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A b st r a c t

The  A ssig n m e n t  o f  P r o t ein  N M R  S pe c t r a  

U sin g  a  Ge n e tic  A lgorithm

B artlett G Ailey

NMR spectroscopy is one of the two methods for determining the structures of 
proteins. The production of a structure using NMR has a number of phases; 
with the assignment phase being one of the most time consuming. Any 
automation, even partial, of the assignment process would be of enormous 
benefit. This thesis describes five modules (2D-SAM, 3D-SAM, BAM-1, BAM-2 
and SCAM) that use a genetic algorithm (GA) to assign protein NMR spectra. 
The 2D-SAM and 3D-SAM are Sequential Assignment Modules. They take the 
relevant spin system identification and sequentially assign either a 2 
dimensional homonuclear or 3 dimensional heteronuclear NOESY spectra. The 
2D-SAM is effective with small proteins which generate high quality spectra 
while the 3D-SAM is effective with larger isotopically labelled proteins. The 
BAM-1 and BAM-2 are Backbone Assignment Modules. The BAM-1 takes 
several triple resonance spectra and assigns the peaks to relevant nuclei 
creating peak systems. The BAM-2 takes the peak systems and sequentially 
assigns them. The SCAM is a prototype Side Chain Assignment Module; it is 
designed to take either a HCCH C13 TOCSY or COSY spectrum and assign its 
peaks to certain types of amino acid. The BAM-1, BAM-2, and SCAM were 
designed to work in sequence to assign a whole protein. Although each module 
is designed to assign a specific type of spectrum or spectra they are all based 
around the same GA core. This core uses a crowding factor, phenotypic domain 
specific genetic operators and a novel age concept to improve its performance. 
When evaluated the performance of each module (average correct assignment) 
was 2D-SAM 100%, 3D-SAM 71%, BAM-1 96% and BAM-2 75%.
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1 .0  I n t r o d u c t i o n

Proteins are essential for life, even the simplest of living organisms1 possess 
them. They form the most diverse class of biological macromolecules in both 
their structure and function. Proteins have three major functions: catalytic, 
mechanical and regulatory. In the form of enzymes2 proteins catalyse nearly 
all biological reactions. They are also responsible for both the structure and 
movement of living organisms on both the intra and extra cellular level. These 
functions, and others, within an organism are regulated and controlled either 
directly or indirectly by other proteins. Although these are the main functions 
of proteins there are a number of others. The function of a protein is 
dependent upon its structure. Therefore the great diversity of protein function 
is dependent on an equal diversity of protein structure.

Proteins are formed by the combination of smaller biological molecules called 
amino acids. There are twenty naturally occurring amino acids and although 
each is different they all share certain properties (Figure 1.1). It is their 
shared property of being able to link to two other amino acids that enable 
them to form proteins; a protein is a chain of amino acids (Figure 1.2). The 
sequence and length of an amino acid chain determines the structure of a 
protein. The amino acid chain of a protein can be anything from a few tens to 
thousands of amino acids in length. The number of possible proteins formed for 
each chain length is 20 to the power of the chain length (Table 1.1). It is this 
astronomical number of possible amino acid sequences combined with the 
variety of amino acid biochemistry that gives proteins their structural 
diversity.

Proteins are classified as having 4 levels of structure. The primary structure of 
a protein is its amino acid sequence. The secondary structure of a protein is 
the local conformation of the amino acid chain. There are three main types of 
secondary structure: a-helix, P-sheet and random coil. In the a-helix secondary 
structure (red area of Figure 1.3 and Figure 1.4) the amino acid chain forms a 
helix. In the p-sheet form (yellow area of Figure 1.3 and Figure 1.4) two or 
more regions of the amino acid chain of the protein align with each other to 
form a plane or sheet. In the random coil (blue and white area of Figure 1.3 
and Figure 1.4) there is effectively no secondary structure, the amino acid 
chain is in an irregular configuration. The sequence of amino acids in a protein 
determines its secondary structure and a protein can have all three types of

1 Viruses are the simplest form of life; so simple it is debatable as to whether they are alive.

2 Biological catalysts.

1
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Table 1.1 Increase in the number of amino acid sequences with the 
increse in amino acid chain length.

Amino Acid Chain Length Number of Possible Proteins
1 20

10 1.024 x 1013
100 1.268 x 10130

Figure 1.1 Amino acid chain strucutre.
H R
I l

N — C — C — H
I I II
H H O

A single amino acid

H R H R H R
1 1 1 1 1 1

N - - C  — C- - N - - C  — c- - N - - c - - C
1 1 II1 1 1 II 1 1 II
H H O H H O H H O

Three amino acids linked together

All amino acids conform to this structure, they vary in the nature of the R.
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Figure 1 .2  The amino acid chain of a protein



Figure 1 .3  1BTA (PDB) a -H elica l secondary strucutre



Figure 1 .4  1BTA (PDB) [3-Sheet secon dary  stru cu tre
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secondary structure (Figure 1.3 and Figure 1.4). The tertiary structure of a 
protein is the global conformation of the amino acid chain. A protein has 
quaternary structure when it formed by two or more amino acid chains, the 
combination and interaction of the chains form its quaternary structure

Determining the primary structure can be done chemically but the secondary, 
tertiary and quaternary have to be determined using physical techniques. To 
determine the three dimensional structure of a protein at atomic resolution 
there are only two techniques: x-ray crystallography and NMR3 (1). X-ray 
crystallography uses the x-ray diffraction pattern from the crystals of a protein 
to determine its three dimensional structure. In NMR the magnetic resonance 
of certain nuclei in the protein are used to generate NMR spectra; the 
information in the spectra is then used to determine its three dimensional 
structure. In the resolution of the protein structure and the size of protein to 
which the technique can be applied x-ray crystallography is the superior 
technique. NMR is superior in that it delivers the structure of the protein 
under near in vivo conditions and information about its dynamics.

Nuclear magnetic resonance is a property exhibited by certain atomic nuclei. 
In the context of protein NMR only the XH, 13C and 15N nuclei exhibit useful 
magnetic resonance. When the nuclei are placed in a magnetic field they will 
absorb electro-magnetic energy at certain characteristic frequencies, they 
resonate. The resonant frequency can be altered or shifted by the electrons of 
the atom. The chemical environment of the atom will affect its electrons and 
thus its resonant frequency. The degree to which the resonant frequency is 
shifted is itself characteristic of the chemical environment of the atom. This 
environment depends on the other atoms it is bonded to, the nature of those 
bonds and other nearby atoms. The shift in resonance frequency of a nucleus 
caused by its chemical environment is called a chemical shift. Chemical shifts 
are small and consequently measured in parts per million (ppm).

In protein NMR (2, 3, 4 & Chapter 2) sophisticated techniques are used to 
determine the resonant frequencies of most of the nuclei4 in the protein and 
the distance between them. This information is then used, in combination with 
knowledge of the molecular dynamics of amino acid chains, to create a three 
dimensional structure of the protein. The process of determining the three 
dimensional structure of a protein has a number of different stages (Figure

3 Nuclear Magnetic Resonance.

4 The nuclei that exhibit useful magnetic resonance.

2
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2.1). The most time consuming and least automated of these is the assignment 
phase in which the resonances observed in an NMR spectrum are assigned to 
one or more nuclei.

There have been a number of attempts to automate the assignment of protein 
NMR spectra. Most of these have concentrated on a rigid examination of NMR 
spectra to extract information to construct possible assignments followed by an 
exhaustive comparison of these possible assignments to choose the best ( 5, 6, 
7, 8, 9, 10, 11 & 12 ). The applications generated had some success with very 
small easily assigned proteins, but problems arose when larger proteins were 
attempted. The data from larger proteins is nearly always more ambiguous 
(Section 2.2.2, 2.3.2, 2.4.2 & 2.5.2) and the number of possible assignments 
increases geometrically. The first problem will exacerbate the second. The 
rigidity of the programs could not cope with the ambiguity while the 
exhaustive approach was susceptible to combinatorial explosion. An example 
of a combinatorial explosion is the astronomical increase in the possible 
sequences of amino acids for a relatively modest increase in length of an amino 
acid chain (Table 1.1).

To solve the problems of ambiguity and combinatorial explosion two 
approaches have been tried: NMR and computational. The NMR approach has 
been to take advantage of new NMR techniques. These techniques use three 
dimensional and hetero nuclear experiments (Sections 2.3, 2.4 & 2.5). These 
techniques, used in combination, have significantly improved both the quality 
and the nature of the information contained in an NMR spectrum. In certain 
cases the change in the nature of the information has even reduced the 
number of possible assignments (Section 2.4). These techniques have allowed 
NMR to determine the structure of larger and more difficult proteins; the 
quality of the information, even with larger proteins, is an improvement over 
that supplied before.

The computational approach has been to use what are described as AI 
techniques, for example expert systems (13 & 14) and genetic algorithms (15). 
The expert systems techniques supply a flexibility that allows the programs to 
cope with the ambiguity inherent in NMR spectra, while genetic algorithms 
are powerful general purpose search algorithms. A search algorithm is one 
that ‘searches’ a number of possible solutions and selecting the best or one of 
the best solutions. Rather than an exhaustive search of the possible solutions a 
GA repeatedly samples them to find a good solution. This approach enables a 
GA to work effectively with very large numbers of possible solutions. Both

3
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these techniques seem to offer improved performance but still could not cope 
with proteins of any size.

By combining both expert systems and GAs with the improved information 
supplied in three dimensional heteronuclear NMR experiments it should be 
possible to develop useful tools for the assignment of protein NMR spectra. 
The strategy adopted in my work was to develop a program or module to take 
information from either a spectrum (Chapter 5) or type of spectrum (Chapter 
7) and to assign the spectrum or spectra. If necessary the data is then passed 
onto another module. Although the new NMR techniques have reduced the 
amount of ambiguity they have not eliminated it. The remaining ambiguity 
combined with the diversity of protein structure means that a 100% correct 
automated assignment for most proteins is currently not achievable. The aim 
of the various modules is to perform the routine part of the assignment leaving 
the spectroscopist to concentrate on problems specific to the protein under 
investigation, spectroscopists have NMR techniques for dealing with such 
problems. The aim of all the modules is to produce a useful tool in the 
assignment of protein NMR spectra, as a rule of thumb 'a useful tool’ is a 
module that gives an 80% correct assignment.

4
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2.0  T h e  A s s i g n m e n t  o f  P r o t e i n  NMR S p e c t r a

The NMR spectra of a protein can be used to determine its three dimensional 
structure in solution (Figures 1.3 & 1.4). NMR spectroscopy is unique in being 
able to provide a detailed structure of small proteins in solution together with 
information about their dynamics. The ability to provide both structural and 
dynamic information under approximately physiological conditions makes 
NMR a valuable complement to X-ray crystallography. The determination of a 
protein structure by NMR involves a series of steps outlined in Figure 2.1. An 
important step is the assignment of resonances in the spectrum to individual 
groups in the protein.

2 .1  P r o d u c i n g  A  S o l u t i o n  S t r u c t u r e

The following is a brief description of the protocol involved in obtaining a 
solution structure. The protocol is listed here to allow the assignment phase to 
be placed in its proper context (Figure 2.1).

2 . 1 .1  S a m p l e  P r e p a r a t i o n

Sample preparation involves the isolation, purification and assessment of the 
protein. The protein is isolated from a natural source or from bacteria5 that 
have been modified, using molecular biology techniques, to produce the 
protein. Once the protein has been isolated it is purified using various 
biochemical techniques. The solubility and stability of the purified protein is 
then assessed.

The protein must be soluble at the concentration and temperature required. If 
it is not soluble then the conditions must be altered: the temperature can be 
raised, the concentration lowered or the solution conditions changed. There are 
limits on these changes to the conditions. The NMR signal from the protein is 
proportional to its concentration for the same experimental conditions. The 
concentration can therefore only be lowered a certain amount. The higher the 
temperature the better resolved the spectra and the more soluble the protein. 
But raising the temperature can also reduce the stability of the proteii|.

The protein must be stable in the NMR tube i.e. it must retain its structure for 
a considerable period of time. A single NMR experiment can last for eight 
days. A series of experiments is often needed to gain enough information to 
produce a structure. Ideally the protein should exist in a single conformation. 
A protein can have two or more conformations which can generate more than

5 Yeast and mammalians cells are also used.

5
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Figure 2 .1  A protocol to produce an NMR structure of a protein.
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Two Dimensional 
Three Dimensional 
Four Dimensional
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one peak per nuclei. Different conformations can place nucleus in different 
environments and thus give the nuclei different chemical shifts.

For a number of experiments the isotope labelling of protein is necessary 
(Sections 2.3, 2.4 & 2.5). Only certain isotopes exhibit useful magnetic 
properties. Fortunately for biological NMR the isotope is one of them. Other 
commonly occurring isotopes in biological structures, 12C, 14N and 160 , do not. 
There are carbon and nitrogen isotopes that do exhibit useful magnetic 
properties, 13C and 15N. In order to aid in the assignment process 12C and 14N

IQ IKcan be replaced with C and N. This substitution is called isotope labelling. A 
labelled protein is produced by using isotopically labelled nutrients in the 
growth medium of the cells that produce it. There are two types of labelling: 
selective and uniform. When selective labelling is required a labelled amino 
acid6 is used in the cell culture medium. The labelled amino acid is then 
incorporated into the protein. In uniform labelling greater than 95% of the 
isotope or isotopes in the protein are substituted. All the references to isotope 
labelling in this thesis refer to uniform labelling unless otherwise stated.

Once all these factors have been considered the task of assigning spectra may 
begin. Generally the process of assigning protein NMR spectra can take 
anything from a few months to several years.

2 . 1 . 2  N M R  E x p e r i m e n t s

There are numerous NMR experiments that can be performed on proteins. 
There are several characteristics associated with each experiment that can be 
used to classify them. These characteristics include: the frequency dimensions 
of the spectra produced, the type of nuclei involved and the type of 
magnetisation transfer.

The most basic of NMR experiments is the one dimensional experiment 
(Figure 2.2) The spectrum is a resonance intensity plotted against frequency. 
This is informative for small molecules where only a small number of peaks 
are present. In larger molecules, such as proteins, there are problems. Large 
molecules produce a large number of peaks in their spectra. These peaks can 
overlap making assignment very difficult. To resolve this problem experiments 
were developed where a second frequency dimension was introduced. The 
extra dimension spaces the peaks out into another dimension, reducing 
overlap. This creates a two dimensional (2D) spectrum that resembles a

labelled with either or both 15N and 13C.

6
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Figure 2.2 1,2 & 3 Dimensional 
NMR Experiments.

1 Dimensional Spectrum

2 Dimensional Spectrum

o o
o o
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Figure 2.3 The relationship between the position of a cross peak and 
the resonant frequency of the nuclei that generated it.

M

A B

A -  Nucleus 
B = Nucleus 
M= Magnetisation

A-rf -  resonance frequency of nucleus A 
B-rf -  resonance frequency of nucleus B

0,10 0,0

A-rf

10,010,10 B-rf

C -  cross peak 
D = diagonal peak
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Figure 2. 4 A ‘though bond* transfer of magnetisation.
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contour map. The position of a peak is determined by its two frequencies7 and 
the intensity determines its area (Figure 2.2). The 2D spectra also included 
information about the connections between peaks (Section 2.2). These 
connections are the most important feature of multi-dimensional NMR spectra 
and are crucial to the assignment. The two dimensional experiments were 
adequate for small proteins but for larger ones another increase in the number 
of dimensions was required. Three and four dimensional (3D and 4D) 
experiments increase the frequencies associated with each resonance or peak 
to three and four respectively. A 3D spectrum (Figure 2.2) is normally viewed 
as a series of 2D spectra in the form of a cube. The third dimension gives the 
position of a 2D spectrum within the cube. 4D spectra are viewed as a series of 
3D spectra i.e. a series of cubes. Currently most NMR experiments on proteins 
are two and three dimensional.

NMR experiments can use several isotopes; naturally occurring 1H and
1 q  1C

artificially introduced C and N. If the experiment uses only one isotope 
then the experiment is a homonuclear8 experiment (Section 2.2). When more 
than one isotope is used the experiment is a heteronuclear one. Heteronuclear 
experiments have advantages over homonuclear experiments, they can be 
more efficient and additional isotopes can give additional information (Sections 
2.3, 2.4 & 2.5).

The final method of characterisation of NMR experiments uses transfer of 
magnetisation. The way that a multidimensional experiment works is by 
transferring magnetisation between two or more nuclei and recording the 
resonant frequency of some or all the nuclei. The position of an NMR peak in a 
spectrum is determined by its frequency or frequencies (Figure 2.3). These 
frequencies are the resonance frequency of nuclei between which 
magnetisation has been transferred. The magnetisation can be transferred 
either 'through bond' (Figure 2.4) or 'through space' (Figure 2.5). Through bond 
refers to the type of experiment where the magnetisation is transferred 
through the electrons of the covalent chemical bonds that hold the nuclei 
together. A through space experiment transfers the magnetisation between

7 The frequencies are referred to in an NMR spectrum as the chemical shift. In an isolated 

environment nuclei of the same type will resonate at the same frequency. However when in a 

molecule the chemical environment will cause the frequency to be shifted from what it would be in 

isolation, i.e. the chemical shift. The chemical shift of a nucleus is given relative to the resonant 

frequency of the nuclei in a reference molecule, and is measured in parts per million, ppm.

8In the context of protein NMR homonuclear nearly always means the 1H isotope is used

7
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nuclei that are physically close and which may or may not be linked by a 
chemical bond. Through space experiments use the Nuclear Overhauser Effect 
(NOE) and the experiments are called Nuclear Overhauser Effect Spectroscopy 
or NOESY experiments.

2 .1 .3  I n t e r p r e t a t i o n  o f  P r o t e i n  N M R S p e c t r a  
Interpretation is the extraction from the spectra of a protein of all the 
information required to determine its solution structure. Interpretation can be 
divided into several stages: peak picking, assignment and the determination of 
angle and distance constraints.

Peak picking is the selection of genuine peaks from an NMR spectrum, 
determining the centre of each peak and calculating its intensity. Ideally this 
would be a simple process but there are problems due to noise peaks and peak 
overlap. Two characteristics are used to determine whether a peak is genuine 
or a noise peak: the peak shape and the peak intensity. In a 2D spectrum 
peaks have a characteristic appearance, any deviation from this is suspect. 
Secondly the more intense a peak the less likely it is to be a noise peak. By 
using these factors an experienced spectroscopist can identify genuine peaks 
with reasonable reliability. There can be several thousand peaks in an NMR 
spectrum. This can lead to some of the peaks occupying the same place, i.e. 
they overlap. Depending on the degree of overlap two peaks can appear to be 
one peak or when the existence of more than one peak can be distinguished 
determining their exact positions is difficult. Automated peak picking 
programs have been developed, with varying success. The approaches vary 
from algorithms that use the geometry and shape (16 &17) of a peak to neural 
networks that can be trained to recognise genuine peaks (18). Most automated 
peak picking programs are used as an initial filter. The peaks picked by the 
program are highlighted in the spectrum and then examined systematically by 
the spectroscopist to confirm that they are genuine peaks.

The assignment of an NMR spectrum is the assignment of a peak to a one or 
more nuclei in the protein (Figure 2.6); peaks are generated by one or more 
nuclei. Traditionally (19 & 20) the assignment is done in two stages: spin 
system identification and sequential assignment, alternatives have been 
suggested (21). A spin system in protein NMR is essentially an amino acid. 
Spin system identification is the identification of a characteristic pattern of 
peaks in an NMR spectrum as being generated by the nuclei of an amino acid 
or a type of amino acid, e.g. the pattern of peaks was generated by glycine 
nuclei. Sequential assignment is the assignment of all the spin systems

8
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Figure 2. 6 Assignment of a protein NMR spectrum peaks to specific 
nuclei.
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identified to a specific amino acids in the protein, e.g. the peaks were 
generated by the glycine at position twenty three. Once the spectra of the 
protein have been assigned the determination of the distance and angle 
constraints can begin.

The distance constraints state that a certain nucleus is within a certain range 
of distances from another nucleus. The distance constraints come from a

o

through space NOESY experiment. Any nuclei less than ~ 5 A9 apart can 
produce a peak in such a spectrum. In a NOESY spectrum the intensity (I) of a 
peak is approximately inversely proportional to the distance (D) between the 
nuclei raised to the sixth power10, see Equation 2.1. The intensity is only 
approximately proportional to the distance between the nuclei due to the 
inherent variability of NMR experiments.

1
I 00 ^ 6  Equation 2.1

The relative distance between any two nuclei linked by an NOE cross peak can 
be calculated using Equation 2.1. Certain nuclei in certain amino acids are 
always a certain distance apart, e.g. the nuclei in aromatic rings. Therefore 
absolute distances between nuclei can be calculated. An angle constraint 
states that the specified nuclei are a certain angle to each other.

2 . 1 . 4  D e t e r m i n a t i o n  o f  T h r e e  D i m e n s i o n a l  S t r u c t u r e  o f  
a  P r o t e i n

The conversion of the distance constraints to a possible three dimensional 
structure is normally performed by a computer program. The program uses 
knowledge of the conformations an amino acid chain can assume in 
conjunction with the distance and angle constraints to generate possible 
structures. An amino acid chain can assume a myriad of different structures. A 
constraint, either distance or angle, reduces the number of possible structures. 
The larger the number of constraints the fewer possible structures there are. If 
enough constraints are used only one possible structure remains. That is not to 
say the time-average position of every nucleus is known, proteins are dynamic

9 1 A = 1 x 1010 m. j
10 The sixth power occurs only in isolated pairs of nuclei. When more than two nuclei are 

involved the effect of all the nuclei on each other must be calculated to generate distance to 

intensity relationship.

9
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structures, in particular in regions of random coiling11.

The process of obtaining a solution structure is not the simple linear process 
outlined here, rather it is an iterative process. The results from one step are 
often fed back into a previous step. Having placed the assignment of protein 
spectra in context the next sections describe the assignment process in more 
detail. The NMR experiments described in the subsequent sections are those 
used by the various GA modules (Chapters 5, 6, 7, 8 & 9).

2 .2  T h e  U s e  o f  T wo D i m e n s i o n a l  H o m o n u c l e a r  ! h

N O ESY  S p e c t r a  t o  p e r f o r m  S e q u e n t i a l  A s s i g n m e n t  
In the traditional approach (22) NOESY experiments are used to perform the 
sequential assignment, for example a pattern of peaks are assigned to a 
glycine amino acid. In sequential spin system assignment spin systems are 
assigned to specific residues in the amino acid sequence, for example a pattern 
of peaks are assigned to glycine 23. Through space NOESY experiments are 
used in sequential assignment because no through bond 1H-1H experiment can 
link spin systems12. The NOE through space transfer of magnetisation can 
transfer magnetisation between nuclei of adjacent spin system. Whatever the

o

local conformation there will always be nuclei within 5A of each other, the 
maximum distance that the NOE will transfer magnetisation. The NOESY 
spectrum or spectra are used to identify residues that are adjacent to each 
other. This is repeated until there are sequences of spin systems. When unique 
sequences appear the spin systems of the sequence can be assigned to the 
relevant positions. If you have a sequence of spin systems, e.g. Gly-Val-Ser- 
Leu that occurs only once in the amino acid sequence, e.g. residues 14 to 17, 
then the sequence is assigned Gly 14-Val 15- Ser 16-Leu 17 (Figure 2.7).

2 .2 .1  A s s i g n m e n t  R u l e s  f o r  N O ESY  S p e c t r a  
The spectrum is two dimensional (Figure 2.2). There are two types of peaks in 
the spectrum: diagonal peaks and cross peaks. Diagonal peaks are peaks that 
have the same chemical shift in both dimensions and are generated by one 
nucleus. Cross peaks have different chemical shifts and are generated by an 
NOE interaction between two nuclei. The chemical shifts of a cross peak come 
from the chemical shifts of the two interacting nuclei.

To find the sequential interactions of a spin system using a NOESY spectrum

11One of the three types of secondary structure; the other two are a-helix and P-sheet.

12 The transfer does take place but is not detectable.

10
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Figure 2. 7 Sequential assignment of a sequence of spin systems

Spin system 
sequence

G occurs 4 times

.G VLA GVLS GCTW GVER.

Amino acid 
sequence GV occurs 3 times

.GVLA GVLS GCTW GVER.

GVL occurs 2 times

.GVLA GVLS GCTW GVER.

GVLS is unique

.GVLA GVLS GCTW GVER.



B G Ailey PhD Thesis

the NH, CaH and CpH nuclei are used. The diagonal peak generated by the 
NH nucleus of an amino acid is selected. The chemical shift of the peak, and 
therefore its position, is already known from the spin system assignment. Any 
cross peak that aligns with the NH peak of the amino acid in either the D1 or 
D2 dimension indicates a potential link to another amino acid or to another 
nucleus within the amino acid, an intra-residue cross peak. Some of the cross 
peaks should align with the diagonal peaks generated by the NH, Ca H or CpH 
nuclei of the preceding amino acid. There should be two or three cross peaks 
linking the amino acid of interest, amino acid i, and the succeeding amino acid, 
i +1. The links are CaH(j) to NH(i +i) and CpH(i) to NH(i +i) (Figure 2.8). 
Depending on the type of the i +1 amino acid there can be a second Ca H(j) to 
NH(i +i) or CpH(i) to NH(j +i) cross peaklS. The NH, CaH and CpH diagonal 
peaks occur in characteristic regions of the spectrum. This allows the 
determination of possible Ca H and CpH chemical shifts of the i amino acid. 
Having found possible Ca H and CpH chemical shifts of the i amino acid the 
spin system assignment is searched for an amino acid that has the appropriate 
CaH and CpH chemical shifts. When a matching amino acid is found it is 
identified as the i amino acid. If no match is found then an alternate set of Ca 
H and CpH chemical shifts are tried. The secondary structure will affect the 
distances between nuclei of different amino acids. The change in distance will 
cause a corresponding change in the intensity of NOE cross peaks linking 
nuclei of different amino acids. The variation in the distances between nuclei 
can be seen in Table 2.1. The data in the table shows that whatever the 
secondary structure of the protein is there are at least two pairs of i and i+1

o

nuclei with 5A of each other.

2 . 2 . 2  A s s i g n m e n t  A m b i g u i t i e s

The assignment rules outlined above are simple. The sequential assignment of 
a protein using its NOESY spectrum should therefore in principle be an easy 
process. In practice the process can be difficult. The cause of this difficulty is 
the ambiguity of protein NMR spectra. The ambiguity is caused by a number 
of factors: overlapping peaks, noise peaks, missing peaks, water line, chemical 
shift differences between spectra and non-sequential interactions.

• There can be several thousand peaks in a NOESY spectrum. The peaks are 
also distributed unevenly in the spectrum, i.e. NH CaH cross peaks will all

13 There is a second a cross peak in the residue is a glycine and there is a second P when the 

residue is a: serine, cysteine, aspartate, asparagine, leucine, lysine, arginine, glutamate, glutamine, 

methionine, histidine, phenylalanine, tyrosine and tryptophan.

11
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Figure 2. 8 Sequential assignm ent using NOE cross peaks.

Peak 1 =-NH(i+ i> Diagonal Peak 
Peak 3 = CaH(i) Diagonal Peak 
Peak 2 = CaHa) - NHu + d Cross Peak
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Table 2 .1  Bond lengths in various types of secondary structure.

Parameter a-Helix 310-Helix p-Anti
parallel

B-parallel

aN (i, i) 2.6 2.6 2.8 2.8
aN (i, i+1) 3.5 3.4 2.2 2.2 1
aN (i, i+2) 4.4 3.8
aN (i, i+3) 3.4 3.3
aN (i, i+4) 4.2 >4.5
NN(i, i+1) 2.8 2.6
NN (i, i+2) 4.2 4.1
BN (i, i+1) 2.5-4.1 2.9-4.4 3.2-4.5 3.7-4.7
aB (i, i+3) 2.5-4.1 3.1-5.1
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be located in a characteristic region of the spectrum. The large number of 
peaks and their uneven distribution causes peaks to overlap. Overlapping 
peaks can have a number of effects depending on the degree of overlap. In 
the worst case two or more overlapping peaks can be perceived as only one 
peak. The effect of this is that one or more peaks appear to missing. The 
combined peak is not located precisely where any of its constituent peaks 
would be. Peak overlap can still cause difficulties even when the individual 
overlapping peaks can be seen. The overlap can disturb the shape of the 
peaks causing the apparent centre of the peaks to be altered. The change in 
the peaks centres and thus chemical shift causes ambiguities when the 
peaks are aligned (see 2.2.1).

Noise peaks are experimental artefacts that occur in an NMR spectrum as 
additional peaks. These peaks can cause ambiguities by apparently linking 
resonances that are not linked.

Missing peaks are peaks that in theory should appear in a spectrum but do 
not. This causes ambiguity in that spin systems that should be linked by an 
NOE peak are not.

When the solvent used in the sample is H2O an intense line appears in the 
NMR spectrum. The line is generated by the signal from XH nuclei in the 
H2O. Any peaks on or near the intense line, the “water line”, will be 
obscured by it.

The chemical shift of a nucleus may vary slightly from spectrum to 
spectrum. The chemical shifts will commonly vary by about +/- 0.03 ppm, 
although it can exceed that value. The chemical shifts of the spin system 
assignment are obtained from different spectra to the NOE spectra. There 
can be a slight difference between a chemical shift of a nucleus recorded in 
the spin system assignment and the one found in the NOE spectikim. Put 
simply the cross peak linking two spin systems will not be in exactly the 
place anticipated.

A non-sequential interaction is the interaction between an amino acid and 
one that is not adjacent to it yet is close to it in space. These interactions 
give the distance constraints used in the calculation of possible structures 
(see 2.1.3) but can also cause ambiguity during sequential assignment as 
the sequential and non-sequential links of an amino acid can easily be 
confused. There are certain specific non-sequential interactions that will

12
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appear depending on the secondary structure of the protein, see Table 2.1. 
When the secondary structure is a-helical the distance between the i and i 
+ 3 residues and the i and i+ 1  residues is approximately the same; giving 
cross peaks of equal intensity which can lead to ambiguity. When the 
secondary structure is p-sheet and the strands are anti-parallel the inter
strand distances between residues are approximately the same as the 
distance between the i and i + 1  residues. Distinguishing between the two 
can be difficult if it is possible at all. This is another source of ambiguity.

All the above factors combine to turn sequential assignment from a simple 
process to a complex one. To deal with these problems the spectroscopist will 
often run several NOESY experiments with varying conditions. Under 
different conditions noise peaks may disappear and missing peaks may 
appear. The chemical shifts of the peaks may move; separating overlapped 
peaks and moving peaks from under the water line. To allow for ambiguity a 
possible assignment is considered until an inconsistency is revealed as the 
assignment proceeds. When a possible assignment has an inconsistency the 
spectroscopist backtracks to the point of conflict and tries a different 
assignment until a consistent assignment is produced. This does not mean the 
assignment is complete: there can be adjacent amino acids in the assignment 
that are not linked by NOE peaks, gaps in the assignment and spin systems 
and NOE peaks not assigned. The completeness of an assignment is dependent 
upon the quality of the spectra which in turn is primarily dependent of the size 
and secondary structure of the protein (see 2.1.3).

2 .3  T h e  U s e  o f  T h r e e  D i m e n s i o n a l  H e t e r o n u c l e a r  15N
N O ESY  S p e c t r a  t o  P e r f o r m  S e q u e n t i a l  A s s i g n m e n t  

The interpretation of the spectra of larger proteins (23)* more than 100 amino 
acids, or those with large regions of a-helical secondary structure can be 
extremely difficult if not impossible. With larger proteins the increase in the 
number of peaks and the reduction in resolution can cause problems. The 
reduction in resolution is due to line broadening. Proteins with large regions of 
a-helical secondary structure will have reduced dispersion in the NH-CaH 
region of their spectra which causes increased peak overlap in this critical 
region. To sequentially assign these proteins 3D heteronuclear NOESY 
experiments are used. The 3D approach adds an extra spectral dimension 
which reduces peak overlap. The transfer of magnetisation between 15N nuclei 
and XH nuclei is more efficient than between 1H nuclei. The efficiency of 
magnetisation transfer, by scalar interactions, between nuclei is dependent on 
the coupling constant of the two nuclei. The JNH-CaH coupling constant is -  3-10

13
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Hz. The J n-h coupling constant by comparison is ~ 94 Hz, an order magnitude 
greater. This improves the signal to noise ratio. The 3D heteronuclear NOESY 
spectra are easier to interpret; they can each be considered to be a series of 
simplified 2D homonuclear NOESY spectra each at different 15N chemical 
shifts.

2 . 3 . 1  A s s i g n m e n t  R u l e s

The peaks in the spectra have three chemical shifts (Figure 2.9): one 15N and 
two *H. The 15N and one of the XH chemical shifts come from the N and NH of 
the amino acid. The other *H shift can come from a XH nucleus in either the 
same or a different amino acid. The peaks of an amino acid will have the same 
15NH and N*H chemical shifts and therefore appear as a line of peaks in a 
spectrum. To perform the sequential assignment an amino acid is selected. 
The relevant line of peaks is found. The 15NH and N*H will be known from the 
spin system assignment. The *H chemical shifts of the intra-residue cross 
peaks will be known from the spin system assignment. Using this information 
the intra and inter residue peaks can be identified. Another spin system is 
then searched for that has an intra-residue peak with the same *H chemical 
shift as one of the inter-residue peaks (Figure 2.10). Two amino acids with 
matching inter-residue and intra-residue peaks are linked

2 . 3 . 2  A s s i g n m e n t  A m b i g u i t i e s

The assignment ambiguities are the same as for the 2D NOESY experiment 
with certain exceptions. The ambiguity caused by overlapping peaks, noise 
peaks, missing peaks, chemical shift differences between spectra and non
sequential interactions still exist. The water line no longer presents any 
difficulties and diagonal peaks can now be distinguished.

The additional dimension spaces the peaks out and reduces peak ovejrlap. For 
overlap to occur in a 3D 15N NOESY spectrum the peaks must have the same 
three chemical shifts. The pattern of peaks within a spin system makes the 
sequential assignment process much easier, i.e. the peaks have the same 15NH 
and N*H chemical shifts forming a line in the spectrum. However the increase 
in expense and the time taken to perform 3D experiments means they are 
primarily used for larger and/or difficult proteins. As NMR spectrometers 
develop larger and larger proteins are studied. To complete the sequential 
assignment of these very large proteins even the improvement of 3D 15N 
NOESY is not enough. Other experiments using a completely different 
approach must be used.

14



B G Ailey PhD Thesis

Figure 2. 9 Nuclei to chemical shift relationship in a 3D 15N NOESY 
spectrum. ;
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Figure 2. 10 Spin system linkage using a 3D 15N NOESY spectrum .
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2 .4  T h e  U s e  o f  T r i p l e  R e s o n a n c e  S p e c t r o s c o p y  t o  
P e r f o r m  B a c k b o n e  A s s i g n m e n t  

Triple resonance means the use of three different types of nuclei. In protein 
backbone assignment the 1HJ 13C and 15N nuclei are used. Protein backbone 
triple resonance experiments are through bond experiments. The experiments 
enable the magnetisation transferred from one amino acid to another, through 
bond, to be observed. The spectrum produced by a protein backbone triple 
resonance experiment is relatively simple. There are one or two peaks in the 
spectrum for each amino acid in the protein. The peaks will have some of the 
chemical shifts of one amino acid and some of its neighbours. The simplicity of 
the spectra and the quality of the information obtained from them make them 
superior to NOESY spectra. The experiments are through bond not j through 
space experiments which eliminates non-sequential interactions.

There are a large number of triple resonance experiments. Each experiment 
gives different information about the amino acid and its neighbours. If several 
different experiments are performed the quality and amount of information 
gained allows an alternative approach to assignment. The backbone of the 
protein can be assigned first. The amino acid side chains are then assigned.

2 . 4 .1  A s s i g n m e n t  R u l e s

The assignment rules vary depending on the experiments used. To give an 
example the backbone assignment of a protein using four triple resonance 
experiments will be described, Figure 2.11. The experiments are

. HNCA

. HN(CO)CA

• HNCO

. HN(CA)CO

The names are descriptive of the transfer of magnetisation in the experiment 
and the information it reveals. The HN(CO)CA experiment transfers 
magnetisation from the N^Ci) to the 15N(i) to the 13CO(i - 1) to the 13Ca(i - 1) 
(Figure 2.11). The experiment gives a spectrum with a peak for each amino 
acid that has the chemical shifts N ^ i ) ,  15N(i) and 13Ca(i - 1). The 13CO(i - 1) 
chemical shift does not appear in the spectrum; this is indicated by the 
brackets around the CO in the experiment name. The HNCA and HN(CA)CO

15
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Figure 2. 11 Transfer of m agnetisation in four triple resonance 
experiments.
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experiments produce two peaks per amino acid. The main peaks are the intra
residue peaks described by the experiments name and are listed first in Figure 
2.12. The secondary peaks are inter-residue peaks, more likely to be missing 
peaks and their intensity is often significantly less than the main peaks. The 
secondary peaks of the HNCA and HN(CA)CO experiments are effectively 
duplicates of the peaks of the HN(CO)CA and HNCO experiments respectively.

The assignment process starts by finding all the peaks from the same amino 
acid. This is done by finding all the peaks that have the same N1H(i) and 15N(i)

i n  I Q
chemical shifts. The Ca and CO chemical shift of the amino acid, amino 
acid i, will be the 13C chemical shift of the main peaks of the HNCA and

19HN(CA)CO experiments respectively. The Ca chemical shift of the preceding
13amino acid, amino acid i - 1, will be the C chemical shift on the peaks of the 

HN(CO)CA experiment and the secondary peaks of the HNCA experiment. 
The 13CO chemical shift of the preceding amino acid, amino acid i - 1, will be 
the 13C chemical shift of the peaks of the HNCO and the secondary peaks of 
the HN(CA)CO experiments. Knowing the 13Ca and 13CO chemical shift of the

i n  i  n

amino acid and the Ca and CO chemical shift of the preceding amino acid it 
is possible to link adjacent amino acids. When this process is carried out 
systematically it is possible to construct a backbone assignment or a 
sequential assignment.

2 . 4 . 2  A s s i g n m e n t  A m b i g u i t i e s

There are the standard assignment ambiguities due to: overlapping peaks, 
missing peaks, noise peaks and variations in chemical shifts between spectra. 
The peak overlap will be reduced due to the simplicity of the spectra. There is 
an ambiguity in the assignment due to the two different peaks produced in the 
HNCA and HN(CA)CO spectra. When there is a full complement of peaks for 
each amino acid then there is no ambiguity. When the HN(CO)CA peak of an 
amino acid is missing from the spectrum then which of the two peaks 
generated by the amino acid in the HNCA spectrum is inter-residue and which 
is intra-residue is ambiguous. The same is true for the HNCO and HN(CA)CO 
experiments. The intensity of the secondary peaks is often less than that of the 
main peaks but this is not always true.

2 .5  P e r f o r m i n g  S p i n  S y s t e m  A s s i g n m e n t  U s i n g  H C C H  
13C TOCSY AND COSY S p e c t r o s c o p y
13HCCH C total correlation spectroscopy (TOCSY) and correlation spectroscopy 

(COSY) are through bond 3D heteronuclear experiments. The protein must be 
13C isotope labelled. The magnetisation is transferred from a *H to a 13C to

16
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Figure 2.12 Alignment of the peaks to form a peak system from 
four triple resonance spectra..

An ideal spin system will give six peaks. 
Each peak will have three chemical shifts.

HNCA spectra gives peaks 1 and 2. 
NH(CO)CA spectra gives peak 3.
NH(CA)CO spectra gives peaks 4 and 5. 
HNCO spectra gives peak 6.

Positions of the six peaks generated by an amino acid and its 
neighbours if the four spectra were combined, note that the six 
peaks all share the same N*H and 15NH chemical shifts.

Alignments of Peaks

Peaks 1-6 align N*H and 15N.
Peaks 2-3 align 13Ca 
Peaks 5-6 align 13CO
Intensity peak 1 > intensity of peak 2, probably. 
Intensity peak 4 > intensity of peak 5, probably.
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another 13C and to another *H (Figure 2.13). The peaks in either experiment
1 13will have peaks with three dimensions, two H and one C. There will be a 

diagonal peak for each 1H, a peak where the two XH chemical shifts are the 
same. There are cross peaks that represent connections between two protons.

13 1A cross peak will have the same C chemical shift and H chemical shift as 
one diagonal peak and the same shift as the other diagonal peak. In a

1 13COSY experiment the detectable magnetisation transfer between H and C 
nuclei will only extend over three chemical bonds. Only the neighbour nuclei 
will give peaks in the spectrum. In a TOCSY experiment the magnetisation 
transfer between and 13C nuclei will extend over the whole amino acid side 
chain. Each diagonal peak in a spin system will have a cross peak connection 
to all the other diagonal peaks in the spin system.

2 .5 .1  A s s i g n m e n t  R u l e s

There are two steps to performing a spin system assignment: constructing spin 
systems and then identifying them. The first step is to find a group of peaks 
that align with each other. The pattern of peaks in a spectrum is that of a

13 1series of strips. For each of these strips of peaks the C and one of the H 
chemical shifts will be the same. The strips are combined to perform potential 
spin systems by aligning a cross peak of one strip with the diagonal peak of 
another (Figure 2.14). Having constructed a potential spin system there is the 
task of identifying it. The pattern of peaks in the spin system can be unique or 
it can belong to one of a group of amino acids. The peaks of a spin system 
typically occur in characteristic regions of the spectrum, e.g. the 13Ca of glycine 
will have a chemical shift of ~ -24 ppm14 while the 13Ca of serine is ~ -11 ppm. 
By a combination of characteristic peak patterns and chemical shifts it should 
be possible to identify 18 out of the 20 amino acids.

2 . 5 . 2  A s s i g n m e n t  A m b i g u i t i e s

There are the standard assignment ambiguities. An additional ambiguity is 
that the chemical shifts that are typical of an amino acid are often not unique 
to it. Other problems arise when the chemical shift of a nucleus is not at the 
characteristic position; the nucleus is in an unusual environment and is 
therefore shifted to an unusual degree or direction. A combination of these 
ambiguities can mean that it is impossible to definitely identify all the spin 
systems and it is only once the sequential assignment is done a definitive 
assignment is produced.

14 The reference material is TMS.
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Figure 2.13 Magnetisation Transfer in a 3D HCCH 13C NMR 
experiment.
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Figure 2.14 Constructing a spin system in a 3D HCCH 13C spectrum.
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As stated the processes outlined in this chapter have been described in a 
sequential fashion. In practice the process is iterative; often different stages 
will be partially or completely repeated using the information gained from one 
of the subsequent stages. The assignment stage is completely dependent upon 
the quality of the spectra obtained. Good spectra result in complete 
assignment of the protein while poor spectra can result in partial or incorrect 
assignment.

18
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3 . 0  E v o l u t i o n a r y  S t r a t e g y

An evolutionary strategy is one that uses the principles of biological evolution. 
A computer program that uses such a strategy is called a genetic algorithm 
(GA) (24, 25, 26, 27, 28 & 29). GAs are search or optimisation algorithms. 
These algorithms search among a large number of alternatives for an optimum 
or near optimum solution. A GA works by creating a group of artificial

I
structures that represent possible solutions to a problem. Four procedures are 
then performed on the structures.

1. The structures are randomly modified.

2. The possible solution each structure represents is determined.

3. The quality of the solutions are evaluated.

4. A new group of structures is created. The chance of a structure being in the 
new group is proportional to the quality of the solution it represents.

The procedures are repeated until some criterion is met: either a set number of 
cycles through the processes one to four or a solution achieving a 
predetermined quality. The random modification creates new structures. The 
new structures can represent either better or worse solutions than the original 
structure. The quality of the solution each structure represents is determined. 
The quality of each structure determines its chances of being in the new group 
of structures. By making quality proportional to survival during the running of 
the GA the good structures increase in number while the bad structures 
decrease in number. The process evolves better solutions to the problem.

3 .1  A S i m p l e  G e n e t i c  A l g o r i t h m

GAs use the terminology of biology in addition to its concepts; although the 
terminology does not always have the same meaning. The group of structures 
is referred to as a population and the operations are called mutation, 
expression, determination of fitness and reproduction. When all the operations 
have been performed the GA is said to have evolved one generation.

3 .1 .1  P o p u l a t i o n

The population is composed of individuals that correspond to possible solutions 
(Figure 3.1). Each individual has a “chromosome” and a “fitness”. The 
chromosome will be a bit string, an array of binary digits, that encodes a 
possible solution. The sequence of binary digits is the “genotype” of the
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Figure 3.1 Genetic algorithm data structures.
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individual. Genotype is a biological term referring to the genetic constitution of 
an organism. The possible solution an individual represents is its “phenotype”; 
it is produced by the “expression” of the genotype. Phenotype is a biological 
term referring to the anatomy and physiology of an organism. It is produced by 
the interaction of an organisms genotype and its environment. Once a possible 
solution has been generated its quality or “fitness” can be determined. Once 
determined, the fitness of the individual will be recorded as a number. The 
population will also normally record certain statistics about itself, i.e. total 
fitness of population, maximum fitness, average fitness and minimum fitness.

3 . 1 . 2  M u t a t i o n

“Mutation” is the random alteration of the chromosome of an individual. The 
mutation creates new genotypes and allows the discovery of better solutions. 
The mutation is performed by genetic operators. There are two types of genetic 
operators (Figure 3.2 & 3.3):

• Mutation genetic operator (Figure 3.2). This should be more properly called 
a point mutation operator. Point mutation refers to a change that converts 
one allele to another. The operator selects a point on an individual's 
chromosome at random and alters the bit at that point. If the bit is a 1 it 
becomes a 0 and vice versa. The point mutation operator is the simplest of 
the genetic operators. Nearly all GAs use a mutation operator, to create 
new genotypes by a minor modification of the existing one. There can be a 
problem when the change of one bit can cause a disproportionate change in 
the phenotype. The problem is dependent on the expression or coding 
system used (see 3.1.3).

• Crossover genetic operator (Figure 3.3). The crossover genetic operator 
randomly selects two individuals. The same point on the two chromosomes 
is selected at random and all the bits from that point to the end of the 
chromosome are swapped between the two chromosomes. The crossover 
operator is different from the other operators for two reasons. In the first 
instance it changes two individuals not one. In the second it produces the 
new genotypes by combining the existing ones; as opposed to modifying 
them. A crossover operator is found in all GAs and is one of the most 
important reasons for their success.

The combination of genetic operators used in a GA vary. A simple GA will have 
a crossover and mutation operator. There are other genetic operators but they 
are either specialised or problem specific (Sections 4.6.3, 5.13, 6.1.3, 7.1.3 &
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Figure 3.2

Figure 3. 3
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8.1.3). Once the genetic operators to be used have been decided up^n, their 
frequency of use must be determined. There has been research into the 
empirical setting of the frequency of genetic operators (30). Currently the 
practice is to start with values that have proved to be effective in the past and 
adjust them experimentally for each GA.

3 . 1 . 3  E x p r e s s i o n

Expression is the conversion of the genotype, the bit string, to the phenotype, a 
possible solution. Expression is a biological term; coding and mapping are 
other terms used to describe the process. The expression is problem specific15. 
How the operation is performed is dependent on the problem the GA is trying 
to solve. To describe how an expression operator is designed an example 
problem is required; such as the sequential assignment problem outlined in 
section 2.2.

The aim of sequential assignment is to create a sequence of spin systems 
linked together by the appropriate cross peaks. The sequence of spin systems 
will be the same length as the amino acid sequence of the protein under 
investigation. Each spin system will be linked to the next by up to four cross 
peaks, NH-NH, a-NH16, pi-NH and (32-NH (Figure 3.4). In a GA designed to 
produce a sequential assignment method of converting a bit string, the 
genotype, to a sequential assignment, the phenotype, has to be found. Figure
3.5 is an example of such a method. The bit string is split into sections that 
encode for an element of the sequential assignment. To encode a spin system 
and its NOE links to the next spin system requires five such sections of bit 
string. The sections of bit string are converted to integers. The integers give 
the position of the element it encodes for in an array of such elements. The 
first integer selects a spin system from the array of spin systems. The second, 
third, fourth and fifth integers select the NH-NH, a-NH, pl-NH and P2-NH 
cross peaks respectively from the array of cross peaks. The process performed 
on the entire bit string will create a sequential assignment.

The expression or mapping is one of the two most critical factors determining 
GA performance. An efficient conversion from genotype to phenotype will have 
an impact both on the time taken to produce a solution and the quality of that

15 This is normally called domain specific but the term domain has a different meaning in 

protein biochemistry. To avoid conflicting meanings the word domain will not be used.

16 When the second spin system is a glycine there will a second NH-a.
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Figure 3.4 NOE cross peak linkage of two spin systems.
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Figure 3.5 The production of a sequential assignment ‘phenotype’ 
from a binary array ‘genotype’.
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3 . 1 . 4  F i t n e s s

Fitness is the ability of an organism to survive and compete for resources 
compared with others of its species. A fit individual will survive and reproduce 
while an unfit one will not. In GAs fitness is the quality of the solution an 
individual encodes; i.e. the quality of its phenotype. A fit individual will 
probably have offspring in the next generation, an unfit one will probably not. 
The evaluation of fitness is problem specific like expression (Section 3.1.3). To 
describe how fitness is evaluated an example is needed. The sequential 
assignment problem outlined in section 2.2 will again be used as an example.

The fitness or quality of a sequential assignment depends on three factors:

1. The completeness of the sequential assignment. The completeness is the 
number of spin systems assigned compared to the total number of spin 
systems.

2. The quality of the spin system identification.

3. The quality of the NOE links between spin systems.

The fitness can be calculated from the sum of the fitness of each spin system in 
the sequential assignment. The greater the number of spin systems in the 
sequential assignment the greater the number that contribute to its fitness, 
this deals with factor 1. The fitness of an single spin system will be a 
combination of the accuracy of its identification and the quality of the NOE 
links to the preceding and succeeding spin systems. Both factors are evaluated 
for each spin system. The evaluation will produce a number that is the quality 
of each factor. The two number are multiplied together to give the fitness of 
the spin system.

Spin system identification will often produce spin systems that have been 
identified as possibly being several types of amino acid. Each potential identity 
of the spin system will have a probability associated with it. To cope with the 
ambiguity of the spin system identification it is encoded as a two element list. 
The list will be the same length as the number of amino acid types in the 
protein. The first element in the list will be an amino acid and the second will 
be the probability that the spin system is that type of amino acid. The 
probability will be a number between 1.0 and 0.0. Each spin system position in
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a sequential assignment corresponds to an amino acid at the same position in 
the amino acid sequence of the protein. The appropriate probability is found 
for the position the spin system occupies. The probability is the fitness of the 
spin system identification (Section 2.1.3).

A spin system is linked to the two adjacent spin systems by up to eight NOE 
cross peaks; four to each neighbouring spin system (Figure 3.5). The fitness of 
the NOE links of a spin system is the sum of the individual NOE links. A cross 
peak should link two spin systems by having the chemical shifts of its centre 
align with a chemical shift of the spin systems, see Figure 3.6. Where the two 
chemical shifts of the spin systems overlap is the ideal position for the centre 
of the cross peak. The closer to the ideal position the greater the probability 
that the cross peak links the two spin systems. Beyond a certain distance from 
the ideal point there is little or no probability that the peak links the two spin 
systems. When the peak is in the ideal position it is ascribed the number 1.0. 
When the cross peak is beyond the certain distance it is ascribed the number
0.0. When in between, the number ascribed is inversely proportional to the 
distance from the ideal point.

The calculation of the quality of an NOE link when it is within the range 
where it is considered possible to link the two spin systems is shown in Figure
3.6 and Equation 3.1.

D\ + D2FitnessNOE = 1 -  — ——  Equation 3.1

The chemical shift used will depend on the nature of the link; for example in a 
pl-NH link the p i chemical shift of one spin system and the NH chemical shift 
of another will be used.

The fitness operator, often called the fitness function, is the second critical 
factor in GA performance. It will have a direct impact on the quality of the 
solution generated and the speed with which it is reached.

3 . 1 . 5  R e p r o d u c t i o n

In a GA reproduction is the transfer of selected individuals from the current 
generation to the next generation. An individual's chance of surviving into the 
next generation is proportional to its fitness. An individual can have none, one 
or several copies of itself in the next generation depending on its fitness and 
random' chance. The reproduction of individuals according to their fitness has
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Figure 3.6 Scoring the quality of an NOE peak.
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two effects. Fitter individuals in the population will survive and increase in 
number. Unfit individuals will decrease in number and eventually die out. 
These effects are called selection pressure. The reproduction operator is quite 
simple:

1. A new population is created.

2. An individual from the old population is selected.

3. The selected individual is copied from the old population to the new.

4. Steps 2 and 3 are repeated until the new population has a full complement 
of individuals.

The important part of the process is the selection of the individuals to be 
reproduced. There are several methods, the simplest being roulette wheel 
selection. The roulette wheel selection is based on the game of roulette. Each 
individual is given a segment of a roulette wheel. The size of an individual's 
segment is in proportion to its fitness. To select an individual the wheel is 
spun. The individual that generated the segment where the ball lands is 
selected. In practice the total fitness of the population is calculated. A random 
number between 0.0 and 1.0 is generated and multiplied by the total fitness; 
this conceptually is the roulette ball. The individuals of the population are 
selected one at a time and their fitness is added to a running total. The 
running total is equivalent to the roulette wheel. When the running total 
equals or exceeds the random fraction of the total fitness the current 
individual is transferred to the next generation; in effect the ball lands in the 
segment of this individual.

3 . 1 . 6  R u n n i n g  a G e n e t i c  A l g o r i t h m

Once a GA has been designed the problem of setting parameters remains. The 
parameters will be: the population size, the number of generations the 
population is to be evolved and the frequency of the use of genetic operators. In 
practice the parameters are set by trial and error. It can take some time to 
optimise the running of a GA. A graph of the maximum, average and 
minimum fitness can be seen in Figure 3.717. In a simple GA the difference 
between the maximum fitness of the population and average fitness of the 
population would be reduced at the end of the run. This is due to the fact that

17 The graph comes from a run of the 2D-SAM GA module, Chapter 5.
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Figure 3.7 A graph of the evolution of a GA.
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the population tends to converge on one individual. The fittest individual will 
normally have multiple copies of itself in the population and numerous minor 
variations of it. The fittest individual will dominate the population at the end 
of the run

GA provide effective answers in a number of fields but to design an effective 
and efficient GA requires an understanding of how they work. This 
understanding is particularly important when designing expression and 
fitness functions.

3 .2  G e n e t i c  A l g o r i t h m  T h e o r y

Understanding how a GA work requires the development of several ideas: 
schemata, building blocks and search space. Schemata are a method of 
describing a set of binary strings. A building block is a specific type of 
schemata. GAs work by processing schemata. Search space is an idea common 
to all search algorithms that allows the difficulty of the problem to be 
investigated.

3 . 2 .1  S c h e m a

A schema is a description of a set of bit strings. As an example, take a GA 
where the chromosome of each individual is an 8 bit long bit string. There are 
28 possible bit strings. To describe a set of bit strings where the first 4 bits are 
all 1 and the last bit a 0 the following schema is produced: 1111***0. The * 
indicates that either a 1 or a 0 can be at the position; it is a wild card 
character. The following bit strings are all described by the above schema: 
11110000, 11110110, 11111110. A schema can define 1 bit string; e.g. the 
schema 11111010 describes only one bit string. Alternatively a schema can 
describe all the bit strings possible; i.e. ********.

Schemata have three properties: order, defining length and fitness. The order 
of a schema is the number of specified bit positions either a 1 or a 0. In the 
schema 1111***0 the order is 5. There are 5 specified positions and 3 wild card 
positions, denoted by a *, in the schema. The defining length of a schema is the 
distance between the two extreme specified positions in the schema. The 
schema **1*001* has a defining length of 4 (7-3). Schemata will vary in the 
contribution they make to a bit string's fitness. A very fit individual will be a 
member of a number of schemata that contribute to its fitness. A schema can 
be described as fit or unfit depending on the contribution it makes to an 
individual's fitness. A schema will correspond to a characteristic or 
characteristics in the phenotype of an individual. These characteristics can
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A GA works by spreading building blocks through a population. Building 
blocks are very fit, low order, short defining length schemata. The factors that 
define a building block all contribute to its spread. Fitness increases the 
chance of a schema surviving into the next generation. Reproduction selects fit 
individuals more frequently than unfit ones. Fit individuals will be members of 
fit schemata. Therefore fit schemata will be reproduced more frequently than 
unfit ones. Low order and short defining length enhance the chance of a 
schema surviving the action of genetic operators. A low order reduces the 
chance of mutation altering a schema. A short defining length reduces the 
chance of crossover altering a schema.

3 . 2 .3  S c h e m a  T h e o r e m

The schema theorem describes the change in the number of schemata in a 
population from one generation to the next. There are two factors that affects 
the change in number: the chance of surviving into the next generation and 
the chance of surviving the disruptive effects of genetic operators: both 
mutation and crossover.

A schema H occurs m(H,t) times in a population at generation t. The number 
in the next generation will be m(H,t + 1). The chance of surviving into the next 
generation Sn is defined in Equation 3.2; where /  is the average fitness of the 
population and f(H) is the average fitness of the individuals that are
members of schema H.

The chance of surviving mutation Sm is described in Equation 3.3; where pm is 
the mutation rate and the order of the schema H is o(H). When both pm and 
o(H) are small the equation can be approximated to 1- o(H)pm.

The chance of surviving crossover Sc is described in Equation 3.4; where pc is 
crossover rate, 8(H) is the defining length of schema H and 1 is the length of 
the bit string.

f(H)
Equation 3.2

/

Equation 3.3
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Equation 3.4

The Sc is an inequality because the crossover might restore the schema if the 
two individuals are similar. The number of schemata in the next generation 
from t is shown in Equation 3.5.

Expanded and simplified it gives what is known as the schema theorem 
Equation 3.6.

The schema theorem implies that the number of building blocks will grow 
exponentially over time.

3 . 2 . 4  S e a r c h  S p a c e

The idea of a search space is common to all search algorithms. A search space 
is a space where all the possible solutions to a problem exist. Similar solutions 
will be near each other while different solutions will be far apart. The fitness 
of a solution will also be a factor in its position. The search space is often 
visualised as a three dimensional graph. Each solution will be a point on the 
graph. The X and Z dimension will be some comparison of the solution's 
similarity to other solutions. The Y or height dimension will the solution's 
fitness. The search space is a product of the problem under investigation and 
the expression used. The search space has two characteristics that affect the 
difficulty of a problem: size and shape.

The size of a search space is the number of solutions it contains. Search space 
size in a simple GA will depend on the length of the bit string; e.g. a bit string 
8 bits long will have 2.560 x 102 (28) possibilities, a bit string 32 bits long will 
have 4.295 x 109 (232) possibilities and a bit string 256 bits long will have 1.158 
x 1077 (2256) possibilities. As the length of the bit string increases the number 
of combinations it has increases exponentially. For example a 256 bit string is 
8 times longer than a 32 bit string but the number of possibilities has 
increased by 68 orders of magnitude. The size of a search space will have an 
impact on the time taken to reach a solution. A large search space makes an 
exhaustive search prohibitively expensive in terms of computer time. The size 
of a search space has a secondary impact on the quality of the solution chosen.

m\ Equation 3.5

o(H)pm Equation 3.6
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The primary factor affecting the quality of the solution chosen is the shape of 
the search space.

The shape of a search space is dependent on the problem being investigated 
and the coding used. The shape of the search space affects the solutiop chosen 
by increasing the likelihood of choosing a local optimum instead of tl^e global 
optimum. A local optimum is a peak in the space that is not the highest peak 
in the search space. If an initial solution is near a local optimum then the local 
optimum can come to dominate the population. If this occurs the global 
optimum will not be found because to get to it intermediate individuals would 
have a lower fitness than the local optimum. The size of the search space can 
also have a certain impact on the probability of this. Initial solutions are often 
chosen randomly; they effectively sample the search space. How well they do 
this is dependent on the size of the population and search space. The larger the 
population the better sampled a given search space. The smaller the search 
space the better it will be sampled for a given size of population. After the 
initial sampling the relative sizes and of the search space the GA population 
will also affect how well the search space is explored by the GA, although its 
shape is the predominant factor.

In a GA there are two processes working all the time: exploration and 
exploitation. Exploration is the search for new solutions. The higher the 
frequency of genetic operators the more the GA explores the search space. If 
there is too little exploration the GA is likely to choose a poor solution; a local 
optimum. Exploitation is the convergence of the population on the best 
individual. The higher the selection pressure and the lower the frequency of 
genetic operators the more the GA exploits the best individuals in the 
population. Selection pressure is the ratio best individuals fitness to the 
average fitness of the population. Genetic operators can disrupt fit individuals. 
When there is too little exploitation the GA makes very little or no progress. 
The two processes must be balanced to choose a good solution in a reasonable 
amount of time. The balance is not easy to achieve as the two processes are 
antagonistic. The balance will vary for each GA and some times for each 
problem.

The GA algorithm described here is a simple or classical GA. There have been 
a number of refinements and adaptations to GAs to enable them to cope with 
different problems. The four GAs I have designed and implemented have made 
use of a number of developments. The GA core, the problem domain 
independent elements, are the same for all the GA modules. The core of the
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4 . 0  D e s i g n  o f  t h e  G e n e t i c  A l g o r i t h m  C o r e

All the GA modules described in subsequent chapters have the same core, the 
problem domain independent elements. In a traditional GA, such as the onej
described in chapter 3, the problem domain dependent elements are thie coding 
and fitness function. In the various modules there is an additional problem 
domain dependent element, the domain specific genetic operators. These 
genetic operators are tailored to each problem domain to improve the 
performance of each module. The design of the GA core is described in this 
chapter while the design of the coding, fitness function and genetic operators is 
described in the relevant module chapters (Chapters 5,6,7 & 8).

4 .1  GA C o r e  D e s i g n  P r i n c i p l e s
The GA core is based on the simple GA described in chapter 3 but 
incorporating one major and several minor modifications. The major 
modification is the use of a crowding factor (31) and the minor modifications 
are the use of fitness scaling (32, 33) and the stochastic remainder sampling to 
select the individuals to reproduce.

A crowding factor is used to increase the diversity of a population and thus 
improve exploration of the search space and is modelled on a biological 
process. When organisms are in a crowded environment they have increased 
competition for resources. An example would be plants competing for light in a 
rain forest. When a plant is in a location where it is crowded by other plants it 
has to compete for the available light. If the plant was unfit by comparison 
with its neighbours then it would probably not survive. If the same plant was 
in a location were there were few or no other plants; then it probably would 
survive because of the reduced competition. The crowding factor mimics this 
effect during the evolution of a GA population. The individuals of the 
population exist in a search space. If most of the individuals in a population 
are similar they will occupy a similar position in the search space. They crowd 
around a location in the search space. Those individuals that are different 
occupy a different position in the search space. The crowding factor improves 
the probability of survival for isolated individuals and reduces the probability 
of survival for crowded individuals.

This is achieved by having two populations: a main population and a sub 
population. The main population contains all the individuals in the population 
of the GA. The sub population contains a subset of the main population. 
Individuals from the main population are copied into the sub population. The 
individuals in the sub population undergo mutation and reproduction and then
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replace selected individuals in the main population. The crowding factor 
operates in the selection of the individuals to be replaced. To select an 
individual for replacement several individuals are chosen from the main 
population. Each of the chosen individuals is compared to the individual from 
the sub population; the most similar one being selected for replacement. The 
more common the genotype of an individual, or parts thereof, the greater the 
probability of it being replaced.

An addition to the crowding factor is the use of the “parent” of an individual. 
The parent of an individual is the individual in the main population it was 
copied from. The parent is used as one of the individuals considered for 
replacement. This was done by Mahfoud (34). The paper states that when the 
entire main population was searched for the best match for an individual from 
the sub population its parent was selected 83% of the time. When candidates 
for replacement from the main population are selected the parent of the 
individual from the sub population is always one of them. When this was 
implemented in the 2D-SAM it reduced the performance of the module. Highly 
fit individuals did not increase in number as rapidly, thus reducing the 
exploitation of such individuals.

The crowding factor used in the various modules was a modification of the one 
described above. Three refinements were developed to the crowding factor. The 
first refinement is competition. Competition was introduced by comparing the 
fitness of the individual from the main population with that of the individual 
in the sub population that will replace it. The replacement only proceeds when 
the sub population individual is fitter. This refinement was introduced to 
prevent highly fit individuals being removed from the main population before 
they have an opportunity to reproduce effectively. Effective reproduction is 
defined as producing an offspring that has a similar fitness. Without this 
comparison highly fit individuals from the main population can be replaced by 
unfit ones. By making the individuals compete, which is in keeping with the 
crowding concept, the demise of highly fit individuals before they can 
reproduce effectively is prevented.

The refinement succeeded in preventing the loss of highly fit individuals from 
the main population but it also reduced its diversity. The reduced diversity 
was caused by a reduction in the number of individuals that are replaced. 
Individuals from the sub population, having undergone mutation, are more 
diverse than those from the main population. The refinement is essentially an 
extreme elitist selection (35). Instead of ensuring that the best individual
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survives, elitist selection, it ensures that most of the fit individuals survive. To 
improve the performance of the GA another concept was developed within the 
GA that allowed the second and third refinements. The concept is thai of each 
individual having an age. Each individual initially has an age of zero. The age 
of an individual in the main population is increased by one every time it is 
copied to the sub population. Once an individual has been copied into the sub 
population the age of the copy is reset to zero. An individual in the main 
population increases in age every time it has an opportunity to reproduce. 
While individuals in the sub population which are the result of that 
reproduction are considered to be new individuals and therefore have no age.

The first refinement is the death age factor. One of the user defined 
parameters for the GA will be the death age, an integer. The age of each 
individual in the main population selected as a possible candidate for 
replacement is examined. If its age is greater than the death age parameter 
the individual becomes the candidate for replacement. The death age removes 
individuals from the population that have reproduced a certain number of 
times. The crowding factor can cause unfit but isolated individuals to survive 
for a very long time. The death age factors remove these individuals.

The second age related refinement is the old age factor. One of the user 
defined parameters for the GA will be the old age, an integer. Once a 
candidate for replacement has been selected its age is again examined. If its 
age is greater than the old age parameter the individual is replaced. It is now 
so old that it cannot compete with younger individuals. If an individual is not 
above the old age parameter then it is young enough to compete and the 
fitness comparison is performed. The death age is greater than the old age, 
logically. Therefore any individual selected as candidate for replacement 
because its age is greater than the death age parameter is replaced. The old 
age factor keeps the population dynamic. The factor allows new individuals 
from the sub population into the main population at a reasonable and 
controllable rate. The factor also gives a highly fit individual an excellent 
chance to reproduce effectively. An individual will have as many chances to 
reproduce as the old age parameter, unless it is replaced by a fitter individual.

Fitness scaling is a proven technique for improving the performance of a GA. 
There are three types of scaling: linear, sigma truncation and power. Linear 
scaling is used in the various GA modules. In scaling the fitness of each 
individual is altered to give it a scaled fitness. The maximum, average and 
minimum fitness of the sub population are used to scale the fitness of each
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individual. The maximum scaled fitness will be some multiple of (in practice 
twice) the average fitness. The scaled average fitness will be kept the same as 
the average fitness. If the maximum fitness of the population is greater than 
twice the average fitness those individuals with above average fitness will 
have a scaled fitness less than their original fitness. While those individuals 
with below average fitness will have a scaled fitness greater than their original 
fitness. When the maximum fitness of the population is less than twice the 
average fitness the reverse is true.

The scaling of fitness has two purposes. The first is to prevent premature 
convergence of the main population. As the GA evolves it converges; one 
genotype will come to dominate the main population. Premature convergence 
occurs when an exceptionally fit individual appears early in the evolution of 
the GA. If the individual has a fitness several times greater than the sub 
population average it would probably have several offspring. Each of offspring 
could itself generate several more and so on until the genotype of the original 
individual, and minor variants of it, is the only one in the population. Scaling 
prevents this by limiting the number of offspring to 2. An individual with 
average fitness will probably have one offspring in the next generation (Section 
3.1.5). An individual with twice the average fitness will probably have two 
offspring in the next generation. Scaling helps maintain a balance between 
exploitation and exploration by preventing over exploitation.

The second purpose of scaling is to promote fitter individuals as the main 
population starts to converge. As the population converges the differences in 
fitness between individuals will be small. The scaling of the fitness of the 
individuals magnifies these small differences. For example if the fittest 
individual in the sub population had a fitness of 5% greater than the 
population average it would have a 5% greater probability of an offspring than 
one with average fitness. With fitness scaling the individual would have twice 
the average fitness and therefore twice the probability of an offspring in the 
next generation. It is not always possible to scale up the maximum fitness to 
twice the average. Those individuals with below average fitness will have their 
fitness reduced by scaling in the circumstances outlined above. The fitness of 
an individual cannot be negative and this limits the amount of scaling.

Remainder stochastic sampling is an improved method of producing a new 
generation of individuals. In the simple GA the roulette wheel method was 
used (Section 3.1.5). The method of calculating the number of children is the 
same as for the simple GA, except for fitness scaling. The scaled fitness of an
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individual is divided by the average fitness of the sub population to give the 
number of children it will have in the next generation. The stochastic 
remainder method allocates the actual number of offspring an individual will 
have in two stages. In the first stage all the individuals with a whole number 
of offspring are allocated that number of offspring in the next generation. For 
example, if an individual is calculated to have 1.34 offspring in the next 
generation then it will have 1 offspring in the next generation. In the second 
stage the remaining places in the population are filled using the fractional 
part of the calculated number of offspring. The individuals are examined one 
after another. In each examination the fractional part of the calculated 
offspring is compared to a randomly generated number between 0.0 and 1.0. If 
the randomly generated number is less than the fractional part of the number 
of offspring then the individual being examined is placed in the next 
generation. Using the previous example 0.34 would be compared to a randomly 
generated number. If the number generated is less than 0.34 then the 
individual would have another offspring in the next generation. The 
examination of the population continues until the next generation has a full 
complement of individuals.

The remainder stochastic sampling method ensures that every individual with 
a fitness greater than the population average receives at least one offspring. 
With roulette wheel selection this was a probability but not a certainty. This 
certainty is its advantage over the roulette wheel sampling method; relatively 
fit individuals always have offspring. The remainder or fractional part of the 
calculated offspring number is used in a stochastic way to determine the rest 
of the population. There will always be gaps in the next generation because 
those individuals with below average fitness will not have any offspring in the 
next generation after the first stage of the sampling. In the second stage each 
probability of an individual having offspring in the next generation is equal to 
a fractional part of its offspring number. The second stage is similar in its 
stochastic nature to the roulette wheel selection except there is a reduction in 
the number of individuals left to be selected. As a result the probability of a 
below average individual having offspring in the next generation is reduced. 
The method guarantees that fit individuals will have offspring while 
maintaining the concept of the number of offspring being proportional to the 
fitness of the parent.

The design of all the GA modules is an object oriented one (36). The objects 
that comprise the GA core are the population and individual objects. The next 
three sections describe the design and functions of these objects. An object, in
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the context of object oriented design, is an instance of a class. The class defines 
the nature of an object and each instance of an object is created using the class 
definition.

4 .2  I n d i v i d u a l  O b j e c t

The individual class forms the interface between the problem domain 
dependent and independent parts of the various GA modules. The class 
definition and the purpose of its various functions are domain independent. 
The actual design and implementation of the functions of the object are 
domain dependent. The purpose of the individual object is to encode an 
assignment of one or more protein NMR spectra. The individual also contains 
information about the assignment and about the individuals behaviour in the 
GA.

4 .2 .1  I n d i v i d u a l  C l a s s  D e f i n i t i o n
The original design of the GA core had a chromosome class. This class was 
included in the design of the GA core to allow variation in the implementation 
of the chromosome. The chromosome class provided another level of 
abstraction. The use of a standard chromosome implementation made the class 
redundant. The chromosome class is now a super class of the individual class. 
The individual class inherits all the attributes of the chromosome class. As the 
object inherits the attributes of the class chromosome the definition of the 
chromosome class is included in this section .

The chromosome representation chosen for all the GA modules was an integer 
array. The chromosome class definition given here is designed to represent the 
features necessary for an integer array chromosome. The class has five 
attributes which are listed in Section 4.7.1. The individual class describes the 
behaviour of an individual within the GA core. The individual class has nine 
attributes which are again listed in Section 4.7.

4 . 2 . 2  I n d i v i d u a l  C l a s s  F u n c t i o n s

The functions of the individual class, except for the accessor functions, mainly 
use the attributes of the chromosome super class. These functions are some of 
the domain dependent elements of the GA modules.

j
The functions of the chromosome class are confined to constructing the 
chromosome object and functions that operate on the chromosome-array 
attribute. These functions either read, write to, copy or compare the 
chromosome array; they were written as part of the extra layer of abstraction.
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The extra abstraction allows a change of chromosomal representation while 
the other classes of the module remain constant.

The functions of the individual class are the expression functions, genetic 
operators and the fitness function. These are all problem domain dependent 
functions. There are many population class functions that make use of the 
individual class attributes. The function used to copy an individual from the 
main to sub populations uses one of the chromosome functions, the 
chromosome copy function.

4 .3  P o p u l a t i o n  C l a s s

The population classes form the main element of the GA core. The class 
produces an object that embodies the population that evolves the required 
solution. In the simple GA described in chapter 3 there is only one population. 
In each of the GA modules there are two populations; the main and sub 
populations. Both populations have a number of elements in common. To 
produce the required two types of population there are three population 
classes. There is a population super class and two sub classes. The classes are 
the population, main population and sub population classes respectively. The 
population class describes the elements common to both the main and sub 
population.

4 . 3 .1  P o p u l a t i o n  C l a s s  D e f i n i t i o n

The population class contains the attributes needed by both the main and sub 
population classes. The class has no functions. All the functions operate on 
either or both the two sub classes. The eight attributes of the class are listed in 
Section 4.7. These attributes are added to by the class definitions of the main 
and sub population classes to form the main and sub population objects.

4 .4  M a i n  P o p u l a t i o n  C l a s s

This class defines the main population of a GA module. There is one instance 
of the main population class in each module. The main population is the 
population of individuals that evolves for a set number of generations to 
produce a solution. The initial individuals of the main population are 
constructed and then evolved a set number of generations. The best individual 
to have existed in the population is used as the solution to the problem. The 
main population is equivalent to the population in a simple GA. The sub 
population is used to reproduce the individuals of the main population. The 
crowding factor requires the use of two populations (section 4.1).
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4 .4 .1  M a i n  P o p u l a t i o n  D e f i n i t i o n

This class inherits the attributes of the population class. There are two 
attributes defined in the main population class. These attributes are listed in 
Section 4.7.

The population current generation attribute will determine how long the GA 
module will run for and the best ancestor will be the solution produced by the 
module. The best ancestor is used rather than the best individual because even 
the fittest individual in the population can be replaced.

4 . 4 . 2  M a i n  P o p u l a t i o n  C l a s s  F u n c t i o n s

The functions of the main population class are the construct population 
function and those functions contained within the evolve population function. 
The construct population class creates the main population object. The evolve 
population function creates a consistent population, controls the number of 
generations that main population evolves, controls interaction with the sub 
population and performs a series of recording functions. A flow chart of the 
functions of the main population is shown in Figure 4.1.

The main population is constructed using three user defined parameters, all of 
which are integers. The parameters are the population size, the length of the 
protein amino acid sequence and the number of integers needed to encode one 
amino acid in the chromosome. The population size defines the population-size 
attribute of the main population and the number of individuals in the 
population-individuals attribute. The other two attributes are used to calculate 
the length of the chromosome array of each individual (Section 4.2.1). The 
number of amino acids in the protein is multiplied by the number of integers 
needed to encode the information for one amino acid. The default value for the 
integers of the chromosome array, an integer array, is 0 which denotes the 
relevant blank objects in all the GA modules. Thus the first assignment for 
every individual is a blank one.

The create consistent population is the first function called by the evolve 
population function and creates a consistent and plausible initial assignment. 
The function invokes the create consistent individual function tor each 
individual of the population. The function gives an individual a consistent and 
plausible initial assignment. It is a problem domain dependent function; it 
depends on the coding used (Sections 5.1.1, 6.1.1, 7.1.1 and 8.1.1). A consistent 
assignment is one where each object in an assignment is used once. For 
example, where an NOE peak is used only once in a sequential assignment
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Figure 4.1 A flow chart of the main population class functions.
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(Sections 5.1.1 and 6.1.1). A plausible assignment is created using the 
information encoded in the fitness function. The information is used to 
construct the fittest possible local assignment. An example would be creating 
an initial peak system assignment from several triple resonance experiments 
(Chapter 7). The first peak in a peak system is chosen at random. The next 
peak chosen is one that has the best alignment with the previous peak 
(alignment equates with fitness in this context). The process is repeated for 
the remaining peaks of the peak system and then the remaining peak system 
of the assignment. The result of the process is an assignment that is locally fit 
and therefore plausible.

The control of the number of generations is dependent on the generations 
parameter and the population-current-generation attribute. The generations 
parameter, an integer set by the user, defines the generation at which the 
evolution of the main population will terminate. The population-current- 
generation attribute records the number of generations that the main 
population has evolved. When the population-current-generation attribute is 
greater than the generations attribute the evolution of the main population is 
stopped.

The interaction between the main and sub populations is controlled by two 
functions. One transfers individuals from the main population to the sub 
population, and the other transfers the individuals of the sub population to the 
main population. The transfer of individuals from the main to sub population 
is performed by the select sub population function. The function randomly 
selects individuals from the main population and places them in the 
population-store attribute (section 4.5.1) of the sub population, until the 
attribute is filled with individuals. The attribute is an array of individuals and 
once filled the evolve sub population function is invoked (section 4.5.2). This is 
the main function of the sub population class.

Once the sub population has been evolved the individuals of jthe sub 
population are transferred to the main population. The transfer involves 
replacing an individual in the main population with one from the sub 
population. It is during this transfer that the crowding factor is used (section 
4.1). The function that accomplishes the transfer of individuals between the 
two populations is the introduce sub population function. The function 
attempts to transfer all individuals of the sub population to the main 
population.
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The first step in attempting to transfer an individual from the sub population 
is selecting an individual in the main population it will replace, a candidate for 
replacement. A candidate is found using the population-pointer attribute and 
the crowding factor parameter. The population-pointer attribute of the main 
population points to the first individual to be compared. Before an individual is 
compared to the individual from the sub population its age is examined. If its 
age is greater than the individual-death-age attribute the individual becomes 
the replacement candidate and the search is terminated. If the age of the 
individual is less than or equal to the death age; its chromosome array is 
compared with that of the individual from the sub population. If the individual 
is the best match so far it becomes the replacement candidate. The population- 
pointer attribute is then incremented18 so that it points to the next individual. 
The number of individuals in the comparison is defined by the used- 
population-crowding-factor attribute19. Once the search has finished the 
replacement candidate is either the most similar individual to the one in the 
sub population or its age is greater than the death age.

The second step in the process is the decision of whether to replace the 
individual in the main population with the individual from the sub population. 
This decision is based on two comparisons. The first compares the age of the 
replacement candidate against its individual-old-age attribute. If its age is 
greater than the individual-old-age attribute then it is replaced. If it is not 
replaced its fitness is compared to the fitness of the individual from the sub 
population. If the individual from the sub population is fitter then it replaces 
the individual from the main population, the replacement candidate.

The last function is the recording function, of which there are essentially three 
sets. They are grouped by the type of recording being performed and the 
frequency with which they are invoked. The frequency will be the number of 
generations that pass between invocations. The first set is the most commonly 
invoked and it outputs to the screen or a file. The output will be a single line of 
text for all the modules giving: the current generation, the maximum fitness of 
the population, the average fitness of the population, the minimum fitness of 
the population and the current time. The second set of record functions will 
vary from module to module and will commonly be invoked less frequently

18 When the population-pointer attribute points to the last individual in the population- 

individuals attribute it is not incremented, but is reset to zero so that it points to the first 

individual in the population-individuals attribute.

19 Section 4.5.1
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than the first set of functions. These functions will record the performance of 
the GA module throughout its evolution. The last set of recording functions 
will be invoked infrequently, every thousand generations for instance. The 
purpose of these functions will be to give interim reports on the best solution. 
The reports are to give the best solution so far if the evolution of the GA 
module terminates prematurely.

4 .5  S u b  P o p u l a t i o n  C l a s s

The sub population class defines the sub population of the GA modules. There 
is one instance of the sub population class in each module. The sub population 
class contains a subset of the individuals from the main population. The 
individuals in the subset are reproduced, mutated and their fitness is 
determined. The reproduction phase is problem domain independent, while the 
mutation phase is problem domain dependent, since domain specific genetic 
operators are used. The determination of the fitness is domain independent at 
the population level, the domain dependent element being at the individual 
level. Once the fitness of the individuals of the sub population has been 
determined they can be returned to the main population by the re-introduce 
sub population function.

4 . 5 .1  S u b  P o p u l a t i o n  C l a s s  d e f i n i t i o n

The sub population class has five additional attributes to the population class. 
The attributes are to enable the class to reproduce the individuals it contains. 
The attributes are listed in Section 4.7. All the attributes, with the exception 
of the population-store, are used to contain user defined parameters that 
control the reproduction of the sub population.

4 . 5 . 2  S u b  P o p u l a t i o n  C l a s s  F u n c t i o n s

The functions of the sub population class reproduce, mutate and determine the 
fitness of its individuals. The reproduction phase is performed u^ing four 
functions: fitness statistics, scale fitness, calculate children and reproduce. 
They are called in sequence and all operate on the individuals in the 
population-store attribute. The reproduce function copies the individuals from 
the store to the population-individuals attribute of the sub population, which is 
the next generation. All the subsequent functions operate on individuals from 
this attribute. A flow chart of the functions of the sub population is shown in 
Figure 4.2.

The population statistics function calculates certain statistics about the fitness 
of the population. The statistics are the total, maximum, average and
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Figure 4.2 A flow chart of the sub population functions.
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minimum fitness of the population. The statistics are used by the scaling 
fitness function to create the scaled fitness for each individual.

The scaling function scales the fitness of all the individuals in the sub 
population. The scaling is used to keep the fitness of individuals within certain 
limits (Section 4.1). There are two calculations performed depending on the 
statistics generated by the previous function. The first calculation scales the 
fitness so that the maximum fitness is twice the average. The second 
calculation is used when the first reduces the scaled minimum fitness below 
zero. Both calculations use the equation of a straight line, Equation 4.1 with F, 
Fs, g, c, being the fitness and scaled fitness of an individual, the gradient and 
the constant respectively. The difference between the two calculations is the 
method used to calculate the gradient. The first method is shown in Equation
4.2 with max, avg and min being the maximum, average and minimum fitness 
of the population. The second method can be seen in Equation 4.3. The 
calculation of the constant is shown in Equation 4.4. The relevant gradient and 
the constant are then used to calculate the scaled fitness for each individual. 
Once the scaled fitness for each individual has been determined; the number of 
children the individual will have in the next generation will be calculated.

Fs = gF + c Equation 4.1

avg x 1 _g = -----------  Equation 4.2max- avg

avgg = --------- — Equation 4.3avg -  min

c = avg -  (g x avg) Equation! 4.4

The function calculate children determines how many children each individual 
will have in the next generation. The calculation is based on the stochastic 
remainder sampling concept described in section 4.1. The function uses 
Equation 4.5 to calculate the number of children an individual will have (Nc). 
The equation uses three numbers: the scaled fitness of an individual (Fa), the 
total fitness of the sub population (Ft) and the number of individuals in the 
sub population (N). The calculated number of children number is then split 
into its integer and remainder components, for example 1.45 will become 1 and 
0.45. The two figures are calculated for each individual and then stored in its 
individtial-child-number and individual-fractional-child attributes.
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Once the number of children from each individual has been calculated the next 
generation can be produced by the reproduce function. The function creates the 
next generation in the individuals attribute of the sub population. The current 
generation is held in the store attribute of the sub population. The next 
generation is produced in two stages. In the first stage every individual in 
population-store is examined. If the individual has individual-child-number 
greater than zero then the individual is copied to population-individual array 
individual-child-number number of times. In the second stage the individuals 
of the store are examined again. The attribute examined this time is the 
fractional child attribute. A random number is generated between 0.0 and 1.0. 
If the number is less than the individual-fractional-child then the individual is 
copied to the population-individuals array. The second examination and 
copying of individuals continues until the population-individuals array has 
been filled with individuals. All further processing of the individuals of the sub 
population is performed on the individuals in the population-individuals array.

The last two functions of the reproduction phase are quite simple. They both 
set an attribute of the individuals in the sub population to a certain value. The 
first function sets the age attribute of all the individuals to zero. The 
individuals have just been bom and therefore have zero age. The second 
function sets the individual changed attribute to nil to indicate that the 
individual has not yet been changed by the genetic operators.

The mutation phase is almost entirely problem domain dependent, due to the 
use of domain specific genetic operators. The number and types of operators 
will vary from module to module. The genetic operators of each module will be 
described in the chapters dedicated to that module, but there are some 
elements that are domain independent. The frequency or rate at which the 
genetic operators are invoked is controlled by the same attributes of the sub 
population, the crossover and various mutation numbers (section 4.5.1). The 
way the individuals are selected for mutation is the same for all the modules. 
The individuals are selected by using the population-pointer attribute of the 
sub population. This points to the first individual in the sub population at the 
start of the mutation process. As required by the various operators the 
individual pointed to is selected and the pointer is incremented. When the 
pointer is incremented it points to the next individual in the sub population.
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This is done so that each individual is subjected to only one mutation event. 
This improves the performance of the modules over a random selection of 
individuals. A plausible explanation of this is that probability of a beneficial 
mutation event is small and decreases as the population evolves. The chances 
of two beneficial mutation events occurring is geometrically less probable. A 
beneficial mutation followed by harmful one will probably result in an overall 
decrease in the fitness of the individual. Therefore having a single mutation 
event per individual is more efficient. This would be especially true with the 
more sophisticated genetic operators which can be quite demanding on system 
resources. When an individual is subjected to a genetic operator its changed 
attribute is set to true. This is to improve the efficiency of the fitness 
determination for each individual.

The population fitness function is a relatively simple function. It invokes the 
relevant expression and fitness function. The expression and fitness functions 
are domain dependent; in certain modules the expression function is integral 
to the fitness function. The expression and fitness functions for each module 
are described in the chapter dedicated to that module. Before the fitness 
function is invoked for an individual its changed attribute is examined. If the 
attribute is nil, indicating that the individual has been unchanged by the 
genetic operators, then the fitness function is not invoked. If an individual has 
not been mutated the fitness recorded in its fitness attribute is still accurate. 
The expression and fitness functions are the two most time consuming 
elements of the various GA modules. Therefore any reduction in number of 
times they are invoked improves the performance of the module.

Once the fitness attribute of each individual is accurate the functions of the 
sub population have completed their purpose of evolving the sub population 
one generation and the individuals are then returned to the main population 
by the introduce sub population function of the main population object (section 
4.4.2).

4 .6  P r o b l e m  D o m a i n  D e p e n d e n t  E l e m e n t s  
The problem domain dependent elements are the coding, the fitness function 
and the genetic operators. Even though these elements are domain dependent 
and they are related because the problem domains are related;, the 
assignment of a protein NMR spectrum or spectra. The next three sections 
describe some of the design concepts common to the domain dependent 
elements of the various modules.
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4 . 6 .1  C o d i n g

The modules all use the same chromosome representation. The chromosome 
representation used in the simple GA described in chapter 3 uses a binary 
array representation. There are other representations (37): integer and 
floating point arrays and lists. For the first module a binary array was used 
(section 5.1.1). During the development of the module the chromosome 
representation was changed to that of an integer array. The integer array 
proved to be a more intuitive and efficient chromosome representation for the 
data and was used in all the subsequent modules.

The conversion from the integer array to the relevant assignment also has 
common elements in all the modules. Each assignment is composed of objects. 
The objects can be of one type e.g. peaks objects or there can be several types 
e.g. peak and spin system objects. Each integer in the chromosome array will 
be the position of an object in an array of such objects. If the first integer in a 
chromosome array is 78 the first object encoded by the chromosome is the 79th 
element of the relevant array. What the objects are and which array each 
integer selects an object from forms the domain dependent elements of the 
coding.

The assignments produced by the modules all needed to be consistent. To 
ensure this, each of the objects used to produce an assignment keeps a record 
of its use in the sub population. The record is an attribute called the used at. 
The attribute is an array of integers. The array is the same length as the size 
of the sub population. The integer at each position in the array states the 
position of the object in an individual of the sub population. The individual is 
the one that occupies the same position in the population-individuals array as 
the integer, e.g. if the 46th integer in the array is 345 then the object is used by 
the 46th individual in the sub population and pointed to by the 345 integer of 
the individual’s chromosome array. By recording the use of each individual a 
consistent assignment can be generated and then maintained by designing 
genetic operators that do not introduce inconsistencies. If consistencies were 
allowed the number of possible assignments would increase; the number would 
be the number of combinations not the number of permutations.

4 . 6 . 2  F i t n e s s  F u n c t i o n

The fitness functions of all the modules have only one element common to all 
the GA modules. The common element is the alignment of peaks. The peaks all 
have a centre. The centre of a peak will be recorded in chemical shifts. The 
fitness function of all the GA modules determines the quality of the alignment
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of the chemical shifts of two or more peaks. The peaks will normally have a 
tolerance within which their chemical shifts are expected to fall. In some of the 
modules other factors are also used in determining the fitness of an individual. 
The fitness functions of the modules are quite diverse.

4 . 6 . 3  G e n e t i c  O p e r a t o r s

The genetic operators have only one factor that is common to all the GA 
modules. All the genetic operators are phenotypic genetic operators. There are 
two categories of genetic operators: genotype and phenotype operators. 
Operators in the first category are those used in the simple GA described in 
chapter 3. These operators function at the level of the genotype; they mutate 
the chromosome. The phenotype operators function at the level of the 
phenotype; they mutate the phenotype. They alter the phenotype of the 
individual causing a corresponding change in the genotype. Phenotypic genetic 
operators are used so that the assignments encoded by each individual 
remains consistent. The phenotypic operators alter the objects or position 
objects already used to create an assignment. When the objects or their 
position is altered their used at arrays are checked to insure that they are not 
already used in the individual. If they are used the mutation cannot take place 
or the object or objects must be removed from their existing position. The use 
of phenotypic operators allows the use of “smart” genetic operators. A smart 
genetic operator does not perform a random mutation it looks for the best 
mutation. The best mutation will either implicitly or explicitly use the criteria 
used by the fitness function to find the best possible mutation.

i
The next five chapters describe the domain dependent elements I of each 
module in more detail. The domain independent elements described in this 
chapter are the same for all five of the GA modules.

4 .7  GA C o r e  O b j e c t  D e f i n i t i o n s

This section describes the objects of the GA core.

4 . 7 . 1  C h r o m o s o m e  C l a s s  A t t r i b u t e s

• Chromosome length attribute: an integer stating the length of the 
chromosome integer array. The attribute will be controlled by the input to 
the relevant module. The allocation of this attribute is to the class. This 
means that this attribute is stored once for the whole class.

• Chromosome bytes per residue attribute: defines how many integers are
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used to encode the assignment of an amino acid. The attribute will be 
defined by the user. It is used to calculate the chromosome-length attribute 
in conjunction with the input to the relevant module. The number is 
problem domain dependent. The attribute will be an integer and the 
allocation is to the class.

• Chromosome residue num attribute: states the number of amino acid 
residues in the protein under investigation. This will be derived from the 
amino acid sequence class that is found in all the modules, and is used to 
calculate the chromosome length attribute. The attribute will be an integer 
and the allocation is to the class.

• Chromosome read position attribute: this integer acts as pointer to an 
integer in the chromosome array. The attribute is used to read the 
chromosome sequentially. It is initially set to 0, this points to the first 
integer in the chromosome array. When an integer is read sequentially from 
the chromosome array the integer is incremented by 1, and then the 
position of the next integer to be read from the array. When the integer 
equals the chromosome length attribute it reset to 0. The sequentially 
reading functions are used either by the decoding functions or by fitness 
functions. The attribute will be an integer and the allocation is to the class.

• Chromosome array attribute: contains a one dimensional integer array. The 
length of the array is determined by the chromosome-length attribute. The 
array forms the chromosome of an individual. This array encodes a possible 
assignment and forms the genotype of an individual.

4 . 7 . 2  I n d i v i d u a l  C l a s s  A t t r i b u t e s

• Individual number attribute: this integer is the index20 of the individual in 
an array of individual objects. The array will be the individuals attribute of 
a population object. For example, if the attribute is 345 the individual will 
occupy the 346th element21 of a population individual attribute.

• Individual fitness attribute: this floating point number records the fitness of 
the individual. The fitness will be determined by the fitness function of the 
module and recorded in this attribute. Once determined this is used by thei

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  j

20 An index gives the position of an element of in an array.

21 It is 346th element as the first element in the array has an index of 0.
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• Individual scaled fitness: this a floating point number records the scaled 
fitness of the individual (Sections 4.1 and 4.5.2). The individual-fitness 
attribute is scaled to give the scaled fitness.

• Individual parent attribute: this will be another individual object. The 
attribute is used by individual objects in the sub population to record the 
individual in the main population from which they were copied. This was 
once used as part of the crowding factor (Sections 4.1 and 4.5.2).

• Individual child number attribute: this integer records the whole number of 
children the individual is calculated as having in the next generation. For 
example, if it calculated that an individual will have 1.67 children in the 
next generation the attribute will be 1 (Sections 4.1 and 4.4.2).

• Individual fractional child attribute: this floating point number records the 
fractional number of children the individual is calculated as having in the 
next generation. For example, if it calculated that an individual will have 
1.67 children in the next generation the attribute will be 0.67 (sections 4.1 
and 4.4.2).

• Individual age attribute: this integer records the number of times an 
individual has been selected for reproduction in the main population. Every 
time the individual is selected for reproduction this attribute is incremented 
by one (sections 4.1 and 4.5.2). While undergoing reproduction in the sub 
population the age of an individual is reset to 0 (sections 4.1 and 4.4.2).

• Individual changed attribute: this symbol records when an individual has 
been changed by the genetic operators of the module it is in (section 4.4.2).

• Individual old age attribute: this integer states the old age for each 
individual (sections 4.1 and 4.5.2). The attribute is set by the user defined 
old age parameter. The allocation of the attribute is to the class.

• Individual death age attribute: this integer states the death age for each 
individual (sections 4.1 and 4.5.2). The attribute is set by the user defined 
death age parameter. The allocation attribute is to the class.
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• Population size attribute: this integer states the size of population, the 
number of individuals in the population.

• Population total fitness attribute: this floating point number is the sum of 
the fitness for all the individuals in the population. This is the sum of 
individual-fitness attributes for all the individuals in the population- 
individuals attribute of object.

• Population average fitness attribute: this floating point number is the 
average fitness of the individuals in the population.

• Population min fitness attribute: this floating point number attribute is the 
fitness of the individual with the lowest fitness in the population.

• Population max fitness attribute: this floating point number is the fitness of 
the individual with the highest fitness in the population.

• Population best individual attribute: this individual is the fittest individual 
in the population. The fitness attribute of the individual will be the 
population-max-fitness attribute.

• Population pointer attribute: this integer gives the position of an individual 
in the individuals attribute of the population object.

• Population individuals attribute: this is an array of individual objects. The 
length of the array will be defined by the population-size attribute.

4 . 7 . 4  M a i n  P o p u l a t i o n  C l a s s  A t t r i b u t e s

• Population current generation: this integer states the current generation of 
the main population. The attribute is incremented every generation that the 
population evolves.

i
• Population best ancestor: this is the fittest individual object that hak existed 

in the population. At the start of the evolution of the population a blank 
individual, with negative fitness, is constructed to become the best ancestor. 
Every generation the fitness of the best individual in the main population is 
compared to the fitness of the best ancestor. If the best individual is fitter it
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4 . 7 . 5  S u b  P o p u l a t i o n  C l a s s  A t t r i b u t e s

• Population crossover number attribute: this integer states the number of 
pairs of individuals in the sub population that undergo crossover. The 
number is calculated from by multiplying the used defined parameter 
crossover rate by the size of the sub population and dividing by two. The 
number is then rounded down to the nearest integer.

• Population mutation num l attribute: this integer defines the number of 
individuals in the sub population that undergo mutation by genetic 
operators which have their frequency set by the mutation rate 1 parameter. 
The number is calculated by multiplying the used defined parameter 
mutation rate 1 by the size of the sub population. The number is then 
rounded down to the nearest integer.

• Population mutation num2 attribute: this integer defines the number of 
individuals in the sub population that undergo mutation by genetic 
operators which have their frequency set by the mutation rate 2 parameter. 
The number is calculated by multiplying the used defined parameter 
mutation rate 2 by the size of the sub population. The number is then 
rounded down to the nearest integer.

• Population mutation num3 attribute: this integer defines the number of 
individuals in the sub population that undergo mutation by genetic 
operators which have their frequency set by the mutation rate 3 parameter. 
The number is calculated by multiplying the used defined parameter 
mutation rate 3 by the size of the sub population. The number is then 
rounded down to the nearest integer.

• Population crowding factor attribute: this integer states the number of 
individuals in the main population compared to an individual from the sub 
population to find a candidate for replacement. The attribute will contain 
the user defined crowding factor parameter.

• Population store attribute: this is an array of individuals. Its size is defined 
by the population-size attribute of the sub population. When the select sub 
population function is selecting individuals from the main population the
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individuals are placed in the array. The array stores the individuals of the 
sub population before reproduction takes place..
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5.0 Two D i m e n s i o n a l  S e q u e n t i a l  A s s i g n m e n t  
M o d u l e

The two dimensional sequential assignment module (2D-SAM) is a GA that 
takes the amino acid sequence, spin system identification and NOESY 
spectrum of a protein and produces a sequential assignment. The production of 
a sequential assignment from the elements listed above is essentially a 
travelling salesman problem. The identified spin systems have to be placed in 
the optimal sequence according to several criteria.. The 2D-SAM was originally 
conceived as part of a collaborative project in which the spin system 
identification module would be designed and implemented by a student in 
Aberdeen.

The sequential assignment of a protein is described in section 2.2. The amino 
acid sequence determines where a spin system can appear in a sequential 
assignment. If the amino acid at position 137 is a proline then only a spin 
system identified as being generated by a Proline can go at position 137. The 
spin system identification process (manual or automatic) supplies the chemical 
shifts of each spin system and the type of amino acid that generated it. The 
identification of the type of amino acid may be ambiguous, and thus the spin 
systems might have multiple identities, e.g. a spin system may be identified as 
either a Leucine or an Isoleucine. This increases the number of positions at 
which a spin system can be placed in the amino acid sequence. The NOESY 
spectrum, in the form of a peak list, supplies the information required to link 
the spin systems together. The spin systems are linked to each other by 
between zero and four NOESY cross peaks. There will be several thousand 
cross peaks in a NOESY spectrum, but for any two spin systems there will 
normally be only a small number of cross peaks in the NOESY spectrum that 
can possibly act as a link between them. This creates a large number of 
possible permutations (the relevant number is the number of permutations not 
combinations as each spin system or cross peak can be used only once).

5.1  D e s i g n  o f  t h e  2D-SAM
The design of the 2D-SAM was optimised over a period of months of 
development and testing of a number of prototypes. The most successful design 
is described in this section. As described in Chapter 4 the design of the 2D- 
SAM is an object oriented one, based around the same GA core as the other 
modules. The classes and their usage can be seen in Figure 5.1. The core part 
of the GA is made up of the individual, sub population and main population 
classes. The problem specific part is contained in the amino acid sequence, 
connections, peak list, connection, peak and spin system classes. The sequence
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Figure 5.1 The design of the 2D-SAM.
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and peak list objects model the amino acid sequence of the protein and its peak 
list22. The peak list is derived from the NOESY spectrum of the protein. The 
peak object models the individual NOESY peaks. The peak list object will 
contain a list of all the peak objects. The spin system objects each model a spin 
system and collectively model the spin system identification. A connection 
object models the inter-connections of a spin system object and duplicates 
some of its attributes. The connections object lists all the connection objects 
and maintains an array of arrays that records all the connection objects that 
can be placed at each position in the sequential assignment.

The rest of the design section is split into 3 sections: coding, fitness function 
and problem specific genetic operators, i.e. those factors that differ between 
the GA of the various modules.

5.1.1 C o d i n g  o f  2D-SAM
There are two inter-related factors to be considered in designing a method for 
the coding: the chromosome representation and the method of converting the 
chromosome to a solution, in the case of the 2D-SAM a sequential assignment. 
The most intuitive chromosome representation for a sequential assignment 
also proved to be the most effective, an integer array. Each integer in the array 
defines either a peak or a spin system by stating their position in an array of 
peaks or spin systems. The first integer in an array encodes the first spin 
system in a sequential assignment. The next four integers define the peaks 
that link the first spin system to the second spin system. The second spin 
system is encoded by the sixth integer in the array. This pattern is repeated 
for the entire length of the integer array. An example of the coding can be seen 
in Figure 5.2. The pattern would be repeated for each connection in the 
protein’s sequential assignment. The size23 of the integer array would be the 
number of amino acids in the protein multiplied by five.

The objects in Figure 5.1 are used to encode a sequential assignment into a 
individual object. Each individual object will have an integer array or 
chromosome. Each integer of the array will define either a connection or a 
peak object. The process of creating a sequential assignment from a 
individuals chromosome is shown in Figure 5.3. An integer is converted to a

22 The peak list contains the peaks picked out by a spectroscopist or a peak p ick ing program . 

In th is case the peaks would have been  picked from the protein’s N O E SY  spectrum , see  

section 2.1.3.

23 Num ber of in tegers in  th e  array.
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Figure 5.2 The expression of the 2D-SAM integer chromosome to 
produce a sequential assignment.
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Figure 5.3 Flow chart of the expression of the 2D-SAM.
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connection using the connection-arrays attribute of the connections object. The 
connection-position variable is used to find the correct array and the integer 
from the chromosome defines the position of the connection in the array. An 
integer is converted to a peak using the peak array attribute of the peak list 
object. The integer defines the position in the array of the peak to be selected.

For the initial genotypes the conventional approach would be to generate a 
random integer array as the chromosome of each individual. This would create 
inconsistent sequential assignments, which would increase the size of the 
search space (Section 3.2.4) dramatically by allowing combinations not just 
permutations. This would cause the GA to waste time evaluating impossible 
solutions. There are two ways to avoid this. The simplest is to include a 
penalty function into the fitness function. The penalty function reduces the 
fitness of an inconsistent individual. The level of the penalty function is 
difficult to set, e.g. should the penalty be set to be proportional to the level of 
inconsistencies or is it set to heavily penalise any inconsistent individual, 
making inconsistency a lethal characteristic for the individual. The more 
complex solution is to make inconsistent individuals impossible. Consistent 
individuals are produced initially and the genetic operators are designed not to 
introduce inconsistencies. The complex solution proved to be the more effective 
as it kept the search space smaller, even though there is a penalty in the time 
taken to evolve each generation.

Consistent individuals are produced by keeping a record of the use of each 
object used to construct a sequential assignment, connections and peaks. The 
record is the used-at attribute of the peak and connection objects. Whenever 
an object is placed in an individual its position is checked to ensure that it is 
not already used in that individual. The construction of the initial genotypes is 
thus only partly random. A connection is chosen at random from tile list of 
connections that can be placed at that point. If the connection has already been 
used then another is randomly chosen. The process is repeated until an unused 
connection is found or if there are no unused connections the position is left 
blank. Once the connections have been chosen the peaks that link them are 
chosen.

If the peaks were randomly chosen then any peaks could be placed in any 
linking position. However only a small number of the peaks in a spectrum, if 
any, will link any two connections. To link two connections a peak must be in 
the correct place in the spectrum; the chemical shifts of the peak must align 
with the chemical shifts of the connections. To reduce the time spent
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evaluating highly improbable connection-peak-connection links all the 
probable links are found before the 2D-SAM starts evolving. These ‘probable’ 
links are used in creating the initial assignment encoded into an individual.

The probable links for a connection are found by finding all the peaks that 
could have been partly generated by the object, i.e. those peaks that have a 
chemical shift that aligns with the chemical shift of the connection, within a 
certain tolerance24. For each peak found all the connection objects that have a 
chemical shift alignment with its other chemical shift are found, again within 
a certain tolerance. By finding all the peaks a connection object is linked to 
and then all the other connection objects that link to each of the peaks all the 
connection-peak-connection links are found (Figure 5.4). For each connection 
object 4 lists are created: NH-NH list, a-NH list, pi-NH list and P2-NH list. 
The list in which each connection-peak-connection link appears depends on the 
chemical shift of the connection with which the peak aligns. The lists iorm the 
NN-connections, a-connections, B 1-connections and B2-connections attributes 
of the object. Each element of the list has two parts: a peak and a connection, 
forming the second and third elements of the connection-peak-link. Each peak 
or connection can appear more than once in the list, i.e. a peak could 
potentially link several connections and two connections could potentially be 
linked by several peaks (Figure 5.4). Once all the ‘probable’ links for each 
connection have been found the initial assignments can be created.

The sequence of connections in each individual is randomly selected. A 
connection is then randomly chosen in the sequence of connections encoded by 
an individual. The NH-connections attribute of the connection is examined for 
entries that contain the next connection in the sequence. The first entry that 
matches the search criteria is examined. If the peak is unused its index is 
placed at the connection’s NH-NH link position in the chromosome (Figure 
5.2). If it is already used the next of the selected entries is examined. If no 
unused peaks are found or there are no entries selected the position is left 
blank. The process is repeated for the a-connections, Bl-connecions and B2- 
connections attributes of the connection and then for each attribute of the 
other connection objects.

The result of the above procedures is an initial population composed of 
individuals that are random sequences of connections and peaks. The 
individuals are consistent and contain no wildly improbable connection-peak-

24 The tolerance is designated by th e  user.
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Figure 5.4 Multiple spin system connections.
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connection links. The individuals of the population remain consistent 
throughout the running of the GA. The consistency of the GA population, once 
it is running, depends on its genetic operators. It is possible that improbable 
connection-peaks-connection links will occur but the genetic operators and 
selection pressure should keep the number small. The selection pressure arises 
from the fitness function ascribing zero fitness to improbable links. The fitness 
function produces a number that represents the fitness of the individual.

5.1 .2  F i t n e s s  F u n c t i o n  o f2 D -S A M
The fitness function determines the fitness of an individual; the quality of the 
solution it represents. In the case of the 2D-SAM the solution is a sequential 
assignment and the fitness is the probability of the connections being in the 
right sequence. The position which a connection occupies in the ^equence 
should be dependent on two things: the amino acid identity of the connection 
and the peaks that link it to the neighbouring connections.

Spin system identification can be ambiguous. The spin system identification 
may state that a connection may have been generated by any of several amino 
acid types. When a connection has multiple possible identities it can be placed 
at any position where any one of these amino acid types occurs in the amino 
acid sequence. Each amino acid identity of a connection has an associated 
probability, e.g. the amino acid is probably a glutamate but it could be a 
glutamine. The probability will be a number between 1.0 and 0.0, e.g. 
glutamate 0.8 and glutamine 0.3. The probability will be assigned by the 
program that performs the spin system identification or by a spectroscopist. A 
connection is more likely to be in the correct position when it is a position 
which uses a high probability identity. Using the previous examples the 
connection is more likely to be in the correct position if it is in a position where 
it is a glutamate, 0.8, rather than a glutamine, 0.3.

A connection is linked to its neighbours by between 0 and 8 peaks. The more 
NOE peaks observed that link a connection to its neighbours the greater the 
probability they are sequential. The probability that each peak actually links 
the 2 connections also affects the probability of the connections being 
sequential. The probability of a connection object being in the right position in 
the sequential assignment will depend on the probability of its amino acid 
identity being correct as well as its links to the neighbouring connection 
objects. A combination of these probabilities for each connection object in a 
sequential assignment is used to assess the fitness for the sequential 
assignment. The probabilities cannot be calculated. They can however be
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estimated. These estimates are referred to in the following sections as scores.

The fitness function takes an individual and decodes or expresses the solution 
it represents. The fitness is the sum of the scores for each connection. The 
score of each connection, Score, is calculated from three factors: the identity 
score spinid, the score of the preceding NOE links nOep and the score of the 
succeeding NOE links nOes. The calculation is shown in Equation 5.1. The 
identity score and the NOE score, the sum of both the preceding and 
succeeding NOE score, are equally important. The multiplication of the two 
scores insures no distortions occurs. For example if the identity score is 0.001 
and the NOE score is 0.95 then the score for the spin system is 9.5 x 104, 
appropriate for the low identity score. Alternatively, if the scores were added 
together the score would be 0.951, inappropriate given the low identity score.

Score = spinid x (nOep + nOes) Equation. 5.1

The preceding and succeeding NOE scores are the sum of the individual link 
scores. There are 4 links between each connection, NH-NH, a-NH, pl-NH and 
p2-NH (equation 5.2).

nOe_ score = NH_ NH + a_NH + 01_ NH + )32_ NH Equation 5.2

The score of each link has to be calculated. Each link is calculated in the same 
way except different chemical shifts are used, e.g. for a a-NH linjk the a  
chemical shift of the first connection and the NH chemical shift of the second 
connection are used. The calculation of the score for a pl-NH link, is used as 
an example (Equation 5.3). The p i chemical shift of the first connection, CS^, 
and the NH chemical shift of the second connection, CSNH, are found. Where 
these two chemical shifts overlap defines the ideal position for a peak to link 
the two connections. There will be two such positions created; one above and 
one below the diagonal of the spectrum. The two chemical shifts of a peak are 
found; in both the dl, CSdl, and d2, CSd2, dimension. The ideal position to 
which the peak is closest is used as the ideal point. The closer the peak is to 
the ideal point the higher the score. Beyond certain distances25, D lMax and 
D2Max, from the ideal point the peak scores zero. The distances are the 
tolerances used to determine the possible links for each connection described

25 E ach dim ension needs a specific d istance due to the variation in  d igital reso lu tion  in  the  

tw o dim ensions.
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in section 5.1.1. The two distances, the peaks chemical shifts and the 
connections chemical shifts are used to calculate a score. The score will be 
between 0.0 and 1.0.

p\-NH-score = \ -05 +
\CSd2 — CS1 

D2_ Equation 5.3

T he question  m arks denote th a t th e connection chem ical sh ifts  used  depend on w hich  o f the  

tw o ideal po in ts is  used.
j

The above equations are the ones currently used in the fitness function. 
Several variations of this equation were used. The first variation was the use 
of the square of the distances to calculate the score of an NOE link (Equation 
5.4). This creates a geometric rather than linear relationship between distance 
from the ideal point and the score.

-  NH -  score = 1-05
CSd, -  CS??

D 1.

+
\CSd2 -  CS?? 

D2 2

12 A

Equation 5.4

This change in the relationship was intended to make the score conform more 
to the spectroscopists estimations. However there was no conclusive 
improvement in the performance of the 2D-SAM with this modification. As the 
Modification increased the complexity and decreased the speed of the fitness 
function it was abandoned.

Another modification was at the level of the calculation of the links between 
the two connections (Equation 5.2). The modification involved the introduction 
of a synergistic factor into the equation. For each link score above zero an 
amount was added to the synergistic factor, e.g. for each link score greater 
than zero 0.25 is added to the synergistic factor. The synergistic factor starts 
at 1.0 and if all 4 links are greater than zero then synergistic factor becomes 
2.0. The synergistic factor is then multiplied by the sum of all 4 NOE links' 
scores. The synergistic factor was incorporated into the fitness function to 
allow for the greater certainty that a spectroscopist would ascribe to 
connections linked by several peaks as opposed to one even if the scores were 
the same, e.g. two peak scores of 0.5 are better than one score of 1.0.

A series of different synergistic factors were tried. Each using different 
increments for each NOE link above zero. The addition was even varied for the

57



B G Ailey PhD Thesis

number of peaks, e.g. the synergistic factor would start at 1.0, the first NOE 
link scoring above zero would add 0.0, the second NOE link scoring above zero 
would add 0.07, the third NOE link scoring above zero would add 0.13 and the 
fourth NOE link scoring above zero would add 0.3. With four NOE links 
scoring greater than zero the synergistic factor would be 1.5. The synergistic 
factor proved to have a negative impact on the performance of 2D-SAM. Since 
it led to the anomaly that a peak that was the only link between two 
connections would add more to the solutions score if it appeared elsewhere. 
The peak could score 1.0 in the correct position but by being the fourth peak 
elsewhere scoring 0.001 it could add greater than 1.0 to the score through the 
synergistic factor. The use of synergistic factors was therefore abandoned. It is 
possible that a carefully designed moderate synergistic factor could have a 
beneficial impact on the performance of the 2D-SAM, but it is doubtful that 
the improvement would be great enough to warrant the effort involved.

5.1 .3  G e n e t i c  O p e r a t o r s  of  2D-SAM
The function of the genetic operators in the 2D-SAM is to create new 
consistent sequential assignments. The operators must not disrupt the initial 
consistency of the sequential assignments. There are five genetic operators in 
the 2D-SAM:

• Blank Removal j

• Connection Reordering

• Segment Reordering

• Peak Reordeiing

• Crossover

The blank removal operator is used to keep the number of blank spaces to a 
minimum. As the other genetic operators function they occasionally introduce 
blank spaces into individuals. To offset this effect the blank removal operator 
is run. The operator fills in any blanks in the individuals sequential 
assignment with unused connections and peaks. A connection inserted at a 
blank space will be randomly chosen from the unused connections that can go 
at that position. A peak inserted at a blank position will be randomly chosen 
from the unused peaks that possibly link the two adjacent connections. The 
operator is used at a relatively low level. It will normally have only a small
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positive effect on the fitness of an individual. The other genetic operators could 
perform the same task but it would take a lot longer to produce the same 
effect. The chances of one of the other operators filling a blank position 
without disrupting the occupied positions is small.

The connection reordering genetic operator randomly reorders the connections 
in a sequential assignment, see Figure 5.5. The procedure outlined in Figure 
5.5 keeps the individual's sequential assignment consistent and keeps as many 
connections in the sequential assignment as possible. Swapping the pqsition of 
the two connections, if possible, is important for two reasons. The first is to 
ensure that, when the connections are swapped, the sequential assignment 
remains as complete as possible, i.e. there are as many peaks and connections 
in it as possible. The second reason is a little more complex. If two connections 
were each occupying the other’s correct position any attempt to move them 
independently could result in a reduction of the fitness of the individual. The 
connections could be linked to their incorrect positions by a number of NOE 
peaks and thus contribute to the fitness of the individual. The deletion of one 
of the connections to place the other in its correct position would remove the 
contribution of the deleted connection to the overall fitness of the individual. 
The connection now in the correct position would probably increase the 
amount contributed to the overall fitness of the individual but it may not be 
enough to offset the loss of deleted connection. It is possible that the next time 
the individual underwent a reordering of its connections the deleted 
connection could be inserted into its now vacant correct position but the 
probability is small, given by the inverse of the number of connections in the 
sequential assignment multiplied by the inverse of the number of connections 
that can be placed at that position. Therefore swapping rather than 
independent movement of connections can be beneficial. When two connections 
are reordered the NOE peaks that link them to the neighbouring connection 
are also reordered. This is discussed later in the section describing the peak 
reordering operator.

The segment reordering operator swaps segments of sequential assignment in 
the chromosome of an individual. The operator is designed to swap segments of 
sequential assignment that can occur at two or more positions. Take for 
example a protein with two segments of amino acids Gly-Ala-Ser. If the two 
segments of connections that correspond to the two amino acid sequences are 
well linked by NOE peaks but are in the wrong positions then, without the 
segment reordering operator the segments would remain at their current 
positions. There are two reasons for this; the first is that the sequence of
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Figure 5.5 Flow chart of the connection reordering operator.
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operations required to swap the two segments by the connection and peak 
reordering operators has a low probability of occurring. The second is that any 
attempt to swap the segments of sequential assignment piecemeal, i.e. using 
the connection and peak reordering operators, would initially disrupt the 
segments, causing a reduction in the fitness of the individual. The sequence of 
operations would be working against the selection pressure of the 2D-SAM. 
The two factors combine to make the swapping of the segments improbable 
even though the final result would be a better sequential assignment and thus 
a fitter individual.

The segment reordering operator has two distinct phases, first to find 
segments that can be swapped and secondly to swap them. A flow chart of the 
operator is shown in Figure 5.6. The check to see if two connections can swap 
position is dependent on the amino acids that correspond to both positions and 
the amino acid identities of the two connections, the connection must have the 
right amino acid identity to be placed at the new position. When the two 
segments are swapped all the connections of the segment and all the NOE 
cross peaks that link them are swapped. The NOE links to the swapped 
segments are then reordered. This is discussed later in the section describing 
the peak reordering operator.

The crossover operator is similar to the segment reordering operator. The 
operator swaps segments of sequential assignment between individuals as 
opposed to within an individual. The function of the operator is shown in 
Figure 5.7. The swapping of the connections and peak objects is itself a 
complex procedure. The complexity is required to ensure that the two 
sequential assignments encoded by the individuals undergoing crossover 
remain consistent. The process of swapping two connections is shown in Figure 
5.8; it is essentially the same as that of swapping two peaks.

The peak reordering operator (Figure 5.9) will reorder the sequence of peaks in 
the sequential assignment an individual encodes. The operator does not 
reorder the peaks completely randomly. The operator randomly selects a peak 
in the sequential assignment and replaces it with another peak, randomly 
chosen from all the peaks that could possibly link the two adjacent 
connections. The connection attributes, NN-connections, a-connections, Bl- 
connections and B2-connections, of a connection object contains a list of all the 
peaks that can link the connection to another connection.

The peak reordering operator is also used by the crossover, connection
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Figure 5.6 Flow chart of the connection reordering operator.
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Figure 5.7 Flow chart of the crossover operator.
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Figure 5.8 Connection reordering (see Figure 5.7).
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Figure 5.9 Peak reordering (see Figure 5.7).
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reordering and segment reordering operators. It is used systematically to link 
the new connection or segments of sequential assignment to the existing 
sequential assignment. The four peaks before and after the new connection or 
segment are unlikely to be possible links between their adjacent connections. 
To insure that the peaks are possible links the reordering operator is used to 
insert possible linking peaks into the eight positions.

All the genetic operators were developed to accelerate the speed and reliability 
with which the 2D-SAM comes to a near optimal solution (Section 3.2.4 and 
Chapter 4).

5 .2  E v a l u a t i o n  o f  t h e  2D-SAM
The 2D-SAM was evaluated using the spectrum of an antibody binding domain 
of protein G. The domain is small, 60 amino acids in length, and its sequential 
assignment is known (38). The peak list of the NOESY spectrum was also 
available. The protein was relatively simple to assign given the quality of its 
NOESY spectrum and its small size. The 2D-SAM should assign at least 80% 
of the domain to be considered a success, although it is working from only one 
spectrum instead of several used by a spectroscopist. The 2D-SAM was also 
tested with Dihydrofolate Reductase (DHFR). The spin system identification is 
known (39) and a peak list was also available. DHFR is more of a challenge to 
the 2D-SAM, it is a large protein, 162 amino acids in length, and even 
experienced spectroscopists could not completely assign the protein from its 2D 
1H-1H spectra alone, 15N and 1SC labelling being required for full assignment. 
Approximately 35% of the protein was assigned using 2D spectraj (GCKR 
personal communication). I

The input data for the 2D-SAM can be found on the enclosed CD-ROM.

5.2 .1  T e s t i n g  of  t h e  2D-SAM
A number of test runs were performed to evaluate the performance of the 2D- 
SAM, in which the correctness and precision of the spin system identification 
was varied. The precision of the spin system identification refers to the 
number of possible amino acid identifications for a given spin system. The 
probability associated with each amino acid identity also has an impact on 
precision; for example when a Ser spin system is identified as either Ser 1.0 or 
Val 0.1 it is a more precise identification than when identified as either Ser 1.0 
and Val 0.9. A spin system identification is considered to be correct when the 
correct amino acid identity has a probability greater than or equal to the best 
of the incorrect identities. Four sets of experiments were performed. The first
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was with a precise and correct spin system identification. The second and third 
sets of experiments had a correct, but imprecise spin system identification. 
The fourth set of experiments had an incorrect and imprecise spin system 
identification. The 2D-SAM is a stochastic program and its output will vary 
even if the input remains constant; in practical use it would be necessary to 
run the 2D-SAM several times in order to have confidence in the results.

The 2D-SAM has a number of user defined parameters. Some parameters are 
concerned with the spectrum, others with the working of 2D-SAM. The 
spectral parameters are the tolerances used in determining when a peak could 
possibly link two connections. All the other parameters affect the environment 
in which the individuals evolve. The parameters set for each experiment are 
those listed below except where stated otherwise. The parameters were all 
derived by experience (Sections 3.1.6). The default parameters are

• The population parameter is 400. The main-population has 400 individuals; 
the sub-population has 40 individuals. The larger the population the better 
the search space is sampled and the longer the time required to evolve one 
generation.

• The generations parameter is set at 6000. The sub-population is evolved for 
6000 generations; effectively 600 generations for the main-population.

• The crossover rate parameter is set at 0.5. 50% of the individuals in the sub
population undergo crossover every generation.

• The connection reordering rate is set at 0.2. 20% of the individuals in the 
sub-population undergo connection reordering.

• The segment reordering rate is set at 0.1. 10% of the individuals in the sub
population undergo segment reordering.

• The peak reordering rate is set at 0.1. 10% of the individuals in the sub
population undergo peak reordering.

The fittest individual that evolved during the running of the 2D-SjAM was 
taken as the solution. The experiments were run on a number^ of SGI 
workstations. The first run of the first set of experiments took lh r  26mins on a 
workstation with a 250 MHz R4400 CPU and 128 Mb of RAM. The
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experiments were all run in a low priority batch queue. Thus the speed of a 
run will depend on the concurrent usage of the computer.

The first set of experiments was with the accurate and precise spin system 
identification. All the spin systems were accurately identified as being 
generated by one amino acid type. 24 experiments were performed. All the 
experimental runs produced a correct sequential assignment. There was some 
minor variation in the fitness of the best individuals produced in each run.

The second set of experiments was performed with an accurate spin system 
identification but with a reduced precision. The spin systems were all 
identified as being generated by a class of amino acid rather than an amino 
acid. The classes used were those described by Redfield (40). Each amino acid 
identity had a probability of 1.0 associated with it. Three groups of 24 
experiments performed. The first set had the 2D-SAM parameters as the 
previous experiments, the second group had the generation parameter set at 
8000 and the third group had it set at 10000. The results for the 6000 
generation run are in Table 5.1. 4, of the 24 experimental runs 24 failed, to 
generate a correct sequential assignment. The experiments using the 10000 
generation parameter failed to find the correct sequential assignment 2 out of 
24 times. On 3 occasions when it did find the correct sequential assignment it 
was at generations above 6000 ( 6600, 7400 and 9400). Two of the errors 
involved the T6-T7 and T22-T23 spin systems being interchanged.

|

The third set of experiments were performed with an accurate spin system 
identification but with a reduced precision. The spin systems that had been 
identified by their Redfield classes in the previous set of experiments were 
identified as all the amino acids in the class. The correct amino acid identity 
had a score of 1.0 while the other amino acid identities in the class had a score 
of 0.9, 0.5 or 0.1 depending on the experimental subset being run. Each subset 
experiment was performed 24 times. The 0.1, 0.5 and 0.9 subsets produced 0, 1 
and 2 incorrect sequential assignments respectively. The errors were the same 
errors as those observed in the second set of experiments.

The fourth set of experiments had the same precision as one of the previous 
subset of experiments; using a score of 0.5 for incorrect amino acid identities of 
the class. Errors were then introduced to the spin system identification by 
making a certain spin system have a score 0.5 for its correct identity and 
assigning one of its incorrect identities a score of 1.0. The changes were as 
follows K9R, E29R, Q37E, D41N and D51N, e.g. the spin system generated by
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Table 5 .1  - Precision Reduced to C ass Spin system identification
Experiment

Number
Residues
Correct

Percentage
Correct

Fitness

1 60 100 213.6
2 60 100 213.1
3 60 100 213.1
4 60 100 213.1
5 60 100 213.6
6 56 93.3 210.4
7 60 100 213.1
8 60 100 213.1
9 60 100 213.8
10 60 100 213.1
11 60 100 213.1
12 60 100 213.1
13 60 100 210.7
14 60 100 213.1
15 56 93.3 210.4
16 46 76.7 196.9
17 60 100 213.1
18 60 100 213.1
19 60 100 213.1
20 60 100 213.1
21 60 100 213.1
22 60 100 213.1
23 60 100 213.1
24 57 95 209.1
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a lysine at position 9 is misidentified as an arginine. 24 experiments were 
performed with each incorrect spin system identification. The results of the 
five of experiments can be seen in Table 5.2, Table 5.3, Table 5.4, Table 5.5 and 
Table 5.6.

In all the cases where there is an error in the sequential assignments of all 
four sets of tests the problem involves the T6 and T7 connections being 
swapped with those of T22 and T23.

The generation in which the correct sequential assignment was found for the 
above experiments is shown in Table 5.7 and Figure 5.10. The first set of 
experiments are recorded in the “Precise” column, the second set of 
experiments are recorded in the “Class” column and the third set of 
experiments are recorded in the 0.1, 0.5 and 0.9 identity columns. The number 
refers to the score assigned to the incorrect amino acid identities. The 
experiments are listed in decreasing precision left to right.

The fifth set of experiments was conducted using the 2D NOESY spectrum, 
spin system identification and amino acid sequence of DHFR. The parameters 
used were 12000 generations with a main population of 1200 individuals. The 
last run in the set of experiments took 14 hours 48 minutes to run. The results 
are far more variable than for protein G. The percentage SD of the percentage 
of residues in the correct position is 15%. Although the fitness only varies by 
2.6%. The difference in the two figures is caused by a number of residues that 
have no NOE links to their neighbouring residues. These residues can then be 
in a number of positions, which may or may not be the correct positions, 
without affecting the fitness of the sequential assignment. The average result 
and standard deviation are calculated for this set of experimental runs. The 24 
experiments gave an average of 26.9% correct sequential assignment. The 
results of all the experiments can be seen in Table 5.8.

5 . 2 . 2  C o n c l u s i o n s

The 2D-SAM exceeds the criterion of success decided upon before the module 
was started, namely that the program perform a sequential assignment that 
formed a useful start point for the spectroscopist in reasonable time. The 
criterion of a useful start point for protein G was a sequential assignment 
approximately 80% correct. The criteria of a useful start point for DHFR was a 
sequential assignment approximately 28% correct, 80% of the 35% of the 
assignment performed manually. For practical purposes a “reasonable time” 
was considered to be an overnight run on an SGI workstation, less than 18
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Table 5. 2 - Precision Reduced to 0.5 Scoring Alternate Identity, K9R
Experiment

Number
Residues
Correct

Percentage
Correct

Fitness

1 60 100 211.2
2 60 100 211.2
3 60 100 211.2
4 60 100 211.7
5 60 100 211.2
6 60 100 211.2
7 60 100 211.2
8 60 100 211.2
9 60 100 211.2
10 60 100 211.2
11 60 100 211.2
12 60 100 211.2
13 60 100 211.7
14 60 100 211.2
15 60 100 211.2
16 60 100 211.2
17 60 100 211.2
18 60 100 211.2
19 60 100 211.2
20 60 100 211.2
21 60 100 211.2
22 60 100 211.2
23 60 100 211.9
24 60 100 211.2
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Table 5. 3- Precision Reduced to 0.5 Scoring Alternate Identity, Q37E
Experiment

Number
Residues
Correct

Percentage
Correct

Fitness

1 60 100 210.2
2 60 100 210.7
3 60 100 210.2
4 60 100 210.2
5 60 100 210.2
6 60 100 210.2
7 60 100 210.2
8 60 100 210.2
9 60 100 210.2
10 60 100 210.7
11 60 100 210.2
12 60 100 210.^
13 60 100 210.7
14 60 100 210.2
15 60 100 210.2
16 60 100 210.2
17 60 100 210.2
18 60 100 210.2
19 60 100 210.2
20 60 100 210.2
21 60 100 210.2
22 56 93.3 207.5
23 60 100 210.2
24 60 100 210.2
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Table 5. 4 - Precision Reduced to 0.5 Scoring Alternate Identity, E29R
Experiment

Number
Residues
Correct

Percentage
Correct

Fitness

1 56 93.3 207.2
2 60 100 209.9
3 60 100 209.9
4 60 100 210.3
5 60 100 209.9
6 60 100 209.9
7 60 100 209.9
8 60 100 209.9
9 60 100 209.9
10 60 100 209.9
11 56 93.3 207.2
12 60 100 209.9
13 60 100 209.9
14 60 100 209.9
15 60 100 209.9
16 60 100 209.7
17 60 100 209.9
18 60 100 209.9
19 60 100 209.9
20 60 100 209.9
21 60 100 209.9
22 60 100 209.9
23 60 100 209.9
24 60 100 209.9
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Table 5. 5- Precision Reduced to 0.5 Scoring Alternate Identity, D41N
Experiment

Number
Residues
Correct

Percentage
Correct

Fitness

1 60 100 210.7
2 60 100 210.7
3 60 100 210.7
4 60 100 210.7
5 60 100 210.7
6 60 100 210.7
7 60 100 211.2
8 60 100 210.7
9 60 100 210.7
10 60 100 211.2
11 60 100 211.2
12 60 100 210.7
13 60 100 210.7
14 60 100 210.7
15 60 100 210.7
16 60 100 210.7
17 60 100 210.7
18 60 100 211.2
19 60 100 211.2
20 60 100 210.7
21 60 100 210.7
22 60 100 210.7
23 60 100 210.7
24 60 100 211.4
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Table 5. 6- Precision Reduced to 0.5 Scoring Alternate Identity, D51N
Experiment

Number
Residues Correct Percentage

Correct
Fitness

1 60 100 211.7
2 60 100 211.7
3 60 100 211.7
4 56 93.3 209.7
5 60 100 211.7
6 60 100 211.7
7 60 100 211.7
8 60 100 211.7
9 60 100 211.7
10 60 100 211.7
11 56 93.3 209
12 60 100 211.7
13 60 100 211.7
14 60 100 211.7
15 60 100 212.1
16 60 100 211.7
17 60 100 211.8
18 60 100 211.7
19 60 100 211.7
20 60 100 211.7
21 60 100 211.7
22 60 100 211.7
23 60 100 211.7
24 60 100 211.7
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Table 5. 7 - Generation Correct Sequential Assignment Obtained
Experiment Precise 0.1 Identity 0.5 Identity 0.9 Identity Class

1 1000 3400 4400 2200 2000
2 1200 4000 2000 5400 2400
3 1600 1400 2600 2200 3200
4 1800 1400 2800 2200 2000
5 1000 3800 2600 4200 3000
6 1400 1600 2000 1400 2800
7 800 2200 2000 2000 3800
8 1000 2200 3200 3400 1800
9 1200 800 2400 2000 3400
10 1600 1400 1200 2600 | 5000
11 1400 1600 1600 3800 1400
12 2800 1200 3400 2200 4600
13 1200 1200 1200 2400 4400
14 1600 1000 1800 1000 4400
15 1400 1800 1600 3800 1400
16 1400 1400 4600 3200 2800
17 800 3800 2200 5000 3000
18 1400 2800 4800 2800 1400
19 1000 2400 4400 1200 5400
20 2200 1200 2000 4200 6000
21 1400 1600 2400 4200 6000
22 1200 2400 2800 1800 6000
23 2200 2000 2600 6000 6000
24 1600 2400 6000 6000 6000

Average 1425 2042 2775 3133 3675
Std. Dev. % 32.9 45.6 44.8 46.2 44.9
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Table 5. 8 - DHFR
Experiment

Number
Residues
Correct

Percentage
Correct

Fitness

1 41 25.3 169.8
2 54 33.3 183.2
3 44 27.2 172.5
4 43 26.5 172.6
5 57 35.2 171.4
6 34 21.0 171.2
7 37 22.8 179.3
8 47 29.0 173.7
9 43 26.5 169.1
10 39 24.1 176.0
11 38 23.5 174.8
12 35 21.6 166.7
13 50 30.9 172.4
14 46 28.4 173.0
15 40 24.7 165.9
16 36 22.2 169.3
17 45 27.8 180.6
18 45 27.8 164.1
19 52 32.1 173.5
20 50 30.9 171.4
21 44 27.2 169.5
22 51 31.5 171.9
23 34 21.0 173.7
24 39 24.1 175.8

Average 43.5 26.9 172.6
% Stan. Dev. 14.9 14.9 2.6
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hours.

When a correct and precise spin system identification of protein G is used as 
input for the 2D-SAM it produces a correct sequential assignment as output. 
Given a good spin system identification, a good NOESY spectrum and a 
moderately sized protein the 2D-SAM can generate a good sequential 
assignment. This is demonstrated by the first set of experiments, in which the 
2D-SAM produces a 100% correct assignment. The performance of the program 
exceeds the objectives for the module, working with only one spectrum it can 
produce a correct sequential assignment in about lhour 30 minutes. This is 
impressive given that there are 1.930 x 10826 possible sequential assignments 
with the input used in the first set of experiments.

An example of a sequential assignment generated by the first run of the first 
experiment by the 2D-SAM can be see in Section 5.3.

|

In the second and third set of experiments the reduction in precision leads to 
an increase in the size of the search space. The spin systems can now be placed 
in a greater number of positions which increases the number of possible spin 
system sequences from 2.426 x 1038 to 4.575 x 1048. The change in the precision 
increases the number of sequential assignments by 10 orders of magnitude to 
3.640 x 10836. The size of the search space is the same for each of these two sets 
of experiments, but there is a difference in performance in various sets of 
experiments (Figure 5.10).

The variation in performance is due not to the size of the search space but its 
shape. As can be seen in Figure 5.10, the performance of the 2D-SAM 
decreases on going from experiments where the wrong identities were ascribed 
a value of 0.1 to the class identity experiments where the wrong identities 
ascribed a value of 1.0. As the score of the incorrect identities is increased to 
effectively 1.0 in the class identity experiments then the incorrect areas of the 
search space have greater and greater fitness. This increase in fitness for these 
areas means that the 2D-SAM spends more time examining these areas of the 
search space and this decreases its performance. The 2D-SAM takes longer to 
arrive at a near optimal solution. In certain random cases the 2D-SAM will not 
find a near optimal solution in the time available to it. This is demonstrated by 
the fact that when the generations parameter was increased in the class 
experiments from 6000 to 10000 the number of near optimal solutions 
increased. The second and third set of experiments demonstrate that the 2D- 
SAM can work with an imprecise or ambiguous spin system identification. The
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Figure 5.10 Effect of reducing assignment precision.

Generation Correct Solution Found with Decreasing 
Precision of The Spin System Identification

4000

3500

3000 -

2500

2000

1500 -4

1000

500 -

0.10 0.5 0.9 1I

Score of the incorrect Amino Acid Identities



B G Ailey PhD Thesis

2D-SAM will on average take longer to reach a near optimal solution but it 
will reach it.

Despite an increase in the size of the search space by ten orders of magnitude 
and the reduction in the quality of the information supplied by the spin system 
identification the 2D-SAM still reached a correct sequential assignment the 
vast majority of the time. In the second set of experiments which were the 
most demanding, the 2D-SAM gave a 100% correct sequential assignment 83% 
of the time. On the four occasions it did not give a 100% correct sequential 
assignment it did give a sequential assignment greater that 93% correct on 
three of those experimental runs.

The fourth set of experiments demonstrate that the 2D-SAM is able to cope 
with a certain amount of error and imprecision in the spim system 
identification, providing that the quality of the NOESY spectrum is 
reasonable. The results were equivalent to the experimental runs performed 
with a correct spin system identification of the same precision. The errors that 
occurred in the sequential assignment produced were not related to the errors 
introduced into the spin system identification. The quality of the data derived 
from the NOESY spectrum was such that the errors in the spin system 
identification could be corrected by the 2D-SAM.

The most critical factor in affecting the performance of the 2D-SAM is the 
quality of the NOESY spectrum and spin system identification. An example of 
the spectrum effects is the recurring problem with the T6-T7 and T22-T23 
segments of sequential assignment. These two segments cause a problem 
because the NOE spectrum can link them almost equally well to either 
position. The difference in fitness between the correct and incorrect positions 
for the two segments is about. 3.0. This is a less than 1.5% of the total fitness. 
Sample out put from the 2D-SAM showing the T6-T7 part of the sequential 
assignment with both correct and incorrect is shown in Figure 5.11. T22 is 
linked to V5 by a score of 0.783 and T23 to Y8 by a score of 1.0. The V5 is 
linked to T6 by a score of 1.0 and T7 is linked to Y8 by a score of 0.0. The T7 to 
Y8 is 0.0 because there are no NOE peaks that link the two spin system. The 
incorrect NOE links have a higher score. This is counteracted by the 
corresponding scoring in the T22-T23 region of the sequential assignment, to 
give a small benefit to the correct sequential assignment scoring.

The fifth set of experiments uses DHFR, a much larger protein as a test. The 
size of the search space increases to 2.609 x 102285 possible sequential
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Figure 5. 11
Correct Sequential Assignment

5-V | *VAL-5*

NH-shift 8.1140 
a-shift 4.2220 
Bl-shift 1.8810 
B2-shift 1000.0000

A Peak 284 | dl 8.4450 | d2 4.2220 | Score 1.0000

Prev 1.000| Curr 1.000 1 ID 1.0| Con Tot 2.000|

6-T | *THR-6*

NH-shift 8.4450 
a-shift 4.4380 
Bl-shift 1000.0000 
B2- shift 1000.0000

A Peak 250 | dl 8.2730 | d2 4.4380 | Score 1.0000

Prev 1.000 1 Curr 1.000 1 ID 1.0| Con Tot 2.000|

7-T | *THR-7*

NH-shift 8.2730 
a-shift 1000.0000 
Bl-shift 1000.0000 
B2-shift 1000.0000

Prev 1.000 1 Curr 0.0001 ID 1.0| Con Tot 1.000|

8 -Y | *TYR-8*

NH-shift 9.3220 
a-shift 5.3090 
Bl-shift 3.3820 
B2-shift 2.8100
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Incorrect Sequential Assignment

5 -V | *VAL-5*

NH-shift 8.1140 
a-shift 4.2220 
Bl-shift 1.8810 
B2- shift 1000.0000

A Peak 285 | dl 8.1330 | d2 4.2220 | Score 0.7833

Prev 1.000 1 Curr 0.783| ID 1.0| Con Tot 1.783|

6-T | *THR-22*

NH-shift 8.1460 
a-shift 5.8630 
Bl-shift 4.3240 
B2- shift 1000.0000

A Peak 174 | dl 
B1 Peak 701 | dl

9.0420 
4.3240

I d2 5.8630 | Score 1.0000 
I d2 9.0420 | Score 1.0000

Prev 0.783| Curr 2.000| ID 1.0| Con Tot 2.783|

7-T | *THR-23*

NH-shift 9.0420 
a-shift 4.6410 
Bl-shift 3.8080 
B2-shift 1000.0000

NN Peak 35 | dl 9.3220 I d2 9.0420 | Score 1.0000

Prev 2.000| Curr 1.0001 ID 1.0| Con Tot 3.000|

8 -Y | *TYR-8*

NH-shift 9.3220 
a-shift 5.3090 
Bl-shift 3.3820 
B2-shift 2.8100
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assignments with the data used in the DHFR runs. The data supplied from the 
spectra is also of reduced quality due to greater peak overlap (Section 2.2.2), 
arising from the increased number of peaks in NOESY spectrum and their 
increased line width. Despite this dramatic increase in the size of the search 
space and decrease in the quality of the spectrum the 2D-SAM nearly meets 
the success criterion, 80% of the performance of a spectroscopist. The level of 
the manual assignment was 28% correct sequential assignment. The level 
achieved was a little under that at 26.9 %. The was a 14% standard deviation 
in the correctness of the assignment but only a 3% standard deviation in the 
fitness of the assignments. The difference between the two figures is due to the 
fact that a number of connections have no NOE peaks to link them into the 
neighbouring connections. Their positions are entirely random, within the 
constraints of their amino acid identity list. Therefore whether or not any of 
these connections are in the correct position and contributing to the percentage 
correct is random.

The program would still have been worth using as start point for manual 
sequential assignment of the DHFR spectrum. This was eventually completely 
assigned using 15N and 13C labelling, together with heteronuclear experiments. 
One of these experiments is used by the 3D-SAM to perform sequential 
assignment.

5 .3  2 D - S A M  O b j e c t  D e f i n i t i o n s

This section contains a definition of the objects used in the design and 
implementation of the 2D-SAM. A list of the attributes of each object are listed 
below.

5 . 3 . 1  P e a k  C l a s s

The peak class is designed to model cross peaks and their use. The attributes 
of the peak object are listed below:

• Id attribute: the symbol identifies the peak to the user. It is the number or 
symbol that was used to identify the peak in the text file that contains the 
peak list.

• System-id attribute: the symbol identifies the peak in the 2D-SAM.

• Type attribute: the symbol states the type of spectrum the peak is selected 
from.
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• The chemical shift attributes d l and d2; these floating point numbers give 
the chemical shift of the centre of the peak in dimensions one and two 
respectively.

• Used-at attribute: is an integer array of the same size as the sub population 
(Section 4.5). The array records the position of the peak object in the 
individuals of the sub population. The integer at position 5 will record the 
position of the peak object in the chromosome array of the 5th individual in 
the sub population. If the peak is not used in the 5th individual the integer is 
- 1 .  i

• Index attribute: the integer gives the position of the peak in an array of 
peaks. The array of peaks is one of the attributes of the peak list class.

There will be as many peak objects as there are peaks in the peak list input 
into the 2D-SAM.

5 . 3 . 2  P e a l  L i s t  C l a s s

The peak-list class, is designed to model a peak list, is a relatively simple class 
with only 4 attributes.

• Type attribute: this symbol states the type of spectrum from which the 
peak list was selected from. In the 2D-SAM this will always be a 2D 
NOESY spectrum.

• Peak-number attribute: this integer states the number of peaks in the peak 
list.

• Peak-list attribute: this is a list of all the peaks, in the form of peak objects, 
in the peak list.

• Peak-array attribute: this is an array of all the peaks, in the form of peak 
objects, in the peak list. The position of a peak object in this array defines 
its index attribute.

There will be only one peak list object in the 2D-SAM as only one spectrum is 
used. The peak-list object will contain all the peak objects (Figure 5.1).

The spin system and connection classes are intertwined and could now be 
combined into one. They were originally separated to allow the 2D-SAM to
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interact with spin system identification module being developed by our 
collaborators at Aberdeen. The spin system object definition is the only non 
original code in the 2D-SAM, although the class definition has been added to. 
The spin system object code was deliberately retained to allow the 2D-SAM to 
interact with the spin system identification module that was being written in 
Aberdeen.

5 . 3 . 3  S p i n  S y s t e m  C l a s s

The spin system class contains the information from the spin system 
identification. The spin system class is not used other than in the creation of 
the connection class (Figure 5.1).

5 . 3 . 4  C o n n e c t i o n  C l a s s

The connection class models the inter-connections of a spin system that has 
been identified during spin system identification. For each spin system object a 
connection object is generated. A number of the attributes of a connection 
object are copied from the spin system objects whose connections it models. 
The attributes of the connection class are:

• Connection-id attribute: the symbol identifies the connection object within 
the 2D-SAM.

i

• Spin-system attribute: contains the spin system object whose connections 
the object models.

• Chemical shift attributes (NH-shift, a-shift, Bl-shift26 and B2-shift): are 
floating point numbers that store the NH, a, (51 and p2 chemical shifts of 
the spin system. This allows faster and simpler access than searching the 
list of chemical shifts found in the spin system object.

• Connection attributes (NN-connections, a-connections, B 1-connections and 
B2-connections): list the connections of the spin system. The elements of 
the list will consist of pairs of objects, e.g. ((connection peak) (connection 
peak)). The first object will be another connection object. The second object 
will be the peak that possibly links the two connection objects.

• Connecting-peaks attribute: a list of all the peaks that possibly link the

26 In the case that the spin system has been identified as possibly being generated by a glycine 

the Bl-shift will be the second a  chemical shift.
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connection to other connection objects. The list will have pairs of elements, 
a peak and the connection it links to. The attribute will be a list.

• Intra-peaks attribute: lists the intra-residue peaks of the spin system. 
Derived from an attribute of the spin system object. The elements of the list 
will be peak objects.

• Identity-scores attribute: is a list of the possible amino acid identities of the 
spin system. Each possible identity will have an associated probability with 
it; the probability that the spin system is an amino acid of that type. The 
list will have pairs of elements; an amino acid and an associated 
probability, e.g. ((V 0.4) (T 0.987)).

• Connection-used-at attribute: records where the connection is used in the 
individuals of the sub-population. The attribute is an integer array, the 
same size as the sub-population. Each integer in the array records the 
position of the connection in the corresponding individual in the sub
population. If the 23rd integer in the used-at array is 5 then the index of the 
connection will be found at the 5th position of the chromosome array of the 
23rd individual of the sub-population. If the connection is not used in an 
individual then a -1 appears at the corresponding position in the used-at 
array. The connection used-at attribute performs the same function as the 
peak used-at attribute.

• Connection-index attribute: is an integer that gives the position of the 
connection object in an array of connection objects27. The array is an 
attribute of the connections class. The index of a connection is used in the 
chromosome array of an individual to define the position of the connection 
in the sequential assignment the chromosome encodes. The connection 
index attribute performs the same function as the peak index attribute.

• Connection-position attribute: is an integer that states the actual position 
of the spin system whose connections the object models in the sequential 
assignment. This is a testing tool used with proteins whose sequential 
assignment is known. The attribute will be used when calculating the 
number of spin systems in the correct position in the sequential 
assignment.

27 The array is the array attribute of the connections class.
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The connection objects are grouped together and ordered in the connections 
class.

5 . 3 . 5  C o n n e c t i o n s  C l a s s

The connections class has 5 attributes that contribute towards the creation of 
a sequential assignment from the chromosome array of an individual. The 
attributes of the class are:

• Number attribute: an integer stating the number of connection objects in 
the 2D-SAM. This is equivalent to the number of spin systems in the spin 
system identification.

• List attribute: a list of the connection objects in the 2D-SAM.

• Array attribute: an array of the connection objects in the 2D-SAM. The 
attribute is the array from which the index of a connection is derived.

• Arrays attribute: an irregular multi-dimensional array of connection 
objects. The 1st dimension of the array is the same as the number of amino 
acids in the protein. The 2nd dimension of the array will be the number of 
connections that could be assigned to that position in a sequential 
assignment, e.g. if the 9th amino acid in a protein is a glutamine then the 
9th array of the arrays attribute will contain all the connections that have 
been identified as possibly being generated by a glutamate.

The sequence class28 models the amino acid sequence of the protein. This is the 
standard sequence class described in (Chapter 4).
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6 . 0  T h r e e  D i m e n s i o n a l  S e q u e n t i a l  a s s i g n m e n t  

M o d u l e
The three dimensional sequential assignment module (3D-SAM) was derived 
from the two dimensional sequential assignment module; modifying it to use a 
different type of spectrum as input. The spectrum input into the module is a 
three dimensional heteronuclear 15N-1H HMQC NOESY spectrum j (section 
2.3). The other input and the output remain the same. The design and 
implementation of the 3D-SAM is essentially the same as the 2D-SAM. The 
differences are to enable the module to use a three dimensional spectrum.

The interpretation of a three dimensional heteronuclear 15N NOESY spectrum 
(section 2.3) is different from a two dimensional homonuclear spectrum. The 
centre of the peaks in the three dimensional spectrum will be defined by three 
chemical shifts. The three chemical shifts will each come from a different 
nucleus29, 1H, 15N and NVH. If the peak is an intra-residue peak the 
chemical shift will come from the same amino acid as the 15N and N*H 
chemical shifts. If the peak is an inter-residue peak the XH chemical shift will 
come from one amino acid and the 15N and N*H chemical shifts will come from 
another amino acid. The peaks generated by an amino acid30 will the same 15N 
and N*H chemical shifts. In a spectrum displayed with NXH, XH and 15N 
dimensions as the x, y and z axis respectively the peaks generated by the same 
amino acid spin system will appear as a vertical strip of peaks (Figure 2.10). 
The intra-residue peaks have the same chemical shift (y axis) as a proton of 
the amino acid that generated the peak. The inter-residue peaks have the 
same chemical shift as the proton of the other amino acid that contributed 
to the generation of the peak. The links between spin systems are found by 
aligning chemical shift of an intra-residue peak of one spin system with the 
1H chemical shift of an inter-residue peak of another spin system. The extra 
dimension and the different pattern of peaks makes sequential assignment 
using a three dimensional heteronuclear 15N NOESY spectrum much easier 
and often allows the sequential assignment of proteins that could not be 
assigned using a two dimensional homonuclear spectrum alone.

The rest of this chapter is split into two sections: design and evaluation.

29 The exception being an intra-residue NH peak. The N 1!! and 1H will come from the same 

nucleus.

30 A peaks can be considered as being generated by the amino acid whose nuclei supplied the 

15N and N JH chemical shifts.
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6 .1  D e s i g n  o f  t h e  3D-SAM
The design of the 3D-SAM is identical to that of the 2D-SAM (Section 5.1) with 
some modifications to the coding and fitness function. The modifications occur 
at a low level in the module, leaving most of the design unchanged.

6 .1 .1  C o d i n g  3D-SAM
The modifications to the design of the coding are to the peak, spin system and 
connection objects and a change in the method used to find possible links 
between connections. The change in the objects is the addition of an extra 
dimension or chemical shift. The change in the way that links are found is to 
allow for the different patterns of peaks generated in a three dimensional 
heteronuclear 15N NOESY spectrum.

The peak object is modified to include and extra chemical shift attribute, d3, a 
floating point attribute. The spin system and connection objects each have an 
additional chemical shift attribute, floating point attributes. These attributes 
contain the 15N chemical shift of a spin system from the spin system
identification. !

i

The method of finding links between spin systems changes due to the change 
in the spectrum used. To find all the links for each connection object takes 
three steps:

• The first is to find all the peaks generated by each amino acid. The spin 
system identification will contain the 15N and NXH chemical shift of each 
spin system. The peak list is then searched for peaks that have the same 
15N and NXH chemical shifts, within certain tolerances. The tolerances will 
be user defined and each chemical shift dimension will have its own 
tolerance. Any peak that matches the search criteria is recorded as possibly 
belonging to that connection. A peak can belong to more than one 
connection. (Figure 5.4)

• The second step is to identify whether the peak is either an inter or an intra 
residue peak. The chemical shift of an intra-residue peak will match one 
of the XH chemical shifts of the connection to which it belongs, while the XH 
chemical shift of an inter-residue peak will not match one of the chemical 
shifts of the connection to which it belongs. To match the chemical shifts 
must be within the tolerance set for intra-residue chemical shifts. Each 
connection is examined in turn and its peaks are listed as either intra or 
inter residue peaks.
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• The third step is to find all the possible links between connection objects. 
Each connection is examined in turn. The 1H chemical shifts (NH, a, p i or 
p2) are compared against the 1H chemical shifts of the inter-residue peaks of 
the other connections. If the chemical shifts of a connection and a peak are 
within the defined tolerance then there is a possible link between the 
connection and the connection to which inter-residue peak belongs. The 
possible links found are recorded. In the connection being examined the link 
is recorded in the relevant connections list (NH, a, [31 or (32), depending on 
the chemical shift which aligns with the peak’s chemical shift. In the 
connection to which the peak belongs the link is recorded in the NH 
connection list.

Once all the possible links have been found the coding is the same as for the 
2D-SAM.

6 . 1 . 2  F i t n e s s  f u n c t i o n  F o r  3 D - S A M
The differences between the fitness function in the 2D-SAM and 3D-SAM are 
confined to the way in which each NOE link is assessed The score for each 
NOE link must represent the probability that the peak links the two 
connection objects. The 15N and N*H chemical shifts of the peak will align with 
the chemical shifts of one connection and with the XH chemical shift of the 
other connection. This gives three chemical shift alignments to be assessed. 
The better the alignment of chemical shifts the greater the probability that the 
peak links the two connection objects. In 2D-SAM the chemical shifts were of 
the same type and they were weighted equally; weighting means the weight or 
importance ascribed to each factor. In the 3D-SAM the chemical shifts are of 
different types so different weighting would seem appropriate. The obvious 
weighting would be to have the *H alignment ascribed a weighting of 0.5 and 
the 15N and NXH alignments ascribed a weighting of 0.25 each. In effect the 
alignment of the peak with each connection is weighted equally, 0.5 each. The 
most likely source of ambiguity is in the number of connection objects with a 
XH chemical shift that can align with the XH chemical shift of an inter-residue 
peak. The assigning of a weighting of 0.5 to this alignment should mean that 
the variations in this alignment will have a critical effect on the score of a link. 
The assessment of the fitness of an NOE link with a peak with the chemical 
shifts P 1̂  P15N and PN1̂  and two connections with chemical shifts C11H 
and C215N and C2NJH can be seen in Equation 6.1. The C l or C2 in the 
variable name denotes the connection object to which the chemical shifts 
belong. The variable with Max in the name define the maximum values for

74



B G Ailey PhD Thesis

which a score is calculated for the three chemical shifts. The Max values will 
be the same as the tolerances used when searching for possible connection- 
peak-connection links. The max values also allow for differences in the scale of 
the different types of chemical shifts.

Equation 6.1

NOE _ score = 1

6.2 E v a l u a t i o n  o f  t h e  3D-SAM
The 3D-SAM was evaluated using Dihydrofolate Reductase (DHFR) (41). The 
protein is fairly large, 162 amino acids in length. The sequential assignment of 
the protein is known and was performed using three dimensional 
heteronuclear NOESY. The peak list used to perform the sequential 
assignment was also available. The conclusions about the performance of the 
3D-SAM were drawn from the results of the tests outlined in the nextj section. 
The input data for the 3D-SAM can be found on the enclosed CD-ROM.

6 .2 .1  T e s t i n g  o f  t h e  3D-SAM
A number of experiments were performed to evaluate the 3D-SAM. The initial 
experiments were performed using a correct and precise connection 
assignment. In later experiments the precision of the connection assignment 
was reduced and in the final set of experiments errors were introduced into the 
connection assignment supplied to the 3D-SAM. Each experiment was 
repeated twenty four times. The 3D-SAM is a stochastic program and its 
output will vary even if the input remains constant. The variation in the 
output, the sequential assignment, is partly what the 3D-SAM is being 
evaluated for.

The 3D-SAM has a number of user defined parameters. Some are concerned 
with the spectrum others with the working of 3D-SAM. The spectral 
parameters are the chemical shift tolerances used in finding possible links and 
in the fitness function. All the other parameters affect the environment that 
the individuals of sub-population evolve in. The parameters set for each were 
the same as those used for the 2D-SAM except where stated otherwise . The 
default parameters are listed below:

• The population parameter is 800. The main-population has 800 individuals 
and the sub-population has 80 individuals. The larger the population the

\p xh - c\xh \
0.51--------- :----   + 0.25Max XHV

\PN]H -  C2N lH\ IPl5N -  C2'5N\ +
V Max N H Max XSN J)
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better the search space is sampled and the longer taken to evolve one 
generation. I

• The generations parameter is set at 12000. The sub-population is evolved 
for 12000 generations; effectively 1200 generations for the main-population.

Each experiment had 24 test runs performed; multiple runs were performed to 
allow for the stochastic nature of the 3D-SAM. The tests were performed using 
a correct and precise spin system identification.

6 . 2 . 2  C o n c l u s i o n s

When the 3D-SAM is given a precise and correct assignment it can generate a 
sequential assignment that is 71 percent correct. The variation in the 
percentage correct is due to the size of the search space and the quality of the 
data supplied to the 3D-SAM. The DHFR protein is 170% larger than protein 
G, but the size of the search space is exponentially larger. With the data 
entered into the 3D-SAM for the DHFR protein there are 1.935 x 102108 
possible sequential assignments. The corresponding figure for protein G is 
1.930 x 10826 possible sequential assignments. The DHFR search space is 
enormous by any definition, though in practice the more critical number is the 
number of possible permutations in the sequence of spin systems, which is 
considerably smaller 1.166 x 10130. The permutations of the sequence of spin 
systems will contribute to how many local maxima there are. The problem 
with reordering the sequence of spin systems is that between one sequence and 
another of higher fitness the intermediate sequences can have a lower fitness 
than the original sequence. This is the problem the genetic operators are 
designed to overcome. A change in the sequence of peaks where the sequence 
of spin systems remaining the same does not have this problem. Any 
intermediates will not have a lower fitness. Despite the huge increase in the 
size of the search space the 3D-SAM still gives a reasonably accurate answer, 
considering that a spectroscopist will normally derive an answer from a 
number of spectra run under different conditions (Section 2.1).

The quality of the data supplied, the NOESY spectrum, will also affect the 
variation in the accuracy of the assignment between runs. Sequences of spin 
systems that are well connected by NOE peaks will remain relatively constant 
throughout all the experimental runs. Those sequences that are not well 
connected will vary between experimental runs. When a sequence of spin 
systems is not well linked a single incorrect NOE link can result in the 
sequence of spin systems being incorrect. This is particularly true of non-
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sequential NOE links; these links can give particularly good scores. The 
incorrect sequences of spin systems can give scores comparable to the scores of 
the correct sequence. Which sequence is found first determines which will be 
used as their scores are very similar. In certain cases there are no NOE peaks 
to link the spin systems. The sequence in these cases is determined by random 
chance; allowing for the restriction that the amino acid identity list places on 
the possible positions of a connection. The result of poor NOE links is that 
position of certain connections in the sequential assignment are determined by 
random chance. The randomness is result of the random action of the various 
genetic operators.

The variation in the accuracy produced by the size of the search space and 
data can be seen in the difference between the percentage standard deviation 
of the number of residues in the correct position (10.5%) and fitnes^ (3.2%), 
(Table 6.1). The standard deviation is more than three times greater for the 
residues in the correct position than for the fitness. The difference is due to the 
poorly linked regions of sequential assignment being very variable in sequence 
of spin systems with a small variation in the fitness of the sequence. This 
could indicate tha t the fitness function is not working properly but 
investigation of the sequential assignments produced by the 3D-SAM suggest 
that poor NOE links are the cause of the variation rather than a poor fitness 
function. The better figure to use when estimating the variation between 
experimental runs would be the standard deviation in the fitness (3.2%) rather 
than the number of spin systems in the correct position.

The generation of a 71% accurate sequential assignment from one NOESY 
spectrum is sufficient to be of use. Although this figure was obtained with a 
‘perfect’ spin system identification. The first experimental run took 11 hours 
and 4 minutes to run on an SGI workstation, the same as the one used in 
testing the 2D-SAM. The experiments could run overnight to give an 
assignment of the quality listed in the enclosed CD-ROM.
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Figure 6.1 Results of 3D-SAM.

Experiment
Number

No. Spin Systems 
Correct

Percentage
Correct

Fitness

1 115 74.2 309.3
2 124 80.0 312.8
3 126 81.3 315.6
4 117 75.5 298.6
5 109 70.3 297.7
6 96 61.9 288.3
7 105 67.7 300.2
8 108 69.7 300.9
9 112 72.3 302.9
10 93 60.0 283.3
11 121 78.1 307.7
12 112 72.3 306.0
13 134 86.5 315.6
14 123 79.4 304.1
15 92 59.4 282.5
16 118 76.1 299.3
17 108 69.7 296.3
18 104 67.1 285.3
19 100 64.5 293.1
20 104 67.1 296.5
21 92 59.4 298.6
22 102 65.8 304.1
23 125 80.6 312.3
24 114 73.5 308.4

Average 110.6 71.4 300.8
Stan Dev % 10.5 10.5 3.2
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7 . 0  B a c k b o n e  A s s i g n m e n t  M o d u l e  1
The backbone assignment module 1 (BAM-1) assigns the backbone resonances 
of a protein using triple resonance spectra. The BAM-1 uses three sources of 
information: the amino acid sequence of the protein, several triple resonance 
spectra of the protein and the rules on the assignment of the spectra. The 
BAM-1 takes this information and produces a list of peak systems. A peak 
system is a group of peaks drawn from the various spectra that were 
generated by the same amino acid. The peaks could have been completely or 
partially generated by the amino acid depending on the type of NMR 
experiment that generated them. There are a large number of triple resonance 
experiments that can be used in the assignment of the backbone of a protein. 
The number and combination of experiments used will vary depending on the 
protein and the spectroscopist running the experiments. To cope With this 
plethora of experiments the rules for the assignment of spectra are external to 
the BAM-1. The separation of the assignment rules and BAM-1 allows the user 
to define how to interpret any triple resonance spectra desired.

The BAM-2 (described in chapter 8) takes the peak systems produced by the 
BAM-1 and creates a sequential assignment.

The backbone assignment of a protein using triple resonance spectra is 
described in section 2.4. Each element of the input to the BAM-1 supplies 
certain information. The amino acid sequence of a protein gives the number of 
peak systems that can to be found in the spectra. The spectra, in the form of 
peak lists, supply the peaks generated by the amino acids of the protein. The 
peaks will have the chemical shifts of the various nuclei of an amino acid or a 
pair of adjacent amino acids. The interpretation or assignment rules define 
how the chemical shifts of the peaks are used to create the peak systems. The 
rules do this by defining which chemical shifts of a peak are shared with other 
peaks generated by the same amino acid. The rules can also define the relative 
intensity of peaks in a peak system.

The rest of this chapter is divided into two sections: design and evaluation.

7.1  D e s i g n  of  t h e  BAM -1
The design of the BAM-1 was produced by the separation of the original BAM 
into the BAM-1 and the BAM-2. The BAM-1 or the part of the BAM that 
became the BAM-1 was largely unmodified from the first prototype developed 
with the exception of one of the genetic operators. The BAM used some of the 
code and concepts from an earlier non GA program designed to use three
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dimensional heteronuclear spectra in spin system assignment. The design of 
the BAM-1 is an object oriented one based around the same GA core (Chapter 
4) as the other modules. The design of the BAM-1 is shown in Figure 7.1. The 
individual and population classes form the GA core. The peak, alignment and 
peak system classes form the problem specific element of the BAM-1. The 
peaks and peak systems classes list and order the objects of the peak and peak 
system classes respectively.

The remainder of this section is split into three sub-sections: the coding, 
fitness function and the genetic operators. The program is designed to be 
flexible in the number and type of triple resonance spectra it can use. To 
describe the remaining sections of the design example triple resonance spectra 
must be used. The examples used are those described in Section 2.4.

7 . 1 . 1  C o d i n g

The two inter-related elements of the coding, the type of chromosome and the 
method of conversion from the chromosome to a solution, are relatively easy 
choices in the case of the BAM-1. The ease of choice of the coding is due to the 
simplicity of the spectra and the solution being generated. The solution is a list 
of peak systems, each of which is a list of peaks (Figure 7.2). The number of 
peaks will depend on the number of spectra being used and the number of 
peaks an amino acid generates in each spectrum. For example when four 
spectra are used with two spectra generating one peak per amino acid and the 
other two generating two peaks per amino acid, there will be up to six peaks in 
each peak system (Section 2.4). To encode this solution in a chromosome the 
simplest method proved to be effective. The chromosome is an integer array 
where each integer defines the position of a peak in an array of peaks derived 
from peak list input of the BAM-1. The array from which each peak is chosen, 
and the number of peaks that comprise a peak system are defined by the user. 
Using the previous example the definition will be “HNCOCA HNCA HNCO 
HNCACO HNCA HNCACO”. Thus first peak of the peak system is selected 
from the HNCOCA peak list, the second from the HNCA peak list and so on 
through the peak system. The size of the integer array will be equal to the 
number of peaks in a peak system multiplied by the number of peak systems.

In practice the coding is performed using the chromosome array of an 
individual object and the peak systems object. The peak systems object 
contains all the peak system objects in its peak-system-list attribute. The peak 
system objects in the list are processed consecutively. The first step in the 
processing is to find the section of the chromosome array that encodes the
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Figure 7.1 Design of the BAM-1.
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Figure 7.2 Expression of the BAM-1 integer chromosome to a peak  
system  assignment.
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peaks of the peak system. This section starts at the integer designated by the 
peak-system-chromosome-index attribute. The integer at that position is read 
and used as the index to the first array contained in the peaks-arrays attribute 
of the peak system object. The peak object is inserted into the first position of 
the peaks attribute of the peak system. The process is repeated until the peaks 
attribute has its full complement of peaks and the next peak system object is 
processed. At the end of the decoding process each peak system object peaks 
attribute is full of peak objects. As in the previous modules a blank peak object 
is used to define blank positions for implementation reasons.

7 . 1 . 2  F i t n e s s  F u n c t i o n

The fitness function of the BAM-1 determines the quality of the peak systems 
of an individual. The fitness of an individual will be the sum of the fitness of 
each peak system it represents. Each peak system will have a fitness between 
0.0 and 1.0. The fitness of each peak system is calculated using two factors, the 
first is derived from the rules contained in the alignment object and the peaks 
of the peak system and the second is calculated using just the peaks of the 
peak system.

The first factor is the “distance factor”. This is calculated using the alignment 
rules contained in the alignment object. The distance factor is the average of 
the factors calculated for each rule. Consider for example the alignment rule (0 
1 d2 d2 0.3). In this rule the d2 chemical shift of the 1st peak (csOd2) in a peak 
system is subtracted from the d2 chemical shift of its 2nd peak (csld2). The 
absolute value of the subtraction is divided by the range (r) 0.3 ppm (Equation 
7.1). If the result of the calculation (d) is less than or equal to 1.0 then it is 
added to a running total (T). If the result is greater than 1.0 then the 
evaluation of the alignment rules is terminated and the distance factor (df) is 
ascribed a value of 0.0. The distance factor is an assessment of the alignment 
of the peaks. Also contained in the list of alignment rules are the intensity 
rules. An intensity rule states that the first peak defined by the rule must 
have an intensity less than or equal to the second, for example the rule (2 4 in 
in) states that the intensity of the 3rd peak must be less than or equal to the 5th 
peak in the peak system31. If an intensity rule is true then 0.0 is added to the 
total (T), if it is false then 1.0 is added to the total (T). The intensity rules are 
used in experiments where two peaks are generated in the spectrum for each 
amino acid and there is an intensity difference between the two peaks. An

31 The peaks of a peak system are stored in an array, the peaks-system peaks attribute. The 

array is indexed 0,l,2...n; the index 3 therefore refers to the 4th element of the array.
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example would be an HNCA experiment (Section 2.4). The intra residue peak 
is usually, but not always, more intense than the inter residue peak. Once all 
the rules have been evaluated the total is divided by the alignment-constraint- 
number attribute (N) of the alignment object. The results of the division is 
then subtracted from 1.0 to give the distance factor (df) for that peak system 
(Equation 7.2). When one or both of the peaks being examined in a alignment 
rule is a blank peak then the distance (d) is zero; blank peaks give a perfect 
alignment.

Ic-sO1'2 -c s l‘,2|
d = --------------------------------------------  Equation 7.1

Tdf = 1 -  — Equation 7.2

The second factor deals with blank peaks in peak systems. If a peak system is 
composed entirely of blank peaks the distance factor will give a perfect score. 
The blank peak factor would give a factor of zero. The blank peak factor (bf) is 
the number of non-blank peaks in a peak system divided by the total number 
of peaks.

The two factors, distance (df) and blank peak (bf), are multiplied together to 
give the fitness of the peak system (Fps), Equation 7.3. The original fitness 
function used only the distance factor; similar to the fitness function used in 
the 2D-SAM and 3D-SAM. The blank peak was added during development of 
the BAM-1, when the assessment of a peaks alignment with a blank peak was 
changed. The original blank peak alignment was assessed as being the worst 
possible alignment; the tolerance of the appropriate dimension being used as 
the alignment distance. The current blank peak alignment is assessed as being 
the best possible alignment; zero being used as the alignment distance. The 
constraint factor was developed to emphasise the difference between viable 
and non-viable peak systems.

Fps =df xbf Equation 7.3

7 . 1 . 3  G e n e t i c  O p e r a t o r s

The BAM-1 has three genetic operators: crossover, mutate aligned peak and 
mutate ideal peak. The crossover operator is a simple genetic operator and 
swaps sections of backbone assignment between individuals. The other two 
operators perform a function similar to the mutation operator in the simple

81



B G Ailey PhD Thesis

GA described in chapter 3. Both operators either implicitly or explicitly make 
use of the alignment rules to place a peak system. The peaks are not randomly 
chosen. Two variants of the aligned and ideal peak operators are also used. 
These variants operate on an entire peak system.

The crossover operator randomly selects the position of a peak system on the 
chromosome array of an individual. Another peak system is randomly chosen 
between the first peak system and the end of the chromosome arifay. The 
peaks of the two peak systems and all the peak systems in between are then 
swapped between the two individuals undergoing crossover. The crossover is 
done in such a way as to maintain the consistency of the backbone assignment 
the individuals represent. A flow chart of the crossover operator is shown in 
Figure 7.3.

The mutate aligned peak operator implicitly uses the alignment rules by using 
the aligned-peaks attribute of a peak object (Figure 7.4). The operator inserts a 
peak into a peak system that is aligned with one of the other peaks in the peak 
system. A peak is considered to align with another peak in a peak system 
when the two peaks conform to the relevant alignment rules contained in the 
alignment object. A peak object has all the peak objects with which it can align 
with listed in its aligned-peaks attribute. The attribute is an array that lists 
the peaks that can be aligned with the peak at each position in the peak 
system. A peak is randomly selected in a randomly selected peak system from 
a randomly selected individual. Another peak position in the selected peak 
system is randomly chosen. The aligned-peaks attribute of the peak chosen is 
searched for the list of peaks that can be aligned with the peak position 
selected. A peak is then randomly selected from the list. The new peak is then 
inserted at the selected peak position. The recorded positions of the new peak 
and the peak that previously occupied the selected position are then updated.

A genetic operator was created that mutates an entire peak system using the 
mutate aligned peak operator. The operator is called the mutate aligned peak 
system operator. An individual is chosen at random from the sub population, 
then a peak system is randomly chosen from the chromosome array of the 
individual. The position of a peak is randomly selected on the chosen peak 
system. A peak is then randomly chosen from the list of peak objects that can 
be placed at that position in the peak system. The chosen peak in then 
inserted into the chosen position. The used at attributes of the chosen peak 
and the one that has just been overwritten are then updated. The mutate 
aligned peak operator is then invoked for all the other peaks in the peak
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Figure 7.4 Flow chart of the mutate aligned peak operator.
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system using the chosen peak as the peak they must align with. The purpose 
of the operator is to create original peak systems. The other operators all use 
the existing peaks of a peak system to modify the other peaks. This operator 
creates a peak system without reference to the existing peaks of the peak 
system. The operator is similar to the method used to create the initial 
backbone assignments.

A modified version of the aligned peaks operator is used to create the initial 
backbone assignments of each individual. The modification is that the operator 
inserts only unused aligned peaks into a spin system. A peak system is 
randomly chosen on the chromosome array of an individual. An randomly 
chosen unused peak is then inserted into a randomly chosen position in the 
peak system. A peak is chosen from the appropriate type of spectra to be 
placed at that position. The aligned-peaks attribute of the inserted peak is 
then used to find the unused aligned peaks. The other positions in the peak 
system are then filled with the unused aligned peaks. The process is repeated 
for all the other peak system in the individuals.

The mutate ideal peak operator uses the alignment rules explicitly (Figure 
7.5). The operator determines the ideal peak for a position in the peak system. 
An ideal peak in this context is the peak that best aligns with the other peaks 
in the peak system. A peak position is randomly chosen from a randomly 
chosen peak system from a randomly chosen individual. The alignment rules 
in the alignment object are searched for references to the peak position e.g. if 
the peak position is 0 all the rules that contain 0 are found. For each rule 
found the other peak referred to is examined. The chemical shift referred to by 
the rule is then determined e.g. for the rule (3 0 d2 d3 -11) the d2 chemical 
shift of the peak at position 3 is determined. The chemical shift is then added 
to the relevant dimensional total e.g. in the previous example the chemical 
shift would be added to d3 total. Once all the alignment rules have been 
processed the dimensional totals are converted to averages. The averages give 
the ideal position for a to align with the other peaks in the peak system. The 
peak closest to the ideal position is found and inserted in the selected peak 
position.

As with the mutate aligned peak operator there is an operator that uses the 
mutate ideal peak operator. The mutate ideal peak system operator randomly 
selects an individual from the sub population. A peak system is then randomly 
selected from the chromosome array of the selected individual. The position of 
a peak is then randomly selected on the chosen peak system. The mutate ideal
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Figure 7.5 Flow chart of the mutate ideal peak operator, i
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peak operator is then invoked for all the peak positions in the peak system 
using the chosen position as a start point.

The original design of the BAM-1 incorporated a completely random peak 
mutation operator instead of the aligned peak mutation operator. The ideal 
peak mutation operator was part of the design from the beginning. Due to the 
completely random nature of the simple peak mutation operator it would 
mostly introduce improbable peaks into a peak system. Only rarely would it 
introduce a peak that aligned with one or more of the existing peaks. The ideal 
peak mutation operator works well when the peak system needs only one peak 
to become a viable peak system or when a viable peak system needs to be 
improved. It does not work as well when some peaks in the peak system do not 
align with each other. The ideal operator is very effective with viable or near 
viable peak systems but not with non-viable peak systems. The operator 
towards the end of a run would often find that the current peak was the ideal 
peak. Thus no mutation occurred. To improve the performance of the BAM-1, 
particularly at the beginning of a run, the aligned peak operator was 
developed to operate alongside the other two operators. The performance of the 
BAM-1 improved. The performance was improved further when the use of the 
simple peaks mutation operator was stopped.

The two peak system genetic operators were both subjected to extensive 
testing. The mutate aligned peak system definitely improved the performance 
of the BAM-1 by creating original peak systems. The mutate ideal peak system 
operator gave no noticeable improvement in performance and it was not used 
in the BAM-1 that performed the test runs in the evaluation section. The use 
of the mutate ideal peak operator was stopped for one series of test runs; both 
aligned genetic operators were used. This reduced the performance of the 
BAM-1. The use of the mutate ideal peak system operator would restore the 
performance of the BAM-1. As the ideal peak system operator is more complex 
and more demanding of computer resources than the mutate ideal peak 
operator the mutate ideal peak the operator was not used in the final 
configuration of the BAM-1. The final configuration of the BAM-1 uses the 
aligned and ideal peak operators and aligned peak system operator.

7 .2  E v a l u a t i o n  o f  T h e  BAM-1
The BAM-1 was evaluated using the spectrum of the flavin mononucleotide 
(FMN) binding domain of Cytochrome P450 Reductase (42).The protein is 
reasonably large, 184 amino acids in length. The backbone assignment of the 
protein was not known when the BAM-1 was under development, althbugh the
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spectra had been recorded and the peaks had been picked. The backbone 
assignment of the protein was being assigned as the BAM-1 was bein^ tested 
and the results of the manual assignment were not examined until testing was 
completed.

The input data for the BAM-1 can be found on the enclosed CD-ROM.

7 .2 .1  T e s t i n g  o f  t h e  BAM -1
A number of test runs were performed on the BAM-1. The bulk of these were 
performed to establish the best combination of genetic operators both in terms 
of the operators used and the frequency of those operators (Section 7.1.3). The 
first, second and third mutation rate parameters determine the frequency of 
use of the aligned peak mutation operator, the ideal peak mutation operator 
and the peak system aligned peak mutation operator. The parameters that 
control the behaviour of the BAM-1 are the same as for the previous GA 
modules. The spectral parameters are contained in the assignment rules that 
form part of the assignment object. The default parameters are listed below.

• The population parameter is 1000. The main-population has 1000 
individuals; the sub-population has 100 individuals.

• The generations parameter is set at 12000. The sub-population is evolved 
for 12000 generations; effectively 1200 generations for the main-population.

• The crossover rate parameter is set at 0.5. 50 percent of the individuals in 
the sub-population undergo crossover every generation.

• The mutation rate 1 parameter is set at 0.2. 20 percent of the individuals 
sub-population are subjected to the aligned peak mutation genetic operator.

• The mutation rate 2 parameter rate is set at 0.1. 10 percent of the 
individuals sub-population are subjected to the ideal peak mutation genetic 
operator.

• The mutation rate 3 parameter rate is set at 0.1. 10 percent of the 
individuals sub-population are subjected to the peak system aligned peak 
mutation genetic operator.

The alignment rules are in the form of a list. Each alignment rule is itself a 
list. The first two numbers state the two peaks in a peak system that have an
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alignment. The second two symbols define the chemical shifts of the two peaks 
that must align. The last element is a floating point number that defines the 
tolerance of the chemical shifts alignment. The rules are listed below.

((0 1 D1 D1 0.03) (0 1 D2 D2 0.4) (0 1 D3 D3 0.3) (0 2 D1 D1 0.03)
(0 2 D2 D2 0.4) (0 3 D1 D1 0.03) (0 3 D2 D2 0.4) (0 4 D1 D1 0.03)
(0 4 D2 D2 0.4) (0 5 D1 D1 0.03) (0 5 D2 D2 0.4) (1 2 D1 D1 0.03)
(1 2 D2 D2 0.4) (1 3 D1 D1 0.03) (1 3 D2 D2 0.4) (1 4 D1 D1 0.03)
(1 4 D2 D2 0.4) (1 5 D1 D1 0.03) (1 5 D2 D2 0.4) (2 3 D1 D1 0.03)
(2 3 D2 D2 0.4) (2 3 D3 D3 0.3) (2 4 D1 D1 0.03) (2 4 D2 D2 0.4)
(2 5 D1 D1 0.03) (2 5 D2 D2 0.4) (3 4 D1 D1 0.03) (3 4 D2 D2 0.4)
(3 5 D1 D1 0.03) (3 5 D2 D2 0.4) (4 5 D1 D1 0.03) (4 5 D2 D2 0.4)
(1 4 IN IN) (3 5 IN IN))

The rules state that the d l and d2 chemical shifts of all the peaks in a peak 
system must be aligned. That the zero and first peaks d3 must align and the 
second and third peaks d3 must also align. The intensity of the first peak 
should be less than that of the fourth peak and the same is true of the third 
and fifth peaks. The numbers correspond to the user defined list of spectra 
that forms part of the input to the BAM-1. In the case of the above alignment 
rules the spectra list is “HNCOCA HNCA HNCO HNCACO HNCA HNCACO”.

The fittest individual that evolved during the running of the BAM-1 was taken 
as the solution. The experiments were run on a number of SGI workstations. 
The experimental runs shown below were run on a workstation with a 200 
MHz R4400 CPU and 64 Mb of RAM. The experiments were all run in a low 
priority batch queue. Thus the speed of a run will depend on the concurrent 
usage of the computer.

There are two sets of test runs. The first set of test runs were to establish the 
consistency of the performance of the BAM-1. The were four test runs 
performed with the default criteria (Table 7.1). The second set were to 
establish the optimum number for the generations parameter. The Generation 
parameter was set at 12000, 24000, 36000 and 48000 (Table 7.2).

The assignment generated by the third test run in Table 7.2 can be found on 
the enclosed CD-ROM. The manual backbone assignment of the FMN binding 
domain of Cytochrome P4 50 (1) can also be found on the enclosed CD-ROM. The 
peak systems in each assignment were compared against each other. The 
results of the comparison are shown in Table 7.3. The first column in the table
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Table 7. 1
Generation Maximum

Fitness
Average
Fitness

Minimum
Fitness

12001 125.808 121.272 49.670
12001 125.066 122.037 82.861
12001 125.354 121.497 82.415
12001 125.590 121.813 81.790

Table 7.2 BAM-1 Results

Generation Maximum
Fitness

Average
Fitness

Minimum
Fitness

12001 125.101 121.581 68.730
24001 126.431 124.049 86.114
36001 126.868 124.651 80.557
48001 127.085 124.813 95.392
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Table 7. 3 - Comparison of Automated and Manual Assignment.
Automated

Peak
System

Manual
Peak

System

Manual
Peak

System

Peak System Discrepancies

1 SPIN3
2 SPIN2
3 SPIN4
4 SPIN1
5 SPIN5
6 SPIN7
7 SPIN6
8 SPIN 12
9 SPIN 13
10 #### AmbSpin6
11 SPIN 16
12 SPIN 11
13 #### AmbSpin8
14 SPIN 15
15 SPIN 18
16 SPIN 19
17 SPIN20
18 SPIN41
19 SPIN23
20 SPIN24
21 SPIN9
22 SPIN26
23 **** SPIN 14
24 SPIN25
25 SPIN28
26 SPIN 17
27 SPIN22
28 SPIN21
29 SPIN29
30 SPIN53 i
31 SPIN35
32 SPIN36
33.- SPIN55



34 SPIN33
35 SPIN54
36 SPIN59
37 SPIN58
38 SPIN30
39 SPIN57
40 SPIN60
41 SPIN56
42 SPIN56
43 SPIN43
44 SPIN62
45 SPIN37
46 SPIN61
47 SPIN38
48 SPIN34
49 SPIN67
50 SPIN8 swapped HNCA
51 SPIN50
52 SPIN63
53 SPIN40
54 #### AmbSpin24 i
55 SPIN65 i

56 SPIN31 swapped HNCA
57 SPIN68
58 #### AmbSpinll
59 SPIN66
60 SPIN77
61 #### AmbSpin8
62 SPIN48
63 SPIN74
64 SPIN73
65 SPIN70
66 #### AmbSpinll
67 SPIN76
68 SPIN75
69 #### AmbSpin24
70 SPIN80
71 SPIN46
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72 SPIN78
73 #### AmbSpin24
74 SPIN70
75 SPIN47
76 SPIN83
77 SPIN72
78 SPIN84
79 SPIN87
80 SPIN90

!

81 SPIN88
82 SPIN81
83 SPIN82
84 **** SPIN86
85 SPIN39
86 SPIN92
87 SPIN42 swapped HNCA
88 SPIN94
89 SPIN64
90 SPIN93
91 SPIN32
92 SPIN45
93 SPIN96
94 SPIN97
95 #### AmbSpinlO
96 SPIN91
97 SPIN49
98 SPIN98
99 SPIN51
100 SPIN99
101 SPIN 101
102 #### AmbSpin23
103 SPIN 140
104 SPIN107 missing HNCOCA
105 SPIN 143
106 SPIN108 missing HNCOCA
107 #### AmbSpin23
108 SPIN 142
109 SPIN 141
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110 SPIN 113 missing HNCOCA
111 SPIN 120
112 SPIN 118
113 SPIN111
114 SPIN 110 missing HNCOCA
115 SPIN 144
116 SPIN 105
117 SPIN 112
118 SPIN 114 missing HNCOCA
119 SPIN 145
120 SPIN 146
121 SPIN 109
122 SPIN 115 missing HNCOCA
123 SPIN 147
124 SPIN150
125 —

126 SPIN 149
127 SPIN 151
128 SPIN 148
129 SPIN152 i
130 SPIN 154

!

131 #### AmbSpin28
132 SPIN155
133 SPIN 119 missing HNCOCA
134 SPIN153
135 SPIN 124 missing HNCOCA
136 SPIN156
137 SPIN 121 missing HNCOCA
138 SPIN 123 missing HNCOCA
139 SPIN 102 missing HNCOCA
140 SPIN157
141 SPIN 129
142 SPIN132 missing HNCOCA
143 SPIN128
144 — HNCOCA peak used in 

SPIN183
145 SPIN136
146 —



147 SPIN 137 swapped HNCA
148 SPIN 130
149 SPIN125
150 SPIN 134 missing HNCOCA
151 SPIN158
152 SPIN 127
153 #### AmbSpin9

j

154 SPIN159
155 —

156 SPIN 122
157 —

158 SPIN126 missing HNCOCA
159 SPIN 160
160 SPIN 135 missing HNCOCA
161 SPIN 161 missing HNCOCA
162 SPIN 131 missing HNCOCA
163 SPIN 133 missing HNCOCA
164 SPIN138 missing HNCOCA
165 SPIN 163 missing HNCOCA
166 —

167 SPIN 168
168 SPIN 162 missing HNCOCA swapped 

HNCA
169 SPIN 169 missing HNCOCA
170 #### AmbSpin5
171 SPIN 170 missing HNCOCA
172 SPIN 164
173 SPIN172
174 SPIN 165 swapped HNCA
175 SPIN175 missing HNCO
176 #### AmbSpin27
177 SPIN 176 missing HNCOCA
178 SPIN177 missing HNCOCA
179 **** SPIN106 missing HNCOCA HNCO
180 #### AmbSpin29
181 SPIN 178
182 ----------

183 #### AmbSpin40
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184 #### AmbSpin25
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identifies a peak system from the automated backbone assignment, the 
number refers to the position of the peak system in the file. The second column 
lists the matching peak system from the manual backbone assignment. There 
are three symbols used when there is no matching peak system in the manual
backbone assignment. The first symbol “****” denotes that the peak system is

1a duplicate peak system. A few of the C terminal residues of the FMN binding 
domain can have two conformations, giving duplicate peak systems for the 
amino acids of the C terminal of the protein. The peak systems have different 
N15 and NH1 chemical shifts but the C13 chemical shifts remain the same. The 
second symbol “####” denotes that the peak system from the automated 
backbone assignment is part of an ambiguous peak system in the manual 
assignment. The peaks of two or more peak systems are too close for them to 
be separated by the spectroscopist. The third symbol “— “ denotes that the 
peak system from the automated assignment has no matching peak system in 
the manual assignment. The third column in the table lists either the 
matching duplicate or ambiguous peak system from the manual assignment to 
the peak system from the automated assignment listed in the first column. 
The fourth column describes any discrepancies between the peaks of the 
automated and manual assignment.

7 . 2 . 2  C o n c l u s i o n s

When the two backbone assignments are compared 82% of the peak systems in 
the automated assignment appear in the manual assignment. If the duplicate 
and ambiguous peak systems are considered to be part of the manual 
assignment then 96% of the peak systems from the automated assignment 
appear in the manual assignment. The module was designed to give a 
reasonable start point for manual assignment. In this it succeeds, the output 
from BAM-1 formed the start point for the manual assignment of the FMN 
binding domain of cytochrome P 4 5 0  reductase.

There are two main discrepancies between the two sets of peak systems. The 
first is that peaks in the manual assignment are missing from the automated 
assignment, while the second discrepancy occurs when the intra residue 
HNCA peak is absent, and the inter residue peak is used at the position of the 
intra residue peak. This is apparent from the matching C13 chemical shifts of 
the peak at the HNCA position and the HNCOCA.

The HNCACO peak list had peaks added to it during the later stages of 
manual assignment, which explains the 26 peaks that were in the manual 
assignment but missing from the automated assignment. The peaks were not
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in the HNCACO peak list given to the BAM-1 so it could not pick them.

Six peak systems in the automated assignment have the inter residue HNCA 
peak in the wrong position. When the intra residue HNCA peak is missing the 
inter residue HNCA peak can be placed in either position without violating 
any of the assignment rules. The inter residue HNCA peak has to conform to 
one less alignment rule when it is at the intra-residue position. Since the 
fitness in each position is inversely proportional to the sum of the distances 
from the alignment rules and a blank peak alignment gives zero distance, the 
fittest position for the HNCA peak is the one where it is subject to fewer 
alignment rules. The mistake is trivial as it occurred in 6 out of 184 peak 
systems and is usually detected easily. The C13 chemical shift of the inter 
residue HNCA peak aligns with the C13 chemical shift of the HNCOCA peak.

To give a complete sequential backbone assignment two additional triple 
resonance spectra were required, CACBNH and CACBCONH. The information 
from these spectra were also used to improve the manual backbone 
assignment. If the two spectra had been added to the input data of thk BAM-1 
the performance of the module would have been improved.

7 .3  BAM-1 O b j e c t  D e f i n i t i o n s

This section contains the definitions of the objects for the BAM-1. The class 
definitions of the objects are listed below.

7 . 3 . 1  P e a k  C l a s s

The peak class models a peak from any triple resonance spectrum. The peak 
class has as many instances as there are peaks in all the peak lists that form 
the main part of the BAM-1 input. The peak class models the characteristics of 
a peak from a triple resonance spectrum and its interaction with the other 
classes of the BAM-1. The attributes are listed below:

• Type attribute: this symbol states the type of spectra the peak comes from.

• d l, d2 and d3 attributes: these floating point numbers state the position of 
the centre of the peak in its three dimensional spectrum. The attributes will 
be chemical shifts measured in ppm..

• Intensity attribute: this floating point number states the intensity of a peak. 
The intensity of a peak is calculated from the volume the peak occupies in 
the spectrum.

8 8
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• Aligned peaks attribute: this is an array of lists. Each list is composed of 
peak objects. The array is the same size as the number of peaks in a peak

i
system. The array records the other peaks objects that can be aligiked with 
the owner of the attribute at each position in a peak system. For example in 
the 3rd list in the array lists the peaks objects that align with the peak 
object in the 3rd position in the peak system.

• Used at attribute: this is an integer array; it is the same size as the sub 
population (Figure 7.1 and Section 4.5). The array will record the position 
of each peak in the individuals of the sub population. The integer at 
position 5 will record the position of the peak object in the 5th individual in 
the sub population. If the peak is not used in the individual then the 
integer at position 5 will be -1.

• Index attribute: this integer states the position of the peak object in an 
array of peak objects. The array will be all the peaks from the appropriate 
peak list. The array will form part of the peak arrays attribute of the peak 
lists class.

• Locked attribute: this symbol states when a peak is has been locked into a 
certain position by the user. When the attribute is not nil the genetic 
operators will not move the peak from the peak system in which it resides.

7 . 3 . 2  P e a k  L i s t s  C l a s s

The peak lists class models all the peak lists input into the BAM-1. There is
only one instance of the peak lists class in the BAM-1. The attributes of the
class are listed below.

• Types attribute: a list of all the types of triple resonant spectra used in the 
BAM-1. Each spectrum can appear more than once in the list. The number 
of times a spectrum appears in the list depends on the number of peaks 
generated per amino acid by each experiment and how many of the peaks 
are used in the assignment.

• Type-number attribute: an integer giving the number of spectra listed in the 
types attribute.

• Peak-numbers attribute: a list of numbers. Each number states the number 
of peaks in a peak list. The first number states the number of peaks in the
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peak list derived from the first spectra type listed first in the types 
attribute.

• Peak-lists attribute: this attribute lists several lists of peak objects. Each 
list of peak objects is derived from the spectrum listed in the same position 
in the types attribute.

• Peak-arrays attribute: this attribute is an array of arrays of peak objects. 
Each array of peak objects is derived from the peak list listed in the same 
position in the types attribute.

• Find-array: The attribute is an array of arrays of peaks. Some of the genetic 
operators of the BAM-1 search for a peak close to a certain position in the 
spectrum as part of their function. The find-array attribute increases the 
speed of the search operation. j

7 . 3 . 3  A l i g n m e n t  C l a s s

The alignment class contains the rules for determining the fitness of a 
solution, a backbone assignment. The rules are a list of alignments of chemical 
shifts for the peaks of a peak system. The rules can also state the relative 
intensities of peaks in a peak system. There will be only one instance of an 
alignment object in the BAM-1. The attributes of the class are listed below.

• Spectra-used attribute: this attribute duplicates the types attributes of the 
peak-lists class.

• Peak-number attribute: this attribute duplicates the type-number attribute 
of the peak-lists class.

• Peak-arrays attribute: this attribute duplicates the peak-arrays attribute of 
the peak-lists class.

• Alignment-list attribute: this is list of the rules used in the assignment of 
the various triple resonant spectra. The rules are in the form of a list. An 
example of a rule would be (0 4 d2 d2). The example rule states than the d2 
chemical shift of the 1st peak in a peak system must align with the d2 
chemical shift of the 5th peak in a peak system.

• Alignment-constraint-number attribute: the attribute states the number of 
rules in the alignment-list attribute.
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7 . 3 . 4  P e a k  S y s t e m  C l a s s  •
The peak system class is designed to model a peak system. There will one peak 
system object for each amino acid in the protein being studied. When the 
chromosome of an individual is expressed the peak system objects will 
collectively form the phenotype of the individual. The attributes of the class 
are listed below.

• Id attribute: the attribute identifies the peak system object to the BAM-1. 
The attribute will be a symbol.

• Alignment attribute: this attribute will contain the alignment object.

• Index attribute: the integer states the position of the peak system in an 
array of peak systems. The array will be an attribute of the peak systems 
object

• Chromosome-index attribute: this integer gives the position of the section of 
the chromosome array that is expressed to give the peak objects that 
comprise the peak system. The peaks are contained in the peaks attribute of 
the class.

• Score attribute: this floating point number contains the score of the peak 
system object in the form of a floating point number. The score will be 
ascribed to the peak system object by the fitness function.

• Peak-number attribute: this integer states the number of peaks in the peak 
system and the length of the array that comprises the peaks attribute.

• Peaks attribute: this is an array of peak objects. The peak objects form the 
peak system that forms part of the backbone assignment.

The peak-list objects are contained and ordered by the peak systems class.

7 . 3 . 5  P e a k -l i s t  C l a s s

The will be only one instance of the peak systems class in the BAM-1. The 
class is used to contain the phenotype expressed by an individual. The class is 
very simple and its three attributes are listed below.

• Number attribute: an integer giving the number of peak systems listed in
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• List attribute: this is a list of the peak systems in the BAM-1.

• Array attribute: an array of peak systems. The position of a peak system in 
the array will be the index attribute of the peak system.
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8 . 0  B a c k b o n e  A s s i g n m e n t  M o d u l e  2
The backbone assignment module 2 (BAM-2) sequentially assigns the 
backbone resonances of a protein. The BAM-2 uses two sources of information: 
the backbone assignment from the BAM-1 and the rules on the sequential 
assignment of the triple resonance spectra. The BAM-2 takes this information 
and produces a sequential backbone assignment of the protein. As with the 
BAM-1 the sequential assignment rules are external to the BAM-2 to allow it 
to cope with the diversity of triple resonance NMR experiments.

The sequential backbone assignment of a protein using several of its triple 
resonance spectra is described in section 2.4. Each element of the input to the 
BAM-2 supplies certain information. The backbone assignment supplies the 
chemical shifts of the peak systems. The alignment rules state the chemical 
shifts of a peak system that align with the chemical shifts of the peak systems 
adjacent to it. The rules do this by stating that chemical shift alignments 
between the adjacent peak systems must be within a given tolerance. The 
rules also contain chemical shift ranges for each amino acid type. These 
chemical shift ranges are used to create a score for each amino acid identity for 
each peak system.

8.1  D e s i g n  o f  t h e  BAM-2
The design of the BAM-2 was produced by the separation of the BAM into the 
BAM-1 and BAM-2. The BAM-2 has many design and implementation 
elements in common with the BAM-1. The BAM-2 also has certain design 
concepts in common with the 2D-SAM and 3D-SAM. The BAM-2 is performing 
a sequential assignment just as the 2D-SAM and 3D-SAM do. The shared 
design concepts are mainly seen in the fitness function and genetic operators. 
The fitness function similarities are the concept of amino acid identity scores 
being combined with links to preceding and succeeding spin/peak systems. The 
genetic operators are similar in that they are all reordering operators. The 
design of the BAM-2 is an object oriented design based around the same GA 
core (Chapter 4) as the other modules. The design of the BAM-2 is shown in 
Figure 8.1. As with the other modules the population and individual classes 
form the GA core. The alignment, peak system and peak systems classes are 
similar to the classes found in the BAM-1. A new class has also been created. 
The new class is the assignment class. The class definitions of the BAM-2 are 
given in Section 8.3.

8 . 1 . 1  C o d i n g

The coding used for the BAM-2 is similar to that of the BAM-1. The
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Figure 8.1 Design of the BAM-2.
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chromosome is an integer array (Figure 8.2). Each integer in the array states 
the position of a peak system object in the peak-systems-array attribute of the 
peak systems object. The integer will be the peak-system-index attribute of the 
peak system object. To decode or express the chromosome array of an 
individual the integer peaks of the array are read one after another. As each 
integer is read the peak system that occupies the appropriate position in the 
peak-systems-array attribute is found and inserted into the corresponding 
position in the assignment-array attribute of the assignment object. The peak 
system determined by the nth integer becomes the nth element of the 
assignment-array attribute. The assignment-array attribute is the sequential 
backbone assignment of the individual that has just been decoded or 
expressed.

The initial sequential backbone assignments are created using a variation on 
one of the genetic operators. Each individual in the initial population starts 
with a consistent and reasonable sequential backbone assignment. The 
consistency is ensured as with the other modules by recording the use of each 
peak system object. Each peak system object has a peak-system-used-at 
attribute. The attribute is an integer array that records the use of the object in 
each individual of the sub population (Sections 4.1 and 4.5). For example if the 
5th integer in the peak-system-used-at array is 45 then the index of the peak 
system object will be the 45th element of the chromosome array of the 5th 
individual in the sub population. As with the other modules -1 indicates that 
the peak system object is not used in the relevant individual. A blank peak 
system object is also used for implementation reasons.

A reasonable initial sequential backbone assignment is created by randomly 
selecting a position on the chromosome array of an individual. A randomly 
chosen peak system object is then inserted into the chosen position. A 
variation of the linked peak systems genetic operator is then called to find an 
unused peak system object that could be adjacent to the randomly chosen peak 
system. The index of the peak system found is then written to the chromosome 
array adjacent to the index of the randomly selected peak system. The 
operator is then called again using the newly inserted peak system. This 
process is repeated until an unused linked peak system cannot be found. When 
no unused peak system is found then a blank peak system is used. The next 
vacant position has an unused peak system randomly inserted into it. This 
process is repeated until there are peak systems at each position. The used-at 
attributes of the peak systems are used to determine when a peak system is 
unused and the linked-to attribute is used to find the other peak systems
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Figure 8.2 Expression of the integer chromosome array to produce a 
section  of backbone assignment.
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6th peak  system  from  peak-system s-array.
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137th peak system  from  peak-system s-array.
184th peak  system  from  peak-system s-array.
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8 . 1 . 2  F i t n e s s  F u n c t i o n

The fitness function of the BAM-2 determines the quality or fitness of a 
sequence of peak systems contained in the assignment-array attribute. The 
fitness of a sequence of peak systems is the fitness of the links between the 
peak systems of the sequence and their fitness to occupy those positions in the 
assignment. Each peak system will have chemical shifts in common with the 
adjacent peak systems. The triple resonance experiments tend to be used in 
complementary pairs. One experiment will give a chemical shift within an 
amino acid, e.g. the C13cti, while the complementary experiment will give the 
same chemical shift but of the preceding amino acid, e.g. the C13ai-i. Since the 
appropriate chemical shift of the preceding amino acid will be known from the 
first experiment the sequential or adjacent peak system can be found. The 
fitness of a peak system to be at a specific position in the assignment is 
dependent upon the amino acid that generated it. This is not known but a 
probability tha t it was generated by a specific amino acid can be estimated. 
The C13a  and C13P chemical shifts of a peak system are, within limits, 
characteristic of the amino acid that generated it (Figure 8.3). These 
characteristic chemical shifts are however affected by the structure of the 
protein. The structure of a protein affects the chemical environment of a 
nucleus and therefore its chemical shift; the 13Ca shifts are particularly 
sensitive to variations in secondary structure. The variation in the chemical 
shifts of each amino acid can be seen in Figure 8.3.

The fitness of the links between the peak systems is an estimate of how well 
the chemical shifts of the peak systems in the sequence align. The quality of 
the link between each peak system is estimated using the rules contained in 
the alignment object. The rules have the form (0 5 0.03). This rule states that 
0th chemical shift (cs1) of the preceding peak system must be within a certain 
tolerance (T),0.03 ppm, of the 5th chemical shift (cs2) of the succeeding peak 
system. Ideally the two specified chemical shifts should be the same. To 
calculate the fitness of the rule Equation 8.1 is used. The absolute difference of 
the two chemical shifts is divided by the tolerance and subtracted from 1.0. 
The number produced is the fitness of that rule (Fr). The fitness of a link is the 
average of the fitness from each rule in the alignment object. If the difference 
between two chemical shifts for a rule is greater than its tolerance then the 
fitness for the whole link is zero.

9 5
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Equation 8.1

The other component in calculating a fitness for an assignment is the 
probability tha t a peak system was generated by the right type of amino acid. 
This is estimated in the amino acid identity scores of each peak system. This 
attribute records a score for each possible amino acid identity. The scores are 
determined using the amino acid identity rules located in alignment object. 
The rules have the form,

((Q E) (2 55.37 3.5 1.0 0.10 0.10) (6 29.43 3.5 1.0 0.10 0.10) 20.0 2.5)

Each element of the rule has the following function:

• The first section of the rule, delineated by the (), indicate that this rule
generates the identity score for glutamine and glutamate amino acids.

• The next two sections, again delineated by the (), are rules for individual
chemical shifts in the peak system the first one is explained below.

• 2 indicates that this section of the rule concerns the 3rd chemical shift of 
the chemical shift array attribute of the peak system

• 55.37 is the ideal value of the 3rd chemical shift of the peak system.

• 3.5 is the tolerance, ±, that the 3rd chemical shift can have. If the 3rd 
chemical shift of the peak system is equal to the ideal chemical shift 
(55.37) ± the tolerance (3.5) then its distance factor will be 1.0.

• 1.0 is the decrement factor. The decrement factor is used when the 3rd 
chemical shift of the peak system is beyond the tolerance. The tolerance 
is subtracted from the absolute difference between the ideal value (55.37) 
and the actual chemical shift. The result is multiplied by the decrement 
factor and subtracted from 1.0 to give the distance factor for the chemical 
shift. If the distance factor is less than -1.0 it is then set to -1.0.

• 0.10 and 0.10 are the scoring factors. These are multiplied by the distance 
factor (described above) to give the score for that chemical shift. The first 
number is used when the distance factor is positive, the second when it is 
negative.

9 6
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• The last two numbers (20.0 and 2.5) are the synergistic factors; they 
describe how the scores from the two chemical shift rules are combined. The 
first step in the combination of the summing of the two scores. If both scores 
are positive then sum of the two scores is multiplied by the first synergistici
factor (20.0). If both are negative then the sum is multiplied by thb second 
factor (2.5).

Finally the result of synergistic factor calculation is added to 1.0 to give the 
identity score for glutamine and glutamate for that peak system.

8 . 1 . 3  G e n e t i c  O p e r a t o r s

The BAM-2 currently uses four genetic operators: crossover, segment 
reordering, linked peak system reordering and the sequence reordering 
operator. The first two operators are relatively simple. The crossover operator 
swaps segments of sequential backbone assignment between individuals in the 
sub population while maintaining a consistent assignment. The segment 
reordering operator swaps segments of sequential backbone assignment within 
an individual. The ‘linked peak system reordering’ operator reorders the 
sequence of peak systems within an individual by swapping one or two peak 
systems. The sequence reordering operator reorders a sequence of peak 
systems in an individual. As with some of the genetic operators of the BAM-1 
these two operators make use of the alignment rules either implicitly or 
explicitly to determine the manner of the reordering.

The crossover operator is similar to all the crossover operators in the other 
modules. The operator just swaps segments of sequential backbone assignment 
between individuals. It randomly selects the position of a peak system on the 
chromosome array of an individual. Another peak system is randomly chosen 
between the first peak system and the end of the chromosome array. The 
peaks of the two peak systems and all the peak systems in between are then 
swapped between the two individuals undergoing crossover. The crossover is 
done in such a way as to maintain the consistency of the backbone assignment 
each individual encodes. If a peak is already used in an individual then it is 
replaced with either a blank peak system or with the peak system that has 
just been overwritten by the new copy of the peak system. A flow chart of the 
crossover operator is shown in Figure 8.4

The segment reordering operator performs a similar function to the segment 
reordering operator in the sequential assignment modules (Sections 5.1.3 and
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Figure 8.4 Flow chart of the crossover operator.
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6.1.3). It randomly selects segments of the sequential backbone assignment 
and swaps the position of the segments. A peak system is randomly chosen on 
a chromosome array. Another peak system is chosen between the fifst peak 
system and the beginning of the chromosome array. The maximum length of 
segment tha t can be swapped is then found. This is the shorter of either the 
distance between the two peak system objects chosen or the distance between 
the first peak system chosen and the last peak system in the chromosome 
array. The length of the segment is randomly chosen between the maximum 
length and zero. The two segments of peak systems defined as starting at the 
two chosen peak systems and by the length chosen swap positions. The 
operator, by swapping segments, does what would probably not be done by 
swapping individual peak systems. For example, two highly fit segments of 
sequential backbone assignment that would confer higher fitness if swapped. 
The probability of the peak system operators swapping the two segments is 
low. The probability of swapping the peak systems of the segments 
sequentially is low. This probability is reduced even further when the changes 
are initially working against a selection pressure. There would be an initial 
reduction of fitness while the segments were being swapped.

The linked reordering operator is similar to both the aligned peaks operator of 
the BAM-1 and the spin system reordering operator of the 2D-SAM and 3D- 
SAM. The operator inserts a peak system into a chromosome array that can be 
linked to its neighbouring peak systems. The operator randomly selects a peak 
system on the chromosome array of an individual. The linked-to-succ attribute 
of the preceding peak system and the linked-to-prec attribute of the succeeding 
peak system are examined. The peak systems that appear in both lists are 
selected and one is randomly chosen. The chosen peak system is then inserted 
into the chosen position. If no peak system occurs in both lists apart from the 
peak system currently occupying the chosen position a peak system is 
randomly chosen from the linked-to-succ attribute of the preceding peak 
system. The chosen peak system is then inserted in the chosen position and 
succeeding peak system is replaced with a blank peak system. The position 
formerly occupied by the newly inserted peak is examined. If the newly 
overwritten peak system can occupy that position without violating any of the 
alignments rules it is inserted at the position. If it violates any of the 
alignment rules then a blank peak system is inserted. The operator implicitly 
makes use of the alignment rules by using the linked-to attributes. The 
attributes are constructed using the alignment rules. The attribute is a list of 
those peak systems that conform to the alignment rules that could be adjacent 
to the peak system.

9 8
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The sequence reordering operator operates in a similar way to the linked peak 
system reordering operator but on a larger scale. The operator randomly 
selects a peak system on the chromosome array of an individual. The operator 
then randomly selects a linked succeeding peak system from the peak-system- 
linked-succ attribute and it is then swapped with the peak system that 
currently occupies tha t position. The process is then repeated for the peak 
system tha t was just inserted. The swapping process continues until one of 
three criteria is met: (i) the end of the chromosome array is reached, (ii) the 
peak-system-linked-succ list of the peak system is empty or (iii) a randomly 
determined number of insertions have occurred. Once the process has been 
terminated the process is repeated but using the peak-system-linked-prec list 
of the first peak system selected and swapping the found peak system with the 
one before it. The termination criteria for this process are the same except the 
beginning of the chromosome array is a termination criterion not the end of it.

Effectively the genetic operators of the BAM-2 are a blend of those of the BAM- 
1 and the sequential assignment modules. The BAM-1 influence comes from 
the fact tha t the two modules were originally one module and that the spectra 
being used are the same. The sequential assignment module influence comes 
from the fact tha t the BAM-2 is designed to produce a sequential assignment. 
Although the genetic operators listed above are the ones used currently several 
others were developed but proved to be either ineffective or to offer no tangible 
improvement in the performance of the BAM-2 during development.

8 .2  E v a l u a t i o n  o f  t h e  BAM-2
The BAM-2 was evaluated using the FMN binding domain of cytochrome P450 
reductase. The backbone assignment of the protein, determined using HNCA, 
HNCO, HNCOCA, HNCACO, CACBNH and CACB(CO)NH experiments, was 
used to create a sequential backbone assignment. The alignment rules only 
made use of the 13C chemical shifts to perform the sequential backbone 
assignment. The data is experimental and therefore imperfect. The manual 
assignment contains only 179 peak systems not 185, of those peak systems 
that it does have: 2% do not have links to either of the neighbouring peak 
systems, 20% have links to only one neighbouring peak system and 39 % have 
a missing 13C|3 chemical shift.

The input data for the BAM-1 can be found in the enclosed CD-ROM.
i
i

8.2.1 T e s t i n g  o f  t h e  BAM-2
9 9
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As with the BAM-1 a number of test runs were performed on the B^\M-2 to 
establish the best combination of genetic operators; which operators are used 
and the frequency of those operators (Section 8.1.3). The first mutation rate 
parameter determines the frequency of use of the ‘reorder peak system linked’ 
operator. The second mutation rate parameter determines the frequency of use 
of the ‘reorder peak system sequence’ operator. The third mutation rate 
parameter determines the frequency of use of the ‘reorder peak system 
segment’ operator. The parameters that control the behaviour of the BAM-2 
are the same as for the previous GA modules. The spectral parameters are 
contained in the alignment rules that form part of the alignment object. The 
default parameters are listed below.

• The population param eter is 1000. The main-population has 1000 
individuals; the sub-population has 100 individuals.

• The generations parameter is set at 20000. The sub-population is evolved 
for 20000 generations; effectively 2000 generations for the main-population.

• The crossover rate parameter is set at 0.5. 50 percent of the individuals in 
the sub-population undergo crossover every generation.

• The mutation rate 1 parameter is set at 0.1. 10 percent of the individuals 
sub-population are subjected to the reorder peak system linked genetic 
operator.

• The mutation rate 2 parameter is set at 0.15. 15 percent of the individuals 
sub-population are subjected to each of the reorder peak system sequence 
genetic operators.

• The mutation rate 3 parameter is set at 0.15. 15 percent of the individuals 
sub-population are subjected to the reorder peak system segment genetic 
operator.

The alignment rules are in the form of a list. Each alignment rule can itself be 
a list. The rules are listed below.

(HNCA HNCOCA HNCACO HNCO CACBNH CACBCONH)
16
(((G) (2 44.24 3.0 1.0 0.20 0.20) (6 1000.0 0.01 10.0 0.01 0.25) 45.0 2.0)
((A) (2 50.89 3.0 1.0 0.10 0.10) (6 19.62 3.0 1.0 0.10 0.15) 20.0 2.0)

100
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((V) (2 60.95 3.0 1.0 0.10 0.10) (6 32.84 3.0 1.0 0.10 0.10) 20.0 2.5)
((S ) (2 57.26 3.0 1.0 0.10 0.10) (6 64.08 3.0 1.0 0.10 0.10) 20.0 2.5)
((T) (2 59.88 3.0 1.0 0.10 0.10) (6 70.78 3.0 1.0 0.10 0.10) 20.0 2.5)
((N D) (2 53.37 3.0 1.0 0.10 0.10) (6 39.15 3.0 1.0 0.10 0.10) 20.0 2.5)
((Y F) (2 55.97 3.0 1.0 0.10 0.10) (6 40.90 3.0 1.0 0.10 0.10) 20.0 2.5)
((C) (2 55.61 3.0 1.0 0.10 0.10) (6 31.04 3.0 1.0 0.10 0.10) 20.0 2.5)
((H) (2 58.81 3.0 1.0 0.10 0.10) (6 27.25 3.0 1.0 0.10 0.10) 20.0 2.5)
((M) (2 53.91 3.0 1.0 0.10 0.10) (6 33.31 3.0 1.0 0.10 0.10) 20.0 2.5)
((Q E) (2 55.37 3.5 1.0 0.10 0.10) (6 29.43 3.5 1.0 0.10 0.10) 20.0 2.5)
((L) (2 53.58 3.0 1.0 0.10 0.10) (6 44.05 3.0 1.0 0.10 0.10) 20.0 2.5)
((I) (2 60.40 4.0 0.5 0.15 0.15) (6 38.59 3.0 1.0 0.10 0.10) 20.0 2.0)
((R ) (2 55.70 3.0 1.0 0.10 0.10) (6 32.40 3.0 1.0 0.10 0.10) 20.0 2.5)
((K) (2 55.56 3.0 1.0 0.10 0.10) (6 33.43 3.0 1.0 0.10 0.10) 20.0 2.4)
((W) (2 55.51 3.0 1.0 0.10 0.10) (6 26.73 3.0 1.0 0.10 0.10) 20.0 2.5))

((2 3 0.4) (4 5 0.4) (6 7 0.4))

The first line identifies the NMR experiments used. The number (16) identifies 
the number of chemical shifts in the peak system. The last line defines which 
chemical shifts must align between the current peak system and the preceding 
peak system in the assignment (Section 8.1.2). For each peak system there are 
three chemical shift alignments: the Ca-Cua, CO-CmO and Cjl-Ci-iP. The data 
respectively comes from the following pairs of experiments HNCA HN(CO)CA, 
HNCO HN(CA)CO and CACBNH CACB(CO)NH. The Ca information is 
duplicated in the CACBNH and CACB(CO)NH spectra. The other lines are 
used to create the amino acid identity scores for each peak system (Section 
8 .1.2).

Eighteen test runs were performed with the BAM-2, the results of the runs are 
shown in Table 8.1. Three criteria were used to assess the performance of the 
BAM-2, they were:

• The percentage of peak systems in the correct position.

• The percentage of peak systems adjacent to the correct peak system; e.g. 
peak system valine 23 is adjacent peak system alanine 24.

• The percentage of peak systems which were assigned as being generated by 
the correct type of amino acid. *

The experiments were run on a number of SGI workstations; with differing
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R un P e a k  S y ste m s in P ea k  S y tem s in  R ea ltiv e ly P ea k  S y ste m s w ith F itn e s s  o f  A ss ig n m e n t

C orrect P o sitio n  (%) C orrect P o sitio n  (%) W ith  th e  C orrect A A  ID  (%)

1 69 .2 79 .8 76 .5 8 8 8 6 .0

2 8 0 .4 86 .5 86 .0 8 9 4 7 .3

3 72 .6 84 .3 78 .7 8 9 5 3 .4

4 8 0 .4 87 .7 83 .7 9 0 3 0 .6

5 7 4 .8 82 .1 8 1 .5 8 9 5 5 .2

6 90 .5 90 .5 9 4 .4 9 0 2 4 .4

7 64 .2 74 .3 73 .1 8 8 8 8 .2

8 72 .6 83 .2 7 9 .8 8 9 4 0 .0

9 77 .0 84 .9 84 .3 9 0 4 9 .8

10 79 .8 86 .0 84 .3 9 0 3 6 .5

11 7 1 .5 79.3 76 .5 8 9 2 4 .6

12 8 4 .3 87 .7 87 .7 9 0 6 6 .7

13 8 2 .6 89 .9 87 .1 9 0 8 1 .6

14 7 2 .6 8 3 .7 79 .3 9 0 1 8 .7

15 77 .0 8 3 .7 81 .5 9 1 0 7 .3

16 6 5 .9 78 .7 72 .0 8 9 0 2 .3

17 6 9 .8 82 .1 78 .2 8 9 1 5 .3

18 6 3 .6 81 .5 70 .9 8 9 5 4 .7

A verage 74 .9 83 .7 80 .9 8 9 8 2 .4

%SD 9 .4 4 .8 7.3 0 .8

T ab le  8.1 BAM-2 Results
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performance characteristics. They were all run in a low priority batch queue. 
Thus the speed of a run will depend on the concurrent usage of the work 
station and its performance (the fastest run was 11 hours 50 minutes).

The fittest individual generated during all the test runs was taken and the 
backbone assignment it encoded was examined further. The sequential 
backbone assignment generated during the fifteenth test run of the BAM-2 
(Table 8.1) took 19 hours 59 and generated 77% correct backbone assignment. 
The correctly and incorrectly assigned peak systems were examined for the 
two characteristics that determine their fitness: linkage to other peak systems 
and amino acid identity; the results are shown in Table 8.2.

8 . 2 . 2  C o n c l u s i o n s

The BAM-2 is a qualified success, it generated a 75% correct backbone 
assignment. The percentage of peak systems with the correct amino acid 
identity was 81% and the percentage of peak systems in the relatively correct 
position was 84% (see Table 8.1). I believe that this makes the BAM-2 a useful 
tool for NMR spectroscopists. The performance is related to the quality of the 
data entered into the module.

The BAM-2 is remarkably consistent in its performance with only a 0.8% 
standard deviation in the fitness. The variation in the other criteria (correct 
position, correct amino acid identity and correct relative position) is greater 
(Table 8.1). The variation is due to those peak systems that can be placed in a 
number of different positions in the assignment which contribute equally to its 
fitness (Section 6.2.2). The problem is inherent in the data and has two causes. 
The first, and most important, is that such peak systems have poor or no links 
to their neighbouring peak systems. Thus a peak system can have the same 
linking score in a number of positions. The second is that these peak systems 
can have atypical 13Ca or 13Cp chemical shifts or the 13Cp is missing. In the 
case of the atypical chemical shifts this will cause the peak system to have a 
very low identity score for the amino acid that generated it and possibly high 
identity scores for other amino acids. In the case of the missing 13CP chemical 
shift the peak system will probably have an inconclusive identity score for a 
number of amino acids. The 13Ca chemical shift on its own is rarely

i

characteristic of an amino acid (Figure 8.3). j

A poor linkage to other peak systems can be overcome, to a certain extent, by a 
good amino acid identity score. The peak system will contribute most to the 
fitness of the assignment when in a position where that good identity score is
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Category Correct Position Incorrect % Correct for Category % Incorrect for Category

Number of Peak Systems 139 44

Linked to both neighbors 118 26 82% 18%

Linked to one neighbor 17 13 57% 43%

Linked to no neighbors 0 5 0% 100%

Best amino acid identity 39 6 87% 13%

One of the best Identities 37 10 79% 21%

Amino acid identity >1 .0 41 16 72% 28%

Amino acid identity < 1.0 18 12 60% 40%

T able 8.2 R un 15 A n alysis (Table 8.1)
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used; this increases the probability of it being in the correct position. 
Conversely, a good linkage to other peak systems can overcome a poor identity 
score for the relevant amino acid. The peak system will contribute most to the 
assignments fitness when adjacent to the correct peak systems. The problem is 
that often the two effects combine, for example a missing 13CP chemical shift 
will mean that the peak system will probably have an inconclusive set of 
amino acid identities and will only have, at the very best, 2/3 of the maximum 
link score.

When the assignment with the highest fitness was examined (run 15 Table
8.1) to produce Table 8.2 the two factors can be seen operating. 82% of the 
peak systems which had links to both neighbouring peak systems are in the 
correct position, while only 18% are in the incorrect position. Of those peak 
systems where the correct identity score is the best score 87% are in the 
correct position. 74% of those peak systems with a missing 13Cp are in the 
correct position. This shows that good or even reasonable links to adjacent 
peak systems can overcome the lack of a high amino acid identity score.

A third factor will be the amino acid sequence of the protein which will have 
an affect on those sequences of peak systems that are relatively correct but the 
whole sequence is in the wrong position. Depending on the amino acid 
sequence of a protein a sequence of n peak systems could be placed in one or 
more positions while contributing the same to the fitness of the assignment. 
This effect is exacerbated when the peak systems have a number of equally 
scoring amino acid identities as this will increase the number of equally 
scoring positions they can be placed at.

It is possible that refinement of the fitness function might reduce the problem 
of these ‘floating’ peak systems, but I think it improbable. The ‘floating’ peak 
systems are an inherent in the data supplied to the module.

In conclusion I believe that the performance of the BAM-2 is limited only by 
the quality of the data it uses. If, for instance, the peak systems had been 
identified as being generated by one amino acid or had the benefit of additional 
spectra (3D HCCH 13C TOCSY or COSY) to aid in the creation of the1 identity 
scores this would improve the performance of the BAM-2. Or if there were 
more 13Cp chemical shifts (39% are missing) this would significantly improve 
the amino acid identity scores and thus improve the performance of the 
module. Finally the output from the module (Figures 8.5 & 8.6), in conjunction 
with a knowledge of the peak systems and the amino acid sequence of the
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Figure 8.6 An exam ple of an incorrect assigment of peak systems

Spin System 1 | G | BLANK | BLANK 

1 0 0 0 . 0 0 0  | 1 0 0 0 . 0 0 0  | 1 0 0 0 . 0 0 0  | 1 0 0 0 . 0 0 0  | 1 0 0 0 . 0 0 0  | 1 0 0 0 . 0 0 0  | 

Spin Score 0.0 | ID 0.0 | Linkl.0 | Prec 0.0 | Succ 0.0 |

Spin System 2 | S | *SPIN~62* | SPIN-F167

58.991 | 56.350 | 175.596 | 176.050 | 1000.000 | 31.040 |

Spin Score 8.0 | ID 1.1 | Link 7.2 | Prec 0.0 | Succ 0.6 |

Spin System 3 | H | *SPIN-15* | SPIN-W168

61.073 | 59.006 | 176.881 | 175.633 | 26.620 | 38.837 |

Spin Score 36.2 | ID 5.0 | Link 7.2 | Prec 0.6 | Succ 0.0 |

The first line identifies where in the assignment the peak system is, the system identification 

for it and the user’s identification for it.

The second line gives the chemical shifts that will align in adjacent peak systems (13Ccii, 13Cai- 

i, 13COi, 13COi-i, 13CPi, and 13CPi-i,).

The third line gives the overall score for the peak system, the amino acid identity score, the 

combined linking score, the preceding and succeeding link score
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Figure 8.5 An example of a correct assignment of peak systems.

Spin System 14 | V | *SPIN-159* I SPIN-V14

66 .171 | 59.410 | 177.607 I 175.890 | 1000.000 | 35.450 |

Spin Score 6.6 | ID 0.9 | Link 7.3 | Prec 0.0 | Succ 0.6 |1

Spin System 15 | E | *SPIN-132* | SPIN-E15

58 .,785 | 66.157 | 178.957 | 177.635 | 29.480 | 1000.000 1

Spin Score 69.5 I ID 5.0 | Link 13.9 | Prec 0.6 | Succ 0.7

Spin System 16 | K | ♦SPIN-52* | SPIN-K16

59 . 468 | 58.790 | 180.048 | 178.953 | 1000.000 | 1000.000 |1

Spin Score 13.6 | ID 1.0 | Link 13.5 | Prec 0.7 | Succ 0.6

Spin System 17 | M | *SPIN-138* | SPIN-M17

60 . 334 | 59.519 | 178.438 I 180.002 | 1000.000 | 1000.000 |11

Spin Score 11.5 | ID 0.9 | Link 12.8 | Prec 0.6 | Succ 0.6

Spin System 18 | K | *SPIN_137 * | SPIN-K18

59 . 928 | 60.400 | 180.264 | 178.411 | 1000.000 | 1000.000 |
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Spin Score 12.5 | ID 1.0 | Link 13.0 | Prec 0.6 | Succ 0.6 |

Spin System 19 | K | *SPIN-12* | SPIN-K19

58.633 | 59.938 | 178.077 | 180.209 | 33.120 | 33.120 |

Spin Score 66.9 | ID 4.9 | Link 13.8 | Prec 0.6 | Succ 0.7 |

Spin System 20 | T | *SPIN-105* | SPIN-T20

60.869 | 58.773 | 175.200 | 178.077 | 69.760 | 32.860 |

Spin Score 69.5 | ID 5.0 | Link 13.9 | Prec 0.7 | Succ 0.6 |

Spin System 21 | G | *SPIN-80* | SPIN-G21

47.035 | 60.966 | 174.707 | 175.294 | 1000.000 | 70.020 |

Spin Score 131.8 | ID 10.5 | Link 12.6 | Prec 0.6 | Succ 0.5

Spin System 22 | R | *SPIN-107* | SPIN-R22

55.170 | 47.140 | 174.597 | 174.758 | 32.860 | 1000.000 |

Spin Score 73.9 | ID 5.0 | Link 14.8 | Prec 0.5 | Succ 0.8 |

Spin System 23 | N | *SPIN-35* | SPIN-N23
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53.178 | 55.308 | 171.401 | 174.649 | 39.877 | 32.861 |

Spin Score 80.3 | ID 5.0 | Link 16.1 | Prec 0.8 | Succ 0.7 |

Spin System 24 | I | *SPIN-118* | SPIN-124

59.102 | 53.275 | 174.076 | 171.450 | 40.660 | 39.620 |

Spin Score 103.7 I ID 6.0 | Link 17.3 | Prec 0.7 | Succ 1.0 |

Spin System 25 | I | *SPIN-84* | SPIN-125

57.233 | 59.103 | 171.724 | 174.119 | 1000.000 | 40.660 |

Spin Score 18.4 | ID 1.1 I Link 16.0 | Prec 1.0 | Succ 0.5 |

Spin System 26 | V | *SPIN-100* | SPIN-V26

58.679 | 57.330 | 175.944 | 171.786 | 1000.000 | 1000.000 |

Spin Score 14.0 | ID 1.1 I Link 12.7 | Prec 0.5 | Succ 0.6 |

Spin System 27 | F | *SPIN-43* | SPIN-F27

56.719 | 58.694 | 175.996 | 175.923 | 42.470 | 32.340 |

Spin Score 36.8 | ID 5.0 | Link 7.4 | Prec 0.6 | Succ 0.0 |

Spin System 28 | Y | *SPIN-51* | SPIN-Y28
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52.346 | 56.818 | 173.244 | 176.027 | 40.400 | 41.960 |

Spin Score 36.3 | ID 3.8 | Link 9.7 | Prec 0.0 | Succ 0.9 |

Spin System 29 | G | *SPIN-103* | SPIN-G29

46.233 | 52.447 | 1000.000 | 173.293 | 1000.000 | 40.390 |

Spin Score 128.2 | ID 10.5 | Link 12.3 | Prec 0.9 | Succ 0.3 |

Spin System 30 | S | *SPIN-123* | SPIN-S30

56.081 | 46.321 | 173.603 | 172.540 | 1000.000 | 1000.000 |

Spin Score 4.0 | ID 1.1 | Link 3.6 | Prec 0.3 | Succ 0.0 |
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protein, will allow an experienced spectroscopist to determine those areas that 
are reliably assigned and those that are not. The linking score for each peak 
system are displayed in the module output. This allows the strength of the 
assignment for each linked sequence to be determined. The amino acid identity 
scores of the sequence, the length of the sequence and the amino acid sequence 
of the protein then allow the spectroscopist to assess whether the linked 
sequence is in the correct position.

8.3  BAM-2 O b j e c t  D e f i n i t i o n s

8 .3 .1  A l i g n m e n t  a n d  P e a k  S y s t e m s  C l a s s e s

The alignment and peak systems class definitions remain the same as those 
used in the BAM-1.

8 .3 .2  P e a k  S y s t e m  C l a s s

The modifications to the peak system class are the removal of the chromosome- 
index, peaks and score attributes and the addition of the shift-array, score- 
prec, score-succ and linked-to attributes.

• Shifts array attribute: this is an array of floating point numbers. The 
floating point numbers are the chemical shifts of the peak system object.

• Identity score attribute: this is a hash of floating point numbers. The keys to 
the hash will be the single letter amino acid identifiers and the floating 
point numbers will be the identity score of the relevant amino acid. The 
hash will default to 1.0 if no score is found for the amino acid.

i

• Score-prec attribute: this floating point number records the score of the link 
to the preceding peak system in a sequential assignment. The sequential 
assignment will be an array of peak systems in the assignment object.

• Score-succ attribute: this floating point number records the score of the link 
to the succeeding peak system in a sequential assignment. The sequential 
assignment will be an array of peak systems in the assignment object.

• Linked-to-prec attribute: this list records all the other peak system objects 
that can precede the object in a sequential backbone assignment. This is 
determined using the rules contained in the alignment object. Each element 
of the list is itself a two element list: the first is the peak system it is linked 
to and the second is the linking score, a floating point number.
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• Linked-to-succ attribute: this list records all the other peak system objects 
that can succeed the object in a sequential backbone assignment. This is 
determined using the rules contained in the alignment object. Each element 
of the list is itself a two element list: the first is the peak system it is linked 
to the and second is the linking score, a floating point number.

8 . 3 . 3  A s s i g n m e n t  C l a s s

The new assignment class is designed to represent a sequential backbone 
assignment. The class is designed to hold sequence of peak systems derived 
from the chromosome array of an individual. There will be only one instance of 
the alignment class. The attributes of the class are listed below.

• Peak-systems attribute: this attribute will contain the peak systems object.

• System-number attribute: this integer records the number of peak systems 
there are in a sequential backbone assignment.

• Array attribute: this is an array of peak systems that comprises the actual 
assignment the class represents.
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9 . 0  F u t u r e  W o r k

Future work on the project will need to concentrate on three areas: the side 
chain assignment module, a user interface for each module and the BAM-2. 
There are some secondary issues still to be addressed with the other GA 
modules.

9.1  S i d e  C h a i n  A s s i g n m e n t  M o d u l e

The side chain assignment module (SCAM) was conceived as a complement to 
the BAM, now the BAM-1 and BAM-2. The BAM-1 and BAM-2 would assign 
the backbone of a protein and the SCAM would assign the side chains of the 
amino acids of the protein. The development of the SCAM was not completed. 
The module was still undergoing initial testing when lack of time forced work 
on the module to stop. As the SCAM is not fully developed a brief description 
of the module has been placed here in the future work chapter.

The SCAM is designed to use HCCH C13 TOCSY or COSY experiments 
(Section 2.5) to perform side chain assignment, the module can use either. The 
task of side chain assignment, although using only one NMR experiment, is 
the most complex of the tasks performed by the various GA modules (Section
2.5.1). Each amino acid will have a characteristic pattern of peaks with 
characteristic chemical shifts. The SCAM will have to recognise each pattern 
of peaks while allowing for the usual spectral ambiguities (Section 2.5.2). The 
SCAM uses the spectrum of either a HCCH C13 TOCSY or COSY experiment, 
the amino acid sequence of the protein under investigation and a description of 
the ideal pattern of peaks for each amino acid. The spectrum will be in the 
form of a peak list, as with the other GA modules. The ideal peak patterns will 
be defined by the a series of alignment rules. Only four amino acids cjannot be 
distinguished using HCCH C13 COSY experiments, Glutamate/Glutamine and 
Aspartate/Asparagine.

The classes of the module are amino acid sequence, peak, peak list, amino acid, 
spin system, individual, sub population and main population. The classes are 
the same as the classes found in other modules with the exception of the amino 
acid and spin system classes. The class definitions can be found in Section 9.4.

The SCAM bears some resemblance to the BAM-1 in its coding, fitness 
function and particularly its genetic operators.

9 .1 .1  C o d i n g  o f  t h e  SCAM
The coding of the SCAM is similar to the other modules in that the
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chromosome is an integer array. It is different in that the conversion to an 
assignment is more complex. Each integer defines a peak from the 
appropriate32 HCCH C13 spectrum. The conversion of the integer array into a 
spin system assignment requires a chromosome array and the *spin-systems* 
object, the instance of the spin system list class. The spin system objects are 
processed sequentially. Each spin system will read a set number of integers 
from the chromosome array from a specified start point. The peak number 
attribute defines the number of integers read and the chromosome index 
attribute defines the start point. Each integer read is the position of a peak 
object in the peak array attribute of the peak list object. The peak objects 
found are placed in the spin-system-peaks array of the spin system object. The 
spin system peaks attributes of all the spin system collectively form the spin 
system assignment generated by the SCAM.

9 .1 .2  F i t n e s s  F u n c t i o n  o f  t h e  SCAM
The fitness function of the SCAM is by far the most complex of all the modules. 
The fitness of a spin system assignment is the sum of the fitness of the spin 
system objects tha t form the spin system assignment. To determine the fitness 
of a spin system objects five factors are considered:

• Blank Peaks

• Alignment Distance

• Alignment Constraints

• Position Constraints

• Shift Constraints

The blank peak factor simply determines the ratio of blank peaks to real 
peaks. If there are four peaks in a peaks system and one of them is a blank 
peak the blank peak factor will be 0.75. The factor is used to represent the fact 
that the more peaks in a spin system the greater the probability of it being a 
genuine spin system.

The alignment distance factor is calculated using the alignment rules. The 
factor calculates the distance from the ideal position of each peak in the spin

32 TOCSY of COSY.
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system. For each peak there is a tolerance in each dimension. The tolerances 
define the maximum difference tha t can exist between the chemical shifts of 
peaks that are considered to be aligned. Each alignment rule defines two 
peaks of a spin system and two chemical shifts of those peaks. If the two 
chemical shifts are within the appropriate tolerance33 then the absolute 
distance between them is calculated. If the distance between the chemical 
shifts of the peaks is greater than the tolerance then the tolerance becomes the 
distance. The tolerance is considered to be the maximum distance. If one or 
both of the peaks referred to by the alignment rule are blank peaks then the 
distance is zero. Blank peaks are considered to give perfect alignments. The 
distance is then added to the appropriate distance total. There are three 
distance totals; one for each dimension of a spectrum.

Once all the rules have been evaluated each total distance (di, d2 and d3 ) is 
divided by the appropriate attribute of the amino acid object of the spin 
system, i.e. amino-acid-d 1-factor (fi), amino-acid-d2-factor (f2 ) or amino-acid- 
d3-factor (fa). The results of the three calculations are added together and 
subtracted from 1. The calculation is shown in Equation 9.1 where Ad is the 
alignment distance, d the total distance for a dimension and f the factor for a 
dimension. The calculation of the dimension factors is shown in Equation 9.2 
where T is the tolerance for the dimension, Nt is the total number of 
alignment rules and N is the number of alignment rules that concern the 
dimension.

I
Equation 9.1

T x N 2 „  ./  = ——--------------------------------  Equation 9.2

An example of an alignment rule is (0 3 d2 d2 -6). The d2 tolerance will be 
used and the absolute difference between the two d2 chemical shifts of the 1st 
and 4th peaks in the spin system will be added to the d2 total distance variable 
(d2 in Equation 9.2).

The alignment constraint factor (Ac) is calculated at the same time as the

33 The appropriate tolerance will be the one that matches the first chemical shift defined in 

the alignment rule, e.g. rule (3 4 d l d l -7) will use the d l tolerance.

A , = i
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alignment distance factor. The factor is the sum of the violation numbers (V) 
from the alignment rules that were false added to the number of alignment 
rules that prove to be true (Nt) divided by the number of alignment rules (N), 
see Equation 9.3. An alignment rule is considered to be true when the 
difference between the two specified chemical shifts is less than the tolerance 
for the specified dimension. The violation number is the -6 in the example give 
previously. The violation number is used to increase the impact of violating the 
alignment rule. Taking the example rule negative impact on violating the rule 
is 1 with out the violation number and 7 with it. The alignment constraint 
factor is used to determine what is a valid spin system while the alignment 
distance factor determines how good a spin system it is.

N, +VAc = — —— Equation 9.3N

The position constraint factor (P in Equation 9.4) is calculated using the 
constraint list attribute of the amino acid object of the spin system. The 
constraint rules state the relative positions of the peaks in a spin system. An 
alignment rule defines two peaks of a spin system and a chemical shift of each 
peak. The specified chemical shift of the 1st peak defined should be greater 
than that of the 2nd. The factor is calculated by adding the number of rules 
that are true (Nt) to the sum of the violation numbers (V) of the rules that are 
false and dividing by the number of rules (N), Equation 9.4.

N. +VP = — —— Equation 9.4N

The shift constraint factor (S in Equation 9.5) is used to determine if the peaks 
of the spin system are in the correct region of the spectrum. The factor is 
calculated using the shift array attribute of the amino acid object of the spin 
system. The shift array defines an ideal range for each chemical shift of a 
peak. The chemical shift of each peak is compared against the appropriate 
ranges given in the shift array. If the chemical shift of the peak (s) falls within 
the defined range the shift constraint factor for that shift (sf) is 1.0. A second 
range is calculated using the range given in the shift array. Twice the distance 
between the two chemical shifts of the range (r) is calculated. The distance is 
added to the upper chemical shift (u) of the range and subtracted from the 
lower (1) to give outer upper (u0) and lower limits (10) (Equations 9.5, 9.6 & 9.7). 
If the chemical shift is on the upper or lower limit of the range the shift 
constraint for that shift is 1.0 and 0.0 if it is on the outer lower or upper limit.

1 0 9
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When the chemical shift of the peak falls between a limit and an outer limit its 
score is linearly proportional to its distance from the limit (Equations 9.8 & 
9.9). If the chemical shift of the peak is out side of the range of either the outer 
limits them the shift constraint factor of the shift is ascribed a value of -3. The 
-3 is used to negate the impact of the other chemical shifts of the peak.

r = 2(u -  /) Equation 9.5

uQ=u + r Equation 9.6

l0= l- r  Equation 9.7

s — usf = -----  Equation 9.8

I — ssf =   Equation 9.9

The shift constraint factor is the average of the shift constraint factors for each 
shift.

The five factors are then combined using Equation 9.10 to give the fitness of a 
spin system (Fs). The alignment constraint factor receives the bul|t of the 
importance in the alignment from the impact of the alignment rules. The 
constraint factor is important in determining when the peaks of spin system 
object are aligned well enough to form a valid spin system. The distance 
component is used to determine the quality of valid spin systems. The position 
constraints insure along with the alignment constraints that the peaks form 
the pattern of peaks characteristic of the appropriate amino acid. The shift 
constraints insure that the pattern peaks are in the appropriate region of the 
spectrum. The blank peak factor insures that the more complete the pattern of 
peaks in the spin system object the greater its fitness.

Fs = BPS([Ad x 0.2) + (Ac x 0.8)) Equation 9.10

9 .1 .3  G e n e t i c  O p e r a t o r s  o f  t h e  SCAM
When the work on the SCAM was stopped there were 7 genetic operators being 
tested, though not concurrently. The operators were:

• Crossover
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• Mutate

• Mutate Shift

• Mutate Aligned

• Mutate Peak Ideal Peak

• Mutate Ideal Peak

• Mutate Ideal Spin System

The crossover operator is identical in function to that of the other GA modules 
and is a permanent part of the SCAM. The other operators were still being 
evaluated when work stopped. All the operators operated on the peaks of a 
spin system object.

The mutate, mutate shift and mutate aligned operators all randomly chose an 
individual and then randomly chose a spin system from the individual. A peak 
from the spin system is randomly chosen and then replaced with another 
randomly chosen peak. The operators vary in the place from which the 
replacement peak is chosen. The mutate peak operator chooses a peak from 
the peak array attribute of the peak list object. The mutate shift operator 
chooses a peak from the peak array of the spin system amino acid object. 
Specifically the peak is chosen from the element of the array that occupies the 
same position as the peak. The mutate aligned operator chooses the peak from 
the either the peak-aligned-cross or peak-aligned-diagonal array of another 
peak of the spin system. The array used is dependent on the type of peak that 
has been selected for replacement; whether it is a diagonal or cross peak. Each 
element of the arrays will be an array of peaks; the peaks that align with the 
peak object the attribute belongs to. The element used is the one that 
corresponds to the peak being replaced, e.g. if the 4th peak in a spin system is 
being replaced then the replacement peak is selected from the 4th element of 
either peak-aligned-cross or peak-aligned-diagonal array. j

The mutate ideal peak, mutate peak ideal peak and mutate ideal spin system 
operators all operate in a similar fashion. The operators randomly select the 
position of a peak in a spin system. Then, using the other peaks of a spin 
system and the alignment rules, an ideal position in the spectrum is calculated
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for a peak to be placed at the selected position in the spin system.

The mutate ideal peak operator randomly selects an individual and then a 
region on the chromosome array of the individual that encodes the peaks of 
spin system object is randomly selected. The peaks encoded by the region are 
found. One of the peaks is randomly chosen for replacement. The alignment 
rules and the other peaks are used to find the ideal position in the spectrum 
for a peak to replace the selected peak. The peak closest to the ideal position is 
then found and the peak is substituted for the selected peak. The mutate peak 
ideal spin system operator, instead of randomly choosing a peak, 
systematically replaces all the peaks in a spin system. The mutate peak ideal 
peak operator differs in that only one other peak in a spin system is used to 
calculate the ideal position; the operator has been superseded by the mutate 
aligned operator.

9 .2  F u t u r e  W o r k  o n  2D -SA M , 3D -SA M , BAM -1 a n d  

B A M -2
The 2D-SAM and 3D-SAM are complete. The only issues that could yet be 
explored is testing the modules on other proteins. The BAM-1 and BAM-2 
similarly needs only further testing. j
9 . 3  U s e r  I n t e r f a c e

Essentially the 2D-SAM, 3D-SAM, BAM-1 and BAM-2 have no user interface. 
To run any of the modules a command is entered into a UNIX shell e.g. “bam l 
-1 “run.lisp” > results/record This must be run from a directory that has the 
BAM-1 binary and run.lisp files. The run.lisp files contains all the user defined 
parameters. The current directory must also have two sub directories: data 
and results. The data directory must contain all the necessary data files and 
the results directory must contain a file called machine-name, this file is used 
to name all the results files. If any of these elements are missing the module 
will not run correctly if at all. One of the modules, BAM-1, has been used by a 
person other than myself. If the modules are to be used they must be made 
user friendly; ideally a graphical user interface would be developed. 
Alternatively the modules could be incorporated into one of the existing NMR 
packages. The BAM-1 can produce a file that acts as input to the NMR 
analysis application NMR Compass.

As part of the user interface problem is the presentation of the results of the 
various GA modules. Currently all the modules produce their results in a text 
file. The file is the assignment generated by the module with an estimate on
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how good each element of the assignment is. This does convey all the essential 
information but is not always what the spectroscopist wants from the module. 
Further work, in close collaboration with the NMR spectroscopists of the 
centre, is required to make the most of the assignment generated by the 
module.

9 . 4  S C A M  O b j e c t  D e f i n i t i o n s

This section contains the class definitions of the SCAM.

9 . 4 . 1  A m i n o  A c i d  C l a s s

The amino acid class encodes the ideal pattern of peaks for an amino acid. 
There will be as many instances of the amino acid class as there are amino 
acids. Each amino acid object will have one or more corresponding spin 
systems. If there are four Lysines in the amino acid sequence of a protein there 
will be four spin systems that have a lysine amino acid object as their spin- 
system-amino-acid attribute. The attributes of the amino acid class are listed 
below.

• name attribute: this is the full name of the amino acid, e.g. “Tyrosine”.

• name-31 attribute: this is the three letter abbreviation of the amino acid, e.g. 
“Tyr”.

• name-11 attribute: this is the one letter abbreviation of the amino acid, e.g.

• peak number attribute: this is the number of peaks an amino acid generates 
in the spectrum.

• dl-factor attribute: this is the sum of the tolerances of the alignments of the 
peaks of the amino acid in the d l dimension.

j

• d2-factor attribute: this is the sum of the tolerances of the alignments of the 
peaks of the amino acid in the d2 dimension.

• d3-factor attribute: this is the sum of the tolerances of the alignments of the 
peaks of the amino acid in the d3 dimension.

• constraint number attribute: this is the number of constraints in the 
constraint list.
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• shift array attribute: this is a three dimensional array of floating point 
numbers. The first dimension of the array is the number of peaks the amino 
acid generates in a spectrum, the peak-number attribute. The second 
dimension of the array is the number of dimensions in the spectrum, a 
HCCH COSY spectrum has three dimensions. The third dimension of the 
array defines the lower and upper limits of a range of chemical shifts for the 
specified dimension of the specified peak. For example in a HCCH COSY 
spin system with four peaks the array will be 4 x 3 x 2. The array gives the 
expected position of the peaks of the amino acid in the spectrum.

• type array attribute: this is a one dimensional array. The array length is 
defined by the number of peaks the amino acid generates in the spectrum. 
The array symbols are either C or D. The symbol C indicates a cross peak 
and the symbol D indicates a diagonal peak. The array defines where a 
diagonal and cross peaks should be placed in the spin-system-peaks 
attribute of a spin system object.

• alignment list attribute: this is a list of alignment rules. Each rule \yill itself 
be a list, e.g. (0 3 d2 d2 -6). The first and second elements of the lisi refer to 
two peaks of the spin system. The third and fourth elements define which 
chemical shifts of the defined peaks must align. The fifth element of the list 
is the violation number. This number is used by the fitness function when 
the alignment rule is violated.

• constraint list attribute: this is a list of constraint rules. Each rule is itself a 
list, e.g. (2 1 d l -4). The first and second elements of the list define the 
peaks the constraint applies to. The third element of the list defines the 
chemical shift the constraint applies to. The fourth element is the violation 
number, which has the same function as before. The constraint defined by 
the example rule is that the d l chemical shift of the third34 peak in the 
corresponding spin-system-peaks attribute must be greater than the d l 
chemical shift of the second peak in the corresponding spin-system-peaks 
attribute.

• peak array constraint attribute: this is an array of arrays of peak objects. 
The size of the first array will be defined by the peak number attribute of

34 All arrays in lisp start at 0. The peaks referred to by the rules are in an array of peak 

objects and therefore the 2 in the rule refers to the third peak in the spin system.
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the amino acid. Each element of the array will contain an array of peak 
objects. The array will be all the peak objects that conform to the relevant 
information in both the amino-acid-shift-array and amino-acid-type-array 
attributes. The first element of the array will be the peak objects that 
conform to information in the first element of both the amino-acid-shift- 
array and amino-acid-type-array attributes. The amino-acid-shift-array will 
define a chemical shift range for the three chemical shifts of the peak 
objects. The amino-acid-type-array will define whether a peak is a cross or 
diagonal peak. The purpose of the array is to provide all the peaks that can 
be placed at each position in the in the spin-system-peaks array of the 
appropriate spin system.

9 . 4 . 2  S p i n  S y s t e m  C l a s s

The spin system class forms the spin system assignment of a protein. There 
will be as many instances of the class as there are amino acids in the protein. 
Each spin system object will have a corresponding amino acid object; the 
amino acid object will be an attribute of the spin system. The attributes of the 
spin system are listed below:

• id attribute: this identifies the spin system to the system.

• type attribute: this is the amino acid the spin system is generated from.

• amino acid attribute: this is the appropriate amino acid object for the spin 
system.

• chromosome index attribute: this is the position of the first integer in the 
chromosome array of an individual object that defines the first peak in the 
spin system.

• peak number attribute: this is the number of peaks in a spin systen}:

• peaks attribute: this is an array of peak objects; of length spin-system-peak- 
number. The array holds the peaks of the spin system.

All the spin system objects are collected into one object. The object is the spin 
systems object. The object has just three attributes. The first states the 
number of spin system in contained in the object. While the second and third 
are a list and array of the spin system objects respectively.
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