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Abstract

In this paper we present the Stata package stgenreg for the parametric analysis of
survival data. Any user-defined hazard function can be specified, with the model estimated
using maximum likelihood utilising numerical quadrature. Models that can be fitted range
from the Weibull proportional hazards model to the generalized gamma model, mixture
models, cure rate models, accelerated failure time models and relative survival models.
We illustrate the features of stgenreg through application to a cohort of women diagnosed
with breast cancer with outcome all-cause death.

Keywords: survival analysis, parametric models, numerical quadrature, maximum likelihood,
Stata.

1. Introduction

Parametric models remain a standard tool for the analysis of survival data. Through a fully
parametric approach, we can not only obtain relative effects, such as hazard ratios in a propor-
tional hazards model, but also clinically relevant absolute measures of risk, such as differences
in survival proportions (Lambert, Dickman, Nelson, and Royston 2010). Parametric models
are also useful where extrapolation is required, such as in the economic decision modelling
framework (Weinstein et al. 2003).

The most popular tool for analysing survival data remains the Cox proportional hazards
model (Cox 1972), which avoids making any assumptions for the shape of the baseline hazard
function. One of the reasons the Cox model remains the prefered choice over parametric
models is that standard parametric models available in standard software are often not flexible
enough to capture the underlying shape of the hazard function seen in real data.

The traditional approach to estimation of parametric models is through maximum likelihood.
This is relatively simply when using a known probability distribution function, such as the
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Weibull or Gompertz. Many commonly used parametric survival models are implemented in
a variety of software packages, such as the streg package in Stata (StataCorp. 2011), survreg
(Therneau 2012) in R (R Core Team 2013) and LIFEREG in SAS (SAS Institute Inc. 2008).
However, every parametric model has underlying assumptions, for example, the widely used
Weibull proportional hazards model assumes a monotonically increasing or decreasing baseline
hazard rate. Such assumptions can be considered restrictive, leading to the development of
other more flexible parametric approaches (Royston and Parmar 2002; Royston and Lambert
2011).

In this paper we present the Stata command stgenreg which enables the user to fit general
parametric models through specifying any baseline hazard function which can be written in
a standard analytical form. This is implemented through numerical integration of the user-
defined hazard function. This allows complex extensions to standard parametric models, for
example, modelling the log baseline hazard function using splines or fractional polynomials,
as well as complex time-dependent effects; methods that are unavailable in standard software.
Time-varying covariates can also be incorporated through using multiple records per subject.
We do not consider frailty (unobserved heterogeneity) in this article.

One of the key advantages of such a general framework for survival analysis is in the devel-
opment of new models, for example in one line of code a parametric survival model can be
fitted rather than having to directly program the likelihood evaluator.

2. Parametric survival analysis

Let T} be the true event time of patient i = 1,...,n, and 7; = min(T}, C;) the observed
survival time, with C; the censoring time. Define an event indicator d;, which takes the value
of 1if T;* < C; and 0 otherwise. We define the probability density function of T;" as

L PA<Tr<t49)
J() = lim 5

where f(t) is the unconditional probability of an event occuring in the interval (¢,¢+ §). We
define the hazard and survival functions as

Pt<T*<t+4+4|T*>t
h(r) = lim TS TS THOTT 2 1)

prg * >
lim 5 and S(t)=P(T* >1t)

such that h(t) is the instantaneous failure rate at time ¢, and S(¢) is the probability of
‘surviving’ longer than time ¢. This leads to

f#) = h(t)S(t) (1)

We can further write
1) = [ e 50 = exp{-1(0) (2)

where H (t) is the cumulative hazard function. When the integral in Equation 2 is analytically
intractible, we can use numerical integration techniques to derive the cumulative hazard and
thus still calculate the survival function.
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2.1. Maximum likelihood estimation

The log-likelihood contribution of the i-th patient, allowing for right censoring and delayed
entry (left truncation), using Equation 1 can be written as

A 1—d;
l; = log {f(ti)di <5((tto:))> }

= dilog{f(ti)} + (1 — di) log{5(t:)} — (1 — d;) log{S(t0i) } 3)

where to; and ¢; are the observed entry and survival/censoring times for the i-th patient.
If delayed entry is not present then the third term in Equation 3 can be dropped. Using
Equation 3 we can directly maximize the log-likelihood if using known probability density
and survival functions. Alternatively, using Equation 1 we can write

l; = log {h(ti)di S(ti) }

S(t()i)
= d;log{h(t;)} + log{S(t;)} — log{S(t0:)}

and substituting Equation 2 this becomes

L = dylog{h(t)} — [ hw)du (@)

to;

We note from Equation 4 that the likelihood can also be maximized if only the hazard func-
tion is known. Of course, in standard parametric models, all 3 functions are known; however,
given that often the hazard function is of most interest, specifying a complex hazard function
can be advantageous. The maximization of such a specified hazard model relies on being
able to evaluate the integral in Equation 4. If we propose to use such functions as fractional
polynomials or splines to model a complex baseline hazard function, or incorporating com-
plex time-dependent effects, then we have a situation where this integral cannot always be
evaluated analytically, motivating alternative approaches.

2.2. Numerical integration

We propose to use numerical quadrature to evaluate the cumulative hazard, and hence maxi-
mize the likelihood in Equation 4, allowing the user to estimate a parametric survival model,
specifying any function for the baseline hazard, satisfying h(t) > 0 for all ¢ > 0.

Gaussian quadrature allows us to evaluate an analytically intractible integral through a
weighted sum of a function evaluated at a set of pre-defined points, known as nodes (Stoer
and Burlirsch 2002). We have

1 1 m
/_1 g(x)dzr = /_1 W(z)g(z)dz ~ ;wzg(azz)

where W (z) is a known weighting function and g(z) can be approximated by a polynomial
function. The integral over [tp;,?;] in Equation 4 must be changed to an integral over [—1, 1]
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using the following rule

t; ti — to; 1 ti — to; toi + ti
h(z)dr = - Z/ h(l x4+ — Z)dav
/,;01. 2 _1 2 2

m

ti — to; ti — to; toi + ti
%12 zzwih<z2 Zl’i‘i’ 22 z)

i=1

This transformation allows the incorporation of delayed entry quite simply. The form of Gaus-
sian quadrature depends on the choice of weighting function. The default within stgenreg is
Gauss-Legendre quadrature, with weighting function, W(x) = 1.

The accuracy of the numerical integral depends on the number of quadrature nodes, m, with
node locations dependent on the type of quadrature chosen. As with all methods which use
numerical integration, the stability of maximum likelihood estimates should be established by
using an increasing number of quadrature nodes.

2.3. Time-dependent effects and time-varying covariates

The presence of non-proportional hazards, i.e., time-dependent effects, is common in the
analysis of time to event data (Jatoi, Anderson, Jeong, and Redmond 2011). This is frequently
observed in registry data sources where follow-up time is often over many years (Lambert
et al. 2011). Similarly in clinical trials, time-dependent treament effects are also observed
(Mok et al. 2009). Time-dependent effects are incorporated seemlessly into our modelling
framework, by allowing the user to interact any covariates with a specified function of time.
We illustrate this in Section 4.2.1.

Time-varying covariates are a further often observed scenario in the analysis of survival data,
where the value of a covariate for individual patients can change at various points in follow-up.
For example in oncology clinical trials, patients will often switch treatment group when their
condition progresses (Morden, Lambert, Latimer, Abrams, and Wailoo 2011), or biomarkers
may be measured repeatedly over time, resulting in multiple records per subject (7). For this
form of analysis the data is often set up into start and stop times, and since delayed entry (left
truncation) is allowed, this again is incorporated into the described modelling framework. We
illustrate through example in Section 4.4.

3. The Stata package stgenreg

The Stata package stgenreg is implemented as three Stata ado files. The primary shell pro-
gram, stgenreg.ado, handles the syntax options for the package, which then calls the like-
lihood evaluator program stgenreg_d0.ado, described in Section 3.1. Finally, a variety of
predictions can be obtained following estimation of a model using Stata’s predict command,
which calls the program stgenreg_pred.ado, described in Section 3.2.

3.1. Program implementation and syntax

The log-likelihood shown in Equation 4 is maximized using the Newton-Raphson algorithm,
with first and second derivatives estimated numerically, as implemented in the m1 command in
Stata (Gould, Pitblado, and Poi 2010). As described in Section 2.1, the integral in Equation 4
is evaluated using m-point Gaussian quadrature.
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The evaluator program has been optimized using Stata’s matrix programming language, Mata.
This provides computational benefits and use of the wide array of mathematical functions
available for the user to specify in the hazard function. In addition, we have implemented
specific functions which allow the incorporation of restricted cubic splines or fractional poly-
nomials into the hazard or log hazard function (Durrleman and Simon 1989; Royston and
Altman 1994).

When using stgenreg one of the options loghazard() or hazard() must be defined. These
specify a user-defined log hazard or hazard function. The function must be defined in Mata
code, with parameters specified in square brackets, for example [1n_lambda]. The use of
Mata means that mathematical operations require a colon (:) prefix, for example :+ instead
of +. Time must be coded as #t. The user can specify covariates or functions of time within
the linear predictor of any parameter, providing a highly flexible framework.

For example, we can specify a Weibull distribution using either the log hazard or hazard

function. Each parameter is parameterized to contain the entire real number line, i.e., both
A and vy are restricted to be positive by modelling on the log scale.

. stgenreg, loghazard([In_lambdal] :+ [In_gamma] /77
> :+ (exp([ln_gamma]) :- 1) :* log(#t))
. stgenreg, hazard(exp([ln_lambda]) :* exp([ln_gamma]) :* /77

> #t :~ (exp([ln_gamma]) :- 1))

A linear predictor can be defined for any of the parameters, with the name of the option
defined as the name of the parameter specified in the loghazard() or hazard() option. For
example a proportional hazards Weibull model can be fitted with covariates treatment, age
and sex by adding the option 1n_lambda(treatment age sex).

One of the key advantages of stgenreg is that we can incorporate a variety of functions (in-
cluding functions of time) into the linear predictor of any parameter. For example, parameter
[1n_lambda] has an available option 1n_lambda(compl | comp2 | ...| compn), which can
contain a variety of component functions to increase complexity. Each compj can contain a
variety of functions described in Table 1.

Additionally, excess mortality (relative survival) models (Nelson, Lambert, Squire, and Jones

2007) can be fitted by use of the bhazard (varname) option. In these models a known expected
mortality rate, h*(t), is included in the model as follows,

h(t) = h*(t) + A(t)

Here the loghazard () and hazard() options now refer to the modelling of A\(¢). Note that it
is the expected mortality rate at the event time that needs to be supplied to the bhazard()
option.

Finally, all standard options of the ml suite in Stata can be used when fitting a stgenreg
model, such as constraints() which allow the user to constrain the value of any coefficient
to be a particular constant.

3.2. Predictions

A variety of predictions can be obtained following the estimation of a model. These include
the hazard, survival and cumulative hazard functions.
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Component Description
varlist [, nocons] The user may specify a standard variable list within a
component section, with an optional nocons option.

g (#t) Where g() is any user defined function of #t written
in Mata code, for example #t:"2.

#rcs(options) Creates restricted cubic splines of either log time or
time. Options include df (int), the number of de-
grees of freedom, noorthog which turns off the de-
fault orthogonalisation, time, which creates splines
using time rather than log time, the default, and
offset(varname) to include an offset when calculat-
ing the splines. See rcsgen in Stata for more details.

#fp(numlist [,options]) Creates fractional polynomials of time with powers de-
fined in numlist. If O is specified, log time is gener-
ated. The only current option is offset() which is
consistent with that described in #rcs() above.

varname : *f (#t) To include time-dependent effects, where £ (#t) is one
of #rcs ), #fp() or g().

Table 1: Description of each component that can be included in the linear predictor of a
parameter.

The standard Stata syntax to obatin predictions following a model fit is as follows
. predict newvarname, statistic
So for example, to obtain the fitted survival, hazard and cumulative hazard functions

. predict survl, survival
. predict hazl, hazard
. predict cumhazl, cumhazard

Extended prediction options unavilable in standard software include: zeros — obtains base-
line predictions, at() — obtains predictions at specified covariate patterns, timevar () — ob-
tains predictions at specified times. These options can be combined with standard choices of
hazard, cumhazard and survival. Finally, the ci option can be used to obtain confidence
intervals.

4. Analysis of example datasets using stgenreg

We illustrate stgenreg through use of a dataset comprising of 9721 women aged under 50
and diagnosed with breast cancer in England and Wales between 1986 and 1990. The event
of interest is death from any cause, with follow-up restricted to 5 years. Deprivation was
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categorized into 5 levels; however, we have restricted the analyzes to comparing the most
affluent and most deprived groups, for illustrative purposes. We therefore only consider a
binary covariate, dep5, with 0 for the most affluent and 1 for the most deprived group.

We further illustrate how to incorporate a time-varying covariate through use of a dataset
of 488 patients with liver cirrhosis (Anderson, Borgan, Gill, and Keiding 1993). A total
of 251 patients were randomized to receive prednisone, with 237 randomized to receive a
placebo. Prothrombin index was measured repeatedly, with between 1 and 17 measurements
per subject, resulting in 2968 observations. Outcome was all-cause death.

4.1. Weibull proportional hazards model

We begin by fitting a Weibull proportional hazards model to the breast cancer dataset, investi-
gating the effect of deprivation status. Given that Weibull models are available in all standard
statistical software, we first illustrate the concept showing that the estimates agree with es-
timates derived using analytically tractible definitions of the hazard and survival functions.
The baseline hazard and log hazard functions have the following form

h(t) = Myt7 " Lexp(BX)
and
log(h(t)) = log(A) + log(y) + (v — 1) log(t) + BX

where X is a vector of covariates, with corresponding regression coefficients 5. In this case it
is convenient to use the loghazard () option of stgenreg. We can investigate covariate effects
by including deprivation status in the linear predictor of log(\), using the option 1n_lambda.

. stgenreg, loghazard([ln_lambdal] :+ [ln_gamma] :+ ///
> (exp([1n_gamma]) :- 1) :* log(#t)) nodes(30) 1ln_lambda(dep5)

Log likelihood = -8808.149 Number of obs = 9721
| Coef. Std. Err z P>|z| [95% Conf. Intervall
___________ e e
In_lambda |
dep5 | .2698633 .0392017 6.88 0.000 .1930293 .3466972
_cons | -2.824814 .0370151 -76.32 0.000 -2.897362 -2.752265
___________ o
1n_gamma |
_cons | .0464514 .0179823 2.58 0.010 .0112068 .081696

Quadrature method: Gauss-Legendre with 30 nodes

We observe a log hazard ratio of 0.270 (95% CI: 0.193, 0.347) and consequently a hazard ratio
of 1.310 (95% CI: 1.213, 1.414), indicating a 31% increase in the mortality rate in the most
deprived group compared to the most afluent. We could further adjust the v parameter by
deprivation status but adding the option 1n_gamma (dep5).
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When fitting models which rely on numerical integration, it is important to establish the
stability of maximum likelihood estimates by using an increasing number of quadrature nodes.
In the case of a Weibull proportional hazards model, we can both compare with the optimized
model using streg in Stata, and compare with an increasing number of quadrature nodes.
Here we present results from fitting the streg model and stgenreg models with 15, 30, 50
and 100 nodes.

Variable | streg stgenreglb stgenreg30 stgenreghb0 stgenregl00
___________ o
#1 I

dep5 | .2698715 .26983514 .26986326 .26986899 .26987095
| .0392017 .03920178 .03920173 .03920172 .03920171
_cons | -2.8252423 -2.8232443 -2.8248136 -2.8251059 -2.8252139
| .03694985 .03718485 .03701515 .03697471 .03695639
___________ o
#2 I
_cons | .04673335 . 04542627 .04645138 .04664313 .04671442
| .01792781 .018125564 .01798227 .01794843 .0179332
___________ o
Statistics |
11 | -8808.0854 -8808.3461 -8808.149 -8808.1075 -8808.0906

We obtain consistent parameter estimates to 3 decimal places with 30 nodes, and accuracy is
improved when the number of nodes are increased. However, computation time will increase
with an increasing number of nodes, for example using 15 nodes takes 7.4 seconds compared
with 12.4 seconds using 100 nodes (on a HP laptop with Intel i5 2.5GHz processor with 8GB
of RAM). In comparison, the fully optimized streg model took 0.4 seconds to converge. This
difference is clearly expected as the stgenreg formulation of the Weibull model is not the
most computationally efficient, as there is no need to use numerical integration when using
the standard Weibull model.

4.2. Restricted cubic spline proportional hazards model

We now introduce a much more flexible proportional hazards survival model, modelling the
baseline log hazard function using restricted cubic splines of log(time). We formulate the
baseline log hazard function

log(h(t)) = s(log(t)) + X3 ()

where s(log(t)) is a restricted cubic spline function of log(¢). This can be implemented by
using the #rcs component option. We use the default knot locations, based on the centiles
of the distribution of uncensored survival times.

This draws parallels with the flexible parametric model of Royston and Parmar (2002), imple-
mented in Stata as the stpm2 command (Royston and Lambert 2011), which uses restricted
cubic splines to model the log cumulative hazard function

log(H (t)) = s(log(t)) + X3 (6)
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Figure 1: Predicted hazard function for the most affluent group with 95% confidence interval.

An advantage of modelling on the log hazard scale is that when there are multiple time
dependent effects, the interpretation of the time-dependent hazard ratios is simplified as
they do not depend on values of other covariates, which is the case when modelling on the
cumulative hazard scale (Royston and Lambert 2011).

We apply the model in Equation 5 with 5 degress of freedom, i.e., 4 internal knots placed
at the 20th, 40th, 60th and 80th percentiles of the distribution of log event times, and 2
boundary knots placed at the Oth and 100th percentiles.

. stgenreg, loghazard([xb]) xb(dep5 | #rcs(df(5))) nodes(30)

Log likelihood = -8756.2213

Number of obs =

depb
_eql_cp2_rcsi
_eql_cp2_rcs2
_eql_cp2_rcs3
_eql_cp2_rcs4
_eql_cp2_rcsb
_cons

I

+

| .2693634
| -.0621779
| .0784834
| .1158689
| -.0251518
| .0012793
| -2.910463

.0392018
.0274602
.0192975
.0176746
.0143719
.0134076
.0607005

.1925293
-.1159989
.0406611
.0812272
-.0533202
-.0249991
-3.029434

.3461976
-.008357
.1163057
.1505106
.0030165
.0275576
-2.791492

Quadrature method: Gauss-Legendre with 30

nodes
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When using the component options stgenreg will create variables labelled by the equation
number (indexed from left to right in the log hazard or hazard specification) and the com-
ponent number (again counting from left to right in each parameter option). So variables
_eql_cp2_x* contain the spline basis variables defined by the #rcs(df (5)) component. The
estimate of the log hazard ratio for the effect of deprivation is very similar to the Weibull
based estimate; however, we have now estimated 6 parameters to model the baseline hazard
function, an intercept and 5 parameters associated with the spline terms. We can obtain the
predicted baseline hazard function and 95% confidence interval as follows

. predict hazl, hazard ci zeros
We illustrate the fitted baseline hazard function in Figure 1.

Time-dependent effects

We now investigate the presence of a time-dependent effect due to deprivation status. Within
the framework of restricted cubic splines, this can be investigated using the component form
varname: *#rcs (df (num)), i.e., an interaction between the effect of time (using splines) and
the deprivation group. We use 3 degrees of freedom for illustration.

. stgenreg, loghazard([xb]) nodes(30) ///
> xb(dep5 | #rcs(df(5)) | dep5 :* #rcs(df(3)))

Log likelihood = -8747.3275 Number of obs = 9721
| Coef. Std. Err. P P>|z]| [95% Conf. Intervall
______________ e
depb5 | .0723415 .0924005 0.78 0.434 -.1087602 .2534433
_eql_cp2_rcsl | -.0108058 .0309504 -0.35 0.727 -.0714673 .0498558
_eql_cp2_rcs2 | .0672877 .0224852 2.99 0.003 .0232177 .1113578
_eql_cp2_rcs3 | .1128672 .0207167 5.45 0.000 .0722634 .1534711
_eql_cp2_rcs4 | -.0261438 .0145455 -1.80 0.072 -.0546525 .002365
_eql_cp2_rcsb | .0014202 .0134079 0.11 0.916 -.0248589 .0276992
_eql_cp3_rcsl | -.1464002 .0443983 -3.30 0.001 -.2334194 -.0593811
_eql_cp3_rcs2 | .0425164 .0333753 1.27 0.203 -.022898 .1079307
_eql_cp3_rcs3 | .0135896 .0322604 0.42 0.674 -.0496396 .0768187
_cons | -2.849318 .0649361 -43.88 0.000 -2.976591 -2.722046

Quadrature method: Gauss-Legendre with 30 nodes

In Figure 2 we compare the fit of the models with either time-independent or time-dependent
hazard ratios for deprivation status, by overlaying the fitted survival functions onto the
Kaplan-Meier curve, for each deprivation group. We observe a much improved fit to the
Kaplan-Meier curve when modelling the time-dependent effect of deprivation group. We can
predict the time-dependent hazard ratio using the partpred (Lambert 2010) command as
follows.



Journal of Statistical Software 11

Proportional hazards Non-proportional hazards

0.6 0.6
0 1 2 3 4 5 0 1 2 3 4 5
Follow-up time (years) Follow-up time (years)
Affluent group, KM curve ———-—- Deprived group, KM curve
----------- Affluent group, stgenreg —— - Deprived group, stgenreg

Figure 2: Kaplan-Meier estimates for the most affluent and most deprived groups, with
predicted survival overlaid. The figure on the left shows predicted survival with a proportional
effect of deprivation status, with the figure on the right allowing for non-proportional hazard

sin the effect of deprivatin status.

3
1

Hazard Ratio
2
1

0 1 2 3 4 B
Follow-up time (years)

Prediction

95% upper bound: hr/95% lower bound: hr

Figure 3: The estimated time-dependent hazard ratio for deprivation group and associated

95% confidence interval.
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. partpred hr, for(dep5 _eql_cp3*) ci(hr_uci hr_lci) eform

This is then plotted in Figure 3 which shows that the relative increase in the mortality rate
is much larger at the start of follow-up and decreases to around one by 5 years.

4.3. Generalized gamma proportional hazards model

The generalized gamma (GG) is a 3-parameter parametric model implemented in a variety of
statistical packages (Cox, Chu, Schneider, and Munoz 2007). However, it is parameterized as
an accelerated failure time model in Stata. We can write the survival and density functions
as
1—1I(y,u) ifrk>0
Saa(t) =< 1—®(2) ifk=0 (7)
I(v,u) if Kk <0

and

(8)

T exp(z —u) ifk#0
fac(z) = {atxl/ﬂ p( \67) ) ‘ #
o exp(—z7/2) ifk=0
where v = |k| 72, 2z = sign{log(t)—pu}, u = v exp(|k|2), ®(2) is the standard normal cumulative
distribution, and I(a,x) is the incomplete gamma function.

Therefore using Equation 1, we can write down our baseline hazard function as the ratio of
the probability distribution function to the survival function.

_ fec(t)
Saa(t)

To invoke proportional hazards we can then simply multiply by the exponential of a parameter,
the linear parameter of which is our vector of covariates

haa(t) = gzz((g exp(XB) or log(hga(t)) = log <£Z(G;((?)

haa(t)

)+ x5

Where § is a vector of log hazard ratios. In terms of implementation, in the linear predictor for
our X 8 parameter we must specify the nocons option to ensure no intercept term, obtaining
a proportional hazards formulation for the GG model. As this is a complex function, we can
use Stata’s local macros to build up the function.

. local mu [mu]

. local sigma exp([ln_sigmal)

. local kappa [kappal

. local gamma (abs( kappa') :~ (-2))

. local z (sign("kappa') :* (log(#t) :- “mu') :/ (“sigma'))

. local u (("gamma') :* exp(abs(“kappa') :* ("z')))

. local survl (1 :- gammap( gamma', u')) :* (“kappa' :> 0)

. local surv2 (1 :- normal(°z')) :* (“kappa' :== 0)

. local surv3 gammap( " gamma', u') :* (Tkappa' :< 0)

. local pdf1 (("gamma' :~ “gamma') :* exp("z' :* sqrt(gamma') :- “u') :/ ///
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> (Tsigma' :* #t :* sqrt( gamma') :* gamma( gamma'))) :* (“kappa' :! =0)
. local pdf2 (exp(-(Cz' :~ 2) :/ 2) :/ (Csigma' :* #t :% sqrt(2 :* pi())))///
> :x (“kappa' :== 0)

. local haz ("pdf1' :+ “pdf2') :/ (Csurvl' :+ “surv2' :+ “surv3')
. stgenreg, hazard(exp([xb]) :* (“haz')) nodes(30) xb(dep5,nocons)

Log likelihood = -8801.2754 Number of obs = 9721
I Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ A
xb |
dep5 | .2694578 .0391992 6.87 0.000 .1926289 .3462868
_____________ o
kappa |
_cons | .6752793 .0749985 9.00 0.000 .528285 .8222735
_____________ o
mu |
_cons | 2.710497 .032793 82.65 0.000 2.646224 2.774771
_____________ P
1ln_sigma |
cons | .1727204 .05621935 3.31 0.001 .0704231 .2750178

Quadrature method: Gauss-Legendre with 30 nodes

Once again we obtain very similar estimates to the Weibull model, but now modelling the
baseline with 3 parameters. This model formulation illustrates a powerful tool where by
simply introducing an extra parameter we can implement a model not available in any software
package.

4.4. Time-varying covariates

We now illustrate the data setup required for survival analysis incorporating a time-varying
covariate. We use the liver cirrhosis dataset described above. Here we use the enter() and
id () options of stset in Stata, to declare the data as multiple record per subject.

. stset stop, enter(start) id(id) failure(event=1)

id: id
failure event: event ==
obs. time interval: (stop[_n-1], stop]
enter on or after: time start
exit on or before: failure

2968 total obs.
0 exclusions
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2968 obs. remaining, representing
488 subjects
292 failures in single failure-per-subject data
1777.749 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 13.39393

We illustrate the data structure of 2 patients, where _tO represents the enter times at which
prothrombin was measured

. list id pro trt _tO0 _t _d if id==1 | id==111, noobs sepby(id)

e +
| id  pro trt t0 _t _d |
| o |
| 1 38 placebo 0 .2436754 O
I 1 31 placebo .2436754  .38057169 O
| 1 27 placebo .38057169 .41342679 1
| |
| 111 59  prednisone 0  .24641332 0 |
| 111 60 prednisone  .24641332  .49830249 0 |
| 111 87  prednisone .49830249 .74471581 O
| 111 59  prednisone .74471581  1.1280254 0|
| 111 35  prednisone 1.1280254  1.1581426 1|
e e e e e e +

We can now fit a stgenreg model using restricted cubic splines to model the baseline, ad-
justing for the proportional effects of treatment and prothrombin index.

. stgenreg, loghazard([xb]) xb(pro trt | #rcs(df(3))) nolog

Variables _eql_cp2_rcsl to _eql_cp2_rcs3 were created

Log likelihood = -588.17466 Number of obs = 2968
| Coef Std. Err z P>|z]| [95% Conf. Intervall
______________ +_____________________________________________________________
pro | -.0349754 .0024771 -14.12 0.000 -.0398304 -.0301205

trt | .1325576 .1182068 1.12 0.262 -.0991235 .3642388
_eql_cp2_rcsi | -.091006 .0579785 -1.57 0.116 -.2046419 .0226298
_eql_cp2_rcs2 | -.1354551 .0431334 -3.14 0.002 -.219995 -.0509151
_eql_cp2_rcs3 | -.2292129 .0499583 -4.59 0.000 -.3271295 -.1312964
_cons | 7376377 .1690535 4.36 0.000 .4062988 1.068977

Quadrature method: Gauss-Legendre with 15 nodes



Journal of Statistical Software

We observe a log hazard ratio of —0.35 (95% CI: —0.040, —0.030) indicating lower values of
the biomarker are associated with an increased risk of death.

Alternatively stgenreg can be used in conjunction with Stata’s stsplit command, to create
at risk time intervals.

5. Discussion

We have presented the stgenreg command in Stata, for the general parametric analysis of
survival data. Through specification of a user-defined hazard function, we have illustrated
how to implement standard proportional hazards models, novel restricted cubic spline survival
models and a generalized gamma model with proportional hazards. In essence, stgenreg may
be used to implement a parametric survival model defined by anything from a very simple one
parameter proportional hazards model, to models which contain highly flexible functions of
time, for both the baseline and time-dependent effects. Any parameter defined in the hazard
function can be dependent on complex functions of time, including fractional polynomials or
restricted cubic splines.

The choice of the number of quadrature nodes is left to the user. An increasing number of
quadrature nodes should be used to establish consistent parameter estimates.

As it is a general framework, it may not be the most computationally efficient; however, it is
a useful tool for the development of novel models. For example, it may be useful to develop
ideas and test new models, but then spend time developing more computationally efficient
methods for specific cases.

In future developments we aim to allow for interval censoring, the extension to incorpo-
rate frailty and a post-estimation command to calculate the cumulative incidence function
for competing risks. The package is available from the Statistical Software Components
archive (Crowther and Lambert 2013) and can be installed from Stata by typing ssc install
stgenreg.
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