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ABSTRACT
A tidal disruption event, which occurs when a star is destroyed by the gravitational field of
a supermassive black hole, produces a stream of debris, the evolution of which ultimately
determines the observational properties of the event. Here, we show that a post-periapsis
caustic – a location where the locus of gas parcels comprising the stream would collapse into
a two-dimensional surface if they evolved solely in the gravitational field of the hole – occurs
when the pericentre distance of the star is of the order of the tidal radius of the hole. It is
demonstrated that this ‘pancake’ induces significant density perturbations in the debris stream,
and, for stiffer equations of state (adiabatic index γ � 5/3), these fluctuations are sufficient to
gravitationally destabilize the stream, resulting in its fragmentation into bound clumps. The
results of our findings are discussed in the context of the observational properties of tidal
disruption events.

Key words: black hole physics – hydrodynamics – galaxies: nuclei – X-rays: individual: Swift
J1644+57.

1 IN T RO D U C T I O N

A supermassive black hole (SMBH) of mass Mh can tidally destroy
a star of mass M∗ and radius R∗ if the star comes within the tidal
radius rt � R∗(Mh/M∗)1/3 of the hole. In this scenario, called a tidal
disruption event (TDE), the star is shredded into a stream of debris.
The properties of the debris and its ultimate fate have been studied
for decades, both analytically and numerically, and the observational
predictions generated from these studies have been tested.

Early analyses of TDEs showed that, due to the differential grav-
itational potential of the black hole, half of the disrupted debris
that was closer to the hole at the time of disruption is bound to the
black hole, while the other half is unbound (Lacy, Townes & Hol-
lenbach 1982; Rees 1988). The half that is bound will eventually
return to the black hole, circularize, and form an accretion disc. The
properties and observational signatures of this accretion disc have
been investigated by many authors (e.g. Cannizzo, Lee & Goodman
1990; Loeb & Ulmer 1997; Strubbe & Quataert 2009, 2011; Lodato
& Rossi 2011; Coughlin & Begelman 2014; Guillochon, Manukian
& Ramirez-Ruiz 2014a; Shen & Matzner 2014). The power radiated
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during the accretion process is enough to generate a highly lumi-
nous event, and some of these events have already been observed
(Bade, Komossa & Dahlem 1996; Komossa & Bade 1999; Halpern,
Gezari & Komossa 2004; Levan et al. 2011; Cenko et al. 2012;
Bogdanovic, Cheng & Amarao-Seoane 2014; Komossa 2015).

Phinney (1989) showed analytically that the rate at which the
debris returns to the black hole decreases with time as Ṁfb ∝ t−5/3.
This feature, coupled with the longevity of the signature, is the ob-
servational ‘smoking gun’ of a TDE. Many of the recently observed
TDE candidates exhibit a light curve that decreases in a manner
commensurate with this power-law rate (Bloom et al. 2011; Zaud-
erer et al. 2011; Cenko et al. 2012; Gezari et al. 2012; Bogdanovic
et al. 2014; Brown et al. 2015).

To investigate the complex hydrodynamical interactions that take
place during TDEs, many authors have resorted to numerical sim-
ulations. Early smoothed particle hydrodynamics (SPH) calcula-
tions supported the analytic estimates of Rees (1988) and Phinney
(1989), showing that the distribution of specific energies calculated
not long after the time of disruption generates a fallback rate that
scales as Ṁfb ∝ t−5/3 (Evans & Kochanek 1989). More recently,
Lodato, King & Pringle (2009) elucidated the effects of the struc-
ture of the progenitor star on the disruption process, demonstrating
that the early stages of the fallback depend on the properties of
the star. Guillochon & Ramirez-Ruiz (2013) investigated how the
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impact parameter β ≡ rt/rp, rp being the pericentre distance of
the stellar progenitor, alters the nature of the event, and found that
shallower impact parameters often result in the survival of a bound
stellar core. Finally, Hayasaki, Stone & Loeb (2013), Bonnerot et al.
(2015), Hayasaki, Stone & Loeb (2015), and Shiokawa et al. (2015)
have looked into the effects of general relativity on the stream,
showing how apsidal and Lense–Thirring precession can alter the
formation of the disc that forms when the tidally disrupted debris
returns to pericentre.

Coughlin & Nixon (2015) demonstrated that, when a solar-like
star with a γ = 5/3 adiabatic equation of state is disrupted by
a 106 M� hole, self-gravity can be important for determining the
stream properties during its late evolution (see also Kochanek 1994;
Guillochon et al. 2014a for a discussion of self-gravity). In particu-
lar, they showed that the tidal influence of the black hole becomes
subdominant to the self-gravity of the debris, which results in the
late-time fragmentation of the stream into gravitationally bound
clumps. These clumps then return to the original pericentre at dis-
crete times, causing the fallback rate of the material to fluctuate
about the t−5/3 average.

An important question arising from the results of Coughlin &
Nixon (2015) is: when is the self-gravitational nature of the stream
revived post-disruption? As the tidal shear and the self-gravity of
the star equal one another at the tidal radius, one might suspect that
the self-gravity of the debris is most influential at late times. Indeed,
it is during this late evolution that Coughlin & Nixon (2015) found
that the stream gravitationally fragments. As we will show here,
however, the self-gravity of the debris can affect the stream evolution
soon after the star passes through periapsis (of the order of hours for
the tidal disruption of a solar-like star by a 106 M� hole). We find
that the star experiences compressive forces in the orbital plane,
which lead to the formation of a post-disruption pancake, similar to
the one found by Carter & Luminet (1982) but oriented orthogonal to
the orbital plane of the progenitor. This in-plane recompression then
augments the importance of self-gravity, resulting in perturbations
on top of the stream that can induce early recollapse. (We note
that we will be considering TDEs in which the star is completely
destroyed, and hence these results should not be confused with those
of Guillochon & Ramirez-Ruiz 2013 who, in certain cases, found
surviving stellar cores for impact parameters less than one.)

In Section 2, we present an analytical analysis of the stream under
the impulse approximation, which assumes that the star maintains
hydrostatic balance until it reaches the tidal radius. We demonstrate
that, even when the pericentre distance and the tidal radius are
approximately coincident, a caustic – a location where the orbits of
the gas parcels comprising the stream collapse to a two-dimensional
surface – occurs shortly after the star is disrupted. Section 3 presents
numerical simulations that demonstrate the effects of this caustic,
and specifically shows how it can modify the density structure of
the stream for times long after disruption. We present a discussion
of the results of our simulations in Section 4 and consider the
astrophysical implications of our findings in Section 5. We conclude
and summarize in Section 6.

2 THE IMPULSE A PPROX IMATION

Many authors (e.g. Carter & Luminet 1983; Rees 1988; Lodato,
King & Pringle 2009; Stone, Sari & Loeb 2013; Coughlin & Begel-
man 2014) have considered the disruption process from a simplified,
analytic standpoint. While an analytic approach almost certainly
misses many of the intricacies associated with the realistic prob-
lem, it has the advantage of being able to characterize the bulk

processes that take place during the interaction. Furthermore, it
is able to elucidate the manner in which those processes depend
on the properties of the progenitor star and the black hole, which
provide useful observational diagnostics. Here, we discuss the im-
pulse approximation, which assumes that the star is able to maintain
hydrostatic balance until it reaches the tidal radius and it is there-
after disrupted, i.e. the pressure and self-gravity of the material are
negligible after the star has passed through the tidal radius.

Carter & Luminet (1982, 1983) considered the case where the
pericentre distance of the star, rp, is well inside the tidal radius of
the hole (their affine star model; see also Stone et al. 2013 for an
alternative approach to analytically modelling this scenario). For
these high-β encounters, where β ≡ rt/rp is the impact parameter,
the impulse approximation can be applied early on in the tidal dis-
ruption process. Because of the component of the tidal force that
acts orthogonally to the orbital plane of the star, the gas parcels com-
prising the top and bottom of the stellar envelope undergo effective
freefall, forming an infinitely thin plane, or caustic, at the pericentre
radius (the location of the caustic is actually slightly after the peri-
centre, only equaling the pericentre distance for β → ∞; Bicknell
& Gingold 1983). This ‘pancaking’ effect was then thought to be
capable of igniting thermonuclear fusion via the triple-α process,
resulting in the detonation of the star. However, studies showed that
the shocks near pericentre resulted in lower densities and pressures
in the stellar core than those predicted by Carter & Luminet (1982),
meaning that the triple-α process is unlikely to be initiated in these
encounters (though some fusion via the CNO cycle may occur;
Bicknell & Gingold 1983).

On the other hand, when β � 1, the star can retain its unperturbed
structure for much longer. In this case, one can approximate the star
as being spherical, with every gas parcel moving with the centre of
mass, until the pericentre is reached. Here, we will focus on this
case, not only because it has not been treated as thoroughly as the
β 
 1 scenario, but also because it has interesting consequences for
the disrupted material soon after the pericentre distance is reached.
Later in this paper, we will relax the assumptions made by this
model with three dimensional hydrodynamic simulations.

2.1 Equations

Once the star passes through the tidal radius, the pressure and self-
gravity of the gas parcels are assumed negligible, implying that
they follow Keplerian orbits in the potential of the black hole. The
equations of motion that describe these orbits are given by

r2 sin2 θ φ̇ = �, (1)

r4θ̇2 + � 2

sin2 θ
= k2, (2)

1

2

(
ṙ2 + k2

r2

)
− GM

r
= ε, (3)

where dots denote differentiation with respect to time, r(t), θ (t), and
φ(t) are the respective radial, polar, and azimuthal coordinates of
the gas parcel under consideration, and M is the mass of the black
hole. Here, �, k, and ε are constants of integration, the first two
being projections of the specific angular momentum, while the last
is the specific energy.

Setting the impact parameter to β ≡ rt/rp = 1, the point at
which equations (1)–(3) become valid occurs when the star reaches
pericentre. We will let the orbit of the stellar progenitor be confined
to the xy-plane, with the periapsis on the positive-x axis and the
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3614 E. R. Coughlin et al.

Figure 1. The initial configuration of the star under the impulse approxi-
mation when β � 1 (this figure is not drawn to scale). The dashed curve
traces out the orbit of the centre of mass, which is assumed to be parabolic.
The Cartesian coordinates are indicated by the diagram immediately below
the black hole (which is indicated by the black circle), z being out of the
plane in a right-handed sense. The spherical-polar coordinates are labelled
r and φ on the diagram, and θ is measured out of the plane of the orbit from
the z-axis (for the above figure that focuses on the x–y plane, θ = π/2).

location of the black hole at the origin. The centre of mass of the
star will also trace out a parabolic orbit. The impulse approximation
then means that the star retains its unperturbed (assumed-spherical)
structure until it reaches pericentre, so that the initial conditions we
will use for equations (1)–(3) will be those depicted by Fig. 1. Note
that the entire star initially shares the velocity of the centre of mass,
which is along the positive y-axis at pericentre.

With the setup given by Fig. 1 in mind, we will define the initial
position of a given fluid element that comprises the star by the
coordinates (ri, θ i, φi). Since the entire star moves with the centre
of mass, the velocity of every fluid element is given by żi = ẋi =
0, ẏi = √

2GMh/rt. Transforming these conditions into spherical
coordinates via the transformations z = rcos θ , y = rsin θsin φ,
x = rsin θcos φ, we find

ṙi =
√

2GMh

rt
sin θi sin φi, (4)

θ̇i = 1

ri

√
2GMh

rt
cos θi sin φi, (5)

φ̇i = 1

ri

√
2GMh

rt

cos φi

sin θi

, (6)

and using these expressions in equations (1)–(3) gives

� = ri

√
2GMh

rt
sin θi cos φi, (7)

k = ri

√
2GMh

rt

√
cos2 φi + cos2 θi sin2 φi, (8)

ε = GMh

rt

(
1 − rt

ri

)
. (9)

Equation (9) shows that gas parcels with initial positions inside the
tidal radius are bound (ε < 0), while those outside are unbound
(ε > 0), which is what we expect.

In addition to its position, we will also be interested in the density
of the stream. As was demonstrated in Coughlin & Nixon (2015),
the density structure can be determined by considering the star at the
time of disruption and assuming that the specific energies of the gas
parcels are frozen in thereafter. Making the additional assumption
that the stream is a circular cylinder of cross-sectional radius H,
then we can show that the azimuthally averaged density along the
stream varies as (Coughlin & Nixon 2015)

ρ = M∗ξ1

2πH 2
√

(r ′)2 + r2(φ′)2

∫ ξ1
μξ1

(ξ )nξdξ∫ ξ1
0 (ξ )nξ 2dξ

, (10)

where M∗ is the mass of the disrupted star, n = 1/(γ − 1) is the
polytropic index of the gas, (ξ ) is the solution to the Lane–Emden
equation and ξ 1 is the first root of (ξ ) (Hansen, Kawaler & Trimble
2004). Here, μ is the dimensionless position of a gas parcel from the
centre of the star at the time of disruption, i.e. μ = Rp/R∗, where
Rp is the radial position of the gas parcel. Primes on the functions
r and φ denote differentiation with respect to μ. We will return to
the question of what determines H in Section 3.2.

2.2 Solutions

With equations (7)–(9) and the initial positions of the gas parcels,
we can numerically integrate equations (1)–(3) to determine the
temporal evolution of the debris stream.

Fig. 2 shows the solution to equations (1)–(3) with the relevant
initial conditions for a TDE between a solar-type star and a 106 M�
hole. The first time (closest set of blue points) is 1.84 d after disrup-
tion, while the longest, yellow set of points is 40.6 d after disruption,
and coincides roughly with the time at which the most bound ma-
terial has returned to pericentre. Intermediate streams are shown
at intervals of 5.53 d. We find overall good qualitative and quan-
titative agreement between the radial positions of these solutions
and the solution to the full problem – making no assumption about
the negligible nature of pressure and self-gravity – obtained using
numerical simulations (see e.g. the red curves in fig. 1 of Coughlin
& Nixon 2015).

However, we find disagreement between the width of the stream
obtained from equations (1)–(3) and that from the simulations, the
former being significantly wider than the latter. This discrepancy
is due to the fact that self-gravity plays a crucial role in determin-
ing the width of the stream (Coughlin & Nixon 2015). In other
words, the H that appears in equation (10) is not simply determined
by the free expansion of the parcels in the gravitational potential
of the hole (see equation (17) below, which shows how H depends
on the density of the stream in the limit that hydrostatic balance is
upheld in the transverse direction).
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Figure 2. The streams of debris formed from the tidal disruption of a
solar-type star by a Mh = 106 M� hole situated at the origin. Each colour
represents a different time, the earliest (blue points closest to the origin)
being at t = 100 r

3/2
t /

√
GMh � 1.84 d from disruption, the latest (yellow

points) at t = 2200 r
3/2
t /

√
GMh � 40.6 d from disruption. The time in

between neighbouring streams is 300 r
3/2
t /

√
GMh � 5.53 d. The black hole

(not drawn to scale) is indicated by the black circle near the origin. While
the radial positions of the gas parcels match well those from numerical
analyses (see fig. 1 of Coughlin & Nixon 2015), the width obtained from
equations (1)–(3) is significantly overestimated (the numerical solutions,
had we shown them, would have amounted to lines plotted overtop of the
streams in Fig. 2). This finding suggests that self-gravity is important for
keeping the stream confined in the transverse direction.

The approximate point at which the self-gravity of the stream
becomes important can, however, be gleaned from the solutions to
equations (1)–(3). Fig. 3 shows the evolution of the in-plane edge of
the stream at four different times for the disruption of a solar-type
star by a 106 M� hole. The front of the stream (the fluid parcels
comprising the leading edge of the polytrope at the time of disrup-
tion) has been coloured blue, the back has been coloured orange,
and the arrow indicates the instantaneous direction of motion of
the centre of mass. This figure demonstrates that, roughly an hour
after disruption, the leading and trailing edges of the stream form a
caustic – a point where the two-dimensional, in-plane surface of the
stream collapses to a one-dimensional line – and thereafter trade
places, the front becoming the back and the back becoming the
front.

The tidal stream thus exhibits a ‘perpendicular pancake’ shortly
after disruption, the perpendicular aspect referring to the fact that
the orientation of the pancake is orthogonal to the orbital plane of the
debris. This pancake is analogous to but distinct from the one found
by Carter & Luminet (1982), who noted that the top and bottom of
the star flatten to a point of infinite density at the tidal radius for
high-β encounters. Here, however, the compressive motions occur
in the orbital plane.

The existence of the pancake encountered here can ultimately
be attributed to the initial conditions: from Fig. 1, it is apparent
that the parcels along the line passing through the centre of the star
and perpendicular to the orbital plane all have their periapses at
φ = 0. Those constituting the leading edge of the star, however,
have already passed through their periapses, while the periapses
of the parcels comprising the back of the star have not yet been
reached. From the conservation of angular momentum (1), the front
of the star is therefore decelerating at the time of disruption while
the back is accelerating, which causes the two to cross at a certain

location. Specifically, if we differentiate equation (1) with respect
to time, set θ = π/2 and use equation (4), we find

φ̈i = −4GMh

r2
i rt

sin φi cos φi, (11)

which shows that gas parcels with φi > 0 are decelerating in the
φ direction, while those with φi < 0 are accelerating. Investigating
this equation further, we see that the differential acceleration across
the star at the time of disruption is

�φ̈ � −4GMh

r2
i rt

�φ, (12)

where �φ is the angle subtended by the star. Geometrically �φ �
2R∗/rt, which yields, after setting ri � rt,

|�φ̈| � 32πGρ∗
3

(
Mh

M∗

)−1/3

, (13)

where ρ∗ = 3M∗/(4πR∗3) is the average stellar density. This ex-
pression shows that the change in acceleration from the front of the
star to the back depends primarily on the properties of the progen-
itor, though the inverse dependence on black hole mass shows that
the effect should be amplified for smaller mass SMBHs.

During a realistic β � 1 tidal encounter, the star will not retain
perfect spherical symmetry until reaching its pericentre. In partic-
ular, the outer, low-density material comprising the envelope will
be more easily stripped, resulting in an elongated, ellipsoidal con-
figuration. However, the higher density core will be able to better
maintain its structure. Therefore, while considering the entire star
as spherical and moving with the centre of mass at the time of dis-
ruption is likely too simplistic for the physical problem, those initial
conditions are perhaps reasonable for the central regions.

Furthermore, the non-zero pressure of the gas will prevent the
development of a true caustic. On the contrary, the convergence of
the Keplerian orbits will increase the pressure and density until it
reaches an approximate equilibrium. However, the stretching of the
stream in the radial direction will cause the density to decrease,
which will likewise result in a more drastic lowering of the pressure
if the gas follows an adiabatic equation of state. The ability of the
pressure to resist the caustic will thus decrease with time, making
it possible for the perpendicular pancake to alter the nature of the
debris stream.

The precise time at which the caustic occurs as it has been pre-
sented here depends only on the gravitational field of the black
hole. In reality, the self-gravity of the steam would serve to alter
the precise nature of the pancake. However, we expect that self-
gravity would only serve to enhance the focusing of the orbits and
potentially generate the caustic at a slightly earlier time.

In the next section, we present simulations that address the com-
plexity of the full problem. As we will see, the numerical solutions
do exhibit interesting behaviour near the time at which equations
(1)–(3) predict the existence of a caustic, and this behaviour is
imprinted on the stream for much later times.

3 N U M E R I C A L S I M U L AT I O N S

To test whether or not the caustic discussed in the previous section
affects realistic β � 1 tidal encounters, we now employ numerical
simulations that allow the star to evolve in the tidal field of the hole
pre-periapsis and include the effects of pressure and self-gravity at
all times.
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3616 E. R. Coughlin et al.

Figure 3. Four snapshots of the in-plane evolution of the gas parcels comprising the edge of the star at the time of disruption; for these figures we chose a
106 M� hole and a solar-like star. The particles comprising the front of the star at the time of disruption have been coloured blue, while the back has been
coloured orange. The arrows indicate the direction of motion of the centre of mass. The bottom, left-hand panel shows that, at a time of roughly an hour after
disruption, the front and back of the stream merge and thereafter trade places. The impulse approximation thus leads to a caustic – where the debris streams
form a two-dimensional surface – which occurs roughly an hour after disruption.

3.1 Simulation setup and initial conditions

We use the SPH code PHANTOM (Lodato & Price 2010; Price &
Federrath 2010) to simulate the tidal disruption of a solar-type star
(one with a solar mass and a solar radius) by a 106 M� black
hole. PHANTOM is a highly efficient code and is especially useful for
astrophysical problems involving complex geometries and a large
range of spatial and temporal scales. For other applications of this
code, see e.g. Nixon, King & Price (2012a), Nixon et al. (2012b),
Martin et al. (2014a,b) and Nealon, Price & Nixon (2015).

In our simulations the star is initially assumed to be a polytrope
with polytropic index γ (Hansen et al. 2004). The correct, poly-
tropic density profile is obtained by first placing 106 particles in a

close-packed sphere, then stretching that sphere to obtain a good
approximation to the exact solution.

We place the polytrope at a distance of 10 rt from the hole, with
the centre of mass on a parabolic orbit. The distance at periapsis is
equal to the tidal radius (β = 1). Every gas parcel composing the
star initially moves with the centre of mass when the star is at 10 rt,
and the length of time taken to traverse the distance to the hole is
sufficient to allow the polytrope to relax. The adiabatic index of the
gas is always equal to the initial, polytropic index of the star.

Self-gravity is included at all stages of the TDE, and is employed
via a k-D tree (Gafton & Rosswog 2011) alongside an opening an-
gle criterion, the latter employing a direct summation method for
the gravitational forces between neighbouring particles (Price &
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Post-periapsis pancakes 3617

Figure 4. The star at the time of disruption for an adiabatic index of γ = 1.5 (top, left), γ = 5/3 (top, right), γ = 1.8 (bottom, left), and γ = 2 (bottom, right).
The configuration has clearly been altered from its original, spherical shape, showing that the tidal force does not act exactly as an impulse as was assumed in
Section 2. The central density is also higher for smaller γ , which is predicted from the original stellar profile.

Monaghan 2007). The simulations presented here used an opening
angle of 0.5 (we have run simulations with smaller opening angles
and found negligible differences; see Coughlin & Nixon 2015).
Shock heating was not included for the runs presented here, though
we have done tests in which it was included and found only negligi-
ble differences. We also do not account for non-adiabatic cooling;
the gas therefore retains its polytropic equation of state throughout
the TDE.

We ran four different simulations, each identical to the next ex-
cept in the adiabatic index used for the gas. Specifically, we chose
γ = 1.5, 5/3, 1.8, and 2, and thus our parameter space agrees with
that chosen by Lodato et al. (2009) except for γ = 2. While adi-
abatic indices greater than 5/3 are difficult to realize physically in
stellar progenitors (though they may be appropriate for planets; Li,
Narayan & Menou 2002; Faber, Rasio & Willems 2005), we in-
cluded these cases to highlight the presence of the caustic and to
compare to Lodato et al. (2009).

3.2 Results

Fig. 4 shows the star at the time of disruption, with each panel cor-
responding to a different adiabatic index. As was commented upon
in Section 2, the fact that the tidal force does not act impulsively

means that the polytrope is already distorted when it reaches its
periapsis, and this distortion is apparent from the figure. We also
see that the central density is higher for lower γ , which is a general
feature of polytropes.

Fig. 5 shows the disrupted stream 2.53 d after disruption for the
four different adiabatic indices. In this case, it is evident that a
larger adiabatic index corresponds to a thinner, denser stream. This
result may seem counterintuitive, as one might expect the higher
density core of the lower-γ polytropes to result in a denser stream.
However, if one assumes that pressure and self-gravity are the two
dominant terms controlling the width of the stream, which is a
reasonable assumption because of the nature of the perpendicular
pancake, then the transverse structure of the stream is governed by
the equation of hydrostatic equilibrium:

1

ρ

∂p

∂s
= −∂φsg

∂s
, (14)

where φsg is the gravitational potential due to the self-gravity of
the debris and s is the transverse distance from the centre of the
stream. Furthermore, if the variation in the self-gravitational po-
tential along the radial direction of the stream is small, which is a
good approximation towards the centre of the stream owing to its
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3618 E. R. Coughlin et al.

Figure 5. The stream at a time of 2.53 d from pericentre for an adiabatic index of γ = 1.5 (top, left), γ = 5/3 (top, right), γ = 1.8 (bottom, left), and γ = 2
(bottom, right). The stream thickness decreases dramatically and the fans become less pronounced as γ increases.

approximately symmetric nature and only breaks down when we
approach its radial extremities, then the Poisson equation reads

1

s

∂

∂s

(
s
∂φsg

∂s

)
= 4πGρ. (15)

Using this equation in conjunction with equation (14), we find that
the equation of hydrostatic equilibrium becomes

1

s

∂

∂s

(
s

ρ

∂p

∂s

)
= −4πGρ. (16)

With the polytropic equation of state p ∝ ργ , dimensional analysis
of this equation shows that the cross-sectional radius of the stream
varies as

H ∝ ρ
γ−2

2 , (17)

where here ρ is the density at the centre of the stream. The precise
constant of proportionality depends on the entropy of the gas and
the numerical solution to equation (16).

It is ultimately the scaling given by equation (17) that tends to
outweigh the presence of a higher density core for smaller γ . Also,
if we use this expression for H in equation (10), then the density
along the stream varies as

ρ = ρm

(
1√

(u′)2 + u2(φ′)2

∫ ξ1
μξ1

(ξ )nξdξ∫ ξ1
0 (ξ )nξ 2dξ

)n

, (18)

where ρm is a normalization constant, chosen such that the density
equals the correct, central stellar density at the time of disruption,
and u ≡ r/rt.

The density along the stream already exhibits a number of inter-
esting features well before 2.53 d. To exemplify this point, Fig. 6
shows the average radial density (i.e. the average density of all
particles at a given radius r) along the stream for the γ = 5/3
run at times of t = 6.14, 9.57, 13.0, and 19.8 h after disruption.
Initially, the density distribution along the curve is smooth, and
matches well the distribution obtained if the original polytrope is
stretched in one dimension (equation 18). However, at later times
the density adopts a more intricate structure, exhibiting a sharper
peak at the centre of the stream and ‘shoulders’, evident from the
bottom-right panel of Fig. 6, that are not predicted analytically.

Fig. 7 shows the average density along the stream for the four
different adiabatic indices at 2.53 d after disruption (the black
curves are the numerical solutions, while the red, dashed curves
give the analytic estimate that results from equation 18). This figure
demonstrates that the small-scale density fluctuations that develop
along the stream at later times are intensified for larger γ . It is evi-
dent that lower adiabatic indices show relatively smooth variations
in the density, and retain an approximately symmetric structure
about the centre of the stream. For larger polytropic indices, how-
ever, the scale at which perturbations develop along the stream
decreases and the perturbations themselves become more erratic
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Post-periapsis pancakes 3619

Figure 6. Four snapshots of the average stream density (the average density of all particles at a given radius r) as a function of r for the γ = 5/3 run. Initially
the density remains smooth throughout the stream; however, by about a day after the disruption, the density structure has developed a more complicated nature,
consisting of a central peak that is narrower than is predicted analytically and two shoulders.

in amplitude and position. It is also clear that a smaller adiabatic
index results in more material at smaller and larger radii than would
be predicted analytically, and these ‘fans’ are also apparent from
Fig. 5. This results from the fact that polytropes with smaller γ

have lower density envelopes, those envelopes being more easily
stripped at early times.

To determine when the density of the debris stream starts to ex-
hibit the anomalous, small-scale structure that is apparent in Figs 6
and 7, Fig. 8 shows the maximum density along the stream as a
function of time; the black, solid curve indicates the numerical so-
lution, while the red, dashed curve gives the analytic prediction
(equation 18). Aside from slightly overpredicting its magnitude,
the analytic solution matches the numerical one well, which shows
that the stream approximately maintains hydrostatic balance for all
times during the disruption in the transverse direction. Note that this
result contrasts the findings of Kochanek (1994), who assumed that
the stream was in free expansion until three dynamical times post-
disruption, which is roughly 1.5 h for the disruption of a solar-type
star by a 106 M� hole (however, the assumption of free expansion
may hold in the limit of β 
 1). This plot also demonstrates that
the first perturbation to the density appears at a couple hours after
disruption, resulting in a ‘ripple’ that over and underestimates the
average value. The perturbations induced on the stream therefore
behave as compression-rarefaction waves.

Fig. 9 shows the maximum density along the stream for the four
different adiabatic indices. It is evident that the first bump in the
density occurs slightly sooner for larger γ , appearing at around an
hour for γ = 2, and that the temporal frequency of the perturbations
increases as γ increases. The average maximum density also falls
off as a power law for late times, which agrees with the analytic
prediction (Fig. 8), with the power-law index being shallower for
larger γ . In particular, if we set ρmax ∝ t−mγ , we find m1.5 = 2.4,
m5/3 � 1.8, m1.8 � 1.5, and m2 � 1.2.

4 D I SCUSSI ON

We saw in the previous subsection that the impulse approximation
– assuming that the star retains its spherical, undisturbed structure
until it reaches the tidal radius – does a reasonable job of fitting the
numerically obtained density profile of the tidally disrupted debris
stream when β = rt/rp = 1 (Fig. 7). This agreement demonstrates
that the stream width is set by hydrostatic balance, while the length
is determined by the radial positions of the gas parcels orbiting in
the potential of the black hole. However, at times corresponding to
a few hours after disruption, the density profile begins to exhibit
anomalous, small-scale structure that is not predicted analytically,
with important ramifications for the late-time evolution of the stream
(Figs 7–9).
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3620 E. R. Coughlin et al.

Figure 7. The average density (same as Fig. 6) as a function of r for γ = 1.5 (top, left-hand panel), γ = 5/3 (top, right-hand panel), γ = 1.8 (bottom, left-hand
panel), and γ = 2 (bottom, right-hand panel) at a time of 2.53 d after disruption (see Fig. 5 for the shape of the streams at this time). The black, solid curves
give the numerical solutions, while the red, dashed curves show the analytic predictions. It is apparent that larger adiabatic indices correspond to an enhanced
amount of variability in the density along the stream, while a smaller adiabatic index results in more extended wings (this is also apparent from the tidal fans
in the edges of the streams in Fig. 5.)

This behaviour was also noted by Lodato et al. (2009), who
commented on the existence of the shoulders present in the density
profile (see their Fig. 7; they were interested in the behaviour of
dm/dε ∝ ρH2, the distribution of mass in energy space, as this
yields information about the fallback rate). Since they renormalized
their specific energy distribution to match the peak, they did not
notice the sharper structure exhibited by the density in the central
portion of the stream. They argued that these shoulders arose from
shock compression within the stream.

However, we find it unlikely that shocks alone can account for
these anomalous features. For one, shocks occur primarily in the
outermost regions of the envelope at the time of disruption. The
majority of the material involved in the shocks is therefore confined
to the tidal tails of the debris stream (the fans at the edges of the
streams in Fig. 5; see fig. 8 of Lodato et al. 2009), comprising only
a small fraction of the total amount of mass contained in the stream.
However, the perturbations occur throughout the majority of the
stream, affecting a much larger fraction of the material. The time
at which the fluctuations begin to appear is also hours after the dis-
ruption, well after the shocks that occur at pericentre. Furthermore,

we have run additional simulations that include shock heating; in
these cases, the density profiles we find are nearly identical to those
presented here, indicating that the amount of material that shocks
significantly is small.

On the contrary, we find that a more reasonable origin for the
anomalous structure present in the numerical solutions is the com-
bination of self-gravity and the ‘perpendicular pancake’ discussed
in Section 2.2 - - where in-plane compression of the star causes the
front and back edges of the star to converge to a one-dimensional
line, or caustic (see Fig. 3). This interpretation is supported by the
temporal coincidence of the ripples present in Fig. 7 and the analytic
prediction of when the caustic arises, both occurring on the order of
hours after disruption. We also note that the majority of the stream,
not just the central maximum, seems to be undergoing an increase
in density when the first perturbation occurs. This can be seen from
Fig. 8, which shows that the first increase in the density for the
γ = 5/3 run starts to appear around a few hours after disruption.
However, the top, left-hand panel of Fig. 6 shows that at a time
of roughly 6 h after disruption, long after the first perturbation has
started to augment the maximum in the density, the entire stream
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Figure 8. The maximum density along the stream as a function of time
with γ = 5/3 (n = 1.5); the numerical solution is given by the black, solid
curve, and the analytical solution (equation 18) is given by the red, dashed
curve. A time of zero here corresponds to the time at which the star reaches
the tidal radius. The time at which the numerically obtained density starts to
decrease is slightly earlier than the analytic one, suggesting that the time at
which the star is ‘disrupted’ is actually pre-periapsis. The first bump in the
numerical solution, which occurs after a couple of hours, indicates where
the pancake starts to augment the maximum density. At late times, both
solutions follow the approximate power-law decline ρ ∝ t−1.8.

Figure 9. The maximum density as a function of time for γ = 1.5 (black,
solid curve), γ = 5/3 (red, dashed curve), γ = 1.8 (green, long-dashed
curve), and γ = 2 (blue, dotted curve). It is apparent that the initial per-
turbation induced by the pancake is induced sooner for larger γ , and the
oscillation time-scale of the perturbation is shorter for larger γ .

still retains a smooth density distribution that is well matched by
the analytic prediction. Indeed, the sharper peak and shoulders do
not seem to appear until around 10 h after disruption, which is the
top, right-hand panel of Fig. 6. This indicates that the first increase
in the maximum density is occurring over the entire stream, not just
in the central region where the maximum occurs (for which Fig. 8
applies), and the density everywhere is being incremented by the
same factor.

In further support of the interpretation that the caustic occurs
in the simulations and enhances the density perturbations, recall
that the existence of the caustic is ultimately related to the initial
conditions at the time of disruption: because every gas parcel is

moving with the centre of mass of the star, the parcels comprising
the back edge of the star have not yet reached their periapses, while
those comprising the front have already passed through theirs. This
configuration then causes the back to accelerate and the front to
decelerate, resulting in their eventual merger. In a realistic TDE,
the star does not retain perfect spherical symmetry all the way
until the tidal radius (Fig. 4). In particular, the less dense, outer
regions of the envelope will be stripped earlier, causing them to
violate the condition that they move with the centre of mass. The
denser, central regions, however, may better retain their unperturbed
structure, resulting in a pancake that occurs mainly in the centre of
the stream.

To test this hypothesis, we ran a simulation in which we took
the output of the γ = 5/3 PHANTOM run when the star reached
pericentre and evolved the particles solely in the gravitational field
of the hole, neglecting pressure and self-gravity. Fig. 10 shows the
distribution of particles at a time of 37 min (left-hand panel), 50 min
(middle panel), and 62 min (right-hand panel) post-disruption, the
red particles being those that composed the back of the star at
pericentre, the black particles the front. This figure shows that,
at roughly an hour after disruption, the front and back edges of
the stream switch places, with the point of maximum compression
occurring in the middle panel. Specifically, the half-width of the
centre of the stream at 50 min is roughly H � 0.1rt, which is
only five times the value when the star is at pericentre. This figure
confirms that the caustic still exists with realistic initial conditions.
However, as predicted, the fans at the edge of the stream do not
undergo a similar amount of compression and retain their original
colours, which is due to the fact that they were not moving with
the centre of mass at the time of disruption (i.e. they were already
stripped from the star; this is also supported by the fact that the fans
extend farther in radially than the analytic solutions predict, which
is apparent in Fig. 7).

The preceding arguments illustrate that it is likely the caus-
tic discussed in Section 2.2 that augments the importance of
self-gravity and generates the density fluctuations in the stream.
Interestingly, Figs 8 and 9 show that this perpendicular pan-
cake does not simply increase the density, but instead gener-
ates a compression-rarefaction wave. This is due to the fact that
the increase in the density likewise generates an increase in the
pressure, which resists the compression. Eventually, the contin-
ued squeezing of the stream results in the material being over-
pressured in the transverse direction, which causes the stream to
‘bounce’.

The sharper peak that develops in the centre of the stream arises
from the self-gravity of the debris. In particular, the compression
in the transverse direction augments the central density to the point
where material can be drawn in gravitationally in the radial di-
rection, which creates the more massive central peak and the two
dips on either side of that peak in Fig. 6. The two shoulders that
develop are regions of the stream that have not been gravitationally
drained of material by the central peak and are slightly denser than
one would predict analytically due to the pancake. More structure
develops at late times, and local maxima are imprinted due to the
oscillation of the stream, ultimately due to the self-gravitating na-
ture of the debris (see also fig. 3 of Kochanek 1994, who found
oscillations in the stream width and height due to pressure and self-
gravity). The points at which the density sharply drops off are the
fans present in Fig. 5, and have thus not been affected by the caustic
(note from Fig. 7 that the rate at which the density falls off with
radius in these regions parallels the analytic one, which confirms
this interpretation).
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Figure 10. The particle distributions from an N-body simulation, where the initial conditions were taken from the γ = 5/3 run at periapsis, at 37 min (left-hand
panel), 50 min (middle panel), and 62 min (right-hand panel) post-disruption. The red particles comprised the back of the star at the time of disruption, while
the black constituted the front of the star. This figure demonstrates that a caustic – where the front and back of the stream merge to form an infinitely thin line
– still occurs in the presence of realistic initial conditions. However, as mentioned in the text, the outermost layers of the star that are stripped earlier (and
therefore violate the frozen-in condition) do not undergo this compression; this is evidenced from the fact that the ‘fans’ present in this figure undergo no
distortion in terms of their colour. The central panel corresponds to the point at which the width of the stream has reached a minimum, the half-width being
H � 0.1 rt.

From Fig. 7, it is apparent that larger adiabatic indices result in
more drastic fluctuations that are induced by the caustic. The reason
for this scaling is likely two-fold, the first being that, for the same
physical radius R∗, polytropes with larger adiabatic indices have
flatter density profiles (note that this is not true in the dimensionless
space spanned by ξ ). Therefore, since the density throughout the
envelope differs from that of the core only when we are near the
surface of the star, polytropes with higher adiabatic indices can
better retain their structure until they reach periapsis. This then
results in more of the stream experiencing the effects of the caustic,
which correspondingly results in a more drastic increase in the
density along the majority of the stream. This is supported by Fig. 7,
which shows that the shoulders extend farther from the centre of
the stream as γ increases.

The second reason is that the stream is thinner for larger γ , which
is evident from Fig. 5. Since the equilibrium width of the stream
increases as γ decreases, the pancake is less effective in compressing
the stream and correspondingly increasing the density to the point
where self-gravity can amplify the perturbations. Additionally, this
scaling with H causes the average density of the stream to decrease
less rapidly with time for larger γ (Fig. 9). The overdensities within
the stream are therefore more dense in an absolute sense, which
increases the ability of the self-gravity of the debris to counteract
the tidal shear imposed by the black hole.

4.1 Is the pancake necessary?

Figs 6–9 show that self-gravity can drastically modify the density
profile of the disrupted debris stream from a TDE, causing a sharper
peak near the centre, small-scale fluctuations, and ‘shoulders’, all
of which are not predicted analytically. These effects are long-lived,
altering the structure of the debris stream for days to months post-
disruption (see also Section 5). In addition, we saw in Section 2 that
a caustic – where the front and the back of the stream intersect to
form a two-dimensional plane – occurs not long after the disruption
of the star under the impulse approximation. Fig. 10 shows that, even
in a realistic TDE where the frozen-in assumption does not apply,
the orbits of the gas parcels near the centre of the star converge to
form this post-periapsis pancake. Therefore, the self-gravity of the
stream is augmented by the dynamical focusing of the gas parcels
in the transverse direction.

Because the numerical method treats the full complexity of the
problem, including pressure, self-gravity, and the influence of the
SMBH, the simulations presented here have not isolated the effects
of self-gravity and the pancaking of the orbits. Is it possible that the
latter is actually unimportant, with the majority of the variation in
the density of the stream due solely to the self-gravity of the debris?

To answer this question, recall that the pancake arises from the
fact that, under the impulse approximation, the front of the star is
decelerating at the time of disruption while the back is accelerating.
Equivalently, the requirement that the entire star move with the
centre of mass means that the gas parcels comprising the front of
the star have already passed through their pericentres, while those
comprising the back have not yet passed through theirs. Therefore,
to avoid the caustic but still maintain a realistic distribution of
specific energies (half bound, half unbound), one can simply impose
that the initial velocities of the gas parcels satisfy ṙi = 0, θ̇i =
0, and r2

i sin2 θi φ̇
2
i = 2GMh/rt. Thus, if the star had these (albeit

contrived) initial conditions, the post-disruption evolution would be
unaffected by the caustic.

To examine the isolated effects of self-gravity, we used the output
of the PHANTOM runs when the star was at pericentre (Fig. 4) and
modified the instantaneous velocities to reflect the initial conditions
that avoid the caustic, i.e. we set ṙi = 0, θ̇i = 0, and r2

i sin2 θi φ̇
2
i =

2GMh/rt for all of the particles. What we generally found was that
the anomalous features of the density profile were still present, i.e.
shoulders still formed and a more concentrated peak developed.
However, the magnitude of each of these features was significantly
reduced; in particular, the shoulders were much less pronounced,
the central density peak was less sharp, and the density fluctuations
were less concentrated. The overall magnitude of the density was
also down by a factor of a few, and the increase in the density
that occurred over the entire stream (see discussion above) was not
observed in the modified runs (see Fig. 11, which illustrates these
points). Finally, the morphology of the streams also differed, having
larger widths and more extended fans in the cases where the pancake
did not occur.

These tests show that, in general, the anomalous features arise
from the self-gravity of the debris modifying the radial density
distribution throughout the stream. However, as was suggested in the
previous subsection, the post-periapsis pancake is quite important
for magnifying and sustaining the self-gravitating nature of the
stream.
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Figure 11. The average density as a function of r for the unaltered, γ = 5/3
run (solid, black curve) and the run that avoids the caustic (dashed, red
curve), both at a time of 2.53 d (the same time as in Fig. 7). This figure
shows that the pancake amplifies the anomalous density structures along the
stream, effectively enhancing the ability of self-gravity.

5 IM P L I C AT I O N S

We have demonstrated above that a caustic, or a ‘perpendicular pan-
cake’, augments the importance of self-gravity in the debris stream
from a TDE. In particular, we found that this pancake and self-
gravity cause density perturbations that are not predicted analyti-
cally (Fig. 7). In this section, we briefly discuss several implications
of our findings.

5.1 Fragmentation

One of the most profound implications is that these perturbations can
result in the gravitational fragmentation of the stream. For γ = 2,
the overdensities present in the stream at a time of 2.53 d are
already self-gravitating and starting to collapse into small-scale,
gravitationally bound clumps (see Fig. 12). For γ = 1.8, the stream
also fragments, but not significantly until a time of a couple weeks
after disruption. The γ = 5/3 run also collapses at late times, but
the time at which fragmentation occurs depends on the resolution of
the simulation. As commented upon by Coughlin & Nixon (2015),
this suggests that the stream itself is gravitationally unstable, but

the perturbations induced by the pancake and self-gravity are not
sufficient to drive the fragmentation. This finding also suggests that
the limiting adiabatic index at which fragmentation occurs is closer
to γ = 5/3 than γ = 2, as indicated by previous studies of compact
object mergers (Lee & Ramirez-Ruiz 2007, in particular their fig. 23;
see also our discussion below regarding the origin of this marginal
stability). We have run the γ = 1.5 simulation presented here out
to nearly 10 yr and have not found recollapse, suggesting that the
density profile of the stream is gravitationally stable.

In the γ = 1.8 run, the first clump forms near the centre of the
stream around a time of 5 yr after disruption, with smaller-mass
clumps forming at later times at distances progressively farther
from the central portion of the stream. By about two months after
disruption, the clump formation becomes less vigorous, and the
clump masses saturate at approximately constant values with an
average clump mass of M̄c � 0.55MJ, where MJ � 9.54 × 10−4 M�
is the mass of Jupiter. The maximum clump mass, however, is
Mc, max � 1.5MJ, showing that the clumps span a large range in
mass.

On the other hand, the first clumps form at a time of around 3 d
after disruption for the γ = 2 run, and instead of forming one clump
in the centre of the stream, between 5 and 10 form around the same
time at approximately evenly spaced intervals along the stream (this
agrees with the findings of Lee & Ramirez-Ruiz 2007 and other
studies of the tidal tails produced during compact object mergers
where very stiff equations of state were used). Fragmentation ceases
with an average clump mass of M̄c � 2.6MJ around two weeks after
disruption, and the maximum clump mass in this case is Mc, max �
37MJ.

Since the γ = 5/3 run collapsed at late times but due to the
small-scale numerical noise inherent in the simulation, additional,
resolved perturbations are required to study true fragmentation
in this case. This marginal instability of the stream is likely due
to the fact that the maximum density in the stream drops off as
ρ ∝ t−1.8 (see Fig. 8), whereas the ‘density’ of the black hole scales
as ρ ∝ 1/r3 ∝ 1/t2, the last proportionality resulting from the fact
that the orbits of the gas parcels initially follow r ∝ t2/3. The de-
cline in the density for the γ = 5/3 case is thus barely above
that of the black hole, meaning that the stream self-gravity only
outweighs the tidal shear by a small margin. Additionally, since
ρ ∝ t−2.4 for γ = 1.5, we do not expect fragmentation to occur
in this case, and this is consistent with what is observed from the
simulation.

Figure 12. The stream from the γ = 2 run (left-hand panel) and a close-up view of the stream (right-hand panel), showing the clumps that have formed
throughout the majority of the stream, both at a time of 5.69 d after disruption.
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5.2 Fallback rate features

When one of the of these clumps returns to pericentre, the fallback
rate can spike above the average, t−5/3 decline by a significant
fraction, as is apparent from Fig. 13 for times greater than a few
years, and from Fig. 14 for times greater than a few months (the
small amount of scatter present for the γ = 1.5 fallback curve is
due to numerical noise). If the tidally disrupted debris has already
formed an accretion disc, the interception of one of these clumps
by the disc can significantly augment the accretion rate on to the
hole (though this is only true during the early stages of the fallback,
when the viscous time is short compared to the infall time; Cannizzo
et al. 1990).

Figure 13. The fallback rate computed for the γ = 1.5 (black curve) and
γ = 5/3 (red curve) runs. The purple curve is the canonical t−5/3 fallback
rate for reference. It is apparent that the return time of the most bound
material is earlier for smaller γ , which is related to the amount of distortion
imparted to the star at the time of disruption. At late times, the accretion of
clumps that have formed in the γ = 5/3 stream causes the fallback rate to
deviate significantly from the mean (the small amount of deviation present
in the γ = 1.5 run is numerical noise).

Figure 14. The fallback rate for the γ = 1.8 run (green, solid curve) and the
analytic prediction (blue, dashed curve). We see that the numerical solution
is larger than the analytic one by an order of magnitude, and the fallback of
bound clumps causes significant deviation from the average, t−5/3 fallback
at times greater than about 6 months from disruption.

Fig. 13 shows that, shortly after reaching their peaks, the fallback
rates for both the γ = 1.5 and 5/3 runs fall below the canonically
assumed t−5/3 power law. There is then a period during which the
rate is slightly shallower than the 5/3 rate; for the 5/3 run, this latter
period lasts from a few months until about a year, after which the
rate resumes the t−5/3 decay. For the γ = 1.5 run, however, the
power-law is less steep than the 5/3 law after nearly 10 yr from
the disruption. This variable fallback rate is due to the accretion
of various parts of the stream: the rate drops below 5/3 when the
dip between the first shoulder and the central peak of the stream
(Fig. 7) is accreted. The rate then becomes shallower than the 5/3
law when the denser, central regions are accreted. This variation
in the fallback rate means that observed TDEs may not follow the
t−5/3 law for much later times than previously suspected.

Fig. 14 demonstrates that the peak fallback rate is signifi-
cantly higher than the analytic prediction (this is also true for
the γ = 1.5 and 5/3 runs), where the latter was calculated by
using the energy–period relation, which gives μ(t) = (t/T)−2/3,
T = 2πMh/(M∗

√
GMh)(R∗/2)3/2 being the period of the most

tightly bound debris, and the frozen-in condition (see Coughlin
& Begelman 2014 for more details). This increase in the fallback
rate arises from the fact that the pancake has increased the density
above what would be predicted analytically, as is apparent from
Fig. 7. This means that the accretion rate on to the black hole is
much higher than thought previously, making it more likely that the
TDE will result in a phase of super-Eddington accretion. Indeed,
if we assume an efficiency of ε = 0.1 and Ṁacc = Ṁfb where Ṁacc

is the accretion rate on to the black hole, then the peak accretion
rate for the γ = 1.8 run in Fig. 14 corresponds to an accretion
luminosity of Lacc � 80LEdd, compared to the analytic estimate of
Lacc � 8LEdd. Since the degree to which the fallback rate is super-
Eddington is inversely proportional to the black hole mass, we see
that more TDEs could be accompanied by a jetted-outflow phase
like that seen for Swift J1644+57 (Zauderer et al. 2011; Coughlin
& Begelman 2014).

5.3 Clump fates

If an accretion disc has not yet formed, the clumps that are bound to
the black hole can return to the original pericentre distance. Since
their densities will likely be lower than that of the stellar progeni-
tor, the tidal disruption radii of the clumps will be outside the tidal
radius of the original star. The returning clumps will therefore be
‘redisrupted’ before reaching their pericentres, leading to compli-
cated interactions between the streams of incoming and outgoing
debris that could avoid the ‘dark year for TDEs’ suggested by Guil-
lochon & Ramirez-Ruiz (2015). Also, depending on the magnitudes
of general-relativistic apsidal and Lense–Thirring precession, these
redisruptions may tend to isotropize the accretion process, leading
to a more symmetric inflow. This symmetric inflow may then lead
to super-Eddington accretion luminosities, puffing up the accretion
disc and potentially leading to the production of jets (Coughlin &
Begelman 2014).

The clumps that form in the unbound portion of the stream will
make their way out of the sphere of influence of the central SMBH
and into the galaxy. In particular, if we recall that the escape velocity
of the most unbound material is vesc � √

2GM∗/R∗(Mh/M∗)1/6,
then we find that the unbound clumps leave the sphere of influence
of the black hole on a time-scale of

tesc ∼ 10 σ−2
100

(
Mh

106 M�

)2/3 (
M�

M�

)−1/6 (
R�

R�

)1/2

yr. (19)
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Although their long-term evolution is uncertain and depends on the
specific properties of the gas (e.g. heating and cooling rates due
to ionizations and recombinations), these unbound clumps could
condense into planetary mass objects and brown dwarfs, producing
a new class of hypervelocity objects that eventually leaves the host
galaxy. Since the clump formation is most vigorous for adiabatic
indices γ � 5/3, those adiabatic indices being somewhat unphysical
for real stellar progenitors, it may seem as though the production
of unbound objects is largely inhibited for realistic TDEs; however,
if cooling can significantly decrease the entropy (see below), then
the number of clumps could be significantly augmented. Therefore,
if they are between 10−4 and 10−5 disruptions per galaxy per year,
the number of hypervelocity, low-mass objects could significantly
outweigh the number of hypervelocity stars. We plan to perform a
more in depth analysis of the detailed properties of the clumps in a
future paper.

We also recall that the marginally bound material recedes to very
large distances before returning to the black hole. Therefore, similar
to the unbound material, the clumps that form in this region of the
stream may have time to collapse into much denser objects (e.g.
planets). These objects may then be able to survive their plummet
back into the tidal region of the black hole (though interactions
with the surrounding stellar population may alter their pericentre
distances to be larger than the original tidal radius), forming a class
of low-mass objects that remain bound to the black hole. Since
they would still be very weakly bound, their orbital periods would
be anywhere from tens to thousands of years. Furthermore, if the
clumps in this region do not become overly dense, they may form
weakly bound clouds that are consistent with those observed near
the Galactic Center (e.g. the cloud G2; Burkert et al. 2012; Gillessen
et al. 2012; Guillochon et al. 2014b).

5.4 Entropy

In these simulations, the gas maintained approximately constant
entropy throughout the entire disruption process. In reality, the gas
energy equation will be modified by losses due to radiative cooling
and cooling or heating (depending on the optical depth of the stream)
due to recombinations, which could significantly alter the equation
of state of the gas and affect the nature of the caustic. A more
realistic equation of state might therefore be of the form

p = S(r, t)ργ , (20)

where S(r, t) is related to the entropy of the gas that is, in general,
a function of both space and time. When S(r, t) is a constant, it
is apparent from this expression that, for the same change in den-
sity, a smaller adiabatic index results in a correspondingly smaller
decrease in the pressure. This scaling then results in a larger cross-
sectional radius of the stream, which ultimately enables the debris
to better resist the pancake and fragmentation for smaller adiabatic
indices. We see, however, that if the entropy decreases with time,
then the pressure could decrease faster than would be predicted
by an isentropic equation of state. Therefore, if cooling is efficient
enough to significantly reduce the entropy of the gas, the pancake
could induce fragmentation for γ less than 5/3. This result is par-
ticularly apparent if we use equation (20) in equation (16), which
shows that the cross-sectional radius scales as

H ∝ S1/2ρ
γ−2

2 , (21)

and using this relation in equation (10) yields

ρ = ρad(r, t)

(
S

S0

)−n

. (22)

Here, ρad is the density one obtains for an adiabatic equation of
state, given by equation (18), S0 is the original entropy of the gas
at the time of stellar disruption, and we recall that n = 1/(γ − 1).
We see that a decrease in the entropy has a more pronounced effect
for smaller γ , meaning that efficient cooling would more easily
result in recollapse for softer equations of state. In particular, since
ρad ∝ t−2.4 for γ = 1.5 (n = 2), we would only need S ∝ t−0.2 to bring
the power law to ρ ∝ t−2, which would make the stream marginally
unstable to gravitational collapse.

6 SU M M A RY A N D C O N C L U S I O N S

We have shown that a caustic – a surface where the orbits of the gas
parcels comprising the stream of tidally disrupted debris formally
attain infinite density – results from the impulse approximation
applied to β = rt/rp � 1 tidal encounters. This pancake is analogous
to the one discovered by Carter & Luminet (1982); however, in this
case the pancake occurs post-periapsis (of the order of an hour after
the star reaches pericentre for the disruption of a solar-type star by
a 106 M� hole), and the compression occurs in the plane of the
orbit of the stream, which causes the orientation of the pancake to
be perpendicular to the plane of the orbit (see Fig. 3).

In a realistic TDE, the pressure of the gas will prevent the exis-
tence of a true caustic. To test the effects of pressure in resisting the
pancake, we simulated four tidal encounters between a solar type
star (R∗ = R� and M∗ = M�) and a 106 M� hole with the peri-
centre of the centre of mass of the parabolic, stellar orbit at the tidal
radius (β = 1). The simulations differed only in the adiabatic index
of the gas, being γ = 1.5, 5/3, 1.8 and 2, making our parameter
space close to that chosen by Lodato et al. (2009).

A few hours after disruption, the density of the streams of debris
produced by the disruption exhibit anomalous behaviour, showing
compression-rarefaction oscillations not accounted for by the an-
alytic model (see Figs 6–9). We interpret these features as arising
from the combination of the perpendicular pancake and self-gravity,
not only because of the temporal coincidence of the two phenomena,
but also because the majority of the stream seems to be undergoing
a systematic increase in the density at the start of the first com-
pression. This can be seen by noting that the first increase in the
maximum stream density starts at a time of roughly an hour after
disruption, yet the stream seems to retain its stretched-polytropic
structure, predicted analytically, after 6 h post-disruption (compare
Figs 8 and 6). This suggests that a large portion of the stream is
being compressed simultaneously and by the same factor, which is
predicted for the pancake; furthermore, this systematic increase in
the density was not observed in the test runs that avoided the caustic
(see Section 4.1). By using the periapsis velocities and positions
of the gas parcels generated from the PHANTOM runs as the initial
conditions for an N-body simulation, we also showed that the or-
bits of the central portions of the stream do tend to form a caustic
(Fig. 10). This finding is consistent with the fact that the dense,
central portions of the star likely retain their structure better until
reaching pericentre, thus creating the conditions necessary to form
a post-periapsis pancake. On the other hand, the outer, less-dense
regions of the envelope are stripped from the star sooner, violating
the impulse criterion that they move with the centre of mass until
reaching pericentre, and thus avoiding the caustic.
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The self-gravity of the stream, supplemented by the caustic, in-
duces fluctuations on top of the otherwise-smooth, analytically pre-
dicted density profile, as evidenced in Fig. 7. The fact that the
analytic predictions match the numerical solutions well means that
the stream width is predominantly set by the balance between pres-
sure and self-gravity, and does not undergo any episode of free
expansion immediately after pericentre passage as expected previ-
ously (Kochanek 1994). The effects of the caustic are long-lived,
and the density profile of the stream evolves for a considerable
amount of time after the initial perturbations are imposed. The vari-
ations induced by the caustic and self-gravity drive deviations from
the canonically assumed t−5/3 fallback rate, the power-law being
first steeper and then shallower than 5/3, which can be seen from
Fig. 13. The peak in the accretion rate is also higher than would be
predicted analytically (Fig. 14).

Remarkably, the combination of the caustic and self-gravity can
cause the stream to fragment into small-scale, gravitationally bound
clumps if the adiabatic index is high enough. Specifically, for γ = 2
and 1.8, we find that the stream collapses at a time of a few days
and a couple of weeks, respectively. After a relatively short time –
about two weeks for γ = 2 and two months for γ = 1.8 – the clump
formation stops and the masses of the clumps saturate. For γ = 2,
the average clump mass is M̄c � 2.6MJ, while that for the γ = 1.8
run is M̄c � 0.55MJ, MJ � 9.54 × 10−4 M� being the mass of
Jupiter. In both of these cases, however, the maximum clump mass
is an order of magnitude above the average, showing that there
is a large range of clump masses. For γ = 5/3, the stream does
collapse, but the instability is started by small-scale noise and so
future simulations with realistic perturbations are required (see also
Coughlin & Nixon 2015). For γ = 1.5, we find no fragmentation
out to a simulated time of 10 yr post-disruption, suggesting that the
stream is gravitationally stable.

The formation of these clumps has a number of interesting reper-
cussions. For one, if an accretion disc has already formed from the
tidally stripped debris, it can intercept one of the infalling clumps
and, especially if the clump mass is on the larger side (� 1MJ) of
the distribution, significantly augment the accretion rate on to the
black hole if the viscous time-scale in disc is short (see Fig. 14).
Such periodic increases would be seen as variability in the light
curve of the TDE, consistent with that observed for Swift J1644+57
(Burrows et al. 2011; Levan et al. 2011; Zauderer et al. 2011), and
also for the events Swift J2058+05 (Cenko et al. 2012) and Swift
J1112.2−82 (Brown et al. 2015). If an accretion disc has not yet
formed, these clumps can be ‘redisrupted’, creating complicated in-
teractions between the incoming and outgoing debris streams. This
would then tend to isotropize the accretion process on to the hole
and cause increased variability in the light curve of the TDE. The
clumps that form in the marginally bound material may have time
to condense into more compact objects, such as planets and brown
dwarfs, that can survive their eventual return to pericentre, allow-
ing them to remain bound to the hole. The clumps formed in the
marginally bound segment of the stream may also form less dense
clouds, the likes of which are observed near our own Galactic Cen-
ter (e.g. G2; Burkert et al. 2012; Gillessen et al. 2012). Finally, the
unbound clumps may form a new class of low-mass, hypervelocity
objects that make their way out of the host galaxy on time-scales of
millions of years.

Our results are based on the encounter between a solar-type star
and a 106 M� black hole. In reality, the properties of the star and
black hole undergoing a tidal encounter may differ from the fidu-
cial parameters chosen here. However, the existence of the in-plane
pancake, and the observational consequences derived therefrom,

depends only on the fact that the pericentre distance be compa-
rable to the tidal radius. In particular, if β 
 1, the star will be
disrupted well before reaching periapsis, while if β � 1 the star
will only be partially disrupted, as noted by Guillochon & Ramirez-
Ruiz (2013). Interestingly, Guillochon & Ramirez-Ruiz (2013) also
found that if 0.75 � β � 0.85 for a γ = 5/3 equation of state, the
star was initially completely destroyed by a 106 M� black hole;
however, at a time greater than 104 s post-disruption, the central
portion of the stream recollapsed into a single, massive core, with
the outer extremities of the stream remaining as tidal tails. We
suggest that the perpendicular pancake pointed out here may have
contributed to this recollapse, and we plan to further investigate this
possibility.

The origin of the pancake can be seen directly from equation
(4), which shows that the gas parcels comprising the front of
the star at the time of disruption are decelerating, while those
at the back are accelerating; this results in the eventual merger
of the in-plane edges of the stream. The differential acceleration
across the star is given by equation (13), which shows that the
magnitude of the pancake is primarily affected by the proper-
ties of the progenitor star. However, the inverse scaling with the
black hole mass, although weak, implies that smaller mass black
holes lead to a larger differential acceleration and, hence, stronger
pancakes.

The pancake alone can augment the self-gravity to the point where
the stream gravitationally fragments in the cases where γ = 1.8 and
2, and this result is ultimately related to the fact that larger adia-
batic indices result in a decreased resistance to the compression.
However, a non-adiabatic equation of state could alter these re-
sults quite dramatically. In particular, any cooling would decrease
the equilibrium width of the stream, enabling the pancake to leave
a much more pronounced effect on the debris. The effects of a
time-dependent entropy are also increased for smaller γ , as is ap-
parent from equation (22), meaning that even streams with very low
adiabatic indices could collapse if the gas-energy equation were
evolved self-consistently. We plan to investigate alternative equa-
tions of state in a future paper.
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