Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(6Z)-4-Bromo-6-\{[(2-hydroxyethyl)-amino]methylidene\}cyclohexa-2,4-dien1 -one

Shaaban K. Mohamed, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {b* }}$ Antar A. Abd Elhamid, ${ }^{\text {a }}$ Kuldip Singh ${ }^{\mathrm{c}}$ and Herman Potgieter ${ }^{\text {d }}$
${ }^{\text {a }}$ Chemistry and Environmental Science Division, School of Science, Manchester Metropolitan University, England, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {c }}$ Department of Chemistry, University of Leicester, Leicester, England, and ${ }^{\mathbf{d}}$ School of Research, Enterprise \& Innovation, Manchester Metropolitan University, England
Correspondence e-mail: akkurt@erciyes.edu.tr

Received 2 March 2012; accepted 5 March 2012

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.041 ; w R$ factor $=0.092$; data-to-parameter ratio $=16.2$.

The title molecule, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$, excluding methylene H atoms and the $\mathrm{C}-\mathrm{OH}$ group, is essentially planar, with a maximum deviation of 0.037 (2) \AA for the N atom. The $\mathrm{N}-$ $\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle is $-63.1(3)^{\circ}$. The molecular structure is stabilized by a weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) hydrogen bond, forming an $S(6)$ motif. In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network.

Related literature

For background to aminoalcohol derivatives and their bioactivity, see: Thomas et al. (1990); Rubinstein \& Svendsen (1994); Erdemir (2012). For the synthesis of a similar structure, see: Chakravarthy \& Chand (2011). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$
$M_{r}=244.08$

Monoclinic, $P 2_{1} / n$
$a=4.4534$ (17) £
$Z=4$
$b=11.523$ (4) \AA
Mo $K \alpha$ radiation
$b=11.523$ (4) \AA
$c=18.212$ (7) \AA
$\mu=4.39 \mathrm{~mm}^{-1}$
$\beta=95.703(7)^{\circ}$
$T=150 \mathrm{~K}$
$\beta=95.703(7)^{\circ}{ }_{\circ}^{3}$
$V=930.0(6) \mathrm{A}^{3}$
$0.25 \times 0.15 \times 0.05 \mathrm{~mm}$

Data collection

Bruker APEX 2000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.407, T_{\text {max }}=0.811$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.092$
$S=0.96$
1930 reflections

7386 measured reflections
1930 independent reflections 1442 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.078$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.86	1.91	2.581 (3)	134
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.86	2.672 (4)	173
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{Ol}^{\text {ii }}$	0.97	2.54	3.341 (4)	140

Symmetry codes: (i) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors are grateful to the Egyptian Higher Education Authority for their financial support of this research project. Our thanks are also extended to Manchester Metropolitan University for facilitating this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2469).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chakravarthy, R. D. \& Chand, D. (2011). J. Chem. Sci. 123, 187-199.
Erdemir, S. (2012). J. Mol. Struct. 1007, 235-241.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Rubinstein, H. \& Svendsen, J. S. (1994). Acta Chem. Scand. 48, 439-444.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thomas, G. J. (1990). Recent Progress in the Chemical Synthesis of Antibiotics, edited by G. Lukacs \& M. Ohno, p. 468. Berlin: Springer Verlag.

supporting information

Acta Cryst. (2012). E68, o1020 [doi:10.1107/S1600536812009749]

(6Z)-4-Bromo-6-\{[(2-hydroxyethyl)amino]methylidene\}cyclohexa-2,4-dien-1-one

Shaaban K. Mohamed, Mehmet Akkurt, Antar A. Abd Elhamid, Kuldip Singh and Herman Potgieter

S1. Comment

The amino alcohol functionality is present in many classes of compounds having chemotherapeutic activity (Erdemir, 2012; Rubinstein \& Svendsen, 1994; Thomas et al., 1990). In addition, phenolic compounds containing the aminoalcohol grouping in ortho positions act as excellent bidentate ligands for the formation of several metal complexes (Chakravarthy \& Chand, 2011).

As an extension of our work on the reactivity of primary aminoalcohols in three-component reactions, the title compound has been isolated as a secondary product from the one-pot reaction of (2E)-3-(4-methylphenyl)-1-phenyl-prop-2-en-1-one (chalcone), 5-bromo-2-hydroxybenzaldehyde and aminoethanol under mild conditions.
As shown in Fig. 1, excluding methylene H atoms and the $\mathrm{C}-\mathrm{OH}$ group, the molecule is essentially planar, with a maximum deviation of 0.037 (2) \AA for N1. The N1-C8-C9-O2 torsion angle is -63.1 (3) ${ }^{\circ}$. The bond lengths (Allen et al., 1987) and angles have normal values.

The molecular structure is stabilized by a weak intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which generates an $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995; Etter et al., 1990). In addition, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1, Fig. 2) contribute to the stability of the crystal structure, linking the molecules into a three-dimensional network.

S2. Experimental

The title compound has been obtained as a secondary product from a multicomponent reaction mixture of (2E)-3-(4-methylphenyl)-1-phenylprop-2-en-1-one (0.01 mol), 5-bromo-2-hydroxybezaldehyde (0.01 mol) and aminoethanol $(0.01 \mathrm{~mol})$. The mixture was heated at 353 K in ethanol for 4 h , monitored by TLC until the reaction was completed and then cooled to room temperature. The solvent was evaporated under vacuum and the residual oil was triturated with water to afford a brown precipitate which was filtered off, washed with water and dried in a desiccator. Pale yellow plate crystals for x-ray diffraction were obtained by dissolving the product in ethanol at room temperature and leaving it to evaporate slowly over four days. 43% yield; m.p. 355 K .

S3. Refinement

H atoms were positioned geometrically and refined using as riding model with $\mathrm{Csp}^{2}-\mathrm{H}=0.93 \AA, \mathrm{C}$ (methylene) - $\mathrm{H}=$ $0.97 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA ; U_{\text {iso }}(\mathrm{H})=\mathrm{x} U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}, \mathrm{O})$, where $\mathrm{x}=1.5$ for hydroxyl H and 1.2 for all other H atoms.

Figure 1

The molecular structure, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2

View of the packing down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
(6Z)-4-Bromo-6-\{[(2-hydroxyethyl)amino]methylidene\}cyclohexa- 2,4-dien-1-one

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrNO}_{2}$
$M_{r}=244.08$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn

$$
\begin{aligned}
& a=4.4534(17) \AA \\
& b=11.523(4) \AA \\
& c=18.212(7) \AA \\
& \beta=95.703(7)^{\circ}
\end{aligned}
$$

$V=930.0(6) \AA^{3}$
$Z=4$
$F(000)=488$
$D_{\mathrm{x}}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 972 reflections

Data collection

Bruker APEX 2000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.407, T_{\text {max }}=0.811$

$$
\begin{aligned}
& \theta=3.5-28.3^{\circ} \\
& \mu=4.39 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Plate, pale yellow } \\
& 0.25 \times 0.15 \times 0.05 \mathrm{~mm} \\
& \\
& 7386 \text { measured reflections } \\
& 1930 \text { independent reflections } \\
& 1442 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.078 \\
& \theta_{\max }=26.5^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-5 \rightarrow 5 \\
& k=-14 \rightarrow 14 \\
& l=-22 \rightarrow 22
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.092$
$S=0.96$
1930 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0441 P)^{2}\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.81$ e \AA^{-3}

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F^{2} for ALL reflections except those flagged by the user for potential systematic errors.
Weighted R-factors $w R$ and all goodnesses of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The observed criterion of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $-R$-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Br1	$1.18634(9)$	$0.87511(3)$	$0.62311(2)$	$0.0421(1)$
O1	$0.7253(5)$	$0.62015(18)$	$0.34691(14)$	$0.0337(7)$
O2	$0.4433(6)$	$1.0017(2)$	$0.24200(13)$	$0.0405(8)$
N1	$0.3527(5)$	$0.7886(2)$	$0.31526(14)$	$0.0281(8)$
C1	$1.0339(8)$	$0.7961(3)$	$0.53566(17)$	$0.0307(10)$
C2	$1.1550(7)$	$0.6880(3)$	$0.51979(19)$	$0.0328(11)$
C3	$1.0572(8)$	$0.6302(3)$	$0.45664(19)$	$0.0306(10)$
C4	$0.8236(7)$	$0.6747(3)$	$0.40514(19)$	$0.0267(9)$
C5	$0.7034(7)$	$0.7865(3)$	$0.42349(17)$	$0.0263(10)$
C6	$0.8125(7)$	$0.8450(3)$	$0.48844(18)$	$0.0289(10)$
C7	$0.4695(7)$	$0.8372(3)$	$0.37491(18)$	$0.0277(10)$

C8	$0.1263(7)$	$0.8437(3)$	$0.26310(19)$	$0.0326(11)$
C9	$0.2721(8)$	$0.9117(3)$	$0.20525(18)$	$0.0314(11)$
H1	0.41130	0.71970	0.30550	0.0340^{*}
H2	1.30420	0.65520	0.55270	0.0390^{*}
H2A	0.54910	1.03260	0.21320	0.0610^{*}
H3	1.14560	0.55950	0.44680	0.0370^{*}
H6	0.73370	0.91700	0.49920	0.0350^{*}
H7	0.39700	0.90970	0.38700	0.0330^{*}
H8A	0.00310	0.89540	0.28960	0.0390^{*}
H8B	-0.00450	0.78470	0.23920	0.0390^{*}
H9A	0.40180	0.86150	0.17950	0.0380^{*}
H9B	0.11890	0.94400	0.16950	0.0380^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0616(3)$	$0.0314(2)$	$0.0309(2)$	$-0.0066(2)$	$-0.0074(2)$	$0.0005(2)$
O1	$0.0400(13)$	$0.0243(12)$	$0.0361(13)$	$0.0005(10)$	$0.0008(10)$	$-0.0076(11)$
O2	$0.0487(15)$	$0.0422(15)$	$0.0306(13)$	$-0.0192(12)$	$0.0033(11)$	$-0.0005(12)$
N1	$0.0275(15)$	$0.0242(14)$	$0.0326(15)$	$-0.0018(11)$	$0.0035(12)$	$0.0017(12)$
C1	$0.0412(19)$	$0.0245(17)$	$0.0261(17)$	$-0.0088(15)$	$0.0017(14)$	$0.0002(14)$
C2	$0.0353(19)$	$0.0257(18)$	$0.0366(19)$	$-0.0015(15)$	$-0.0010(15)$	$0.0105(15)$
C3	$0.0368(18)$	$0.0183(15)$	$0.0369(19)$	$-0.0004(15)$	$0.0045(14)$	$0.0048(14)$
C4	$0.0269(16)$	$0.0221(16)$	$0.0321(17)$	$-0.0048(14)$	$0.0080(13)$	$0.0021(15)$
C5	$0.0285(17)$	$0.0216(16)$	$0.0295(17)$	$-0.0022(13)$	$0.0067(13)$	$0.0029(13)$
C6	$0.0352(18)$	$0.0221(17)$	$0.0300(17)$	$-0.0014(14)$	$0.0068(14)$	$-0.0014(13)$
C7	$0.0304(17)$	$0.0227(16)$	$0.0309(17)$	$-0.0036(14)$	$0.0080(14)$	$0.0012(14)$
C8	$0.0264(17)$	$0.0322(19)$	$0.0382(19)$	$-0.0009(14)$	$-0.0023(14)$	$-0.0010(16)$
C9	$0.0357(19)$	$0.0294(18)$	$0.0286(18)$	$-0.0004(15)$	$0.0008(14)$	$-0.0013(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{C} 1$	$1.900(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.406(5)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.272(4)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.423(5)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.415(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.511(5)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{~N} 1-\mathrm{C} 8$	$1.460(4)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{~N} 1-\mathrm{C} 7$	$1.285(4)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{H} 1$	0.8600	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.399(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 6$	$1.364(5)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.363(5)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9700
$\mathrm{C} 3-\mathrm{C} 4$	$1.425(5)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	$1.447(5)$		
		$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.00
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.00	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.00
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$123.8(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.00

C8-N1-H1	118.00	C4-C3-H3	119.00
C2-C1-C6	120.5 (3)	C1-C6-H6	120.00
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2$	119.1 (2)	C5-C6-H6	120.00
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 6$	120.4 (3)	N1-C7-H7	118.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.8 (3)	C5-C7-H7	118.00
C2-C3-C4	122.1 (3)	N1-C8-H8A	109.00
O1-C4-C3	122.6 (3)	N1-C8-H8B	109.00
O1-C4-C5	121.9 (3)	C9-C8-H8A	109.00
C3-C4-C5	115.5 (3)	C9-C8-H8B	109.00
C6-C5-C7	119.8 (3)	H8A-C8-H8B	108.00
C4-C5-C6	121.1 (3)	O2-C9-H9A	110.00
C4-C5-C7	119.1 (3)	O2-C9-H9B	110.00
C1-C6-C5	120.0 (3)	C8-C9-H9A	110.00
N1-C7-C5	123.8 (3)	C8-C9-H9B	110.00
N1-C8-C9	111.3 (3)	H9A-C9-H9B	108.00
O2-C9-C8	107.4 (3)		
C8-N1-C7-C5	-176.0 (3)	O1-C4-C5-C6	179.3 (3)
C7-N1-C8-C9	89.7 (4)	C3-C4-C5-C7	180.0 (3)
Br1-C1-C6-C5	179.3 (2)	O1-C4-C5-C7	-0.3 (5)
C2-C1-C6-C5	0.3 (5)	C3-C4-C5-C6	-0.5 (5)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-178.2 (3)	C4-C5-C6-C1	-0.5 (5)
C6-C1-C2-C3	0.8 (5)	C6-C5-C7-N1	-178.5 (3)
C1-C2-C3-C4	-1.8 (5)	C7-C5-C6-C1	179.2 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	-178.2 (3)	C4-C5-C7-N1	1.1 (5)
C2-C3-C4-C5	1.6 (5)	N1-C8-C9-O2	-63.1 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$	0.86	1.91	$2.581(3)$	134
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.86	$2.672(4)$	173
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots 1^{\mathrm{ii}}$	0.97	2.54	$3.341(4)$	140

Symmetry codes: (i) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

