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Abstract: The European CORINE land cover mapping scheme is a standardized 

classification system with 44 land cover and land use classes. It is used by the European 

Environment Agency to report large-scale land cover change with a minimum mapping unit 

of 5 ha every six years and operationally mapped by its member states. The most commonly 

applied method to map CORINE land cover change is by visual interpretation of 

optical/near-infrared satellite imagery. The Sentinel-1A satellite carries a C-band Synthetic 

Aperture Radar (SAR) and was launched in 2014 by the European Space Agency as the first 

operational Copernicus mission. This study is the first investigation of Sentinel-1A for 

CORINE land cover mapping. Two of the first Sentinel-1A images acquired during its 

ramp-up phase in May and December 2014 over Thuringia in Germany are analysed. 27 

hybrid level 2/3 CORINE classes are defined. 17 of these were present at the study site and 

classified based on a stratified random sample of training pixels from the polygon-eroded 

CORINE 2006 map. Sentinel-1A logarithmic radar backscatter at HH and HV polarisation 

(May acquisition), VV and VH polarisation (December acquisition), and the HH image 

texture are used as input bands to the classification. In addition, a Digital Terrain Model 

OPEN ACCESS 



Remote Sens. 2015, 7 14877 

 

 

(DTM), a Canopy Height Model (CHM) and slope and aspect maps from the Shuttle Radar 

Topography Mission (SRTM) are used as input bands to account for geomorphological 

features of the landscape. In future, elevation data will be delivered for areas with 

sufficiently high coherence from the Sentinel-1A Interferometric Wide-Swath Mode itself. 

When augmented by elevation data from radar interferometry, Sentinel-1A is able to 

discriminate several CORINE land cover classes, making it useful for monitoring of  

cloud-covered regions. A bistatic Sentinel-1 Convoy mission would enable single-pass 

interferometric acquisitions without temporal decorrelation. 

Keywords: SAR; Copernicus; CORINE; land cover; land use; habitat mapping; Shuttle 

Radar Topography Mission (SRTM); geomorphometry 

 

1. Introduction 

CORINE land cover mapping provides the only consistent classification system of long-term land 

cover data in Europe [1]. With its 44 classes, some of which are defined as mixed land cover and land 

use classes, CORINE provides a European scale map with 25 ha minimum mapping unit for land cover 

and 5 ha for land cover change every 6 years [2]. 

CORINE land cover maps are important as a source of operational land cover information for many 

sectors of the European economy, including risk management for the insurance industry [3], 

telecommunications planning, environmental reporting, land use impact assessment on the natural 

environment [4], life cycle analysis [5], biodiversity and habitat conservation [6], population 

distribution mapping [7], crop forecasting [8], urban heat island studies [9] and others. 

Historically, member states of the European Environment Agency have adopted national 

approaches for the production of CORINE; with many choosing to follow the Agency’s published 

Technical Guidelines [10]. These guidelines foresee a manual digitization of land cover change based 

on visual interpretation of optical/near-infrared satellite images. This process is both subjective to 

some extent, even with the internal and external quality assurance and verification steps that are 

compulsory, and labour intensive. In the current CORINE mapping process to produce a 2012 map, 

frequent cloud cover has made the provision of optical imagery over the British Isles and parts of 

Scandinavia very patchy and difficult to fulfil within the specified user requirements. 

SAR is an active imaging technique that is not hampered by frequent cloud-cover because 

microwave radiation penetrates through clouds. The European Space Agency (ESA) has launched the 

first of its Copernicus Sentinel missions in April 2014. Sentinel-1A provides C-band SAR data in four 

acquisition modes with a temporal revisit time of 12 days with the first satellite and 6 days once 

Sentinel-1B has been launched in 2016 [11]. The acquisition modes are Stripmap (SM), 

Interferometric Wide-Swath (IW), Extra Wide Swath (EW) and Wave Mode (WV). The SM, IW, and 

EW modes acquire data at a single transmit polarisation (H or V) and dual receive polarisation (HV or 

VH). The WV mode only has a single polarisation (HH or VV). The default mode over land is the 

Interferometric Wide-Swath Mode, which provides a 250 km swath composed of three sub-swaths at 5 

m by 20 m spatial resolution in single look. It uses a new type of ScanSAR mode called Terrain 
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Observation with Progressive Scan (TOPS) SAR, which is shrinking the azimuth antenna pattern along 

track direction.  

Several studies have investigated the suitability of SAR for land cover mapping, but few have aimed 

at the delineation of a large number of classes, and fewer still have analysed C-band SAR data [12]. 

Microwave radiation responds to fundamental scattering processes that are determined by surface 

roughness, soil moisture, vegetation water content and 3D structure of the scattering elements. A C-band 

SAR-based land cover classification of Kuwait showed a total of 13 classes could be distinguished from 

ERS-1/2 and Radarsat images [13]. Vegetation cover, surface roughness, percentage of coarse material in 

the surface layer and moisture conditions influenced the backscatter. Most SAR classification algorithms 

use fixed polarimetric indices to detect certain land cover types, despite the large natural variability 

between observation sites, temporal acquisition, environmental conditions and calibration effects. To 

improve on previous approaches, a decision-tree-based adaptive land cover classification technique has 

been developed [14]. 

The potential of Sentinel-1 for land cover mapping [15] was recognised in a study that simulated the 

planned short revisit and dual-polarization concept of Sentinel-1 with multi-temporal ERS-2 and 

ENVISAT ASAR AP C-band backscatter data [16]. Five basic level 2 land cover classes could be 

mapped consistently and operationally with accuracies greater than 85% covering 75,000 km2 of 

Belgium, the Netherlands and Germany [16]. C-band SAR backscatter is able to map burnt peat land 

as was shown for the CORINE peat bog class [17]. Multitemporal/multi-polarization ENVISAT ASAR 

C-band data were investigated for principal component analysis and classification of five land cover 

classes in Korea [18]. Sentinel-1 will provide IW mode acquisitions over land areas, making it suitable 

for SAR interferometry (InSAR), which offers the retrieval of canopy height models and digital terrain 

models from SAR and is particularly promising for forest mapping [19]. Interferometric coherence 

also discriminates between forest growing stock volume classes [20]. 

Some studies cast doubts on the ability of SAR to map land cover with acceptable accuracy. ALOS 

PALSAR L-band and RADARSAT-2 C-band data were tested for land cover classification in a moist 

tropical region [21]. L-band provided 72.2% classification accuracy for a coarse land cover 

classification system (forest, succession, agro-pasture, water, wetland, and urban) and C-band  

only 54.7%. 

An important feature of SAR images is their image texture, which can be quantified by a range of 

different statistical measures that are calculated over a moving window of specific size. For example, 

ALOS PALSAR 50 m FBD data were used to map land cover in Riau province, Sumatra, Indonesia [22]. 

The radiometric information in the L-band HH and HV channels alone was a poor classifier, and 

textural parameters were needed to achieve land cover class discrimination. The SVM classifier  

in that study showed an agreement over 70% with six land cover classes derived from Landsat [22]. 

Very high resolution TerraSAR-X data were used for land cover mapping by specifying the speckle 

characteristics of the land cover classes: water; open land (farmland, grassland, bare soil); woodland; 

and urban area, showing overall accuracies of 77%–86% [23]. A combination of radiometric image 

bands and texture bands also increased the classification accuracies [21]. 

The multi-temporal capabilities of Sentinel-1 are likely to improve its classification accuracy for land 

cover applications. Riedel et al. [24] generated a land use map with 20 crop types of Northern Thuringia 

with 80.2% overall accuracy from ASAR time-series by including texture information which they 
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retrieved from multi-temporal statistics. Another study used X-band SAR with eleven COSMO-SkyMed 

HH and HV images for land cover mapping over an agricultural area in Southern Australia [25]. The 

temporal information improved the classification results, with an overall accuracy of ca. 82% for 10 

classes [25]. Five land use/land cover types (forests, urban infrastructure, surface water and marsh 

wetland) were mapped from multi-temporal polarimetric RADARSAT-2 imagery in North-eastern 

Ontario, Canada [26]. Wetlands showed a seasonal increase in HH and HV backscatter intensity due to 

the growth of emergent vegetation over the summer but other classes showed little temporal variation in 

backscatter. Multi-temporal RADARSAT-2 polarimetric SAR data were used to discriminate high-

density residential areas, low-density residential areas, industrial and commercial areas, construction 

sites, parks, golf courses, forests, pasture, water, and two types of agricultural crops using an object-

based support vector machine and a rule-based approach (κ = 0.91) [27]. In the Brazilian Pantanal, multi-

temporal L-band ALOS/PALSAR and C-band RADARSAT-2 data gave an accuracy of 81% for the land 

cover types of forest, savanna, grasslands/agriculture, aquatic vegetation and open water [28]. 

Knowledge-based models have been used to determine hierarchical decision rules to differentiate 

land cover classes [29]. In the approach by Dobson et al. [29] the classifier produces two levels of 

classification, first a terrain differentiation into man-made features (urban), surfaces, short vegetation, 

and tall vegetation, followed by a level 2 differentiation of the tall vegetation class based on foliage and 

growth form of woody stems (excurrent, decurrent, and columnar tree architecture), leading to overall 

accuracies over 90% in northern Michigan. The knowledge-based SAR-based classification by  

Dobson et al. [29] was superior to unsupervised classification of multi-temporal AVHRR data. A 

dictionary- and rule-based model selection approach was developed in an adaptive contextual  

semi-supervised algorithm for multi-temporal RADARSAT-2 polarimetric SAR (PolSAR) data [30]. 

The best overall classification accuracy it achieved was 89.99%. 

The synergistic use of optical and SAR data improves classification accuracy. Five land cover classes 

in the Arctic tundra were mapped with dual-polarized TerraSAR-X (HH/VV), quad-polarized Radarsat-2 

and Landsat 8 imagery [31]. The overall accuracy increased if both SAR and optical data were used 

(71% unsupervised Landsat 8 and TerraSAR-X; 87% supervised Landsat 8 and Radarsat-2). 

Hierarchical decision trees are appealing for land cover mapping but usually require an 

interpretation by the observer to set the branching rules. To avoid reliance on this a priori knowledge, 

ensemble classification methods that originate from machine learning are increasingly prominent in the 

recent literature. One such method is random forests, a machine learning supervised classifier 

developed by Breiman [32]. Random forests often provide better land cover classification accuracies 

than for example the maximum likelihood approach [33]. In Waske and Brown [33], boosted decision 

trees and random forests were applied to multi-temporal C-band SAR data from different study sites 

and years. Random forests outperformed all other classifiers and reached nearly 84% overall accuracy 

in rural areas [33]. Random forest classification has been applied to salt marsh vegetation mapping 

from quad-polarimetric airborne S- and X-band SAR, elevation and optical data [34]. 

This comprehensive literature review shows that most studies have limited themselves to mapping 

around five land cover classes from SAR, with only a handful of studies expanding the classification 

scheme to include more classes. Besides, no published studies of real Sentinel-1 data for the mapping 

of land cover classes are in the public domain at the date this manuscript was written.  
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This paper examines what is achievable from summer and winter acquisitions of Sentinel-1A  

dual-polarisation SAR data aided by prior knowledge of past land cover and digital elevation data from 

the Shuttle Radar Topography Mission. 

2. Materials and Methods 

The present study analyses two of the first Sentinel-1A SAR image acquisitions over Thuringia, 

Germany. The first, uncalibrated Sentinel-1A image was acquired during the ramp-up phase on 2 May 

2014 (Scene ID = S1A_IW_GRDH_1SDH_20140502T170314_20140502T170343_000421_0004CC), 

in ascending orbit at HH and HV polarisations. The second image was acquired on 9 December 2014 

(Scene ID = S1A_IW_GRDH_1SDV_20141209T053327_20141209T053352_003638_0044F6), in 

descending orbit at VV and VH polarisations. Both images were processed to the Standard Level 1 

Product, GRDH (ground-range detected, high resolution) by ESA. The images were not fully 

calibrated because during the Sentinel-1A ramp-up phase the calibration constants were not yet 

available from ESA, meaning that the backscatter values are not on an absolute scale. The backscatter 

bands contain Digital Numbers which are converted to the dB scale. The image bands are resampled to 

100 m spatial resolution using bilinear interpolation. Texture bands are calculated from the GRDH 

image products within a moving 5 by 5 pixel window, calculating the variance within each window 

and them resampling to 100 m spatial resolution. 

SRTM data [35–38] at 100 m spatial resolution were obtained from opentopography.org and 

SLOPE and ASPECT are calculated from the DTM in order to take into account the prevalence of 

certain land cover types on specific slopes, aspects or altitudes. 

The 2006 CORINE land cover map for Germany was produced using the standard method of visual 

interpretation based upon the EEA technical guidelines [10] and obtained as a gridded 100 m 

resolution product. A hybrid CORINE level 2/level 3 classification scheme of 27 classes is devised 

(Table 1), based on knowledge of the scattering mechanisms of C-band SAR and the dependence of 

certain land cover types on geomorphology. All spatial data are resampled to the 100 m grid with a 

Lambert Azimuthal Equal Area projection (latitude at projection centre = 52, longitude at projection 

centre = 10, false easting = 4,321,000 m, false northing = 3,210,000 m, GRS80 ellipsoid, units = 

metre). The hybrid CORINE land cover map 2006 is used for the automatic extraction of pixels as 

training sites for the classifiers. To minimise edge effects, its polygons were first eroded by 5 pixels 

along the edges. Polygon erosion results were performed with different numbers of pixels (3, 5 and 7) 

and 5 pixels lead to eroded polygon areas that are sufficiently free of edge effects and location 

uncertainty effects from overlaying the CORINE polygon boundaries and the SAR viewing geometry. 

Up to 20,000 stratified random samples of training pixels are chosen for each CORINE class. A 

stratified random sampling approach is statistically appropriate for sampling distributions with highly 

imbalanced sample sizes such as often found in land cover datasets. We explored different caps of the 

number of training pixels and found that 20,000 was a good compromise between computational 

efficiency (because larger numbers increase the RF computation time) and coverage of representative 

areas of land cover types (which can be an issue if too few samples are used from land cover types 

with large area extent that become under-sampled and hence biased). 
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The processing of all datasets was implemented in R [39], using the R packages “randomForest” [40], 

“sp” [41,42], “caTools”, “gdalUtils”, “rgdal”, “foreign”, “raster”, “fields”, “rasclass” and “mmand”. Four 

random forest (RF) classifications are performed with different input bands to assess their  

relative performance: 

(i) RFPOL classification: A purely radiometric classification with HH and HV polarisations from 

May 2014 and VV and VH from December 2014. 

(ii) RFTEX classification: Radiometric and texture information, with HH and HV polarisations 

from May 2014 and VV and VH from December 2014, as well as the HH texture band. 

(iii) RFTEXSRTM classification: An integrated radiometric and texture classification with 

auxiliary geomorphometric input bands, using HH and HV polarisations from May 2014 and VV and 

VH from December 2014, the HH texture band, and the Digital Terrain Model (DTM), Canopy Height 

Model (CHM) and SLOPE and ASPECT maps from the Shuttle Radar Topography Mission (SRTM). 

(iv) RFSRTM classification: A pure terrain classification using only the Digital Terrain Model 

(DTM), Canopy Height Model (CHM) and SLOPE and ASPECT maps from the Shuttle Radar 

Topography Mission (SRTM). 

The principle of a random forest is the classification of the image layers by constructing a large 

number of decision trees [32]. Random forests train classifiers to generate class predictions for unseen 

data. Randomness is introduced by bootstrapping and random selection of a subset of m variables to 

split at each node of a tree. Splitting thresholds are defined using the Gini Index, which is a measure of 

the child node class homogeneity with respect to the distribution of classes in the parent node. Each 

object (either a pixel or a polygon) is classified as the class which gets the most “votes” from all the 

decision trees in the random forest. In the original implementation trees are grown to the largest 

possible size without pruning [32]. 

Each of the RF classifiers used here generated 201 decision trees. All classifiers are post-processed 

with a 3 by 3 pixel local mode filter to remove isolated pixels and reduce noise in the land cover maps. 

The accuracy of the classified maps is assessed by calculating the out-of-bag error rates of the random 

forests for each CORINE class over the training pixels. The out-of-bag error rate is estimated 

internally by the random forest during the construction of each tree from a different bootstrap sample 

from the original data. One-third of the pixels (cases) are left out of the bootstrap sample for each tree 

and are then classified with that tree. A test classification of each pixel is obtained in this way from 

one-third of all trees. These independent test sets are used to estimate the out-of-bag error rate. It 

provides an unbiased estimate of the true map accuracy [32]. 

Random forests allow the analysis of the variable importance with the Gini coefficient, which is a 

measure of the homogeneity of a distribution, ranging from 0 (completely homogeneous) to 1 

(completely heterogeneous). The Gini coefficient originates from Economics where it is used to 

describe the inequalities of the distribution of wealth. In random forests, the Gini coefficient is 

calculated each time a particular input variable is used to split a node. The Gini coefficient for the child 

nodes are compared to that of the original node. If the split improves the homogeneity of classes, the 

Gini coefficient will decrease after splitting the node. All decreases in the Gini coefficient that are 

achieved for the nodes are added up for each input variable. Hence, input variables that result in nodes 

with higher classification purity have a higher decrease in Gini coefficient overall. 
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Table 1. Description of the CORINE level 3 classification scheme with the original level 3 

codes and the hybrid CORINE level 2/3 scheme used in this study with recoded class codes. 

Code CORINE Level 3 Recoded Hybrid CORINE Level 2/3 

111 Continuous urban fabric 111 Continuous urban fabric 

112 Discontinuous urban fabric 112 Discontinuous urban fabric 

121 Industrial or commercial units 

120 
Industrial, commercial and 

transport units  

122 Road and rail networks and associated land 

123 Port areas 

124 Airports 

131 Mineral extraction sites 

130 
Mine, dump and construction 

sites  
132 Dump sites 

133 Construction sites 

141 Green urban areas 
140 

Artificial, non-agricultural 

vegetated areas  142 Sport and leisure facilities 

211 Non-irrigated arable land 211 Non-irrigated arable land 

212 Permanently irrigated land 212 Permanently irrigated land 

213 Rice fields 213 Rice fields 

221 Vineyards 

220 Permanent crops  222 Fruit trees and berry plantations 

223 Olive groves 

231 Pastures 230 Pastures  

241 Annual crops associated with permanent crops 

240 Heterogeneous agricultural areas  

242 Complex cultivation patterns 

243 Land principally occupied by agriculture, with 

significant areas of natural vegetation 

244 Agro-forestry areas 

311 Broad-leaved forest 311 Broad-leaved forest 

312 Coniferous forest 312 Coniferous forest 

313 Mixed forest 313 Mixed forest 

321 Natural grasslands 321 Natural grasslands 

322 Moors and heathland 322 Moors and heathland 

323 Sclerophyllous vegetation 323 Sclerophyllous vegetation 

324 Transitional woodland-shrub 324 Transitional woodland-shrub 

331 Beaches, dunes, sands 331 Beaches, dunes, sands 

332 Bare rocks 332 Bare rocks 

333 Sparsely vegetated areas 333 Sparsely vegetated areas 

334 Burnt areas 334 Burnt areas 

335 Glaciers and perpetual snow 335 Glaciers and perpetual snow 

411 Inland marshes 
410 Inland wetlands  

412 Peat bogs 

421 Salt marshes 

420 Maritime wetlands  422 Salines 

423 Intertidal flats 

511 Water courses 
510 Inland waters  

512 Water bodies 

521 Coastal lagoons 

520 Marine waters 522 Estuaries 

523 Sea and ocean 
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Table 2. Number of pixels selected randomly for each hybrid CORINE level 2/3 class as 

training data for the classifiers. 

Class Description 
Number of Pixels in 

the CLC 2006 Map 

Number of  

Training Pixels 

111 Continuous urban fabric 543 119 

112 Discontinuous urban fabric 50,613 8,832 

120 Industrial, commercial and transport units 9,117 1,143 

130 Mine, dump and construction sites 1,641 68 

140 Artificial, non-agricultural vegetated areas 3,574 271 

211 Non-irrigated arable land 431,518 20,000 

220 Permanent crops 1,915 395 

230 Pastures 80,113 14,972 

240 Heterogeneous agricultural areas 38,663 6,549 

311 Broad-leaved forest 102,895 20,000 

312 Coniferous forest 202,476 20,000 

313 Mixed forest 58,720 13,473 

321 Natural grasslands 11,356 5,145 

322 Moors and heathland 247 12 

324 Transitional woodland-shrub 1,431 132 

410 Inland wetlands 395 32 

510 Inland waters 2,748 334 

  

(a) (b) 

Figure 1. Maps of the study area in Thuringia, Germany, showing the city of Erfurt.  

(a) CORINE Land Cover Map 2006. See Table 1 for class definitions. (b) Street map  

© OpenStreetMap contributors. 

Table 2 shows the number of training pixels for each CORINE class, it follows the distribution of 

dominant classes of the overall CORINE map. The number of training pixels per class was capped at a 

maximum of 20,000 but some classes had fewer pixels in the polygon eroded CORINE image band. 

Bare rocks were masked out from the analysis due to their small sample size. 

Erfurt 
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The hybrid CORINE land cover map for the study area and an OpenStreetMap quicklook are shown 

in Figure 1. The study area is a homogeneous landscape covered by a large expanse of non-irrigated 

agricultural land (211), punctuated by permanent crops (220), mainly vineyards and fruit trees, 

pastures (230) consisting of small linear features on more marginal land often following landscape 

features such as rivers and the transport network, broadleaf (311), coniferous (312) and mixed forests 

(313) on the steeper and higher ground and discontinuous urban fabric (112) in the towns and villages. 

The largest city appearing in red is Erfurt (Figure 1). The elevation of the study region varies from 

86 m to 973 m (mean = 388 m). After polygon erosion and training pixel selection, the signatures of 

the hybrid CORINE classes were calculated from the training pixels. 

3. Results 

3.1. Sentinel-1A Radiometric Signatures and Information Content of the Texture and SRTM Bands 

The radiometric signatures of the Sentinel-1A C-band backscatter bands at all polarisations from both 

dates and the HH texture band are shown in the boxplots in Figure 2 to illustrate the information content 

of the different bands for each land cover class. For example, classes 111 (continuous urban fabric), 112 

(discontinuous urban fabric) and 120 (industrial, commercial and transport units) have a high C-HH 

backscatter and high HH texture in comparison to the other classes. Class 140 (artificial, non-agricultural 

vegetated areas) also has higher texture than the non-artificial surface classes (211–510). 

Boxplots of the distribution of the SRTM data bands for each training class are shown in Figure 3. 

Classes 312 (Coniferous forest), 321 (Natural grasslands) and 322 (Moors and heathland) and to a 

lesser extent 230 (Pastures), 240 (Heterogeneous agricultural areas), 311 (Broad-leaved forest), 313 

(Mixed forest), 324 (Transitional woodland-shrub) and 410 (Inland wetlands) are situated at a higher 

altitudinal range in the landscape, where soils tend to be less fertile and cooler temperatures are less 

suitable for intensive agriculture (Figure 3a). Classes 111 (Continuous urban fabric) and 220 

(Permanent crops) are constrained to a lower altitudinal range.  

Forests (311, 312, 313) in the study region tend to occur on steep slopes (Figure 3b). Classes 130 

(Mine, dump and construction sites), 140 (Artificial, non-agricultural vegetated areas), 230 (Pastures), 

240 (Heterogeneous agricultural areas), 311 (Broad-leaved forest), 312 (Coniferous forest), 313 

(Mixed forest), 322 (Moors and heathland) and 324 (Transitional woodland-shrub) are predominantly 

sited on slopes between 2.5 and 10 reaching 25 in the extreme (Figure 3b).  

To distinguish forest cover from non-forest, the CHM derived from the SRTM mission is a very 

good predictor. All forest classes (311 Broad-leaved forest, 312 Coniferous forest, and 313 Mixed 

forest) and also class 322 (Moors and heathland) show distinctively high canopy height (Figure 3c). 

The class 324 (Transitional woodland-shrub) has lower CHM values than the mature forest classes 

311–313 but taller than agricultural land (211–240) (Figure 3c). This class includes bushy or 

herbaceous vegetation with scattered trees, representing woodland degradation or forest regeneration 

areas. The main occurrences of this class include transitional phases between clear-cutting and forest 

regrowth. Figure 3d shows the aspect angles of each land cover class as rose diagrams. 
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 2. Colour-coded boxplots of the Sentinel-1A SAR image bands of the randomly 

chosen training sites for each CORINE class in Table 2 on the x axis. (a) HH-polarization 

(May 2014) Digital Number. (b) HV-polarization (May 2014). (c) VV-polarization 

(December 2014). (d) VH-polarization (December 2014). (e) HH-polarization texture band 

(5 × 5 variance). 
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(a) (b) 

 

 

(c) (d) 

Figure 3. Boxplots of the Shuttle Radar Topography Mission (SRTM) bands of the 

randomly chosen training sites for each CORINE class in Table 2 on the x axis. (a) Digital 

Terrain Model (DTM). (b) Slope derived from the DTM. (c) Canopy Height Model 

(CHM). (d) Rose diagrams of the aspect angle by CORINE class. 

Figure 4 shows the Sentinel-1A image bands at HH and HV polarisation (acquired in May 2014), 

the VV and VH polarisation (acquired in December 2014) and the HH image texture band. The HH, 

VV and VH polarisations and HH texture show urban areas as brighter shades of grey, indicating high 

backscatter intensity and high texture due to the urban fabric. The HV polarisation clearly shows 

agricultural fields with crop cover and forests, and the VH image from December 2014 shows the same 

fields are not covered with crops anymore after harvesting. 

In Figure 5 the SRTM data bands (DTM, SLOPE, ASPECT and CHM) are presented. The slopes 

derived from the DTM also show that the forested higher elevation areas tend to have steeper slopes 

(Figure 5b). The CHM from the SRTM (Figure 5d) clearly discriminates between the forested and 

non-forested areas. Classes 311 (Broad-leaved forest), 312 (Coniferous forest), 313 (Mixed forest) and 

324 (Transitional woodland-shrub) in Figure 1 all show tall canopies in the CHM boxplots in Figure 3c 

and show up clearly as high CHM values in Figure 5d. 
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(a) (b) 

  

(c) (d) 

 

 

(e)  

Figure 4. Sentinel-1A SAR C-band image bands. (a) HH polarisation (May 2014). (b) HV 

polarisation (May 2014). (c) VV polarisation (December 2014). (d) VH polarisation 

(December 2014). (e) HH image texture (5 × 5 variance). 
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(a) (b) 

  

(c) (d) 

Figure 5. Shuttle Radar Topography Mission (SRTM) bands of the study area. (a) Digital 

Terrain Model (DTM). (b) Slope derived from the DTM. (c) Aspect derived from the 

DTM. (d) Canopy Height Model (CHM). 

3.2. Classification Results 

Figure 6 shows the results from all three classifiers. Each classified map can be compared with the 

CORINE map in Figure 6e. The RFPOL Random Forest Classification of the radiometric SAR bands 

in Figure 6a confuses some agricultural crops with forest classes. The Random Forest Classification 

RFTEX (Figure 6b), which includes the HH texture band, also shows some agricultural areas as 

forests compared to the CORINE map in Figure 6e. 

A quantitative accuracy assessment of all classifiers was carried out by using the out-of-bag error 

rate, which as discussed above is a good unbiased predictor of the overall classification accuracy. This 

approach has the advantage that it only uses the pure CORINE pixels after polygon erosion and not 

any mixed pixels along the edges which could confound the confusion matrix. The RFPOL Random 

Forest has an out-of-bag error rate of 52.5% equivalent to an accuracy of 47.5% and a κ coefficient of 

0.38 (Table 3). To some extent, land cover change between 2006 and 2014 is likely to have contributed 

to the high out-of-bag error rate. The CORINE map was last updated in 2006 and the Sentinel-1A 
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images were acquired in 2014. However, a large proportion of the error is clearly due to a 

misclassification. Table 3 shows that many pixels that are agricultural land (211) in the CORINE 2006 

map were classified as broad-leaved forest (311) or mixed forest (313). 

The RFTEX Random Forest has a similar out-of-bag error rate of 52.5% and the same κ = 0.38 as 

RFPOL. Table 4 shows that the amount of confusion of the agricultural class (211) with broad-leaved 

(311), coniferous (312) or mixed forest (313) is about the same as for RFPOL in Table 3. 

After adding the SRTM-derived DTM, CHM, SLOPE and ASPECT as input bands to the Random 

Forest Classification (RFTEXSRTM), the quality of the classified map is improved substantially with 

an out-of-bag error rate of 31.6% (68.4% accuracy) and κ = 0.63 (Table 5). The classified map in  

Figure 6c and the confusion matrix in Table 5 show that the confusion between agricultural crops (211) 

and forest cover types (311–313) is almost completely removed. The classified RFTEXSRTM map is 

also visually more similar to the hybrid level 2/3 CORINE map in Figure 6e than any other classifier. 

  

(a) (b) 

  

(c) (d) 

Figure 6. Cont. 

RFTEX 

RFTEXSRTM RFSRTM 

RFPOL 
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(e)  

Figure 6. Classification results according to the hybrid CORINE level 2/3 scheme.  

(a) RFPOL radiometric classification. (b) RFTEX classification with added HH texture 

band. (c) RFTEXSRTM classification with HH texture band and SRTM DTM, CHM, 

SLOPE and ASPECT bands. (d) RFSRTM classification with only the SRTM bands.  

(e) Original CORINE land cover map (CLC) 2006 with hybrid level 2/3 classes. 

We also tested the classification of the SRTM-derived geomorphometric data alone (DTM, CHM, 

SLOPE and ASPECT) without any Sentinel-1A data to examine whether the terrain shape alone is a 

sufficient predictor of the CORINE land cover classes in the test area and found that the out-of-bag 

error rate was 44.3% (κ = 0.48, Table 6). This is more accurate than using only the Sentinel-1 

radiometric bands without terrain information in the RFPOL model but less accurate than combining 

them in the RFTEXSRTM model. 

The results show that the synergies between the information content of the geomorphometric 

landscape structure from the SRTM derived data bands and the Sentinel-1A radiometry allow a more 

accurate classification of the CORINE land cover types. 

3.3. Diagnostic Analysis of the RFTEXSRTM Classifier 

To analyse the characteristics of the random forest in more detail, some important properties of the 

RFTEXSRTM classifier are described in this section. In Figure 7a, the out-of-bag error rate of the 

random forest classification is decreasing for all classes but the rate of this decrease is slowing as more 

trees are added. The 201 decision trees that were used in this study are considered sufficient to ensure a 

stable error rate. Even around 100 trees would achieve similar error rates. The number of nodes of the 

individual decision trees was between 23,800 and 24,800 nodes with a mean number of 24,278 nodes.  

A remaining question is the variable importance of the input bands to the random forest 

classification. The boxplots in Figures 2 and 3 suggest that the landscape terrain and the canopy height 

from the SRTM data provide a better class separation than the radiometric bands from the SAR and 

even the texture bands. 

CLC 
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Table 3. Out-of-bag confusion matrix of the RFPOL classification and the CLC 2006 map. Overall error rate = 52.5%, accuracy = 47.5%, κ = 0.38. 

Class 111 112 120 130 140 211 220 230 240 311 312 313 321 322 324 410 510 Class.Error 

111 15 99 0 0 0 1 0 1 0 3 0 0 0 0 0 0 0 87% 
112 14 5161 41 0 1 717 0 292 77 1244 843 418 19 0 1 0 4 42% 
120 1 633 37 0 0 185 0 73 17 74 86 22 6 0 0 0 9 97% 
130 0 3 0 13 0 13 0 13 1 8 9 7 1 0 0 0 0 81% 
140 0 67 1 0 5 47 0 15 3 47 64 20 1 0 0 0 1 98% 
211 0 410 23 1 1 14,111 3 2189 243 572 1796 229 396 0 0 0 26 29% 
220 0 6 0 0 0 191 2 76 9 4 95 4 8 0 0 0 0 99% 
230 0 385 16 0 0 3033 1 6060 385 905 2892 472 810 0 0 0 13 60% 
240 0 273 9 0 1 1704 5 1625 169 676 1544 328 211 0 0 0 4 97% 
311 0 624 1 0 0 625 3 777 147 12,333 2969 2421 96 0 1 0 3 38% 
312 1 523 5 0 0 1145 4 1942 273 2222 11,399 2266 215 0 0 0 5 43% 
313 0 363 3 1 1 466 0 671 132 4442 4498 2819 76 0 0 0 1 79% 
321 0 17 1 0 0 910 2 2031 92 223 1061 143 664 0 0 0 1 87% 
322 0 0 0 0 0 1 0 1 0 3 5 1 1 0 0 0 0 100% 
324 0 3 0 0 0 4 0 4 0 56 35 30 0 0 0 0 0 100% 
410 0 3 0 0 0 1 0 1 0 9 10 3 1 0 0 0 4 100% 
510 0 1 8 0 0 100 0 30 2 5 10 3 13 0 0 1 161 52% 

Table 4. Out-of-bag confusion matrix of the RFTEX classification and the CLC 2006 map. Overall error rate = 52.5%, accuracy = 47.5%, κ = 0.38. 

Class 111 112 120 130 140 211 220 230 240 311 312 313 321 322 324 410 510 Class.Error 

111 15 99 0 0 0 1 0 1 0 3 0 0 0 0 0 0 0 87% 
112 13 5173 36 0 1 712 1 273 68 1261 832 433 22 0 2 0 5 41% 
120 0 645 31 0 0 194 0 65 12 72 81 31 5 0 0 0 7 97% 
130 0 3 0 12 0 16 0 10 2 10 9 5 1 0 0 0 0 82% 
140 0 65 0 0 5 46 0 16 5 57 61 12 2 0 0 0 2 98% 
211 0 401 22 2 1 14,133 2 2204 256 602 1739 235 377 0 0 0 26 29% 
220 0 6 0 0 0 194 0 80 6 6 85 7 11 0 0 0 0 100% 
230 0 393 16 0 0 3030 3 6074 377 931 2871 472 792 0 0 0 13 59% 
240 0 288 11 0 1 1680 3 1650 158 655 1528 344 226 0 0 0 5 98% 
311 0 631 4 0 0 626 1 803 133 12,368 2951 2398 82 0 1 0 2 38% 
312 1 529 5 0 1 1126 2 1971 258 2254 11,333 2295 218 0 0 0 7 43% 
313 0 347 3 1 1 490 1 696 112 4496 4428 2833 62 0 0 0 3 79% 
321 0 22 1 0 0 904 1 2031 108 209 1058 139 669 0 0 0 3 87% 
322 0 0 0 0 0 1 0 1 1 1 7 0 1 0 0 0 0 100% 
324 0 3 0 0 0 5 0 2 0 60 36 26 0 0 0 0 0 100% 
410 0 4 0 0 0 1 0 2 0 8 9 3 1 0 0 0 4 100% 
510 0 2 6 0 0 95 0 39 1 3 11 3 8 0 0 1 165 51% 
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Table 5. Out-of-bag confusion matrix of the RFTEXSRTM classification and CLC 2006. Overall error rate = 31.6%, accuracy = 68.4%, κ = 0.63. 

Class 111 112 120 130 140 211 220 230 240 311 312 313 321 322 324 410 510 Class.Error 

111 47 70 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 61% 
112 15 6841 21 0 1 1105 3 276 80 379 51 41 19 0 0 0 0 23% 
120 1 596 263 0 0 216 0 54 3 5 0 1 4 0 0 0 0 77% 
130 0 2 0 19 0 14 0 6 1 16 8 2 0 0 0 0 0 72% 
140 0 77 0 0 27 48 0 35 11 44 17 7 4 0 0 0 1 90% 
211 0 583 8 0 2 16,905 11 1596 411 173 37 58 206 0 2 0 8 15% 
220 0 4 0 0 0 182 175 29 2 0 0 0 3 0 0 0 0 56% 
230 0 273 5 0 4 1556 10 10,918 539 522 500 116 523 1 1 0 4 27% 
240 0 224 2 0 2 1209 0 2284 1752 507 231 156 181 0 0 1 0 73% 
311 0 114 0 0 2 135 0 561 145 14,287 2454 2252 38 0 12 0 0 29% 
312 0 16 0 1 1 47 0 585 97 1664 15,735 1757 96 0 0 0 1 21% 
313 0 42 0 0 0 95 0 387 155 3686 3477 5610 17 0 4 0 0 58% 
321 0 22 0 0 0 496 0 899 79 79 105 24 3440 0 0 1 0 33% 
322 0 0 0 0 0 0 0 2 0 0 7 0 0 3 0 0 0 75% 
324 0 1 0 0 0 1 0 10 2 74 6 20 4 0 14 0 0 89% 
410 0 8 0 0 0 10 0 5 0 0 0 0 3 0 0 5 1 84% 
510 0 2 0 0 0 77 0 7 0 1 1 0 3 0 0 0 243 27% 

Table 6. Out-of-bag confusion matrix of the RFSRTM classification and CLC 2006. Overall error rate = 44.3%, accuracy = 55.7%, κ = 0.48. 

Class 111 112 120 130 140 211 220 230 240 311 312 313 321 322 324 410 510 Class.Error 

111 22 35 2 0 0 59 0 1 0 0 0 0 0 0 0 0 0 82% 
112 9 3094 63 0 2 3947 26 942 262 220 45 30 182 0 1 0 9 65% 
120 4 147 289 0 0 553 4 93 13 19 0 4 16 0 0 1 0 75% 
130 0 2 0 13 0 11 0 6 4 22 7 1 2 0 0 0 0 81% 
140 0 29 0 0 22 96 2 58 15 25 13 7 4 0 0 0 0 92% 
211 20 1696 150 0 15 14,726 56 1634 552 616 26 73 414 0 3 2 17 26% 
220 0 22 3 0 0 153 180 24 4 9 0 0 0 0 0 0 0 54% 
230 0 423 25 0 2 1700 26 9323 831 1358 439 210 621 1 10 0 3 38% 
240 0 259 6 0 1 1021 2 1652 2140 876 154 177 255 0 1 5 0 67% 
311 0 121 4 3 8 517 1 1803 569 10,142 3425 3150 249 0 8 0 0 49% 
312 0 16 0 2 1 29 0 671 125 3414 13,528 2074 134 1 1 2 2 32% 
313 0 39 1 0 1 183 1 576 207 3714 3315 5400 33 0 3 0 0 60% 
321 0 125 7 0 1 771 0 678 172 246 109 30 3004 0 0 1 1 42% 
322 0 0 0 0 0 0 0 2 0 0 5 0 0 5 0 0 0 58% 
324 0 3 0 0 0 9 0 52 6 53 2 3 2 0 2 0 0 98% 
410 0 6 1 0 0 9 0 1 5 0 1 0 1 0 0 8 0 75% 
510 0 22 0 0 0 120 1 12 0 0 0 0 7 0 0 0 172 49% 
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(a) (b) 

Figure 7. Diagnostic properties of the RFTEXSRTM Random Forest Classification.  

(a) Out-of-bag error rate of the Random Forest classification as a function of the number of 

decision trees used in the algorithm. (b) Decrease of GINI coefficient due to the different 

input variables, ranked by variable importance. 

Figure 7b shows that the greatest decrease of the Gini coefficient and consequently the greatest 

improvement in the class purity was achieved by the DTM input band, followed by SLOPE, VH 

(December), CHM, VV (December), ASPECT, HV (May), HH texture and HH (May). 

4. Discussion 

The best of the classifiers is the RFTEXSRTM random forest, which uses the SAR backscatter 

images, HH texture band and SRTM bands as inputs. The out-of-bag error rate of the RFTEXSRTM 

classifier over the training sites is 31.6%, showing an accuracy of 68.4% and a κ = 0.63. Given the 

large number of land cover classes, this is a relatively low error rate considering that some of the  

non-matching pixels are likely due to the mapping scale differences and to real land cover change 

between 2006 and 2014. 

A visual comparison of the SAR texture band at HH polarisation in Figure 4e with the CORINE 

land cover map in Figure 1a shows that the texture is a good discriminator for urban land cover types 

while the backscatter intensities highlight vegetated areas very distinctively. Sentinel-1A is a C-band 

radar and hence the backscatter signal will originate from the top layer of any vegetation canopy. The 

use of a summer and winter acquisition enables a much better discrimination of agricultural cropland 

(seasonal vegetation cover) and forests (permanent vegetation cover), which would be confused by a 

single summer acquisition due to the similarities of volume scattering at C-band in forest and 

agricultural canopies. Single-date C-band radar backscatter intensity bands cannot distinguish very 

well between forested areas and dense agricultural crops, hence a radiometric classification of a single 

image is likely to lead to high rates of classification errors. 

The slope map in Figure 5b provides a more robust delineation of areas that are covered by forests 

than the single-date radiometry from SAR because of the structure of the landscapes in this region 
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where steep slopes are often forested. The aspect of a hill side (Figure 5c) can affect land use 

decisions, since south-facing slopes have higher insolation than north-facing ones. 

Figure 6 shows that the Sentinel-1A imagery shows much more spatial detail than the original 

CORINE map because of the coarse minimum mapping unit of the CORINE land cover map of 25 ha. 

This characteristic difference in mapping scale makes a direct comparison of the two datasets difficult. 

Using too few decision trees in a random forest can deteriorate the classification results. It is 

therefore important to check how many decision trees are required to achieve a stable error rate of the 

classification. Generally, the more trees are added, the more accurate the classification. In reality the 

error rate of the random forest decreases more slowly as more trees are added and approaches a limit 

when the number of trees is large enough. Here, 201 trees provided a number with stable error rates 

(Figure 7a). 

The findings of this study show that geomorphometric information on the landscape structure can 

improve classification accuracy when used in a random forest classification approach. While terrain 

shape alone cannot discriminate between CORINE land cover types, it can help the random forest 

classifier to distinguish between agricultural crops and forest cover classes that would otherwise 

appear very similar in a purely radiometric classification. 

5. Conclusions  

Several random forest classifications with different combinations of input bands are compared. 

Post-classification mode filtering was applied to improve the classified maps. The results show that the 

random forest with all Sentinel-1A SAR intensity bands from May and December, the HH texture 

band and four SRTM-derived terrain bands (DTM, CHM, SLOPE and ASPECT) gives the highest 

classification accuracy (68.4%) based on the out-of-bag error rates over the randomly selected 

CORINE 2006 training sites. The classification approach presented here uses the largest number of 

land cover classes derived from SAR imagery to date, compared to a thorough review of the literature. 

27 classes were defined based on a hybrid level 2/3 CORINE nomenclature, of which 17 were found in 

the study area. In comparison to other types of landscapes in the CORINE mapped area, such as the 

heterogeneous landscapes of the UK, the study area is relatively simplistic and provides a good test 

site. The information content in the geomorphometric data layers is highly dependent on the landscape 

type studied. The applicability to more complex classes will need to be demonstrated in the future. 

In its operational phase, Sentinel-1 Interferometric Wide-Swath Mode data will be the default 

acquisition mode over land areas. Sentinel-1 will thus provide interferometric digital surface models 

that could in principle allow the derivation of a DTM, CHM, slope and aspect maps to update the 

SRTM data. However, even with a 6 day temporal baseline, the temporal decorrelation will hinder the 

generation of DTMs using C-band. Only a passive Sentinel-1 chaser satellite to acquire bistatic 

interferometric data can alleviate the temporal decorrelation problem. The achievable accuracy of an 

elevation dataset from Sentinel-1 would be improved significantly if ESA launched a Sentinel-1 

Convoy mission with a receive-only SAR sensor, operating in tandem with Sentinel-1A or 1B as a 

bistatic SAR. 

In conclusion, this study shows that Sentinel-1 is an important data source that can complement 

land cover mapping, especially under cloudy conditions. Random forests and other machine learning 
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approaches achieve high classification accuracy when used in conjunction with geomorphometric data 

from a DTM and CHM and prior information on past land cover.  

Under such circumstances, an operational SAR-based land cover monitoring service for a rapid 

mapping of CORINE land cover change is conceivable if the transferability of the method can be 

demonstrated. Furthermore, the hyper-temporal coverage of Sentinel-1A (and 1B) will allow the 

computation of multi-temporal metrics. These metrics have the potential to further improve the 

delineation of CORINE relevant classes as demonstrated in previous studies [12,16]. This will provide 

the focus of future research. 
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