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Computational fluid dynamics (CFD) is a simulation technique widely used in chemical and process 

engineering applications. However, computation has become a bottleneck when calibration of CFD 

models with experimental data (also known as model parameter estimation) is needed. In this research, 

the kriging meta-modelling approach (also termed Gaussian process) was coupled with expected 

improvement (EI) to address this challenge. A new EI measure was developed for the sum of squared 

errors (SSE) which conforms to a generalised chi-square distribution and hence existing normal 

distribution-based EI measures are not applicable. The new EI measure is to suggest the CFD model 

parameter to simulate with, hence minimising SSE and improving match between simulation and 

experiments. The usefulness of the developed method was demonstrated through a case study of a 

single-phase flow in both a straight-type and a convergent-divergent-type annular jet pump, where a 

single model parameter was calibrated with experimental data. 
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Introduction 

Computational fluid dynamics (CFD) simulations are usually large complex computer programs 

representing real life fluid systems. The complexity of such simulations can make them quite a 

herculean task to solve, with the run time associated with the simulation being of great concern. Such 

simulation run time could be for hours or days.
1,2

 In addition, large scale or complex systems usually 

place a great demand on computer memory.
3
 Computation is especially a problem when the CFD 

simulation is required to run for a large number of times, for example when sensitivity analysis is 

carried out 
1,4

, or the models are used within a certain optimisation problem.
4,5

 Of particular interest in 

this research project is calibration of CFD models (also known as model parameter estimation), which 

can be cast into an optimisation problem. 

CFD model calibration can be defined as the process of adjusting numerical or physical parameters in 

the CFD model which, on obtaining the optimal values
6
, helps to improve agreement with 

experimental data.
7,8,9

 The parameters in this context are typically turbulence model coefficients or 

turbulence model choice. The default values given by CFD software providers for turbulence 

parameters may apply only in standard circumstances. In this paper, calibration is formulated as an 

optimisation problem to minimise the mismatch between simulated and experimental outputs 

(responses). The calibration process may need tens to hundreds of simulation runs to evaluate the 

objective function, the sum of squared errors (where the errors quantify the differences between the 

simulated and the experimental outputs) over the region of interest, a requirement that is often 

infeasible for CFD.  

These difficulties faced by CFD simulations have led to the application of meta-modelling, which is a 

further abstraction of the simulation model. The basic concept is to treat the simulation as “computer 

experiments”, from which the simulation “data” are used to develop a relatively simple empirical 

model termed meta-model (also known as surrogate, emulator, model of a model, approximate or 

auxiliary model or response surface).
1,4 

Then, the fast-to-run meta-model can be used in place of the 

CFD for analysis and optimisation purposes. Meta-modelling has been widely applied in different 

fields; Table 1 provides a sample.  

 



3 

 

[Table 1 about here] 

 

However, the application of meta-modelling in chemical process engineering has been less common. 

Palmer and Realff reported the early use of meta-modelling in chemical process design via ammonia 

synthesis plant steady state flow sheet simulation.
31,32

 Later, the use of meta-models for real time 

optimisation was proposed by Gomes et al. with the consideration of a typical alkylation process.
33

 

Furthermore, Gomes et al. applied the same methodology to a crude distillation unit and solvents 

units.
34

 More recently, Hoque developed CFD based multiple linear and neural network meta-models 

for bio-aerosol transport in indoor environments.
35 

Coetzee et al. investigated the development of 

kriging meta-model (also called Gaussian process in the literature with slightly different 

formulation
1,5,6

) for the CFD simulation of gas–liquid flow in bubble columns.
36

 From their findings, 

the kriging meta-modelling approach is effective in summarising or approximating non-linear data. 

The usefulness of kriging is discussed later in this article. Li et al. proposed two different types of 

surrogate models (which are not empirical, but rather mechanistic) to replace the detailed but 

computationally expensive full-order simulated moving bed chromatography model for optimisation 

purposes.
37

 Wang et al. developed a meta-model using Gaussian process regression for fast prediction 

and uncertainty analysis in a CFD simulated natural gas vapour dispersion process.
38 

 

Despite these progresses in meta-model assisted process design and analysis, the topic of calibrating 

CFD models using meta-model has not been well explored. Hence, the current research seeks to 

further this line of work to develop a method for a fast calibration of CFD simulation with 

experimental data. The kriging method is to be used for meta-modelling. The principle of expected 

improvement (EI), a measure for global optimisation
39-41

, is utilised to formulate the calibration into an 

optimisation problem. However, in previous studies, EI was developed assuming a Gaussian process 

meta-model for the output (response) of the underlying simulation model; this is not applicable to 

calibration problems in which the objective is to minimise the sum of squared errors. Assuming 

Gaussian distributed simulation output implies that this sum has a generalised chi-square distribution 

(as we shall see below equation 15). 
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In this paper, the usefulness of the developed methodology will be demonstrated by calibrating a CFD 

model of a straight-type and convergent-divergent-type annular jet pump. Jet pumps have the 

advantages of simplicity in structure, absence of moving parts, convenience of operation and 

maintenance, easy to machine and low capital cost. Hence, they are ideal for corrosive environments 

and can be used to handle poisonous, explosive, flammable or radioactive substance.
42

 They can also 

be used in de-liquefication of oil and gas wells, boosting of production in such wells, boosting 

pressure of low pressure gas in a process system, and can also help to eliminate intermediate 

compressors.
43

 The developed meta-modelling methodology can be used in the design and 

optimisation of jet pumps. 

 

Meta-model based CFD calibration 

Meta-model is also referred to as surrogate model or response surface model in the literature.
44,45

 It is a 

further abstract representation of the CFD simulation model via construction of approximations to the 

computationally expensive simulation.
7
 It can also be defined as an explicit and simplified model of 

the underlying complex simulation model, where the simulation model implies an implicit 

input/output function that maps the simulation parameters onto the output (response).
45

 These 

surrogate models are for fast prediction, verification and validation, calibration, sensitivity analysis 

and uncertainty analysis
31,32,45,46

 hence helping with decision making process.
3
 

An overview of the proposed calibration methodology is given in Figure 1.  

[Figure 1 about here] 

The starting point is usually the CFD simulation results at the default parameter values. The error 

obtained when the simulation results are compared with the experimental data can be calculated in 

terms of the sum of squared errors (SSE) which serves as a benchmark for the calibration. Other 

criteria used in modelling practice include the sum of relative error, mean squared residuals, and 

average absolute relative error.
45

 The SSE needs to be minimised for a better match of the CFD 

simulation results with experimental data. 

     ∑ (       )
  

            (1) 
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where     is the ith experimental datum and     the simulated value, and   is the number of data 

points. 

It is essential to identify the CFD simulation inputs and outputs which will be used for calibration. The 

inputs will be the main input variables used in running the simulation and which are most important, 

and can likewise be included as inputs into the meta-model, while the outputs are the outputs of 

interest in both real life and computer experiment. The most important input variables can be 

determined using factor screening which is defined as the search for the important inputs (also called 

factors) that should be varied in the computer experiment.
45 

In this paper, the inputs were selected 

based on experience and knowledge of the simulation problem. In both the straight-type and 

convergent-divergent-type annular jet pump case studies considered, the inputs into the meta-model 

are turbulent parameter,   , spatial location, X/Do, and flow ratio, M; while the experimental 

measurement and therefore, the simulation output is pressure coefficient,   . These parameters will be 

defined under the sub-heading “Experimental data of Shimizu et al.
47”

. 

 

The design of experiments (DoE) is then used to determine the values of input variables that should be 

used for CFD simulation. DoE is a statistical approach used in designing and selection of the inputs 

that can be utilised for computer simulations. Examples of widely used DoE methods are grid layouts 

plan, random sampling, Latin hypercube sampling
48,49,50

, Hammersley sequence sampling
1,46,51

, and 

uniform design
52,53

. The key feature which makes DoE useful is that it is used to sample the design 

space (region of interest bounded by the upper and lower limits of the design input variables being 

studied), hence generating sample data to fit the meta-model to each of the response variables of 

interest.
46

  

The meta-model is then developed from the CFD simulation data, and the SSE (or equivalently the 

root mean square error, RMSE) is calculated to check the accuracy of the meta-model against CFD 

simulation. This should be carried out by using the leave-one-out cross validation (LOOCV) method. 

The LOOCV is a statistical technique which involves taking a single run from the entire dataset which 

is used as the validation data (test data), while the remaining runs (training data) are used to build the 

meta-model. The procedure is repeated such that each run is used once for validation, and the overall 
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validation error is evaluated. Subsequently, the meta-model is used to predict the SSE at untried 

combination of values (or points in the input space) of model parameters and the expected 

improvement (EI) can be obtained. The EI is needed because the meta-model prediction is 

probabilistic, i.e. it gives prediction mean and variance.
55

 By using the prediction mean only, the 

optimisation problem can be stuck in some local optimum.
55

 If the maximised EI is less than a certain 

threshold, then the iteration stops, otherwise, the process is repeated from simulations at the new 

design points. An alternative stopping criterion could be reaching maximum computational resources 

(e.g. maximum number of iterations). 

 

The rest of this section gives an overview of CFD simulation, kriging meta-model, and maximisation 

of expected improvement. 

 

Computational fluid dynamics (CFD) simulation 

The governing equations of fluid flow are a representation of the mathematical statements of the 

conservation laws of physics. There are different turbulence models, but in this project, we have 

focused on the k-ε models. The equations governing the fluid flow are: the continuity equation, the 

momentum equation, and equations for turbulent kinetic energy and turbulent dissipation rate. The 

default model parameters for three k-ε turbulence models are given in Table 2. RNG in the table refers 

to Renormalization Group. The standard k-ε model was chosen for the calibration methodology 

because it is reasonably accurate for a wide range of applications.
56

 ANSYS Fluent CFD software was 

used in this research. Its solvers are based on the finite volume method. 

[Table 2 about here] 

 

According to Launder and Spalding
58

, the turbulent parameters,    and    , can be adjusted for the 

case of axisymmetric jets as no single best value can be found. However, carrying out calibration via 

CFD directly involves a lot of simulation runs which are time consuming and expensive. This perhaps 

is the reason why little has been done to adjust these parameters for practical applications. In this work 

involving the use of jet pump as case study, meta-modelling assisted calibration of CFD simulation 

was carried out by adjusting the turbulent parameter,   . In the preliminary study, we attempted 
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calibration for both    and    ; however the results suggested that adjusting    only can provide 

satisfactory results for this particular application, and adjusting both parameters did not give improved 

results.  

 

The kriging meta-model  

The meta-model of choice here is kriging, which is also termed Gaussian process in the literature with 

slightly different formulation.
1,5,6,45,54

 It approximates the output of a computer model as a random 

Gaussian process. It is probabilistic giving both an expected value and a variance in the prediction.
54,59

 

Kriging obtains the prediction at unobserved input values by assigning higher weights to simulation 

output data, the more similar the corresponding input combinations are.
45,59

 It is an excellent way of 

interpolation compared with other meta-modelling techniques such as polynomial, regression splines, 

radial basis functions and artificial neural network.
1,31,32,33,44,60,61,62,63

  

Let                be a set of   training data points (also known as “design sites” in kriging) for 

developing the kriging model, each of which is a vector of input variables with dimension   (   

 [               ]
 ) , and    [            ]

  be the corresponding response variables. Then, the 

prediction for a new data point,   , in the kriging model is given by 

  (  )    
 (  )     

 (  ) 
  (     )         (2) 

which is a general type of kriging called universal kriging
33,34,45,54,64

. Here
  (  ) contains a set of 

regression functions of the input variables as determined by the modeller, and   is the corresponding 

regression coefficients to be estimated. Usually,   contains polynomials of up to second order.
64

 For 

example, if only the zero-th order polynomial is used,   reduces to a scalar function with fixed value of 

unity:   (  )   . If additional first order polynomial is included, then  (  )   [                   ]
  

and so on.    [ (  )  (  )      (  )]
  is a matrix containing the regression functions calculated 

for all the   training data points. In this work, only the zero-th order polynomial is used which is 

termed “ordinary kriging” in the literature.
31,44,45,50,54,59,64,65 

 

R is the correlation matrix which is obtained from correlation functions evaluated at each pair of the 
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training points: 

   [

 (     )
 (     )

 

 (     )   (     )
 (     )   (     )

   
 (     )  (     )   (     )

]       (3) 

where the correlation function can be parameterised in various ways.
45,64

 A widely used specification 

of R is the Gaussian function
40,44,65

: 

 (     )     ( ∑   (        )
  

   )         (4) 

The above correlation function is appropriate for deterministic simulations. If stochastic simulations 

are of interest, a random noise term needs to be added to the correlation function.
45

 

  is a vector representing the correlation between the new point,    , and the training set:   

 (  )   [ (     )  (     )    (     )]
        (5) 

The parameters in kriging include those in the correlation function (   [            ]
 ), the 

process variance (  
 ), and the regression coefficients ( ). First,   is estimated by using the maximum 

likelihood method
66

, giving rise to 

 ̂ = (      )
  
               (6) 

The process variance is then obtained as 

 ̂ 
   

 

 
 (    ̂)     (    ̂)        (7) 

Lastly, the correlation parameter can be estimated by solving the following optimisation problem: 

    (| |
    ̂ 

 )          (8) 

The estimated parameters are then plugged into the kriging model in equation (2) to obtain prediction 

mean (denoted   ). The corresponding prediction variance,   
   is obtained as the estimated mean 

square error of the predictor 
44,45,64,65

 which is given as:  

  
    ̂ 

 (     (      )           )       (9) 
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where  

           .          (10) 

Equation (9) is only an approximation because it ignores the uncertainty of the estimated kriging 

parameters.
45

 

Mathematical details of kriging and its construction can be found in Sacks et al.
54

 and other meta-

modelling studies.
19,31,36,44,45,59,64,65 

 

Maximising expected improvement 

Expected improvement (EI) indicates which input combination to simulate next in order to have a 

better match of the experimental data with the CFD model. It is the computation of the extent of 

improvement when a given point is sampled. It is a widely used statistical measure which can help to 

decide the subsequent function evaluations in global optimisation.
39,40,41

 Here “global optimisation” 

refers to that (i) first, the method guarantees to find the global optimum when the number of iterations 

tends to infinity
55

; and (ii) the search is not limited to a local region of the current point. Although in 

practice, the number of iterations is always finite, the capability of searching globally gives rise to 

higher probability of finding the global optimum, when compared with the traditional gradient-based 

optimisation methods.
 39,55,67

 

The EI for SSE needs to be derived, because the objective functions in existing studies have been 

assumed to be normally distributed
39,55

; however the SSE is not normally distributed (clearly SSE must 

be non-negative whilst the normal distribution is defined on the entire real axis
68

). This will be 

discussed in the rest of the section. 

To minimise an objective function, EI is defined as: 

    ∫    ( )   
 

 
          (11) 

where         , a continuous random variable which is the improvement,   is the objective 

function to be minimised and      is the best    that has been achieved so far, and  ( ) is a probability 
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density function.  

The meta-model is to be used for calibration, and the variable to be minimised is the sum of squared 

errors, SSE. So, it might be possible to build a meta-model between calibration parameters (e.g. 

turbulent model parameter,   ) and SSE, but such a meta-model loses the capability of predicting the 

physical measurements of interest (e.g. pressure coefficients, concentration field, etc.) due to its 

empirical nature and the inability to establish and describe the physical or chemical process of the 

considered system.
5
 We choose to build meta-model to predict the measurement, and calculate SSE 

according to equation (1). 

Let the minimum SSE achieved so far be        (which is a constant), then the improvement becomes 

            . Since SSE must be non-negative, the greatest improvement can only be       . 

From equation (11), EI becomes: 

    ∫ [          ] (          )   (          )
      
 

    (12) 

which is equivalent to: 

    ∫ [          ] (   )      
      
 

       (13) 

Equation (13) can be further expressed as: 

          ∫  (   )      
      
 

 ∫      (   )      
      
 

     (14) 

The integral part of the first expression in equation (14) can be related to the cumulative distribution 

function (cdf) which describes the probability that SSE takes on a value less than       . Hence, we 

have: 

               (          )   ∫      (   )      
      
 

.    (15) 

The distribution of SSE can be derived from the fact that the kriging prediction is normally distributed, 

ignoring the fact that the kriging parameters are unknown and must be estimated so the predictor 

becomes non-linear.
45

 As such, the SSE conforms to a generalised chi-square distribution.
69

 This can 

be seen as follows. 
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By definition, the sum of squares of independent, standard normal random variables conforms to a chi-

square distribution. In the context of model calibration, suppose there are   experimental data points 

with inputs               , against which the kriging meta-model predictions are compared to 

calculate SSE. Recall that the prediction from kriging model for data  , denoted   , is normally 

distributed with prediction mean being    and variance   
 ,        , i.e.     (     

 ). When 

calculating SSE, the simulated value in equation (1) is replaced by the meta-model prediction    and 

therefore     ∑ (     )
  

   . This SSE is not chi-square distributed because (     )   (   

      
 ) is not a standard normal random variable (its mean is not necessarily zero and variance is not 

unity).  

Fortunately, the chi-square distribution can be extended to its generalised form: if a multivariate 

random variable   has a multivariate normal distribution with a fixed mean vector   and covariance 

matrix  , then the quadratic form     has a generalised chi-square distribution.
69

 Using the vector-

matrix form, it can be seen that     (   ) (   ) is such a quadratic form if we let      , 

     , and       ([  
      

 ]), where   [       ]
 , and   [       ]

 . Note that 

when making predictions at m new data points using kriging, the predictions are correlated and thus to 

be rigorous    is not a diagonal matrix. We choose to ignore this correlation in order to simplify the 

calculations. 

There is no analytical form of this distribution function, but a numerical procedure exists to calculate 

the following cumulative distribution function (cdf):     (          ) .
69

 This numerical 

procedure involves the numerical computation of multivariate normal distribution based on ellipsoidal 

sets. It computes the multivariate normal value to a given relative accuracy for an ellipsoid at a given 

centre and radius, with a positive definite matrix.  Its mathematical basis can be found in the book by 

Genz and Bretz
70

 while its implementation is given by Sheil and O’Muircheartaigh.
69

 With this cdf, the 

first term in the EI expression in equation (15) can be directly calculated; the second term can be 

calculated through numerical integration.  

 

The maximum value of EI was obtained by using the interior point optimisation method combined 

with the multi-start method, i.e. the optimisation algorithm was randomly initialised multiple times (10 
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times in this study) and the best solution of these multiple optimisation runs is used. The input 

variables corresponding to this maximum indicate the next point where simulation will be carried out. 

The interior point has been extensively discussed in the literature.
71,72,73

 The optimisation process 

eventually results in a new set of simulation data. The meta-model is then updated using the new 

simulation data, with the process repeated until EI is less than a specified threshold in which there is 

no further improvement. Being a probabilistic measure, EI does not guarantee monotonic decrease of 

SSE in each iteration; rather it intends to provide a search direction towards which SSE is likely to 

improve.
39

 When the entire process is completed, we choose the values of the calibrated parameters 

corresponding to the minimum SSE, since this gives the best match between the simulation and 

experimental data. 

 

Case study: CFD simulation of annular jet pump 

The case studies used to illustrate the novel methodology are for the turbulent single-phase flow in a 

straight-type and in a convergent-divergent-type annular jet pump. Generally speaking, the jet pump 

transfers energy from a liquid or gas primary fluid to a secondary fluid. Momentum is transferred from 

the high velocity primary jet flow to the secondary flow of lower velocity.
42,74

 In this case study, both 

the primary and secondary fluid are water. The primary fluid passes through a nozzle where pressure 

energy is converted into kinetic energy. The high kinetic primary fluid mixes with low kinetic energy 

secondary fluid, thus drawing the low kinetic energy to a higher pressure. Recirculation can also be 

observed. The observed recirculation can be explained based on the concept of entrainment. The jet 

flows through the mixing region and expands in diameter due to the entrainment of the secondary 

flow. Recirculation comes into play when all the secondary flow has been entrained before the 

expansion of the jet to reach the walls of the mixing region.
75

 

In the convergent-divergent-type annular jet pump, converging and diverging parts (which are the 

suction chamber and diffuser region respectively) differentiate it from the straight-type. In the 

converging part, there is a decrease in flow pressure, and mixing and recirculation commences here. In 

the diverging part, there is more efficient pressure recovery than in the straight-type. Schematics of the 

jet pumps used, with the dimensions are shown in Figure 2 corresponding to the jet pumps studied by 
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Shimizu et al.
47

 who also reported experimental measurements as outlined in the next section. The 

geometries are symmetrical along the x-axis (axisymmetric). 

[Figure 2 about here] 

 

Experimental data of Shimizu et al.
47

 

Wall pressures in the suction pipe (secondary flow pipe or throat), annular nozzle and delivery pipe 

(outlet) were experimentally taken from the respective pressure tapping and were measured by the 

mercury manometers. These pressure tappings were placed at different locations on the jet wall based 

on a dimensionless spatial location or axial distance, X/Do, where X is the distance measured from the 

nozzle exit and Do is the throat diameter. The obtained pressures at these points were subsequently 

used to compute the pressure coefficient given as: 

   
     

(
   

 

 
)

           (16) 

where   is static pressure at the wall,    is static pressure at the secondary flow stream,   is the 

density of the flow medium and Uj is the jet flow velocity.  

 

In the straight-type annular jet pump case, four different flow ratios were used, where the flow ratio, 

M is the ratio of secondary flow rate to primary flow rate. The flow ratios are 0.01, 0.11, 0.19 and 

0.34. In the convergent-divergent-type, three flow ratios were used, which are 0.04, 0.3 and 0.58. The 

flow ratios were used to investigate their effect on the flow field in the two geometries. More details of 

the experiments can be found in Shimizu et al.
47

, from where the experimental data were extracted 

from their graphs for use in the present study. 
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CFD simulation  

Prior to CFD simulation, a suitable DoE is essential to determine the value of input parameters. Since 

in this case, there is only one parameter to be adjusted for calibration (  )  we can simply choose a 

lower bound (       ) and upper bound (      )  with an intermediate value (       ). All 

these points (lower, intermediate and upper bound) constitute the initial CFD simulation. The turbulent 

parameter,   , spatial location, X/Do and flow ratio, M constitute the meta-model inputs. 

  

The CFD simulation was done using the ANSYS Workbench version 14.5 which comprises of the 

ANSYS Design-modeler, ANSYS Meshing and ANSYS Fluent. The geometries used are shown in 

Figure 2 and 3. The inlet boundary for both the primary flow and secondary flow inlet were defined as 

mass flow inlet, outlet boundary as pressure outlet, the duct wall as wall, and the centreline as axis 

corresponding to a 2D axisymmetric case. The no-slip boundary condition was defined for the wall. 

The meshing was done using ANSYS Meshing in the workbench. For the straight-type, three 

computational grids with grid numbers of approximately 32,000, 58,000 and 113,000 (taken as coarse, 

medium and fine grid respectively) were used to perform mesh or grid independence tests. Likewise 

for the convergent-divergent-type, three computational grids with grid numbers of approximately 

173,000, 367,000 and 629,000 were used as the coarse, medium and fine grid respectively. In both 

cases, the results were grid independent. 

 

The fluid flow in the annular jet pump was assumed to be steady and incompressible under the 

influence of Reynolds Averaged Navier Stokes Equations and continuity equations. The pressure and 

mean velocity fields were coupled by the SIMPLE algorithm.
56

 The k-ε turbulence model was used 

and a comparison was made between three classes of the model such as the standard k-ε, the realizable 

k-ε and Renormalization Group (RNG) k-ε with the standard k-ε chosen for the meta-modelling 

methodology. 

 

Figure 3 and 4 present the simulation results for the straight-type and convergent-divergent pumps 

respectively using the default   . A reasonably good fit with experimental data was obtained within an 
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axial distance, X/Do of 2 and 7. But between X/Do of 0 and 2, a good agreement was not obtained 

especially for M = 0.01 and M = 0.34, hence the need for model calibration to give a better match 

between the simulation model and experimental data. The need for calibration is also clearly seen from 

the plot of CFD simulation versus experimental data as shown in Figure 5a in which it is clear that 

some points do not lie on the 45
o
 line.  

[Figure 3 about here] 

 

It can be seen in Figure 3 that from the jet exit to the mixing region, the wall pressure increases, and 

then flattens out as it moves towards the outlet of the annular jet pump. This trend was observed for all 

the flow ratios. The low pressure obtained within an axial distance, X/Do of 0 and 2 could be due to the 

formation of recirculation zone, the jet expansion and secondary flow mixing zone that partly overlaps 

with it.  

 

For the convergent-divergent-type, the results from the standard k-ε simulation are shown in Figure 4 

and 5b. The need for calibration can be clearly seen with some data points not lying on the 45
o
 line in 

Figure 5b. The pattern of the pressure coefficient was seen to vary with flow ratio more than for the 

straight case (see Figure 4). 

[Figure 4 about here] 

 

[Figure 5 about here] 

 

Meta-models developed from initial CFD data  

The 12 initial CFD runs (three    values combined with four flow ratios) for the straight-type jet pump 

were used to develop a kriging meta-model. Likewise, a kriging meta-model for the convergent-

divergent jet pump was developed from the 9 CFD runs (three    values combined with three flow 

ratios). The LOOCV results, by taking one run out for validation, while the remaining runs (training 

data) are used to build the kriging meta-model are presented in Figure 6. The LOOCV results show 

excellent accuracy for straight-type (Figure 6a). The results for convergent-divergent-type were 

reasonably good as shown in Figure 6b, though that of the straight-type is far better. The reason for 
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this is probably due to the difference in the observed trend between the plot of pressure coefficient 

versus X/Do for both the straight-type and the convergent-divergent-type. That of straight-type in 

Figure 3 gave similar trend, while there is an obvious variability in the plot trend of convergent-

divergent-type (Figure 4) as the flow ratio, M changes. This variability seems to be challenging to the 

kriging meta-model. 

[Figure 6 about here] 

 

Results and discussion 

Straight-type annular jet pump 

The calibration results for     independent on flow ratio and    dependent on flow ratio have been 

presented.    independent on flow ratio implies the    does not vary with flow ratio. So, all the flow 

ratios in the straight-type case study were combined to give a single    for the purpose of calibration. 

In contrast,    dependent on flow ratio implies the    varies with flow ratio. So, calibration was done 

for each flow ratio, which eventually results into different    for different flow ratio. 

 

The calibration results obtained were based on the procedure described previously which involved the 

calculation of EI using SSE. Figure 7a shows the maximum EI which suggests a value of turbulent 

parameter,    = 0.095. This optimum value of    is suggested for all the four flow ratios combined 

together i.e. M = 0.01, 0.11, 0.19 and 0.34. It corresponds to the second iteration where each iteration 

is equivalent to four simulations (from four flow ratios). It is important to mention that the maximum 

EI suggests the    value of 0.095 and the corresponding SSE (or root mean squared error, RMSE) is 

then calculated, which gives the minimum SSE (or minimum RMSE). SSE leads to the generalised 

chi-square distribution, whereas the RMSE does not have a known distribution; therefore SSE is used 

to find the maximum EI. The RMSE, however, is used for ease of interpretation of the results for the 

case study; it has the same units (scale) as the simulated and experimental responses and has been used 

in the literature as a standard measure for model performance.
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A plot of all the RMSE versus number of CFD simulations obtained for each calibration simulation 

iterations is shown in Figure 7b, which clearly depicts the number of CFD simulations at respective 

RMSE values and subsequently at minimum RMSE which gives    = 0.095. This minimum RMSE 

obtained was 0.0193 which was previously 0.0199 from the initial simulation. This could probably be 

due to the fact that four flow ratios were combined, which resulted into an optimum    value of 0.095 

not far from that of the initial simulation, 0.09. The remaining points in Figure 7b indicating other 

numbers of CFD simulations are for confirmatory studies. In essence, we could have stopped at the 

minimum RMSE, but the remaining points indicate no further improvement is obtained. Figure 7b also 

shows that one iteration is equal to four simulations. A plot of CFD simulation (default and calibrated 

model) versus experimental data is given in Figure 7c. The plot shows that at RMSE = 0.0196, the 

data points lie slightly closer to the 45
o
 line as compared with RMSE = 0.0199 which is for the default 

CFD simulation. However, the improvement is not seen in terms of the coefficient of determination, 

R
2
 (0.948 and 0.950 for default CFD model and calibrated model respectively). 

[Figure 7 about here] 

 

The flow ratios were also considered individually in terms of the calibration results which gives 

different values of    which are 0.1385, 0.0935, 0.083 and 0.056 for M = 0.01, 0.11, 0.19, and 0.34 

respectively. The SSE and hence, the root mean square error (RMSE) for each of these    values was 

minimised, hence a better match with experimental data. This is seen in Table 3. The RMSE values 

were taken to three significant figures. 

[Table 3 about here] 

 

The relationship between the use of a single turbulent model parameter    and for    values 

dependent on flow ratio is shown in Figure 8. The best match of the CFD model with experimental 

data was given by    values dependent on flow ratio. This is indicated by the root mean square errors. 

It shows that for better calibration,    has to be dependent on flow ratio. 

[Figure 8 about here] 

Comparison between the proposed meta-model-assisted method and the traditional calibration method 
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for CFD simulation has also been attempted. In principle, the calibration problem can be formulated to 

minimise SSE, but without meta-modelling the optimisation problem needs to be solved directly with 

the optimiser (e.g. a gradient-based method) being able to run the CFD simulation automatically. 

However, to the best of the author’s knowledge (and from a survey of the literature), there is no ready-

to-use tool that can directly calibrate turbulent parameters in CFD. Hence, we used the “trial-and-

error” approach as a benchmark for comparison. It is worth noting that this trial-and-error approach is 

still widely used in the CFD and other simulation communities for model calibration purposes. 

Specifically, the simulation started from the default value for    (0.09), and based upon the mismatch 

between simulation and experimental data, the modeller (in this case the first author) decided the next 

value of    that should be tried. This iteration goes on until the same (within 1% difference) RMSE is 

achieved as the meta-model-assisted approach for a fair comparison. Relying on the modeller’s 

experience, the comparison is subjective; however it does provide a good demonstration (at least 

qualitatively) of how the meta-modelling approach compares with the traditional approach.  

 

The results for the straight-type annular jet pump is given in Table 4 (the case for flow ratio-dependent 

  ). The comparison gives an indication of how much computational time could have been saved 

using the approach proposed in this work. The traditional and the proposed meta-modelling 

approaches utilised 29 and 12 simulation runs, respectively, to arrive at the same minimum RMSE of 

0.0104 which was originally 0.0199. 

[Table 4 about here] 

 

Convergent-divergent-type annular jet pump 

The same methodology was applied to the convergent-divergent annular jet pump case study. 

Calibration was done for    independent on flow ratio, where all the flow ratios, M = 0.04, 0.3 and 

0.58 were combined to give a single    value and also for    dependent on flow ratio, where 

calibration was done for individual flow ratios. For the combined case, the default    value, 0.09 gave 

the best match with experimental data, with minimum RMSE. This corresponds to the first iteration, 

where one iteration is equivalent to three simulations. This can be seen in Figure 9.  
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[Figure 9 about here] 

 

For    dependent on flow ratio, the sum of squared errors, and hence the root mean square error was 

minimised to give better agreement with experimental data. This is seen in Table 5. 

[Table 5 about here] 

 

   dependent on flow ratio gave better match with experimental data as compared with a single   . 

This can be seen in Figure 10 where RMSE reduces from 0.0993 to 0.0835. 

[Figure 10 about here] 

 

The comparison between the traditional CFD calibration method and the proposed approach for the 

convergent-divergent annular jet pump is given in Table 6. Similar to the straight-type jet pump, the 

proposed meta-model-assisted approach could significantly save the computation needed for 

calibration: it used 14 simulation runs (whilst the trial-and-error approach used 25) to arrive at the 

same minimum RMSE of 0.0835. 

[Table 6 about here] 

 

The relationship between    and flow ratio for both case studies considered was obtained as shown in 

Figure 11. It can be seen that the straight-type and convergent-divergent-type both gave exponential 

correlation, with the relationship between    and flow ratio for straight-type being: 

          
                  (17) 

while that of convergent-divergent-type is: 

           
                  (18) 

These two equations (17) and (18) can be used to estimate likely values of    for other flow ratios 

which could give good simulation predictions of the measured parameter (in this case the pressure 

coefficient). 

[Figure 11 about here] 
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Conclusion 

From the foregoing, it can be seen that in the case studies of the straight-type and convergent-

divergent annular jet pump considered, involving one calibration parameter (  ), the objective of the 

research was achieved. The expected improvement which was expressed as a function of the sum of 

squared errors (the objective function to be minimised) helped to suggest values of the calibration 

parameters (  ) to simulate with, thereby reducing the sum of squared errors when compared with the 

default CFD simulation, hence, a better match with experimental data. In addition, the simulation time 

using the proposed approach was reduced as compared to using traditional CFD calibration approach. 

This confirms that the proposed novel methodology of maximising expected improvement to minimise 

the sum of squared errors, for the purpose of calibrating CFD simulations worked. It is a potential 

contribution to CFD simulation studies in different fields of study, as it helps to provide a supportive 

hand in cases where calibration is required.  

It was also observed that in both cases of the annular jet pump, it is better to carry out calibration on 

the basis that    is dependent on flow ratio rather than trying to use a single    value for all the flow 

ratios. The proposed relationship between    and flow ratio can also be used to estimate likely values 

of    for required flow ratios. As only one parameter was considered for calibration in the case 

studies, future study can try to address two or more parameters. For instance, the adjustment of both 

   and    . We also plan to investigate the impact of data quality and model-reality mismatch on the 

calibration results.  
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Table Legends 

Table 1. Application of meta-modelling in different fields 

 

Table 2. Default k-ε Turbulence models constant 

 

Table 3. Calibration results for straight-type annular jet pump 

 

Table 4. Comparison between traditional CFD and the proposed approach (straight-type) 

 

Table 5. Calibration results for convergent-divergent annular jet pump 

 

Table 6. Comparison between traditional CFD and the proposed approach 

(convergent-divergent type) 

 

Figure Legends 

Figure 1. Overview of calibration procedure. 

 

Figure 2. Schematics of the annular jet pump. (a) Straight-type; (b) Convergent-divergent-type. 

 

Figure 3. Pressure distribution variation with axial distance for straight-type 

annular jet pump k-ε model. 

 

Figure 4. Pressure distribution variation with axial distance for 

convergent-divergent-type annular jet pump k-ε model. 

 

Figure 5. CFD simulation versus experimental data for the standard k-ε model (Parameter measured: 

Cp which is dimensionless). (a) Straight-type (b) Convergent-divergent-type. 

 



28 

 

Figure 6. Leave-one-out cross validation results. (a) Straight-type 

(b) Convergent-divergent-type. 

 

Figure 7. Straight-type calibration results:    independent on flow ratio. 

 

Figure 8. Default   , and calibration using single    and 

dependence of    on flow ratio, M for straight-type. 

 

Figure 9. Convergent-divergent-type calibration results:    independent on flow ratio. 

 

Figure 10. Single    and calibration with    dependent on flow ratio for 

convergent-divergent type. 

 

Figure 11. Relationship between    and flow ratio. 
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Table 1. Application of meta-modelling in different fields 

Research Area Aspect studied Reference 

Mechanical and 

aerospace 

systems 

 Aircraft structural performance 

 Aerodynamics Optimisation 

 Optimising a flow diffuser using CFD 

 Optimising an aerospace nozzle in a rocket 

engine 

 Optimisation of helicopter rotor blades 

10,11 

12,13,14,15 

16,17 

 

18,19 

20 

Water resources 

management 

 Optimisation and uncertainty assessment of 

strongly non-linear groundwater models 

 Water distribution system optimisation 

 Water quality modelling 

 Soil vapour extraction system design 

 Calibration of rainfall runoff model 

 Simulation runs reduction in uncertainty 

estimation in hydrological modelling 

 Optimisation of flood control detention dams 

 Water distribution system design  

 

2 

21 

22,23 

24 

25,26 

 

27 

28 

26 

Civil 

engineering 

 

Chemical 

engineering 

 Development of a meta-model based approach 

for integrated building energy simulation 

 Reliability analysis of structures 

 Design of vacuum/pressure swing adsorption 

systems 

 

5 

29 

 

30 
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Table 2. Default k-ε Turbulence models constant
57

 

Model Parameters Standard k-ε Realizable k-ε RNG k-ε 

    1.44 1.44 1.42 

    1.92 1.9 1.68 

   0.09 - 0.0845 

   1.0 1.0 - 

   1.3 1.2 - 
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Table 3. Calibration results for straight-type annular jet pump 

 Standard k-ε model Calibrated model 

M = 0.01   

   0.09 0.1385 

RMSE 0.0255 0.00325 

M = 0.11   

   0.09 0.0935 

RMSE 0.00450 0.00448 

M = 0.19   

   0.09 0.083 

RMSE 0.00700 0.00512 

M = 0.34   

   0.09 0.056 

RMSE 0.0270 0.0195 
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Table 4. Comparison between traditional CFD and the proposed approach (straight-type) 

Method Number of simulation runs Total simulation time 

Traditional CFD 29 145 hours 

Proposed approach 12 60 hours 
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Table 5. Calibration results for convergent-divergent annular jet pump 

  Standard k-ε model Calibrated model 

M = 0.04     

   0.09 0.1294 

RMSE 0.1128 0.0391 

M = 0.3     

   0.09 0.0888 

RMSE 0.1284 0.1279 

M = 0.58     

   0.09 0.0524 

RMSE 0.1088 0.0597 
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Table 6. Comparison between traditional CFD and the proposed approach  

(convergent-divergent type) 

Method Number of simulation runs Total simulation time 

Traditional CFD 25 125 hours 

Proposed approach 14 70 hours 
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Figure 1. Overview of calibration procedure. 
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Figure 2. Schematics of the annular jet pump. (a) Straight-type; (b) Convergent-divergent-type. 
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Figure 3. Pressure distribution variation with axial distance for straight-type  

annular jet pump k-ε model. 
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Figure 4. Pressure distribution variation with axial distance for  

convergent-divergent-type annular jet pump k-ε model. 
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Figure 5. CFD simulation versus experimental data for the standard k-ε model (Parameter measured: 

Cp which is dimensionless). (a) Straight-type (b) Convergent-divergent-type. 
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Figure 6. Leave-one-out cross validation results. (a) Straight-type  

(b) Convergent-divergent-type. 
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Figure 7. Straight-type calibration results:    independent on flow ratio. 
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Figure 8. Default   , and calibration using single    and 

dependence of    on flow ratio, M for straight-type. 
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Figure 9. Convergent-divergent-type calibration results:    independent on flow ratio. 



44 

 

 

Figure 10. Single    and calibration with    dependent on flow ratio for  

convergent-divergent type. 
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Figure 11. Relationship between    and flow ratio. 
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