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“Our greatest weakness lies in giving up. The most certain way to succeed is always

to try just one more time."

Thomas Edison



Abstract

In this thesis, we have developed meshless adaptive radial basis functions (RBFs)

method for the pricing of financial contracts by solving the Black-Scholes partial

differential equation (PDE). In the 1-D problem, we priced the financial contracts

of a European call option, Greeks (Delta, Gamma and Vega), an American put

option and a barrier up and out call option with this method. In the BENCHOP

project with Challenge Parameter Set (Parameter Set 2) [97], we have shown

that our adaptive method is highly accurate and with less computational cost in

comparison with the finite difference method for the European call option and

barrier up and out call option. And also we have presented the numerical result of

the equally spaced RBF method for both Parameter Set 1 and 2. In our numerical

simulations with Parameter Set 2, we note that our adaptive method is more

accurate and faster than the equally spaced RBF method. For example for the

barrier up and out call option, the equally spaced method (MQ) with 3000 uniform

nodes has the maximum error of 1.30e-02 at three evaluation points, but our

adaptive method (101 nodes) has maximum error of 9.98e-05 at the same three

points. This is about 100 times better than the equally spaced method with about

30 times less CPU time. Since our adaptive strategy is accurate and efficient, we

substantially increase the accuracy with fewer number of nodes.

We also developed an adaptive algorithm for the 2 assets Black-Scholes problem,

in this algorithm we used the rectangular Voronoi points for the refinement, and

the thin plate spline is used for the local approximation in order to assess the

error. The numerical results of pricing a Margrabe call option are presented for

both adaptive and non-adaptive methods. The adaptive method is more accurate

and requires fewer nodes when compared to the equally spaced RBF method.
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Chapter 1

Introduction

1.1 Background

The three classical numerical methods are finite difference (FD), finite element
(FE) and finite volume (FV), which have been developed successfully to solve
many partial differential equations (PDEs) for decades. The behaviour of some
material objects in nature can be modeled by PDEs, which means they can be
solved by these classical numerical methods. For instance, weather and climate
modeling in geophysics, biphasic model in engineering, the Maxwell’s equations
in electrodynamics and the Navier-Stokes equations in fluid dynamics, where it
arises in our real life physical problems. In the engineering and other sciences,
the finite difference method is well known for its simplicity. The main drawback
of FDM is that it cannot handle higher dimensional geometrical objects as the
discretization of PDE is based on a topological grid of line. FEM is the most
flexible amongst these classical methods in term of geometry. Other methods,
such as the spectral method, which is most accurate, but it has restrictions on
geometry, and predefined periodic boundary conditions for the Fourier case. The
new approach of solving PDEs by radial basis functions (RBFs) was proposed
by Kansa [62]. Within this method the approximation depends on the pairwise
distances between nodes, which is truly meshfree as no points and meshes are
required to be connected. In general, computing the distances between points is
less computationally costly than generating meshes in mesh based methods. In
particular when the number of dimensions increases, it is difficult to generate the
mesh for a mesh-based method, but for the RBF method, it does not increase
the difficulty in terms of computing the distance between nodes. This means that

1



Introduction 2

the RBF method can be easily implemented for high dimensional problems with
less computational cost in contrast to mesh-based methods. After Kansa [62] used
the RBFs collocation method for a variety of engineering problems, it has gained
significance popular in many research fields, such as mathematics, engineering,
bioscience and finance.

For financial mathematics, apart from the three classical numerical methods, and
spectral method, there are some different methods like Monte Carlo method, sparse
grid method. The RBF method has been explored by [34, 48, 52, 53, 66, 80, 86].
In the next section we list some numerical methods which have been used to solve
one or two dimensional Black-Scholes PDEs.

1.2 Numerical methods for the Black-Scholes equa-

tion

In 1973, an analytical formula of the European option was proposed by Black and
Scholes [9]. Based on the assumption of risk neutrality, the log-normal Black-
Schole partial differential equation is used to evaluate the European option value.

The difference between the European option and the American option is that the
American option has an early exercise feature. Currently, there is no analytical
solution existing for the American option. It can be solved if we treat it as a free
boundary problem, and several numerical methods have been proposed to solve
this free boundary problem; Finite difference method in [45], finite element method
with penalty approach in [75], finite volume method in [8], lattice (or binomial)
method in [23], projected SOR method in [25, 26], operator splitting method by
Ikonen et al. [58], front-fixing finite difference method by Kwok et al. [64], Monte
Carlo method in [48], recursive integration method in [57], a quasi-radial basis
functions method in [52], a RBF collocation method in [34, 53, 80], and also Carr
et al. [15] derived a way to solve the American put option problem based on the
European option.

For multidimensional problems, such as a European or an American basket option,
Reisinger et al. [86] proposed a method based on sparse grids to solve the European
basket option. Fasshauer et al. [34] used the RBF method to solve an American
basket option. The European basket option can be solved with an improved RBF
method which is presented by Larsson et al. [66].
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Apart from these methods, there are also some adaptive methods. For example,
Persson et al. [70] proposed an adaptive finite difference method for European
multi-asset option. Bungartz et al. [13] used an adaptive sparse grid method to
solve the basket option problem. We have developed an adaptive RBF method
to compute a Margrabe call option in this thesis. More details of adaptive RBF
schemes are presented in the next section.

1.3 The RBF based adaptive methods

The adaptive radial basis function method is an alternative choice for solving both
time dependent and time independent PDE problems. Here are some examples of
RBFs based on adaptive schemes which have been proposed for PDE problems.
Bozzini et al. [10] used multiquadric B-splines for their adaptive interpolation. The
error indicator used for refinement is based on a predefined error threshold and the
value of the root mean squared difference produced by scaled multiquadric inter-
polant. The linear convergence of an adaptive greedy algorithm has been presented
by Hon et al. [54], where the method automatically concentrates on the largest
residual error. Driscoll and Heryudono [28] illustrated their adaptive subsampling
method (MQ basis functions) based on evaluating the residual error by inserting
points half way between evaluation points. Behrens et al. [5] shows their adaptive
method by combining both the semi-Lagrangian method (SLM) and RBF (the
thin plate spline basis function) interpolation to solve the linear transport equa-
tion. Later, in [6] the method is extended to non-linear transport equations with
the numerical example of the Burger’s equation and the Buckley-Leverett equation
being solved. The error residual depends on the difference between the approxi-
mation solution of PDE by SLM and reconstruction of local interpolation by the
thin plate. Iske [60] used the finite volume particle method and scattered data
reconstruction to the five spot problem. In his work, he discussed some numerical
aspects approximation with polyharmonic spline, e.g., local approximation order,
conditioning and numerical stability of the reconstruction problem. The combina-
tion of RBF and generalized finite difference stencil method have been proposed
by Davydov [24]. Naqvi [77] used an adaptive RBF method to solve the 1-D Ko-
rteweg de Vries (KdV) equation, and her method is similar to adaptive method
by Iske and Beherens, where she used the global and local RBFs approximation.
In our adaptive method, we modify Naqvi’s algorithm and extend it to compute
a Margrabe call option via the 2-D Black-Scholes PDE.
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1.4 Motivation

Most recently, Naqvi [77] successfully applied an adaptive RBFs algorithm for solv-
ing the one dimensional Korteweg de Vries (KdV) equation and Burger’s equation.
In this method, extra nodes are required in the high variation region, which is pre-
ferred over the equally spaced method in term of efficiency. Her result shows that
the adaptive method can solve the KdV equation with less nodes and the same
accuracy in comparison with the non-adaptive method. In other words, the distri-
bution of nodes profile in the adaptive method reflects the profile of the solution.
In the previous section, we note that many RBF based algorithms have been pro-
posed for solving the Black-Scholes equation in the field of financial mathematics,
but none of the adaptive schemes have been proposed for the multidimensional
Black-Scholes equation. This is the main motivation which drives us to develop
such an adaptive algorithm. Our adaptive algorithm is based on [6, 77]. In [6],
Iske et al. have demonstrated an adaptive scheme to solve many different kinds
of PDEs in 2-D, such as Burger’s equation and the Buckley-Leverett equation. In
their adaptive algorithm, the error indicator is a reflection of the local approx-
imation quality of the interpolation around some specific node set. This useful
error indicator can tell us where to refine the node and where not to. In PDE
problems, this adaptive scheme can be summarised as high-order accurate, flexi-
ble with respect to geometry and easy to implement, which is the ideal numerical
method.

1.5 Achievements

In this thesis, we are not aiming to produce an optimal algorithm for solving
the Black-Scholes equation in both the 1-D and 2-D cases, but we show that the
adaptive RBF method can numerically solve this problem in an efficient way. For
instance, in [97] we demonstrated that our adaptive method could be 15 times
faster than the FDM in terms of delivering the same accuracy for the European
call option with Challenging Parameter Set. Also, for this sort of problem, the
equally spaced RBF method could require at least 10 times the nodes to deliver
similar accuracy solution when compared with our adaptive method (Details of
numerical simulations presented in Chapter 4 ). Furthermore, we show that our
adaptive algorithm works well in terms of accuracy in contrast to the equally
spaced method for a Margrabe call option. In both the 1-D and 2-D cases of the
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Black-Scholes equation, we illustrate that our adaptive method requires less nodes
and can deliver similar accuracy when compared with the equally spaced RBF
method.

1.6 Thesis outline

In Chapters 2 we document some definitions and notations of RBFs which will
give an overview of the radial basis function. The multiquadric (MQ) and the
Gaussian basis functions will be applied as a tool for approximating the solution
of the Black-Scholes equation.

Chapter 3 focuses on the Black-Scholes model for one underlying asset, including
the European call option, the American put option and the barrier up and out call
option for the equally spaced RBF method.

Chapter 4 shows how our adaptive method performs for the same examples as in
Chapter 3. Moreover, we introduce a new parameter set from [97] which might
transforms our problem to a singularly perturbed PDE problem. Our adaptive
algorithm for the 1-D Black-Scholes equation is presented, and our numerical re-
sults show that in the new parameter set, our adaptive method is highly accurate
and faster than the equally spaced method, where the equally spaced method is
struggling to deliver an accurate solution with small number of nodes (less than
200) which means a large number of nodes is required. In [97], we have shown our
adaptive method is faster than FD method in terms of delivering a solution with
relative error less than 1e-05 for an European call option, Delta, Gamma, Vega
and barrier up and out call option.

Since we gain the insight of adaptivity of radial basis function for the Black-Scholes
equation in one dimension, our adaptive method for two dimensional problem is
presented in Chapter 5. A Margrabe call option is implemented in both adaptive
and non-adaptive methods, the numerical results show our adaptive algorithm
is more accurate than the equally spaced method. In our adaptive algorithm, we
exclude the coarsen strategy which would be one of our development in our further
work.

A summary of the thesis and further of the work is given in Chapter 6.



Chapter 2

Definition and Tools

2.1 Radial basis functions

Over the last two decades, due to the numerous advantages RBFs offer [30, 12, 99]
the application of RBFs has had a fast development area in many research fields.
Pena listed some RBF applications (Table 1) in [80], also he used the Kansa
collocation method [62] to demonstrate a way to solve a range of different option
pricing problems with RBFs in Wilmott magazine. In general, the advantages of
RBFs are high-order accuracy, applicability in high dimension, easy to implement
and mesh free. Some examples of these advantages are included as:

• High-order accuracy
In [38], Larson and Fornberg concluded in elliptic problems stated that RBFs
are more accurate than the standard second-order finite difference method
(FDM) and the Fourier-Chebyshev pseudospectral method (PSM). Buhmann
et al. and Madych et al. proved that infinitely smooth RBFs have spectral
orders of convergence (faster than any polynomial order) in [73, 11].

• Applicability in high dimension
In [17], Cecil et al. illustrated the example of solving the Hamilton Jacobi
equation in 2 to 4 dimensions by using RBFs. Alternatively, finite difference
(FDM), finite element (FEM), finite volume (FVM) can also be used to solve
this problem [56, 95].

6
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• Easy to implement
Pena’s eight step "cooking recipe" [80] showed that RBFs can be easily im-
plemented for a range of different option pricing problems.

• Mesh free
RBFs method only require an arbitrary set of nodes which does not require
specific sub-domain which is extremely useful for high dimensional imple-
mentation, such as an American basket option [34, 66].

Furthermore, in complex geometries, infinitely smooth RBFs can achieve high or-
der or spectral convergence when they have been applied to solve PDEs. With
these advantages, RBFs could become one of the alternative ways to solve PDEs
alongside more traditional methods (FDM, FEM and FVM).

In 1990, Kansa used the RBF (MQ) interpolation method to successfully approx-
imate the numerical solution of partial differential equations (PDEs) of elliptic,
parabolic and hyperbolic type [62]. As opposed to Kansa’s collocation method, the
symmetric collocation method was used by Wu [100] in 1992 which lets the basis
functions also depend on the differential operators. Later, for initial and bound-
ary conditions, Hon et al. extended this method to solve the engineering biphasic
model with the nonlinear initial and boundary conditions in [22]. Fornberg et al.
applied variate boundary treatments (edge enhancement techniques) to RBFs to
investigate the problem of RBF approximations at the edge of an interval in both
1-D and 2D [19]. Furthermore, examples of option pricing (American and Euro-
pean option) with RBFs (Global RBFs and Quasi-RBFs) have been demonstrated
by Hon in [53] [52], where the Boundary Updated Procedure (BUP) technique is
applied to capture the free boundary condition problem in the American option.
Hon also investigated the theoretical convergence of RBFs for the Black-Scholes
equation [55]. In this thesis we use the Kansa collocation method [61, 62] which
was mentioned above. Some others may use the symmetric radial basis function
method [33, 39]. In this section, some definitions of RBFs interpolation and the
Black-Scholes equation [9] are introduced.
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2.1.1 Scattered data interpolation

Definition 2.1 (Scattered data interpolation problem). Let X = {x1, . . . ,xN} ⊆
Rd, and data f(xi), i = 1, . . . , N , be given. The multivariate scattered data
interpolation problem is to find a function s : Rd → R with data set xi, such that
s(xi) = f(xi), i = 1, . . . , N .

Scattered data interpolation for reconstructing an unknown function from a finite
set of discrete data often appears to be a problem in practical applications. Finding
a suitable algorithm of scattered data interpolation has been a problem in many
areas of research for years. In 1982, Hardy’s multiquadratic (MQ) has been ranked
the best interpolation method among all twenty-nine interpolation methods in
Franke’s review paper [42], which means this could possibly be one of optimal
algorithms to the scattered data interpolation problem.

2.1.2 Radial Basis Functions

One possible method of solving the multivariate scattered data function problem
is using a linear combination of radial basis functions:

s(x) =
N∑
j=1

λjφ(‖x− xj‖), x ∈ Rd, (2.1)

where λj, j = 1, · · · , N is the unknown coefficient, and we use the Euclidean norm
‖x‖ = (

∑d
i=1 x

2
i )

1/2, and φ : R+ → R is a univariate function. There are many
different types of RBFs; more details can be found in [69]. In Table 2.1 we have
listed some common functions. Compactly supported radial basis functions have
become popular, as they give rise to sparse matrices. Amongst the family of com-
pact supported radial basis functions, the most popular one would be Wendland’s
functions [99]; examples are listed in Table 2.2. Wu’s functions and other com-
pact supported radial basis functions can be found in [32]. Franke examined and
rated the Hardy’s MQ to be one of the best interpolation methods in term of
accuracy, speed and ease of implementation [42]. Later, Stead also concluded that
MQ is more accurate for the gradient estimation from scattered data compared to
some other methods [96]. Because of MQ’s comparatively high accuracy, MQ is a
favoured choice in the literature [80, 34, 53, 66]. In particular, MQ is also infinitely
differentiable and the higher order partial derivatives of option price (Greeks, such
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as, ∆ and Γ) can be directly obtained by the derivative of the basis function of
MQ and the Gaussian, where both MQ and the Gaussian are used for our basis
functions from now on in this thesis.
The MQ and Gaussian basis functions are defined as

φ(‖x− xj‖) =
√

(x− xj)2 + c2, (2.2)

φ(‖x− xj‖) = e−
(x−xj)

2

c2 , (2.3)

where c is the shape parameter which controls the shape of functions and has huge
impact on both accuracy and the condition number of interpolation matrix. If a
chosen a priori value of c (Table 2.1) is too large, the condition number increases
significantly and the matrix tends to be badly ill-conditioned, which results in
numerical instability. Moreover, in the case of a small value of c (c → 0), an in-
accurate solution is produced with well-conditioned linear system which is stated
in [27]. In [89], Schaback observed that we cannot have both accuracy and a good
condition number at the same time. The Contour-Padé algorithm and RBF-QR
have been proposed by Fornberg et al. [20, 40] to perform stably even when c

tends to zero in 1-D. In [37], RBF-QR is extended to PDEs in three dimensions.
Currently, there is not an easy way to determine the shape parameter, c a priori,
as the choice is problem dependent [65]. The optimal shape parameter and the
ill-conditioned interpolation problem are still active and open problem in RBF
research. Throughout this thesis, we use the Kansa collocation method [62].

Name of RBFs Functional Form φ(r) = Parameters
Gaussians e−(cr)2 c > 0

Polyharmonic Splines rν ν > 0, ν /∈ 2N
Thin Plate Splines (TPS) r2k log(r) k ∈ N

Multiquadric(MQ) (c2 + r2)
ν
2 ν > 0, ν /∈ 2N, c > 0

Inverse Multiquadric(IMQ) (c2 + r2)
ν
2 v < 0, c > 0

Table 2.1: Example of some radial basis functions

Now we will introduce some basic, essential definitions. These can be found in any
elementary textbook on RBFs (see [32] [99] [12]).

Definition 2.2 (Radial function). A function Φ : Rd → R is defined as a radial
if there is a univariate function φ : [0,∞) → R, such that Φ(x) = φ(r), where
r = ‖x‖, and ‖.‖ is some norm on Rd which is typically the Euclidean norm.
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k φ3,k(r) smoothness
0 (1− r)2

+, C0

1 (1− r)4
+[4r + 1], C2

2 (1− r)6
+[35r2 + 18r + 3], C4

3 (1− r)8
+[32r3 + 25r2 + 8r + 1], C6

Table 2.2: Example of Wendland’s compactly supported radial basis function
ϕs,k,where s = 3.

From the above definition, we know that φ(‖x − xk‖) is a radial basis function
and φ is a basic function. Suppose our finite data set X ⊆ Ω for some domain Ω

in Rd.

Definition 2.3 (Fill distance). The fill distance is

h = hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖, (2.4)

and it is a measure that indicates how well the data set X = {x1, . . . ,xN} fills out
the domain Ω, and is the radius of the largest ball which does not intersect with
any data.

Definition 2.4 (Separation distance). The separation distance ofX = {x1, . . . ,xN}
is defined by:

q = qX =
1

2
min
i 6=j
‖xi − xj‖. (2.5)

It gives the smallest possible radius between two data.

Definition 2.5 (Positive semi-definite matrices). A real symmetric matrix A is
called positive semi-definite if its associated quadratic form is non-negative, i.e.,

N∑
i=1

N∑
j=1

λiλjAij ≥ 0, (2.6)

for λ = [λ1, . . . , λN ]T ∈ RN .
If the quadratic form (2.6) is zero only for λ ≡ 0, then A is called positive definite.

A positive definite matrix is non-singular, because only non-zero eigenvalues exist.

Definition 2.6 (Positive definite function). A real valued continuous function Φ

: Rd → R is positive definite if and only if it is even and

N∑
i=1

N∑
j=1

λiλjΦ(xi − xj) ≥ 0, (2.7)
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for anyN pairwise different pointsX = {x1, . . . ,xN} ⊆ Rd, and λ = [λ1, . . . , λN ]T ∈
RN .
The function Φ is strictly positive definite on Rd if the quadratic form (2.7) is zero
only for λ ≡ 0.

Theorem 2.7 (Bochner’s Theorem). A continuous function Φ ∈ C(Rd) is positive
definite on Rd if and only if it is the Fourier transform of a finite non-negative
Borel measure µ on Rd, i.e.

Φ(x) = µ̂(x) =
1√

(2π)d

∫
Rd
e−ix

T ydµ(y), x ∈ Rd

Lemma 2.8 (Wendland). The Gaussian Φ(r) = exp(−α‖r‖2), α > 0, is positive
definite on Rd.

Proof. The above Lemma is true as the Fourier transform of the Gaussian is
essentially the Gaussian. For example, The Gaussian Φ(r) = exp(−‖r‖

2

2
), has

a Fourier transform

Φ̂(r) = (2)−d(απ)−
d
2

∫
Rd
e−
‖r‖2
4α e−ix

Twdw,

this means that Φ is positive definite, and by Bochner’s Theorem: every positive
definite function is the Fourier transform of a positive function. If α = 1√

2
then

Φ̂ = Φ.

Definition 2.9 (Conditionally positive definite function). A real valued continu-
ous function Φ: Rd → R is conditionally positive definite of order m on Rd if and
only if

N∑
i=1

N∑
j=1

λiλjΦ(xi − xj) ≥ 0, (2.8)

for any N pairwise different points x1, . . . ,xN ∈ Rd, and λ = [λ1, . . . , λN ]T ∈ RN

satisfying
N∑
i=1

λip(xi) = 0, (2.9)

for any real valued polynomial p of degree at most m−1. The function Φ is called
strictly conditionally positive definite of order m on Rd if the quadratic form (2.8)
is zero only for λ = 0.

Theorem 2.10 (Buhmann, Micchelli). Let g ∈ C∞[0,∞) be such that g′ is com-
pletely monotonic but not constant. Suppose further that g(r) ≥ 0. Then the
interpolation matrix A is nonsingular for φ(r) = g(r2).
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A = {φ(‖xi − xj‖)}xi,xj∈X and X is set of points.

Proof. Since g(r) ∈ C∞[0,∞), then we have

g(r) = g(0) +

∫ r

0

g′(x)dx.

By changing the integral and replacing g′(x) with the Bernstein-Widder represen-
tation. By Fubini’s theorem:

g(r) = g(0) +

∫ r

0

∫ ∞
0

e−αxdµ(α)dx.

Suppose λ ∈ RX and
∑

i∈X λi = 0, then we have

λTAλ = −
∫ ∞

0

∑
i∈X

∑
j∈X

λiλjα
−1e−α‖i−j‖

2

dµ(α),

and ∫ r

0

e−αxdx = −α−1e−αr + α−1.

Thus λTAλ < 0 for all λ and except λ = 0, this means there is one negative
eigenvalue in A with remainder of positive eigenvalues.

The proof of invertibility of Gaussian and MQ are directly taken from [99] and [12],
respectively.

Definition 2.11 (m-unisolvent). The set of points X = {x1, . . . ,xN} ⊆ Rd is
called m-unisolvent if the only polynomial of total degree at most m interpolating
zero data on X is the zero polynomial.

Within a scattered data interpolation problem, there is a finite set of points
X = {x1, . . . ,xN} ⊆ Rd with corresponding value f = [f(x1), . . . , f(xN)]. Re-
calling Equation 2.1, we then have the following RBF interpolation:

s(x) =
N∑
j=1

λjφ(‖x− xj‖), x ∈ Rd. (2.10)

With the above equation and corresponding value f , the value of coefficient λj can
be found by enforcing the interpolation condition
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s(xj) = f(xj), j = 1, · · · , N. (2.11)

Rewriting Equation (2.11) as a linear system with N ×N interpolation matrix A,
λ = [λ1, . . . , λN ]T and f = [f(x1), . . . , f(xN)]T , we have


φ(‖x1 − x1‖2) φ(‖x1 − x2‖2) . . . φ(‖x1 − xN‖2)

φ(‖x2 − x1‖2) φ(‖x2 − x2‖2) . . . φ(‖x2 − xN‖2)
...

... . . . ...
φ(‖xN − x1‖2) φ(‖xN − x2‖2) . . . φ(‖xN − xN‖2)




λ1

λ2

...
λN

 =


f(x1)

f(x2)
...

f(xN)

.

This transfer the multivariate scattered data interpolation problem into the fol-
lowing linear system problem

Aλ = f. (2.12)

Precisely, to obtain the unique solution of s = [s(x1), . . . , s(xN)]T and λ =

[λ1, . . . , λN ]T , matrix A should be nonsingular which is true if it is positive definite.
The condition number of A can be defined as

k(A) = ‖A‖‖A−1‖ =
σmax

σmin

, (2.13)

where σmax and σmin denote the maximum and minimum eigenvalues of A, respec-
tively. An upper bound of ‖A−1‖ is given by Ball in [2] when φ(r) = ‖r‖, and Nar-
cowich and Ward [78] gave the upper bound of ‖A−1‖ and upper bound condition
numbers for φ(r) = ‖r‖ and φ(r) = log(1+r2) and MQ, r ∈ Rd and φ(·) : R→ Rd.
In their results, the upper bounds on conditional number for the MQ in 2 and 3 di-
mension are 5.95

√
1+D2

p
e

3
p

(
D+2q

2q

)3

and 8.55
√

1+D2

p
e

4
p

(
D+2q

2q

)3

, where q is half way
of smallest distance or the separation radius and D = maxi 6=j ‖xi − xj‖, xi ∈ X.
They also suggested that for small number of q, it is better to use the basis func-
tion of

√
4q2 + r2 as we can get the upper bound ‖A−1‖ to be less or equal to 6

q
.

This is one of the reasons that we chose our shape parameter to be 4∆x (∆x is the
distance between two neighboring nodes) in our equally spaced method in Chapter
3. In [79], the upper bound of Gaussian and thin plate spline are ‖A−1‖ ≤ 2sqs

δsρ( 2δ
q

)

and ‖A−1‖ ≤ 2
√
πq−1, where ρ(u) is strictly positive, decreasing and continuous on

(0,∞), δ = 12
(
πΓ2( s+2

2
)

9

) 1
s+1

, Γ denotes Gamma function. Micchelli has discussed
the RBFs in term of accuracy and condition numbers [76].
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RBF intepolants can be extended with polynomial term which give us the guaran-
tee of strictly positive definite. For instance, X ⊂ Rd and a function Φ : Rd → R
with a low degree polynomial of d variate and at most m − 1 degrees P d

m can be
interpolated by RBFs with polynomial term

s(x) =
N∑
j=1

λjφ(‖x− xj‖) +
M∑
i=1

dipi(x), x ∈ Rd, (2.14)

where the polynomial p1, . . . , pM form a basis for the M =

(
m− 1 + d

m− 1

)
dimen-

sional linear space πdm−1 of polynomial with degree of freedom less and equal of
m− 1 in d variables. From the definition of (m− 1)-unisolvent, we are guaranteed
a unique solution for the above interpolation problem andM is dimension of linear
space πdm−1 of total degree less or equal to m− 1 in s variables.
The new linear system has been created by enforcing the interpolation condition
s(xi) = f(xi) with i = 1, . . . , N. Finding the N +M unknown coefficient values of
λj and di, we also need an additional condition for the polynomial part to guaran-
tee a unique solution of the N linear equations (the proof of which can be found
in [32]). The following extra conditions are

N∑
j=1

λjpi(xj) = 0, i = 1, . . . ,M. (2.15)

From Equations (2.14) and (2.15), by enforcing s = u and u = [f(x1), . . . , f(xN)]T

we will have the following form[
A P

P T O

][
λ

d

]
=

[
u

0

]
, (2.16)

where Alj = φ(‖xl − xj‖), with l, j = 1 . . . , N, Pli = pi(xl), i = 1, . . . ,M, λ = [λ1,
. . . λN ]T ,u = [u1, . . . , uN ]T , d = [d1, . . . , dN ]T , the O in the matrix form is M ×
M null matrix and 0 in the vector form is the zero vector with length M . In
the remainder of this thesis, we only consider the case M = 0 (not adding any
polynomial terms) for 1-D Black-Scholes problem as the thin plate spline is used
to solve the spread option in Chapter 5. In a linear elliptic PDE with the Dirichlet
boundary condition, the collocation equations are:
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Lu(xi) = f(xi) i = 1, . . . , N −NB,

u(yj) = g(yj), j = N −NB + 1, . . . , N,
(2.17)

i.e. ∑N
j=1 λjLφ(xi − xj) = f(xi), i = 1, . . . , N −NB,∑N
j=1 λjφ(yi − xj) = g(yi), i =, N −NB + 1 . . . , N,

(2.18)

where L is a linear partial differential operator, NB is the number of nodes on the
boundary, φ denote the MQ radial basis function, u, g and f are real functions,
where y is on the boundary domain of ∂Ω. In the Kansa’s collocation method [62],
the approximate solution of u is defined as

ũ(x) =
N∑
j=1

λjφj(x− xj), x ∈ Ω ⊆ Rd, (2.19)

where λj = [λ1, . . . , λN ]T ∈ RN is an unknown coefficient vector. Equation (2.17)
can be rewritten as

Aλ =

[
f

g

]
, (2.20)

with

A =

[
ÃL

Ã

]
, (2.21)

where
ÃL,ij = Lφ(‖xi − xj‖), i = 1, . . . , N −NB, j = 1, . . . , N.

Ãij = φ(‖xi − xj‖), i = N −NB + 1, . . . , N, j = 1, . . . , N.

and this solved the problem in a form of linear system.

2.1.3 Convergence

Truncation and rounding errors are two main type of errors when applying numer-
ical schemes to approximate the solution of PDEs. The truncation error occurs by
replacing a continuous problem with a discrete problem, and the rounding error
occurs when we use finite precision. Schaback et al. used symmetric interpolation
matrix to give the error bound of elliptic problem [41] and Fornberg et al. found
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the convergence rate of RBFs in 1-D of equally spaced points [36]. Fornberg et al.
also noted that the RBF interpolation error structure oscillates around zero mean
in their experiment (cos(wx)). In financial applications, one of the localized RBF
methods, the RBF partition of unity collocation method (RBF-PUM) has been
tested for both stability and accuracy in [50] by Safdari-Vaighani et al.. There is
no theoretical convergence analysis of our adaptive algorithm in this thesis and in
any existing literature. Before going any further, we introduce some relevant and
necessary definitions needed in the analysis of convergence of our adaptive method
in the future.

Definition 2.12 (Reproducing kernel). Let H be a real Hilbert space of functions
f : Ω(⊆ Rd) → R with inner product 〈., .〉. A function Φ : Ω× Ω → R is called a
reproducing kernel for H if

1. Φ(.,y) ∈ H for all y ∈ Ω,

2. f(y) = 〈f,Φ(.,y)〉H for all f ∈ H all y ∈ Ω.

Theorem 2.13. Suppose H is a Hilbert space of functions f : Ω→ R with repro-
ducing kernel Φ. Then we have

1. Φ(x, y) = 〈Φ(., x),Φ(., y)〉H for x, y ∈ Ω.

2. Φ(x, y) = Φ(y, x) for x, y ∈ Ω.

3. If fn converges to f in Hilbert space norm, then fn also converges to f

pointwise, e.g., for n → ∞, ‖f − fn‖H → 0 imply that |f(y) − fn(y)| → 0

for all y ∈ Ω.

Theorem 2.14. Suppose H is a reproducing kernel Hilbert function space with
reproducing kernel Φ : Ω × Ω → R Then Φ is positive definite. Moreover, Φ

is strictly positive definite if and only if the point evaluation functionals δy are
linearly independent in H∗.

H∗ is the dual which is the space of bounded linear function on H.

From the work of [99, 73], we know that smooth RBFs, such as Gaussian, inverse
quadratics (IQ) and MQ on native spaces have been known to converge exponen-
tially [73, 11]. Furthermore, Gaussian basis functions have small native space with
analytical function [81], the proof of convergence were also given by Madych and
Nelson in [72] that based on the fundamental work of [47]. Subsequently this has
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been extended by [76, 68, 82, 84, 90].
The convergence in scattered data interpolation was proved by Wu in [100], and
the convergence rate of the RBFs method for the solution of PDEs were investi-
gated in [41, 98]. For the shape parameter, Driscoll and Fornberg showed some
result of convergence in both 1-D (converge to polynomial) and 2-D for smooth
functions when c tends to zero with small number of N [27]. At equidistant dis-
tribution of center nodes, Platte and Driscoll applied the variable change, and
found that there was a connection between polynomials and Gaussian interpola-
tion [29]. For polynomial interpolation, the rate of convergence can be denoted
by the method of classical approximation theory, such as the stability of the in-
terpolation problem of Runge phenomenon analysis, which indicates the optimal
distribution set of nodes. In Hermite interpolation, the investigation of rate of
convergence of Hermite interpolation has been done by Luo and Levesley [67] with
a modification method of variational approach of Madych and Nelson [71, 72] by
a fixed conditional positive definite (CPD) function.
For the elliptic PDE problem, Carsten and Schaback [16] used symmetric collo-
cation method to find an L∞ error bound, and in term of L2 norm, it has an
additional convergence factor hd/2 for MQ basis function.

2.2 Option pricing

Numerical methods for solving the Black-Scholes equation [9], which approximate
the solution of a linear parabolic equation is an efficient way to price a derivative
contract. However, with the number of assets increasing, the number of spatial
spaces and computational demand are also increased, thus RBFs could be one
method to resolve this problem. The Black-Scholes model has been used and
extended to price a variety of options by many practitioners. The general setting
for the underlying asset S in the Black-Scholes model is that S follows a Geometric
Brownian motion (GBM) with

dS = µSdt+ σSdW, (2.22)

where µ and σ are assumed to be constant, and represent the expected asset return
and volatility of asset return, respectively. Based on GBM and the continuous
hedging argument, the Black and Scholes PDE [9] is obtained by the following
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equation. This is a one dimensional non dividend payment Black-Scholes PDE for
calculating the fair price of a European option with respect to time and underlying
asset:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2.23)

where S follows a GBM in continuous time, σ is a constant volatility, r is a known
and constant short-term interest rate and V is the option price.

2.2.1 European option

A European option (Vanilla option) is a derivative product that gives the holder
the right, but not the obligation to exercise the option at end of its life time,
at maturity time with a pre-agreed strike price. The discounted expected payoff
function of the European option can be described as:

Vt = E[e−r(T−t)G(ST )], (2.24)

where K is the strike price.

G(ST ) = max[α(ST −K), 0], (2.25)

where G(ST ) is the payoff function, E is the expectation in a risk-neutral world
and α is equal to +1 for a call options and -1 for a put options. ST is the under-
lying asset, T is maturity time and K is the strike price. European call (or put)
options give the buyer the right to buy (or sell) an asset at maturity T .

2.2.2 American option

An American option can be executed at any time before the expiration date with
pre-agreed strike price. It has the same payoff function Equation (2.25) as a
European option. Since the value of American call option is the same as the value
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of European option, we only discuss the case of an American put option in our
numerical example.

2.2.3 Barrier option

A barrier option is an option where the holder has the right to execute it if the
underlying asset crosses (does not cross) a certain barrier level before the expiration
date. There are many different kinds of barrier options on the market with both
availability in call and put options. In general, barrier options can be divided into
two categories and four basic path dependent forms, such as

• knock-out option:

– up and out call/put

– down and out call/put

• knock-in option:

– up and in call/put

– down and in call/put

The European style of barrier up-and-out call option will be demonstrated in our
numerical experiments. The mathematical formula of the payoff function is

Payoff =

{
max{(St - K), 0 }, St < B, 0 ≤ t ≤ T,

0, otherwise,

}
, (2.26)

where B is barrier level. In terms of premiums, barrier options have small premi-
ums compared with European options.

2.2.4 Spread option

A spread option is an option whose underlying is based on the difference in price
between two different assets. There is a wide variety of multi-asset options on the
market. However, in this thesis, we mainly deal with a special case of the European
style of spread option which has an analytical solution. In this spread option, for
simplicity we consider K = 0 which is also called a Margrabe option [74]. The
payoff function can be described as
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Payoff(S1, S2) = max{(S1 − S2), 0}. (2.27)

Theorem 2.15 (Itô ’s Lemma). Let B(t) be a Brownian motion and W(t) be an
Itô drift-diffusion process which satisfies the diffusion equation:

dW (t) = µ(W (t), t)dt+ σ(W (t), t)dB(t). (2.28)

If f(w, t) ∈ C2(R2,R), then f(w,t) is also an Itô drift-diffusion process which
satisfies the following differential equation:

d(f(W (t), t)) =
∂f

∂t
(W (t), t)dt+

∂f

∂W (t)
(W (t), t)dW +

1

2

∂2f

∂W (t)2
(W (t), t)dt,

(2.29)
where dt2 = 0, dtdW (t) = 0 and dW (t)2 = dt.

Itô ’s Lemma with two variables will be used in Chapter 5 for derivation of the
two asset Black-Scholes formula.



Chapter 3

Option Pricing with Radial Basis

Functions

3.1 European Call Option and Greeks

Let us recall the Black-Scholes equation for the non-dividend payment European
option,

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (3.1)

where S is the underlying asset value which follows a GBM in continuous time, σ
is a constant representing volatility, r is a known and constant short-term interest
rate and V is the price of the option. The initial condition of a European call
option is given by the final payoff,

V (S, T ) = max{S −K, 0}, S ≥ 0. (3.2)

Here we have discretized both time and spatial spaces in a domain Ω ∈ [Smin, Smax]×
[0, T ] and the boundary conditions can be described as

V (Smin, t) = α(t), 0 ≤ t ≤ T,

V (Smax, t) = β(t), 0 ≤ t ≤ T.
(3.3)

There are a few ways to numerically approximate the solution of the Black-Scholes
equation, either solving it directly or with a variable change (it also can be trans-
formed to heat equation). Firstly, we follow the eight step "cooking recipe" in [80]

21
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and [53] to reproduce the equally spaced RBF method. We propose a variable
change with x = log(S) which is the same strategy in [53, 80], then, with the new
payoff function U(x, t) = V (S, t) Equation (3.1) can be rewritten as:

∂U

∂t
+

1

2
σ2∂

2U

∂x2
+

(
r − 1

2
σ2

)
∂U

∂x
− rU = 0. (3.4)

Following the change of variables, the initial and boundary conditions can be
expressed as

U(x, T ) = max{ex −K, 0},
U(log(Smin), t) = α(t), 0 ≤ t ≤ T,

U(log(Smax), t) = β(t), 0 ≤ t ≤ T,

(3.5)

on the domain Ω = [x× t] with x = [log(Smin), log(Smax)] and t = [0, T ].
By discretizing the domain with N nodes and M time steps, we use the RBF of
form φj(x) = φ(‖x− xj‖) to approximate the solution of U :

u(x, t) =
N∑
j=1

λj(t)φj(x) ' U(x, t), (3.6)

where λj is an unknown time dependent coefficient vector. By substituting u

in Equation (3.6) into Equation (3.4), we obtain the following linear system of
equations with the initial and boundary conditions of Equation (3.5),

∂u(x, t)

∂t
+

1

2
σ2∂

2u(x, t)

∂x2
+

(
r − 1

2
σ2

)
∂u(x, t)

∂x
− ru(x, t) = 0. (3.7)

In our numerical simulations, for a given set of data points x1, . . . , xN , we use
MQ and Gaussian basis functions for the equally spaced method in 1-D which is
presented in Table 3.1. Tensor products of RBFs are used in Chapter 5 to compute
a Margrabe call option.

Since RBFs with uniform nodes are time independent, then the partial derivative
of u with respect to time t is

∂u(x, t)

∂t
=

N∑
j=1

φ(‖xi − xj‖)
dλj(t)

dt
, (3.8)



Option Pricing with Radial Basis Functions 23

Name of RBFs Functional Form φ =

Gaussians e

(
−

(x−xj)
2

c2

)

Gaussians Tensor Product 2d e

(
−

(x−xj)
2

c21

)
e

(
−

(y−yj)
2

c22

)
Multiquadric(MQ)

√
((x− xj)2 + c2)

Tensor Product of Multiquadrics 2d
√

((x− xj)2 + c2
1)
√

((y − yi)2 + c2
2)

Table 3.1: Examples of radial basis functions in our numerical experiments

the first and second partial derivatives of u with respective to the underlying asset
x can be denoted as:

∂u(x, t)

∂x
=

N∑
j=1

λj(t)
∂φ(‖x− xj‖)

∂x
, (3.9)

and
∂2u(x, t)

∂x2
=

N∑
j=1

λj(t)
∂2φ(‖x− xj‖)

∂x2
. (3.10)

For the MQ radial basis function, we have both first and second partial derivatives
of φ as

∂φ(‖x− xj‖)
∂x

=
(x− xj)√

(x− xj)2 + c2
, (3.11)

∂2φ(‖x− xj‖)
∂x2

=
1√

(x− xj)2 + c2
− (x− xj)2

(
√

((x− xj)2 + c2)3
. (3.12)

In the Gaussian case, the first and second partial derivatives of u are

∂φ(‖x− xj‖)
∂x

= −2c−2(x− xj)e(−
(x−xj)

2

c2
), (3.13)

∂2φ(‖x− xj‖)
∂x2

= 4c−4(x− xj)2e−(
(x−xj)

2

c2
) − 2c−2e(−

(x−xj)
2

c2
). (3.14)

The notation for u and its the partial derivatives are as follow:

ux(x, t) =
∂u(x, t)

∂x
=

N∑
j=1

λj
∂φ(‖x− xj‖)

∂x
,
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uxx(x, t) =
∂2u(x, t)

∂x2
=

N∑
j=1

λj
∂2φ(‖x− xj‖)

∂x2
,

ut(x, t) =
∂u(x, t)

∂t
=

N∑
j=1

φ(‖x− xj‖)
dλj(t)

dt
,

u(x, t) =
N∑
j=1

λjφ(‖x− xj‖).

We collocate at the points xi, i = 1, . . . , N , and for notational simplicity, we use
Axλ =

∑N
j=1 λj(t)

∂φ(‖xi−xj‖)
∂x

, Axxλ =
∑N

j=1 λj(t)
∂2φ(‖xi−xj‖)

∂x2
, Aλt =

∑N
j=1 φ(‖xi −

xj‖)dλj(t)dt
and Aλ =

∑N
j=1 λj(t)φ(‖xi− xj‖. In matrix form, we can rewrite Equa-

tion (3.7) as

Aλt +
1

2
σ2Axxλ+

(
r − 1

2
σ2

)
Axλ− rAλ = 0. (3.15)

Hon et al. mentioned that A in the equally spaced RBF is invertible [53] which is
verified by Powell in [83]. The MQ is CPD of order 1, and the Gaussian is positive
definite. Let’s rewrite Equation (3.15) as:

λt = −
[

1

2
σ2A−1Axx +

(
r − 1

2
σ2

)
A−1Ax − rI

]
λ. (3.16)

Equation (3.16) also can be written as

λt = Pλ,

where P = −1
2
σ2A−1Axx −

(
r − 1

2
σ2
)
A−1Ax + rI,

(3.17)

and I is the N ×N identity matrix. In Equation (3.17), the matrix P can also be
expressed as:

P = (Pij)1≤i,j≤N ,

where

Pij = −1

2
σ2 (φ(‖xi − xj‖))−1 ∂

2φ(‖xi − xj‖)
∂x2

− (r − 1

2
σ2) (φ(‖xi − xj‖))−1 ∂φ(‖xi − xj‖)

∂x
+ rδij, (3.18)
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and δij is the Kronecker delta function.

3.1.1 Time integration scheme

Equation (3.16) is a linear system of ordinary differential equations (ODEs) in
time. We can obtain our coefficient vector λ with any backward time integra-
tion schemes, for example the Theta Method, fourth order explicit Range-Kutta
Method (RK4) and the second order backward differential scheme (BDF-2). De-
tails of these methods can be found in [80, 53, 66]. Our chosen time integration
scheme is the backward Crank Nicolson scheme (CN). The first order homogeneous
ODE with equalised time step ∆t with initial conditions given by Equation (3.5)
can be rewritten as

λt − λt−∆t

∆t
=

1

2
P (λt + λt−∆t), 0 < t ≤ T. (3.19)

Rearranging the above expression we obtain

(
I − 1

2
∆tP

)
λt =

(
I +

1

2
∆tP

)
λt−∆t. (3.20)

We define matrices L and R,

L =
(
I − 1

2
∆tP

)
,

R =
(
I + 1

2
∆tP

)
,

(3.21)

which then gives the following linear system of equations,

Lλt = Rλt−∆t,

i.e. λt = L−1Rλt−∆t,
(3.22)

0 < t ≤ T , where L and R are N ×N matrices.
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3.1.2 Boundary updating system

Under the European call option framework, we need to satisfy the following bound-
ary conditions:

V (0, t) = 0, 0 ≤ t ≤ T,

V (S, t) = S − e−r(T−t)K, S →∞.
(3.23)

Following the proposed variable change, the initial and boundary conditions of the
log transformed Black-Scholes equation are

u(x, T ) = max{ex −K, 0},
u(log(Smin), t) = 0, 0 ≤ t ≤ T,

u(log(Smax), t) = Smax − e−r(T−t)K, 0 ≤ t ≤ T,

(3.24)

where Smax and Smin represent the maximum and minimum values that we take
to satisfy the boundary conditions in our spatial domain. In the following nu-
merical experiments, we discretize our spatial space domain and time domain
with N equally spaced nodes and with M equidistant time steps, respectively.
For the Dirichlet boundary condition of first order time dependent ODEs (Equa-
tion (3.16)), we can use the Boundary Update Procedure (BUP) in [53], which
states

For n = M to 0.
Step 1: Compute un = φλn.
Step 2: Update the first and last elements un(1) and un(N).
Step 3: Calculate λn by using φ−1un.

Here, n represents the number of time steps or iteration steps. For n = M + 1,
the unknown initial coefficient vector

∑N
j=1 λ

M
j can be obtained by φ−1uM(x).

Throughout the iteration of BUP, we can find the unknown coefficient vector∑N
j=1 λ

0
j for n = 0, which is at t = 0. The option value can be obtained by

calculating

U(x, 0) '
N∑
j=1

λ0
jφj. (3.25)
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3.1.3 Method of Lines

In PDEs, the method of lines (MOL) consists of replacing the spatial deriva-
tives with RBFs that transform PDEs into ODEs. For example, Shen used the
MOL-RBF to solve time-dependent problem of Korteweg de Vries (KdV) equa-
tion in [93], Naqvi used adaptive RBF-MOL to solve the 1-D KdV equation and
Burger’s equations in her thesis [77]. In our case, we use RBF-MOL to solve the
log transformation of Black-Scholes Equation (3.4), which can be rearranged as
follows:

∂u

∂t
+ Lu = 0, t ∈ [0, T ], (3.26)

where

u(x, t) =
N∑
j=1

λj(t)φ(rj), i = 1, . . . , N and r = ‖xi − xj‖ (3.27)

This is the same as Equation (3.16) and the approximation of the solution can be
obtained by any backward time integration scheme.

3.1.4 The shape parameter

In the equally spaced method, an appropriate shape parameter has been chosen
in our MQ and Gaussian basis functions. Details of research literature on the op-
timal shape parameter are given in [35, 20, 14, 21, 51, 87]. In particular, Larsson
et al. [66] used non-adaptive (non-uniform nodes) method to show the best shape
parameter in their work is obtained by numerical simulation, which is defined as
c = 1+ N

20
for a number of nodes that is between 20 to 60 in the 1-D Black-Scholes

problem. The cross validation technique has been used to obtain the optimal
shape parameter in [21, 51]. Pippa proposed the leave one out cross validation
(LOOCV) algorithm based on the number of data distribution and computational
precision [87]. Within our equally spaced method, we choose the shape parameter
to be 4∆x for MQ, which was proposed by [80] and [53]. However, for the Gaussian
basis function, we choose the shape parameter to be c = 2∆x, where ∆x is the
distance between two neighboring nodes. Figure 3.1 shows how the shape param-
eter c can affect the condition number and RMSE. The left figure shows that the
condition number increases when c increases, and the right figure indicates that
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when both c and the condition number increase to certain level (below 1e+10), we
can have a good RMSE, but we can see that when the condition number reach to
1e+10, in particular around 1e+15, our RMSE explode completely.
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Figure 3.1: Condition number and RMSE in log-log plot for the shape param-
eter c.

3.2 Numerical Results

All of our numerical simulations are based on the problems of the BENCHOP
project [97], which gives us comparisons to other methods of solution. In this sim-
ulation experiment, we will compare two radial basis function, MQ and Gaussian.
Due to the choice of the shape parameter, there would be some oscillations in the
Gaussian basis function. Moreover, we will use the same setting for both basis
functions, such as the number of nodes, time steps and spatial domain. Since the
error profile (absolute error plot in each time step) of both basis functions are
broadly similar, and for clarity reason, we list all of them in Appendix A. In the
following one dimensional problem, we present the numerical results between two
standard RBF basis functions, MQ and Gaussian. In this section, we use the Pa-
rameter Set 1 from the BENCHOP project [97], which tests both basis functions
for the European call option, Greeks, an American put option and a barrier up
and out call option. Parameter Set 1 is

Parameter Values
σ 0.15
r 0.03
T 1.0
K 100
B 125

Table 3.2: BENCHOP project, Problem 1 in [97], Parameter Set 1, B is the
barrier level.

and B is the barrier level in the barrier up and out option.
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3.2.1 Error measure

For computational purposes, we need to restrict our problem to a finite domain.
We measure the error in the region [4K

5
, 6K

5
] = [80, 120], where value of the spot

price is close to the strike price (K), and we know that there is very small proba-
bility that the stock will be out of the money or be further away from the strike.
Let P (x, 0) be the analytical solution of the Black-Scholes equation, x be the log
transform of S and 0 is current time for t. The absolute error and the relative
error functions are

Eabs(x) = |P (x, 0)− u(x, 0)|, (3.28)

and
Erel(x) =

|P (x, 0)− u(x, 0)|
P (x, 0)

, (3.29)

where u is our approximation solution of U . Let N be some number of the evalu-
ation points, and

xj = xmin + (j − 1)∆x, j = 1, · · · , N, (3.30)

and
∆x =

xmax − xmin

N
. (3.31)

The financial norm of the error is the max error, Emax

Emax = max
0≤i≤N

(|P (xi, 0)− u(xi, 0)|), (3.32)

where i = 1, · · · , N .

The second error norm is the root mean square error (RMSE),

Ef =

√
1

N

∑
1≤i≤N

|P (xi, 0)− u(xi, 0)|2, (3.33)

All numerical experiments were performed using Matlab with a 64-bit Windows 7
operating system on a HP desktop with Intel Core i5 CPU @ 3.1GHz with 8GB
RAM. None of the Matlab code has been optimized.
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3.2.2 European call option

We first compare the approximation error of equally spaced methods for the Euro-
pean call option. In order to assess the accuracy of the numerical method, we use
the max error (Emax) and the RMSE (Ef ), which compare the numerical solution
with the analytical solution of Black-Scholes equation. In Table 3.3, we compare
Emax of approximation solution of current call option value with maturity time
T using MQ and the Gaussian basis functions with various number of nodes N
and time steps M . Within this numerical experiment, the number of time steps
are the same as the number of nodes in the spatial domain (M = N). As seen
in Table 3.3, Emax decreases as the number of nodes and times steps increase,
both basis functions can achieve Emax around 6.6e-04 for 640 nodes and 640 time
steps. Figure 3.2 represents the RMSE against number of nodes, as we can see
the RMSE value decreases as the number of nodes increases for N between 20 and
1280. For 160 nodes and time steps, the RMSE value is 2.258e-03 for the Gaussian
and 1.330e-03 for MQ. In our numerical simulations, we try to avoid using a large
number of nodes as it can give us an accurate solution, but it is computationally
expensive. Table 3.3 and Figure 3.2 show that N = M = 160 delivers a solution
with Emax around 2.3e-03 and Ef around 1.2e-03; this is our start point to test
the equally spaced RBF method.

Basis function N=20 N=40 N=80 N=160 N=320 N=640
MQ 1.13 2.01e-01 3.32e-02 1.33e-03 1.06e-03 6.36e-04

Gaussian 1.44 2.31e-01 4.16e-02 2.26e-03 1.16e-03 6.55e-04

Table 3.3: Max error (Emax) of the RBF approximation for MQ and the
Gaussian.

Figure A.1 and Figure A.2 represent the absolute error surface of the European
call option in time for Parameter Set 1 in Table 3.2. The largest absolute error
occurs when the spot price S is close to the strike price (K) at time step 1 with
Emax = 2.452e-01 in MQ and Emax = 3.45e-01 in the Gaussian. We also note that
there are several small peaks appearing at time step 1 as well. The numerical
results in Figure 3.3 indicates that the relative error is below 1.7e-03 for both
basis functions. In particular, when S = K we have Erel around 1.12e-04, and the
RMSE for MQ and the Gaussian are 8.7994e-04 and 1.1e-03, respectively. The
oscillation in the Gaussian is related to the choice of shape parameter. This is an
issue with all Compact support functions.
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Figure 3.2: Ef of MQ and Gaussian against degree of freedom (DF)(number
of nodes).
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Figure 3.3: Relative error of European call option for MQ and the Gaussian
basis functions at t = 0.

3.2.3 Greeks

In the financial market, the Greeks: Delta, Theta, Gamma, Vega, Rho and Psi,
measure different facets of the risk of an option position. They are useful as they
can predict the direction of movement of an option trade, and show how to protect
the position against adverse movements in critical market variables. In this thesis,
we discuss three Greeks: Delta, Gamma, and Vega.
Delta (∆) is the sensitivity with respect to the underlying asset S. It is the rate
of change in value with respect to the asset. Delta is defined as

∆ =
∂V

∂S
,

Gamma (Γ) is the second derivative of the option price with respect to the under-
lying asset S,

Γ =
∂2V

∂S2
.

Vega (ν) is the measure of sensitivity of an option price with respect to volatility
σ. Similarly to ∆, it gives the direction and extent of movement of the option
price. Both call and put options have the same Vega, and Vega is always positive,
as is volatility. The Vega is defined as the first derivative of underlying asset with
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respect to volatility σ
ν =

∂V

∂σ
.

3.2.3.1 Delta

The value of Delta can be approximated by

∆(x, 0) =
1

S

N∑
j=1

λtj
∂φ(‖x− xj‖)

∂x
, (3.34)

where x ∈ [log(Smin), log(Smax)] and t ∈ [0, T ]. In the RBF method, we can calcu-
late Delta without any additional computational effort. Figure A.3 and Figure A.4
show the absolute error surface of Delta in time for Parameter Set 1. The structure
of the absolute error surface behaves in Delta similar to the error surface of option
value, though the error in Delta has more oscillation at time step 1 (t = T ). At
time step 1 Emax for MQ and the Gaussian are 1.473e-01 and 1.479e-01, respec-
tively. Figure 3.4 shows the relative error of Delta for the spot prices from 80 to
120 at t = 0 with maturity time T , the Delta value of the Gaussian is highly oscil-
latory. The RMSE of Delta for MQ is 5.3434e-05, and 5.7118e-04 for the Gaussian,
which means MQ has 10 times less RMSE value than the Gaussian.
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Figure 3.4: Relative error of Delta for MQ and the Gaussian basis functions
at t = 0.
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3.2.3.2 Gamma

The value of Gamma can be approximated with

Γ(x, 0) =
1

S2

N∑
j=1

λtj
∂2φ(‖x− xj‖)

∂x2
, (3.35)

where x ∈ [log(Smin), log(Smax)] and t ∈ [0, T ]. Gamma is the second partial
derivative with respect to underlying asset S, and as before we do not require any
additional computational effort to obtain the Gamma value in the RBFs method.
Figure A.5 and Figure A.6 represent the absolute error surface of Gamma value
in time, and two large kinks appear at S = 95 and 98. In Figure 3.5, we present
the relative error with different spot prices at t = 0. As we can see the relative
error of the Gaussian oscillates around the MQ. The maximum relative errors of
MQ are smaller than the Gaussian. Figure 3.6 is the plot of absolute error against
spot prices for MQ and the Gaussian basis functions. It indicates that Emax is just
under 9.5e-03 which means the values of Gamma appear to be extremely small
(maximum Gamma value is 0.028). The RMSE for MQ is 5.9e-03 and 6.0e-03 for
the Gaussian.
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Figure 3.5: Relative error of Gamma for MQ and the Gaussian basis functions
at t = 0.
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Figure 3.6: Absolute error of Gamma for MQ and the Gaussian basis functions
at t = 0.

3.2.3.3 Vega

The Vega can be approximated with

ν(x, σ) =
u(x, σ + a)− u(x, σ)

a
, (3.36)

where a is an increment of σ. We tested our Vega with a = 0.001σ. In the following
Table 3.4, we use the Parameter Set 1 which has been given in Table 3.2 with both
N and M equal to 160 to calculate the relative error at three specific evaluation
points. The result shows that we can deliver our approximation solution with high
accuracy for both MQ and the Gaussian basis functions, with maximum of Erel at
6.03e-04. Overall, MQ seems perform better than the Gaussian for Vega valuation,
in particularly when S = 110, MQ is 5 times more accurate than the Gaussian.

Basis function S = 90 S = 100 S = 110
MQ 5.44e-04 1.27e-04 1.17e-04

Gaussian 5.09e-04 1.56e-04 6.03e-04

Table 3.4: The relative error (Eref) of Vega approximation for MQ and the
Gaussian.
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3.2.4 American Put Option

An American option is a contract that can be exercised at any time before matu-
rity. The optimal exercise strategy is the one which maximises the payoff value.
However, we do not know in advance what the optimal exercise strategy is. The
concept of free boundary conditions is associated by the optimal exercise strategy
as it separates the optimal exercise region from the holding region. The optional
exercise price is the difference between exercise value and non exercise value, which
depends on the remaining time of the contract (time to maturity), volatility and
other parameters. Unlike the European option, a free boundary is involved, which
poses a difficulty for most numerical approximation methods. To date, no analyt-
ical solution of American options exists. In [15], Theorem 1.1 showed that we can
use the value of European put option with the earlier exercise premium to replace
the value of an American put option. The value of a European put option is

VE = −SN
(
−d+

(
S

K
, T − t

))
+Ke−r(T−t)N

(
−d−(

S

K
, T − t)

)
, (3.37)

where d± = 1
σ
√
T−t [ln

S
K

+ (r ± σ2

2
)(T − t)] and N(.) is the standard normal dis-

tribution function. The value of an American put option can then be written
as

VA = VE + rK

∫ T

t

e−r(T−u)N(−d−(
b(t)

b(u− t)
, T − u))du, (3.38)

where 0 ≤ t < T and b(t) is the optimal exercise strategy at time t with b(T ) = K.
More details of this method and proofs can be found in [15]. In Table 3.5 we present
numerical results of an American put option that shows that RBFs can capture
the earlier exercise feature. The initial and boundary conditions can be described
as

U(x, T ) = max{ex −K, 0},
U(log(Smin), t) = Ke−r(T−t), 0 ≤ t ≤ T,

U(log(Smax), t) = 0, 0 ≤ t ≤ T,

(3.39)

and the earlier exercise feature is described as

V (Sf (t), t) = max{K − Sf (t), 0}, 0 ≤ t ≤ T, (3.40)

∂V (Sf (t), t)

∂S
= −1, 0 ≤ t ≤ T, (3.41)
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where Sf (t) is the free boundary (or the optimal exercise strategy). In our nu-
merical implementation, we used the Boundary Update Procedure given in [53].
There is a small modification in the step 2:

Step 2: Updating the entire element of un(i) with un(i) = max{V (Sf (n), n), un(i)},
where i = (1, . . . , N).

Results presented in Table 3.5 show that both MQ and the Gaussian can achieve
a maximum Eref of 3.45e-04 over the three evaluation points. We use the same
Parameter Set 1 in Table 3.2 and keep the same value of M and N as 160. In our
computation, we take our spatial domain as S ∈ [1, 2K]. The reference value we
used is based on [97].

Basis function S = 90 S = 100 S = 110
MQ 9.79e-05 3.45e-04 2.02e-04

Gaussian 1.03e-04 3.44e-04 1.75e-04

Table 3.5: The relative error (Eref) of approximation solution of American put
option for MQ and the Gaussian.

3.2.5 Barrier up and out call option

The last example in Problem 1 is the barrier up and out call option. In this
problem, we show an example of the RBF method that can be used to capture the
discontinuity of the payoff function. The barrier up and out call option is the same
as a European option if and only if the underlying asset does not hit a pre-specified
barrier level. Once the underlying asset hits a pre-specified barrier level, then the
option becomes worthless. Figure A.7 and Figure A.8 represent the absolute error
surface with respect to time for Parameter Set 1. Unlike for Figure A.1 for the
European option, the largest absolute error occurs when the spot price approaches
the barrier level (b = 125). The largest error seems to be massive (over 1.4). We
test it further with the relative error for the barrier up and out call option and
plot it in Figure 3.7. The maximum value of Eref for MQ is 9.6e-03 and 3.28e-02
for the Gaussian. The RMSE for MQ is 1.77e-02 and 4.39e-02 for the Gaussian.
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Figure 3.7: Relative error of a barrier up and out call option for MQ and the
Gaussian basis functions at t = 0.

3.2.6 Conclusion

In a European call option, we see that the Gaussian oscillates around MQ which
means its first and second derivatives are more oscillated than itself, where the rel-
ative error of Delta and Gamma plots (Figure 3.4 and Figure 3.5) in our numerical
simulations have proved that. However, since the relative error of a European call
option for both basis functions is below 1.8e-3 in comparison with an analytical
solution, we can say the equally spaced RBF method did well in term of accuracy
and CPU time as both basis functions require around 0.2 second time in Matlab.
In Vega valuation, we see that both basis functions can achieve high accuracy in
term relative error (around 6.04e-4 in Table 3.4). An American put option, the
relative error for these three evaluation points are of approximately at 3.46e-4
(Table 3.5), this is also high accuracy in comparison with our reference value. In
the last experiment, we see that the MQ has a small relative error (around 1e-2)
for 40 evaluation points (80 to 120) in contrast to the Gaussian. Overall, MQ is
more stable and more accuracy than the Gaussian in our experiments, thus we
use MQ for remainder. As we have noted that the error mainly occurred around
the strike price (K) where the initial condition is applied. In the next Chapter,
we propose an adaptive method based on RBFs which can reduce the error caused
by the initial non-smooth payoff function. Moreover, we aim to use a minimum
number of nodes to achieve reasonable accuracy.



Chapter 4

Option Pricing with Adaptive

Radial Basis Functions

4.1 Introduction

In this section, we describe our adaptive radial basis functions method (ARBF) as
follows: By a given set of chosen interpolation points x1, . . . ,xN ∈ R, the adaptive
algorithm uses a predefined error indicator to move the nodes automatically in
space, which could minimize the memory usage to limited nodes at each time
(dimension) in comparison with the fixed nodes algorithm. There are some other
popular adaptive schemes, such as [6, 77]. The numerical results of our adaptive
method are presented in this chapter. In addition, we compare our result with
the equally spaced RBF method in [80, 53]. Our adaptive method has several
advantages in comparison with the equally spaced method which we illustrate
through numerical experiments. For example, it is highly accurate, stable and
efficient as fewer nodes are required. The numerical result of a European call
option, a barrier call up and out option, and an American put option is produced
with both adaptive and non-adaptive methods.

4.2 Adaptive Radial Basis Functions Method for

One Dimensional Black-Scholes Equation

The one dimensional non-dividend payment Black-Scholes equation is

39
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∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (4.1)

where S follows a GBM in continuous time, σ is a constant volatility, r is a known
and constant short-term interest rate and V is the price of option. Proposing the
same variable change in Chapter 3 with x = log(S), and discretizing the domain
with N equally space nodes, we will have our RBF φj = φ(‖x − xj‖) used for
approximating the solution of U , such as

∂U

∂t
+

1

2
σ2∂

2U

∂x2
+ (r − 1

2
σ2)

∂U

∂x
− rU = 0, (4.2)

φ(‖x− xj(t)‖) =
√

(c(t)(x− xj(t)))2 + 1, (4.3)

and

u(x, t) =

N(t)∑
j=1

λj(t)φ(‖x− xj(t)‖), (4.4)

where λj(t) is the unknown time dependent coefficient vector set. N and xj change
because we are using adaptive techniques.

4.2.1 Adaptive algorithm

In general, most of the adaptive methods for PDEs have their own adaptive cycle,
which can be divided into 4 separate parts. These are the approximation of the
solution, error indicator, coarsening or refinement and data output. Here are a few
examples of adaptivity strategy in literature. Driscoll and Heryudono illustrated
the adaptive residual subsampling method [28] which evaluates the error at half
way of the initial points. Later, Chan [18] used the same adaptive method for
the classical Merton jump-diffusion problem. We follow closely the algorithm in
Naqvi’s thesis [77], which has a similar adaptive structure as adaptive residual sub-
sampling method (ARSM) as Driscoll et al. and Chan in [28, 18]. They compute
the interpolation error at evaluation points half way between initial interpolation
points.

The adaptive cycle is done by MQ basis functions with MOL, it transforms our
PDE to ODE, and solve it with any backward time integration schemes. In each
adaptive cycle, the approximation solutions are generated by MQ basis func-
tions, which is corresponding to the "Solve" step. Our error indicator deicides
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whether we require refinement or coarsening. In our error indicator, we compute
the interpolation error between the global approximation and the local approxi-
mation. The local approximation solutions are generated by the piecewise cubic
spline, where the cubic spline is reconstructed by 8 nearest points for all evalu-
ation points, xi and 2 ≤ i ≤ N − 1. A good approximation means the residual
(rerr =| uN(xi)− ũNxi (xi) | ) is below the redefined error thresholds errref . uN(x)

denotes the solution of global approximation at x and ũN (x) is the solution of
local approximation at x. The decision of coarsening or refining is based on the
error assessment, which can be generalised as refining if rerr is great than the
predefined error thresholds (errref) and coarsening if rerr is below the predefined
error thresholds (errcrs). We insert nodes at half way between initial interpola-
tion nodes for our refinement phase. The coarsening strategy is a bit different
from the refinement strategy, because removing too many nodes could cause large
gaps between nodes and possibly lead our interpolation matrix to be ill-condition.
Therefore, we introduce a maximum distance of nodes to avoid this possibility
and the maximum number of nodes we can remove is about 50% of new adding
nodes. To avoid removing too many nodes in a certain region, we also give a
rule which allow us to remove about 50% of coarsening nodes in each side. When
the coarsening or refinement cycle ends, we re-adapt the shape parameters. The
Adaptive cycle ends if all rerr are below rerr; then the time integration scheme is
applied. Figure 4.1 shows an example of our refinement in the 1-D problem. In
this example, we assume the red node to be the refinement node for both figures,
and after the refinement strategy, the blues nodes are the new added nodes, which
are presented in the figure on the right. Figure 4.2 shows an example of our
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Figure 4.1: An example of refinement.

coarsening strategy in the 1-D problem. In this problem, we assume the maxi-
mum distance of nodes is 1, our refinement and coarsening region is in [2, 4], the
total number of coarsening nodes is 5 (blue nodes in the figure on the left) and the
number of new added nodes is 4. Under these conditions, we know the maximum
number of nodes we can remove is 2. The blue nodes in the left figure denote the
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Figure 4.2: An example of coarsening.

coarsening nodes. In our coarsening strategy we remove 1 node from the left and
1 from the right, which is based on the given information. Firstly, we consider
the left side of blue node at (2, 0). By removing this node, the distance between
node at (1, 0) and node at (2.5, 0) is 1.5 which exceeds our maximum distance
condition, leading to its automatic rejection. Now we look at the second blue node
at (2.5, 0), this node satisfies our maximum distance condition, which means we
can coarsen it and colour it with red (right side of Figure 4.2). On the right side,
we start to check the maximum distance condition with the blue node at (4, 0),
which does not satisfy our maximum distance condition. Therefore we move on
to check node at (3.5, 0) and find it that fulfills our maximum distance condition.
Right panel of Figure 4.2, we have coloured the coarsening nodes with red colour.
Within the 1-D problem, we know the error occurs around the strike region which
is due to the non-smooth initial conditions, thus we divide our node set into 2
region: non-coarsen-or-non-refine region and coarsen-refine region. In Subroutine
1, it redistributes the nodes with our non-coarsen-or-refine region with predefined
maximum distance, and it keeps extra nodes at the boundary. The redistribution
rule is based on removing nodes in non-coarsen-or-refine regions with the maxi-
mum distance condition. In the coarsen-or-refine region, we can summarise our
coarsening or refinement strategy as follows:

Let errref and errcrs be the error thresholds for refinement and coarsening, respec-
tively. The refinement and coarsening strategy can be summarized as follows:
For a given set of interpolation points x1, . . . , xN , we will not change the two end
points (first and last interpolation points).

1. • For each xi, determine Nxi ;

• Compute ũNxi , the local interpolant using cubic splines;

• Compute rerr =| uN(xi)− ũNxi (xi) |.

2. Refine if rerr > errref .
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3. Coarsen if rerr < errcrs.

Now, we will explain and discuss our adaptive algorithm for the Black-Scholes
PDE. There are a few differences in comparison with the equally spaced RBF
method. Let us name our main algorithm as the main function, and name the
refinement and coarsening functions 1 and 2 as our subroutines 1 and 2. Our main
Algorithm 1 can be described as follows.

Algorithm 1 Algorithm for adaptive radial basis function - one dimensional non-
dividend payment Black-Scholes equation
1. Input the parameters (included errref , errcrs) and coarsen or refine region,
node distribution, maximum distance.

2. Choose a basis function and construct the node set.

3. Call Refinement and coarsening function 1 (output - node distribution,
adaptive shape parameter and approximation of solution, u).

4. Boundary update.

5. call Extra time steps (i = 0 to T1).

for i = T1 to T do

Compute the differentiation matrices.

Compute the coefficient matrix with output of coarsen and refine functions
and use the time integration scheme.

Recall Refinement and coarsening function 2, compute new set of node
distributions, adaptive shape parameter, approximation of solution, u.

Boundary update

end for

Compute the value of option

In our main algorithm, apart from extra time steps and the refinement or coars-
ening strategy, the algorithm is more or less the same as the equally spaced RBF
method, where the BUP system from Hon and Mao [53] is used, and the extra time
step treatment is presented in Subroutine 3. In other words, the method is straight
forward and easy to implement. Here (Subroutine 1 and Subroutine 2) are our
refinement coarsening and function 1 and 2 which are the key parts of our adaptive
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method as they contains the error indicator and the adaptive shape parameter.
Subroutine 1 is also an immediately coarsening and refinement strategy.

Subroutine 1: Refinement and coarsening function 1
1. Input errref , errcrs and coarsen or refine region, node distribution, maximum
distance.

2. Compute number of nodes.

3. Redistribute the nodes.

while (rerr > errref) do

Compute adaptive shape parameter set.

Compute the MQ basis function of u

for 2 ≤ i ≤ N − 1 do
a) For each xi, determine Nxi

b) Compute ũNxi , the local interpolant using cubic splines;

c) Compute rerr =| uN(xi)− ũNxi (xi) |.
end for

Refine if rerr > errref .

end while rerr < errref

Output value of u, c and node distribution (x).

In Subroutine 3, dt is the size of the time step that is used in the equally spaced
method. However, in our adaptive method, we use a non-uniform time steps treat-
ment to reduce the error caused by the non-smooth initial conditions. Therefore,
we use the small time steps after Subroutine 1. Figure 4.3 is an example of our
adaptive method in Subroutine 1. It starts with the left sub-figure, which is the
uniform node distribution at t = T . The right sub-figure shows the redistribution
of nodes after Subroutine 1. In Figure 4.4, the left sub-figure shows the new node
distribution after Subroutine 3 (extra time steps) in Algorithm 1 (step 5). The
right sub-figure shows the final node distribution at t = 0 (backward time inte-
gration applied). Figure 4.3 and Figure 4.4 also show that our adaptive method
can capture the error profile as the node distribution follows the change of error
profile in time (from t = T to t = 0).
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Subroutine 2: Refinement and coarsening function 2
1. Input errref , errcrs and coarsen or refine region, node distribution, maximum
distance.

2. Compute number of nodes.

while (rerr > errref) do

Compute adaptive shape parameter set.

Compute the MQ-interpolant at u

for 2 ≤ i ≤ N − 1 do
a) For each xi, determine Nxi

b) Compute ũNxi , the local interpolant using cubic splines;

c) Compute rerr =| uN(xi)− ũNxi (xi) |.
end for

Refine if rerr > errref .

Coarsen if rerr < errcrs.
end while rerr < errref

Output value of u, c and node distribution (x).

Subroutine 3: Extra time steps

1. Use small size of time steps, e.g. dt
5
.

2. Switch back to dt for the remaining number of time steps, such as (dt).

3. Use larger size of time steps (e.g. 2dt) if we need reduce the computational
cost.
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Figure 4.3: An example of Subroutine 1 for a European Call option.
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Figure 4.4: An example of adaptive RBF method.
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4.2.2 Error indicator

Adaptive methods for PDE solving based on error indicators are an active area of
research in both finite elements and RBFs [1, 28, 5, 63, 92]. Iske et al. and Driscoll
et al. pointed that the finer grids should be placed in a high variation region [59,
60, 28, 5]. We used a simple and straight forward method (for the reason of
computation cost and complicated data structure, we should keep the adaptation
rule to be as simple as possible in term of efficiency) for our error indicator, which
finds the pointwise error rerr =| uN(xi) − ũNxi (xi) | for all points excluding the
first and last points. x is a set of points, uN is the approximation solution of u
produced by global MQ basis functions, uNxi is the local approximation of uN by
using cubic spline with closest 8 nodes. In the 2-D case, we use the Voronoi points
which we present in Chapter 5. The predefined thresholds errref and errcrs are
used to compare with our residual rerr.

4.2.3 The adaptive shape parameter

The crucial part of adaptivity is the shape parameter, c, which has been noted
in [28]. The c in our adaptive method is a center dependent shape parameter,
unlike in the equally spaced method as we have redefined our MQ basis function
in Equation (4.3). In our method, we apply the adjustment of shape parameter
that gives to each center an individual shape parameter where it depends on the
distance to the nearest neighbour. Numerical result shows that the adjustment
of the shape parameter set performs well as the shape parameter affects both the
accuracy of the result and condition number. In our algorithm, the adaptive shape
parameter is automatically computed during the refinement and coarsening strat-
egy. For each individual node, its own shape parameter is produced by selecting
the minimum distance between two arrays, such as, min{[∞, 1

dx
], [ 1

dx
,∞]}, where

dx is the distance between 2 nodes, and since we need to restrict the problem to a
finite domain. The reason of including ∞ is to show that the first and last nodes
only have one close node thus we introduce one extra node where it has distance of
∞. Therefore we assigned first and last nodes with the shape parameter of ∞. In
Chapter 2, we know that the condition number k(A) of our interpolation matrix
A depends on the maximum and minimum of the eigenvalue λ. The low condition
number means the matrix is well conditioned, otherwise it is ill-conditioned. For
example in Equation (2.12), for the linear system problem, if A is an ill-conditioned
matrix (large condition number), the error in solution f is much larger than the
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error in λ. In other words, the error rate of λ depends on the error change of f .
Therefore, increasing the value of minimum eigenvalue λmin could be one potential
way to construct a well conditioned matrix as it helps to prevent the increment
of the condition number. Figure 4.5 shows the log-log plot of RMSE and the
condition number vs shape parameter c. The left panel of Figure 4.5 shows the
RMSE against c (all of the constant shape values come from our adaptive shape
parameters due to the non-equally node set), and the right panel gives the log-log
plot of the condition number against all of the constant shape parameters. Both
figures show that our adaptive shape parameter can have a good condition number
and smaller RMSE when compared with the constant shape parameter. Also we
need to point out that to find the optimal constant shape parameter is expensive
and inefficient for the non-uniform node set problem. In this experiment, as we
used the MQ from Table 2.1, thus the shape parameter is produced by selecting
the minimum distance between an array 4[∞, dx] and an array 4[dx,∞].
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Figure 4.5: RMSE and condition number plot for the adaptive (the center
dependent shape parameters) and constant shape parameter c.

4.2.4 Time integration scheme

In our adaptive algorithm, we use the backward technique with the CN scheme
which can be found in [80, 53]. Moreover, we also use non-uniform time steps for
our adaptive method since we know that a peak exists at the initial condition. To
reduce the size of the peak we require finer grids in the region of these kinks at the
initial conditions and small time steps. Within this method, we require extra time
steps at first iteration time by comparing with uniform time step, and may also
need some extra coarsening and refinement strategies in these extra time steps.
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4.3 Numerical Results

In the following numerical experiments, we introduce an additional parameter set
given in Table 4.1 which we call Parameter Set 2 (or the challenge parameter
set [97]). As we can see, the σ is relatively small, the interest rate r is large and
small value of time to maturity T in comparison with Parameter Set 1 (Table 3.2)
which we still follow in our numerical simulations. To avoid confusion, all Param-
eter Set 1 results are in Appendix B. The three evaluation points are 98, 99 and
100 for a European call option and 97, 98, 99 for an American put option and a
barrier up and out call option, which is much closer to the strike price (K) if we
compare it with Parameter Set 1.

Parameter Values
σ 0.01
r 0.10
T 0.25
K 100
B 125

Table 4.1: BENCHOP project, Problem 1 in [97], Parameter Set 2, B is the
barrier level for the barrier up and out option.

The error measures used in previous chapters will be applied in the following nu-
merical simulations. Our ARBF algorithm for numerically solving Equation (4.2)
with initial condition Equation (3.5) is demonstrated with a European call option
in Figure 4.6, the parameters we use are in Table 2 [80]. The Parameter Set 1 is
T = 1, K = 15, σ = 0.3, S = 15, and r = 0.05, and in here an example of large
time steps is demonstrated.

In Figure 4.6, the red nodes represent the value of RBFs interpolant in the inter-
polation points, the blue line represents the call payoff function with 301 equally
spaced nodes and the blue nodes represent the value of RBFs interpolant in the
interpolation point which lie on the blue line; this means that the RBFs interpo-
lation scheme is implemented properly. Figure 4.6 shows that ARBF-MQ with
non-uniform time step, as seen in the algorithm. We use 20 uniform nodes and 30
equally time step to start with, after the immediately refine and coarsen strategy,
we have 22 nodes which are placed non-uniformly. After step 1, we use smaller
time step (dt

5
) and the number of nodes increased (23) with a different position

to the pervious step. In step 3, we use 2dt which is 15 steps in total, the nodes
has been reduced to 20. Overall, we used 20 time steps and our relative error
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Figure 4.6: Example of ARBF-MQ with non-uniform time step (dt5 , 2dt).

is 7.5647e-05 which is 9 times better than equally spaced RBF method (Erel =
7.10e-04, 80 equally spaced nodes and 80 time steps). This example shows our
ARBF-MQ can achieve better interpolation result with fewer required of nodes.
Also, we note that the position of nodes did not change after step 3, this is be-
cause the error is below our error indicator and for computational efficiency no
refinement and coarsen strategy is required. For simplicity, we do not increase the
size of time step after step 2 in the following experiments in this Chapter.

4.3.1 European call option

In our numerical simulations, given a set of interpolation points x1, . . . , xN , we
denote our maximum and minimum logarithms price as xmax = log(Smax) and
xmin = log(Smin), x ∈ [log(30), log(2K)]. Figure B.1 shows the absolute error
surface of a European call option for ARBF-MQ in time for Parameter Set 1
(Table 3.2). Note that the maximum value of Eabs in initial step is 3.136e-03 which
is 78 times better when compared with the equally spaced method in Figure A.1
(2.452e-01). This indicates that our ARBF-MQ can reduce the error which is
caused by the non-smooth initial payoff function. When M = 0 an immediate
refinement and coarsen strategy is applied, the number of nodes is reduced from
160 to 99. In the first step of "small time steps" in step 2 (Subroutine 3), we
add an extra node. After that we used 101 nodes for the remaining time steps.
The total number of time steps in our method is 205. In comparison with equally
spaced RBF method, we used extra 45 time steps, but with a total of 2

3
of nodes
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required. The relative error of a European call option in Parameter Set 1 at t = 0

(option value at today with maturity time T ) is shown in Figure B.3. It shows
that ARBF-MQ can achieve higher accuracy than the equally spaced RBF method
(Figure 3.3) as the maximum relative error (Erel) for a European call is 9 times
less. Table 4.2 shows the maximum condition number and RMSE, overall, the
ARBF-MQ has small condition number and smaller error in Ef .

Error ARBF-MQ MQ (160)
Ef 2.8770e-04 1.15e-02

Max Condition Number 2.0475e+07 6.0362e+07

Table 4.2: The RMSE of a European call option for both methods in Parameter
Set 2.

In Parameter Set 2, we note that when σ = 0.01 our Equation (4.2) tends to
be a singularly perturbed PDE and if 1

2
σ2 approaches zero then the solutions or

derivatives approach a discontinuous limit [88]. To solve this problem and achieve
a good approximation solution, we require a large number of uniform nodes in the
equally spaced method. Figure 4.7 shows the equally spaced RBF method with
160 nodes cannot approximate the solution well and oscillations appear throughout
time. Next, we increased the number of nodes to 1500 uniform nodes in Figure 4.8,
and we can see that the absolute error decreased significantly with the maximum
absolute error at 6.19e-03 caused by initial non-smooth payoff function at time
step 1. Figure 4.9 shows that our adaptive method can reduce the maximum
absolute error in Figure 4.8 from 6.19e-03 to 7.788e-05 with 10 time fewer nodes
(maximum of 150 nodes which is 1

10
). The reason why our adaptive method works

is because our adaptive method has a similar strategy as Shishkin meshes (details
can be found in [94]), where we place a large number number of nodes at the peak
region to reduce the error, where as the equally spaced method uses the same
amount of nodes in whole region. Figure 4.10 shows we have small absolute error
at t = 0. Figure B.8 shows the absolute error of a European call option with our
adaptive method for the uniform time steps, we can see that it also has the better
accuracy than the equally spaced method (1500 nodes). Node distribution in time
is produced in Figure B.9 for both adaptive and non-adaptive with Parameter Set
2. Figure 4.10 represents the absolute error of a European call option value at
current time with maturity time T . As we can see in Figure 4.10, our adaptive
has higher accuracy than the equally spaced method (1500 nodes) apart from the
spot price at 96 and 97. Figure 4.11 shows the node distributions of adaptive RBF
interpolation in time. We can see that the nodes slowly increase and the maximum
of nodes we used is 150 nodes.
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Error ARBF-MQ (150) MQ (1500 nodes)
Eref 6.64075e-05 2.42706e-03

Max Condition Number 3.7275e+08 6.0362e+07
CPU time 14.52102 25.06761

Table 4.3: Maximum Eref , condition number and CPU time of a European
call option for both methods in Parameter Set 2.
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Figure 4.7: Surface of absolute error of a European call option in Parameter
Set 2 with uniform nodes (160).

Table 4.3 shows the maximum relative error Eref at three evaluation points (98, 99
and 100), condition number and CPU time. Though from the condition number
in our adaptive method is a bit larger than the equally spaced method, we have
better accuracy and less CPU time.
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Figure 4.8: Surface of absolute error of a European call option in Parameter
Set 2 with non-adaptive MQ (1500) method.
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Figure 4.9: Profile of absolute error of a European call option in Parameter
Set 2 with ARBF-MQ method.
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Figure 4.10: Absolute error of a European call option for both adaptive and
non-adaptive MQ methods at t = 0.
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Figure 4.11: ARBF-MQ node distribution in time for a European call option
in Parameter Set 2.



Option Pricing with Adaptive Radial Basis Functions 55

4.3.2 Greeks

In this subsection, we discuss the first and second partial derivatives of U with
respect to the underlying asset S. One of the advantage of using the RBF method
is that the partial derivatives (∆ and Γ) can be directly obtained by differentiation.
Firstly, we present our results for Parameter Set 1 in comparison with the results
we had in Chapter 3 (the equally spaced method). From Figure B.4 and Figure B.6
we can say that the absolute error of the Delta and Gamma at initial time step
have been successfully reduced. The relative error of Delta value (the current
value of Delta with maturity T ) is given in Figure B.5, and shows that Erel is
approximately 5.2e-04 which is better than the MQ we had in the equally spaced
method where Erel around 6.6e-04 (Figure 3.4). Figure B.7 shows Erel of Gamma
value(at current value with maturity T ) against spot price. In comparison with
Figure 3.6, our adaptive method has 10 times smaller relative error since our
maximum of Erel is of approximately 1.2e-02. Figure 4.12 and Figure 4.15 show
the absolute error of Delta and Gamma in the equally spaced method. We can see
that a kink appears in the first time step for both Delta and Gamma. Figure 4.13
and Figure 4.16 show our adaptive method has reduced the absolute error of
Delta (around 10 times smaller) and produced 14 times more accurate solution
in Gamma in comparison with the equally spaced method. The absolute error of
Delta and Gamma values at today with maturity T is produced in Figure 4.14 and
Figure 4.17.

Table 4.4 shows the RMSE of Delta and Gamma value at today with Maturity T .
From this table we note that the RMSE of our Delta in the adaptive method is
much better the equally spaced method. The same is true for Gamma. Next we

Delta Gamma
Error ARBF-MQ (150) MQ (1500 nodes) ARBF-MQ (150) MQ (1500 nodes)
Ef 6.19805e-06 1.20113e-03 3.29233e-04 7.64816e-03

Table 4.4: The maximum RMSE of Greeks for both methods in Parameter Set
2.

present our Vega in Table 4.5. In this simulation, the three evaluation points are
97, 98 and 99 in Parameter Set 2, the maximum number of nodes we used is 130,
we can see that our adaptive method produced a smaller relative error and CPU
time when compared with the equally spaced method.
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Figure 4.12: Profile of absolute error of Delta in Parameter Set 2 with non-
adaptive MQ (1500) method.
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Figure 4.13: Profile of absolute error of Delta in Parameter Set 2 with ARBF-
MQ method.

S = 97 S = 98 S = 99 CPU time
MQ (1500) 6.9e-03 2.8e-03 1.4e-03 49.994

ARBF-MQ (130) 1.18e-06 9.26e-06 1.09e-05 3.652

Table 4.5: The relative error Eref of Vega for Parameter Set 2.
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Figure 4.14: Absolute error of Delta for both adaptive and non-adaptive MQ
methods at t = 0 in Parameter Set 2.
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Figure 4.15: Profile of absolute Error of Gamma in Parameter Set 2 with
non-adaptive MQ (1500) method.
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Figure 4.16: Profile of absolute error of Gamma in Parameter Set 2 with
ARBF-MQ.
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Figure 4.17: Absolute error of Gamma for both adaptive and non-adaptive
MQ methods at t = 0 in Parameter Set 2.
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4.3.3 American Put Option

In the American option, we used the same treatment as we did in the equally spaced
method, where the Boundary Update Procedure given in [53] is used. Now we used
Parameter Set 1 and 2 to test an American put option. Our reference values for an
American put option at spot price 97, 98 and 99 are U = [3, 2, 1] in Parameter Set
2 and U = [10.7264867100, 4.8206081848, 1.8282075840] for Parameter Set 1 where
evaluation points are 90, 100 and 110. Table 4.6 shows the maximum relative error
at the three evaluation points and the CPU time for Parameter Set 2 . We can
see that our adaptive method can achieve higher accuracy and requires a small
number of nodes. In the equally spaced method by delivering such accuracy, it
used 3000 nodes and a total number of 205 time steps; this costs 34 time more
CPU time in comparison with adaptive method and requires 22 times more nodes.

MQ(3000) ARBF-MQ (135)
Eref 1.53e-05 1.17e-05

CPU time 206.94012 6.06531

Table 4.6: The maximum relative error (Erel) of approximation solution of an
American put option and CPU time, Parameter Set 2.

4.3.4 Barrier up and out call option

Figure B.10 shows the surface of absolute error of a barrier up and out call option
for spot price from 80 to 120. In comparison with Figure A.7 and Figure A.8, we
can see that the absolute error at the initial condition has been reduced as well as
the spot price (120) which is close to barrier level (125). Figure B.11 represents
the relative error of a barrier call option at spot price between 80 and 120 at today
with maturity time T for Parameter Set 1. The relative error is less than 4.6e-03,
and for S = 120 and S = K our adaptive method can perform nearly 50 and
2 times better than the equally spaced method in comparison with Figure 3.7.
Figure 4.18 gives the node distribution in each time step for Parameter Set 1. We
can see that the maximum number of nodes we used is 67. In Table 4.7, we present
our result of maximum relative error in these three predefined evaluation points
for Parameter Set 2.
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MQ(3000) ARBF-MQ (101)
Eref 1.30e-02 9.98e-05

CPU time 210.290490 7.422248

Table 4.7: The maximum relative error (Erel) of approximation solution of a
barrier up and out call option and CPU time for Parameter Set 2.
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Figure 4.18: ARBF-MQ node distribution in time for a barrier up and out
call option in Parameter Set 1.

4.4 Conclusion

In this chapter, we have compared our adaptive method with the equally spaced
method for a number of variate options. For the European option with Parameter
Set 2, our adaptive method has higher accuracy (maximum relative error less than
1e-05) in terms of maximum relative error at 3 evaluation points and less CPU cost
than the equally spaced method. We also note that the equally spaced method
requires at least 10 times more nodes to deliver a solution with relative error less
than 2.5e-3. Moreover, for Delta and Gamma, the equally spaced method can
only deliver a maximum relative error around 8e-03, but our adaptive method can
deliver a maximum relative error less than 4e-04 which is about 20 times more
accurate. Parameter Set 2, we require 1

22
of nodes and 1

34
of CPU time in contrast

to 3000 nodes for the equally spaced method to obtain similar levels of accuracy.
Finally in barrier up and out call option with Parameter Set 2, we gain both high
accuracy and less CPU time in comparison with the equally spaced method (3000)
where our adaptive method requires 101 nodes. Additionally in [97], to deliver a
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solution with a relative error less than 1e-5 for 3 evaluation points in Parameter Set
2, we have showed that our adaptive method is faster than FD method in Table 3
and 4 for some financial contracts. The numerical results are based on the Tintin
cluster, which consists of 160 dual AMD Opteron 6220 (Bulldozer) nodes and
locates at Uppsala Multidisciplinary Center for Advanced Computational Science
(UPPMAX). Overall, our adaptive method can reduce the error caused by a non-
smooth payoff function, and it is useful for a problem (due to singularly perturbed
problem) which the equally spaced method cannot solve properly.



Chapter 5

Adaptive Radial Basis Function for

Spread Options

5.1 Multi-asset Black-Scholes Equation

Nowadays, computers have become more and more powerful than ever before,
but sometimes they are still not able to perform simulations for high dimensional
problems as the problem size grows exponentially with the number of dimensions,
which is also limited by the memory of computers. However, in finance, the
derivative products have become more and more complicated than ever before and
with a huge interest of demand in multi-asset products where the price of an option
is based on d underlying assets, such as an European style of basket option and a
spread option. To price an European style of spread option through solving the 2-
dimensional Black-Scholes equation is still active research as to today there are no
analytical solutions. Currently, there are some methods to price multi-dimensional
contracts, such as Monte Carlo methods [46], sparse grid methods [13, 44, 43], and
finite difference methods. In high dimensional problems, computational time is
another key point for the financial market. In this chapter, we introduce the
equally spaced and adaptive methods to solve 2 dimensional Black-Scholes PDE
for a special case of a spread call option (K = 0 which is a Margrabe call option).
The non-dividend payment of d-dimensional Black-Scholes problem is defined as

∂V

∂t
+

1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V

∂SiSj
+

d∑
i=1

rSi
∂V

∂Si
− rV = 0, (5.1)

62
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where d is the number of assets whose price at time t is denoted by S(t) =

(S1(t), . . . , Sd(t)), r is the risk free interest rate, V is the price of option, σi denotes
the volatility of i-th underlying asset and ρij is the correlation between asset i and
j.

5.2 Equally space radial basis function for a Mar-

grabe call option

Margrabe was the first person to treat each asset of spread option separately who
also derived an analytical solution for the special case (K = 0) of spread option,
this also known as Margrabe option [74]. In this section, we will implement the
equally spaced RBFs method for a Margrabe option; the parameter set was taken
from the problem (6) of the BENCHOP project [97] and we refer to it as Parameter
Set 3:

Parameter Values
σ1 0.15
σ2 0.15
r 0.03
T 1
K 0
ρ 0.5

Table 5.1: BENCHOP project, Problem 6 in [97], Parameter Set 3

The non-dividend payment for 2 assets, Black-Scholes equation is

∂V

∂t
+

1

2

2∑
i=1

2∑
j=1

ρijσiσjSiSj
∂2V

∂SiSj
+

2∑
i=1

rSi
∂V

∂Si
− rV = 0, (5.2)

where V is the price of option, S1 and S2 are the underlying asset 1 and 2, σ1

and σ2 represent the volatility of asset 1 and 2, r is the risk free interest rate, the
correlation between asset 1 and 2 is ρ12 or ρ21 (ρ12 = ρ21). The payoff function is

V (S1, S2) = max(S1 − S2 −K, 0). (5.3)

The equally spaced RBF method for a Margrabe call option is more or less the same
as for the 1-D European call option, the basis functions we used are in Table 3.1.
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In our simulations, we propose a variable change, such as U(s1, s2) = V (S1, S2),
s1 = log(S1) and s2 = log(S2). The Equation (5.2) can be rewritten as

∂U

∂t
+

1

2

(
2ρ12σ1σ2

∂2U

∂s1s2

+ σ2
1

∂2U

∂s2
1

+ σ2
2

∂2U

∂s2
2

)
+ r

(
∂U

∂s1

+
∂U

∂s2

)
− rU = 0. (5.4)

The initial condition is

U(s1, s2, T ) = max{es1 − es2 −K, 0}. (5.5)

The boundary conditions depend on the spatial domain we have taken for each
asset. The approximation solution of U is defined as

u(s, t) =
N∑
j=1

λj(t)φ(‖s− xj‖) ' U(s, t), s = (s1, s2) (5.6)

Now, the eight steps "cooking recipe" in [80] can be applied to solve Equation (5.4).

5.2.1 Numerical simulations

Figure 5.1 shows the profile at t = 0 of value of the Margrabe call option by using
Parameter Set 3, the MQ meshfree approximation based on 40 × 40 nodes with
CN method in time and 30 time steps. The left axis has been labeled as S1, which
represents the spot value of S1. The right side of axis denotes the spot price of
S2. Because the correlation value of two assets is 0.5 and the payoff function is
S1 − S2, which means that the option value increases just after S1 > S2. It also
shows that the largest error occurs around the left side of diagonal line. In other
words, we would expect our adaptive methods to place extra nodes at the right
side of the diagonal line.
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5.3 Adaptive radial basis function for a Margrabe

call option

Iske et al. [5, 6, 59, 60] have applied the adaptive method to many different 2-
D problems, such as 2-D Burger’s equation, and the slotted cylinder problem.
Naqvi [77] has successfully applied the adaptive radial basis function to solve
a Franke type function in her thesis. The Voronoi diagram has been used in
coarsening and refinement strategy in their work, and we will follow closely the
strategy in [6, 77]. In our 2-D non-dividend payment Black-Scholes problem, we
present our latest development which only contains refinement. Before going any
further, we introduce some relevant and necessary definitions need for our 2-D
Algorithm. We start with the Voronoi diagram,

Definition 5.1 (Voronoi diagram). For a fixed node set X ⊂ Rd and any y ∈ X,
the Voronoi tile

VX(y) = {x ∈ Rd : dX(x) = ‖x− y‖} ⊂ Rd (5.7)

of y w.r.t X contain all points in Rd is x. And the set of (VX(x))x∈X is called the
Voronoi diagram of X.

Voronoi points are vertices of Voronoi tile VX(x) and VX(x) is a convex polyhedron
which is non-empty. More details of Voronoi diagrams can be found in [85]. In our
local interpolation approximation, we use thin plate splines which was proposed
in [6, 59], and it is the special case of polyharmonic splines in 2-D. Duchon [31]
gave the general framework of thin plate spline in 1977. The thin plate spline
and polyharmonic spline basis functions can be found in Table 2.1. We use the
following general form for our local interpolation approximation

s(x) =
N∑
j=1

λjφk(‖x− xj‖) +
∑
|α|≤k

dαp
α, (5.8)

and
pα = pα1

1 p
α2
2 . . . pαdd , p = (p1, . . . , pd)

T ∈ Rd,

where ‖.‖ represents the Euclidean norm on Rd, α = (α1, . . . , αd) with |α| =
α1 + . . . + αd. Schaback and Wu [91] given the following form for the local error
estimate for thin plate spline interpolation at x ∈ Ω,
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|u(x)− s(x)| ≤ C · hkN ,%(x), (5.9)

where C is a positive constant which depends on u, and hN ,%(x) is the local fill
distance of N around x for some positive radial %.

In [7], Iske et al. observed that reduction in the local fill distance, dN (y) can
improve the local error. Let x1 = (x1,1, x1,2) ⊆ R2, d = 2, and X = {x1, . . . ,xN} ⊂
R2, the thin plate spline for our 2-D Black-Scholes equation is

s(x) =
N∑
j=1

λj‖x− xj‖2 log(‖x− xj‖) + d0 + d1x1 + d2x2. (5.10)

Iske et al. [49] have shown that the thin plate spline interpolation is second order
accurate. Therefore, the thin plate spline is used for our local approximation in
the error indicator.

5.3.1 Adaptive algorithm

In our 2-D adaptive algorithm, the adaptive cycle is the same as the 1-D (the
approximation of the solution, error indicator, refinement and data output) case,
except we included a coarsening strategy. Firstly, for a given set of data x =

(x1, x2) ⊆ R2, and X = {x1, . . . ,xN} ⊂ R2, we use the MQ basis function to
approximate the solution of U = {U1, . . . , UN}. Once the approximation solution
u = {u1, . . . , uN} is generated, it passes to our error indicator. The error indi-
cator checks our global approximation solution u = {u2, . . . , uN−1} against local
approximation solution at 8 nearest points (Nxi) to xi with 2 ≤ i ≤ N−1. A good
approximation is defined by the residual with predefined threshold errref , which
is rerr =| uN(xi) − uNxi (xi) | where Nxi denotes the 8 nearest points without xi
itself. Then the decision is passed to our refinement phase, the Voronoi points
are inserted if the refinement phase is required. Figure 5.3 shows an example of
refinement for one point in uniform nodes set, and the red nodes are the Voronoi
points which have been inserted to refine the error for a specific point x. Because
of the non-coarsening strategy involved, the Voronoi points in our problem are
rectangular nodes. The refinement region in here excludes our boundary nodes.
The final step is the solution output.
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Algorithm 2 Algorithm for adaptive radial basis function - two dimensional non-
dividend payment Black-Scholes equation
1. Input the parameters (included errref , node distribution).

2. Use MQ basis function and construct the node set.

3. Call 2-D refinement function (output - node distribution, adaptive shape
parameter, approximation of solution u).

4. Boundary update.

for i = 0 to T do

Compute the differentiation matrices.

Compute the coefficient matrix with output of refine function and use time
integration scheme.

Recall 2-D refinement function, compute new set of node distribution, adap-
tive shape parameter, approximation of solution u.

Boundary update

end for

Compute the value of option

Algorithm 2 is the main function, and Subroutine 1 is the 2-D refinement function.
In the 2-D problem, we used the same adaptive shape parameter strategy as in 1-
D, which is selecting the nearest distance for each node. Here we demonstrate the
refinement strategy in Figure 5.2. In the left panel of Figure 5.2, the refinement
node is coloured with red and the rectangular Voronoi points are colored with
blue which are the new added nodes. We also excluded our boundary nodes in the
refinement region in our 2-D problem.
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Figure 5.2: An example of refinement in 2-D case
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Figure 5.3: Refinement of a point x in 2-D, red nodes are inserted Voronoi
points

Subroutine 1: 2-D Refinement function
1. Input errref , node distribution.

2. Compute number of nodes.

while (rerr > errref) do

Compute adaptive shape parameter set.

Compute the MQ-interpolant at u

for 2 ≤ i ≤ N − 1 do
a) For each xi, determine Nxi

b) Compute ũNxi , the local interpolant using thin plate spline;

c) Compute rerr =| uN(xi)− ũNxi (xi) |.
end for

Refine with Voronoi points if rerr > errref .

end while rerr < errref

Compute the value of option



Adaptive Radial Basis Function for Spread Options 70

5.3.2 Numerical simulations

Table 5.2 shows the relative error of 5 evaluation points in Parameter Set 3 for
both adaptive and equally spaced methods. In the adaptive method the maximum
number of nodes used is 955, but for the equally spaced method, 1600 nodes are
used to generate the solution. In simulations we chose Smax = 3K, Smin = 1 and 30
time steps. In the MQ, the Gaussian and the tensor product MQ basis functions,
the shape parameter is (log(Smax) − log(Smin))/N , where N is number of nodes.
We note that our ARBF-MQ uses less nodes and better accuracy than the equally
spaced RBF method (40 × 40). Figure 5.4 and Figure 5.5 show the profile of a
Margrabe call option in Parameter Set 3 at t = 0, we can see that we use more
nodes in the region where the non-smooth payoff function is applied.

RBFs / S1, S2 100, 90 100, 100 100, 110 90, 100 110, 100
ARBF-MQ 4.1e-03 9.1e-03 2.44e-02 2.55e-02 4.5e-03

MQ (40× 40) 2.07e-02 3.22e-02 1.067e-01 1.230e-01 2.13e-02
Tensor Product MQ (40× 40) 1.87e-02 3.28e-02 9.92e-02 1.124e-01 1.98e-02

Gaussian (40× 40) 2.19e-02 2.86e-02 8.09e-02 9.15e-02 2.24e-02

Table 5.2: The relative error of a Margrabe option for both methods
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Figure 5.5: Profile at t = 0 Margrabe call option - ARBF-MQ (2), Parameter
Set 3

5.4 Conclusion

In this chapter, we have priced a Margrabe call option for Parameter Set 3 for
both the equally spaced RBF method and the adaptive method. We can see that
our adaptive method performs well in comparison with the equally spaced method
in Table 5.2. Since this is our latest development we had so far, therefore, we have
not included the coarsen strategy in our algorithm. However, we believe that by
adding coarsen strategy in the algorithm can reduce the number of nodes we used
for the same tolerance and possibly reduce the computational cost as less nodes
are required in each time steps. For instance, after the immediate refinement of
the non-smooth payoff function, we had a total 920 nodes, if the coarsen strategy
is added, we can reduce the number of nodes.



Chapter 6

Conclusions and Future Work

6.1 Conclusions and future work

We introduced a new adaptive RBF method for the pricing of financial contracts,
such as a European option, an American option, a barrier up and out option and a
Margrabe option. This is an adaptive scheme where the error indicator depends on
the residual of the local approximation reconstruction and global approximation
interpolation. Iske et al. and Naqvi [6, 77] applied this adaptive scheme to solve
many different kinds of PDEs in both 1-D and 2-D PDEs, such as the 1-D KdV
equation and 2-D Burger’s equation. We have successfully applied this adaptive
scheme to solve both the 1-D and 2-D Black-Scholes partial differential equations.
In the 1-D problem, the MQ-RBF has been used for approximating the solution
of the PDEs. The decision of error indicator rerr relies on the predefined error
thresholds errref and errcrs. The reconstruction of local approximation plays a
crucial part, where rerr is the difference between our global approximation solutions
and local reconstruction solutions. Because the boundary nodes are not in our
refinement and coarsening region, our local reconstruction strategy does not apply
to them. The idea of local reconstruction strategy for a selected node x is based
on reconstruction of an original function with 8 nearest neighbour nodes of x
and their solutions by using the cubic spline. The approximate solution at x can
be found with this original function. Once we have the approximate solution at
x, we compare it to the global approximation solution we had with MQ-RBF.
If rerr > errref , we refine the node by placing one on left and another one on
right (both of them should be placed in the half way of its closest node). The
coarsening rule is driving by the condition of rerr < errcrs. The maximum number

72
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of nodes that we can remove is based on the number of new added nodes in the
refinement phase. The maximum number of nodes we can remove is 50% of new
added nodes, and in some cases we could have a situation in which we can only
remove a certain number of nodes that is way below the level of 50% of new added
nodes. Our coarsening rule also allows us to remove the half of total coarsening
nodes with the condition of the maximum distance rule. This maximum distance
is the distance that we can have for two nodes. The example of refinement and
coarsening strategy can be found in Chapter 4.
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Figure 6.1: An example of adaptive RBF node distribution for a European
call option with Parameter Set 2

Figure 6.1 shows one example node behaviour when the error profile changes during
the time (from t = T to t = 0) for a European call with Parameter Set 2. The
right figure gives the node distribution at t = T and left is the node distribution
at t = 0. We can see our node distribution changes when the error profile moves.
Moreover, with our adaptive method we have delivered an accurate solution as
FDM in Parameter Set 2, but with less computational cost for the pricing of
financial contracts of a European call option (15 times faster), Delta (10 times
faster), Gamma (10 times faster), Vega (20 times faster) and barrier up and out
call option (3 times faster) in [97]. Also we note that the equally spaced RBF
method cannot work well with a problem like a singularly perturbed PDE, unless
a large number of nodes is required. Our adaptive method can deal with this sort of
problem as our method is similar to the Shishkin meshes [94] which places the extra
nodes in the active area. However, for Parameter Set 1, we can gain high accuracy,
but the computational cost is our main drawback in comparison with the equally
spaced RBFs method. In our future work, we can try to reduce the computational
cost by looking at the combination of the adaptive method with sparse grids for
the 2-D problem (detail of sparse grids can be found in [13, 44, 43]), where it might
help us to reduce the computational cost and improve the node distribution. In
our numerical experiments, we note that for Parameter Set 1, after we reduced
the error caused by the non-smooth initial condition and extra time steps applied,
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it seems our node distribution does not change. For this reason we can pause our
coarsening and refinement strategy as the coarsening and refinement strategy are
expensive in our adaptive method and take about 80% of our total computational
time. Now, we propose a new adaptive method in Algorithm 3 (main algorithm)
and Subroutine 1 which is more efficient than the one in Chapter 4 based on the
computational cost. This new adaptive algorithm delivers a similar solution when
compared with our adaptive method in [97], but with about 1

30
of CPU time for

the European call option and around 1
50

of CPU time for the barrier up and out
call option for Parameter Set 1. In Subroutine 1, we also modified our coarsening
strategy with the rule of deleting the maximum 2% of coarsening nodes. For
the coarsening nodes, we firstly reordered them from the smallest error to largest
error, then remove 2% of coarsening node with the smallest errors. We also use
the small uniform node set (20 nodes to start with) which is more efficient than
the redistribution strategy that we have proposed in Chapter 4. Our simulation
shows that we have used the maximum of 41 nodes for the barrier up and out call
option and 45 nodes for the European call option, respectively.

However, for Parameter Set 2, we need to constantly apply the coarsening and
refinement strategy due to the change of error profile, which means we need to
develop an indicator which can help to define whether we need to pause or not.



Conclusions and Future Work 75

Algorithm 3 Algorithm for adaptive radial basis function - one dimensional non-
dividend payment Black-Scholes equation
1. Input the parameters (included errref , errcrs) and coarsen or refine region,
node distribution, maximum distance.

2. Choose a basis function and construct the node set.

3. Call Refinement and coarsening function (output - node distribution, adaptive
shape parameter and approximation of solution u).

4. Boundary Update.

5. Extra time steps (i = 0 to T1).

for i = T1 to T do

Compute the differentiation matrices.

Compute the coefficient matrix and use the time integration scheme.

Compute the approximation of solution, u.

Boundary Update

end for

Compute the value of option
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Subroutine 1: Refinement and coarsening function
1. Input errref , errcrs and coarsen or refine region, node distribution.

2. Compute number of nodes.

while (rerr > errref) do

Compute adaptive shape parameter set.

Compute the MQ-interpolant at u

for 2 ≤ i ≤ N − 1 do
a) For each xi, determine Nxi

b) Compute ũNxi , the local interpolant using cubic splines;

c) Compute rerr =| uN(xi)− ũNxi (xi) |.
end for

Refine if rerr > errref .

Coarsen if rerr < errcrs.
end while rerr < errref

Output value of u, c and node distribution (x).
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Due to the limitation of time, we have not included the coarsening strategy in our
adaptive algorithm for two assets Black-Scholes PDE. In this problem, our adaptive
algorithm can be divided into 4 steps. Step 1, we use the MQ-RBF to approximate
the PDE solution, then we pass it to the error indicator which is Step 2. The
decision of error indicator only depends on predefined error thresholds errref . In
the error indicator, the residual is rerr =| uN(xi)− ũNxi (xi) | is the same as in the
1-D adaptive algorithm, but the local construction of solution is produced by the
thin plate spline. For a specific node x, we also used 8 nearest neighbour nodes of
x and their solution to reconstruct the original function. The local approximation
solution is calculated by inserting x into the original function. For the future
work, before we considering the coarsening strategy, we should include one extra
condition for the node distribution by defining a rule of inserting the rectangular
Voronoi nodes based on the maximum and minimum distance of inserting nodes.
This can also can be applied when the coarsening strategy is involved. For instance,
in the left figure of Figure 6.2, we try to refine the red node, but in this situation,
we should not add the rectangular Voronoi nodes (blue nodes) as it could cause
the problem to the node at (4, 4). Because the node clustering at a certain area
but it also causes a large gap, this could possibly lead our interpolation matrix
to become singular. To fix this problem, we either add some extra rectangular
Voronoi nodes which have been colored in red in the right panel of Figure 6.2
or pause the refinement for that node. Figure 6.3 gives an example of inserting
the Voronoi nodes at random nodes set, which would be an example of adding the
coarsening strategy in our algorithm as the extra nodes needed in the active region.
In Figure 6.4 and Figure 6.5, we also note that the profile of node distribution does
not change much, where as in the 1-D problem (in Figure 6.1) we can see the nodes
moves in time. We believe that the coarsening strategy could reduce the number
of nodes. The random points distribution in [6] could be another way to start as
well (detail can be found in [5, 6, 59, 60]. These methods could help with the error
caused by the non-smooth payoff function as more nodes been placed in the active
region. Figure 6.4 shows the profile of node distribution when we applied the
non-smooth payoff function at t = T with our refinement strategy. For t = 0, the
profile of node distribution displays in Figure 6.5. In 2-D problem of Margrabe call
option, we show our adaptive method is better than the equally spaced method,
but our adaptive method in here is only considered the refinement. The evolution
of solution in radial basis function is computationally expensive and this is one
of drawbacks we will be concerned in our future work. One possible approach is
using the faster evaluation of radial basis function (multipole expansions), as in
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the work of Beatson et al. [4, 3]. With this method, we could possibly reduce
the computational cost for our 2-dimensional problem by using our adaptive RBF
method. Throughout our latest work of a 2-D algorithm for a Margrabe option,
we not only need to further develop this algorithm and extend it further, but also
we are required to do some convergence analysis of our adaptive RBF method for
the Black-Scholes PDEs. (For example, the stability of node distribution (CFL
condition), shape parameters and the proof of non-singularity of interpolation
matrix differentiation).
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Figure 6.2: Condition of refinement of a point x in 2-D
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Figure 6.4: Profile of node distribution at t = T , a Margrabe call option,
Parameter Set 3
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Parameter Set 3
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Numerical results in Chapter 3
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Figure A.1: Profile of absolute error of European call option in Parameter Set
1 for uniform distribute nodes with basis function MQ.
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Figure A.2: Profile of absolute error of European call option in Parameter Set
1 for uniform distribute nodes with basis function Gaussian.
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Figure A.3: Profile of absolute error of Delta in Parameter Set 1 for uniform
distribute nodes with basis function MQ.
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Figure A.4: Profile of absolute error of Delta in Parameter Set 1 for Uniform
distribute nodes with basis function Gaussian.
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Figure A.5: Profile of absolute error of Gamma in Parameter Set 1 for uniform
distribute nodes with basis function MQ.
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Figure A.6: Profile of absolute error of Gamma in Parameter Set 1 for uniform
distribute nodes with basis function Gaussian
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Figure A.7: Profile of absolute error of barrier up and out call option in
Parameter Set 1 for uniform distribute nodes with basis function MQ.
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Figure A.8: Profile of absolute error of barrier up and out call option in
Parameter Set 1 for uniform distribute nodes with basis function Gaussian.
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Numerical results in Chapter 4
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Figure B.1: Profile of absolute error of European call option in Parameter Set
1 for ARBF-MQ.
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Figure B.2: Profile of absolute error of European call option in Parameter Set
1 for ARBF-MQ, uniform time step.
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Figure B.3: Relative error of European call option in Parameter Set 1 for
ARBF-MQ, t=0.
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Figure B.4: Surface of absolute error of Delta in Parameter Set 1 for ARBF-
MQ.
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Figure B.5: Relative error of Delta in Parameter Set 1 for ARBF-MQ, t=0
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Figure B.6: Profile of absolute error of Gamma in Parameter Set 1 for ARBF-
MQ.
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Figure B.7: Relative error of Gamma in Parameter Set 1 for ARBF-MQ, t=0.
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Figure B.8: Profile of absolute error of European call option in Parameter Set
2 with ARBF-MQ, uniform time step.
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Figure B.9: Uniform and adaptive nodes distribution for Parameter Set 2.
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Figure B.10: Profile of absolute error of barrier up and out call option in
Parameter Set 1 for ARBF-MQ.
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Figure B.11: Surface of absolute error of barrier up and out call option in
Parameter Set 1 for ARBF-MQ, at t=0.
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