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Despite the compelling contribution of the study of event related potentials (ERPs) and eyemovements to cognitive
neuroscience, these two approaches have largely evolved independently. We designed an eye-movement visual
search paradigm that allowed us to concurrently record EEG and eye movements while subjects were asked to
find a hidden target face in a crowded scenewith distractor faces. Fixation event-related potentials (fERPs) to target
and distractor stimuli showed the emergence of robust sensory components associated with the perception of
stimuli and cognitive components associatedwith the detection of target faces.We compared those components
with the ones obtained in a control task at fixation: qualitative similarities aswell as differences in terms of scalp
topography and latency emerged between the two. By using single trial analyses, fixations to target and
distractors could be decoded from the EEG signals above chance level in 11 out of 12 subjects. Our results
show that EEG signatures related to cognitive behavior develop across spatially unconstrained exploration of
natural scenes and provide a first step towards understanding themechanisms of target detection during natural
search.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

A central goal in cognitive psychology and visual neuroscience is to
understand how we perceive real-world scenes (for a review see
Eckstein, 2011). Real-world scenarios typically include several salient
features and thus natural vision involves sophisticated mechanisms to
efficiently allocate foveal resources (Itti and Koch, 2000). Several
processes, such as behavioral goals, motivational state, and the spatial
properties of the visual scene, govern saccadic scan paths during free-
viewing tasks. But can classical event related potentials (ERPs) be reliably
measured during visual search tasks that involve complex and uncon-
strained spatial distributions of ocular trajectories? EEG recordings
typically involve flashing stimuli at fixation to avoid the large artifacts
that eye movements introduce in the ERPs. For this reason, the registra-
tion of EEGduring eye-movement exploration tasks of natural scenes has
been largely avoided in the past, posing a potential difficulty to the study
of human vision in more ecological environments.
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Recent reports have shown that it is feasible to concurrently
record EEG and eye movements (Kamienkowski et al., 2012a, 2012b;
Ossandón et al., 2010; Plöchl et al., 2012). However, in order to restrict
eye-movement contaminations, these studies were run in much simpli-
fied scenarios compared to the exploration of natural scenes; namely
they involved controlled saccade tasks (Brouwer et al., 2013; Dandekar
et al., 2012; Kazai and Yagi, 1999; Thickbroom and Mastaglia, 1985;
Thickbroom et al., 1991; Yagi, 1981), reading paradigms (Dimigen
et al., 2011; Marton and Szirtes, 1988a, 1988b) or visual search tasks
with artificial stimuli (Kamienkowski et al., 2012a, 2012b). To our
knowledge, only two studies have focused on fixation event-related po-
tentials (fERPs) during the free-viewing of natural images (Graupner
et al., 2007; Ossandón et al., 2010). Due to the difficulty in obtaining
long fixations (i.e. long EEG traces without contamination of eye move-
ments), these studies did not dealwith long latency components typically
associated with cognitive processing.

In the present studywe sought to understand the full range of events
that unfold during the visual exploration of natural scenes. Subjects had
to find a hidden target face in a crowded scenewhilewe simultaneously
recorded EEG and eye movements. Before the experiment we trained
subjects to avoid making fixations of short duration while searching.
In this way, we were able to obtain relatively long fixations during the
experiment, which allowed the analysis of late cognitive components
without contamination of eye movements. Moreover, we designed a
ved.
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fixed-gaze experiment akin to a classical oddball paradigm, in order to
systematically compare the ERPs obtained in our visual search task with
the classic ERPs of paradigms at fixation. This allowed a simple and direct
way to compare fERPs and ERPs without the need of ocular correction
methods (such as those based on Independent Component Analysis). De-
veloping objective validation criteria (Ossandón et al., 2010; see also
Dimigen et al., 2012) would be particularly problematic in this experi-
ment since subjects performed saccades of any size and in any direction.

Our results show that known EEG signatures related to cognitive
functions in fixed-gaze paradigms are also present in more ecological
settings. Interestingly, we also show that a direct comparison between
ERPs and fERPs yields differences in relation to their latency and topog-
raphy. Furthermore, we show that the information contained in the
cognitive fERPs can be used to discriminate target detection in single
trials. Altogether, our work provides new insights into the dynamics
of brain processes during visual exploration of natural scenes.

Materials and methods

Participants

Twelve subjects (10 males and 2 females, ages 21–31 years old)
participated in the experiments. 10 subjects completed both tasks
while 2 subjects completed only the eye-movement visual search task.
All subjects were naive to the objectives of the experiment, had normal
or corrected to normal vision and gave written informed consent
according to the recommendations of the declaration of Helsinki to par-
ticipate in the study.

Stimuli

The image database contained 60 gray scale images of crowds at
stadiums downloaded from Internet or obtained at football stadiums.
Images were 800 × 768 pixels in size and each one contained between
23 and 35 distractor faces (30.68 faces on average). From all the faces in
each image 3 were chosen as targets. Images weremade isoluminant in
order to avoid areas of increased saliency.

Experimental procedures

Stimuli were presented on a 21″ Iiyama CRT monitor, with a screen
resolution of 1024 × 768 pixels and a refresh rate of 75 Hz. Participants
sat in a comfortable chair inside a darkened room at 60 cm from the
screen, their heads stabilized via an in-house chin rest. All experiments
were implemented in MATLAB (Mathworks, Natick, MA) using the
Psychophysics toolbox (Brainard, 1997). Manual responses were
collected with a standard keyboard. Ocular responses were obtained
from the eye position of subjects via the on-line information provided
by an eye tracker. During task execution in both experiments, we simul-
taneously recorded EEG and eye movements.

Visual search experiment

At the beginning of each trial subjects pressed the space bar and
were presented with a target face for 3 s. On each trial we resized the
original target face to a random value between 2 × 2° and 3 × 3°. This
prevented subjects from using target size to guide their visual search
strategy. After this time a fixation point was presented on the screen
at a random location. Subjects needed to fixate at the new dot location
for 1 s for the image of a crowd to appear on the screen. The subjects'
task was to search for the target face within the crowd and to fixate
on it for 1 s once they have found it (Fig. 1). Trials ended when subjects
found the target or after 20 s of visual search. The 60 images were
presented in pseudo-random order as a block. Between blocks subjects
took 5 min resting breaks. In each block the target face for each image
was different from previous blocks. The target faces varied in size
from 2° to 4° across trials to prevent subjects from making inferences
about the face position on the following image presentation. In total
subjects performed 180 trials (3 different targets per crowd image for
the whole experiment). Before the experiment started, subjects were
trained to search the target without rushing and gave them an indicative
pace with a metronome clicking at 1 Hz. The metronome was only used
during their training session, not during the actual experiment; it served
to train subjects not to rush during the visual search. During the experi-
ment, we provided subjects with visual feedback at the end of a trial
only if they had produced less than 2 fixations of at least 0.5 s throughout
the trial. The feedback consisted of the sentence “too fast” shown on a
gray background screen. The rationale of this was to encourage larger
fixation times in order to study late latency fERPs related to cognitive pro-
cesses, as described below. The images used during the training sessions
were not used during the experiment. On 59% of trials (980/1663 trials,
over all subjects and experiments) subjects made at least 2 fixations of
0.5 s to distractors. In total, subjects made 1561 fixations to targets and
4655fixations to distractors. Using these simple instructionsweobtained:
1) longer fixations than in other visual search experiments, and 2) less
redundancy between fixations (less number of repeated fixations on the
same faces), very common when subjects are allowed to freely explore
without any instruction. Both properties of the eye movements were im-
portant for the analysis: longer fixations opened the possibility to observe
clean late evoked potentials and low redundancy prevented fixations in
which the subject fixated at the target but might have not identified it.

Visual Oddball experiment

Subjects had to fixate at the center of the screen, where target and
distractor images were flashed in pseudo-random order (Fig. 1, Supple-
mentary Materials). From each image of crowds in the dataset we
extracted 11 faces. We extracted these faces by cutting a rectangular
area of 2 × 2°, keeping the target face original size. Before each trial
we selected 1 of these images of faces as the target and the other 10
as distractors. In each trial the target face was presented before the
beginning of the trial for 3 s as in the visual search experiment. The se-
quence of 11 faceswas then presented, each one for 0.5 swith a random
inter-stimulus interval in the range of 0.2–0.3 s. Subjects were asked to
fixate constantly on the sequence of images. In total we presented sub-
jects with 220 trials consisting in 3 blocks of 60 trials each and one final
block of 40 trials. Between blocks subjects took 5 min resting breaks.
The target was present in the sequence on 80% of the trials (180 trials).
Targets appeared with the same frequency at any position from 2 to 11
in the sequence and were never presented as the first image in the
sequence. The subjects' task was to report with a keyboard press at
the endof the trialwhether they had detected the target in the sequence
of images.

Eye movements and EEG recordings

Eye movements were registered with an EYELINK 1000 system (SR
Research, Ontario, Canada). The eye tracker was used in binocular
mode with stabilized-head and sampling rate of 500 Hz in each eye.
Saccades and fixations were detected using an adapted version of the
velocity-based Engbert and Kliegl's algorithm (Engbert and Kliegl,
2003) using the parameters described in Kamienkowski et al. (2012a,
2012b). We only kept saccades larger than 1° for the analyses of the
data. We considered as fixations to targets all those fixations that landed
on an area of 2 × 2° of visual angle from the center of the target face. For
all the experiments we ran drift corrections every 10 trials and a recali-
bration of the eye tracker every 60 trials (before the beginning of a new
block). The nine-point calibration was kept with an average error
below 1° (typically below 0.5°). EEG data were recorded on a standard
64-channel 10–20 montage using a Biosemi Active-Two System
(Biosemi, Amsterdam, Holland) at 1024 Hz. Data was imported into
MATLAB with EEGLAB toolbox (Delorme and Makeig, 2004) using



Fig. 1. Experimental design and eye movements' statistics. Upper left panel: Sequence of fixations during an exemplary trial. The red square shows the position of the target in the crowd.
Each dot in the image represents a fixation. Dot colors, from darker to brighter, represent the order in which fixations were produced while dot size represents the duration of fixations.
Trials endedwhen subjects fixated on the target face for 1 s or after 20 s visual search. Bottom left panel: Traces of the eye position as recorded by the eye tracker during the trial shown in
the upper panel. The final vertical red line shows the beginning of thefixation on the target and the start time of the EEG epoch. Behavioral responses for the free-viewing condition. Upper
right: Distribution of the number of fixations across trials. Middle right: Distribution of fixation durations. Bottom right: Saccade amplitude distribution.
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linked mastoids as reference. Datasets were down-sampled at 256 Hz
and bandpass filtered at 0.1–40 Hz (sixth order elliptic filter). We
considered the start of the fixation on each face as the trial onset
(Fig. 1). For each crowd scene we analyzed the response to the target
image (the last image inwhich the subjectfixated N1 s to indicatefinding
the target) and tofixations to distractors. In the later casewe only consid-
ered fixations longer than 500 ms. EEG data were aligned to fixation
onset and cropped between .200 ms and 500 ms from the fixation
time.We applied a baseline correction to each epoch in the timewindow
[−200–100] ms from fixation onset. Epochs were visually inspected and
non-saccadic artifacts were manually removed. An analog card was used
to convert and output the digital eye position as analog voltage channels.
The temporal offset between the signals was corrected by realigning the
eye trackingdata to the frontal electrodes,which showeda sharp saccadic
spike potential shortly after saccade onset.
Statistical analysis of ERPs

We mainly focused our statistical analysis on midline channels Fz,
Cz, Pz and Oz. In order to run statistical comparisons between targets
and distractors, we applied a non-parametric Wilcoxon rank-sum test
to each (channel, time) sample of the average ERP. We ran separate
tests for each channel and data point to compare the two conditions
across all subjects. In order to correct for multiple comparisons we ap-
plied a false discovery rate procedure.We considered samples as statisti-
cally different between the two conditions when the p-value of the
Wilcoxon rank-sum test was below the threshold that set the
expected proportion of falsely rejected null hypotheses to 5%.
EEG single trial classification

We applied Support Vector Machines to the EEG data to conduct a
single-trial classification between fixations to targets and distractors.
Data classification was performed with the FieldTrip software
(Oostenveld et al., 2011). Classification performance was assessed
with five-fold cross-validation, the classifier being fed with 64 × 128
features corresponding to the voltage values of the 64 channels and
the whole post-fixation epoch (0 to 500 ms after fixation onset).
For each single trial we performed baseline correction in the range
[−200–100] ms before running the classification procedure. Since we
had 3 times more fixations to distractors than targets we selected a
random subset of distractors to match the number of targets for a
given participant (between 110 and 150). We report the mean and
SEM accuracy for each subject. The significance was estimated using a
binomial test (Quiroga and Panzeri, 2009).

Results

Behavioral results for the eye-movement visual search task

On average subjects found the target in 138 out of 180 trials (SD:
15.36). Only trials that ended with a fixation on the target were consid-
ered valid and were kept for further analysis. Subjects made an average
of 8.4 fixations (SD: 1.84) and took a mean time of 8.5 s before fixating
on the target (Fig. 1). The distribution of fixation durations was skewed
with a peak at ~0.22 s and a long tail to longer times. Even though the
peak was earlier than 0.5 s, there were still a large number of fixations
with a duration longer than 0.5 s to run the statistical analysis on the
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full sequence of ERP events. The saccade amplitudes had a skewed distri-
bution with an average amplitude of 3.7° (SD: 2.3°). To assess the pres-
ence of training or memory effects across the task (the fact that
subjects could potentially remember the images and use this information
to improve their performance) we compared the response times of sub-
jects across blocks. We ran an ANOVA with response time as dependent
measure and block (1, 2 or 3) as factor. This analysis showed no statistical
difference between the response times of the three blocks (F = 0.66,
df = 2, p = 0.51). Potential differences in the physical properties of sac-
cades (such as saccade amplitude and angular distribution) to targets and
distractors could lead to spurious differences in the fERPs. To avoid this
issue,we tested the hypothesis that the angular distribution or the ampli-
tude of saccades might vary between saccades to targets and distractors.
We could not find any statistical evidence to support this hypothesis
(Kuiper test for circular statistics, p = 0.15).

Behavioral results for the visual oddball task

Subjects had an average of 95.27% correct detections of the target and
an average of 7.35% false alarms in those sequences when the target was
not present. Only correct trials were used for analysis.

Analysis of fixation event-related potentials during the eye-movement visual
search task

Fixation-event related potentials (fERPs) during the visual search
experiment generated similar patterns for targets and distractors in
the first 250 ms following fixation onset (Fig. 2). We observed a
saccade-related artifact before fixation onset, an initial frontal positivity
at the start of the fixation (t = 0 ms) followed by a positive occipital P1
component at ~100 ms and a vertex positive potential at ~170 ms.
Conversely, late potentials showed a large difference between fixations
to target and distractors. Only fixations to targets elicited a sustained
positive P3 component starting from 250 ms, with a centro-parietal
topography (see Fig. 2).

Analysis of event-related potentials for the oddball task

For the oddball experimentwe compared the ERPs elicited by targets
to the ERPs triggered by the distractors preceding the target in the se-
quence. As in the visual search task, the spatial topographies of the
ERPs showed that the early ERPs generated by the faces were identical
for the targets and distractors (Fig. 3). After ~250 ms a P3 target-
related component was observed occurring first over the main frontal
and central electrodes and later spreading to parietal and occipital
electrodes.
Fig. 2. Topographical maps for the free-viewing condition. Fixations to targets and fixations to d
onset. The neural correlates of target detection appeared after 250 ms with a strong P3 comp
fixation onset.
Comparison between the visual search and the oddball tasks

From a direct comparison between the fERPs obtained in the
free-viewing with the ERPs from the oddball experiment, it is clear that,
despite showing similar trends and a significant difference between
targets and distractors, there were also some differences in the shape of
the P3 component (Fig. 4). The P1 for the visual search task occurred
earlier than the P1 for the oddball task, with a peak at 96 ms (SEM:
2.13 ms) after stimuli onset as compared to the 115 ms (SEM: 4.8 ms)
for the oddball. For the visual search task the P3 appeared as a single
centro-parietal component with a maximum at 372 ms. Instead, in the
oddball task this component presented an increased fronto-central
amplitude at a latency of 305 ms and a centro-parietal maximum at
440 ms (Fig. 4, right panel). In addition, the P3 componentwasmore pos-
terior for the oddball task than for the visual search task, encompassing
also occipital channels (Fig. 4, bottom panels).

Single trial classification of stimulus identity

The classification of target vs. non-target faces was significantly
above chance (binomial test, p b 0.05, against the null hypothesis that
subjects were performing at chance level) in 11 out of 12 subjects for
the visual search experiment and in 10 out of 10 subjects for the oddball
experiment. Mean accuracy, shown in Fig. 5A, was significantly higher
in oddball (O) than in free viewing (FV) (O: (0.72 ± 0.02), FV:
(0.63 ± 0.01); t-test: t = 4.70, p = 0.0002). The largest contribution
to the classifier originated from centro-parietal channels at around
450 ms (Fig. 5B). In the oddball task, an earlier contribution from
more frontal electrodes was observed. Both the time window and the
location of the most informative electrodes for classification using a
blind analysiswere consistentwith the P3 obtained from the ERP analysis
(Fig. 5B, compare with Fig. 2).

Influence of saccade amplitude in the fERP P1 component

In order to further understand the properties of the early free-
viewing P1 component; we realigned the data to the start of the saccade
and compared the latency and amplitude of the fERP P1 component for
both alignments (fixation aligned versus saccade aligned, Fig. 6). To
assess the contribution of the saccades to the P1 componentwe studied
the amplitude of the saccades preceding the fixation. We divided the
trials into 3 classes according to the amplitude of the preceding saccade:
1–2°, 2–3° and saccades larger than 3° of visual angle. For each class of
trial we averaged the EEG epochs and obtained an ERP for each subject.
We then ran ANOVAs on the P1 peak amplitude and P1 peak latency
across subjects and classes. Our analysis showed that fixations with
istractors generated almost identical early visual components up to ~250 ms after fixation
onent only for the fixations on targets. Time ‘0’ in the topographical plots corresponds to

image of Fig.�2


Fig. 3. Topographical maps for the oddball condition. As with the free-viewing experiment, fixations to targets and distractors generated similar early visual components up to ~250 ms
after fixation onset. The differences between targets and distractors appeared after 250 ms with a strong component present only during the presentation of targets.
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preceding short saccades generated smaller P1 amplitudes, compared
to the fixations with preceding large saccades. From these subsets of
ERPs we observed a main effect of the preceding saccade on the P1
Fig. 4.Main fERP and ERP components for the free-viewing and oddball experiments. Targets eli
could be further separated into two subcomponents. Shaded areas depict SEM and gray scale ba
rank sum test, p b 0.05 corrected for multiple comparisons; see section ‘Statistical analysis of E
amplitude for fixation aligned trials (F(2,33) = 4.12, p = 0.0003) as
well as for saccade aligned trials (F(2,33) = 8.33, p = 0.0012, Fig. 5).
Post-hoc Tukey's HSD tests showed that preceding saccades in the
cited a clear P3 component in the two experiments. The P3 component for the oddball task
rs show the p-values for the comparison between conditions at each time point (Wilcoxon
RPs’).
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Fig. 5. Single-trial analysis of target versus distractor responses. A: Average accuracy (±SEM) over 10 repetitions of the single-trial classification procedure for each participant for both
experiments. In each repetition we randomly selected a subset of distractors of the same size as the targets set for a given participant (between 110 and 150 trials), andwe ran a five-fold
cross-validation. The classificationwas successful in 11 out of 12 subjects for the free viewing experiment and in 10 out of 10 subjects for the oddball task. Accuracywas significantly higher
in Oddball than in Free Viewing (O: (0.72 ± 0.02), FV: (0.63 ± 0.01); t-test: t = 4.70, p = 0.0002). B: Scalp distribution of the classification parameters at three 50 ms time-windows
around 150 ms, 300 ms and 450 ms, for both experiments. The data from all the channels during the whole epoch was submitted to the classifier. The most discriminative time points
and channels selected by the classification algorithm (classifier parameters or weights of the classifier) matched the times and channel locations of the ERPs P3 components.
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range of 1–2° of visual angle generated a modulation on P1 amplitude
that differed statistically from the saccades in the range of 2–3°, and
those larger than 3°. All other comparisons were not significant. To fur-
ther validate these results, we conducted a regression analysis of the P1
peak amplitude on the preceding saccade amplitude, at the single trial
level for all subjects. We epoched each trial and applied a baseline
Fig. 6. Preceding saccades modulate P1 amplitude. fERPs/ERPs at channel Oz. Left panel: trials a
Both panels show only fixations to distractors. Fixations with preceding short saccades genera
Results). These effects were observed in the average ERPs aswell as in the single trial analysis. Th
amplitude at the single-trial level. The difference in the P1 latency peak between the fixation-
saccades across all trials during the experiment.
correction to each epoch in the time window [−200–100] ms from
fixation onset. After epoching the data, we calculated the peak ampli-
tude of the P1 component in each single trial for each subject. With
these data we ran regression analyses of the P1 amplitudes as a function
of the amplitude of the saccade preceding the fixation. As with the previ-
ous analysis, we found a significant positive correlation between the P1
ligned to the beginning of fixation; Right panel: trials aligned to the beginning of saccade.
ted a smaller P1 amplitude compared to the fixations with preceding large saccades (see
e small insets in the panels show the P1 peak amplitude as a function of preceding saccade
aligned and the saccade-aligned events was 39 ms and matched the median duration of

image of Fig.�5
image of Fig.�6
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amplitude and previous saccade amplitude for fixation aligned (Pearson
r = 0.17; p = 10−10) and saccade aligned trials (Pearson r = 0.15,
p = 10−9).

Discussion

In the present studywe showed fERP components associatedwith the
perception of faces in a search task involving natural scenes. Twoprevious
studies analyzed fERPs during exploration of natural scenes focusing on
source models of ongoing and evoked EEG activity (Ossandón et al.,
2010) and on the fERPs related to short-term habituation (Graupner
et al., 2007). Due to the difficulty in obtaining longfixations, these authors
restricted their data analysis to the early components of the fERPs.
Building up from these studies the design of our paradigm allowed us to
have access to both early sensory and late cognitive potentials during the
visual search task and to compare these potentials with the components
of a control oddball task. Our findings demonstrate that it is possible to
obtain robust cognitive ERP components during visual search tasks with
crowded and complex natural images. The remarkable similarities be-
tween the evoked responses in both tasks link the results we obtained
during free exploration with the large literature describing evoked
responses with stimuli flashed at fixation (Fisch et al., 2009; Gaillard
et al., 2009; Hillyard et al., 1973; Kranczioch et al., 2003; Navajas et al.,
2013; Picton, 1992; Polich, 2007; Polich and Kok, 1995; Quiroga et al.,
2008).

The neural correlates of object detection have been explored with
different techniques in humans including EEG (Hillyard et al., 1973;
Navajas et al., 2013; Polich and Kok, 1995), fMRI (Kanwisher et al.,
1997), EcoG (Fisch et al., 2009; Gaillard et al., 2009), single cell recordings
in humans (Quiroga et al., 2008) and animals (Sigala and Logothetis,
2002). The visual and auditory oddball tasks are two well-known para-
digms that researchers employ to study target detection with EEG
(Hillyard et al., 1973; Polich and Kok, 1995). Several previous studies
using rapid serial visual presentation, attentional blink or oddball para-
digms have shown that targets and distractors are best separated by
the evoked P3 component (Hillyard et al., 1973; Kranczioch et al., 2003;
Polich and Kok, 1995). In our experiments we used a variation of the
classical oddball task; we employed faces as stimuli and asked subjects
to respond at the end of the sequence, rather than immediately after
seeing the target. These differences with respect to the classical oddball
task allowed us to control for the EEG activity related to button
responses after the presentation of the target stimuli; plus amore direct
comparison with the results of the free-viewing experiment. We tested
the hypothesis that a P3-like component is elicited upon target detection
during visual exploration. For the visual search and the oddball tasks the
fERPs/ERPs found in the first 250 ms were equivalent in latency and
amplitude for targets and distractors, while a robust P3 only associated
with the detection of targets appeared after ~300 ms. There were differ-
ences in the scalp topographies between both paradigms; while in free
viewing targets elicited a P3 component with maximum amplitude over
parieto-central recording sites, the oddball exhibited an earlier peak
with a frontal topography, followed by a later peak that also reached
central, parietal, and occipital channels.

Analysis of single trial epochs can potentially revealmore information
than average event-related potentials. Single trial analysis of event-
related potentials has previously been used to address different problems
such as the decoding of stimulus identity or subject's response from the
neural signals (Blankertz et al., 2011; Parra et al., 2008; Sajda et al.,
2009), the effects of trial-to-trial variability (Quiroga and Garcia, 2003;
Ratcliff et al., 2009), and the neural mechanisms underlying average
responses (Jung et al., 2001; Navajas et al., 2013). The signal-to-noise
ratio in the fERPs allowed single trial predictions: wewere able to distin-
guishfixations to targets anddistractors from the EEG signals for 11 out of
12 subjectswell above chance (mean accuracy of 63%). Although the per-
formance was significantly lower than the one obtained with the control
oddball paradigm, the information thatwas used by the classifier for both
tasks originated from the P3 component. Our results show that this
component, one of the landmarks of cognitive processing in EEG record-
ings, is present in visual search tasks with unconstrained spatial ocular
movements.

In addition to the cognitive components that emerged in the visual
search task, we also found artifact-related and sensory potentials. Near
fixation onset, we observed a frontal component that was generated by
the superposition of the spike potential (SP), caused by the contraction
of extra-ocular muscles, and the corneo-retinal dipole (CRD) that origi-
nates from the rotation of the eyes (Dimigen et al., 2009; Plöchl et al.,
2012; Yuval-Greenberg et al., 2008; see Figs. 2 and 3). As expected, this
potential peaked a few milliseconds after saccade onset, displayed a
biphasic shape, and increased its amplitude with saccade size (see
Fig. 6) (Carl et al., 2012; Keren et al., 2010). We also observed pre-
stimulus activity for the oddball task,which is likely to contain a contribu-
tion from the offset of the previous stimulus. Several characteristics of
sensory fixation-related potentials have been the subject of many recent
investigations. In particular, a recent study focusing on early potentials in
a free-viewing task showed that the amplitude of early fERP components
is modulated by differences in luminance between successive fixation
locations (Ossandón et al., 2010). Previous studies recording from V1
neurons of macaques examined the phase of neuronal oscillations after
fixation onset (Schroeder and Lakatos, 2009), and reported an enhance-
ment in the amplitude of the transient responses to visual stimuli; this
has been interpreted as a consequence of the increment in phase coher-
ence (Rajkai et al., 2008; Schroeder and Lakatos, 2009). Such findings
have led to the hypothesis that fixation-related responses to visual
stimuli should have a higher signal-to-noise ratio than ERPs obtained
underfixed-gazeparadigms.Our results favor this hypothesis by showing
an increase in amplitude of the P1 component for the fERPS compared to
conditions without eye movements. This modulation is characteristic of
the visually evoked lambda response (Thickbroom et al., 1991), which
appears approximately 100 ms after fixation onset, depending on the
saccade size, low level features; such as luminance and contrast, and
has been interpreted as the P1-equivalent in free-viewing (Dimigen
et al., 2012). Given the existence of a strong P1 response after fixation
and that the modulation of its peak amplitude is given by the amplitude
of the preceding saccade; our results suggest that for fERPs the P1 is gen-
erated by a perceptual component related to the processing of a stimulus
atfixation, andby a saccade component or lambdapotential generated by
brain activity associated with eye movements (Thickbroom et al., 1991;
Yagi, 1981). This is consistent with previous neurophysiological reports
in humans and monkeys that show the existence of saccadic related re-
sponses locked to the onset of eye movements (Fourment et al., 1976;
Rajkai et al., 2008; Skrandies and Laschke, 1997; but see also Ossandón
et al., 2010, for an experiment inwhich clear visual componentswere ab-
sent when subjects performed saccades on a homogeneously gray
screen).

For comparison, we implemented a simple fixed-gaze paradigm
using faces taken from the visual scenes. Although we tried our best to
make the paradigms as similar and comparable as possible, some visual
properties have not been preserved and some cognitive processesmight
have differed between the tasks. For example, the enhancement in the
amplitude of the P1 component during the visual exploration task in
comparison to the oddball task could reflect an increasing effort in
selecting the target from surrounding peripheral distractors, a higher
attentional demand (as demonstrated byHillyard et al., 1973), the influ-
ence of the preceding saccade amplitude (as shown in Fig. 6), or percep-
tual differences between the stimuli in the tasks (one face presented in
isolation during the oddball task comparedwith one face surrounded by
other faces during free exploration). Requiring participants to make
fixations with sufficiently long durations (in order to analyze late-
latency fERP components) might have also introduced some additional
neural activation linked to executive control or motor functions, which
could have also contributed to the differences between ERPs and fERPs.
Despite these differences due to the particular paradigm implemented
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here, central aspects of visual processing could be intrinsically different
between passive (fixed-gaze) search and active (free viewing) search.
First of all, in active search the decision of identifying the identity of a
stimulus is linked to the decision of where to look next; several models
of control of eye movements have been developed to explain that se-
quence mainly in visual search, scene perception and reading (Engbert
et al., 2005; Findlay andWalker, 1999; Nuthmann et al., 2010). Secondly,
the segmentation of the cognitive tasks could be different. Indeed, the
discrete stucturing of attention in an RSVP task (Wyble et al., 2009,
2011), has been recently shown to fit naturally into fixations using an at-
tentional blink task embedded in eye movements (Kamienkowski et al.,
2012a, 2012b). Finally, the expectation is also intrinsically different in
both fixed-gaze and free viewing; in natural viewing participants can
have a glance of the following position using peripheral vision (Kliegl
et al., 2006), and they are continuously updating information about the
whole scene, estimating the likely position of the target (Najemnik and
Geisler, 2005). We acknowledge the need of further studies to assess
those very interesting issues on fERPs in more ecological environments;
butwenote that, in spite of the differences between the tasks, remarkable
similarities in the late cognitive fERPs that distinguish targets from
distractors offer a novel bridge between fixed-gaze and free exploration
paradigms.

Understandingbrain responses under thepresence of eyemovements
is a challenging question, with theoretical and practical implications
(Dandekar et al., 2012). However, the few studies that have previously in-
vestigated saccade or fixation potentials have mostly used constrained
eye movement tasks with subjects moving their eyes at restricted loca-
tions and at fixed times set up experimentally. These works have focused
on a wide spectrum of questions; such as the technical challenges
concerning artifacts related to eye movements and microsaccades
(Dimigen et al., 2009, 2011; Keren et al., 2010; Yuval-Greenberg et al.,
2008), early evoked potentials or “lambda waves” (Thickbroom et al.,
1991; Yagi, 1981) and reading (Dimigen et al., 2011). To date, only a
handful of studies have looked at fixation-elicited ERPs in tasks allowing
eye movements (Brouwer et al., 2013; Dimigen et al., 2011; Graupner
et al., 2007; Kamienkowski et al., 2012a, 2012b; Ossandón et al., 2010)
and, to our knowledge, no study has previously focused on cognitive
ERP components appearing in tasks involving natural scenes.

While several algorithms have been proposed to mitigate the effects
of ocular artifacts in the EEG signal, most of them have been largely re-
stricted to the occurrence of rare eye movements occurring in fixation
tasks (Jung et al., 1998). Two recent studies have extended ICA-based
methods to the field of reading (Dimigen et al., 2011) and to correct for
ocular artifacts occurring in saccades across two dimensions (Plöchl
et al., 2012). Although these methods were successful in allowing some
types of analyses, their application to tasks involving natural scenes,
which involve saccades of a wide variety of amplitudes and that are un-
constrained in their spatial directions, has remain elusive. This occurred
because the number of ICA coefficients related to the artifacts present
in the signal increases if eye movements are to be performed freely. Im-
portantly, our experimental design allowed us to avoid this data process-
ing and to directly compare the fERP responses with a control oddball
paradigm.

Here we presented a first approach towards brain responses in nat-
ural vision.We did so by showing that it is possible to obtain robust cog-
nitive components across spatially unconstrained eye-movements in a
real-world-like scenario. We believe our results will encourage further
work to understand the mechanisms of object processing and target de-
tection during visual exploration of natural scenes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.12.006.
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