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Abstract
In meta-analysis the random-effects model is often used to account for heterogene-
ity. The model assumes that heterogeneity has an additive effect on the variance of
effect sizes. An alternative model which assumes multiplicative heterogeneity has
been little used in the medical-statistics community, but is widely used by particle
physicists. In this paper we compare the two models using a random sample of
448 meta-analyses drawn from the Cochrane Database of Systematic Reviews. In
general, differences in goodness of fit are modest. The multiplicative model tends
to give results that are closer to the null, with a narrower confidence interval. Both
approaches make different assumptions about the outcome of the meta-analysis.
In our opinion, the selection of the more appropriate model will often be guided by
whether the multiplicative model’s assumption of a single effect size is plausible.

Introduction
A meta-analysis (MA) provides a quantitative summary of a measure taken from
a collection of studies usually obtained via a systematic review process. MAs are
widely used in economics, the social sciences and in medicine (see, e.g. White-
head (2002); Borenstein et al. (2009)). Although the studies included in a MA
should be comparable, it is not uncommon for there to be heterogeneity between
the effect sizes of the studies.
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Two main models are commonly applied in MA; the fixed-effect model, and
the random-effects model. The former assumes that there is a single true effect
size, and which each study included in the MA is measuring, and so any variation
between studies is assumed to be due to random error. In contrast, the random-
effects model allows for heterogeneity and assumes that the effect sizes of the
studies included in the MA are a random sample of all effect sizes from studies
addressing the question that met the criteria for inclusion in the underlying sys-
tematic review. The distribution of these effect sizes, with a focus on its mean, is
usually the outcome of the random-effects MA (Borenstein et al., 2009).

Under the random-effects model (see, e.g. Whitehead (2002)):

θ̂i ∼ N(θ,v2
i + τ2)

where θ̂i and v2
i are the observed estimates of the effect size and sample variance of

the ith study, and τ2 is the between-studies variance. A variety of estimators have
been proposed for τ2 (DerSimonian and Kacker, 2007; Veroniki et al., 2015), the
most frequently used of which is probably the DerSimonian and Laird estimator
(DerSimonian and Laird, 1986).

Under the random-effects model, the weight assigned to each study in the MA
is given by:

wi =
1

v2
i + τ2

where vi is the variance of the ith study. Both the study variances and τ2 are
generally treated as known, and hence their uncertainties ignored, although pro-
file likelihood (Hardy and Thompson, 1996) and Bayesian methods (Smith et al.,
1995) can relax these assumptions. Thus, in the presence of heterogeneity, as τ2

increases relative to the vis, the weights assigned to each study will become rela-
tively more similar. This has the effect of reducing the influence of studies with a
small variance (usually the larger studies in the MA).

Thompson and Sharp (1999) considered an alternative method of accounting
for heterogeneity by the use of a multiplicative parameter:

θ̂i ∼ N(θ,v2
i φ)

with φ, which is estimated from the data, set to 1 if the estimate is < 1. This
model gives the same effect size as a fixed-effect analysis, but with standard errors
inflated by

√
φ. The appropriate value of φ can be established by running a linear

regression of the observed effect sizes against a constant, with weights wi = 1/vi
and extracting the mean squared error (Thompson and Sharp, 1999). We note
that Higgins’s H2 = Q/k − 1 (Higgins and Thompson, 2002) is equivalent to this
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quantity (Stanley and Doucouliagos, 2015), which is also referred to as Birge’s
ratio (see, e.g. Cooper et al. (2009)).

In contrast to the random-effects model, which accounts for heterogeneity by
adding a constant, τ2 to each study’s variance, the variance of each study is mul-
tiplied by a constant, φ. Smaller studies therefore have a smaller absolute increase
in variance under the multiplicative model than the additive random-effects model.

This model has, until recently, received little attention in the medical statistics
literature, although as Baker and Jackson (2013) observe, its use is well estab-
lished in the synthesis of the results of particle physics experiments (Rosenfeld,
1975). In contrast to the random-effects model, the relative weights of each study
are independent of the level of observed heterogeneity. Interestingly, the particle
physicists exclude studies with a very low precision, relative to the rest of the MA,
using an “arbitrarily chosen” threshold (Beringer et al., 2012). They reason that,
although these studies can only make a very modest contribution to the overall
effect size, they can make significant contributions to the amount of heterogeneity
observed.

Thompson and Sharp did not recommend the multiplicative model, noting
that:

“The rationale for using a multiplicative factor for variance inflation
is weak. The idea that the variance of the estimated effect within each
study should be multiplied by some constant has little intuitive appeal,
and leads to the same dominance of large studies over small studies
that has been criticised in the context of fixed-effect meta-analysis.”

A multiplicative model has recently been re-investigated by Stanley and Dou-
couliagos (2015). They show, via a simulation study, that under large levels of ad-
ditive heterogeneity the coverage of the model outperforms the additive random-
effects model (although they do not impose the requirement φ ≥ 1). They also
note the multiplicative model has better coverage and resistance to bias in the
presence of publication bias. As they observe “the advantage of the weighted least
squares meta-regression [i.e. the multiplicative model] is largest in those exact
conditions for which random-effects are designed—large additive heterogeneity”.

Implications of the fixed-effect, additive random-effects and multiplicative
models are illustrated for two example data-sets (discussed in more detail later
in the paper) using the funnel plots (Light and Pillemer, 1984) in Figure 1. In
addition to plotting the observed studies on the plots, we include 95% pseudo
confidence regions, in which we expect 95% of the observed study estimates to
lie under each of the models. They serve to illustrate how the variation in het-
erogeneity with respect to the precision of studies may be better modelled by the
either the additive or multiplicative term.
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This paper uses a large collection of MAs from the January 2008 issue of
the Cochrane Database of Systematic Reviews (CDSR) to perform an empiri-
cal study of the effects of using the multiplicative model instead of the random-
effects model. The database contains 2,321 reviews, which contain 22,453 meta-
analyses, classified by medical speciality, type of intervention in the comparison
(e.g. pharmacological, surgical, etc.) and type of outcome (e.g. mortality, pain,
quality of life, etc.). The data cover a wide range of subject areas, interventions
and outcome types and are described more fully by Davey et al. (2011).

Methods
The fixed-effect, random-effects and multiplicative models were fitted to a random
sample of binary outcome data MAs taken from the CDSR. A systematic review
could use the same study in more than one meta-analysis (for example in meta-
analyses looking at different outcomes, such as an efficacy outcome and a safety
outcome). In order to ensure independence between analyses a single meta analy-
sis from each systematic review was selected at random. Studies were combined
across subgroups within the same CDSR forest plot. As subgroup analyses were
not necessarily mutually exclusive it would have been possible for a study to be
included more than once in a meta-analysis; these duplicates had previously been
removed from the data as described by Davey et al. (2011).

It would be difficult to compare the appropriateness of the two models in meta-
analyses with very few studies, owing to the difficulties in estimating τ2 and φ,
therefore if a meta-analysis had fewer than 10 studies it was excluded from the
database.

The odds-ratio was used as the primary outcome measure, although the analy-
sis was repeated using the risk-ratio as a sensitivity analysis. The metafor package
(version 1.9-3) (Viechtbauer, 2010) for R (version 3.1.2) (R Core Team, 2014) was
used to calculate (logged) effect sizes and to fit the random-effects models. τ2 was
calculated using the Paule and Mandel estimator (Paule and Mandel, 1982), as
this has been shown to be statistically optimal (DerSimonian and Kacker, 2007).
We extended the metafor package’s code to allow the fitting of the multiplicative
model. This was done by inflating the variances of the studies contributing to a
fixed-effect meta-analysis, calculating φ as described above. Following Thomp-
son and Sharp (1999), where φ < 1 we set φ = 1.

A continuity correction of 0.5 was added to all cells of the 2x2 table for trials
with at least one zero in any of the cells. Trials with no events in either arm were
removed, as such trials provide no information on which group has the higher risk
when using the odds ratio as an outcome measure (Higgins and Green, 2011).

The goodness of fit of the models was compared by taking differences in AIC
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between the additive and multiplicative model. As smaller values of the AIC
indicate a better fitting model, positive values of this quantity indicate that the
multiplicative model is favoured over the additive model.

The magnitudes of the effect sizes and widths of their associated confidence
intervals were compared under each model. An exploratory regression analysis
was performed to investigate characteristics of the MAs that were better supported
by each model. Covariates (described below) were regressed in univariate analy-
ses against the difference in AIC. As positive values of this quantity indicate that
the multiplicative model is favoured over the additive model, positive values of
the regression coefficient, β, suggest that larger values of the covariate favour the
multiplicative model.

We considered plausible covariates by considering the differences in the as-
sumptions underlying the models, and examination of the forest plots of MAs that
were particularly well fitted by one or other of the models. These showed that the
multiplicative model tended to favour MAs where the largest studies had similar
effect sizes. In the presence of heterogeneity these studies will have larger weights
in the multiplicative model than under the additive model. In order to quantify this
difference, we calculated each study’s difference in effect size from the effect size
of the most precise study in the MA. As the sign of this difference is unimportant,
and because it seems reasonable to penalise larger differences more, this quantity
was squared. The squared difference was divided by the study’s variance, reflect-
ing the weight it has in the fixed-effect MA. This gives:

D2 =

k∑
i=1

(yi − ymax prec)2

vi

Where yi and vi are the effect size and variance of the ith study, and ymax prec
is the effect size of the study with the smallest variance in the MA. The quan-
tity is similar to Cochran’s Q statistic, which we also considered. Logs of these
quantities were taken to reduce skew.

As the multiplicative model assumes a single effect size, it may be more diffi-
cult to satisfy this requirement when there are many studies included in the MA.
Consequently, we considered number of studies in the MA as a covariate.

When there is little variation in the precisions of studies contributing to the
MA there can be less difference between the additive and multiplicative models,
as the relative weights of the studies will be quite similar. To quantify the level of
variation in study precisions, the variance of the relative variances (i.e. vi/

∑
vi)

was calculated for each MA. Logs of this quantity were taken to reduce skewness.
We considered an alternative method of exploring the heterogeneity within a

MA by splitting each MA into tertiles by study size. Additive and multiplicative
models were then separately fitted to the largest third of studies and the smallest

5



third of studies. As the median number of studies per MA included in the regres-
sion analysis was 12, we note that these estimates will, in general, be associated
with considerable uncertainty.

Results
Of the 22,453 MAs in the database, 14,886 were for binary outcomes (excluding
MAs that had reported binary results as part of a MA of a survival analysis). There
were 7,265 studies with no events in both treatment and control arms, which were
removed from the MA they were included in. After these studies were removed,
MAs with fewer than 10 studies remaining were removed giving 1,402 potential
meta-analyses. One MA from each systematic review was randomly selected,
to ensure independence, giving a final sample of 448 MAs. Table 1 provides
summary statistics of the MAs that were included.

Of the 448 meta-analyses, 160 (35.7%) had φ̂ < 1; φ̂ was set to 1 for these
studies. 145 MAs (32.4%) had τ̂2 = 0, all of which also had φ̂ = 1.

Figure 2 shows the relationship between the variance of the log odds ratios, τ2,
and the variance scaling factor, φ, for each of the meta-analyses. There is a fairly
strong correlation between the two measures of heterogeneity (ρpearson = 0.536,
excluding studies with τ2 = 0 and φ = 1, ρ′pearson = 0.478 ), although some MAs
have a relatively large value of τ2 in the additive analysis, and a small value of φ
in the multiplicative analysis (or vice versa).

Excluding the 145 MAs for which heterogeneity was estimated to be zero,
and thus equivalent to the fixed-effect model, the median difference in AIC was
0.028 (Inter-quartile range: −0.5 to 0.884). A histogram of AIC differences is
shown in Figure 3. A difference in AIC of at least two is often taken as showing
a substantial improvement in a model. By this criterion 9.38% of the studies were
substantially better fitted by the multiplicative model and 6.92% of MAs are better
fitted by the random-effects model. Considering a more stringent requirement of
taking differences of at least five as being important, 2.01% of MAs are better
fitted by the additive model. The same percentage (2.01%) are better fitted by the
multiplicative model.

Effect sizes and confidence intervals
Two hundered and twenty MAs recorded an absolute effect size closer to the null
under the multiplicative model than the additive model. Eighty three had a larger
absolute effect size. The remaining MAs were those that were equivalent to the
fixed-effect model. MAs’ effect sizes were slightly smaller under the multiplica-
tive model (paired t-test, mean difference in LOR: 0.021, p=0.002).

6



Two hundred and eighty six MAs had a narrower 95% confidence interval
under the multiplicative model, 17 MAs had a wider interval (the remaining MAs
had φ = 1 and τ2 = 0 and so had identical CIs). There was strong evidence for
a difference in CI widths between the two models (paired t-test, mean difference:
0.076, p<0.001).

Table 2 shows the number of MAs that were statistically significant at the
5% level under each of the three models. As the multiplicative model has the
same point estimate as the fixed-effect model, but with a wider CI when φ > 1,
none of the MAs which were not statistically significant under fixed-effect can
be statistically significant under the multiplicative model. Twenty three MAs are
significant under the fixed-effect model, but not under either the additive or multi-
plicative models. Twenty six MAs were statistically significant under only one of
the additive or multiplicative models.

Predictors of the more appropriate model
We performed an exploratory linear regression analysis to investigate the factors
that influenced whether a particular MA was likely to be better fitted by the addi-
tive or multiplicative model. Owing to the large amount of unexplained residual
variation we verified that the univariate linear regressions explained the broad
trends in the data by visually comparing the results of the linear regression to a
LOWESS smoothed curve (Cleveland, 1981). The 145 MAs which had τ2 = 0
under the additive model and φ = 1 under the multiplicative model were excluded
from this analysis, as they would be best fitted by the fixed-effect model. A sensi-
tivity analysis showed that their inclusion had little influence on the model.

There was a statistically significant association between MAs with large values
of log(D2) and their being better fitted by the additive model (β = −0.697, p <
0.001), although this explained relatively little of the observed variation (R2 =

0.046).
We found that the log of Cochran’s Q statistic explained less of the observed

variation than log(D2) (β = −0.417, p = 0.039, R2 = 0.014). No significant
association between number of studies and model appropriateness was found (β =

−0.003, p = 0.742, R2 = 0). MAs with a large amount of variation in variances
tended to be better fitted by the multiplicative model (β = 0.283, p = 0.029),
although this explained little of the variance in the regression(R2 = 0.016).

When large amounts of heterogeneity were estimated in the smaller studies
(using either additive or multiplicative models), this was strongly associated with
the multiplicative model being favoured (Additive: β = 1.029, p < 0.001, R2 =

0.189, multiplicative: β = 0.651, p < 0.001, R2 = 0.091). Large amounts of
heterogeneity in the larger studies were associated with the additive model being
favoured, although this result was not statistically significant using the additive
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model (additive: β = −0.086, p = 0.6, R2 = 0.001, multiplicative: β = −0.179,
p < 0.001, R2 = 0.078.).

The relative levels of heterogeneity between the largest and smallest thirds
of studies was also considered. The ratio φlarge/φsmall was calculated for each
MA. Large amounts of heterogeneity in the small studies, relative to the large
studies, led to the multiplicative model being favoured (β = −0.76, p < 0.001,
R2 = 0.289).

Multivariate models were explored, considering the number of studies, log(D2),
the logged variance of relative study variances, and φlarge/φsmall as covariates.
These covariates were selected as they represent different aspects of the model,
and are relatively uncorrelated (all pairwise correlations have |ρ| < 0.5, with the
exception of number of studies and logged variance of relative study variances
(ρ = −0.677).)

The glmulti package (Calcagno and de Mazancourt, 2010) for R was then
used to find the best fitting main-effects model, using these covariates, taking the
AIC as the model selection criterion. This did not result in the removal of any
covariates. All two level interactions were then included in the potential model,
and the selection process repeated. Three way or higher level interactions were not
considered. This gave the model shown in Table 3, which contained all two-way
interactions with the exception of the k × D2 interaction.

In order to assist interpretation of this model, Table 4 shows the predicted
differences in AIC for hypothetical MAs with the minimum, maximum and me-
dian value of each covariate when the remaining covariates take their median val-
ues. For typical values of the other parameters, the ratio of heterogeneity between
the largest and smallest studies appears to be the most significant predictor of
whether the additive or multiplicative model is preferred. MAs with highly het-
erogeneous large studies, relative to the heterogeneity of the smaller studies tend
to be favoured by the additive model.

Alternative outcome measures
The use of the log risk-ratio was considered as an alternative outcome measure.
The difference in AIC between the additive and multiplicative models was cal-
culated, and compared to the differences in AIC when the OR was used as the
outcome measure. Taking differences in AIC of at least two as significant, 323
of the 448 MAs in the sample were not significantly better fitted by either model
under either outcome measure. There were 78 MAs that were significantly better
fitted by the same model under both outcome measures, and 5 MAs whose signif-
icantly preferred model depended on the outcome measure used. The remaining
42 MAs were significantly better fitted by one or other of the models under only
one of the outcome measures.
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Illustration with example data-sets
Thompson and Sharp (1999) criticise the “dominance of large studies over small
studies” under the multiplicative model, compared with the additive model. In
some circumstances this could be considered an advantage. Consider the well
known and much studied example of magnesium to treat acute MI (see, e.g. Li
et al. (2007); Higgins (2002)). Here, small, early trials and meta-analyses showed
substantial reductions in mortality for patients treated with intravenous magne-
sium. In contrast, the 1995 ISIS-4 “mega trial” of 58,050 participants, showed
“no significant reduction in 5-week mortality, either overall. . . or in any subgroup
examined”. The substantial heterogeneity in the MA has the effect of down-
weighting the ISIS-4 trial to the extent that it is impossible for it to supersede
the earlier results; a random-effects analysis including the trial suggests that mag-
nesium is an effective intervention (OR: 0.55, 95% CI: 0.39 to 0.78). In contrast,
the multiplicative or fixed-effect models suggests there is little evidence for the
intervention’s efficacy (OR: 1.02, 95% CI (multiplicative model): 0.92 to 1.13,
95% CI (fixed-effect model): 0.96 to 1.08). Given the very different effect sizes
reported in the studies underlying the analysis, the more liberal assumptions of
the random-effects model appear to be more appropriate, even though this model
gives a more favourable result than a recent Cochrane review, which concluded
magnesium was unlikely to be effective (Li et al., 2007). We note, however, that
as with any meta-analysis, (possibly unmeasured) study level covariates could ex-
plain some of this heterogeneity, and that any residual heterogeneity would still
need to be modelled appropriately having modelled these.

Figure 1 shows funnel plots for the datasets used in our empirical investigation
in which the difference in fit between additive and multiplicative models was the
greatest. The additive model fitted dataset 1 the best while the second dataset
plotted was fitted best by the multiplicative model. The 95% pseudo confidence
intervals included on the plots indicate the assumptions about the nature of the
heterogeneity, as described in the introduction. For neither dataset does a fixed
effect model look reasonable (Figures 1a and d) as several studies exist outside the
confidence region. For dataset 1 (Figures 1a, b, c) we see that the heterogeneity
is fairly constant over the whole range of standard errors—the assumption that is
consistent with the additive random effects model. In contrast, dataset 2 (Figure
1d, e, f) would appear to have heterogeneity which increases with standard error
and such an appearance is best accommodated by the multiplicative error term
(considerably inflated beyond that allowed under the fixed effect assumption).
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Discussion
This work has shown that, according to goodness of fit statistics, there are rarely
significant differences in model fit observed when comparing the use of an addi-
tive or multiplicative meta-analysis model. There are, however, some MAs that
are clearly better fitted by one or other of the models. The reasons behind this
were examined using an exploratory regression analysis, which showed that large
amounts of heterogeneity in the larger studies (particularly when this was large
relative to the amount of heterogeneity in the smaller studies) led to the additive
model being favoured. This is due to the relatively lower weights that will be
assigned to the large studies under the additive model.

The multiplicative model tended to give effect sizes that were closer to the null
and narrower confidence intervals than the additive model. We note that smaller
(and potentially more biased) studies tend to show larger effect sizes (Nüesch
et al., 2010; Sterne et al., 2000, 2001; Turner et al., 2012), and that these will have
less weight under the multiplicative model, in the presence of heterogeneity. As
this is an empirical study, the true effect size and confidence interval are unknown.

Although it is useful to think about the additive and multiplicative models in
terms of comparing goodness of fit statistics, the models have quite different as-
sumptions. In common with the fixed-effect model, the multiplicative approach
assumes a single overall effect size. In contrast, the outcome of the random-effects
model is the mean of the effect sizes for all the studies that could have contributed
to the MA. Although the model’s goodness of fit is clearly an important factor,
we would argue that the appropriateness of the underlying the model is also im-
portant. For the multiplicative model, the assumption of a single effect size will
often be unrealistic; the characteristics of participants and the precise nature of
the intervention in the trials contributing to the meta-analysis will often vary.

A single effect size is likely to be a more tenable assumption in some cir-
cumstances. The particle physics meta-analyses considered by Baker and Jackson
(2013) should be measuring a single effect (for example, the mass of a fundamen-
tal physical particle). In medical statistics there are few situations where we can
be confident that a single effect size is the most appropriate outcome of a meta-
analysis. In the presence of very similar study protocols, as might be observed
if the results of a multi-centre trial were combined using a meta-analysis, it may
well be appropriate to assume a single effect size. We cannot, however, rule out
that the true effect measured by each centre is different; for example, different ex-
perience levels of staff performing the intervention or differences in the baseline
characteristics of participants could lead to the efficacy of the intervention varying
between sites.

The models used in this paper were applied to binary outcomes, using the
log odds-ratio as the outcome measure. A sensitivity analysis showed that similar
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results were obtained using the log risk-ratio. The models used in this paper could,
in principle, be applied to other types of outcome measure, provided the normality
assumptions that underlie the models can be satisfied.

This work used on a frequentist approach, although all of the models dis-
cussed here can be readily implemented using MCMC methods, in WinBUGS
(Lunn et al., 2000), for example. Implementing the models using an MCMC ap-
proach provides an estimate of the uncertainties in τ2 and φ and incorporates this
uncertainty into the models’ estimated effect sizes.

In this work, we set φ = 1 if its estimate was < 1. Others have considered
similar MA models with an over-dispersion parameter and allowed it to be esti-
mated as < 1 (i.e. implying under-dispersion) (Stanley and Doucouliagos, 2015;
Moreno et al., 2009; Kulinskaya and Olkin, 2014). φ < 1 implies there is less
between study variation in the MA than we would expect by chance; this may
occur if the same study is included multiple times in the MA or in the presence of
publication bias. We would argue against allowing φ < 1, but would suggest that
it could be useful as a diagnostic tool.

It is known that the random-effects model is sensitive to publication bias
(Brockwell and Gordon, 2001). Henmi and Copas (2010) proposed a model that
uses the point estimate obtained from a fixed-effect analysis, but incorporates
the uncertainty due to τ2 in the confidence interval. As the fixed-effect model
down-weights the smaller studies (which are more prone to bias), relative to the
random-effects model, they show that their approach is less prone to bias. The
multiplicative model discussed in this paper shares many of the appealing fea-
tures of Henmi and Copas’s model; under both models the relative weights of the
studies will be equal, and identical to the fixed-effect weights. Both may return
a wider confidence interval than the fixed-effect model, reflecting any observed
heterogeneity.

Baker and Jackson (2013) explored the goodness of fit of the additive and
multiplicative models by maximising the likelihood of a model that allows one
to interpolate between the additive and multiplicative models. They fitted this
model to (separate) collections of medical and physics MAs, and obtained results
consistent with the additive model, on average, better fitting both groups of MAs.
Their model raises the intriguing possibility that a ‘hybrid’ model that combines
elements of the multiplicative and additive models may be more appropriate for
some MAs. This would avoid the rather strict assumption of a single effect size,
while mitigating the equalisation of study weights that is characteristic of the ad-
ditive model in the presence of heterogeneity. We note that some of the MAs
examined in this paper had rather large estimates of τ2 and rather small estimates
of φ, and vice versa (Figure 2), suggesting they may well be measuring different
aspects of heterogeneity. The outcomes of the Baker and Jackson model for in-
termediate values of the parameter that controls the ‘additiveness’ of the MA are,

11



unfortunately, rather difficult to interpret. We plan to explore an alternative for-
mulation of their model, whose parameters are more closely analogous to φ and
τ2, in a forthcoming paper.

Cochran’s Q statistic (Cochran, 1954) is often used to test for heterogeneity in
a MA, although it is known that its power is poor where there is limited informa-
tion (Hardy and Thompson, 1998). In the circumstances where the outcome of the
MA must be a single true effect (for example the physics experiments referred to
previously), then the multiplicative model would appear to be the more appropri-
ate model to use. Since the multiplicative model takes account of heterogeneity,
the CI returned will be wider if it is present. In the absence of heterogeneity, the
model reduces to fixed effect model. As such, the multiplicative model may be
considered to be a more general model, although the value of φ will clearly be of
interest in interpreting the results of the MA. In the medical area the assumption of
a single true effect is much less likely to be tenable, so the random-effects model
would usually appear more appropriate.

In this paper we showed that the statistical significance of both models tended
to agree. In general, if visual inspection of the MA using a funnel plot suggests
that the chosen model is inappropriate we would suggest running the other model
as a sensitivity analysis. If this leads to a different conclusion we would suggest
reporting this and applying appropriate caution when drawing conclusions from
the analysis.
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Tables

Min Q1 Median Q3 Max
Trials per meta-analysis 10 10 12 16 158
Participants in treatment groups 38 567.5 1018 2259.75 243928
Events in treatment groups 5 89 210 477 29866
Participants in control groups 74 523.5 964 2138.25 211559
Events in control groups 0 92 218 449.5 8216

Table 1: Summary information for the 448 meta analyses used. Participant and
event totals are taken across all studies included in the meta-analyis.
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Fixed-effect SS NSS
Multiplicative

SS NSS SS NSS

Additive
SS 235 10 0 1
NSS 15 23 0 164

Table 2: Numbers of MAs that were statistically significant (SS) or not statis-
tically significant (NSS) at the 5% level under each of the models, split by whether
the fixed-effect MA was statistically significant.
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Difference in AIC

Interactions model

Number of studies 0.019 (−0.103, 0.141)
log(D2) 2.860 (0.696, 5.030)
log(vi/

∑
v) −0.304 (−1.580, 0.970)

φlarge/φsmall −0.189 (−1.370, 0.992)
Number of studies × log(vi/

∑
v) −0.012 (−0.023, −0.0001)

log(D2) × log(vi/
∑
v) 0.377 (−0.024, 0.778)

Number of studies ×φlarge/φsmall −0.058 (−0.085, −0.032)
log(D2) × φlarge/φsmall −0.197 (−0.374, −0.020)
log(vi/

∑
v) × φlarge/φsmall −0.183 (−0.407, 0.041)

Constant −3.960 (−10.900, 2.960)

Observations 303
R2 0.424
Adjusted R2 0.406
Residual Std. Error 1.840 (df = 293)
F Statistic 23.900∗∗∗ (df = 9; 293)

Table 3:1 The model for predictors of whether the additive or multiplicative
model is preferred. Coefficient estimates and 95% confidence intervals are given.
*** p < 0.01.

1Table created using Stargazer (Hlavac, 2014).
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Estimate Lower bound Upper bound
log(D2) 0% (2) -0.07 -3.72 3.59

log(D2) 50% (3.31) 0.75 -2.88 4.38
log(D2) 100% (5.67) 2.23 -1.55 6.02

log(vi/
∑
v) 0% (-10.63) -2.26 -6.24 1.71

log(vi/
∑
v) 50% (-5.24) 0.75 -2.88 4.38

log(vi/
∑
v) 100% (-3.11) 1.94 -1.73 5.62

Number of studies 0% (10) 0.75 -2.89 4.38
Number of studies 50% (12) 0.75 -2.88 4.38

Number of studies 100% (158) 1.05 -8.54 10.64
φlarge/φsmall 0% (0.14) 1.45 -2.19 5.09
φlarge/φsmall 50% (1.33) 0.75 -2.88 4.38

φlarge/φsmall 100% (13.06) -6.09 -10.44 -1.74
Table 4: Predicted values of the difference in AIC from the model in Table 3,

including 95% prediction intervals. The covariate listed is set to the appropriate
percentile (values given in brackets), while the other three variables are set to their
median value.
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