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Abstract 10 

Exploration in anything but the simplest of reservoirs is commonly more challenging because 11 

of the intrinsic variability in rock properties and geological characteristics that occur at all 12 

scales of observation and measurement. This variability, which often leads to a degree of 13 

unpredictability, is commonly referred to as “heterogeneity”, but rarely is this term defined. 14 

Although it is widely stated that heterogeneities are poorly understood, researchers have 15 

started to investigate the quantification of various heterogeneities and the concept of 16 

heterogeneity as a scale-dependent descriptor in reservoir characterization.  17 

Based on a comprehensive literature review we define “heterogeneity” as the variability of an 18 

individual or combination of properties within a specified space and / or time, and at a 19 

specified scale. When investigating variability, the type of heterogeneity should be defined in 20 

terms of grain - pore components and the presence or absence of any dominant features 21 

(including sedimentological characteristics and fractures). Hierarchies of geologic 22 

heterogeneity can be used alongside an understanding of measurement principles and 23 

volumes of investigation to ensure we understand the variability in a dataset. 24 

Basic statistics can be used to characterise variability in a dataset, in terms of the amplitude 25 

and frequency of variations present. A better approach involves heterogeneity measures since 26 

these can provide a single value for quantifying the variability, and provide the ability to 27 

compare this variability between different datasets, tools / measurements, and reservoirs. We 28 

use synthetic and subsurface datasets to investigate the application of the Lorenz Coefficient, 29 
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Dykstra-Parsons Coefficient and the coefficient of variation to petrophysical data – testing 30 

assumptions and refining classifications of heterogeneity based on these measures.  31 
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Introduction 46 

Petrophysics is the study of the (physical and chemical) rock properties and their interactions 47 

with fluids (Tiab & Donaldson 2004). We can define a number of petrophysical properties, 48 
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for example porosity, saturation, and permeability, and many of these depend on the 49 

distribution of other properties such as mineralogy, pore size, or sedimentary fabric, and on 50 

the chemical and physical properties of both the solids and fluids. Consequently 51 

petrophysical properties can be fairly constant throughout a homogeneous reservoir or they 52 

can vary significantly from one location to another, in an inhomogeneous or heterogeneous 53 

reservoir. This variation would be relatively easy to describe if petrophysical analysis was 54 

only applied at a single scale and to a constant measurement volume within the reservoir. 55 

While many petrophysical measurements are typically made in the laboratory at a core plug 56 

scale (cm) or within the borehole at a log scale (m), fluid distribution is controlled at the pore 57 

scale (nm to mm) by the interaction of fluids and solids through wettability, surface tension 58 

and capillary forces, at the core scale by sedimentary facies, fabrics or texture (mm to m), and 59 

at bed-to-seismic scales by the architecture and spatial distribution of geobodies and 60 

stratigraphic elements (m to kms). Note we use the words fabric and texture here to indicate 61 

generic spatial organisation or patterns. At each scale of measurement various heterogeneities 62 

may exist, but it is important to note that a unit which appears homogeneous at one scale may 63 

be shown to be heterogeneous at a finer-scale, and vice versa. Clearly, as more detailed 64 

information is obtained, reservoir characterisation and the integration of the various data 65 

types can become increasingly complex. It is important to fully understand the variability and 66 

spatial distribution of petrophysical properties, so that we can understand whether there is any 67 

pattern to the variability, and appreciate the significance of simple averages used in geologic 68 

and simulation modelling. This is especially true in the case of complex hydrocarbon 69 

reservoirs that have considerable variability. Carbonate reservoirs often fall into this 70 

category, and the term heterogeneous is often used to describe a reservoir that is complex and 71 
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evades our full understanding. Indeed, an early definition states heterogeneous as meaning 72 

extraordinary, anomalous, or abnormal (Oxford English Dictionary; Simpson & Weiner 73 

1898). 74 

Most, if not all, of the literature on reservoir characterisation and petrophysical analysis refers 75 

to the heterogeneous nature of the reservoir under investigation. Heterogeneity appears to be 76 

a term that is readily used to suggest the complex nature of the reservoir, and authors often 77 

assume the reader has a pre-existing knowledge and understanding of such variability. No 78 

single definition has been produced and consistently applied. Researchers have started to 79 

investigate the quantification of various heterogeneities and the concept of heterogeneity as a 80 

scale-dependent descriptor in reservoir characterization (Frykman 2001; Jennings & Lucia 81 

2003; Pranter et al. 2005; Westphal et al. 2004). 82 

Here we review what heterogeneity means, and how it can be described in terms of 83 

geological attributes before discussing how the scale of geological heterogeneity can be 84 

related to the measurement volumes and resolution of traditional subsurface data types. We 85 

then discuss using a variety of statistical techniques for characterising and quantifying 86 

heterogeneity, focussing on petrophysical heterogeneities. We focus here on the principles 87 

and controls on the statistics and measures, before applying these to real reservoir data in four 88 

case studies. In doing so, we consider approaches used in a range of scientific disciplines 89 

(primarily the environmental sciences and ecology) to explore definitions and methods which 90 

may be applicable to petrophysical analysis. These statistical techniques are then applied to 91 

reservoir sub-units to investigate their effectiveness for quantifying heterogeneity in reservoir 92 

datasets. 93 
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Defining Heterogeneity 94 

Heterogeneity refers to the quality or condition of being heterogeneous, and was first defined 95 

in 1898 as difference or diversity in kind from other things, or consisting of parts or things 96 

that are very different from each other (Oxford English Dictionary; Simpson & Weiner 97 

1989). A more modern definition is something that is diverse in character or content (Oxford 98 

Dictionaries, 2014). This broad definition is quite simple and does not comment on the spatial 99 

and temporal components of variation, nor does it include a consideration of directional 100 

dependence, often referred to as isotropy and anisotropy. Other words or terms that may be 101 

used with, or instead of, heterogeneity include; complexity, deviation from a norm, 102 

difference, discontinuity, randomness, and variability.  103 

Nurmi et al. (1990) suggest that the distinction between homogeneous and heterogeneous is 104 

often relative, and is based on economic considerations. This highlights how heterogeneity is 105 

a somewhat variable concept which can be changed or re-defined to describe situations that 106 

arise during production from a reservoir, and is heavily biased by the analyst’s experience 107 

and expectations. Li and Reynolds (1995) and Zhengquan et al. (1997) state that 108 

heterogeneity is defined as the complexity and/or variability of the system property of interest 109 

in three-dimensional space, while Frazer et al. (2005) define heterogeneity, within an 110 

ecological model, as variability in the density of discrete objects or entities in space. These 111 

definitions suggest that heterogeneity does not necessarily refer to the overall system, or 112 

individual rock/reservoir unit, but instead may be dealt with separately for individual units, 113 

properties, parameters and measurement types.  114 
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Frazer et al. (2005) commented that heterogeneity is an inherent, ubiquitous and critical 115 

property that is strongly dependent on scales of observation and the methods of measurement 116 

used. They studied forest canopy structure and stated that heterogeneity is the degree of 117 

departure from complete spatial randomness towards regularity and uniformity. This may 118 

seem, at first, counterintuitive because heterogeneity is commonly regarded as being 119 

complete spatial randomness. Here, the introduction of regular features, such as bedding in a 120 

geological context, adds to the heterogeneous nature of the formation in a structured or 121 

anisotropic manner. Nurmi et al. (1990) suggest that heterogeneity, in electrical borehole 122 

images, refers to elements that are distributed in a non-uniform manner or composed of 123 

dissimilar elements/constituents within a specific volume. Therefore, as well as looking at a 124 

specific element or property, it is also suggested that the volume of investigation influences 125 

heterogeneity, alluding to the scale-dependence of heterogeneities. Interestingly, Dutilleul 126 

(1993) comments that a shift of scale may create homogeneity out of heterogeneity, and vice-127 

versa, and suggests that heterogeneity is the variation in density of measured points compared 128 

to the variation expected from randomly spread points. In a discussion of the relationship 129 

between scale and heterogeneity in pore size, Dullien (1979) suggests that to be a truly 130 

homogeneous system random subsamples of a population should have the same local mean 131 

values. Lake and Jensen (1991) provide a flow-based definition in their review of 132 

permeability heterogeneity modelling within the oil industry. In this latter case, heterogeneity 133 

is defined as the property of the medium that causes the flood front to distort and spread as 134 

displacement proceeds; in this context the medium refers to the rock, and fluid front is the 135 

boundary between displacing and displaced fluids. Thus many authors provide the foundation 136 

in which we begin to see that heterogeneity may be a quantifiable term. 137 
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Pure homogeneity, with regard to a reservoir rock, can be visualised in a formation that 138 

consists of (1) a single mineralogy with (2) all grains of similar shapes and sizes with (3) no 139 

spatial organization or patterns present; in this example, similar grain shapes and sizes, 140 

together with lack of spatial patterns would lead to a uniform distribution of porosity and 141 

permeability. Therefore, ignoring the scalar component of heterogeneity for a moment, there 142 

are two contrasting examples of heterogeneity in a reservoir rock (Figure 1). The first 143 

example is a formation of consistent mineralogy and grain characteristics that has various 144 

spatial patterns (for example bedding, foresets, syn-sedimentary faulting, or simply grain 145 

packing). The second example has no spatial organisation (it is massive) but has variable 146 

mineralogy and grain size and shape, i.e. it is a poorly sorted material. Both are clearly not 147 

homogeneous but which has the stronger heterogeneity? Quantifying the degree of 148 

heterogeneity would enable these two different systems to be differentiated from each other, 149 

and in turn these values may be related to other characteristics such as reservoir quality. In 150 

attempting to quantify heterogeneity we can consider several approaches. It is probably best, 151 

however, to start by defining the degree of heterogeneity in relation to the nature of the 152 

investigation; for example in a study of fluid flow, sedimentological structures may be of 153 

more importance than variation in mineralogy. In contrast in an investigation of downhole 154 

gamma ray variability the mineralogical variability (or strictly chemical variability of 155 

potassium, thorium and uranium) would be more relevant than any spatial variation.  156 

Lake and Jensen (1991) suggest that there are five basic types of heterogeneity in earth 157 

sciences; (1) Spatial - lateral, vertical and three-dimensional, (2) Temporal - one point at 158 

different times, (3) Functional - taking correlations and flow-paths into account, (4) Structural 159 
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- either unconformities or tectonic elements, such as faults and fractures, and (5) 160 

Stratigraphic. Formations may have regular and penetrative features such as bedding and 161 

cross-bedding, or alternatively less regularly distributed features, including ripples, 162 

hummocky cross-bedding, and bioturbation. The intensity, frequency and orientation of such 163 

features may additionally reflect repetition or repetitive patterns through the succession. A 164 

heterogeneity, in terms of the grain component, may appear rhythmic or repeated, patchy, 165 

gradational / transitional, or again it may be controlled by depositional structures (Nurmi et 166 

al. 1990).  167 

Homogeneity and heterogeneity can be considered as end members of a continuous spectrum, 168 

defining the minimum and maximum heterogeneity, with zero heterogeneity equating to 169 

homogeneity. There are a number of characteristics that occur in both end-member examples 170 

provided above (for example vertical rhythmicity in terms of bedding or grain size 171 

distribution). Neither end-member is obviously more heterogeneous than the other; there may 172 

indeed be a relative scale difference between the two examples. Some researchers may 173 

perceive a regularly structured system, for example a laminated or bedded reservoir, as 174 

homogeneous because these structures are spatially continuous and occur throughout the 175 

formation. The presence of structures within a formation is, however, more commonly 176 

interpreted as a type of heterogeneity, regardless of how regular their distribution. In this 177 

scenario, the structures represent deviation from the homogeneous mono-mineralic ‘norm’. 178 

Equally the concept of increased heterogeneity could be viewed as an increase in the random 179 

mixing of components of a formation. Here, as the formation becomes more heterogeneous 180 

there is less spatial organization present, so that the formation has the same properties in all 181 



Quantifying petrophysical heterogeneity.  Fitch et al. 2014 

10 

 

directions, i.e., it is isotropic. Although the rock is more heterogeneous, the actual reservoir 182 

properties (such as the porosity distribution) become more homogeneous throughout the 183 

reservoir as a whole.  184 

If grain-size alone varies, two possible extremes of heterogeneity may occur. An example 185 

where there is a complete mix of grain sizes that show no evidence of sorting would be 186 

classified as a heterogeneous mixture in terms of its components. The mixture itself would 187 

appear isotropic, however, because on a larger-scale the rock properties would be the same in 188 

all directions (in the sense of a transverse isotropic medium). If this mixture of grain sizes 189 

was completely unsorted then the grains would be completely randomly distributed and the 190 

rock would appear homogeneous at a larger scale. In another example where a formation has 191 

continuous and discontinuous layers of different grain sizes, the individual layers of similar 192 

grain size may appear homogeneous, however if looking at a contact between two layers, or 193 

the complete formation, then the heterogeneity will be much more obvious. This may be 194 

classed as a ‘structural’ or ‘spatial’ heterogeneity, again depending upon the scale of 195 

investigation. 196 

When defining a measure of how heterogeneous a system property is, it is important to 197 

consider only those components of heterogeneity that have a significant impact on reservoir 198 

properties and production behaviour / reservoir performance. This leads to the discussion of 199 

heterogeneity as a scale-dependent descriptor in the next section. 200 

Scale and measurement resolution 201 
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Regardless of reservoir type, geological heterogeneity exists across a gradational continuum 202 

of scales (Nichols 1999; Moore 2001). Observations from outcrop analogues have been used 203 

to characterise and quantify these features (examples for carbonate outcrops include Mutti et 204 

al. 1996; Pomar et al. 2002; Badenas et al. 2010; Cozzi et al. 2010; Koehrer et al. 2010; 205 

Palermo et al, 2010; Pierre et al. 2010; Amour et al. 2012). Hierarchies of heterogeneity are 206 

now frequently used to classify these heterogeneities over levels of decreasing magnitude 207 

within a broad stratigraphic framework. Heterogeneity hierarchies have been developed for 208 

wave-influenced shallow marine reservoirs (e.g. Kjønsvik et al. 1994; Sech et al. 2009), 209 

fluvial reservoirs (e.g. Jones et al. 1995), fluvio-deltaic reservoirs (e.g. Choi et al. 2011), and 210 

carbonate reservoirs (e.g. Jung & Aigner 2012). These hierarchies break the continuum of 211 

scales of geologic and petrophysical properties into key classes or ranges.  212 

A single property can differ across all scales of observation. Porosity in carbonates is an 213 

example of a geological property that can exist, and vary, over multiple length-scales. In 214 

carbonate rocks pore size can be seen to vary from less than micrometre-size micro-porosity 215 

(e.g., North Sea chalks; Brasher & Vagle 1996) to millimetre-scale inter-particle and 216 

crystalline porosity (e.g., carbonate reservoirs of the Middle East, Lucia 1995, Ramamoorthy 217 

et al. 2008; offshore India, Akbar et al. 1995; and the microbialite build-ups of offshore 218 

Brazil, Rezende et al. 2013) . Vugs are commonly documented to vary in size from 219 

millimetre to tens of centimetres (e.g., Nurmi et al. 1990). Additional dissolution and erosion 220 

may create huge caves, or “mega-pores” (often being metres to kilometres in size, e.g., Akbar 221 

et al. 1995; Kennedy 2002). 222 
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In order to investigate heterogeneity at different scales and resolutions, the concept of “scale” 223 

and how it relates to different parameters is considered. Figure 2 illustrates the scales of 224 

common measurement volumes and their relationship to geological features observed in the 225 

subsurface. While geological attributes exist across the full range of length-scale (mm – km 226 

scale; e.g. van Wagoner et al. 1990; Jones et al. 1995; Kjønsvik et al. 1994; Frykman and 227 

Deutsch 2002; Sech et al. 2009; Choi et al. 2011; and Jung & Aigner 2012), subsurface 228 

measurements typically occur at specific length-scales depending upon the physics of the tool 229 

used. For example, seismic data at the kilometre scale, well logs at the centimetre to metre 230 

scale, and petrophysical core measurements at millimetre to centimetre scales. In general the 231 

insitu borehole and core measurement techniques are considered to interrogate a range of 232 

overlapping volumes, but in reality a great deal of “white space” exists between individual 233 

measurement volumes (Figure 2). How a measurement relates to the scale of the underlying 234 

geological heterogeneity will be a function (and limitation) of the resolution of the 235 

measurement device or tool used. The analyst or interpreter should ensure that appropriate 236 

assumptions are outlined and documented.  237 

The issue of how the scale and resolution of a measurement will be impacted by 238 

heterogeneity can be represented through the concept of a Representative Elementary 239 

Volume (REV) to characterise the point when increasing the size of a data population no 240 

longer impacts the average, or upscaled, value obtained (Bear 1972, Bachmat & Bear 1987). 241 

The REV concept lends itself to an extensive discussion on upscaling and the impact of 242 

heterogeneity on flow behaviour, which are beyond the current scope of this study. Examples 243 
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of previous studies into REV, sampling and permeability heterogeneity include Haldorsen 244 

(1986), Corbett et al. (1999), Nordahl & Ringrose (2008), Vik et al. (2013).  245 

Different wireline log measurements, for example, will respond to, and may capture, the 246 

different parts or scales of geological heterogeneity (Figure 2C and 3). The geological 247 

features that exist below the resolution of tools shown in Figure 2 will in effect be averaged 248 

out in the data (Ellis & Singer 2007). Figure 3 shows how the heterogeneity of a formation 249 

can vary depending on the scale at which we sample the formation. Examples are shown for 250 

three distinct geological features; beds of varying thickness only (Figure 3A), a set of graded 251 

beds, again, of varying thicknesses (Figure 3B), and a “large” and “small” core sample for 252 

two sandstone types (Figure 3C). A quantitative assessment of whether a formation appears 253 

homogeneous or heterogeneous to the measurement tool as it travels up the borehole is 254 

possible. The degree of measured heterogeneity will also change as the measurement volume 255 

changes (e.g. Figure 3A and B); shallow measurements (e.g. bulk density or micro resistivity) 256 

will sample smaller volumes, whereas deep measurements (e.g. gamma radiation, acoustic 257 

travel time or deep resistivity) will sample large volumes.  258 

Assessment of thinly bedded siliciclastic reservoirs highlights the issues of correlating 259 

geological-petrophysical attributes to petrophysical measurement volumes. Thin beds are 260 

defined geologically as being less than 10 cm thick (Campbell 1967), whereas a “modern” 261 

petrophysical thin bed is referred to as less than 0.6 m in thickness, and is defined to reflect 262 

the vertical resolution of most porosity and resistivity logs (Qian & Zhong 1999; Passey et al. 263 

2006). The micro-resistivity logs (including dipmeter and borehole electrical imaging logs) 264 

have a higher vertical resolutions and so can recognise thin beds on a scale that is more 265 
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consistent with the geological scale (Cheung et al. 2001; Passey et al. 2006). Figure 3 (A and 266 

B) illustrates how alternating high and low porosity thin beds, that are significantly below the 267 

resolution of typical wireline well logs, would appear as low variability within the 268 

measurement volume.   269 

Up-scaling from core measurements to petrophysical well log calibration, and eventually to 270 

subsurface and flow simulation models of the reservoir at circa seismic-scale is a related 271 

topic. This process of upscaling represents a change of scale and hence properties may 272 

change from being heterogeneous at one scale to homogeneous at another scale. A discussion 273 

of up-scaling is beyond the scope of this paper. 274 

To summarise, ‘heterogeneity’ may be defined as the complexity or variability of a specific 275 

system property in a particular volume of space and/or time. Effectively there is the intrinsic 276 

heterogeneity of the property itself (e.g. porosity or mineralogy) and the measured 277 

heterogeneity as described by the scale, volume and resolution of the measurement technique. 278 

Evaluating Heterogeneity 279 

Having defined heterogeneity, we consider a variety of statistical techniques that can be used 280 

to quantify heterogeneity. Techniques are grouped into two themes: (1) characterising the 281 

variability in a dataset and; (2) quantifying heterogeneity through heterogeneity measures. 282 

Firstly we illustrate how standard statistics can be used to characterize the variability or 283 

heterogeneity in a carbonate reservoir. Secondly we use four simple synthetic datasets to 284 

illustrate the principles of and controls on three common heterogeneity measures, before 285 
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applying the heterogeneity measures to (a) the porosity data from two carbonate reservoirs, 286 

(b) a comparison of core and well log-derived porosity data in a clastic reservoir, (c) core 287 

measured grain density as a proxy for mineralogic variation in a carbonate reservoir, and (d) 288 

gamma ray log-derived bedding heterogeneities in a clastic reservoir..  289 

Characterising the variability of the dataset 290 

The core-calibrated well log-derived porosity data from an Eocene-Oligocene carbonate 291 

reservoir are used to illustrate the concepts for characterising heterogeneity (Figure 4). 292 

Formation A is c.75 m in vertical thickness, and is dominated by wackestone and packstone 293 

facies, with carbonate mudstone & grainstone interbeds. Formation B is c.54 m in vertical 294 

thickness, and is composed of grain-rich carbonate facies (predominantly comprising 295 

packstone to grainstone facies). Micro- and matrix-porosity dominate Formations A and B in 296 

the form of vugs, inter- and intra-granular porosity (Reddy et al. 2004; Wandrey 2004; Naik 297 

et al. 2006; Barnett et al. 2010). Metre-thick massive mudstone interbeds are observed toward 298 

the top of Formation A. The mudstone is suggested to be slightly calcareous and dolomitic in 299 

nature, with trace disseminated pyrite (Thakre et al. 1997; Estebaan 1998). 300 

A simple glance at the wireline data for this reservoir (e.g., Figure 4) suggests Formation-A is 301 

more variable or “heterogeneous”. An early step in completing a routine petrophysical 302 

analysis is often to produce cross plots of the well log data; these give additional visual clues 303 

as to the presence of heterogeneities within the data (e.g. Figure 5). Formation-A has a 304 

diverse distribution of values across the bulk density – neutron porosity cross plot, indicating 305 

its more heterogeneous character when compared to Formation-B, which is more tightly 306 
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clustered (Figure 5). The bulk density – neutron porosity cross plot reflects the varied facies 307 

and porosity systems of Formation-A, in comparison to the carbonate packstone-grainstone 308 

dominated Formation-B with a more uniform porosity system. 309 

Basic statistics can be used to characterise the variation in distribution of values within a 310 

population of data. The basic statistics (Table 1) and histogram (Figure 6) for the values of 311 

wireline log derived porosity for Formations A and B clearly reflect different variability 312 

within the data populations. Log-derived porosity in Formation A is skewed toward lower 313 

values around a mean value of 8.5 %, with a moderate kurtosis (Figure 6, Table 1). The 314 

statistics for the log-derived porosity of Formation B records a tendency toward higher values 315 

(negatively skewed) around a mean of 21.9 % and a stronger kurtosis (Figure 6, Table 1). The 316 

standard deviation, of values around the mean, is moderate for both Formations. This 317 

suggests that values are neither tightly clustered nor widely spread around the mean, although 318 

we note that the standard deviation for Formation B is one unit lower.  319 

These basic statistics can be used to characterise variation within a dataset, producing a suite 320 

of numerical values that describe data distributions. However, we need to complete and 321 

understand the full suite of statistical tests to achieve what is still a fairly general numerical 322 

characterisation of heterogeneity. We note that we could not use a similar suite of statistics to 323 

directly compare the variability between different data types that occur at different scales as 324 

the range of values has strong control on the outputs, for example comparing the variability in 325 

porosity (on a theoretical maximum scale of 0 to 100) with permeability (which for a 326 

conventional reservoir can vary between over several orders of magnitude, from close to 0 to 327 

1000s mD). Thus, when using basic statistics, there is no single value to adequately define the 328 
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quantitative heterogeneity of a dataset as being “x”, that would enable direct comparison of 329 

different well data, formations and reservoirs. Instead, to achieve a direct heterogeneity 330 

comparison that is both robust and useful we must consider established heterogeneity 331 

measures. 332 

Quantifying Heterogeneity: heterogeneity measures 333 

Measures used in quantifying heterogeneity use geostatistical techniques to provide a single 334 

value to describe the heterogeneity in a dataset. Published heterogeneity measures, such as 335 

the coefficient of variation and the Lorenz Coefficient, have been in common use throughout 336 

most scientific disciplines, and are frequently used in establishing porosity and permeability 337 

models in exploration (e.g. Dykstra & Parsons 1950; Lake & Jensen 1991; Reese 1996; 338 

Jensen et al. 2000; Elkateb et al. 2003; Maschio & Schiozer 2003; Sadras & Bongiovanni 339 

2004; Sahni et al. 2005). 340 

Four simple synthetic datasets (Table 2) are used to illustrate the impact of common types of 341 

variability in a dataset on the heterogeneity measures.  These measures are then applied to 342 

specific heterogeneities in a series of case studies. Of the synthetic datasets, Dataset (i) is 343 

homogeneous with no internal variation, Dataset (ii) is composed of two values representing 344 

a high and low setting, Dataset (iii) comprises a simple linear increase in values, and Dataset 345 

(iv) represents an exponential increase in values (Table 2). 346 

Coefficient of Variation 347 

The coefficient of variation (Cv) is a measure of variability relative to the mean value. The 348 

most commonly used method for calculating the coefficient of variation is shown below 349 
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(Equation 1), although numerous variations on this approach can be found in published 350 

literature. A homogeneous formation will have a coefficient of variation of zero, with the 351 

value increasing with heterogeneity in the dataset (Elkateb et al. 2003).  352 

  𝐶𝐶 =  √𝜎
2

�̅�
       (Equation 1) 353 

  [Where: Cv is the coefficient of variation, √𝜎2 is the standard deviation, and �̅� is the mean] 354 

For our synthetic test datasets, we see coefficient of variation increase with heterogeneity; (i) 355 

Cv = 0, (ii), Cv = 0.35, (iii) Cv = 0.55, and (iv) Cv = 2.82.  356 

The Lorenz Coefficient 357 

The original Lorenz technique was developed as a measure of the degree of inequality in the 358 

distribution of wealth across a population (Lorenz 1905). Schmalz and Rahme (1950) 359 

modified the Lorenz Curve for use in petroleum engineering by generating a plot of 360 

cumulative flow capacity against cumulative thickness, as functions of core measured 361 

porosity and permeability. Fitch et al. (2013) investigated the application of the Lorenz 362 

technique directly to porosity and permeability data. In our application of the Lorenz 363 

Coefficient, and to allow comparison of the heterogeneity in a single data type between the 364 

different measures, the cumulative of the property of interest (e.g., porosity), sorted from high 365 

to low values, is plotted against cumulative measured depth increment (Figure 7A; Fitch et al. 366 

2013, and Figure 7B, the synthetic dataset considered here). In a purely homogeneous 367 

formation, the cumulative property will increase by a constant value with depth, this is known 368 

as the “line of perfect equality” (Sadras & Bongiovanni 2004). An increase in the 369 
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heterogeneity of the property will cause a departure of the Lorenz Curve away from the line 370 

of perfect equality. The Lorenz Coefficient (Lc) is calculated as twice the area between the 371 

Lorenz Curve and the line of perfect equality; a pure homogeneous system will return a 372 

Lorenz Coefficient of zero, while maximum heterogeneity is shown by a Lorenz Coefficient 373 

value of one (Figure 7A).  374 

The Lorenz Coefficients generated for our synthetic test datasets demonstrate some of the key 375 

features of the Lorenz technique; Dataset (i) matches the line of perfect equality (Figure 7B), 376 

returning an Lorenz Coefficient of zero, Datasets (ii) and (iii) return Lorenz Coefficient 377 

values of 0.16 and 0.25, respectively, and the exponential data of set (iv) returns a Lorenz 378 

Coefficient value of 0.86, and is clearly visible as the most heterogeneous data with the 379 

largest departure from the line of perfect equality (set (i)) on Figure 7B.  380 

Dykstra-Parsons Coefficient 381 

The Dykstra-Parsons Coefficient (VDP) is commonly used in the quantification of 382 

permeability variation. A method for calculating VDP, provided by Jensen et al. (2000), 383 

begins by ranking the property of interest (e.g., porosity) in order of decreasing magnitude. 384 

We have followed the method presented by Maschio and Schiozer (2003) to assign 385 

probability values; for each individual value calculate the percentage of values greater than, 386 

or the ‘cumulative probability’, so that the probability of X is P(x≤X). The original 387 

permeability values are then plotted on a log probability graph with the cumulative 388 

probability values (Figure 8A). The slope and intercept of a line of best fit, for all data, from 389 

this plot is then used to calculate the 50th and 84th probability percentile, which are used in 390 

Equation 3 to derive VDP. Here, we assume a log-normal distribution, so that the 391 
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Log(property) value at the 84th percentile represents one standard deviation away from the 50 392 

% probability (Machio & Schiozer 2003). As heterogeneity increases the slope of the line of 393 

best fit increases along with the difference between the 50th and 84th percentile, and 394 

subsequently the value of VDP (Figure 8A). 395 

  𝑉𝐷𝐷 = 𝑥50−𝑥84
𝑥50

         (Equation 3) 396 

[Where  x50 is the 50th property percentile, and x84 is the  84th property percentile] 397 

Our synthetic datasets show significant differences in the Dykstra-Parsons plots produced 398 

(Figure 8B) and resultant Dykstra-Parsons values; set (i) VDP = 0.0, set (ii) VDP = 0.31, set 399 

(iii) VDP = 0.57, and set (iv) VDP = 0.99.  400 

Selection of Appropriate Heterogeneity Measures  401 

The key advantage to using a heterogeneity measure is the ability to define the heterogeneity 402 

of a dataset as a single value, allowing direct comparison between different data types, 403 

reservoir units (formations) and fields. 404 

The coefficient of variation provides the simplest technique for generating a single value 405 

measure of heterogeneity, with no data pre-processing required. By calculating the standard 406 

deviation as a fraction of the mean value we are looking at the variability within the data 407 

distribution, removing the influence of the original scale of measurement. As such the 408 

coefficient of variation should provide a more appropriate measure of the heterogeneity of a 409 

dataset than the basic statistics (as in Table 1), that can be compared between different 410 



Quantifying petrophysical heterogeneity.  Fitch et al. 2014 

21 

 

measurement types and scales of observation. Lake and Jensen (1991) comment that the 411 

estimate of Cv is negatively biased, suggesting that the Cv estimated from data will be 412 

smaller than the value for the true population. Sokal and Rohlf (2012) suggest that care 413 

should be used in applying the coefficient of variation to ‘small samples’ and provide a 414 

simple correction. In addition the coefficient of variation should only be applied to data 415 

which exist on a ratio scale with a fixed zero value, for example it is not appropriate for 416 

temperature measurement in Fahrenheit or Celsius (Sokal & Rohlf 2012). The coefficient of 417 

variation (Cv) increases with heterogeneity to infinity as no upper limit is defined in the 418 

calculation (Figure 9). Lake and Jensen (1991) suggest that this is a major advantage in use of 419 

the coefficient of variation as a heterogeneity measure, in that it can distinguish extreme 420 

variation. However, we favour a heterogeneity measure with defined upper and lower limits, 421 

allowing a clear comparison of variation in different datasets with different scales, resolutions 422 

and hypothetical end-member values across a similarly scaled range. We note that Jensen and 423 

Lake (1988) suggest that high levels of heterogeneity are compressed in the case of the 424 

Dykstra-Parsons and Lorenz Coefficients, and urge caution when using these techniques on 425 

small datasets (e.g., less than 40 samples).  426 

The Lorenz Coefficient provides a simple graphical-based approach to visualising and 427 

quantifying heterogeneity. As heterogeneity in a dataset can only vary between zero and one, 428 

all data types can be easily compared, regardless of the scale of original measurement. This 429 

effectively removes the influence that the scale of the original data may have on magnitude of 430 

variability present, which would be described by the mean, standard deviation and other basic 431 

statistics. The Lorenz Coefficient values more accurately reflect the heterogeneity within a 432 
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formation, and provide a measure that can be directly compared between different data types. 433 

Our initial work with the synthetic dataset suggests that low heterogeneity occurs around a 434 

Lorenz Coefficient of 0.16 (set ii, Figure 9), moderate linear heterogeneity is associated with 435 

a Lorenz Coefficient of 0.25 (set iii, Figure 9), and high-level exponential heterogeneity 436 

increases heterogeneity up to a Lorenz Coefficient of 0.86 (set iv, Figure 9). We have not yet 437 

been able to generate a sufficiently heterogeneous dataset to return the maximum 438 

heterogeneity of Lorenz Coefficient = 1.0. For comparison, Lake and Jensen (1991) suggest 439 

that typical Lorenz Coefficient values, for cumulative flow capacity against cumulative 440 

thickness, in carbonate reservoirs ranges from 0.3 to 0.6. Fitch et al. (2013) show that the 441 

several orders of magnitude variability in permeability measurements play a major control in 442 

the heterogeneity recorded using the traditional Lorenz technique.  443 

The Dykstra-Parsons Coefficient may be considered as a more statistically robust technique, 444 

but it is more complex and requires additional application and understanding of mathematical 445 

and statistical methodologies (i.e., probability functions). Additionally, unlike the Lorenz 446 

plot, the Dykstra-Parsons plot does not provide a simple graphical approach for visually 447 

comparing heterogeneity between datasets. Jensen and Currie (1990) and Rashid et al. (2012) 448 

provide discussion of the weakness of using a line of best fit to calculate heterogeneity, rather 449 

than the actual “raw” data points, placing weighting on the central portion of the data and 450 

decreasing the impact of high or low extreme values. However, as long as the technique is 451 

used consistently comparisons can be made between different data types and reservoir 452 

settings. A classification scheme based on the Dykstra-Parsons value exists for permeability 453 

variation where lower values (0 – 0.5) represent small heterogeneities (zero being 454 
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homogeneous), while larger values (0.7–1) indicate large to extremely large heterogeneities 455 

(Lake & Jensen 1991). Results from our initial trial using the synthetic data are comparable; 456 

with simple, small heterogeneities varying from VDP values of 0.3 to 0.6, and the large 457 

exponential heterogeneity producing a VDP value of 0.99 (Figure 9). Lake and Jensen (1991) 458 

comment that most reservoirs have VDP values between 0.5 and 0.9.  459 

As with any data analysis and interpretation, understanding the measurement device used and 460 

what it is actually responding to within the subsurface is key, and this can aid in 461 

understanding what heterogeneities are being described and why. This suite of techniques can 462 

be easily applied to a range of datasets at a formation scale (i.e. estimation of shale volume, 463 

water saturation, and even the original wireline log measurements), providing a 464 

comprehensive understanding of heterogeneities and underlying controls. Jensen et al. (2000) 465 

comment that heterogeneity measures are not a substitute for detailed geological study, 466 

measurements and analysis. They suggest that, at this scale, heterogeneity measures provide a 467 

simple way to begin assessing a reservoir, guiding investigations toward more detailed 468 

analysis of spatial arrangement and internal reservoir structures which may not be shown 469 

directly. 470 

An overall summary of the heterogeneity measures and the advantages and disadvantages 471 

associated with each is provided in Figure 10 for quick reference. Each of these measures 472 

provides a quantitative estimate of the heterogeneity in a dataset. There is currently no best 473 

practice choice from these heterogeneity measures, indeed it seems that the choice of which 474 

measure one should use is based solely upon the analyst’s preference, often based on 475 

experience, skills, and knowledge. The fact that all measures discussed here point toward 476 
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similar numerical ranking of the heterogeneity present in the datasets investigated is 477 

reassuring. We have a preference for the Lorenz Coefficient as a heterogeneity measure. This 478 

uses a simple technique to produce both graphical and numerical indicators of heterogeneity 479 

that can be easily compared across a range of datasets, measurement, and reservoir types. In 480 

the final section of this manuscript we summarise the findings from four case studies as 481 

examples. 482 

Jensen and Lake (1988) demonstrate that both the Dykstra-Parson and Lorenz Coefficients 483 

provide only an estimate of the true heterogeneity, depending on the population size, 484 

sampling frequency and location. Sampling frequency and location will play an impact on the 485 

measured heterogeneity in a property; this is demonstrated in Case Study 2 below. An 486 

additional issue, not addressed by the three static heterogeneity measures discussed here, is 487 

spatial organisation of the property, or the non-uniqueness of the heterogeneity measure. 488 

Figure 11 provides examples of nine ‘simple’ heterogeneous layered models, each is 489 

composed of two sets of fifty layers assigned a value of 1 and 100, respectively (in this case 490 

units are mD for permeability, but could represent any numerical property). The layers in 491 

model A and B are grouped into separate high and low property domains, model Q alternates 492 

high and low property layers throughout, and models C to M represent a range in spatial 493 

organisation of the layers. The standard statistics are identical for each spatial model (i.e. 494 

mean value 20.5, standard deviation of 49.75). The coefficient of variation, Lorenz 495 

Coefficient and Dykstra-Parsons Coefficient are 0.985, 0.485 and 0.856, respectively, for 496 

each of the models regardless of spatial organisation of the heterogeneity. In the case of these 497 

permeability models, each will behave significantly differently under flow simulation in 498 
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terms of fluid production, breakthrough time and sweep efficiency. There is a potential for 499 

modifying existing techniques to quantify variability while maintaining the spatial 500 

organisation of heterogeneity, for example the Stratigraphic Modified Lorenz Plot (Gunter et 501 

al. 1997).    502 

Case Studies 503 

1) Porosity heterogeneity in a complex carbonate reservoir 504 

The heterogeneity measures have been applied to the Eocene-Oligocene carbonate reservoir 505 

described above in terms of how standard statistics can be used to characterize variability in 506 

porosity measurements. To summarise the core-calibrated porosity log values describe 507 

Formation A as a moderate to highly variable porosity succession composed of 508 

predominantly low values around a mean value of 8.5 %, and Formation B as a less variable 509 

succession of high porosity values spread around a mean of 21.9 % (Figure 6, Table 1). 510 

The coefficient of variation values for the porosity of Formation A is 0.532 and is reduced by 511 

c.70 % for Formation B (0.161; Table 3). Formation A porosity values have a Lorenz 512 

Coefficient of 0.288, and Formation B has a Lorenz Coefficient of 0.085 (Figure 12A, Table 513 

3). The Dykstra-Parsons coefficient for the Formation A porosity values returns  a  VDP  of 514 

0.353 and Formation B, again, has lower heterogeneity with a VDP  of 0.123 (Figure 12B, 515 

Table 3). As with results from the synthetic data, it is reassuring that all three heterogeneity 516 

measures provide the same relative ranking of the two formations. Differences in the 517 

measures ranges by c.50 % for both Formations A and B. This highlights that although we 518 
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can compare heterogeneity between specific techniques, we should not attempt to compare 519 

heterogeneity values measured with the different techniques. 520 

2) Porosity and permeability heterogeneity in a sandstone reservoir 521 

To provide a comparison of how heterogeneity levels are captured at two scales of 522 

measurement we compare the core measured and well log-derived porosity and permeability 523 

data from a North Sea Jurassic sandstone reservoir (Fig.13a) using the Lorenz Coefficient. 524 

Permeability is clearly more heterogeneous than porosity in both measurement types (Figure 525 

13b). This reflects the difference in scale of measurement for permeability (typically ranging 526 

from 0.1 to 1000 mD, for example) and porosity (e.g., 0 to 0.3, or 0% to 30 %). Similar 527 

observations were made by Fitch et al. (2013) with regard to carbonate rock property data.  528 

Heterogeneity in the well log-derived data is typically lower than that of the core data (Figure 529 

13b). This observation relates to the irregular sampling of core measurements in comparison 530 

to continuous log measurements down a borehole. Resampling the well log porosity data 531 

illustrates that measured heterogeneity depends on sampling frequency and whether sampling 532 

location captures extreme values in a population. Figure 13c illustrates that decreasing 533 

sampling frequency and altering sample locations can enhance the range of heterogeneities 534 

recorded, supporting the study by Jensen and Lake (1988). Additional work in this area has 535 

the potential of informing best practise sampling protocols in both industrial and scientific 536 

drilling (e.g., Corbett & Jensen 1992a; b).  537 

3) Lithological heterogeneity in a carbonate reservoir 538 
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Analysis of grain density and porosity measurements from an Eocene carbonate reservoir 539 

allows for a simple comparison of the heterogeneity in grain- and pore-components of the 540 

two zones, by using grain density as a proxy for mineralogy (grain component) and porosity 541 

as a proxy for facies (pore component), alongside sedimentological descriptions of the core 542 

plugs. Reservoir zone X is calcite dominated, with a range in facies from carbonate 543 

mudstone, to wackestone and packstone. Low variability in the grain density data, and large 544 

variability in porosity with facies type is observed in the raw data (Figure 14), and is reflected 545 

in Lorenz Coefficient heterogeneities of 0.028 and 0.334, respectively. Reservoir zone Y is 546 

composed of wackestone and packstone facies, with dolomite and disseminated pyrite 547 

observed in thin section. Consequently, porosity variability appears lower with a Lorenz 548 

Coefficient of 0.198, while grain density heterogeneity is almost twice as high as that of 549 

reservoir X (Lc 0.049). 550 

In reservoir characterisation studies, heterogeneity measures are traditionally applied to 551 

permeability and porosity data. This pilot study indicates that there is potential to apply the 552 

techniques to quantify other types of heterogeneity that are described by any numerical data. 553 

These may include other rock property data (e.g., photoelectric, nuclear magnetic resonance, 554 

or resistivity logs to investigate heterogeneity in mineralogy, pore-size distribution and fluid 555 

content), digitized sedimentological descriptions (including facies codes and point count 556 

data), and borehole image facies analysis.  557 

4 )  Bedding heterogeneity in a clastic reservoir  558 
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The gamma ray log from the North Sea Jurassic sandstone reservoir outlined in Case Study 2 559 

is used to provide an example of how heterogeneity in bedding can be investigated using the 560 

Lorenz Coefficient. Figure 15 illustrates how using different gamma ray API values can be 561 

used as thresholds to define “bed boundaries”. Different threshold values will impact not only 562 

the bed locations but also how many beds are identified and the variability in bed thickness 563 

through the succession. By converting the presence of consecutive beds into a binary code we 564 

can calculate the heterogeneity in bed thickness (in this example using the Lorenz 565 

Coefficient). As the gamma ray threshold is increased above 50 API the number of beds is 566 

decreased, but the thickness of beds is increased, reflected in a decrease in the heterogeneity 567 

level (Figure 15B).  The lowest GR threshold of 40 API identifies two beds with a bedding 568 

heterogeneity of 0.14 (Figure 15A(iii)). A gamma ray threshold of 50 API generates a large 569 

number of illogically placed bed boundaries, and subsequently has a higher bedding 570 

heterogeneity of 0.34 (Figure 15A(iv)). The original gamma ray log gives a Lorenz 571 

Coefficient heterogeneity value of 0.288, which is replicated by the bedding succession 572 

identified using a threshold of 120 API (Figure 15A(i)). Visual comparison suggests that 573 

appropriate bed boundaries between mudstone and sandstone layers are picked using this 574 

simple technique, supported by a similar level of heterogeneity being captured. 575 

Although this is a somewhat simple application, with a major assumption that the gamma ray 576 

signature is only caused by the presence of clay minerals and that bed thickness is greater 577 

than the vertical resolution of the gamma ray log, application of this type of analysis could be 578 

made to selecting appropriate grid block size in high resolution geological models and 579 

subsequent upscaling of rock properties. 580 
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Further investigations of heterogeneities that occur across a range of length scales in datasets, 581 

or with different measurement resolutions may aid our understanding of the scale of 582 

variability in reservoir heterogeneity, for example, incorporating core, image logs and 583 

numerical sedimentological observations.  584 

Conclusions  585 

The term “heterogeneity” can be defined as the variability of an individual or combination of 586 

properties within a known space and/or time, and at a specified scale. Heterogeneities within 587 

complex hydrocarbon reservoirs are numerous and can co-exist across a variety of length-588 

scales, and with a number of geological origins. When investigating heterogeneity, the type 589 

of heterogeneity should be defined in terms of both grain / pore components and the presence 590 

or absence of structural features in the widest sense (including sedimentary structures, 591 

fractures and faults). Hierarchies of geological heterogeneity can be used alongside an 592 

understanding of measurement principles and volumes of investigation to ensure we 593 

understand the variability in a dataset. 594 

Basic statistics can be used to characterise variability in a dataset, in terms of the amplitude 595 

and frequency of variations present but a better approach involves heterogeneity measures 596 

because these can provide a single value for quantifying the variability. Heterogeneity 597 

measures also provide the ability to compare this variability between different datasets, tools / 598 

measurements, and reservoirs. Three separate heterogeneity measures have been considered 599 

here: 600 
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• The coefficient of variation is a very simple technique, comparing the standard 601 

deviation of a dataset to its mean value. A value of zero represents homogeneity, but 602 

there is no maximum value associated with extreme heterogeneity (increasing to 603 

infinity). Individual measurement scales will influence the documented heterogeneity 604 

level, and therefore comparison between different datasets is limited 605 

• The Lorenz Coefficient is a relatively simple yet robust measure that provides 606 

graphical and numerical outputs for interpretation and classification of variability in a 607 

dataset, where heterogeneity varies between zero (homogeneous) and one (maximum 608 

heterogeneity).  609 

• The Dykstra-Parsons coefficient is a more complex technique, requiring greater 610 

understanding of statistical methods. Numerical output defines a value of 611 

heterogeneity between zero (homogeneous) and one (maximum heterogeneity). 612 

Initial work incorporating synthetic and subsurface datasets allows the prior assumptions and 613 

classification schemes for each measure to be tested and refined. Application to a wider 614 

selection of subsurface data types, and from a range of complex reservoir types and 615 

geographic locations will enhance our understanding of the link between geological and 616 

petrophysical heterogeneity. Drawing on a larger volume of examples, this work may also 617 

indicate one heterogeneity measure to be of more use than another. At this time, the choice 618 

between heterogeneity measures ultimately depends upon the objectives of the analysis, 619 

together with the analyst’s preference, often based on experience, skills, and knowledge.  620 

Beyond the results presented here, but taking account of published research, integration of 621 

heterogeneity analysis from outcrop and subsurface examples with geocellular and simulation 622 
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modelling experiments investigating the impact of geologic features on flow behaviour may 623 

help streamline both exploration and production phases by focussing attention on what it is 624 

important to capture, at what scale and which of the data types is of most use in 625 

characterising heterogeneity in petrophysical properties. 626 
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Figure Captions 826 

Figure 1. An illustration of how heterogeneity can be separated into two ‘end-members’ of 827 

spatial fabric and grain component.  828 

Figure 2. Sketches illustrating how scales of geological features, wireline logs and different 829 

types of hydrocarbon reservoir data / model elements are related: Schematic illustrations of 830 

(A) key geological heterogeneities and the scales of which they exist (see van Wagoner et al. 831 

1990), (B) measurement volume and resolution of different types of subsurface data 832 

(modified from Frykman and Deutsch 2002), and (C) different tool resolution and volume of 833 

investigation of typical wireline log measurements. 834 

Figure 3. Schematic illustration of the influence of thin beds (A, B), grading (B) and grain 835 

size and sorting (C) on petrophysical measurement volumes. (A, B) focus on deep and 836 

shallow well log measurements, and (B) focuses on core and thin section measurements. 837 
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 Figure 4. Petrophysical data for Formations A and B. Panels from left to right; (1) caliper, 838 

(2) bulk density (RHOB) & neutron porosity (NPHI), and (3) core calibrated porosity log and 839 

core measured porosity (grey circles).  840 

Figure 5. Cross plot of bulk density and neutron porosity measurements from Formation A 841 

(black circles) and Formation B (grey circles) (Figure 4). 842 

Figure 6. Histogram distributions of core calibrated porosity log values for Formations A and 843 

B (Figure 4). 844 

Figure 7. (A) Schematic illustration of the Lorenz plot, and (B) Lorenz curves generated 845 

using the synthetic datasets (Table 3)  846 

Figure 8. (A) Schematic illustration of the cross plot underlying the Dykstra-Parson 847 

coefficient, and (B) Dykstra-Parson plots generated using the synthetic datasets (Table 3). 848 

Figure 9. The heterogeneity values obtained for the four synthetic datasets; set (i) 849 

homogeneous, set (ii) two end-member values, set (iii) a simple linear change in values, and 850 

set (iv) an exponential change in values. 851 

Figure 10. Summary of the heterogeneity measures discussed in this paper, listing the 852 

advantages and disadvantages of each technique. 853 

Figure 11. Nine examples of permeability models which have the same statistical 854 

characteristics and heterogeneity measures.   855 
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Figure 12. (A) Lorenz curves generated for the porosity data of Formations A and B (Table 856 

3), and (B) Dykstra-Parson plots generated for the porosity data of Formations A and B 857 

(Table 3). 858 

Figure 13. Core and well log calibrated measurements of porosity (A) and permeability (B) 859 

for a North Sea Jurassic sandstone reservoir. (C) provides a graphical comparison of the 860 

Lorenz Coefficient for the whole succession (Bz4) and zones A to F. (D) illustrates the spread 861 

of Lorenz Coefficient values obtained by re-sampling the well log porosity data at different 862 

locations and frequencies. 863 

Figure 14. Special core analysis measurements of grain density (A) and porosity (B) through 864 

reservoir zones X and Y of an Eocene carbonate succession. Facies code: Mdst – carbonate 865 

mudstone, Wkst – wackestone, Pkst – packstone, and dol – dolomite. 866 

 Figure 15. Depth plots of the gamma ray log (A(ii)), and bed boundary location picked using 867 

gamma ray value thresholds of 120 API (A(i)), 40 API (A(iii)), and 50 API (A(iv)). Crossplot 868 

of the number of beds identified by gamma ray log thresholding against Lorenz Coefficient 869 

heterogeneity in bed thickness. 870 

Table captions 871 

Table 1. Results of statistical analysis for core calibrated porosity log values of Formation A 872 

and B (Figure 4). Statistical analysis; (a) mean, mode and median averages, (b) standard 873 

deviation and variance, (c) maximum, minimum and range between minimum and maximum, 874 

(d) skewness (measure of the asymmetry of a distribution, positive indicates lower values are 875 
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more common than higher values), and (e) kurtosis (measure of the spread of data around a 876 

mean,  more positive indicates single peak around a mean with less tails, more negative 877 

indicates less of a mean peak and larger tails). 878 

Table 2. Synthetic dataset used to investigate the impact of different styles of data variability 879 

on the heterogeneity measures. Dataset (i) homogeneous, dataset (ii) two end-member values, 880 

dataset (iii) a simple linear change in values, and dataset (iv) an exponential change in values. 881 

Table 3. Heterogeneity measures returned for the core calibrated porosity log values of 882 

Formation A and B (Figure 4). 883 

 

 Formation A 

(porosity, %) 

Formation B 

(porosity %) 

Mean 8.5 21.9 

Median 7.6 22.2 

Standard Deviation 4.5 3.5 

Maximum 23.3 29.2 

Minimum 0.4 4.9 

Skewness 0.945 -1.037 

Kurtosis 0.579 2.834 

Table 1. Results of statistical analysis for core calibrated porosity log values of Formation A and B 

(Figure 4). Statistical analysis; (a) mean, mode and median averages, (b) standard deviation and 

variance, (c) maximum, minimum and range between minimum and maximum, (d) skewness 

(measure of the asymmetry of a distribution, positive indicates lower values are more common than 

higher values), and (e) kurtosis (measure of the spread of data around a mean,  more positive indicates 

single peak around a mean with less tails, more negative indicates less of a mean peak and larger 

tails). 
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Depth 
(m) Set (i) Set (ii) Set (iii) Set (iv) 

100.50 1 2 2 10000 

101.00 1 2 1.8 1000 

101.50 1 2 1.6 100 

102.00 1 2 1.4 10 

102.50 1 2 1.2 1 

103.00 1 1 1 0.1 

103.50 1 1 0.8 0.01 

104.00 1 1 0.6 0.001 

104.50 1 1 0.4 0.0001 

105.00 1 1 0.2 0.00001 

Table 2. Synthetic dataset used to investigate the impact of different styles of data variability 

on the heterogeneity measures. Set (i) homogeneous, set (ii) two end-member values, set (iii) 

a simple linear change in values, and set (iv) an exponential change in values. 
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 Formation 

A 

(porosity) 

Formation 

B 

(porosity) 

Coefficient of variation 0.532 0.161 

Lorenz Coefficient 0.288 0.085 

Dykstra-Parsons 

Coefficient 
0.353 0.123 

 

Table 3. Heterogeneity measures returned for the core calibrated porosity log values of 

Formation A and B (Figure 4). 

 

 

Figure 1 
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Figure 15 

Title: An integrated and quantitative approach to petrophysical heterogeneity. 

Authors: Fitch, P. J. R., Lovell, M. A., Davies, S. J., Pritchard, T. and Harvey, P. K. 

Highlights 

We explore how the term heterogeneity can be defined in earth sciences. 

We show that standard statistics can be used to characterise the variability in a dataset. 

We investigate the main controls on three static heterogeneity measures. 

Four case studies illustrate the application of heterogeneity measures to different data types.  


	Abstract
	Keywords
	Acknowledgements
	Introduction
	Defining Heterogeneity
	Scale and measurement resolution

	Evaluating Heterogeneity
	Characterising the variability of the dataset
	Quantifying Heterogeneity: heterogeneity measures
	Coefficient of Variation
	The Lorenz Coefficient
	Dykstra-Parsons Coefficient


	Selection of Appropriate Heterogeneity Measures
	Case Studies
	1) Porosity heterogeneity in a complex carbonate reservoir
	2) Porosity and permeability heterogeneity in a sandstone reservoir
	3) Lithological heterogeneity in a carbonate reservoir
	4 )  Bedding heterogeneity in a clastic reservoir

	Conclusions
	Reference
	Figure Captions
	Table captions

