J. and E. Savaş (2004), "Instruction Set Extensions for Fast Arithmetic in Finite 
Fields GF( p) and GF(2 m)", 2004, pp. 161-169. 

Gulati, M. and N. Bagherzadeh (1996), "Performance study of a multithreaded superscalar 
microprocessor", in Proceedings of Second International Symposium on High-
Performance Computer Architecture, San Jose, CA, IEEE, pp. 291-301. 

Gwennap, L. (1995), "New Algorithm Improves Branch Prediction; Better Accuracy required for 
Highly Super-Scalar Designs", Microprocessor Report, vol. 9(4), pp. 1-5, March 27, 
1995. 

Halang, W. A. and A. D. Stoyenko (1994), "Real Time Computing", NATO ASI Series, Series 
F: Computer and Systems Sciences vol. 127: Springer-Verlag ISBN. 

Hames, R. (2009, Spring Issue 2009), "The Computer Chronicles". Available: 
http://www.crews.org/curriculum/ex/compsci/articles/generations.htm 

Hannibal (2004, Aug 2009), "RISC vs. CISC: the Post-RISC Era". Available: 
http://arstechnica.com/cpu/4q99/risc-cisc/rvc-1.html 

Hardung, B., T. Kölzow and A. Krüger (2004), "Reuse of software in distributed embedded 
automotive systems", presented at the Proceedings of the 4th ACM international 
conference on Embedded software, Pisa, Italy. 

Harris, D. M. and S. L. Harris (2007), "Digital Design and Computer Architecture": Morgan 
Kaufmann, ISBN:  978-0-12-370497-9. 

Heath, S. (2002), "Embedded Systems Design": Newnes, ISBN. 



References 

R-7 

 

Heckmann, R., M. Langenbach, S. Thesing and R. Wilhelm (2003), "The influence of processor 
architecture on the design and the results of WCET tools", Proceedings of the IEEE, vol. 
91(7), pp. 1038-1054. 

Hennessy, J., N. Jouppi, F. Baskett, T. Gross and J. Gill (1982), "Hardware/software tradeoffs 
for increased performance", presented at the Proceedings of the first international 
symposium on Architectural support for programming languages and operating 
systems, Palo Alto, California, United States. 

Hennessy, J. and D. Patterson (2006), "Computer Architecture - A Quantitative Approach", 4th 
ed.: Morgan Kauffman, ISBN:  0-12-370490-1. 

Hennessy, J. L. and T. R. Gross (1982), "Code generation and reorganization in the presence of 
pipeline constraints", presented at the Proceedings of the 9th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Albuquerque, 
Mexico. 

Hennessy, J. L., N. Jouppi, F. Baskett and J. Gill (1981), "MIPS: a VLSI processor 
architecture", Stanford University. 

Hoganson, K. E. (2007), "Concepts in Computing": Jones and Bartlett, ISBN:  0763742953. 

Hughes, Z. H. and M. J. Pont (2004), "Design and test of a task guardian for use in TTCS 
embedded systems", in Proceedings of the UK Embedded Forum 2004, (Birmingham, 
UK), Published by University of Newcastle upon Tyne, pp. 16-25. 

Ip, N. and S. Edwards (2006), "A Processor Extension for Cycle-Accurate Real-Time Software", 
2006, pp. 449-458. 

Isaksen, U., J. Bowen and N. Nissanke (1997), "System and Software Safety in Critical Systems", 
Department of Computer Science, The University of Reading, UK. 

Issacson, S. and D. Wilde (2004), "The Task-Resource Matrix: Control for a Distributed 
Reconfigurable Multi-Processor Hardware RTOS", in ERSA’04. 

James, H. A., K. A. Hawick and P. D. Coddington (1999), "Scheduling Independent Tasks on 
Metacomputing Systems", in Proc. of Parallel and Distributed Computing Systems 
(PDCS'99). 

Jamil, T. (1995), "RISC versus CISC", Potentials, IEEE, vol. 14(3), pp. 13-16. 

Jeffay, K., D. F. Stanat and C. U. Martel (1991), "On non-preemptive scheduling of periodic and 
sporadic tasks", in the 12 th IEEE Symposium on Real-Time Systems, pp. 129-139. 

Jensen, E. D., C. D. Locke and H. Tokuda (1985), "A time driven scheduling model for real-time 
operating systems", in Proceedings of the 6th IEEE Real-Time Systems Symposium 
RTSS 85 IEEE Computer Society, pp. 112-122. 

Kain, G. and J. Heinrich (1992), "MIPS RISC Architecture - Introducing the R4000 Technology". 
New Jersey: Prentice Hall, ISBN. 



References 

R-8 

 

Kaminski-Morrow, D. (2008), "Airbus includes surcharge in 2008 catalogue prices". Available: 
http://www.flightglobal.com/articles/2008/04/22/223184/airbus-includes-
surcharge-in-2008-catalogue-prices.html 

Katcher, D. I., H. Arakawa and J. K. Strosnider (1993), "Engineering and analysis of fixed 
priority schedulers", Software Engineering, IEEE Transactions on, vol. 19(9), pp. 920-
934. 

Kilby, J. S. (1959), "Miniaturized Electronic Circuits, US3138743", 1959. 

Kilby, J. S. (1976), "Invention of the integrated circuit", IEEE Trans. Electron Devices, vol. ED-
23, p. 653. 

Kirk, D. B. (1989), "SMART (strategic memory allocation for real-time) cache design", in IEEE 
Real-Time Systems Symposium 1989, pp. 229-237. 

Kirk, D. B. and J. K. Strosnider (1990), "SMART (strategic memory allocation for real-time) cache 
design using the MIPS R3000", in IEEE Real-Time Systems Symposium, 1990., pp. 
322-330. 

Kirner, R. and P. Puschner (2007), "Time-Predictable Task Preemption for Real-Time Systems with 
Direct-Mapped Instruction Cache", in The 10th IEEE International Symposium on 
Object and Component-Oriented Real-Time Distributed Computing, IEEE 
Computer Society -  Washington, DC, USA pp. 87-93. 

Kissell, K. (2008), "MIPS MT: A Multithreaded RISC Architecture for Embedded Real-Time 
Processing", 2008, pp. 9-21. 

Klingler, R. and D. Wilde (2004), "SDCC-RTP and RTPGen: A C-to-FPGA System-on-
Programmable-Chip System Generator for Multiprocessor Embedded Systems", Department of 
Electrical and Computer Engineering, Brigham Young University, Provo, UT, 
U.S.A. 

Kohout, P., B. Ganesh and B. Jacob (2003), "Hardware support for real-time operating systems", 
in Proceedings of the 1st IEEE/ACM/IFIP international conference on 
Hardware/software codesign and system synthesis, Newport Beach, CA, USA, 
ACM. 

Kopetz, H. (1991), "Event-Triggered Versus Time-Triggered Real-Time Systems", in The 
International Workshop on Operating Systems of the 90s and Beyond, Springer-
Verlag pp. 87-101. 

Kopetz, H. (1997), "Real-Time Systems: Design Principles for Distributed Embedded Applications": 
Kluwer Academic Publishers, ISBN:  0792398947. 

Kopetz, H. (2008), "The Complexity Challenge in Embedded System Design", in Proceedings of 
the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed 
Computing, IEEE Computer Society, pp. 3-12. 

Kopetz, H. and G. Grünsteidl (1994), "TTP-A Protocol for Fault-Tolerant Real-Time Systems", 
Computer, vol. 27(1), pp. 14-23. 



References 

R-9 

 

Krishna, C. M. and K. Shin, G. (1997), "Real-Time Systems": MIT Press and McGraw-Hill, 
ISBN. 

Kuacharoen, P., M. Shalan and V. Mooney (2003), "A configurable hardware scheduler for real-
time systems", in Proceedings of the International Conference on Engineering of 
Reconfigurable Systems and Algorithms, pp. 96-101. 

Lee, J., K. Ingström, A. Daleby, T. Klevin, V. J. M. III and L. Lindh (2003), "A Comparison 
of the RTU Hardware RTOS with a Hardware/Software RTOS", in ASP-DAC 2003 
(Asia and South Pacific Design Automation Conference 2003), Kitakyushu 
International Conference Center, Japan, p. 6. 

Leen, G. and D. Heffernan (2002), "Expanding Automotive Electronic Systems", Computer, vol. 
35(1), pp. 88-93. 

Leen, G., D. Heffernan and A. Dunne (1999), "Digital networks in the automotive vehicle", 
Computing & Control Engineering Journal, vol. 10(6), pp. 257-266, Dec 1999. 

Levy, M. (2002), "Exploring the ARM1026EJ-S Pipeline", ARM, Cambridge, 30th April. 

Lilienfeld, J. E. (1926), "Method and Apparatus for Controlling Electric Currents, US1745175", 
1926. 

Lindh, L. (1992), "FASTHARD - A Fast Time Deterministic Hardware Based Real-Time Kernel", 
in Real-Time Workshop, Athens. 

Lindh, L. (1993), "FASTHARD Prototype - A Real-Time Kernel Implemented In One Chip", in 
Real-Time Workshop, Oulu, Finland. 

Lindh, L., J. Furunäs and J. Stärner (1995), "From Single to Multiprocessor Real-Time Kernels in 
Hardware", First IEEE Real-Time Technology and Applications Symposium 
(RTAS'95), vol. 0, p. 42, January, 1995. 

Lindh, L., T. Klevin and J. Furunäs (1999), "Scalable Architecture for Real-Time Applications - 
SARA", in Swedish National Real-Time Conference SNART'99, Linköping, 
Sweden. 

Lindh, L. and F. Stanischewski (1991), "FASTCHART - A Fast Time Deterministic CPU and 
Hardware Based Real-Time-Kernel", in Real-Time Workshop, Paris, France. 

Lindh, L. and F. Stanischewski (1991), "FASTCHART - Idea and Implementation", in 
International Conference on Computer Design (ICCD), Cambridge MIT, USA, 
IEEE Press. 

Lindh, L., J. Stärner, J. Furunäs, J. Adomat and M. E. Shobaki (1998), "Hardware Accelerator 
for Single and Multiprocessor Real-Time Operating Systems", in Seventh Swedish 
Workshop on Computer Systems Architecture (Chalmers), Göteborg, Sweden. 

Liu, C. L. and J. W. Layland (1973 ), "Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment ", J. ACM vol. 20 (1), pp. 46-61  

Liu, J. W. S. (2000), "Real-Time Systems": Prentice Hall, ISBN. 



References 

R-10 

 

Liu, J. W. S., K. J. Lin and S. Natarajan (1987), "Scheduling Real-Time, Periodic Jobs Using 
Imprecise Results", IEEE Real-Time Systems Symposium, pp. 252-260. 

Locke, C. D. (1992), "Software architecture for hard real-time applications: cyclic executives vs. fixed 
priority executives", Real-Time Syst., vol. 4(1), pp. 37-53. 

Logue, J. C. (1998), "From Vacuum Tubes to Very Large Scale Integration: A Personal Memoir", 
IEEE Ann. Hist. Comput., vol. 20(3), pp. 55-68. 

Lundqvist, K., J. Srinivasan and S. Gorelov (2005), "Non-intrusive System Level Fault-
Tolerance", in Reliable Software Technology – Ada-Europe 2005, 2005, pp. 156-166. 

Lundqvist, T. and P. Stenstr (1999), "Timing Anomalies in Dynamically Scheduled 
Microprocessors", presented at the Proceedings of the 20th IEEE Real-Time Systems 
Symposium. 

Maaita, A. and M. J. Pont (2005), "Using ‘planned pre-emption’ to reduce levels of task jitter in a 
time-triggered hybrid scheduler", in Proceedings of the Second UK Embedded Forum, 
Birmingham, UK, University of Newcastle upon Tyne, pp. 18-35. 

Malone, D. (2008), "Dangerous Knowledge". UK: BBC Documentary, 11th June 08, 11.30 pm. 

Marr, D. T., F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller and M. Upton 
(2002), "Hyper-Threading Technology Architecture and Microarchitecture", Intel Technology 
Journal. 

Marti, P., R. Villa, J. M. Fuertes and G. Fohler (2001), "On Real-Time Control Tasks 

Schedulability", in European Control Conference, Porto, Portugal, pp. 2227-2232. 

Mazor, S. (1995), "The history of the microcomputer-invention and evolution", Proceedings of the 
IEEE, vol. 83(12), pp. 1601-1608. 

McFarling, S. (1989), "Program optimization for instruction caches", SIGARCH Comput. Archit. 
News, vol. 17(2), pp. 183-191. 

Mentor Graphics (2010), "ModelSim - Advanced Simulation and Debugging". Available: 
http://model.com 

Merrick, J. R., S. Wang, K. G. Shin, J. Song and W. Milam (2005), "Priority Refinement for 
Dependent Tasks in Large Embedded Real-Time Software", presented at the Proceedings 
of the 11th IEEE Real Time on Embedded Technology and Applications 
Symposium. 

Micea, M. V., V. Cretu and V. Groza (2005), "Predictable Signal Generation with the Hard Real-
Time Operating Kernel HARETICK", in Instrumentation and Measurement 
Technology Conference, 2005. IMTC 2005. Proceedings of the IEEE, pp. 2097-
2102. 

MIPS-Technologies (2009), "Markets Overview ". Available: 
http://www.mips.com/everywhere/vertical-markets 

MISRA (2004), "Guidelines for the use of the C language in vehicle based software", Motor Industry 
Software Reliability Report, October 2004. 



References 

R-11 

 

Mohammadi, A. and S. Akl (2005), "Scheduling Algorithms for Real-time Systems", School of 
Computing, Queen's University, Kingston, Ontario. 

Mooney, V. J. and D. M. Blough (2002), "A Hardware-Software Real-Time Operating System 
Framework for SOCs", IEEE Design and Test of Computers, pp. 44-51, November-
December 2002. 

Moore, G. E. (1965) "Cramming more Components onto Integrated Circuits", Electronics.  

Mueller, F. (1995), "Compiler support for software-based cache partitioning", SIGPLAN Not., vol. 
30(11), pp. 125-133. 

Mueller, F., D. Whalley and M. Harmon (1993), "Predicting instruction cache behavior", in ACM 
SIGPLAN Workshop on Language, Compiler, and Tool Support for Real-Time 
Systems. 

Muller, F. (2004), "Timing analysis: in search of multiple paradigms", in Parallel and Distributed 
Processing Symposium, 2004. Proceedings. 18th International, p. 126. 

Nett, E., H. Streich, P. Bizzarri, A. Bondavalli and F. Tarini (1996), "Adaptive Software Fault 
Tolerance Policies with Dynamic Real-Time Guarantees", in WORDS 96, IEEE Second 
Int. Workshop on Object-oriented Real-time Dependable Systems, Laguna Beach, 
California, U.S.A., pp. 78--85. 

Niehaus, D. (1994), "Program representation and execution in real-time multiprocessor systems", 
University of Massachusetts, 1994. 

Niehaus, D. and D. Andrews (2003), "Using the Multi-Threaded Computation Model as a Unifying 
Framework for Hardware-Software Co-Design and Implementation", in Proceedings of the 
9th International Workshop on Object-oriented Real-time Dependable Systems 
(WORDS 2003). 

Niehaus, D., E. Nahum and J. A. Stankovic (1991), "Predictable Real-Time Caching in the Spring 
System", in In Proceedings of the 8th Workshop on RealTime Operating Systems 
and Software. 

Nissanke, N. (1997), "Realtime systems": Prentice-Hall, Inc., ISBN:  0-13-651274-7. 

Nolte, T. (2003), "Reducing Pessimism and Increasing Flexibility in the Controller Area Network", 
PhD thesis, Department of Computer Science and Engineering, Malardalen 
University, Vasteras, SWEDEN, 2003. 

Noyce, R. N. (1959), "Semiconductor device-and-lead Structure, US2981877", 1959. 

Null, L. and J. Lobur (2006), "The Essentials of Computer Organization And Architecture", 2nd 
Ed ed.: Jones & Bartlett Publishers, ISBN:  978-0763737696  

Obermaisser, R. (2004), "Event-Triggered and Time-Triggered Control Paradigms": Springer-
Verlag TELOS, ISBN:  0387230432. 

Ong, R. H. L. and M. J. Pont (2002), "The impact of instruction pointer corruption on program flow: 
A computational modelling study", Microprocessors and Microsystems, vol. 25, pp. 409-
419. 



References 

R-12 

 

Ortega, R. (1994), "Timing Predictability in Real-Time Systems": University of Washington, 
1994. 

Oxford-Dictionaries (2008), "Compact Oxford English Dictionary of Current English", O. 
Corpus, O. Corpus, Third edition revised ed: Oxford University Press, 2008. 

Panda, P. R., N. D. Dutt and A. Nicolau (1997), "Exploiting off-chip memory access modes in 
high-level synthesis", in Computer-Aided Design, 1997. Digest of Technical Papers., 
1997 IEEE/ACM International Conference on, pp. 333-340. 

Park, C. Y. and A. Shaw (1990), "Experiments with a Program Timing Tool Based on Source level 
Timing Schema", in Proceedings of the Real-Time Systems Symposium, IEEE 
computer society press, pp. 72-81. 

Patterson, D. A. (1985), "Reduced instruction set computers", Commun. ACM, vol. 28(1), pp. 8-
21. 

Patterson, D. A. and D. R. Ditzel (1980), "The case for the reduced instruction set computer", 
SIGARCH Comput. Archit. News, vol. 8(6), pp. 25-33. 

Patterson, D. A. and J. L. Hennessy (2005), "Computer Organization and Design: The 
Hardware/Software Interface", 3rd Edition ed.: Morgan Kaufmann, ISBN. 

Patterson, D. A. and C. H. Séquin (1998), "Retrospective: RISC I: a reduced instruction set 
computer", presented at the 25 years of the international symposia on Computer 
architecture (selected papers), Barcelona, Spain. 

Petters, S. M. (2002), "Worst Case Execution Time Estimation for Advanced Processor 
Architectures", Elektrotechnik und Informationstechnik, Technischen Universität at 
München, 2002. 

Phatrapornnant, T. and M. J. Pont (2006), "Reducing Jitter in Embedded Systems Employing a 
Time-Triggered Software Architecture and Dynamic Voltage Scaling", IEEE Transactions 
on Computers, vol. 55(2), pp. 113-124, February 2006. 

Pitter, C. and M. Schoeberl (2007), "Time Predictable CPU and DMA Shared Memory Access", 
in International Conference on Field Programmable Logic and Applications, 
Amsterdam, pp. 317-322. 

Pont, M. J. (2001), "Patterns for time-triggered embedded systems: building reliable applications with the 
8051 family of microcontrollers": ACM Press/Addison-Wesley Publishing Co., ISBN:  
0-201-33138-1. 

Pont, M. J. (2002), "Embedded C": Addison - Wesley, ISBN:  020179523X. 

Pont, M. J. (2003), "Supporting the development of time-triggered co-operatively scheduled (TTCS) 
embedded software using design patterns", Informatica, vol. 27, pp. 81-88. 

Pont, M. J. and H. L. R. Ong (2003), "Using watchdog timers to improve the reliability of TTCS 
embedded systems", in Proceedings of the First Nordic Conference on Pattern 
Languages of Programs, pp. 159-200. 



References 

R-13 

 

Pont, M. J. and R. H. L. Ong (2002), "Using watchdog timers to improve the reliability of single-
processor embedded systems: Seven new patterns and a case study", in Proceedings of the First 
Nordic Conference on Pattern Languages of Programs, pp. 159-200. 

Puaut, I. and D. Hardy (2007), "Predictable Paging in Real-Time Systems: A Compiler Approach", 
in Proceedings of the 19th Euromicro Conference on Real-Time Systems, ECRTS 
'07, IEEE Computer Society, pp. 169-178. 

Puente, J. A. d. l. and J. Zamorano (2003), "Execution-time clocks and Ravenscar kernels", 
presented at the Proceedings of the 12th international workshop on Real-time Ada, 
Viana do Castelo, Portugal. 

Puschner, P. (2002), "Is WCET Analysis a Non-Problem? - Towards New Software and Hardware 
Architectures", in Proc. 2nd Euromicro International Workshop on WCET Analysis, 
York YO10 5DD, United Kingdom, Department of Computer Science, University 
of York. 

Puschner, P. (2003), "The Single-Path Approach Towards WCET-Analysable Software", in Proc. 
IEEE International Conference on Industrial Technology, pp. 699-704. 

Puschner, P. and A. Burns (2002), "Writing Temporally Predictable Code", in Proceedings of 
the 7th IEEE International Workshop on Object-Oriented Real-Time Dependable 
Systems, pp. 85-91. 

Ramamritham, K. and J. A. Stankovic (1994), "Scheduling algorithms and operating systems 
support for real-time systems", Proceedings of the IEEE, vol. 82(1), pp. 55-67. 

Rapita (2008), "RapiTime White Paper". Available: 
http://www.rapitasystems.com/system/files/RapiTime-WhitePaper.pdf 

Ravi, H., G. Ganesh and S. Mandayam (2003), "Formal Verification of a Complex Pipelined 
Processor", Form. Methods Syst. Des., vol. 23(2), pp. 171-213. 

Reeves, G. (1998), "Re: What Really Happened on Mars?", Risks-Forum Digest  vol. 19(58). 
Available: http://catless.ncl.ac.uk/Risks/19.54.html#subj6 

Reineke, J., B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger and B. Becker (2006), 
"A Definition and Classification of Timing Anomalies", in Proc. 6th Intl Workshop on 
Worst-Case Execution Time (WCET) Analysis. 

Robert, F. C., I. K. Shing, R. D. David and J. K. Edmund (1991), "An analysis of MIPS and 
SPARC instruction set utilization on the SPEC benchmarks", SIGARCH Comput. 
Archit. News, vol. 19(2), pp. 290-302. 

Ross, I. M. (1998), "The invention of the transistor", Proceedings of the IEEE, vol. 86(1), pp. 7-
28. 

SAE (1993), "Class C Application Requirement Considerations, SAE Recommended Practice 
J2056/1", SAE, June 1993. 

SAE (1994), "Survey of Known Protocols, SAE Information Report J2056/2", SAE, April 1993. 



References 

R-14 

 

Saez, S., J. Vila, A. Crespo and A. Garcia (1999), "A hardware scheduler for complex real-time 
systems", in Industrial Electronics, 1999. ISIE '99. Proceedings of the IEEE 
International Symposium on Industrial Electronics, Bled, IEEE, pp. 43-48. 

Schroeder, H. R. (2006), "The Man Behind the Microchip: Robert Noyce and the Invention of Silicon 
Valley [Book Review]", Technology and Society Magazine, IEEE, vol. 25(3), pp. 50-
51. 

Sebek, F. (2001), "Measuring Cache Related Pre-emption Delay on a Multiprocessor Real-Time 
System", in IEEE Workshop on Real-Time Embedded Systems (RTES'01), 
London. 

Shalan, M. and V. J. Mooney (2000), "A Dynamic Memory Management Unit for Embedded Real-
Time System-on-a-Chip", in International Conference on Compilers, Architecture and 
Synthesis for Embedded Systems (CASES'00), pp. 180-186. 

Shiu, P., Y. Tan and V. J. Mooney (2001), "A Novel Parallel Deadlock Detection Algorithm and 
Architecture", in 9th International Workshop on Hardware/Software Co-Design 
(CODES'01), pp. 30-36. 

Shockley, W. (1950), "Semiconductor Amplifier, US2502488", 2502488, 1950. 

Shockley, W. (1953), "Bistable circuits, including transistors, US2655609", 1953. 

Shockley, W. (1957), "Forming semiconductive devices by ionic bombardment, US2787564", 1957. 

Short, M. and M. J. Pont (2007), "Fault-Tolerant Time-Triggered Communication Using CAN", 
IEEE Transactions on Industrial Informatics, vol. 3(2), pp. 131-142. 

Simonson, J. and J. H. Patel (1995), "Use of preferred preemption points in cache-based real-time 
systems", in Computer Performance and Dependability Symposium, 1995. 
Proceedings., International, pp. 316-325. 

Smullyan, R. M. (1992), "Gödel's Incompleteness Theorems": Oxford University Press, ISBN:  
0195046722  

Souyris, J., E. L. Pavec, G. Himbert, V. Jégu, G. Borios and R. Heckmann (2005), 
"Computing the Worst Case Execution Time of an Avionics Program by Abstract 
Interpretation", in Proceedings of the 5th Intl Workshop on Worst-Case Execution 
Time (WCET) Analysis. 

Spuri, M., G. Buttazzo and F. Sensini (1995), "Robust Aperiodic Scheduling under Dynamic 
Priority Systems", in 16 th IEEE Real-Time Systems Symposium, Pisa, Italy, pp. 210-
219. 

Stallings, W. (1988), "Reduced instruction set computer architecture", Proceedings of the IEEE, 
vol. 76(1), pp. 38-55. 

Stankovic, J. A. (1988), "Misconceptions About Real-Time Computing: A Serious Problem for Next-
Generation Systems", Computer, vol. 21(10), pp. 10-19. 



References 

R-15 

 

Stankovic, J. A., D. Niehaus and K. Ramamritham (1991), "SpringNet: A Scalable Architecture 
For High Performance, Predictable, and Distributed Real-Time Computing", University of 
Massachusetts, Technical Report. 

Stankovic, J. A., M. Spuri, M. Di Natale and G. C. Buttazzo (1995), "Implications of classical 
scheduling results for real-time systems", Computer, vol. 28(6), pp. 16-25. 

Stärner, J. (1998), "Controlling cache behavior to improve predictability in real-time systems", in 10th 
Euromicro Workshop on real-time systems. 

Stärner, J. (1998), "Increasing Predictability of Real-Time Operating Systems", in 7th Swedish 
Workshop on Computer System Architecture. 

Stewart, D. B. (2001), "Twenty-Five Most Common Mistakes with Real-Time Software 
Development", in International Conference on Embedded Systems, San Francisco, 
USA. 

Sun, D., D. Blough and V. J. Mooney (2002), "Atalanta: A New Multiprocessor RTOS Kernel 
for System-on-a-Chip Applications", Georgia Institute of Technology, April 2002. 

Thiele, L. and R. Wilhelm (2004), "Design for Time-Predictability", in Design of Systems with 
Predictable Behaviour, Dagstuhl, Germany, Internationales Begegnungs- und 
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, pp. 157-
177. 

Tia, T., J. W. S. Liu and M. Shankar (1996), "Algorithms and optimality of scheduling soft aperiodic 
requests in fixed-priority preemptive systems", Real-Time Systems, vol. 10(1), pp. 23-43, 
January 1996. 

Tiggeler, H., T. Vladimirova and D. Zheng (2000), "A System-on-a-Chip for Small Satellite 
Data Processing and Control", in Proceedings of Military and Aerospace Applications 
of Programmable Devices and Technologies International Conference 
(MAPLD’2000), Laurel, Maryland US. 

Tindell, K., H. Kopetz, F. Wolf and R. Ernst (2003), "Safe Automotive Software Development", 
presented at the Proceedings of the conference on Design, Automation and Test in 
Europe - Volume 1. 

Turing, A. M. (1939), "Systems of logic based on ordinals", Proceedings of the London 
Mathematical Society. Second Series, vol. 45, pp. 161-228. 

Turley, J. (1999, 5th May 1999), "Embedded Processors by the Numbers", Embedded Systems 
Programming  vol. 12(5). Available: 
http://www.embedded.com/1999/9905/9905turley.htm 

Turley, J. (2003), "Motoring with microprocessors", Embedded Systems Design Available: 
http://www.embedded.com/columns/significantbits/13000166?_requestid=43991
0 

Uhrig, S., S. Maier and T. Ungerer (2005), "Toward a processor core for real-time capable autonomic 
systems", in Signal Processing and Information Technology, 2005. Proceedings of 
the Fifth IEEE International Symposium on, pp. 19-22. 



References 

R-16 

 

Vera, X., B. Lisper and J. Xue (2003), "Data cache locking for higher program predictability", 
SIGMETRICS Perform. Eval. Rev., vol. 31(1), pp. 272-282. 

Vera, X., B. Lisper and J. Xue (2007), "Data cache locking for tight timing calculations", ACM 
Trans. Embed. Comput. Syst., vol. 7(1), pp. 1-38. 

Vidler, P. J. and M. J. Pont (2006), "Computer Assisted Source-Code Parallelisation", in 
Computational Science and Its Applications - ICCSA 2006, Glasgow, Springer, pp. 
22-31. 

Vladimirova, T. and X. Wu (2006), "On-Board Partial Run-Time Reconfiguration for Pico-Satellite 
Constellations", in Adaptive Hardware and Systems, 2006. AHS 2006. First 
NASA/ESA Conference on, pp. 262-269. 

W. Peck, J. Agron, D. Andrews, M. Finley and E. Komp (2004), "Hardware/Software Co-
Design of Operating System Services for Thread Management and Scheduling", in In 
Proceedings of the 25th IEEE International Real-Time Systems Symposium, 
Works In Progress Session (RTSS, WIP 2004), Lisbon, Portugal. 

Weik, M. H. (1961), "A Third Survey of Domestic Electronic Digital Computing Systems", Ballistic 
Research Laboratories, Report No. 1115, Aberdeen Proving Ground, Maryland. 

Whitham, J. and N. Audsley (2006), "MCGREP--A Predictable Architecture for Embedded Real-
Time Systems", presented at the Proceedings of the 27th IEEE International Real-
Time Systems Symposium. 

Wilhelm, R. (2004), "Formal Analysis of Processor Timing Models", in Model Checking 
Software, 2004, pp. 1-4. 

Wilhelm, R., J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. 
Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat 
and P. Stenstr (2008), "The worst-case execution-time problem - overview of methods and 
survey of tools", Trans. on Embedded Computing Sys., vol. 7(3), pp. 1-53. 

Wilkes, M. V. (1969), "The Growth of Interest in Microprogramming: A Literature Survey", ACM 
Comput. Surv., vol. 1(3), pp. 139-145. 

Wolf, W. (2008), "Computers as Components", Principles of Embedded Computing System 
Design Second Edition ed.: Morgan Kaufmann, ISBN:  978-0-12-374397-8. 

Wolfgang, H. (2004), "Simplicity Considered Fundamental to Design for Predictability", in Design 
of Systems with Predictable Behaviour, Dagstuhl, Germany, Internationales 
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, 
Germany. 

Wu, X. and T. Vladimirova (2006), "A Self-reconfigurable System-on-Chip Architecture for Satellite 
On-Board Computer Maintenance", in Proc. of the Asia-Pacific Computer Systems 
Architecture Conference 2006, pp. 552-558. 

Xu, J. and D. L. Parnas (1993), "On Satisfying Timing Constraints in Hard-Real-Time Systems", 
IEEE Trans. Softw. Eng., vol. 19(1), pp. 70-84. 



References 

R-17 

 

Young, M. and D. Wilde "A Customizable Hardware/Software Real Time Operating System for a 
System on a Programmable Chip", School of Electrical and Computer Engineering, 
Brigham Young University, Provo, UT, U.S.A. 

Zheng, D., T. Vladimirova and H. Tiggeler (2001), "Reconfigurable Single-Chip On-Board 
Computer for a Small Satellite", in 52nd International Astronautical Congress, 
Toulouse, France. 

 
 



Instruction Set of PH Processor 

A-1  

 

Appendix A:  Instruction Set of PH Processor 

Instructions taken from MIPS I ISA (Kain and Heinrich 1992). 

Non R-type instructions 

Mnemonic Name Opcode 

LW Load Word 100011 

SW Store Word 101011 

LB Load Byte 100000 

LBU Load Byte Unsigned 100100 

LH Load Halfword 100001 

LHU Load Halfword Unsigned 100101 

SB Store Byte 101000 

SH Store Halfword 101001 

BEQ Branch On Equal 000100 

BNE Branch On Not Equal 000101 

BLEZ Branch Less Than and Equal Zero  000110 

BGTZ Branch Greater Than Zero 000111 

ADDI Add Immediate 001000 

ADDIU Add Immediate Unsigned 001001 

ANDI And Immediate 001100 

J Jump 000010 

JAL Jump And Link 000011 

LUI Load Upper Immediate 001111 

ORI Or Immediate 001101 

XORI Exclusive Or Immediate 001110 

SLTI Set Less Than Immediate 001010 

SLTIU Set Less Than Immediate Unsigned 001011 

 

 

 



Instruction Set of PH Processor 

A-2  

 

Mnemonic Name Opcode RT 

BLTZ Branch On Less Than Zero 000001 00000 

BLTZAL Branch On Less Than Zero and Link 000001 10000 

BGEZ Branch On Greater Than and Equal Zero 000001 00001 

BGEZAL Branch On Greater Than and Equal Zero and Link 000001 10001 

 

R TYPE 

Mnemonic Name Funct 

JR Jump Register 001000 

JALR Jump And Link Register 001001 

ADD Add 100000 

ADDU Add Unsigned 100001 

SUB Subtract 100010 

SUBU Subtract Unsigned 100011 

AND And 100100 

OR Or 100101 

SLT Set Less Than 101010 

SLTU Set Less Than Unsigned 101011 

NOR Nor 100111 

XOR Exclusive Or 100110 

SLL Shift Left Logical 000000 

SLLV Shift Left Logical Variable 000100 

SRA Shift Right Arithmetic 000011 

SRAV Shift Right Arithmetic Variable 000111 

SRL Shift Right Logical 000010 

SRLV Shift Right Logical Variable 000110 

MULT Multiply 011000 

MULTU Multiply Unsigned 011001 

DIV Divide 011010 

DIVU Divide Unsigned 011011 

BREAK Breakpoint 001101 



Instruction Set of PH Processor 

A-3  

 

Coprocessor instructions 

Mnemonic Name Opcode MT/MF 

MTC0 Move To System Control Coprocessor 010000 00100 

MFC0 Move From System Control Coprocessor 010000 00000 

 



PH Processor control and data paths 

B-1  

 

Appendix B: PH Processor control and data paths 

 



Additional Figures 

C-1  

 

Appendix C: Additional Figures 

 

 

 

Figure 84: PH Core interrupt latency simulation 

 



Additional Figures 

C-2  

 

 

 

 

 

Figure 85: Multiply instruction (33 CPU clock cycles) 

 

 

 



Additional Figures 

C-3  

 

 

 

 

 

Figure 86: Interrupt Overhead (10 CPU clock cycles) 

 



Additional Figures 

C-4  

 

 

 

 

 

Figure 87: Interrupt on a Branch Delay Slot instruction (11 CPU clock cycles) 

 

 

 

 



Additional Figures 

C-5  

 

 

 

 

 

 

Figure 88: PH-Predictable core interrupt latency simulation 

 

 



Additional Figures 

C-6  

 

 

 

 

Figure 89: Multiply instruction paused as the interrupt handler is executed 

 



Additional Figures 

C-7  

 

 

 

 

 

 

Figure 90: Detailed Time-Triggered Co-operative Schedule 

 

 

 

 

 



Additional Figures 

C-8  

 

 

 

 

 

Figure 91: Hardware scheduler offset delay 

 

 

 



Additional Figures 

C-9  

 

 

 

 

Figure 92: Simulated between task overhead 

 

 



Additional Figures 

C-10  

 

 

 

 

Figure 93: Modelsim simulation of the hardware task guardian unit in action



The evolution of the modern microprocessor 

D-1  

 

Appendix D: The evolution of the modern microprocessor  

D.1 Introduction 

This chapter aims to show that throughout the design and evolution of the computer, 

there has been an overriding interest in increasing performance which has led to a 

significant increase in complexity. 

By modern definition, a computer is a machine that performs logical operations based on a 

list of instructions (Oxford-Dictionaries 2008). The name was originally used for people 

who performed numerical calculations, often for large banks with the aid of a mechanical 

calculating device. Today, the word computer is commonly associated with an electronic 

device that executes a stored program. As a result it can be difficult to identify a single 

device as the earliest form of computer. 

Prior to the advent of machines that resemble today’s processors, computers were 

generally very large, expensive and often unreliable. As with all digital computers, 

processors required switching elements to differentiate between discrete states. In early 

machines electrical relays and vacuum tubes (thermionic valves) were commonly used. 

When compared to mechanical designs, these systems had distinct speed advantages. 

However, they were generally unreliable, for instance, the EDVAC had an average error-

free operating time of 8 hours (Weik 1961). 

In December 1947, following  Lilienfeld’s patent (Lilienfeld 1926), scientists at the Bell 

Telephone Laboratories demonstrated their invention of the point-contact transistor 

amplifier (Bardeen and Brattain 1947). This began the work with transistors, which was 

then further expanded by Shockley (Shockley 1950; Shockley 1953; Shockley 1957; Ross 

1998). 

One transistor could replace the equivalent of about 40 vacuum tubes and was faster, more 

reliable, smaller, and much cheaper to build than a vacuum tube (Hames 2009). Transistors 

allowed for the design of more complex CPUs and facilitated the building of smaller 

machines. With this improvement more complex and reliable CPUs were built onto 

printed circuit boards containing discrete (individual) components. 



The evolution of the modern microprocessor 

D-2  

 

Further work with transistor technology then paved the way in semiconductors for modern 

integrated circuits and microchips (Kilby 1976; Schroeder 2006). Following the invention 

of the integrated circuit (Kilby 1959; Noyce 1959),  parts or whole circuits could be placed 

onto a single microchip. This meant that electronic circuits could be miniaturized and the 

number of transistors increased whilst keeping the cost low.  

These advancements allowed for a great reduction in power, significant miniaturization of 

systems and consequently a significant increase in speed. As a result, Intel announced a 

new era in integrated circuits in 1971 (Mazor 1995). The natural progression for computing 

was then to attempt to put a computer on a chip. 

Although it’s often cited that in 1971 the Intel 4004 was the first microprocessor, this has 

subsequently been disputed (Logue 1998). Regardless of which microprocessor came first, 

there was an overwhelming and concurrent drive to make computers smaller and faster.  

In 1974 the miniaturization continued and gave birth to the first microcontroller TMS 

1000 (Deshmukh 2005), which not only contained a processor on a chip, but also the 

memory and digital IO. The microcontroller became a very popular platform for a wide 

range of embedded devices and meant that it could be used in areas where traditionally a 

computer would not have otherwise been considered (Zheng, Vladimirova et al. 2001). 

Throughout the development of computers from the earliest digital machines such as the 

Zuse Z3, Colossus and the ENIAC, to the first microprocessors, microcontrollers and the 

processors available today, the advancements in silicon semiconductor technology has 

increased significantly.  

During this progression the number of transistors that could be placed on a silicon die was 

increasing exponentially. This trend was known as Moore’s law (Moore 1965; Adee 2008). 

Conversely as the silicon circuits grew, the speed of these circuits also increased. 

This advancement of speed and silicon real-estate has been so significant that companies 

today make use of high level reprogrammable logic devices - such as Field Programmable 

Gate Arrays (FPGA) - to prototype what would normally be expensive and risky 

application-specific integrated circuit (ASIC) component developments. These generic 

FPGA devices are now fast and large enough to be used out in the field as a direct 

replacement to the ASIC (Tiggeler, Vladimirova et al. 2000; Zheng, Vladimirova et al. 



The evolution of the modern microprocessor 

D-3  

 

2001; Fernandez-Leon, Pouponnot et al. 2002) and allow for more advanced features such 

as partial runtime reconfiguration (Vladimirova and Wu 2006; Wu and Vladimirova 2006). 

More importantly, it can be shown that throughout the history of the computer, the 

processor market has been largely concerned at reducing size and maximizing processing 

performance. Some of these traits can be observed in microcontrollers and embedded 

systems. However, whilst the increase in hardware speed and silicon die area does not 

necessarily link to a reduction in predictability, this drive for increased performance has 

sparked the exploration of various developments in processor architectures.   

D.2  The evolution of early CPU architecture 

To meet the demands of technology and industry, the CPU architecture has evolved over 

the years to become the modern processor of today. This section will describe how some 

of the changes involved in the CPU architecture were driven mainly by the need for more 

performance. 

D.2.1 CISC architecture 

In the early days of computing, memory was often expensive, as were the computers 

themselves. Up to the 1970’s, computers generally used magnetic core memory which was 

expensive and slow (Patterson 1985). Whilst RAM came shortly after and was faster, it too 

was expensive when it was just gaining popularity in the early 90s. This meant that good 

code was considered to be compact code.  

In the 1960s to early 1970s the cost of software was far out growing the cost of hardware 

and even though compilers were being designed, the compilation stage took a long a time 

and the output was not very optimal (Hennessy and Patterson 2006). Along with memory 

limitations the best way to obtain compact and optimized code was to program in 

assembly (Hennessy and Patterson 2006). This meant that programming bug free code was 

very challenging and people would accept almost any code as long as it worked. 

At the time, the state of the art in VLSI design was limited as it wasn’t possible to fit much 

functionality on a chip. Due to the scarce on-chip resources, machines had their units 

spread across several chips. This limited overall performance because the delay and power 



The evolution of the modern microprocessor 

D-4  

 

penalty of running data transfers between chips (Patterson and Séquin 1998). If it was 

possible a single chip solution would have been ideal. 

Therefore, due to the cost of memory, the limitations of compilers and the demand for 

more complex applications there was a fear the industry was leading towards a potential 

software crisis (Patterson 1985). However, whilst the software costs were escalating, the 

hardware costs were starting to become cheaper. The reaction was to shift the complexity 

from software into hardware by implementing common complex functions in hardware. 

This was the main idea behind the Complex Instruction Set Computer (CISC) architecture, 

which was believed to provide some performance benefits (Patterson and Séquin 1998). 

D.2.2 Load/Store architecture 

In order to support CISC, it was necessary that the architecture should support complex 

addressing modes.   

In the past, computers had a register known as an ‘accumulator’ (Ceruzzi 2003). The 

accumulator register would be used to store a value temporarily and be used in conjunction 

with another value to perform an arithmetic operation. This register would have specific 

instructions associated with it to load and store its contents from memory. This led 

towards the basis of the load/store principle. 

A load/store architecture takes the approach that access to memory can ‘only’ take place 

by designated load and store instructions which place values into CPU registers (Null and 

Lobur 2006). All other instructions would then only operate on those values stored in 

registers. In other words, no other instruction can access memory directly other than 

specific load and store instructions (). 



The evolution of the modern microprocessor 

D-5  

 

 

Figure 94: Load/Store hierarchy, reproduced from (Hannibal 2004) 

A drawback of using the load/store principle meant the programmer had to spell out 

explicitly the steps required to do a particular operation (Hannibal 2004). For instance, a 

multiplication operation on two values in memory would require the following operations, 

where ‘A’ and ‘B’ are internal processor registers (). 

LOAD A,(0x02) 

LOAD B,(0x04) 

MUL A,B 

STORE A,(0x02) 

Listing 19: Multiply in assembly language using Load/Store addressing 

In the CISC architecture, it may be possible for the MUL instruction to be able to access 

memory directly. The result is that the architecture could be modified so that the above 

multiplication operation could be done within a single instruction as shown in . Please note 

that the resulting value is automatically written back to the address of the first operand. 

MUL (0x02),(0x04) 

Listing 20: Multiply in assembly using complex addressing 



The evolution of the modern microprocessor 

D-6  

 

By being able to convert four instructions into one allowed for some large reductions in 

code size. This also meant that all the lower level operations could be hidden from the 

programmer leaving them to concentrate on the high level operations at hand. However, 

implementing these instructions was not easy and required more hardware resources 

(Hannibal 2004). 

D.2.3 Microcode 

Originally, instruction sets were hardwired into the processor where the circuitry to 

complete an instruction was controlled directly by combinational logic. This was known as 

direct execution and was fast and efficient (Patterson 1985). However, the problem was 

that it required circuitry for each new instruction and consumed quite a bit of silicon real 

estate. This becomes a bigger problem when introducing larger and more complex 

instructions which take a lot of work to execute.  

Although hardware was becoming cheaper, the number of transistors was still limited and 

therefore directly executing CISC instructions was not really feasible. 

A solution to this problem was to use a microcode engine which would decode a CISC 

instruction and translate it into several smaller microinstructions that could then be directly 

executed on the processor (Fiddler, Stromberg et al. 1990). This extra translation was 

slower than the direct execution method. However, the control memory ROM used to 

hold the microinstructions was about 10 times faster than magnetic core memory at the 

time so it still offered an acceptable performance (Patterson 1985). 

Over time, microcode technology was improving and it made more sense to move 

functionality from slower and more expensive software to faster and cheaper hardware. To 

this end, instruction set counts grew requiring increasing numbers of microprogramming 

(Wilkes 1969). To accommodate the increase and keep performance up, the microcode 

routines had to be highly optimized and kept extremely compact in order to maintain low 

costs. 

As the microprogramming increased it became increasingly difficult to test and debug the 

code. To fix a bug would often require the need to patch the microcode ROM out in the 

field. These difficulties then led to questions as to whether implementing all the elaborate 

instructions in microcode was the best use of resources (Patterson 1985). 



The evolution of the modern microprocessor 

D-7  

 

D.2.4 RISC architecture 

By 1981, technology had changed but the complexity of CISC implementations meant that 

most processors still spanned across multiple chips (Hannibal 2004). This was not ideal for 

performance. Therefore there was a drive for a single chip solution which would make 

optimal use of transistor resources (Patterson and Séquin 1998). 

To fit the entire CPU onto a single chip, some functionality would have to be removed and 

tradeoffs made in favour of speed. Part of these tradeoffs was to see if all the additional 

instructions were required. Studies were therefore undertaken at profiling application code 

to find which instructions were used the most (Patterson and Ditzel 1980; Fiddler, 

Stromberg et al. 1990). 

At the time, compiler technology was improving and memory costs were becoming 

cheaper.  As a result, it was reasoned that high level language support could be better 

placed in software (Stallings 1988). This was backed up by the application profiling which 

showed that many of the elaborate instructions were not being used by compilers as they 

were difficult to implement (Patterson 1985; Jamil 1995). Instead compilers were opting 

for groups of smaller instructions which did the same thing (Hannibal 2004).  

It was found that the extra instructions could be removed without really losing any 

functionality meaning the microcode engine was no longer needed, leaving only the simpler 

directly executing reduced instruction set. This trend of moving complexity out of 

hardware and back into software then gave rise to RISC (Patterson and Ditzel 1980). 

D.2.5 Pipelining 

Part of the RISC mentality was to make each instruction uniform in size and wherever 

possible take only one cycle to complete (Patterson 1985). This was possible due to the 

removal of complex microcode instructions and keeping the small and fast assembly 

instructions. This then made it feasible to employ a technique called pipelining.  

Pipelining was a way that allowed separate portions of different instructions to be 

completed in parallel (Figure 8), thereby lowering the average number of cycles per 

instruction (Hennessy and Patterson 2006). This was only really made feasible by dealing 

with instructions which do not have varying degrees of complexity. 



The evolution of the modern microprocessor 

D-8  

 

The outcome was that by reducing the number of cycles it took to process each 

instruction, performance would increase. However, since a program using RISC 

instructions required more instructions to perform the same task, and that the memory was 

slower than the processor’s ability to execute instructions, then the memory bottleneck 

could negate any potential performance benefits. 

D.2.6 Compilers, registers and high level languages 

In order to deal with the problem of increased code size when using RISC machines and 

slow speed of memory access times, a few techniques were required to increase 

performance. The first step was to increase the number of processor registers. This helped 

because researchers noticed when doing code profiling, that 80% of the variables in a 

program were local scalars (Patterson and Séquin 1998).  Therefore, rather than loading 

values directly to and from memory for each operation, as was common in CISC 

instructions, these values could be loaded into a processor register on which a number of 

operations are performed before only then writing the value back out to memory. 

Since CISC architectures would often charge load/stores to individual instructions, the 

results was that more memory cycles were required compared to RISC architectures. The 

problem for CISC machines was that the compiler does not have the ability to arrange and 

manage load/stores intelligently for maximum efficiency. However, for RISC architectures 

the compilers role is more prominent if performance is to be maximised (George 1990). 

The architectural decisions for RISC machines meant that hardware could be made simpler 

while software compensated by absorbing the complexity to retain a good level of 

performance. It is stated that the RISC and CISC design philosophies deal with much more 

than just the simplicity or complexity of an instruction set (Hannibal 2004).  

D.3 Post RISC 

Since the early RISC designs transistor counts have risen and architectures have taken 

advantage of the increased resources in a number of ways to gain increasing performance  



The evolution of the modern microprocessor 

D-9  

 

D.3.1 Superscalar pipeline 

One of the first architectural enhancements to emerge after the introduction of the RISC 

movement was the addition of extra parallel pipelines or parallel functional units in order 

to facilitate instruction level parallelism (ILP). This meant that the same parts of two or 

more instructions could be processed at the same time (Hennessy and Patterson 2006).  

Using a second pipeline unit to support floating point instructions became an attractive 

option as processors were required to perform more mathematically complex operations. 

This type of pipeline could be allowed to execute a floating point operation in parallel with 

integer instructions. Prior to the split, the instructions proceed in sequential order through 

the pipeline stages (). 

 

Figure 95: Superscalar pipeline with parallel floating point unit 

The technique was then used to including even more functional units for the ability to 

allow several instructions to start each clock cycle (). However to make efficient use of the 

multiple execution pipelines an instruction scheduler was employed to deal with instruction 

dependencies. 

For dynamic multiple issue superscalar pipelines, instructions would be grouped for 

execution at runtime (Patterson and Hennessy 2005). Older superscalar architectures 

would issue multiple instructions in-order only where dependencies can be met. This 

meant that there would be conditions where some execution units would remain idle until 

it was possible to issue the next instruction sequence in parallel. 



The evolution of the modern microprocessor 

D-10  

 

 

Figure 96: Superscalar pipeline with multiple parallel execution units 

This system gave rise to a new set of complexity to schedule parallel instructions at runtime 

whilst allowing the hardware to take into account and manage the dependencies 

dynamically.  

D.3.2 Very Long Instruction Word 

Due to the unpredictable nature of estimating how the instruction scheduler would affect 

performance, DSP manufactures who rely on fast and predictable performance decided to 

adopt different solution. 

The ability to process several instructions at the same time was a great performance 

benefit, however dynamic multiple issue pipelines made timing more complex. Therefore, a 

solution was sought to group instructions statically for execution at compile time. This 

technique is known as the Very Long Instruction Word (VLIW) which contains several 

operations that the compiler has determined can be issued independently as a group 

(Hennessy and Patterson 2006). Each operation bundle gets executed in parallel without 

the need for a hardware scheduler. 

Initially VLIW was not very popular because compilers were not efficient at dealing with 

instructions dependencies and ordering the instructions for maximum ILP (Hennessy and 

Gross 1982; Hannibal 2004).  However, due to the power of modern compilers VLIW is 



The evolution of the modern microprocessor 

D-11  

 

more feasible and is in keeping with the RISC tradition of putting the complexity from 

hardware back into software. 

D.3.3 Out-of-order pipelines 

Whilst VLIW had limited attention, the problem of data dependencies in early in-order 

superscalar architectures meant that there would be parallel execution units which would 

often sit idle. This then led to a technique for executing instructions out-of-order to that of 

the program text. This meant that the hardware instruction scheduler could dynamically 

reorder the instructions at runtime to optimize the code so that it can get maximum usage 

out of all the parallel units.  

The out-of-order superscalar pipeline technique is very popular in modern desktop 

architectures as it provides good average-case performance. However, it introduces a large 

amount of complexity into the pipeline and the behaviour of the instruction scheduler is 

not visible to the programmer who will be unaware which instructions will be issued as a 

group (Bate, Conmy et al. 2001). 

D.3.4 Branch Prediction 

A problem common to pipeline architectures is the condition when the sequential flow of 

instructions is altered. This flow can be interrupted when executing branch or jump 

instructions. When one of these instructions is executed it can result in parts of the 

pipeline being flushed and has the knock-on effect of reducing performance. Therefore 

modern processor architectures employ various techniques to counteract the wasted cycles.  

The cause for pipeline stages being flushed is that the test condition for a branch 

instruction may not be known until a later pipeline stage (Figure 97). This means that the 

previous pipeline stages may need to be flushed when the test condition is true. This is a 

problem that can increase as the number of pipeline stages in the processor design 

increases. 



The evolution of the modern microprocessor 

D-12  

 

 

Figure 97: Flushed pipeline stages due to a branch instruction 

One way the performance loss can be reduced is to perform the test condition in an early 

as possible pipeline stage and therefore reduce the number of stages that would need to be 

flushed. However, this is not always practical. 

Another approach to the problem was to allow the instructions that would ordinarily be 

flushed to execute regardless if the branch condition was taken. It would then be up to the 

compiler to locate suitable instructions to place in these locations, which are also known as 

branch delay slots (BDS). If the compiler was unable to re-order the existing instructions 

into the slot, then it would use no-operation (NOP) instructions. Therefore in the case of 

NOP instructions there was no performance gain and the code size was increased. This 

then led to the use of branch prediction techniques. 

One of the simplest forms of branch prediction is the static BTFN (backward branches 

taken, forward branches not taken) predictor which is said to be about 60-70% accurate for 

typical embedded applications (Berg, Engblom et al. 2004).  

A further approach to branch prediction which is often the only feasible means of 

decreasing the branch penalty for superscalar architectures is to predict dynamically which 

way branches are likely to go based on previous executions. This technique does have 

additional hardware complexity over the other methods due to the need to store the data 

about previous executions. 

D.3.5 Exceptions 

Exceptions and interrupts suffer from similar performance problems faced by branch and 

jump instructions in that traditionally parts of the pipeline are flushed. This allows the old 

uncompleted instructions to be removed whilst the new instruction stream from the 

interrupt service routine is executed.  



The evolution of the modern microprocessor 

D-13  

 

Exceptions such as hardware malfunctions and ‘prefetch aborts’ the CPU is often only 

required to terminate execution which is comparatively simple to implement. However, 

exceptions such as ‘user calls’ and interrupts require that execution be restarted once the 

handler has completed.  It must then be possible to shut down the pipeline safely and save 

its state so that the uncompleted instruction stream can be resumed. 

The steps for performing an exception or interrupt are as follows (Hennessy and Patterson 

2006): 

1. Force the first instruction of the handler into the pipeline on the next instruction 

fetch. 

2. Until the interrupt or exception handler instruction is processed, flush out all the 

pipeline stages from the faulty or uncompleted instruction (). (This is often 

implemented by zeroing out all the write control lines in those respective pipeline 

stages and therefore preventing those instructions from making any state changes). 

3. The program counter (PC) of the faulty instruction is saved so that it can be used 

later when the handler returns. 

 

Figure 98: Flushed pipeline stages due to an exception or interrupt 

When an exception or interrupt occurs on branches it is no longer a simple matter of re-

creating the processor state because the instructions in the pipeline may no longer be 

sequentially related. Often this may result in not returning to the next instruction after the 

handler, but re-executing the branch condition in order to determine which instructions 

should follow. 



The evolution of the modern microprocessor 

D-14  

 

Whilst it is easier to implement precise exceptions for in-order integer pipelines, there are 

cases for high-performance CPUs using an out of order superscalar architecture where 

using an imprecise mode can yield a greater than ten times performance. This is because 

instructions such as floating point operations may run for several cycles and could be 

allowed to execute in parallel to the normal pipeline. In such cases, an exception for a new 

instruction may occur before the older floating point operation has completed or even had 

chance to raise its own exception. In such a scenario, it can then be hard for someone 

debugging the system to ascertain which instruction caused the exception or in which 

order they were executed. 

The problem of keeping track of the order in which exceptions should occur doesn’t only 

relate to out-of-order superscalar pipelines but also to simple scalar pipelines. This 

problem arises due to the possibility of multiple exceptions occurring during the same 

cycle. 

 

Pipeline stage Exceptions that can occur 

IF Page fault on instruction fetch, misaligned memory access, memory 

protection violation 

ID Undefined or illegal opcode 

EX Arithmetic exception 

MEM Page fault on data fetch, misaligned memory access, memory 

protection violation 

WB None 

Table 28: Exceptions that can occur in the MIPS pipeline (Hennessy and Patterson 2006) 

Table 28 lists the possible exceptions that could occur on a simple 5-stage pipeline. 

An example of a problem that can occur is where a load operation in a MEM stage and an 

ADD instruction in the EX stage causes a page fault and an arithmetic exception to arise at 

the same time (). To implement precise exceptions, the goal is to handle these in the 

correct order.  However, the problem can be even more complicated.  



The evolution of the modern microprocessor 

D-15  

 

 

Figure 99: Problem when two exceptions occur at the same time 

In some scenarios, exceptions can occur out of order.  A new instruction may cause an 

exception before an older one. For instance, an ADD instruction might cause an 

instruction page fault in the IF stage before the previous LOAD instruction creates a data 

page fault when it reaches the MEM stage (). 

 

Figure 100: Problem when exceptions occur out of order 

In this scenario, the pipeline cannot handle the exception as it occurs in time as this would 

lead to exceptions being handled out of order.  

A common solution to this problem is to store the exception status of each instruction as it 

filters down the pipeline and only act upon it before it reaches the end of the MEM stage 

and before any state changes are committed to registers or memory. At this point, the 



The evolution of the modern microprocessor 

D-16  

 

exception status flag is then checked and the exception is raised in the correct sequential 

instruction flow order. The drawback of this method is that most of the pipeline stages get 

flushed when an exception or interrupt occurs and performance is subsequently reduced. 

This solution doesn’t work for all processors as some have instructions that change the 

states during the middle of execution. In some cases registers or even memory are 

modified. Therefore if the instruction is aborted, there needs to be a way to undo any 

committed changes.  

D.3.5.1 Re-order buffer 

There can be problems when an interrupt or exception occurs on an out-of-order 

superscalar pipeline as several instructions may be in flux and state of the registers 

unknown. Therefore, one method to allow instructions to complete out-of-order and 

maintain the precise interrupt rule is to retain the results of each instruction in a reorder 

buffer. The results of executed instructions are only then committed once all the previous 

instructions are free of exception conditions. 

A negative side to the reorder buffer method is that there can be a performance loss 

because the processor cannot issue an instruction which depends on a result currently 

being held in the reorder buffer until it writes that result into the register file. 

D.3.5.2 History Buffer 

The history file method provides a solution to the performance issues encountered in the 

reorder buffer method. Instructions are allowed to complete in any order and update the 

register file immediately upon completion. However, when an instruction is issued, the 

processor saves the previous state of any modified registers to a history buffer. This allows 

the reconstruction of the processor’s sequential state in the event of an exception.  

D.3.5.3 Future File 

A similar technique to the history buffer solution is the future file method which contains 

two register files. These are known as the current working register file and the future file. 

Instructions will execute out-or-order and update the contents of the future file. When the 

previous instructions become clear of any exceptions, the working register file is updated 



The evolution of the modern microprocessor 

D-17  

 

from the future file. When an exception or interrupt occurs, the future file is restored with 

the contents of the working file and thereby retains the precise exception status. 

D.3.6 Modern CISC-RISC 

Compared to previous computer history, memory is now both cheap and fast. However, 

the speed of memory has not kept pace with the speed of processors and manufactures are 

beginning to hit the bottlenecks on silicon speed. The problem is no longer how to fit the 

required functionality on a chip, but what can be done will all the available transistors. 

With the need to keep memory bandwidth up and execution fast, there has been a return 

to hybrid CISC-RISC architectures. In modern desktop processors the internal core is 

often RISC based but presents the programmer with a rich collection of CISC instructions. 

Compilers have also been advanced to make use of the CISC instructions. Advancements 

have also been made in the developments of memory systems to reduce the memory 

performance impact. This will now be described in the next section. 

D.4 Memory 

Another area of study that has undergone development in modern processors is the 

memory architecture. In computer systems memory is used for storing working data and 

program storage. These can be arranged into two commonly known models; the von 

Neumann or Harvard architecture.  

D.4.1 Von Neumann 

The von Neumann architecture - which is most commonly used in computing systems 

(Null and Lobur 2006) - stores both instructions and data in the same memory system (). 

This allows for practices such as self modifying code and dynamic loading of programs. 

However, a drawback is that without appropriate memory protection, accidental or 

malicious overwriting of code can have problematic and security implications. For instance, 

a buffer overflow attack can be used by Malware to overflow the call stack to overwrite or 

modify an existing program in order to achieve a higher privilege level to carry out the 

desired operation. 



The evolution of the modern microprocessor 

D-18  

 

 

Figure 101: Von Neumann architecture 

The von Neumann architecture also presents a serious bottleneck where both data and 

instruction fetches occur at the same time. This is common in pipelined processors where 

the CPU must be halted until both memory operations are carried out. On some memory 

systems this can be a lengthy process since the time for each access to memory may take a 

number of CPU cycles. 

D.4.2 Harvard 

The Harvard architecture utilizes a separate storage and bus medium for instructions and 

data (). Most computers which are documented as Harvard are in fact based on the 

modified Harvard architecture where it is possible to gain access to the program memory 

through the data bus.  

 

Figure 102: Harvard architecture 



The evolution of the modern microprocessor 

D-19  

 

A disadvantage with the pure Harvard architecture is that programs cannot be loaded at 

runtime and then executed. Therefore in pure Harvard architectures the program is often 

preloaded in a read only memory so that the computer can begin execution as soon as the 

power is applied.  

D.4.3 Performance 

The performance of a computer not only depends on the processor architecture but also 

the speed of the memory system. Ideally the memory would be as fast as the processor and 

accessible in a single clock cycle. However, this is only true for very expensive memory 

which is often only available in small quantities due to its cost. The problem is that 

memory speeds are increasing at a slower rate than processor speeds (Harris and Harris 

2007), as shown in . 

 

 

Figure 103: The gap in performance between processors and memory over time (Patterson 

and Hennessy 2005) 

In modern computers main memory is often implemented using dynamic random access 

memory (DRAM), while faster memories such as cache are implemented using static 

random access memory (SRAM). DRAMs are typically made from large banks of 

capacitors and have better density than SRAM. This means that DRAM can have a larger 



The evolution of the modern microprocessor 

D-20  

 

capacity for the same amount of silicon and are therefore cheaper (Patterson and Hennessy 

2005). 

 

Figure 104: Memory hierarchy model (Patterson and Hennessy 2005) 

Due to the difference in price and access times it is often advantageous to build memory as 

hierarchy of levels (). In this way by using the principles of locality it is possible to provide 

the quantity of cheaper memory at the speed closer to that of the fastest memory 

(Patterson and Hennessy 2005). 

D.4.4 Cache 

Cache is a small amount of fast memory located near the top of the memory hierarchy 

which can temporarily hold various sections of code and data based on the rules of locality 

(Hennessy and Patterson 2006). 

A cache hit occurs when a CPU performs a memory access and finds the item stored 

within the cache. Conversely a cache miss occurs when the CPU does not find the item in 

cache. 

If a cache miss occurs the processor can be paused while a block (fixed collection of data) 

containing the required word is fetched from main memory. The rules of temporal locality 

assume that it is likely that the CPU will require the word again in the near future. Spatial 



The evolution of the modern microprocessor 

D-21  

 

locality makes the assumption that it is highly probable that the rest of the data in the block 

will be needed soon. 

The process of cache hits and misses are handled in hardware. During a cache miss the 

time required to fetch the first word in a block is known as the latency and the time to 

receive the whole block is known as the bandwidth (Hennessy and Patterson 2006).  

The variation between the cache hit and miss times and the difficult nature of predicting 

which items are currently held in cache make determining tight BCET’s and WCET’s 

highly complex. 

D.4.5 Direct memory Access 

Direct memory access (DMA) is a hardware unit that allows data to be moved between IO 

and memory without the processor needing to intervene. This mechanism frees up the 

processor from doing tedious data transfers to generally slower IO. A negative aspect is 

that the DMA shares the data bus with the processor and therefore they can interfere with 

each other as they gain control of the bus. 

D.4.6 Memory management unit 

Memory management units (MMU) are a hardware mechanism that provides a number of 

useful functions such as paged memory, memory protection and translations between 

virtual and physical addresses. With paged memory, the address range is divided into 

manageable chunks known as pages. These pages are then used by memory allocation 

schemes. When a program is loaded into memory it may consume a number of pages 

whose locations may be non-consecutive. The program will then operate based on a virtual 

address which makes the memory region appear consecutive to the processor even though 

the addresses may not reflect the real addresses where the program is stored. A virtual 

address contains a page number and offset address which is translated through a page table 

to convert the virtual addresses to physical addresses. A translation lookaside buffer (TLB) 

is sometimes used to cache page table entries to help increase performance. Memory 

protection is sometimes included and can allow areas to be set with different privilege 

levels or be flagged as execute, read or read/write only.  



The evolution of the modern microprocessor 

D-22  

 

A MMU can benefit full scale operating systems greatly where dynamic memory allocation 

and separation of tasks are concerned. However they can impose a significant overhead on 

memory access times especially if the page table entries are not held within the TLB. 

D.5 Conclusions 

This chapter has provided an overview of computer architecture and its developments to 

some of the features found in modern processors. It has been shown in the past that a 

drive for miniaturization, reliability and performance has resulted in modern computer 

architecture exhibiting some highly complex features. Although this has benefited 

performance, the increase in complexity makes it harder to predictably make precise 

estimates of the systems behaviour. 

 

 


