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ABSTRACT

Embedded processors play a key role in many safety-critical applications including
medical, automotive and aerospace systems. In such systems an inability to provide
guarantees that the design will meet its requirements can have catastrophic consequences.
To ensure that guarantees can be made, it must be possible to predict both the functional

and temporal properties of the system at design time.

The trend in modern embedded system design is currently leading towards unpredictable
processor architectures in order to achieve increased performance. This trend presents
fundamental challenges for the designers of timing analysis tools who are finding the
accuracy and safety of timing estimations produced by new tools are getting worse. The
consequence of this is that it is increasingly becoming harder to provide guarantees that
the system requirements will be met. The primary causal factor is put down to the

developments in modern processor architecture.

This thesis attempts to address these problems with a novel, highly predictable

embedded processor design for systems with a “time-triggered” (TT) system architecture.

Even with a predictable processor, a real-time operating system (RTOS) implemented in
software can itself complicate the temporal predictability of the system. To address this

issue a predictable hardware TT scheduler is implemented in hardware.

In order to overcome the possibility of the application programmer writing temporally
unpredictable code, a set of software-based error-detection (and recovery) mechanisms is
implemented as a “task guardian” to deal with issues of task overruns in TT systems. The
performance and complexity of the initial software implementation leads to an

innovative hardware task guardian solution.

Opverall, the implication of the studies presented in this thesis provide the system
developer with an effective set of software and hardware components which are shown

to provide a highly-predictable platform for the execution of time-triggered tasks sets.
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Introduction

Chapter 1 Introduction

Beginning with Cantor, mathematicians have shown the uncertainty of mathematics and
human logic (Dauben 1990; Davis 2004). Boltzmann showed the disorder of physics
through fluid dynamics and that things can only be described in terms of probability
(Boltzmann and Brush 1995). Go6del showed the incompleteness of pure mathematics
proving that all systems of mathematical logic were limited, that there would be things that
while true, would never be able to be proved true (Smullyan 1992). Turing recast
incompleteness in terms of computers and showed that since they are logic machines,
incompleteness meant there would always be some problems they would never solve
(Turing 1939). A machine fed one of these problems would never stop and furthermore,
Turing proved there was no way of knowing beforehand which problems these were. This
condition was defined as ‘incomputable’ (Boolos, Burgess et al. 2007). Turing then related
this to the human mind and the limitations of logic and stated that “wathematical reasoning
may be regarded rather schematically as the combination of two faculties, which we may call intuition and
ingenuity” (Turing 1939). The then notions that there was a perfect logic that governed a
wortld of certainties had unravelled itself, that logic had revealed the limitations of logic and

certainty had revealed uncertainty (Malone 2008).

This may appear to be obvious to us in the current modern world, especially where many
software projects appear to be plagued by numerous bugs. However, this is a serious
problem when designing safety critical systems where the failure or malfunction may result
in death, injury, loss or damage to equipment and environmental harm. It is therefore
desirable to achieve some form of certainty to determine if a particular machine will

operate correctly.

Whilst there exist many mechanisms and formalisms that attempt to describe, model and
test safety critical systems (Bowen and Stavridou 1993), it is not always possible to be
completely certain that these machines are indeed safe (Isaksen, Bowen et al. 1997). This is
because logic machines like computers have a subset of mathematical logic to which
software programs can exist and they will often have to interact with their environment,

which as fallible humans we often struggle to describe.

11



Introduction

It is because of a range of human factors (Beaty 1995) and reasons such as those just
described, that many safety critical systems don’t rely solely on testing or formal
specifications but on a combination of systems including redundancy and fault tolerant
techniques (Nett, Streich et al. 1996; Lundqvist, Srinivasan et al. 2005; Boussemart, Ouimet
et al. 2006; Short and Pont 2007). As such it will be argued in this thesis that, if the
probability of an error occurring as a result of a systems design is to be reduced, designers
must strive to eliminate as much uncertainty as possible. Therefore it is pertinent to
develop systems based on highly predictable components. This becomes particulatly

significant as the complexity of a system increases (Wolfgang 2004).

The emphasis throughout this thesis will be focused on the issues of predictability when
designing and building applications where safety is critical. In particular, this issue will be

examined in regard to the field of embedded systems.

1.1 Embedded Systems

An embedded system is defined as a system in which a computer is encapsulated by the
device it controls (Wolf 2008). In short, an embedded system is typically a computer that
does not look like your conventional desktop PC (Pont 2002). In many cases the user may

even be unaware that a computer exists within the device.

One of the first recognizably modern embedded systems was the Apollo Guidance
Computer which was used for the NASA missions to the moon (Figure 1) (Hoganson

2007).

Figure 1: Apollo Guidance Computer (Image courtesy of Computer History Museum)
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Today embedded systems can form a core component of a vast range of everyday items
(cars, aircraft, medical equipment, factory systems, mobile phones, DVD players, music
players, microwave ovens, toys etc). Over the recent years, the embedded systems market
has increased significantly. For instance, in 1999 it was estimated that for every desktop
computer sold, there were approximately 100 embedded processors sold (Turley 1999).

Estimates state that in 2010 there will be 3 embedded devices per person on earth

(ARTEMIS 2004).

A large portion of the embedded market serves the safety critical sector. This can be
highlighted by the predictive growth of the automotive industry which has been the fastest

growing Huropean semiconductor consumer (Leen, Heffernan et al. 1999).

Initially embedded processors were first used in cars for engine management units (EMU)
after stringent legislations in California 1961 to reduce exhaust emissions (Flis 1983). Now
they can be found throughout the car from anti-lock braking systems, active suspension,

adaptive cruise control, to GPS navigation and environmental climate control (Figure 2).
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Figure 2: Available electronic devices in high-end cars (Leen, Heffernan et al. 1999)
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For modern luxury vehicles the cost of electronics can amount to more than 23% of the
total manufacturing cost. Analysts estimate that more than 80% of all automotive

innovation now stems from electronics (Leen and Heffernan 2002).

To support these systems, the number of microprocessors in the average modern car has
increased to about 40 - 100 (Turley 2003). So much so that the weight of the wiring looms
to connect these devices together and the electrical power requirements are becoming a

significant design issue (Leen and Heffernan 2002).

The automotive sector is an example of one area where the use of embedded systems is
gaining greater emphasis - not just in a multimedia capacity - but also in a safety critical
role. Many of these safety critical systems, such as drive-by-wire, have their heritage born
in the aviation sector where a new aircraft such as the Airbus A380 can cost around 205
million GBP (Kaminski-Morrow 2008). However, the modern day car is just a fraction of
the cost and meeting similar safety requirements within a competitive price point can be
particularly challenging. This can be highlighted by the number of safety standards that a
modern car must now conform to and still attain a relatively low time to market (SAE

1993; SAE 1994; Hardung, Kolzow et al. 2004; MISRA 2004).

The problem is further compounded as the complexity of the applications continues to
increase. Unfortunately the scale of the problem of reliably developing safety critical
embedded systems can be highlighted by the number of incidents that have occurred in the
space and aviation industries, which by comparison generally have tighter more stringent
standards, greater budgets and development times (Garman 1981; Carlow 1984; Fernando

1991; Reeves 1998; Stewart 2001; Driscoll, Hall et al. 2003; Charette 2005).

1.2 Challenges of Real-time Embedded Systems

Many safety critical embedded systems are generally categorised as real-time systems in

which the system must be responsive to its environment.

By definition a real-time system is a computer-based system where the timing of a
computed result is as important as the actual value (Liu 2000). Real-time systems do not
always require that the value must be produced as quickly as possible, in many cases the

desired property is steady and predictable behaviour (Stankovic 1988).

14



Introduction

Hard real-time systems are a type of real-time system where the penalty incurred for
missing a deadline can lead to catastrophic consequences (Buttazzo 2005). Examples of
hard real-time systems are the devices used for protecting transformers from lightning
surges on overhead power lines. These systems have to take the transformer offline within
a millisecond from detecting a lightning strike. If the system meets this deadline then the
transformer is protected. If the deadline is not met, then severe damage can occur. In this
example, there is no extra value gained from the system being faster than required to meet

the deadline (Engblom 2002).

For other hard real-time systems the computation time should have minimal variance
(jitter) in producing the result. For example, the control systems in engine controller units
(ECU) must regulate the amount of fuel and control the timing of spark plugs. If the spark
plugs fire too early then the engine could be damaged. If they fire too late then the engine
performance will decrease. Therefore the control algorithms should compute results at a
precise time from when the measurements are taken as this is necessary in order to
maintain good controller performance (Marti, Villa et al. 2001). Throughout this thesis, we

will be concerned with these types of hard real-time system.

In order to guarantee that these systems operate correctly, the worst case behaviour must
be analyzed and accounted for. Therefore it must be shown that all tasks can meet their

respective deadlines even in the case that all tasks consume the maximum amount of time.

For completeness, a distinction is sometimes made between “hard” designs and “soft”
real-time systems (Liu 2000). In soft real-time systems, the occasional failure to meet a
deadline does not usually result in severe effects. For instance, skipping a frame in video
playback is not fatal and might not even be noticeable by the user. Therefore, missing soft
real-time deadlines often means that the system still provides a useful service but that the

quality of the service is reduced.

1.3 Predictable Computer Systems

When describing the timing behaviour of a program, there are a number of common
measures used. The best-case execution time (BCET) is the shortest time the program can

ever take to execute. The worst-case execution time (WCET) is the longest time that a
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program can take to execute. The average case execution time is a value that lies between

the BCET and WCET (Figure 3).

% A Actual Actual
% BCET WCET
o Actual execution times
BCET Average? WCET
estimates estimates
>
Safe Unsafe Safe Execution time

Figure 3: Execution time measurements, reproduced from (Engblom 2002)

Since a program can receive a number of inputs at run time, it can often be very difficult to
determine the exact BCET and WCET values. It is often even harder to determine the
average times as these can depend on the distribution of data and not just the extremes of

program behaviour (Engblom 2002).

When building hard real-time systems to specification, timing analysis tools aim to produce
estimates of the actual WCET and BCET values. In order for a WCET estimate to be safe,
it must be greater than, or ideally, equal to the actual WCET. Similarly, the BCET has to be
less than or equal to the actual BCET. This is shown by the estimates lying within the safe
regions on Figure 3, any other WCET or BCET estimate is unsafe. This is because
producing an underestimate WCET or overestimate BCET will result in the system relying
on a false assumption which can ultimately fail (Engblom 2002; Puschner 2002; Wilhelm,
Engblom et al. 2008).

For timing estimates to be useful they should be conservative and close (or tight) to the
actual values, as shown by the ‘tighter’ arrows in Figure 3. An over estimated WCET value
may be safe but can lead to an incredible waste of resources. However, large variation in
the execution times and control flow of software can make producing estimates very

complex. Therefore great care must be taken when producing safe and optimum values.

A system that has variable execution times and accurately defined BCET and WCET’s, can
be considered as predictable. However, within this thesis, predictability in the first place
will be defined as the ability of the system to provide guarantees that its tasks will meet

their designated timing constraints. Secondly, predictability must provide for minimal
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timing deviations from the optimal timing scenario in which the system state can be

accurately predicted down to the instruction execution level at any instance of time.

Therefore the temporal predictability of a system can be quantified as the jitter or variation
in execution, and the summation of various causes of jitter which make it very hard to

predict accurate execution times.

1.4 Building real-time systems

When building real-time systems, two types of models are commonly used, event-based
and time-based. An event-based system is triggered by external events, whist time-based
systems read their input signals periodically (usually driven by some clock). Another
definition of time-triggered systems is that it is possible to determine in advance what the
system is doing at every moment of time during the lifetime of the system (Pont 2002).
This makes time-triggered systems particularly attractive for applications requiring high

predictability.

Time-triggered (T'T) architectures are often promoted for use in safety critical applications.
For instance, Kopetz reports that “zhe control system for Japan’s Shinkansen bullet train uses a large
time-triggered fault-tolerant system”, and he claims that “Safety-critical real-time computer applications
Jor flight control, nuclear power plant shutdown, and so on, have to be fault tolerant and are therefore based

on the time-triggered paradigm” (Kopetz and Griinsteidl 1994).

A drawback of building TT real-time systems is that the synchronous execution of tasks
needs more preplanning in the design phase and is less flexible than asynchronous tasks in
event-based systems. For instance, care has to be taken to ensure that the system is both
responsive to its environment and that each task is has enough available CPU time
available to it. In the case that a task exceeds its allocated WCET the resulting effect may
cause the other tasks in the system to miss their respective deadlines. These conditions are

known as task overruns.

On the other hand, TT designs tend to have a very simple architecture which makes them
easy to understand and maintain (Liu and Layland 1973 ), thus the maintenance costs can
be substantially reduced. Furthermore, due to the predictable nature of TT designs,
certification authorities (and company lawyers) tend to look favourably on systems using

this architecture for safety-critical applications (Pont 2001).
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TT scheduling architectures can differ between pre-emptive and co-operative (or non-pre-
emptive) algorithms. Rate monotonic (TTRM) and deadline monotonic (TTDM) define
scheduling algorithms that are fully pre-emptive, whilst cyclic executives and time-triggered

co-operative (T'TC) algorithms define co-operative based systems (Bate 1998; Pont 2001).

A key benefit of co-operative algorithms is the absence of deadlock situations and the
associated complexity from dealing with shared resources among concurrent tasks. As a
result, TTC architectures are often regarded as one of the simplest forms of time-triggered
scheduling which are easier to use due to its low complexity and has been shown to be

highly effective for a wide range of applications (Pont 2001; Kopetz 2008).

Overall, the focus of this thesis is on predictability and therefore the rest of the document
will be based on time-triggered co-operative architecture. A more detailed discussion of the

TTC architecture is given in Chapter 2.

1.5 Problems making real-time systems predictable

As discussed in the previous section, TT architectures can be expected to provide highly-
predictable behaviour. However, assumptions about such behaviour rely (often implicitly)
on knowledge of the operating characteristics of the underlying hardware. For instance,
Engel. et al. notes that: “Fulfilling an embedded application's real-time requirements depends largely on
knowing the timing properties of the underlying hardware and OS.” (Engel, Kuz et al. 2004). It is
therefore essential - that if predictable timing behaviour is to be obtained - that the

temporal characteristics of the systems hardware can be easily understood.

Often embedded systems are built upon highly predictable electronics driven by a high
precision oscillator to provide accurate and synchronous clock signals. However, as the
layers of abstraction (such as processor architecture, operating system and application
software) are applied, the predictable timing behaviour generally appears to decrease

(Edwards and Lee 2007).

The developments in microprocessor architectures have often been designed to meet the
classical objective of maximising (average) resource utilisation. Embedded processors are
slowly following this trend by integrating some of the features commonly found on
desktop and server architectures, where the goal is performance rather than predictability.

As a result, these architectures are displaying greater variations in the execution time of
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tasks and can make determining the systems temporal properties highly complex. Features
that contribute to this complexity include caches, DMA, pipelines, branch prediction and

instruction level parallelism (Berg, Engblom et al. 2004).

Due to these temporal complexities, modern timing analysis tools are struggling to keep up
with modern computer design (Rapita 2008; Wilhelm, Engblom et al. 2008). The difficulty
is being able to accurately model the processor hardware for static analysis or take timing
measurements that are known to be both accurate and safe (as described in Section 1.3).
This results in reduced confidence in the guarantees that the system will meet its

objectives.

The problem can then be summarised as follows: if time-triggered systems are to be
considered as predictable but run on processors that are regarded as hard to predict, it

follows that in essence that time-triggered systems cannot be predictable.

Therefore, a predictable processor architecture is required in order to allow time-triggered
co-operative systems to run predictably and alleviate the problems associated in providing

reliable guarantees that the system will meet its requirements.

1.6 Aims of this thesis

The aim of this thesis is to design and evaluate a highly predictable embedded processor
specifically suited for time-triggered co-operative systems in which each instruction has a
single temporal response under all conditions in order to facilitate simple static program

analysis and highly accurate time predictability.

1.7 Key contributions
® Development of a novel processor core for time-triggered systems.
® Development of a hardware-based scheduler for use with TT systems.

® Development of a set of software-based error-detection (and recovery)

mechanisms to deal with issues of task overruns in TT systems.

® Translation of the above task overrun solution into hardware, thereby improving

performance and reducing software complex
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1.8 Thesis Overview

The rest of this thesis is organized as follows:

Chapter 2 gives an overview of the key parameters and characteristics involved in

selecting a predictable scheduler for hard real-time embedded systems.

Chapter 3 reviews how the features in modern processor architecture have an

impact on the ability of the system designer to predict how the system will behave.

Chapter 4 presents a design for a predictable processor by first considering the
architectural decisions and then adding new features to support predictable

execution of TT architectures.

Chapter 5 presents a design for a hardware-based TTC scheduler which minimises

the complexities of scheduling overheads.

Chapter 6 presents a set of software-based error-detection (and recovery)

mechanisms to deal with issues of task overruns in TT systems.

Chapter 7 presents a hardware solution to the task overrun problem in order to

improve performance and reduce software complexity.

Chapter 8 draws conclusions from the work presented throughout this thesis and
discuss the future work in the area of increasing predictability in embedded

systems.

1.9 Conclusions

This chapter introduced the challenges involved with creating predictable embedded

systems and reviewed the main contributions of the research presented in this thesis. These

contributions are centred on achieving highly predictable behaviour for time-triggered real-

time embedded systems.
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Chapter 2 Software architectures for embedded systems

2.1 Introduction

Chapter 1 discussed that for embedded systems and in particular for hard real-time systems
to be predictable, the underlying architecture must be predictable. In software this relates

to the way code is executed.

For many systems the functional requirements are often broken down into a group of
smaller tasks. For hard real-time systems, these tasks must then be proved to be correct

(Section 1.4).

In order to achieve the required system behaviour, a scheduler algorithm can be used to
execute the tasks in the system in a specific order based on a set of constraints. Buttazzo
breaks these constraints down into three key areas; timing, precedence and resource

constraints (Buttazzo 2005).

2.1.1 Timing constraints

For each task in the system there are a number of commonly used timing parameters to
define its temporal behaviour. These parameters can be met by an appropriate scheduling

algorithm.

The “arrival time” or “release time” parameter is defined as the time at which the task is
ready for execution. The start time defines the point when the task actually begins
execution. The finishing time is the time in a particular run where the task actually finishes
execution. The relative deadline is the maximum delay from the release time at which the

task must complete. BCET and WCET parameters are described in Section 1.3.

Tasks are further broken down based on their arrival characteristics into periodic and

sporadic.

For periodic tasks a new instance is executed periodically after a fixed duration between
each task release (Buttazzo and Caccamo 1999). A benefit for periodic systems is that the
future release times of tasks are known in advance. Also many real-time applications are

periodic in nature such as data acquisition and control systems (Halang and Stoyenko 1994,
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Krishna and Shin 1997; Buttazzo 2005). Periodic systems are often promoted for hard real-

time systems (Spuri, Buttazzo et al. 1995; Pont 2001).

Sporadic tasks differ from periodic tasks in that the tasks are activated at irregular rates
(Jeffay, Stanat et al. 1991). Examples of sporadic tasks are non-periodic device interrupt
handlers and user requested task activations such as graphical user interfaces (GUI) (Spuri,
Buttazzo et al. 1995; Nolte 2003; Buttazzo 2005). Sporadic tasks are also generally
considered to be unpredictable (Kopetz 1991).

2.1.2 Precedence constraints

Another requirement is that tasks are executed in a particular order. This relation is known
as the precedence (Mohammadi and Akl 2005). An example could be a data acquisition
system in which there might be an input sensor task and computational task followed by an

output task. This characteristic is common in systems such as simple cruise control

(Ayavoo, Pont et al. 2005).

For groups of tasks that have precedence relations, the temporal behaviour is not just
based on the individual task but by the set of tasks in the relation. Therefore all tasks must
complete before the overall deadline (Halang and Stoyenko 1994; Ramamritham and
Stankovic 1994). Precedence can also apply to task sets across multiple processors (Jensen,

Locke et al. 1985).

2.1.3 Resource constraints

Tasks can also be classified as independent or dependent. Discounting the CPU,
independent tasks do not share any other resources (Blake 1992; James, Hawick et al.
1999). Alternatively, dependant tasks require mutually exclusive access to shared resources
(Cottet, Delacroix et al. 2002; Merrick, Wang et al. 2005). Shared resources are considered
to have negative impacts on temporal predictability due to the need to consider the timing
impacts of the locking mechanisms and the associated tasks that also share the resource

(Audsley and Burns 1990).

2-2



Software architectures for embedded systems

2.2 Real-time task scheduling

In order to manage the various task constraints a suitable scheduling mechanism can be
used. This section will discuss the differences in scheduling approaches and the impact

they have on the predictability of the system.

2.2.1 Time-triggered versus event-triggered

Scheduling architectures can be broken down into time-triggered and event-triggered
systems. A time-triggered system releases tasks based on specific time instances which are
known before the systems starts (Liu 2000). Event-triggered systems release tasks based on

a set of events such as external interrupts.

Event-triggered systems are useful for applications requiring high responsiveness, flexibility
and the capability to handle sporadic events (Kopetz 1997). However, since the frequency,
timing and possibility for simultaneous events are hard to predict, the run-time behaviour
is unknown until the system starts and therefore the system is unpredictable (Kopetz

1991).

Time-triggered systems detect external events by polling the event sources periodically
(Pont 2001). The responsiveness of the system is then dependent on how frequently the
polling tasks are called. If the tasks are called very frequently then the system may be
loaded unnecessarily (Pont 2001). Therefore, in time-triggered systems more pre-planning
is required in the design stage. However, since the task executions are based on static pre-
determined schedules, the system loads and systems response times are known in advance
(Locke 1992; Kopetz 1997; Liu 2000). The state-synchronisation on time-triggered systems

is also better as the tasks are based around a synchronised global clock (Obermaisser 2004).

2.2.2 Offline versus online

Schedulers also differ in the time at which scheduling decisions are made. Scheduling
decisions can be made using either offline or online algorithms (Liu 2000; Cottet,
Delacroix et al. 2002). Offline algorithms contain a static plan of task parameters which
can be stored as a table of procedure calls (Stankovic, Spuri et al. 1995; Nolte 2003). The
availability of the pre-runtime schedule makes the system more predictable and easier for

the designer to ensure that the constraints of the system will be met (Xu and Parnas 1993).
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Online algorithms differ in that the task schedule is determined dynamically based on the
parameters that are known at runtime (Cottet, Delacroix et al. 2002). A benefit to this
behaviour is that the schedule is flexible and can evolve to the demands of varying
environmental conditions, especially where the future system loads are unknown.
However, online algorithms are unpredictable and require the additional overhead of

calculating the schedule between task activations (Liu 2000).

2.2.3 Co-operative versus pre-emptive

Scheduling strategies can differ between co-operative and pre-emptive systems (Liu 2000).
In co-operative scheduling, tasks are given control of the processor and must co-operate
with the system by returning control to the scheduler once the task has completed (Pont
2001). Therefore since tasks are not interrupted and run to completion complex locking

mechanisms are not required as resources are not shared.

In pre-emptive scheduling a task may be interrupted whilst higher priority tasks are given
control of the processor (Audsley, Burns et al. 1995; Nissanke 1997). This involves saving
the current tasks state so that it can be paused and restarted once the higher priority tasks

have completed (Liu 2000).

2.2.4 Fixed-priority versus dynamic-priority

Real-time scheduling schemes execute tasks based on a set of priorities. The priority
assignment for tasks can be fixed or dynamic in nature (Audsley, Burns et al. 1991;

Buttazzo 2005).

In fixed priority assignment, tasks are given a priority that is maintained throughout the
lifetime of the system (Burns 1991). Since the priority of tasks are known before the
system runs, fixed priority systems are promoted for the use in hard real-time systems (Tia,

Liu et al. 1996).

Dynamic priority assignment allows tasks to be given different priorities during the lifetime
of the system (Liu 2000). These systems will adapt the task schedule to the conditions of
the environment to meet the required demands. Whilst dynamic priority is more flexible

than static priority, it is also less predictable (Bini and Buttazzo 2004).

24



Software architectures for embedded systems

2.3 The time-triggered co-operative scheduler

Based on the criteria in the previous sections, a predictable hard real-time system should
contain a time-triggered co-operative (T'TC) scheduler with offline and statically prioritized
tasks. In fact, in literature this type of system is known as a cyclic executive (Baker and
Shaw 1988; Locke 1992; Bate 1998) and is widely used in the design of safety critical
systems in areas such as the automotive and avionics sector (Catlow 1984; Kopetz and

Grinsteidl 1994; Tindell, Kopetz et al. 2003).

There are a few drawbacks to TTC scheduling. For instance, whilst the implementation is
simple, the structure can be considered to be rigid and inflexible (Locke 1992),
implementing tasks to handle sporadic events through polling can be expensive (Bate 1998)
and the schedule has to be re-analysed for every change made. However, the TTC
scheduling framework is highly predictable and has been shown to be suitable for a wide

range of applications (Pont 2001; Kopetz 2008).

While such a scheduler is not suitable for all systems, when compared to other
architectures, time-triggered, co-operative scheduled (T'TC) systems are known to provide
a simple, low-cost and highly predictable platform. For instance, various studies have
demonstrated that when compared to pre-emptive schedulers, co-operative schedulers
have a number of desirable features, particularly for use in safety-related systems. For
example, (Nissanke 1997) notes: “/pre-emptive] schedules carry greater runtime overheads becanse of
the need for context switching — storage and retrieval of partially computed results. [Co-operative]
algorithms do not incur such overbead. Other advantages of [co-operative] algorithms include their better
understandability, greater predictability, ease of testing and the inherent capability for guaranteeing exclusive
access to and shared resonrce or data.”. (Allworth 1981) notes: “Significant advantages are obtained
when using this [co-operative] technique. Since the processes are not interruptible, poor synchronisation does
not give rise to the problem of shared data. Shared subroutines can be implemented without producing re-
entrant code or implementing lock and wunlock mechanisms”. Also (Bate 2000) identified the
following four advantages of co-operative scheduling when compared to pre-emptive
alternatives: The scheduler is simpler; The overheads are reduced; Testing is easier and

Certification authorities tend to support this form of scheduling.
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Within this thesis, the most important constraint is predictability and therefore the TTC

scheduler will be used throughout the work described here?.

2.3.1 Implementation

The particular TTC scheduler implementation which will be used throughout this thesis is
be based around the design described in (Pont 2001). This is because the source code is
well documented and the subject of a number of research papers (Pont 2003;
Phatrapornnant and Pont 2006; Vidler and Pont 2006; Gendy and Pont 2008). An

additional benefit is that the source code is freely available for use in research projects.

A TTC scheduler is characterised by a periodic scheduler tick in which one of more tasks
can execute as long as they return in a time less than the tick interval. In Figure 4, a
scheduler tick is denoted by the upward arrows indicating the points when the system is
interrupted. The tick interval is the periodic time between the scheduler ticks. Tasks are

scheduled after a tick and must return before the end of the current tick interval.

Interrupt
b
(vs)
a
@]
pg
ve)

Figure 4: Example Time-Triggered Co-operative schedule

The scheduler tick is often implemented through a periodic timer interrupt which calls a
scheduler interrupt service routine (ISR) called Update. The Update function will
increment a tick count value which is required by a scheduler Dispatch function in order to
determine when a task can be released. At runtime the Dispatch function is called from the
main function inside an infinite while loop. Using the tick count value, a task queue is
updated and the tasks are released based on the their period and fixed priority. An example

of a typical TTC schedule is shown in Figure 4.

2Tt is noted that other less predictable and more flexible pre-emptive scheduling architectures such as rate-
monotonic, deadline-monotonic, eatliest deadline first and least laxity first could be considered but is

felt to be out of the scope of the work presented here.
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2.4 The Time-Triggered Hybrid Scheduler

An alternative to TTC can be to include support for an optional single pre-emptive task
and allow the co-operative tasks to extend beyond the tick interval. This allows for a
mixture of long and short task executions in order to further expand the range of

applications that can be supported.

For instance, whilst the TTC architecture has many attractive features, the solution is not
always appropriate. As Allworth has noted:  “/The/ main drawback with this [co-operative]
approach is that while the current process is running, the system is not responsive to changes in the
environment. Therefore, system processes must be extremely brief if the real-time response [of the] system is
not to be impaired.” (Allworth 1981). This concern can be expressed slightly more formally by
noting that if a system is being designed which must execute one or more tasks of (worst-
case) execution time e and also respond within an interval t to external events then, in

situations where t < e, a pure co-operative scheduler will not generally be suitable.

In such circumstances, it is tempting to opt immediately for a fully pre-emptive design.
Indeed, some studies seem to suggest that this is the only alternative (Locke 1992; Bate
1997). However, another design option is to include the support for a single, time-
triggered, pre-emptive task that can be added to a TTC architecture, to create a “time-

trigeered hybrid” (TTH) scheduler (Pont 2001; Maaita and Pont 2005).

Use of a TTH scheduler allows the system designer to create a static schedule made up of
(i) a collection of tasks which operate co-operatively and (ii) a single — short - pre-emptive
task. In many designs, the pre-emptive task will be used for periodic data acquisition,
typically through an analogue-to-digital converter or similar device: such requirements is

common in, for example, a wide range of control systems (Buttazzo 2005).

The operation of the TTH architecture is illustrated schematically in Figure 5. This figure
shows the situation where a single short pre-emptive task is executed every millisecond,
while a co-operative task (with a duration greater than 1 ms) is “simultaneously” executed
every 3 milliseconds. Note that pre-emptive task will interrupt the co-operative task when

it i1s due to run and therefore shared resources must be handled with care.
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Figure 5: Illustrating the operation of a TTH scheduler

The TTH architecture will, in many cases, be used to implement a common “rate-
monotonic” schedule: although it should be emphasised that this architecture only
supports a single pre-emptive task. As a consequence, in a resource-constrained embedded
system, it is a very attractive proposition because it allows creation of a scheduler with
minimal resource requirements which is precisely matched to the needs of many practical
applications. However, for the most part, this thesis will be concerned with TTC
scheduling since a TTH framework reduces the predictability slightly due to the inclusion

of pre-emption and the issue of dealing with shared resources.

2.5 Conclusion

This chapter has discussed some of the key parameters and characteristics involved when
selecting an appropriate scheduler for high-reliability embedded systems. By taking the
most predictable design choices an offline and static priority time-triggered co-operatively
scheduled system was selected in order to provide highly predictable and deterministic
system behaviour. Therefore the rest of this thesis will be primarily based around the TTC

scheduling architecture.

The next chapter considers the issues of temporal predictability in the design of

microprocessor architecture.
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Chapter 3 The challenges involved in creating

“predictable” microprocessor hardware

This chapter reviews the challenges in designing predictable microprocessors and the
current work that has been done to improve temporal predictability. Anyone not familiar
with modern processor architecture may wish to take a look through Appendix D which

describes how computer hardware has developed over the past 50 years.

3.1 Introduction

This chapter aims to demonstrate the problems of understanding and predicting the
temporal properties of software as it executes on modern processor hardware. Figure 6
illustrates this problem where an application programmer will typically combine a set of
tasks and an RTOS to form the code that will run on the processor. However, the
temporal properties of executing that code is often unknown, leading to an output

behaviour that is difficult to predict.

Input Output

RTOS
\ D Behaviour
|
Tasks /

Figure 6: Mismatch between code input and anticipated temporal behaviour

As mentioned in Section 1.3, one of the key temporal properties required for hard real-
time systems is WCET, therefore this chapter begins by considering the challenges

involved in WCET analysis.
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3.2 Difficulties in WCET analysis

One of the key issues in timing analysis is attempting to solve the problems of obtaining
accurate and tightly bounded execution times. For hard real-time systems, the most crucial
of these is to obtain the upper bounds (WCET) of a program in order to guarantee that

deadlines can be met.

In fact, Wilhelm and colleagues have argued that “Unfortunately, it is not possible, in general, to
obtain upper bounds on execution times for programs.” (Wilhelm, Engblom et al. 2008). Whilst
using a restrictive form of programming by bounding loops and removing recursion can
help, they argue that determining the worst case inputs to the system can be very complex
to derive. They state that even if the worst case inputs can be derived then the state space

is often too large to explore all possible executions.

A common approach to obtain timing estimates is to take measurements for a set of test
cases. However, these values will usually under estimate the correct BCET or WCET. The
problem is knowing if the worst case or best case times have indeed been measured.
Therefore, measurement based techniques are not guaranteed to be safe and are generally

unsuitable for hard real-time systems, especially as a primary source of timing analysis.

The only way to achieve accurate bounds on execution times is to explore the computed
time for all possible task executions. However, since the state space is so large, a more
feasible approach is to abstract the system model (Rapita 2008). A problem with this form
of static analysis is that while safe, the abstraction loses information about the system states

and will usually produce overestimated timing values.

The way this relates to the processor hardware is that in order to obtain safe and tight
bounds, all the system states must be explored or abstracted conservatively. This therefore
requires an accurate model of the underlying hardware and its features. In some cases the

best model of the processor is the processor itself (Bernat, Davis et al. 2007).

The ability to create accurate models of the hardware depends largely on the complexity
and temporal predictability of the techniques used. Some of these features can reduce
predictability due to the use of speed-up mechanisms like caches, instruction pipelines,
parallel instruction-execution units, and branch-prediction. Some of these mechanisms are

complex in their implementation and have mutual interferences in their timing. In addition,
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the timing properties are rarely documented to protect the manufacturer’s intellectual
property. These issues make it very difficult to build static WCET analysis tools for

modern processors that can be guaranteed to model the timing of the processor correctly

(Puschner 2002).

This chapter aims to explore some of the underlying temporal predictability problems in

modern processor architecture.

3.3 Principles for a time predictable processor

Identifying the complexities in temporal predictability for modern processor architecture

are best described through the principles for a time predictable processor.

(Thiele and Wilhelm 2004) identified 4 key threats to predictability in processor

architectures:

Non-Deterministic behaviour - A significant cause for low temporal predictability can arise
through the systems sensitivity to interfering and non-deterministic behaviour. For

example, through the reception of sporadic interrupts.

High Variability — A number of features such as caches, pipelines and out of order
execution can cause a high variation in execution times. These variations can combine

together to have a larger impact on the temporal properties of the system.

Non-Analysable — Some components can exhibit properties which are non-analysable and

can make determining accurate execution times impossible.

Complexity - There are some components that can be analysed but the computational
effort to do so results in such high complexity and low performance that the effort

required is not practical.

These properties have been observed and found to be responsible for temporal
predictability in a number of system components (Heckmann, Langenbach et al. 2003) and

will be described in more detail in the following sections.

3-3



The challenges involved in creating “predictable” microprocessor hardware

3.4 Issues with current processor architecture

Some of the problems with timing analysis have been shown to come about due to the

following processor features:
® Instruction Set
® DPipelines
® Branch Prediction
® Memory systems

® Documentation

These issues will be discussed in more detail in this section.

3.4.1 Instruction Set

Often one of the early decisions in a processor design is to choose an appropriate
instruction set architecture (ISA) (Patterson and Hennessy 2005). Instructions sets can
differ between size, CISC and RISC, and modern instruction sets also differ between

variable and fixed length.

Current embedded system trends indicate that variable length instruction sets have a better
code density which is an important design parameter for many real-time systems. Examples
of processors with variable length instruction sets can include some incarnations of ARM
and MIPS processors. These processors can contain a mixture of 16bit and 32bit

instructions.

A problem with variable length instruction sets is that they can make the predictability for
cache analysis more complex, for instance by adding extra instruction cycles for branches
to misaligned instructions when only part of the instruction is cached. Due to the code
density of variable length instruction sets the number of memory cycles are decreased,

giving better average performance than fixed length instruction sets.
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3.4.2 Pipelines

A design feature that can link closely to the instructions set is the option to utilize a

pipelined architecture.

The predictability of a particular pipeline system can depend on the power of the available
analysis methods. With pipeline analysis two levels of complexity have been defined, one-

shot and fixed-point analysis (Berg, Engblom et al. 2004).

One-shot analysis is a fast method which is only suitable for simple pipelines as each
instruction is assumed to have a single and deterministic pipeline behaviour. Fixed-point
analysis uses a collection of abstracted pipeline states which are used to evaluate all
possible states. This makes fixed-point analysis more suitable for complex pipeline
architectures but entails higher computational costs. Some architectures feature
characteristics that are not suitable for either methods. For example, a PowerPC 755
processor was found to have cases where an instruction could have up to 1000 states
(Heckmann, Langenbach et al. 2003). Furthermore, some systems suffer from long timing
effects (LTEs) and can cause an unmanageable amount of complexity in fixed point

analysis and render one-shot analysis completely infeasible.

LTEs are the effect when the timing behaviour of the current instruction depends on the
execution history of previous instructions which are not its direct neighbour in the
instruction flow. This effect can range from between a few machine cycles in simple
pipelines to propagating for potentially unbounded sequences of instructions, for example
in caches (Engblom and Jonsson 2002). The result is high variability and local non-
determinism which can affect the execution times of tasks and the ability to meet

deadlines.

A more alarming problem is the issue of timing anomalies which display a counterintuitive
influence on the expected timing behaviour between the local execution of instructions and
its effect on the global execution of tasks (Lundqvist and Stenstr 1999; Reineke, Wachter et
al. 20006). An example of this is the condition where a cache hit would normally translate
into faster system execution, but in fact leads to the opposite. The ColdFire 5307 processor

was observed to have this behaviour (Heckmann, Langenbach et al. 2003).

3-5



The challenges involved in creating “predictable” microprocessor hardware

The first timing anomaly to be observed was in the instruction scheduler of superscalar
out-of-order pipelines (Graham 1969). In such architecture, a speed up in one instruction
could lead to a less efficient schedule which can affect many future instructions. The state
space for such a system becomes very large and thus becomes a highly computational

heavy problem for analysis tools.

The potential for timing anomalies has a large effect on the ability of timing analysis tools

to provide accurate and safe estimates (Heckmann, Langenbach et al. 2003).

3.4.3 Branch Prediction

Dynamic branch prediction is generally considered unsuitable for use in real-time systems
(Heckmann, Langenbach et al. 2003). This is because a number of the employed
techniques break the recovery requirement which states that it is possible to recover the
knowledge of the ISA or timing behaviour when it becomes unknown (Berg, Engblom et
al. 2004). For dynamic branch prediction this is a problem because the history of previous

branches affects the predictions of future branches (Engblom 2003).

When combined with caches, branch prediction has also been shown to be a cause of
timing anomalies (Ferdinand, Heckmann et al. 2001). In such cases, executing a loop for

more iterations could result in a reduction of execution time (Engblom 2003).

Dynamic branch prediction is also shown to break the non-interference principle where
the prediction can cause parts of the cache contents to be replaced by instructions that are
not executed. A large quantity of branches in a program can result in a significant
disruption to the cache analysis and consequently the timing estimates (Berg, Engblom et

al. 2004).

On modern processors such as the AMD Athlon, dynamic branch prediction is shown to
make WCET analysis very difficult (Petters 2002). An alternative approach is to use static
prediction based on statically known information, such as branch direction or special hint
bits in the instruction. An example of a static predictor is the BTFN (backward branches
taken, forward branches not taken) which is shown to be 60-70% accurate for typical

embedded applications (Gwennap 1995; Levy 2002).
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3.4.4 Cache Predictability

According to (Basumallick and Nilsen 1994; Sebek 2001) there are two main types of cache
behaviour, intrinsic and extrinsic. Intrinsic behaviour is the condition where two parts in
the same task compete for the same area in cache. As a result the two parts invalidate each
other and the performance is reduced. Extrinsic behaviour is the result of separate tasks
invalidating each other, mainly due to pre-emption where the contents of the cache are

replaced with the contents of a new task. This is also known as the cache related pre-

emption delay (CRPD) (Sebek 2001).

A common perception is that the use of cache is not suitable for applications requiring
predictable behaviour. As a result it can be common practice to disable cache for critical

sections of code where predictability is required (Mueller, Whalley et al. 1993).

An alternative solution to the problem is the use of a locally fast on-chip RAM area in
which the compiler or programmer can selectively map key sections of code and data.
However, the use of large amounts of on-chip RAM comes at a cost penalty and
performance depends on the effectiveness to map values that will provide a maximum

benefit.

Despite some of the negative aspects for the predictability of cache, there are some
researchers who argue that modern techniques can provide accurate estimates. For instance
once the cache is loaded with the values then the analysis is said to model the real
behaviour accurately (Ferdinand, Heckmann et al. 2001). Instruction caches can also be
predicted quite accurately when the program flow and memory accesses are known
(Mueller, Whalley et al. 1993). However, the assumption is usually made that the code
being analysed is between two points (such as context switches) where the cache is

assumed to be invalidated.

There are also claims of confidence in the predictability of data cache (Berg, Engblom et al.
2004). For example, one study (Ferdinand, Heckmann et al. 2001) shows that in
benchmarks supplied by Airbus found over 90% of the data accesses to be predictable.

However, for systems in which the instruction and data accesses share a unified cache, an

interference problem occurs. This is where instruction and data accesses can invalidate
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each other and like the similar problem in branch prediction it can affect the overall

performance (Berg, Engblom et al. 2004).

Cache are also known for exhibiting timing anomalies on out-of-order pipelines where a
cache hit can result in the worst case timing. Furthermore a miss penalty can be higher
than expected due to its effect on the instruction scheduler which can cause older

instructions to execute earlier than normal (Lundqvist and Stenstr 1999).

A few solutions have been provided to get round the problems of extrinsic cache
behaviour from task pre-emption. A simple solution is to flush the cache on each context
switch so that each execution run starts in a known condition (Niehaus, Nahum et al.
1991). However the performance can be significantly impacted if pre-emption occurs very
frequently. An alternate solution to flushing the cache after every context switch is to make
the pre-emption points known so that the disruption to cache can be modelled in the
analysis (Simonson and Patel 1995). Kirner and Puschner used this idea in combination
with an instruction counter rather than a timer to identify the exact points in the code
where the pre-emption would occur (Kirner and Puschner 2007). This solution was shown
to be predictable but it does require that the task schedule be static or deterministic so that

it can be included within the model.

Another approach to increasing the cache predictability is the use of partitioning to split
the cache into segments which can be assigned to individual tasks (Kirk 1989; Kirk and
Strosnider 1990; Mueller 1995). This can be achieved either through hardware or in
software by carefully mapping the tasks to memory locations that do not compete for the
same cache lines. A problem with cache partitioning is that each task is only given a small
portion of the available cache and the task scheduler must incorporate mechanisms for

protecting and allocating the cache resource.

A solution proposed by (McFarling 1989) uses a dedicated bit in the instruction set to
indicate if a particular instruction should be cached. This provides a solution for systems
where only certain portions of the code contain time critical sections and where the rest of
the system can benefit from the full use of the cache. (Chi and Dietz 1989) used a similar

technique in load and store instructions to indicate if data should be cached.

Another approach is the use of cache locking mechanisms where values are loaded into the

cache and locked to prevent further change (Akgul and Mooney 2002). Two methods exist,
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static and dynamic cache locking. Static cache locking allows the values to be loaded once
during system start up and are then never changed during the systems lifetime (Campoy,
Ivars et al. 2001). Dynamic cache locking allows the values to be loaded and then changed
at specific points, for instance when tasks are pre-empted (Campoy, Ivars et al. 2002).
Experiments show that static locking is more predictable but has limited performance
gains compared to dynamic locking (Campoy, Perles et al. 2003; Vera, Lisper et al. 2003;
Vera, Lisper et al. 2007).

3.4.5 DRAM

Unlike SRAM, DRAM can cause problems to temporal predictability due to its need to
refresh the capacitors that it uses to store data. Unfortunately the refresh cycles occur
asynchronously to program execution and are an example of a non-analysable component.
If the refresh occurs on the same data that is being accessed then the processor will be
halted until the refresh is complete. The problem is being unable to know when the refresh
cycles will collide with the data accesses and how often. Therefore assuming the worst case
time on each memory access will usually result in a large overestimation of the WCET

(Atanassov and Puschner 2001).

Initial measurements on the impact of DRAM refreshes showed that the effects were
larger than expected (Park and Shaw 1990). However, more recent studies have shown the

average effect to be about a 2% increase on execution time (Atanassov and Puschner

2001).

A proposed method to increase DRAM predictability includes a compiler based system to
synchronise memory accesses with refresh cycles (Panda, Dutt et al. 1997). However, this

knowledge of when the refresh occurs is unknown.

3.4.6 Direct Memory Access (DMA)

For DMA transfers there are two modes of operation, cycle stealing and burst mode
(Colnaric and Halang 1993). In cycle stealing mode the DMA takes its turn with the CPU
to make use of the data bus. In order to predict when the DMA operation will finish
requires knowing the arbitration scheme of the bus. A more predictable approach is the
burst mode where the CPU is paused until the transfer operation is complete. However,

during this period it will reduce the processors ability to react to external events. Therefore
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the DMA must be factored into the timing analysis much like any other task in the system

(Pitter and Schoeberl 2007).

3.4.7 Memory Management Unit (MMU)

Memory management units provide two main functionalities. These are to make the main
memory appear larger than the physical memory by offloading less frequently used pages
to a slower memory medium, and to provide memory protection (Berg, Engblom et al.
2004). For hard real-time systems the features of memory protection are of most practical
use as expanding the memory area beyond the physical memory is usually unpredictable in
hardware and slow in software. Some recent work has been done to increase the
predictability on directing the MMU page transfers through a compiler (Puaut and Hardy
2007). Another issue with using an MMU is the translation lookaside buffer is a form of
cache memory for holding page table entries and therefore suffers from the similar
problems as cache (Bennett and Audsley 2001). If all the relevant table entries are located
in the TLB before the task starts then the behaviour is said to be predictable (Niehaus
1994).

3.4.8 Comprehensive Documentation

Processor documentation is scarcely catered for hard real-time systems in which deep
information for the processors states and temporal qualities are required (Berg, Engblom et
al. 2004). The reasons behind this lack of information might be due to competitive reasons.
In some case even the documented information has been found to be incorrect, as
(Atanassov and Puschner 2001) found in the case of DRAM timing. The hardware
documentation for the C167 processor was also found to be inaccurate, leading to a 5%

difference in measured and estimated times (Atanassov, Kirner et al. 2001).

If predictability is to be maintained and analysis tools are to provide safe and accurate
estimates, then the processor hardware states should be both predictable and well

documented.

3.5 Symptoms of unpredictable hardware

In the previous section the reduced predictability in processor architectures are shown to

be the result of speed-up mechanisms such as caches, pipelines, branch prediction,
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instruction level parallelism and out-of-order execution. This problem is made worse when
the effects of these mechanisms combine to produce LTEs and timing anomalies.
Furthermore the documentation rarely provides adequate information to produce accurate
processor models. These combined issues then make it difficult to build static WCET tools
and make guarantees that deadlines will be met (Puschner and Burns 2002). This also
relates to a further problem in the ability to validate that the WCET tools are themselves

correct (Engblom, Ermedahl et al. 2001).

When using static tools the analysis for a simple processor may take in the order of a few
minutes, however the analysis of a complex processor, even when using an abstract model,
has been shown to take about a day (Souyris, Pavec et al. 2005). As a result, the complexity
and size of abstract models are increasing. With regard to modern tools, Wilhelm,
Engblom et al. state that: “Benchmarks published earlier offer better results regarding the degree of
overestimation, although significant methodological progress has been made in the meantime” (Wilhelm,
Engblom et al. 2008). This is put down to the divergence between unpredictable processor
architectures and the capabilities of modern static analysis tools. Therefore if applications
use modern hardware and software architectures the complexity of making timing

guarantees are inescapable (Puschner 2002).

If the analysis tools can provide safe WCET times for a modern processor, then the
problem of increasingly large variation between the average and worst case execution times
means that for a large proportion of the time the CPU is just idling. This leads to an
underutilised processor and a waste of resources. One approach to the problem is to mix
hard and soft real-time tasks so that the hard real-time tasks will always have the available
CPU time and the soft real-time tasks will benefit when the hard real-time tasks perform
the average or best case times. However, this can have limited appeal as some hard real-
time designers may prefer to physically separate soft real-time tasks onto a separate

hardware in order to simplify the verification process.

The next section looks at some of the work that has been carried out to help improve the

predictability of processors.
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3.6 Work that has been done to improve time predictability

Research is currently being undertaken in various areas to help improve the timing analysis
of processors. These include techniques to generate formal specifications from hardware
descriptive languages (Wilhelm 2004); model based software design (Feiler, Lewis et al.
2000) and single path programming techniques (Puschner and Burns 2002; Puschner 2003;
Gendy and Pont 2007); to formal verification of pipelines (Ravi, Ganesh et al. 2003) and
full processor models such as the ARM6 (Anthony 2003).

A few techniques have been used to improve the predictability of specific hardware
components. These include work by (Stankovic, Niehaus et al. 1991) to provide a means in
which sporadic interrupts can be handled through the use of a master processor core to
schedule appropriate tasks on a collection of slave cores. Work has also been done to
improve the predictability of cache (Kirk 1989; Stirner 1998; Akgul and Mooney 2002;
Vera, Lisper et al. 2007) and memory systems (Pitter and Schoeberl 2007).

There are number of papers which highlight the design decisions for a predictable
processor (Colnaric and Halang 1993; Ortega 1994; Colnaric, Verber et al. 1995; Berg,
Engblom et al. 2004; Thiele and Wilhelm 2004). However, only a few complete processors

have been designed with predictability at the forefront of the architectural decisions.

(Whitham and Audsley 2006) produced a processor design, named MGREP, as an
alternative to high performance superscalar ILP through the use of microcode controlled
reconfigurable logic. Whilst the system is shown to provide a high throughput, the design
assumes that the reconfigurable logic can be reconfigured in a predictable and fast manner.
However, they state that runtime reconfiguration is not well documented and that the

system could be unresponsive during reconfiguration.

The CAR-SoC project builds on a multithreaded core design to run hard real-time tasks in
a separate hardware thread than soft real-time tasks (Uhrig, Maier et al. 2005). This helps to
increase responsiveness and partitioning between tasks although they state that the address
pipeline is made complicated by the microcode engine. What the work does not do is to

resolve the problems of execution times for individual threads.

The SPEAR processor design represents a 3-stage simple pipelined processor where data

hazards are resolved by a forwarding unit and control hazards result in a pipeline stage
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being flushed (Delvai, Huber et al. 2003). Each instruction is one word in length and has
deterministic execution times. The processor utilizes separate on chip memory for both
instruction and data accesses with the option to allow the use of lock cache memory.
Interrupts have a maximum jitter of one clock cycle and a latency of 3 clock cycles. One of
the key features that make this architecture appealing for timing analysis is that it provides
support to help with single path programming by utilizing instruction condition codes.
However, this architectures predictability relies on each instruction executing within a
single cycle and therefore it does not include more advanced instructions like multiply or
divide which are becoming more commonly used in embedded processors (Heath 2002;

GroB3schadl and Savas 2004).

Another approach to the problem is the virtual simple architecture (VISA) which will
execute hard real-time tasks on a complex processor and will switch to a simpler processor
if it does not finish in time (Anantaraman, Seth et al. 2003; Muller 2004). While this
mechanism will provide safe upper limits to the WCET, the variations of the execution
time could be large due to the difference in performance between the complex core and
the simple core. Therefore the WCET values will not be optimal if considering the

condition where all tasks miss there deadlines and must execute on the simple core.

A different approach is the design of a precision timed machine (PRET) which aims to
implement a MIPS based processor with the inclusion of special timeout (deadline)
instructions which ensure constant time periods between sections of code (Ip and Edwards
2006; Edwards and Lee 2007). If a section of code completes faster than expected, the
deadline instruction will halt the processor for the requested number of clock cycles from
the last deadline instruction. A problem with this approach is that it cannot handle
interrupts and multitasking very well as the clock cycle counter may exceed the deadline

amount by the time the interrupt has returned.

3.7 Conclusion

As described in Chapter 2, time-triggered software architectures can be used in a wide
range of systems where high predictability is required. However, one of the problems is
that its predictability is determined and in some cases undermined by the underlying

hardware architecture.
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This chapter has reviewed how many of the features in modern processor architectures
have an impact on the ability of the system designer to know how the system will behave at
any particular point in time. The un-deterministic temporal characteristics of these
architectures reduce the ability of static analysis tools to obtain both accurate and safe
timing estimates. It was shown that some architectures exhibit the presence of LTEs and
timing anomalies which can make static timing analysis infeasible. These problems were
found in components such as pipelines, branch prediction and cache memory. As a result,
modern timing analysis tools are struggling to keep up with modern processor designs
(Rapita 2008; Wilhelm, Engblom et al. 2008). Therefore in order to achieve “ultimate
predictability” and reduce the complexities required by timing analysis, it is important that
the execution of the instructions in the processor can ‘in all circumstances’ be predicted

right down to the clock cycle level.

As discussed in Section 3.6, a few microprocessor designs have tried to address some of
the issues of temporal predictability. However not all designs provide a full solution or
include the support for multi-cycle instructions which are common for control and data

acquisition tasks. Some of the widely used instructions in this category are integer multiply

and divide.

The aim of the work presented in this thesis is to ensure that the processor will be
predictable at the instructions level (even when incorporating multi-cycle instructions such
as multiply and divide which can result in variable latencies). Previous designs have not
achieved this level of predictability. In addition, the work here is focused on processors
which support time-triggered architectures: previous studies have not considered the needs

of such systems.

The next chapter will present a novel processor design which will be used throughout the

remainder of this thesis to support predictable execution of time-triggered systems.
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Chapter 4 Design of a predictable TT processor

4.1 Introduction

This chapter aims to explore the design for a highly predictable multi-cycle capable
processor design targeted towards supporting time-triggered systems after reviewing the
various architectural design choices by a using a bottom up approach. This implementation
will put predictability as the highest design criterion before performance or cost. In some
cases it may be simpler to adopt an archaic architecture. However, an archaic design is
unlikely to meet the performance requirements of modern systems. The emphasis here will
be on finding a balance between performance and cost without impinging on the first

criterion of predictability.

4.2 Design choices

A summary of the design requirements for a predictable processor based on the
architectural details laid out in Section 3.4 is listed below and will be described in greater

detail within this Section.
® Tixed Length RISC Instruction Set
e Simple scalar pipelined architecture
® Static branch prediction
® Pipeline forwarding unit
® Harvard architecture for separate data and instruction buses

® Static access time SRAM

Due to the current trend and popularity for higher performance 32-bit embedded
processors, the design here will be based on a 32-bit architecture. In Section 3.4.1, it was
clear for reasons of simplicity which in turn relate to ease of analysis and predictability

(Wolfgang 2004) that a fixed length RISC instruction should be used.
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Whilst RISC is not always synonymous with pipelined architectures, it is possible to utilize
a pipeline as long as it’s possible to employ one-shot analysis and reduce the effect of long
timing effects. Part of these requirements is that there must be no hardware interlocks
which are made easier by keeping the pipeline length fairly shallow. The number of
pipeline stages with variable length should also be kept to a minimum and the use of
parallel pipelines should be avoided to prevent an explosion of potential instruction
combinations. Using a simple pipeline will enable the processor to reach the kinds of levels
of performance found in many modern processor architectures and can also help to keep

power consumption low.

A common issue with pipelined architectures is that structural hazards can occur. This is
when an instruction cannot be executed because the hardware is unable to support the
current combination of instructions. An example of this can be when a data and
instruction fetch occurs in the same cycle over a single bus. Therefore a conflict arises due
to multiple pipeline stages fighting for memory access along the single shared resource. As
a result, one of the pipeline stages must be paused until both stages can complete their
memory accesses. To avoid such a conflict, the use of a true Harvard architecture with
separate memory buses is proposed. This has the added benefit of isolating the program
and data memory and can also be particularly useful in preventing attacks such as buffer

overflows and accidental memory writes.

In memory hierarchies there are a number of arguments stating that cache flow can be
modelled under certain conditions. Although many of these solutions are highly complex
and are often not practical as they rely on clauses such as ‘no use of interrupts’ or ‘multi-
path programming’. However, as described in Section 3.4.4 there are some techniques such
as cache locking and cache partitioning which avoid some of these problems. If used
correctly, these techniques can also provide a reasonable speed increase. For reasons of

simplicity, the use of caches will not be used at this stage.

Ideally the memory technology used for the processor should run at the processors clock
speed. This is often possible in the form of on chip SRAM. Nevertheless, it’s recognised
that this can be costly especially if required in large quantity. Cheaper slower memory
systems can also be used as long as the access times are constant. This is not the case for
the popular DRAM chips which are known to suffer delays due to unpredictable memory

refreshes. Using slower memory will have a significant impact on the overall systems
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performance and as such, some memory chips make use of a pre-fetch buffer. Whilst the
pre-fetch buffers can reduce the performance loss, care must be taken to understand fully

the features of the particular implementation to ensure that it can be modelled correctly.

Since the design here is intended for highly predictable safety critical systems and cache
will not be used at this stage, the cost of using fast on chip SRAM is deemed acceptable as

an initial solution.

The use of a single cycle instruction set which is of fixed length can make analysis far
simpler and can allow for fixed interrupt response times as is the case in the SPEAR
design. Where possible this will be used, although as will be described later, it is not always

practical to implement all instructions into a single cycle implementation.

Another effect of pipelined systems is the issue of control hazards. This occurs when an
instruction has been fetched into the pipeline which is not going to be executed due to a
flow control change. For example, when the outcome of branches are unknown until a
later pipeline stage. In this scenario, any instructions that have already been fetched which
do not follow the branch path will be flushed. Due to this problem, many modern
processor architectures employ forms of branch prediction to reduce the wasted cycles

from loading unwanted instructions.

As described in Section 3.4.3 dynamic branch prediction reduces predictability as its
prediction relies on a history of previous branches which is difficult to model. On the
other hand static branch prediction will make the same prediction on all instances of

execution but at the cost of performance.

A method to guarantee an equal execution time, regardless if the branch is taken or not, is
to pause subsequent instruction fetches until the branch outcome is known. However, this
method always imposes the worst case performance and has the added requirement of
hardware to pause instruction fetch stage. Thus it is advantageous to determine the branch

direction in an early as possible pipeline stage.

An alternate method which also guarantees equal execution time across branches is the
branch delay slot technique. This technique relies on the compiler placing a suitable
instruction directly after the branch which will be executed regardless if the branch is taken

or not. If no suitable instruction can be found, then a NOP instruction is used instead. The
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performance for this method is based on the number of delay slots and the compilers
ability to reorder instructions into these slots. This technique will be used in the design

here as it simplifies the analysis process.

One final effect of a pipelined architecture is data hazards. A data hazard occurs when an
instruction cannot execute because a previous instruction holds data that it requires to
complete execution. In most cases this problem can be resolved by the use of a forwarding
unit to make the most recent data value available to the execution pipeline stage. However,
if an instruction relies on data that is currently being fetched from memory by the previous
instruction, then it must wait until the value is ready. In such a scenario the instruction is
often paused and is generally avoided by the compiler. However, when such a condition
occurs, the execution time can be modelled by simple analysis of the object code. Other
architectures can use the compiler to insert an instruction after the load which is not

dependant on the value being fetched. This process is known as the load delay slot.

4.3 Selecting a processor platform

A key aspect of a processors design is the ISA. This is because the ISA links closely to the
underlying hardware and the abstraction that it provides for software programs to run. A
common requirement is to provide enough data, logical and conditional instructions to
efficiently support and run a high level language such as C. The complexity of making this
possible also comes from developing supporting tools such as compilers and debuggers. It
is therefore advantageous to base the processor design around an existing ISA in order to

reduce the design effort required for providing appropriate tools.

Some of the common and well known RISC ISAs are Alpha, PA-RISC, PowerPC, ARM,
Thumb, SuperH, SPARC, M32R and MIPS. However, a number of these ISAs are the
intellectual property of various companies, therefore only open ISAs can be considered.
Out of this list, SPARC and MIPS are commonly used as templates for a number of
processor designs. The SPARC ISA is an open standard and the MIPS ISA was born out
of research by Patterson and Hennessy before being taken up by MIPS Technologies Inc.
As a result, most of the MIPS instruction set is open apart from a few patented

instructions which relate to unaligned memory accesses.
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The MIPS architecture is fairly well understood due to the many books published about it,
in particular by its creators Patterson and Hennessy (Patterson and Hennessy 2005;
Hennessy and Patterson 2006), whilst SPARC which is also well documented has an open

specification and certification procedure.

For the most part, both SPARC and MIPS have more architectural similarities than
differences. One of the main differences between the architectures is the use of register
windows. MIPS has a fixed 32 x 32-bit register file, whereas SPARC has 24 of its 32
registers overlapped by different register windows. The aim was to reduce register to
memory traffic on procedure calls through the use of register windows. Thus the SPARC
ISA allows for cores to be synthesised with 2 - 32 register windows, where only 32 of the
registers are accessible at any one time. Another defining feature is that early MIPS
architectures make use of the BDS instruction whereas SPARC will always flush out the
BDS instructions in the case when the branch is taken. Early incarnations of SPARC also

did not have hardware multiply and divide instructions.

Table 1 gives a more detailed overview of the architectural differences between the

architectures.
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32 x 32bit registers

8 global + 24 overlapping register windows.

Integer to Floating Point register move instructions

Integer to Floating Point load/store instructions

Single precision FP

Single + Double precision FP

Single load/store addressing mode

Two load/store addressing modes

Compare and branch in one instruction

Requires two instructions to do the same

Instruction in delay slot is executed

Hardware will flush the instruction if branch is taken

Requires compiler to avoid a load data instruction
directly before an instruction using that data.

Hardware will pause the pipeline in such a scenario.

Can move values between single and double FP

registers

Can only move values between single FP registers

Has integer multiply and divide/remainder instructions

Not available in SPARC

No FP square root instruction

Has square root instructions

No conditional trap instruction

Has conditional trap instructions

TLB managed in software

Memory management done in hardware

Immediate constant field is 16bits

Immediate constant field is 13bits

32-entry, 32bit FP register file which can hold up to 16
double precision values

Can hold a mixture of 32 single-precision values, 16

double precision values or 8 quad precision values

Table 1: Comparison of MIPS and SPARC, reproduced from (Robert, Shing et al. 1991)

When taking into account the architecture requirements for predictability, as was

highlighted in Section 5.2, it can be seen that both architectures could be used.

Throughout this thesis the MIPS ISA was chosen as template for the processor design for

the following reasons.

® One of the benefits of using MIPS over SPARC is that branch instructions do not

incur additional cycles when the branch is taken. Instead the MIPS compiler will,

where possible, insert a useful instruction into the branch delay slot which will be

executed regardless if the branch is taken of not, and thus will always incur the

same number of CPU cycles. For SPARC, the branch delay slot instruction is

flushed when the branch is taken and hence performance is reduced. A similar
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problem exists in SPARC for load hazards. In this scenario the pipeline is paused
until the load hazard no longer exists. On the other hand the MIPS compiler will

reorder instructions to avoid such occutrences.

® The MIPS architecture is also not bounded by the complexity that comes from
SPARC:s use of register windows which adds another dimension to modelling and
timing analysis, even though it can help performance for code with many

subroutine calls.

e FEarly and simple incarnations of the SPARC architecture did not include the
multiply and divide instructions until the more complex SPARC v8, where as MIPS

have had these instructions since the early MIPS R2000.

4.4 Considering existing soft cores

With the reduction in cost and greater popularity of FPGAs against the escalating costs of
ASIC designs, there has been an increase in building systems-on-chip with embedded

processor cores (Figure 7).

Since this project began there has been a flurry of new soft processor cores which were not
previously available. It is therefore appropriate to consider if some of the more recent

cores would have been a better starting point.

120,000

B Without Embedded LP
100,000 @ With Embedded pP

80,000

60.000

40,000

20.000

Number of FPGA/PLD Design Starts

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Figure 7: FPGA Design Starts With Embedded UP - Source: Gartner, August 9, 2005
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A number of open MIPS like soft cores are based on the DLX architecture which were
born out of the books published by Patterson and Hennessey (Patterson and Hennessy
2005) and contains a subset of MIPS instruction set. However, modern DLX compilers are
not currently being kept up-to-date. Another incarnation of the DLX architecture is the
closed source 32-bit Xilinx Microblaze soft core which includes a number of additional
instructions. Whilst there exists an open source Microblaze clone, it was decided that the
simplest solution would be to design a soft core based on a very simple, early and
unmodified version of the MIPS ISA. For this reason the R2000 ISA was chosen as it
includes the multi-cycle multiply and divide instructions which were not present on the

DLX.

There are a number of advantages to the MIPS design approach. As its name MIPS
(Microprocessor without Interlocked Pipeline Stages) suggests, the aim was to increase
dramatically the speed of a processor by the use of deep instruction pipelining whilst
reducing interlocks that were required for multi-cycle instructions. The motivation then
was that the hardware required to set up these locks were generally large and complicated
which had a significant impact on the speed of processors (Hennessy, Jouppi et al. 1982).
Therefore Hennessy’s approach was to create a simple RISC instruction set by eliminating
a number of useful complex instructions such as multiply and divide that take multiple
clock cycles to execute, and create an instruction set where all instructions take only one
clock cycle (Hennessy, Jouppi et al. 1981). In doing so the pipeline no longer required the
complex interlock mechanisms and formed an efficient processor design. Such a design is
at the heart of many modern MIPS and RISC processors designs used in areas of research
and devices such as Sony Playstations, PDA’s and large physics processing computers

(MIPS-Technologies 2009).

Whilst the instruction set has a bearing on the architectural characteristics of the hardware,
the same ISA can result in a differing number of implementations. Therefore it was
decided that the core would be built from the ground up. This would also have the added
benefit of being able to fully control and understand all the architectural implementation

decisions.
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4.5 The PH Processor

For the purposes of this research, the PH processor® IP core was create as an
implementation of a cut-down version of the original MIPS R2000 processor. The core is
compatible with the MIPS I ISA (Instruction Set Architecture) (Kain and Heinrich 1992),
except for the few patented non-aligned memory access instructions. The design was based
on the architecture and organization outline provided by Patterson and Hennessy
(Patterson and Hennessy 2005) and is therefore named the “PH Processor”. Briefly, it is a
32-bit processor with 32 registers, a 5-stage pipeline, and separate instruction and data

memory banks.

IF ID EX MEM WB

Instruction flow

Figure 8: Typical 5-state MIPS pipeline (Patterson and Hennessy 2005)

The 5 pipeline stages of the PH core are shown in Figure 8. These stages execute in parallel
and as one instruction finishes in its current stage it moves onto the next stage. The 5-
stages of the processor are, the instruction fetch (IF), Instruction Decode (ID), Execution
(EX), Memory (MEM) and Write Back (WB) stages. A more detailed diagram of the

control and data paths of the processor is available in Appendix B.

Figure 9 shows an outline of the PH core and peripheral components which was
implemented in VHDL on a Xilinx Spartan 3 400 FPGA. The tools used in this process

consisted of the Xilinx ISE and Modelsim toolsets.

3 A version of this PH core has been commercialised through TTE Systems Ltd.
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Figure 9: PH processor implementation

Whilst the PH - MIPS R2000 based — processor core retains many of the key features for a
predictable processor design as was outlined in Section 4.2, there are still a few adverse side
effects in this architecture that need to be resolved. These effects relate to task execution
and interrupt latency variation which is made complicated when using a pipelined
architecture. The aim is to have static execution times and a predictable and known
interrupt overhead. The processor should also have support for at least standard integer
multiply and divide operations which can in certain implementations take multiple cycles to
complete as these operations can be common in embedded applications. These issues will

now be explained in the following Sections.

4.6 Making the PH processor predictable

Often the terms interrupts and exceptions are interchanged in text, however here
exceptions will be defined as internal interrupts that occur often due to some sort of
hardware malfunction. Interrupts will be used to describe externally triggered hardware

interrupts.
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It is common in modern architectures to implement precise exceptions. Precise exceptions
are defined as a situation where the pipeline can be stopped such that the instructions
before the faulting instruction are completed, and those after it are restarted when the
handler returns. This has many benefits such as making the debugging of code far easier.
Also, paging, virtual memory and IEEE arithmetic handlers strongly motivate the support

for precise exceptions (Hennessy and Patterson 2000).

Further details on precise exceptions can be found in Section D.3.5.

4.6.1 Implementing the interrupt system

As highlighted in Section D.3.5, in order to implement precise exceptions - which are
beneficial for predictable interrupt handling - a solution can be to service the exception
only when the instruction reaches the MEM stage before any state changes are committed.
This can be seen in Figure 10 where an exception only gets raised when the instruction
enters the memory pipeline stage which causes the instructions in that stage and all the

previous stages to be flushed.

When this is implemented, it leads to the problem that the instructions which were flushed
before entering into the exception handler must be re-executed on return from interrupt.
This in turn means that the interrupted code execution time has been extended by several

additional cycles to reload the pipeline.

O
oe’é\\
Q/‘F
Flush Flush Flush Flush Allow
IF ID EX MEM WB

>

Figure 10: Instructions flushed from 4 pipeline stages when an exception occurs

For error conditions, the additional CPU cycles may be acceptable. Although, ideally for
normal timer interrupts there should be no hidden overhead to the interrupted mechanism

other than that of the interrupt handler instructions.
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Figure 11: Timer interrupts could be allowed to occur in the first pipeline stage

At first glance, a solution might be to move the timer interrupt handling response to the
first pipeline stage and leave the other exceptions to be handled as normal in the later
MEM stage. This scenario is depicted in Figure 11 where the timer interrupt will allow the
instructions in all the pipeline stages to continue and will redirect the program counter to
the interrupt handler address on the next cycle. However, in certain scenarios the timer
interrupt may start to be handled either at the same time or before a pending exception has

reached the MEM stage, as shown in Figure 12.

Since it is regarded that exceptions are error conditions which in the most case will not be

recoverable, this may not be such a serious problem.

1
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IF ID EX MEM WB

>

Figure 12: An exception could be pending at the time when the timer interrupt occurs

A problem that is not addressed so far is the scenario when an interrupt occurs on an
instruction in the branch delay slot, see Figure 13. The normal behaviour in MIPS is to re-
execute the previous branch instruction on return from the interrupt handler in order to
re-evaluate if the branch should have been taken. However, this means that the overhead
imposed by the interrupt mechanism is no longer constant as there will be cases when an

instruction must be executed twice.
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BDS Branch

IF ID EX MEM WB

Figure 13: Problems of interrupt on a BDS instruction

A way to avoid re-evaluating the branch condition might be to automatically store the
branch condition and the branch address into architectural registers when the interrupt

occurs, see Figure 14.

D Branch address
D Branch condition
Q

X O
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BDS Branch
IF ID EX MEM WB
|

Figure 14: Store branch condition and branch address

Whilst the method above provides a reasonable solution, albeit with some slightly
unnatural behaviour when exceptions and interrupts occur at the same time, there is a

fundamental problem when it comes to supporting multi-cycle instructions.

Pause

Executing

Waiting

Waiting

EX

MEM

WB

Figure 15: Interrupt paused by multi-cycle instruction

The problem arises when an interrupt occurs whilst a multi-cycle instruction is executing

or is about to be executed in the EX stage. This can be seen in Figure 15, where the EX
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stage processes for a number of cycles by pausing the previous pipeline stages. Since the
interrupt response has been moved from the MEM stage to the IF stage, the interrupt can
no longer abort the multi-cycle instruction. Instead, it must wait for the multi-cycle
instruction to complete before it can respond and begin loading the interrupt handler

instructions into the pipeline.

Both conditions of aborting the currently executing instruction or waiting for the
instruction to complete are not ideal. When an instruction is aborted, the processor can
respond to an interrupt no variation to the interrupt latency. However, this is at the cost of
additional cycles which are passed on to the interrupted code because of the need to reload
and re-execute the aborted instructions. In Figure 16 the variation of reloading and
executing the flushed instructions is depicted by the time variation between points ‘a’ and

‘b’

Interrupt

ISR

Task Task

\4

Time
Figure 16: Post interrupt jitter

For the scenario when the interrupt occurs in the IF stage and the instructions which are
loaded into the pipeline are no longer aborted, then the interrupt response time can still be
variable due to the need to wait for the current instructions in the pipeline to complete.
This time may vary depending on which instructions are loaded in the pipeline at that
particular time when the interrupt occurred. This is because different instructions may take
a different number of clock cycles to execute. This variation of the interrupt latency can be

shown by the time between points ‘a’ and ‘b’ in Figure 17.
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Figure 17: Interrupt latency jitter

Both the scenarios shown in Figure 16 and Figure 17 add a variable amount of additional
execution time to the overall task length which is above that of the interrupt handler
instructions. Therefore, a solution must be found to implement precise exceptions whist
obtaining static interrupt latency time and a constant post interrupt overhead which is
imposed on the interrupted task. At the same time, it is important to support the use of
commonly used multi-cycle instructions such as multiply and divide as these operations are

popular in many embedded systems.

To summarise the modifications required to make the PH processor core predictable,

especially when dealing with precise exceptions, are outlined in Table 2.

Requirements

1. Precise exceptions

2. No interrupt latency jitter

3. Constant post interrupt overhead

4. Support for multi-cycle instructions

Table 2: Predictable processor requirements
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4.6.2 Dealing with Multi-cycle Instructions

For architectures which support integer multiply/divide and floating-point operations, it is
generally impractical to create a fully single-cycle design. Whilst it could be possible to
accept a slower clock rate or use large amounts of silicon, the normal approach is to
support multi-cycle operations (Patterson and Hennessy 2005). The use of multi-cycle
instructions is likely to increase as “spare logic” found surrounding intellectual property
(IP) cores in FPGAs can be used to implement application-specific operations. For
instance, it may be desirable in some applications to include some form of Fast Fourier
Transform (FFT) instructions which can execute much faster in hardware than a software

library but still require a number of cycles to compute.

The implementation of integer multiply/dividers can vary from completely setial designs
normally requiring the number of cycles as bits to multiply, to fully parallel designs which
can operate in one cycle. The implementation largely depends on the amount of silicon
usage deemed acceptable and the strength of desire for speed. In FPGAs, the
implementation might be based on available leftover logic or number of available on chip

multiplier blocks.

For simplicity and the purposes of demonstration, the PH processor was designed with a
fully serial multiplier/divider which takes 33 cycles to complete an operation. Figure 18
shows the basic outline of the architecture where the wvalues are placed in the
multiplicand/divisor and LO register. The result appears in the HI and LO registers after

33 cycles.
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Figure 18: Serial multiply and divide unit

If the processor follows the rule of servicing an interrupt only after the current instruction
has completed, then in the case of interrupting the MUL or DIV operation, there can be a
significant amount of jitter from the latency varying between 1 and 33 cycles. The amount

will depend on how much of the operation is left at the time when the interrupt occurs.

In an attempt to solve this problem there are a number of solutions that could potentially

be considered.

4.6.2.1 Abort the instruction

As mentioned previously, one way to get round the problem of interrupt response jitter is
to abort the currently executing instruction mid execution and restart the instruction on
return from the interrupt. This has the benefit of eliminating the response time jitter but at

the cost of shifting that jitter to the interrupted task.

There are also situations where implementing this type of solution is not possible due to
instructions that modify the processor state during execution and therefore the changes
cannot be undone if aborted. If this occurs, certain registers or memory locations may

become corrupt.
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In addition, some memory bus systems may not allow an instruction to be aborted once a

memory request has already been started.

4.6.2.2 Run in parallel

Another method might be to service the interrupt immediately, but instead of aborting the
instruction, it could be allowed to complete in parallel (Figure 19). In certain situations, this
results in speeding up the interrupted code execution time. The increase in speed is not
desirable for predictability where the interrupted code is impacted in a positive way but by

an unknown quantity.

Integer Unit
|

IF ID - >  MEM we
MUL/
i

Figure 19: Multi-cycle instructions running in parallel to integer instructions

This method also runs on the assumption that handler code will not require use of the
multi-cycle execution unit before the instruction has had time to complete. In the scenario
when the execution unit is required, a resource conflict arises requiring the handler to stall
until the current multi-cycle operation has completed. The system also needs to ensure that

the previous result values in the execution unit remain present on return from interrupt.

4.6.2.3 Execute if time

Another method might be to look ahead to an earlier stage in the pipeline and prevent the
multi-cycle operation from being executed when there are less than the required cycles
until the timer overflows (Figure 20). This would give zero jitter to servicing the interrupt
but consequently add additional cycles to the interrupted code leading to the same effect as
the instruction abort method. It also relies on there being a timer which is driving the

interrupt signal and its registers are accessible to the processor control unit.
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Figure 20: Stall the pipeline when there is no time to complete a multi-cycle instruction.

4.6.2.4 Fixed maximum interrupt latency

A similar solution might be to always incur the maximum delay from when the interrupt is
generated to the point when it gets serviced by using a similar technique to code balancing.
This technique is far from efficient and not easily expandable as it requires knowledge of
the worst case execution time of the included execution units. In some processors,
additional instructions are added as external or on-chip co-processors, therefore the
WCET instruction time might not be known at processor design time. However, this
method does solve the problem of interrupt response jitter and impacts the interrupted

code by a fixed amount.

4.6.2.5 Multithreaded pipeline

While the previous methods have found solutions to some of the problems, only the fixed
maximum interrupt latency method provides a solution to solve both variable interrupt
response and task overhead latencies but at a significant cost to performance. There is also

the issue of dealing with the variability of interrupting on a BDS instruction.

One of the modern techniques for increasing performance by making greater use of silicon
rather than an increase in core frequency is the design of multi-threaded cores (Gulati and
Bagherzadeh 1996). The idea is to speed up multithreaded systems by providing a way in
which the processor can change task contexts at the instruction level. This is implemented
in hardware with very little switchover time. Each thread is given its own register file and

instruction counters, but shares the pipeline and execution units.

The uses of multithreaded pipelines are common in modern desktop processors such as

Intel’s Hyperthreading technology (Marr, Binns et al. 2002). They are also beginning to be
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implemented in various new embedded processors such as the MIPS MT core (Kissell

2008).

One of the benefits of using a multithreaded core is that it can avoid the performance
problems from various pipeline hazards by automatically switching to another thread until
the pipeline hazard for the current thread has been resolved. As a result, maximum pipeline
usage can be obtained in all pipeline stages. According to Intel, this can result in a 30%

increase on Pentium processors (Bulpin and Pratt 2004).

Whilst the intention is to seek performance through greater pipeline utilization and support
fast context switching times between threads, a similar idea could be used for increasing

predictability of switching between a single task and interrupt handler.

The idea would be to allow the interrupt to be handled in the MEM stage and in addition
to the duplicate instruction counter and register file the pipeline stages would also be
mirrored. The mirroring of the pipeline stages would avoid the need for flushing pipeline
stages during an interrupt. Instructions such as branch could then remain in the pipeline
and continue execution on treturn without the need for re-execution. In essence, one
pipeline would be used for normal task execution whilst the other is used for the interrupt
handler (Figure 21). The result, is that the interrupted task could be paused so that the
interrupt handler could run immediately and the task could resume execution at the exact
point where the interrupt occurred leaving the task pipeline stages intact. This is generally
only possible for time-triggered type systems where there is only one interrupt, as
supporting multilevel or nested interrupts would require duplicate numbers of

multithreaded pipelines.
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Figure 21: Predictable processor pipeline

Whilst the solution maybe more silicon intensive compared to the previous methods, it
does solve the problem of response and overhead jitter and removes the variation of
interrupting on a BDS instruction. The method therefore reduces the complexity of
factoring interrupt overheads to timing analysis. However, to enable this technique to work
for multi-cycle instructions the additional execution units must also have a way of pausing
and resuming their state. This can be achieved by implementing shadow registers which are

switched in when the processor enters and returns from the interrupt thread (Figure 22).

4-21




Design of a predictable TT processor

32 bit
1
Mode Multiplicand / Divisor e
l y
ADD
SuB & » Control
\;‘>Z>/‘///
<>
1 1
HI LO
64 bit

Figure 22: Multiply and Divide unit with controllable shadow registers

In summary, through selective design choices and the techniques described above a
predictable pipelined processor with reasonable performance can be achieved. Some
sacrifices have been made in performance by abstaining from ILP, caches and branch
prediction. Also, silicon usage has been increased through the implementation of a
multithreaded like system. However, it is believed that the performance of the processor

will still be respectable when compared with many common embedded COTS processors.

4.7 Making the processor TT

The interest throughout this thesis has been on the development of a processor which is

not only predictable but also supports time-triggered (I'T) architectures.

Currently, many generic COTS processors support a wide range of interrupt sources, while
the use of a (pure) time-triggered software architecture generally requires that only a single
interrupt be supported by each processor. This then leads to software design ‘guidelines’,
like the ‘one interrupt per micro-controller rule’ (Pont 2001). Such guidelines can be
adhered to by the use of appropriate tools in software creation. However, it is possible for
changes to be made in the software (for example, during software maintenance or

upgrades) that lead to the creation of unreliable systems.
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More specifically, it is possible that developers of time-triggered software designs (or
people who subsequently maintain or upgrade systems based on time-triggered software
designs) may be unaware of the need to employ only a single interrupt source with such
designs. If (as a result of this lack of knowledge or lack of experience) an attempt is made
to use multiple interrupts in such a system, then this may lead to highly ‘unpredictable’
behaviour. The aim is therefore to improve the processor hardware in supporting time-
triggered software by removing the chance and possibility for more than one interrupt
being enabled. Note, that the use of general software exceptions is not appropriate in such
a design: instead, only serious faults (such as page faults, arithmetic errors and undefined

instructions) should be handled in this manner.

The operation of a time-triggered system generally operates by a source of periodic “ticks”
to which the processor will schedule one or more periodic tasks to execute, see Section
2.3.1. The design should allow for the tick interrupts to be obtained from only 1 of a

number of different sources, depending on the nature of the system (see Figure 23).

Source 1

-
Periodic ticks from timer

Source 2
[Example] Interrupt Source
Periodic ticks from UART Decoder -
(1 out of N) Source of periodic ticks to
drive TT architecture
Source N
[Example]

Periodic ticks from CAN

Figure 23: Interrupt source selector

For single processor designs, the ticks will generally be derived from an on-chip timer.
However, in multiprocessor designs, the ticks may be derived from the arrival of messages
from a suitable communication bus (e.g. CAN bus, UART). As a failsafe option, it may be

necessary for the system to be able to switch interrupt sources on-the-fly, to for instance a

4-23



Design of a predictable TT processor

backup CAN bus. The hardware must then ensure that only a single source of interrupts is

active at any one time during the operation of the system.

Interrupt sources which are not used to generate periodic system ticks can be monitored

by polling (under the control of the system scheduler) at an appropriate rate.

4.7.1 Detailed Description

By restricting the number of interrupt sources (to 1) in a TT embedded system, the “one
interrupt per microcontroller” design guideline can be met and thus the system behaviour

can be made more predictable.

The modifications are implemented through the standard MIPS co-processor zero registers
which are ordinarily used for configuring interrupts. The coprocessor unit is part of the

internal processor core and has among others, the following registers derived from MIPS

(Table 3).

Register Number Register Name
R12 Status
R13 Cause
R14 Exception Program Counter (EPC)
R15 Processor ID (PRId)
R16 Config

Table 3: PH co-processor zero registers?

The coprocessor is setup to be similar to the MIPS convention in that the registers have
the same name and that they perform similar operations to those found in a MIPS
processor. However the structure and operation of these registers are slightly different. For
instance, the status and cause registers which deal with interrupts are modified so that only

the interrupt source number is held in the interrupt mask register rather than using

4 The EPC and PRId registers are the same as in MIPS. However the PRId register
contains version numbers pertaining to the PH processor. The Config register has a low-

power bit (only) which is used to place the processor in idle/sleep mode.
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individual bits to represent each source. Also the status register includes a global interrupt

enable bit which allows the single interrupt source to interrupt the processor (Figure 24).

Status
3

Figure 24: Co-processor status and cause registers

To enforce the one interrupt rule the hardware is made using a simple 3 to 8bit decoder
(for 8 interrupt sources) which can never have more than one output bit enabled at any
time (Figure 25). The IM (Interrupt Mask) register holds the binary number of the enabled
interrupt source. Since there are 8 possible interrupt sources the IM register is only 3 bits

wide in the current implementation.

[E

Decoder

[MO) >——s, o
M) >——s D

* !
[(IM2) >——s, ?/

ENB

IRQ(4)

Figure 25: Interrupt source selector

The hardware takes the binary number from the IM register and runs it through a 3 to 8 bit
decoder. The incoming interrupt sources are AND together with the decoder output,
allowing only the relevant bit to pass through. The final output is then AND with the IE

(interrupt enable) bit before being allowed to interrupt the processor core.
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In addition to the above circuit, the interrupt sources will also be flagged in the cause
register where each bit will represent an interrupt source. Polling applications can then

monitor these bits and reset the individual flags by writing a 1 to the relevant bit.

Whilst the implementation is rather simplistic, it is very effective in preventing the

possibility of enabling more than one interrupt source.

4.8 Results

In this section results were obtained to show the interrupt latency jitter and the interrupt
overhead time for two versions of the PH core. By way of comparison, the first core is
setup to represent a COTS microprocessor, which in this scenario will abort the current
instruction on interrupt and enter into the interrupt handler immediately. The second —
multi-pipelined — core implements the architecture described throughout Section 4.6.2.5,
which on interrupt, will pause the current pipeline state and return directly to that state
after the handler code has completed. For ease of reference, the first core will be known as

the ‘PH’ core whilst the second will be referred to as the ‘PH-Predictable’ core.

The aim of the results will be to demonstrate that it is easier for a programmer to predict
how long a particular piece of code will take to run on the PH-Predictable core. More
specifically this will include the scenario when that code is interrupted by a simple interrupt

handler. To achieve this objective, a test bed was setup as follows.

4.8.1 Test Case 1 Strategy

Each core will boot up and run its initialisation code, once done, the core will execute a set
of instructions repeatedly in a loop. An example of this can be seen in Listing 1. Within
this loop there is a single cycle NOP’ instruction as well as a multiply and divide
instruction as these are the longest running instructions on the core. On the both cores the

multiply and divide instructions can consume 33 CPU clock cycles per calculation.
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int main ()
{
// Set up IO
LED_Init();
SEG_Init();

while (1) // Super Loop
{
// Set output pin to low
GPO_pin = 0;

// Multiply 2 * 3
asm("li $2,2\n"
"li $3,3\H"
"multu $2,$3"
:::"52","53");

// Divide 6 / 2
asm("li $2,6\n"
"li $3,2\H"
"divu $2, 383"
:::"52","53");

// No operation
asm("nop") ;

}

// Should never reach here
return 0O;

}

Listing 1: Multi-cycle instructions under test for test 1

The first test will be to measure the time between an interrupt signal being triggered and

the core entering and executing the interrupt handler code.

To achieve this objective, an interrupt mechanism had to be devised to ensure that
different instructions in the loop would get interrupted, rather than the same instruction
consistently. Therefore, the period between consecutive interrupts should observe a
random like behaviour. To keep the implementation simple, interrupts would be generated
by an external source which would be driven by a timer whose timeout values will be based
on the first 4000 digits of PI. On each timeout, the next digit in the table will be loaded

into the timer for the next interrupt.

// Change timer match register to a number
// based on the next digit of PI
TMROTMAT = (1000-5) + digitsOfPi[pIndex];

Listing 2: Setting of the variable timer timeout values
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The timeout values were based around a 1 millisecond interval as interrupting too
trequently would make it hard to record measurements and running slower would provide

no benefit and consume unnecessary time.

At first glance it may seem rather ineffective to vary each timer timeout value between 995
and 1004 microseconds, however, the timing effect is accumulative. For instance, after 50
timeouts the time could vary as much as 49.75 milliseconds to 50.2 milliseconds which
could amount to a difference of up to 11,250 CPU clock cycles at 25MHz. It is recognised
that this mechanism may not necessarily provide truly random behaviour; however, it
provides enough variation to ensure that various instructions in the loop will be

interrupted.

Having created a means to generate interrupts at different points in time, the recorded
measurements must be taken from when the external interrupt source goes high and until
the interrupt handler on the core has begun executing (see Figure 17). This could be
achieved by using an external hardware counter which counts at a rate of a 100MHz. This
is equivalent to 4 clock cycles for each a CPU clock cycle with a core frequency of 25MHz.
The counter will be started as soon as the external interrupt source is active and stopped
when a GPIO signal received from the target core becomes active. This GPIO signal is set

high immediately at the beginning of the interrupt handler code (Listing 3).

handler:
# Set output pin to high
1i $26, 0x00030008
1i $27, 1
sSwW $27, 0($26)

# Read CP0 EPC return address Reg
mfcO0 $26, $14

# Enable Interrupts
11 $27, 0xOF
mtcO $27, $12

# Return from handler
J $26
nop

Listing 3: Interrupt handler code for test 1

4-28



Design of a predictable TT processor

4.8.2 PH Core - TestCase 1
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Figure 26: The PH processors interrupt latency over a mixture of MULT, DIV and NOP

instructions

When recording the interrupt latency for a number of interrupts, the standard PH core was
observed to have a fixed latency of 0.4us (Figure 26). This amounts to 10 CPU cycles and

can be broken down as shown in Table 4.

Event Instructions CPU Cycle Count
Internal Response Time 1
Pipeline Flush 3
Interrupt Vector j handler 2
nop
Interrupt Handler to write monitoring lui $26, 0x03 4
pin ori $26, 0x08
i $27, 1
sw $27, 0(3826)

Table 4: Measured interrupt latency time breakdown
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For greater clarification, the latency breakdown can be explained as follows. The time from

the external interrupt signal going high and the system co-processor 0 latching the

interrupt state is one clock cycle. For reference, on MIPS based cores the co-processor 0

contains and deals with interrupt enable and status flags and thus the interrupt passes

through the co-processor 0 before interrupting the main CPU core. When the CPU core is

interrupted, the three instructions in the IF, ID and EX stages are flushed. Therefore, it

takes 3 clock cycles before the first interrupt handler instruction reaches the end of the

execution stage and begins to do some work. The first two instructions that are executed

come from the interrupt vector address which contains a jump to the interrupt handler and

its subsequent branch delay slot. At the beginning of the interrupt handler, the first four

instructions deal with setting the GPIO pin high which is used to stop the external

counter.

To ensure the explanation of the interrupt latency time was correct, the processor was

simulated in Modelsim which is an industry standard tool for hardware for simulating

hardware designs (Mentor Graphics 2010). The simulations were undertaken using a test

bench file which loads the processor with the same binary code file as was used in the real

world tests. Figure 27 shows the time taken from sensing an external interrupt signal going

high to then setting a GPIO pin high.
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Figure 27: PH Core interrupt latency simulation®

[75260000 ps|

From the first test it can be seen that the standard PH processor has a static zero jitter

interrupt response time due to its ability to abort the currently running instructions. This

already appears promising for the development of a predictable processor. However, the

> A larger version of this diagram is available in Appendix C, Figure 84.
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next test will look at what the potential side effects of aborting the instruction might be

when considering the overhead imposed on the task that has been interrupted.

4.8.3 Test Case 2 Strategy

o))
O

Interrupt

ISR

Task Task

\4

Time
Figure 28: Timing measurements for test 2

The next test is similar to the first test apart from some minor changes. The most
significant change is that the time measured by the external counter is now set to between
the start of one iteration of the instruction loop and the end of that iteration (Figure 28).
The purpose of this was to make the instruction loop represent a task that would be
interrupted occasionally. The measurements would then record the execution time of that
task. However, in order to make the main instruction loop execute for a duration large
enough to get significant measurements, an internal loop was added to re-execute the set of

assembly instructions (Listing 4).
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while (1) // Super Loop
{
// Set output pin 1 to high
GPO_pin = 1;

for (i=0; 1<2048; i++)
{
// Multiply 2 * 3
asm("li $2,2\n"
"li $3,3\H"
"multu $2,$3"
: : :"$2"’ "$3");

// Divide 6 / 2
asm("li $2,6\n"
"li $3,2\H"
"divu $2,53"
:::"$2","$3");

// No operation
asm("nop") ;

}

// Set output pin 2 to high
GPO_pin = 2;

Listing 4: Multi-cycle instructions under test for test 2

The job of the interrupt handler was then modified so that it simply re-enabled the
interrupts and returned to the interrupted code. Since the handler doesn’t do much, it
wasn’t necessary to save and restore registers as would normally be done in most interrupt

handlers. This would also make understanding the interrupt overhead a bit easier.

handler:
# Read CPO EPC return address Reg
mfcO $26, $14

# Enable Interrupts
1i $27, 0xOF
mtcO $27, $12

# Return from handler

j $26
nop

Listing 5: Interrupt handler code for test 2

4.8.4 PH Core - Test Case 2

When running the system on hardware, the task execution time varied quite a bit (Figure
29).
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Figure 29: PH Core task execution time

Looking at Figure 29 a steady line can be seen at the lower end of the graph. This line
represents the base task execution time when the task has not been interrupted. From this
base line there is a gap of 10 CPU cycles which represents the interrupt handler execution
time. Above the additional 10 CPU cycle interrupt handler time there are a number of
varied measurements which peak upto a 43 CPU cycle time above the base uninterrupted

task execution time (Table 5).

Execution Time (ms) CPU Cycles
Max 7.04741 176185
Min 7.04569 176142
Difference 0.00168 43

Table 5: PH Core task execution maximum and minimum times

It can therefore be seen that the standard PH core with its instruction abort mechanism
provides a stable low jitter interrupt latency time. However, the jitter that would normally
come from waiting for the current instruction to complete is replaced by jitter due to the

need to re-execute any instructions that have been aborted. In effect, the instruction abort
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design gives the interrupt handler a higher priority over the currently executing task by
running immediately, however, the overhead imposed on the interrupted task is still
variable. In some ways this design might lead to a misunderstanding of the interrupt
overhead if not fully understood by the application designer who may be concerned about

timing effects withing their system.

Event Instructions CPU Cycle Count
Pipeline Flush 3
Interrupt Vector J handler 2
nop
Interrupt Handler mfcO $26,514 5

# Enable Interrupts
1i $27,0x0F
mtcO0 $27,$12

# Return from handler

] $26
nop
Max Instruction cycle time MUL or DIV 33

Table 6: PH Core task execution overhead breakdown

Table 6 gives a breakdown of the overhead that was observed in the measurements in
Figure 29. However, to give more justification to where these results may have come from,
the next few figures were obtained from Modelsim simulations of the PH core using the

same code that was used in the tests.

Messages [ I | |

ES 117171 AU UL L U UL L L U T
0 rst 0
‘1}-‘ iaddress 00000234 joo... T 00000270 T 00000254
(&} < idin 00000000 ¥ oo, T T T V[ V24030002 I [CJoocoooga
I+ 0 pbus 00 {oo000002} o} | [ T T T Jolo.. oo [ olo fooooooodt for V[ Jo 0 foooooood: 40t
|+ 4 pdata 77777777 -
’ den 1
|+ 4 phdbi {00000} {0000} 0000} {0000}
v‘ exception [}
[+ irg 00000000 doooooog
WEAO Now woo0on0ops |y L e e e
=) Multiply Start 53440000 ps 53440000 ps| 1320000 p
- Multiply End 60760000 ps 60760000 ps

Figure 30: Multiply instruction (33 CPU clock cycles)®

Figure 30 demonstrates the execution time for a multiply instruction consumes 33 CPU

cycles. This execution time is the same regardless of the size of the operands which in

6 A larger version of this diagram is available in Appendix C, Figure 85.
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other processors can lead to variable computational times. The PH core is also different to
some standard MIPS cores in that multiply and divide instructions do not execute in

parallel to normal integer instructions, but rather execute sequentially.
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Figure 31: Interrupt Overhead (10 CPU clock cycles)’

Figure 31 shows the overhead of the interrupt mechanism and the interrupt handler code.
It is worth noting that the delay of sensing the interrupt signal and latching it in the co-
processor 0 does not affect the interrupt overhead since the interrupt is sensed in parallel

to the pipeline. Therefore the interrupt overhead time starts from when the vector is

executed.
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Figure 32: Interrupt on a Branch Delay Slot instruction (11 CPU clock cycles)?

Although not represented in the measurements, there is a further variation to the interrupt
overhead which can come from interrupting on a branch delay slot. If such a condition

should occur, then the previous branch instruction must be executed again in order to re-

TA larger version of this diagram is available in Appendix C, Figure 86.

8 A larger version of this diagram is available in Appendix C, Figure 87.
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evaluate if the branch should have been taken or not. This would result in the overhead

time consuming a futher CPU cycle as can be shown in Figure 32.

In summary, the modelsim figures show that an interrupt overhead time of 10 CPU cycles
could be expected with the potential need to re-execute a 33 CPU cycle multiply or divide
instruction which would consume upto 43 CPU cycles. The worst case scenario would be
if the multiply or divide instruction occured in a branch delay slot where a maximum
overhead of 44 CPU cycles would be observed. If the interrupt handler code is not
included, then the processor could be said to have an interrupt overhead of 5 to 38 CPU

cycles.

In many applications, a varation as small as this may not seem a big concern. However,
since this thesis is concerned with making a predictable processor down to the instruction
level, then the next set of results show how the PH-Predictable core differs from the

standard PH core.

4.8.5 PH-Predictable Core - Test Case 1

As in the standard PH Core, the first test was to measure the interrupt latency between an
external interrupt signal going high and the interrupt handler responding by setting a
GPIO pin high. As in the standard PH Core, the PH-Predictable core had no jitter in the
interrupt latency time (Figure 33). Furthermore, the duration of the interrupt latency was
also exactly the same. It may therefore appear that the PH-Predicatable core offers no real
speed increase over the standard PH Core. However, for a normal interrupt handler in the
standard PH Core many of the registers would have to be saved on the stack. Alternatively,
the PH-Predictable core has two register files and therefore avoids the need to execute

these additional instructions to save and restore the interrupt context.
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Figure 33: PH-Predictable core interrupt latency

The interrupt latency time can be broken down to the same actions as in the standard PH
core. First there is a single clock cycle delay as the interrupt signal is latched by the co-
processor 0. Although the pipeline is not flushed, 3 clock cycles are required to load the
interrupt handler instructions to the EX stage where they begin to do some work. The
interrupt vector code then consumes 2 CPU cycles followed by 4 CPU cycles for writing to
the GPIO peripheral.

Event Instructions CPU Cycle Count
Internal Response Time 1
Load Pipeline 3
Interrupt Vector J handler 2
nop
Interrupt Handler to write monitoring pin 1ui $26, 0x0003 4
ori $26, $26, 0x0008
1i $27, 1
sw $27, 0($26)

Table 7: PH-Predictable interrupt latency time breakdown
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Figure 34 shows the simulation of an interrupt on the PH-Predictable core. It can be seen
that the value ‘1’ which is written to the GPIO port is present on the peripheral bus (pdata)

10 clock cycles after the interrupt occured.

Messages L | | \ | |
& o 1 B ;I__;\__Iﬁ;_l_l__l_l_ e O s I o s I ey I
& st ] | ! I
+) 4 iaddress 00000254 000254 0000008 [0000000C 00000030 }pO000054 _ JDOD000SE | {0000005C 00000AD ___JOO0000AS _ JDODOOORS
1+ 4 idin 24030002 23050072 [0B0000P4_J00000070 | J3CTADO03  [375AD00B  J241H0031  JAFGB0000 00000000 370....
= 4 pbus 00 {00000003} {0} | 00 0000003 (0% 100 000009, 0 0 00000002y 0% J0 0H{o0n300...§o 0 {00p300... 0 0 {000004... {10 {000300...j00 L.
'+ 4 pdata 77777777 {00000001
’ den i
+) 4 phabi {ooooo} {o0oo} 0000} {0000}
& cpuint ] | |
‘ exception o __'_| !
i 00000000 10000030 J00000030
IO Now 100000000 ps
@ ExtInterrupt Signal 55100000 ps |55]DUDUJ ps |2[]G[]G ps
2 Interrupt Sensed 55120000ps | [55120000 ps——40000 ps
=) Vector 55160000 ps [55160000 ps-——80000 ps
) Handler 55240000 ps 55240000 ps | 120000 p:
-] Write GPIO 55360000 ps 55360000 ps| 140000 p
2 GPIO Dats on BUS 55500000 ps 55500000 ps|

Figure 34: PH-Predictable core interrupt latency simulation®

Having shown that both the standard and the predictable core have zero jitter latency, the
main difference should come in the next test where the hardware interrupt overhead on
the predictable core should be static and not contain jitter as was seen on the standard PH

core.

4.8.6 PH-Predictable Core - Test Case 2

The second test undertaken on the PH-Predictable core was similar to the test completed
on the standard core, apart from the interrupt handler was modified since there was no
need to re-enable interrupts and get the return address, instead a new instruction was
added. The purpose of the ‘retint’ instruction was to signify to the processor that it should
switch pipelines from the interrupt pipeline to the task pipeline. To add a bit more weight

to the interrupt handler, a few ‘NOP’ instructions were added (Listing 6).

handler:
nop
nop

# Return from handler
retint

nop

Listing 6: PH-Predictable core interrupt handler

9 A larger version of this diagram is available in Appendix C, Figure 88.
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When measuring the task execution time there was a base line which represented the task
duration without being interrupted. The upper line represented the execution time when
the task was interrupted. From the results it can be seen that when an interrupt occurred,

the overhead was a constant 6 CPU cycles longer (Figure 35).
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Figure 35: PH-Predictable task execution time

The exact measured values are shown in (Table 8).

Execution Time (ms) CPU Cycles
Max 7.04592 176148
Min 7.04568 176142
Difference 0.00024 6

Table 8: PH-Predictable core task execution maximum and minimum times

Justifying the 6 CPU clock cycle overhead time can be done by simply adding up the

interrupt vector and interrupt handler instructions (Table 9).
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Instructions CPU Cycle
Count

Interrupt Vector J handler 2
nop

Dummy Interrupt Handler Code nop 2
nop

End of Handler Instruction retint 2
nop

Table 9: PH-Predictable core task execution overhead breakdown

Also of interest is that the interrupt overhead was static even when interrupting a multiply
and divide instruction. This can be seen in Figure 36 where a multiply instruction has
executed for 8 clock cycles when it is then interrupted by an interrupt handler whose code
consumes a further 6 cycles. On return from the interrupt handler the multiply instruction
completes the rest of the instruction by taking only a further 25 cycles. As a result the

multiply instruction did not need to be re-executed and produced the correct result on

completion.
Messages | | | |
: dk 1 Wik a¥pHE B pHE Bl Bl e e p e R el ale e gl ey e g e ok ey ey gy g e Wl M il U pE a Ey
rst a
|+ 4 iaddress 00000280 {_Jo000026¢ Ty 000026C [
[+ @ idin 00000000 2403000 _Jpoooo... |1 [¥2403000 T
|+ 4 pbus 00 {ooooooo2y {0} | 5[0 f00000p0Sy 40k J0 0 fooooopozy {o% 5 Joo..
[+ 4 pdata 77777777
Oden 1
|+ 4 phdbi {00000} {0000} 000(0} {0000
Oexoepﬁon 0 ! [1
[+ @ irg 00000000 00000000 T {oodooooo
+) 4 mulo.result 60000000 0.1 11 ¥ Tboooooco 5 S O R | fieieafie] T T Y pogo000e
1 1 1 ' 1 1 | ' 1 1 1 | 1 1 1 1 | 1 1 1 ' ' 1 ' ' | 1 1 1 | 1
Mow 100000000 ps 65000000 ps 6F500000 ps 66000000ps  &§500 000 ps
Mult Start 64830000 ps | [54850000 ps |— 320000 ps—]
Handler 65200000 ps 55200000 ps| 240000 ps|
Mult Continue 55440000 ps 65440000 ps | 1000000 ps
Mult End 66440000 ps

Figure 36: Multiply instruction paused as the interrupt handler is executed!®

On the standard PH core, interrupting a multiply instruction resulted in a variable interrupt
overhead which would vary by as much as 33 CPU cycles, or 34 CPU cycles if combined
with a branch delay slot. The PH-Predictable core displayed predictable interrupt

behaviour regardless of which instruction was interrupted.

10'A larger version of this diagram is available in Appendix C, Figure 89.
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Figure 37: Comparisons of logic utilisation for the predictable multi-pipelined core

Making the processor predictable did come at a cost and resulted in the multi-pipelined
design being 1.72 times larger than the standard processor core (Figure 37). The extra

hardware utilisation is primarily from the need to duplicate the pipeline registers.

4.9 Discussion

This chapter has described a design for a predictable processor by making decisions to
build on some existing architectural features and avoiding others which would lead to
unpredictability. A choice was made to base the design around a MIPS pipelined processor.
A solution to the problems of dealing with interrupt mechanisms, which are a requirement
in most real-time operating systems, was provided. It was shown that the interrupt
mechanisms in pipelined processors present a number of complications, especially when
maintaining precise exceptions, dealing with branch delay slots and multi-cycle instructions.

In Section 4.6, a number of design choices were considered however only one design using
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a multi-pipelined solution solved all the problems in a practical way which would not

impinge on performance.

To support time triggered architectures, the interrupt system on the processor was
modified to conform to the ‘one interrupt per microcontroller’ rule. The new processor
design was then compared against a similar processor design without the aforementioned
features. The results demonstrated that even when comparing against a processor which
uses an instruction abort mechanism, the predictable core produced no jitter in handling
interrupts. The predictable core also imposed a static overhead over the code that it had
interrupted. Furthermore, the interrupt overhead could be calculated by simply counting
the instruction cycle times of the interrupt vector and interrupt handler code. This
provides a more predictable and simple way of determining execution times when using an
interrupt mechanism which would otherwise be non-obvious in systems using an

instruction abort mechanism.

4.10 Conclusion

In Chapter 3, the causes for unpredictability in processor hardware were discussed and this
led to the design and implementation of the predictable processor architecture described
throughout this chapter. The unique multi-cycle instruction capable processor design was
specifically aimed towards time-triggered architectures and included support for the one
interrupt per microcontroller rule. The result was a highly predictable hardware platform

with fixed and small interrupt overheads.

This chapter has demonstrated that a processor design with reasonable performance and
very high predictability can be achieved. However, there remains a potential for the
predictability to be lost by the implementation of the system code. This code can contain
various control paths and loops. The variations in the control flow can then result in large
differences in execution times and hence reduce temporal predictability. The next chapter

looks at trying to solve this problem.
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Chapter 5 TTC Hardware Scheduler

This chapter aims to address the issue of ensuring that the implementation of the TTC

scheduler provides both predictable and easy to understand CPU overheads.

5.1 Introduction

When using a predictable processor there still remains a potential for a variance in
execution times to be generated by the software implementation. The source of this
unpredictability can be due to variations of program flow throughout the code. These can
arise due to loops and conditional statements. For instance, on a predictable processor it
may be possible to know the exact time when a task begins execution. However, it may not
necessarily be possible to determine which paths and loops the code will take and thus
when the task will actually finish. Consequently the overall CPU loads become unknown

and the timing variation can then have knock-on effects on subsequent tasks.

The difficulty of predicting code execution times is not a new problem. One approach
outline by (Puschner and Burns 2002) are techniques such as code balancing and single
path programming. These may help to increase the predictability of code execution times.
However, this method can result in a significant performance hit and thus it may not
always be efficient or even practical to implement all code in this manner. An alternate
solution can be to use bounded loops and obtain bounded WCETs rather than static
execution times. Program control flow analysis and simulation can then be utilised to
speculate when and how frequently different paths might be taken. However, this can
result in a large variation between the best case and worst case execution times. A further
problem exists if a piece of code is waiting on an external signal or event, and thus a

relation between the code and external system properties must be factored in.

Often, embedded systems make use of a scheduler or RTOS in order to obtain
synchronization and support multitasking. In general, these systems are built by combining
three core components, a processor, RTOS and user tasks. The RTOS or scheduler may be
built in-house or licensed from a third party and used in a variety of applications.

Therefore, whilst it may not always be possible to control the way a programmer
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implements their application code and tasks, it can be possible to control the

implementation of the scheduler and RTOS on which the system is built.

Since a number of real-time applications do required some knowledge of system response
times, many RTOS manufactures often aim to produce low task release jitter. This then at
least gives a reference point on which to estimate task response times. Although on some
systems this is generally applicable to higher priority tasks. It is then up to the application
programmer to take a measured approach based on the particular system requirements on
how they implement their individual tasks for predictability. Consequently, there is a limit

to how predictable their task can be if not implemented on predictable hardware.

A similar problem is faced by RTOS designers where in order to achieve the minimal jitter
and system overheads, the implementation of the software scheduler mechanism has to be
undertaken carefully. This can prove to be complicated as the software implementation
may not reflect the final output accurately, for instance due to compiler optimizations. As
such, assembly code may often be used and as a side effect can result in the RTOS being
less portable and have different timing properties across a wide number of COTS

processors.

A key issue is that even if the final scheduler implementation can be made predictable, then
a further problem exists if the application programmer does not have a clear of
understanding of the scheduling mechanism and its complete system overheads. This may
result in the tasks themselves being unpredictable. For instance, it may not be possible to
know when and how much of the CPU time will be consumed by the scheduler and how
much will be available for each task. Also the scheduler or RTOS loads may be related to
the properties of the tasks in the system. As a result it is common practice in safety
certifications to reassess the whole system even when a small part in a single task has been

altered.

It is therefore desirable that the programmer and verification team can - without too much
difficulty - understand and anticipate how the underlying scheduling technique, system
architecture and system loads will be affected with each new program task. This in turn
means that in addition to making the RTOS predictable it is generally desirable to keep the

system implementation as simple as possible.
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As described in Section 2.3, one of the simplest forms of multitasking scheduling
architectures is a time-triggered co-operative approach (Pont 2001). However, when
looking at scheduler implementation techniques, (Katcher, Arakawa et al. 1993) argues that
there is a wide gap between scheduling theory and its implementation in operating system
kernels running on specific hardware platforms. They also note that the implementation of
a particular algorithm can introduce costs which must be taken into account when

validating the timing correctness properties of a real-time system.

For instance, considering a simple time-triggered co-operative scheduling model as shown
in Figure 4, time is split up into 1ms tick intervals in which one or more periodic tasks may
execute as long as they return in a time less than the tick. However, the implementation
becomes rather more complicated as the scheduling overhead and nature of the

functionality for the particular microcontroller is introduced.

A ? A ? ¢
B =0 i 2 3 4 5 t(ms)

Figure 38: Detailed Time-Triggered Co-operative Schedule!!

An example of this can be seen in Figure 38 which shows that the time left for the tasks to
complete is no longer easy to determine and can largely depend on the conditions of the
system. For instance, the number of tasks in the system may affect the time required for
the scheduler to decide which task is to be executed next. Therefore taking into account all
the overheads for what should in theory be a very simple scheduler, can actually become a
rather complicated procedure. As a result, the aim is to attempt to achieve the execution as

perceived and expected in the first diagram.

As previously mentioned, when implementing schedulers, some designers may use code
streamlining by programming in assembly in an attempt to reduce the overhead impact and
make calculating the system loads more deterministic. However, another approach can be
to implement the scheduling system on hardware. This can have a number of benefits,
including protecting the scheduler from being inadvertently modified and increasing

system performance.

1 A larger version of this diagram is available in Appendix C, Figure 90.
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For instance, (Andrews, Peck et al. 2005) notes that: “Specifically, developing an operating system
with minimal jitter, deterministic behavionr, and fine scheduling granularity have by far been the most
challenging goals for real-time operating systems designers. To achieve the best and tightest bounds on
application program scheduling, migration of both the scheduler processing as well as the management of

state information must be moved off of the CPU and into hardware components.”

Whilst the speed of silicon transistors appear to be no longer increasing as rapidly as it
once use to, Moore’s law on the increasing number of transistors is still being steadily
applied. This then leads to the consideration of utilizing a custom hardware approach
which is made more practical through the use of FPGA’s. The intention is to make the
system run in a simple and predictable way which can be easily understood by the
application programmer. As a result, the scheduling overhead can be removed making it

easier to determine CPU loads.

In scheduler implementations the following design features are desirable:
® Zero task jitter
® Constant and predictable system overhead
® Predictable schedule

® [Efficient and simple design

5.2 Related Work

Before continuing, this section gives a brief overview of the work in literature on the

development of hardware scheduling units.

A popular goal in literature is to increase system performance for pre-emptive kernels by
implementing various system features into hardware units (Furunis 2000; Lee, Ingstrém et
al. 2003). Examples include, a System-on-Chip Dynamic Memory Management Unit
(SoCDMMU) (Shalan and Mooney 2000), Multiprocessor synchronization support (Akgul
and Mooney 2001), System-on-a-Chip Deadlock Detection Unit (SoCDDU) (Shiu, Tan et
al. 2001), System-on-a-Chip Lock Cache (SoCLC) (Akgul and Mooney 2002), hardware
support for priority inheritance (Akgul, Mooney et al. 2003), resource locking and message
passing (Mooney and Blough 2002; Sun, Blough et al. 2002).
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Many hardware scheduling units are based on pre-emptive scheduling algorithms as the
overhead of context switching can be costly (Garcia, Vila et al. 1999; Saez, Vila et al. 1999;
Kohout, Ganesh et al. 2003).

Some system include the support for a range of scheduling architectures such as round-
robin, priority based, rate monotonic and earliest deadline first (Andrews, Niehaus et al.
2004; Andrews, Niehaus et al. 2004). Whilst others systems can modify the scheduling
architecture in real-time (Kuacharoen, Shalan et al. 2003; W. Peck, J. Agron et al. 2004;
Andrews, Peck et al. 2005).

Some features are scalable in the design phase (Lindh, Klevin et al. 1999) and lead to the
developments in hardware and software workflows (Young and Wilde ; Niehaus and

Andrews 2003; Issacson and Wilde 2004; Klingler and Wilde).

For many systems, the ability to perform context switching in hardware has been shown to
have higher performance and improved determinism (Adomat, Furunis et al. 1996; Stirner
1998). However the interest of the work in this thesis is on increasing the predictability of

embedded systems.

A set of projects - based on pre-emptive schedulers - starting with FASTCHART showed
that it was possible to get deterministic execution time through a CPU and real-time kernel.
(Lindh and Stanischewski 1991; Lindh and Stanischewski 1991). However, in order to
obtain this predictability the system had excluded the use of pipelines, caches, DMA and

interrupts.

In order to improve performance, FASTHARD improved on FASTCHART by adding the
support for interrupts. However the system was built as a purely hardware real-time kernel
which would be interfaced with standard COTS processors (Lindh 1992; Lindh 1993).
They showed that performance and determinism was better than software, however the

use of a COTS processor meant that the predictability of the tasks was reduced.

The Real Time Unit 94 (RTU94) improved on FASTHARD by its capability to control
multiprocessor systems (Furunds, Stirner et al. 1995; Lindh, Furunis et al. 1995; Adomat,
Furunis et al. 1996; Lindh, Stirner et al. 1998). The unit also includes semaphores, event
flags and watchdogs. Tasks could either be fixed to a local processor or be dynamically

scheduled on any processor. The RTU implements a priority based pre-emptive scheduler
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for each CPU, with a local queue for each processor and a global queue for global tasks
which can dynamically balance the load in the system. The emphasis of this work moved

from predictability towards performance which was greatly improved.

The Hard Real-Time Compact Kernel (HARETICK) project presented a solution for
executing co-operative tasks in a high priority mode (Micea, Cretu et al. 2005). The
hardware scheduling unit was interfaced to a COTS processor where they stated that the
WCET must be overestimated slightly to encounter for unpredictability. This resulted in a
decrease in operating efficiency. Therefore, their solution was to include soft real-time
tasks which would consume any leftover slack time. These tasks would operate in a low
priority mode and be pre-empted when a hard real-time task is released. A problem with
this solution is that the pre-emption on an unpredictable processor would incur variable
overhead. Also the verification process will be more complicated when mixing hard and

soft real-time tasks on the same system.

Through the literature it has been shown that most work has been focused on increasing
the performance and determinism of hardware based pre-emptive systems. The
HARETICK solution was found to be the closest to the work in this thesis. However, the
focus of the work here is towards the support of the TTC scheduler architecture to be built
around a predictable processor in order to meet the objectives of reduced system overhead
complexity and increased temporal predictability which can be predicted down the
instruction cycle level. It is thought that this architecture is novel and has not been

undertaken beforel!2.

5.3 TTC Software Scheduler Implementation

Before describing a hardware scheduling solution, this section will described the operation

of the time-triggered co-operative software mechanism as presented by (Pont 2001).

The time-triggered co-operative (TTC) scheduling system operates by splitting up the
available processor time into “Tick” intervals, often with a typical duration of 1ms. Most

tasks in the system will illustrate periodically: for example, every 3 ms (see Figure 39). In a

12 A Patent application for the TTC hardware scheduler has been filed. Please see the list of publications.
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TTC design, each task must finish and pass control back to the scheduler before the next

task is run.

Interrupt
>

Figure 39: Periodic co-operative scheduling

To obtain this behaviour, a periodic timer linked to an interrupt service routine is required,

plus (usually) a separate “dispatch” function e.g. see (Pont 2001). To achieve this, a

conventional timer often has a set of count registers configured to generate the periodic

interrupts. In the example shown in Figure 40, a prescaler register is used to bring down

the high onboard clock frequency to a reasonable value for the timer registers. The

prescaler count register is decremented with every pulse from the onboard clock source.

On an underflow, a tick signal is set high upon which the prescaler reload value is then

placed back into the count register and the process continues. The timer registers operate

in a similar manner, but are instead driven by the tick clock from the prescaler. On a timer

count register underflow an interrupt pin is set high where a processor then loads the

default interrupt vector.

Prescaler reload

— |

Clock | | prescaler count

Y

l \ 4

Timer reload

E_ﬁﬂck

Figure 40: Generic timer operation
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5.4 TTC Hardware Scheduler

Like the software scheduler the TTC hardware scheduler contains two major components,
Update and Dispatch connected together by a task FIFO. Update feeds the FIFO with
new task ID’s when they are scheduled to execute. The dispatch unit executes these tasks
until the FIFO becomes empty. Figure 41 shows an overview of the internal structure of

the hardware scheduler.

Dispatch | |

Figure 41: Hardware scheduler functional overview

Driven by a timer, the Update component waits until a new tick has been signalled where it
then decrements each tasks delay value as long the respective task enable bit is set. When
the tasks delay value underflows, the delay value is reloaded with the period and the task id
is inserted into the FIFO queue. In one view, the update unit can be considered as a timer
with multiple count and reload registers which contains one per task. When a task is due

for execution it is added to the task FIFO queue.

Task n period

Task B period

Task A period

Task n delay

Task B delay

Task A delay

Task FIFO

Figure 42: Hardware scheduler Update functional overview
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The dispatch component waits until the FIFO queue contains tasks to be executed. If the
queue is not empty then dispatch executes the first task. The dispatch unit then waits until

current task has completed where it then continues by executing any remaining tasks.

l Task n vector

Task B vector

Task FIFO Task A vector

—— 1> vector

|
|
lempty > interpt
|
|
|

Figure 43: Hardware scheduler Dispatch functional overview

5.5 The Processor Interface

The first problem with the hardware scheduler mechanism is to find a way to instruct the
processor to execute a task from a specific location in memory. The solution bears
resemblance to an interrupt mechanism, since in a similar manner an interrupt directs the
processor to execute a portion of code from a vector address. The main difference here is
that the vector address for the task to be executed comes externally from the hardware

schedulet.

Using this technique there must also be a means by which the hardware scheduler is
notified of the tasks completion so that it may instruct the processor to execute the next
task. This is achieved by implementing an ‘endtask’ instruction which is to be placed at the

end of each task.
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Figure 44: TTC Hardware scheduler interface overview

After the power up initialisation routine the processor is only required to execute tasks as
instructed by the hardware scheduler (Figure 44). As a result, there is no need for the tasks
to save and restore registers or even return back to any code. Instead, when the end task
instruction is executed, the processor sends an end task signal to the hardware scheduler
core - which assuming no further tasks are to be executed - places the processor into a
suitable low power sleep mode. The processor then remains in the low power sleep mode

until eventually signalled to execute another task.

One benefit to this system is that since the core instructs tasks to execute directly, there is
no real software interrupt handling mechanism needed apart from exception handlers to
deal with erroneous conditions. As a result, the predictable multiple pipeline method as
presented in Chapter 4 for the software scheduler is no longer required. Consequently this

simplifies the processor design.

5.6 Overhead Reduction

In the simplest implementation, when the ‘endtask’ instruction reaches the instruction
decode pipeline stage the processor sends the end task signal to the hardware scheduler

core (Figure 45).
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Nop Endtask Sw $r1, 0x04($r0)  Add $r1, $r2, $r4 Lw $r2, 0x00($r0)

IF ID EX MEM WB

Figure 45: Initial solution

However, there are two problems with this method. The first problem is that the
instruction immediately following the ‘endtask’ instruction is loaded into the pipeline and
therefore there exists at least one CPU clock cycle overhead before the next task might be
loaded into the pipeline (Figure 46). Secondly, the instructions in execution and instruction
fetch stages could potentially raise an exception which would not get serviced until the
MEM stage. This would result in an exception being raised after the end task signal has

already indicated that the task has finished.

Task 1 Nop Task 2

Endtask

Figure 46: Example solution 1 overhead

A quick fix to the problem might be to move the end task signalling to the execution stage

at which point the previous instructions can no longer generate exceptions (Figure 47).

>
S
Nop Nop Endtask Sw $r1, 0x04($r0)  Add $r1, $r2, $r4
IF ID EX MEM WB

Figure 47: Alternate solution

However, this puts the constraint on the system that an ‘endtask’ instruction must be
padded by two no-operation instructions since they do not generate exceptions in the

pipeline. Consequently this then increases the overhead to 2 CPU clock cycles between
tasks (Figure 48).
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Task 1 Nop | Nop Task 2

Endtask

Figure 48: Example solution 2 overhead

Since the NOP instructions do not provide any useful work, it would be advantageous to
attempt to get tasks to run back to back without any additional overhead. Starting each task
with an interrupt type signal would also flush the first 3 pipeline stages and consequently
waste CPU time. Instead, in order to meet the demands of removing the between task

overheads, a solution to run tasks back to back with correctly ordered exceptions and end

task signals is required.

A modification can be made to the hardware scheduler to output the task vector for next
task whilst the current task is still executing. A small amount of logic in the instruction
fetch stage could detect an end task instruction and redirect the program counter from

fetching the next instruction to fetching instructions for the next task (Figure 49).

]
Endtask Sw $r1, 0x04($r0)  Add $r1, $r2, $r4  Lw $r2, 0x00($r0)  Lw $r4, 0x08($r0)
Y
Next instruction ———»
—> IF ID EX MEM WB
Task Vector ——»|

>

Figure 49: Redirecting instruction flow when ‘endtask’ instruction is detected

When the ‘endtask’ instruction propagates down to the execution stage where the previous
task can no longer generate an exception, the hardware scheduler core can then be notified
of the end of task where it would either output the task vector for any following tasks or

send the processor to a low power sleep mode (Figure 50).
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Ori $r3, 0x01 Lui $r2, 0x00 Endtask Sw $r1, 0x04($r0)  Add $r1, $r2, $r4

A\ 4
Next instruction ——»

— IF ID EX MEM WB
Task Vector ——pp»

A
Sleep

Next task vector address
HW Scheduler

Figure 50: Signalling the end of task to the hardware scheduler

In the scenario where there are no more tasks to be executed and the processor is sent to
sleep, the instructions in the pipeline stages IF and ID would be the first two instructions
of task 1. Since task 1 may not be due to run next and that the sleep mode is deactivated by
an interrupt signal from the hardware scheduler, then the first two instructions of task 1

will be flushed out of the pipeline.

The sequence of events starting at the beginning of a tick interval is as follows. When the
tick begins and assuming that there are tasks to be executed, the hardware scheduler sends
an interrupt signal along with the task vector of the task to be executed. This interrupt
signal flushes the first three stages of the pipeline to remove any potentially unwanted
instructions. The first instruction of the task to be executed takes 3 CPU clock cycles
before it reaches the end of the execution stage and begins to change the system state
(Figure 51). If there are tasks that follow the currently executing task then at the point
when the ‘endtask’ instruction is loaded, the first instructions of the next task are preloaded
into the pipeline. When the ‘endtask’ instruction reaches the execution stage, the hardware
scheduler allows the new task to execute. If there are no further tasks to be executed and
the now currently executing task reaches its ‘endtask’ instruction, the hardware scheduler

puts the processor to sleep.

Pre1 | Pre2 | Pre3 Task 1 Task 2

Endtask
Endtask

Figure 51: Overheads when using the hardware scheduler

Essentially, each tick starts with a three CPU clock cycle delay and each task must be

terminated by an ‘endtask’ instruction. However, the hardware scheduler unit does require
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some time to compute the task schedule and therefore requires some clock cycles.
Although, this doesn’t affect the CPU load as the schedule is calculated in parallel to the
processor. What happens is there is an offset between the timer signal going into the
hardware scheduler and the first task being executed on the processor. This isn’t visible to
the processor, just that the timing on the processor is offset slightly from the timer.
However, this offset is kept constant so that the first task in a tick always executes the

same time at the beginning of each tick interval.

5.7 Results

To demonstrate that the hardware scheduler and processor are predictable as intended, two
test cases were devised. The first test case shows the offset time by measuring the duration
from the timer tick being raised to the point where hardware scheduler actually executes
the first task. The second test case shows the back to back execution of tasks by measuring

the time between one task finishing and the next task beginning.

5.7.1 TestCase 1

To measure the offset time, a second FPGA was loaded with a measuring core which will
be used to generate periodic tick signals. These tick signals are fed into the hardware
scheduler and processor core (Figure 52). When directed by the hardware scheduler, the
first few instructions of the first task will set a GPIO pin high. The measuring core will
then measure the time between the tick signal going high and this GPIO pin going high.

This interval is recorded by a hardware counter which is clocked at 100MHz.

5-14



TTC Hardware Scheduler

Measuring Core

2
X =
8 € 2
- S =
o
Test Core

Figure 52: Setup for test case 1

For this test the tick period is set to 10ms to allow time for the counter values to be sent to
a host computer for storage. A simple flashing LED task will be used for this test and is
called by an assembly wrapper (Listing 7). The first few instructions of the wrapper set the
GPIO pin high before calling the task. Once the task returns, the GPIO pin is set low

again and the ‘endtask’ instruction is executed.

first_task:
# Set GPIO pinl high
lui $26, 0x3
ori $26, $26, 0x8
1i $27, 1
sw $27, 0($26)
# Call the LED Task
jal LED_Update
nop
# Set GPIO pinl low
lui $26, 0x3
ori $26, $26, 0x8
sw $0, 0($26)
# End of task
endtask

Listing 7: Assembly wrapper for the first task in test case 1

When measuring the test case it can be seen through the scatter diagram in Figure 53 that

the offset time is constant throughout each run.
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Figure 53: Measured offset time between tick and first task reacting

From Table 10 it can be seen that there is a 16 clock cycle offset from when the tick signal
is fed into the hardware scheduler and the first task executing the instructions required to

set the GPIO pin high.

Offset Time (us) CPU Cycles
Measured | 0.640 16 |

Table 10: Detailed measured offset time between tick and first task reacting

Table 11 shows a breakdown of where these 16 clock cycles come from. For this test the
hardware scheduler component was synthesised for up to 8 tasks. By design, the dispatch
part of the hardware scheduler will not execute the first task until 8 cycles has passed
(Figure 54). This delay is based on the number of tasks the unit can handle and ensures the
update part of the hardware scheduler has enough time to update each of the task count
values. It also ensures that the first task, whether it is Task 1 or Task 8, will always start

after a fix period after the tick signal has been received.
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Figure 54: Hardware scheduler offset delay!?

Following the 8 clock cycle delay, there is a single cycle consumed by the processor sensing
and responding to the execute task signal. The processor then loads the pipeline with the
tasks instructions which takes 3 clock cycles until the first instruction reaches the end of
the execution stage. Four instructions must then be executed to set the GPIO pin high so

that the measurement can take place (Table 11).

Event Instructions CPU Cycle
Count
Hardware Scheduler offset 8
Internal Response Time 1
Load Pipeline 3
Set GPIO Pin High 1lui $26, 0x3 4
ori $26, $26, 0x8
1i $27, 1
sw $27, 0($26)

Table 11: Breakdown of the measured offset results

From these measurements it can be deduced that there is a hardware offset time of 9 clock
cycles plus a 3 clock cycle overhead before the first task is executing. The 9 clock cycle
offset time means that the processor is offset from the tick signal by 9 cycles, however, this
may not appear as CPU overhead as the task in the previous tick can run right up until the

end of these 9 clock cycles.

5.7.2 Test Case 2

This test aims to demonstrate the overhead between one task completing and the next task

starting. Two tasks are therefore required which are called by means of an assembly

13 A larger version of this diagram is available in Appendix C, Figure 91.
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wrapper. The first task is a simple flashing LED task which before completion will set a

GPIO pin high and execute the end task instruction (Listing 8).

led task:
# Call the LED Task
jal LED_Update
nop
# Set GPIO pinl high
lui $26, 0x3
ori $26, $26, 0x8
1i $27, 1
sw $27, 0($26)
# End of task
endtask

Listing 8: Assembly wrapper for the first task in test case 2

The second task is a seven segment task which sets a different GPIO pin high before

calling the main task function and executing the end task instruction (Listing 9).

seg_task:
# Set GPIO pin2 high
lui $26, 0x3
ori $26, $26, 0x8
1i $27, 2
sw $27, 0($26)
# Call the SEG Task
jal SEG_Update
nop
# End of task
endtask

Listing 9: Assembly wrapper for the second task in test case 2

The test will use a similar setup as described in the previous chapter with the main
difference being that the counter will measure the time between the first and second GPIO

pin going high (Figure 55).
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Figure 55: Setup for test case 2

In Figure 506 it can be seen that the time between the tasks is constant and does not vary.
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Figure 56: Measured time between first and second task

9000

10000

5-19



TTC Hardware Scheduler

From Table 12 it can be seen that there is a 5 clock cycle duration between the first GPIO

pin going high and the second GPIO pin going high.

Execution Time (us)

CPU Cycles

Measured

0.200

5 |

Table 12: Detailed measured time between first and second task

The breakdown of the 5 clock cycle duration is broken down in Table 13 where 4 of the

measured clock cycles come from setting the GPIO pin high and only 1 clock cycle from

executing the ‘endtask’ instruction.

Instructions

CPU Cycle

Count

Task 1: End of Task endtask 1
Task 2: Set GPIO Pin 2 High lui $26, 0x3 4
ori $26, $26, 0x8
1i  $27, 2
sw $27, 0($26)

Total

Table 13: Breakdown of the measured between task time

Figure 57 shows the whole process from when the tick signal enters the hardware

scheduler component to when the GPIO pin is set high demonstrating the 5 clock cycles

as observed in the measurements.

Messages | | | | |
% exception i} | l_| | | |
dk S [ M U U U U U LU Uy T T
dk_en ¥
*rst a
o+ -‘ irg 00000000 doooooon Joboboooa
[+ 4 vector 00000004 000000% DO0O00FD Jooon000+
Qsleep 1
[+ 4 idin 27BDFFFS J7BDFFFS s T e T e T T T
4} 4p phobi {00} {0} 0% {07
& tick 0 M1
34 pdata ZZIT7ITY —o— - O0——0 -, - O—+—
*endmsk 0 1
[+ 4 iaddress 00000238 0000238 IBEEEIRERTREEEE NSRRI EEEIE
1+ 4 pbus 0 0 {00000000} {0} (0 00000000 {0} b O O A O O O O O O O O O O O O
& phdbo u
&3O Now |  1000000000Ps |00 ps T osodooks I 701000000ps 701500 ocbes | 702000000 ps
[0 Timer Tick 700180000 ps 700180000 ps —320000 ps—|
o B ] HW Sch Interrupt 700500000 ps [Foos00000 |ps [s0000 ps
e Task 1: Loading 700560000 ps [7ooss0000 ps | 980000 p:
o =] Task 1: End Task 701540000 ps (701540000 ps —— 200000 ps
(=17 © Task 2: GPIO Set High 701740000 ps [7o1740000 ps|

Figure 57: Simulated between task overheadl4

14 A larger version of this diagram is available in Appendix C, Figure 92.
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In summary, the execution of tasks showed a 9 cycle offset from when the tick signal is fed
into the hardware scheduler and an execute task signal is received by the processor. There
was then a 3 cycle overhead to load the first task into the pipeline. It was then shown that
there is a single cycle overhead between tasks because of the need to execute an ‘endtask’
instruction. In addition, it was observed that there was no jitter or variance to the

measurements.

5.8 Analysis between hardware and software

When comparing the hardware scheduler core against the standard PH and predictable
cores as introduced in Section 4.8.1, it can be seen that the overheads to the first executing
task are significantly reduced (Figure 58). The reason why the predictable core has less
overhead than the standard PH core is because the interrupt handler does not need to save
and restore registers. It is worth point out that the loads measured for the software
schedulers are based on the time to execute Task 1 at the beginning of the tick. If time was
measured between the interrupt and the Task 2 as the first task in the tick, then the
overhead would be slightly larger due to the software mechanism needing to iterate once
more around a loop. This problem is not faced in the hardware scheduler which will always

have fixed load regardless of which task is executed first in the tick.
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Figure 58: Software scheduler loads on standard and predictable cores

The overheads between tasks is also variable in the software mechanisms as can be seen in
Figure 59. However, the hardware scheduler has a fixed one cycle overhead between tasks

which is due to the need to execute an end task instruction.
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Figure 59: Variable software scheduler overhead between tasks

When comparing the code and data sizes between the software and hardware schedulers, it
can be seen that the hardware mechanism consumes much less memory (Figure 60). The
memory that is consumed for the hardware scheduler are for helper functions to load the

hardware scheduler registers when the system is first started.
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Figure 60: Hardware and software scheduler code and data sizes

Some of the other benefits from using a hardware scheduler are not only is the
predictability better, but also the hardware provides protection from the user code and

software bugs whilst enhancing system performance.

Due to the complexity of understanding the software scheduler loads, this chapter looked
at moving the scheduling mechanism from software to hardware. A large benefit of this
was that the processor core no longer required the need for an interrupt handler as the
tasks executions are directed from hardware. As a result, the multi-pipelined core presented
in Section 4.6.2.5 for the support of predictable interrupts was no longer necessary. This
resulted in the processor core including the hardware TTC scheduler and support for up to
8 tasks being 13.5% smaller than the multi-pipelined core (see Figure 61). However, the

new processor core was still 51.2% larger than the standard unpredictable processor core.
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Figure 61: Comparisons of logic utilisation for the HW TTC core

Even though the logic consumption was larger, the design ensured that the scheduler loads
were now much smaller and fixed. These loads were fixed with a 3 clock cycle overhead
for the first task in a tick interval and had a between task overhead of 1 CPU cycle due to

the inclusion of an ‘endtask’ instruction.

5.9 Discussion

This chapter has dealt with the issue of unpredictable scheduler loads on the processor by
adopting a hardware solution. By comparison, the use of a scheduler implemented in
software resulted in variable execution times before the first task is executed in a tick
interval. Also the scheduler exhibited variable overheads when switching between tasks due
to variations in the control paths. This was noticeable when comparing the load when
switching between the first and second task to the load between the first and third task
which had an increase of 44.5%.
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The very nature of a scheduler being implemented in software can also give rise to timing
which is a2 more complex to understand. For instance, compiler optimizations could alter

the order and the amount of the generated code and thus lead to different scheduler loads.

The hardware scheduler mechanism described in this chapter produced loads that were
both fixed in duration and easy to understand. These loads would not be affected by
changes to the software. Furthermore the core size was smaller than the predictable core

and the code and data sizes were reduced whilst the performance was increased.

The simplicity of the overheads in the hardware scheduler makes it easier to prevent
mistakes being made in the calculations. By moving the scheduling mechanism from
software to hardware the system offers better protection from malicious and accidental
alterations to the system code. This means that changes to the functionality of the
scheduler are restricted unless the hardware can be regenerated. However, verifying
systems in hardware are considered to be easier than verifying software systems, thus

hardware designs can more suitable for safety critical type systems.

5.10 Conclusion

This chapter has presented a novel design for a hardware TTC scheduler which has
minimised the scheduling overhead and increased the predictability of embedded systems.
This design is unique because it provides very small overheads for a pipelined processor
based on the TTC scheduling architecture, with just 3 CPU cycles before the execution of
the first task in a tick interval and the inclusion of a single cycle instruction at the end of

each task.

Whilst a hardware TTC scheduler can provided a very predictable platform, there remains
a key failure mode in TTC scheduling that has the potential to cause the system to become
completely unresponsive. The next chapter will discuss this problem and provide a

solution for this failure mode.
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Chapter 6 Software Task Guardian

This chapter describes the design of a software task guardian mechanism to protect against

the problems of task overruns in both TTC and TTH scheduling architectures.

6.1 Introduction

In Chapter 2 it was discussed that the predictability for real-time systems not only relies on
functional requirements but also on the guarantees that the system will meet its deadlines.
Due to this importance for temporal predictability and a common need to execute more

than one task in a system, a time-triggered co-operative scheduling solution was chosen.

Whilst a time-triggered scheduler can have many benefits when it comes to temporal
predictability, there exists one major failure mode which has the potential to greatly impair

the system performance: this failure mode relates to the problem of task overruns.

In the event of a task overrun a problem may not even be detected (let alone resolved).
This may have a serious impact on the system behaviour. For example, as Buttazzo has
noted: “/Co-operative] scheduling is fragile during overload situations, since a task exceeding its predicted

excecution time conld generate (if not aborted) a domino effect on the subsequent tasks” (Buttazzo 2005).

A minimal task overrun may only generate a tick offset error where the scheduler
sequencing has been shifted by a small amount, however the remaining schedule recovers
and may not be apparent to the user. A task overrun that is longer but still returns to the
scheduler, often results in the system appearing very slow and sluggish. The worst case

scenario is where a task overrun does not return and causes the system to hang indefinitely.

In summary, for a co-operatively scheduled system, any task that overruns has the potential
to bring the whole system down to its knees. In a similar situation, a pre-emptive system
may still be able to execute the higher priority tasks whilst the lower priority tasks remain
blocked. As a result this can make a TTC system a less attractive solution, especially when
considering safety critical systems. This chapter therefore aims to address the problem of
task overruns by means of a flexible framework which provides a variety of mechanisms

for dealing with overruns.

6-1



Software Task Guardian

Before continuing, this chapter not only provides a task guardian solution for TTC
architectures, but also includes the mechanisms to support a TTH scheduler which is
described in Section 2.4. This is to allow the system to be used in a wider range of
applications such as data acquisition systems which may require tasks that have short and

long execution times to be scheduled within the same system.

6.2 Related work

There has been a considerable amount of work on the scheduling of systems in which
there is an overload situation (Caccamo, Buttazzo et al. 2002; Cervin, Henriksson et al.

2003; Buttazzo 2005).

When considering the use of backup tasks which are called when a task overruns, some
interesting work has previously been carried out in this area building on Jane Liu’s
publications on imprecise computations (Liu, Lin et al. 1987). This work involves running
a simple version of a task first: this will be followed by a more complete version if there is
time. One key difference between Liu’s work and the approach presented here is that a

static task schedule is used and backup tasks will only be employed if the main task fails.

Another related publication — with a focus on the Ada Ravenscar Kernel (Puente and
Zamorano 2003) - outlines a technique for using a timer ISR routine to run a recovery task
in the event of an overrun in a co-operative scheduler. Few details are provided but the
approach appears to be similar to the original TTC Task Guardian design (Hughes and
Pont 2004).

In relation to the Time-Triggered communication Protocol (TTP), a time-triggered
network architecture has been designed for the supervision and protection of network
communications (Bauer, Kopetz et al. 2003). The idea is to detect and recover from
network errors in distributed systems. The work here differs because the intention is to
detect and recovery from task errors and not just on the network communications.
However, the failure of tasks may themselves lead to network errors and thus the proposed

solution here may help to prevent against some of these errors.

In existing system designs, the main alternative to the techniques described here involve
the use of a simple watchdog timer (Douglass 1997). For example, previous studies have

described a set of design patterns which allow watchdog timers to be used in conjunction
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with TTC embedded designs (Pont and Ong 2003). Such techniques can be useful in TTC
designs, but cannot provide precise timing behaviour during recovery due to the long

restart times to boot the system back into a working state.

6.2.1 Normal operation

In order to understand the effects of task overruns in the software TTC and TTH
scheduling implementations the normal operations of the scheduler is described in this

section.

During normal operation of systems using the TTC/TTH scheduler implementations, the
first function to be run (after the startup code) is main(). Function main() then calls
Dispatch () which in turn launches the co-operative task(s) currently scheduled to execute:
it will be assumed in this discussion that a (co-operative) task - c_Task () - may be called.
Once any co-operative tasks have completed their execution, Dispatch() calls sleep(),
placing the processor into a suitable “idle” mode. A timer-based interrupt occurs every
millisecond (in typical implementations) which either wakes the processor up from the idle
state or pre-empts a long co-operative task. In either case, the ISR update () is invoked, by
means of an assembly-language “wrapper” (in the version of this system used here). For
TTH systems, Update () then directly calls the pre-emptive task (here it will be assumed
that this is P_Task ()). Once the pre-emptive task is complete, Update () increments a tick
counter. The function calls then “unwind” back to main (), and Dispatch () is called again.

The cycle thereby continues.

Please note that, in most designs, it would generally be expected that the pre-emptive task

would occupy no more than approximately 10% of the tick interval.

6.2.2 Co-operative task overrun

As previously mentioned, the hybrid scheduler differs from the co-operative scheduler in
that the assumption that co-operative tasks will complete within a tick interval is relaxed:
that is, co-operative tasks are permitted to have a duration greater than a tick interval.
However if there is more than one co-operative task scheduled to execute at any instant of

time then the current task must finish before any other (co-operative) task can run (Figure

62).
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Figure 62: Typical co-operative schedule under normal conditions

When a co-operative task overrun occurs, then - instead of sleep() being interrupted by

the ISR - the overrunning task is interrupted. The pre-emptive task will still run at every

tick, but all other co-operative tasks will be blocked (Figure 63).
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Figure 63: Overrunning of task A causes task B to be released late

6.2.3 Pre-emptive task overrun

If a pre-emptive task overrun occurs, then the co-operative tasks lose processing time

within the tick interval(s).

execution delayed until the pre-emptive task returns (if ever) (Figure 64).
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Figure 64: Overrunning pre-emptive task causes co-operative tasks to be blocked
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6.3 Adding Task Guardians

In the TTH architecture, two Task Guardians are required: one for the co-operative tasks
and one for the pre-emptive task. Ways in which these Guardians can be implemented are

discussed in this section.

6.3.1 Co-operative task overruns

The Task Guardian for co-operative tasks is described first.

6.3.1.1 Providing WCET information

In a TTC scheduler, a task overrun can be detected comparatively easily, since - if a task is
still executing when the next Tick occurs - the task has overrun. In a TTH scheduler, the
situation is more complicated because one or more of the (co-operative) tasks may have
been designed to execute for longer than a Tick interval: some additional information is

therefore required if an overrun situation is to be detected.

The implementation presented in this chapter will assume that the user will provide the
required information by indicating the expected WCET of each task (in us) as it is added to
the scheduler. Tasks will then be allowed to execute up to its expected WCET, where if
found to exceed this time, the task is then shutdown. This WCET information is then
checked by the Task Guardian implemented through a function called

SCH_Check_Tasks_OR().

To perform these checks, two timer match registers are employed to generate two
interrupts on the timer IRQ) line. Both interrupts are periodic and have the same period
(equal to the Tick Interval: 1 ms in the studies discussed in this chapter). The Pre-Tick
Interrupt occurs just before the Tick Interrupt: the interval between these events is the

Pre-Tick Offset (and is set to 50 us in the studies discussed in this chapter).

The Pre-Tick Interrupt is used to execute the SCH_Check_Tasks_OR() function and the Pre-
Tick Offset period is set to a value such that the checks in the scH_Check_Tasks_OR()
function can be completed before the main Tick Interrupt occurs. The purpose of the pre-
tick interrupt is to avoid the jitter and variable overhead that would be caused by
SCH_Check_Tasks_OR() function. This concept is a similar technique to the planned pre-

emption mechanism presented by (Maaita and Pont 2005).
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The interrupt behaviour is implemented by means of an “IRQ wrapper” (in assembly
language): this code is used to save (and restore) registers and call the appropriate function

when a timer ISR is invoked (Figure 65).
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Figure 65: Task scheduling diagram with co-operative task guardian.

6.3.1.2 Desired behaviour

In the co-operative Task Guardian, the aim is to shut down any (co-operative) task found
to have exceeded its predetermined WCET when the IRQ Wrapper is invoked. However
if — as the result of a task overrun — some tasks in the tick interval have not been executed,
these tasks need to be allowed time to execute. To allow this, the schedule is paused (for
one Tick Interval), to allow any “blocked” tasks to execute. This then creates a predictable

recovery time before the normal schedule continues.
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Figure 66: Paused tick offset to allow blocked tasks to execute before the system continues

6-6



Software Task Guardian

6.3.1.3 Overview of the Task Guardian mechanism

The co-operative Task Guardian is implemented as follows:

e The IRQ Wrapper — when invoked by the “Pre-tick offset” interrupt — will call

SCH_Check_Task_OR ()
® sCH_Check_Task_OR () will check the WCETS of the tasks and (if necessary) flag that
a task must be shut down.
® The IRQ Wrapper then places the processor into sleep mode.
® The tick interrupt then wakes the processor up from sleep mode and calls
Update ()
¢ For TTH implementations update () then calls the pre-emptive task.
® Tinally - based on the result flagged from the previous call to
SCH_Check_Task_OR() - the IRQ Wrapper will either shut down the currently

overrunning task or return normally from the interrupt.

The two main stages of the task guardian (detecting task overruns and returning from the

IRQ wrapper), are considered in more detail in the following sub-sections.

6.3.1.4 Detecting task overruns (general mechanism)

In order for the scH_Check_Task_OR () function to determine that an overrun has occurred
and take appropriate action, a simple but reliable method is required to detect overruns.
Modifying the code in pispatch (), where the co-operative tasks are launched, enables this
to be achieved. First the start and stop times of tasks are stored (before and after the task
is called) so that the task duration can be recorded. A (single) wvariable
(Co_op_Task_overrun_G) is also used to indicate if a task is still running when the timer
interrupt occurs and to identify the task concerned (see Listing 10). Note that the value

255 is used here as a reserved ID to indicate successful task completion (the value is

arbitrary).
Co_op_Task_Overrun_G = Index; // Store task ID
Start_Time = TMRO_TC() ; // Get Start time of Task
EnableInt () ; // Enable timer interrupt
(*SCH_tasks_G[Index].pTask) (); // Run the task
DisableInt () ; // Disable timer interrupt

Stop_Time = TMRO_TC(); // Get Stop time of Task
Co_op_Task_Overrun_G = 255; // Task completed

Listing 10: Overrun detection in Dispatch()
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Due to the problem that an interrupt could occur anywhere in the scheduler code resulting
in numerous systems states, there are three main areas in which an interrupt has been
allowed to occur: (1) while a co-operative task is still executing; (if) whilst Dispatch() is
“between tasks”; and (iii) during sleep mode, when all the tasks in the tick have completed.
Interrupts are — therefore - only enabled in pre-determined areas of the code for these
specific conditions (before and after the task is called, before and after sleep and once in a

suitable place in dispatch between task calls).

By detecting which of the three conditions the scheduler was in when the interrupt
occurred, it becomes possible to take appropriate action. This is discussed in the following

sub-sections.

6.3.1.5 Detecting task overruns 1 (interrupt an executing task)

In the condition where a task is still executing at the time when an interrupt occurred, the
currently executing task is checked to see if it has exceeded its WCET, and if so,
appropriate action is taken (Figure 67). To ensure this condition was not the result of a
previous error the recently executed tasks are then checked to see if they had exceeded
their WCETs. Finally another check is done to see if there are any tasks that have missed
their execution deadlines as a result of this condition: if so, the co-operative tick is paused
(for 1 Tick Interval) to allow the unexecuted tasks to run. After this “pause”, the normal
schedule continues. Under certain conditions an optional error report may be generated

which is sent to a buffer which can be transmitted over a communication medium such as

a UART.
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Figure 67: Flowchart of SCH_Check_Task_OR() when interrupting an executing task

6.3.1.6 Detecting task overruns 2 (Interrupt the scheduler in sleep mode)

When interrupting the scheduler in sleep mode, the system does a check on the previously

executed tasks to identify if any tasks may have exceeded their WCETs when they ran

(Figure 68).
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Figure 68: Flowchart of SCH_Check_Task_OR() when interrupting sleep mode

6.3.1.7 Detecting task overruns 3 (Interrupt the scheduler between tasks)

If a timer interrupt occurs when the dispatcher is “between tasks” this may mean that a
particular task has overrun slightly, causing delayed execution of later tasks in this interval.
If a “between tasks” event is detected, all previously-executed tasks are checked for
overruns and the schedule is examined to see if there are unexecuted tasks remaining to be
run. In the latter situation, the scheduler is paused (again for 1 Tick Interval) in order to

allow the outstanding tasks to execute. The normal schedule then continues (Figure 69).
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Figure 69: Flowchart of SCH_Check_Task_OR() when interrupting scheduler between

tasks

6.3.1.8 Returning from the IRQ Wrapper

Once the scH_check_Task_OR () function has completed and the system has been awakened
from sleep mode (by the timer interrupt), Update()and the pre-emptive task are then
executed. Following this, update () then returns to the IRQ wrapper where the decision
to shut down a task is made, based on the value of the shutdown_Task variable (which was

set in the sCH_Check_Task_OR() function).

If the decision is made to shut down the task, then the IRQ Wrapper must alter its return
address so that - instead of returning to the overrunning task - it returns to Dispatch()
(Listing 11). This can be achieved by loading the address of a code label (pointing to the
appropriate place in the pispatch() function), into a general purpose register (such as
t26°). 'Then, to perform a return, the program counter (‘pc’) register is loaded with the

contents of ‘r26’ through a jump instruction.
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# Load the dispatch return vector
la $26, Disp_Return_Ptr

1w $26, 0($26)

nop

# Return from handler
jr $26

nop

Listing 11: Return address known by use of code label in Dispatchy().

Since the code returns to pispatch () directly, there is no way of knowing which registers
have been altered or been placed on the stack by the overrunning task. The Dispatch ()
function therefore contains two assembly macros which save the processor state before
and after the task calls, allowing the pispatch() function to continue regardless of any

register changes.

6.3.2 Pre-emptive task overruns

With pre-emptive tasks, it is clear that — if the task is still executing at the time of the next
Tick - it has overrun. In practice, detecting and handling such overruns requires care
because pre-emptive tasks execute from a timer ISR: if the task overruns, subsequent
interrupt requests (from this source) can be blocked. To resolve this, a second timer is
used: this is set to an overflow time which is (i) slightly longer than the WCET of the pre-

emptive task, and (ii) slightly shorter than the tick interval.

Overflow of this timer is linked to a separate interrupt which must be allowed to interrupt

the current timer ISR.

Overall, the aim is to provide an effective TG mechanism without increasing the levels of
task jitter under normal operating conditions. Using the methods described below, this is
achieved by ensuring that there is always a fixed amount of tick available for the co-

operative tasks.
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Figure 70: Flowchart of pre-emptive TG

The second ‘pre-emptive’ timer is started before a pre-emptive task is called. Once the
timer match value is reached, the IRQQ Wrapper is invoked which in this instance calls
SCH_Check_PTask_OR (). If the (pre-emptive) task is found to be executing then its overrun
flag is updated and an error report is created (Figure 70). If however the (pre-emptive)
task returned before the timer finished, then the processor is placed in sleep mode for the
remainder of the timer duration. FEither way, the scH_Check_PTask_OR() is called and the

ISR shuts down the code it has interrupted. Control is then passed back to update ().

It is worth noting that, just before update () finishes, the processor is once again placed
into sleep mode. This encapsulates the pre-emptive task and pre-emptive task guardian
into a fixed pre-emptive time frame which reduces the likelihood of jitter in the timing of

the first co-operative task (Figure 71).

The remaining techniques used to create the pre-emptive Task Guardian are the same as

those described for the co-operative version.
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6.3.3 Overview of Task Guardian timing

For ease of reference, a summary of the timing measurements associated with the task
guardian is given in (Figure 71). The large arrows represent the tick interrupts and the
smaller dotted arrows represent the pre-tick and pre-emptive interrupts to create a fixed
time frame which encapsulates the pre-emptive task. This process means that the co-
operative task is interrupted by a fixed amount of time which is predictable and could be

factored into timing analysis.
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Figure 71: Task scheduling diagram showing low jitter solution

6.4 Evaluating the basic TG mechanism

In this section results are presented from a study which was intended to assess the speed

and response of the system in the event of a task overrun.

6.4.1 Overview of the study

In this design, a Tick interval of 1ms was used and a fixed period of 20 us was allocated in

each Tick interval for processing the pre-emptive task.

For test purposes, two tasks were created to generate task overruns at pre-determined

times.

6-14



Software Task Guardian

The co-operative task was set to alternate one of the LEDs on the development board
every time it was called. This function will also count the number of times it was called,
when a count value of 5 was reached, an infinite while loop is executed to generate a task
overrun. Note that, under normal conditions, the execution time of the co-operative task

was approximately 2.36 us.

The pre-emptive task simply pauses for a short while to represent some load and a variable
counts the number of times the task was called: after 500 calls, an infinite loop is executed
(Listing 12). Please note that “Function_a()” is used to demonstrate that the Task

Guardian can successfully shut down tasks with sub functions.

void Premp_Update (void)
{

Function_A();
}

void Function_A()

{
volatile int i;

for (1 = 0; 1 < 10; 1i++);
if (++State == 500)
{

State = 0;

while (1);

}

Listing 12: Pre-emptive task will generate a task overrun every 500 times it is called

Please note that the code in these tests was compiled using the GCC 3.3.3 compiler

without optimizations set.

6.4.2 Timing behaviour

Timing measurements were taken at key points in the systems execution by using a
hardware CPU cycle counter and sending its values over a serial connection to the host.
These values contain the cycle time from the beginning of the tick interrupt to the
associated event, as can be seen in Table 14. One of the more prominent values is the time
to the beginning of the first co-operative task as this reflects the overhead of the scheduler

and any pre-emptive tasks before the CPU time is handed over to standard TTC tasks.
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Event Measured Time (us)

Start of Pre-emptive Task 7.56
End of Pre-emptive Task 13.44
End of Update 61.80
Start of 15t Co-operative Task 74.52
End of 1st Co-operative Task 76.88

Table 14: Measured times during key event in the basic TG operation

In addition, values were recorded for the time between the first and second co-operative

tasks as well as the overhead imposed by check task overrun function (Table 15).

Event Measured Time (us)
Time between 1st and 2nd Co-operative Task 14.20
Check Task Overrun Overhead 12.52

Table 15: Measured overheads during normal conditions of the basic TG

When testing the basic task guardian mechanism under different overrun conditions it can

be seen that the time until the first co-operative tasks is unaltered (Table 16).

Condition Scheduler Load (ps)

No Overrun 74.52
Pre-emptive Overrun 74.52
Co-operative Overrun 74.52
Both Overrun 74.52

Table 16: Scheduler loads during task overrun conditions

When examining the results shown in (Table 16), it should be noted that — in all cases —
20 ps of the load comes from the fixed available execution time for the pre-emptive task
and a further generous 30 ps arises from the Jitter Compensation Delay. Even including
this fixed (50 ps) load, the scheduler can shut down an overrunning pre-emptive and / or
co-operative task within 74.52 pus from the beginning of the tick. More specifically, the
shut down time is 24.52 ps greater than the fixed available pre-emptive execution time and

has no effect on the jitter behaviour of the first executing co-operative task.

For almost all practical applications, this represents an extremely fast (and highly

predictable) response time.
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6.4.3 Implementation costs

The focus in this thesis is on applications which must have highly predictable patterns of
behaviour and ideally low resource requirements. Both the memory and CPU requirements

of the modified software scheduler are considered in this section.

Table 17 compares the memory requirements for the Base and Task Guardian schedulers.
It can be seen that the implementation of the Task Guardians requires a significant amount
of additional code for the main scheduler functions. However, even with this additional
code, the total data memory requirement is 318 bytes, and the total code requirement is

6352 bytes.

Scheduler Code Size (bytes) Data Size (bytes)
Base 2216 108
Basic Task Guardian 6352 318

Table 17: Code and data memory requirements for the “Base” and “Task Guardian” TTH

schedulers

It is also important to consider the CPU load imposed by adding the Task Guardians. To
illustrate this, Table 18 shows the amount of the tick interval used to process the scheduler
code in normal conditions (with empty tasks and no task overruns). As previously noted,
the Task Guardian in this case study fixes 20us of the tick interval to process the pre-
emptive task and 30us for a short pause at the end of update (). Even taking this into
account, the modified framework requires only a total of 74.52 us of the available CPU

time in a tick interval (under normal conditions).

Scheduler Scheduler Load (ps)
Base 8.60
Basic Task Guardian 74.52

Table 18: Scheduler loads per tick interval

6.5 Adding support for backup tasks and “allowed overruns”

The ability to shut-down tasks that overrun and exceed their WCET (as described in
Section 6.3), has the potential to improve the reliability of TTC and TTH designs.
However, avoiding scheduler “jams” may not address the underlying problem: indeed, if a
critical operation is rendered inoperative through the shutdown process, the system

reliability may not be improved (at all).
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There are a number of ways in which the functionality of the Task Guardian can be

extended in order to address this problem:

® Support for “Backup tasks” can be provided (such tasks to be invoked in the event
of the failure of a critical task).

® A task that is still running at the next tick interval can be shut down even if it has
not exceeded its WCET but its continued execution would prevent another task

from starting on time.

This section describes these features in more detail.

6.5.1 Backup Tasks

To support backup tasks, a second function pointer is required in the task array (for each
task). This will hold the address to the backup task (if one exists). When — in the
SCH_Check_Task_OR() function — a co-operative task overrun is detected, the backup-task
address is checked. If a non-zero value is found, the original task address is replaced with
the address of the backup. The scheduler then executes the backup task immediately

(before running any other pending tasks).

To reduce the problems of a domino effect (caused by the insertion of a new task in what
may be a full schedule), a period of grace (of 1 Tick Interval) is allowed for the backup task
and the completion of tasks which may have been unable to execute in the same tick

interval as the offending task.

Please note that, in the framework described here, the recovery time is known (1 Tick
Interval, from the task overrun being detected to the return to the normal schedule). It is
also known that the worst case overrun detection time is also 1 Tick Interval. Therefore in
the case where a co-operative task has overrun by a small amount (measured in

microseconds), it is only possible to react within the period of 1 Tick Interval.!>

The pre-emptive backup task operates slightly differently. Recall that, if the pre-emptive

task exceeds its pre-determined WCET wvalue, it will be shut down and control will be

15 This behavior is not ideal. However, the cost of supporting more rapid detection of overruns of the

co-operative task would be considerable (it would be necessary to perform overrun checks — for

example — ten times in every tick interval: this would impose a substantial CPU load).

6-18



Software Task Guardian

passed back to Update (). At this point, to reduce jitter in the timing of the co-operative
tasks, the scheduler goes to sleep mode for a short period (the Pre-emptive Delay). This
results in a pre-emptive time frame which will always have a duration equal to the WCET
of the pre-emptive task plus the Pre-emptive Delay (30 us in the present system). If a pre-
emptive backup task (labelled P, in these discussions) is included in the schedule then - in
the case where the pre-emptive task exceeds its WCET - the backup will be run
immediately and will take up exactly two pre-emptive time frames. For example, if the
system has a pre-emptive task and backup which each have WCET wvalues of 50 us, then
the “double pre-emptive frames” slot would have a total duration of 160 ps (that is, WCET
times of the two tasks + 2 x Jitter Compensation Delay). This worst-case figure should be

taken into account when setting the schedule for the co-operative tasks.

6.5.2 Allowed Overruns

As has been discussed, incorporating backup tasks without causing some disruption to the
schedule is a practical impossibility. One way around this problem is referred to here as an
“Allowed Overrun” mechanism for co-operative tasks. What this means is that, if a co-
operative task overruns, the designer may opt to allow it to carry on until either its WCET
is reached or another (co-operative) task is due to execute. The aim is to allow tasks to
continue to run, so long as it does not impact on other tasks. This might be particularly

useful if (because of inaccurate WCET estimates) a task may overrun by a small amount.

For a task to be allowed to overrun, the scheduler must be able to determine when the
next task is due to execute. The framework in the TTC and TTH schedulers determines
the execution times by decrementing delay counters for each task in the Dispatch()
function: when a delay of 0 is reached, the task is executed and the delay counter is reset.
By keeping a running count of how many ticks a task has overran and comparing this with
the delay values of the tasks in the scH_check_Task_OR()function, it is possible to

determine when a task will next be executed.

6.6 Evaluating the extended TG mechanism

As with the basic Task-Guardian framework in Section 6.4, a study was conducted with the
extended framework, described in Section 6.5, in order to assess the speed of response in

the event that there are one or more task overruns.
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6.6.1 Overview of the study

The study was conducted in the manner described in Section 6.4 using the same basic task

set. Please note, however, that in this study, backup tasks were also employed.

The co-operative and pre-emptive tasks were set to run (with no offset) every 2 ms, as
shown in Listing 13. Both tasks were scheduled to execute in the same time slot so that
measurements could be taken for the worst-case situation (in which both tasks overrun
simultaneously).

// Def: SCH_Add_Task (Task, BackupTask, Delay, Period, WCET, Premp);

// Pre-—-emptive task
SCH_Add_Task (Preemptive_Task, Preemptive_Task_Bkp, 0, 2, 20, 1);

// Co-operative task
SCH_Add_Task (Cooperative_Task, Cooperative_Task_Bkp, 0, 2, 100, 0);

Listing 13: Scheduling the tasks and backup tasks

6.6.2 Timing behaviour

When looking at the times of the key events in the extended task guardian it can be seen

that the overhead is slightly increased to accommodate the extra functionality (Table 19).

Event Measured Time (us)

Start of Pre-emptive Task 7.08
End of Pre-emptive Task 14.08
End of Update 61.32
Start of 15t Co-operative Task 77.56
End of 1st Co-operative Task 79.16

Table 19: Measured times during key event in the extended TG operation

In addition, the overhead between co-operative tasks and the check task overrun function

has also increased slightly (Table 20).

Event Measured Time (us)
Time between 1st and 2nd Co-operative Task 16.32
Check Task Overrun Overhead 14.92

Table 20: Measured overheads during normal conditions of the extended TG

Unlike the basic task guardian mechanism, the extended task guardian has some additional
overheads when backup tasks are executed (Table 21). In the case of a pre-emptive backup
task being executed, the additional overhead is predictable in that it requires exactly one

extra pre-emptive time frame. When a backup co-operative task is run the additional
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overhead is less obvious but is static and can be measured or calculated by static code

analysis. In this study this overhead was measured as 3.04 us.

Condition Scheduler Load (us) Difference (us)

No Overrun 77.56 0
Pre-emptive Overrun 77.56 0
Pre-emptive Overrun + Backup 127.56 +50
Co-operative Overrun 77.56 0
Co-operative Overrun + Backup 80.6 +3.04
Both Overrun 130.4 +53.04

Table 21: Scheduler load during task-overrun conditions

As the table makes clear, the additional features lead to a very small increase in the
scheduler load (3.04 us under normal operating conditions). The loads for the various
overrun conditions are summarised in Table 22. Note that the Dispatch Delay load may

vary if the first task in a tick interval is not the same.

Condition Load Equations

Normal Conditions Scheduler load = (Pre-emptive Time Frame) + Dispatch Delay
Pre-emptive Backup Scheduler load = (2 x Pre-emptive Time Frame) + Dispatch Delay
Co-operative Backup Scheduler load = (Pre-emptive Time Frame) + Co-operative Backup Overhead + Dispatch Delay

Both Backup Scheduler load = (2 x Pre-emptive Time Frame) + Co-operative Backup Overhead + Dispatch Delay

Table 22: Scheduler overhead equations!®

The user should use the load equations to predict the worst case scenario for a schedule
and apply this with the WCET information to ensure that the scheduler is not overloaded

under normal or task overrun conditions.

6.6.3 Implementation costs

As noted in Section 6.4.3, it is important to understand the implementation costs of the

mechanisms required to implement backup tasks and allowed overruns.

16 Measured values for scheduler overhead equations: Dispatch Delay = 27.56us; Co-operative Backup

Overhead = 3.04ps
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Table 23 shows the impact on the memory requirements from the addition of the backup
function and allowed overrun features. Again there is a significant increase in code size,

however there is only a small increase in data requirements.

Scheduler Code Size (bytes) Data Size (bytes)
Base 2216 108
Basic Task Guardian 6352 318
Extended Task Guardian 8648 366

Table 23: Code and Data memory requirements for the Base and Task Guardian

Schedulers

Although there is additional code, the CPU requirements (in normal operation) are

increased by only a very small amount (see Table 24).

Scheduler Scheduler Load (ps)

Base 8.6
Basic Task Guardian 74.52
Extended Task Guardian 77.56

Table 24: CPU loads for the various TTH schedulers

6.7 Further applications of the TG approach

In this section TTC and TTH implementation of the techniques described in this chapter

are compared.

6.7.1 ATTC implementation

The process to convert between the complete TTH framework (with support for backup
tasks and allowed overruns) into a TTC Scheduler framework can be done simply through
the use of a compiler ‘#define’ directive. In the TTC version, there is no support for pre-

emptive tasks (and, therefore, no Task Guardian for such tasks).

The memory requirements of the TTC and TTH designs are compared in Figure 72. The

comparisons of the CPU loads are shown in Figure 73.
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6.7.2 Dealing with the underlying causes of task overruns

Task overruns do not only arise from inaccurate estimates of WCET. For example,
electromagnetic interference can cause code and data corruption (Ong and Pont 2002)
which could lead to task overruns. In many cases, hardware features on the processor may
be employed to detect such errors and could make use of the TG mechanisms to handle
them. A similar form of generic error-handling mechanism (for watchdog timers) has been

described (Pont and Ong 2002).

The PH processor used in the examples in this chapter has four main “exception”
mechanisms: Undefined Instruction, Arithmetic error, Instruction Abort and Data Abort.!”
The Task Guardian implementation described in this chapter can be set to deal with all
four exceptions in the same manner that it deals with task overruns. On entering an
exception the handler will record the return address of the instruction that generated the
exception (which is printed along with the exception type by a generated error report). The
handler then flags an exception has occurred and places the processor into sleep mode to
await the next scH_Check_Task_OR()interrupt: this function then checks the exception flag
and shuts down the offending task. The TG treats the exception in the same manner as a
normal overrun, and therefore backup tasks (if any) are executed. All other TG features

remain available when this form of exception handling is employed.

6.8 Discussion

When a TTC scheduler is used the behaviour can be very predictable. However, in order to
expand the range of applications that a TTC scheduler can be used, a “time-triggered

hybrid” (TTH) scheduler can be employed as an alternative to a fully pre-emptive design.

Both systems can suffer due to the condition of task overruns. To address this problem,
this chapter presented a Task Guardian mechanism which can be employed to deal with
both co-operative and a single pre-emptive task. The task guardian provided a way to

shutdown an overrunning task and execute - if requested - a backup task. The benefit of

17 Data Abort errors occur when an attempt is made to load data from (or store data in) an invalid

memory location. Instruction Abort errors occur when an attempt is made to fetch an instruction from
an invalid memory location. An Undefined Instruction errors occur when an attempt is made to

execute an invalid instruction. An Arithmetic error occurs when a signed value overflows.
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the backup task was that the user could define a specific recovery mechanism for each task.
The resulting framework has been shown to have predictable behaviour, even in the event

of task overruns.

Inevitably, there are costs involved in applying these approaches. For example, knowledge
of task execution times and timing characteristics of the scheduler are required in order to
apply the equations presented in Table 22. In particular, for the basic TG mechanism, the
developer needs to ensure that the pre-tick interval and the jitter compensation delay are
sufficiently large for the guardian to execute. For the extended TG mechanism, the Pre-
emptive Time Frame, Pre-emptive Backup Overhead, Dispatch Delay, and Co-operative
Backup Overhead need to be defined. If these measurements are not accurate then the

reliability of the system could be compromised.

Even though the task guardian provided a number of useful features, this came at a high
price. For instance, the code size was 3.9 times larger than the software scheduler and the
data size was approximately 3.36 times larger. This not only represented a large increase in
memory requirements but also a significant amount of complexity. A timer with 2 match
registers was also required in order to provide a low jitter solution by running a ‘check task
overrun’ function in a separate interrupt handler before the main tick interrupt occurred.
The result was that the scheduler overhead was 2.2 times larger without including the extra
time required for the ‘check task overrun’ function. The between task overhead was also

increased by 3.4 times than that of the software scheduler.

Whilst the software task guardian was large and complex, it was designed to achieve a good
level of temporal predictability. However, it could be considered that because the system is
large and complex the the effort required to verify the system meets its safety standards

could render the use of a software task guardian to be impractical.

6.9 Conclusions

Throughout this thesis the goal has been to provide a way of constructing highly
predictable embedded systems. This chapter has sought a software solution to the task
overrun problem through the implementation of a task guardian. The software mechanism
achieved this goal but has substantially increased the amount of code required to

implement the system. This in turn increases system costs and complicates both the
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development and maintenance processes for the system. In addition, the developer must
correctly configure the software mechanism or they may actually reduce the system
reliability rather than improve it. Furthermore, the implementation is tied tightly to the

features of the microcontroller.

The work in this chapter differs from most previous approaches in that no attempt is made
to create an on-line scheduling algorithm which can adapt to deal with an overload
situation: instead, the aim is to follow a pre-determined (static) schedule as closely as
possible and to either shut down (or replace) a task that does not meet its pre-determined
WCET constraints. Providing this kind of mechanism is advantageous so that the error

detection and recovery times can be done quickly and in a known predictable time.

Due to all the associated complexities of the software task guardian mechanism, the next
chapter looks at providing a hardware solution which can be integrated with the hardware

scheduler mechanism as described in Chapter 5.
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Chapter 7 Hardware Task Guardian

This chapter aims to look at a hardware alternative to the software task guardian solution.
The solution presented here will be integrated with the predictable processor and hardware
scheduler designs as outlined in the previous chapters. A comparison will be then drawn

between the hardware solution and the software mechanism presented in Chapter 6.

7.1 Introduction

One of the main goals of a task guardian component is to guarantee task execution time by
ensuring each tasks allocated block of CPU time will always be available to it, especially if
any other task attempts to exceed its allocated time. To minimise the effect of an
overrunning task on subsequent tasks, involves the need for quick error detection. Thus
preventing CPU overload and ensuring that the recovery mechanism is fast so that the
tasks can collectively meet their deadlines. This highlights one of the problems with the
software task guardian mechanism where a task overrun is only checked at the end of each
tick interval. As such, a task may overrun by up to 1 millisecond before being detected.
This may result in several slack stealing tasks being forced to run in the next tick interval in
order to catch up with the desired schedule. In hardware, this issue is no longer a problem
as the overrun detection mechanism can occur in parallel to the executing task. As such,
this presents some interesting design choices to the way the hardware task guardian can be

implemented.

With the ability of the hardware to see what tasks are due to run next and quickly respond
to an overrun event and take the appropriate action, the need to shutdown the task
immediately can be relaxed. For instance, the guaranteed processor time (GPT) might be
set to the task’s WCET. However, the design can have the additional flexibility in that it
does not require precise information about the WCETSs for the tasks that it is monitoring.
This is because the task may be allowed to keep running (even if this execution takes
longer than might have been predicted — i.e. longer that the guaranteed processor time)
while no other task requires access to the CPU. Accordingly, this feature can help to
simplify the system design process. In addition, it may help to ensure that a system
operates in a reliable way and could also significantly reduce the opportunities for

programming errors to affect the system.
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While the advantages of allowing a task to exceed its guaranteed processing time when it
will have no impact on other task can have many benefits, there does come a point or
upper time limit where the user would prefer a recovery action to be taken. For example, if
a task has a WCET of 100us but the next task in the schedule does not execute until
500ms away, then the task could overrun for a substantial amount of time before anything
is done about the problem. Therefore, the hardware mechanism can be provided with an
additional variable, the maximum allowed overrun time (AOT). This means recovery will

be guaranteed to happen between the GPT and AOT times.

Finally, the hardware mechanism will include the ability to execute a backup task after the
current task has exceeded its GPT time. If no backup task is provided, then if specified the

task can run up to its AOT.

7.2 Task Guardian Component

This section briefly describes the functionality of the core of the hardware task guardian

mechanism.

7.2.1 Task information block

The task guardian registers are interfaced to the processor through the address and data
bus to load the task information along with the TT hardware scheduler unit. The current
layout of the task information block for the TT hardware scheduler unit contains the

information detailed in Table 25.

Task Variable Type Description
Vector Long Task address vector
Delay Short Delay until task executes
Period Short Period between task executions
Enable Bit Enable task to be scheduled

Table 25: TT Hardware Scheduler unit task information block

To support the task guardian unit three additional variables must be added to the task

information block. These include a guaranteed processor time ‘GPT’ variable, which
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contains the maximum execution time that the specified task will be guaranteed in each
task period. The second variable is an allowed overrun time ‘AOT’ up to which the
specified task may run when its additional execution time (i.e. that over and above its GPT)
does not coincide with any pending tasks'®. The third additional variable is a backup task
vector address ‘bVector’. When this contains a non-zero value the backup task at the
specified address will be executed in the event that the original task does not manage to
complete within its GPT time limit. The backup task is then allowed to execute for the
duration specified in the AOT. These variables are contained together with the TTC

hardware scheduler to form the task information block detailed in Table 26.

Task Variable  Type Description

Vector Long Task address vector

Delay Short Delay until task executes

Period Short  Period between task executions

Enable Bit  Enable task to be scheduled

GPT Long Guaranteed Processor execution Time (CPU cycles)

AOT Long Allowed Overrun execution Time (CPU cycles)
bVector Long Backup task address vector

Table 26: TT Hardware Scheduler + Task Guardian task information block

Whilst these three extra variables appear to the programmer as part of the hardware
scheduler unit, they are actually contained within registers of the task guardian unit. Figure
74 illustrates the structure and some key input and output control signals involved in the

operation of the hardware task guardian unit.

18 Note, that the GPT and AOT are specified in CPU cycles as these are the types of values that can be
obtained by static analysis and are not affected if features like dynamic frequency scaling are used. For a

CPU clock frequency of 25MHz, the maximum duration that can be specified is 2.86 seconds.
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Figure 74: Schematic overview of the hardware task guardian unit

In order to fully appreciate how the task guardian works it is important to review the basic
operation of the hardware scheduler as presented in Chapter 5. The hardware scheduler
contains two major components referred to as ‘Update’ and ‘Dispatch’. A timer generates
tick intervals (typically 1 ms in duration) by sending signals to the Update component. On
receipt of each signal, the Update component checks if there are any tasks due to run in
the current tick interval. Upon detecting that a task is due to run, the task is added to a
First In First Out (FIFO) queue. The role of the Dispatch component is to then execute
each task as it comes out of the FIFO queue until the queue becomes empty. The tasks are
executed by sending a task execute signal to the processor which causes its program
counter (PC) to be loaded with the vector address of the current task. An example of a

resulting schedule is shown in Figure 4 for tasks A, B, C and D.
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To support the task guardian, the task IDs which are stored in the FIFO queue are also
used to reference the current task’s GPT, AOT and backup task vector. In addition, the
task execute signal from the Dispatch component causes the task guardian timer to be

loaded with the stored GPT and AOT values and the timer is then started.

If the AOT is set to zero, two conditions can occur - either the task completes before the

GPT is reached or the GPT is reached and an error-recovery mechanism steps in.

When a task completes, an ‘endtask’ instruction is executed signifying to the Dispatch
component that it can proceed to execute the next task in the FIFO queue. In the scenario
when a task completes in time, the end task signal is also routed to the task guardian

component where it causes the task guardian timer to be stopped.

Alternatively, in the scenario when the GPT has been reached, the task overrun signal
indicates to the Dispatch component that the task should have ended. The next action
then depends on the outcome of the ‘shutdown / backup’ signal. If this simply indicates
that the task is to be shutdown then the Dispatch component stops the current task and
continues to execute the next task in the FIFO list. However, if no tasks are due to run, the

processor is put into sleep mode.

If the task guardian indicates that a backup task should be executed, the Dispatch
component then sends another task execute signal to the processor, but this time loading

the program counter with the backup task address.

If the AOT is not equal to zero then, in the event that the GPT has been exceeded, the
task guardian timer will keep running until either the AOT is reached or a task pending
signal is received. In either case the recovery mechanisms described above will operate
unless the task ends before either event (i.e. before the AOT is reached or before a task

pending signal is received).

Note that identifying pending tasks is achieved by reading the ‘queue not empty’ signal

from the task FIFO in the hardware scheduler unit.

Figure 75 represents the above functionality of the task guardian, in terms of a flow

diagram. The actions in the flow diagram execute every tick interval.
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The task guardian component may also include a “task overrun register” for each task.
This can be configured to maintain a value that indicates the number of times that the task

has exceeded its GPT and/or AOT.

7-6



Hardware Task Guardian

Start

Execute Task &
Start TG Timer

If GPT true
overflow

false false

If Backup task

Task ID = Backup
task

If AOT
overflow

— If ‘end_task’
false -

true

false

If FIFO Empty

If FIFO empty r—y

false

v

Task ID = Next
task Stop

Figure 75: Flowchart of the hardware task guardian operation.
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7.3 Results

The following section demonstrates the overhead that occurs when the hardware task

guardian shuts down the current task or runs a backup task.

A flashing LED task was added to the hardware scheduler with its subsequent backup task
along with the following values (Listing 14). The task was given a 100 CPU cycle
guaranteed execution time and a 100 CPU cycle allowed overrun time, which in this case
(because a backup task is provided) would be the maximum time the backup task is
allowed to run before it too would be shutdown. The task was set to execute with a 1ms

delay and a period of 50ms.

SCH_Add_Task (led_task, led_bk_task, 1, 50, 100, 100);

Listing 14: Hardware TG LED task parameters

Before the main LED task is run, an assembly wrapper was used to set a GPIO pin high
(for measuring purposes), load the stack pointer with the base address and execute the

‘endtask’ instruction once the task completed.

led _task:
# Set GPIO pinl high
lui $26, 0x3
ori $26, $26, 0x8
11 %27, 1
sw $27, 0($26)
# Set stack pointer register
la $29, 0x00011FFO
# Call the LED Task
jal LED_Update
nop
# End of task
endtask

Listing 15: Hardware TG LED task assembly wrapper

The LED_Update function that is called by the assembly wrapper will alternate the LED

pin and on every other execution it will execute a ‘while 1” loop.
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void LED_Update (void)

{
LED_pin = LED_state;
LED_state = ~LED_state;

if (++overrun_state == 2)

{

overrun_state = 0;
while (1);

Listing 16: Hardware TG LED task

When the LED_Update task executes the while 1 loop, the hardware task guardian will
shutdown the overrunning LED task and execute its backup task. The backup task also has
an assembly wrapper which differs from the normal task wrapper in that it sets a different

GPIO pin which is used for measurements.

led bk task:
# Set GPIO pin2 high
lui $26, 0x3
ori $26, $26, 0x8
1i $27, 2
sw  $27, 0($26)
# Set stack pointer register
la $29, 0x00011FFO
# Call the LED Backup Task
jal LED_Backup
nop
# End of task
endtask

Listing 17: Hardware TG LED backup task assembly wrapper

In addition to the LED tasks there is also a seven segment task. The purpose of the seven
segment task is that when the LED task does not overrun a GPIO pin is set high so that a
measurement can be taken to show the difference between normal execution and when the

LED task overruns.
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seg_task:
# Set GPIO pin2 high
lui $26, 0x3
ori $26, $26, 0x8
i $27, 2
sw $27, 0($26)
# Set stack pointer register
la $29, 0x00011FFO
# Call the SEG Task
jal SEG_Update
nop
# End of task
endtask

Listing 18: Hardware TG seven segment task assembly wrapper

When comparing the time between the beginning of the LED task and beginning of the

next task (the Seven Segment task) or backup task, the following was observed (Figure 76).
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Figure 76: Execution of times of the LED task

It can be seen that when an overrun occurs there is precisely 100 CPU clock cycles
between the start of the LED task and its backup task (Table 27). Whilst correct, this result

is slightly offset from the actual time the LED task starts and the backup task runs. This is
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due to the 4 instructions required before the GPIO pin is set in both instances. However,

what is not directly apparent is the overhead required to shutdown the task and force the

next one to begin.

Execution Time (us) CPU Cycles
Normal 1.40 35
Overrun 4.00 100

Table 27: Detailed execution of times of the LED task

As described in Chapter 5, the first task to execute in a tick has a 3 clock cycle delay whilst
its instructions are loaded into the pipeline and reach the end of the execution stage. An
interrupt type signal is used to direct the program counter to the vector address of the task.
This also has the effect of flushing out the contents of the first three pipeline stages. From
then on, tasks are separated by a 1 clock cycle ‘endtask’ instruction until there are no more

tasks to execute and the processor is put to sleep (Figure 77).

Pre1 | Pre2 | Pre3 Task 1 Task 2

Endtask
Endtask

Figure 77: Hardware TTC scheduler overheads

In the scenario when Task 1 overruns and must be shutdown, the same interrupt signal can
be used to flush out the unexecuted instructions and direct the processor to either the
backup task (if one exists) or to execute the next task. Therefore, instead of a single
‘endtask’ instruction overhead as in normal execution, there is a 3 clock cycle delay whilst
the pipeline is loaded with the next task. If the backup task completes within its allotted
time, then normal execution continues. If however the backup task also overruns, then it

too is shutdown and the same 3 clock cycle delay is required to force the next task to

execute.

Pre1 | Pre2 | Pre3 Task 1 Pre1 | Pre2 | Pre3 Backup Task 1

Endtask

Figure 78: Hardware TG task shutdown overheads

As can be seen in Figure 78, both Task 1 and the backup task have a 3 clock cycle delay
before they are executed. It is because of this identical delay that the measured overrun

time in Table 27 has the same offset to give an exact value of 100 CPU cycles. This
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measured value is identical to the GPT value entered in for the task parameters. To clarify
how this is possible, the task guardian execution time counter starts as soon as the task is
given control of the processor. Therefore in the case of Task 1, the counter is started when
the processor begins to load Task 1 into the pipeline (e.g. at ‘Prel’). Similarly for the
backup task the counter restarts at its ‘Prel’. However, assuming that previous task did not
overrun and the current task is not the first task in the tick, as is the case for Task 2 in
Figure 77, then the counter starts as soon as the first instruction is executed. This in
essences means that the GPT and APT values should be set to 3 CPU cycles longer than

the expected worst case times to cover the potential overhead to load each task into the

pipeline.
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Figure 79: Modelsim simulation of the hardware task guardian unit in action!?

To verity the task guardian component the unit was simulated in Modelsim. Figure 79
shows the scenario where two tasks and their respective backup tasks overrun. The end
result is that the final backup task is shutdown and the processor is immediately sent to

sleep.

7.4 Expansion of TG

The description of the task guardian so far has related mainly to a time guardian. However

there are many other conditions in which it is suitable to employ the task guardian recovery

19 A larger version of this diagram is available in Appendix C, Figure 93.
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mechanism. For instance, when exceptions generated from processor detect errors such as

mathematical and invalid instructions can be linked into the task guardian.

For instance it might be advantageous for a software engineer to include their own ‘divide
by zero’ error handler as a back-up task for a specific task containing important
mathematical routines. Features such as these can be provided and processed through the

use of the T'G unit.

One key aspect to ensuring a task is operating within its bounds is to check for invalid
memory accesses and program flow errors. These could be detected through a memory
guardian designed to interface with the task guardian unit in order to employ its error

recovery mechanisms.

Overall, the various aspects of the task guardian mechanism allow for predictable
behaviour in the event of task overruns without unnecessarily restricting processor time for

task executions.

7.5 Comparisons of the hardware cores

When observing the FPGA logic utilisation it is apparent that the hardware task guardian
mechanism consumes a fair bit more logic than the other cores (Figure 80). This may in
part be due to the number of task variables which are synthesised into registers made out
of FPGA logic. The cores containing hardware schedulers in Figure 80 were synthesised
for 8 tasks, however for larger numbers of tasks it may be advantageous to store the task

variables in FPGA block RAMs to conserve the logic resources.
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Figure 80: Xilinx Spartan 3 — 400 FPGA logic usage

Whilst the hardware logic consumption is increased quite substantially, the consequence is
that the code and data sizes are dramtically reduced when using the hardware schedulers

and task guardians (Figure 81).
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Figure 81: Code and data sizes of software and hardware systems

In addition, the hardware scheduler overheads for executing tasks are significantly reduced

and the between task overheads are made static when compared to the software solutions

(Figure 82).
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Figure 82: Extended software task guardian and hardware task guardian overheads

For the hardware task guardian the overheads due to a task overrun and executing an
optional backup task are also significantly reduced (Figure 83). These values are static and
not affected by code changes or optimisations. There is also a significant improvement in
the responsiveness to detecting and taking action on a task overrun. By comparison, the
software mechanism has to wait until just before the end of the tick interval before
discovering if a task has overrun, whereas the hardware mechanism detects the error

immediately because it runs in parallel to the processor.
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Figure 83: Software and hardware task overrun overheads

7.6 Discussion

Due to the large overhead and complexity of the software task guardian in Chapter 6, this
chapter has presented a hardware solution. A significant drawback of the software solution
was that task overruns would not be detected until the end of the tick interval by which
time the remaining schedule may have been adversely affected. In order to prevent a
domino effect and make the recovery time predictable, there were conditions when the
schedule might be paused for a whole tick to allow the blocked tasks time to catch up.
These issues could be avoided by the hardware task guardian which could run in parallel to
the executing tasks. The hardware solution also provided a means for relaxing the WCETS
entered into the task guardian by allowing tasks to overrun up to an upper bound as long

as it would not interfere with any other tasks.

When comparing the hardware task guardian core which is synthesised with support for up

to 8 tasks, the core was 2.5 times larger than the standard processor core and 1.7 times
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larger than the hardware TTC core. This represented a significantly larger increase in
silicon area. However, the overhead was dramatically reduced especially under overrun
conditions where a task could be shutdown in 3 CPU cycles. In context, this overhead was
157 times smaller than the software task guardian. The code and data sizes were also much
smaller as the code for the hardware task guardian was only required to implement helper
functions to load the appropriate task guardian registers. When compared to the software
task guardian, the code size was 14.2 times smaller and the data size was 43.6 times smaller.
Most importantly, the timing characteristics of the hardware task guardian are simple and
easy to understand and remain statically in line with the CPU frequency. This can be
particularly useful in power conscious systems that could take advantage of dynamic

frequency and voltage scaling (Phatrapornnant and Pont 20006).

It has also been discussed that the hardware TG can be expanded to operate on a variety
of system errors providing the programmer flexibility to apply their own recovery code for

a variety of conditions.

7.7 Conclusion

This chapter has provided an overview of the functionality of the hardware task guardian
unit in which one of the key goals is to guarantee task processing time. This is principally
produced by a timer unit that checks if a task exceeds its WCET. In the event that the
WCET is exceeded two recovery mechanism are employed, task shutdown and backup

tasks.

A key aspect that the hardware unit has over software alternatives is its very fast erro