
Designing and Implementing
Embedded Fault Diagnosis Systems

Using MLP and RBFN Classifiers

Thesis submitted for the degree of
Doctor o f Philosophy

at the University of Leicester

by

Yuhua Li
BEng, M Eng

Department o f Engineering
U niversity of Leicester

2003

UMI Number: U496331

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U496331
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Designing and Implementing
Embedded Fault Diagnosis Systems

Using MLP and RBFN Classifiers

by

Y uhuaL i
BEng, MEng

Declaration of Originality

A thesis subm itted in fulfilment of the requirements for the degree of Doctor of
Philosophy in the Department of Engineering, The University of Leicester, UK.
All work recorded in this thesis is original unless otherwise acknowledged in the
thesis or by reference. No part of it has been submitted for any degree, either to
the University o f Leicester or to any other university.

Yuhua Li
2003

To JunYan and WenTing

ii

Acknowledgements
I owe a debt o f gratitude to my supervisor, Dr M ichael Pont, who has consistently
supported and encouraged me throughout the duration of the work. I am most
grateful for his patience and tolerance with my English.

I would like to gratefully acknowledge the financial support of an ORS award
from CVCP, a scholarship from the University of Leicester, and an additional
scholarship raised by Dr Pont during the course of this research work.

I owe a debt of thanks to Dr John Twiddle for the supply of simulation data for an
engine cooling system, and experimental data for an engine aspiration system. I
am also deeply grateful for his patience in checking the English in my papers and
part of this thesis.

Chinm ay Parikh deserves special thanks, for the co-operation of research work
and paper writing. I am indebted to my other colleagues: Royan Ong, (Jason)
Chang Liang Lim, Ken Boon Goh, Aamer I. Bhatti, Yu Xu, Yuehe W ang, Chen
Pang W ong and Daljeet Gill, for making the BTSP group an interesting and
enjoyable place to work.

in

Designing and Implementing
Embedded Fault Diagnosis Systems

Using MLP and RBFN Classifiers

Yuhua Li (BEng, M Eng)
Departm ent of Engineering
University of Leicester

PhD thesis
2003

Abstract

As new microcontrollers and related processors have becom e available, it has
becom e possible to create em bedded systems for condition monitoring and fault
diagnosis (CM FD). This thesis explores how two popular classifiers: the
M ultiLayer Perceptron (M LP) and Radial Basis Function neural Network
(RBFN), can be most effectively em ployed in em bedded CM FD systems.

The design of an em bedded CM FD system can be considered to consist of three
stages, involving data pre-processing, classification, and post-processing of
classifier outputs. The thesis makes contributions to each of these phases as
follows.

First, the thesis describes a novel separability analysis method which is able to
predict the relative effectiveness of pre-processing techniques. An important
aspect of this method is that the separability is derived from a non-parametric
analysis: it therefore requires no assumptions to be made about the underlying
distribution o f the data.

Second, a design methodology is derived that may be used to help the software
engineer select between the use of M LP or RBFN classifiers in the CM FD system,
depending on the particular system requirements. The design methodology is the
result o f a comprehensive series of empirical studies. The com parison criteria
used are those of particular relevance in em bedded CM FD applications. These
include classification performance in the presence of unknown faults, with
multiple faults, and with limited training data. The criteria also include processor
and memory requirements.

Third, the thesis develops a novel technique that allows the user to determine an
appropriate threshold for interpreting the outputs of a trained RBFN classifier.
Results from two experiments demonstrate that this technique can be used to
improve the performance of RBFN classifiers in practical CM FD applications
where ‘unknown faults’ may occur.

IV

Designing and Implementing
Embedded Fault Diagnosis Systems
Using MLP and RBFN Classifiers

Yuhua Li
D epartment o f Engineering, University o f Leicester

1 Designing Embedded CMFD Systems..1
1.1 Introduction.. 1
1.2 CMFD using neural networks..2
1.3 Required characteristics of CMFD classifiers................................ 3
1.4 Embedded CMFD systems..5
1.5 Pre- and post-processing...8
1.6 Scope of the study..10
1.7 Overview of the remainder of this thesis......................................11

2 MLP and RBFN Classifiers...13
2.1 Introduction.. 13
2.2 Multilayer perceptrons...13
2.3 Radial basis function networks.. 17
2.4 Classifier parameters and implementation.................................. 25

2.4.1 Parameters for classifier structure................................... 25
2.4.2 Interpretation of classifier outputs.................................... 28
2.4.3 Estimation of error rates..31
2.4.4 Activation functions and learning algorithms..................33
2.4.5 Implementing the embedded classifiers......................... 34

2.5 Conclusions.. 35

3 A Separability Measure for Data with an Unrestricted
Distribution..36
3.1 Introduction..36
3.2 Classical separability analysis... 37

3.2.1 Classical separability measures...................................... 38
3.2.2 Limitations of classical separability measures............... 41

3.3 The proposed non-parametric separability measure.................. 42
3.4 Separability versus classification error... 45
3.5 Conclusions...48

4 Identifying the most Appropriate Pre-Processing Strategy Using
a Separability Measure..49
4.1 Introduction.. 49
4.2 Pre-processing technique selection based on separability

measures.. 51
4.3 Misfire detection: background and data acquisition.....................52

4.3.1 Background.. 52
4.3.2 Data acquisition description.. 53

4.4 Feature vector sets after pre-processing...................................... 55

4.4.1 Features from time domain... 56
4.4.2 Features from frequency domain..................................... 56
4.4.3 Features from wavelets coefficients................................57

4.5 Prediction of pre-processing efficiency.. 62
4.6 Implementing the classifiers..63
4.7 Further experiments... 65
4.8 Summary... 67
4.9 Conclusions.. 68

5 Classifier Comparison Criteria and Case Studies......................... 69
5.1 Introduction... 69
5.2 The comparison criteria..70
5.3 The case studies...72

5.3.1 The Mathematical Model (MM) case study................... 75
5.3.2 Diesel engine Cooling system (DC) case study............ 78
5.3.3 Breast Cancer (BC) case study...................................... 81
5.3.4 The datasets: Summary.. 82

5.4 Basic classifier performance..83
5.4.1 Data for designing and testing classifiers...................... 83
5.4.2 Experiments.. 85
5.4.3 Basic classifier performance..91

5.5 Conclusions...91

6 Classifier Comparisons: Hardware Constraints.............................93
6.1 Introduction..93
6.2 Processor requirements... 94

6.2.1 Analysis of processor requirements...............................94
6.2.2 Experiments.. 97
6.2.3 Processor requirements: discussion and conclusions 101

6.3 Memory requirements...102
6.3.1 Analysis of memory requirements...............................102
6.3.2 Experiments.. 103
6.3.3 Discussion..104

6.4 Power consumption implications... 105
6.5 Conclusions...106

7 Classifier Comparisons: CMFD Characteristics........................... 107
7.1 Introduction.. 107
7.2 Working with ‘unknown’ faults.. 107

7.2.1 Geometrical analysis of decision boundary form ing... 108
7.2.2 MM case study.. 112
7.2.3 DC case study... 114
7.2.4 Unknown faults: conclusions... 116

7.3 Working with multiple faults...116
7.3.1 The experimental dataset...117
7.3.2 The classifier structure... 118
7.3.3 Results..119

7.4 Working with limited training data...121
7.4.1 Theoretical analysis...122

V I

7.4.2 Experiment comparison..126
7.4.3 Discussion..129
7.4.4 Data size: conclusions.. 131

7.5 Conclusions... 132

8 Selecting Thresholds for RBFN C lassifie rs................................... 133
8.1 Introduction...133
8.2 Theoretical considerations... 134

8.2.1 The general problem.. 135
8.2.2 Behaviour of the RBFN classifier................................... 137
8.2.3 Reliable threshold selection for RBFN classifiers 140
8.2.4 Summary of the technique... 144

8.3 Empirical tests.. 145
8.3.1 Mathematical model dataset... 146
8.3.2 Diesel engine cooling system diagnosis dataset 152

8.4 Discussion... 156
8.5 Conclusions..157

9 A M ethodology for Designing Embedded CMFD System s......... 158
9.1 Introduction... 158
9.2 Towards a design methodology... 159

9.2.1 Pre-processing strategy..159
9.2.2 Classifier selection criteria.. 160
9.2.3 Post-processing strategy...162
9.2.4 Overall classification system design methodology......162

9.3 Assessing the design methodology..165
9.3.1 System requirements and initial consideration............ 166
9.3.2 Experiments... 168

9.4 Conclusions.. 172

10 C onclusions...173
10.1 Introduction... 173
10.2 Techniques for effective pre- and post-processing.................173
10.3 Comparing classifier performance.. 175
10.4 Can the comparative results be generalised?.........................176

10.4.1 Selection of datasets...176
10.4.2 Rules independent of d a ta ... 177

10.5 The design methodology..178
10.6 Future work..178

10.6.1 Novelty detection..178
10.6.2 Time-varying distributions... 179
10.6.3 Selection of training data.. 180

10.7 Conclusions...181

Appendix: Embedded C Source Code... 182
Bibliography..184

V II

List of Publications
A number of papers have been published during the course of the work described
in this thesis. They are listed below.

Directly-related journal papers

Li, Y., Pont, M .J., Jones, N.B. “Improving the performance of radial basis
function classifiers in condition monitoring and fault diagnosis applications
where ‘unknow n’ faults may occur,” Pattern Recognition Letters, vol.23,
no.5, 2002, pp569-577.

Li, Y., Pont, M.J. “On selecting pre-processing techniques for fault classification
using neural networks,” International Journal of Knowledge-Based Intelligent
Engineering Systems, vol.6, no.2, 2002, pp80-87.

Li, Y., Pont, M .J., Jones, N.B. “Using M LP and RBF classifiers in embedded
condition monitoring and fault diagnosis applications,” Transactions of the
Institute o f M easurement and Control, vol. 23, no.5, 2001, p p 3 15-343

Jones, N.B., Li, Y. “A review on condition monitoring and fault diagnosis for
diesel engines,” Tribotest Journal, vol.6, no.3, 2000, pp267-291.

Directly-related conference papers

Li, Y., Pont, M .J., Parikh, C.R., Jones, N.B. “Comparing the Performance of
Three Neural Classifiers for Use in Embedded A pplications,” Soft Computing
Techniques and Applications. Physica-Verlag: Heidelberg, New York, 2000,
pp34-39. ISBN 3-7908-1257-9.

Li, Y., Pont, M .J., Parikh, C.R., Jones, N.B. “Using a Combination of RBFN,
M LP and kNN Classifiers for Engine Misfire D etection,” Soft Computing
Techniques and Applications. Physica-Verlag: Heidelberg, New York, 2000,
pp46-51. ISBN 3-7908-1257-9.

Li, Y., Pont, M. J., Jones, N. B. “A comparison of the performance of radial
basis function and multi-layer Perceptron networks in condition monitoring
and fault diagnosis,” Proceedings of the International conference on condition
monitoring, Swansea, UK, 12th-15th, April 1999, pp577-592.

Li, Y., Jones, N. B., Pont, M. J. “Applying neural networks and fuzzy logic to
fault diagnosis: a review ,” Proceedings of recent advances in soft
com puting’98, Leicester, UK, July 1998, p p !0 4 -l 19.

V III

Associated publications

Li, Y., Zheng, H., Jones, N.B., Pont, M.J. “M ulti-channel rotational speed
measurement: a software based approach,” M easurement and Control, vol.
31, no. 8, 1998, pp229-231.

Parikh, C.R. Pont, M.J. Li, Y., Jones, N.B. “Investigating the performance of
M LP classifiers where limited training data are available for some classes,”
Soft Com puting Techniques and Applications. Physica-Verlag: Heidelberg,
New York, 2000, pp22-27. ISBN 3-7908-1257-9.

Parikh, C.R., Pont M.J., Li, Y., Jones, N.B. “Neural networks for condition
m onitoring and fault diagnosis: the effect of training data on classifier
perform ance,” Proceedings of the International conference on condition
monitoring, Swansea, UK, April 1999, pp237-244.

Parikh, C.R., Pont, M.J., Li, Y., Jones, N.B., Twiddle, J.A. “Towards a flexible
application framework for data fusion using real-tim e design patterns,”
EU FIT’98, Germany, Sep. 1998, pp l 131-1135.

Pont, M .J., Ong, R.H.L., Parikh, C.R., Kureemun, R., W ong, C.P., Peasgood, W.,
Li, Y. “A selected of pattern for reliable em bedded system s,” Fourth
European Conference on Pattern Languages of Program m ing and Computing
(EuroPlop’99), July 1999, Bad Irsee, Germany. Available from
“http://ww w .argo.be/europlop/w riters.htm ”

Pont, M.J., Parikh, C.R., Li, Y., W ong, C.P. “The design of em bedded system
using software pattern,” Proceedings of the International conference on
condition monitoring, Swansea, UK, April 1999, pp221-236.

IX

http://www.argo.be/europlop/writers.htm%e2%80%9d

Abbreviations

CMFD: Condition M onitoring and Fault Diagnosis
MLP: M ulti-Layer Perceptrons
RBFN: Radial Basis Function Networks
CPU: Central Processing Unit
ROM: Read Only M emory
RAM: Random Access M emory
MM: M athematical Model for static fault diagnosis
DC: Diesel engine Cooling system model
BC: Breast Cancer diagnosis
OBD II: On-Board Diagnosis generation 2
VC dim ension: Vapnik-Chervonenkis dimension

x

1
Designing Embedded CMFD Systems

1.1 Introduction

Em bedded condition monitoring and fault diagnosis (CM FD) com ponents are

becom ing an increasingly important feature of complex modern systems. This is

due to the growing demands for plant availability, reliability, maintainability,

safety, quality and cost efficiency (Patton, et al, 1989; Chan, et al, 1997;

Flam m ini, et al, 2001; Min, et al, 2002). In this context, a fault represents an

unperm itted deviation o f at least one characteristic property or param eter of the

plant from the ‘acceptable’, ‘usual’ or ‘standard’ condition (Isermann & Balle,

1997; Isermann, 1997). The objective of CMFD is then to determine if such a

fault is present and - if so - to identify the size, location and time of occurrence

(Sick, 2002).

The aim of the programm e of work described in this thesis was to investigate how

M ulti-Layer Perceptrons (MLPs) and Radial Basis Function neural Networks

(RBFNs) techniques could be most effectively applied in em bedded CM FD

applications. The particular focus of this work was on what are referred to here as

“three-stage neural classifiers” . These classifiers involve the pre-processing of

1

E m b e d d e d CMFD S y s t e m s

raw data from the plant, the design of suitable (neural) classifiers, and the post

processing of classifier outputs. In such a three-stage system, each stage

contributes significantly to the system performance (Theodoridis & Koutroumbas,

1999).

This introductory chapter begins by explaining the importance of CM FD using

neural networks (Section 1.2), before discussing the distinctive features of the

classifiers used for CM FD purposes (Section 1.3). In Section 1.4 it is argued that

the developm ent of an em bedded implementation of a classifier imposes severe

restrictions in memory and CPU power. Section 1.5 then describes the process of

designing CM FD classification systems using neural networks. Following this

introduction, Section 1.6 explains the scope of the project described in this thesis,

and finally Section 1.7 provides an overview of the thesis itself.

1.2 CMFD using neural networks

A variety o f CM FD methods have been developed in the last two decades

(Isermann & Balle, 1997; Chantler, et a l, 1998; Sick, 2002). In the early years,

research efforts concentrated on the development of methods for linear dynamic

plants (W illsky, 1976), while in the 1980s, the model-based approach formed the

core of the CM FD methodology (Frank & KoppenSeliger, 1997; Isermann, 1984;

Gertler, 1993; Patton, et a l, 1995). More recent research has mainly focused on

the development of CMFD methods suitable for use in non-linear systems with

uncertainty (Frank, 1994; Gertler, et a l, 1995; Patton & Chen, 1997; Le Riche, et

a l, 2001).

2

E m b e d d e d CMFD S y s t e m s

Because of the increasing com plexity of modern plants and the developments in

artificial intelligence (M arks, 1993), intelligence-based CM FD methods were a

particular focus of research during the 1990s (Patton & Lopez-Toribio, 1998;

Ayoubi & Isermann, 1997; Frank & KoppenSeliger, 1997). In particular, artificial

neural networks have been extensively applied in practical CM FD systems

(Kram er & Leonard, 1990; Li, et al, 1998; Grimmelius, et al, 1999). Examples

include: engine diagnosis (Ribbens, et al, 1994), nuclear power system monitoring

(Cheon, et al, 1993), chemical processes (Ozyurt & Kandel, 1996), power plant

diagnosis (Guglielmi, et al, 1995), and diagnosis of bearing faults (Yang, et al,

2002). These applications have established that neural networks are a very

prom ising technique.

Among these applications M ulti-Layer Perceptrons (M LPs) (Lippmann, 1987,

1989; Rum elhart & M cClelland, 1986) have proved the most popular classifier

(Zhang, 2000; Sick, 2002), but Radial Basis Function neural Networks (RBFNs)

(Broom head & Lowe, 1988; M oody & Darken, 1988) have also been widely used

(Leonard & Kramer, 1990; M usavi, et al, 1994; Schwenker, et al, 2001).

1.3 Required characteristics of CMFD classifiers

In this study classifiers based on MLPs and RBFNs will be considered. The key

question that arises when developing a particular CMFD application is - which of

these two classifiers should be used?

3

E m b e d d e d CMFD S y s t e m s

Recently several benchm ark and comparison studies have been published which

have com pared the performance of different classifier systems (Michie, et a l,

1994; Ripley, 1994; Jain & Mao, 1997; Hsu & Lin, 2002). However, three

particular problem s make the process of classification for CM FD purposes

particularly challenging:

1) ‘M ultiple faults’

In CM FD applications, simultaneous faults can occur: for example, it is

possible that both the failure of a thermostatic valve and a radiator in a

cooling system will occur simultaneously, following physical damage.

This type of problem was rarely discussed in com parative studies (Rozier,

2001; Sick, 2002) because, in many classifier systems, the problem simply

cannot arise: for example, in a speech recognition system, the user might

say either ‘three’ or ‘four’, but - clearly - cannot say both words

simultaneously.

2) ‘Unknown faults’

In CM FD applications, ‘unknown faults’ can occur: these are conditions

that were not anticipated during the classifier design process and which,

consequently, were not represented in the datasets used to train the

classifier system. Such problems are, again, rarely discussed in

comparative studies, because they are uncommon in many classifier

systems (Tarassenko, et al, 2000).

E m b e d d e d CMFD S y s t e m s

3) Limited training data

In CM FD applications, samples representing the normal plant condition

are readily available, but samples of fault conditions are often difficult to

obtain, especially in safety-critical environments (Bartal, et al, 1995; Jack

& Nandi, 2001). In addition, obtaining details of fault conditions from

manufacturers or suppliers can be difficult.

These characteristics of CMFD applications require the classifier designer to

consider not only basic classifier performance, but also perform ance in the context

of multiple faults, unknown faults and limited training data. These important

features have been largely ignored in previous studies in this area (Dash &

Venkatasubram anian, 2000; Sick, 2002).

1.4 Embedded CMFD systems

W here an M LP or RBFN classifier is used in a CMFD application, it is very likely

that this classifier will be ‘em bedded’ (for example, see Patton, et al, 1989;

Isermann & Raab, 1993; Rao, 1996; Marzi, 2002). This fact has a significant

impact on the range o f system designs that can be econom ically implemented

(Flammini, et al, 2001; Dash & Venkatasubramanian, 2000).

Unlike systems implemented on desktop microprocessors (based, for example, on

personal com puter or workstation architectures), em bedded systems (Vahid &

Givargis, 2002) have severely limited memory and CPU power (Figure 1-1). For

example, a CMFD system based on the widely-used 8051 m icrocontroller family

5

E m b e d d e d CMFD S y s t e m s

will typically have, on each processor node, up to 64 kbytes of external RAM

(used mainly to store variables), and up to 64 kbytes o f on-chip ROM (used

mainly to store the program code). The microcontroller operates at up to 50

million instructions per second (50 MIPS). By comparison, a standard desktop

PC will have a multi-gigabyte disk (for program storage), more than 100 Mbytes

of RAM (for program execution), and will operate at around 1000 MIPS or more.

IM.0ITZ1
PI 1 (T2EX1

P3.0 (RXD)

P3 1 (TXD)
P3.2 (/ INTO)
P3J(/W T1)

P3.4 (TO)

P35 (T1)
P3.6(/WR|
P3 7 (/ RO)

vcc 1
PO O (ADO)

P0 1 (ADI)

P0.2 (AD2) 0
P0 3 (A03)
P0 4 (A04)

P0.5 (AOS)

P0.6 (ADG) •
P0.7 (AD7)

/ EA
•

ALE P f t t »
/PSEN

•
P2.7 (A1S)

P2.6 (A 14) 0
P2.5 (A13)
P2.4 (A 12)

P2.3 (All) •

P2.2 (Al 0)

P2.1 (A9)

P2.0 (AS)

Typical features:

Up to 50 MHz operating frequency:
up to 50 million instructions per second (MIPS)

On-chip data (RAM) memory - 256 bytes.

On-chip code (ROM) memory - up to 64 kbytes.

Three sixteen-bit timer / counters.

Various interrupt sources.

Cost from ~$0.50 (US), in quantities of 1000+.

Figure 1-1. External interface (left) and features (right) o f a small
microcontroller. While the features available on different
microcontrollers vary considerably, the extensive and popular
8051 fam ily is representative o f the type o f small microcontroller
that might be used to implement an embedded CMFD application
o f the type discussed in this thesis.

Despite the apparent disadvantages of embedded processors, they are widely used.

Indeed more than ten times as many microcontrollers than microprocessors are

manufactured and sold in the world (Carelse, 2002). There are three particularly

important reasons for this:

6

E m b e d d e d CMFD S y s t e m s

• W hile the desktop PC may have a system board costing $300.00+, the

typical cost of the system board for the embedded solution will be of the

order o f $2.00+. The low cost of microcontroller-based solutions

(Flammini, et al, 2001) is of central importance in high-volume embedded

CM FD applications in, for example, the automotive industry.

• The physical size of a microcontroller-based solution is typically a small

fraction of any solution based on a microprocessor (W ilmshurst, 2001);

even solutions based on PC architectures designed for em bedded use (such

as P C /104) have a much larger ‘footprint’ than the corresponding

m icrocontroller solution. Small physical size is an essential requirement in

many em bedded systems.

• To provide a true multi-tasking capability and/or redundancy, many

em bedded designs will employ a network of multiple processors, and

CM FD components will be integrated into such systems (Chan, et al, 1997).

For exam ple, a modem passenger car might contain some forty processors

(Leen, et al, 1999), controlling brakes, door windows and mirrors, steering,

air bags, and so forth. M icrocontrollers with Controller Area Network

(CAN) and similar communication hardware are readily available (for

exam ple, see Lawrenz, 1997), allowing networks of processors to be created

with minimal additional hardware complexity, at minimal cost (see Pont,

2001). PC architectures require substantial numbers of additional hardware

components, and additional software layers, to im plement equivalent

designs.

7

E m b e d d e d CMFD S y s t e m s

As a result of the consideration of embedded systems, this thesis not only

compares the classification performance of MLP and RBFN classifiers, but also

considers the costs, in terms of both processor instructions and memory load, of

implementing each classifier.

1.5 Pre- and post-processing

The type of CMFD system considered in this thesis usually consists of three

stages:

1) the pre-processing of the acquired raw data to extract useful information;

2) the implementation of the classifier to suit the particular application

problem;

3) the post-processing of the classifier outputs to provide the state of the

plant.

Figure 1-2 illustrates a typical three-stage CMFD system.

Raw data Feature vector Plant states

Classifiers Post-processingPre-processing

Figure 1-2. A typical three-stage CMFD system.

The pre- and post-processing stages are considered in the sub-sections below.

E m b e d d e d CMFD S y s t e m s

Pre-processing

Using a CM FD system, the condition of the plant will be inferred from

measurements obtained using data-acquisition equipment. The raw data recorded

from the plant in this way usually consists of a great number of samples and is

likely to contain some level of noise.

In this thesis, the term “pre-processing” will be used to refer to the process of

extracting features from this raw data, using appropriate signal processing

techniques. A fter such processing, the plant data will be represented by feature

vectors with reduced dim ensionality (Manson, et al, 2001; Yang, et al, 2002).

It should be noted that the dimensionality reduction achieved through pre

processing is of particular importance in em bedded CM FD designs (of the type

considered in this thesis), not least because it may mean that a simpler/smaller

neural classifier can subsequently be employed, with a consequent reduction in

CPU and memory requirements.

Post-processing

Ideally the output of the classifier is two-valued, for example, with 1 for the

presence of the class and 0 for the absence of the class. However the actual output

of a neural classifier rarely appears in this ideal form: that is, elements of the

output vector are usually real valued rather than binary valued. The objective of

post-processing is to convert the real valued vectors into binary valued vectors in

E m b e d d e d CMFD S y s t e m s

order to reach the final classification for feature vectors (Theodoridis &

Koutroumbas, 1999).

Proper post-processing directly translates into improving classifier system

perform ance (Silipo & M archesi, 1998; Haykin, 1999). This post-processing

stage makes a particularly large contribution to the system performance for some

applications such as unknown fault detection (Tarassenko, et al, 2000; Hayton, et

al, 2001) and multi-fault diagnosis (Chung, et al, 1994). However the importance

of post-processing has been largely overlooked by researchers (Cordelia, et al,

1995; Lampariello & Sciandrone, 2001).

1.6 Scope of the study

W ith the characteristics o f CM FD applications and the restrictions of embedded

systems in mind, this thesis considers the design of CM FD systems as an

integrated process of three stages: pre-processing, classifier design and post

processing. The specific aims of this study are as follows:

1) To develop a method for measuring the effectiveness of pre-processing

techniques.

2) To evaluate the appropriateness of MLP and RBFN classifiers against

criteria that are appropriate for CM FD systems.

3) To identify optimal thresholds for post-processing classifier outputs in

RBFN classifiers.

10

E m b e d d e d C M F D S y s t e m s

These objectives will be achieved by theoretical derivation and empirical

evaluation. The empirical work follows current standard practice (Prechelt, 1996;

Jain & Mao, 1997; Zhang, 2000; Hsu & Lin, 2002) in that, each method (or

algorithm, classifier, comparison criterion) is evaluated on at least two

classification problems.

1.7 Overview of the remainder of this thesis

Following this introductory chapter, Chapter 2 provides an overview of M LP and

RBFN classifiers, and their implementation in CM FD systems.

Chapters 3 and 4 are then devoted to the selection of appropriate pre-processing

strategies. Chapter 3 first proposes a class-separability measure which is derived

from a non-param etric separability analysis: no knowledge of the underlying

distribution of the data is required. Chapter 4 then develops a selection procedure

for pre-processing techniques using the proposed separability measure. The

effectiveness o f this procedure is explored on a problem of engine misfire

detection.

Chapters 5, 6 and 7 are devoted to the evaluation of M LP and RBFN classifiers,

focusing on CM FD applications. Chapter 5 describes how the comparison criteria

were selected and provides information about the datasets that were em ployed in

the empirical study. Chapters 6 and 7 describe the empirical studies themselves.

11

E m b e d d e d C M F D S y s t e m s

Chapter 8 is devoted to post-processing, focusing on improving RBFN

performance where unknown faults may occur. It presents a novel technique that

may be used to determine an appropriate threshold for interpreting the outputs of a

trained RBFN classifier. Results from two experiments demonstrate that this

method can be used to improve the performance of RBFN classifiers in practical

applications.

A design m ethodology is derived in Chapter 9, based on the theoretical and

experimental findings from earlier chapters. This methodology is then assessed in

a further case study, which involves the design of an em bedded CM FD system for

a diesel-engine aspiration system.

The final chapter concludes the thesis with an overall discussion, and a

presentation of suggestions for future work in this important area.

12

2
MLP and RBFN Classifiers

2.1 Introduction

As discussed in Chapter 1, this thesis explores how two popular neural classifiers,

the M LP and RBFN, can be most effectively em ployed in CM FD systems. This

chapter provides essential background information on these two classifiers. It also

discusses classifier implementation issues which are particularly important for

em bedded CM FD applications.

2.2 Multilayer perceptrons

M LPs have been the most widely used neural network (Zhang, 2000). The MLP

network consists of an input layer, one or more hidden layers and an output layer,

each layer consisting of a number of neurons (nodes). Figure 2-1 illustrates the

signal flow in a single neuron which has input signals (x), weights (w), and output

signal (}'). A bias, wo, acts exactly as a weight on a connection from a node whose

input signal is always 1.

13

MLP a n d RBFN C l a s s i f i e r s

summation activation
function function

Inputs^
Output
— ► y

Figure 2-1. Signal flow in a node from an MLP network.

A node carries out two actions. The first is to sum weighted input signals from

other nodes, providing the net input for this node:

n

net = wixi
i=0

where n is the number of inputs.

The second action is to output a value as a function of its net input:

y = / (n e f)

This is commonly carried out using a sigmoid function such as:

1
y = f (ne

\ + e-n e t

The network structure of an MLP with one hidden layer is depicted in Figure 2-2.

14

MLP a n d RBFN C l a s s i f i e r s

Input
layer

Hidden
layer

Output
layer

Figure 2-2. An MLP with one hidden layer.

MLPs are trained using the back-propagation (BP) algorithm (Rumelhart &

McClelland, 1986). During the learning process, weight corrections are applied

according to the delta rule:

where, Awy7(fc) is the weight correction applied to a synaptic link connecting the

neuron j to the neuron i of the preceding layer at the training

iteration k.

Tj is a constant called the learning rate parameter.

Sj(k) is a local gradient which depends on whether neuron j is an output

equals the product of the output error signal (that is, the difference

between the target output and the network output) and the derivative

of the activation function. If neuron j is a hidden neuron, Sj(k)

equals the product of the associated derivative of the activation

function and the weighted sum of the <?s computed for the neurons

in the next hidden or output layer that are connected to neuron j.

x ,(it) is the ith input signal of neuron j at the training iteration k.

Awji(k) = 7jSj(k)xi(k) (2- 1)

neuron or a hidden neuron. If neuron j is an output neuron, Sj(k)

15

MLP a n d RBFN C l a s s if ie r s

The training process for an M LP involves a ‘forward pass’ and a ‘backward pass’.

During the forward pass, the synaptic weights between the layers are unaltered

and, for each training pattern, an error signal is generated from each neuron in the

output layer. Once the error vector is generated, weight corrections are applied

according to (2-1). As the weight corrections are based on a local gradient

computation, it is a requirement that the activation functions used for MLP

networks are differentiable.

Note that training of the network can be undertaken in pattern mode (weight

changes are calculated and applied after each training pattern has been presented)

or in batch mode (weight changes are calculated and applied after presentation of

all the training patterns: the presentation of the whole set of training patterns is

known as an epoch).

The learning rate Tj in (2-1) determines the size of weight changes in any given

iteration. If the learning rate is set too low, the training time will increase to an

unacceptable duration. On the other hand, if the learning rate is set too high, large

weight changes will occur which make the network unstable, oscillate and fail to

converge.

Direct use of this gradient descent algorithm is particularly inefficient in training

MLPs, and various modifications have been proposed (Haykin, 1999). A method

16

M L P a n d R B F N C l a s s if ie r s

to improve training efficiency and yet avoid the occurrence of instability is to

modify the delta rule by adding a momentum term (Bishop, 1995):

A w J:(k) = JjSj {k).t (k) + a A w n { k - 1) (2-2)

where a is usually a positive number called the momentum constant.

The momentum term may also have the benefit of preventing the learning process

from terminating in a shallow local minimum on the error surface.

Equation (2-2) is called the generalised delta rule containing two (arbitrary)

parameters, tj and a , whose values must be adjusted to give the best performance.

Furtherm ore, the optim al values for these parameters will often vary during the

training process. One effective strategy for varying the learning rate is to compare

e(k)
the error ratio of successive iteration steps, ~ ~ — ~ (Haykin, 1999). If the error

e (k - l)

at the kth iteration step, e(k), is smaller than the previous error e(k-l), then the

learning rate is increased. If, on the other hand, e{k) is greater than e(k -l) by more

than a predefined ratio, the learning rate is decreased.

2.3 Radial basis function networks

The radial basis function is a functional approximation technique (Powell, 1987).

Given m different points {x, : / = l,2,- -,ra} in Rn, and m real numbers

{>’, :/ = 1,2, --,m}, one has to calculate a function / : /?"—>/? that satisfies the

interpolation condition:

17

MLP a n d RBFN C l a s s if ie r s

/ (x ,) = / = 1,2, — , m

Powell (1987) chose/ from a linear space that depends on the positions of the data

points. The positions of data points is described using radial basis functions of the

form:

<t>(||x-x,||), x e i = 1,2,-• • ,m (2-3)

where ||»|| is the norm of I f1.

Table 2-1 lists some examples of radial basis function nonlinearities (Sanchez,

1996).

Function name Function expression: <j)(r, <r)
(<7=constant)

Linear r

Cubic 3r

Thin plate spline r2.log r

Gaussian exp(-[r2/<72])

M ultiquadric (r 2+ a 2) ± U 2

Table 2-1. Examples o f radial basis function nonlinearities.

The approximation functions have the form:

/ (X) = X w M l* - x,||), x e R " (2-4)
1 = 1

18

M L P a n d R B F N C l a s s if ie r s

Broomhead & Lowe (1988) and M oody & Darken (1988) first independently

converted this functional approximation technique into a neural network

paradigm. The resulting RBFNs consist of one input, one hidden and one output

layer (Figure 2-3).

outputs

bias
basis
functions

inputs

Figure 2-3. The architecture o f RBFNs.

In Figure 2-3 the hidden layer contains nodes realising basis functions while the

output layer nodes form a linear combination of the hidden layer outputs. Thus an

output of the RBFN, given input vector x, may be described as follows:

m

y k (x) = £ w ,t<|>,.(||x-c,||)
7° k = l , 2 , - p (2-5)

= (|x - c ,||) + ^
(= 1

where c, is the centre of ((J), could be one of the expressions in Table 2-1), wik is

the weight connecting the /th hidden node and the &th output node, p is the

19

MLP a n d RBFN C l a s s if ie r s

number of output neurons, the radial basis function <j)0 is set to be a constant equal

to 1, and bias b k — w 0k

For a set of input vectors X = { x 1, x 2, - x yv }, Equation (2-5) can be rewritten as:

(2-6)

where:

y k = [>’* (x l).> ’* (x 2 > " ’>'*(XA/)]‘

w * = [b k , w l k , w 2k, - " , w mk]T

1 < M l x i - c i l l) < M I x i - c 2 | |)

< l >

1 <|>i(||x2 - C , | |) <t>2 (| x 2 ~ c 2 |)

< M l x i - c , „ | |)
<l>ra(|X2 - Cm|)

.1 <M|X*-Cl||) <t>2(|X2V -« 2||) <L(||xN -cJ)
= [l (|>| <|»2 1

where T denotes transpose.

For the Gaussian function with centre c, and width cri (i = \,2, - , m) , (j), has the

form:

<MX) = exp
(II

X - c

2cr;
(2-7)

The basis function (nonlinearity) in the hidden layer produces a significant non

zero response to input stimuli only when the input falls within a small localised

2 0

MLP a n d RBFN C l a s s if ie r s

region of the input space, and the RBFNs form a bounded decision region

(Lampariello & Sciandrone, 2001).

Since the hidden layer and output layer of an RBFN perform different tasks, most

of the learning algorithms consist of two stages. The first stage selects the

appropriate centres of the radial basis functions, and the second estimates the

weights between the hidden layer and the output layer using linear optimisation

algorithms.

The centre can be selected using the following algorithms:

1) Fix the number of radial basis functions, m (m<N, where N is the number

of samples in training dataset), in the hidden layer, and choose locations of

the m centres randomly from the training dataset. In order to achieve

effective RBFNs, this approach requires that the training data well

represents the data distribution of the problem at hand (M oody & Darken,

1988).

2) Adapt the centres of the radial basis functions in a self-organised fashion

such as £:-nearest neighbour rule or other clustering methods (Lee & Kil,

1991).

3) Gradually optimise the centres of the radial basis functions by supervised

learning using the gradient descent procedure (Tarassenko & Roberts,

1994; O it , 1999).

21

M L P a n d R B F N C l a s s if ie r s

W hen we design an RBFN, it is desirable to obtain a parsimonious model. One

effective way to achieve this objective is to use the orthogonal least squares

(OLS) learning algorithm (Chen, et al, 1991). The OLS learning algorithm will

be used in the following chapters and therefore deserves a more detailed

discussion.

To apply the OLS method to design RBFN, Equation (2-6) is viewed as a special

case of the linear regression model as follows (Chen, et al, 1991):

y = «J>w + £ (2-8)

where y e R N ,4>e R Nxm and w e R m (for simplicity, here m is equivalent to m + 1

in (2-6)) are the same as defined in (2-6), E is the error signal which is

uncorrelated with the regressor vectors <{),:

E = [el , e2, - - , e N]T e R N

The regressor vectors <|); form a set of basis vectors, and the least squares solution

w satisfies the condition that <£>w be the projection of y onto the space spanned

by these basis vectors.

The OLS method involves the transformation of the regressor vectors (j), into a

corresponding set of orthogonal vectors u, (/= 1, 2, ..., m), that is, the regression

matrix O can be decomposed into:

4> = UA (2-9)

MLP a n d RBFN C l a s s if ie r s

where A e R mxn> is an upper triangular matrix with l ’s on the diagonal and 0 ’s

below the diagonal, and U e R Nxm is a matrix with orthogonal columns u, such

that:

11,11 . = 0 , for i ^ j (2 - 10)

The orthogonal decomposition of into U and A can be obtained using the

Householder transformation method, classical Gram-Schmidt algorithm or the

modified Gram-Schmidt algorithm (W atkins, 1991). In the classical Gram-

Schmidt algorithm, the transformation is performed as follows:

= <t>.

1 < i < k
u ui i

k-1

1 = 1

k = 2,3 , - , m (2 - 11)

where the transformation is computed column by column.

The space spanned by the set of orthogonal basis vectors u, is the same space

spanned by the set of <J),, Equation (2-8) can therefore be rewritten as:

y = Ug + E (2-12)

where g g R m. The OLS solution g of g is then given b y:

g = (U 7' u r l U 7'y (2-13)

or

23

MLP a n d RBFN C l a s s if ie r s

g t = u f y / (u f u , .) for /= !, . .. ,m

The quantities w and g satisfy:

Aw = g (2-14)

where w is the estimate of w in (2-8).

Using (2-10), the sum of squares of y can be obtained from (2-12) and is given by:

Equation (2-15) shows how an individual regressor contributes to the sum of

squares of y. The error reduction ratio due to u, can be defined as:

Using (2-16), the significant regressors can be selected.

In the design of RBFNs, the OLS learning procedure selects the radial basis

function centres as a subset of the N training data vectors. At the kth step of the

selection procedure, a candidate centre c* is selected as forming the kth regressor

centred at c* if the regressor produces the largest value of errk from among the rest

of N-k+ 1 candidate centres. The selection process is terminated when the

inequality (2-17) becomes true:

m
(2-15)

(2-16)

24

M L P a n d R B F N C l a s s if ie r s

k

\ - ' 5 L erri < p (2 - |7 >
j =i

where 0 < p < 1 is a chosen tolerance. This gives rise to a subset network

containing m significant hidden nodes.

The OLS learning procedure generally produces an RBFN whose hidden layer is

sm aller than an RBFN with randomly selected centres. It therefore provides a

useful means for the construction of a parsimonious RBFN (Chen, et al, 1991).

2.4 Classifier parameters and implementation

This section discusses the implementation of the neural network classifiers which

are applied throughout the rem ainder of this thesis.

2.4.1 Parameters for classifier structure

The structure o f neural network classifiers is designed by the number of input

nodes, hidden layers, hidden nodes and output nodes.

Input nodes

The number of input nodes in a neural classifier is determined by the dimensions

of the feature space. For an n-dimensional feature space, n input nodes are

needed. Thus if, for example, a vibration signature to be classified is 1000

25

MLP a n d RBFN C l a s s if ie r s

samples long (in the time domain), a neural network with 1000 input nodes is

requ ired1.

Number of hidden layers

The determ ination of the num ber of hidden layers is only relevant to M LP design

as the RBFN was originally developed with only one hidden layer. M LPs with

one hidden layer are used throughout this study as in most published applications.

This is because M LPs with just one hidden layer (with enough hidden nodes) can

form decision regions with arbitrary shapes, being universal approxim ators for

arbitrary finite-input environm ent measures (Huang & Lippmann, 1988; Huang, et

a l , 2000).

Number of hidden nodes

The num ber o f hidden neurons in an M LP has a great impact on the network’s

classification perform ance. Huang & Huang (1991) have argued that, for the

finite subset o f feature space R n o f a multi-input-single-output system, the

optim al num ber o f hidden neurons m to realise an arbitrary function is m = N - 1,

w here N is the num ber o f input patterns. In practice, fewer than m hidden neurons

are generally required since real datasets often consist of redundant patterns.

Indeed there are no general rules to decide the optimal number of hidden neurons

(Setiono, 2001; Leung, et al, 2003).

1 In m ost C M F D applications, this approach is im practical, and raw sensor data must be pre-
p rocessed before application to the classifier. Selection o f an appropriate pre-processing
technique w ill be d iscu ssed in Chapter 4.

26

M L P a n d R B F N C l a s s if ie r s

In this thesis, in the absence of a better solution and in line with previously

published works, a simple ‘trial-and-error’ approach was em ployed to determine

the most appropriate number of hidden nodes in the M LP classifiers. Specifically,

networks were trained with different numbers of hidden neurons (using a training

dataset) and then the error for each was calculated (using a different dataset). The

network with the minimum testing error dictated the ‘optim al’ number of hidden

nodes.

For RBFNs, the number of hidden neurons may be determ ined either by a hybrid

learning algorithm (Moody & Darken, 1989) or by an OLS learning algorithm

(described in Section 2.3). In both cases, a heuristic-based selection of the widths

can be incorporated in order to achieve a certain amount of response overlap

between each node and its neighbours. This ensures that, when combined, the

nodes form a smooth and continuous interpolation over those regions of the input

space. In this study, OLS learning algorithm was used. This algorithm expands

the hidden layer by adding a new neuron at each of the learning iterations. The

new hidden neuron is added at the location within learning data so that it reduces

the leaning error signal of the classifier (Chen, et a l, 1991).

Number of output nodes

The number of output nodes is set to be equal to the number of known classes,

with a single output node for each known class. Details of the representation

scheme are given in the next section.

27

M L P a n d R B F N C l a s s if ie r s

2.4.2 Interpretation of classifier outputs

The output classes can be represented by the network in several ways. In the

majority of the experiments in this thesis, a single output neuron is used to

represent each class. For example, an output of {‘ 1’, ‘O’, ‘O’ } from a three-output

network would indicate a classification of ‘Class 1’, an output of {‘O’, ‘1’, ‘0 ’ }

would indicate a classification of ‘Class 2 ’, and {‘O’, ‘O’, ‘1’ } would indicate

‘Class 3 ’.

In practice, such idealised outputs are rarely observed, and the outputs of the

classifier must be processed to give the final decision. Figure 2-4 depicts the

process of assigning an input pattern x, from neural classifier outputs, where a is

{ 0 , 1 }.

Classifier
Outputs

Decision
action

x, Neural
Classifier

> ^ 1,'

■ ^2 ,

+ X-,-

Post
Processor

■* a u

+ a H

Figure 2-4. Conversion o f classifier outputs to decision action.

It is usually assumed that the largest output represents the class output. Thus the

post-processor is defined by:

a k, =
1 if y t J = m a x (v t j)

0 otherw ise

28

M L P a n d R B F N C l a s s if ie r s

The value of a*,, gives a decision action where the input pattern x, is assigned to

the kth class if a*./=l.

This simple post-processing strategy is clearly not appropriate for CMFD

applications where unknown-fault and multiple-fault may occur. Instead, a

threshold, r, may be applied to classifier outputs. It is then understood that the

output represents the class presence if its value exceeds the threshold. Thus the

post-processor for such CMFD applications is defined by:

a , • = ik, i

1 if y k i > t

n - f - ’ <r fOT * = 1* — >c0 if y kJ < T

This allows the neural classifier to represent the occurrence of multiple and

unknown faults. For example, an output of {‘O’, ‘1’, ‘1’ } would indicate an

output in ‘Class 2 ’ and ‘Class 3 ’ simultaneously, and an output vector which does

not match any output pattern in training data would indicate the occurrence of

unknown faults.

As we have discussed above, it is possible that ‘unknown faults’ will be

encountered, where classifier inputs are not represented in the training dataset.

W hen a classifier is used in such applications, there are several possible ways of

representing these faults, including the following:

1) To use an extra output neuron to represent unknown faults, so that the

number of output neurons is equal to the number of known classes plus

one;

29

M L P a n d R B F N C l a s s if ie r s

2) To set the number of output neurons equal to the number of known

classes.

A brief analysis suggests that the first approach is impractical. Recall that the

response of an output neuron is determined as follows:

for MLP: y k = f (n e t k) = 1 , n e tk = w] y (l + b k (2-18)
l + e *

for RBFN: y k =wj<l> + bi (2-19)

where w k is a vector of weights from the hidden neurons to the output neuron k, yh

is a vector of outputs of the hidden neurons (subscript h for hidden layer), bk is a

bias. W hen the classifiers are trained using data of known classes, the value of the

‘unknown fault’ output neuron is required to be assigned to a constant (denoted

const) to indicate that an unknown fault is not present. Thus, during training, w k

will simply be assigned to zero and bk to f ~ x (const) for the MLP, and bk to const

for the RBFN. The trained classifiers will therefore produce const on the

‘unknown fault’ output neuron no matter what value the input samples take.

Since an extra output neuron cannot provide a useful representation of unknown

faults, it is more appropriate to set the number of output neurons equal to the

number of known classes. In this situation, the classifier outputs need to be

combined and interpreted in a slightly different way to that described above:

• If one output exceeds a value of r (r i s a pre-set threshold), then we assume

that this output identifies the fault.

30

MLP a n d RBFN C l a s s if ie r s

• If the classifier output vector is not the same as the desired output vector,

then the input vector is misclassified, and the corresponding sample is

included in the "error" category.

• If no output exceeds t , the input is assumed to be an ‘unknown fault’.

In such a CMFD application, one of the key issues is then to determine the value

of the threshold. The value of rc a n be determined by analysis of the bias values

in the output layer2.

2.4.3 Estimation of error rates

In a classification problem, the designer has a set of data samples z1,z2,--*,zyv.

Each sample consists of two parts z, = (x,,y(), where x, is a vector of input

variables and y, is the corresponding vector indicating the presence or absence of

classes.

The original dataset may then be re-organised into j subsets. Each subset has AL

samples, where usually N = ^ N J , for example for j= 2, there are N l samples in
j

the training dataset and N 2 samples in the test set.

On the basis of the training dataset, a classifier y = ^ (x) is constructed (^deno tes

the classifier and y is the estimate of y) and its outputs are converted to a class

2 This process is d iscussed further in Chapter 8.

31

MLP a n d RBFN C l a s s if ie r s

decision, a, using the post-processing scheme discussed in the previous section.

The objective is then to estimate the classifier performance using an (unseen)

dataset independent of the training dataset. The classification error rate on the

dataset of AC samples is defined as:

This estimation can be achieved by one of the following error estimation methods:

the holdout method (Bishop, 1995), the cross validation method (Theodoridis &

Koutroumbas, 1999) or the bootstrap method (Efron, 1979; Hamamoto, et al,

1997), based on the organisation of sub-sets of data and the estimation procedure.

In this thesis, the holdout method is used for designing classifiers. This method

involves dividing each dataset into two parts, usually with equal size, one for

training and the other for testing. This approach is taken because the goal of this

study is to compare the performance of the classifiers, rather than to provide

optimal performance results for each problem. Provided the comparison

conditions are the same for all classifiers, the results will indicate the relative

performance of individual classifiers. Therefore, in classifier comparisons, the

error estimation method is not important so long as the error estimation method is

the same for all classifiers (Michie, et al, 1994; Blayo, et al, 1995).

N

where L is a loss function defined by:

0 if y, = a,
1 otherwise

32

MLP a n d RBFN C l a s s if ie r s

2.4.4 Activation functions and learning algorithms

Each of the classifiers used in this study was implemented in its most commonly

used form. Specifically, the MLPs were implemented with one hidden layer using

logistic sigmoid functions for both the hidden layer and the output layer (Haykin,

1999). Similarly, the RBFNs were implemented using Gaussian functions for the

hidden layer and linear functions for the output layer (Looney, 1997).

Both MLPs and RBFNs were implemented using the Neural Network Toolbox

version 2.0.4 in M atlab3.

The MLPs were trained using M atlab’s “trainbpx” which is widely used (Duin,

1996), setting the maximum number of ‘epochs’ to 4000 and using default values

for the following training parameters: learning rate increase (1.05); learning rate

decrease (0.7); momentum constant (0.9) and maximum error ratio (1.04).

The RBFNs were designed using the “solverb” function which implements the

orthogonal least square learning algorithm proposed by Chen et al (1991). Please

note that the commonly used term ‘w idth’ for the radial basis function is

equivalent to the term ‘spread constant’ in the Neural Network Toolbox.

3 All im plem entations w ere in M atlab, with the exception o f the m em ory experim ents discussed
in Chapter 6.

33

M L P a n d R B F N C l a s s if ie r s

2.4.5 Implem enting the em bedded classifiers

This section briefly considers how neural classifiers might be implemented in an

embedded system.

In order to implement such applications, a network of at least two low-cost

microcontrollers (for example, from the 8051 family) can be made use of, which

are integrated by means of a shared-clock scheduler architecture (see Pont, 2001,

for further details of the scheduler architecture).

The resulting system architecture is illustrated schematically in Figure 2-5.

MLP Classified
(Slave)

MLP Classifier

(Slave)

MLP Classified
(Slave)

RBFN Classified
(Slave)

RBFN Classified
(Slave)

Data acquisition
/ pre-processing
& post-processing

(Master)

Data acquisition
/ pre-processing
& post-processing

(Master)

Figure 2-5. Two possible embedded architectures that might be used to
implement the classifier systems discussed in this study. In each
case, more than one m icrocontroller is used and the operations are
synchronised by means o f a time-triggered software architecture,
realised using a shared-clock scheduler.
(Top) A simple architecture with two microcontrollers, used to
implement a single classifier with data acquisition and pre- and
post-processing.
(Bottom) A more complex architecture used to implement a fusion
classifier with both M LP and RBFN components.

34

MLP a n d RBFN C l a s s if ie r s

2.5 Conclusions

The purpose of this chapter was to introduce the two classifiers used throughout

this thesis. The back-propagation algorithm for training M LP was briefly

introduced. An essential part of the design of a RBFN classifier is how to select

radial basis function centres from the training set. This chapter described the

orthogonal least squares learning algorithm which is an efficient and com monly

used training algorithm for RBFN classifiers.

In the use of MLP and RBFN for CMFD applications, a number of network

parameters need to be determined. In order to use the classifier for cases of

unknown and multiple faults, an interpretation strategy for classifier outputs was

discussed. This chapter also briefly considers how the studied classifiers could be

implemented in an em bedded system.

Following the review of M LP and RBFN classifiers presented here, Chapter 3 will

begin to address the first stage o f designing embedded CM FD systems.

35

3
A Separability Measure for Data with an
Unrestricted D istribution

3.1 Introduction

As discussed in Chapter l the ‘raw ’ signals obtained from sensors are rarely

applied directly to the classifier. Instead these raw signals are pre-processed prior

to classification (Theodoridis & Koutroumbas, 1999; Liu, et al, 2002).

Numerous forms of pre-processing techniques may be em ployed (Petrilli, et al,

1995; Tsoi & Back, 1995; Yang, et al, 2002), but the most common involve some

form of filter (for example, low-pass, notch or moving-average), and/or some

form of transform (for exam ple, decimation, Fourier transform or wavelet

transform). Despite the variation in techniques, the three aims of pre-processing

are generally similar (Staszewski & W orden, 1997; Theodoridis & Koutroumbas,

1999; Somol & Pudil, 2002; Sick, 2002):

1) To enhance the difference between examples from different classes;

2) To minimise the difference between examples from the same class;

3) To reduce the size of the dataset, allowing the use of a smaller neural

network (with faster responses and reduced memory requirements).

36

S e p a r a b il it y M e a s u r e

Since the designers of CM FD systems have a range of different types of pre

processing techniques at their disposal, there is a need to have a measure to

indicate the effectiveness of individual techniques in order to identify the most

appropriate pre-processing approach.

It seems reasonable to assume that a dataset which contains highly separated

classes would be easier to classify than one containing overlapping classes (Blayo,

et al, 1995; Theodoridis & Koutroumbas, 1999). Thus, if we are able to obtain a

suitable measure of class separability, we might reasonably expect that this would

form the basis of an effective means of comparing pre-processing techniques.

Although there are some statistical measures for measuring separability between

classes (Fukunaga, 1990), they are rarely used in CM FD applications. This is

because existing separability measures assume that the probability distributions of

the dataset are known (Theodoridis & Koutroumbas, 1999), but in real CMFD

applications the distributions are unlikely to be known a priori (Heinke &

Hamker, 1998; Marzi, 2002). To overcome the limits of existing measures, this

chapter proposes a new method for measuring the separability for datasets with

unknown probability distributions. This separability measure is then applied in a

procedure for identifying effective pre-processing techniques in Chapter 4.

3.2 Classical separability analysis

Measures for describing datasets may be divided into three main categories:

37

S e p a r a b il it y M e a s u r e

1) Simple measures such as: the number of attributes, the number of classes,

and the dataset size;

2) Statistical measures such as: those based on class distributions and dataset

density (Blayo, et al, 1995; Theodoridis & Koutroumbas, 1999);

3) Information theoretic measures such as: entropy and information scoring

(Zheng, 1993).

Recent research has revealed that neural networks have a strong link to statistics

(Cheng & Titterington, 1994; Ripley, 1994; Kay & Titterington, 1999). If a

statistical measure is able to sufficiently describe the distributional features of a

dataset, it may be used to predict the classification difficulty of the dataset for

neural networks (Blayo, et al, 1995; Heinke & Hamker, 1998).

In this study, therefore, the em phasis is placed on describing a dataset in terms of

statistics. In particular, the focus is on an analysis of class separability for a given

dataset. Class separability provides a measure of the extent to which samples of

different classes overlap. Classical separability measures are introduced first in

order to examine their limitations when applied to CM FD applications.

3.2.1 C lassical separab ility m easures

Some useful criteria for separability analysis are the Fisher criterion, divergence

and the Bhattaharyya distance (Heinke & Hamker, 1998). Before considering

38

S e p a r a b il it y M e a s u r e

these measures, the concept of inertia is introduced. Inertia is a classical measure

In e rtia

Consider a dataset of N samples with c classes. For the class co, (for /= l,.. .c) , the

number of samples is N, , the a priori probability is P, and the mean is m,. We

have:

class (0, inertia :

of the variance of data4.

for (3-1)

within-class inertia :

C 1 v
(3-2)

between-class inertia:

(3-3)

where ||j| is the Euclidean norm: ||x|| = (x7 • x)1/2.

D etails o f the m easures in this sub-section are available from Fukunaga (1990).

39

S e p a r a b il it y M e a s u r e

Fisher c rite rio n

The Fisher criterion measures the between-class inertia normalised by the within-

class inertia and is defined by:

F C = —
I

(3-4)

The separability gets better as the Fisher criterion (FC) gets larger.

D ispersion

The mean dispersion of class co, in class (0y is defined by:

m . - m .
(3-5)

If the dispersion measure between two classes is large, these classes are well

separated.

B h a ttah a ry y a d istance

The Bhattaharyya distance between two classes is defined by:

B = - (m , - m .) (m 2 - m ,) + ^-ln

E, + E 2

Vkl-fc
(3-6)

where x is the determ inant o f m atrix x and E, is the covariance m atrix o f class CD,.

As seen in (3-6), the Bhattaharyya distance consists of two terms. The first or

second term disappears when m , = m 2 or E, = E 2, respectively. Therefore, the

40

S e p a r a b il it y M e a s u r e

first term measures the class separability due to the mean difference, while the

second term measures the class separability due to the covariance difference.

D ivergence

If the distributions of two classes are normal, the divergence is defined by:

o - i . r f e ; ' K m , - m , X m , - m , -1 . r f c | ‘E , - n ; ; ' X , - 2 1) (3-7,

The divergence also consists of two terms similar to that o f Bhattaharyya distance.

However both terms of the divergence are expressed by the trace of a matrix.

3.2.2 L im itations of classical separab ility m easures

The aforementioned parametric measures are all based on the assumption that the

class distributions are known a priori to be normal (Fukunaga, 1990; Theodoridis

& Koutroumbas, 1999). W hen developing a practical CM FD application of the

type considered in this thesis, the class distributions are unlikely to be known until

sufficient knowledge about the faults is available (Tarassenko, et al, 2000; Lada,

et al, 2002; Skoundrianos & Tzafestas, 2002).

If class distributions are significantly non-normal and multimodal (see, for

example, Figure 3-1), the use of parametric measures cannot be expected to

accurately indicate the class separability. For this reason it is highly desirable to

have a separability measure that does not require any assumptions about class

distributions.

S e p a r a b il it y M e a s u r e

(a)

Figure 3-1. Examples o f classification problems with non-normal and
multimodal distributions.
(a)The classification problem involves nonconvex decision regions
(Haykin, 1999).
(b) A typical nonlinear classification problem represents a range o f
mechanical system fau lt diagnosis. This example can be found in
many publications.

3.3 The proposed non-param etric separab ility measure

To overcome the limits of classical measures, an alternative non-parametric

separability measure is more appropriate in circumstances where the data

distribution is unknown. Based on the idea of non-parametric discriminant

analysis (Fukunaga, 1983; 1990), the proposed separability measure is described

below.

For a two-class problem, let class 1 be coi and class 2 be ©2, the a priori

probability of class 0), is P„ then the non-parametric between-class scatter matrix

is defined as:

42

S e p a r a b il it y M e a s u r e

S,, = ^£{(x(1) - m 2(xn,))(x(1) - m 2(xni))r|col}

+ P2e \[x (2) - m1(x(2)))(x(21 -m ,(x (2)))r|(o2}
(3-8)

where E() represents expectation operator.

Similarly, the non-parametric within-class scatter matrix is defined as:

S„. = /^ e {(x" ' - m1(x,ll))(xl" -m ,(x ("))7'|<Dl}

+ P2e { (\ ,! ' - m 2(x'2'))(x121 - m 2(x‘2’))'|<o2}
(3-9)

Here, samples X(,) € CO, and m , (x (/)) is the (Oj-local mean for a given sample x (/) ,

computed from the ^-nearest neighbours in co, to x (/) :

<3- 10)k H

Note that, when SH is computed, it is necessary to exclude the sample x(/) from our

k-NN determination, as x(/) should not be considered a nearest neighbour to itself.

M oreover, in the calculation of SM, all samples which are situated at the same

position as x(/) must be excluded as the nearest neighbours of x(/) in order to avoid

distorting the local information.

Figure 3-2 illustrates the calculation of local mean for between-class scatter with

k=2. The derivation of local means in class Oh for two samples xjl} and x^ in

class G)i is also shown in the figure. For xjl} the two nearest neighbours in o>2 are

xi2) and xl2) (connected with a dotted line) which form the local mean at

43

S e p a r a b il it y M e a s u r e

m 2 (x j 1)) . For the two nearest neighbours are x j 2) and x (32) which form the

local mean at m 2 (x (21)) . Similarly, local means can be derived from the same

class for the calculation of within-class scatter.

D ecision boundary

Figure 3-2. Illustration o f local mean derivation fo r the calculation o f
between-class scatter with k=2. *•’ fo r samples in class (Oj , 40’ fo r
samples in class 0)2 , ‘0 ’ fo r local means. The arrow indicates the
direction from the sample to its local mean.

From Sb and S w (equations 3-8 and 3-9 respectively), the separability measure

between C0i and CO2 is defined as:

y = - t r (S X) (3-11)n

Note that to ensure that J = 1 when the two classes are identical, the trace of

S~'S/7 is divided by dimensionality n. If J is close to one or even smaller than

one, the two classes have low separability. The larger J is the higher the

44

S e p a r a b il it y M e a s u r e

separability between the two classes. A very large J indicates no overlap between

classes.

For a multi-class problem, the values for J between all possible pairs of classes are

mutually computed. This gives us a separability matrix. The main-diagonal

entries of the matrix are 1, and it is symmetric (which is consistent with the

definition of the separability measure formula).

3.4 Separability versus classification error

It is assumed that classes in a dataset with high separability should be easier to

classify (Theodoridis & Koutroumbas, 1999). This implies that if the separability

measure is workable, the classifier will obtain a lower classification error for

problem s with higher separability. This section employs a commonly-used

classification problem in pattern classification research to evaluate the proposed

separability measure.

Figure 3-3 shows the class distribution. Each of the four clusters (of two classes)

can be expressed by the conditional probability density functions as follows.

(3-12)

where p., is the mean vector and cr,2 is the variance.

45

S e p a r a b il it y M e a s u r e

It is clear that the separability of the two classes cannot be effectively measured

by classical separability measures (Section 3.2.1), because the class distributions

are multimodal and share the same mean.

In this experiment, we change the mean vector in (3-12) in order to simulate

datasets with different separabilities. Figure 3-3 shows two exem plar datasets

with high separability and low separability.

0.5

v

-0.5

-0.5 0.5

(a)

Figure 3-3. Distribution o f a nonlinear classification problem with two
classes. '• ’ - class 1, ‘° ’ - class 2.
(a) H igher separability between classes CD] and (fy.
(b) Lower separability between classes (Oi and (fy.

A series of datasets with different separability were generated from (3-12). Each

dataset contained 2000 samples, 1000 samples were used to train the classifier and

the other 1000 samples were used to test the classifier performance. For each of

the datasets, MLP and RBFN classifiers were designed. The structure of all

classifiers were fixed, that is, both MLP and RBFN had two input nodes for the

46

S e p a r a b il it y M e a s u r e

two-dimensional vector, and two output nodes for the two classes. The number of

hidden nodes was set to 6 for MLPs and 30 for RBFNs.

The performance of the trained classifiers was evaluated on the test datasets. The

experimental results are shown in Figure 3-4.

The results in Figure 3-4 demonstrate that the classification error decreases with

the increase in separability. Therefore, on the basis of this study, it seems that the

proposed separability can effectively predict the classification difficulty of the

data.

40

30

20

10

0
4020 300 10

Sep arab il ity

Figure 3-4. Separability versus classification error (%).

47

S e p a r a b il it y M e a s u r e

3.5 Conclusions

In this chapter, a separability matrix was presented that is suitable for use in the

development of embedded CMFD applications. The separability matrix was

derived from non-parametric analysis between classes in the data: it therefore

requires no assumption about the underlying distribution of the data. In an

assessment using a simulated classification problem, it was dem onstrated that - in

the case of both the MLP and RBFN classifiers considered in this thesis - the

separability measure was able to predict the classifier performance.

The next chapter will use the proposed separability to develop a procedure for

selecting the most appropriate pre-processing technique from possible candidate

techniques for a given CMFD application.

48

4
Identifying the most A ppropriate Pre-
Processing Strategy Using a
Separability Measure

4.1 Introduction

The effectiveness and reliability of a pre-processing technique has traditionally

been assessed based on trial-and-error (Ribbens & Bieser, 1995; Grimmelius, et

al, 1999; Staszewski, 2000; Yang, et a l, 2002; W ang & Too, 2002) as follows:

1) Pre-process the data using different signal processing techniques to obtain

sets of feature vectors;

2) Train individual neural networks using these feature vector sets;

3) Employ the pre-processing technique which results in the best overall

classification performance.

Figure 4 -1(a) depicts this traditional pre-processing selection procedure. From the

figure, it is clear that this selection procedure requires the design of a classifier for

each of the extracted feature vector sets. Since training of neural networks often

takes a long time (due to the need to optimise training parameters and avoid local

minima), designing different networks for each set of pre-processed data can be a

laborious process (Ripley, 1995; Somol & Pudil, 2002; Marzi, 2002). In order to

49

P r e - p r o c e s s in g S t r a t e g y

avoid designing multiple classifiers and hence to improve selection efficiency, this

chapter presents a procedure for identifying the most appropriate pre-processing

techniques for a given set of recorded signals. This procedure is based on the

non-parametric separability matrix proposed in the last chapter. The procedure is

then assessed using a real CMFD problem of engine misfire detection.

PPT * CEFVS > CD

Raw data

FVS, CD,

Selected: PPT = min (CE,)

PPT FVS

Raw data

CDSelected: PPT = max (J,)
/

CE

(b)

Figure 4-1. The pre-processing technique selection procedure.
(a) Traditional trial-and-error selection procedure.
(b) The selection procedure based non-parametric separability
measure.
Keys to the figure: PPT (pre-processing technique), FVS (feature
vector set), CD (classifier design), CE (classification error), J
(separability measure).

50

P r e - p r o c e s s in g S t r a t e g y

4.2 Pre-processing technique selection based on separability

measures

A procedure for selecting the most appropriate pre-processing technique for a

particular classification problem is presented as follows.

1) Take the recorded raw dataset and apply the chosen pre-processing

technique.

2) Measure the separability between classes after pre-processing.

3) Repeat for all alternative pre-processing techniques.

4) In the classifier system, employ the pre-processing technique that results in

the largest separability measure.

This selection procedure is illustrated in Figure 4 -1(b). Comparing it to the

traditional selection procedure as in Figure 4 -1(a), it is only necessary to design a

single classifier for the feature vector set with the highest separability.

To assess this approach, the remainder of this chapter will apply it to a real CMFD

problem involving engine misfire detection. Before conducting the assessment,

the next section first provides some background to the topic of misfire detection,

and describes the procedure for data acquisition.

51

P r e - p r o c e s s in g S t r a t e g y

4.3 Misfire detection: background and data acquisition

4.3.1 Background

Misfire in a petrol engine is a condition in which there is no combustion of the

fuel/air mixture during the power stroke of the engine (Ribbens, et al, 1994).

When misfire occurs, engine performance suffers, along with fuel economy and

idle quality.

Of particular concern is the fact that, during misfire, there is an increase in the

level of exhaust emissions. As a result, misfire is one of the key areas of concern

in On-Board Diagnostics generation 2 (OBD II). OBD II is a collection of strict

emissions oriented monitoring rules for US passenger cars (Carley, 1997).

Similar regulations are expected in Europe.

Engine misfire detection has been extensively investigated in the last decade.

This investigation has resulted in a number of detection methods and a number of

publications (Wu & Lee, 1998). No matter what the detection method is, the

necessary task is to obtain misfire information from the recorded signals, such as

rotational speed (W illiams, 1996), exhaust pressure (Ceccarani, et al, 1998),

sound (Li, et al, 1996; Li Z, et al, 1997) or vibration. It is rare that the recorded

signals can be directly used for misfire detection, rather they must be pre-

processed using signal-processing techniques. The use of a certain signal

processing technique has depended on the investigator’s preference (Staszewski,

2000; Liu, et al, 2002). Therefore the selected signal processing technique is not

52

P r e - p r o c e s s in g S t r a t e g y

necessarily the most appropriate. W hile this chapter is concerned with the

development of a method for selecting effective pre-processing techniques, this

makes the misfire detection problem particularly valuable as the case study to

assess the proposed method.

4.3.2 Data acquisition description

In the present experiment, vibration data were used to detect the misfire situation.

The studies involved a 6-cylinder Ford 2900 spark ignition (SI) engine. The

engine was installed in the engine test cell in the Departm ent of Engineering,

University of Leicester and a water-brake dynam ometer was connected to apply a

load.

Three accelerometers (along the three axes) were mounted to the engine block via

an adapter. An encoder on the crankshaft was used for the timing mark. The

transducer signals were conditioned and were recorded digitally on line at a

10kHz sampling rate.

The experiments were concerned with sustained misfires, introduced by

disconnecting the lead of cylinder three in the engine. The engine was run at 2700

revolutions per minute with varying loads of 50Nm, 60Nm, 70Nm, 80Nm, 90Nm

and lOONm respectively for both normal and misfire conditions. The recorded

signals were then pre-processed to form feature vectors that were fed into the

P r e - pr o c e s sin g S t r a t e g y

classifier to give an indication of the engine firing state (that is, normal or

misfire).

Figure 4-2 shows a schematic representation of the engine misfire detection

system.

Ford 2900 Data acquisition Classification Engine
& Pre-processing state

Normal

Misfire

Figure 4-2. Schematic diagram o f misfire detection system.

Figure 4-3 shows 2 normal and 2 misfire examples of the recorded vibration

signals. Each signal has 1000 samples. Since the absolute amplitude of the signal

has no effect on the results of misfire detection (as long as all the signals have the

same scale), the y-axis has the default scale of recording, without calibration.

54

P r e -p r o c e s s in g S t r a t e g y

0.6

0.4
as
E 0.2
o
Z

- 0.2
500 10000
(a)

0.6

0.4

0.2

0

- 0.2
5000 1000

0.4

0.2

- 0.2

-0.4
0 500 1000

(b)
0.6

0.4

0.2

- 0.2
0 500 1000

(c) (d)

Figure 4-3. Examples o f the logged signals. Each signal consists o f 1000
samples, its amplitude is not calibrated.
(a)(b) Normal condition,
(c)(d) Continuous misfire in cylinder 3.

4.4 Feature vector sets after pre-processing

As in many real CMFD examples, the ‘raw ’ vibration signals (each containing

1000 samples) were rather too large to classify directly with a neural classifier.

Three pre-processing schemes were therefore considered and compared using the

separability matrix described in Chapter 3. To make the number of samples equal

to a power of 2 (due to signal processing restrictions), 512 samples of the 1000

samples (for each signal, along two axes) were used in the subsequent feature

extraction.

55

P r e - p r o c e s s in g S t r a t e g y

4.4.1 Features from time domain

The first pre-processing technique employed involved ‘down sam pling’ the

original (time domain) data. This ‘down sam pling’ is explained in this section.

Let the engine speed be n revolutions per minute (r/min), that is, the engine

rotation frequency is n/60. For four-stroke-cycle engines, each of the cylinders

fires once in any two successive revolutions. For m cylinders the firing frequency

is therefore: / f - n m l 120Hz . In this study, the engine has six cylinders (m = 6)

and the original signal sampling rate was 10kHz. For these tests, the engine was

made to run at approximately 2700 r/min («). T h u s ,// = 135 Hz, this gives 74

(10k/135) samples between two cylinders firing. Assuming that at least two

samples between cylinders firing in the down-sampled data are required

(according to sampling theorem), only 1 sample point in 37 samples needs to be

retained. For convenience, and to ensure consistency with other techniques

discussed below, one point from every 32 samples was selected. Therefore 16

data points were used to represent 512 samples: each such set of 16 points was

considered as a feature vector (a pattern) for one signal. Data from two axes were

used in each case. In this way, 360 ‘time dom ain’ 32-dimension feature vectors

(that is, 180 for normal and 180 for misfire) were produced.

4.4.2 Features from frequency domain

Power spectrum estimation is a frequency analysis technique widely used for the

processing of vibration signals (Tandon & Choudhury, 1999). For a time signal,

denoted by x(t), the Fourier transform S(J) is given by:

56

P r e - p r o c e s s in g S t r a t e g y

S (f) = f^ x (t) e ~ j2*‘dt = \ "[f] \ ej0(f)

where |S (/) | and 0 (f) represent the amplitude and phase of the Fourier

transform, respectively.

The power spectrum, P(f), of x(t) is defined as (Newland, 1993):

P (f) - E (s (f) S ’ (f)) = e | s (/) | 2)

where * denotes the complex conjugate.

For the recorded vibration signals (each with 512 samples), the power spectra

were estimated using a Hanning window, without overlapping (Oppenheim,

1975). By investigating the power spectra, it was observed that the signal power

is contained in 16 frequency components. Thus 16 points of the most significant

information components of each power spectrum were chosen to form a feature

vector.

As with the time-domain signals, with the result that data from two axes were

used in each case, 32-dimension feature vectors were produced.

4.4.3 Features from wavelets coefficients

Wavelet analysis is used to decompose a time-domain signal into a series of

wavelets at different levels. Each of the wavelets in the time domain has the same

length as the original signal, but covers a different frequency band. By selecting

^

P r e - p r o c e s s in g S t r a t e g y

and examining one or more of these wavelets, one can derive the desired

information and remove unwanted parts from the original signal.

For an orthogonal wavelet transform, a signal x(t) at f e [0 ,r] can be decomposed

into a summation of wavelets at a finite number of scales/levels (Staszewski,

1998) as:

° ° 2'-l

x (t) = a 0 + Y J Y . a v +kW(2 ‘ t - k) (4-13)
j = 0 k-0

where 0 , are coefficients of the wavelet transform, w (2J •••) are wavelets of level

j. In this application, the twentieth-order D aubechies’ wavelet is used to

decompose the vibration signal. Figure 4-4 shows an example of the vibration

signal and its corresponding wavelet transform. Since the signal does not need to

be calibrated for the purpose of misfire detection, the units of amplitude were not

labelled in the figure.

Eight levels of wavelet decomposition for the vibration signal in Figure 4-4 are

shown in Figure 4-5. The spectral for corresponding wavelet levels in Figure 4-5

are shown in Figure 4-6. It can be seen that each of the wavelet levels covers a

different frequency band.

In this experiment, the engine was run at 2700r/min and the firing frequency was

approximately 135Hz. By analysing the spectra of wavelet levels in Figure 4-6,

this firing frequency was found to dominate the fourth level of wavelet

58

P r e - p r o c e s s in g S t r a t e g y

decomposition. So the 16 wavelet coefficients representing the fourth wavelet

level were used for misfire detection.

Data from two axes were used in each case, so 180 normal and 180 misfire 32-

dimension feature vectors were created in this way.

0.2

- 0.2
50 100 150 200 250 300 350 400 450 500

Vibration Signal (samples)

0.05

-0.05

- 0.1
100 150 200 250 300 350 400 450 50050

Wavelet Transform

Figure 4-4. Vibration signal and Wavelet transform.

59

P
r

e
-p

r
o

c
e

ssin
g

S

t
r

a
t

e
g

y

le
ve

l
5

le
ve

l
3

P r e - p r o c e s s in g S t r a t e g y

10

5
CM
"53 10>
—

o L------ --------- --------- .-------- .-------- -
500 1000 1500 2 000 2500 3000

500 1000 1500 2000 2 500 3000
2

1

0
500 1000 1500 2 000 2500 3000

5

0
500 1000 1500 2 00 0 2500 3000

500 1000 1500 2000 2500 3000

500 1000 1500 200 0 2500 3000
5

0
500 1000 1500 2000 2500 3000

1

5

0
500 1000 1500 200 0 2500 3000

Figure 4-6. Spectral o f wavelet levels (Horizontal axis unit is Hz).

61

P r e - p r o c e s s in g S t r a t e g y

4.5 Prediction of pre-processing efficiency

The intention of this study was to explore the extent to which the separability

matrix assists in the selection of the most appropriate pre-processing technique.

The separability between normal and misfire conditions for the time domain

dataset was calculated using (3-11), and is listed in Table 4-1. Similarly, the

frequency domain results are given in Table 4-2, and the results for the wavelet

transform are in Table 4-3.

Normal Misfire

Normal 1 1.14

M isfire 1.14 1

Table 4-1. Separability m atrix fo r the engine misfire dataset (Time Domain).

Normal Misfire

Normal 1 1.18

Misfire 1.18 1

Table 4-2. Separability matrix fo r the engine misfire dataset (Power
Spectrum).

62

P r e - p r o c e s s in g S t r a t e g y

Normal Misfire

2.84Normal 1

M isfire | 2.84 1

Table 4-3. Separability matrix fo r the engine misfire dataset (Wavelet).

It is observed that the separability of the dataset from wavelet coefficients is the

biggest, while the time domain is the smallest. According to the discussion in

Section 4.2, the dataset with the greatest separability should result in the most

effective classification performance.

In the next section we explore the predictive value of this technique.

4.6 Implementing the classifiers

As mentioned above, three datasets, each contains 180 normal and 180 misfire 32-

dimension feature vectors for misfire detection were produced from the time

domain, power spectrum and wavelet analysis respectively.

In estimating the classification errors of the designed classifiers on datasets from

different pre-processing techniques, each of the three datasets was equally

partitioned into a training set and a test set. That is, the training set contained 90

normal and 90 misfire feature vectors, and the test set contained 90 normal and 90

misfire feature vectors.

63

P r e -p r o c e s s in g S t r a t e g y

All classifiers had 32 input nodes for the 32 dimensions of the feature vector, and

2 output nodes for representing the two engine conditions (normal and misfire).

The architecture of the classifiers was 32-M-2, where M is the number of hidden

nodes of the MLP, or the number of radial basis functions of the RBFN.

For the M LP, M =40 was found to produce the best classification result after

several trials. Therefore, in this experiment, an architecture of 32-40-2 for MLPs

was used for engine misfire detection.

For the RBFN, the number of hidden neurons of the classifiers for time domain,

power spectrum and wavelet coefficients was set to 80, as these values were found

to produce the best results.

Table 4-4 lists the classification error of the classifiers from features extracted

from the time domain, power spectrum and wavelet coefficients

MLP RBFN

Time domain 35.6 34.4

Power spectrum 34.4 33.3

W avelet coefficients 13.9 15.6

Table 4-4. M isfire detection error (%) using different pre-processing
strategies.

64

P r e - p r o c e s s in g S t r a t e g y

As discussed in Section 4.5, the separability between normal and misfire condition

is 1.14, 1.18 and 2.84 in the feature space formed from time domain, power

spectrum and wavelet coefficients respectively.

From the results in Table 4-4, it is observed that, for both M LP and RBFN, the

classification error is the smallest on the dataset derived from wavelet coefficients

and the largest on the dataset derived from the time domain. This negatively

correlates with the separabilities for the datasets. Overall, this experiment

suggests that the proposed method is effective in selecting an appropriate pre

processing technique for fault classification applications.

4.7 Further experiments

In the last section it was dem onstrated that the best pre-processing techniques

could be selected based on values of the proposed separability measure. This

section carries out an experim ent to further validate the claim made. The

experim ent is concerned with whether the selection strategy is dependent on the

separability values only. That is, for the same set o f recorded signals, the pre

processing technique obtaining largest separability value should result in the

lowest classification error. This further study is particularly useful because we

may have some variations in experiment set-up: for example, we may record

different sets of signals. Therefore the purpose of this further experiment is to

validate the claim: given a set of recorded signals, the proposed selection method

should be capable of identifying the most appropriate pre-processing technique.

P r e - p r o c e s s in g S t r a t e g y

In justifying this argument, a sub-set of the whole set of signals (as used in the last

section) was formed. From the sub-set signals, three sets of feature vector were

extracted from time domain, power spectrum and wavelet coefficients

respectively. Each set contained 200 feature vectors, that is, 100 vectors of

normal condition and 100 vectors of misfire condition. The separability was

calculated for each of the feature sets, and listed in Table 4-55.

Separability between
Normal and Misfire

Time domain 1.49

Power spectrum 1.63

W avelet coefficients 2.23

Table 4-5. Separability fo r fea ture vectors from the sub-set o f signals.

Similarly each set was equally partitioned into a training set and a test set. Table

4-6 lists the classification errors for feature vectors extracted from this sub-set of

signals.

5 It is observed that the value o f the separability o f this dataset differs from that com puted on the
dataset from the w hole set o f signals. This is plausible because the sub-set and the w hole-set
have different distributions. Here w e are not concerned with the difference in the distributions,
we sim ply focus on how to identify the most appropriate pre-processing technique for a given
set o f signals.

66

P r e - p r o c e s s in g S t r a t e g y

MLP RBFN

Time domain 28 29

Power spectrum 27 26

W avelet coefficients 18 20

Table 4-6. Classification error (%) on the feature sets from the sub-set o f
signals.

By exam ining the results listed in Table 4-5 and Table 4-6, it is clear - again - that

the classification error decreases with the increase of separability.

4.8 Summary

The two experiments described in this chapter were conducted to assess the claim:

given a set of signals, the proposed selection procedure is able to identify the most

appropriate pre-processing technique.

Figure 4-7 summarises the results from the two experiments. From this figure, it is

clear that, for both M LP and RBFN classifiers, the classification error strongly

correlates with the separability.

67

P r e -p r o c e s s in g S t r a t e g y

RBFN-AII
RBFN-Sub

S eparabil ity

Figure 4-7. A summary o f the results on misfire detection using the whole-set
or a sub-set o f the recorded signals. ‘A l l’ indicates the whole set o f
signals. ‘S u b ’ indicates the sub-set o f signals.

4.9 Conclusions

This chapter proposed an efficient selection procedure which was based on the

separability analysis of feature vector sets. The proposed procedure selects the

pre-processing technique which results in the feature vector set with the highest

level of class separability. In the assessment using a real CMFD problem, it was

dem onstrated that - in the case of both the MLP and RBFN classifiers considered

in this thesis - the selection procedure was able to identify the most appropriate

pre-processing technique.

The next chapter will move on to the second stage of developing embedded

CMFD systems: classifier design.

68

5
Classifier Comparison Criteria and Case
Studies

5.1 Introduction

As noted in Chapter 1, this thesis is concerned with the design of three-stage

CMFD systems. In such systems, after the recorded signals have been pre-

processed, the processed signals must be classified. The performance of the

classifier thus plays a central role in the whole CMFD process.

A classifier may be suitable for some kinds of problem and not suitable for others,

depending on the used performance measuring criteria (Michie, 1994; Mak, et al,

1993; W ilson, et a l, 1997; Terra & Tinos, 2001; Liu & Gader, 2002; Prakash, et

al, 2002). Thus an appropriate classifier needs to be selected early in the design

process.

The effectiveness o f neural network classifiers has traditionally been compared

using em pirical studies (Zhang, 2000; Prechelt, 1996). This chapter, and the two

that follow, are devoted to such an empirical comparison, with a focus on practical

CMFD applications.

69

C l a ss if ie r C o m p a r is o n M a t e r ia l s

This chapter provides the necessary background material for the experimental

comparisons in the next two chapters, by:

1) identifying new comparison criteria based on the distinct features of

embedded CMFD applications;

2) describing datasets from classification problems with different levels of

classification difficulty;

3) describing the results of experiments in which the basic classification

performance of M LP and RBFN classifiers was compared using the above

datasets.

5.2 The comparison criteria

To evaluate the perform ance of neural classifiers, a number of comparison studies

have been carried out since 1990 (Michie, et al, 1994; Ripley, 1994; Jain & Mao,

1997; Zhang, 2000; Hsu & Lin, 2002). Notably, in 1997, IEEE Transactions on

Neural Networks published a special issue on artificial neural networks and

statistical pattern recognition techniques. In this issue, Holmstrom et al (1997)

compared 18 statistical and neural classifiers on two datasets: hand-written digits

data and phonem e data. The neural classifiers compared in their paper were

multilayer perceptron and learning vector quantisation. It was concluded that,

compared to statistical classifiers, the neural classifiers provide an attractive

alternative by com bining good classification performance and less complex

design. O ther earlier efforts in comparing neural classifiers date back to 1990.

One of the first contributions was made by Cheng & Titterington (1994). Cheng

& Titterington explored the links between neural networks and statistical

70

C l a s s if ie r C o m p a r is o n M a t e r ia l s

methodology. They showed that some statistical procedures can be given a neural

network expression, and that neural networks can be provided with a statistical

explanation/commentary. In the same year, Ripley (1994) published a paper

setting up a framework for com paring classifiers from statistics, neural networks

and machine learning. He com pared Bayes’ rule, linear discriminant analysis,

logistic discriminant analysis, quadratic discriminant analysis, k nearest

neighbours, multivariate adaptive regression spline, projection pursuit regression,

classification tree, learning vector quantisation and MLP on three datasets:

synthetic data, sonar data, and forensic glass data. It is also worth mentioning the

project StatLog under the ESPRIT programme of the European Community

(Michie, 1994). StatLog com pared and evaluated 23 different classifiers from

statistics, machine learning and neural networks on 22 datasets. The results

showed that there was no unique best classifier in terms of classification accuracy.

On analysing published results in comparison, Duin (1996) argued that a

straightforward and fair com parison should be carried out in a defined application

domain with good com parison criteria.

Chapter 1 analysed the distinct characteristics of CMFD applications. From the

discussions in that chapter it is clear that, in addition to the evaluation of

classification accuracy, the criteria for CMFD applications must include the

assessment o f the classifier’s ability to deal with multiple faults, unknown faults

and limited amounts of available data.

71

C l a ss if ie r C o m p a r is o n M a t e r ia l s

In addition, as also discussed in Chapter 1, embedded systems have - compared to

‘desktop’ and ‘w orkstation’ computers - severely limited memory and CPU

power. Therefore, in contrast to the great majority of previous studies in this area,

the hardware resources required to implement MLP and RBFN classifiers will be

considered in some detail in this study. Hardware requirements must be assessed

in two ways: processor requirements and memory requirements. Here the former

requirement refers to the processor time needed to train and apply the classifier,

while the latter requirem ent indicates how much memory is required to implement

a classifier.

In summary, the criteria to be used in this thesis for the comparison of M LP and

RBFN classifiers for use in embedded CMFD applications are as follows:

• Basic classifier perform ance in terms of classification error (or

classification accuracy).

• The ability to detect unknown faults.

• The ability to deal with multiple faults.

• The effects of dataset size on generalisation ability.

• The processor requirements.

• The m emory requirements.

5.3 The case studies

W hen exam ining the literature, the history of neural classifier comparison can be

roughly divided into two periods: pre 1996 and post 1996. The research on neural

classifier comparison began around 1990 and attracted increasing interest in the

72

C l a s s if ie r C o m p a r is o n M a t e r ia l s

following years (M ichie, 1994; Blayo, et a l, 1995; Prechelt, 1994; Zheng, 1993).

In the early period, although researchers realised that classifier performance can

only be com pared using different application problems, many published works

used no more than one problem in their studies 6. Using a single problem for

neural network com parisons is now considered insufficient, because a single

problem cannot represent the variety of classification difficulties. Since the

publication of some distinguished researchers’ work (for example, Michie, 1994;

Prechelt, 1996; Duin, 1996) in which they strongly suggested that editors and

reviewers should set significantly higher standards, most researchers have used

multiple problems to evaluate classifiers. In line with these recom mendations, the

present study involves data from multiple problems.

Having decided to base the com parison on data from multiple problems, the next

question is what kind o f problem s should be employed. Generally classification

problems can be differentiated into artificial, realistic and real problems (Ripley,

1994; Prechelt, 1996). Prechelt (1996) described these three kinds of problems as

follows:

6 Prechelt (1996) analysed articles published in 1993 and 1994 in four o f the oldest and most
w ell know n journals dedicated to neural network research. The four journals are Neural
N etw orks, Neural Com putation, N eurocom puting, and IEEE Transactions on Neural N etworks.
He observed that around 40% o f the articles used no more than one problem . He suggested
that in future articles not using a m inim um o f tw o problem s “should usually be rejected” . This
v iew w as echoed by researchers in experim ental evaluation o f neural networks. S ince then
using m ultiple problem s was becom ing the standard practice in experim ental evaluation o f
neural networks.

73

C l a ss if ie r C o m p a r is o n M a t e r ia l s

• Artificial problem s are those whose data are generated synthetically based

on some simple logic or arithmetic formula, for example, encoder/decoder,

sine wave, etc.

• Realistic problems also consist of synthetic data, but these are generated by

a model with properties similar to those can be found in the physical world.

• Real problem s consist of data that represents actual observations of

phenom ena in the physical world.

Although artificial problem s are weak in connection with the real world, they are

commonly acceptable and have served for an illustration of a classifier

performance in m any publications. Realistic problems are considered useful to

assess the behaviour o f a classifier on problems with known properties, they

provide the best way to characterise the kinds of problems for which a classifier

will yield good results. Real problems usually have characteristics that are not

com pletely known, yet they act as a real challenge for classifier performance.

This study uses the following classification problems:

1) A m athematical model (described in Section 5.3.1);

2) A non-linear cooling system model (described in Section 5.3.2)

3) A breast cancer diagnosis dataset (described in Section 5.3.3).

Problem 1 is a realistic problem because the model of this type is quite general

and fits, for example, the linearlised engine model of Hsu et al (1995). Problem 2

is a complex realistic problem. Problem 3 is a real problem, it is publicly

74

C l a ss if ie r C o m p a r is o n M a t e r ia l s

available and has been used in many classifier comparison research (for example,

Lampariello & Sciandrone, 2001; Heinke & Hamker, 1998).

Each problem is described, in turn, in the following sub-sections.

5.3.1 The Mathematical Model (MM) case study

The following m athematical model represents a large class of static diagnosis

problems and is adapted from that introduced by Kramer & Leonard (1990), and

described as follows:

Here Y represents the m easurem ent vector of the plant, Yo represents the plant

nominal steady state. M easurem ent Y is a function of plant physical parameters

p,/(p), and suffers from m easurement noise v.

Plant faults are caused by deviation of parameters. All parameters are scaled such

that their numerical value is zero at the nominal operating point. To simplify the

problem, Y is assum ed to be a linear function of p, that is:

a is a distribution matrix of parameter effects on the measurement vector. Here

we assume that Y has two measurements yi and yj, p has two parameters p\ and

P2 , and:

Y = Y0 + /(p) + v (5-14)

Y = Y0 + a p + v (5-15)

75

C l a s s if ie r C o m p a r is o n M a t e r ia l s

This means that fault p\ causes >’i and yi to deviate in the same direction, and fault

p i causes >’i and >2 to deviate in the opposite direction.

The classes are defined as:

Normal (Co): |a |< 0.05, |/?2|< 0 .0 5

Fault 1 (Ci): |p , |> 0 .0 5 , |p 2|< 0 .0 5

Fault 2 (C2): |p ,| < 0.05, |p 2j > 0.05

v ,,v 2 ~ N (0, 0.015)

One set of training data was generated with values of p\ and p i sampled from the

normal distribution N{0, 0.25). In total, 300 input/output pairs (/ e. 100

input/output pairs per class respectively) were generated from (5-15) and were

used for training all networks.

Figure 5-1 illustrates the class distribution in the measurement space.

76

C l a ssifie r C o m p a r is o n M a t e r ia l s

0.5

-0.5

-1

O O q

* * +

N orm al

o o+++

-1 -0.5 0.5

Figure 5-1. Class distribution o f mathematical model dataset
‘. ’—Normal, ‘+ ’—fa u lt 1, ‘o ’—fa u l t2.

One additional set of test data was also generated. This dataset was intended to

explore the generalisation (interpolation) ability of the networks and had the same

distribution as the training set.

Table 5-1 shows the separability matrix (using k = 1 in the separability measure

proposed in Chapter 3) for a combination of the training and testing datasets.

Normal Fault 1 Fault 2

Normal 1 141.88 85.42

Fault 1 141.88 1 180.37

Fault 2 85.42 180.37 1

Table 5-1. Separability Matrix fo r the ‘Mathematical M odel’ Dataset.

77

C l a s s if ie r C o m p a r is o n M a t e r ia l s

Since we opted to avoid overlap between classes when we generated this dataset,

the separability measures have large values. Thus, using these parameters, this

dataset provides us with a well-defined benchmark for assessing basic classifier

performance.

5.3.2 Diesel engine Cooling system (DC) case study

The second dataset used in this study was generated from the non-linear model of

a cooling system o f a diesel engine developed at the University of Leicester

(Twiddle, 1999)7.

Such a cooling system is designed to rapidly bring the engine to its most efficient

operating temperature and to maintain this temperature even when (for example)

the load and speed are varied. This section briefly describes the non-linear

therm odynamic cooling system model which was used to generate data for fault

diagnosis of a diesel engine cooling system. A full description of the model is

available elsewhere (Twiddle, 1999).

The cooling system may be considered as two models, a model for heat transfer

from the engine block to coolant, and a model for heat dissipation from the

radiator.

7 Special thanks to Dr John T w iddle w ho kindly provided the m odel and the data for this study.

78

C l a ss if ie r C o m p a r is o n M a t e r ia l s

For the model of heat transfer from the engine block to coolant:

d r . h .A , / * tnhCr , _ x

dr m fcCr m foCr

where: hb is the convective heat transfer coefficient between the block and the

coolant.

A t is the internal area of contact between the block and the coolant over

which this heat transfer takes place.

mb is the mass of coolant contained within the block.

C< is the specific heat capacity of the coolant.

Tb is the engine block temperature

T\ is the coolant tem perature at engine block inlet.

72 is the coolant temperature at the engine block outlet.

For the model of heat dissipation from the radiator:

= _ T) _ T _ r j _ L g F A J t 4 - T 4)
d t m ra d C c m r a A

where: m radCt is the mass of coolant in the radiator multiplied by the specific

heat capacity, Cc, of the coolant.

hradA rad is the radiator heat transfer coefficient multiplied by the total

surface area of the radiator,

cris Boltzmans constant

L is relative em issivity for the surface of the radiator

F is defined as the shape factor

Ta is the ambient temperature

7 3 is the coolant temperature at the radiator outlet

79

C l a ss if ie r C o m p a r is o n M a t e r ia l s

In the above equations the mass flow rate of coolant is assumed to be proportional

to rpm, N, and is given by:

m = k Npum p

Using the model, various faults may be simulated, including those considered in

this study: ‘fan fault’ (that is, the radiator fan is permanently off), ‘thermostat

fault’ (that is, the thermostat is stuck open) and ‘pump fault’ (the coolant pump is

damaged). To detect these faults, we have access to six measurements: the

ambient tem perature (Ta)\ the engine block temperature (Tb), the coolant

temperature (T \) at engine block inlet; the coolant temperature (T2) at the engine

block outlet; the coolant temperature (T3) at the radiator outlet; and the engine

speed (N).

Using the model, a training dataset (with 300 samples) and a testing dataset (with

300 different samples) were created. In each case, the datasets consisted of equal

numbers of ‘norm al’, ‘fan fault’, ‘thermostat fault’, and ‘pump fault’ data (75

samples o f each).

The separability matrix (again with k = 1) for a combination of both testing and

training datasets is shown in Table 5-2. Note in particular the fact that the

‘norm al’ and ‘therm ostat fault’ classes overlap in these datasets. This represents

the fact that, with the available measurements, it is not always possible to

distinguish between these two situations. As a result, this dataset is particularly

valuable in this study as an example of ‘overlapping classes’.

80

C l a s s if ie r C o m p a r is o n M a t e r ia l s

Normal Fan fault Thermostat
fault

Pump
fault

Normal 1 268.54 0.67 56.45

Fan fault 268.54 1 244.61 306.35

Therm ostat fault 0.67 244.61 1 62.45

Pump fault 56.45 306.35 62.45 1

Table 5-2. Separability M atrix fo r the Cooling System Dataset.

5.3.3 Breast Cancer (BC) case study

A publicly accessible breast-cancer dataset was also used in this study8.

Originally this breast cancer dataset was obtained from the University of

W isconsin Hospitals, M adison (M angasarian & W olberg, 1990).

Here the classification task involves distinguishing between datasets derived from

cancer cells (Heinke & Hamker, 1998). The dataset is characterised by small

overlaps and com plex decision boundaries. There are two pattern classes: benign

tumour and m alignant tumour. The two classes are distinguished by nine

parameters. These include the clump thickness, the uniformity of cell size and

cell shapes, the amount of marginal adhesion, and the frequency of bare nuclei.

These various values were collected by microscopic examination. There are 690

8 This dataset was clearly not from the C M FD domain. An important reason w hy it was used
here is that it is readily available for public use from the U niversity o f California.
http://w w w .ics.uci.edu/~m learn/M L R epository.htm l. A s a result, it makes it possib le for other
researchers to use the results presented here to ‘benchm ark’ their ow n classifiers.

8 1

http://www.ics.uci.edu/~mlearn/MLRepository.html

C l a ss if ie r C o m p a r is o n M a t e r ia l s

examples in the original dataset: in this study, 600 examples were used. The data

were then divided into a training set and a test set, each with 300 examples. In the

training set, the class of benign tumour has 160 examples and the class of

malignant tum our has 140 exam ples, note that we have attempted to keep the size

of the two training classes roughly equal (see Parikh, et al, 1999, for a discussion

of this issue). In the testing set, the class of benign tumour has 215 examples and

the class of malignant tum our has 85 examples.

The separability matrix (again with k = 1) for breast cancer datasets is shown in

Table 5-3.

Benign tumour M alignant tumour

Benign tum our 1 4.62

M alignant tum our 4.62 1

Table 5-3. Separability M atrix fo r the ‘Breast C ancer’ Dataset.

5.3.4 Summary of dataset organisation

Datasets were obtained from three classification problems: a mathematical model

for static fault diagnosis, a non-linear cooling system model and breast cancer

diagnosis. The datasets were characterised using the proposed non-parametric

separability analysis method. These problems each pose a different challenge to

classifiers. The dataset from the mathematical model has low dimensionality and

good separability, this provides us with a well-defined benchmark for assessing

82

C l a s s if ie r C o m p a r is o n M a t e r ia l s

classifier basic performance. The dataset from the non-linear cooling system

model has medium dim ensionality and good separability between some classes

and very low separability between others. This dataset is particularly valuable to

investigate classifier perform ance in terms of overlapping classes. The breast

cancer dataset is publicly available, it has small overlaps and a complex class

boundary.

5.4 Basic classifier performance

In this section the basic classification performance of the M LP and RBFN

classifiers is com pared. In each case, datasets from three problems are employed:

the mathematical model (M M) for some fault diagnosis problems, the diesel

engine cooling system model (DC), and the breast cancer diagnosis (BC), as

described in Section 5.3. The basic performance of a trained classifier is

com pared based on classification error rate on the testing dataset. This section

begins with a discussion o f the data for designing and testing the classifiers.

5.4.1 Data for designing and testing the classifiers

From the case studies described in Section 5.3, datasets for comparing classifier

performance were organised. Approximately equal numbers of samples in all

classes were assumed, that is, each of the classes has approximately equal a priori

probability, P(for i = \ , 2 , - c . Although this assumption may not always be

satisfied in some real applications, the unequal size of classes can be re-organised

into groups of equal size. For techniques to accomplish this, Parikh et al (2000)

make some useful suggestions.

83

C l a s s if ie r C o m p a r is o n M a t e r ia l s

From the mathematical model (MM), one set of training data was generated with

values of p\ and p i sampled from the output of normal distribution N{0, 0.25). In

total, 300 input/output pairs (that is, 100 input/output pairs per class respectively)

were generated from (5-15) and were used for training all classifiers.

Two additional sets of test data were also generated, ‘Test 1’ and ‘Test 2 ’. ‘Test

1’ had the same distribution as the training set. ‘Test 2 ’ had values distributed

over the whole param eter space. For this set, the ‘correct’ results for patterns

from regions out of the training set were determined by distance, that is, a pattern

is assumed to belong to the nearest class. These datasets were used to explore the

generalisation ability of each network, both in terms of interpolation (Test 1) and

extrapolation (Test 2).

From the diesel engine cooling system (DC) model, both the training dataset and

the test dataset had 300 samples with equal class sizes (equal class distribution

probability). The num ber o f samples was determined empirically, that is, further

increasing the num ber of samples did not show a significant improvement in

classifier perform ance.

For breast cancer (BC) diagnosis, the number of samples available was limited: as

discussed in Chapter 1. Limited number of samples is a common problem in

CM FD applications.

84

C l a ss if ie r C o m p a r is o n M a t e r ia l s

Table 6-1 lists class distribution probability and the number of samples in training

and test datasets.

Prior Class
Probability

Training Set
Samples

Test Set
Samples

MM

"0.33"
0.33
0.33_

300
Test 1

300
Test 2

300

DC

'0.25"
0.25
0.25
0.25

300 300

BC
0.625

0.375
300 300

Table 5-4. Num ber o f samples in training and test datasets fo r each o f the
three experiments.

5.4.2 Experiments

The three experim ents conducted to compare basic classifier performance are

discussed below.

a) MM case study

Both M LP and RBFN classifiers for the MM study had 2 input neurons, 3 output

neurons and M hidden neurons, represented by 2-M-3.

85

C l a s s if ie r C o m p a r is o n M a t e r ia l s

For the M LP, structures with 3, 4, 6 and 15 hidden neurons respectively were

implemented and compared. For the RBFN, the maximum number of radial basis

functions was set at 50, since the classification error was found to decrease very

little after this number. Then the RBFN was trained with different spread

constants for the Gaussian functions.

Table 5-5 sum m arises the performance of the two classifiers on this task. Note

that the classification error is given as a percentage. The numbers in the second

row of the table are the num ber of hidden nodes. Numbers in parentheses are the

spread constants for the Gaussian functions used with the RBFN.

MLP RBFN

Number of
hidden neurons

3 4 6 15 50
(0.01)

50
(0.025)

50
(0.05)

50
(0.1)

Training error 33.7 0 0 0 2.3 0.3 0 0

Error for Test 1 39.7 1 0.3 0.3 5.0 0.3 0.3 0.3

Error for Test 2 33 17.7 26.3 27.7 4.67 1.7 18.67 10.3

Table 5-5. Classification error rate (%) fo r Static fa u lt diagnosis.

From the table, the following observations can be made:

1) For this problem, the M LP with 4-hidden neurons and the RBFN with

spread constant 0.025 provide the smallest classification error on the

training set and testing sets. The errors (on the Test 1 dataset) are very

sim ilar for the two classifiers. Referring back to Table 5-1, it is clear that

the classes have large separability, while the classification results here

86

C l a ss if ie r C o m p a r is o n M a t e r ia l s

have very small error rate for both MLP and RBFN. Thus the results

illustrate that both classifiers perform well if there is a large separability

between classes.

2) In considering these results, it should be noted that the M LP starts training

from random initial weights and converges to a possible local minimum,

while the RBFN converges to a global minimum if the output layer is

linear and the positions of radial basis functions in the feature space are

located optim ally a priori (Looney, 1997). Thus, using an MLP, it is

som etim es necessary to train more than once to obtain an ‘optim um ’

result, a fact which may increase the training time substantially. In all of

the tables presented in this chapter, the MLP training was performed five

times or more to find the best performance. The results presented here are

the best that were obtained over these runs. Table 5-6 gives the results of

five runs o f training for the MLP with 4 hidden neurons. It is clear from

the table that each of the trainings may give a different classification error.

3) For practical applications, it can be the case that the training data do not

fully represent the feature space. The resulting classification during

‘testing’ is then a result of either interpolation or extrapolation from the

available (training) data.

In term s o f interpolation, it is observed that both classifiers exhibit very

sim ilar classification errors (0.3%) within the regions of the training set.

On the other hand, in terms of extrapolation (on the Test 2 dataset), the

classification error of RBFNs (1.7%) is better than that of MLPs (17.7%)

(see Table 5-5) for samples from regions unrepresented by the training set.

87

C l a ssifie r C o m p a r is o n M a t e r ia l s

This is a plausible result. The decision boundary of RBFN is formed

based on distance and that of the MLP is unbounded. The MLP therefore

‘arbitrarily’ classifies unseen patterns which lie outside the regions

described by the training set9.

Runs 1 2 3 4 5

Error of training 1.0 1.0 1.0 17.0 7.3

Error for Test 1 1.0 1.0 1.0 19.3 12.0

Error for Test 2 39.7 39.7 38.0 23.0 24.3

Table 5-6. Results o f M LP fo r 5 runs.

b) DC case study

The dataset used in the second study of basic classifier performance was

generated from the non-linear model of a diesel engine cooling system described

in Section 5.3.2. The classifier for diesel cooling system diagnosis is

implemented as shown in Figure 5-2.

Tr
T 2 -

T3-
T t t -

T f

N -

Classifier

-►Normal

-►Radiator fault

■►Thermostat fault

-►Pump fault

Figure 5-2. Classifier fo r Cooling system diagnosis.

9 This is d iscussed in greater detail in Chapter 7.

C l a s s if ie r C o m p a r is o n M a t e r ia l s

In this experiment, both M LP and RBFN classifiers had 6 input neurons, 4 output

neurons and M hidden neurons, represented by 6-M-4. For the M LP, 10, 20, 30,

40 hidden neurons structure were implemented respectively. For the RBFN, the

spread constant o f the Gaussian functions was varied as detailed in the results

table (in parentheses).

Using this dataset, the performance of the two classifiers was compared. The

results are listed in Table 5-7.

M LP RBFN

N umber of 10 20 30 40 150 99 49 49
hidden neurons (0.5) (1) (2) (3)

Training error 34.3 17.3 14.7 16 0 12 16 18.7

Testing error 35.3 17.3 18.7 19.3 18 18 17.3 22

Table 5-7. C lassification error rate (%)for Cooling system diagnosis.

For this task, to achieve a low classification error while keeping the classifier size

small, the structure o f the classifiers were 20 hidden neurons for the M LP and 49

hidden neurons for the RBFN. From these results, a minimum ‘testing error’ of

17.3% was obtained for each classifier, that is, the minimum classification error

using the (unseen) test dataset was 17.3% for both techniques. This classification

error is prim arily caused by the confusion between the classes ‘norm al’ and

‘thermostat stuck open’ (with a separability of 0.67, see Table 5-2), providing

89

C l a ss if ie r C o m p a r is o n M a t e r ia l s

empirical confirm ation that neither classifier can effectively classify classes which

have low separability.

c) BC case study

Both o f the classifiers used for the cancer study had 9 input neurons, 2 output

neurons and M hidden neurons, represented by 9-M-2. For the MLP, structures

with 3, 4, 8 and 15 hidden neurons respectively were implemented with learning

parameters as described in Section 2.4. For the RBFN, the spread constant was

set to 4.0, 5.0 and 7.5 respectively. The orthogonal least squares algorithm was

used to find the appropriate number of hidden neurons for the RBFN classifier.

Table 5-8 lists the classification error rates.

M LP RBFN

Num ber of
hidden neurons

3 4 8 15 59
(4.0)

51
(5.0)

48
(7.5)

Training error 2.0 1.3 1.3 0.3 1.7 0.7 1.3

Testing error 3.3 2.7 2.7 3.3 1.7 1.7 1.3

Table 5-8. Classification error rate (%) fo r Breast cancer.

From the results, it is seen that the RBFN classifiers achieved a slightly smaller

classification error rate than M LP classifiers for the breast cancer data. However

the difference in classification error rates between all classifiers is small and all

classifiers can provide good classification results (below 3.3% error rate).

90

C l a ss if ie r C o m p a r is o n M a t e r ia l s

From Table 5-8, the ‘best’ classifier of each type was selected, that is, the MLP

with 4 hidden nodes and the RBFN with 48 hidden nodes. Again, for this

problem, the number of hidden nodes required for the RBFN is much larger than

for the MLP.

5.4.3 Basic classifier performance

The basic perform ance of M LP and RBFN classifiers was com pared in this

section, using three disparate datasets. The results dem onstrated that both

classifiers exhibit similar classification error rates. It was also noted that MLP

always requires few er hidden nodes than RBFN.

5.5 Conclusions

By analysing the characteristics of CMFD applications and the hardware

constraints of em bedded systems, a comprehensive set of classifier comparison

criteria were identified in this chapter. These criteria consist o f classification

error, dealing with unknown and multiple faults, working with limited data size,

processor requirem ents and memory requirements. In addition, datasets for three

suitable classification problems were described.

In order to obtain the classifier structures for assessing hardware requirements of

MLP and RBFN classifiers in the next chapter, this chapter also conducted a set of

comparative experiments to establish basic classifier performance.

91

C l a ss if ie r C o m p a r is o n M a t e r ia l s

This material forms the basis of the experimental studies in the next two chapters.

Chapter 6 investigates the hardware requirements when M LP and RBFN

classifiers are im plem ented on embedded systems. Chapter 7 compares the

performance of M LP and RBFN classifiers with respect to the criteria

characterising the CM FD applications.

92

6
C lassifier Comparisons: Hardware
Constraints

6.1 Introduction

Embedded CM FD systems, based on microcontrollers in particular, are

increasingly found in a variety of plants (Chan, et al, 1997; Flammini, et al,

2001). As discussed in Chapter 1, such systems often have lim ited memory and

CPU power. These hardware limits pose a practical challenge to the

implementation of classifier in embedded CM FD systems (Dash &

Venkatasubram anian, 2000; Kobayashi, et al, 2002).

In measuring the processor requirement of neural networks, some previous studies

have used com puter time (for example, Michie et al, 1994; Mak et al, 1993).

However, the use of com puter time makes results difficult to compare when

classifiers are im plem ented on different computers. In this thesis, ‘flops’

(floating-point operations) are used to measure the processor requirements.

Because the number of flops for a classifier solely depends on its algorithm

(Rathbun, et al, 1997), the speed index of the classifier will be independent of the

particular processor used and the results could be directly applicable elsewhere.

93

H a r d w a r e C o n s t r a in t s

To evaluate memory requirements, all classifiers are implemented on two

common types of m icrocontroller and measurements of ROM and RAM memory

are made from the com piler outputs.

Note that, at the end of this chapter, consideration is given to the link between

CPU and memory requirements and system power consumption.

6.2 Processor requirements

This section begins with an analysis of processor requirements for MLP and

RBFN classifiers on the basis of the classifier structure itself, and then goes on to

discuss how to measure the processor requirements effectively. The processor

requirements o f the classifiers are then experimentally compared on the three case

studies described in Chapter 5.

6.2.1 Analysis of processor requirements

The processor requirem ent of a classifier can be assessed in two phases, training

and classification. The processor requirement in the training phase is determined

by the particular algorithm em ployed (Marzi, 2002) and is difficult to formulate

due to the com plexity and variety of learning algorithms. Here only the processor

requirement in the classification phase is theoretically considered. The training

phase will be evaluated in empirical experiments.

Consider all neural classifiers with n input nodes, c output nodes and m hidden

nodes. The processor time required for floating (add, multiply, divide and

94

H a r d w a r e C o n s t r a in t s

exponent) operations is %a, %m, %d, x e respectively. Then the time required

for the classification of an input sample can be formulated as follows.

For M LP the time is tm:

l = (x»,-'i + v (' i - i) + ' 0 - m + K + ' c« + ' 0 ' m

+(*,„ ' m + ^ ■ (m - 1) +) • c + (x , + T„ + Xd) • c
(6- 1)

For RBFN the time is tr:

K = (K + ' t „ + 2 x l„+Tj - / i + T<, - (n - l) + Tf)-m

+(t „ - m + x a (m - l) + T,) c
(6-2)

Assuming add, multiply and divide require approximately the same clock cycles,

Ta ~ xm ~ x d ~ x (Pont, 2001; Intel51; Intel96), the above formulae may be

simplified as follows:

t m ~ 2(nm + m e + m + c) ■ x + (m + c) • i t

« 2 (n + c) • m • x + (m + c) - l e

tr ~ (6m n + 2m e - m) • x + m • x e

~ (6n + 2c) • m • t + m • x e

(6-3)

(6-4)

From the above equations, if all the classifiers have the same number of hidden

nodes, and if c is small, then the MLP requires lower processor resources.

However, RBFNs usually require many more hidden nodes than MLPs (as seen in

the previous chapter) and may thus be expected to require more CPU resources.

95

H a r d w a r e C o n s t r a in t s

To consider the processor requirements on a specific microcontroller, the

classification of M M data on standard 8051 microcontroller (Calcutt, 1998) is

chosen as an example. As shown in Section 5.4.2, there are 4 hidden nodes for

M LP and 50 for RBFN. Then:

L = 4 8 t + 7 t ,

tr = 9 0 0 t + 50t^

The calculation of xe is at least 20 times longer than that of r (M icrosoft, 1992),

say Te = 2 0 t , then:

tm = 188t, tr = 1900x,

The floating point operation of r requires 200 cycles on an 8051 device, assuming

the code was com piled with the Keil compiler (Pont, 2001). Then, at 12 MHz on

a standard 8051, £=0.0002 second and therefore:

tm = 0 0376s, tr - 0.38s,

This gives an approxim ate analysis for the processor requirements of the

classifiers.

However, in the com puter industry, the measure “floating-point operations”

(flops) per second is often used to measure a com puter’s ability to perform

calculations with floating point numbers (Microsoft, 1992). Since the

im plem entation of the algorithm of a classifier consists of certain numbers of

‘flops’ and the number is uniquely determined by the algorithm complexity

(Rathbun, et al, 1997), ‘flops’ can be used to indicate the processor requirements.

96

H a r d w a r e C o n s t r a i n t s

The advantage of using ‘flops’ is that the measure will be independent of the

particular com puter used. Thus it makes the processor requirements of the

classifiers obtained by different people or on different computers more easily

com parable. Therefore, ‘flops’ was used to represent the processor requirements

in the following experiments.

6.2.2 Experiments

This section presents results for comparing the processor requirements of MLP

and RBFN classifiers on three classification problems. For each problem, two

datasets were used. The classifiers were trained using the Training dataset and

tested using the Test 1 dataset as described in Section 5.4.

In the following results, ‘Training flops’ are the total number of flops required for

training the whole netw ork and ‘Classification flops’ are measured per sample.

The tables also list classification error rates to help select the proper classifier

structure, that is, the proper number of hidden nodes for neural classifiers.

a) MM case study

MLPs were trained and tested on the MM datasets using these numbers of hidden

neurons: 3, 4, 6 , 8 and 15. The results are listed in Table 6-1.

For RBFN the maximum number of hidden neurons were set to 50 and various

spread constant values were tried. The results are listed in Table 6-2.

97

H a r d w a r e C o n s t r a i n t s

Hidden neurons 3 4 6 8 15

Testing error (%) 39.7 1 0.3 0.3 0.3

Training flops 3.76-108 4.64-108 6.43 108 8 .2 1 1 0 s 1.45 109

Classification flops 6 6 82 114 146 258

Table 6-1. Processor requirement o f M LP fo r MM.

Spread constant 0 . 0 1 0.025 0.05 0 . 1

Testing error (%) 5 0.33 0.33 0.33

Training flops 9.59-107 9.59 107 9.59 107 9.59-107

Classification flops 1059 1059 1059 1059

Table 6-2. Processor requirem ent o f RBFN fo r MM.

To compare the processor requirem ents, the classifier with the minimum error rate

is identified from M LP and RBFN, and listed in italic bold font in the above two

tables as well as follow ing tables.

Note that, in this case, for the best classification error rate, the training ‘speed’ of

the M LP is 6.7 times slower than that of the RBFN, but the testing speed of the

MLP is 9.3 times faster than RBFN (primarily because the RBFN has a larger

number of hidden units).

98

H a r d w a r e C o n s t r a i n t s

b) DC case study

For M LP classifiers, the number of hidden neurons employed was: 10, 20, 30 and

40. The training flops and classification flops are listed in Table 6-3.

For RBFN classifiers, the maximum number of hidden neurons was set to 150 and

the spread constant was varied. The training flops and classification flops are

listed in Table 6-4.

Hidden neurons 10 20 30 40

Testing error (%) 35.3 17.3 18.7 19.3

Training flops 7 .8 1 0 s 1 .49- l(f 2 .2 -1 0 9 2 .9 M 0 9

Classification flops 284 544 804 1064

Table 6-3. Processor requirem ent o f M LP fo r DC.

Spread constant 0.5 1 2 3

H idden neurons 150 99 49 49

Testing error (%) 18 18 17.3 2 2

Training flops 9 .8 1 1 0 s 4.05-10s 1.16 108 1.16 1 0 s

Classification flops 6462 4245 2162 2162

Table 6-4. Processor requirement o f RBFN fo r DC.

It is observed again that, for the classifier with the best classification error rate,

the training ‘speed’ o f the M LP is 12.8 times slower than that o f the RBFN, but

the testing speed of the M LP is 4 times faster than that of the RBFN.

99

H a r d w a r e C o n s t r a i n t s

c) BC case study

For M LP classifiers, the different numbers of hidden neurons tried were: 3, 4 8

and 15. The training flops and classification flops are listed in Table 6-5.

For the RBFN classifier the maximum number of hidden neurons was set to 100

and the spread constant was varied. The training flops and classification flops are

listed in Table 6 -6 .

H idden neurons 3 4 8 15

Testing error (%) 3.3 2.7 2.7 3.3

Training flops 2.50-108 3 .2 1 108 6.06-108 5.77T 0 8

Classification flops 96 124 236 432

Table 6-5. Processor requirem ent fo r M LP with BC.

Spread constant 4.0 5.0 7.5

Hidden neurons 59 51 48

Testing error (%) 1.7 1.7 1.3

Training flops 1 1.39-108 1.05 108 9 .5 1 107

Classification flops 3246 2760 2598

Table 6-6. Processor requirement fo r RBFN with BC.

Note that, again, for the classifiers with best classification error rate, the training

‘speed’ of the M LP is 3.4 times slower than that of the RBFN, but the testing

speed of the M LP is 21 times faster than that of the RBFN.

100

H a r d w a r e C o n s t r a i n t s

6.2.3 Processor requirements: discussion and conclusions

This study dem onstrates that, for these three problems, the training of an MLP

requires considerably more processor operations than that of a RBFN, while the

testing of an M LP requires fewer processor operations. The detailed results are

summarised in Table 6-7 for training and in Table 6 - 8 for classification.

Problem MM DC BC

M LP 6.43-108 1.49 109 3.21 - 10s

RBFN 9.59-107 1.16-10® 9.51 107

M LP/RBFN 6.7 1 2 . 8 3.4

Table 6-7. A summ ary o f the processor requirements fo r training on the case
studies.

Problem MM DC BC

M LP 114 544 124

RBFN 1059 2162 2598

RBFN/M LP 9.3 4.0 2 1 . 0

Table 6-8. A sum m ary o f the processor requirements fo r Classification on the
case studies.

The processor requirem ents may be a significant factor in determining the

applicability of each technique in embedded systems. In the cases where off-line

training is possible and rapid classification (‘testing’) is required, the MLP may be

more appropriate. H owever, where on-line learning is required, the RBFN may be

more appropriate.

101

H a r d w a r e C o n s t r a i n t s

6.3 Memory requirements

Em bedded systems frequently suffer from memory constraints. Although modern

microcontrollers can directly address large amounts of RAM and ROM memory

and memory prices have fallen, any reductions in memory requirements can

directly translate into savings in the application cost, particularly in high-volume

automotive applications where product cost is of great concern (Wilmshurst,

2001; V ahid & Givargis, 2002). To evaluate memory requirements, all classifiers

were im plem ented on two com mon types of microcontroller and measurements of

ROM and RAM m em ory were made from the com piler outputs.

This section begins with an analysis of the memory requirements based on the

classifier structure and size o f the param eter set. Then memory requirements are

evaluated on both 8 -bit and 16-bit microcontrollers.

6.3.1 Analysis of memory requirements

For a trained network, if the number of hidden neurons of M LP equals the number

of radial basis functions of RBFN, then the two networks can be expected to have

approxim ately the same m emory requirements. For example, for n-M-c structure

of M LP and RBFN, both require memory to store (n +1) • M + (M +1) ■ c floating

point network param eters.

However one should note that, for a given fault classification problem, MLPs

require fewer hidden neurons than RBFNs. Indeed, a RBFN may require more

H a r d w a r e C o n s t r a i n t s

memory than an equivalent M LP because of the large number of hidden neurons

and the com plexity o f the training algorithm.

These issues are explored in the empirical studies below.

6.3.2 Experiments

On-line training o f the classifiers studied in this thesis is rarely practical, because

of the long training tim es that can result (Marzi, 2002). In this study, the concern

is only with the classification (‘testing’) phase of each technique. It is assumed

that training is carried out off-line (perhaps on a desktop computer) and that

weights have been transferred to the embedded environment. This is a common

way of using such classifiers in em bedded applications (Flammini, et al, 2001).

The com m only used microcontrollers for embedded systems are 8 -bit and 16-bit

devices (Calcutt, 1998; Pont, 2001). Thus the code was implemented for two

modern m icrocontrollers: an 8 -bit device (Infineon 80c515c) and a 16-bit device

(Infineon 80c 167c). Table 6-9 and Table 6-10 give the memory requirements of

the two classifiers for the three classification problems. The last row in the tables

shows the relative mem ory differences as percentage between MLP and RBFN

classifiers.

103

H a r d w a r e C o n s t r a i n t s

Problem M M case D C case BC case
2-M-3 6-M-4 9-M-2

Classifier M LP RBFN MLP RBFN M LP RBFN

M 4 50 2 0 49 4 48

M emory
Size

7892 8576 8080 8590 7864 8543

Difference
(%)

8.67 6.31 8.63

Table 6-9. M em ory size required fo r classification: 8-bit m icrocontroller 10.

Problem MM case DC case BC case
2-M-3 6-M-4 9-M-2

Classifier M LP RBFN MLP RBFN MLP RBFN

M 4 50 2 0 49 4 48

M emory
Size

6139 6646 6343 6642 6114 6601

Difference
(%)

8.26 4.71 7.97

Table 6-10. M em ory size required fo r classification: 16-bit microcontroller.

6.3.3 Discussion

In these experim ents, the RBFN classifier required between approximately 6.31%

and 8.67% more memory than the MLP equivalent (using an 8 -bit

10 In this table and the fo llow in g table, the structure o f a classifier is represented as n - M - c , n is
the d im ension o f input vector, c is the number o f classes, M is the number o f hidden neurons.

104

H a r d w a r e C o n s t r a i n t s

microcontroller) and up to approximately 8.26% more memory (using a 16-bit

microcontroller).

However it should be pointed out that, if the number of hidden neurons is small

(as in this experiment), a com paratively large amount of memory is required for

calculation of the exponent (which takes about 3 kbytes of memory on an 8 -bit

m icrocontroller and about 3.6 kbytes of memory on a 16-bit microcontroller). If

these figures are rem oved from the comparison (giving a result more

representative of that expected for a large network), the RBFN classifiers may

require even more m emory than the MLP equivalent11.

6.4 Power consumption implications

One additional observation should also be made. If an em bedded RBFN

implementation requires around 20 times the number of CPU operations as an

equivalent M LP classifier, then, as observed, it may be possible to implement the

MLP classifier more cheaply.

In addition, it should also be noted that it would be possible to implement the

MLP classifier on the same hardware platform, using a much lower oscillator

frequency12. This may be very important because, in modern designs, system

11 This is confirm ed in Chapter 9.

12 T his is now p ossib le , because many m icrocontrollers can be used over a very w ide range o f
oscillator frequencies: from 0 to 24 M H z, or 0 to 50 M Hz (in som e cases). N ote that the use o f
‘0 M H z’ may seem to have little value. H ow ever, in practice, the ability o f the microcontroller
to operate at 0 M H z im proves the chances o f system recovery fo llow ing disruption to the
oscillator source.

105

H a r d w a r e C o n s t r a i n t s

power consum ption is linked almost linearly to oscillator frequency (Pont, 2001).

Thus, the ability to reduce the oscillator frequency can be very valuable,

particularly in battery-pow ered systems.

Similar, but less dramatic, reductions in power consumption can also be obtained

through reduction in memory requirements (Vahid & Givargis, 2002).

6.5 Conclusions

In this chapter the hardware requirements of studied classifiers have been assessed

in terms of processor requirem ents and memory requirements. On the basis of the

results obtained, it is clear that in terms of memory requirements, the MLP

requires less mem ory than RBFN. Also, the processor requirements for the MLP

are considerably less than those for the RBFN. In concluding the chapter, the link

between processor requirem ents (and, to a less extent memory requirements) and

system power consum ption was also considered.

The next chapter shifts the comparison focus to the characteristics of CMFD

applications.

106

7
C lassifier Comparisons: CMFD
Characteristics

7.1 Introduction

The experim ents described in this chapter are concerned with the following

CMFD characteristics:

1) The ability to detect unknown faults.

2) The ability to deal with multiple faults.

3) The effects o f dataset size on generalisation ability.

7.2 Working with ‘unknown’ faults

In the previous classification experiments (Section 5.4), the problems were

studied with the im plicit assumption that all classes in the system are exhaustively

known a priori and that only a single fault may occur at a time. However as

discussed in Chapter 1, one significant difference between generic classifier tasks

and CM FD applications is that, in the latter case, it is often difficult to obtain

information about all possible system faults a priori. As a result many practical

CM FD systems must respond ‘appropriately’ in situations where faults not

evident in the training set are present (Dash S & Venkatasubramanian, 2000;

Tarassenko, et a l, 2000). In this section two experiments were conducted to

107

C M F D C h a r a c t e r i s t i c s

investigate the perform ance of M LP and RBFN classifiers in the presence of such

unknown faults. The consideration of unknown faults begins with an analysis of

the decision boundary property of a classifier. Based on this property, the

capability of a classifier to deal with unknown classes is predicted.

7.2.1 Geometrical analysis of decision boundary forming

Before these networks are used for fault classification, it is important to be aware

of the difference in their inherent decision making properties. The M LP partitions

the input space into decision region using hyperplanes while RBFNs use

hyperspheres (Leonard & Kramer, 1990; Looney, 1997; Bishop, 1995). This

fundamental difference has little effect on interpolation, either a well-trained MLP

or RBFN can be expected to perform well when classifying novel (unseen, non

training) sam ples w hich fall in the range of the training dataset. This was

observed in the basic perform ance comparison in Section 5.4. However, the

underlying differences in these classifiers can be expected to have a greater

impact on extrapolation performance. That is, when classifying samples outside

the range seen in the training dataset. Such samples are inevitable in practical

CMFD applications.

To illustrate the underlying differences in the operation of the two classifiers,

consider a two-dim ensional measurement space. As shown in Figure 7-1, within

the m easurement space, the distribution of samples of normal condition (region N)

and fault conditions (region A and B for fault 1, region C and D for fault 2) is

assumed to be known.

108

CMFD C h a r a c t e r i s t i c s

1

0 .5 xx

0

x<x

-0 .5

1
1 -0 .5 0 0 .5 1

Figure 7-1. D istribution o f three classes in two-dimension space.

The networks for this fault classification problem have 2 input neurons and three

output neurons and are assumed to be trained using available data. After training,

MLPs partition the input space with hyperplanes and so the decision boundaries

are unbounded (the decision surfaces for each MLP class are shown in Figure

7-2). This can be seen in Figure 7-2(b), for example, where the classifier will

produce high values for samples not only in the region of the training samples but

also for samples some distance away (‘some distance’ may be infinitely far in

some directions). On the other hand, since RBFNs partition the input space using

hyperspheres, their decision boundaries are bounded (the decision surfaces for

each RBFN class are shown in Figure 7-3). From the figure, it is seen that RBFN

classifier produces high values for samples only from the regions covered by

training samples. Figure 7-3 (d) clearly shows that the decision boundaries are

closed.

109

C M F D C h a r a c t e r i s t i c s

Figure 7-2. Decision surface o f MLP.
(a) Decision surface fo r ‘Normal * condition,
(b) Decision surface fo r ‘Fault 1 ’,
(c) Decision surface fo r ‘Fault 2 \
(d) Contour o f Decision surfaces.

110

CMFD C h a r a c t e r i s t i c s

Figure 7-3. Decision surface o f RBFN.
(a) D ecision surface fo r ‘Norm al’ condition,
(b) Decision surface fo r ‘Fault 1
(c) D ecision surface fo r ‘Fault 2 ’,
(d) Contour o f Decision surfaces.

I l l

C M F D C h a r a c t e r i s t i c s

A further point of note is that the decision surface of the M LP is ‘uncontrolled’,

that is, for the M LP different training may result in different decision surfaces.

A fter training the networks may be used for fault classification. It is clear from

Figure 7-2 and Figure 7-3, that both MLP and RBFN could provide good

classification results for novel samples in the region of the original training data

samples. H owever if a novel ‘out of range’ fault occurs in the plant, the

unexpected samples will lie outside the regions N, A, B, C or D. W hile the RBFN

may still provide an ‘appropriate’ result for such faults, the M LP is less likely to

do so. This analytical result is assessed using the following two experiments.

7.2.2 MM case study

In this experiment, the mathematical model presented in Chapter 5 was used

again. However, in this experiment the MLP and RBFN classifiers were trained

with ‘N orm al’ and ‘Fault 1’ only, and then tested with ‘N orm al’, ‘Fault 1’ and

‘Fault 2 ’. In this case, Fault 2 is treated as an unknown fault.

Both the classifiers have two inputs and two outputs. The number o f hidden

neurons is 4 for the M LP and 19 for the RBFN (with spread constant 0.09).

The classification results are presented in the form of a confusion matrix (Blayo, et

al, 1995). The confusion matrix C is:

Ci; = £(class = j I class = i)

112

CMFD C h a r a c t e r i s t i c s

where e is the norm alised number of the classification result j , if the class i is

given.

Table 7-1 and Table 7-2 list the confusion matrix of classification for the test data.

Normal Fault 1 Fault 2
(unknown)

Normal 1.0 0 0

Fault 1 0 1.0 0

Fault 2 (unknown) | 0.82 0.13 0.05

Table 7-1. Confusion matrix (MLP).

Normal Fault 1 Fault 2
(unknown)

Normal 1.0 0 0

Fault 1 0 1.0 0

Fault 2 (unknown) 0.20 0 0.80

Table 7-2. Confusion m atrix (RBFN).

From these tables13 it is notable that the MLP classified 82% of the ‘Fault 2

(unknown fault)’ samples as ‘N orm al’, and that only 5% of these faults were

classified correctly. By contrast, the RBFN classified only 20% of the ‘Fault 2 ’

13 The absolute figures for classification accuracy w ould be different if the distribution o f the data
w as different. H ow ever this d oes not influence the conclusion o f the classifiers’ ability when
dealing with unknown faults, because the ability o f a classifier to deal with such unknown
faults is determ ined by the c la ssifier’s inherent decision behaviour.

113

C M F D C h a r a c t e r i s t i c s

class as ‘N orm al’, and correctly classified 80% of these as unknown faults. The

overall perform ance of the RBFN classifier for this study was 93% while that of

the M LP was approxim ately 68%. This experiment supports the theoretical

prediction that RBFN can provide a good indication for ‘unknown faults’, while

MLP is unlikely to do so.

7.2.3 DC case study

In this experim ent, the nonlinear model of the diesel cooling system presented in

Chapter 5 is em ployed again. However, both the classifiers were trained with

‘N orm al’ and ‘Fan o f f data only, and then tested with ‘N orm al’, ‘Fan o f f ,

‘Therm ostat stuck open’ and ‘Pump fault’. Thus, in this study, ‘Therm ostat stuck

open’ and ‘Pump fau lt’ exam ples are treated as unknown faults.

Both classifiers had six input nodes and two output nodes. The number of hidden

neurons was 20 for M LP and 50 for RBFN with spread constant 0.5. Table 7-3

and Table 7-4 list the confusion matrices for test data.

114

CMFD C h a r a c t e r i s t i c s

Normal Fan off Thermostat
stuck open
(unknown)

Pump fault
(unknown)

Normal 1.0 0 0 0

Fan off 0 1.0 0 0

Therm ostat
stuck open
(unknown)

1.0 0 0 0

Pump fault
(unknown)

1.0 0 0 0

Table 7-3. Confusion m atrix (MLP).

Normal Fan off Thermostat
stuck open
(unknown)

Pump fault
(unknown)

Normal 1.0 0 0 0

Fan off 0 1.0 0 0

Therm ostat 1
stuck open 1.0
(unknown)

0 0 0

Pump fault q
(unknown)

0 0 1.0

Table 7-4. Confusion m atrix (RBFN).

In this study there were two unknown faults, ‘Thermostat stuck open’ and ‘Pump

fault’. From these tables, it is apparent that the MLP classified 100% of the

unknown faults as ‘N orm al’. By contrast, while the RBFN classifier also

classified ‘Therm ostat stuck open’ data as ‘N orm al’, it correctly classified all of

the ‘Pump fau lt’ as unknown faults. This is because the “Thermostat stuck open”

115

C M F D C h a r a c t e r i s t i c s

is confused with “N orm al” (with separability value of 0.67, see Table 5-2), while

the “Pump fault” is well separated from the known classes o f “N ormal” and “Fan

o f f ’ (both with large separability, see Table 5-2). The overall performance of the

RBFN classifier was 75% while that of the MLP was around 50% for this study.

The results dem onstrate that RBFN classifier can detect unknown faults, if they

are well separated from known classes.

7.2.4 Unknown faults: conclusions

W here unknown faults are concerned, these studies confirm the theoretical

prediction that RBFNs can provide accurate classification results for unknown

faults if they are well separated from known classes, but still (inevitably) performs

poorly for those unknow n faults which overlap with known classes. On the other

hand, M LPs always attem pt to classify samples of unknown faults into known

classes since the decision boundaries of the known classes are unbounded.

7.3 Working with multiple faults

The previous experim ents have considered only a single fault. It is often the case

that more than one fault will occur simultaneously in a practical system (Chung, et

al, 1994; W atanabe, et al, 1994; Hsu, et al, 1995; Maki & Loparo, 1997; Cheon,

et al, 1993). This poses a challenge to CMFD systems because multiple faults

may interfere with one another and are, as a result, more difficult to classify (Hsu,

et al, 1995).

116

CMFD C h a r a c t e r i s t i c s

In this section the perform ance of MLPs and RBFNs for dealing with multiple

faults is compared. The comparison was carried out on the diesel engine cooling

system model with which simultaneous radiator and pump faults were simulated.

7.3.1 The experimental dataset

To compare the perform ance of neural classifiers dealing with multiple faults, the

non-linear model (Chapter 5) of an engine cooling system was employed. Here

the engine cooling system was assumed to experience four different conditions:

normal, radiator fault, pum p fault, and simultaneous radiator and pump fault.

Again six m easurem ents (as described in Chapter 5) were used for classification.

Both training and testing datasets were generated from the model, and each

contained 400 samples. Each of the four conditions was represented by 100

samples. Table 7-5 lists the separability of classes on the whole dataset.

Normal Radiator Pump Radiator
& Pump

N ormal 1 1.68 137.48 95.35

Radiator 1.68 1 129.04 87.54

Pump 137.48 129.04 1 37.22

Radiator
& Pump

95.35 87.54 37.22 1

Table 7-5. Separability M atrix o f Multiple Faults.

117

C M F D C h a r a c t e r i s t i c s

Table 7-5 shows that there is low separability (with value of 1.68) between

Normal and Radiator fault, but the separability is high between other classes. This

explores how neural classifiers perform for classes with high separability when

multiple faults exist.

7.3.2 The classifier structure

W hen considering only a single fault, the input vector is classified as being of the

corresponding class with the highest value for the classifier outputs. For multiple

classes, the output o f a classifier must be interpreted in a different way:

1. An output node represents a single class, where 1 indicates the occurrence of

the class and 0 non-occurrence.

2. A threshold, r , is introduced. If the output of a node exceeds the threshold r,

the output value is rounded to 1, otherwise it is rounded to 0.

For the above cooling system problem, the networks (again) have the same input

measurements and have three output neurons to represent normal, radiator fault

and pump fault. M ultiple faults are represented by the combination of output

neurons, for exam ple, for three classes, {0 1 0} is used for class 2 and {0 0 1}

for class 3, so in the case of multiple faults of class 2 and 3, the values of output

neurons are expected to be {0 1 1}. In this way multiple faults are classified by

M LPs and RBFNs. Table 7-6 lists the output patterns for cooling system fault

diagnosis.

118

C M F D C h a r a c t e r i s t i c s

Class Output pattern

normal 1 0 0

radiator 0 1 0

pump 0 0 1

radiator & pump 0 1 1

Table 7-6. Representation o f multiple classes.

The number o f hidden neurons of M LP and the width of radial basis function are

determined by trial and error. All other network parameters have the values

described in Section 2.4.

7.3.3 Results

The trained networks were evaluated using the testing dataset. In assigning a

sample to a class, an output threshold of 0.5 (0.5 is intuitive for output value

between 0 and 1, H aykin 1994) was used for all the neural classifiers. A

particular output is said to represent a particular class if one output neuron value

exceeds this threshold. If a sample cannot be assigned to any of the pre-defined

classes (normal, radiator fault, pump fault, radiator & pump faults), it is treated as

an instance of an ‘unknow n fault’ condition.

Table 7-7 and Table 7-8 list the confusion matrices for the classifications by MLP

and RBFN respectively.

119

C M F D C h a r a c t e r i s t i c s

normal radiator pump

0

Radiator
& pump

0

unknown

0.09normal 0.51 0.4

radiator I 0.17 0.73 0 0 0.1

pump 0 0 1.0 0 0

Radiator ^
& pump 0 0 1.0 0

Table 7-7. Confusion m atrix o f M LP classification.

normal radiator pump Radiator
& pump

unknown

normal 0.44 0.51 0 0 0.05

radiator 0.22 0.77 0 0 0.01

pump 0 0 1.0 0 0

Radiator
& pump

0 0 0 1.0 0

Table 7-8. Confusion m atrix o f RBFN classification.

From the Table 7-7 and Table 7-8, it is observed that both classifiers exhibit a

similar level of perform ance for this multiple fault problem. The overall

classification accuracy was 81% for the MLP and 80.25% for the RBFN. In fact,

since the ‘radiator & pum p’ fault has very high separability from other classes

(see Table 7-5), both the classifiers provide 100 percent classification rate for this

example. Because the separability between classes of Normal condition and

Radiator fault is very low (see Table 7-5) there is a strong overlap between these

two classes and both the classifiers performed poorly in this situation. This

120

C M F D C h a r a c t e r i s t i c s

experiment demonstrates that, on this problem, neural classifiers perform well

regardless of single fault or multiple faults, if there is high separability between

the classes.

7.4 Working with limited training data

The ability o f a trained classifier to generalise correctly is known to be influenced

by three key factors: the physical complexity of the problem at hand, the

architecture o f the network, and the size and quality o f the training dataset

(Haykin, 1999). Clearly the physical complexity of the problem cannot be

directly controlled by designers14. The influence of the network architecture on

the generalisation ability was studied in Section 5.4, by fixing the training data

size and altering the classifier structure (with a different number of hidden nodes

for M LP or different spread constant for RBFN, etc.).

This section will therefore be devoted to an investigation into the effect of training

data size on generalisation. In doing this, the main focus is on determination of

the size of training dataset needed to achieve good generalisation.

Intensive theoretical investigations in the effects of dataset size have resulted in a

number of ‘rules o f thum b’ that may be used to suggest how many training

samples are required for successful learning. Some key theoretical results are

discussed below. However, in practical CMFD applications, it is rarely possible

14 N ote, how ever, that the designers may influence the problem com plexity through the use o f
appropriate pre-processing techniques as discussed in Chapters 3 and 4.

121

C M F D C h a r a c t e r i s t i c s

to obtain the number of samples suggested by theoretical form ulae15. As a result

empirical studies, such as that discussed in this chapter, are an important adjunct

to theoretical work in this area.

7.4.1 Theoretical analysis

It is well understood that the number of samples in the training data can affect

how well a network may be trained. Investigations into the impact of sample size

have focused on three main areas: statistical analysis, geometrical analysis and

worst-case analysis based on Vapnik-Chervonenkis (VC) theory (Smolensky, et

al, 1996). This section will present some results about the effect of dataset size

from these frameworks.

a) Geometrical view

In the process o f classification, a neural network partitions the input space into

regions where each region is formed by a hyperplane (or hypersphere) segment.

Samples in a region belong to the same class, and each class may consist of a

number of regions. Thus, the process of training a neural network can be viewed

as a process of constructing optimal hyperplanes.

Because a hyperplane separates classes from each other, samples near a class

boundary, called boundary samples, are important for identifying hyperplanes

(Lee & Landgrebe, 1997). Based on this geometrical view, we can determine the

15 A s discussed in Chapter 1, data for fault classes may be particularly d ifficult to obtain, not least
because it m ay in vo lve permanent dam age to expensive equipment.

122

CMFD C h a r a c t e r i s t i c s

minimum number of samples required for successful training by determining how

many boundary samples are needed to identify the hyperplanes.

Given the input dim ensionality n, the number of hidden nodes m in a neural

network and the num ber of clusters M c of input samples (generally M t> the

number of classes or output nodes), M ehrotra et al (1991) determined that the

number of boundary samples N b required for successful classification is

proportional to:

N b = £2(min(m, n) • M c) (7-1)

This method em phasizes boundary samples, however in general most samples are

not boundary samples. The nature of the distribution of samples within clusters

determines the proportion of the number of boundary samples, hence the overall

number of input samples required is likely to be more than m in(m ,n) ■ M c .

In practice, since the actual distribution of input samples is unlikely to be known,

it is difficult to determ ine the overall number of input samples needed to generate

the required boundary samples. One solution may be to pre-process the overall

input samples to identify the boundary samples (Hara & Nakayama, 1998) then

use these samples to train the netw ork16.

16 One potential benefit o f this approach is that it w ill reduce the training tim e due to a small
number o f training sam ples being used.

123

CMFD C h a r a c t e r i s t i c s

b) VC dimension view

The Vapnik-Chervonenkis dimension is a measure of the capacity of the family of

classification functions realised by the learning machine (Haykin, 1999). Stated

in terms more specific to neural classifiers, the VC dimension of the set of

classification functions is the maximum number of training samples that can be

learned by the neural classifier without error, for all possible binary labelling of

the classification functions.

Using the measure o f VC dimension, Baum & Haussler (1989) presented a

formula to find the upper bound of training samples required for reasonable

generalisation. A ssum ing that the neural classifier has a total of M nodes in the

hidden and output layer, and a total of W weights, they showed that, if some

number Nvc of samples given by:

W , M
N v c > — l og2 — (7-2)

£
can be learned by the network such that a fraction 1 - — are correctly classified

(where 0 < £ < —) then there is a high probability that the network will correctly
8

classify a fraction 1 - e of future samples drawn from the same distribution of

training samples.

Instead o f using the VC dimension, Takahashi & Gu (1998) introduced the

Boolean interpolation (IP) dimension diP. IP dimension is the supremum of the

smallest num ber of input samples needed for fixing the decision boundary of a

124

CMFD C h a r a c t e r i s t i c s

neural network. If the num ber of changeable parameters (weights) in a network is

W, then d]P < W is true. Given an error rate e > 0 and a confidence 1-5, then the

minim um samples size achieving successful learning is:

N lp > — J d /PI n f + ̂ (7-3)
8 V oe e

where In denotes the natural logarithm, e is the base of natural system of

logarithms.

c) E xam ple

The previous sub-sections presented some of the main theoretical results in

finding training sam ples for successful learning. This section will apply those

formulae to the static fault diagnosis problem described in Chapter 5.

For this classification problem , the neural classifier has 2 input nodes, 4 hidden

nodes and 3 output nodes, so the total nodes M=7 (excluding input nodes), the

total weights W=21 and the number of clusters of input sample Mt=5. Assume

dip=W=21, £ = 0 .05 , 8 - 0 .05, then the number of training samples for successful

learning derived from different methods is shown in Table 7-9.

M ethod N b Nvc N ip

Training Samples 1 0 3850 716

Table 7-9. Training samples derived from different methods.

125

CMFD C h a r a c t e r i s t i c s

Looking at Table 7-9, M ehrotra’s geometrical method says 10 boundary samples

are needed for successful learning, while Baum ’s method shows 3850 samples are

needed for the same problem .

There are no simple techniques available allowing us to identify boundary

samples from a dataset. It is intuitively obvious that the number of boundary

samples in a dataset may vary with the complexity (for example, shape of class

boundary, size o f class region, dimensionality) of the classification problem. It is

probably true that more samples are required to warrant the number of boundary

samples derived from M ehrotra’s method, but the difference between the different

techniques is still significant.

Overall, it is not clear how useful these theoretical studies are in practice. In some

neural network paradigm s (for example, multilayer neural networks), the VC

dimension is hard to calculate (Takahashi & Gu, 1998). M ore generally, the

theoretical bounds may be regarded more as an attempt to come to a theoretical

understanding o f the true behaviour of the training process, rather than as a tool

for direct application in practical systems (Haussler, et al, 1997).

7.4.2 Experimental comparison

As discussed above, developers of practical CMFD applications still need to rely,

at least in part, on em pirically derived sample size bounds (Haussler, 1992;

Zhang, 2000). In fact, previous experiments indicate that satisfactory

generalisation error is sometimes obtained for sample sizes considerably smaller

126

C M F D C h a r a c t e r i s t i c s

than theoretically estim ated bounds (Haussler, et al, 1997; Kramer & Leonard,

1990; Rao, 1999).

In the rem ainder o f this chapter an empirical study will be described, which

com pared the effects o f training sample size on the generalisation error of MLP

and RBFN classifiers in CM FD applications. The aim of the experiments is to

investigate how the num ber of samples affects the performance, this in turn

determines the selection of an appropriate classifier for the available data size.

The experim ents are m ade on static fault diagnosis data and cooling system fault

diagnosis data.

a) MM case study

The structures of the classifiers were determined based on the results in Section

5.4. Specifically, the num ber of hidden nodes was 4 for the MLP, and the spread

constant was 0.025 for the RBFN. All other parameters use default values.

Again, training sam ples of 30, 100, 300, 600 were generated from Equation (5-

15). After training, the two testing datasets described in Section 5.4 were used for

exploring the perform ance of the classifiers. Table 7-10 summarises the

experim ental results.

127

CMFD C h a r a c t e r i s t i c s

MLP RBFN

Samples 30 1 0 0 300 600 30 1 0 0 300 600

Training error 0 0 0 0.33 0 0 0.33 0

Error for Test 1 6 . 0 2.33 1 .0 0.67 28.67 10.33 0.33 1 .0

Error for Test 2 22.33 28.67 17.67 32.33 30.33 27.67 1.67 1 .0

Table 7-10. Performance vs. Samples on M M data.

From Table 7-10, it can be seen that the RBFN requires more training samples to

achieve good classification performance, and that the number of samples strongly

affects the generalisation ability o f RBFN, but less so for MLP. The extrapolation

ability of M LP cannot be increased by increasing the number of training samples.

b) DC case study

The structures o f classifiers were determined based on the results in Section 5.4.

Specifically, the num ber of hidden nodes was 20 for M LP and spread constant

was 2 for RBFN. All other param eters use default values.

Again training sam ples of 32, 100, 300, 600 were generated from engine cooling

system model described in Chapter 5. After training, the testing dataset used in

Section 5.4 was used for exam ining the performance of the classifiers. Table 7-11

summarises the experim ental results.

128

CMFD C h a r a c t e r i s t i c s

M LP RBFN

Samples 32 1 0 0 300 600 32 1 0 0 300 600

Training error 25 0 17.3 9.17 3.1 0 16 10.17

Test error 28.33 22.5 17.3 2 0 49.67 32.67 17.3 19.7

Table 7-11. Perform ance vs. Samples on D C data.

From Table 7-11, it can be observed that the RBFN generalised poorly if the

training data size was small. The number of samples strongly affects the

generalisation ability o f the RBFN, but less so for the MLP.

7.4.3 Discussion

Suppose the input dim ension is n , the number of classes is c, the total number of

training samples is N and the training samples per class is N c. To analyse these

results, the size of the training dataset is described using the ratio of the training

samples per class to the input dimensions, N c/n, which is generally accepted as an

indicator of characterising data size in the practice of classifier design (Jain,

2000).

The corresponding values of N c In for the experiments in the last section are listed

in Table 7-12 and Table 7-13.

N 30 1 0 0 300 600

N c 1 0 33 1 0 0 2 0 0

N c/n 5 16.5 50 1 0 0

Table 7-12. Size o f training data fo r MM.

129

CMFD C h a r a c t e r i s t i c s

N 32 1 0 0 300 600

N c 8 25 75 150

N c/n 1.33 4.1 12.5 25

Table 7-13. Size o f training data fo r DC.

The size o f a dataset is often described using linguistic terms such as ‘sm all’ and

‘large’. Since it is difficult to say exactly how many samples should be in, for

example, a ‘sm all’ training set, a fuzzy set (Zadeh, 1973; Ross, 1995) is

introduced for this description. Here three fuzzy sets are assigned to N c In. The

corresponding m em bership functions p for Nc /n is defined as in Figure 7-4. The

1 7supports and boundaries of the membership functions for the fuzzy sets are

intuitively determ ined based on the experiments.

m edium largesmall

Figure 7-4. Size o f training data characterised by fuzzy sets.

Referring to M M data in Table 7-12, it can be said that the size of training data is

small for 30 samples, medium for 100 samples and large for 300 and 600 samples.

17 The support o f m em bership function for a fuzzy set A com prises those elem ents x o f the

universe such that p ^ J c) > 0 . The boundaries o f membership function for a fuzzy set A

com prise those elem ents jc o f the universe such that 0 < < 1.

130

CMFD C h a r a c t e r i s t i c s

W hile for DC data in Table 7-13, it can be said that the size of training data is

small for 32 and 100 samples, medium for 300 hundred samples and large for 600

samples.

Examining Table 7-10 and Table 7-11 and the values of N c /n, conclusions about

the impact o f training set size to the classification performance can be made as

follows:

1) For a sm all-sized training dataset, MLP clearly outperforms RBFN;

2) For a m edium -sized training dataset, MLP slightly outperforms RBFN.

3) For a large-sized training dataset, both classifiers provide comparable

classification performance.

Taking the above observations into account, it is appropriate to use an MLP for

the cases with small- and m edium -sized set of training data, and a RBFN for cases

with large- and m edium -sized set of training data.

7.4.4 Data size: conclusions

Neural classifiers are data-driven techniques. The size of the dataset strongly

affects the generalisation ability of a classifier.

In this section, some theoretical bounds for training data size were discussed.

These theoretical bounds tend to suggest that large amounts of training data are

required. Because of practical limitations in the availability of training data, the

131

CMFD C h a r a c t e r i s t i c s

requisite number o f samples is usually difficult to achieve in real CMFD

problems.

This section also em pirically compared the influence of dataset size to the

generalisation ability of the studied classifiers. Based on the results, it may be

concluded that it is more appropriate to use the RBFN for the cases of medium

and large num ber of training samples, and the MLP for cases of small and

medium number of training samples.

7.5 Conclusions

In this chapter, the results from a series of empirical studies intended to consider

the suitability o f M LP and RBFN classifiers for use in CM FD applications have

been presented. The em pirical studies considered the ability to deal with

unknown or multiple faults, and the effects of training dataset size.

Overall, on the basis of the results obtained in these studies, it can be seen that

each form of classifier has both strengths and weaknesses, and that neither is

suitable for use in all CM FD applications.

So far we have addressed issues pertinent to the first and the second stages of

designing em bedded CM FD systems. The next chapter will move on to the final

stage, the post-processing of classifier outputs.

132

8
Selecting T hresholds for RBFN
C lassifiers

8.1 Introduction

The results obtained in Chapter 7 verified the theoretical predication that the

RBFN classifiers have the ability to identify classes which had not been seen in

training data. To achieve this, the outputs of the classifier were interpreted by

applying a threshold to the output vector. If the value of an output neuron exceeds

the given threshold, then an exam ple of the corresponding class is said to have

occurred (Joshi, et al, 1997; Cheon, et al, 1993; Maki & Loparo, 1997; Isermann,

1997).

In addition to the ability to represent unknown classes, this threshold-based

classification scheme has another important application in multiple fault

classification: this was also discussed in Chapter 7.

Despite these potential advantages, use of a threshold classifier for CMFD

applications can be problem atic, because the overall performance of the system

depends on the use of an appropriate threshold value. In most published work in

this area, thresholds are simply empirically set, usually at values of ‘0.5’

133

P o s t - p r o c e s s i n g f o r R B F N

(W atanabe, et al, 1994; Haykin, 1999), which does not necessarily result in

optimal classifier perform ance (Joshi, et al, 1997; Theodoridis & Koutroumbas,

1999).

To improve the perform ance of threshold based classifiers in CM FD and other

application areas, methods for identifying the optimal threshold values are

required. This chapter addresses this post-processing problem by developing a

method which im proves the performance of RBFN classifiers in CMFD

applications where an ‘unknow n’ fault may occur. This novel technique is based

on an analysis o f the relationship between the behaviour of a well-trained RBFN

classifier and its response to the dataset.

The chapter is organised as follows: in Section 8.2, a method for determining a

suitable threshold is derived, based on theoretical considerations; the results of

two empirical tests are presented in Section 8.3; the results are discussed in

Section 8.4.

8.2 Theoretical considerations

A technique for reliable threshold selection for RBFN classifiers will be derived

in this section. The problem of threshold selection for neural network classifiers

is first form ulated in Section 8.2.1. In Section 8.2.2 the decision behaviour of

RBFN classifiers is mathematically and geometrically analysed. The reliable

threshold selection m ethod for RBFN classifiers is then proposed in Section 8.2.3.

134

P o s t - p r o c e s s i n g f o r RBFN

8.2.1 The general problem

A basic learning problem can be represented by six components (Smolensky, et

a l, 1996): X, Y, A, P, and L. The first four components are the instance (input

vector), outcome, decision, and decision rule, respectively. X is an arbitrary set, Y

and A e {0,1}, and ^ is a family of functions from X into A. The fifth component,

P , is a family of jo in t probability distributions of Z = X x Y . These represent the

possible states that might be governing the generation of examples. The last

component, the loss function L, is a mapping from YxA into the real number set R.

This chapter m ainly concerns the characteristics of A and L with respect to the

threshold. Assum e that the classifier has been well trained with samples

Ui ,• • ' , z N), where z, = (x ,, y f) e Z , drawn independently at random according to

some probability distribution P e P. After training the classifier is applied to a set

o f samples whose class is known. Suppose the outcome of an output neuron is

y e [0 ,1], a threshold is applied to y , then we have the hypothesis h e that

specifies the appropriate action a e A as:

h \ X —» A, a(x,T) = 0 (y - T) (8 - 1)

where: 0 (S)
fO if < ? < 0

1 if £ > 0

This definition of 0 gives (8-1) the following values:

135

P o s t - p r o c e s s i n g f o r RBFN

0 if y < T
a (x , T) = 0 (y - T) = \ (8-2)

1 if y > T

where T is the threshold, a equals one for indicating the class occurred or zero

otherwise. Further, we consider the following loss function:

L (z , t) = L (y,a(x,T)) = <
0 if a = y

1 if a ^ y
(8-3)

and the risk function (Scholkopf, et al, 1997):

I(T)= \L (z , t) dP(z) (8-4)

Since the probability distribution function P{z) is unknown, but random and

independent sample o f pairs z,- = (x i , y i) are given, then from (8-4) we have

instead the em pirical risk function:

/ (r) = T 7 E L(y . ’a i) (8-5)
M i=1

Thus the expected risk of the decision rule (or hypothesis) is simply the

probability that it predicts incorrectly, the usual notation of the error of the

hypothesis.

For the above classification problem, the risk function I is obviously bounded and

non-negative. O ur goal is then to minimise the risk function, /, by determining the

optimal value o f the threshold, t (see Section 8.2.3)

P o s t - p r o c e s s i n g f o r RBFN

8.2.2 Behaviour o f the RBFN classifier

Referring to Chapter 2 (Section 2.3), the output of an output neuron of RBFN with

m hidden neurons has the form (Broomhead & Lowe, 1988; M oody & Darken,

1988):

y(x) = w T$(x) + b (8-6)

where <{> are basis functions which can be one of several types (Sanchez, 1996).

The weight coefficients w com bine the basis functions into an output value, and b

is a bias term.

The mostly com m only used radial basis function is the Gaussian basis function:

r r i

1= 1

m

= Z WieXP
II ||2
X - C :

1 = 1 2 a t
+ b

(8-7)

Thus in (8-7) $ is the zth Gaussian basis function with centre c,■ and variance oj .

Since the radial basis functions in the hidden layer have localised response

behaviour in the input space, its response approaches zero at large radii, that is:

, llx C; II—̂°° ~•— u------->0

Considering the most com mon form of coding scheme for classification using

neural networks (Tarassenko & Roberts, 1994), the output value y is 1 if the input

137

P o s t - p r o c e s s i n g f o r RBFN

pattern x belongs to the class and 0 otherwise, that is, y e [0 ,1] on the training

18data . As an RBFN classifier obtains its parameters through training, this gives

the following statem ent about the interval of bias in the output layer:

T*
For classification using RBFN, y = w (f)(x) + Z?, i f the output is set as

y e [0,1] on training data, then a well trained RBFN classifier will

satisfy: b e [0 ,1].

The validity o f the above statement can be proved as follows:

Since y e [0,1], a n d </)E (0 ,1], w are finite numbers,

if an input vector is far from the centers of the radial basis functions,

we have

||x — c j —■> °o => (p. —>0 , for all i, i= \,...m

then from (8-7) we have lim y = b

assume b £ [0 ,1], say b > 1 , then y = w T§ (x)+ b —>b > 1 ,

which contradicts the condition of y £ [0 ,1] . Thus b < 1. Similarly

we can prove that b > 0 .

Thus b e [0,1].

18 The condition y e [0,1] applies for the training data only, using the coding scheme discussed
above. Even when an ‘optimally’ trained network is used for classification, the network output
may still fall outside the interval [0,1]. In this case, the classifier can still perform well when
an appropriate threshold is applied to the network output.

138

P o s t - p r o c e s s i n g f o r RBFN

To understand the physical meaning of outcomes and the bias in the output layer,

consider a geom etric interpretation.

Suppose there is a tw o-class problem with inputs distributed in two dimensions as

in Figure 8-1 (a). An RBFN classifier with two input and two output neurons is

used for this classification problem. After training, the values of the output

neurons with respect to the input variable Xj are as in Figure 8-1 (b). The

corresponding output neuron has a high value if the input is within the region of

the class, while the other output neuron has a low value. Outcomes of all output

neurons will be asym ptotic to their bias if the input is out of their class region.

It is notable that the bias value of a trained RBFN classifier may lie outside the

interval [0, 1] in some im plem entations. However, such classifiers will perform

very poorly, as dem onstrated in Sections 8.3 and 8.4. In these circumstances the

RBFN classifier will generally need to be re-trained by adjusting the training

parameters (that is, the number and the spread constant of the radial basis

functions).

139

P o s t - p r o c e s s i n g f o r R B F N

C lass 2

•#
• • •

C lass 1

Xi

(a)

O u tp u t 2Outpu t 1

X l

(b)

Figure 8-1. Outcomes o f output neurons.

8.2.3 Reliable threshold selection for RBFN classifiers

As discussed in Section 8.2.1, for the problem of classification, our goal is to

determine a threshold that tends to minimise the probability of erroneous

classification in a given class. To derive the optimal threshold for a radial basis

function classifier, the general model (Smolensky, et al, 1996) for describing the

task of generalisation optim isation of a neural network is used.

140

P o s t - p r o c e s s i n g f o r RBFN

The goal of designing a network is to find the network which provides the most

likely explanation o f the observed dataset. To do this it is necessary to try to

maximise the probability:

p { v |P)= } (8-8)

where 7t represents the network (with all of the weights and biases specified), *D

represents the observed dataset, and p(z\7t) is the probability that the network 7t

would have produced the observed data V. Applying the monotonic logarithm

transformation to (8 -8), we have:

In P & |Z>) = In p{t>\k)+ In P(%) - In P(z>) (8-9)

Thus maximising (8-9) is equivalent to maximising (8 -8).

Since the probability distribution of the data is not dependent on the network,

In P (v) will have no contribution to the maximising solution o f lnP(7t\v) and is

dropped from (8-9).

The second term o f (8-9), ln P (^) , is a representation of the probability of the

network itself: that is, it is the a priori probability or a priori constraint on the

network. Since our method assumes that the classifier has been well trained and

our purpose is to determ ine an optimal threshold for the trained RBFN classifier,

we will also drop this term.

P o s t - p r o c e s s i n g f o r RBFN

The first term o f (8-9), \n P (v \7 t), represents the probability of the data given the

network: that is, it is a measure of how well the classifier accounts for the data.

Therefore the threshold selection problem is equivalent to a requirement to

Further, if the data are broken into two parts, the output y and the input x, then:

lnP (£> |^)= ln P ((x ,y)te)
, x (8-10)

= In P(y|x a 7t)+ In P(x)

where ‘xÂ ’ stands for inputting x to %

Finally, suppose that the input x does not depend on the network, then the last

term of (8-10) has no effect in maximising ln P (^ |^) . Therefore, we need only

maximise the first term lnP(y|xA ‘%).

For the classification problem , the output vectors, a, defined in (8-2), consist of a

sequence of 0 ’s and l ’s. In this case, we imagine that each element of the

classifier output, a , represents the probability that the corresponding element of

the desired output y takes on the value 0 and 1. Then the probability of the output

given the network, for a problem with c classes, is represented by the binomial

distribution (Flem ing & Nellis, 1994):

maximise

c

(8- 11)
/ =]

142

P o s t - p r o c e s s i n g f o r RBFN

Applying logarithm transform, the above equation becomes:

7 = In P(y|x a 7 t)

c (8- 12)
= X b , In + (l - yt)ln(l — a,))

Thus the problem becom es to maximise 7- By differentiating (8-12) with respect

to decision action a, , we then obtain:

To obtain the stationary points of 7 we set (8-13) to zero. W e then have:

As discussed in Section 8.2.2, b, e [0,1], and the classifier output as in (8-15)

satisfies y, —»b(for an input pattern located far from the training patterns. To

satisfy (8-14), we wish at to coincide with the actual y, when (assuming, here,

that each output node of the RBFN is allowed to have a different threshold) is

applied to y, > as in (8-2). In other words, a{ should be 1 if the input pattern is

f t = y i ~ a i

dat at (l - a() (8-13)

(8-14)

Since to the left of the above stationary point, — is positive and to the right ——
dcij

is negative, the stationary point from (8-14) is the maximum point of 7-

Since for an RBFN:

9i (x) = w r<|)(x) + bj (8-15)

143

P o s t - p r o c e s s i n g f o r RBFN

within the training class and 0 if it is out of the training class. Therefore, we must

select:

Ti = b i (8-16)

The threshold with the value given by (8-16) decides whether samples are

classified into that class. If there is noise or disturbance in the data, we expect

that the turning point (where classification error rate increases abruptly) will be

less sensitive to the dataset, and we therefore increase (8-16) by a small amount,

e:

z i = b i + e (8-17)

The introduction of e is to make the classifier robust to noise and disturbance

while having little increase on the misclassification rate.

Finally, if we use a single-threshold RBFN classifier, then we obtain:

T = m ax(b) + £ (8-18)

Here, £ is a very small positive constant to make t slightly greater than max(b): of

course, rm u s t not exceed 1 .

8.2.4 Summary of the technique

Based on an analysis o f the decision behaviour of an RBFN classifier, a technique

for threshold determ ination was derived above.

P o s t - p r o c e s s i n g f o r RBFN

This method assumes that the RBFN classifier has been successfully trained.

Following such training, an appropriate threshold value may be determined by

considering values larger than the maximum value of the bias value in the output

layer.

8.3 Empirical tests

In this section, the threshold determination technique derived in Section 8.2.3 is

assessed in two em pirical studies. The chosen datasets were obtained, firstly,

from a m athem atical model simulating static fault diagnosis and, secondly, from a

non-linear model o f a diesel engine cooling system. Both datasets were described

in Chapter 5. In both cases, the input variables were normalised to [0, 1], and the

classifiers were trained using the orthogonal least square algorithm (Chen, et al,

1991) in the M atlab N eural Network Toolbox.

As discussed in Chapter 2, in addition to determining the threshold value,

implementing an effective RBFN classifier for a given task involves determining

two further im portant parameters:

(a) the m axim um num ber {me) of radial basis functions to use in the hidden

layer;

(b) the spread constant (sc) of the radial basis function.

For each of the following two experiments, the classifier was trained using a range

of possible values for me and sc. The trained classifier was then tested both on the

145

P o s t - p r o c e s s i n g f o r RBFN

(seen) training set and on the (unseen) test sets. The classification error on each

dataset is estim ated using (8-5).

The key purpose o f each study was to explore the impact of the threshold value.

To this end a ‘traditional’ threshold value (to) of 0.5 was used. This was

com pared with a threshold value (i j) determined according to (8-18). More

explicitly, £w as selected as:

€ = 0 .0 5 x m ax (b)

to provide a threshold slightly grater than max(b).

8.3.1 Mathematical model dataset

This mathematical model representing a class of static fault diagnosis problems is

described in Chapter 5 (Section 5.3). Using that model, one set of training data

was generated with values of p\ and p 2 sampled from the normal distribution N(0,

0.25) and v, ,v2 - N (0,0.015) In total, 600 input/output pairs were generated

from (8 -2 0) and were used for training all the networks.

Two additional sets of test data, each with 300 input/output pairs, were also

generated, designated ‘Test Set 1’ and ‘Test Set 2 ’. These datasets were intended

to explore how our approach performs, both in terms of interpolation (Test Set 1)

and extrapolation (Test Set 2).

146

P o s t - p r o c e s s i n g f o r R B F N

Test Set 1 had the same distribution as the training set. Test Set 2 had values

distributed over the whole param eter space. For this set, samples within the

region of training data were assigned to one of the known classes, all other

samples were assumed to belong to unknown faults.

Using the training dataset, RBFN classifiers were trained by changing the number

and the spread constant of radial basis functions in the hidden layer. Table 8-1

lists the m isclassification rate of the trained RBFN classifiers. In the table:

training data, Test Set 1 and Test Set 2 are represented by Vo, V \ and £>2,

respectively; elem ents in row b are biases of the corresponding output neurons;

Rows 5 and 6 are the m isclassification rates for the training sets using tb=0.5 and

ri=max(b)+£, respectively; Rows 6 to 9 are misclassification rates for Test Set 1

and Test Set 2. As noted above, we set £ - 0 .05xm ax(fr).

147

P o s t - p r o c e s s i n g f o r RBFN

”-...
Classifier
Number

....
1 2 3 4 5 6 7 8 9 1 0 11

me/sc 50/0.025 50/0.03 50/0.05 50/0.1 100/0.025 100/0.04 100/0.05 100/0.06 100/0.075 1 0 0 /0 .1 1 0 0 /0 . 2

b
0.0224
0.5684
0.4092

0.1230
0.4196
0.4574

-0.0045
0.4616
0.5429

0.0065
0.3969
0.5966

0.0629
0.5021
0.4350

0.0154
0.5801
0.4045

-0.0027
0.6372
0.3655

0.0283
0.5832
0.3885

0 . 0 1 0 0

0.3828
0.6072

-0.0058
0.3922
0.6137

-0.4157
0.6168
0.7990

V Q with 0.5 4.67 5.17 0.83 0.5 0.5 0.33 0.33 0.33 0.33 0.33 0.5

Vo with fi 11.83 4.17 1 .0 1.17 0.67 0.5 0.33 0.33 0.5 0.5 6.5

V \ with 0.5 9.67 9.0 2.33 1.67 2.67 1.33 0.67 1 .0 1.33 2 . 0 3.67

V \ with T\ 23.67 8 . 0 3.0 2.67 4.67 2 . 0 2.67 1.33 2.67 3.0 15.67

V i with 0.5 53 9.33 47.0 45.33 48.33 47.67 47.67 47.0 47.67 47.33 52.0

V'l with Ti 14.67 8.67 7.67 22.33 7.67 5.67 7.67 9.67 15.33 27.33 54.33

Table 8-1. Classification error rate (%) fo r mathematical model.

P o s t - p r o c e s s i n g f o r RBFN

From the table, it is clear that when using either to or t i , the classifiers provide a

very similar m isclassification rate on the training set and test set 1. However, for

samples out of the training region the classifier using t i produces a lower

misclassification rate.

These results may be readily understood. They arise because the appropriately

trained classifier is intended to produce a high output value (close to 1) for

samples in the class while a low output value (close to 0) for samples in other

classes. Thus there is a large interval for threshold selection. Theoretically one

could use any threshold between 0 and 1 for a perfectly-trained classifier which is

required only to classify samples within the ‘training’ range.

To further explore the effects of the value of the threshold on the misclassification

rate, different thresholds were used for the classifiers in Table 8-1 with a

maximum of 100 hidden neurons and spread constant of 0.025 and 0.04. Figure

8-2 and Figure 8-3 show the misclassification rate versus the threshold.

Table 8-2 lists the misclassification rates versus thresholds around max(b). Here e

in (8-18) was set to be proportional to max(b), that is, £ = A - m a x (b) , where X

is a small coefficient in {-0.1, -0.05, -0.01, 0.0, 0.01, 0.05, 0.1}.

These empirical results confirm the findings in (8-18). Specifically, as is apparent

in Figure 8-2 and Figure 8-3, the classifier with a threshold slightly larger than

149

P o s t - p r o c e s s i n g f o r RBFN

max(b), say Xi, produces a minimum misclassification rate for Test 2 while a near

minimum misclassification rate for the training set and Test Set 1, and X\ is the

turning point o f misclassification rate on Test Set 2. This is because, if the

threshold is sm aller than Ti, the classifier will misclassify samples out of the

training range as existing known classes. If the threshold is bigger than Ti, the

classifier will reject more samples within known classes, and hence increase the

misclassification rate for the training set and Test set 1. For the former case, the

classifier assigns an unknow n class to known class(es), and may assign ‘unknown

fault’ to ‘normal condition’.

It is frequently a requirem ent (in CMFD applications) that the classifier will

provide us not only with a high performance for known conditions but also good

performance in the presence of unknown faults. For this purpose, these empirical

results support the use of a classifier with threshold Xi. Moreover, the

determination of Tj is straightforward from the biases in the output layer. This

avoids the risks inherent in an arbitrary selection of the threshold value.

150

M
is

cl
as

si
fi

ca
ti

on

ra
te

crS

'
M

iS
C

la
S

S
ifi

ca
tio

n
ra

te

P o s t - p r o c e s s i n g f o r R B F N

— Training se t

T est se t 1
T est se t 2

ure 8-2.

0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Threshold

M isclassification rate vs. Threshold (sc=0.025).

0.9
 Training se t

- T e s t se t 1
 T e s t se t 2

0.8

0.7

0.6

0.4

0.6 0.7 0.8 0.9 10.4 0.50 .3
Threshold

Figure 8-3. M isclassification rate vs. Threshold (sc -0 .0 4).

151

P o s t - p r o c e s s i n g f o r RBFN

sr= 0 .025 5,c=0.04

O o Z>i Z>2 Z>o Vi Vi

-0.1 0.33 2.0 50.33 0.33 1.33 47.0

-0.05 0.33 1.67 49.3 0.33 1.33 46.33

-0.01 0 .50 2.33 49.0 0.50 1.67 43.33

0 0 .50 2.67 36.67 0.50 1.67 29.0

0.01 0 .50 3.0 7.0 0.50 1.67 8.33

0.05 0.67 4.67 7.67 0.50 2.00 5.67

0.1 0.83 6.0 9.0 0.50 2.67 6.67

Table 8-2. C lassification error rate (%) using threshold around max(b)
r = m ax(b) + € = max(b) + X • m ax(b).

8.3.2 Diesel engine cooling system diagnosis dataset

The second dataset used in this study was generated from a non-linear model of a

cooling system of a diesel engine described in Chapter 5 (Section 5.3.2).

Using the m odel, a training dataset with three states (normal, fan fault, and

therm ostat fault) was generated. Two different test datasets were also generated.

One test set (Test Set 1) has the same three classes as the training data. Another

test dataset (Test Set 2) has the same three classes plus ‘pump fault’, where pump

fault was considered to be an ‘unknown fault’. Each dataset has 300 samples. In

each case, the datasets consisted of equal numbers of samples for each class, that

is, each class has 75 samples in Test Set 2, and 100 samples in the training set and

Test Set 1.

152

P o s t - p r o c e s s i n g f o r RBFN

—
Classifier
Number 1 2 3 4 5 6

m e/sc 100/0.15 1 0 0 /0 . 2 100/0.25 100/0.26 100/0.27 100/0.3

M SE 0.1799 0.1147 0.0962 0.0934 0.01090 0.0885

b
0.3080
0.3451
0.3469

0.1825
0.4873
0.3302

0.0898
0.4941
0.4161

0.1583
0.6440
0.1978

0.1341
0.6847
0.1812

0.0527
0.7573
0.1900

Vo with 0.5 15.67 8.33 5.33 5.0 7.67 5.33

Vo with T\ 18.67 8.67 6 . 0 0 12.33 2 0 . 0 22.33

V\ with 0.5 21.67 13.0 10.33 11.33 1 1 . 0 10.33

V\ with T\ 22.33 13.67 10.33 18.0 20.67 21.67

V 2 with 0.5 2 0 . 0 12.67 1 2 . 0 35.67 35.33 35.33

V 2 with T\ 18.33 13.33 11.67 17.0 19.67 20.67

Table 8-3. Classification error rate (%)for cooling system diagnosis.

To explore the effects of the value of the threshold on the misclassification rate,

we used different thresholds for the classifier in Table 8-3 with a maximum

number of hidden neurons of 100 and spread constants of 0.25 and 0.27. Figure

8-4 shows the misclassification rate versus the threshold. Table 8-4 lists the

m isclassification rates versus thresholds around max(b).

153

M
is

cl
as

si
fi

ca
ti

on

ra
te

M
is

cl
as

si
fi

ca
ti

on

ra
te

P o s t - p r o c e s s i n g f o r RBFN

— Training set
Test set 1
Test set 2

0.8

0.6

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

— Training set
Test set 1
Test set 2

0.8

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

Figure 8-4. M isclassification rate vs. threshold
(a) fo r sc=0.25 and (b)fo r sc=0.27.

154

P o s t - p r o c e s s i n g f o r RBFN

sc=0.25 sc=0.27

X V 0 V 2 Vo Z>i v 2

-0 .1 7.0 11.33 37.67 11.67 13.67 39.67

-0.05 6.33 10.33 36.33 15.0 16.33 42.0

-0 . 0 1 5.33 1 1 . 0 36.33 18.0 18.67 43.33

0 5.33 10.67 13.67 18.33 19.67 23.33

0 . 0 1 5.33 10.33 1 2 .0 18.67 19.67 19.0

0.05 6.33 10.33 11.67 2 0 . 0 20.67 19.67

0 .1 7.0 11.33 12.33 | 23.33 23.33 23.67

Table 8-4. Classification error rate (%) using threshold around max(b)
T = m ax(b) + £ = max(b) + A • m ax(b).

The results show that the classifiers with Tq produce a lower misclassification rate

for training data and Test Set 1 than that with T\, while classifiers with T\ can give

a better m isclassification rate for Test Set 2.

As dem onstrated in Experim ent 1, the classifier with T\ gives near minimum

misclassification rate for samples within the range of training data, so T\ can still

be used in such applications. If we are concerned with the classifier performance

in applications w ith possible unknown classes, T\ is more suitable but incurs some

cost in m isclassification of known classes.

155

P o s t - p r o c e s s i n g f o r R B F N

8.4 Discussion

The proposed approach has been tested using two classification problems: static

fault diagnosis and cooling system diagnosis. Each classifier was trained using a

training dataset (Vo), and then tested by a Test Set 1 (Vi) which has the same class

distribution as the training data. To compare the proposed approach with

traditional approaches, we also tested the classifiers for the problems using an

additional test dataset (£>2) which has a new class not seen by the classifier during

training. For fault classification applications, the new class represents an

unknown fault.

The experim ental results dem onstrated that, on Vo and V \, the proposed approach

gives a sub-optim al threshold for both of the two experiments, and the classifiers

with T\ produce near m inim um misclassification rate. However on V i the

performance o f classifiers with T\ was significantly improved, and reached a

minimum m isclassification rate.

The value of the threshold affects the classifier performance in two ways. On the

one hand, in m ost cases, if Z\ is bigger than % the classifier rejects more samples

in £>0 and V \ and thus increases the misclassification rate. On the other hand, a

higher confidence in the classification of the samples is obtained.

It should be noted that it has also been shown that the bias, b, at the output layer

of an RBFN classifier should satisfy the condition b e [0,1]. This result may be

156

P o s t - p r o c e s s i n g f o r R B F N

used to check w hether a particular classifier has been trained successfully, and the

classifier should be discarded if m ax(b)>l or min(b)<0. Based on this condition,

it would be sensible to abandon classifiers numbered 3, 7, 10 and 11 in Table 8-1.

Finally, note that care m ust be taken when accepting the training if max(b) is

close to 1 , because the classifier will leave little margin for response to previously

unseen samples. An ‘ideal’ RBFN classifier will therefore have a low

m isclassification rate and a small value for max(b).

8.5 Conclusions

An approach for determ ining a reliable threshold for RBFN classifiers has been

derived. This approach is easy to use and understand.

The proposed approach is especially useful in classification problems where there

may be possible new classes or ‘unknown faults’. The result obtained when

testing the approach with two such classification problems used in this chapter

demonstrated the effectiveness of this technique.

157

9
A Methodology for Designing Embedded
CMFD Systems

9.1 Introduction

Throughout the previous chapters, various techniques intended to build effective

classification system s for em bedded CMFD applications have been presented.

The building o f CM FD classification systems usually consists of three stages: pre

processing, classifier design and post-processing. Therefore the techniques have

been developed for achieving more effective building components.

The techniques for pre-processing and post-processing were developed

theoretically and assessed by a series of experiments. The classifier design,

though, was m ainly evaluated empirically and, where possible, subject to the

appropriate theoretical analysis. Based on the theoretical investigation and the

empirical results, this chapter produces a classification system design

methodology to assist in the effective use of MLP and RBFN classifiers in

em bedded CM FD applications. In order to assess this methodology, it is applied

to the design of an em bedded CMFD system for fault diagnosis in the aspiration

system of a diesel engine.

158

D e s i g n M e t h o d o l o g y

9.2 Towards a design methodology

This section seeks to draw together the results of the various experiments obtained

in previous chapters, and thereby develop a preliminary design methodology: this

is intended to assist in the effective use of MLP and RBFN classifiers in

em bedded CM FD applications. This section firstly summarises the techniques

and results from the individual stages. It then presents the classification system

design m ethodology along with a design flowchart.

9.2.1 Pre-processing strategy

The first step to design a CM FD classification system is to extract features using

appropriate signal processing technique. Chapters 3 and 4 presented a separability

measure based on a non-param etric analysis of the data that can be used to select

an appropriate pre-processing approach:

y = - t r (S - 'S i.)
n

The goal in this stage of the design process is to seek the pre-processing technique

that gives the feature dataset with the largest separability. Thus a technique for

identifying the m ost effective pre-processing approach can be summarised as

follows:

1) Take the recorded raw dataset, and apply the chosen pre-processing

strategy.

2) M easure the separability between classes after pre-processing.

3) Repeat for all alternative pre-processing strategies.

159

D e s i g n M e t h o d o l o g y

4) In the classifier system, employ the pre-processing strategy that results in

the largest separability measure.

9.2.2 Classifier selection criteria

As discussed in Chapter 5, when designing an embedded CMFD classifier system

using an M LP or RBFN classifier, three key factors must be taken into account:

(1) the basic classifier performance, (2) hardware resource implications, and (3)

performance when there is limited training data, and in the presence of ‘unknown’

or ‘m ultiple’ faults. From the results obtained in Chapters 6 and 7, it should be

noted that neither M LP nor RBFN exhibits the best performance when measured

against these key criteria.

To assist in the selection of the most suitable classifier, the following “rule of

thumb” can be drawn from the experimental results in Chapter 6 and 7.

1) If the classification error rate in known faults is the only factor being

considered, then either M LP or RBFN may be used as they provide very

similar levels of performance.

2) The training of an M LP requires considerably more processor operations

than that o f an RBFN, while the testing of an MLP requires rather fewer

processor operations than an RBFN. In cases where off-line training is

possible, and rapid classification (‘testing’) is required, the MLP may be a

more appropriate choice. However, where on-line learning is required, the

RBFN may be more appropriate.

160

D e s i g n M e t h o d o l o g y

3) In the phase o f classification, an MLP requires less memory due to having

fewer hidden nodes and parameters (weights and bias).

4) The M LP requires fewer training samples to achieve good generalisation.

Since the training speed of RBFN is faster than MLP, the MLP will

require much longer training time if the training set is large. Thus, on the

basis o f these findings, it can be concluded that: it is more appropriate to

use RBFN in situations where there are ‘large’ numbers of (training)

samples available, and M LP in situations where only ‘sm all’ numbers of

(training) samples are available. Both classifiers may be considered if the

training set is of ‘m edium ’ size.

5) Both M LP and RBFN perform similarly in the presence of multiple faults,

they can be considered equally in such applications.

6) RBFN can provide accurate classification results for unknown faults if

they are well separated from known classes, but still (inevitably) performs

poorly for those unknown faults which overlap with known classes. On

the other hand, M LP is prone to classify samples of unknown faults as

known classes since the decision boundaries of the known classes are

unbounded. Overall where unknown faults are concerned, RBFN is the

more appropriate classifier.

It is clear that there is no unique best classifier against selection criteria. The

selection of the most appropriate classifier must be based on the constraints and

the nature of the specific application.

161

D e s i g n M e t h o d o l o g y

9.2.3 Post-processing strategy

CM FD classification systems have their distinct features as detailed in previous

chapters. These include the particular attention that should be paid to the

interpretation o f the classifier outputs. A threshold-based post-processing scheme

was considered more appropriate for CMFD applications because of the nature of

this area. The key issue of this threshold-based scheme is the determination of the

threshold value. For m ost cases both MLP and RBFN classifiers can employ a

value of 0.5 as is com m only used in traditional applications. However for CMFD

applications with unknow n faults, RBFN classifiers should be considered and the

threshold value m ust be determined. Chapter 8 developed a technique that may

significantly im prove the performance of RBFN classifiers in CMFD applications

where unknown faults may occur. As a result, the post-processing scheme can be

presented as follows.

1) For problem s where all classes are known a priori, a threshold of 0.5 is

suitable for both M LP and RBFN classifiers.

2) For problem s with unknown faults, RBFN should be selected. The

threshold of the post-processing should be set to a value slightly greater

than the m axim um bias of the output layer of the RBFN classifier.

9.2.4 Overall classification system design methodology

The previous sections discussed the techniques and considerations that aim to

achieve the best perform ance in individual design stages. In order to make the

techniques accessible, this section presents the methodology for designing

effective classification systems for embedded CMFD applications using MLP and

162

D e s i g n M e t h o d o l o g y

RBFN classifiers. The basic idea of the design methodology relies on the

com mon process o f CM FD systems that consist of pre-processing, classifier

selection and post-processing. Thus the presented methodology intends to build

CMFD systems from three reliable stages. Figure 9-1 presents the flowchart of

the design m ethodology.

In keeping with the observations presented above, and Figure 9-1, the process of

the design m ethodology is described as follows by integrating the previous

individual strategies together.

• Pre-processing

1) Take the recorded raw dataset, S, and apply the chosen pre-processing

technique, SP,.

2) M easure the separability between classes after pre-processing, J,.

3) Repeat for all alternative pre-processing techniques.

4) In the classifier system, employ the pre-processing technique that

results in the largest separability measure.

• Classifier selection

5) Consider the required classification error.

6) Consider the available hardware resources (and/or system cost).

7) Consider the available training data.

8) Consider the need to deal with ‘unknown’ or ‘m ultiple’ faults.

• Post-processing

9) For problem s that all classes are known a priori, a threshold of 0.5 is

applicable for both MLP and RBFN classifiers.

10) For problem s with unknown faults, an RBFN should be selected. The

threshold of the post-processing is set to a value slightly greater than

the m axim um bias of the output layer of the RBFN classifier.

163

D e s i g n M e t h o d o l o g y

P reprocessing

m ax(J,, J2, ..., J,)

Raw signals

SP, SP2 ... SP,-

1 1 I
Selected SP: max(J] , J2 J ,)

C lassifier selection

y = V (x)

>y

A p p l i c a t i o n c o n s t r a i n s S e l e c t i o n c r i t e r i o n R e c o m m e n d e d

c l a s s i f i e r

MLP, RBFN

/ Training N RBFN

Classification MLP

ML. Memory MLP

Small MLP

MediumData
size

MLP, RBFN

Large RBFN

Multiple
fault

MLP, RBFN

Unknown
fault

RBFN

System
Cost

Application
Nature

Classification
Error Rate

P ost-processing

y - T
----------------- ►a

>Known classes:

MLP: x = 0.5
RBFN: x = 0.5

Unknown classes:

RBFN: x = max(b) + e

Figure 9-1. Flowchart fo r designing an appropriate embedded CMFD system using MLP or RBFN classifier. Keys: S-raw
signals, SV-signal processing technique, 1-separability measure, x-feature vector, 71 -classifier, y-output o f
classifier, x—threshold, 2t—fina l decision.

1 6 4

D e s i g n M e t h o d o l o g y

9.3 Assessing the design methodology

In order to begin to assess this methodology, it is applied to the design of an

em bedded CM FD system for fault diagnosis in the aspiration system of a diesel

engine.

The aspiration system consists of an air filter, a compressor, an air inlet manifold,

a turbine and an exhaust pipe. Possible faults in the system include exhaust leak,

exhaust restriction, exhaust valve fault, air inlet leak, air inlet restriction, air inlet

valve fault, air inlet m anifold leak, turbocharger fault, etc. Faults in the system

may result in unburned fuel, degraded power and increased pollution.

This case study considers four states: normal (identified by D l), exhaust

restriction (D2), air inlet leak (D3) and air inlet manifold leak (D4). For each of

these states, eleven channels of signals were recorded from the diesel engine test

bed in the D epartm ent of Engineering at the University of Leicester19. The signals

include air inlet mass flow, compressor outlet air temperature, boost pressure (air

inlet m anifold pressure), exhaust temperature at the turbine inlet, exhaust pressure

at the turbine inlet, exhaust pressure at the turbine outlet, exhaust temperature at

the turbine outlet, smoke emission, ambient pressure, ambient temperature, and air

inlet pressure. All the signals were recorded at 20 Hz.

19 The author w ould like to express his sincere thanks to Dr John T w iddle w ho supplied the
recorded data for use in this study.

165

D e s i g n M e t h o d o l o g y

The recorded signals contained a large number of samples (most of the signals

with over 25k samples). Data samples in these recorded signals were then re

organised into the form for the design of fault classifier, specifically, a training

dataset (containing 600 samples, 150 samples for each of the four classes), and a

test dataset (containing 1000 samples, 250 samples for each class).

9.3.1 System requirements and initial consideration

The requirements for the em bedded aspiration diagnosis system were identified as

follows:

1) The system should be implemented at low cost, preferably on an 8 -bit

microcontroller.

2) The system should work in real-time.

3) The system should provide an ‘excellent’ classification error rate.

4) The system should be capable of working in an ‘unpredictable’

environment.

Since the experim ent was conducted under several steady states and all the signals

changed very little under each state, the signals are directly used to form the

feature vectors. This is somewhat unusual because most CMFD applications

require feature extraction through pre-processing. Nevertheless this application

problem is still valuable for assessing the presented design methodology because

the pre-processing strategy was sufficiently evaluated using simulated and real

166

D e s i g n M e t h o d o l o g y

problems in Chapters 3 and 4, while this experiment will focus on the assessment

o f classifier selection and post-processing.

The design process therefore began with a consideration of the classification error.

In this study, there are a very large amount of samples available for classifier

design. As the results in Chapter 8 demonstrated, there is little to choose between

RBFN and M LP classifiers when there is sufficient training data. This suggests

that, on the basis of classification performance alone, either an M LP or RBFN

classifier could be used in this case.

The next, key, consideration is one of cost. The system cost is directly related to

the hardware resource requirements, such as memory and CPU load. As

summarised in Figure 9-1, the results in Chapter 6 demonstrated that the MLP has

lower memory requirem ents than RBFN. In addition, if we are only concerned

with classification (and not training) then the MLP also imposes a lower CPU

cost, allowing the use of a less expensive microcontroller and/or (as discussed in

Chapter 6) reduced system power consumption. Together, these observations tend

to suggest that an M LP solution may be the most appropriate.

However, basic perform ance and cost are not the only issues to be considered. As

introduced in the beginning of this section, there are possibly nine (or more)

condition states in the aspiration system, but only four states are considered in this

167

D e s i g n M e t h o d o l o g y

2 0study . Thus the designed CMFD system is expected to work under the

environment o f possible unknown states. According to Figure 9-1, a RBFN may

have to be considered if unknown faults are to be detected.

On the basis of the m ethodology presented earlier in this chapter, the MLP should

be selected (to reduce product cost and, possibly, power consumption) while

RBFN should be selected, to improve the likelihood of detecting ‘unknown

faults’. On the basis o f this analysis, a compromise solution must be made

depending on which aspect of the system requirements is considered to be the

most important.

In the next section, these statements are assessed empirically.

9.3.2 Experiments

A series of experiments were carried out to assess the prediction derived from

Figure 9-1 as above. Figure 9-2 depicts the structure of M LP or RBFN classifiers

for this engine aspiration diagnosis application.

20 This is partly because, as in many CM FD system s, som e o f the other states - such as exhaust
leak - are very difficu lt to produce on the testbed.

168

D e s i g n M e t h o d o l o g y

Signal vector

air inlet mass flow

compressor outlet air temperature

air inlet manifold pressure

exhaust temperature at turbine inlet

exhaust pressure at turbine inlet

exhaust pressure at turbine outlet

exhaust temperature at turbine outlet

smoke emission

ambient pressure

ambient temperature

air inlet pressure

Figure 9-2. Structure o f the classifiers fo r engine aspiration system diagnosis.

C lassification e r ro r ra te . The classifiers were trained on the training dataset

with 600 samples, and were then tested on 1 0 0 0 unseen samples (the datasets

were described in the beginning of Section 9.3). Table 9-1 lists the error rate (in

percent).

MLP RBFN

Hidden nodes 8 49

Training error (%) 0.5 0 . 2

Test error (%) 1 0 .6 1 0 .2

Table 9-1. Classification error rate fo r Engine aspiration system diagnosis.

MLP or RBFN Engine condition

D1 - normal

D2 - exhaust restriction

D3 - air inlet leak

D4 - air inlet manifold leak

169

D e s i g n M e t h o d o l o g y

As predicted in Section 9.2.4, the classification error rates of the two classifiers

are very similar.

Classification speed. Classification speed was measured, as before, in terms of

‘flops’ per sample. Table 9-2 reports the CPU requirements for the two

classifiers.

Training flops

MLP RBFN

7.734 • 109 3.988 • 108

Classification flops 328 3687

Table 9-2. CPU requirements fo r Engine aspiration system diagnosis.

As stated in Section 9.2.4, the classification speed of the M LP is much faster than

that for the RBFN.

Memory requirement. The classifiers were implemented on 8 -bit

microcontrollers, which are the mostly common used and can be embedded in

most plants as well as diesel engines. The embedded C source code for these

classifiers is listed in appendix.

Looking at the C source code, only the essential parts of the classification process

are im plem ented in these experiments. Since the classifiers are trained before

embedding on microcontrollers, the parameters of the classifiers are assumed to

be fixed and stored in ROM.

170

D e s i g n M e t h o d o l o g y

Table 9-3 shows the memory requirements of these classifiers. From the table, it

is seen that the M LP classifier requires much less memory (-50% less) than the

RBFN.

MLP RBFN

8 -bit 9437 17378

Table 9-3. M em ory requirement on 8-bit m icrocontroller fo r Engine
aspiration system diagnosis.

Detection of unknown faults. In this experiment, the training dataset with 600

samples contains three states: normal (D l), exhaust restriction (D2) and air inlet

leak (D3). The test dataset with 1000 samples consists of four states: D l, D2, D3

and air inlet m anifold leak (D4). D4 is considered to represent one of the

unknown faults that may be encountered in the real operating environment.

The confusion matrix of M LP and RBFN on the test dataset is presented in Table

9-4 and Table 9-5. It is observed that both MLP and RBFN provide similar

classification perform ance for the known classes (D l, D2, and D3). However

M LP misclassifies 98.8% of D4 as D2, so it is unable to identify the unknown

class D4. By contrast, the RBFN correctly detects the unknown class D4 (73.6%

accuracy), and only comparatively rarely misclassifies D4 as D l (7.6%) or as D2

(18.8%).

171

D e s i g n M e t h o d o l o g y

D l D2 D3 D4

D l 0.74 0 0.168 0.092

D2 0 0.992 0 0.008

D3 0 0 0.992 0.008

D4 0 0.988 0 0 . 0 1 2

Table 9-4. Confusion matrix o f classification (MLP).

D l D2 D3 D4

D l 0.736 0 0 . 0 1 2 0.252

D2 0 0.988 0 0 . 0 1 2

D3 0 0 0.972 0.028

D4 0.076 0.188 0 0.736

Table 9-5. Confusion m atrix o f classification (RBFN).

Overall, the results of these experiments confirm the earlier findings, and support

the design m ethodology summarised in Figure 9-1.

9.4 Conclusions

On the basis of the results obtained in these studies, it is argued that each form of

classifier has both strengths and weaknesses, and that neither is suitable for use in

all CM FD applications. In order to assist in the selection between MLP and

RBFN classifiers, a design methodology for CMFD applications was proposed

based on the results. An assessment of the design methodology on a new case

study confirm ed its value when selecting between MLP and RBFN classifiers for

use in em bedded CM FD applications.

172

10
Conclusions

10.1 Introduction

The aim of the program m e of work described in this thesis was to investigate how

MLPs and RBFNs techniques could be most effectively applied in embedded

CMFD applications. The particular focus of the work was on what are referred to

here as “three-stage neural classifiers” ; such classifiers involve the pre-processing

of raw data from the plant, the design of suitable (neural) classifiers, and the post

processing of classifier outputs. In such a three-stage system, each stage

contributes significantly to the system performance.

In this chapter, the results obtained are discussed, and the extent to which the aims

of the thesis have been achieved is considered. In addition, some suggestions for

future work in this im portant area are made.

10.2 Techniques for effective pre- and post-processing

The thesis explored two techniques through which the performance of the chosen

classifier could be improved.

173

C o n c l u s i o n s

The first area considered involved the process of selecting pre-processing

strategies for em bedded classifiers. As discussed in Chapters 3 and 4, the ‘raw ’

signals obtained from sensors are rarely applied directly to the classifier. Instead,

these signals are pre-processed in order to reduce the data size, and - ideally - to

em phasise relevant data features.

A variety of pre-processing techniques exist. However, as with the selection of

appropriate classifier, the selection of an appropriate pre-processing method has

traditionally been based on ‘trial-and-error’. As an alternative, Chapter 4

presented a strategy for selecting pre-processing methods which is based on a

separability matrix. The matrix was derived from a non-parametric analysis of

classes in the dataset: crucially, it requires no assumptions to be made about the

underlying distribution of the data. Since the data distributions for practical

CMFD applications are likely to be unknown a priori, the proposed separability

analysis is particularly useful for CMFD applications. The problem of engine

misfire detection was used to demonstrate the effectiveness of this technique.

Another contribution made in this thesis concerned the selection of thresholds for

RBFN classifiers. Again, the focus was on CMFD applications, particularly those

with multiple faults or unknown faults. Following an investigation of the

underlying theory, a technique for deriving the required threshold for a trained

RBFN classifier was developed. This was then assessed empirically in two

further case studies.

174

C o n c l u s i o n s

10.3 Comparing classifier performance

Chapters 6 and 7 of this thesis presented the results of a comprehensive series of

empirical studies aimed at comparing the performance of M LP and RBFN

classifiers. As introduced in Chapter 1, several benchmark and comparison

studies have been previously published which have compared the performance of

different classifier systems (Ripley, 1994; Jain & Mao, 1997; Yang, 2000).

However, five particular problems distinguish many embedded CMFD

applications from most generic classifiers:

1) CPU resources are likely to be limited.

2) M emory resources are likely to be limited.

3) ‘M ultiple faults’ can occur.

4) ‘Unknown faults’ can occur.

5) Limited training data may be available.

The studies of classifiers discussed in this thesis are, it is believed, unique in their

focus on the design of embedded CMFD systems. Table 7-1 summarises the

results obtained.

175

C o n c l u s i o n s

Rule Rank Remarks

Error rate M LP ~ RBFN For interpolation

Training speed RBFN » MLP

Classification speed MLP » RBFN

M emory requirem ent M LP > RBFN On microcontroller

Training data size MLP > RBFN

M ultiple faults MLP ~ RBFN

Unknown faults RBFN » MLP

Table 10-1. Comparison Results. In the table the relative order o f classifier A
and classifier B is represented as follows.
A ~ B: classifiers A and B have similar performance.
A > B: classifier A is slightly better than classifier B.
A » B: classifier A is clearly better than classifier B.

10.4 Can the comparison results be generalised?

The results obtained in previous chapters were based mainly on the results of

empirical studies, using a limited number of datasets and data samples. It is

therefore im portant to consider the extent to which these results may be

generalised. Tw o observations are made below.

10.4.1 Selection of datasets

As classifiers can be applied to many areas in science and technology, the number

of datasets from possible domains is very large and the differences among them is

great. It is clearly im possible to compare classifiers by using them on all possible

applications.

176

C o n c l u s i o n s

To help address this problem , this thesis did not directly consider the physical

representation of the dataset, but instead focused on the data characteristics. A

dataset can be characterised by a number of measures, one of the important

measures is the separability between classes. To make the measure distribution-

free, this thesis used a non-parametric separability matrix to characterise the

dataset. Datasets from three case studies were then chosen that posed different

levels of difficulty for the classifier. For example, some classes had non-linear

boundaries (in the M M study), some classes were well separated (normal, pump

fault and radiator fault in the DC study), some classes had small overlaps and

complex class boundaries (in the BC study), some classes overlapped strongly

(normal and therm ostat stuck open in the DC study).

Overall, this range of data characteristics was felt to be highly appropriate for the

type of application considered in this thesis.

10.4.2 Rules independent of data

It should also be noted that some of the results are largely independent of the

particular datasets used: in this category are the processor and memory

requirements. These are determined mainly by the network architecture (number

of inputs, outputs and hidden units).

177

C o n c l u s i o n s

10.5 The design methodology

To make it easier to apply the results obtained from this study, they were used to

derive a design m ethodology (described in detail in Chapter 9). This methodology

was further explored in an additional case study, in Chapter 9. The results from

this study confirm ed the predictions from the methodology.

10.6 Future work

As this thesis draws to a close, some suggestions for future work in this important

area are made.

10.6.1 Novelty detection

W hen designing classifiers, it is often assumed that the states in the plant are

exhaustively known. This can be a significant drawback in real world CMFD

applications where it is difficult (if not impossible) to model all the possible fault

states of the plant in advance. It is therefore highly desirable that a classifier can

detect plant states which were unknown a priori.

Recently novelty detection has become increasingly important in many different

fields (Roberts, 1999; Tarassenko, et al, 2000). In novelty detection, a classifier is

constructed from a training dataset and novel classes are consequently identified

by exam ining the classifier output against output patterns for known classes.

Novelty detection can be achieved by density estimation (Bishop, 1994; Roberts,

1999; Desforges, et a l, 1998), neural networks (for example, RBFN and support

178

C o n c l u s i o n s

vector machines: Stitson et al, 1996), hidden Markov models (Smyth, 1994) or

data fusion techniques.

The decision as to w hether an input vector is from novel class or not tends to be

made on the basis of an exceeded threshold. As yet, there is no principled way to

choose such thresholds. The threshold selection method developed in Chapter 8

tackled this difficulty successfully for trained RBFN classifiers. It would be

interesting to explore the impact of extending the technique discussed in Chapter

8 into the area o f novelty detection.

10.6.2 Time-varying distributions

Suppose at time to some information is obtained (in the form of measurement data

and heuristic knowledge) from the system, and a classifier is constructed and

trained from this information. After training, the classifier will have decision

boundaries representing the states of the system at to. Conventionally, such

boundaries o f classes are assumed to be fixed. In practice, however, the actual

boundaries may vary in position, orientation or shape with respect to time, due to

ageing and changes in the operating environment (Martinez, 1998). It is therefore

often necessary to design a classifier that can adapt its decision boundaries, from

system history inform ation (at time t\, t2,..., tn-\), to track such variants. Thus the

classifier should always provide an appropriate classification at any future time tn,

no matter how the actual boundaries vary.

179

C o n c l u s i o n s

Again, it seems likely that further work on threshold adjustments could be used to

improve the perform ance in ‘aging’ systems.

10.6.3 Selection of training data

A neural classifier com prises a set of parameters (weights and biases) which

establish relationships between the relevant system inputs and outputs. These

param eters will generally be derived through training.

As discussed in Chapters 3 and 7, the quality and size of the available data has an

impact on the classifier performance. In particular, in practical applications, the

dataset may have a lot o f redundant samples (Hara & Nakayama, 1998). On the

other hand, new exam ples with information about the variance of class boundaries

should be added into dataset to adapt the classifier.

If we wish to reduce training times, and optimise classifier performance, training

data selection is required. The samples must be selected so as to maximise their

information content. Lee & Landgrebe (1997) have demonstrated that samples

around class boundaries contain all the necessary information for classification.

Again, by adjusting the thresholds of an RBFN classifier, we can infer the position

of a given sample relative to the class boundary. Taking this into consideration,

some further work is justified in to the selection of training data based on the

findings in Chapters 4 and 8 .

180

C o n c l u s i o n s

10.7 Conclusions

The major contributions of the work described in this thesis fall into three areas:

the predication of the effectiveness of pre-processing strategies, the

com prehensive com parison for the selection of classifiers, and the determination

of thresholds for optimal post-processing for RBFN classifiers. The resulting

design m ethodology, derived from theoretical and empirical findings, was shown

to be useful for designing and implementing effective embedded CMFD systems.

This thesis, in answering the questions that were posed at the outset, has prompted

many more. These will hopefully provide the stimulus for further research in this

important area.

181

A p p e n d ix : Em b e d d e d C so urc e c o d e

Embedded C code for classification using MLP

/* M LP c la ss if ie r : e s s e n t ia l c o d e on ly */
in c lu d e < m a th .h >

d e f in e InN o 1 2 / / n u m b er of input n o d e s
d e f in e H iN o 8 / / n u m b er of h idden n n o d e s
d e f in e O u tN o 4 / / n u m b er of output n o d e s

/ / fu n ction for MLP c la s s if ie r
v o id m lp(float* xx , float* yy, float* w 1 , float* b 1 , float* w 2 , float* b2)

{
float H iO ut[H iNo];
r e g is te r int i, j, k;

for(i=0;i<H iN o;i++)

{
H iO ut[i]=0;

for(j=0;j<lnN o;j++)
HiOutfi] += ((xx[j]*w1[j*HiNo+i]));

HiOut[i] += b1[i];
H iO ut[i]=1/(1 +exp(-H iO ut[i]));

}

for(k = 0;k < O u tN o;k + +)

{
yy[k]=o;

for(i=0;i<H iN o;i++)
yy[k] += ((HiO ut[i]*w2[i*O utNo+k]));

yy[k] += b2[k];
yy[k]=1/(1+ exp(-H iO ut[k]));

}
}

int m ain ()

{
floa t x [ln N o], y[O utN o]; // input an d ou tput array for o n e sa m p le

floa t w 1[ln N o][H iN o], b1[H iN o] / / w e ig h ts an d b ia s e s b e tw e e n input
and h id d en layer

floa t w 2[H iN o][O u tN o], b2[O utN o];// w e ig h ts an d b ia s e s b e tw e e n h idden
and //ou tp u t layer

// ca ll m lp() for c la ss ify in g th e sa m p le x, result sto red in y
m lp(x , y, w1 [0], b 1 , w 2[0], b2);

return 0;

}

182

A p p e n d i x

Em bedded C code for classification using RBFN

/* R B F N c la ss if ie r : e s s e n t ia l c o d e on ly */
in c lu d e < m a th .h >

d e f in e InN o 1 2 // n u m b er of input n o d e s
d e f in e H iN o 4 9 / / n u m b er of h idd en n o d e s
d e f in e O u tN o 4 / / n u m b er of output n o d e s

// c la s s if ic a t io n fu n ction
vo id rbf(float* xx , float* yy, float* C en , float* Var, float* w 2 , float* b2)

{
floa t H iO ut[H iNo];
re g is te r int i, j, k;

for(i=0;i<H iN o;i++)

{
H iO ut[i]=0;

for(j=0;j<lnN o;j++)
HiOut[i] += ((xx[j]-C en[j*H iN o+i])*(xx[j]-C en|j*H iN o+i]));

HiOut[i] /= (2.0*Var[i]*Var[i]);
H iO ut[i]=exp(-H iO ut[i]);

}

for (k = 0;k < O u tN o;k + +)

{
yy[k]=o;

for (0;i<H iN o;i++)
yy[k] += HiOut[i]*w2[i*OutNo+k];
yy[k] + - b2[k];

}
}

int m ain ()

{
floa t x [ln N o], y[O utN o]; // input and output array for o n e s a m p le
floa t cen [ln N o][H iN o]; / / c e n tr e s of RBFN
floa t var[FliNo]; / / w id ths of RBFN
float w 2[H iN o][O utN o]; / / w e ig h ts
floa t b2[O u tN o]; / / b ia s e s

/ / ca ll rbf() for c la s s if in g th e sa m p le x, th e resu lt is s to r e d in y
rbf(x, y, c e n [0] , var, w 2[0], b2);

return 0;

183

B ib l io g r a p h y

Ayoubi M, Iserm ann R (1997). “Neuro-fuzzy systems for diagnosis,” Fuzzy Sets

and Systems, 89(3): 289-307.

Azzoni P, M oro D, Ponti F, Rizzoni G (1998). “Engine and load torque estimation

with application to electronic throttle control,” SAE Special Publications,

vo l.1357: 149-159.

Bartal Y, Lin J, Uhrig RE (1995). “Nuclear-power-plant transient diagnostics

using artificial neural networks that allow don’t-know classifications,”

Nuclear Technology, 110(3): 436-449.

Baum EB, H aussler D (1989). “W hat size net gives valid generalization?” Neural

Computation, 1(1): 151-160.

Bishop CM (1994). “Novelty detection and neural-network validation,” IEE

Proceedings-Vision Image and Signal Processing, 141(4): 217-222.

Bishop CM (1995). “Neural networks for pattern recognition,” Clarendon Press,

Oxford.

Blayo F, Cheneval Y, et al (1995). “Enhanced learning for evolutive neural

architecture,” FTP: ftp.dice.ul.ac.be/pub/neural-nets/ELENA/Benchmarks.ps.Z.

Braun S (1986). “M echanical signature analysis : theory and applications,”

London : Academ ic Press.

Broomhead DS, Lowe D (1988). “Multivariable function interpolation and

adaptive netw orks,” Complex Systems, 2: 321-335.

Bugmann G (1998). “Normalised Gaussian radial basis function networks,”

Neurocomputing, 20(1-3): 97-110.

Calcutt DM (1998). 8051 Microcontrollers : Hardware, Software and

Applications. London: Arnold

184

ftp://ftp.dice.ul.ac.be/pub/neural-nets/ELENA/Benchmarks.ps.Z

B i b l i o g r a p h y

Carelse XF (2002). “An introduction to the industrial applications of

microcontrollers,” Physica Scripta, T97: 148-151.

Carley L (1997). “Understanding OBDII: past, present & future,”

http://mem bers.aol.com /carpix256/library/us796obd.txt.

Ceccarani M, Rebottini C, Bettini R (1998). “Engine misfire monitoring for a V I2

engine by exhaust pressure analysis,” SAE Special Publications, vol. 1357: 65-

70.

Chan W L, Chan TM , Pang SL, So ATP (1997). “A distributed on-line HV

transm ission condition monitoring information system,” IEEE Transactions

on Power Delivery, 12(2): 707-713.

Chantler M J, Coghill GM, Shen Q, Leitch RR (1998). “Selecting tools and

techniques for m odel-based diagnosis,” Artificial Intelligence in Engineering,

12(1-2): 81-98.

Chen S, Cowan FN, Grant PM (1991). “Orthogonal least squares learning

algorithm for radial basis function networks,” IEEE Transactions on Neural

Networks, 2(2): 302-309.

Cheng B, Titterington DM (1994). “Neural networks: a review from a statistical

perspective,” Statistical Science-a Review Journal of the Institute of

M athematical Statistics, 9(1): 2-30.

Cheon SW, Chang SH, Chung HY, Bien ZN (1993). “Application of neural

networks to multiple alarm processing and diagnosis in nuclear-power-

plants,” IEEE Transactions on Nuclear Science, 40 (1): 11-20.

Chin H, Danai K (1991). “A method of fault signature extraction for improved

diagnosis,” Transactions of the ASME, J. of dynamic systems, measurement,

and control, 113(4): 634-638.

Chung HY, Bien ZN, Park JH, Seong PH (1994). “Incipient multiple-fault

diagnosis in real-tim e with application to large-scale systems,” IEEE

Transactions on Nuclear Science, 41(4 Pt2): 1692-1703.

185

http://members.aol.com/carpix256/library/us796obd.txt

B i b l i o g r a p h y

Connolly FF, Rizzoni G (1994). “Real time estimation of engine torque for the

detection of engine misfires,” Journal of dynamic systems, measurement, and

control, 116: 675-686.

Cordelia LP, Destefano C, Tortorella F, Vento M (1995). “A method for

im proving classification reliability of multilayer perceptrons,” IEEE

Transactions on Neural Networks, 6 (5): 1140-1147.

Dash S, V enkatasubram anian V (2000). “Challenges in the industrial applications

o f fault diagnostic system s,” Computers & Chemical Engineering, 24(2-7):

785-791.

Davies P, Silverstein BR (1995). “A comparison of neural nets to statistical

classifiers for stubborn classification problems,” ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, vol.5:

3467-3470.

DeJong RG, Powell RE, M anning JE (1986). “Engine monitoring using vibration

signals,” International off-highway & powerplant congress & exposition,

(Conf. Code, 08833), M ilwaukee, WI, USA, p7.

Desforges MJ, Jacob PJ, Cooper JE (1998). “Applications of probability density

estimation to the detection of abnormal conditions in engineering,” Journal of

M echanical Engineering Science, 212(8): 687-703.

Duin RPW (1995). “Small sample size generalization,” in: G. Borgefors (eds.),

SCIA'95, Proc. 9th Scandinavian Conf. on Image Analysis, (Uppsala,

Sweden), vol.2: 957-964.

Duin RPW (1996). “A note on comparing classifiers,” Pattern Recognition

Letters, 17(5): 529-536.

Efron B (1979). “Bootstrap methods: another look at the Jackknife,” Annals of

Statistics, 7: 1-26.

Efron B (1983). “Estim ating the error rate of a prediction rule: improvement on

cross-validation,” Journal of the American Statistical Association, 78(382):

316-331.

186

B i b l i o g r a p h y

Farell AE, Roat SD (1994). “Framework for enhancing fault-diagnosis capabilities

o f artificial neural networks,” Computers and Chemical Engineering, 18(7):

613-635.

Flam mini A, M arioli D, Taroni A (2001). “A low-cost diagnostic tool for

stepping m otors,” IEEE Transactions on Instrumentation and Measurement,

50(1): 157-162.

Flem ing M C, Nellis JG (1994). Principles of Applied Statistics, Routledge.

Foerster J, Lohm ann A, M ezger M, RiesMueller K (1997). “Advanced engine

misfire detection for Sl-engines,” SAE Special Publications, vol. 1236: 167-

173.

Frank PM (1990). “Fault diagnosis in dynamic systems using analytical and

knowledge-based redundancy—a survey and some new results,” Automatica,

26(3): 459-474.

Frank PM (1994). “O n-line fault-detection in uncertain nonlinear-systems using

diagnostic observers - a survey,” International Journal of Systems Science,

25(12): 2129-2154.

Frank PM, KoppenSeliger B (1997). “New developments using A l in fault

diagnosis,” Engineering Applications of Artificial Intelligence, 10(1): 3-14.

Frank T, Kraiss KF, Kuhlen T (1998). “ Comparative analysis of fuzzy ART and

ART-2 A network clustering performance,” IEEE Transactions on neural

networks, 9(3): 544-559.

Fukunaga K (1983). “nonparametric discriminant analysis,” IEEE Transactions on

Pattern Analysis and M achine Intelligence, 5(6): 671-678.

Fukunaga K (1989). “Estimation of classifier performance,” IEEE Transactions on

Pattern A nalysis and M achine Intelligence, 11(10): 1087-1101.

Fukunaga K (1990). “Introduction to Statistical Pattern Recognition,” Academic

Press, 2nd Edition.

Fukunaga K, Hayes RR (1989). “Effects of sample size in classifier design,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11(8): 873-885.

187

B i b l i o g r a p h y

Gertler J (1993), “Residual generation in model-based fault diagnosis,” Control-

theory and advanced technology, 9(1): 259-285.

Gertler J, Costin M, Fang XW (1995). “Model based diagnosis for automotive

engines—algorithm development and testing on a production vehicle,” IEEE

Transactions on Control Systems Technology, 3(1): 61-69.

Gioutsos T (1995). “Signal processing for automotive applications,” ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, vol.5: 2975-2978.

Grimm elius HT, M eiler PP, Maas HLMM, Bonnier P, Grevink JS, van

Kuilenburg RF (1999). “Three state-of-the-art methods for condition

monitoring,” IEEE transactions on Industrial Electronics, 46(2): 407-416.

Guglielmi G, Parisini T, Rossi G (1995). “Keynote paper - fault-diagnosis and

neural networks - a power- plant application,” Control Engineering Practice,

3(5): 601-620.

Guyon I, M akhoul J, Schwartz R, Vapnik V (1998). “W hat size test set gives good

error rate estim ates,” IEEE Transactions on pattern analysis and machine

intelligence, 20(1): 52-63.

Hamamoto Y, Uchim ura S, Tom ita S (1997). “A bootstrap technique for nearest

neighbor classifier design” IEEE Transactions on Pattern Analysis and

M achine Intelligence, 19(1): 73-79.

Hara K, N akayam a K (1998). “Training data selection method for generalization

by m ultilayer neural networks,” IEICE Transactions on Fundamentals of

Electronics Com m unications and Computer Sciences, E81A(3): 374-381.

Haussler D (1992). “Decision Theoretic Generalizations of the PAC Model for

Neural Net and O ther Learning Applications,” Information and Computation,

100(1): 78-150.

Haussler D, Kearns M, Seung HS, Tishby N (1997). “Rigorous Learning Curve

Bounds from Statistical M echanics,” Machine Learning, 25: 195-236.

188

B i b l i o g r a p h y

Haykin S (1999). “N eural networks: a comprehensive foundation,” Macmillan

College Publishing Company, Inc.

Hayton P, Scholkopf B, Tarassenko L, Anuzis P (2001). “Support vector novelty

detection applied to je t engine vibration spectra,” Advances in Neural

Inform ation Processing Systems, vol. 13: 946-952

Heinke D, H am ker FH (1998). “Comparing neural networks: A benchmark on

growing neural gas, growing cell structures, and fuzzy ARTM AP,” IEEE

Transactions on Neural Networks, 9(6): 1279-1291

Holmstrom L, Koistinen P, Laaksonen J, Oja E (1997). “Neural and statistical

classifiers-taxonom y and two case studies,” IEEE Transactions on Neural

Networks, 8(1): 5-17.

Hsu CH, Lin CJ (2002). “A comparison of methods for multiclass support vector

m achines,” IEEE Transactions on Neural Networks, 13(2): 415-425.

Hsu PL, Lin KL, Shen LC (1995). “Diagnosis of multiple sensor and actuator

failures in automotive engines,” IEEE Transactions On Vehicular

Technology, 44(4): 779-789.

Huang GB, Chen YQ, Babri HA (2000) “Classification ability of single hidden

layer feedforward neural networks,” IEEE Transactions on Neural Networks,

11(3): 799-801.

Huang SC, Huang YF (1991).“Bounds on the number of hidden neurons in

multilayer perceptrons” IEEE Transactions on Neural Networks, 2(1): 47-55.

Huang W Y, Lippm ann RP (1988) “Neural net and traditional classifiers,” in

Neural Inform ation Processing Systems, Anderson D, Ed. New York:

American Institute of Physics, 387-396.

Hudon S, Yan Y, Kinsner W (1990). “A comparative-study of neural network

m odels,” M athem atical and Computer Modelling, 14: 300-304.

Hurtado JE, A lvarez DA (2001). “Neural-network-based reliability analysis: a

comparative study,” Computer Methods in Applied Mechanics and

Engineering, 191(1-2): 113-132.

189

B i b l i o g r a p h y

Hwang YS, Bang SY (1997). “Recognition of unconstrained handwritten

numerals by a radial basis function neural network classifier,” Pattern

Recognition Letters, 18(7): 657-664.

Intel51. “M CS(R) 51 Microcontroller Family User's Manual,”

http://www.intel.com/design/m cs5 l/docs_m cs51 .htm#Manuals.

Intel96. “8XC196Kx, 8XC196Jx, 87C196CA M icrocontroller Family User's

M anual,” http://www.intel.eom/design/m cs96/docs_mcs96.htm#M anuals.

Isermann R (1984). “Process fault detection based on modelling and estimation

m ethods—a survey,” Automatica, 20(4): 387-404.

Isermann R (1993). “Fault diagnosis of machines via parameter estimation and

knowledge processing—tutorial paper,” Automatica, 29(4): 815-835.

Isermann R (1997). “Supervision, fault-detection and fault-diagnosis methods-an

introduction,” Control Engineering Practice, 5(5): 639-652.

Isermann R, Balle P (1997). “Trends in the application of model-based fault

detection and diagnosis of technical processes,” Control Engineering Practice,

5(5): 709-719.

Isermann R, Raab U (1993). “Intelligent actuators - ways to autonomous actuating

systems,” Automatica, 29(5): 1315-1331.

Jack LB, Nandi AK (2001). “Support vector machines for detection and

characterization o f rolling element bearing faults,” Proceedings of the

Institution o f M echanical Engineers Part C-Journal of Mechanical

Engineering Science, 215(9): 1065-1074.

Jain AK, Duin RPW , M ao JC (2000). “Statistical pattern recognition: A review,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1): 4-37.

Jain AK, M ao JC (1997). “Special issue on artificial neural networks and

statistical pattern recognition,” IEEE Transaction on neural networks, 8(1): 1-

3.

190

http://www.intel.com/design/mcs5
http://www.intel.eom/design/mcs96/docs_mcs96.htm%23Manuals

B i b l i o g r a p h y

Joshi A, Ram akrishm an N, Houstis EN, Rice JR (1997). “On neurobiological,

neuro-fuzzy, m achine learning, and statistical pattern recognition techniques,”

IEEE Transactions on Neural Networks, 8(1): 18-31.

Kavuri SN, Venkatasubram anian V (1993a). “Representing Bounded Fault

Classes Using Neural Networks With Ellipsoidal Activation Functions,”

Com puters & Chem ical Engineering, 17(2): 139-163.

Kay JW , Titterington DM (1999). Statistics and Neural Networks: Advances at

the Interface, Oxford University Press.

Kim YW , Rizzoni G, Samimy B, W ang YY (1995). “Analysis and processing of

shaft angular velocity signals in rotating machinery for diagnostic

applications,” ICASSP, IEEE International Conference on Acoustics, Speech

and Signal Processing - Proceedings, vol.5: 2971-2974.

Kittler J, H atef M, Duin RPW , Matas J (1998). “On combining classifiers,” IEEE

Transactions on Pattern Analysis & M achine Intelligence, 20(3): 226-239.

Kobayashi H; Onoye T; Shirakawa I (2002). “Performance estimation at

architecture level for embedded systems,” IEICE Transactions on

Fundamentals of Electronics Communications and Computer Sciences,

E85A(12): 2636-2644.

Kramer MA, Leonard JA (1990). “Diagnosis Using Backpropagation Neural

Networks - Analysis and Criticism,” Computers & Chemical Engineering,

14(12): 1323-1338.

Lada EK, Lu JC, W ilson JR (2002). “A wavelet-based procedure for process fault

detection,” IEEE Transactions on Semiconductor Manufacturing, 15(1): 79-

90.

Lampariello F, Sciandrone M (2001) “Efficient training of RBF neural networks

for pattern recognition,” IEEE Transactions on Neural Networks, 12(5): 1235-

1242.

Lampariello F, Sciandrone M (2001). “Efficient training of RBF neural networks

for pattern recognition,” IEEE Transactions on Neural Networks, 12(5): 1235-

1242.

191

B i b l i o g r a p h y

Lawrenz, W (1997). CAN System Engineering, Springer-Verlag.

Le Riche R, Gualandris D, Thomas JJ, Hemez F (2001). “Neural identification of

non-linear dynam ic structures,” Journal of Sound and Vibration, 248(2): 247-

265.

Le TT, W atton J, Pham DT (1998). “Fault classification of fluid power systems

using a dynam ics feature extraction technique and neural networks,”

Proceedings o f the Institution of Mechanical Engineers. Part I, Journal of

Systems & Control Engineering, 212(2): 87-97.

Lee C, Landgrebe DA (1997). “Decision boundary feature extraction for neural

netw orks,” IEEE Transactions on neural networks, 8(1): 75-83.

Lee S, Kil RM (1991). “A Gaussian potential function network with hierarchically

self-organizing learning,” Neural networks, 4: 207-224.

Leen G, H effernan D, Dunne A (1999). “Digital networks in the automotive

vehicle,” Com puting and Control, 10(6): 257-266.

Leonard JA, K ramer M A (1990). “Classifying process behaviour with neural

networks: strategies for improved training and generalization,” Proceedings of

the American Control Conference, San Diego, CA, USA, 23-25 May 1990,

(Conf. code 14483), no.1990: 2478-2483.

Leonhardt S, Ayoubi M (1997). “Methods of fault diagnosis,” Control

Engineering Practice, 5(5): 683-692.

Leung FHF; Lam HK; Ling SH; Tam PKS (2003) “Tuning of the structure and

param eters o f a neural network using an improved genetic algorithm,” IEEE

Transactions on Neural Networks, 14(1): 79-88.

Li Q, Tufts DW (1997). “Principal feature classification,” IEEE Transactions on

neural networks, 8(1): 155-160.

Li YH, Jones NB, Pont M J (1998). “Applying neural networks and fuzzy logic to

fault diagnosis: a review ,” Proceedings of recent advances in soft

com puting’98, Leicester, UK: 104-119.

192

B i b l i o g r a p h y

Li Z, A kishita S, Kato T (1997). “Engine failure diagnosis with sound signal using

wavelet transform ,” SAE Special Publications, vol. 1240: 79-86.

Li Z, A kishita S, Tokum oto SI, Kato T (1996). “Failure diagnosis system by

sound signal for automobile engine,” Proceedings of the Japan/USA

Sym posium on Flexible Automation, vol.l: 427-430.

Lippmann RP (1987). “An introduction to computing with neural networks,”

Institute o f Electrical and Electronic Engineers (USA): Acoustics, Speech and

Signal Processing.

Lippmann RP (1989). “Pattern classification using neural networks,” IEEE

Com m unications M agazine, 27(11): 47-64.

Lippmann RP, in Cherkassky V, Friedman JH, W echsler H (Eds) (1994). “From

statistics to neural networks : theory and pattern recognition applications,”

Berlin; London : Springer-Verlag.

Liu JH; G ader P (2002). “Neural networks with enhanced outlier rejection ability

for off-line handwritten word recognition,” Pattern Recognition, 35(10):

2061-2071.

Liu S, Gu F, Ball A (2002). “The on-line detection of engine misfire at low speed

using multiple feature fusion with fuzzy pattern recognition,” Proceedings of

The Institution of M echanical Engineers Part D-Journal of Automobile

Engineering, 216 (5): 391-402.

Looney CG (1997). Pattern Recognition Using Neural Networks. Oxford

U niversity Press.

M acGregor R, “OBD II Explained,” http://www.vru.com/carshow/obd2.html.

M ak MW , A llen W G, Sexton GG (1993). “Comparing multi-layer perceptrons

and radial basis function networks in speaker recognition,” Journal of

M icrocom puter A pplications, 16(2): 147-159.

Mak MW, Allen W G, Sexton GG (1994). “Speaker identification using multilayer

perceptron and radial basis function networks,” Neurocomputing, 6(1): 99-

117.

193

http://www.vru.com/carshow/obd2.html

B i b l i o g r a p h y

Maki Y, Loparo KA (1997). “A neural-network approach to fault detection and

diagnosis in industrial processes,” IEEE Transactions on Control Systems

Technology, 5(6): 529-541.

M angasarian OL, W olberg W H (1990). "Cancer diagnosis via linear

program m ing,” SIAM News, 23(5): 1-18.

Manson G, W orden K, Holford K, Pullin R (2001). “Visualisation and dimension

reduction o f acoustic emission data for damage detection,” Journal of

Intelligent M aterial Systems and Structures, 12(8): 529-536.

Marks RJ (1993). “Intelligence: computational versus artificial,” IEEE

Transactions on Neural Networks, 4(5): 737-739.

M artinez D (1998). “Neural tree density estimation for novelty detection,” IEEE

Transactions on Neural Networks, 9(2): 330-338.

Marzi H (2002). “Developm ent of a real-time monitoring system,” Proceedings of

the Institution of M echanical Engineers Part B-Journal of Engineering

Manufacture, 216(6): 933-937.

M ehrotra KG, M ohan CK, Ranka S (1991). “Bounds on the number of samples

needed for neural learning” IEEE Transactions on Neural Networks, 2(6):

548-558.

M ichie D, Spiegelhalter DJ, Taylor CC (Eds) (1994). “M achine learning, neural

and statistical classification,” New York; London: Ellis Horwood.

M icrosoft (1992). M ASM , Reference, Assembly-Language Development System

Version 6.1, Docum ent No. DB35749-1292.

Min BK, O 'Neal G, Koren Y, Pasek Z (2002). “A smart boring tool for process

control,” M echatronics 12(9-10): 1097-1114.

Moody J, D arken CJ (1988). “Learning with localised receptive fields,”

Proceedings o f the 1988 connectionist models summer school, 133-143.

Moody J, Darken CJ (1989). “Fast learning in networks of locally-tuned

processing units,” Neural computation, 1(2): 281-294.

194

B i b l i o g r a p h y

Moro D, Azzoni P, M inelli G (1998). “Misfire pattern recognition in high

perform ance SI 12 cylinder engine,” SAE Special Publications, vol. 1357: 87-

94.

M usavi M T, Chan KH, Hummels DM, Kalantri K (1994). “On the generalization

ability o f neural network classifiers,” IEEE Transactions on Pattern Analysis

and M achine Intelligence, 16(6): 659-663.

Neal RM (1996). Bayesian Learning for Neural Networks, Springer-Verlag,

ISBN: 0-387-94724-8.

Newland DE (1993). “An introduction to random vibrations, spectral and wavelet

analysis,” Harlow : Longman Scientific & Technical.

Newland DE (1994). “W avelet analysis of vibration .1. Theory; 2. Wavelet

maps,” Journal o f Vibration and Acoustics-Transactions of the ASME,

116(4): 409-425.

Oppenheim AV (1975). “Digital signal processing” London : Prentice Hall.

Orr M JL (1999). “Recent Advances in Radial Basis Function Networks,” Tech.

Rep., Center for Cognitive Science, University of Edinburgh.

Ozyurt B, Kandel A (1996). “A hybrid hierarchical neural network-fuzzy expert-

system approach to chemical process fault-diagnosis,” Fuzzy sets and

systems, 83(1): 11-25.

Parikh CR, Pont MJ, Li Y, Jones NB (2000). “Investigating the performance of

M LP classifiers where limited training data are available for some classes,” in

R. John and R. Birkenhead (Eds), Advances in Soft Computing—Soft

Com puting Techniques and Applications, Springer-Verlag, ISBN 3-7908-

1257-9: 22-27.

Parikh CR, Pont MJ, Li YH, Jones NB (1999). “Neural networks for condition

monitoring and fault diagnosis: the effect of training data on classifier

perform ance,” Proceedings of the International conference on condition

monitoring, Swansea, UK: 237-244.

195

B i b l i o g r a p h y

Patton R, Frank PM , Clark R (1989). “Fault diagnosis in dynamic systems-theory

and applications,” Prentice Hall.

Patton RJ, Chen J (1997). “Observer-based fault detection and isolation:

Robustness and applications,” Control Engineering Practice, 5(5): 671-682.

Patton RJ, Chen J, Nielsen SB (1995). “Model-Based M ethods for Fault-

D iagnosis - Some Guide Lines,” Transactions of the Institute of Measurement

and Control, 17(2): 73-83.

Patton RJ, Lopez-Toribio CJ (1998). “Artificial intelligence approaches to fault

diagnosis,” IEE Colloquium, Update on Developments in intelligent Control,

23 Oct 1998.

Petrilli O, Paya B, Esat II, Badi MNM (1995). “Neural networks based fault

detection using different signal processing techniques as pre-processing,”

American Society of M echanical Engineers, Petroleum Division (Publication)

PD, 70: 97-101.

Pittner S, Kamarthi SV (1999). “Feature extraction from wavelet coefficients for

pattern recognition tasks,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21(1): 83-88.

Plutowski M, W hite H (1993). “Selecting concise training sets from clean data,”

IEEE Transactions on Neural Networks, 4(2): 305-318.

Pont M J (2001). Patterns for Time-Triggered Embedded Systems, Addison-

W esley Publishers Ltd.

Powell M JD (1987). “ Radial basis functions for multivariable interpolation: a

review,” Conference in Algorithms for the Approximation of Functions and

Data.

Prakash KN, Ram akrishnan AG, Suresh S, Chow TW P (2002). “Fetal lung

maturity analysis using ultrasound image features,” IEEE Transactions on

Information Technology in Biomedicine, 6(1): 38-45.

Prechelt L (1994). “PROBEN1-A set of benchmarks and benchmarking rules for

neural network training algorithms,” Tech. Report 21/94, Fakultat fur

196

B i b l i o g r a p h y

Informatik, U niversitat Karlsruhe, Germany, FTP:

ftp.ira.uka.de/pub/papers/techreports/1994/1994-21 .ps.Z

Prechelt L (1996). “A Quantitative Study of Experimental Evaluations of Neural

N etw ork Learning Algorithms: Current Research Practice,” Neural Networks,

9(3): 457-462

Rao BKN (ed.) (1996). Handbook of Condition Monitoring, Oxford: Elsevier

Advanced Technology.

Rao NSV (1999) “Simple sample bound for feedforward sigmoid networks with

bounded w eights,” Neurocomputing, 29 (1-3): 115-122.

Rathbun TF, Rogers SK, DeSimio MP, Oxley ME (1997). “MLP iterative

construction algorithm ,” Neurocomputing, 17 (3-4): 195-216.

Ribbens WB, Bieser S (1995). “Advanced signal processing for misfire detection

in automotive engines,” ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, vol.5: 2963-2966.

Ribbens WB, Park J, Kim D (1994). “Application of neural networks to detecting

misfire in automotive engines,” ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, vol.2: 593-596.

Ripley BD (1994). “Neural networks and related methods for classification (with

discussion),” Journal of the Royal Statistical Society Series B-

M ethodological, 56(3): 409-456.

Ripley BD (1995). “Statistical ideas for selecting network architectures,” In

‘Neural Networks: Artificial Intelligence and Industrial Applications,’ eds B.

Kappen & S. Gielen, Springer, 183-190.

Roberts SJ (1999). “Novelty detection using extreme value statistics,” IEE

Proceedings-Vision Image and Signal Processing, 146(3): 124-129.

Ross TJ (1995). “Fuzzy logic with engineering applications,” M cGraw-Hill, Inc.

Rozier D (2001). “A strategy for diagnosing complex multiple-fault situations

with a higher accuracy/cost ratio,” Engineering Applications of Artificial

Intelligence, 14(2): 217-227.

197

ftp://ftp.ira.uka.de/pub/papers/techreports/1994/1994-21

B i b l i o g r a p h y

Rumelhart D, M cClelland JL (1986). Parallel Distributed Processing, vol.l.

M.I.T. Press.

Sanchez VD (1996). “On the design a class of neural networks,” Journal of

network and com puter applications, 19: 111-118.

Scholkopf B, Sung KK, Burges CJC, Girosi F, Niyogi P, Poggio T, Vapnik V

(1997). “Comparing support vector machines with Gaussian kernels to radial

basis function classifiers,” IEEE Transactions on Signal Processing, 45(11):

2758-2765.

Schwenker F, K estler HA, Palm G (2001). “Three learning phases for radial -

basis-function networks,” Neural Networks 14(4-5): 439-458.

Setiono R (2001) “Feedforward neural network construction using cross

validation,” Neural Computation, 13(12), 2865-2877.

Sick B (2002). “On-line and indirect tool wear monitoring in turning with

artificial neural networks: A review of more than a decade of research,”

M echanical Systems and Signal Processing, 16(4): 487-546.

Silipo R, M archesi C (1998). “Artificial neural networks for automatic ECG

analysis,” IEEE Transactions on Signal Processing, 46(5): 1417-1425.

Skoundrianos EN, Tzafestas SG (2002). “Fault diagnosis via local neural

networks,” M athematics and Computers in Simulation, 60 (3-5): 169-180.

Skurichina M, Duin RPW (1996). “Stabilizing classifiers for very small sample

sizes,” ICPR13, Proc. 13th Int. Conf. on Pattern Recognition (Vienna,

Austria, Aug.25-29) vol.2, Track B: Pattern Recognition and Signal Analysis,

IEEE Computer Society Press, Los Alamitos: 891-896.

Smolensky P, M ozer MC, Rumelhart DE (1996). M athematical Perspectives on

Neural Networks, Mahwal, New Jersey, Lawrence Erlbaum Associates,

Publishers.

Smyth P (1994). “Markov monitoring with unknown states,” IEEE Journal on

Selected Areas in Communications, 12(9): 1600-1612.

198

B i b l i o g r a p h y

Somol P, Pudil P (2002). “Feature selection toolbox,” Pattern Recognition, 35:

2749-2759.

Staszewski W J (1998). “ W avelet based compression and feature selection for

vibration analysis,” Journal of Sound and Vibration, 211(5): 735-760.

Staszewski, W J (2000). “Advanced data pre-processing for damage identification

based on pattern recognition,” International Journal of Systems Science,

31(11): 1381-1396.

Staszewski, W J, W orden K (1997). “Classification of faults in gearbox - pre

processing algorithms and neural networks,” Neural Computing &

Applications, 5(3): 160-183.

Stitson MO, W eston JAE, Gammerman A, Vovk V, Vapnik V (1996). “Theory of

support vector machines,” Technical Report CSD-TR-96-17, Department of

Computer Science, Royal Holloway, University of London.

Takahashi H, Gu HZ (1998). “A tight bound on concept learning,” IEEE

Transactions on neural networks, 9(6): 1191-1202.

Tandon N, Choudhury A (1999). “A review of vibration and acoustic

measurement methods for the detection of defects in rolling element

bearings,” Tribology International, 32(8): 469-480.

Tarassenko L, Nairac A, Townsend N, Buxton I, Cowley Z (2000). “Novelty

detection for the identification of abnormalities,” International Journal of

Systems Science, 31(11): 1427-1439.

Tarassenko L, Nairac A, Townsend NW, Buxton I, Cowley P (2000). “Novelty

detection for the identification of abnormalities” Int J Systems Science, 11:

1427-1439

Tarassenko L, Roberts S (1994). “Supervised and unsupervised learning in radial

basis function classifiers,” IEE Proceedings-Vision Image and Signal

Processing, 141(4): 210-216.

199

B i b l i o g r a p h y

Terra MH, Tinos R (2001). “Fault detection and isolation in robotic manipulators

via neural networks: A comparison among three architectures for residual

analysis,” Journal of Robotic Systems, 18 (7): 357-374.

Theodoridis S, Koutroumbas K (1999). Pattern Recognition. Academic Press.

Tsoi AC, Back A (1995). “Static and dynamic preprocessing methods in neural

networks,” Engineering application of artificial intelligent, 8(6): 633-642.

Twiddle JA (1999). Fuzzy Model Based Fault Diagnosis of a Diesel Engine

Cooling System. Departm ent of Engineering, University of Leicester, Report

99-1 Jan 1999.

Vahid F, Givargis T (2002). Embedded System Design: a Unified

Hardware/Software Introduction. New York: John W iley & Sons, Inc.

Wang CC, Too GPJ (2002). “Rotating machine fault detection based on HOS and

artificial neural networks,” Journal of Intelligent M anufacturing, 13(4): 283-

293.

Watanabe K, Hirota S, Hou L, Himmelblau DM (1994). “Diagnosis of Multiple

Simultaneous Fault Via Hierarchical Artificial Neural N etw orks,” AICHE

Journal, 40(5): 839-848.

Watkins DS (1991). “Fundamentals of Matrix Computations,” John Willey &

Sons, Inc.

Williams J (1996). “An overview of misfiring cylinder engine diagnostic

techniques based on crankshaft angular velocity measurements,” SAE special

publications, 1149: 31-37.

Williams J (1996a). “Improved methods for digital measurement of torsional

vibration,” Proceedings of the 1996 international truck & bus meeting &

exposition, conference code 45559, Detroit MI, USA: 9-15.

Willsky AS (1976). “A survey of design methods for failure detection in dynamic

systems,” Automatica, 12(6): 601-611.

Wilmshurst T (2001). An Introduction to the Design of Small-Scale Embedded

Systems. Basingstoke: Palgrave, 2001.

2 0 0

B i b l i o g r a p h y

Wilson CL; Blue JL; Omidvar OM (1997). “Training dynamics and neural

network perform ance,” Neural Networks, 10(5): 907-923.

Wu ZJ, Lee A (1998). “M isfire detection using a dynamic neural network with

output feedback,” SAE Special Publications, vol. 1357: 33-37.

Yang DM, Stronach AF, M acConnell P, Penman J (2002). “Third-order spectral

techniques for the diagnosis of motor bearing condition using artificial neural

networks,” M echanical Systems and Signal Processing, 16(2-3): 391-411.

Ye N, Zhao B (1996). “A hybrid intelligent system for fault-diagnosis of

advanced m anufacturing system,” International journal of production

research, 34(2): 555-576

Ypma A., Duin RPW (1997). “Novelty detection using self-organizing maps,” in:

N. Kasabov, R. Kozma, K. Ko, R. O'Shea, G. Goghill, T. Gedeon (eds.),

Progress in Connectionist-Based Information Systems, vol.II, Springer

Verlag, Berlin, 1322-1325.

Yu D, Shields DN, Daley S (1996). “A hybrid fault-diagnosis approach using

neural networks,” Neural computing & applications, 4(1): 21-26.

Zadeh LA (1965). “Fuzzy sets,” Information and Control, 8: 338-353.

Zadeh LA (1973). “Outline of a new approach to the analysis of complex systems

and decision processes,” IEEE Transactions on System, Man, and

Cybernetics, 3(1): 28-44.

Zhang GQP (2000). “Neural networks for classification: a survey,” IEEE

Transactions on Systems Man and Cybernetics Part C - Applications and

Reviews, 30(4): 451-462.

Zheng ZJ (1993). “A benchmark for classifier learning,” Tech. Rep. TR474,

Basser Department of Computer Science, University of Sidney, Anonymous

ftp:7ftp.es. su.oz.au/pub/tr/TR93_474.ps.Z.

201

ftp://ftp.es

