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Abstract

As new microcontrollers and related processors have becom e available, it has 
becom e possible to create em bedded systems for condition monitoring and fault 
diagnosis (CM FD). This thesis explores how two popular classifiers: the 
M ultiLayer Perceptron (M LP) and Radial Basis Function neural Network 
(RBFN), can be most effectively em ployed in em bedded CM FD systems.

The design of an em bedded CM FD system can be considered to consist of three 
stages, involving data pre-processing, classification, and post-processing of 
classifier outputs. The thesis makes contributions to each of these phases as 
follows.

First, the thesis describes a novel separability analysis method which is able to 
predict the relative effectiveness of pre-processing techniques. An important 
aspect of this method is that the separability is derived from a non-parametric 
analysis: it therefore requires no assumptions to be made about the underlying 
distribution o f the data.

Second, a design methodology is derived that may be used to help the software 
engineer select between the use of M LP or RBFN classifiers in the CM FD system, 
depending on the particular system requirements. The design methodology is the 
result o f a comprehensive series of empirical studies. The com parison criteria 
used are those of particular relevance in em bedded CM FD applications. These 
include classification performance in the presence of unknown faults, with 
multiple faults, and with limited training data. The criteria also include processor 
and memory requirements.

Third, the thesis develops a novel technique that allows the user to determine an 
appropriate threshold for interpreting the outputs of a trained RBFN classifier. 
Results from two experiments demonstrate that this technique can be used to 
improve the performance of RBFN classifiers in practical CM FD applications 
where ‘unknown faults’ may occur.
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1
Designing Embedded CMFD Systems

1.1 Introduction

Em bedded condition monitoring and fault diagnosis (CM FD) com ponents are 

becom ing an increasingly important feature of complex modern systems. This is 

due to the growing demands for plant availability, reliability, maintainability, 

safety, quality and cost efficiency (Patton, et al, 1989; Chan, et al, 1997; 

Flam m ini, et al, 2001; Min, et al, 2002). In this context, a fault represents an 

unperm itted deviation o f at least one characteristic property or param eter of the 

plant from the ‘acceptable’, ‘usual’ or ‘standard’ condition (Isermann & Balle, 

1997; Isermann, 1997). The objective of CMFD is then to determine if such a 

fault is present and - if so - to identify the size, location and time of occurrence 

(Sick, 2002).

The aim of the programm e of work described in this thesis was to investigate how 

M ulti-Layer Perceptrons (MLPs) and Radial Basis Function neural Networks 

(RBFNs) techniques could be most effectively applied in em bedded CM FD 

applications. The particular focus of this work was on what are referred to here as 

“three-stage neural classifiers” . These classifiers involve the pre-processing of

1
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raw data from the plant, the design of suitable (neural) classifiers, and the post

processing of classifier outputs. In such a three-stage system, each stage 

contributes significantly to the system performance (Theodoridis & Koutroumbas, 

1999).

This introductory chapter begins by explaining the importance of CM FD using 

neural networks (Section 1.2), before discussing the distinctive features of the 

classifiers used for CM FD purposes (Section 1.3). In Section 1.4 it is argued that 

the developm ent of an em bedded implementation of a classifier imposes severe 

restrictions in memory and CPU power. Section 1.5 then describes the process of 

designing CM FD classification systems using neural networks. Following this 

introduction, Section 1.6 explains the scope of the project described in this thesis, 

and finally Section 1.7 provides an overview of the thesis itself.

1.2 CMFD using neural networks

A variety o f CM FD methods have been developed in the last two decades 

(Isermann & Balle, 1997; Chantler, et a l, 1998; Sick, 2002). In the early years, 

research efforts concentrated on the development of methods for linear dynamic 

plants (W illsky, 1976), while in the 1980s, the model-based approach formed the 

core of the CM FD methodology (Frank & KoppenSeliger, 1997; Isermann, 1984; 

Gertler, 1993; Patton, et a l, 1995). More recent research has mainly focused on 

the development of CMFD methods suitable for use in non-linear systems with 

uncertainty (Frank, 1994; Gertler, et a l, 1995; Patton & Chen, 1997; Le Riche, et 

a l, 2001).

2
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Because of the increasing com plexity of modern plants and the developments in 

artificial intelligence (M arks, 1993), intelligence-based CM FD methods were a 

particular focus of research during the 1990s (Patton & Lopez-Toribio, 1998; 

Ayoubi & Isermann, 1997; Frank & KoppenSeliger, 1997). In particular, artificial 

neural networks have been extensively applied in practical CM FD systems 

(Kram er & Leonard, 1990; Li, et al, 1998; Grimmelius, et al, 1999). Examples 

include: engine diagnosis (Ribbens, et al, 1994), nuclear power system monitoring 

(Cheon, et al, 1993), chemical processes (Ozyurt & Kandel, 1996), power plant 

diagnosis (Guglielmi, et al, 1995), and diagnosis of bearing faults (Yang, et al, 

2002). These applications have established that neural networks are a very 

prom ising technique.

Among these applications M ulti-Layer Perceptrons (M LPs) (Lippmann, 1987, 

1989; Rum elhart & M cClelland, 1986) have proved the most popular classifier 

(Zhang, 2000; Sick, 2002), but Radial Basis Function neural Networks (RBFNs) 

(Broom head & Lowe, 1988; M oody & Darken, 1988) have also been widely used 

(Leonard & Kramer, 1990; M usavi, et al, 1994; Schwenker, et al, 2001).

1.3 Required characteristics of CMFD classifiers

In this study classifiers based on MLPs and RBFNs will be considered. The key 

question that arises when developing a particular CMFD application is - which of 

these two classifiers should be used?

3
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Recently several benchm ark and comparison studies have been published which 

have com pared the performance of different classifier systems (Michie, et a l, 

1994; Ripley, 1994; Jain & Mao, 1997; Hsu & Lin, 2002). However, three 

particular problem s make the process of classification for CM FD purposes 

particularly challenging:

1) ‘M ultiple faults’

In CM FD applications, simultaneous faults can occur: for example, it is 

possible that both the failure of a thermostatic valve and a radiator in a 

cooling system will occur simultaneously, following physical damage. 

This type of problem was rarely discussed in com parative studies (Rozier, 

2001; Sick, 2002) because, in many classifier systems, the problem simply 

cannot arise: for example, in a speech recognition system, the user might 

say either ‘three’ or ‘four’, but - clearly - cannot say both words 

simultaneously.

2) ‘Unknown faults’

In CM FD applications, ‘unknown faults’ can occur: these are conditions 

that were not anticipated during the classifier design process and which, 

consequently, were not represented in the datasets used to train the 

classifier system. Such problems are, again, rarely discussed in 

comparative studies, because they are uncommon in many classifier 

systems (Tarassenko, et al, 2000).
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3) Limited training data

In CM FD applications, samples representing the normal plant condition 

are readily available, but samples of fault conditions are often difficult to 

obtain, especially in safety-critical environments (Bartal, et al, 1995; Jack 

& Nandi, 2001). In addition, obtaining details of fault conditions from 

manufacturers or suppliers can be difficult.

These characteristics of CMFD applications require the classifier designer to 

consider not only basic classifier performance, but also perform ance in the context 

of multiple faults, unknown faults and limited training data. These important 

features have been largely ignored in previous studies in this area (Dash & 

Venkatasubram anian, 2000; Sick, 2002).

1.4 Embedded CMFD systems

W here an M LP or RBFN classifier is used in a CMFD application, it is very likely 

that this classifier will be ‘em bedded’ (for example, see Patton, et al, 1989; 

Isermann & Raab, 1993; Rao, 1996; Marzi, 2002). This fact has a significant 

impact on the range o f system designs that can be econom ically implemented 

(Flammini, et al, 2001; Dash & Venkatasubramanian, 2000).

Unlike systems implemented on desktop microprocessors (based, for example, on 

personal com puter or workstation architectures), em bedded systems (Vahid & 

Givargis, 2002) have severely limited memory and CPU power (Figure 1-1). For 

example, a CMFD system based on the widely-used 8051 m icrocontroller family

5
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will typically have, on each processor node, up to 64 kbytes of external RAM 

(used mainly to store variables), and up to 64 kbytes o f on-chip ROM (used 

mainly to store the program code). The microcontroller operates at up to 50 

million instructions per second (50 MIPS). By comparison, a standard desktop 

PC will have a multi-gigabyte disk (for program storage), more than 100 Mbytes 

of RAM (for program execution), and will operate at around 1000 MIPS or more.

IM.0ITZ1
PI 1 (T2EX1

P3.0 (RXD)

P3 1 (TXD)
P3.2 (/ INTO)
P3J(/W T1)

P3.4 (TO)

P35 (T1)
P3.6(/WR|
P3 7 (/ RO)

vcc 1
PO O (ADO)

P0 1 (ADI)

P0.2 (AD2) 0
P0 3 (A03)
P0 4 (A04)

P0.5 (AOS)

P0.6 (ADG) •
P0.7 (AD7)

/  EA
•

ALE P f t t »
/PSEN

•
P2.7 (A1S)

P2.6 (A 14) 0
P2.5 (A13)
P2.4 (A 12)

P2.3 (All) •

P2.2 (Al 0)

P2.1 (A9)

P2.0 (AS)

Typical features:

Up to 50 MHz operating frequency: 
up to 50 million instructions per second (MIPS)

On-chip data (RAM) memory - 256 bytes.

On-chip code (ROM) memory - up to 64 kbytes.

Three sixteen-bit timer /  counters.

Various interrupt sources.

Cost from ~$0.50 (US), in quantities of 1000+.

Figure 1-1. External interface (left) and features (right) o f  a small
microcontroller. While the features available on different 
microcontrollers vary considerably, the extensive and popular 
8051 fam ily is representative o f  the type o f  small microcontroller 
that might be used to implement an embedded CMFD application 
o f the type discussed in this thesis.

Despite the apparent disadvantages of embedded processors, they are widely used. 

Indeed more than ten times as many microcontrollers than microprocessors are 

manufactured and sold in the world (Carelse, 2002). There are three particularly 

important reasons for this:

6
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• W hile the desktop PC may have a system board costing $300.00+, the 

typical cost of the system board for the embedded solution will be of the 

order o f $2.00+. The low cost of microcontroller-based solutions 

(Flammini, et al, 2001) is of central importance in high-volume embedded 

CM FD applications in, for example, the automotive industry.

•  The physical size of a microcontroller-based solution is typically a small 

fraction of any solution based on a microprocessor (W ilmshurst, 2001); 

even solutions based on PC architectures designed for em bedded use (such 

as P C /104) have a much larger ‘footprint’ than the corresponding 

m icrocontroller solution. Small physical size is an essential requirement in 

many em bedded systems.

• To provide a true multi-tasking capability and/or redundancy, many 

em bedded designs will employ a network of multiple processors, and 

CM FD components will be integrated into such systems (Chan, et al, 1997). 

For exam ple, a modem  passenger car might contain some forty processors 

(Leen, et al, 1999), controlling brakes, door windows and mirrors, steering, 

air bags, and so forth. M icrocontrollers with Controller Area Network 

(CAN) and similar communication hardware are readily available (for 

exam ple, see Lawrenz, 1997), allowing networks of processors to be created 

with minimal additional hardware complexity, at minimal cost (see Pont, 

2001). PC architectures require substantial numbers of additional hardware 

components, and additional software layers, to im plement equivalent 

designs.

7



E m b e d d e d  CMFD S y s t e m s

As a result of the consideration of embedded systems, this thesis not only 

compares the classification performance of MLP and RBFN classifiers, but also 

considers the costs, in terms of both processor instructions and memory load, of 

implementing each classifier.

1.5 Pre- and post-processing

The type of CMFD system considered in this thesis usually consists of three 

stages:

1) the pre-processing of the acquired raw data to extract useful information;

2) the implementation of the classifier to suit the particular application 

problem;

3) the post-processing of the classifier outputs to provide the state of the 

plant.

Figure 1-2 illustrates a typical three-stage CMFD system.

Raw data Feature vector Plant states

Classifiers Post-processingPre-processing

Figure 1-2. A typical three-stage CMFD system.

The pre- and post-processing stages are considered in the sub-sections below.
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Pre-processing

Using a CM FD system, the condition of the plant will be inferred from 

measurements obtained using data-acquisition equipment. The raw data recorded 

from the plant in this way usually consists of a great number of samples and is 

likely to contain some level of noise.

In this thesis, the term “pre-processing” will be used to refer to the process of 

extracting features from this raw data, using appropriate signal processing 

techniques. A fter such processing, the plant data will be represented by feature 

vectors with reduced dim ensionality (Manson, et al, 2001; Yang, et al, 2002).

It should be noted that the dimensionality reduction achieved through pre

processing is of particular importance in em bedded CM FD designs (of the type 

considered in this thesis), not least because it may mean that a simpler/smaller 

neural classifier can subsequently be employed, with a consequent reduction in 

CPU and memory requirements.

Post-processing

Ideally the output of the classifier is two-valued, for example, with 1 for the 

presence of the class and 0 for the absence of the class. However the actual output 

of a neural classifier rarely appears in this ideal form: that is, elements of the 

output vector are usually real valued rather than binary valued. The objective of 

post-processing is to convert the real valued vectors into binary valued vectors in
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order to reach the final classification for feature vectors (Theodoridis & 

Koutroumbas, 1999).

Proper post-processing directly translates into improving classifier system 

perform ance (Silipo & M archesi, 1998; Haykin, 1999). This post-processing 

stage makes a particularly large contribution to the system performance for some 

applications such as unknown fault detection (Tarassenko, et al, 2000; Hayton, et 

al, 2001) and multi-fault diagnosis (Chung, et al, 1994). However the importance 

of post-processing has been largely overlooked by researchers (Cordelia, et al, 

1995; Lampariello & Sciandrone, 2001).

1.6 Scope of the study

W ith the characteristics o f CM FD applications and the restrictions of embedded 

systems in mind, this thesis considers the design of CM FD systems as an 

integrated process of three stages: pre-processing, classifier design and post

processing. The specific aims of this study are as follows:

1) To develop a method for measuring the effectiveness of pre-processing 

techniques.

2) To evaluate the appropriateness of MLP and RBFN classifiers against 

criteria that are appropriate for CM FD systems.

3) To identify optimal thresholds for post-processing classifier outputs in 

RBFN classifiers.

10
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These objectives will be achieved by theoretical derivation and empirical 

evaluation. The empirical work follows current standard practice (Prechelt, 1996; 

Jain & Mao, 1997; Zhang, 2000; Hsu & Lin, 2002) in that, each method (or 

algorithm, classifier, comparison criterion) is evaluated on at least two 

classification problems.

1.7 Overview of the remainder of this thesis

Following this introductory chapter, Chapter 2 provides an overview of M LP and 

RBFN classifiers, and their implementation in CM FD systems.

Chapters 3 and 4 are then devoted to the selection of appropriate pre-processing 

strategies. Chapter 3 first proposes a class-separability measure which is derived 

from a non-param etric separability analysis: no knowledge of the underlying 

distribution of the data is required. Chapter 4 then develops a selection procedure 

for pre-processing techniques using the proposed separability measure. The 

effectiveness o f this procedure is explored on a problem of engine misfire 

detection.

Chapters 5, 6 and 7 are devoted to the evaluation of M LP and RBFN classifiers, 

focusing on CM FD applications. Chapter 5 describes how the comparison criteria 

were selected and provides information about the datasets that were em ployed in 

the empirical study. Chapters 6 and 7 describe the empirical studies themselves.

11
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Chapter 8 is devoted to post-processing, focusing on improving RBFN 

performance where unknown faults may occur. It presents a novel technique that 

may be used to determine an appropriate threshold for interpreting the outputs of a 

trained RBFN classifier. Results from two experiments demonstrate that this 

method can be used to improve the performance of RBFN classifiers in practical 

applications.

A design m ethodology is derived in Chapter 9, based on the theoretical and 

experimental findings from earlier chapters. This methodology is then assessed in 

a further case study, which involves the design of an em bedded CM FD system for 

a diesel-engine aspiration system.

The final chapter concludes the thesis with an overall discussion, and a 

presentation of suggestions for future work in this important area.

12



2
MLP and RBFN Classifiers

2.1 Introduction

As discussed in Chapter 1, this thesis explores how two popular neural classifiers, 

the M LP and RBFN, can be most effectively em ployed in CM FD systems. This 

chapter provides essential background information on these two classifiers. It also 

discusses classifier implementation issues which are particularly important for 

em bedded CM FD applications.

2.2 Multilayer perceptrons

M LPs have been the most widely used neural network (Zhang, 2000). The MLP 

network consists of an input layer, one or more hidden layers and an output layer, 

each layer consisting of a number of neurons (nodes). Figure 2-1 illustrates the 

signal flow in a single neuron which has input signals (x ), weights (w), and output 

signal (}'). A bias, wo, acts exactly as a weight on a connection from a node whose 

input signal is always 1.

13
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summation activation
function function

Inputs^
Output 
— ► y

Figure 2-1. Signal flow  in a node from  an MLP network.

A node carries out two actions. The first is to sum weighted input signals from 

other nodes, providing the net input for this node:

n

net = wixi 
i=0

where n is the number of inputs.

The second action is to output a value as a function of its net input:

y  =  / ( n e f )

This is commonly carried out using a sigmoid function such as:

1
y  = f ( ne

\ + e-n e t

The network structure of an MLP with one hidden layer is depicted in Figure 2-2.
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Input
layer

Hidden
layer

Output
layer

Figure 2-2. An MLP with one hidden layer.

MLPs are trained using the back-propagation (BP) algorithm (Rumelhart & 

McClelland, 1986). During the learning process, weight corrections are applied 

according to the delta rule:

where, Awy7(fc) is the weight correction applied to a synaptic link connecting the

neuron j  to the neuron i of the preceding layer at the training 

iteration k.

Tj is a constant called the learning rate parameter.

Sj(k)  is a local gradient which depends on whether neuron j  is an output

equals the product of the output error signal (that is, the difference 

between the target output and the network output) and the derivative 

of the activation function. If neuron j  is a hidden neuron, Sj(k)  

equals the product of the associated derivative of the activation 

function and the weighted sum of the <?s computed for the neurons 

in the next hidden or output layer that are connected to neuron j.  

x ,(it) is the ith input signal of neuron j  at the training iteration k.

Awji(k) = 7jSj(k)xi(k) (2- 1)

neuron or a hidden neuron. If neuron j  is an output neuron, Sj(k)

15
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The training process for an M LP involves a ‘forward pass’ and a ‘backward pass’. 

During the forward pass, the synaptic weights between the layers are unaltered 

and, for each training pattern, an error signal is generated from each neuron in the 

output layer. Once the error vector is generated, weight corrections are applied 

according to (2-1). As the weight corrections are based on a local gradient 

computation, it is a requirement that the activation functions used for MLP 

networks are differentiable.

Note that training of the network can be undertaken in pattern mode (weight 

changes are calculated and applied after each training pattern has been presented) 

or in batch mode (weight changes are calculated and applied after presentation of 

all the training patterns: the presentation of the whole set of training patterns is 

known as an epoch).

The learning rate Tj in (2-1) determines the size of weight changes in any given 

iteration. If the learning rate is set too low, the training time will increase to an 

unacceptable duration. On the other hand, if the learning rate is set too high, large 

weight changes will occur which make the network unstable, oscillate and fail to 

converge.

Direct use of this gradient descent algorithm is particularly inefficient in training 

MLPs, and various modifications have been proposed (Haykin, 1999). A method

16
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to improve training efficiency and yet avoid the occurrence of instability is to 

modify the delta rule by adding a momentum term (Bishop, 1995):

A w J:(k ) =  JjSj {k).t (k ) + a A w n { k -  1) (2-2)

where a  is usually a positive number called the momentum constant.

The momentum term may also have the benefit of preventing the learning process 

from terminating in a shallow local minimum on the error surface.

Equation (2-2) is called the generalised delta rule containing two (arbitrary) 

parameters, tj and a ,  whose values must be adjusted to give the best performance. 

Furtherm ore, the optim al values for these parameters will often vary during the 

training process. One effective strategy for varying the learning rate is to compare

e(k)
the error ratio of successive iteration steps, ~ ~ — ~  (Haykin, 1999). If the error

e ( k - l )

at the kth iteration step, e(k), is smaller than the previous error e(k-l), then the 

learning rate is increased. If, on the other hand, e{k) is greater than e(k -l)  by more 

than a predefined ratio, the learning rate is decreased.

2.3 Radial basis function networks

The radial basis function is a functional approximation technique (Powell, 1987). 

Given m different points {x, : / = l,2,- -,ra} in Rn, and m real numbers

{>’, :/ = 1,2, --,m}, one has to calculate a function / :  /?"—>/? that satisfies the 

interpolation condition:

17
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/ ( x , )  = / = 1,2, — , m

Powell (1987) chose/ from a linear space that depends on the positions of the data 

points. The positions of data points is described using radial basis functions of the 

form:

<t>(||x-x,||), x e  i = 1,2,-• • ,m (2-3)

where ||»|| is the norm of I f1.

Table 2-1 lists some examples of radial basis function nonlinearities (Sanchez,

1996).

Function name Function expression: <j)(r, <r) 
(<7=constant)

Linear r

Cubic 3r

Thin plate spline r2.log r

Gaussian exp(-[r2/<72])

M ultiquadric ( r 2+ a 2 ) ± U 2

Table 2-1. Examples o f  radial basis function nonlinearities.

The approximation functions have the form:

/ (X )  = X  w M l* -  x,||), x e R "  (2-4)
1 =  1
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Broomhead & Lowe (1988) and M oody & Darken (1988) first independently 

converted this functional approximation technique into a neural network 

paradigm. The resulting RBFNs consist of one input, one hidden and one output 

layer (Figure 2-3).

outputs

bias
basis
functions

inputs

Figure 2-3. The architecture o f RBFNs.

In Figure 2-3 the hidden layer contains nodes realising basis functions while the 

output layer nodes form a linear combination of the hidden layer outputs. Thus an 

output of the RBFN, given input vector x, may be described as follows:

m

y k (x) = £ w ,t<|>,.(||x-c,||)
7° k = l , 2 , - p  (2-5)

= ( |x - c ,||) +  ^
( =  1

where c, is the centre of ((J), could be one of the expressions in Table 2-1), wik is 

the weight connecting the /th hidden node and the &th output node, p  is the
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number of output neurons, the radial basis function <j)0 is set to be a constant equal

to 1, and bias b k — w 0k

For a set of input vectors X = { x 1, x 2, - x yv }, Equation (2-5) can be rewritten as:

(2-6)

where:

y  k =  [>’* (x l).> ’* (x 2 > " ’>'*(XA/)]‘ 

w * = [ b k , w l k , w 2k, - " , w mk]T

1  < M l x i  - c i l l )  < M I x i - c 2 | | )

< l >

1 <|>i(||x2 - C , | | )  <t>2 ( | x 2 ~ c 2 |)

< M l x i  - c , „ | | )
<l>ra( |X2 - Cm|)

.1 <M|X*-Cl||) <t>2(|X2V -« 2||) <L(||xN -cJ)
= [l (|>| <|»2 1

where T  denotes transpose.

For the Gaussian function with centre c, and width cri (i = \,2, - , m ) , (j), has the

form:

<MX) = exp
(  II

X - c

2cr;
(2-7)

The basis function (nonlinearity) in the hidden layer produces a significant non

zero response to input stimuli only when the input falls within a small localised

2 0
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region of the input space, and the RBFNs form a bounded decision region 

(Lampariello & Sciandrone, 2001).

Since the hidden layer and output layer of an RBFN perform different tasks, most 

of the learning algorithms consist of two stages. The first stage selects the 

appropriate centres of the radial basis functions, and the second estimates the 

weights between the hidden layer and the output layer using linear optimisation 

algorithms.

The centre can be selected using the following algorithms:

1) Fix the number of radial basis functions, m (m<N, where N  is the number

of samples in training dataset), in the hidden layer, and choose locations of 

the m centres randomly from the training dataset. In order to achieve 

effective RBFNs, this approach requires that the training data well

represents the data distribution of the problem at hand (M oody & Darken,

1988).

2) Adapt the centres of the radial basis functions in a self-organised fashion 

such as £:-nearest neighbour rule or other clustering methods (Lee & Kil, 

1991).

3) Gradually optimise the centres of the radial basis functions by supervised 

learning using the gradient descent procedure (Tarassenko & Roberts, 

1994; O it ,  1999).
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W hen we design an RBFN, it is desirable to obtain a parsimonious model. One 

effective way to achieve this objective is to use the orthogonal least squares 

(OLS) learning algorithm (Chen, et al, 1991). The OLS learning algorithm will 

be used in the following chapters and therefore deserves a more detailed 

discussion.

To apply the OLS method to design RBFN, Equation (2-6) is viewed as a special 

case of the linear regression model as follows (Chen, et al, 1991):

y  =  «J>w +  £  (2-8)

where y e  R N ,4>e R Nxm and w e  R m (for simplicity, here m is equivalent to m + 1 

in (2-6) ) are the same as defined in (2-6), E  is the error signal which is 

uncorrelated with the regressor vectors <{),:

E = [el , e2, - - , e N]T e R N

The regressor vectors <|); form a set of basis vectors, and the least squares solution

w satisfies the condition that <£>w be the projection of y onto the space spanned 

by these basis vectors.

The OLS method involves the transformation of the regressor vectors (j), into a

corresponding set of orthogonal vectors u, (/= 1, 2, ..., m), that is, the regression 

matrix O can be decomposed into:

4> = UA (2-9)
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where A e R mxn> is an upper triangular matrix with l ’s on the diagonal and 0 ’s 

below the diagonal, and U e R Nxm is a matrix with orthogonal columns u, such 

that:

11,11 . = 0 ,  for i ^ j (2 - 10)

The orthogonal decomposition of into U and A can be obtained using the 

Householder transformation method, classical Gram-Schmidt algorithm or the 

modified Gram-Schmidt algorithm (W atkins, 1991). In the classical Gram- 

Schmidt algorithm, the transformation is performed as follows:

= <t>.

1 < i < k
u ui i

k-1

1 = 1

k = 2,3 , - , m (2 - 11 )

where the transformation is computed column by column.

The space spanned by the set of orthogonal basis vectors u, is the same space 

spanned by the set of <J),, Equation (2-8) can therefore be rewritten as:

y = Ug + E  (2-12)

where g g  R m. The OLS solution g of g is then given b y:

g = (U 7' u r l U 7'y (2-13)

or
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g t = u f y / ( u f u , . )  for /= !, . .. ,m

The quantities w and g satisfy:

Aw = g (2-14)

where w is the estimate of w in (2-8).

Using (2-10), the sum of squares of y can be obtained from (2-12) and is given by:

Equation (2-15) shows how an individual regressor contributes to the sum of 

squares of y. The error reduction ratio due to u, can be defined as:

Using (2-16), the significant regressors can be selected.

In the design of RBFNs, the OLS learning procedure selects the radial basis 

function centres as a subset of the N  training data vectors. At the kth step of the 

selection procedure, a candidate centre c* is selected as forming the kth regressor 

centred at c* if the regressor produces the largest value of errk from among the rest 

of N-k+ 1 candidate centres. The selection process is terminated when the 

inequality (2-17) becomes true:

m
(2-15)

(2-16)
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k

\ - ' 5 L erri < p  (2 - |7 >
j =i

where 0 < p  < 1 is a chosen tolerance. This gives rise to a subset network 

containing m significant hidden nodes.

The OLS learning procedure generally produces an RBFN whose hidden layer is 

sm aller than an RBFN with randomly selected centres. It therefore provides a 

useful means for the construction of a parsimonious RBFN (Chen, et al, 1991).

2.4 Classifier parameters and implementation

This section discusses the implementation of the neural network classifiers which 

are applied throughout the rem ainder of this thesis.

2.4.1 Parameters for classifier structure

The structure o f neural network classifiers is designed by the number of input 

nodes, hidden layers, hidden nodes and output nodes.

Input nodes

The number of input nodes in a neural classifier is determined by the dimensions 

of the feature space. For an n-dimensional feature space, n input nodes are 

needed. Thus if, for example, a vibration signature to be classified is 1000
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samples long (in the time domain), a neural network with 1000 input nodes is 

requ ired1.

Number of hidden layers

The determ ination of the num ber of hidden layers is only relevant to M LP design 

as the RBFN was originally developed with only one hidden layer. M LPs with 

one hidden layer are used throughout this study as in most published applications. 

This is because M LPs with just one hidden layer (with enough hidden nodes) can 

form decision regions with arbitrary shapes, being universal approxim ators for 

arbitrary finite-input environm ent measures (Huang & Lippmann, 1988; Huang, et 

a l , 2000).

Number of hidden nodes

The num ber o f hidden neurons in an M LP has a great impact on the network’s 

classification perform ance. Huang & Huang (1991) have argued that, for the 

finite subset o f feature space R n o f a multi-input-single-output system, the 

optim al num ber o f hidden neurons m  to realise an arbitrary function is m = N  - 1, 

w here N  is the num ber o f input patterns. In practice, fewer than m hidden neurons 

are generally required since real datasets often consist of redundant patterns. 

Indeed there are no general rules to decide the optimal number of hidden neurons 

(Setiono, 2001; Leung, et al, 2003).

1 In m ost C M F D  applications, this approach is im practical, and raw sensor data must be pre- 
p rocessed  before application to the classifier. Selection  o f  an appropriate pre-processing  
technique w ill be d iscu ssed  in Chapter 4.

26



M L P  a n d  R B F N  C l a s s if ie r s

In this thesis, in the absence of a better solution and in line with previously 

published works, a simple ‘trial-and-error’ approach was em ployed to determine 

the most appropriate number of hidden nodes in the M LP classifiers. Specifically, 

networks were trained with different numbers of hidden neurons (using a training 

dataset) and then the error for each was calculated (using a different dataset). The 

network with the minimum testing error dictated the ‘optim al’ number of hidden 

nodes.

For RBFNs, the number of hidden neurons may be determ ined either by a hybrid 

learning algorithm (Moody & Darken, 1989) or by an OLS learning algorithm 

(described in Section 2.3). In both cases, a heuristic-based selection of the widths 

can be incorporated in order to achieve a certain amount of response overlap 

between each node and its neighbours. This ensures that, when combined, the 

nodes form a smooth and continuous interpolation over those regions of the input 

space. In this study, OLS learning algorithm was used. This algorithm expands 

the hidden layer by adding a new neuron at each of the learning iterations. The 

new hidden neuron is added at the location within learning data so that it reduces 

the leaning error signal of the classifier (Chen, et a l, 1991).

Number of output nodes

The number of output nodes is set to be equal to the number of known classes, 

with a single output node for each known class. Details of the representation 

scheme are given in the next section.
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2.4.2 Interpretation of classifier outputs

The output classes can be represented by the network in several ways. In the 

majority of the experiments in this thesis, a single output neuron is used to 

represent each class. For example, an output of {‘ 1’, ‘O’, ‘O’ } from a three-output 

network would indicate a classification of ‘Class 1’, an output of {‘O’, ‘1’, ‘0 ’ } 

would indicate a classification of ‘Class 2 ’, and {‘O’, ‘O’, ‘1’ } would indicate 

‘Class 3 ’.

In practice, such idealised outputs are rarely observed, and the outputs of the 

classifier must be processed to give the final decision. Figure 2-4 depicts the 

process of assigning an input pattern x, from neural classifier outputs, where a is 

{ 0 , 1 }.

Classifier
Outputs

Decision
action

x, Neural
Classifier

> ^ 1,'

■ ^2 ,

+  X-,-

Post
Processor

■* a u

+ a H

Figure 2-4. Conversion o f classifier outputs to decision action.

It is usually assumed that the largest output represents the class output. Thus the 

post-processor is defined by:

a k, =
1 if  y t J = m a x (v t j )

0 otherw ise
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The value of a*,, gives a decision action where the input pattern x, is assigned to 

the kth class if a*./=l.

This simple post-processing strategy is clearly not appropriate for CMFD 

applications where unknown-fault and multiple-fault may occur. Instead, a 

threshold, r, may be applied to classifier outputs. It is then understood that the 

output represents the class presence if its value exceeds the threshold. Thus the 

post-processor for such CMFD applications is defined by:

a ,  • =  ik, i

1 if  y k i > t

n - f  -  ’ <r fOT * =  1* — >c0 if  y kJ <  T

This allows the neural classifier to represent the occurrence of multiple and 

unknown faults. For example, an output of {‘O’, ‘1’, ‘1’ } would indicate an 

output in ‘Class 2 ’ and ‘Class 3 ’ simultaneously, and an output vector which does 

not match any output pattern in training data would indicate the occurrence of 

unknown faults.

As we have discussed above, it is possible that ‘unknown faults’ will be 

encountered, where classifier inputs are not represented in the training dataset. 

W hen a classifier is used in such applications, there are several possible ways of 

representing these faults, including the following:

1) To use an extra output neuron to represent unknown faults, so that the 

number of output neurons is equal to the number of known classes plus 

one;
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2) To set the number of output neurons equal to the number of known 

classes.

A brief analysis suggests that the first approach is impractical. Recall that the 

response of an output neuron is determined as follows:

for MLP: y k = f  (n e t k ) = 1 , n e tk =  w ] y (l + b k (2-18)
l + e *

for RBFN: y k =wj<l> +  bi (2-19)

where w k is a vector of weights from the hidden neurons to the output neuron k, yh 

is a vector of outputs of the hidden neurons (subscript h for hidden layer), bk is a 

bias. W hen the classifiers are trained using data of known classes, the value of the 

‘unknown fault’ output neuron is required to be assigned to a constant (denoted 

const) to indicate that an unknown fault is not present. Thus, during training, w k

will simply be assigned to zero and bk to f ~ x (const) for the MLP, and bk to const 

for the RBFN. The trained classifiers will therefore produce const on the 

‘unknown fault’ output neuron no matter what value the input samples take.

Since an extra output neuron cannot provide a useful representation of unknown 

faults, it is more appropriate to set the number of output neurons equal to the 

number of known classes. In this situation, the classifier outputs need to be 

combined and interpreted in a slightly different way to that described above:

• If one output exceeds a value of r ( r i s  a pre-set threshold), then we assume 

that this output identifies the fault.
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• If the classifier output vector is not the same as the desired output vector, 

then the input vector is misclassified, and the corresponding sample is 

included in the "error" category.

• If no output exceeds t , the input is assumed to be an ‘unknown fault’.

In such a CMFD application, one of the key issues is then to determine the value 

of the threshold. The value of rc a n  be determined by analysis of the bias values 

in the output layer2.

2.4.3 Estimation of error rates

In a classification problem, the designer has a set of data samples z1,z2,--*,zyv. 

Each sample consists of two parts z, = (x,,y(), where x, is a vector of input 

variables and y, is the corresponding vector indicating the presence or absence of 

classes.

The original dataset may then be re-organised into j  subsets. Each subset has AL

samples, where usually N  = ^ N J , for example for j= 2, there are N l samples in
j

the training dataset and N 2 samples in the test set.

On the basis of the training dataset, a classifier y = ^ (x )  is constructed (^deno tes 

the classifier and y is the estimate of y) and its outputs are converted to a class

2 This process is d iscussed  further in Chapter 8.
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decision, a, using the post-processing scheme discussed in the previous section. 

The objective is then to estimate the classifier performance using an (unseen) 

dataset independent of the training dataset. The classification error rate on the 

dataset of AC samples is defined as:

This estimation can be achieved by one of the following error estimation methods: 

the holdout method (Bishop, 1995), the cross validation method (Theodoridis & 

Koutroumbas, 1999) or the bootstrap method (Efron, 1979; Hamamoto, et al,

1997), based on the organisation of sub-sets of data and the estimation procedure.

In this thesis, the holdout method is used for designing classifiers. This method 

involves dividing each dataset into two parts, usually with equal size, one for 

training and the other for testing. This approach is taken because the goal of this 

study is to compare the performance of the classifiers, rather than to provide 

optimal performance results for each problem. Provided the comparison 

conditions are the same for all classifiers, the results will indicate the relative 

performance of individual classifiers. Therefore, in classifier comparisons, the 

error estimation method is not important so long as the error estimation method is 

the same for all classifiers (Michie, et al, 1994; Blayo, et al, 1995).

N

where L is a loss function defined by:

0 if y, = a,
1 otherwise
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2.4.4 Activation functions and learning algorithms

Each of the classifiers used in this study was implemented in its most commonly 

used form. Specifically, the MLPs were implemented with one hidden layer using 

logistic sigmoid functions for both the hidden layer and the output layer (Haykin, 

1999). Similarly, the RBFNs were implemented using Gaussian functions for the 

hidden layer and linear functions for the output layer (Looney, 1997).

Both MLPs and RBFNs were implemented using the Neural Network Toolbox 

version 2.0.4 in M atlab3.

The MLPs were trained using M atlab’s “trainbpx” which is widely used (Duin, 

1996), setting the maximum number of ‘epochs’ to 4000 and using default values 

for the following training parameters: learning rate increase (1.05); learning rate 

decrease (0.7); momentum constant (0.9) and maximum error ratio (1.04).

The RBFNs were designed using the “solverb” function which implements the 

orthogonal least square learning algorithm proposed by Chen et al (1991). Please 

note that the commonly used term ‘w idth’ for the radial basis function is 

equivalent to the term ‘spread constant’ in the Neural Network Toolbox.

3 All im plem entations w ere in M atlab, with the exception o f  the m em ory experim ents discussed  
in Chapter 6.
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2.4.5 Implem enting the em bedded classifiers

This section briefly considers how neural classifiers might be implemented in an 

embedded system.

In order to implement such applications, a network of at least two low-cost 

microcontrollers (for example, from the 8051 family) can be made use of, which 

are integrated by means of a shared-clock scheduler architecture (see Pont, 2001, 

for further details of the scheduler architecture).

The resulting system architecture is illustrated schematically in Figure 2-5.

MLP Classified 
(Slave)

MLP Classifier 

(Slave)

MLP Classified 
(Slave)

RBFN Classified 
(Slave)

RBFN Classified 
(Slave)

Data acquisition 
/  pre-processing 
& post-processing 

(Master)

Data acquisition 
/ pre-processing 
& post-processing 

(Master)

Figure 2-5. Two possible embedded architectures that might be used to
implement the classifier systems discussed in this study. In each 
case, more than one m icrocontroller is used and the operations are 
synchronised by means o f  a time-triggered software architecture, 
realised using a shared-clock scheduler.
(Top) A simple architecture with two microcontrollers, used to 
implement a single classifier with data acquisition and pre- and  
post-processing.
(Bottom) A more complex architecture used to implement a fusion  
classifier with both M LP and RBFN components.
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2.5 Conclusions

The purpose of this chapter was to introduce the two classifiers used throughout 

this thesis. The back-propagation algorithm for training M LP was briefly 

introduced. An essential part of the design of a RBFN classifier is how to select 

radial basis function centres from the training set. This chapter described the 

orthogonal least squares learning algorithm which is an efficient and com monly 

used training algorithm for RBFN classifiers.

In the use of MLP and RBFN for CMFD applications, a number of network 

parameters need to be determined. In order to use the classifier for cases of 

unknown and multiple faults, an interpretation strategy for classifier outputs was 

discussed. This chapter also briefly considers how the studied classifiers could be 

implemented in an em bedded system.

Following the review of M LP and RBFN classifiers presented here, Chapter 3 will 

begin to address the first stage o f designing embedded CM FD systems.
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3
A Separability Measure for Data with an 
Unrestricted D istribution

3.1 Introduction

As discussed in Chapter l the ‘raw ’ signals obtained from sensors are rarely 

applied directly to the classifier. Instead these raw signals are pre-processed prior 

to classification (Theodoridis & Koutroumbas, 1999; Liu, et al, 2002).

Numerous forms of pre-processing techniques may be em ployed (Petrilli, et al, 

1995; Tsoi & Back, 1995; Yang, et al, 2002), but the most common involve some 

form of filter (for example, low-pass, notch or moving-average), and/or some 

form of transform (for exam ple, decimation, Fourier transform or wavelet 

transform). Despite the variation in techniques, the three aims of pre-processing 

are generally similar (Staszewski & W orden, 1997; Theodoridis & Koutroumbas, 

1999; Somol & Pudil, 2002; Sick, 2002):

1) To enhance the difference between examples from different classes;

2) To minimise the difference between examples from the same class;

3) To reduce the size of the dataset, allowing the use of a smaller neural 

network (with faster responses and reduced memory requirements).
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Since the designers of CM FD systems have a range of different types of pre

processing techniques at their disposal, there is a need to have a measure to 

indicate the effectiveness of individual techniques in order to identify the most 

appropriate pre-processing approach.

It seems reasonable to assume that a dataset which contains highly separated 

classes would be easier to classify than one containing overlapping classes (Blayo, 

et al, 1995; Theodoridis & Koutroumbas, 1999). Thus, if we are able to obtain a 

suitable measure of class separability, we might reasonably expect that this would 

form the basis of an effective means of comparing pre-processing techniques.

Although there are some statistical measures for measuring separability between 

classes (Fukunaga, 1990), they are rarely used in CM FD applications. This is 

because existing separability measures assume that the probability distributions of 

the dataset are known (Theodoridis & Koutroumbas, 1999), but in real CMFD 

applications the distributions are unlikely to be known a priori (Heinke & 

Hamker, 1998; Marzi, 2002). To overcome the limits of existing measures, this 

chapter proposes a new method for measuring the separability for datasets with 

unknown probability distributions. This separability measure is then applied in a 

procedure for identifying effective pre-processing techniques in Chapter 4.

3.2 Classical separability analysis

Measures for describing datasets may be divided into three main categories:
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1) Simple measures such as: the number of attributes, the number of classes, 

and the dataset size;

2) Statistical measures such as: those based on class distributions and dataset 

density (Blayo, et al, 1995; Theodoridis & Koutroumbas, 1999);

3) Information theoretic measures such as: entropy and information scoring 

(Zheng, 1993).

Recent research has revealed that neural networks have a strong link to statistics 

(Cheng & Titterington, 1994; Ripley, 1994; Kay & Titterington, 1999). If a 

statistical measure is able to sufficiently describe the distributional features of a 

dataset, it may be used to predict the classification difficulty of the dataset for 

neural networks (Blayo, et al, 1995; Heinke & Hamker, 1998).

In this study, therefore, the em phasis is placed on describing a dataset in terms of 

statistics. In particular, the focus is on an analysis of class separability for a given 

dataset. Class separability provides a measure of the extent to which samples of 

different classes overlap. Classical separability measures are introduced first in 

order to examine their limitations when applied to CM FD applications.

3.2.1 C lassical separab ility  m easures

Some useful criteria for separability analysis are the Fisher criterion, divergence 

and the Bhattaharyya distance (Heinke & Hamker, 1998). Before considering
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these measures, the concept of inertia is introduced. Inertia is a classical measure

In e rtia

Consider a dataset of N  samples with c classes. For the class co, (for /= l,.. .c ) , the 

number of samples is N, , the a priori probability is P, and the mean is m,. We 

have:

class (0, inertia :

of the variance of data4.

for (3-1)

within-class inertia :

C 1 v
(3-2)

between-class inertia:

(3-3)

where ||j| is the Euclidean norm: ||x|| = (x7 • x )1/2.

D etails o f  the m easures in this sub-section are available from Fukunaga (1990).
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Fisher c rite rio n

The Fisher criterion measures the between-class inertia normalised by the within- 

class inertia and is defined by:

F C  = —  
I

(3-4)

The separability gets better as the Fisher criterion (FC) gets larger. 

D ispersion

The mean dispersion of class co, in class (0y is defined by:

m . - m .
(3-5)

If the dispersion measure between two classes is large, these classes are well 

separated.

B h a ttah a ry y a  d istance

The Bhattaharyya distance between two classes is defined by:

B  = - ( m ,  - m . ) (m 2 - m ,  ) + ^-ln

E, + E 2

Vkl-fc
(3-6)

where x is the determ inant o f m atrix x and E, is the covariance m atrix o f class CD,.

As seen in (3-6), the Bhattaharyya distance consists of two terms. The first or 

second term disappears when m , = m 2 or E, = E 2, respectively. Therefore, the
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first term measures the class separability due to the mean difference, while the 

second term measures the class separability due to the covariance difference.

D ivergence

If the distributions of two classes are normal, the divergence is defined by:

o  -  i . r f e ; '  K m , - m , X m ,  - m , -1 . r f c | ‘E ,  - n ; ; ' X ,  -  2 1 ) (3-7,

The divergence also consists of two terms similar to that o f Bhattaharyya distance. 

However both terms of the divergence are expressed by the trace of a matrix.

3.2.2 L im itations of classical separab ility  m easures

The aforementioned parametric measures are all based on the assumption that the 

class distributions are known a priori to be normal (Fukunaga, 1990; Theodoridis 

& Koutroumbas, 1999). W hen developing a practical CM FD application of the 

type considered in this thesis, the class distributions are unlikely to be known until 

sufficient knowledge about the faults is available (Tarassenko, et al, 2000; Lada, 

et al, 2002; Skoundrianos & Tzafestas, 2002).

If class distributions are significantly non-normal and multimodal (see, for 

example, Figure 3-1), the use of parametric measures cannot be expected to 

accurately indicate the class separability. For this reason it is highly desirable to 

have a separability measure that does not require any assumptions about class 

distributions.
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(a)

Figure 3-1. Examples o f  classification problems with non-normal and  
multimodal distributions.
(a)The classification problem involves nonconvex decision regions 
(Haykin, 1999).
(b) A typical nonlinear classification problem represents a range o f  
mechanical system fau lt diagnosis. This example can be found  in 
many publications.

3.3 The proposed non-param etric separab ility  measure

To overcome the limits of classical measures, an alternative non-parametric 

separability measure is more appropriate in circumstances where the data 

distribution is unknown. Based on the idea of non-parametric discriminant 

analysis (Fukunaga, 1983; 1990), the proposed separability measure is described 

below.

For a two-class problem, let class 1 be coi and class 2 be ©2, the a priori 

probability of class 0), is P„ then the non-parametric between-class scatter matrix 

is defined as:
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S,, = ^£{(x(1) - m 2(xn,))(x(1) - m 2(xni))r|col} 

+ P2e \[ x (2) -  m1(x(2)))(x(21 -m ,(x (2)))r|(o2}
(3-8)

where E() represents expectation operator.

Similarly, the non-parametric within-class scatter matrix is defined as:

S„. = /^ e {(x" ' -  m1(x,ll))(xl" -m ,(x ("))7'|<Dl} 

+ P2e { ( \ ,! ' - m 2(x'2'))(x121 - m 2(x‘2’))'|<o2}
(3-9)

Here, samples X(,) € CO, and m , ( x (/)) is the (Oj-local mean for a given sample x (/) , 

computed from the ^-nearest neighbours in co, to x ( / ) :

<3- 10)k H

Note that, when SH is computed, it is necessary to exclude the sample x(/) from our 

k-NN determination, as x(/) should not be considered a nearest neighbour to itself. 

M oreover, in the calculation of SM, all samples which are situated at the same 

position as x(/) must be excluded as the nearest neighbours of x(/) in order to avoid 

distorting the local information.

Figure 3-2 illustrates the calculation of local mean for between-class scatter with 

k=2. The derivation of local means in class Oh for two samples xjl} and x^ in

class G)i is also shown in the figure. For xjl} the two nearest neighbours in o>2 are

xi2) and xl2) (connected with a dotted line) which form the local mean at
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m 2 ( x j 1)) . For the two nearest neighbours are x j 2) and x (32) which form the

local mean at m 2 ( x (21)) .  Similarly, local means can be derived from the same 

class for the calculation of within-class scatter.

D ecision  boundary

Figure 3-2. Illustration o f  local mean derivation fo r  the calculation o f
between-class scatter with k=2. *•’ fo r  samples in class (Oj , 40’ fo r  
samples in class 0 )2 , ‘0 ’ fo r  local means. The arrow indicates the 
direction from  the sample to its local mean.

From Sb and S w (equations 3-8 and 3-9 respectively), the separability measure 

between C0i and CO2 is defined as:

y = - t r ( S X )  (3-11)n

Note that to ensure that J  = 1 when the two classes are identical, the trace of 

S~'S/7 is divided by dimensionality n. If J  is close to one or even smaller than 

one, the two classes have low separability. The larger J  is the higher the
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separability between the two classes. A very large J  indicates no overlap between 

classes.

For a multi-class problem, the values for J  between all possible pairs of classes are 

mutually computed. This gives us a separability matrix. The main-diagonal 

entries of the matrix are 1, and it is symmetric (which is consistent with the 

definition of the separability measure formula).

3.4 Separability versus classification error

It is assumed that classes in a dataset with high separability should be easier to 

classify (Theodoridis & Koutroumbas, 1999). This implies that if the separability 

measure is workable, the classifier will obtain a lower classification error for 

problem s with higher separability. This section employs a commonly-used 

classification problem in pattern classification research to evaluate the proposed 

separability measure.

Figure 3-3 shows the class distribution. Each of the four clusters (of two classes) 

can be expressed by the conditional probability density functions as follows.

(3-12)

where p., is the mean vector and cr,2 is the variance.
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It is clear that the separability of the two classes cannot be effectively measured 

by classical separability measures (Section 3.2.1), because the class distributions 

are multimodal and share the same mean.

In this experiment, we change the mean vector in (3-12) in order to simulate 

datasets with different separabilities. Figure 3-3 shows two exem plar datasets 

with high separability and low separability.

0.5

v

-0.5

-0.5 0.5

(a)

Figure 3-3. Distribution o f  a nonlinear classification problem  with two 
classes. '• ’ - class 1, ‘° ’ - class 2.
(a) H igher separability between classes CD] and (fy.
(b) Lower separability between classes (Oi and (fy.

A series of datasets with different separability were generated from (3-12). Each 

dataset contained 2000 samples, 1000 samples were used to train the classifier and 

the other 1000 samples were used to test the classifier performance. For each of 

the datasets, MLP and RBFN classifiers were designed. The structure of all 

classifiers were fixed, that is, both MLP and RBFN had two input nodes for the
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two-dimensional vector, and two output nodes for the two classes. The number of 

hidden nodes was set to 6 for MLPs and 30 for RBFNs.

The performance of the trained classifiers was evaluated on the test datasets. The 

experimental results are shown in Figure 3-4.

The results in Figure 3-4 demonstrate that the classification error decreases with 

the increase in separability. Therefore, on the basis of this study, it seems that the 

proposed separability can effectively predict the classification difficulty of the 

data.

40

30

20

10

0
4020 300 10

Sep arab il ity

Figure 3-4. Separability versus classification error (%).
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3.5 Conclusions

In this chapter, a separability matrix was presented that is suitable for use in the 

development of embedded CMFD applications. The separability matrix was 

derived from non-parametric analysis between classes in the data: it therefore 

requires no assumption about the underlying distribution of the data. In an 

assessment using a simulated classification problem, it was dem onstrated that - in 

the case of both the MLP and RBFN classifiers considered in this thesis - the 

separability measure was able to predict the classifier performance.

The next chapter will use the proposed separability to develop a procedure for 

selecting the most appropriate pre-processing technique from possible candidate 

techniques for a given CMFD application.
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4
Identifying the most A ppropriate Pre- 
Processing Strategy Using a 
Separability Measure

4.1 Introduction

The effectiveness and reliability of a pre-processing technique has traditionally 

been assessed based on trial-and-error (Ribbens & Bieser, 1995; Grimmelius, et 

al, 1999; Staszewski, 2000; Yang, et a l, 2002; W ang & Too, 2002) as follows:

1) Pre-process the data using different signal processing techniques to obtain 

sets of feature vectors;

2) Train individual neural networks using these feature vector sets;

3) Employ the pre-processing technique which results in the best overall 

classification performance.

Figure 4 -1(a) depicts this traditional pre-processing selection procedure. From the 

figure, it is clear that this selection procedure requires the design of a classifier for 

each of the extracted feature vector sets. Since training of neural networks often 

takes a long time (due to the need to optimise training parameters and avoid local 

minima), designing different networks for each set of pre-processed data can be a 

laborious process (Ripley, 1995; Somol & Pudil, 2002; Marzi, 2002). In order to
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avoid designing multiple classifiers and hence to improve selection efficiency, this 

chapter presents a procedure for identifying the most appropriate pre-processing 

techniques for a given set of recorded signals. This procedure is based on the 

non-parametric separability matrix proposed in the last chapter. The procedure is 

then assessed using a real CMFD problem of engine misfire detection.

PPT *  CEFVS >  CD

Raw data

FVS, CD,

Selected: PPT = min (CE, )

PPT FVS

Raw data

CDSelected: PPT = max (J, )
/

CE

(b)

Figure 4-1. The pre-processing technique selection procedure.
(a) Traditional trial-and-error selection procedure.
(b) The selection procedure based non-parametric separability 
measure.
Keys to the figure: PPT (pre-processing technique), FVS (feature  
vector set), CD (classifier design), CE (classification error), J  
(separability measure).

50



P r e - p r o c e s s in g  S t r a t e g y

4.2 Pre-processing technique selection based on separability 

measures

A procedure for selecting the most appropriate pre-processing technique for a 

particular classification problem is presented as follows.

1) Take the recorded raw dataset and apply the chosen pre-processing 

technique.

2) Measure the separability between classes after pre-processing.

3) Repeat for all alternative pre-processing techniques.

4) In the classifier system, employ the pre-processing technique that results in 

the largest separability measure.

This selection procedure is illustrated in Figure 4 -1(b). Comparing it to the 

traditional selection procedure as in Figure 4 -1(a), it is only necessary to design a 

single classifier for the feature vector set with the highest separability.

To assess this approach, the remainder of this chapter will apply it to a real CMFD 

problem involving engine misfire detection. Before conducting the assessment, 

the next section first provides some background to the topic of misfire detection, 

and describes the procedure for data acquisition.
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4.3 Misfire detection: background and data acquisition

4.3.1 Background

Misfire in a petrol engine is a condition in which there is no combustion of the 

fuel/air mixture during the power stroke of the engine (Ribbens, et al, 1994). 

When misfire occurs, engine performance suffers, along with fuel economy and 

idle quality.

Of particular concern is the fact that, during misfire, there is an increase in the 

level of exhaust emissions. As a result, misfire is one of the key areas of concern 

in On-Board Diagnostics generation 2 (OBD II). OBD II is a collection of strict 

emissions oriented monitoring rules for US passenger cars (Carley, 1997). 

Similar regulations are expected in Europe.

Engine misfire detection has been extensively investigated in the last decade. 

This investigation has resulted in a number of detection methods and a number of 

publications (Wu & Lee, 1998). No matter what the detection method is, the 

necessary task is to obtain misfire information from the recorded signals, such as 

rotational speed (W illiams, 1996), exhaust pressure (Ceccarani, et al, 1998), 

sound (Li, et al, 1996; Li Z, et al, 1997) or vibration. It is rare that the recorded 

signals can be directly used for misfire detection, rather they must be pre- 

processed using signal-processing techniques. The use of a certain signal 

processing technique has depended on the investigator’s preference (Staszewski, 

2000; Liu, et al, 2002). Therefore the selected signal processing technique is not
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necessarily the most appropriate. W hile this chapter is concerned with the 

development of a method for selecting effective pre-processing techniques, this 

makes the misfire detection problem particularly valuable as the case study to 

assess the proposed method.

4.3.2 Data acquisition description

In the present experiment, vibration data were used to detect the misfire situation.

The studies involved a 6-cylinder Ford 2900 spark ignition (SI) engine. The 

engine was installed in the engine test cell in the Departm ent of Engineering, 

University of Leicester and a water-brake dynam ometer was connected to apply a 

load.

Three accelerometers (along the three axes) were mounted to the engine block via 

an adapter. An encoder on the crankshaft was used for the timing mark. The 

transducer signals were conditioned and were recorded digitally on line at a 

10kHz sampling rate.

The experiments were concerned with sustained misfires, introduced by 

disconnecting the lead of cylinder three in the engine. The engine was run at 2700 

revolutions per minute with varying loads of 50Nm, 60Nm, 70Nm, 80Nm, 90Nm 

and lOONm respectively for both normal and misfire conditions. The recorded 

signals were then pre-processed to form feature vectors that were fed into the
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classifier to give an indication of the engine firing state (that is, normal or 

misfire).

Figure 4-2 shows a schematic representation of the engine misfire detection 

system.

Ford 2900 Data acquisition Classification Engine
& Pre-processing state

Normal

Misfire

Figure 4-2. Schematic diagram o f misfire detection system.

Figure 4-3 shows 2 normal and 2 misfire examples of the recorded vibration 

signals. Each signal has 1000 samples. Since the absolute amplitude of the signal 

has no effect on the results of misfire detection (as long as all the signals have the 

same scale), the y-axis has the default scale of recording, without calibration.
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(c) ( d )

Figure 4-3. Examples o f  the logged signals. Each signal consists o f  1000 
samples, its amplitude is not calibrated.
(a)(b) Normal condition,
(c)(d) Continuous misfire in cylinder 3.

4.4 Feature vector sets after pre-processing

As in many real CMFD examples, the ‘raw ’ vibration signals (each containing 

1000 samples) were rather too large to classify directly with a neural classifier.

Three pre-processing schemes were therefore considered and compared using the 

separability matrix described in Chapter 3. To make the number of samples equal 

to a power of 2 (due to signal processing restrictions), 512 samples of the 1000 

samples (for each signal, along two axes) were used in the subsequent feature 

extraction.
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4.4.1 Features from time domain

The first pre-processing technique employed involved ‘down sam pling’ the 

original (time domain) data. This ‘down sam pling’ is explained in this section.

Let the engine speed be n revolutions per minute (r/min), that is, the engine 

rotation frequency is n/60. For four-stroke-cycle engines, each of the cylinders 

fires once in any two successive revolutions. For m cylinders the firing frequency 

is therefore: / f -  n m l  120Hz . In this study, the engine has six cylinders (m = 6)

and the original signal sampling rate was 10kHz. For these tests, the engine was 

made to run at approximately 2700 r/min («). T h u s ,// = 135 Hz, this gives 74 

(10k/135) samples between two cylinders firing. Assuming that at least two 

samples between cylinders firing in the down-sampled data are required 

(according to sampling theorem), only 1 sample point in 37 samples needs to be 

retained. For convenience, and to ensure consistency with other techniques 

discussed below, one point from every 32 samples was selected. Therefore 16 

data points were used to represent 512 samples: each such set of 16 points was 

considered as a feature vector (a pattern) for one signal. Data from two axes were 

used in each case. In this way, 360 ‘time dom ain’ 32-dimension feature vectors 

(that is, 180 for normal and 180 for misfire) were produced.

4.4.2 Features from frequency domain

Power spectrum estimation is a frequency analysis technique widely used for the 

processing of vibration signals (Tandon & Choudhury, 1999). For a time signal, 

denoted by x(t), the Fourier transform S(J) is given by:
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S ( f ) =  f^ x ( t) e ~ j2*‘dt = \ "[ f ] \ ej0(f)

where |S ( /) | and 0 ( f )  represent the amplitude and phase of the Fourier 

transform, respectively.

The power spectrum, P(f), of x(t) is defined as (Newland, 1993):

P ( f )  -  E ( s ( f ) S ’ ( f ) ) =  e | s ( / ) | 2)

where * denotes the complex conjugate.

For the recorded vibration signals (each with 512 samples), the power spectra 

were estimated using a Hanning window, without overlapping (Oppenheim, 

1975). By investigating the power spectra, it was observed that the signal power 

is contained in 16 frequency components. Thus 16 points of the most significant 

information components of each power spectrum were chosen to form a feature 

vector.

As with the time-domain signals, with the result that data from two axes were 

used in each case, 32-dimension feature vectors were produced.

4.4.3 Features from wavelets coefficients

Wavelet analysis is used to decompose a time-domain signal into a series of 

wavelets at different levels. Each of the wavelets in the time domain has the same 

length as the original signal, but covers a different frequency band. By selecting
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and examining one or more of these wavelets, one can derive the desired 

information and remove unwanted parts from the original signal.

For an orthogonal wavelet transform, a signal x(t ) at f e  [0 ,r]  can be decomposed 

into a summation of wavelets at a finite number of scales/levels (Staszewski, 

1998) as:

° °  2'-l

x ( t)  = a 0 + Y J Y . a v +kW( 2 ‘ t - k ) (4-13)
j = 0  k-0

where 0 , are coefficients of the wavelet transform, w (2J •••) are wavelets of level 

j.  In this application, the twentieth-order D aubechies’ wavelet is used to 

decompose the vibration signal. Figure 4-4 shows an example of the vibration 

signal and its corresponding wavelet transform. Since the signal does not need to 

be calibrated for the purpose of misfire detection, the units of amplitude were not 

labelled in the figure.

Eight levels of wavelet decomposition for the vibration signal in Figure 4-4 are 

shown in Figure 4-5. The spectral for corresponding wavelet levels in Figure 4-5 

are shown in Figure 4-6. It can be seen that each of the wavelet levels covers a 

different frequency band.

In this experiment, the engine was run at 2700r/min and the firing frequency was 

approximately 135Hz. By analysing the spectra of wavelet levels in Figure 4-6, 

this firing frequency was found to dominate the fourth level of wavelet
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decomposition. So the 16 wavelet coefficients representing the fourth wavelet 

level were used for misfire detection.

Data from two axes were used in each case, so 180 normal and 180 misfire 32- 

dimension feature vectors were created in this way.

0.2

- 0.2
50 100 150 200 250 300 350 400 450 500

Vibration Signal (samples)

0.05

-0.05

- 0.1
100 150 200 250 300 350 400 450 50050

Wavelet Transform

Figure 4-4. Vibration signal and Wavelet transform.
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Figure 4-6. Spectral o f  wavelet levels (Horizontal axis unit is Hz).
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4.5 Prediction of pre-processing efficiency

The intention of this study was to explore the extent to which the separability 

matrix assists in the selection of the most appropriate pre-processing technique.

The separability between normal and misfire conditions for the time domain 

dataset was calculated using (3-11), and is listed in Table 4-1. Similarly, the 

frequency domain results are given in Table 4-2, and the results for the wavelet 

transform are in Table 4-3.

Normal Misfire

Normal 1 1.14

M isfire 1.14 1

Table 4-1. Separability m atrix fo r  the engine misfire dataset (Time Domain).

Normal Misfire

Normal 1 1.18

Misfire 1.18 1

Table 4-2. Separability matrix fo r  the engine misfire dataset (Power 
Spectrum).
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Normal Misfire

2.84Normal 1

M isfire | 2.84 1

Table 4-3. Separability matrix fo r  the engine misfire dataset (Wavelet).

It is observed that the separability of the dataset from wavelet coefficients is the 

biggest, while the time domain is the smallest. According to the discussion in 

Section 4.2, the dataset with the greatest separability should result in the most 

effective classification performance.

In the next section we explore the predictive value of this technique.

4.6 Implementing the classifiers

As mentioned above, three datasets, each contains 180 normal and 180 misfire 32- 

dimension feature vectors for misfire detection were produced from the time 

domain, power spectrum and wavelet analysis respectively.

In estimating the classification errors of the designed classifiers on datasets from 

different pre-processing techniques, each of the three datasets was equally 

partitioned into a training set and a test set. That is, the training set contained 90 

normal and 90 misfire feature vectors, and the test set contained 90 normal and 90 

misfire feature vectors.
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All classifiers had 32 input nodes for the 32 dimensions of the feature vector, and 

2 output nodes for representing the two engine conditions (normal and misfire). 

The architecture of the classifiers was 32-M-2, where M  is the number of hidden 

nodes of the MLP, or the number of radial basis functions of the RBFN.

For the M LP, M =40 was found to produce the best classification result after 

several trials. Therefore, in this experiment, an architecture of 32-40-2 for MLPs 

was used for engine misfire detection.

For the RBFN, the number of hidden neurons of the classifiers for time domain, 

power spectrum and wavelet coefficients was set to 80, as these values were found 

to produce the best results.

Table 4-4 lists the classification error of the classifiers from features extracted 

from the time domain, power spectrum and wavelet coefficients

MLP RBFN

Time domain 35.6 34.4

Power spectrum 34.4 33.3

W avelet coefficients 13.9 15.6

Table 4-4. M isfire detection error (%) using different pre-processing  
strategies.
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As discussed in Section 4.5, the separability between normal and misfire condition 

is 1.14, 1.18 and 2.84 in the feature space formed from time domain, power 

spectrum and wavelet coefficients respectively.

From the results in Table 4-4, it is observed that, for both M LP and RBFN, the 

classification error is the smallest on the dataset derived from wavelet coefficients 

and the largest on the dataset derived from the time domain. This negatively 

correlates with the separabilities for the datasets. Overall, this experiment 

suggests that the proposed method is effective in selecting an appropriate pre

processing technique for fault classification applications.

4.7 Further experiments

In the last section it was dem onstrated that the best pre-processing techniques 

could be selected based on values of the proposed separability measure. This 

section carries out an experim ent to further validate the claim made. The 

experim ent is concerned with whether the selection strategy is dependent on the 

separability values only. That is, for the same set o f recorded signals, the pre

processing technique obtaining largest separability value should result in the 

lowest classification error. This further study is particularly useful because we 

may have some variations in experiment set-up: for example, we may record 

different sets of signals. Therefore the purpose of this further experiment is to 

validate the claim: given a set of recorded signals, the proposed selection method 

should be capable of identifying the most appropriate pre-processing technique.
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In justifying this argument, a sub-set of the whole set of signals (as used in the last 

section) was formed. From the sub-set signals, three sets of feature vector were 

extracted from time domain, power spectrum and wavelet coefficients 

respectively. Each set contained 200 feature vectors, that is, 100 vectors of 

normal condition and 100 vectors of misfire condition. The separability was 

calculated for each of the feature sets, and listed in Table 4-55.

Separability between 
Normal and Misfire

Time domain 1.49

Power spectrum 1.63

W avelet coefficients 2.23

Table 4-5. Separability fo r  fea ture vectors from  the sub-set o f  signals.

Similarly each set was equally partitioned into a training set and a test set. Table 

4-6 lists the classification errors for feature vectors extracted from this sub-set of 

signals.

5 It is observed that the value o f  the separability o f  this dataset differs from that com puted on the 
dataset from the w hole set o f  signals. This is plausible because the sub-set and the w hole-set 
have different distributions. Here w e are not concerned with the difference in the distributions, 
we sim ply focus on how  to identify the most appropriate pre-processing technique for a given  
set o f  signals.
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MLP RBFN

Time domain 28 29

Power spectrum 27 26

W avelet coefficients 18 20

Table 4-6. Classification error (%) on the feature sets from  the sub-set o f 
signals.

By exam ining the results listed in Table 4-5 and Table 4-6, it is clear -  again - that 

the classification error decreases with the increase of separability.

4.8 Summary

The two experiments described in this chapter were conducted to assess the claim: 

given a set of signals, the proposed selection procedure is able to identify the most 

appropriate pre-processing technique.

Figure 4-7 summarises the results from the two experiments. From this figure, it is 

clear that, for both M LP and RBFN classifiers, the classification error strongly 

correlates with the separability.

67



P r e -p r o c e s s in g  S t r a t e g y

RBFN-AII
RBFN-Sub

S eparabil ity

Figure 4-7. A summary o f  the results on misfire detection using the whole-set 
or a sub-set o f  the recorded signals. ‘A l l’ indicates the whole set o f  
signals. ‘S u b ’ indicates the sub-set o f signals.

4.9 Conclusions

This chapter proposed an efficient selection procedure which was based on the 

separability analysis of feature vector sets. The proposed procedure selects the 

pre-processing technique which results in the feature vector set with the highest 

level of class separability. In the assessment using a real CMFD problem, it was 

dem onstrated that - in the case of both the MLP and RBFN classifiers considered 

in this thesis - the selection procedure was able to identify the most appropriate 

pre-processing technique.

The next chapter will move on to the second stage of developing embedded 

CMFD systems: classifier design.
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5
Classifier Comparison Criteria and Case 
Studies

5.1 Introduction

As noted in Chapter 1, this thesis is concerned with the design of three-stage 

CMFD systems. In such systems, after the recorded signals have been pre- 

processed, the processed signals must be classified. The performance of the 

classifier thus plays a central role in the whole CMFD process.

A classifier may be suitable for some kinds of problem and not suitable for others, 

depending on the used performance measuring criteria (Michie, 1994; Mak, et al, 

1993; W ilson, et a l, 1997; Terra & Tinos, 2001; Liu & Gader, 2002; Prakash, et 

al, 2002). Thus an appropriate classifier needs to be selected early in the design 

process.

The effectiveness o f neural network classifiers has traditionally been compared 

using em pirical studies (Zhang, 2000; Prechelt, 1996). This chapter, and the two 

that follow, are devoted to such an empirical comparison, with a focus on practical 

CMFD applications.
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This chapter provides the necessary background material for the experimental 

comparisons in the next two chapters, by:

1) identifying new comparison criteria based on the distinct features of

embedded CMFD applications;

2 ) describing datasets from classification problems with different levels of 

classification difficulty;

3) describing the results of experiments in which the basic classification 

performance of M LP and RBFN classifiers was compared using the above 

datasets.

5.2 The comparison criteria

To evaluate the perform ance of neural classifiers, a number of comparison studies 

have been carried out since 1990 (Michie, et al, 1994; Ripley, 1994; Jain & Mao, 

1997; Zhang, 2000; Hsu & Lin, 2002). Notably, in 1997, IEEE Transactions on 

Neural Networks published a special issue on artificial neural networks and

statistical pattern recognition techniques. In this issue, Holmstrom et al (1997)

compared 18 statistical and neural classifiers on two datasets: hand-written digits 

data and phonem e data. The neural classifiers compared in their paper were 

multilayer perceptron and learning vector quantisation. It was concluded that, 

compared to statistical classifiers, the neural classifiers provide an attractive 

alternative by com bining good classification performance and less complex 

design. O ther earlier efforts in comparing neural classifiers date back to 1990. 

One of the first contributions was made by Cheng & Titterington (1994). Cheng 

& Titterington explored the links between neural networks and statistical
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methodology. They showed that some statistical procedures can be given a neural 

network expression, and that neural networks can be provided with a statistical 

explanation/commentary. In the same year, Ripley (1994) published a paper 

setting up a framework for com paring classifiers from statistics, neural networks 

and machine learning. He com pared Bayes’ rule, linear discriminant analysis, 

logistic discriminant analysis, quadratic discriminant analysis, k nearest 

neighbours, multivariate adaptive regression spline, projection pursuit regression, 

classification tree, learning vector quantisation and MLP on three datasets: 

synthetic data, sonar data, and forensic glass data. It is also worth mentioning the 

project StatLog under the ESPRIT programme of the European Community 

(Michie, 1994). StatLog com pared and evaluated 23 different classifiers from 

statistics, machine learning and neural networks on 22 datasets. The results 

showed that there was no unique best classifier in terms of classification accuracy. 

On analysing published results in comparison, Duin (1996) argued that a 

straightforward and fair com parison should be carried out in a defined application 

domain with good com parison criteria.

Chapter 1 analysed the distinct characteristics of CMFD applications. From the 

discussions in that chapter it is clear that, in addition to the evaluation of 

classification accuracy, the criteria for CMFD applications must include the 

assessment o f the classifier’s ability to deal with multiple faults, unknown faults 

and limited amounts of available data.
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In addition, as also discussed in Chapter 1, embedded systems have - compared to 

‘desktop’ and ‘w orkstation’ computers - severely limited memory and CPU 

power. Therefore, in contrast to the great majority of previous studies in this area, 

the hardware resources required to implement MLP and RBFN classifiers will be 

considered in some detail in this study. Hardware requirements must be assessed 

in two ways: processor requirements and memory requirements. Here the former 

requirement refers to the processor time needed to train and apply the classifier, 

while the latter requirem ent indicates how much memory is required to implement 

a classifier.

In summary, the criteria to be used in this thesis for the comparison of M LP and 

RBFN classifiers for use in embedded CMFD applications are as follows:

•  Basic classifier perform ance in terms of classification error (or 

classification accuracy).

•  The ability to detect unknown faults.

•  The ability to deal with multiple faults.

•  The effects of dataset size on generalisation ability.

• The processor requirements.

• The m emory requirements.

5.3 The case studies

W hen exam ining the literature, the history of neural classifier comparison can be 

roughly divided into two periods: pre 1996 and post 1996. The research on neural 

classifier comparison began around 1990 and attracted increasing interest in the
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following years (M ichie, 1994; Blayo, et a l, 1995; Prechelt, 1994; Zheng, 1993). 

In the early period, although researchers realised that classifier performance can 

only be com pared using different application problems, many published works 

used no more than one problem in their studies 6. Using a single problem  for 

neural network com parisons is now considered insufficient, because a single 

problem cannot represent the variety of classification difficulties. Since the 

publication of some distinguished researchers’ work (for example, Michie, 1994; 

Prechelt, 1996; Duin, 1996) in which they strongly suggested that editors and 

reviewers should set significantly higher standards, most researchers have used 

multiple problems to evaluate classifiers. In line with these recom mendations, the 

present study involves data from multiple problems.

Having decided to base the com parison on data from multiple problems, the next 

question is what kind o f problem s should be employed. Generally classification 

problems can be differentiated into artificial, realistic and real problems (Ripley, 

1994; Prechelt, 1996). Prechelt (1996) described these three kinds of problems as 

follows:

6 Prechelt (1996 ) analysed articles published in 1993 and 1994 in four o f  the oldest and most 
w ell know n journals dedicated to neural network research. The four journals are Neural 
N etw orks, Neural Com putation, N eurocom puting, and IEEE Transactions on Neural N etworks. 
He observed that around 40%  o f  the articles used no more than one problem . He suggested  
that in future articles not using a m inim um  o f  tw o problem s “should usually be rejected” . This 
v iew  w as echoed  by researchers in experim ental evaluation o f  neural networks. S ince then 
using m ultiple problem s was becom ing the standard practice in experim ental evaluation o f  
neural networks.
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•  Artificial problem s are those whose data are generated synthetically based 

on some simple logic or arithmetic formula, for example, encoder/decoder, 

sine wave, etc.

•  Realistic problems also consist of synthetic data, but these are generated by 

a model with properties similar to those can be found in the physical world.

• Real problem s consist of data that represents actual observations of 

phenom ena in the physical world.

Although artificial problem s are weak in connection with the real world, they are 

commonly acceptable and have served for an illustration of a classifier 

performance in m any publications. Realistic problems are considered useful to 

assess the behaviour o f a classifier on problems with known properties, they 

provide the best way to characterise the kinds of problems for which a classifier 

will yield good results. Real problems usually have characteristics that are not 

com pletely known, yet they act as a real challenge for classifier performance.

This study uses the following classification problems:

1) A m athematical model (described in Section 5.3.1);

2) A non-linear cooling system model (described in Section 5.3.2)

3) A breast cancer diagnosis dataset (described in Section 5.3.3).

Problem 1 is a realistic problem because the model of this type is quite general 

and fits, for example, the linearlised engine model of Hsu et al (1995). Problem 2 

is a complex realistic problem. Problem 3 is a real problem, it is publicly
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available and has been used in many classifier comparison research (for example, 

Lampariello & Sciandrone, 2001; Heinke & Hamker, 1998).

Each problem  is described, in turn, in the following sub-sections.

5.3.1 The Mathematical Model (MM) case study

The following m athematical model represents a large class of static diagnosis 

problems and is adapted from that introduced by Kramer & Leonard (1990), and 

described as follows:

Here Y represents the m easurem ent vector of the plant, Yo represents the plant 

nominal steady state. M easurem ent Y is a function of plant physical parameters 

p,/(p), and suffers from  m easurement noise v.

Plant faults are caused by deviation of parameters. All parameters are scaled such 

that their numerical value is zero at the nominal operating point. To simplify the 

problem, Y is assum ed to be a linear function of p, that is:

a  is a distribution matrix of parameter effects on the measurement vector. Here 

we assume that Y has two measurements yi and yj, p has two parameters p\ and 

P2 , and:

Y = Y0 + /(p) + v (5-14)

Y = Y0 + a p  + v (5-15)
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This means that fault p\ causes >’i and yi to deviate in the same direction, and fault 

p i  causes >’i and >2 to deviate in the opposite direction.

The classes are defined as:

Normal (Co): |a |<  0.05, |/?2|< 0 .0 5

Fault 1 (Ci): |p , |> 0 .0 5 , |p 2|< 0 .0 5

Fault 2 (C2): |p ,| < 0.05, |p 2j > 0.05

v ,,v 2 ~ N (0, 0.015)

One set of training data was generated with values of p\ and p i  sampled from the 

normal distribution N{0, 0.25). In total, 300 input/output pairs (/ e. 100 

input/output pairs per class respectively) were generated from (5-15) and were 

used for training all networks.

Figure 5-1 illustrates the class distribution in the measurement space.

76



C l a ssifie r  C o m p a r is o n  M a t e r ia l s

0.5

-0.5

-1

O O q

* *  +

N orm al

o o+++

-1 -0.5 0.5

Figure 5-1. Class distribution o f  mathematical model dataset 
‘. ’—Normal, ‘+ ’—fa u lt 1, ‘o ’—fa u l t2.

One additional set of test data was also generated. This dataset was intended to 

explore the generalisation (interpolation) ability of the networks and had the same 

distribution as the training set.

Table 5-1 shows the separability matrix (using k = 1 in the separability measure 

proposed in Chapter 3) for a combination of the training and testing datasets.

Normal Fault 1 Fault 2

Normal 1 141.88 85.42

Fault 1 141.88 1 180.37

Fault 2 85.42 180.37 1

Table 5-1. Separability Matrix fo r  the ‘Mathematical M odel’ Dataset.

77



C l a s s if ie r  C o m p a r is o n  M a t e r ia l s

Since we opted to avoid overlap between classes when we generated this dataset, 

the separability measures have large values. Thus, using these parameters, this 

dataset provides us with a well-defined benchmark for assessing basic classifier 

performance.

5.3.2 Diesel engine Cooling system (DC) case study

The second dataset used in this study was generated from the non-linear model of 

a cooling system o f a diesel engine developed at the University of Leicester 

(Twiddle, 1999)7.

Such a cooling system is designed to rapidly bring the engine to its most efficient 

operating temperature and to maintain this temperature even when (for example) 

the load and speed are varied. This section briefly describes the non-linear 

therm odynamic cooling system model which was used to generate data for fault 

diagnosis of a diesel engine cooling system. A full description of the model is 

available elsewhere (Twiddle, 1999).

The cooling system may be considered as two models, a model for heat transfer 

from the engine block to coolant, and a model for heat dissipation from the 

radiator.

7 Special thanks to Dr John T w iddle w ho kindly provided the m odel and the data for this study.
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For the model of heat transfer from the engine block to coolant:

d r .  h .A , / * tnhCr , _ x

dr m fcCr m foCr

where: hb is the convective heat transfer coefficient between the block and the 

coolant.

A t  is the internal area of contact between the block and the coolant over 

which this heat transfer takes place. 

mb is the mass of coolant contained within the block.

C< is the specific heat capacity of the coolant.

Tb is the engine block temperature

T\ is the coolant tem perature at engine block inlet.

72  is the coolant temperature at the engine block outlet.

For the model of heat dissipation from the radiator:

=  _  T  ) _  T  _  r j  _  L g F A J t 4 -  T 4)
d t  m ra d C c m r a A

where: m radCt is the mass of coolant in the radiator multiplied by the specific 

heat capacity, Cc, of the coolant. 

hradA rad is the radiator heat transfer coefficient multiplied by the total

surface area of the radiator, 

cris Boltzmans constant

L  is relative em issivity for the surface of the radiator 

F  is defined as the shape factor 

Ta is the ambient temperature 

7 3  is the coolant temperature at the radiator outlet
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In the above equations the mass flow rate of coolant is assumed to be proportional 

to rpm, N, and is given by:

m  = k  Npum p

Using the model, various faults may be simulated, including those considered in 

this study: ‘fan fault’ (that is, the radiator fan is permanently off), ‘thermostat 

fault’ (that is, the thermostat is stuck open) and ‘pump fault’ (the coolant pump is 

damaged). To detect these faults, we have access to six measurements: the 

ambient tem perature (Ta)\ the engine block temperature (Tb), the coolant 

temperature (T \) at engine block inlet; the coolant temperature (T2) at the engine 

block outlet; the coolant temperature (T3) at the radiator outlet; and the engine 

speed (N).

Using the model, a training dataset (with 300 samples) and a testing dataset (with 

300 different samples) were created. In each case, the datasets consisted of equal 

numbers of ‘norm al’, ‘fan fault’, ‘thermostat fault’, and ‘pump fault’ data (75 

samples o f each).

The separability matrix (again with k = 1) for a combination of both testing and 

training datasets is shown in Table 5-2. Note in particular the fact that the 

‘norm al’ and ‘therm ostat fault’ classes overlap in these datasets. This represents 

the fact that, with the available measurements, it is not always possible to 

distinguish between these two situations. As a result, this dataset is particularly 

valuable in this study as an example of ‘overlapping classes’.
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Normal Fan fault Thermostat
fault

Pump
fault

Normal 1 268.54 0.67 56.45

Fan fault 268.54 1 244.61 306.35

Therm ostat fault 0.67 244.61 1 62.45

Pump fault 56.45 306.35 62.45 1

Table 5-2. Separability M atrix fo r  the Cooling System Dataset.

5.3.3 Breast Cancer (BC) case study

A publicly accessible breast-cancer dataset was also used in this study8. 

Originally this breast cancer dataset was obtained from the University of 

W isconsin Hospitals, M adison (M angasarian & W olberg, 1990).

Here the classification task involves distinguishing between datasets derived from 

cancer cells (Heinke & Hamker, 1998). The dataset is characterised by small 

overlaps and com plex decision boundaries. There are two pattern classes: benign 

tumour and m alignant tumour. The two classes are distinguished by nine 

parameters. These include the clump thickness, the uniformity of cell size and 

cell shapes, the amount of marginal adhesion, and the frequency of bare nuclei. 

These various values were collected by microscopic examination. There are 690

8 This dataset was clearly not from the C M FD  domain. An important reason w hy it was used 
here is that it is readily available for public use from the U niversity o f  California. 
http://w w w .ics.uci.edu/~m learn/M L R epository.htm l. A s a result, it makes it possib le for other 
researchers to use the results presented here to ‘benchm ark’ their ow n classifiers.

8 1

http://www.ics.uci.edu/~mlearn/MLRepository.html
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examples in the original dataset: in this study, 600 examples were used. The data 

were then divided into a training set and a test set, each with 300 examples. In the 

training set, the class of benign tumour has 160 examples and the class of 

malignant tum our has 140 exam ples, note that we have attempted to keep the size 

of the two training classes roughly equal (see Parikh, et al, 1999, for a discussion 

of this issue). In the testing set, the class of benign tumour has 215 examples and 

the class of malignant tum our has 85 examples.

The separability matrix (again with k = 1) for breast cancer datasets is shown in 

Table 5-3.

Benign tumour M alignant tumour

Benign tum our 1 4.62

M alignant tum our 4.62 1

Table 5-3. Separability M atrix fo r  the ‘Breast C ancer’ Dataset.

5.3.4 Summary of dataset organisation

Datasets were obtained from three classification problems: a mathematical model 

for static fault diagnosis, a non-linear cooling system model and breast cancer 

diagnosis. The datasets were characterised using the proposed non-parametric 

separability analysis method. These problems each pose a different challenge to 

classifiers. The dataset from the mathematical model has low dimensionality and 

good separability, this provides us with a well-defined benchmark for assessing
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classifier basic performance. The dataset from the non-linear cooling system 

model has medium dim ensionality and good separability between some classes 

and very low separability between others. This dataset is particularly valuable to 

investigate classifier perform ance in terms of overlapping classes. The breast 

cancer dataset is publicly available, it has small overlaps and a complex class 

boundary.

5.4 Basic classifier performance

In this section the basic classification performance of the M LP and RBFN 

classifiers is com pared. In each case, datasets from three problems are employed: 

the mathematical model (M M ) for some fault diagnosis problems, the diesel 

engine cooling system model (DC), and the breast cancer diagnosis (BC), as 

described in Section 5.3. The basic performance of a trained classifier is 

com pared based on classification error rate on the testing dataset. This section 

begins with a discussion o f the data for designing and testing the classifiers.

5.4.1 Data for designing and testing the classifiers

From the case studies described in Section 5.3, datasets for comparing classifier 

performance were organised. Approximately equal numbers of samples in all 

classes were assumed, that is, each of the classes has approximately equal a priori 

probability, P( for i = \ , 2 , - c .  Although this assumption may not always be

satisfied in some real applications, the unequal size of classes can be re-organised 

into groups of equal size. For techniques to accomplish this, Parikh et al (2000) 

make some useful suggestions.
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From the mathematical model (MM), one set of training data was generated with 

values of p\ and p i  sampled from the output of normal distribution N{0, 0.25). In 

total, 300 input/output pairs (that is, 100 input/output pairs per class respectively) 

were generated from (5-15) and were used for training all classifiers.

Two additional sets of test data were also generated, ‘Test 1’ and ‘Test 2 ’. ‘Test 

1’ had the same distribution as the training set. ‘Test 2 ’ had values distributed 

over the whole param eter space. For this set, the ‘correct’ results for patterns 

from regions out of the training set were determined by distance, that is, a pattern 

is assumed to belong to the nearest class. These datasets were used to explore the 

generalisation ability of each network, both in terms of interpolation (Test 1) and 

extrapolation (Test 2).

From the diesel engine cooling system (DC) model, both the training dataset and 

the test dataset had 300 samples with equal class sizes (equal class distribution 

probability). The num ber o f samples was determined empirically, that is, further 

increasing the num ber of samples did not show a significant improvement in 

classifier perform ance.

For breast cancer (BC) diagnosis, the number of samples available was limited: as 

discussed in Chapter 1. Limited number of samples is a common problem in 

CM FD applications.
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Table 6-1 lists class distribution probability and the number of samples in training 

and test datasets.

Prior Class 
Probability

Training Set 
Samples

Test Set 
Samples

MM

"0.33"
0.33
0.33_

300
Test 1 

300
Test 2 

300

DC

'0.25"
0.25
0.25
0.25

300 300

BC
0.625

0.375
300 300

Table 5-4. Num ber o f  samples in training and test datasets fo r  each o f  the 
three experiments.

5.4.2 Experiments

The three experim ents conducted to compare basic classifier performance are 

discussed below.

a) MM case study

Both M LP and RBFN classifiers for the MM study had 2 input neurons, 3 output 

neurons and M  hidden neurons, represented by 2-M-3.
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For the M LP, structures with 3, 4, 6 and 15 hidden neurons respectively were 

implemented and compared. For the RBFN, the maximum number of radial basis 

functions was set at 50, since the classification error was found to decrease very 

little after this number. Then the RBFN was trained with different spread 

constants for the Gaussian functions.

Table 5-5 sum m arises the performance of the two classifiers on this task. Note 

that the classification error is given as a percentage. The numbers in the second 

row of the table are the num ber of hidden nodes. Numbers in parentheses are the 

spread constants for the Gaussian functions used with the RBFN.

MLP RBFN

Number of 
hidden neurons

3 4 6 15 50
(0.01)

50
(0.025)

50
(0.05)

50
(0.1)

Training error 33.7 0 0 0 2.3 0.3 0 0

Error for Test 1 39.7 1 0.3 0.3 5.0 0.3 0.3 0.3

Error for Test 2 33 17.7 26.3 27.7 4.67 1.7 18.67 10.3

Table 5-5. Classification error rate (%) fo r  Static fa u lt diagnosis.

From the table, the following observations can be made:

1) For this problem, the M LP with 4-hidden neurons and the RBFN with 

spread constant 0.025 provide the smallest classification error on the 

training set and testing sets. The errors (on the Test 1 dataset) are very 

sim ilar for the two classifiers. Referring back to Table 5-1, it is clear that 

the classes have large separability, while the classification results here
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have very small error rate for both MLP and RBFN. Thus the results 

illustrate that both classifiers perform well if there is a large separability 

between classes.

2) In considering these results, it should be noted that the M LP starts training 

from random initial weights and converges to a possible local minimum, 

while the RBFN converges to a global minimum if the output layer is 

linear and the positions of radial basis functions in the feature space are 

located optim ally a priori (Looney, 1997). Thus, using an MLP, it is 

som etim es necessary to train more than once to obtain an ‘optim um ’ 

result, a fact which may increase the training time substantially. In all of 

the tables presented in this chapter, the MLP training was performed five 

times or more to find the best performance. The results presented here are 

the best that were obtained over these runs. Table 5-6 gives the results of 

five runs o f training for the MLP with 4 hidden neurons. It is clear from 

the table that each of the trainings may give a different classification error.

3) For practical applications, it can be the case that the training data do not 

fully represent the feature space. The resulting classification during 

‘testing’ is then a result of either interpolation or extrapolation from the 

available (training) data.

In term s o f interpolation, it is observed that both classifiers exhibit very 

sim ilar classification errors (0.3%) within the regions of the training set. 

On the other hand, in terms of extrapolation (on the Test 2 dataset), the 

classification error of RBFNs (1.7%) is better than that of MLPs (17.7%) 

(see Table 5-5) for samples from regions unrepresented by the training set.
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This is a plausible result. The decision boundary of RBFN is formed 

based on distance and that of the MLP is unbounded. The MLP therefore 

‘arbitrarily’ classifies unseen patterns which lie outside the regions 

described by the training set9.

Runs 1 2 3 4 5

Error of training 1.0 1.0 1.0 17.0 7.3

Error for Test 1 1.0 1.0 1.0 19.3 12.0

Error for Test 2 39.7 39.7 38.0 23.0 24.3

Table 5-6. Results o f  M LP fo r  5 runs. 

b) DC case study

The dataset used in the second study of basic classifier performance was 

generated from the non-linear model of a diesel engine cooling system described 

in Section 5.3.2. The classifier for diesel cooling system diagnosis is 

implemented as shown in Figure 5-2.

Tr
T 2 -

T3-
T t t -

T f

N -

Classifier

-►Normal 

-►Radiator fault

■►Thermostat fault 

-►Pump fault

Figure 5-2. Classifier fo r  Cooling system diagnosis.

9 This is d iscussed in greater detail in Chapter 7.
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In this experiment, both M LP and RBFN classifiers had 6 input neurons, 4 output 

neurons and M  hidden neurons, represented by 6-M-4. For the M LP, 10, 20, 30, 

40 hidden neurons structure were implemented respectively. For the RBFN, the 

spread constant o f the Gaussian functions was varied as detailed in the results 

table (in parentheses).

Using this dataset, the performance of the two classifiers was compared. The 

results are listed in Table 5-7.

M LP RBFN

N umber of 10 20 30 40 150 99 49 49
hidden neurons (0.5) (1) (2) (3)

Training error 34.3 17.3 14.7 16 0 12 16 18.7

Testing error 35.3 17.3 18.7 19.3 18 18 17.3 22

Table 5-7. C lassification error rate (% )for Cooling system diagnosis.

For this task, to achieve a low classification error while keeping the classifier size 

small, the structure o f the classifiers were 20 hidden neurons for the M LP and 49 

hidden neurons for the RBFN. From these results, a minimum ‘testing error’ of 

17.3% was obtained for each classifier, that is, the minimum classification error 

using the (unseen) test dataset was 17.3% for both techniques. This classification 

error is prim arily caused by the confusion between the classes ‘norm al’ and 

‘thermostat stuck open’ (with a separability of 0.67, see Table 5-2), providing
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empirical confirm ation that neither classifier can effectively classify classes which 

have low separability.

c) BC case study

Both o f the classifiers used for the cancer study had 9 input neurons, 2 output 

neurons and M  hidden neurons, represented by 9-M-2. For the MLP, structures 

with 3, 4, 8 and 15 hidden neurons respectively were implemented with learning 

parameters as described in Section 2.4. For the RBFN, the spread constant was 

set to 4.0, 5.0 and 7.5 respectively. The orthogonal least squares algorithm was 

used to find the appropriate number of hidden neurons for the RBFN classifier. 

Table 5-8 lists the classification error rates.

M LP RBFN

Num ber of 
hidden neurons

3 4 8 15 59
(4.0)

51
(5.0)

48
(7.5)

Training error 2.0 1.3 1.3 0.3 1.7 0.7 1.3

Testing error 3.3 2.7 2.7 3.3 1.7 1.7 1.3

Table 5-8. Classification error rate (%) fo r  Breast cancer.

From the results, it is seen that the RBFN classifiers achieved a slightly smaller 

classification error rate than M LP classifiers for the breast cancer data. However 

the difference in classification error rates between all classifiers is small and all 

classifiers can provide good classification results (below 3.3% error rate).
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From Table 5-8, the ‘best’ classifier of each type was selected, that is, the MLP 

with 4 hidden nodes and the RBFN with 48 hidden nodes. Again, for this 

problem, the number of hidden nodes required for the RBFN is much larger than 

for the MLP.

5.4.3 Basic classifier performance

The basic perform ance of M LP and RBFN classifiers was com pared in this 

section, using three disparate datasets. The results dem onstrated that both 

classifiers exhibit similar classification error rates. It was also noted that MLP 

always requires few er hidden nodes than RBFN.

5.5 Conclusions

By analysing the characteristics of CMFD applications and the hardware 

constraints of em bedded systems, a comprehensive set of classifier comparison 

criteria were identified in this chapter. These criteria consist o f classification 

error, dealing with unknown and multiple faults, working with limited data size, 

processor requirem ents and memory requirements. In addition, datasets for three 

suitable classification problems were described.

In order to obtain the classifier structures for assessing hardware requirements of 

MLP and RBFN classifiers in the next chapter, this chapter also conducted a set of 

comparative experiments to establish basic classifier performance.
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This material forms the basis of the experimental studies in the next two chapters. 

Chapter 6 investigates the hardware requirements when M LP and RBFN 

classifiers are im plem ented on embedded systems. Chapter 7 compares the 

performance of M LP and RBFN classifiers with respect to the criteria 

characterising the CM FD applications.
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6
C lassifier Comparisons: Hardware 
Constraints

6.1 Introduction

Embedded CM FD systems, based on microcontrollers in particular, are 

increasingly found in a variety of plants (Chan, et al, 1997; Flammini, et al, 

2001). As discussed in Chapter 1, such systems often have lim ited memory and 

CPU power. These hardware limits pose a practical challenge to the 

implementation of classifier in embedded CM FD systems (Dash & 

Venkatasubram anian, 2000; Kobayashi, et al, 2002).

In measuring the processor requirement of neural networks, some previous studies 

have used com puter time (for example, Michie et al, 1994; Mak et al, 1993). 

However, the use of com puter time makes results difficult to compare when 

classifiers are im plem ented on different computers. In this thesis, ‘flops’ 

(floating-point operations) are used to measure the processor requirements. 

Because the number of flops for a classifier solely depends on its algorithm 

(Rathbun, et al, 1997), the speed index of the classifier will be independent of the 

particular processor used and the results could be directly applicable elsewhere.
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To evaluate memory requirements, all classifiers are implemented on two 

common types of m icrocontroller and measurements of ROM and RAM memory 

are made from the com piler outputs.

Note that, at the end of this chapter, consideration is given to the link between 

CPU and memory requirements and system power consumption.

6.2 Processor requirements

This section begins with an analysis of processor requirements for MLP and 

RBFN classifiers on the basis of the classifier structure itself, and then goes on to 

discuss how to measure the processor requirements effectively. The processor 

requirements o f the classifiers are then experimentally compared on the three case 

studies described in Chapter 5.

6.2.1 Analysis of processor requirements

The processor requirem ent of a classifier can be assessed in two phases, training 

and classification. The processor requirement in the training phase is determined 

by the particular algorithm  em ployed (Marzi, 2002) and is difficult to formulate 

due to the com plexity and variety of learning algorithms. Here only the processor 

requirement in the classification phase is theoretically considered. The training 

phase will be evaluated in empirical experiments.

Consider all neural classifiers with n input nodes, c output nodes and m hidden 

nodes. The processor time required for floating (add, multiply, divide and
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exponent) operations is %a, %m, %d, x e respectively. Then the time required 

for the classification of an input sample can be formulated as follows.

For M LP the time is tm:

l  = ( x»,-'i + v ( ' i - i ) + ' 0 - m + K + ' c« + ' 0 ' m

+(*,„ ' m  + ^  ■ (m - 1) + ) • c + (x , +  T„ +  Xd) • c
(6- 1)

For RBFN the time is tr:

K = ( K + ' t „ + 2 x l„+Tj - / i  + T<, - ( n - l )  + Tf)-m 

+(t „ - m  +  x a ( m - l )  + T,) c
(6-2)

Assuming add, multiply and divide require approximately the same clock cycles, 

Ta ~ xm ~ x d ~  x (Pont, 2001; Intel51; Intel96), the above formulae may be 

simplified as follows:

t m ~ 2(nm  +  m e + m + c) ■ x + (m + c) • i t 

«  2 (n + c) • m • x + (m  + c ) - l e

tr ~  (6m n  +  2m e -  m) • x + m  • x e 

~ (6n  +  2c) • m  • t  +  m • x e

(6-3)

(6-4)

From the above equations, if all the classifiers have the same number of hidden 

nodes, and if c is small, then the MLP requires lower processor resources. 

However, RBFNs usually require many more hidden nodes than MLPs (as seen in 

the previous chapter) and may thus be expected to require more CPU resources.
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To consider the processor requirements on a specific microcontroller, the 

classification of M M  data on standard 8051 microcontroller (Calcutt, 1998) is 

chosen as an example. As shown in Section 5.4.2, there are 4 hidden nodes for 

M LP and 50 for RBFN. Then:

L  = 4 8 t  + 7 t ,  

tr = 9 0 0 t + 50t^

The calculation of xe is at least 20 times longer than that of r  (M icrosoft, 1992), 

say Te = 2 0 t  , then:

tm =  188t, tr = 1900x,

The floating point operation of r  requires 200 cycles on an 8051 device, assuming 

the code was com piled with the Keil compiler (Pont, 2001). Then, at 12 MHz on 

a standard 8051, £=0.0002 second and therefore:

tm = 0 0376s, tr -  0.38s,

This gives an approxim ate analysis for the processor requirements of the 

classifiers.

However, in the com puter industry, the measure “floating-point operations” 

(flops) per second is often used to measure a com puter’s ability to perform 

calculations with floating point numbers (Microsoft, 1992). Since the 

im plem entation of the algorithm of a classifier consists of certain numbers of 

‘flops’ and the number is uniquely determined by the algorithm complexity 

(Rathbun, et al, 1997), ‘flops’ can be used to indicate the processor requirements.
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The advantage of using ‘flops’ is that the measure will be independent of the 

particular com puter used. Thus it makes the processor requirements of the 

classifiers obtained by different people or on different computers more easily 

com parable. Therefore, ‘flops’ was used to represent the processor requirements 

in the following experiments.

6.2.2 Experiments

This section presents results for comparing the processor requirements of MLP 

and RBFN classifiers on three classification problems. For each problem, two 

datasets were used. The classifiers were trained using the Training dataset and 

tested using the Test 1 dataset as described in Section 5.4.

In the following results, ‘Training flops’ are the total number of flops required for 

training the whole netw ork and ‘Classification flops’ are measured per sample.

The tables also list classification error rates to help select the proper classifier 

structure, that is, the proper number of hidden nodes for neural classifiers.

a) MM case study

MLPs were trained and tested on the MM datasets using these numbers of hidden 

neurons: 3, 4, 6 , 8  and 15. The results are listed in Table 6-1.

For RBFN the maximum number of hidden neurons were set to 50 and various 

spread constant values were tried. The results are listed in Table 6-2.

97



H a r d w a r e  C o n s t r a i n t s

Hidden neurons 3 4 6 8 15

Testing error (%) 39.7 1 0.3 0.3 0.3

Training flops 3.76-108 4.64-108 6.43 108 8 .2 1 1 0 s 1.45 109

Classification flops 6 6 82 114 146 258

Table 6-1. Processor requirement o f  M LP fo r  MM.

Spread constant 0 . 0 1 0.025 0.05 0 . 1

Testing error (%) 5 0.33 0.33 0.33

Training flops 9.59-107 9.59 107 9.59 107 9.59-107

Classification flops 1059 1059 1059 1059

Table 6-2. Processor requirem ent o f  RBFN fo r  MM.

To compare the processor requirem ents, the classifier with the minimum error rate 

is identified from M LP and RBFN, and listed in italic bold  font in the above two 

tables as well as follow ing tables.

Note that, in this case, for the best classification error rate, the training ‘speed’ of 

the M LP is 6.7 times slower than that of the RBFN, but the testing speed of the 

MLP is 9.3 times faster than RBFN (primarily because the RBFN has a larger 

number of hidden units).

98



H a r d w a r e  C o n s t r a i n t s

b) DC case study

For M LP classifiers, the number of hidden neurons employed was: 10, 20, 30 and 

40. The training flops and classification flops are listed in Table 6-3.

For RBFN classifiers, the maximum number of hidden neurons was set to 150 and 

the spread constant was varied. The training flops and classification flops are 

listed in Table 6-4.

Hidden neurons 10 20 30 40

Testing error (%) 35.3 17.3 18.7 19.3

Training flops 7 .8 1 0 s 1 .49- l( f 2 .2 -1 0 9 2 .9 M 0 9

Classification flops 284 544 804 1064

Table 6-3. Processor requirem ent o f  M LP fo r  DC.

Spread constant 0.5 1 2 3

H idden neurons 150 99 49 49

Testing error (%) 18 18 17.3 2 2

Training flops 9 .8 1 1 0 s 4.05-10s 1.16 108 1.16 1 0 s

Classification flops 6462 4245 2162 2162

Table 6-4. Processor requirement o f  RBFN fo r  DC.

It is observed again that, for the classifier with the best classification error rate, 

the training ‘speed’ o f the M LP is 12.8 times slower than that o f the RBFN, but 

the testing speed of the M LP is 4 times faster than that of the RBFN.

99



H a r d w a r e  C o n s t r a i n t s

c) BC case study

For M LP classifiers, the different numbers of hidden neurons tried were: 3, 4 8 

and 15. The training flops and classification flops are listed in Table 6-5.

For the RBFN classifier the maximum number of hidden neurons was set to 100 

and the spread constant was varied. The training flops and classification flops are 

listed in Table 6 -6 .

H idden neurons 3 4 8 15

Testing error (%) 3.3 2.7 2.7 3.3

Training flops 2.50-108 3 .2 1 108 6.06-108 5.77T 0 8

Classification flops 96 124 236 432

Table 6-5. Processor requirem ent fo r  M LP with BC.

Spread constant 4.0 5.0 7.5

Hidden neurons 59 51 48

Testing error (%) 1.7 1.7 1.3

Training flops 1 1.39-108 1.05 108 9 .5 1 107

Classification flops 3246 2760 2598

Table 6-6. Processor requirement fo r  RBFN with BC.

Note that, again, for the classifiers with best classification error rate, the training 

‘speed’ of the M LP is 3.4 times slower than that of the RBFN, but the testing 

speed of the M LP is 21 times faster than that of the RBFN.
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6.2.3 Processor requirements: discussion and conclusions

This study dem onstrates that, for these three problems, the training of an MLP 

requires considerably more processor operations than that of a RBFN, while the 

testing of an M LP requires fewer processor operations. The detailed results are 

summarised in Table 6-7 for training and in Table 6 - 8  for classification.

Problem MM DC BC

M LP 6.43-108 1.49 109 3.21 - 10s

RBFN 9.59-107 1.16-10® 9.51 107

M LP/RBFN 6.7 1 2 . 8 3.4

Table 6-7. A summ ary o f  the processor requirements fo r  training on the case 
studies.

Problem MM DC BC

M LP 114 544 124

RBFN 1059 2162 2598

RBFN/M LP 9.3 4.0 2 1 . 0

Table 6-8. A  sum m ary o f  the processor requirements fo r  Classification on the 
case studies.

The processor requirem ents may be a significant factor in determining the 

applicability of each technique in embedded systems. In the cases where off-line 

training is possible and rapid classification ( ‘testing’) is required, the MLP may be 

more appropriate. H owever, where on-line learning is required, the RBFN may be 

more appropriate.
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6.3 Memory requirements

Em bedded systems frequently suffer from memory constraints. Although modern 

microcontrollers can directly address large amounts of RAM and ROM memory 

and memory prices have fallen, any reductions in memory requirements can 

directly translate into savings in the application cost, particularly in high-volume 

automotive applications where product cost is of great concern (Wilmshurst, 

2001; V ahid & Givargis, 2002). To evaluate memory requirements, all classifiers 

were im plem ented on two com mon types of microcontroller and measurements of 

ROM and RAM  m em ory were made from the com piler outputs.

This section begins with an analysis of the memory requirements based on the 

classifier structure and size o f the param eter set. Then memory requirements are 

evaluated on both 8 -bit and 16-bit microcontrollers.

6.3.1 Analysis of memory requirements

For a trained network, if the number of hidden neurons of M LP equals the number 

of radial basis functions of RBFN, then the two networks can be expected to have 

approxim ately the same m emory requirements. For example, for n-M-c structure 

of M LP and RBFN, both require memory to store (n +1) • M  + (M +1) ■ c floating 

point network param eters.

However one should note that, for a given fault classification problem, MLPs 

require fewer hidden neurons than RBFNs. Indeed, a RBFN may require more
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memory than an equivalent M LP because of the large number of hidden neurons 

and the com plexity o f the training algorithm.

These issues are explored in the empirical studies below.

6.3.2 Experiments

On-line training o f the classifiers studied in this thesis is rarely practical, because 

of the long training tim es that can result (Marzi, 2002). In this study, the concern 

is only with the classification ( ‘testing’) phase of each technique. It is assumed 

that training is carried out off-line (perhaps on a desktop computer) and that 

weights have been transferred to the embedded environment. This is a common 

way of using such classifiers in em bedded applications (Flammini, et al, 2001).

The com m only used microcontrollers for embedded systems are 8 -bit and 16-bit 

devices (Calcutt, 1998; Pont, 2001). Thus the code was implemented for two 

modern m icrocontrollers: an 8 -bit device (Infineon 80c515c) and a 16-bit device 

(Infineon 80c 167c). Table 6-9 and Table 6-10 give the memory requirements of 

the two classifiers for the three classification problems. The last row in the tables 

shows the relative mem ory differences as percentage between MLP and RBFN 

classifiers.
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Problem M M  case D C case BC case
2-M-3 6-M-4 9-M-2

Classifier M LP RBFN MLP RBFN M LP RBFN

M 4 50 2 0 49 4 48

M emory
Size

7892 8576 8080 8590 7864 8543

Difference
(%)

8.67 6.31 8.63

Table 6-9. M em ory size required fo r  classification: 8-bit m icrocontroller 10.

Problem MM  case DC case BC case
2-M-3 6-M-4 9-M-2

Classifier M LP RBFN MLP RBFN MLP RBFN

M 4 50 2 0 49 4 48

M emory
Size

6139 6646 6343 6642 6114 6601

Difference
(%)

8.26 4.71 7.97

Table 6-10. M em ory size required fo r  classification: 16-bit microcontroller.

6.3.3 Discussion

In these experim ents, the RBFN classifier required between approximately 6.31% 

and 8.67% more memory than the MLP equivalent (using an 8 -bit

10 In this table and the fo llow in g  table, the structure o f  a classifier is represented as n - M - c ,  n  is 
the d im ension  o f  input vector, c  is the number o f  classes, M  is the number o f  hidden neurons.
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microcontroller) and up to approximately 8.26% more memory (using a 16-bit 

microcontroller).

However it should be pointed out that, if the number of hidden neurons is small 

(as in this experiment), a com paratively large amount of memory is required for 

calculation of the exponent (which takes about 3 kbytes of memory on an 8 -bit 

m icrocontroller and about 3.6 kbytes of memory on a 16-bit microcontroller). If 

these figures are rem oved from the comparison (giving a result more 

representative of that expected for a large network), the RBFN classifiers may 

require even more m emory than the MLP equivalent11.

6.4 Power consumption implications

One additional observation should also be made. If an em bedded RBFN 

implementation requires around 20 times the number of CPU operations as an 

equivalent M LP classifier, then, as observed, it may be possible to implement the 

MLP classifier more cheaply.

In addition, it should also be noted that it would be possible to implement the 

MLP classifier on the same hardware platform, using a much lower oscillator 

frequency12. This may be very important because, in modern designs, system

11 This is confirm ed in Chapter 9.

12 T his is now  p ossib le , because many m icrocontrollers can be used over a very w ide range o f  
oscillator frequencies: from  0 to 24 M H z, or 0 to 50 M Hz (in som e cases). N ote that the use o f  
‘0  M H z’ may seem  to have little value. H ow ever, in practice, the ability o f  the microcontroller 
to operate at 0  M H z im proves the chances o f  system  recovery fo llow ing  disruption to the 
oscillator source.
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power consum ption is linked almost linearly to oscillator frequency (Pont, 2001). 

Thus, the ability to reduce the oscillator frequency can be very valuable, 

particularly in battery-pow ered systems.

Similar, but less dramatic, reductions in power consumption can also be obtained 

through reduction in memory requirements (Vahid & Givargis, 2002).

6.5 Conclusions

In this chapter the hardware requirements of studied classifiers have been assessed 

in terms of processor requirem ents and memory requirements. On the basis of the 

results obtained, it is clear that in terms of memory requirements, the MLP 

requires less mem ory than RBFN. Also, the processor requirements for the MLP 

are considerably less than those for the RBFN. In concluding the chapter, the link 

between processor requirem ents (and, to a less extent memory requirements) and 

system power consum ption was also considered.

The next chapter shifts the comparison focus to the characteristics of CMFD 

applications.
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C lassifier Comparisons: CMFD 
Characteristics

7.1 Introduction

The experim ents described in this chapter are concerned with the following 

CMFD characteristics:

1) The ability to detect unknown faults.

2) The ability to deal with multiple faults.

3) The effects o f dataset size on generalisation ability.

7.2 Working with ‘unknown’ faults

In the previous classification experiments (Section 5.4), the problems were 

studied with the im plicit assumption that all classes in the system are exhaustively 

known a priori and that only a single fault may occur at a time. However as 

discussed in Chapter 1, one significant difference between generic classifier tasks 

and CM FD applications is that, in the latter case, it is often difficult to obtain 

information about all possible system faults a priori. As a result many practical 

CM FD systems must respond ‘appropriately’ in situations where faults not 

evident in the training set are present (Dash S & Venkatasubramanian, 2000; 

Tarassenko, et a l, 2000). In this section two experiments were conducted to
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investigate the perform ance of M LP and RBFN classifiers in the presence of such 

unknown faults. The consideration of unknown faults begins with an analysis of 

the decision boundary property of a classifier. Based on this property, the 

capability of a classifier to deal with unknown classes is predicted.

7.2.1 Geometrical analysis of decision boundary forming

Before these networks are used for fault classification, it is important to be aware 

of the difference in their inherent decision making properties. The M LP partitions 

the input space into decision region using hyperplanes while RBFNs use 

hyperspheres (Leonard & Kramer, 1990; Looney, 1997; Bishop, 1995). This 

fundamental difference has little effect on interpolation, either a well-trained MLP 

or RBFN can be expected to perform well when classifying novel (unseen, non

training) sam ples w hich fall in the range of the training dataset. This was 

observed in the basic perform ance comparison in Section 5.4. However, the 

underlying differences in these classifiers can be expected to have a greater 

impact on extrapolation performance. That is, when classifying samples outside 

the range seen in the training dataset. Such samples are inevitable in practical 

CMFD applications.

To illustrate the underlying differences in the operation of the two classifiers, 

consider a two-dim ensional measurement space. As shown in Figure 7-1, within 

the m easurement space, the distribution of samples of normal condition (region N) 

and fault conditions (region A and B for fault 1, region C and D for fault 2) is 

assumed to be known.

108



CMFD C h a r a c t e r i s t i c s

1

0 .5 xx

0

x<x

-0 .5

1
1 -0 .5 0 0 .5 1

Figure 7-1. D istribution o f  three classes in two-dimension space.

The networks for this fault classification problem have 2 input neurons and three 

output neurons and are assumed to be trained using available data. After training, 

MLPs partition the input space with hyperplanes and so the decision boundaries 

are unbounded (the decision surfaces for each MLP class are shown in Figure 

7-2). This can be seen in Figure 7-2(b), for example, where the classifier will 

produce high values for samples not only in the region of the training samples but 

also for samples some distance away ( ‘some distance’ may be infinitely far in 

some directions). On the other hand, since RBFNs partition the input space using 

hyperspheres, their decision boundaries are bounded (the decision surfaces for 

each RBFN class are shown in Figure 7-3). From the figure, it is seen that RBFN 

classifier produces high values for samples only from the regions covered by 

training samples. Figure 7-3 (d) clearly shows that the decision boundaries are 

closed.
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Figure 7-2. Decision surface o f  MLP.
(a) Decision surface fo r  ‘Normal * condition,
(b) Decision surface fo r  ‘Fault 1 ’,
(c) Decision surface fo r  ‘Fault 2 \
(d) Contour o f  Decision surfaces.
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Figure 7-3. Decision surface o f  RBFN.
(a) D ecision surface fo r  ‘Norm al’ condition,
(b) Decision surface fo r  ‘Fault 1
(c ) D ecision surface fo r  ‘Fault 2 ’,
(d) Contour o f  Decision surfaces.
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A further point of note is that the decision surface of the M LP is ‘uncontrolled’, 

that is, for the M LP different training may result in different decision surfaces.

A fter training the networks may be used for fault classification. It is clear from 

Figure 7-2 and Figure 7-3, that both MLP and RBFN could provide good 

classification results for novel samples in the region of the original training data 

samples. H owever if a novel ‘out of range’ fault occurs in the plant, the 

unexpected samples will lie outside the regions N, A, B, C or D. W hile the RBFN 

may still provide an ‘appropriate’ result for such faults, the M LP is less likely to 

do so. This analytical result is assessed using the following two experiments.

7.2.2 MM case study

In this experiment, the mathematical model presented in Chapter 5 was used 

again. However, in this experiment the MLP and RBFN classifiers were trained 

with ‘N orm al’ and ‘Fault 1’ only, and then tested with ‘N orm al’, ‘Fault 1’ and 

‘Fault 2 ’. In this case, Fault 2 is treated as an unknown fault.

Both the classifiers have two inputs and two outputs. The number o f hidden 

neurons is 4 for the M LP and 19 for the RBFN (with spread constant 0.09).

The classification results are presented in the form of a confusion matrix (Blayo, et 

al, 1995). The confusion matrix C is:

Ci; = £(class = j  I class = i)
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where e is the norm alised number of the classification result j ,  if the class i is 

given.

Table 7-1 and Table 7-2 list the confusion matrix of classification for the test data.

Normal Fault 1 Fault 2 
(unknown)

Normal 1.0 0 0

Fault 1 0 1.0 0

Fault 2 (unknown) | 0.82 0.13 0.05

Table 7-1. Confusion matrix (MLP).

Normal Fault 1 Fault 2 
(unknown)

Normal 1.0 0 0

Fault 1 0 1.0 0

Fault 2 (unknown) 0.20 0 0.80

Table 7-2. Confusion m atrix (RBFN).

From these tables13 it is notable that the MLP classified 82% of the ‘Fault 2 

(unknown fault)’ samples as ‘N orm al’, and that only 5% of these faults were 

classified correctly. By contrast, the RBFN classified only 20% of the ‘Fault 2 ’

13 The absolute figures for classification  accuracy w ould be different if  the distribution o f  the data 
w as different. H ow ever this d oes not influence the conclusion o f  the classifiers’ ability when 
dealing with unknown faults, because the ability o f  a classifier to deal with such unknown  
faults is determ ined by the c la ssifier’s inherent decision behaviour.
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class as ‘N orm al’, and correctly classified 80% of these as unknown faults. The 

overall perform ance of the RBFN classifier for this study was 93% while that of 

the M LP was approxim ately 68%. This experiment supports the theoretical 

prediction that RBFN can provide a good indication for ‘unknown faults’, while 

MLP is unlikely to do so.

7.2.3 DC case study

In this experim ent, the nonlinear model of the diesel cooling system presented in 

Chapter 5 is em ployed again. However, both the classifiers were trained with 

‘N orm al’ and ‘Fan o f f  data only, and then tested with ‘N orm al’, ‘Fan o f f , 

‘Therm ostat stuck open’ and ‘Pump fault’. Thus, in this study, ‘Therm ostat stuck 

open’ and ‘Pump fau lt’ exam ples are treated as unknown faults.

Both classifiers had six input nodes and two output nodes. The number of hidden 

neurons was 20 for M LP and 50 for RBFN with spread constant 0.5. Table 7-3 

and Table 7-4 list the confusion matrices for test data.
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Normal Fan off Thermostat 
stuck open 
(unknown)

Pump fault 
(unknown)

Normal 1.0 0 0 0

Fan off 0 1.0 0 0

Therm ostat 
stuck open 
(unknown)

1.0 0 0 0

Pump fault 
(unknown)

1.0 0 0 0

Table 7-3. Confusion m atrix (MLP).

Normal Fan off Thermostat 
stuck open 
(unknown)

Pump fault 
(unknown)

Normal 1.0 0 0 0

Fan off 0 1.0 0 0

Therm ostat 1
stuck open 1.0
(unknown)

0 0 0

Pump fault q 
(unknown)

0 0 1.0

Table 7-4. Confusion m atrix (RBFN).

In this study there were two unknown faults, ‘Thermostat stuck open’ and ‘Pump 

fault’. From  these tables, it is apparent that the MLP classified 100% of the 

unknown faults as ‘N orm al’. By contrast, while the RBFN classifier also 

classified ‘Therm ostat stuck open’ data as ‘N orm al’, it correctly classified all of 

the ‘Pump fau lt’ as unknown faults. This is because the “Thermostat stuck open”
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is confused with “N orm al” (with separability value of 0.67, see Table 5-2), while 

the “Pump fault” is well separated from the known classes o f “N ormal” and “Fan 

o f f ’ ( both with large separability, see Table 5-2). The overall performance of the 

RBFN classifier was 75% while that of the MLP was around 50% for this study. 

The results dem onstrate that RBFN classifier can detect unknown faults, if they 

are well separated from known classes.

7.2.4 Unknown faults: conclusions

W here unknown faults are concerned, these studies confirm the theoretical 

prediction that RBFNs can provide accurate classification results for unknown 

faults if they are well separated from known classes, but still (inevitably) performs 

poorly for those unknow n faults which overlap with known classes. On the other 

hand, M LPs always attem pt to classify samples of unknown faults into known 

classes since the decision boundaries of the known classes are unbounded.

7.3 Working with multiple faults

The previous experim ents have considered only a single fault. It is often the case 

that more than one fault will occur simultaneously in a practical system (Chung, et 

al, 1994; W atanabe, et al, 1994; Hsu, et al, 1995; Maki & Loparo, 1997; Cheon, 

et al, 1993). This poses a challenge to CMFD systems because multiple faults 

may interfere with one another and are, as a result, more difficult to classify (Hsu, 

et al, 1995).
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In this section the perform ance of MLPs and RBFNs for dealing with multiple 

faults is compared. The comparison was carried out on the diesel engine cooling 

system model with which simultaneous radiator and pump faults were simulated.

7.3.1 The experimental dataset

To compare the perform ance of neural classifiers dealing with multiple faults, the 

non-linear model (Chapter 5) of an engine cooling system was employed. Here 

the engine cooling system  was assumed to experience four different conditions: 

normal, radiator fault, pum p fault, and simultaneous radiator and pump fault.

Again six m easurem ents (as described in Chapter 5) were used for classification. 

Both training and testing datasets were generated from the model, and each 

contained 400 samples. Each of the four conditions was represented by 100 

samples. Table 7-5 lists the separability of classes on the whole dataset.

Normal Radiator Pump Radiator 
& Pump

N ormal 1 1.68 137.48 95.35

Radiator 1.68 1 129.04 87.54

Pump 137.48 129.04 1 37.22

Radiator 
& Pump

95.35 87.54 37.22 1

Table 7-5. Separability M atrix o f  Multiple Faults.
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Table 7-5 shows that there is low separability (with value of 1.68) between 

Normal and Radiator fault, but the separability is high between other classes. This 

explores how neural classifiers perform for classes with high separability when 

multiple faults exist.

7.3.2 The classifier structure

W hen considering only a single fault, the input vector is classified as being of the 

corresponding class with the highest value for the classifier outputs. For multiple 

classes, the output o f a classifier must be interpreted in a different way:

1. An output node represents a single class, where 1 indicates the occurrence of 

the class and 0 non-occurrence.

2. A threshold, r ,  is introduced. If the output of a node exceeds the threshold r, 

the output value is rounded to 1, otherwise it is rounded to 0.

For the above cooling system  problem, the networks (again) have the same input 

measurements and have three output neurons to represent normal, radiator fault 

and pump fault. M ultiple faults are represented by the combination of output 

neurons, for exam ple, for three classes, {0 1 0} is used for class 2 and {0 0 1} 

for class 3, so in the case of multiple faults of class 2 and 3, the values of output 

neurons are expected to be {0 1 1}. In this way multiple faults are classified by 

M LPs and RBFNs. Table 7-6 lists the output patterns for cooling system fault 

diagnosis.
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Class Output pattern

normal 1 0 0

radiator 0 1 0

pump 0 0 1

radiator & pump 0 1 1

Table 7-6. Representation o f  multiple classes.

The number o f hidden neurons of M LP and the width of radial basis function are 

determined by trial and error. All other network parameters have the values 

described in Section 2.4.

7.3.3 Results

The trained networks were evaluated using the testing dataset. In assigning a 

sample to a class, an output threshold of 0.5 (0.5 is intuitive for output value 

between 0 and 1, H aykin 1994) was used for all the neural classifiers. A 

particular output is said to represent a particular class if one output neuron value 

exceeds this threshold. If a sample cannot be assigned to any of the pre-defined 

classes (normal, radiator fault, pump fault, radiator & pump faults), it is treated as 

an instance of an ‘unknow n fault’ condition.

Table 7-7 and Table 7-8 list the confusion matrices for the classifications by MLP 

and RBFN respectively.
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normal radiator pump

0

Radiator 
& pump

0

unknown

0.09normal 0.51 0.4

radiator I 0.17 0.73 0 0 0.1

pump 0 0 1.0 0 0

Radiator ^ 
& pump 0 0 1.0 0

Table 7-7. Confusion m atrix o f  M LP classification.

normal radiator pump Radiator 
& pump

unknown

normal 0.44 0.51 0 0 0.05

radiator 0.22 0.77 0 0 0.01

pump 0 0 1.0 0 0

Radiator 
& pump

0 0 0 1.0 0

Table 7-8. Confusion m atrix o f  RBFN classification.

From the Table 7-7 and Table 7-8, it is observed that both classifiers exhibit a 

similar level of perform ance for this multiple fault problem. The overall 

classification accuracy was 81% for the MLP and 80.25% for the RBFN. In fact, 

since the ‘radiator & pum p’ fault has very high separability from other classes 

(see Table 7-5), both the classifiers provide 100 percent classification rate for this 

example. Because the separability between classes of Normal condition and 

Radiator fault is very low (see Table 7-5) there is a strong overlap between these 

two classes and both the classifiers performed poorly in this situation. This
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experiment demonstrates that, on this problem, neural classifiers perform well 

regardless of single fault or multiple faults, if there is high separability between 

the classes.

7.4 Working with limited training data

The ability o f a trained classifier to generalise correctly is known to be influenced 

by three key factors: the physical complexity of the problem at hand, the 

architecture o f the network, and the size and quality o f the training dataset 

(Haykin, 1999). Clearly the physical complexity of the problem cannot be 

directly controlled by designers14. The influence of the network architecture on 

the generalisation ability was studied in Section 5.4, by fixing the training data 

size and altering the classifier structure (with a different number of hidden nodes 

for M LP or different spread constant for RBFN, etc.).

This section will therefore be devoted to an investigation into the effect of training 

data size on generalisation. In doing this, the main focus is on determination of 

the size of training dataset needed to achieve good generalisation.

Intensive theoretical investigations in the effects of dataset size have resulted in a 

number of ‘rules o f thum b’ that may be used to suggest how many training 

samples are required for successful learning. Some key theoretical results are 

discussed below. However, in practical CMFD applications, it is rarely possible

14 N ote, how ever, that the designers may influence the problem com plexity  through the use o f  
appropriate pre-processing techniques as discussed in Chapters 3 and 4.
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to obtain the number of samples suggested by theoretical form ulae15. As a result 

empirical studies, such as that discussed in this chapter, are an important adjunct 

to theoretical work in this area.

7.4.1 Theoretical analysis

It is well understood that the number of samples in the training data can affect 

how well a network may be trained. Investigations into the impact of sample size 

have focused on three main areas: statistical analysis, geometrical analysis and 

worst-case analysis based on Vapnik-Chervonenkis (VC) theory (Smolensky, et 

al, 1996). This section will present some results about the effect of dataset size 

from these frameworks.

a) Geometrical view

In the process o f classification, a neural network partitions the input space into 

regions where each region is formed by a hyperplane (or hypersphere) segment. 

Samples in a region belong to the same class, and each class may consist of a 

number of regions. Thus, the process of training a neural network can be viewed 

as a process of constructing optimal hyperplanes.

Because a hyperplane separates classes from each other, samples near a class 

boundary, called boundary samples, are important for identifying hyperplanes 

(Lee & Landgrebe, 1997). Based on this geometrical view, we can determine the

15 A s discussed  in Chapter 1, data for fault classes may be particularly d ifficult to obtain, not least 
because it m ay in vo lve  permanent dam age to expensive equipment.
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minimum number of samples required for successful training by determining how 

many boundary samples are needed to identify the hyperplanes.

Given the input dim ensionality n, the number of hidden nodes m in a neural 

network and the num ber of clusters M c of input samples (generally M t> the 

number of classes or output nodes), M ehrotra et al (1991) determined that the 

number of boundary samples N b required for successful classification is 

proportional to:

N b =  £2(min(m, n) • M c ) (7-1)

This method em phasizes boundary samples, however in general most samples are 

not boundary samples. The nature of the distribution of samples within clusters 

determines the proportion of the number of boundary samples, hence the overall 

number of input samples required is likely to be more than m in(m ,n) ■ M c .

In practice, since the actual distribution of input samples is unlikely to be known, 

it is difficult to determ ine the overall number of input samples needed to generate 

the required boundary samples. One solution may be to pre-process the overall 

input samples to identify the boundary samples (Hara & Nakayama, 1998) then 

use these samples to train the netw ork16.

16 One potential benefit o f  this approach is that it w ill reduce the training tim e due to a small 
number o f  training sam ples being used.
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b) VC dimension view

The Vapnik-Chervonenkis dimension is a measure of the capacity of the family of 

classification functions realised by the learning machine (Haykin, 1999). Stated 

in terms more specific to neural classifiers, the VC dimension of the set of 

classification functions is the maximum number of training samples that can be 

learned by the neural classifier without error, for all possible binary labelling of 

the classification functions.

Using the measure o f VC dimension, Baum & Haussler (1989) presented a 

formula to find the upper bound of training samples required for reasonable 

generalisation. A ssum ing that the neural classifier has a total of M  nodes in the 

hidden and output layer, and a total of W  weights, they showed that, if some 

number Nvc  of samples given by:

W , M
N v c > — l og2 —  (7-2)

£
can be learned by the network such that a fraction 1 -  — are correctly classified

(where 0  < £ < —) then there is a high probability that the network will correctly 
8

classify a fraction 1 -  e of future samples drawn from the same distribution of 

training samples.

Instead o f using the VC dimension, Takahashi & Gu (1998) introduced the 

Boolean interpolation (IP) dimension diP. IP dimension is the supremum of the 

smallest num ber of input samples needed for fixing the decision boundary of a
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neural network. If the num ber of changeable parameters (weights) in a network is 

W, then d ]P < W  is true. Given an error rate e > 0 and a confidence 1-5, then the 

minim um  samples size achieving successful learning is:

N lp > —  J d /PI n f  + ̂  (7-3)
8 V oe e

where In denotes the natural logarithm, e is the base of natural system of 

logarithms.

c) E xam ple

The previous sub-sections presented some of the main theoretical results in 

finding training sam ples for successful learning. This section will apply those 

formulae to the static fault diagnosis problem described in Chapter 5.

For this classification problem , the neural classifier has 2 input nodes, 4 hidden 

nodes and 3 output nodes, so the total nodes M=7 (excluding input nodes), the 

total weights W=21 and the number of clusters of input sample Mt=5. Assume 

dip=W=21, £ = 0 .05 , 8  -  0 .05, then the number of training samples for successful 

learning derived from  different methods is shown in Table 7-9.

M ethod N b Nvc N ip

Training Samples 1 0 3850 716

Table 7-9. Training samples derived from  different methods.
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Looking at Table 7-9, M ehrotra’s geometrical method says 10 boundary samples 

are needed for successful learning, while Baum ’s method shows 3850 samples are 

needed for the same problem .

There are no simple techniques available allowing us to identify boundary 

samples from a dataset. It is intuitively obvious that the number of boundary 

samples in a dataset may vary with the complexity (for example, shape of class 

boundary, size o f class region, dimensionality) of the classification problem. It is 

probably true that more samples are required to warrant the number of boundary 

samples derived from  M ehrotra’s method, but the difference between the different 

techniques is still significant.

Overall, it is not clear how useful these theoretical studies are in practice. In some 

neural network paradigm s (for example, multilayer neural networks), the VC 

dimension is hard to calculate (Takahashi & Gu, 1998). M ore generally, the 

theoretical bounds may be regarded more as an attempt to come to a theoretical 

understanding o f the true behaviour of the training process, rather than as a tool 

for direct application in practical systems (Haussler, et al, 1997).

7.4.2 Experimental comparison

As discussed above, developers of practical CMFD applications still need to rely, 

at least in part, on em pirically derived sample size bounds (Haussler, 1992; 

Zhang, 2000). In fact, previous experiments indicate that satisfactory 

generalisation error is sometimes obtained for sample sizes considerably smaller
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than theoretically estim ated bounds (Haussler, et al, 1997; Kramer & Leonard, 

1990; Rao, 1999).

In the rem ainder o f this chapter an empirical study will be described, which 

com pared the effects o f training sample size on the generalisation error of MLP 

and RBFN classifiers in CM FD applications. The aim of the experiments is to 

investigate how the num ber of samples affects the performance, this in turn 

determines the selection of an appropriate classifier for the available data size. 

The experim ents are m ade on static fault diagnosis data and cooling system fault 

diagnosis data.

a) MM case study

The structures of the classifiers were determined based on the results in Section 

5.4. Specifically, the num ber of hidden nodes was 4 for the MLP, and the spread 

constant was 0.025 for the RBFN. All other parameters use default values.

Again, training sam ples of 30, 100, 300, 600 were generated from Equation (5- 

15). After training, the two testing datasets described in Section 5.4 were used for 

exploring the perform ance of the classifiers. Table 7-10 summarises the 

experim ental results.
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MLP RBFN

Samples 30 1 0 0 300 600 30 1 0 0 300 600

Training error 0 0 0 0.33 0 0 0.33 0

Error for Test 1 6 . 0 2.33 1 .0 0.67 28.67 10.33 0.33 1 .0

Error for Test 2 22.33 28.67 17.67 32.33 30.33 27.67 1.67 1 .0

Table 7-10. Performance vs. Samples on M M  data.

From Table 7-10, it can be seen that the RBFN requires more training samples to 

achieve good classification performance, and that the number of samples strongly 

affects the generalisation ability o f RBFN, but less so for MLP. The extrapolation 

ability of M LP cannot be increased by increasing the number of training samples.

b) DC case study

The structures o f classifiers were determined based on the results in Section 5.4. 

Specifically, the num ber of hidden nodes was 20 for M LP and spread constant 

was 2 for RBFN. All other param eters use default values.

Again training sam ples of 32, 100, 300, 600 were generated from engine cooling 

system model described in Chapter 5. After training, the testing dataset used in 

Section 5.4 was used for exam ining the performance of the classifiers. Table 7-11 

summarises the experim ental results.
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M LP RBFN

Samples 32 1 0 0 300 600 32 1 0 0 300 600

Training error 25 0 17.3 9.17 3.1 0 16 10.17

Test error 28.33 22.5 17.3 2 0 49.67 32.67 17.3 19.7

Table 7-11. Perform ance vs. Samples on D C data.

From Table 7-11, it can be observed that the RBFN generalised poorly if the 

training data size was small. The number of samples strongly affects the 

generalisation ability o f the RBFN, but less so for the MLP.

7.4.3 Discussion

Suppose the input dim ension is n , the number of classes is c, the total number of 

training samples is N  and the training samples per class is N c. To analyse these 

results, the size of the training dataset is described using the ratio of the training 

samples per class to the input dimensions, N c/n, which is generally accepted as an 

indicator of characterising data size in the practice of classifier design (Jain, 

2000).

The corresponding values of N c In for the experiments in the last section are listed 

in Table 7-12 and Table 7-13.

N 30 1 0 0 300 600

N c 1 0 33 1 0 0 2 0 0

N c/n 5 16.5 50 1 0 0

Table 7-12. Size o f  training data fo r  MM.
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N 32 1 0 0 300 600

N c 8 25 75 150

N c/n 1.33 4.1 12.5 25

Table 7-13. Size o f  training data fo r  DC.

The size o f a dataset is often described using linguistic terms such as ‘sm all’ and 

‘large’. Since it is difficult to say exactly how many samples should be in, for 

example, a ‘sm all’ training set, a fuzzy set (Zadeh, 1973; Ross, 1995) is 

introduced for this description. Here three fuzzy sets are assigned to N c In. The 

corresponding m em bership functions p for Nc /n is defined as in Figure 7-4. The

1 7supports and boundaries of the membership functions for the fuzzy sets are 

intuitively determ ined based on the experiments.

m edium largesmall

Figure 7-4. Size o f  training data characterised by fuzzy  sets.

Referring to M M  data in Table 7-12, it can be said that the size of training data is 

small for 30 samples, medium for 100 samples and large for 300 and 600 samples.

17 The support o f  m em bership function for a fuzzy set A  com prises those elem ents x  o f  the 

universe such that p ^ J c )  > 0 . The boundaries o f  membership function for a fuzzy set A  

com prise those elem ents jc o f  the universe such that 0  < < 1.
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W hile for DC data in Table 7-13, it can be said that the size of training data is 

small for 32 and 100 samples, medium for 300 hundred samples and large for 600 

samples.

Examining Table 7-10 and Table 7-11 and the values of N c /n, conclusions about 

the impact o f training set size to the classification performance can be made as 

follows:

1) For a sm all-sized training dataset, MLP clearly outperforms RBFN;

2) For a m edium -sized training dataset, MLP slightly outperforms RBFN.

3) For a large-sized training dataset, both classifiers provide comparable 

classification performance.

Taking the above observations into account, it is appropriate to use an MLP for 

the cases with small- and m edium -sized set of training data, and a RBFN for cases 

with large- and m edium -sized set of training data.

7.4.4 Data size: conclusions

Neural classifiers are data-driven techniques. The size of the dataset strongly 

affects the generalisation ability of a classifier.

In this section, some theoretical bounds for training data size were discussed. 

These theoretical bounds tend to suggest that large amounts of training data are 

required. Because of practical limitations in the availability of training data, the
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requisite number o f samples is usually difficult to achieve in real CMFD 

problems.

This section also em pirically compared the influence of dataset size to the 

generalisation ability of the studied classifiers. Based on the results, it may be 

concluded that it is more appropriate to use the RBFN for the cases of medium 

and large num ber of training samples, and the MLP for cases of small and 

medium number of training samples.

7.5 Conclusions

In this chapter, the results from a series of empirical studies intended to consider 

the suitability o f M LP and RBFN classifiers for use in CM FD applications have 

been presented. The em pirical studies considered the ability to deal with 

unknown or multiple faults, and the effects of training dataset size.

Overall, on the basis of the results obtained in these studies, it can be seen that 

each form of classifier has both strengths and weaknesses, and that neither is 

suitable for use in all CM FD applications.

So far we have addressed issues pertinent to the first and the second stages of 

designing em bedded CM FD systems. The next chapter will move on to the final 

stage, the post-processing of classifier outputs.
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8
Selecting T hresholds for RBFN 
C lassifiers

8.1 Introduction

The results obtained in Chapter 7 verified the theoretical predication that the 

RBFN classifiers have the ability to identify classes which had not been seen in 

training data. To achieve this, the outputs of the classifier were interpreted by 

applying a threshold to the output vector. If the value of an output neuron exceeds 

the given threshold, then an exam ple of the corresponding class is said to have 

occurred (Joshi, et al, 1997; Cheon, et al, 1993; Maki & Loparo, 1997; Isermann, 

1997).

In addition to the ability to represent unknown classes, this threshold-based 

classification scheme has another important application in multiple fault 

classification: this was also discussed in Chapter 7.

Despite these potential advantages, use of a threshold classifier for CMFD 

applications can be problem atic, because the overall performance of the system 

depends on the use of an appropriate threshold value. In most published work in 

this area, thresholds are simply empirically set, usually at values of ‘0.5’
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(W atanabe, et al, 1994; Haykin, 1999), which does not necessarily result in 

optimal classifier perform ance (Joshi, et al, 1997; Theodoridis & Koutroumbas, 

1999).

To improve the perform ance of threshold based classifiers in CM FD and other 

application areas, methods for identifying the optimal threshold values are 

required. This chapter addresses this post-processing problem by developing a 

method which im proves the performance of RBFN classifiers in CMFD 

applications where an ‘unknow n’ fault may occur. This novel technique is based 

on an analysis o f the relationship between the behaviour of a well-trained RBFN 

classifier and its response to the dataset.

The chapter is organised as follows: in Section 8.2, a method for determining a 

suitable threshold is derived, based on theoretical considerations; the results of 

two empirical tests are presented in Section 8.3; the results are discussed in 

Section 8.4.

8.2 Theoretical considerations

A technique for reliable threshold selection for RBFN classifiers will be derived 

in this section. The problem  of threshold selection for neural network classifiers 

is first form ulated in Section 8.2.1. In Section 8.2.2 the decision behaviour of 

RBFN classifiers is mathematically and geometrically analysed. The reliable 

threshold selection m ethod for RBFN classifiers is then proposed in Section 8.2.3.
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8.2.1 The general problem

A basic learning problem  can be represented by six components (Smolensky, et 

a l, 1996): X, Y, A, P, and L. The first four components are the instance (input 

vector), outcome, decision, and decision rule, respectively. X  is an arbitrary set, Y 

and A  e  {0,1}, and ^  is a family of functions from X  into A. The fifth component,

P , is a family of jo in t probability distributions of Z = X x Y . These represent the 

possible states that might be governing the generation of examples. The last 

component, the loss function L, is a mapping from YxA  into the real number set R.

This chapter m ainly concerns the characteristics of A  and L  with respect to the 

threshold. Assum e that the classifier has been well trained with samples 

Ui ,• • ' , z N), where z, = (x ,, y f) e Z ,  drawn independently at random according to 

some probability distribution P e P. After training the classifier is applied to a set 

o f samples whose class is known. Suppose the outcome of an output neuron is 

y e  [0 ,1], a threshold is applied to y , then we have the hypothesis h e  that 

specifies the appropriate action a e  A as:

h \ X  —» A, a(x,T) = 0 ( y - T )  (8 - 1 )

where: 0 (S )
fO if < ? < 0  

1 if £ > 0

This definition of 0  gives (8-1) the following values:
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0 if y < T
a ( x , T )  = 0 ( y - T )  = \ (8-2)

1 if y  > T

where T is the threshold, a equals one for indicating the class occurred or zero 

otherwise. Further, we consider the following loss function:

L ( z , t )  = L (  y,a(x,T)) = <
0 if a = y

1 if  a ^  y
(8-3)

and the risk function (Scholkopf, et al, 1997):

I(T)= \L ( z , t ) dP( z )  (8-4)

Since the probability distribution function P{z) is unknown, but random and 

independent sample o f pairs z,- = (x i , y i ) are given, then from (8-4) we have 

instead the em pirical risk function:

/ (r ) =  T 7 E L( y . ’a i) (8-5)
M  i=1

Thus the expected risk of the decision rule (or hypothesis) is simply the 

probability that it predicts incorrectly, the usual notation of the error of the 

hypothesis.

For the above classification problem, the risk function I  is obviously bounded and 

non-negative. O ur goal is then to minimise the risk function, /, by determining the 

optimal value o f the threshold, t (see Section 8.2.3)
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8.2.2 Behaviour o f the RBFN classifier

Referring to Chapter 2 (Section 2.3), the output of an output neuron of RBFN with 

m hidden neurons has the form (Broomhead & Lowe, 1988; M oody & Darken, 

1988):

y(x)  = w T$(x) + b (8-6)

where <{> are basis functions which can be one of several types (Sanchez, 1996). 

The weight coefficients w com bine the basis functions into an output value, and b 

is a bias term.

The mostly com m only used radial basis function is the Gaussian basis function:

r r i

1= 1

m

= Z WieXP
II ||2
X - C :

1 =  1 2 a t
+ b

(8-7)

Thus in (8-7) $  is the zth Gaussian basis function with centre c,■ and variance oj .

Since the radial basis functions in the hidden layer have localised response 

behaviour in the input space, its response approaches zero at large radii, that is:

, llx C; II—̂°° ~•— u------->0

Considering the most com mon form of coding scheme for classification using 

neural networks (Tarassenko & Roberts, 1994), the output value y is 1 if the input
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pattern x belongs to the class and 0  otherwise, that is, y e  [0 ,1] on the training

18data . As an RBFN classifier obtains its parameters through training, this gives 

the following statem ent about the interval of bias in the output layer:

T*
For classification using RBFN, y  = w  (f)(x) +  Z?, i f  the output is set as 

y e  [0,1] on training data, then a well trained RBFN classifier will 

satisfy: b e  [0 ,1].

The validity o f the above statement can be proved as follows:

Since y e  [0,1], a n d  </)E (0 ,1 ], w are finite numbers,

if an input vector is far from the centers of the radial basis functions, 

we have

||x — c j  —■> °o => (p. —>0 , for all i, i= \,...m  

then from  (8-7) we have lim  y  = b

assume b £ [ 0 ,1], say  b >  1 , then y  =  w T§ (x )+ b  —>b > 1 ,

which contradicts the condition of y  £  [0 ,1] .  Thus b < 1. Similarly

we can prove that b >  0  .

Thus b e  [0,1].

18 The condition y e  [0,1] applies for the training data only, using the coding scheme discussed 
above. Even when an ‘optimally’ trained network is used for classification, the network output 
may still fall outside the interval [0,1]. In this case, the classifier can still perform well when 
an appropriate threshold is applied to the network output.
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To understand the physical meaning of outcomes and the bias in the output layer, 

consider a geom etric interpretation.

Suppose there is a tw o-class problem  with inputs distributed in two dimensions as 

in Figure 8-1 (a). An RBFN classifier with two input and two output neurons is 

used for this classification problem. After training, the values of the output 

neurons with respect to the input variable Xj are as in Figure 8-1 (b). The 

corresponding output neuron has a high value if the input is within the region of 

the class, while the other output neuron has a low value. Outcomes of all output 

neurons will be asym ptotic to their bias if the input is out of their class region.

It is notable that the bias value of a trained RBFN classifier may lie outside the 

interval [0, 1] in some im plem entations. However, such classifiers will perform 

very poorly, as dem onstrated in Sections 8.3 and 8.4. In these circumstances the 

RBFN classifier will generally need to be re-trained by adjusting the training 

parameters (that is, the number and the spread constant of the radial basis 

functions).
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C lass 2

•#
•  •  •

C lass 1

Xi

(a)

O u tp u t 2Outpu t  1

X l

(b)

Figure 8-1. Outcomes o f  output neurons.

8.2.3 Reliable threshold selection for RBFN classifiers

As discussed in Section 8.2.1, for the problem of classification, our goal is to 

determine a threshold that tends to minimise the probability of erroneous 

classification in a given class. To derive the optimal threshold for a radial basis 

function classifier, the general model (Smolensky, et al, 1996) for describing the 

task of generalisation optim isation of a neural network is used.
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The goal of designing a network is to find the network which provides the most 

likely explanation o f the observed dataset. To do this it is necessary to try to 

maximise the probability:

p { v  |P)= } (8-8)

where 7t represents the network (with all of the weights and biases specified), *D 

represents the observed dataset, and p(z\7t) is the probability that the network 7t

would have produced the observed data V. Applying the monotonic logarithm 

transformation to (8 -8 ), we have:

In P & |Z>) = In p{t>\k)+ In P(%) -  In P(z>) (8-9)

Thus maximising (8-9) is equivalent to maximising (8 -8 ).

Since the probability distribution of the data is not dependent on the network, 

In P (v)  will have no contribution to the maximising solution o f lnP(7t\v) and is

dropped from (8-9).

The second term  o f (8-9), ln P ( ^ ) ,  is a representation of the probability of the 

network itself: that is, it is the a priori probability or a priori constraint on the 

network. Since our method assumes that the classifier has been well trained and 

our purpose is to determ ine an optimal threshold for the trained RBFN classifier, 

we will also drop this term.
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The first term o f (8-9), \n P (v \7 t), represents the probability of the data given the

network: that is, it is a measure of how well the classifier accounts for the data. 

Therefore the threshold selection problem is equivalent to a requirement to

Further, if the data are broken into two parts, the output y and the input x, then:

lnP (£> |^)=  ln P ((x ,y )te )
, x (8-10)

= In P(y|x a  7t)+ In P(x) 

where ‘xÂ ’ stands for inputting x to %

Finally, suppose that the input x does not depend on the network, then the last 

term of (8-10) has no effect in maximising ln P (^ |^ ) .  Therefore, we need only

maximise the first term  lnP(y|xA ‘%).

For the classification problem , the output vectors, a, defined in (8-2), consist of a 

sequence of 0 ’s and l ’s. In this case, we imagine that each element of the 

classifier output, a , represents the probability that the corresponding element of 

the desired output y  takes on the value 0 and 1. Then the probability of the output 

given the network, for a problem with c classes, is represented by the binomial 

distribution (Flem ing & Nellis, 1994):

maximise

c

(8- 11)
/ = ]
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Applying logarithm transform, the above equation becomes:

7  = In P(y|x a  7 t )

c (8- 12)
= X  b , In + (l -  yt )ln(l — a,))

Thus the problem  becom es to maximise 7- By differentiating (8-12) with respect 

to decision action a, , we then obtain:

To obtain the stationary points of 7  we set (8-13) to zero. W e then have:

As discussed in Section 8.2.2, b, e  [0,1], and the classifier output as in (8-15) 

satisfies y, —»b( for an input pattern located far from the training patterns. To 

satisfy (8-14), we wish at to coincide with the actual y, when (assuming, here, 

that each output node of the RBFN is allowed to have a different threshold) is 

applied to y, > as in (8-2). In other words, a{ should be 1 if the input pattern is

f t  =  y i ~ a i 

dat at (l -  a() (8-13)

(8-14)

Since to the left of the above stationary point, —  is positive and to the right ——
dcij

is negative, the stationary point from (8-14) is the maximum point of 7-

Since for an RBFN:

9i (x) = w r<|)(x) + bj (8-15)
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within the training class and 0 if it is out of the training class. Therefore, we must 

select:

Ti = b i (8-16)

The threshold with the value given by (8-16) decides whether samples are 

classified into that class. If there is noise or disturbance in the data, we expect 

that the turning point (where classification error rate increases abruptly) will be 

less sensitive to the dataset, and we therefore increase (8-16) by a small amount, 

e:

z i = b i + e  (8-17)

The introduction of e  is to make the classifier robust to noise and disturbance 

while having little increase on the misclassification rate.

Finally, if we use a single-threshold RBFN classifier, then we obtain:

T =  m ax(b ) + £  (8-18)

Here, £  is a very small positive constant to make t slightly greater than max(b): of 

course, rm u s t not exceed 1 .

8.2.4 Summary of the technique

Based on an analysis o f the decision behaviour of an RBFN classifier, a technique 

for threshold determ ination was derived above.
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This method assumes that the RBFN classifier has been successfully trained. 

Following such training, an appropriate threshold value may be determined by 

considering values larger than the maximum value of the bias value in the output 

layer.

8.3 Empirical tests

In this section, the threshold determination technique derived in Section 8.2.3 is 

assessed in two em pirical studies. The chosen datasets were obtained, firstly, 

from a m athem atical model simulating static fault diagnosis and, secondly, from a 

non-linear model o f a diesel engine cooling system. Both datasets were described 

in Chapter 5. In both cases, the input variables were normalised to [0, 1], and the 

classifiers were trained using the orthogonal least square algorithm (Chen, et al, 

1991) in the M atlab N eural Network Toolbox.

As discussed in Chapter 2, in addition to determining the threshold value, 

implementing an effective RBFN classifier for a given task involves determining 

two further im portant parameters:

(a) the m axim um  num ber {me) of radial basis functions to use in the hidden 

layer;

(b) the spread constant (sc) of the radial basis function.

For each of the following two experiments, the classifier was trained using a range 

of possible values for me and sc. The trained classifier was then tested both on the
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(seen) training set and on the (unseen) test sets. The classification error on each 

dataset is estim ated using (8-5).

The key purpose o f each study was to explore the impact of the threshold value. 

To this end a ‘traditional’ threshold value (to) of 0.5 was used. This was 

com pared with a threshold value (i j)  determined according to (8-18). More 

explicitly, £w as selected as:

€  =  0 .0 5 x m ax (b ) 

to provide a threshold slightly grater than max(b).

8.3.1 Mathematical model dataset

This mathematical model representing a class of static fault diagnosis problems is 

described in Chapter 5 (Section 5.3). Using that model, one set of training data 

was generated with values of p\ and p 2 sampled from the normal distribution N(0, 

0.25) and v, ,v2 -  N (0,0.015) In total, 600 input/output pairs were generated 

from (8 -2 0 ) and were used for training all the networks.

Two additional sets of test data, each with 300 input/output pairs, were also 

generated, designated ‘Test Set 1’ and ‘Test Set 2 ’. These datasets were intended 

to explore how our approach performs, both in terms of interpolation (Test Set 1) 

and extrapolation (Test Set 2).
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Test Set 1 had the same distribution as the training set. Test Set 2 had values 

distributed over the whole param eter space. For this set, samples within the 

region of training data were assigned to one of the known classes, all other 

samples were assumed to belong to unknown faults.

Using the training dataset, RBFN classifiers were trained by changing the number 

and the spread constant of radial basis functions in the hidden layer. Table 8-1 

lists the m isclassification rate of the trained RBFN classifiers. In the table: 

training data, Test Set 1 and Test Set 2 are represented by Vo, V \ and £>2, 

respectively; elem ents in row b  are biases of the corresponding output neurons; 

Rows 5 and 6  are the m isclassification rates for the training sets using tb=0.5 and 

ri=max(b)+£, respectively; Rows 6  to 9 are misclassification rates for Test Set 1 

and Test Set 2. As noted above, we set £ -  0 .05xm ax(fr).
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” ..............-...
Classifier
Number

....
1 2 3 4 5 6 7 8 9 1 0 11

me/sc 50/0.025 50/0.03 50/0.05 50/0.1 100/0.025 100/0.04 100/0.05 100/0.06 100/0.075 1 0 0 /0 .1 1 0 0 /0 . 2

b
0.0224
0.5684
0.4092

0.1230
0.4196
0.4574

-0.0045
0.4616
0.5429

0.0065
0.3969
0.5966

0.0629
0.5021
0.4350

0.0154
0.5801
0.4045

-0.0027
0.6372
0.3655

0.0283
0.5832
0.3885

0 . 0 1 0 0

0.3828
0.6072

-0.0058
0.3922
0.6137

-0.4157
0.6168
0.7990

V Q with 0.5 4.67 5.17 0.83 0.5 0.5 0.33 0.33 0.33 0.33 0.33 0.5

Vo with fi 11.83 4.17 1 .0 1.17 0.67 0.5 0.33 0.33 0.5 0.5 6.5

V \ with 0.5 9.67 9.0 2.33 1.67 2.67 1.33 0.67 1 .0 1.33 2 . 0 3.67

V \ with T\ 23.67 8 . 0 3.0 2.67 4.67 2 . 0 2.67 1.33 2.67 3.0 15.67

V i  with 0.5 53 9.33 47.0 45.33 48.33 47.67 47.67 47.0 47.67 47.33 52.0

V'l with Ti 14.67 8.67 7.67 22.33 7.67 5.67 7.67 9.67 15.33 27.33 54.33

Table 8-1. Classification error rate (%) fo r  mathematical model.
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From the table, it is clear that when using either to or t i ,  the classifiers provide a 

very similar m isclassification rate on the training set and test set 1. However, for 

samples out of the training region the classifier using t i  produces a lower 

misclassification rate.

These results may be readily understood. They arise because the appropriately 

trained classifier is intended to produce a high output value (close to 1) for 

samples in the class while a low output value (close to 0 ) for samples in other 

classes. Thus there is a large interval for threshold selection. Theoretically one 

could use any threshold between 0  and 1 for a perfectly-trained classifier which is 

required only to classify samples within the ‘training’ range.

To further explore the effects of the value of the threshold on the misclassification 

rate, different thresholds were used for the classifiers in Table 8-1 with a 

maximum of 100 hidden neurons and spread constant of 0.025 and 0.04. Figure 

8-2 and Figure 8-3 show the misclassification rate versus the threshold.

Table 8-2 lists the misclassification rates versus thresholds around max(b). Here e 

in (8-18) was set to be proportional to max(b), that is, £  = A -  m a x ( b ) , where X 

is a small coefficient in {-0.1, -0.05, -0.01, 0.0, 0.01, 0.05, 0.1}.

These empirical results confirm  the findings in (8-18). Specifically, as is apparent 

in Figure 8-2 and Figure 8-3, the classifier with a threshold slightly larger than
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max(b), say Xi, produces a minimum misclassification rate for Test 2 while a near 

minimum misclassification rate for the training set and Test Set 1, and X\ is the 

turning point o f misclassification rate on Test Set 2. This is because, if the 

threshold is sm aller than Ti, the classifier will misclassify samples out of the 

training range as existing known classes. If the threshold is bigger than Ti, the 

classifier will reject more samples within known classes, and hence increase the 

misclassification rate for the training set and Test set 1. For the former case, the 

classifier assigns an unknow n class to known class(es), and may assign ‘unknown 

fault’ to ‘normal condition’.

It is frequently a requirem ent (in CMFD applications) that the classifier will 

provide us not only with a high performance for known conditions but also good 

performance in the presence of unknown faults. For this purpose, these empirical 

results support the use of a classifier with threshold Xi. Moreover, the 

determination of Tj is straightforward from the biases in the output layer. This 

avoids the risks inherent in an arbitrary selection of the threshold value.
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—  Training se t  

T est se t  1 
T est se t  2

ure 8-2.

0.1 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1

Threshold

M isclassification rate vs. Threshold (sc=0.025).

0.9
  Training se t

-  T e s t  se t  1 
 T e s t  se t  2

0.8

0.7

0.6

0.4

0.6 0.7 0.8 0.9 10.4 0.50 .3
Threshold

Figure 8-3. M isclassification rate vs. Threshold (sc -0 .0 4 ).
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sr= 0 .025 5,c=0.04

O o Z>i Z>2 Z>o Vi Vi

-0.1 0.33 2.0 50.33 0.33 1.33 47.0

-0.05 0.33 1.67 49.3 0.33 1.33 46.33

-0.01 0 .50 2.33 49.0 0.50 1.67 43.33

0 0 .50 2.67 36.67 0.50 1.67 29.0

0.01 0 .50 3.0 7.0 0.50 1.67 8.33

0.05 0.67 4.67 7.67 0.50 2.00 5.67

0.1 0.83 6.0 9.0 0.50 2.67 6.67

Table 8-2. C lassification error rate (%) using threshold around max(b) 
r  = m ax(b) + € = max(b) + X • m ax(b ).

8.3.2 Diesel engine cooling system diagnosis dataset

The second dataset used in this study was generated from a non-linear model of a 

cooling system of a diesel engine described in Chapter 5 (Section 5.3.2).

Using the m odel, a training dataset with three states (normal, fan fault, and 

therm ostat fault) was generated. Two different test datasets were also generated. 

One test set (Test Set 1) has the same three classes as the training data. Another 

test dataset (Test Set 2) has the same three classes plus ‘pump fault’, where pump 

fault was considered to be an ‘unknown fault’. Each dataset has 300 samples. In 

each case, the datasets consisted of equal numbers of samples for each class, that 

is, each class has 75 samples in Test Set 2, and 100 samples in the training set and 

Test Set 1.

152



P o s t - p r o c e s s i n g  f o r  RBFN

—
Classifier
Number 1 2 3 4 5 6

m e/sc 100/0.15 1 0 0 /0 . 2 100/0.25 100/0.26 100/0.27 100/0.3

M SE 0.1799 0.1147 0.0962 0.0934 0.01090 0.0885

b
0.3080
0.3451
0.3469

0.1825
0.4873
0.3302

0.0898
0.4941
0.4161

0.1583
0.6440
0.1978

0.1341
0.6847
0.1812

0.0527
0.7573
0.1900

Vo with 0.5 15.67 8.33 5.33 5.0 7.67 5.33

Vo with T\ 18.67 8.67 6 . 0 0 12.33 2 0 . 0 22.33

V\ with 0.5 21.67 13.0 10.33 11.33 1 1 . 0 10.33

V\ with T\ 22.33 13.67 10.33 18.0 20.67 21.67

V 2 with 0.5 2 0 . 0 12.67 1 2 . 0 35.67 35.33 35.33

V 2  with T\ 18.33 13.33 11.67 17.0 19.67 20.67

Table 8-3. Classification error rate (% )for cooling system diagnosis.

To explore the effects of the value of the threshold on the misclassification rate, 

we used different thresholds for the classifier in Table 8-3 with a maximum 

number of hidden neurons of 100 and spread constants of 0.25 and 0.27. Figure

8-4 shows the misclassification rate versus the threshold. Table 8-4 lists the 

m isclassification rates versus thresholds around max(b).
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—  Training set 
Test set 1 
Test set 2

0.8

0.6

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—  Training set 
Test set 1 
Test set 2

0.8

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

Figure 8-4. M isclassification rate vs. threshold 
(a) fo r  sc=0.25 and (b )fo r  sc=0.27.

154



P o s t - p r o c e s s i n g  f o r  RBFN

sc=0.25 sc=0.27

X V 0 V 2 Vo Z>i v 2

-0 .1 7.0 11.33 37.67 11.67 13.67 39.67

-0.05 6.33 10.33 36.33 15.0 16.33 42.0

-0 . 0 1 5.33 1 1 . 0 36.33 18.0 18.67 43.33

0 5.33 10.67 13.67 18.33 19.67 23.33

0 . 0 1 5.33 10.33 1 2 .0 18.67 19.67 19.0

0.05 6.33 10.33 11.67 2 0 . 0 20.67 19.67

0 .1 7.0 11.33 12.33 | 23.33 23.33 23.67

Table 8-4. Classification error rate (%) using threshold around max(b) 
T = m ax(b) + £ = max(b) + A • m ax(b ).

The results show that the classifiers with Tq produce a lower misclassification rate 

for training data and Test Set 1 than that with T\, while classifiers with T\ can give 

a better m isclassification rate for Test Set 2.

As dem onstrated in Experim ent 1, the classifier with T\ gives near minimum 

misclassification rate for samples within the range of training data, so T\ can still 

be used in such applications. If we are concerned with the classifier performance 

in applications w ith possible unknown classes, T\ is more suitable but incurs some 

cost in m isclassification of known classes.
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8.4 Discussion

The proposed approach has been tested using two classification problems: static 

fault diagnosis and cooling system diagnosis. Each classifier was trained using a 

training dataset (Vo), and then tested by a Test Set 1 (Vi) which has the same class 

distribution as the training data. To compare the proposed approach with 

traditional approaches, we also tested the classifiers for the problems using an 

additional test dataset (£>2) which has a new class not seen by the classifier during 

training. For fault classification applications, the new class represents an 

unknown fault.

The experim ental results dem onstrated that, on Vo and V \, the proposed approach 

gives a sub-optim al threshold for both of the two experiments, and the classifiers 

with T\ produce near m inim um  misclassification rate. However on V i the 

performance o f classifiers with T\ was significantly improved, and reached a 

minimum m isclassification rate.

The value of the threshold affects the classifier performance in two ways. On the 

one hand, in m ost cases, if Z\ is bigger than % the classifier rejects more samples 

in £>0 and V \ and thus increases the misclassification rate. On the other hand, a 

higher confidence in the classification of the samples is obtained.

It should be noted that it has also been shown that the bias, b, at the output layer 

of an RBFN classifier should satisfy the condition b e  [0,1]. This result may be
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used to check w hether a particular classifier has been trained successfully, and the 

classifier should be discarded if m ax(b)>l or min(b)<0. Based on this condition, 

it would be sensible to abandon classifiers numbered 3, 7, 10 and 11 in Table 8-1.

Finally, note that care m ust be taken when accepting the training if max(b) is 

close to 1 , because the classifier will leave little margin for response to previously 

unseen samples. An ‘ideal’ RBFN classifier will therefore have a low 

m isclassification rate and a small value for max(b).

8.5 Conclusions

An approach for determ ining a reliable threshold for RBFN classifiers has been 

derived. This approach is easy to use and understand.

The proposed approach is especially useful in classification problems where there 

may be possible new classes or ‘unknown faults’. The result obtained when 

testing the approach with two such classification problems used in this chapter 

demonstrated the effectiveness of this technique.
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9
A Methodology for Designing Embedded 
CMFD Systems

9.1 Introduction

Throughout the previous chapters, various techniques intended to build effective 

classification system s for em bedded CMFD applications have been presented. 

The building o f CM FD classification systems usually consists of three stages: pre

processing, classifier design and post-processing. Therefore the techniques have 

been developed for achieving more effective building components.

The techniques for pre-processing and post-processing were developed 

theoretically and assessed by a series of experiments. The classifier design, 

though, was m ainly evaluated empirically and, where possible, subject to the 

appropriate theoretical analysis. Based on the theoretical investigation and the 

empirical results, this chapter produces a classification system design 

methodology to assist in the effective use of MLP and RBFN classifiers in 

em bedded CM FD applications. In order to assess this methodology, it is applied 

to the design of an em bedded CMFD system for fault diagnosis in the aspiration 

system of a diesel engine.
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9.2 Towards a design methodology

This section seeks to draw together the results of the various experiments obtained 

in previous chapters, and thereby develop a preliminary design methodology: this 

is intended to assist in the effective use of MLP and RBFN classifiers in 

em bedded CM FD applications. This section firstly summarises the techniques 

and results from  the individual stages. It then presents the classification system 

design m ethodology along with a design flowchart.

9.2.1 Pre-processing strategy

The first step to design a CM FD classification system is to extract features using 

appropriate signal processing technique. Chapters 3 and 4 presented a separability 

measure based on a non-param etric analysis of the data that can be used to select 

an appropriate pre-processing approach:

y = - t r ( S - 'S i.) 
n

The goal in this stage of the design process is to seek the pre-processing technique 

that gives the feature dataset with the largest separability. Thus a technique for 

identifying the m ost effective pre-processing approach can be summarised as 

follows:

1) Take the recorded raw dataset, and apply the chosen pre-processing 

strategy.

2) M easure the separability between classes after pre-processing.

3) Repeat for all alternative pre-processing strategies.
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4) In the classifier system, employ the pre-processing strategy that results in 

the largest separability measure.

9.2.2 Classifier selection criteria

As discussed in Chapter 5, when designing an embedded CMFD classifier system 

using an M LP or RBFN classifier, three key factors must be taken into account: 

(1) the basic classifier performance, (2) hardware resource implications, and (3) 

performance when there is limited training data, and in the presence of ‘unknown’ 

or ‘m ultiple’ faults. From  the results obtained in Chapters 6  and 7, it should be 

noted that neither M LP nor RBFN exhibits the best performance when measured 

against these key criteria.

To assist in the selection of the most suitable classifier, the following “rule of 

thumb” can be drawn from  the experimental results in Chapter 6  and 7.

1) If the classification error rate in known faults is the only factor being 

considered, then either M LP or RBFN may be used as they provide very 

similar levels of performance.

2) The training of an M LP requires considerably more processor operations 

than that o f an RBFN, while the testing of an MLP requires rather fewer 

processor operations than an RBFN. In cases where off-line training is 

possible, and rapid classification ( ‘testing’) is required, the MLP may be a 

more appropriate choice. However, where on-line learning is required, the 

RBFN may be more appropriate.
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3) In the phase o f classification, an MLP requires less memory due to having 

fewer hidden nodes and parameters (weights and bias).

4) The M LP requires fewer training samples to achieve good generalisation. 

Since the training speed of RBFN is faster than MLP, the MLP will 

require much longer training time if the training set is large. Thus, on the 

basis o f these findings, it can be concluded that: it is more appropriate to 

use RBFN in situations where there are ‘large’ numbers of (training) 

samples available, and M LP in situations where only ‘sm all’ numbers of 

(training) samples are available. Both classifiers may be considered if the 

training set is of ‘m edium ’ size.

5) Both M LP and RBFN perform similarly in the presence of multiple faults, 

they can be considered equally in such applications.

6 ) RBFN can provide accurate classification results for unknown faults if 

they are well separated from known classes, but still (inevitably) performs 

poorly for those unknown faults which overlap with known classes. On 

the other hand, M LP is prone to classify samples of unknown faults as 

known classes since the decision boundaries of the known classes are 

unbounded. Overall where unknown faults are concerned, RBFN is the 

more appropriate classifier.

It is clear that there is no unique best classifier against selection criteria. The 

selection of the most appropriate classifier must be based on the constraints and 

the nature of the specific application.
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9.2.3 Post-processing strategy

CM FD classification systems have their distinct features as detailed in previous 

chapters. These include the particular attention that should be paid to the 

interpretation o f the classifier outputs. A threshold-based post-processing scheme 

was considered more appropriate for CMFD applications because of the nature of 

this area. The key issue of this threshold-based scheme is the determination of the 

threshold value. For m ost cases both MLP and RBFN classifiers can employ a 

value of 0.5 as is com m only used in traditional applications. However for CMFD 

applications with unknow n faults, RBFN classifiers should be considered and the 

threshold value m ust be determined. Chapter 8  developed a technique that may 

significantly im prove the performance of RBFN classifiers in CMFD applications 

where unknown faults may occur. As a result, the post-processing scheme can be 

presented as follows.

1) For problem s where all classes are known a priori, a threshold of 0.5 is 

suitable for both M LP and RBFN classifiers.

2) For problem s with unknown faults, RBFN should be selected. The 

threshold of the post-processing should be set to a value slightly greater 

than the m axim um  bias of the output layer of the RBFN classifier.

9.2.4 Overall classification system design methodology

The previous sections discussed the techniques and considerations that aim to 

achieve the best perform ance in individual design stages. In order to make the 

techniques accessible, this section presents the methodology for designing 

effective classification systems for embedded CMFD applications using MLP and
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RBFN classifiers. The basic idea of the design methodology relies on the 

com mon process o f CM FD systems that consist of pre-processing, classifier 

selection and post-processing. Thus the presented methodology intends to build 

CMFD systems from  three reliable stages. Figure 9-1 presents the flowchart of 

the design m ethodology.

In keeping with the observations presented above, and Figure 9-1, the process of 

the design m ethodology is described as follows by integrating the previous 

individual strategies together.

• Pre-processing

1) Take the recorded raw dataset, S, and apply the chosen pre-processing 

technique, SP,.

2) M easure the separability between classes after pre-processing, J,.

3) Repeat for all alternative pre-processing techniques.

4) In the classifier system, employ the pre-processing technique that 

results in the largest separability measure.

• Classifier selection

5) Consider the required classification error.

6 ) Consider the available hardware resources (and/or system cost).

7) Consider the available training data.

8 ) Consider the need to deal with ‘unknown’ or ‘m ultiple’ faults.

• Post-processing

9) For problem s that all classes are known a priori, a threshold of 0.5 is 

applicable for both MLP and RBFN classifiers.

10) For problem s with unknown faults, an RBFN should be selected. The 

threshold of the post-processing is set to a value slightly greater than 

the m axim um  bias of the output layer of the RBFN classifier.
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9.3 Assessing the design methodology

In order to begin to assess this methodology, it is applied to the design of an 

em bedded CM FD system for fault diagnosis in the aspiration system of a diesel 

engine.

The aspiration system consists of an air filter, a compressor, an air inlet manifold, 

a turbine and an exhaust pipe. Possible faults in the system include exhaust leak, 

exhaust restriction, exhaust valve fault, air inlet leak, air inlet restriction, air inlet 

valve fault, air inlet m anifold leak, turbocharger fault, etc. Faults in the system 

may result in unburned fuel, degraded power and increased pollution.

This case study considers four states: normal (identified by D l), exhaust 

restriction (D2), air inlet leak (D3) and air inlet manifold leak (D4). For each of 

these states, eleven channels of signals were recorded from the diesel engine test 

bed in the D epartm ent of Engineering at the University of Leicester19. The signals 

include air inlet mass flow, compressor outlet air temperature, boost pressure (air 

inlet m anifold pressure), exhaust temperature at the turbine inlet, exhaust pressure 

at the turbine inlet, exhaust pressure at the turbine outlet, exhaust temperature at 

the turbine outlet, smoke emission, ambient pressure, ambient temperature, and air 

inlet pressure. All the signals were recorded at 20 Hz.

19 The author w ould  like to express his sincere thanks to Dr John T w iddle w ho supplied the 
recorded data for use in this study.
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The recorded signals contained a large number of samples (most of the signals 

with over 25k samples). Data samples in these recorded signals were then re

organised into the form for the design of fault classifier, specifically, a training 

dataset (containing 600 samples, 150 samples for each of the four classes), and a 

test dataset (containing 1000 samples, 250 samples for each class).

9.3.1 System requirements and initial consideration

The requirements for the em bedded aspiration diagnosis system were identified as 

follows:

1) The system should be implemented at low cost, preferably on an 8 -bit 

microcontroller.

2) The system should work in real-time.

3) The system should provide an ‘excellent’ classification error rate.

4) The system should be capable of working in an ‘unpredictable’ 

environment.

Since the experim ent was conducted under several steady states and all the signals 

changed very little under each state, the signals are directly used to form the 

feature vectors. This is somewhat unusual because most CMFD applications 

require feature extraction through pre-processing. Nevertheless this application 

problem is still valuable for assessing the presented design methodology because 

the pre-processing strategy was sufficiently evaluated using simulated and real
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problems in Chapters 3 and 4, while this experiment will focus on the assessment 

o f classifier selection and post-processing.

The design process therefore began with a consideration of the classification error. 

In this study, there are a very large amount of samples available for classifier 

design. As the results in Chapter 8  demonstrated, there is little to choose between 

RBFN and M LP classifiers when there is sufficient training data. This suggests 

that, on the basis of classification performance alone, either an M LP or RBFN 

classifier could be used in this case.

The next, key, consideration is one of cost. The system cost is directly related to 

the hardware resource requirements, such as memory and CPU load. As 

summarised in Figure 9-1, the results in Chapter 6  demonstrated that the MLP has 

lower memory requirem ents than RBFN. In addition, if we are only concerned 

with classification (and not training) then the MLP also imposes a lower CPU 

cost, allowing the use of a less expensive microcontroller and/or (as discussed in 

Chapter 6 ) reduced system power consumption. Together, these observations tend 

to suggest that an M LP solution may be the most appropriate.

However, basic perform ance and cost are not the only issues to be considered. As 

introduced in the beginning of this section, there are possibly nine (or more) 

condition states in the aspiration system, but only four states are considered in this
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2 0study . Thus the designed CMFD system is expected to work under the 

environment o f possible unknown states. According to Figure 9-1, a RBFN may 

have to be considered if unknown faults are to be detected.

On the basis of the m ethodology presented earlier in this chapter, the MLP should 

be selected (to reduce product cost and, possibly, power consumption) while 

RBFN should be selected, to improve the likelihood of detecting ‘unknown 

faults’. On the basis o f this analysis, a compromise solution must be made 

depending on which aspect of the system requirements is considered to be the 

most important.

In the next section, these statements are assessed empirically.

9.3.2 Experiments

A series of experiments were carried out to assess the prediction derived from 

Figure 9-1 as above. Figure 9-2 depicts the structure of M LP or RBFN classifiers 

for this engine aspiration diagnosis application.

20 This is partly because, as in many CM FD system s, som e o f  the other states - such as exhaust 
leak - are very difficu lt to produce on the testbed.
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Signal vector

air inlet mass flow 

compressor outlet air temperature 

air inlet manifold pressure 

exhaust temperature at turbine inlet 

exhaust pressure at turbine inlet 

exhaust pressure at turbine outlet 

exhaust temperature at turbine outlet 

smoke emission 

ambient pressure 

ambient temperature 

air inlet pressure

Figure 9-2. Structure o f  the classifiers fo r  engine aspiration system diagnosis.

C lassification e r ro r  ra te . The classifiers were trained on the training dataset 

with 600 samples, and were then tested on 1 0 0 0  unseen samples (the datasets 

were described in the beginning of Section 9.3). Table 9-1 lists the error rate (in 

percent).

MLP RBFN

Hidden nodes 8 49

Training error (%) 0.5 0 . 2

Test error (%) 1 0 .6 1 0 .2

Table 9-1. Classification error rate fo r  Engine aspiration system diagnosis.

MLP or RBFN Engine condition

D1 - normal

D2 - exhaust restriction

D3 - air inlet leak

D4 - air inlet manifold leak
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As predicted in Section 9.2.4, the classification error rates of the two classifiers 

are very similar.

Classification speed. Classification speed was measured, as before, in terms of 

‘flops’ per sample. Table 9-2 reports the CPU requirements for the two 

classifiers.

Training flops

MLP RBFN

7.734 • 109 3.988 • 108

Classification flops 328 3687

Table 9-2. CPU requirements fo r  Engine aspiration system diagnosis.

As stated in Section 9.2.4, the classification speed of the M LP is much faster than 

that for the RBFN.

Memory requirement. The classifiers were implemented on 8 -bit 

microcontrollers, which are the mostly common used and can be embedded in 

most plants as well as diesel engines. The embedded C source code for these 

classifiers is listed in appendix.

Looking at the C source code, only the essential parts of the classification process 

are im plem ented in these experiments. Since the classifiers are trained before 

embedding on microcontrollers, the parameters of the classifiers are assumed to 

be fixed and stored in ROM.
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Table 9-3 shows the memory requirements of these classifiers. From the table, it 

is seen that the M LP classifier requires much less memory (-50%  less) than the 

RBFN.

MLP RBFN

8 -bit 9437 17378

Table 9-3. M em ory requirement on 8-bit m icrocontroller fo r  Engine 
aspiration system diagnosis.

Detection of unknown faults. In this experiment, the training dataset with 600 

samples contains three states: normal (D l), exhaust restriction (D2) and air inlet 

leak (D3). The test dataset with 1000 samples consists of four states: D l, D2, D3 

and air inlet m anifold leak (D4). D4 is considered to represent one of the 

unknown faults that may be encountered in the real operating environment.

The confusion matrix of M LP and RBFN on the test dataset is presented in Table

9-4 and Table 9-5. It is observed that both MLP and RBFN provide similar 

classification perform ance for the known classes (D l, D2, and D3). However 

M LP misclassifies 98.8% of D4 as D2, so it is unable to identify the unknown 

class D4. By contrast, the RBFN correctly detects the unknown class D4 (73.6% 

accuracy), and only comparatively rarely misclassifies D4 as D l (7.6%) or as D2 

(18.8%).
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D l D2 D3 D4

D l 0.74 0 0.168 0.092

D2 0 0.992 0 0.008

D3 0 0 0.992 0.008

D4 0 0.988 0 0 . 0 1 2

Table 9-4. Confusion matrix o f  classification (MLP).

D l D2 D3 D4

D l 0.736 0 0 . 0 1 2 0.252

D2 0 0.988 0 0 . 0 1 2

D3 0 0 0.972 0.028

D4 0.076 0.188 0 0.736

Table 9-5. Confusion m atrix o f classification (RBFN).

Overall, the results of these experiments confirm the earlier findings, and support 

the design m ethodology summarised in Figure 9-1.

9.4 Conclusions

On the basis of the results obtained in these studies, it is argued that each form of 

classifier has both strengths and weaknesses, and that neither is suitable for use in 

all CM FD applications. In order to assist in the selection between MLP and 

RBFN classifiers, a design methodology for CMFD applications was proposed 

based on the results. An assessment of the design methodology on a new case 

study confirm ed its value when selecting between MLP and RBFN classifiers for 

use in em bedded CM FD applications.
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Conclusions

10.1 Introduction

The aim of the program m e of work described in this thesis was to investigate how 

MLPs and RBFNs techniques could be most effectively applied in embedded 

CMFD applications. The particular focus of the work was on what are referred to 

here as “three-stage neural classifiers” ; such classifiers involve the pre-processing 

of raw data from the plant, the design of suitable (neural) classifiers, and the post

processing of classifier outputs. In such a three-stage system, each stage 

contributes significantly to the system performance.

In this chapter, the results obtained are discussed, and the extent to which the aims 

of the thesis have been achieved is considered. In addition, some suggestions for 

future work in this im portant area are made.

10.2 Techniques for effective pre- and post-processing

The thesis explored two techniques through which the performance of the chosen 

classifier could be improved.
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The first area considered involved the process of selecting pre-processing 

strategies for em bedded classifiers. As discussed in Chapters 3 and 4, the ‘raw ’ 

signals obtained from  sensors are rarely applied directly to the classifier. Instead, 

these signals are pre-processed in order to reduce the data size, and - ideally - to 

em phasise relevant data features.

A variety of pre-processing techniques exist. However, as with the selection of 

appropriate classifier, the selection of an appropriate pre-processing method has 

traditionally been based on ‘trial-and-error’. As an alternative, Chapter 4 

presented a strategy for selecting pre-processing methods which is based on a 

separability matrix. The matrix was derived from a non-parametric analysis of 

classes in the dataset: crucially, it requires no assumptions to be made about the 

underlying distribution of the data. Since the data distributions for practical 

CMFD applications are likely to be unknown a priori, the proposed separability 

analysis is particularly useful for CMFD applications. The problem of engine 

misfire detection was used to demonstrate the effectiveness of this technique.

Another contribution made in this thesis concerned the selection of thresholds for 

RBFN classifiers. Again, the focus was on CMFD applications, particularly those 

with multiple faults or unknown faults. Following an investigation of the 

underlying theory, a technique for deriving the required threshold for a trained 

RBFN classifier was developed. This was then assessed empirically in two 

further case studies.
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10.3 Comparing classifier performance

Chapters 6  and 7 of this thesis presented the results of a comprehensive series of 

empirical studies aimed at comparing the performance of M LP and RBFN 

classifiers. As introduced in Chapter 1, several benchmark and comparison 

studies have been previously published which have compared the performance of 

different classifier systems (Ripley, 1994; Jain & Mao, 1997; Yang, 2000). 

However, five particular problems distinguish many embedded CMFD 

applications from most generic classifiers:

1) CPU resources are likely to be limited.

2) M emory resources are likely to be limited.

3) ‘M ultiple faults’ can occur.

4) ‘Unknown faults’ can occur.

5) Limited training data may be available.

The studies of classifiers discussed in this thesis are, it is believed, unique in their 

focus on the design of embedded CMFD systems. Table 7-1 summarises the 

results obtained.
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Rule Rank Remarks

Error rate M LP ~ RBFN For interpolation

Training speed RBFN »  MLP

Classification speed MLP »  RBFN

M emory requirem ent M LP > RBFN On microcontroller

Training data size MLP > RBFN

M ultiple faults MLP ~ RBFN

Unknown faults RBFN »  MLP

Table 10-1. Comparison Results. In the table the relative order o f  classifier A 
and classifier B is represented as follows.
A ~ B: classifiers A and B have similar performance.
A > B: classifier A is slightly better than classifier B.
A »  B: classifier A is clearly better than classifier B.

10.4 Can the comparison results be generalised?

The results obtained in previous chapters were based mainly on the results of 

empirical studies, using a limited number of datasets and data samples. It is 

therefore im portant to consider the extent to which these results may be 

generalised. Tw o observations are made below.

10.4.1 Selection of datasets

As classifiers can be applied to many areas in science and technology, the number 

of datasets from possible domains is very large and the differences among them is

great. It is clearly im possible to compare classifiers by using them on all possible

applications.
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To help address this problem , this thesis did not directly consider the physical 

representation of the dataset, but instead focused on the data characteristics. A 

dataset can be characterised by a number of measures, one of the important 

measures is the separability between classes. To make the measure distribution- 

free, this thesis used a non-parametric separability matrix to characterise the 

dataset. Datasets from three case studies were then chosen that posed different 

levels of difficulty for the classifier. For example, some classes had non-linear 

boundaries (in the M M  study), some classes were well separated (normal, pump 

fault and radiator fault in the DC study), some classes had small overlaps and 

complex class boundaries (in the BC study), some classes overlapped strongly 

(normal and therm ostat stuck open in the DC study).

Overall, this range of data characteristics was felt to be highly appropriate for the 

type of application considered in this thesis.

10.4.2 Rules independent of data

It should also be noted that some of the results are largely independent of the 

particular datasets used: in this category are the processor and memory 

requirements. These are determined mainly by the network architecture (number 

of inputs, outputs and hidden units).
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10.5 The design methodology

To make it easier to apply the results obtained from this study, they were used to 

derive a design m ethodology (described in detail in Chapter 9). This methodology 

was further explored in an additional case study, in Chapter 9. The results from 

this study confirm ed the predictions from the methodology.

10.6 Future work

As this thesis draws to a close, some suggestions for future work in this important 

area are made.

10.6.1 Novelty detection

W hen designing classifiers, it is often assumed that the states in the plant are 

exhaustively known. This can be a significant drawback in real world CMFD 

applications where it is difficult (if not impossible) to model all the possible fault 

states of the plant in advance. It is therefore highly desirable that a classifier can 

detect plant states which were unknown a priori.

Recently novelty detection has become increasingly important in many different 

fields (Roberts, 1999; Tarassenko, et al, 2000). In novelty detection, a classifier is 

constructed from a training dataset and novel classes are consequently identified 

by exam ining the classifier output against output patterns for known classes. 

Novelty detection can be achieved by density estimation (Bishop, 1994; Roberts, 

1999; Desforges, et a l, 1998), neural networks (for example, RBFN and support
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vector machines: Stitson et al, 1996), hidden Markov models (Smyth, 1994) or 

data fusion techniques.

The decision as to w hether an input vector is from novel class or not tends to be 

made on the basis of an exceeded threshold. As yet, there is no principled way to 

choose such thresholds. The threshold selection method developed in Chapter 8 

tackled this difficulty successfully for trained RBFN classifiers. It would be 

interesting to explore the impact of extending the technique discussed in Chapter 

8  into the area o f novelty detection.

10.6.2 Time-varying distributions

Suppose at time to some information is obtained (in the form of measurement data 

and heuristic knowledge) from the system, and a classifier is constructed and 

trained from this information. After training, the classifier will have decision 

boundaries representing the states of the system at to. Conventionally, such 

boundaries o f classes are assumed to be fixed. In practice, however, the actual 

boundaries may vary in position, orientation or shape with respect to time, due to 

ageing and changes in the operating environment (Martinez, 1998). It is therefore 

often necessary to design a classifier that can adapt its decision boundaries, from 

system history inform ation (at time t\, t2,..., tn-\), to track such variants. Thus the 

classifier should always provide an appropriate classification at any future time tn, 

no matter how the actual boundaries vary.
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Again, it seems likely that further work on threshold adjustments could be used to 

improve the perform ance in ‘aging’ systems.

10.6.3 Selection of training data

A neural classifier com prises a set of parameters (weights and biases) which 

establish relationships between the relevant system inputs and outputs. These 

param eters will generally be derived through training.

As discussed in Chapters 3 and 7, the quality and size of the available data has an 

impact on the classifier performance. In particular, in practical applications, the 

dataset may have a lot o f redundant samples (Hara & Nakayama, 1998). On the 

other hand, new exam ples with information about the variance of class boundaries 

should be added into dataset to adapt the classifier.

If we wish to reduce training times, and optimise classifier performance, training 

data selection is required. The samples must be selected so as to maximise their 

information content. Lee & Landgrebe (1997) have demonstrated that samples 

around class boundaries contain all the necessary information for classification. 

Again, by adjusting the thresholds of an RBFN classifier, we can infer the position 

of a given sample relative to the class boundary. Taking this into consideration, 

some further work is justified in to the selection of training data based on the 

findings in Chapters 4 and 8 .
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10.7 Conclusions

The major contributions of the work described in this thesis fall into three areas: 

the predication of the effectiveness of pre-processing strategies, the 

com prehensive com parison for the selection of classifiers, and the determination 

of thresholds for optimal post-processing for RBFN classifiers. The resulting 

design m ethodology, derived from theoretical and empirical findings, was shown 

to be useful for designing and implementing effective embedded CMFD systems. 

This thesis, in answering the questions that were posed at the outset, has prompted 

many more. These will hopefully provide the stimulus for further research in this 

important area.
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A p p e n d ix : Em b e d d e d  C so urc e  c o d e

Embedded C code for classification using MLP

/* M LP c la ss if ie r : e s s e n t ia l  c o d e  on ly  */
# in c lu d e  < m a th .h >

# d e f in e  InN o 1 2  / /  n u m b er of input n o d e s
# d e f in e  H iN o 8  / /  n u m b er of h idden n  n o d e s
# d e f in e  O u tN o  4  / /  n u m b er  of output n o d e s

/ /  fu n ction  for MLP c la s s if ie r
v o id  m lp(float* xx , float* yy, float* w 1 , float* b 1 , float* w 2 , float* b2) 

{
float H iO ut[H iNo]; 
r e g is te r  int i, j, k;

for(i=0;i<H iN o;i++ )

{
H iO ut[i]=0;

for(j=0;j<lnN o;j++)
HiOutfi] +=  ((xx[j]*w1[j*HiNo+i]));

HiOut[i] +=  b1[i];
H iO ut[i]=1/(1 +exp(-H iO ut[i]));

}

for(k = 0;k < O u tN o;k + + )

{
yy[k]=o;

for(i=0;i<H iN o;i++)
yy[k] +=  ((HiO ut[i]*w2[i*O utNo+k]));

yy[k] += b2[k];
yy[k ]=1/(1+ exp(-H iO ut[k]));

}
}

int m ain ()

{
floa t x [ln N o], y[O utN o]; //  input an d  ou tput array for o n e  sa m p le

floa t w 1[ln N o][H iN o], b1[H iN o] / /  w e ig h ts  an d  b ia s e s  b e tw e e n  input
and  h id d en  layer

floa t w 2[H iN o][O u tN o], b2[O utN o];// w e ig h ts  an d  b ia s e s  b e tw e e n  h idden
and //ou tp u t layer

// ca ll m lp() for c la ss ify in g  th e  sa m p le  x, result sto red  in y 
m lp(x , y, w1 [0], b 1 , w 2[0 ], b2);

return 0;

}
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Em bedded C code for classification using RBFN

/* R B F N  c la ss if ie r : e s s e n t ia l  c o d e  on ly  */
# in c lu d e  < m a th .h >

# d e f in e  InN o 1 2  //  n u m b er of input n o d e s
# d e f in e  H iN o 4 9  / /  n u m b er of h idd en  n o d e s
# d e f in e  O u tN o  4  / /  n u m b er  of output n o d e s

//  c la s s if ic a t io n  fu n ction
vo id  rbf(float* xx , float* yy, float* C en , float* Var, float* w 2 , float* b2)

{
floa t H iO ut[H iNo]; 
re g is te r  int i, j, k;

for(i=0;i<H iN o;i++ )

{
H iO ut[i]=0;

for(j=0;j<lnN o;j++)
HiOut[i] +=  ((xx[j]-C en[j*H iN o+i])*(xx[j]-C en|j*H iN o+i])); 

HiOut[i] /=  (2.0*Var[i]*Var[i]);
H iO ut[i]=exp(-H iO ut[i]);

}

for (k = 0;k < O u tN o;k + + )

{
yy[k]=o;

for (0;i<H iN o;i++)
yy[k] +=  HiOut[i]*w2[i*OutNo+k];
yy[k] + -  b2[k];

}
}

int m ain ()

{
floa t x [ln N o], y[O utN o]; //  input and  output array for o n e  s a m p le
floa t cen [ln N o][H iN o]; / /  c e n tr e s  of RBFN
floa t var[FliNo]; / /  w id ths of RBFN
float w 2[H iN o][O utN o]; / /  w e ig h ts
floa t b2[O u tN o]; / /  b ia s e s

/ /  ca ll rbf() for c la s s if in g  th e  sa m p le  x, th e  resu lt is s to r e d  in y 
rbf(x, y, c e n [0 ] , var, w 2[0 ], b2);

return 0;
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