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ABSTRACT

The Local Group galaxy M33 exhibits a regular spiral structure and is close enough to permit high resolution
analysis of its kinematics, making it an ideal candidate for rotation curve studies of its inner regions. Previous
studies have claimed the galaxy has a dark matter halo with an Navarro–Frenk–White profile, based on statistical
comparisons with a small number of other profiles. We apply a Bayesian method from our previous paper to place
the dark matter density profile in the context of a continuous, and more general, parameter space. For a wide range
of initial assumptions we find that models with inner log slope γin < 0.9 are strongly excluded by the kinematics
of the galaxy unless the mass-to-light ratio of the stellar components in the 3.6 μm band satisfies ϒ3.6 � 2. Such a
high ϒ3.6 is inconsistent with current modeling of the stellar population of M33. This suggests that M33 is a galaxy
whose dark matter halo has not been significantly modified by feedback. We discuss possible explanations of this
result, including ram pressure stripping during earlier interactions with M31.

Key words: dark matter – galaxies: individual (M33) – galaxies: kinematics and dynamics – galaxies: spiral –
galaxies: structure – Local Group

1. INTRODUCTION

Cosmological models of the formation of dark matter halos
predict cusped density profiles (Dubinski & Carlberg 1991;
Navarro et al. 1996), which do not appear to match the dark
matter density profiles inferred from observations of rotation
curves of disk galaxies (Gentile et al. 2004).

Decompositions suggesting uniform central density halos
(Flores & Primack 1994; Moore 1994) led Burkert (1995) to
propose a universal, cored profile. Rotation curves were origi-
nally measured with a slit along the principal axis of the galaxy,
but most current measurements use a tilted ring method to ex-
tract rotation curves from velocity fields (Begeman 1989). Using
this method Gentile et al. (2004) found that cored halos were
preferred to both ΛCDM halos and MOND (MOdified New-
tonian Dynamics) for a sample of five galaxies. Observations
of galaxies from THINGS (The H i Nearby Galaxy Survey;
Walter et al. 2008) have provided improved observational con-
straints on the rotation curves (and thus density profiles) of
nearby galaxies, as explored in de Blok et al. (2008) and Hague
& Wilkinson (2013, hereafter HW13). These improved velocity
data permit more precise constraints on halo density profiles than
were possible in previous papers that addressed the cusp–core
problem.

Hydrodynamics simulations have been used to attempt to rec-
oncile dark matter-only ΛCDM simulations with observations.
Governato et al. (2010) found that feedback from supernovae is
able to flatten the inner density profile of isolated dwarf galaxies
and produce a rotation curve comparable to that observed in the
dwarf galaxy DDO 39. In contrast, Parry et al. (2011) found
that satellites of a Milky Way-like simulated galaxy, generated
using a hydrodynamical simulation that was able to reproduce
the observed population and kinematics of the Milky Way sys-
tem, did not have their dark matter halos significantly altered
by baryonic activity, although they note that they are unable
to resolve the innermost parts of the profile due to the force
resolution of their simulations. Di Cintio et al. (2013) found a
relation between maximum rotation velocity vrot and the inner
log slope of the dark matter profile in 31 simulated galaxies,

with cores being seen in smaller (vrot ∼ 50 km s−1) galax-
ies and profiles approaching Navarro–Frenk–White (NFW) in
larger (vrot ∼ 150 km s−1) galaxies.

In this paper we apply the Bayesian method presented in
HW13 to the galaxy M33, which previous work has shown
can be fitted over the entire radial range of H i data by a
single power law ρ ∝ r−1.3, compatible with the NFW profile
(Corbelli & Salucci 2000). Later work in Corbelli (2003) added
molecular gas to the mass model, resulting in an inner density
profile ρ ∝ r−1.5 being excluded. We also examine the more
recent claim of Seigar (2011) that the NFW profile itself best
represents the dark matter halo of M33. This result is at odds
with some observational claims (e.g., de Blok et al. 2008) that
smaller galaxies are best described with cored halo profiles. In
Hague & Wilkinson (2014, hereafter HW14) we found, using
our Bayesian method, a broad range of inner log slopes in a
subset of the THINGS galaxies.

Previous work on rotation curves (e.g., Chemin et al. 2011;
Gentile et al. 2004; Seigar 2011) has taken the reduced χ2 values
of mass models to be an accurate representation of the quality
of the fit, and further have inferred support for the particular
properties of their dark halo models from these values. This is
problematic for three main reasons; first the degrees of freedom
cannot be trivially inferred from examination of the profile, as it
is not clear that all the parameters impact the fit independently
at all points in parameter space (see Section 5). Second, even
using non-reduced χ2, the errors that occur in rotation curves
derived using the tilted ring model are not Gaussian, and thus
the χ2 statistic is not strictly valid in this case. Third, there
are many halo density profiles that vary considerably in their
essential qualities that produce comparably good fits measured
by χ2, as shown in Figure 1 where modifying the inner log
slope of an NFW profile and then finding the best fit with a
free mass-to-light ratio gives good χ2 for profiles that span
the range between cusps and cores. In this context, we present
an alternative approach based on Markov Chain Monte Carlo
(MCMC) that attempts to overcome these issues and uses χ2

as a local estimate of the relative likelihood of nearby models
rather than a rigorous global goodness of fit.
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Figure 1. Variability of best-fit χ2, using the rotation curve data presented
in Section 2, with inner log slope for a range of modified NFW profiles
ρ ∝ (r/rs)γ (1 + r/rs)3−γ , where γ is the inner log slope. Free mass-to-light
ratios are allowed for both stellar components. The unmodified NFW halo is the
marked point.

In Section 2, we present the data we use in this analysis. In
Section 3, we describe how we reproduce the baryonic mass
modeling and rotation curve of M33, and the MCMC technique
we use with this model. In Section 4, we analyze the output of
the MCMC chains, and in Section 5, we discuss our result in the
context of previous papers and the current paradigm of galaxy
formation.

2. M33 DATA

We use the rotation curve and gas surface density from
Corbelli (2003). This gas model includes both neutral atomic
and molecular gas. The rotation curve is derived from H i
velocity cubes of the galaxy using a tilted ring model with
11 free rings. Our stellar luminosity data are taken from Seigar
(2011), which divides the stellar component into a centrally
concentrated component (referred to as a bulge in that paper)
and a more extended component.

A more extended rotation curve is shown in Corbelli et al.
(2014), but these data do not provide higher spatial resolution
and primarily introduce new circular speed bins in the outer
(>16 kpc) part of the galaxy. As we are focusing on the profile
of the inner halo and the impact baryons have on it, these data
are not relevant here. Also, as we explain in Section 3.2, we
specifically use a dark matter density profile that allows for
independent fitting at large and small radii, which therefore
does not impose a prior relation between the slope of the inner
profile and the outer profile.

3. MODELING OF M33

We decompose the rotation curve of M33 into four compo-
nents: two stellar disks, a gas disk, and a dark matter halo. The
circular velocity contribution of each component is added in
quadrature to produce a proposed rotation curve, to be com-
pared with observations.

3.1. Baryonic Mass Models

The Seigar (2011) model consists of a gas component taken
from Corbelli (2003), along with two stellar components. These

Table 1
Parameters Used to Generate the Mass Models

Parameter Definition Value

h1 (kpc) Inner stellar disk scale length 0.235
M1 (M�) Inner stellar disk mass 6.07 × 108

h2 (kpc) Outer stellar disk scale length 1.7
M2 (M�) Outer stellar disk mass 3.81 × 109

zgas (kpc) Gas disk scale height 0.5
Mgas (M�) Gas disk mass 3 × 109

Notes. The two stellar components are modeled as exponential disks using
parameters from Seigar (2011). For definiteness, we use their mass-to-light
ratio ϒ3.6 = 1.25 here (although can be a free parameter or takes different
values in our models, see Table 2), and the gas component is modeled using
radially binned surface density data provided by Corbelli (2003).

latter components are distinguished photometrically, rather than
by velocity structure. The more extended component is assumed
to be exponential, while the more centrally concentrated compo-
nent is taken to be a Sérsic profile (although in this case the best
fit was found to be n = 1, making it equivalent to an exponential
profile). Table 1 shows the values used to generate the two com-
ponents. Values for the inner component appear to differ from
those quoted in Seigar (2011) as we have converted them from
those of a Sérsic profile to the equivalents for an exponential
disk. We explore models with a freely varying baryonic mass-
to-light ratio, ϒ3.6, the solar masses per solar luminosity in the
Spitzer 3.6 μm band, and a number of fixed mass-to-light ratios
taken from previous work or derived from stellar mass model-
ing. We do not include a mass-to-light gradient in the disk as
the estimated gradient in Seigar (2011) (−0.014 kpc−1) gives
rise to a change in the total predicted velocity, which is less than
0.75 of the observational error bars at all radii. However we
investigate the potential impact of varying mass-to-light ratio
with radius in models D1 and D2.

Our first model for the stellar mass allows the mass-to-light
ratio of the stellar disks to vary freely over a large range.
We consider a second, fixed stellar model using the stellar
population mass modeling of Oh et al. (2008), along with the
J − K values for M33 taken from the Two Micron All Sky Survey
Large Galaxy Atlas (Jarrett et al. 2003). These values are based
on integrated magnitudes measured within a 20 mag arcsec−2

isophote, which in M33 corresponds to a radius r ≈ 6 kpc.
For M33, [J − K] = 0.891, which gives a mass-to-light ratio
ϒ3.6 = 0.67. This is more consistent with current estimates of
mass-to-light ratios of similar nearby galaxies (e.g., Meidt et al.
2014) than the value from Seigar (2011) of ϒ3.6 = 1.25.

We have been provided with the radial surface density of
neutral atomic gas and molecular gas used in Corbelli (2003)
by the authors. We processed this using the ROTMOD task in
GIPSY,1 which employs the method described in Casertano
(1983) to generate a rotation curve contribution. We use a sech2

vertical density law and the value for zgas = 0.5 kpc given
in Corbelli & Salucci (2000), who note that an infinitesimally
thin disk yields an identical result. Other density laws do not
produce a sufficiently large difference to impact the analysis,
and the gas rotation curve is consistent with that shown in
Figure 5 of Corbelli (2003). The gas contribution used in Seigar
(2011) is that of Corbelli & Salucci (2000), which does not
include molecular gas. However, as shown in Corbelli (2003),

1 http://www.astro.rug.nl/∼gipsy/
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the molecular gas mass is 10% of the atomic gas and so the result
from Seigar (2011) is suitable for a first order comparison.

3.2. Dark Matter Models

To model the dark matter halo we used an α − β − γ profile,
but as in HW13 transformed to remove the degeneracy between
ρs and rs

ρ(r) = Σ̃max

G

v2
max(

r
rs

)γ
(

1 +
(

r
rs

)1/α
)α(β−γ ) , (1)

where rs is the scale radius; vmax is the peak velocity of the dark
matter rotation curve; α, β, and γ are shaping parameters; and
Σ̃max is the normalized surface density at rmax ≡ r(vmax), given
by

Σ̃max = ρsrmax

M(rmax)
, (2)

which means that the parameterization replaces ρs with vmax but
retains the same number of parameters, since Σ̃max is fixed at
each point in parameter space.

Contrary to the statements in Adams et al. (2014), it does not
matter that the parameters of this halo profile are still degenerate
to some extent as we focus on physical properties of each halo
model, within the data range, rather than parameters such as
γ . Our approach has the advantage that we do not impose as
strong a prior link as all previous authors between the log slope
of the halo at small and large radii (due to the larger parameter
space) and we do not extrapolate beyond the data range. We
have confirmed the utility of this approach through extensive
testing in HW13.

3.3. MCMC Analysis

We use a Bayesian MCMC method to explore the parameter
space of our models. This method produces a non-normalized
probability distribution, which can be argued to be normalized
if there are no physically credible models outside the param-
eterization. The method is described, along with the exten-
sive testing we have done on simulated data, in HW13. Start-
ing at a random position in the parameter space defined by
[α, β, γ, vmax, rs, ϒ3.6], each MCMC chain moves through the
space using a Metropolis–Hastings algorithm (Hastings 1970)
that chooses a new model based on a Gaussian step from the
existing one, and then moves there if the new model shows a
higher likelihood, or with a probability equal to the ratio of the
new likelihood divided by the current one if the new likelihood is
lower. This results in the chain seeking, and spending most time
in, likelihood peaks, but also enables it to move out of peaks to
explore other parts of the parameter space. The posterior prob-
ability distributions of the parameters are then calculated from
the density of models in the parameter space by multiplication
with the prior probability. For explicit parameters (e.g., α, β,
γ , etc.) we assume a flat prior to allow the data the greatest
freedom to constrain the models. For derived parameters (e.g.,
γin) this leads to an implicit prior that we calculate numerically
(see Section 3.1 of HW13).

We use χ2 to calculated a likelihood value at each chosen
point in parameter space, but the validity of our approach only
depends on the relative values of χ2 for nearby models being
a reasonable proxy for relative likelihood. There are many halo
profiles that produce good χ2 values for this rotation curve

Table 2
Parameters of the MCMC Runs

Run ϒ3.6 Radial Bins Number of Models

A1 [0.1, 5] 27 34969550
B1 1.25 27 39147303
C1 0.67 27 39285713
D1 [0.1, 5] 27 33891283

A2 [0.1, 5] 25 34169361
B2 1.25 25 39634524
C2 0.67 25 39455690
D2 [0.1, 5] 25 31798101

Notes. The number of radial bins in models in the second set of models is
reduced by ignoring the feature at the outermost part of the rotation curve in
Corbelli & Salucci (2000). The priors for ϒ3.6 are (1) a freely varying ϒ3.6 in the
range [0.1, 5] (models A, D); (2) the value from Seigar et al. (2008), who used
a central mass-to-light ratio in the Spitzer 3.6 μm band of ϒ3.6 = 1.25 ± 0.10
(model B); (3) a value for ϒ3.6 derived in this paper with assumptions from Oh
et al. (2008), as described in the text (model C).

and the strength of the MCMC method is that it allows us to
differentiate between these models and determine what, if any,
actual constraint exists.

Following the method in HW13 we use the publicly available
CosmoMC code (Lewis & Bridle 2002) to implement our MCMC
chains. We ran 8 chains in parallel, with a total of ∼4 × 107

models. We have shown in HW14 that this method can be
applied to galaxies spanning a wide range of mass and surface
brightness.

We present the results for eight runs, shown in Table 2. For
the A runs, we allowed a free mass-to-light ratio, ϒ3.6, with a
range [0.1, 5] to generously cover possible stellar contributions
from no disk contribution through to a super-maximal disk. For
the B runs, we model the baryonic components as in Seigar
(2011); for the C runs, we use the mass-to-light ratio calculated
above (Section 3.1); and for the D runs, we use two independent
values for ϒ3.6 for the inner and outer stellar components, using
the same ranges as the A runs.

The parameter space is mirrored around γ = 0, using a range
[−2,2] for model selection but taking the absolute value in the
range [0, 2] for likelihood testing, so that potentially viable
cored profiles are not located at the boundary of the parameter
space (see HW13 for details).

We have discarded 10,000 models from the beginning of
each chain to allow for burn-in, which we find is sufficient for
all the chains to move to areas of high likelihood (χ2

red < 2.5).
However, after this point some chains explore secondary peaks
before finding the main peak. These secondary peaks are a
genuine part of the distribution, as can be verified by the fact
that chains sometimes leave the main peak to explore them for
an extended period. Our use of MCMC in our analysis thus
gives us a more complete picture of the multi-modal probability
distribution. However, we note that the high ϒ3.6 tail of the
distribution is very weak and only partially resolved by our
chains. Thus, a comparison of likelihood values between these
peaks is not meaningful.

3.4. Convergence of MCMC Chains

To check that all eight chains are converged on the same
distribution, we calculated the ratio of the variance of the means
of the chains σ (x̂), to the mean of the variances of the chains
σ̂ (x), for each parameter x. This number is not meaningful
for γ , as the distribution is bimodal, but the highest value for

3
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Figure 2. Rotation curve of M33. The dark blue curve is the gas (atomic and
molecular) contribution, the purple curve is the inner stellar component, the red
curve is the outer stellar component, the green line is a proposed dark matter
halo (taken from the most occupied bin from the parameter space of the A1
run), and the light blue line is the expected rotation curve. Observed data from
Corbelli (2003) are in black. The mass-to-light ratio of the stellar components
has been found by fitting the rotation curve rather than by modeling the stellar
population in this case.

other parameters was 0.17 for β indicating good convergence.
Inspection of the distribution for each chain showed that in some
cases the chain had found only the main peak shown in Figure 5
whereas in other cases the chain only found the left-hand side
of the tail. As some chains managed to integrate the entire
distribution as shown in Figure 5, it is reasonable to assume that
given enough time any chain will converge on the same result.
Combining the distributions may produce an incorrect relative
model density between the density of the main peak and the tail,
but our analysis does not make use of these values. The aim here
is to include the broadest possible range of alternate hypothesis
in order to demonstrate that the areas avoided by the MCMC are
truly excluded. Calculating the precise likelihood of each peak
explored is not required for this purpose.

4. RESULTS

Our main finding is that models of M33 exhibit a well
defined degeneracy between stellar mass and halo inner slope.
Furthermore, we are able exclude models with both slopes
shallower than γin < 0.9 and stellar mass to light ratios in the
3.6 μm band ϒ3.6 < 2, for a generous range of priors. Runs A1,
A2, D1, and D2 all show the degeneracy and runs B1, B2, C2,
and C3 find values for fixed values of ϒ3.6 that are consistent
with the distribution found with less restrictive mass-to-light
priors. We use A1 as our primary example here, and use the
other runs to demonstrate the insensitivity of the degeneracy to
different priors.

4.1. Individual Profiles

A rotation curve from the most populated bin of
the A1 distribution is shown in Figure 2, with param-
eters (α, β, γ, rs, vmax, ϒ3.6) = (0.36, 3.85, 1.22, 32.6 kpc,
135.4 km s−1, 1.53). A density plot of all the profiles produced
in this run is shown in Figure 3, showing the best fits of other
commonly used density profiles. The highest density of models
occurs in a band centered on a single power-law profile with
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Figure 3. Density plot of all the models produced by A1, in d log ρ/d log r

space. Overlaid are fits of commonly used profiles to the M33 data. The vertical
dashed line marks the outer edge of the observed rotation curve data.

Figure 4. Best models of the M33 rotation curve where the blue band is the
best-fitting MCMC bin, the green dashed line is the best Burkert halo χ2

fit, the red dashed line the best Einasto halo fit, and the orange dashed line
the best NFW profile fit. In each case the rotation curve was fitted using a
free mass-to-light ratio ϒ3.6. The quoted χ2 value for the NFW profile is not
the same as that found by Seigar (2011) as we use slightly different rotation
curve data (see Section 2). The similarity of the χ2 value for the NFW halo and
the Burkert halo (separation of <1 in terms of reduced χ2) illustrates that this
fitting statistic cannot be used to clearly differentiate between cusps and cores
in this application and that a more sophisticated technique such as MCMC is
needed.

log-slope ∼ −1.25, in agreement with the findings of Corbelli
& Salucci (2000). We note that the sharp lower boundary of the
distribution between log r = −1 and log r ≈ 0.5 corresponds
to the limit of a maximal halo.

Figure 4 shows the halo of the most favored part of the pa-
rameter space compared to other commonly used halo profiles,
which have been fitted by minimizing χ2

red, using a free ϒ3.6
parameter. All the halos are able to capture the data in the inner
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Figure 5. Contour plot of the mass-to-light ϒ3.6 vs. inner log slope γin. The red
contour contains 68% of all the models in the MCMC chains, the green contour
contains 95%, and the blue contour contains 99%.

part of the galaxy reasonably well while not fitting the outer data
points well. This does not preclude a low value of χ2

red, as the
poor fit at large radii can be compensated for by a tight fit at low
radii, which is the case in these curves. This further underscores
the danger of applying a statistic such as χ2

red to these data.

4.2. Log Slope Degeneracy

We measure the inner log slope of each model at the innermost
data point, γin, rather than relying on the parameter γ , so that
our measurement of the slope is not an extrapolation outside the
data range.

For A1, we found γin to be degenerate with the mass-to-
light ratio as shown in Figure 5. The distribution is binned on a
128×128 grid and then contours placed that enclose 68%, 95%,
99% of all models. Our analysis favors models with steep inner
cusps and high mass-to-light ratios, with a tail in the distribution
moving toward flat halos with even higher values of ϒ3.6. The
two areas are connected by a bridge of models that is not shown
here as the density is below the 3σ level. The exact combination
of stellar disk mass and dark matter halo favored in Seigar (2011)
(ϒ3.6 = 1.25 and γin � 1) is disfavored at over 3σ when using
the free prior here. However, this does not mean that it cannot fit
the rotation curve, or that it is not the most favored result given

a more constraining prior on ϒ3.6. The question we address here
is not whether the NFW halo can fit the data (it can, as has
been established in the work of Seigar (2011) and Corbelli et al.
(2014) and confirmed here). Rather, we are asking whether other
models provide better fits, and thus what can actually be inferred
from the fact that a particular profile does fit the data.

At the low γin end of the plot is the maximal disk case, where
the baryonic component of the galaxy contributes almost all of
the rotation curve. Note that despite being flat, this region is not
flush with the upper boundary of the ϒ3.6 range—higher values
are excluded by the rotation curve data themselves.

We further illustrate the degeneracy by binning the MCMC
models along the γin axis and showing a sample of rotation
curves from each bin. This is presented in Figure 6, which clearly
shows the degeneracy between the disk and halo contributions.
The right-hand panel shows the case of models near the peak
of the probability distribution and the left and middle panels
show models from the tail toward shallower profiles. These are
substantially disfavored relative to the peak.

4.3. Impact of Rotation Curve Features

The rotation curve presented in Corbelli & Salucci (2000)
and Corbelli (2003) shows an apparent feature in the outermost
part of the rotation curve where the rotation velocity begins to
increase, after having leveled off (see Figure 2). We now explore
the extent to which these two data points influence our result
on the distribution of γin by re-running our MCMC chains
without the two outmost data points. This is required as we
wish to show that our result is independent of the inclusion or
not of these two data points.

The feature may be modeled by a flat dark matter density
profile extending throughout the radial range, coupled with the
maximal baryonic component to model the shape of the rotation
curve at small r. We confirm this by calculating r1, the radius at
which the log slope of the dark matter halo reaches −1. We find
that this value is high (on the order of the radial extent of the
data) for high values of ϒ3.6 (which, from Figure 5, correspond
to γin ≈ 0).

If these outermost data points represented a genuine feature
of the density profile and the disk were not maximal, it would
require an anomalous increase in the dark matter density at this
point as the baryonic component is marginal here. As there is
no obvious mechanism to form such a shell of dark matter, we
cannot take this model to be correct at large r.

We consider an artifact of the tilted ring method used to
generate this rotation curve to be more a likely explanation of
this rotation curve feature. In Corbelli & Salucci (2000), an

Figure 6. Overlay of representative samples of rotation curves from Figure 5 illustrating the degeneracy between halo slope and stellar mass-to-light ratio. From left
to right the panels show models with 0.1 < γin < 0.2, 0.8 < γin < 0.9, and 1.3 < γin < 1.4, respectively. Key is as in Figure 2.
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Figure 7. Histogram of values of γin in case B1 where ϒ3.6 is fixed at 1.25 (i.e., using the mass-to-light value from Seigar 2011). Vertical axis shows number of models,
normalized to give the histogram a total area of 1. Top is the case for the full rotation curve and bottom is the case where the last two data points are excluded. Arrows
show log slopes for maximum likelihood fits of four individual profiles: green is the Burkert profile, red is the Einasto profile, orange is the NFW profile, and purple is
the single power law found in Corbelli & Salucci (2000). Note that the value calculated in Corbelli et al. (2014) corresponds closely to the value for the NFW profile
shown here.

initial set of radial bins in this rotation curve are generated
by fitting a parameterized ring to the H i velocity field of the
galaxy, under the assumption of entirely circular motion, and
then additional radial bins are calculated from interpolating
between the neighboring rings. If the assumptions of the model
do not hold, e.g., in the presence of significant radial motion,
then the parameters of a particular ring may be invalid. An
underestimate of inclination would lead to an overestimation in
rotation velocity and due to the interpolation, a single incorrect
inclination can account for the apparent feature seen in the last
two radial bins. Considered without the final two radial bins, it
is not clear the feature exists at all.

In Corbelli et al. (2014) there are data that cover a greater
radial extent than earlier papers. However, as can be seen in
Figure 5 of that paper, data further out than the outmost limit
of the rotation curve used here (from 15 kpc) have large errors
and can be clearly approximated by a flat rotation curve. This
confirms the above assessment and means that there would be
little to be gained for our specific goal of constraining γin by
using the more extended rotation curve.

4.4. Alternate Mass-to-light Priors

Figure 7 shows that for run B1 (where ϒ3.6 is taken from
Seigar (2011)), the distribution of γin favors a cusped density
profile, steeper than the best-fitting NFW profile. This does
not imply that an NFW halo does not fit the rotation curve,
merely that other regions of parameter space are favored. The
distribution is bimodal, but removing the last two data points
removes the second peak (lower panel). This peak is then purely
dependent on a feature that may be an artifact.

In runs C1 and C2, we found a log slope compatible with the
NFW profile. However, this was in a region that is disfavored
by the run with a free value of ϒ3.6. In Figure 8 we show
the equivalent result to Figure 3, which demonstrates that in
this case a single power law is not favored. The smaller stellar
contribution to the kinematics requires the shape of the rotation
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Figure 8. Density plot of all the models produced by C1, in dlogρ/dlogr space.
Key as in Figure 3.

curve to be primarily modeled by the dark matter halo and the
NFW profile is unable to do this for the entire radial range. The
inner part (log r < 0.5) would require a different concentration
parameter cvir than the outer part (log r > 0.5) and in the fitting
statistic χ2 is weighted toward the inner part of the galaxy as
there are more data points there.

Runs D1 and D2, with an additional free parameter for the
ϒ3.6 value of the inner stellar component, produced a similar
degeneracy to the A runs. Figure 9 shows the relation between
γin and both values of ϒ3.6. There is a weak, secondary peak
of models featuring a maximal inner component and a flat
(γin < 0.5) inner slope, but the main peak in ϒ3.6,outer versus
γin is unaffected. We repeated this test, imposing a prior that the
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Figure 9. For run D1. Correlation between γin and (top) mass-to-light ratio ϒ3.6 for the outer stellar component and (bottom) ϒ3.6 for the inner stellar component.
There is a prior constraint that the inner mass-to-light ratio be higher.

value of ϒ3.6 for the inner component always be greater than
that for the outer component and found that the result shown in
Figure 9 remained unchanged. It should be noted that the smooth
variation of these two components effectively parameterizes a
mass-to-light gradient across the stellar disk (which we elected
not to model, see Sectionmassmodels) and demonstrates that
its inclusion would not impact the result. In general, we find
that cusped halo models exhibit smaller gradients than cored
models. The distribution of ϒ3.6,inner is unsurprisingly wide, due
to its dependence on a small number of the innermost data
points.

5. DISCUSSION

5.1. Comparison with Previous Work

We have found a result more in agreement with the value
of γin = 1.3 implied by Corbelli & Salucci (2000) than the
assertion by Seigar (2011) that M33 is best described by an
NFW halo. While the NFW halo does fit the rotation curve
decomposition with χ2

red = 1.18, there are many other halos
(mostly steeper) that also fit the same data equally well.

We noted in HW13 that with multi-parameter models, χ2
red

is not reliable across the entire parameter space because it is
calculated assuming that the degrees of freedom are constant
across the parameter space. This cannot be assumed to be the
case. For instance, if a model includes a high stellar mass and
a reduced contribution of the dark matter halo to the rotation
curve at small r, then any shape parameters of the halo are
going to become less relevant to the quality of the fit. This
was described, in an extreme case, in HW13 for the case of
constructed high surface brightness rotation curves where the
dark matter contribution to the rotation speed was smaller than
the error bars. Even in less extreme cases, the parameter β is
often not fully utilized, if the scale radius of the halo is large
enough that β does not become the dominant shape parameter
within the data range. Model comparison on the basis of χ2

red
alone is thus not necessarily meaningful.

The probability of adding a model, a point in parameter space,
to one of our MCMC chains is not based on the absolute
value of its χ2 but on the gradient of the goodness of fit,

i.e., the relative goodness of fit compared to some other point
the chain may arrive from. The final result is essentially an
integral of this value over all possible starting points, but with a
substantial weighting toward nearby points due to the Gaussian
shape of the model selection function in the Metropolis–Hasting
algorithm. This means that the MCMC result does not rely on
the goodness of fit being a globally correct representation of
likelihood. Given that in a tilted ring model, errors are computed
from azimuthal variations in the inferred circular velocity, it is
not immediately clear they satisfy the requirements of being
independent, Gaussian errors as assumed when χ2 is used to
calculate a statistically robust likelihood. An analysis (such
as ours, see HW13) that does not rely on the assumption of
Gaussian errors is preferable.

In HW13 we showed that the MCMC method was able
to recover the correct halo model from synthetic data with
artificially inflated error bars more tightly than would be naively
expected. We attribute this not only to the method being less
dependent on the actual values of the goodness of fit, but also
to the physically reasonable prior assumption of a smooth dark
matter density profile. Smoothness is inherent in the α − β − γ
profile for reasonable values of α, but for an even freer prior,
smoothness would have to be imposed separately. A non-
parametric halo, with a log slope for each data point in the
rotation curve, would have to impose a constraint on these values
such that together they form a physically realistic density profile.

In Seigar (2011) it is claimed that fitting of the NFW profile
to rotation curve bins outside r = 7 kpc is evidence that the this
profile “best represents these data.” Only the prior assumption
of an NFW profile makes the fit to the outer rotation curve
relevant to the determination of the inner density profile. Without
assuming a strong link between inner and outer data points as
a prior, we find that a steeper inner density profile is favored
when using the ϒ3.6 value used in that paper.

The fact that the NFW profile is able to fit the rotation
velocities in previous work does not itself convey the properties
of the NFW profile (i.e., a log slope of −1 at r = 0) upon the
galaxy, given that we have shown there are many profiles with
differing properties that also provide good fits. Thus, it cannot
be concluded that a low reduced χ2 value for an NFW fit gives
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a high posterior probability for specific analytic properties of
the NFW profile, e.g., the central ρ ∝ r−1 cusp. Allowing more
freedom in the profile and fully exploring the parameter space
with MCMC resolves these issues and provides a more robust
description of the dark matter density profile across the entire
radial range of the rotation curve data.

The second claim of Seigar (2011) is that the NFW concen-
tration parameter cvir is related to the spiral arm pitch angle P.
Taking cvir purely as a density profile parameter without any
implications for inner profile slope, correlations between it and
other physical parameters are not necessarily in conflict with
our conclusions.

5.2. ϒ3.6−γin Degeneracy

It is clear from our result that there is a substantial degeneracy
between the baryonic mass-to-light ratio ϒ3.6 and the inner log
slope γin. The scale length of the stellar disk is approximately
equal to the radius at which the total rotation curve transitions
from rising to flat, so the most obvious cause of the degeneracy
is the degree to which the rising part of the stellar contribution
to the circular velocity is used to model the rising part of the
overall rotation curve. To investigate this, we assume that the
degeneracy of the fit near the peak of the disk rotation curve
approximates that of the entire rotation curve and that the inner
dark matter halo can be taken to be a single power law (which in
our results it can; over 98% of models in A1 have a scale radius
outside the data range). We can then represent the degeneracy
using

v2
max,star + vDM(Rmax)2 = constant, (3)

where vmax,star is the maximum velocity contribution of the
stellar component and vDM(Rmax) is the velocity contribution
of the dark matter halo at that radius. Given that v2

max,star ∝ ϒ3.6

and vDM(Rmax)2 ∝ (Rmax/rs)2−γin (as γin is assumed to be
representative of the log slope at this radius, due to our
assumption of a single power law) we can write

ϒ3.6 = a − bc2−γin , (4)

where a, b, and c are constants. This is not meant to imply that the
galaxy is well fitted by a single power law; this is merely meant
to approximate the dark matter halo density profile well in the
region that is most sharply affected by the degeneracy. The curve
in γin − ϒ3.6 space described here is not a physical description,
nor a prediction, but is useful as a parameterized, quantitative
summary of the degeneracy determined by the MCMC method.

We binned γin values of a subset of models from A1 (34,846
models chosen from all chains with a probability 10−5, ignoring
the first 10,000 models for burn-in) to produce a set of 2000 bins
with a uniform number of points. We fit the relationship (4) to
these data and find a = 2.6, b = 6.3, and c = 0.089 as shown
in Figure 10. The baryonic mass-to-light ratio in the maximal
disk case is ϒ3.6,max = a − bc2 and the halo slope in the no disk
case is γin,no = 2 − (log a − log b)/log c.

In runs D1 and D2, we tested whether this degeneracy would
be changed by having independent ϒ3.6 values for both stellar
components. The scale radius of the inner component is too short
to meaningfully contribute to the circular velocity at the radius
at which we model the degeneracy between γin and ϒ3.6,outer
above.

5.3. Alternate Gas Mass Models

We now consider whether it is possible that the apparently
large stellar mass in our cored models could be accounted for by

Figure 10. Fit to the degeneracy between log slope at the inner most bin (γin)
and mass-to-light ratio in the Spitzer 3.6 μm band (ϒ3.6). Points are 34,846
models chosen from the chain, after burn-in, with a probability 10−5. The line
shows the relationship ϒ3.6 = 2.6–6.3 × 0.0892−γin , fitted to 2000 bins, and
should not be taken as valid outside the range of the models shown. Green and
blue points are constraints on γin found by models B1 and C1, respectively. See
the text for discussion.

molecular gas. The gas density profile we obtained from Corbelli
(2003) included the molecular gas fraction, calculated from CO
emission, along with the atomic gas contribution to the rotation
curve. The factor used to calculate total molecular gas mass
from CO emission, XCO, is estimated based on observations
of the Milky Way (Wilson 1995) and may not be correct for
M33. In the mass modeling we use, the stellar disk has a mass
3.8×109 M� and the molecular gas disk component has a mass
3×108 M�, so this would represent an increase in ϒ3.6 of ∼0.1.
(Note that, following de Blok et al. (2008), we have assumed
that the scale length of the molecular gas is that same as that of
the stars). To account for the difference between the modeled
ϒ3.6 = 0.67 and the ϒ3.6 = 2.5 required for a flat halo would
require XCO to be 37 times larger. In Dame et al. (2001) the 1σ
relative error for this ratio was found to be less than 0.17 for
nearby clouds in the Milky Way and thus a factor of 37 increase
seems unlikely.

5.4. Comparison with Cosmological Simulations

Given that we have confirmed earlier claims that the halo
profile of M33 is steeper than in other galaxies of similar lumi-
nosity, it is worth asking whether there is a natural explanation
for this difference. In their models of the Local Group Bekki
(2008) found that M33 encountered M31 with a periapsis of
∼100 kpc at 4–8 Gyr before present. Ram pressure stripping of
M33 by an outflow from M31 could also have had an impact on
the progression of feedback in M33 (e.g., Nayakshin & Wilkin-
son 2013). The prompt removal of low density gas by stripping
would cause the dark matter halo to relax into a shallow, less
concentrated state (as modeled in Gnedin & Zhao 2002; Read &
Gilmore 2005; Governato et al. 2010; and HW14), so it might
be reasonably assumed that such an event would lead to a cored
dark matter halo, but this is not necessarily the case, as we now
discuss.
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It is reasonable to assume the process of contraction would
mean that after initial baryon infall, but before feedback begins,
the dark matter halo would have an inner log slope steeper than
γin = 1. Feedback models such as Read & Gilmore (2005),
Governato et al. (2010), Parry et al. (2011), and Ogiya & Mori
(2014) require multiple outflow and inflow events to account for
the transition from such steep initial halos to their flatter inner
halos at later times. If this process were interrupted early on, it
could prevent a sufficiently large amount of feedback that even
though the event itself would flatten the halo slightly, it would
still retain an inner halo that is steep relative to those of similar
galaxies.

6. CONCLUSION

We have modeled the rotation curve of M33 using the MCMC-
based approach we presented in HW13. We have quantified and
understood the degeneracy between baryonic mass-to-light ratio
ϒ3.6 and the log slope of the dark matter halo at the inner bin
γin. We cannot resolve the conflict between observations of
similar galaxies (Kuzio de Naray et al. (2006) and de Naray
et al. (2008)) and the MCMC analysis of the M33 rotation curve
without assuming ϒ3.6 > 2, which is difficult to reconcile with
stellar population modeling. We find that with a lower fixed
ϒ3.6 = 0.67, an NFW halo is compatible with the data, but
that this part of parameter space is not strongly favored when
we relax the constraint on ϒ3.6. We strongly exclude the
combination of ϒ3.6 < 2 and a halo profile inner log slope
γin < 0.9, for a comprehensive range of assumptions.

The constraints we find on ϒ3.6 and γin admit at least the four
following scenarios.

1. There is a great deal more mass in the disk of M33 than is
accounted for by standard modeling of stellar populations
and molecular gas clouds.

2. The halo of M33 deviates significantly from spherical
symmetry, being flattened at small disk radius and less so
in the outer part of the galaxy.

3. Feedback cannot produce a core in a galaxy with the stellar
mass of M33. Di Cintio et al. (2013) make this point but
their conclusion depends on the specific feedback physics
used in that paper and only accounts for supernova and early
stellar feedback. It also predicts a shallower (γin � 0.75)
inner density profile for a galaxy with the range of stellar
masses we calculate.

4. The dark matter halo has a much steeper inner profile
than would be expected from hydrodynamical simulations
of galaxy formation (e.g., Governato et al. 2010; Maccio
et al. 2011). This could occur if M33 were dominated by
the process of contraction. The above simulations show
both contraction of the halo steepening the inner profile
and feedback flattening it. In the absence of any obvious
source of significant additional disk mass and assuming
no fundamental error in the view of baryon–dark matter
interaction in galaxy formation, we propose that the history
of the dark matter halo in M33 is dominated by contraction.
Ram pressure stripping by M31 before feedback flattening
the halo is a possible physical mechanism by which this
could have happened.

The first scenario is inconsistent with the stellar mass model-
ing of Corbelli et al. (2014). We will investigate the remaining
three possibilities by applying our modeling scheme to cosmo-
logical simulations in a future work.
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