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Abstract

We look at aspects of error analysis for interpolation by translates of a basic function. In
particular, we consider ideas of localisation and how they can be used to obtain improved
error estimates. We shall consider certain seminorms and associated spaces of functions
which arise in the study of such interpolation methods. These seminorms are naturally
given in an indirect form, that is in terms of the Fourier Transform of the function rather
than the function itself. Thus, they do not lend themselves to localisation. However, work
by Levesley and Light [17] rewrites these seminorms in a direct form and thus gives a
natural way of defining a local seminorm. Using this form of local seminorm we construct
associated local spaces. We develop bounded, linear extension operators for these spaces
and demonstrate how such extension operators can be used in developing improved error
estimates. Specifically, we obtain improved L, estimates for these spaces in terms of the
spacing of the interpolation points. Finally, we begin a discussion of how this approach to
localisation compares with alternatives.
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Chapter 1

Introduction

Interpolation is an important tool in the physical sciences and has a variety of applications.
In general we are trying to solve the following type of problem. Information in the form
of real or complex values is known only on a finite set of sampling points or nodes in R".
Our aim is to find a function s : R®™ — R whose value at each of the nodes agrees with
the given data. The specifics of the interpolation scheme are, of course, dependent on the
application in hand. For example, we may require the interpolant s to have a certain degree
of smoothness or behaviour at infinity. Some considerations, however, must be taken into
account in any interpolation scheme. In order to avoid numerical instability, we must ensure
the problem is posed in such a way as to guarantee a unique solution. In addition, we would
like small changes in the data to imply small changes in the interpolant. The question of
error is also of importance; we would hope to have some means of evaluating how well our
scheme works.

The work in this thesis is motivated by interpolation by translates of a basic function.

This is now a well-established and relatively simple method of interpolation which can be



applied to scattered data. We shall discuss some of the relevant theory in this chapter
and introduce certain seminorms and spaces of functions which arise naturally in the study
of this type of interpolation problem. The aim of this work is to produce improved error

estimates for these spaces by applying localisation methods.

1.1 The Interpolation Problem

We shall be concerned with the following interpolation problem. Interpolation data is given
in the form of z1,...,z,, € R™ and corresponding values di,...,d,, € R. Let X be a space

of real-valued functions on R". We wish to find a function s € X such that
s(z;) = d; foralli=1,...,m. (1.1)

It is useful to assume that X is a linear space of functions for the following reasons. Suppose
s1 € X interpolates data di,...,d, € R at the points zi,...,z,,, € R", in the sense of
(1.1). Then, if X is a linear space, given any a € IR the function as € X interpolates
the data ad,,...,ad, € R at zi,...,Z,. Suppose also that so € X interpolates the data
ai,...,am € Rat z1,...,z, € R™. Then, again provided X is a linear space, the function
s1 + s2 € X interpolates the data dy + a1,...,dn + ap, at the points z1, ..., z,.

In order to provide stability for the system it is important that the interpolation condi-
tions (1.1) ensure that s is uniquely defined. Thus, we require that the only function in X
which vanishes on the interpolation points is the zero function. However, work dating back
to Mairhuber [24] shows that difficulties occur when considering a multidimensional situa-

tion. Specifically, suppose X is an m-dimensional space of continuous real-valued functions



on a domain Q C R™. Suppose also that given any set of points {zi,...,Zn,} C Q, the only
function f € X satisfying f(z;) =0 for all i = 1,...,m, is the zero function. Then, either
m = 1 or the domain (2 is just one dimensional. This result forces us to make X dependent
on the given interpolation data.

A solution to this problem presents itself in the form of radial basic function interpo-
lation. We begin with a basic function ® which is real-valued on Ry = {z € R: z > 0}.
Letting A = {z1,...,Zm} we define the interpolation space X = X4 to consist of all

functions from R” to R of the form

m
a:»——)Zaj@(|m—xj|), withaj € Rforallj =1,...,m.
=1

Here |-| denotes the Euclidean norm. Having specified our interpolation space X to be data
dependent, we now have a chance of being able to solve the interpolation problem uniquely
for s. However, certain restrictions must be placed on the function ® in order to ensure

this.

1.2 Conditionally Positive Definite Functions

We have the following radial basic function interpolation problem. Let ® be a real-valued
function on R;. Given values dj,...,d,, € R and points z;,...,z,, € R", we wish to

determine
Z a;®(|z — zj),

where the o; are constants to be found subject to the interpolation conditions

s(z;) = d;, foralli=1,...,m



This is equivalent to solving the linear system

n
Zaj@ﬂmi—mjl) =d; foralli=1,...,m.
Jj=1

Writing this in matrix form we have

Aa = d,

where A is the m x m matrix whose components are given by A;; = ®(|z; — zj|), a =
(ayy...,0n) € R™ and d = (d1,...,dn) € R™. Clearly we can solve this system uniquely
for a provided A is invertible. With minimal effort one can prove this is the case if ® is

strictly positive definite in the following sense.

Definition 1.2.1 Let ® : R, — R. If, for any set of distinct points y1,...,yr € R" and

constants c¢1,...,c, € IR, the quadratic form

T T
> cici®(lyi —y;]) >0

i=1j=1

then we say @ is positive definite. If, in addition,

Y cici®(lyi — y;1) =0

i=1j=1

if and only if ¢; =0 for alli=1,...,r, then we say ® is strictly positive definite.

The interpolation problem is uniquely solvable provided the function @ is strictly positive
definite. The Gaussian, defined by ®(r) = e~ is an example of a strictly positive definite
function, see Powell [28, p.118]; so is the inverse multiquadric defined by &(r) = (¢ +
|r|2)_1/ 2 where ¢ > 0. However, some of the first interpolants of this kind to be used

successfully in applications involved basic functions ¢ which do not possess this property, for



example, Duchon’s thin plate splines [6], in which ®(r) = r2Inr and Hardy’s multiquadric

surfaces [14], in which &(r) = (r? + )12 for ¢ > 0. However, these functions do possess

the following property.

Definition 1.2.2 Let ® : R, — R. If, for any set of distinct points y1,...,yr € R" and

constants c,...,cr € R, the quadratic form

S5 e (i — v3]) 2 0

i=1j=1

whenever
T
Z cip(y;)) =0 for all p € IIx_1(R"), (1.2)
=1

then we say @ is conditionally positive definite of order k. If, in addition, ci,...,c, satisfy

(1.2) and
T T
> > cici®(lyi —ysl) =0
=1 j=1
if and only if ¢; = 0 for all i = 1,...,r, then we say P is conditionally strictly positive

definite of order k.

We note that the above definition can be extended to functions ¥ : R® — IR by considering
¥(y; — y;) instead of ¥(|y; — y;|).

When considering functions ® which are conditionally positive definite of order k we
add a polynomial of degree k — 1 to the interpolant. Assume II;_;(IR™) has dimension [

and suppose polynomials pi,...,p; form a basis for IT;_;(IR"). We then let

m l
s(z) =Y a;@(lz — zj]) + ) Brpx(z) for z € R",
j=1 k=1
and hope to solve for constants o, ...,a, and f,..., 5 subject to the conditions



(1) s(z;) =d;,foralli=1,...,m,
(2) Xjeiajpr(zj) =0, forallk=1,...,1

The additional degrees of freedom introduced by the polynomial in the interpolant com-
pensate for the addition of condition (2) to the interpolation constraints. We can write the

above system of equations in matrix form as follows,

A P o d

PT 0 B 0
where A is the m x m matrix given by A;; = ®(|z; — z;|), P is the m x | matrix given by
pij = pj(zi), d = (d1,...,dm) € R™, @ = (a1,...,0y) € R™ and B = (6y,...,0) € RL
This system can be solved uniquely provided the (m + 1) x (m + ) matrix

A P
M=

PT 0
is invertible. We shall see that this is true if ¢ is conditionally positive definite of order k

and if in addition the interpolation points z1,.. .,z have the following property.

Definition 1.2.3 We say that y1, - ,ym € R"™ are unisolvent with respect to IIx(R") if,

whenever p € Il (R"™) and p(y;) =0, for alli =1,---,m, p is the zero polynomial.

Lemma 1.2.4 Let ® be conditionally strictly positive definite of order k, and let x4, ...,zm
be unisolvent with respect to Ilx_1(IR™). Assume Ix_1(IR™) has dimension | and suppose
polynomials p1,...,p; form a basis for Ilx_1(IR™). Let A be the m X m matriz given by
Aij = ®(|z; — zj|) and P be the m x | matriz given by P;j = pj(z;). Then the matriz

A P
PT 0



is invertible.

Proof. Suppose u = (u1,...,Un) € R™ and v = (vy,...,v) € R! are such that (u,v) €

R™* is in the kernel of M. Then we have

Au+Pv =0 (1.3)

and

PTy=0. (1.4)
Equation (1.4) implies TP = 0. Pre-multiplying Equation (1.3) by »” and making the
substitution uT P = 0 gives

ul Au = 0.

Expanding gives

m m
Z Zuin‘I)(l.'Ei - .'BJI) =0.

i=1j=1

Also from Equation (1.4) we have

m
Zuipj(xi) =0 forallj=1,...,1.
i=1

Hence, since ® is conditionally strictly positive definite of order & we must have u = 0.

From Equation (1.3) we now have Pv = 0. Expanding gives
g(z;) = pi(zi)v1 + p2(xi)va + ... + pi(zi)v; = 0, foralli=1,...,m.

Thus ¢ is a polynomial in ITx_;(IR™) with ¢(z;) = 0, for all : = 1,...,m. Hence, by the
unisolvency of z1,...,Zmy, ¢ = 0. Thus, v = 0. Therefore, the kernel of M is trivial and

hence M is invertible. [ |



The seminal paper by Micchelli [26] shows that the multiquadric is conditionally strictly
positive definite of order one. Micchelli also proves that it is possible to solve the multi-
quadric interpolation problem without a polynomial term being added to the interpolant.
This is an interesting feature of conditionally strictly positive definite functions of order one.
In the multiquadric case this result backed up Hardy’s experimental evidence. In addition,
Micchelli gives the following characterisation of conditionally positive definite functions of

order k, which extended the work of Schoenberg [35] who had considered the case k = 0.

Definition 1.2.5 A function f is said to be completely monotone on (0,00) if f € C*°(0, 00)

and (=1)™f™(t) > 0 for all t >0 and m = 0,1,2,. ...

Theorem 1.2.6 Let & € C[0,00) N C*®(0,00) and suppose that (—1)F®F) is completely
monotone but not constant on (0,00). Let function ¥ be defined by ¥(t) = ®(¢?), for

t € (0,00). Then ¥ is conditionally strictly positive definite of order k.

We have seen that in order to guarantee a solution to the interpolation problem when
the basic function ® is conditionally strictly positive definite of order k, we must ensure
that the interpolation points satisfy a unisolvency condition. However, for many common
choices of @, k is at most two. Thus, the unisolvency condition is not as problematic as
it seems at first glance. For example, in two dimensions with ¥ = 2, we would simply
require three non-collinear points in order to be able to solve the system. If £ = 0 then no

requirement is made on the points at all.
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Some common examples of ¢ are listed below.

Bare norm o(r)=r k=1

Thin plate spline ®(r) = r2lnr k=2

Multiquadric d(r)y=vri+c2 k=1
Gaussian d(r)=e" k=0

1.3 Variational Theory

The first radial basic function interpolants to be actively researched were the thin plate
splines. The original motivation came from the aeronautical industry in the early seventies
(13]. The problems focussed on finding splines which minimised the bending energy of
infinite thin plates subject to interpolation constraints. Duchon, building on earlier work
by Atteia [3], took these ideas of minimisation and extended them to higher dimensions. His
papers [6, 7] were seminal in the development of a variational theory for these problems. The
interpolant is shown to be a minimal norm interpolant in the following sense. Let Hilbert
space X, with seminorm |-| defined on X, be such that point evaluations are bounded linear
functionals on X. Suppose that f € X is known only on the points z1,...,z, € R". We

wish to find s € X such that
i) s(z;) = f(zj), forall j =1,...,m,
ii) |s| < |v|, for all v € X satisfying v(z;) = f(z;) forall j =1,...,m.

Duchon used spaces of distributions which were generalisations of Beppo-Levi spaces (see

[5]); the related seminorm taking the form

1/2
HE (2 a |, n|5°7f(x)|2dx) :

|a|=k

11



for fixed integer £ > 0 and known constants c,. In this case the solution to the above

variational problem takes the form

s(z) =Y a;®(|z — zi]) + p(x),

i=1
where p is a polynomial of degree k — 1 and the function ® has the form

r2k=nInr, for n even ,
‘I’(’l") - 2k—n

T ) otherwise .
Such interpolants are known as surface splines and in one dimension they coincide with
natural splines of order 2k.
Recent work of Light and Wayne [20] generalised that of Duchon, and provides the

motivation for much of the work contained in this thesis. A measurable weight function

v :R™ = R is introduced and the seminorm is defined, for fixed integer k, by

1/2
Ifle = (Z ca/ _|Def (z) v () dm) .

|a|=k

The Fourier transform here is taken in the distributional sense (see Section 1.6) and the

constants ¢, are defined by the algebraic identity

D cqz®® = |lz|*, for all z € R".
|a|=k

The associated space of functions is given by
Z(R™) = {f € §': D°f € LL,(R™) and /]R" \D%F (z)|%v(z) dz < oo,
for all a € Z} with |a| = k}.

Here we use S’ to denote the space of tempered distributions, which we discuss further in
Section 1.6.

12



In order to consider an interpolation problem on these spaces we need to ensure point
evaluations make sense. Light and Wayne [20] demonstrated this by proving that Zg(IR")
was embedded in C(IR™). However this is dependent on the weight function v satisfying the

following conditions,
(1) ve C(R™\{0}),
(2) v(z) >0ifz #0,

(3) 1/v € Lj,,(R™),

loc
(4) there is a 4 € R such that (v(z))™! = O(|z|~2#) as |z| = oo.

These conditions also ensure that Z;(IR") is complete with respect to | - |x.
Using the fact that v(z) > 0 if z # 0, one can show that the kernel of the seminorm |- |
is IIx—;(IR™). Hence, we can define a norm on Z;(IR") as follows. Let a1,...,a; € R"™ be

unisolvent with respect to IIx_; (IR"). Then define

. 1/2
Ifllz. = (Z |f(as)* + |f|ﬁ> for all f € Z(R").
s=1
Equipped with this norm Zx(IR") is a Hilbert function space. Using reproducing kernel
techniques, Light and Wayne [20] were able to show that the minimal norm interpolant to
f € Zx(IR"), on points z1,...,Z,m € R"™ unisolvent with respect to IIx_;(IR"), takes the

form

s(z) = Zajfb(m - z;) + p(z).
j=1

13



The function p(z) is a polynomial of degree k — 1, and @ is a tempered distribution which
satisfies

|- |* =1.
In addition, ® is a continuous function and, in a link with the previous section, is also
conditionally positive definite of order k. We remark, however, that the basic function & is

not radial.

1.4 Error Estimates

We turn our attention now to the subject of error estimates in order to provide motivation
for the work contained in Chapter 2.
Let X be a space of real valued functions on IR™ with seminorm |- |. Suppose we

interpolate a function f € X at points z,...,2,;, € R" by s € X. Thus,
s(zi) = f(zs), forall:=1,...m.
A typical error estimate has the form
|f(z) — s(z)] < P(z,z1,...,zm)|f — sl, for all z € R™.

Here P is the so-called power function and we shall give more details on how it is derived
in Chapter 3. In order to be able to use this estimate we need to know f — s everywhere
on IR™. Duchon [7] described for his spaces of distributions how one could use localisation

to obtain improved error estimates. Instead of the above global estimate he obtains for

14



Q c IR" a ‘local’ estimate of the form
|f(z) — s(z)| < P(z,z1,...,2Zm)|f — S|, for all z € Q. (1.5)

Note that a localised version of the seminorm appears on the right-hand side and the error
estimate is now only true for z € Q. Using this local estimate Duchon is able to obtain
improved estimates in terms of the spacing of the interpolation points zi,...,z,;. Let
A={z1,...,zn} and

h =sup inf |y — z|.
yegm‘eA |y I

Suppose using the original estimate one can obtain a constant C independent of f and A
such that ||f — s||lpo < ChP|f| for some 3. Making use of the localised error estimate it is
possible to improve this to || f — s||,,0 < ChP+™/P|f|q. Exact details of how Duchon obtains
these results can be found in [7] or the later work of Light and Wayne [19].

The aim of this work is to apply Duchon’s localisation techniques to spaces having a

seminorm of the form

1/2
|flk = (z Ca [ . |D/°‘\f(w)|2v(a:) dm) ,
& /]R

as introduced in the previous section. The first step is to indicate what we mean by a local
version of the seminorm |-|,. We notice that this is defined in terms of the Fourier transform
of the function. Thus, there is currently no natural way of defining the local seminorm.
What is needed is a direct version of the seminorm, defined in terms of the function itself,
and not its Fourier transform. The recent paper of Levesley and Light [18] concerned itself

with this task. We assume the weight function v satisfies the following conditions,

15



(1) v e S'NC(R™) and v(z) > 0 for almost all z € R",

(2) ¥ is a measurable function and for any neighbourhood N of the origin, ¥ € L}(R™\N),
(3) v(y) = v(—y) for all y € R,

(4) 19(y)| = O(ly|*) asy = 0, where n + s +2 > 0,

(5) v(0) =0 and %(z) < 0 for almost all z € R".

Under these conditions, Levesley and Light proved that for all f € Z;x(R"),

Jon DT @Po(@)ds = =3 [, [ 5@ = 9)I(D"N@) - (D* NP dedy.

Now we can simply define our local seminorm by

1/2
|f|m—(zca [ [ we-nio=N@ - (D"f)(y)lzdwdy) ,

la|=Fk
where w = —%ﬁ.

The second, and less obvious, requirement for the development of the localised version
of the error estimate is having to hand certain extension operators. Duchon worked in
a Sobolev space setting where the relevant extension theorems were already well known.
The development of the required extension operators for the above seminorm is the aim of
Chapter 2.

We begin by working with some spaces of continuous functions. Let C¥(IR™) denote the
set of all compactly supported functions on R™ which have continuous derivatives up to the
k-th order. For , an open subset of R", we define X (2) = {g|q : g € C¥(R™) and |g|x o <
oo}. Similarly we define X (IR") = {f € C¥(R™) : |f|lx < oo}. Now, under appropriate

16



hypotheses on w, | - |x,q defines a seminorm on X(f2). We develop a linear extension
operator from X (2) to X(IR"), subject to  and the weight function w satisfying certain
properties which are detailed in Chapter 2. Using this result we deduce the existence of
extensions for functions in Y(2), the completion of X (€2) with respect to the seminorm
| - |k, Outlined below is our principal extension result, the proof of which can be found in

Section 2.3 and is again dependent on a suitable choice of €2 and w.

Theorem 1.4.1 Given f € Y(2), there exists a function fo € Y(IR™) such that

1) felﬂzf

2) |felgr < M|fla for some constant M independent of f.

In Chapter 3, using an adaptation of Duchon’s methods, we shall demonstrate how these

extension theorems can be used to derive improved error estimates for the spaces Y(IR").

1.5 Native Spaces

We discussed in Section 1.3 how the surface splines of Duchon [6, 7] arise naturally from
a variational problem described on certain spaces of functions. The work of Madych and
Nelson [21, 22, 23] extends this to other radial basic function interpolants, for example
multiquadric surfaces. The approach is different to that of Duchon, where the focus is
on the seminorm and associated space of functions. Here one begins with a conditionally
positive definite function and uses it to construct a native space of functions in which one
can carry out the appropriate variational arguments. Other papers in this area include

those of Wu and Schaback [39], those of Dyn [8, 9] and several papers by Schaback which

17



are accessible through the survey [31].

Many authors considering native spaces work on the whole of R™. However, definitions
of local native spaces, and corresponding extension theorems, can be found for example in
the work of Schaback [32] and Iske [16]. In Chapter 4 we shall look at how this approach
to localisation compares to that described in the previous section, which makes use of
the Levesley-Light direct form seminorm [18]. Of particular interest will be the following
convolutional characterisation of the local native space given by Iske.

Let Q be an open, bounded subset of IR". Let & : R® — IR be continuous and strictly
positive definite. We define C§°(f2) to be the set of all functions in C§°(IR™) whose support

is contained in Q. A bilinear form (-,-)s is defined on C§°(Q) via

(v,w)p = /Q /Q ®(y — z)v(z)w(y) dzdy, for v,w € C§°(Q).

Assume that there exists a continuous and positive function ¥ : R"\{0} — IR such that

(v, w)p = /]Rn U(2)3(2)B(2) do for all v,w € C°(Q).

Then the quantity || - |le = /(-,-)s defines a norm on C§°(R2). Since & € C(IR"), the

convolution ® * w is well defined for all w € C§°(2) and is given by
@ w)@) = [, 8- yyu) dy.

Let

I(Q) ={f |la: f = @ *xw for some w € C§°(N)}.

Iske’s local native space of ® is defined as the closure with respect to ||-|| of I(2). We remark

18



that this is the simplest case of Iske’s results. One could also work with a conditionally

positive definite function.

1.6 Distribution Theory and Notation

We end this chapter with some notation and results that will be of use in later chapters. In
particular, we introduce some of the theory of distributions which will be needed in Chapter
4. The definitions are taken from Rudin [30] in which further details and proofs of all the
results given here can be found.

The space of test functions D consists of the vector space C§°(IR"), whose topology is
described in [30, Definition 6.3]. The space of distributions, denoted D’, consists of all linear
functionals on D which are continuous with respect to this topology. If f is a distribution
and ¢ is a test function, then we shall use the notation [f,¢] to denote the action of the
distribution on the test function.

For multi-index o = (o1 ..., o) € ZY the differential operator D is given by

o [0\ [ 8\
= (am) (o)

and has order |a| = a1 + ...+ ap.

The space of rapidly decreasing functions consists of those functions for which

sup sup (1 + |z|>)N|D*f(x)| < o0 N=0,1,2,.... (1.6)
la|<N zelR"

These functions form a vector space S whose topology is given by the countable collection
of norms (1.6). We denote by S’ the space of tempered distributions, that is the set of all
continuous linear functionals on S.
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We quote now some useful properties of tempered distributions which will be needed
in subsequent chapters. If f is a tempered distribution and ¢ € S then ¢f is a tempered

distribution whose action is defined by

[¢f’¢]=[f’¢¢] '(IJES

For f € S the Fourier transform of f is defined by

F@) = oy Jppe [0y, z e R

Furthermore, the Fourier transform is a continuous, linear, one-to-one mapping of S onto

S. We can extend the Fourier transform to tempered distributions by defining for f € S,

[f,6] =1, 4] $€S.

This distributional Fourier transform is also a continuous, linear, one-to-one mapping of S’

onto §'. For f,g € L2(IR"), the Parseval formula states that
g= fg. 1.7
o 9= [ 79 (L.7)
Taking f = g in Equation (1.7) yields the Plancherel Theorem,
1£ll2 = 11 2, for all f € L*(IR™).

The operator B is defined for ¢ € S by (B¢)(z) = ¢(—=z) for all z € R™. A useful

A~

result is that (¢) = B¢, for ¢ € S. Given z € R", the shift operator T, : S — S is
defined by (T;¢)(y) = #(y —z), y € R"™. The operators T, and B are extended to tempered

distributions by defining [T%, f, ¢] = [f, T-z¢] and [Bf,¢] = [f, B¢] for all ¢ € S.
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The convolution of two functions f and g on R" is given by

(Fr9)@) = [ 1@ —v)o(w) dy

whenever the integral exists. For ¢ and % in S the convolution ¢ * ¢ is well-defined and
is itself an element of S. This convolution also satisfies the properties (¢ * ¥) = #¥ and

(¢1)” = ¢ x 1. The convolution of a tempered distribution f with ¢ € S is given by

[f * &, 94] = [f, T BY] P EeS.

Furthermore, it can be shown that fx¢ € C° NS, (f*¢) = fé and (fo) = fxo.
Finally we end with a remark on notation. We have already in this chapter used the
symbol | - | to denote both the Euclidean norm and a generic seminorm. However, as we

believe the intended meaning is clear in all cases we have chosen not to develop an alternative

piece of notation.
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Chapter 2

Extension Theorems

In Section 1.4 we introduced the idea of a direct form seminorm, with particular reference to
the seminorm of Levesley and Light [18]. The advantage of a direct form seminorm is that
it delivers a very natural way of defining a local seminorm, and hence corresponding local
spaces. In this chapter, we shall be interested in spaces of functions which arise from the
Levesley-Light direct form seminorms. In particular, we wish to develop certain extension
theorems for these spaces, the motivation being that such extension theorems can then be
employed in the development of improved error estimates. We shall discuss this application
further in Chapter 3.

A special case of the Levesley-Light seminorm is that used in non-integer valued Sobolev
space seminorms. Extension theorems for these spaces, both integer and non-integer valued,
are well known, see for example Adams [1] or Showalter [36]. We shall make use of this
in the sense that our overall strategy of proof follows that used in the Sobolev extension
theorems. However, at the level of generality we are considering, new techniques must be

developed.
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2.1 An Extension on IR’}

We begin with some results on the half plane R} ; that is, the set of all points in IR" whose
last coordinate is positive. This focus on the last coordinate means we shall often write a
point z € R™ in the form z = (2, z,), where 2/ € R""! and ,, € IR. Using this notation,
we can write R} = {(z',z,) : z, > 0}.

We define now a linear operator E,, which extends functions defined on R}, to functions
defined on the whole of R™. This operator will prove essential, not only to the current
development, but to subsequent work in this chapter. Indeed, it provides the backbone of
the extension operators we shall construct in Section 2.3 for domains more general than

R™.

Definition 2.1.1 Let k € Z; and define Ay,..., k41 to be the unique solution of the

system

k+1 1 l
ZAj(— ) =1, 1=0,1,...,k.
j=1

J
For each f : R} — IR and each a = (o, ...,an) € Z, define Eqf : R® — R by

fl@' zy), if zp, >0
Eaf(xl, xn) =

E;“__"_'ll Aj (_%)Ianl f(&',—z,/j), otherwise.
Many of the results in this section will concern Eg, where 8 = (0,...,0). We begin
by describing how this operator behaves with regards to continuous functions. We shall
initially be interested in the space Y*(R%) = {9|]Ri : g € CE(R™)}, where k is some

positive integer. The corresponding space Y*(IR") is simply C¥(IR™).
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Theorem 2.1.2 Let § = (0,...,0) and let f € Y*(R"), for some k € Z,. Then Epf €

CK(R™) and D*Eyf = EoD°f, for all o € Z with |o| < k.

Proof. Suppose z = (¢/,z,) € R", with z, <0, and o = (ay,...,an) € Z} with |a| < k.

Then,

k+1
D°Eyf(z',z,) = D° ZAjf(x’,—xn/j)}

=1

k+1 1 |0£n| , )
- 2 (—J—.) D*f (s, —zn/3)

= E,D°f(z',zy).

The relation D*Ey f () = E,D*f(z) for z = (2, z,,) with z,, > 0 is clear and so the formula
D°Eyf = E,D°f is established for all f € Y* (IR%).

It remains to show that Eyf € C¥(IR™). We know from above that D®Eyf = E,D*f.
Since f € Y¥(R"), D®f € Y°(R%). Thus it is clear from the definition of E, that

E,D*f € Co(IR™). Hence D*Eyf € Cy(R™) and the result follows. [

We now introduce a measurable weight function w : R® — IR. We shall assume through-

out this section that w satisfies the following two properties,
(W1) w(z) > 0 for almost all z € R™;

(W2) there exists a constant M > 0 such that if z = (z/,z,) € R" and y = (z',y,) € R”

with |z,| > |yn| then w(z) < Mw(y).
Now take o € Z}, and define, for f € Y’al(]Ri),
1/2
oy = ( oo . 0@ = 9ID%f (@) - D5 )P dwdy> .
+/ Ry
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The form of the integral is exactly that found in the Levesley-Light seminorm [18]. We
shall be interested in functions for which this integral is finite. Thus, we define X*(IR%})
to be the set of all f € YI®/(R") which satisfy |f |a,]R1 < oo. The quantity |f|,r* and
space X*(IR") are similarly defined. We now prove an extension theorem for functions in

X*(RY).

Theorem 2.1.3 There ezists a linear operator E : X*(R}) — X*(IR"™) such that for all

f e X*(RY),
(i) Ef(z) = f(x), for all z € R,

(%) |Eflom < Alfla,Rif for some positive constant A independent of f.

Proof. Our claim is that a suitable choice for E is the one we have already defined prior to
this theorem, E = Ey, providing |a| < k. Take f € X*(R%}). It follows immediately from

the construction of E that Ef(z) = f(z) for all z € R}. We consider
S g = [ fo wle = 9IDEf(2) = D*Bf u) dody.
For convenience we define a measurable function z by
2(z,y) = w(z — y)|D*Ef(z) — D*Ef(y)|?, for almost all z,y € R".

Let x++ be the characteristic function of IR" x R, x;_ be the characteristic function of

R%} x (R"\IR}), and similarly for x_ and x__. Then

Bfimr =Tev + Lo+ 1 +1
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where, for example,

I_y= / . / . X—+(z,y)2(z,y) dzdy.

Now,

00 0 , ,
I+ = /]R"“/o /]R"“/_ wl@ =y, = )

k+1 an|
(EA (- 1) D"f(w’,—mn/j)) — D*f(y/,3n)

2
dzndz' dyndy'.

Recall that since |ay,| < k we have Zk“ (-— 31-) o = 1. Using this fact and an application

of the Cauchy-Schwarz inequality gives

2

k+1 lan|
(Z)\ ( 1) Daf(m’, —xn/J)) —Daf(ylvy'n)

2

k on
f Aj (—%)I | (Daf(wla —Zn/j) — Daf(y,v yn))

j=1
2 k+1
) ( ‘Daf ' y—%n/§) — D f( y yn)')
1

EhE)E

=1

IA

2]an
Let A; = k+1|/\ |2( ) o] . Then,

k+1

Iy < AIZ/W 1/ /R" 1/ w(z' =y, on — yn)

|D®f(z', —2n/5) — D*F (', yn)|* dendz'dyndy'.

Making the substitution z, = —js, in the appropriate integral gives

k+1

I, < 4 ZJ/]R" 1/ /]R" 1/ w(z' —y', —jsn — yn)

|Df (', 5n) — DOF (Y, yn)|* dsndz'dyndy'.
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Since j, sp, and y, only take positive values,
| — jsn —Ynl| = |j3n+yn| =JSn+Yn 2 Sn+Yn = |3n - Ynl-

Hence, by (W?2), we can find a number Ay > 0 such that

k+1 o) 00 ,
I+ < A2§:j/n_1/ /n_l/ w(z' —y', 50 — yn)
=1 'R 0 0

|Df (@', 8n) = Df (', yn)[* dsndadyndy’.
Letting A3 = Ay Ej’:ll j we obtain,
Iysds [ [ wiz—y)D*f(s)— Df(y)* dody.
R} /RY
An almost identical argument furnishes the existence of a constant A4 such that
Lo <A [ [ wiz—y)[Df(s) — Df(y)I* dody.
Now, by reasoning very similar to above, we deduce the existence of A5 > 0 such that

0 0
I- = /JR"—I/_OO/RH/_OO w(@' =y, yn)
2

k+1 an
S (1) (071, 2t~ D/, /)| ey

=1

k+1 0 0
< AsZ/ n_1/ / n_1/ w(z' =y, Tn — yn)
|Df(a', ~2n/3) = D*f (Y, ~yn/ )" denda'dyndy'.
The change of variables z,, = —js, and y, = —jt, gives,

k+1 0 Io's) o0
. / ! N
= ASJ‘;J /m"-lfo /"“1/0 W& =gt = Jon)

|D®f(z',80) — Df(y,tn) {2 dspdx'dt,dy'.
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Again, since s, t, and j take only positive values, we have
|7tn — 3snl = jlsn — ta] 2 |80 — tnl,
and so an application of (W2) furnishes a constant Ag such that
I-<4s [ [ 0 =50 =)D, 5) = DS (Y, ta)] dsnde’dtady’.
+/ IRy
Finally, using

|Ef2ge = Lot + L+ Iy +1 -

< (+ds+Ai+de) [ [ w@—9IDf(z) - DS ()] dady,
+7 Ay

we obtain IEfla,]R," <V1+ A3+ A4+ Ag lfla,]R,'_:_' [ |
We end this section with some results that will be of use later.

Lemma 2.1.4 Let§ = (0,...,0) € Z7}. Let k € Z,, and suppose o € Z} satisfies |a| < k.
For f € X*(RY) define Ef = Eyf as in Definition 2.1.1. Then there erists a constant C

such that
/ |IDEf(z)|? dz < C/ |Df(x)|? dz for all f € X*(R").
R Ry
Proof. We can write,

a 2 _ « 2 o] 2
/]Rn |D°Ef(z)|? de = /lRi ID°Ef (z)|? dz + - \D°Ef(z)|? dz

= Jpn 1P @F o

0
* o]
R '/ -
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We consider the second integral. Let

1= feoo [

An application of the Cauchy-Schwarz inequality gives

I= / n1 / (k+1 (“3)Ia| ) (%1 D (&', —@n/3) |) de, da'.

( %) laal? , and making the change of variables z, = —s,j we have

k+1

I<qg Z]/ / |D*f (2’ sn)| ds,dzx’.

k+1 2

bIEY (-3)"" Dost@, s

dz, dz’.

Letting ¢; = Zk"'l

k+1 -

Letting ca = ¢1 ) ;% 7 we have

j=
I<C/ D $2d$.
2 [ |1D*f(z)]

Hence,

IA

fpe P BI@R @ < [ D@ dstes [ 1D @) do

+

(1+cz)/]R |D*f(z)]* dz. W

Definition 2.1.5 Take k € Z, and let f € YF(IR"). We define

1y = 3 calfloms + 3 [, ID7@

aEZ" aEZ"
|a|=lc |a|<k
where the c, are constants. Let || - || gn be similarly defined.

Theorem 2.1.6 Let § = (0,...,0) € Z%. For f € (= X*(RY), let Ef = Eyf be as

defined in Theorem 2.1.2. Then, for all f € Njaj=k X*(RL)

IEfll g < MIIfllR",
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for some constant M independent of f .

Proof. Take f € o= X*(R]). Then, by Theorem 2.1.3 and Lemma 2.1.4, there exist a

constants M7 and M3, independent of f such that

IBf g = X calBfEge+ ¥ [ ID°BS@)P da,

laf=k lal<k
< MY calflipr+ M2 Y / D% f(x)|? da.
= laf<k /%
Taking M? = max{M;, M,} gives the result. |
g

2.2 Some Preparatory Results

In this section we begin to move towards an extension for more general domains. The actual
construction of the extension operator is deferred until Section 2.3; here we shall discuss
some technical results that will be essential to our later development. We also introduce
some definitions and notation which we will adhere to throughout the rest of the chapter.
We begin by recalling the form of the Levesley-Light direct seminorm.

Take k € Z and suppose (2 is an open subset of IR". Let w : R™ — IR be a measurable
weight function, which will be required to satisfy certain properties as we proceed. For

f € C*(Q) we define,

1/2
1fla = (MZ:kc“ /Q /Q w(z — y)|D*f(z) — D*f (y)[? da:dy) , (2.1)

where the constants c, are defined by the algebraic identity

Z car®® = |z|*, for all z € R"™.
|al=k
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As in Section 2.1, we shall be interested in functions for which |- | is finite. We denote by
X () the set of all f restricted to 2 such that f € CF¥(R"™) and |f|a < c0. On X (), |- |a
defines a seminorm with kernel consisting of polynomials restricted to €2 of degree at most

k. We define, for f € C*¥(R"),

1/2
11l = ( > [ 1D%f (@) da + Ifl?z) for f € X(9). (2:2)
el <k

Then, if 2 is bounded, || - ||o defines a norm on X ().
In the construction of our extension operators we will make use of domain transforma-

tions which are k-smooth, by which we mean the following.

Definition 2.2.1 Let ; and Q3 be domains in IR", and ® a bijection from Qy to Qs. We
say that ® is k-smooth if, writing ®(z) = ($1(z1,---,Zn)s -, In(T1,- .., Tn)) and &7 1(z) =
U(z) = (1(Z1y-- > Zn), - - -y ¥n(21, - - -, Tn)), then the functions ¢1, ..., ¢, belong to C*(Qy)

and 11, - .. ,Pn belong to C¥(Qa). If k = 0 then we will refer to ® as smooth.

Definition 2.2.2 Let ® be a bijection from RR"™ to R™. We say ® is locally k-smooth if ®

is k-smooth on every bounded domain in IR™.

As we have already indicated, the results in this section will often need w to satisfy

certain conditions. We gather together all the required hypothesis here:
(W1) w € LY(IR™\N) for any neighbourhood N of the origin;
(W2) w(y) = O(|y|*) as y — 0, where n + s+ 2 > 0;

(W3) [, w > 0 whenever A has positive measure;
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(W4) w(y) = w(—y) for all y € R";

(W5) for every locally (k + 1)-smooth map ¢ on R", and every bounded subset 2 of R",
there is a K > 0 such that w(¢(z) — ¢(y)) < Kw(z —y), for all z,y € Q;

(W6) there exists a constant M > 0 such that if z = (¢/,z,) € R" and y = (z/,y,) € R"
with |z,| > |yn|, then w(z) < Mw(y).

We remark that in the previous section we assumed that w satisfied w(z) > 0 for almost
all z € R". We again assume this here, albeit in the stronger form of (W3). We are now
ready to begin developing the technical results needed in Section 2.3. We begin by quoting
two standard analysis results which will be of use later (see, for example, Rudin [29] and

Apostol [2]).

Theorem 2.2.3 (Fubini’s Theorem) Let f be a measurable function on R™ x R™ and

suppose at least one of the integrals

b= [ ([ f@plds) dy
b= [ ([ f@v)ldy) do

ezists and is finite. Then I, = I5.

Theorem 2.2.4 (Lebesgue’s Monotone Convergence Theorem) Let A C R" be mea-

surable. Let {f,} be a sequence of measurable functions satisfying
(i) 0 < fi(z) < fa(z) < -+ < 00 for almost every x € A,

(ii) fn(z) = f(z) as n — oo, for almost every € A.
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Then f is measurable, and

/Afn(w) da:-—)/Af(a:) dz as n — 0o.

Lemma 2.2.5 Let w: R™ — IR be a measurable function satisfying (W1)-(W3). Then the

mapping y — |y|*w(y) for y € R™ is in L}, (RR").

Proof. Choose § > 0 and set N = {y € R" : |y| < §}. Then there exists A > 0 such
that |w(y)] < Aly|® for all y € N. Since w € L!(R™\N), it is clear that the mapping
y +— |yl2w(y) for y € R is in L}, ,(R™\N). It suffices to show that this same mapping is in

loc

L'(N). For some appropriate constant B,

é
[ o) dy< 4 [ 191+? dy < 4B [t dr < o,
N N 0
by property (W2). [ ]

Lemma 2.2.6 Let Q be an open, convez, bounded subset of R". Let w : R™ — IR be a
measurable function satisfying (W1)-(W4). There exists A > 0 such that for each f €
cH(q),

| [we-vli@) - f@F dedy <4 Y [ 1D ()P da.

laj=1
Proof. Since f € C1(f), Taylor’s formula with integral remainder [15, pg.13] allows us to

write

2

TOES{OE | [ -0+ ity - ) a

|a|=1
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< (/ 1dt> (/ 3 (y—2)*D*f(z + t(y ——a:))l dt)

|a| 1

< [ (5;1) (Z l(y—x)auaf(x+t(y—w))]2) dt

lof=1

Now, let xq be the characteristic function of the set . Extend each D*f to a function
on R" by setting it to be zero outside 2. Two applications of Fubini’s theorem plus the

change of variables y = z + z gives

[ [ we=9lf@ - 1) dody

IA

nZ//w(x—— /|(y—Z°‘D°‘f(:1:+t( —z))|? didydz

lof=1

= a3 [ [ | v x0@xa) |- 97D (o + Hy - ) dydade

la|=1

=ny, / f/ 2)xa(z)xa(z + 2)|2*> | D f (z + tz)|* dzdzdt

laj=1

= 0 3 [ o w@l [ 1D+ ) xn(o)xala + =) dadsdt.
la]=1 aN(Q—=z)

Since {2 is bounded, we can find § > 0 such that if |z| > § then QN (2 — 2) is empty. Let

Bs = {y € R": |y| < é}. Then the change of variables z + tz = v gives

/n /a w(z - y)|f(z) - f(y)I* dzdy

= Z / /B /m(ﬂ_z) D% f(z +t2)|* xa(z)xa( + 2) dzdzdt
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= ny /01 fBé w(z)|2%? /R,, xa(v — tz)xa(v + (1 — £)2) |D*f(v)|* dvdzdt

lal=1

IA

n E /01 /5'5 w(z)|z%? /R" |Df (v)|? dvdzdt

|al=1

INA

n Y [, w@lel® [ 1D )P dvds,

=1
since (D°f)(v) = 0 for v € Q. Now by Lemma 2.2.5, there is a constant A > 0 independent

of f such that

[ [ we-vif@) - 1wl dedy < an 3 [ |D=f) do. W

la|=1
Lemma 2.2.7 Let U, H,G be measurable subsets of R™ satisfying the following properties
1) H is a bounded set and U C H C G;
2) there exists a 6 > 0 such that for allz € G\H and y € U, |z —y| > 4.
Let w: R™ — R be a measurable function satisfying (W1). Then there exists a constant K
such that for all y € U,

<K.

/G\H'w(a; —y) dz

Proof. Define f : U - R by f(y) = fG\H w(z — y) dz for y € U. Making the change of

variables £ = s + y gives

f) = | wis)ds

Ty

where T, = G\H —y. Take s € T,,. Then s = z —y for some z € G\ H and so by Condition
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(2), |z — y| > 6. Now take N = {s € R" : |s| < 6}. Then T, C R*\N and

s@I=| [ vy s < [l ds < o o) ds
Setting K = [~y |w(s)| ds gives the result. ]

In the proof of the next lemma we use of the notion of lower semicontinuity, which we
define below. In particular we exploit the fact that a lower semicontinuous function attains

its infimum on compact sets. A proof of this can be found in [25].

Definition 2.2.8 Let f be a function from a topological space to the extended reals. We

say f is lower semicontinuous if the set {z : f(z) > a} is open for every real a.

Lemma 2.2.9 Let H be a bounded subset of IR". Let U be a subset of H such that H\U
has positive measure. Let w: R™ — IR be a measurable function satisfying (W1) and (W3).

Then there is a number K > 0 such that,
/ w(z —y)dz > K, for ally € U.
H\U
Proof. Define f from IR™ to the extended reals by

i) = [ @ =) da = | ws) ds,

where T, = H\U —y and y € R". Because T}, has positive measure, f(y) > 0 for ally € R".
We claim f is a lower semicontinuous function on IR™. That is, the set Y, = {y € R" :
f(y) > a} is open for each oo € R. Clearly if < 0 then Y, is the whole of IR™ and so is

open. Thus we fix @ > 0. We will show that the set Y = {y € R : f(y) < a} is closed. Let
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[o <] 3 (4
{vj}32 be a sequence in Y. Then,

f('vj)=/ w(z) dz < a, forall j =0,1,....
T,

vi

For convenience we shall write T} for Ty,. Suppose that lim;_,.,v; = v. We wish to show
that v € YS. Let N be any neighbourhood of the origin. We define A = T, N N and

Aj =T;jNN. Since w € L'(R™\N) we have

/ w(z) dz = lim w(z) dz < a. (2.3)
T\A I700 JT;\4;

Let B(0,1/m) = {z € R" : |z] < 1/m} and define L, = T, N B(0,1/m). Let xm be the
characteristic function of L,,. Consider the sequence {wg}52, defined by wy = (1 — xi)w.
Now, for all z € R",

i) 0 < wp(z) < wi(z) < ...

ii) limg 00 wi(z) = w(z).

Note that in order to ensure Condition (ii) for z = 0, we need to define w(0) = 0. Now, the

Lebesgue Monotone Convergence Theorem and Equation (2.3) give,

w(z) dz = lim [ (1 - xx)(z)w(z) dz = lim w(z) dz < o
T, k=00 JT3, k—o0 Ty\Ly,

Therefore, v € Y£ and Y? is closed. Hence, f is lower semicontinuous. Since U C H and H
is bounded, U lies in some closed ball, centred on the origin. Now f attains its (positive)

infimum on this ball, and so the required conclusion follows. [ |

The following result seems to be absolutely crucial in all extensions theorems of this

nature. It examines the integral

[ [ we = 9)i5) ~ S dody,
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in the case where f is compactly supported on U C G. Now if U C H C G we find that,
under certain circumstances, we can in some sense disregard contributions of integrals over

H x (G\H).

Lemma 2.2.10 Let U C H C G be measurable subsets of R", with H bounded. Suppose
that for some § > 0, |z —y| > 6 for all z € G\H and y € U. Suppose w : R* - R
is a measurable function satisfying (W1), (W38) and (W4). Let X consist of all functions
f € C(G) for which the mapping F : G x G — R given by F(z,y) = w(z —y)|f(z) — f(v)]?

for z,y € R" is in L'(G x G). There is a number K such that

/G /G Fl(z,y) dzdy < K /H /H F(z,y) dzdy,

for all f € X with support in U.

Proof. Let f € X, then f is supported on U and F(z,y) = w(z — y)|f(z) — f(¥)|? €

LY(G x G). Furthermore, since w satisfies (W4), F is symmetrical. Thus we can write

/ / F(z,y) dzdy = / / F(z,y) dzdy + 2 / / Fl(z,y) dody
cle a\vJe\u vle\u
+// F(z,y) dzdy
uJu

= 2/ F(z,y) dxdy+/ / F(z,y) dzdy
vJe\u vJu

= 2/ F(z,y) da;dy+2// F(z,y) dzdy
vJe\H vJH\U
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+/U/UF(:v,y) dzdy

= 2/ F(z,y) da:dy+/ / F(z,y) dzdy.
UJG\H HJH
Now, again using the facts that F € L}(G x G), and f is supported in U,

/U /G\H Fla,y) dedy = /U MO /G\H w(z — y) dzdy.

Lemmas 2.2.7 and 2.2.9 show that there exists constants Ky, Ky > 0 such that
K

/ w(z—y)dr < K; < 1/ w(z — y) dz.

G\H Ky Jm\u

Since f is supported on U, we conclude that

K
[ ] Feyady < 22 [ 116k [ we-y) doy
U JG\H 2 JU H\U

Kl/
= — F(z,y) dzdy.
% Ju Janw (z,y) dzdy

Finally,

/G/GF(:I:,y) dzdy

IN

2K1/ F(z,y) d:cdy+/ / F(z,y) dzdy
H\U

IA

(——+1>//ny dzdy. W

We turn our thoughts now to k-smooth mappings as defined at the beginning of this
Section. It is important that we have an understanding of them as they will be essential
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to the development of our extension operator. The necessary results in this area are given

in the next four lemmas and in Theorem 2.2.15 which is one of the central results of this

Section.

Lemma 2.2.11 Let Q;, Q9 be domains in IR", and ¢ a k-smooth bijection from 2 to Q.

For each f € C*(2) and o € Z" with |a| <k,

D*(fog)= D Pogl(D’f)od], (2.4)

0<|BI<|e]

where each Pyg is a polynomial of degree at most |B| in derivatives of the components of ¢

of orders at most |a|.

Proof. The proof is by induction on |a|. If & = 0, then the result holds with Pyy = 1. Now
assume Equation (2.4) holds for all o € Z7} with |a| < m < k. Take a € Z} with |o| = m.

Then o = 3 + -y where || < m and |y| = 1. Now employing the induction hypothesis,

D*(fo¢) = D'DF(fog¢)

= D7( > Pﬂu[(Duf)°¢]>

0<|v|<m—1

= > ((D"Pﬁu)[(D"f )o @] + Ps,D7[(D”f) o ¢]).

0<v]<m—1

The induction hypothesis can now be employed again on part of the second term in the

parentheses above giving

D(D"f)o¢]l = D Pul(D**f)od]

0<|pl<1
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= Py[(Df)od] + Z Py[(D** f) o 4].

|ul=1

Thus,

D*(fod) = Y, (D'Pg,+ Ps,Py)[(D"f)o¢]

0<v|<m-1

+ Z Pgy, Z Pw[(D'hLVf) o ¢

0<y|<m—1  |ul=1

= Y. (D"Pg, + Pg,Py)[(D"f) o ¢]
0<lv|<m—1

+ z Z PgsPyy | [(DYf) o ¢].

1I<y|<m | pto=v

jul=1
6>0

We can therefore write

D¥fog)= D, Pul(D"f)od],

0<[v|<m
where )
D7Pﬂ0 + PgoPyo, v=20
DIYPﬁu"'PﬁVP'yO+Eu+5=yPﬂJP'yp.a 1< |Vl <m-1
Py =« |%tl>=01
Eu+6=uPﬂ5P'ma lv| = m.
lu|=1
\ 6>0
The result now follows by induction. |
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Lemma 2.2.12 Let ¢ be a k-smooth bijection between bounded domains Q1 and Q9 in R™.

There exists a constant K such that for all o € Z% with |a| < k and for all f € C*(Qy),

/ﬂ ID*(foA)@) de < K max | |(DPf)(@)P dr.

Proof. Take f € C*¥(Q) and o € Z? with |a| < k. Then, using Lemma, 2.2.11
+

*(fod)@)= D Pup(a)(D’f) o ¢l(2),
1B1<le]
where each Pyg is a polynomial of degree at most |3| in derivatives of the components of ¢

of orders at most |¢|.

Thus, using the Cauchy-Schwarz inequality, we have

[ped@ii = [ | 3 Pu@(@h) @] i

L1l

< [Pas(z)* [[(DP£) © 4](z)
/91 161<le] Iﬂ%al ’ l | )
< (X 1) max [ 1Pas@P (D) 0 dl(@)] da

18|<|l

2

2
: (Iﬂ%all) Bi</al (xné%’flp )lz/m|[(Dﬁf)°¢](x)' dm)'

Now suppose the maximum above over |G| < |a| occurs at 3 = (y. Since §2; is a bounded

domain, we can assume that there is a number K; such that

2
2
(Z 1) max | Pog, (z)|” < Ki.

181<le]
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Then,

[ D@ do< ki [ 080 6l as

1951

Making the change of variables z = ¢~!(y), we obtain

[ oo @ ds < [ [0%n@) 720 d

where Jy-1 is the corresponding Jacobian. Since (32 is bounded, this Jacobian is bounded

on )y, and so there is a number K5, such that

[ 10°( o @) do < KuKs [ (DPf) (@) do
Ql Q2
as required. [ |

Lemma 2.2.13 Let ¢ be a (k+1)-smooth bijection between bounded domains Q1 and Qs in
IR". Let o, € ZY} with |a|,|8| < k. Let Pyg be as in Lemma 2.2.11. Let w be a measurable

function satisfying (W1)-(W38). Then there ezists a constant K such that

/Q w(z — ) |Pag(z) — Pap(y)|? d < K,

1

for ally € Q.

Proof. Recall from Lemma 2.2.11, that P, is a polynomial of degree at most |3| in

derivatives of the components of ¢ of orders at most |c|. Let

d(z) = (p1(z1y- -, Zn)y - -, D@1, ., Tn))-

Because ¢ is (k+1)-smooth, the functions ¢1,..., ¢, are in C¥+1(};). Hence, we can find

a constant K; such that for all 1 <i <n,

|(DYi)(z) — (D7¢4)(y)| < Kilz —yl,
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for all z,y € Q; and for all v € Z?} with |y| < k. Consequently, we can find a constant
K such that |Pag(z) — Pap(y)| < Kalz — y| for all z,y € Q1 and for all o, € ZT with

] 161 < k. Hence,
[ w(z = 4) 1Pap(@) ~ Pas@)* do < K [ Jo— ylPule — y) de.
1 1

Using the change of variables £ — y = s we have

| 0@ = 9)1Pas@) = Pasl@) do <K [ [sfu(s) ds.

1 1-Y

Lemma 2.2.5 establishes the existence of a constant K3(y) > 0 such that

[ 0@ =) 1Pas@) = Pos@)? da < K3 K (o).

1

Again by Lemma 2.2.5, the map s — |s|?w(s) is in L}, ,(R"). Therefore, the function y

Joi—y |s]*w(s) ds is continuous. Since Q; is bounded, it follows that sup,cq, K3(y) < oo.

Thus the required result is obtained by taking

K =K2sup K3(y). ®
ye

In the following result we will make use of the following simple inequality. For all
a,be R

la+ 6] < laf? + 2|allb] + [b* < 3(lal* + [5]%). (2.5)

Lemma 2.2.14 Let ¢ be a (k+1)-smooth bijection between bounded domains Q1 and Q2
in IR™. Let w be a measurable function satisfying (W1)-(W3) and (W5). There ezists a
constant K such that for all f € C*(Q) and all a € Z7 with |o| < k,
|| wlz=9)ID°(f 0 $)(@) - D°(f 0 ) ) dady

1 1
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<K mx [ [ w@-y)(D°N)@) ~ (DN dzdy + K max [ (D)) do.

Proof. Take f € C*(Q;) and a € Z7 such that |¢| < k. Observe first that by Lemma

2.2.11,

D(fod)(@) = Y. (Pas(@)(D’f o ¢)(a) for € O,
181<]

where each P, is a polynomial of degree at most || in derivatives of the components of
¢ of orders at most |a|. Therefore, using the Cauchy-Schwarz inequality and the remark

preceding this Lemma,

ID%(f © $)(&) — D*(f o ) (y)I”

2

> (Pas(@)(DPf o §)(@) — Pas(u) (D’ 0 $)(v))
18I<le|

IA

( > 1) ( > |Pasle Dﬂf°¢)($)—Paﬁ(y)(DﬁfO@(y)lz)

181<le 181<]el

IA

3( > 1) ( Y [Pas(@)|(D°f 0 $)(2) — (D 0 )(w)|

18I<lad [BI<lel

+ 3 ‘(Dﬂf é)(y l |Pop(z) — aﬁ(?/)|)

181<le|

Put K1 = 3E|ﬂ15|0‘| 1. Then,
J,, . wle =D o 8)(z) ~ D(f o ) ) dody
> [ [ w = lPas@)R (0 0 $)@) - (D1 0 8)(w)|| dady

Iﬂl<| l
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+K (DPf o))" [ w(z 1) Pap(z) — Pag(y)|? dedy.
2 @0l

We examine each of the above integrals in turn. Firstly, since 2; is bounded we can assume

that |Pyg(z)]? < K; for all |8| < || and for all z € ©;. Thus, making the changes of

variables £ = ¢~1(s) and y = ¢~ 1(2),

| [ wa = plPas(@P [(0°F 0 9)(@) = (Df 0 #)(w)|” dady
Q1 J

< Ko f [ we—9)|D°Fod)w) - (0°fo )] dady

< K /92 /ﬂzw(¢_l(8) -¢7'(1) ,(Dﬂf)(s) - (Dﬁf)(t)lz|J¢—1(s).]¢_1(t)| dsdt.

Using hypothesis (W5) and the fact that |J;-1| is bounded on the domain Q3, we infer the

existence of a constant K3 such that
2|(ph 8 ?
| wl@ = vIPas (@) |(D°f o §)(@) ~ (D°F o @)(w)|” dady
1 1
2
<K [ [ wis—9|01)e) - DN dsd.
Q2 /0,
Considering now the second integral, by Lemma 2.2.13 there is a constant K4 such that

|2 dzx.

[DPf o ¢)(z)

Jo (02100 [ 0@~ )IPap(@) = Pap(w) dody < K |

Applying Lemma 2.2.12 there is a constant K5 such that

Jo

Thus, assuming (with no loss of generality) that K5 > K3,

") da.

(DPf o ¢)(y)|2 /91 w(z — y)|Pap(z) — Pop(y)|? dzdy < K ltlirllgl);l /Q2 (D

[ e =0ID*(7 0 §)@) - (s o 1) dady
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< KiKs 3 // (s = 1)| (D 1)(s) Dﬂf)(t)’ dsdt
161<Iod

s Iﬁ% (1BI<led /92 1 (PP1)(e) l

_ s — (DA ds
< Kle( > 1) (é’i‘é‘ﬁn&fazw(s ) |(DP£)(s) = (DPF)(®)| dsdt

181<lel

+ max
1BI<lal JQq

s 2
(DPf)()] dz).
Taking K = K1K5 _)g/<|e| 1 completes the proof. |

Our final result concerning k-smooth mappings and the remaining results in this Section
will concern the quantity || - ||o as defined at the beginning of this Section. Recall that for

bounded domains , || - |jo defines a norm on X ().

Theorem 2.2.15 Let ¢ be a (k+1)-smooth bijection from a convez, bounded domain
into IR". Let w: R™ — IR be a measurable function satisfying (W1)-(W6). Then there is

a number K such that

If o dlle, < Kllf llp(s), for all f € X($(£21)).

Proof. Set Qs = ¢(2;). From Lemmas 2.2.12 and 2.2.14 we infer the existence of a constant

K7 > 0 such that

Ifodllh, = X / ID2(f 0 §) (@) do

lal<k
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+ Y [ [ we-ID(f o 9)@) — DF o )W) drdy

o=k M

- B _nb 2
< Kimax /ﬂ 2 /Q iz ~9)IDf(w) ~ D ()" dady

+Kmax/ DB f(z)|? dz.
1 mmax 92| f()]

From Lemma 2.2.6 we infer the existence of a constant K5 > 0 such that

<k

Ifodllt, < Ki (Kz Z/m |DYf(z)|? dz

+ ) c /Q /Q lw(z — y)|Df(z) — D7 f(y)|? d:cdy)

lv|=k

+K ma,x/ DB f(z)|?dz
vmax [ 1D77(a)

< KI(K2 + 2)“f”92,
as required. [ |

Lemma 2.2.16 Letu € C§°(IR"™) and let Q be a convez, bounded domain. Letw : R" — IR

satisfy (W1)-(W4). There exists a constant C such that for all v € Z} with |y| =k,
[ [ wia - 9ID7wh)(@) - DY) (W) dody < Ol 1
for all f € X(9).
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Proof. Let

I = /Q/Qw(g: —y)| D (uf)(z) — D7(’uf)(y)|2 dedy.
The Leibniz formula (see [30, Section 6.15]) allows us to write

D'(uf) = Y Cyp(D"Pu)(DPf),
e
181<l

where the C,5 are suitable numbers. Using this and the Cauchy-Schwarz inequality gives

ho= [ fpre=v] 2 o {0 @@ e - @ uwonm) [

< (z aom?) [ [we-v( T [0 u)@)0" )@

1BI<I 18I<I|

(D7) () (D? ) (w)| ) dady.

Now set c1 = 3 |8<|1 |C,p]%. Then using inequality (2.5) we obtain

L < 3a ) w(z —y)| D" Pu(2)*|D? f(z) - DPf (y)|* dzdy
1 1 1BI1<Ivl /Q/Q

+3 z — y)|DPf(y)|?| DA — D" Bu)? dzdy.
cllﬁ%ﬂ /Q /Q w(z - )| DPf(y)2) D" Pu(z) ()2 dzdy

Now set

€2 = max sup D" Buy(z))2.
IﬁISI7ImEQ| @)

Lemma 2.2.6 shows that there is a constant c3 such that
ho< san 3 [ [ we-y)ID?f@) - D) dedy
B1<lr| 72
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+3 3 /Q /Q w(z — y)|DP £ () [2|D"Pu(z) — DT Pu(y)|? dudy
[BI<lv]

< 3ee w(z ~ y)|D f(z) — D° f(y)|? dwd
1 2|[§=:k/0/9 y Yy Y

+3cicac3 Z /QlDﬂf(y)lzdy

1<|BI<k

+3c1 Y, [ IDPf))? | w(z —y)|D" Pu(z) — D" Pu(y)]® dzdy.
Iﬁlslvl/Q /Q

If we can now show that for each y €  and every o € Z'} with || <&,

I(y) = /Q w(z — y)|D*u(z) — Du(y)[? ds

is bounded by a constant ¢4 dependent only on u and «, then we will obtain

L < 3ec w(z — y)|D? f(z) — DP f(y)|? dzdy
< s 3 L

+3crcaes 3 /Q DA ()2 dy

1<|BI<k

+3cics Y / |DP £ (y)|2dy.
181<lv] 7S

This completes the proof. For the boundedness of I we note that, since u € C§°(IR™), there
exists a constant cs(a) dependent on «, such that

|D%u(z) — D%u(y)| < cs(a)lz —yl,
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for all z,y € R™. Using the change of variables £ — y = s, we obtain

L) < oslo) /Q w(z - y)lz — y|? do

= 05(01)/ w(s)|s|? ds.
Q-y
Lemma 2.2.5 now establishes the boundedness of I on . [ ]

Lemma 2.2.17 Let Q be a bounded, convex, open subset of R". Let w : R* — IR be a
measurable function satisfying (W1)-(W4). Let u € C§°(IR™). Then there is a number

C > 0 such that ||ufl|la < C||f|la for all f € X(2).
Proof. Let f € X(2). An application of Lemma 2.2.16 shows that

lufly = ¥ ca | [ wie-9)ID*wh)@) ~ DX W)@ dedy  (26)

lal=k

+ 3 [ IDuh@) do

o<k

< Y alflp+ ¥ [ ID*@)H@ do, (2.7)

le|=k le|<k

for some c; independent of f. The Leibniz formula guarantees the existence of constants

cap such that

D*(uf) = > cap(D*Pu)(DPf).
18I<|e]

Hence, for any a € Z’} with |a| = k, an application of the Cauchy-Schwarz inequality gives

ID°(uf)(z)? do = cap D Pul)DP (z)[ da
/Q /Qllﬂgal ’ |
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< (Z lcam?) /ﬂ Y 1D Pu(z)DP f(z)? da-.

18|<|al 1BI<le
Setting

= 2 a-p 2
C2 = Z Icaﬂl max sup |D u(z)|
1BI<]al [BI<|el zen2

gives,

*(uf)(z)|*dzr <c Ai(z)|?de < c 2.
[ 1D )@ do < 2,ﬂ§a|/n'D f@)P dz < allfIlh

Substituting this result back in (2.7) gives

luflt < Y- cactllfllG+ D callfllg,

|lo|=k |laf<k

which is the required result providing we take

C > ancl-l-ZCQ. ||

|a|=k la|<k

2.3 Extension Theorems for More General Domains

We are ready now to construct an extension operator for domains 2 which are considerably

more general than IR”}. Some restrictions on the domain 2 are nevertheless needed. For

example, we shall always assume that 2 is bounded. We also require a certain level of

smoothness of the boundary of 2 which we now detail.

Let B = {(y1,¥2,...,yn) € R* : |y;] <1, 1 <j<n},andset By ={y € B: y =

(v',yn) and y, > 0} and By = {y € B: y = (¥',yn) and y, = 0}. We shall assume k is a

fixed natural number throughout this section.
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Definition 2.3.1 A bounded, open, convez set 2 in IR™ with boundary 0S? will be called a

V-domain if the following hold,
(V1) there exist open sets Gi,...,Gn C R" such that OS2 C U;-Vzl Gj;

(V2) there egist locally (k+1)-smooth maps ¢; : R* — IR"™ such that ¢;(B) = Gj,

$i(B+) =G;NQ and ¢;(By) =G; NN, j=1,...,N;

(V3) let Qs be the set of all points in Q whose distance from 0 is less than §. Then

for some § > 0,

N
1 .
Qs c |J ¢ ({(y1,y2,...,yn) € R": |y;| < Pr LS Sn})
Jj=1

We continue to use the notations |- | and || - || as defined in Equations (2.1) and (2.2), as
well as the space X (Q2).

We now embark on the construction which will define our extension. We presume (2 is
a V-domain and develop a linear extension operator L : X (©2) — X (IR™). We note that the
notation we are developing here will be used throughout this section in the various results

we shall establish. Let

1
= R": |y:| < ——, 1<j<nb.
Q {(y1,yz, 'Yn) € Iygl<k+1, _J_n}

Now set V; = ¢;(Q), i =1,...,N. By virtue of (V3) for some § > 0, Vq,...,Vy form an
open cover of §25. Consequently, we can find an open set Vj such that dist(z,92) > ¢ for all
z € Vp,and 2 C U;-VZO Vj. Now construct a partition of unity ug,...,uy € C§°(IR") such
that,
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(A1) each u; is supported in Vj,

(A2) uj(z) > 0 for all z € R",

(A3) =X guj(z) =1for all z € Q.

Now take f € X(Q2). Then f = g |q for some g € C¥(IR") with |g|q = |f|a < oo. Thus

we can think of f as being in C§(R™). We can write,
N
f(z) =) ui(z)f(z) for z € Q.
J=0

Now define 9; : R® — R by ¢; = (u;jf) o ¢;, s =1,...,N. Note that (u;f)(¢;(z)) = 0 if

¢i(z) ¢ V; = ¢;(Q). Hence 1; is supported on Q.

Lemma 2.3.2 Let s € C¥(IR™) be supported on Q. Definet = s |R1’ and the extension

operator E as in Definition 2.1.1. Then Et € CE(RR™) and is supported in B.

Proof. The fact that Et € CE(R™) is the substance of Theorem 2.1.2. To see that Ft
is supported in B, suppose z ¢ B. If z, > 0 then (Et)(z) = t(z) = s(z) = 0, since s is
supported on  and Q C B. If z,, <0, then

k+1 k+1

Et(z) = Y _ Mt(z/,—zn/i) = D Ais(2, —zn /3).
i=1 i=1

Suppose |z,| > 1. Then for 1 <i<k+1,

1
|| >

[n /4l 2 Zkx0)

1
(k+1)
If |z,,| < 1, then since z ¢ B, there is a j with 1 < j <n — 1 such that

1
21> —:--.
sl 212 5
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We conclude from this that if z ¢ B, then (z/,—z,/i) ¢ Q for 1 < i < k+ 1. Hence,

(Et)(z) = 0. -

Define ¥; = 9; I]Ri . Then by Lemma 2.3.2, EY; is in C§(IR™) and is supported in B.
Define 6; = E¥; 0 ¢7'. If z ¢ Gy, it follows that ¢;'(z) ¢ B and so E¥;(¢;"(z)) = 0.
From this we conclude that the support of 6; is in G;, j = 1,..., N. We are now finally in

a position to define our extension operator L as

N
Lf =uof + 6, (2.8)
=1

Lemma 2.3.3 Let Q be a V-domain. We have Lf(z) = f(x) for all z € Q.

Proof. Take z € €. By reordering if necessary, we can assume that x belongs to Gy, ...,Gp

but not to Gpr41,--.,GnN. Then,

Lf(z) = wuo(z)f(z)+ ) 0i(z)

= up(2)f(2) + gm(qs;l(x))-
Now for i =1,...,M, z € QNG; and so ¢; }(z) € B,. Hence,
EV(¢;(2)) = (wif )(9i(¢7 () = (uwif)(2).
Finally, because u;(z) =0,i =M +1,..., N,

M N
Lf(z) = uo(z)f(z) + Y wi(z)f(z) = wo(2)f () + Y_ui(z)f(z) = f(z). W
i=1 1=1
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From Lemma, 2.3.3, we see that L certainly has the potential to be the required extension
operator. However, we need to address the question of whether L is bounded. To this end

we make the simple observation that

N
IZfIlR» < lluofllm» + D 1651l
i=1

The next result examines the quantities ||6;|[|g~. We shall drop the subscript j temporarily

and simply work with § = E o ¢~! supported on a set G, which typifies G;.

Lemma 2.3.4 Let Q be a V-domain. Let w satisfy (W1)-(W6). There ezists a number
C > 0 such that,

19l g < Clluflla, for all f € X(Q).
Proof. Let f € X(Q). For a € Z, |a| < k we consider the integrals

L= [ [ - 0ID0E) - D0 iy snd L= [ D0 ds

Let G be a bounded subset of R™ which contains G. Moreover, suppose there exists 7 > 0
such that |t —y| > n for all z € G and y € R™"\G. Then, because 8 is supported on G,

Lemma 2.2.10 provides a number ¢; such that

L<d /g /g w(z — y)|D*0(z) — D°0(y)|? dady.

Again, because 6 is supported on G,
I = [ |D°6()P da,
g

and so we conclude that [|f||g» < c1]|0]|g. Since ¢~! is a locally (k + 1)-smooth map-

ping, Theorem 2.2.15 shows there is a number ¢y > 0 such that ||0]lg = ||[E¥ 0 ¢~ }|g <
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c2||[E¥||4-1(g)- Now, by Theorem 2.1.6, we can find a constant c3 > 0 such that
I0lR" < c1e2]|E¥lg-1(g) < c1e2|| E¥[|Rm < c3l| ¥R -

Since ¥ is supported on Q4+ C B NIRY, we can again apply Lemma 2.2.10 to obtain a

constant ¢4 such that
/ / w(z—y)|D*¥(z)~D*U(y)|* dzdy < 64/ / w(z—y)|D*¥(z)~D*U(y)|* dedy,
T/RL By /By
for all « € Z7 with |a| < k. Therefore, there exists a constant c5 such that
16lr~ < esll¥limy < csll¥llBy = csli¥llB,-

Moreover, since ¥ = (uf)o¢, an application of Theorem 2.2.15 shows that there is a constant

cg such that

16lRr < cslluf odlla, < csllufllgs,

= cllufllanc

IA

collufllo. W

Theorem 2.3.5 Let & C R" be a V-domain. Let w : R™ — IR be a measurable function
satisfying (W1)-(W6). Let f € X(Q). Then there exists a continuous, linear mapping
L: X(Q) - X(R"™) such that for all f € X(2),

1)Lfla=f

2) |\ Lfllgr < M| fllq for some constant M independent of f.
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Proof. Let f € X(f2) and define Lf as in Equation (2.8). By Lemma 2.3.3, (Lf)(z) = f(z)

for all z € ). Furthermore,

N
1L IR < lluof iR~ + D 1165 I
j=1

An application of Lemma 2.3.4 shows that [|0;[|g~ < c1]|u;f|lo for some suitable constant
c¢1 > 0. Thus,

N
ILfIlR» < luoflime + D cillu;fllo.
j=l

An application of Lemma 2.2.17 gives

N
ILflge < luofllme + D cicallflle,
j=1

for some number c; independent of f. Furthermore, since ug is supported on Vy C Q we can

use Lemma 2.2.10 and a further application of Lemma 2.2.17 to obtain constants c¢3,cq4 > 0,

independent of f, such that

ILfilgr < eslluoflla + Neieo|lflla

IN

cscl| flla + Neiea|| fllo

IA

(csca + Neiog)|f -
Using this result and the fact that f € X(2) we have,

ILfiIrr < ILflg~
< (csca+ Neied)l flla

1/2
(c3cs + Nejcp) ( > /Q |D*f(z)|? dx + Ifl?z)

|la|<k

< 00.
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Thus Lf € X(R"). B

Let X(€) be the completion of X (2) with respect to | - ||q. Let X(IR"™) be likewise
defined. We shall make use of the following standard abstract analysis result, a proof of

which can be found in [17].

Lemma 2.3.6 Let P be a normed space and Q) a complete normed space. Let V be a dense
linear subspace of P and let Ty be a continuous mapping of V into Q). Then there is a unique

continuous mapping T from P to Q that extends Ty. Further T is linear and ||T|| = ||To||-

We note that the above result also holds if one is considering seminormed rather than
normed spaces, the only exception being that the extension T is no longer unique. A
straightforward application of Lemma 2.3.6 allows us to deduce the existence of extension

results for functions in X' () as follows.

Theorem 2.3.7 Let 2 C R" be a V-domain. Let w : R® — IR be a measurable function
satisfying (W1)-(W6). There ezists a continuous linear operator L : X(Q) — X(IR") such
that for all f € X(Q),

1) Lfla=f

2) ILflmr < M|\ fllq, for some constant M independent of f.

Now, let Y(IR") be the completion of X (IR™) with respect to | -|. Since |f|gr~ < [|flIlR"

for all f € X(IR"™), the following result follows immediately from Theorem 2.3.5 .
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Theorem 2.3.8 Let QO C IR"™ be a V-domain. Let w: R™ — IR be a measurable function
satisfying (W1)-(W6). Let f € X(Q). Then there ezists a continuous, linear mapping
L:X(Q) - Y(IR™) such that for all f € X(Q),

1) Lfla=f

2) |Lflgr < M| f|lq for some constant M independent of f.

In a similar way to Lemma 2.3.7 we can obtain a second extension result for functions in

x(Q).

Theorem 2.3.9 Let 2 C R™ be a V-domain. Let w: R™ — IR be a measurable function
satisfying (W1)-(W6). There ezists a continuous linear operator L : X(2) — Y(IR™) such
that for all f € X(02),

1) Lfla=f

2) |ILf|jgr < M||f|la, for some constant M independent of f.
Proof. Again this result is derived from Theorem 2.3.8, using Lemma 2.3.6 . ]

Before proving our final extension theorems we quote two more results from abstract

analysis which we shall require.

Theorem 2.3.10 Let X and Y be normed spaces. If there is an open, continuous mapping

from X onto Y and X is complete, then so is Y.

Theorem 2.3.11 Suppose that ||.||1 and ||.||2 are two norms on X both making the space

complete. If there exists an a > 0 such that

lz]l2 < aflz|: forallx € X,
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then the norms are equivalent.
Proofs of these results can be found in [17], pages 179 and 218 respectively.

Theorem 2.3.12 Let 2 C R"™ be a V-domain. Let w: R"™ — IR be a measurable function
satisfying (W1)-(W6). Given f € X(Q), there exists a function fo € Y(IR") such that

I)felﬂ’_—f

2) |felgr < M|fl|a for some constant M independent of f.
Proof. Let IIy o = {p |n: p € IIx(R™)}. We shall work with the quotient space
X(Q)/Mga ={f +1a: f € X(Q)}.

For f € X(2) define

If + kel = |fla,

|f + Millz = inf{|ulg~ : u € Y(R™) and u |q = f}.

We claim that || - ||; and || - ||2 are norms on X(Q)/H)q. Now, |flo = 0 if and only if
f € Ilkq, and so || - ||; is clearly a norm on X(2)/Il; o. Given f € X({2), Theorem 2.3.7
allows us to find an Lf € Y(R") which satisfies Lf | = f and [Lf|gr < oo. Hence,
||f + I||2 exists. Let f. € Y(R™) satisfy |fe|g» = inf{|ulg~ : v € Y(R") and u |q = f}.
Suppose || f +1k||2 = 0, then |fe|g» = 0 and f. € IIx. Since f. |q = f this implies f € I .
Conversely, suppose f € IIx n. Then f, is just the polynomial in II; for which f. |q = f,
since then |f.|g~ = 0. Hence || - ||2 is a norm on X () /Il q.

The quotient map Q : X(Q) — X(Q) /I q is defined by Q(f) = f + Ik q, for f € X().
This is a linear, continuous, open map from X(Q2) to X (Q)/Ilx q, (see for example (30,
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p.31]). Since X(f2) is complete we can thus deduce from Lemma 2.3.10 that the normed
spaces (X(Q)/Ik, || - |l1) and (X(Q)/Hk, || - ||l2) are also complete. For all f € X(€), we

have the simple inequality

If +Mealli = |fla = |fela < |felr» = If + Mk all2.

Hence, using Lemma 2.3.11, there exits a § > 0 such that

lfelmr = IIf + xallz < BIf + Mk ally = Blfla, forall f € X(Q). W

Our final extension theorem involves the spaces Y(2) which we define as the completion
of X () with respect to | - |. Before we prove this final result we remark that the following

Corollary can be deduced trivially from the previous theorem.

Corollary 2.3.13 Let Q C R"™ be a V-domain. Let w: R" — IR be a measurable function
satisfying (W1)-(W6). Given f € X(Q), there ezists a function f. € Y(IR") such that

1)fe|Q=.f

2) |felmrr < M|f|a for some constant M independent of f.

Theorem 2.3.14 Let Q C R" be a V-domain. Let w: R" — IR be a measurable function
satisfying (W1)-(W6). Given f € Y(Q), there ezists a function f. € Y(IR™) such that

1) fela=f

2) |felgr < M|fla for some constant M independent of f.

Proof. By Corollary 2.3.12, such extensions exist for functions in X (). Since X(Q) is

dense in Y(Q2), Lemma 2.3.6 implies the required result. [
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2.4 The Weight Function w and the Domain 2

The extension results developed in the previous section are dependent on the weight function
w satisfying conditions (W1)—(W6), as given in Section 2.2. We give now some examples of
weight functions for which these properties hold.

We begin with the familiar non-integer valued Sobolev seminorms. Here the weight
function w is defined by w(z) = |z| ™" * for x € R® and 0 < A < 2. It is clear that w
satisfies conditions (W1)-(W4) and (W6). To see that (W5) is satisfied, let ¢ be a locally
1-smooth map on IR™. Then ¢! is also locally 1-smooth. Let Q be a bounded domain. By

Taylor’s formula, there exists a constant K > 0 such that for all z,y € Q,
lz -yl = ¢~ ((2)) — 7 ($())| < K|¢(z) — p(v)|-

Hence, for all z,y € Q with z # vy,

- _ gntA _
() — p(y)I"*+* ~ o K wE—y)

w(d(z) — ¢(y)) =

Since ¢ is a bijection, z = y implies w(¢(z) — ¢(y)) = w(z — y) = w(0). Hence, w(¢(z) —
#(y)) < max{K"+* 1} w(z — y) for all z,y € Q. Hence, condition (W5) is satisfied.

For our second example let w(z) = e~ for z € R™. Again, it is easily verified that w

satisfies conditions (W1)—-(W4) and (W6). Let ¢ be a locally smooth map on IR". Let

be a bounded domain. For all z,y € ©,

lz —y|* — |6(z) — $(¥)I> < |z —y* < sup |z —y|*
z,yeN

Because 2 is bounded we can find a K > 0 such that sup, ,cq |© — y|? < K. Then,

() — W) > |z —y> - K for all z,y € Q.
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Thus, for all z,y € €,
w(p(z) — P(y)) = e WO < mlo-yP+K — Koy(z — ).

Consequently, condition (W5) holds.

Our previous example forms part of a family of such examples. Let w be a continuous,
positive-valued function in L'(R") satisfying w(—z) = w(z) for all z € R™. We also
assume that there exists some ball B; = {z € R" : |z| < §} such that on R"\B;, w(z)
is a decreasing function of |z|. It is straightforward to see that w satisfies (W2)-(W4).
Furthermore, there exists A > 0 such that w(z) < A for all z € R™. Let ¢ be a locally
smooth map on IR™ and let 2 be a bounded domain. Since w is continuous we can find

M > 0 such that w(z —y) > M for all z,y € Q. Thus
A
w(p(z) —P(y)) <AL 'M’w(w -y) for all z,y € Q.

Hence, (W5) is satisfied. Finally, we examine condition (W6). Take y € R™. If y € Bs then
a similar argument to that above proves the existence of C > 0 such that w(y) > Cw(z)
for all z € R". If y ¢ By, then w(y) > w(z) for all z € R"™ with |z] > |y|. Thus
w(y) > min{1, C} w(z) whenever |z| > |y|, showing (W6) holds.

The condition on the domain is more difficult to exemplify. If Q is a domain which lies
locally on one side of its boundary 052, then Conditions (V1) and (V2) in Definition 2.3.1
will hold if the boundary 02 is an (n — 1)-dimensional, (k + 1)-smooth manifold in R”, (see
Oden and Reddy [27]). An easy example of a set 2 in R?, which satisfies (V'3), is given by

any disc. To construct the open sets G, for the disc B(0,7) = {z € R? : |z| < r} we can
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take, for j =1,...,8,
G = {:1: € R?:z = (pcosb, psinf) and %’ <p< %T, Li;slﬁ <0< Sj-}-sl)w}.

The condition that €2 be a V-domain is a fairly strong requirement on the smoothness of
0f2. Of importance to us in Chapter 3 will be the fact that this condition implies the cone

condition as defined below, (see Wloka [38, Section 2]).

Definition 2.4.1 A domain ) is said to have the cone property if there erists a finite cone
C such that each point x € Q) is the vertex of a finite cone contained in Q and congruent to

C.
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Chapter 3

Error Estimates

An important question in the study of any interpolation method is that of error. Specifically,
we wish to know how well the interpolant reconstructs the original function. Thus, we
now turn our attention to the subject of error estimates. As indicated previously, the
motivation behind the derivation of the extension results in Chapter 2 was their use in
obtaining improved error estimates. In this chapter, we shall provide full details of how
this is achieved. However, we shall begin by giving a brief introduction to the subject in
a general setting, giving an indication of how one might construct a typical error estimate.
We shall introduce the use of the so-called power function in the development of pointwise

error estimates, and go on to obtain a simple Ly estimate.

3.1 Power Functions and Typical Error Estimates

The development we shall use in this section follows that used by Light and Wayne [19],
and has its roots in the variational theory of Golomb and Weinberger [11].

Let X be a linear space of continuous real valued functions on IR", with semi-inner
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product (-,-). We define a seminorm on X by

|Fl =/ (£, 1), for f € X.

We suppose that | - | has a finite dimensional kernel K. Let 2 be a bounded subset of R".
Let A be a finite subset of 2 and suppose that aj,...,a; € A are unisolvent with respect

to K. We can define an inner product on X by

(f,9)= if(ai)g(ai) + (£,9), for f,g € X.
j=
This induces a norm, || - ||, on X via
lgli? = (g, 9), for g € X.
We shall assume that X is complete with respect to || - || and, for each z € IR", there exists

an M > 0 such that

|g(.’1))| SM(gvg)a for allgEX

Thus X is a Hilbert function space. Given f € X, let Uf € X be the minimal norm
interpolant to f on A. By this we mean U f(a) = f(a) for all a € A, and, if v € X also
satisfies v(a) = f(a) for all a € A, then ||[Uf|| < |lv||. A useful property of the minimal
norm interpolant is that || f — U f||> = || f||? — ||U ||, see Cheney and Light [4, Chapter 30,
Theorem 1]. It is straightforward to deduce from this that the minimal norm interpolant
also satisfies |f — Uf|? = |f|?2 — |[Uf|?, a fact we shall make use of later.

We are ready now to begin constructing a pointwise error estimate. We define G, a
subspace of X, by

G={veX:v(a)=0foralli=1,...,¢}.
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Note that G is also a Hilbert space. Let
P(z) = sup{|v(z)| : v = 1}.
veG

Then, for any g € G, we have

P(z) > Igl(ga;)l, for all z € R™.
Rearranging gives,
lg(z)| < P(z)|gl, for all z € R™. (3.1)

Now consider f — Uf. Clearly (f —Uf)(a;) =0foralli=1,...,¢,andso f—Uf € G.
Thus, using Equation (3.1) and the property of the minimal norm interpolant mentioned

above, we have
I(f-UN@IP < {P@YIf-UfP
= {P@)Y (/P - UfP)
< {P@)}I5*
We have derived an error estimate of the form

|f(z) - Uf(z)| < P(z)|f - Uf| < P(z)|f], for all z € R™. (3.2)

However, we need to learn more about P for this to be of any practical use. Since G is a
Hilbert space, we may make use of the Reisz representation theorem. This establishes, for
each z € R", the existence of a unique representer r, € G, such that (rp, f) = f(z) for all

f € G. Fix z € R" and recall that

P(z) = glel(p;{lv(w)l o] =1}
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Now, |v(z)| = |(v,7z)| for all v € G and so we can write

P(z) = sup{|(v, rs)| : |v| = 1}.
veEG

Now, if v € G, then |v| = ||v||. Thus, using the Cauchy-Schwarz inequality, we have for all
v € G with |v| =1,

(v, o)l < [l llr=ll = [v] Ir=ll = llrz|I-
Thus, P(z) < ||r¢||. Also, since r, € G,

(rz, "':c) ”'r:c“2
= ||rzl

rel  llrel

P(z) >

Thus, P(z) = ||Irz|| = /(rz,7z) = V/7z(z) and we have, from Equation (3.2),

|f(z) —Uf(z)| < \fra(z) |f —Uf| < yre(2) |f]5 for all z € R™.

The form of the representer r, can be explicitly calculated. As an example, we recall
the spaces of Light and Wayne [20] discussed in Chapter 1. We have a measurable weight

function v : R®™ — IR and, for non-negative integer k, we define
Zu(R") = {f € §': Do € LR and [ 157 () *0(z) dz < oo,
for all a € Z7} with |a| = k}.

Let ¢ € S satisfy ¢ = {| - |*v}~! and suppose pi,...,ps € Hx_;(IR™) are such that
ps(a;) = 1 if s = j, and is zero otherwise. Subject to certain conditions on the weight

function v, the representer r, has the form

¢ ¢
= ¢(0) — Zp] d(z —a;) — > pi(z)pla; —z) + > pi(z)p;(z)d(a; — aj).
7j=1

,j=1
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Details of how this is obtained can be found in [19].

The function P is often referred to as the power function, the name originating from
Schaback [33]. Schaback uses a different approach to the one described above; however,
ultimately, he obtains the same function (cf. Light and Wayne [19]).

Having obtained an explicit form for the power function P, we can examine its asymp-
totic behaviour to establish an error estimate in terms of the spacing of the interpolation

points. The usual measure of how densely the points in A4 ‘fill out’ 2 is given by

h = inf |y — z|.
epath v~

One hopes to obtain a bound of the form |P(z)| < C; h?, where C} is a constant independent
of f and h, and 8 > 0. Having derived such a bound, we can substitute it into Equation

(3.2) to give an error estimate of the form
If(z) — Uf(z))® < C?h*| 5|2, for all z € R™.

Then, as we would expect, the error on 2 between the function and its interpolant goes to
zero as h tends to zero. It is straightforward to move from this inequality to an Ls error

estimate. Integrating both sides over 2 gives
1@ -vi@P < o [ 1
Q Q
< Coh®|fP?
for some constant C, since €2 is bounded. Thus we have
If = Ufllzg < VCh?|f],

where C5 is independent of f and h.
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3.2 Improved Error Estimates Using Localisation

We move now from this general setting and return to the spaces considered in Chapter 2.
We begin by recalling the relevant definitions. Let w : R®™ — IR be a measurable weight
function which will be required to satisfy certain assumptions as we proceed. Let k be a

fixed non-negative integer and define
X(B") = {f € CE®™): [ [ w(@-y)ID*f(z) - D°f (W) dady < o,
for all o € Z with |a] = k}.

For f € X(IR") define,

1/2
e = (Z o [ o 0@~ DID (@) - DS dxdy) ,
la|=k

where the constants c, are defined by the algebraic identity

> Cat®® = |z|?*, for all z € R™.
la|=k

Let Y(IR™) denote the completion of X (IR") with respect to |- |g». Then |- |gn defines
a seminorm on Y(IR"™) with kernel It (IR"). We shall assume that IT;(IR") has dimension

¢. Suppose ay,...,a; € R" are unisolvent with respect to IIx(IR"). We can then define a

norm on Y(R") via
£
1715 = D 1f (@) + |f IR for f € Y(R™).
i=1

We shall see that Y(IR™) is complete with respect to this norm, making (Y(IR"),| - |ly) a

Hilbert space.
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Lemma 3.2.1 The space Y(IR") is complete with respect to || - ||y .

Proof. Let {f,}52; be a Cauchy sequence in Y(IR") with respect to || - ||y. Take € > 0,

then there exists a threshold N € IN such that for all m,n > N,

L 1/2
1fn = Fmlly = (Z (@) = Fon(@i) + o — fm@{,,) <e
i=1

It follows that |f, — fm|R~» < € whenever m,n > N. Hence {f,}32, is a Cauchy sequence
with respect to |-|g». Since Y(IR") is complete with respect to |-|, there is a limit f € Y(IR")
such that |f — fn|R» tends to zero as n tends to infinity. Furthermore, for each i =1,...¢,
| fn(a;) — fm(ai)|> < € whenever m,n > N. Thus, {fn(a;)}3; is a Cauchy sequence of real
numbers, and so has a limit b; € R such that |f,(a;) —b;| tends to zero as n tends to infinity.

Now, since ai,...,as € IR" are unisolvent with respect to IIx(IR™), there exists a poly-

nomial q € IIx(IR™) such that g(a;) = b; + f(a;) for alli =1,...,¢. Then,

¢
Ifa=(F =)} = Y Ifalai) = flai) + q(a) | + | fa — f + align
i=1

IA

é'f"(“‘) - f(as) + a(a)? + (1fa ~ flRe + lalge)’
= iélfn(ai) — flai) + q(a)|? + | fn = fligr
= i‘élfn(ai) = bil* + |fa — flR~-
Therefore, ||fn — (f — )|y tends to zero as n tends to infinity. Since f — ¢ € Y(IR"), this

completes the proof. [ |
For bounded subset Q of IR", we define local spaces X (2) by,

X() ={f lo: f € CE(R") and /Q /Q w(z — y)|D°f(z) — D (y)[? dzdy < oo,
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for all o € Z} with |a| = k}.

For f € X(Q), define

1/2
fla = (z Ca /Q /Q w(z — y)|D*f(z) — D*f(y)[? dxdy) .
|a|=k

Then |- |o defines a seminorm on X (€2), with kernel Iy o = {p |q: p € II;(IR™)}. We denote
by Y(€2) the completion of X () with respect to |- |-
We now recall the assumptions (W1)-(W6) made on the weight function w in the pre-

vious chapter as we shall refer to these again:

(W1) w € L'(R™\N) for any neighbourhood N of the origin;
(W2) w(y) = O(|y|®) asy — 0, where n + s+ 2 > 0;

(W3) [4w > 0 whenever A has positive measure;

(W4) w(y) = w(—y) for all y € R™;

(W5) for every locally (k + 1)-smooth map ¢ on R"™, and every bounded subset Q of R",

there is a K > 0 such that w(¢(z) — ¢(y)) < Kw(z — y), for all z,y € Q;

(W6) there exists a constant M > 0 such that if z = (z',z,) € R" and y = (¢/,y,) € R™

with |zn| > |yn|, then w(z) < Mw(y).
We shall also require the following additional homogeneity type condition,

(W7) there exists a function f : R — IR such that w(lz) = f(A\)w(z) for all z € R",

A € IR; furthermore f(A) # 0 whenever A # 0.
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Now, let Q be an open subset of R™. Let .A be a finite subset of {2 such that a;,...,a, € A
are unisolvent with respect to IIx(IR™). Suppose that there is a § > 0 and a constant C

independent of h such that, if g € Y(IR") satisfies g(a;) =0 for all 7 = 1,...,¢, then
lg(z)| < ChP|g|R~ for all z € .

Let Uf € Y(IR"™) be the minimal norm interpolant to f € Y(IR") on A. Now, applying the

arguments of the previous section, we could deduce the L, error estimate

If = Ufllz,0 < K1b?|fIRn, (3.3)

where K, is independent of f and h. However, the arguments found in the remainder of
this chapter will demonstrate that, by using a localisation argument, this can be improved

to

If = Ufllaa < KobPH2|f|q,

where K5 is a constant independent of f and h. Comparing this to Equation (3.3) we
notice that instead of h® we now have h#1%/2 and the local seminorm now appears on the
right-hand side of the equation. Furthermore, we need only know f on (2, that is, we can
take f € V() rather than in the full space Y(IR™). The argument we shall use is based on
that found in Light and Wayne [19], which itself uses the work of Duchon [7]. In these two
papers, a Sobolev space setting is used. Thus a certain amount of generalisation is needed
to ensure this technique works for our spaces. In particular, difficulties occur because our
seminorm involves a weight function and a double integral. We shall need some preliminary
results before we are able to deduce the improved L2 error estimate. We begin by recalling
the main result of Chapter 2.
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Theorem 3.2.2 Let  C IR™ be an open, bounded, V-domain. Let w : R® — IR be
a measurable function satisfying (W1)-(W6). Given f € Y(Q), there ezists a function

fe € Y(IR™) such that
(1) fela=f
(2) |felmrr < M|f|a for some constant M independent of f.

Our next step is to demonstrate that if 2 is an open ball in R", then the constant M

in Theorem 3.2.2 can be taken independent of €.

Lemma 3.2.3 Let Q2 be a measurable subset of R". Let a,b € IR" and h > 0. Define
o(z) = b+ h(z —a), for x € R". Let w: R™ — R be a measurable function satisfying

(W7). Then there exists a constant Ch,, dependent on h, such that for all u € Y(Q),
lulo = Chlu 0 o|5-1(q).
Proof. Take u € Y(R), then

ula = 3 ca [ [ w(e - 9)ID*u(@) - D®uly) P dady.

la|=k

Making the transformation z = o(s) and y = o(¢) we have

2 = p?n c w(o(s) —o “u(o(s)) — D%u(o sdt.
juff = b ,.:ék"/«f*(m/o-lm) (0(s) = o (D) Du(a(s)) ~ Du(o(t))* dsdt

Now, since w satisfies (W7), there exists a function f: R - R with f(h) # 0 such that
w(o(s) —o(t)) = wb+h(s—a)—b—h(t—a))
= w(h(s —t))

= f(hw(s —1).
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Also, for |a| =k,
(D%u)(€) = [D*(uo o 0a™)](€) = h*[D%(u 0 0))(0 ™ (€))-

Thus,

[(D%u) 0 0](€) = (D*u)(0(€)) = A™*[D*(u 0 9)](£)-

Hence,

W = fRRE S ¢ /

lajJ=k “°

= f(WR*" Fluoal’i g

Taking Cj, = 1/ f(h)h?"—2k gives the result. [ ]

Lemma 3.2.4 Let B be any open ball with radius h in R". Let w : R™ — IR be a measur-

- Yuog)(s) — D*(uoo)(t)|? ds
iy sy 906 = I (0 0)(5) = Do (w0 ) st

able function satisfying (W1)-(W7). Given f € Y(B), there ezists a function fg € Y(IR")

such that

(1) fele=f

(2) |felpr < M|f|B for some constant M independent of f and B.

Proof. Let f € Y(B), then, using Lemma 3.2.2, there exists an fp € Y(IR") such that
fB |B = f and |fg|gr~ < M|f|B for some constant M independent of f. By choosing fp
to be the minimal norm extension we can assume that if v € Y(IR") is such that v |g = f
then |fp|Rr~ < |v|R». We need to show that the constant M can be taken independent of

B.
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We can write B = {x € R" : |zt —a| < h} for some a € R". Let By = {z € R": |z| < 1}
and define o(z) = h™'(z — a), for £ € R™. Then o(B) = By. Let F = f oo™}, then
F € Y(By). Thus, by Lemma 3.2.2, there exists a function F, € Y(IR") such that F, |, = F
and |Fe|g» < K(Bo)|F|B,, for some constant K(By) independent of F but dependent on
By. We claim that

(i) fpoo™' g, =F
(ii) |fpoo YR < |v|gr for all v € Y(IR™) such that v |g, = F.
Take z € By, then 0~ 1(z) € B. Since fp |p= f, it follows that fg(c™(z)) = f(o™(x)).
Hence, (fg oo™ ')(z) = (f oo~ 1)(z) for all z € By and (i) is satisfied. Now suppose
v € Y(R™) satisfies v |[p, = foo™!. Thenv(o(z)) = f(z) forallz € B. Thus (voo) |g= f |B
and the properties of fp imply that |fg|gr < |voo|g~. By Lemma 3.2.3, there exists a
constant Cp, # 0 such that
Ifoo™lrr = Chlfslmrn
< Cplvoo|ge
= CilCh] v~
= |vlre-
Thus, claim (ii) is satisfied. Now, since Fe |p, = F and |F,|g~ < K(Bg)|F|p, we have
|fg oo™ R < |Felrr < K(Bo)|Fl, = K(Bo)|f oo™ |p,
By Lemma 3.2.3, there exists a constant C}, # 0 such that

IfBllR,n = IfBO(J'_-1 Oaan
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= [Chl7'|fBoo™!|Rn

IA

[Chl ™' K(Bo)|f 0 07|,

[Ch] ' K(Bo)Chlf|B

= K(Bo)|f|s,
as required. ]

Throughout the remainder of this chapter we shall make use of the following notation.

For ¢,r € R™ we define B(c, ) to be the closed ball in R"™ with centre ¢ and radius r.

Lemma 3.2.5 (Light and Wayne [19]) Let {vi,...v¢} be a set of IIx(IR™)-unisolvent
points in IR™. Then there exists a § > 0 such that if (c1,...,¢p) € B(v1,68) X B(vg,8) X ... X

B(vy, 8), then {c1,...,ce} is a set of IIx(IR™)-unisolvent points.

Definition 3.2.6 A domain 2 is said to have the cone property if there exists a finite cone
C such that each point x € 2 is the vertezx of a finite cone contained in 2 and congruent to

C.

Lemma 3.2.7 (Duchon [7]) Let Q be an open subset of IR™ having the cone property.
Then, there exists M, My, and m > 0 such that to each 0 < h < m, there corresponds a set

T, C Q with
(i) B(t,h) C Q for all t € Ty,
(i) @ C User, B(t, M),

(143) Yier, XB(t,MB) < M.
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We shall require a slightly modified version of the above lemma, the proof of which is taken

from Light and Wayne [19, Lemma 3.6]

Lemma 3.2.8 Let Q be an open subset of R™ having the cone property. Let A be a finite

I (IR™)-unisolvent subset of Q0 with

max min |y — z| < h.
yeEN z€A

Then there exists My, Ma, hg > 0, and a set T, C 2, such that
(i) © C User, B(t, M1h),

(1) ier, XB(t,Mh) < M2,

provided 0 < h < hy.
Furthermore, given t € Ty, there exists ay,...,ap € B(t, M1h) N A such that aq,...,ay

are unisolvent with respect to II;(IR"™).

Proof. Let {v1,...v;} be a set of IIx(IR™)-unisolvent points in IR™. By Lemma 3.2.5 there
exists a 6 > 0 such that if (c1,...,¢c¢) € B(v1,6) X ... x B(vg, ), then {ci,...,ce} is a
set of II;(IR™)-unisolvent points. Dilation by a factor of 1/§ creates a new set of points
u1,...ug such that if (c1,...,¢¢) € B(ug,1) X ... x B(ug,1), then {c1,...,c¢} is a set of
I (IR™)-unisolvent points.

Choose R > 0 such that B(u;,1) € B(0,R) for all i = 1,...,£. By Lemma 3.2.7,
we can find constants M, M; and m > 0, such that there exists a set T, C Q with
B(t,Rh) C Q, Q C User, B(t, MRh) and 3 e, XB(t,MRR) < M2, providing 0 < Rh < m.
Taking M; = MR and hg = m/R delivers the first part of the lemma.
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Fixt € Ty and h > 0 such that 0 < h < hg. We shall construct aq,...,as € B(t, Mih)NA
such that ai,...,ay are unisolvent with respect to IIx(IR"). Define ¢ : B(t, MRh) —
B(0,MR) by o(y) = h™'(y — t) for y € B(t, MRh). Due to the spacing of the points in
A, each ball B(u;,1) must contain at least one image under o of a point in .A. Thus, we
can choose a; ... ,a; € A such that o(a;) € B(ui,1), and so {o(a1),...,0(as)} is a IIx(IR™)-
unisolvent set. It follows that {ai,...,a} is a IIx(IR™)-unisolvent subset of B(t, MRh) =

B (t, M h) . |
We are finally ready to compute our improved L2 error estimate.

Lemma 3.2.9 Let Q C IR" be an open, bounded, V-domain. Let w : R* — IR be a
measurable function satisfying (W1)-(W7). Let A be a finite Iy (IR™)-unisolvent subset of
Q with

maxmin |y — z| < h.
yeQ z€ A

We assume that there exists a 3 > 0 and a constant C independent of h such that if A is a

I (IR™)-unisolvent subset of A, and g € Y(IR™) satisfies g(a) = 0 for all a € A, then
lg(z)| < Chﬂ|9|m", for all z € R™.

Given f € Y(R), let Uf € Y(IR") be the minimal norm interpolant to f on A. There exists

an hyg > 0 and a constant K > 0, independent of f and h, such that, provided h < hy,
If = Ufllan < KWP*2|flq, for all f € V().

Proof. By Lemma 3.2.8, there exists constants My, My, hg > 0, and a set T, C Q such
that, @ C User, B(t, M1h) and Yier, XB(e,M0) < M2 provided 0 < h < hg. Fix h < ho.
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Take t € T}, then, also by Lemma 3.2.8, we can construct ay,...,a; € B(t, M1h) N A such
that aj,...,ay are unisolvent with respect to IIx(IR"). For ease, we shall now write B for
B(t, Mih).

Take f € Y(Q) and let fq € Y(IR™) be the extension of f as described in Lemma, 3.2.2.
We shall, for the next part of the proof, write f for fo. Let (f — U f) g also be as in Lemma,
3.2.2. Thus (f —Uf)g | = (f —Uf) |B, and, due to Lemma 3.2.4, |(f — Uf)plg~ <
C1|f — U f|p for some C; independent of B.

Now, (f —Uf)(a;) = 0 for all s = 1,...,£. Since ay,...,ap € B it follows that (f —

Uf)p(a;)) =0foralli=1,...,£ Thus, for all z € R",

I(f —UfB@)? < C*H¥#|(f-Uf)plhn

< C°C}h*|f - Ufl.
For x € B we have (f —Uf)p(z) = (f —Uf)(z). Thus, for all z € B,
(F = UN @) < Coh™|f —Uf5,

where Cy = C?C? is independent of f and h. Integrating over B gives

A

If-Uslgs < Cah®lf sy [ 1

< CRC3h%Pmf —Uf|E,

for some appropriate constant Cs.

Let Q" = Uyer, B(t, M1h). Then,

If =Uflsg < If=Ufl}q-
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< D NF-UFN3 peann)
teTy
< CoC3h**™ S |F = Ufl300mm)-

teTy,

Let By = B(t, M1h) and define, for z,y € R",

z(z,y) = > caw(z —y)|D(f —Uf)(z) — D*(f = Uf)(y)|*

|a|=k
Then,
S - Ufleanny = 2 [ [ @) dody
teTy, teTy, t t
< Z/n/ z(z,y) dzdy
teTy B
= ¥ | fon X @)2(e,0) dody
teTy
< / n/ . (Z XBt(m)) z(x,y) dzdy
teTy
< / iy - Maz(z,y) dzdy
= M|f - Uflgn
Thus,

If —Ufll30 < CaCaMah®*7|f — U flizn.
Recall now that we are writing f for fo. Thus, using properties of the minimal norm
interpolant, we have
If =Ufla < C:CsMab™*"|fa —Ufalis
= CoC3Mh™ (| folg — |U falfz»)

< CQC3M2h2ﬁ+"|fQ|]2Rn.
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Using the properties of the extension fq, there is a constant C; independent of f and h
such that

If = Ufl3q < CoCsCaMah®+n |3,
Letting K = /CyC3C4M> we have

If = Uflla0 < Kh#H2|flg. W
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Chapter 4

Alternative Local Spaces and

Seminorms

Many of the ideas discussed in the previous two chapters stem from a variational approach
to the interpolation problem. One begins with a Hilbert space of functions and recognises
the interpolant as the solution of a variational problem described on the given space. In
particular, we have focussed on the spaces of distributions introduced by Light and Wayne
[20], and the associated direct form seminorms developed by Light and Levesley [18]. These
allowed us to construct the local spaces and seminorms of Chapter 2, for which extension
theorems were developed.

An alternative approach to the variational one uses the ideas introduced in Section 1.5.
Here one begins with a conditionally positive definite function and constructs around it a
native Hilbert space in which to study the interpolation problem. This theory leads to its
own definitions of local spaces and seminorms. Clearly it is of interest to know whether

these two approaches generate the same spaces, particularly with regards to localisation.
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This chapter attempts to answer some aspects of this question.

There are many different characterisations of the native space. We shall be interested in
that given by Iske in [16]. Beginning with the spaces of Madych and Nelson [23], Iske devel-
ops a convolutional representation of the native space. The technical details of this useful

reformulation are not trivial. Thus, here, we shall merely quote the relevant definitions.

4.1 Spaces on R"

We begin our discussion with a comparison of spaces described on the whole of R". In
particular, we shall focus on the native spaces of Iske [16] and the spaces of distributions of
Light and Wayne [20]. We begin with some definitions and assumptions.

Throughout this section we assume v : R™ — IR to be a measurable function which

satisfies

(vl) v e C(R"\{0}),

(v2) v(z) > 0 for all z # 0,

(v3) 1/v € Lj,,(R"),

(v4) there is a u € R such that 4 > n and {v(z)}~! = O(|z|7#) as |z| = oo.
We define, for non-negative integer £,

Zy(R") = {f € §': D°f € LL (R and /}Rn 1D (2)[Po(z) dz < oo

for all a € Z; with |a| = k}.
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This is the space of distributions introduced by Light and Wayne [20], and is discussed in
Section 1.3. We shall, in this section, concern ourselves only with the case k = 0. Therefore,

the relevant space is simply
Zo(R") = {g € §' : § € LL (R") and /n" 15(2)|2v(z) dz < oo}.
For ease of notation we shall, henceforward, write Z(IR") for Zyo(IR"). A norm is defined
on Z(IR") by,
\ 1/2
lgllz = (/ _1g(@)|*v(z) dx) , for g € Z(R").

We make the assumptions (v1), (v2) and (v4) on v in order to ensure that Z(IR") is a subset
of the continuous functions, see [20, Theorem 2.18]. The additional assumption, (v3), allows

us to derive some useful results concerning the function v.

Lemma 4.1.1 Let v: R"™ — R be a measurable function satisfying (v1)-(v4), then 1/v €

LY(R™).

Proof. We can write

1 1 1
dz =/ dz +/ dx
/R" |v(z)] jel<1 [v(2)] le>1 [v(z)]
By assumption (v3) on v, 1/v € L} _(IR™), and so the first integral is finite. Now, since
v € C(R™\{0}) and v(z) > 0 for all z # 0, 1/v is continuous on the set {x € R" : |z| > 1}.

Hence, using this and property (v4) of v, there is a constant C and a p > n, such that

{v(z)}7! < C|z|=* for all z € {z € R™ : |z| > 1}. Hence,

dx < C |z| ™ dz.

1
/!x|21 [v(z)] |z]>1
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Using polar coordinates we can find a B > 0 such that

1 o0
/ ——dz < B/ rHtr-l gy
lef21 |v(z)] 1

This final integral is finite since —p+n—-1< -n+n—-1=—1. [ |

Lemma 4.1.2 Let v : R™ — IR be a measurable function satisfying (v1)-(v4). Then there
exists a 1 € S’ such that

P=1/v.
Furthermore, v is a bounded continuous function on R", and v (z) tends to zero as |z|

tends to infinity.

Proof. By Lemma 4.1.1, 1/v € L'(R™). Hence 1/v is a tempered distribution, whose

action on a test function ¢ € S is given by

/0.8 = o 775 #(@) da.

The distributional Fourier transform is a one to one mapping of S’ onto S’. Hence, there
exists a ¢ € S’ such that

P =1/v.

Then, by properties of Fourier transforms,

~

By = = (1/v).

Since 1/v € L'(IR™), it also possesses a Fourier transform in the classical sense, which is

continuous and bounded on IR", and approaches zero at infinity. Since the classical and
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distributional Fourier transform for 1/v must coincide, it follows that i possesses these

properties. [

We demonstrate now that the i of the previous lemma is also positive definite. In order to
do so we make use of the following definition from Gel’fand and Vilenkin [10, Chapter II,

Section 3.1].
Definition 4.1.83 A distribution A € §' is called positive definite if for all $ € S,
(A, ¢d] > 0.
Lemma 4.1.4 Let v : R™ — R be a measurable function satisfying (v1)-(v{). Let ¢ € S’

satisfy {5 = 1/v. Then v is positive definite.

Proof. Take ¢ € S. Then,

(5,431 = /0,9 = [, Wlx)lcb(x)lz dz > 0,

since, by assumption (v2), v(z) >0 if z # 0. [
The space Z(IR™) has delivered a continuous positive definite function 3. We shall now
take 1 and generate its native space according to Iske [16]. Intuitively we would expect this

space to be identical to Z(IR™). We shall show that, under the right circumstances, this is

indeed the case.

Definition 4.1.5 Let v : IR®™ — IR be a measurable function satisfying (v1)-(v4). Let

Y €8 be such that = 1/v. We define

I(R")={g:9=1%vx*f, for some f € C§°(IR™)}.
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Some remarks about the definition of I(IR™) seem to be required here. An element of I(IR")
is a convolution of the form 1  f, with f € C§°(IR™). This convolution can be taken in two
senses. By Lemma 4.1.2, 9 € C(IR"). Therefore, the convolution v * f is well defined in

the classical sense and is given by

(W* )(z) = [ ¥ = v)f ) dy, for z € R".

Also, ¢ € S’ and, since f € C§°(IR"), we have f € S. Hence, the convolution ¢ * f is well

defined in the distributional sense and is given by
Y * f = [y, T Bf].

We would expect these two interpretations of the convolution to coincide. We now demon-
strate that this is indeed the case. Since ¢ € C(IR"), its action on a test function in C§°(IR")

is given by integration. Thus, for f € C§°(IR™) we have,
W.TeBf) = [ $W)TBNG) dy
= Jre Y(y)Bf(y —z) dy
= Jgr Y(y) f(z —y) dy

R Y(z —y)f(y) dy
We give now some insights into the elements of I(IR").

Lemma 4.1.6 Let I(IR™) be as in Definition 4.1.5. Suppose g € I(IR™) with g =¥ = f and
f € C§°(R™). Then,
(i) g € C*(R*) NS,
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(i) § = fb € L'(R™).
The Fourier transform here is taken in a distributional sense.

Proof. Take g € I(R") with ¢ = % * f and f € C§°(R™). Then, since ¥» € §’ and
f € C°(R™) C S, properties of distributions ensure g € §' N C*°(R"), and § = f.
Since f € C$°(IR™), it follows that f € S. By Lemma 4.1.1, ¢ = 1/v € L*(R"). Thus,

fb e LY(RM). n

Definition 4.1.7 For each g € I(R"), with g = * f, and f € C§°(R"), we define

ol = [ o@F@ da= [ [ 4=/ )T dydz.

The use of the notation || - ||; here is not abusive as we shall now demonstrate that this

quantity defines a norm on I(RR").

Lemma 4.1.8 Let I(IR") and ||-||; be as in Definitions 4.1.5 and 4.1.7. Then ||-||; defines

a norm on I(RR").

Proof. We shall use a distributional argument and make frequent use of the properties
of distributions described in Section 1.6. Take g € I(IR"). Then g = % x f for some
f € C§°(R™). By Lemma 4.1.6, g € C*°(IR") and thus g is a distribution whose action on

a test function ¢ € C§°(IR") is given by

l9,¢] = /]R" g(z)p(z) dx.
Thus, we can write
lgll7 = - 9(2)f () dz = [g, 1.
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Since f € S, there is a # € S such that 6= f. Thus, using simple properties of distributions,

lgll} = lg, 1 = [9,6] = [3,6].

By Lemma 4.1.6, g = f tZ Thus, again using simple properties of distributions,

~ —~

lgll? = [F,6] = [&, F6] = [, F B = [, F

—

By Lemma 4.1.1, 9 = 1 /v € L'(R™), and thus, as a tempered distribution, its action on a

test function in S is given by integration. Hence,

lolf = [ 9@ D) da

Since, by assumption (v2), v(z) > 0 for all z # 0, it is clear that ||g|[; > 0. Further more,

llgllr = 0 implies Ff=0.If f =0, then f = 0 and we must have g=vx*f=0. n

The native space of % is given by the closure of I(IR™) with respect to ||-||;. We want to
compare this space with our original space Z(IR"). Our aim is to show that, under suitable
circumstances, I(IR") is a dense subset of Z(IR"). We begin by examining the two norms

- 1lr and || - || 2.
Theorem 4.1.9 If g € I(R"), then ||g|lr = |i9l|z-

Proof. Take g € I(IR"), then g = v * f for some f € C§°(IR"). An identical argument to

that found in the proof of Lemma 4.1.8 gives

~ ~

lgll7 = - B(z)f(z)f(z) da.
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Now, vy = 1, thus since v is real valued we have

Using this and the fact that, by Lemma 4.1.6, g = {ﬁ f, we have

~

o} = | 0D@dE7F @@ d

= ﬁx)ﬁp yo(z) dz

Il
\
QQ)I

yv(z) dz

13(x)|?v dx

I
\

= IIQII%- u
Lemma 4.1.10 We have I(IR") C Z(IR").

Proof. Take g € I(IR"), then by Lemma 4.1.6, g € S’ and § € L'(R"). By Lemma 4.1.9,
ligliz = llglls < co. Hence g € Z(R"). =

The following density result concerning Z(IR™) can be found in [20].

Lemma 4.1.11 The set {g € Z(IR") : g € C§°(IR™)} is dense in Z(IR").

In order to show that I(IR") is a dense subset of Z(IR") we need to make some further
assumptions on the weight function v. Specifically, we strengthen property (v1) and assume

v € C(R") N S'. We also assume 1/v € L2 _(IR").

Lemma 4.1.12 Let v : R®™ — IR be a measurable function satisfying (v2)-(v4), v €

C(R™)NS' and 1/v € L} (R™). Let 3 € S' be such that ¢ = 1/v. Let

I(R*) ={g:9=19xf, for some f € C5°(R")}.
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Then I(IR™) is dense in Z(IR"™).

Proof. By Lemma 4.1.10, I(R") ¢ Z(IR"). Take g € Z(IR"). Lemma 4.1.11 allows us to
assume that § € C$°(IR"™). Note that this implies g € S C L2(IR®). Since v € &', Bv € §'.
Hence, since g € S, the convolution f = Bu * g is well defined and f € S’ N C*°(R"). By

properties of distributions we then have
F=(Bvxg) =g§Bv=jgv.

Since g € C§°(R™) and v € C(R"), it follows that F € Co(R™) C L2(IR™). Hence, f €
L2(R"™) N C®(IR"). Since v = 1/¢ we can write § = (§/¥)P = fip.
For n € IN we can define 8, € C§°(IR"™) such that 0 < 6,(z) < 1 for all z € R", and

1, |z|<n
On(z) =
0, |z|>n+1

Define f, = fO, then, since f € C®(R"), fn € C°(R"). Let g = ¥ * fp. Then
gn € I(IR™), and, by Lemma 4.1.6, g, = f;'{ﬁ\ Since ¢ € L2 (R™) and f, € C§°(IR"), we

loc

have for some compact set K,

Je TP do = [ Tn(@@)F do < swp |fafe)] [ B do < oo

Thus g, € L?(IR™) and it follows that g, € L?(IR"™).
We now consider the function g — g,,. Firstly,

o~

G=9)=G—Tn=T0—Tab=(F=F)b = (f — f)®-
Now,

lo=gnllz = [, 160~ 9n)@)v(z) do
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—~ ~

= Jg» 97 90)(2)(9 = gn)(2)v(z) dz

e 0= 9)@)(f = fa)(@)Po(z) do

o 9= 90)(@)(f = fa) () da.

The final equality is due to the fact that v = 1. Since f, fn,g and g, are in L2(R"), it
follows that f — f, and g — gy, are in L2(IR™). Thus, we can apply Parseval’s Theorem to

obtain,

lg—9gnllz = R” (9 — 90)(@)(f — fn)(z) dz

‘/ o (9= 90)(@)(f = fn)(2) dz
< fonl@= 9@ - 16n)(2)] do
= /|z|>n [((9 = 92)F)(@)I|(1 — 6n) ()| dz

< [ 6=9N@) s

Using the Cauchy-Schwarz inequality,

1/2 1/2
- X T — T 2 T T 2 o 00
/man((g 9n)f)(z)| dz < </|ml2nl(g 9n)(2)] d) </|x|z |f ()| d) < 00,

since g, g, and f are in L?(IR™). Thus (g — g,)f € L'(IR") and

JRCRTALICIES

tends to zero as n tends to infinity. Hence ||g — gn||z tends to zero as n tends to infinity

and I(IR™) is dense in Z(IR"). N
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4.2 Spaces on Domains in IR"

We turn now to spaces defined on a domain @ C R". We begin with a discussion of local
native spaces. Let ¢ : R® — IR be continuous and positive definite. As in the previous

section we define

I(R™) ={g:g9=1x* f for some f € Cg°(IR")}.

A norm on I(IR") is defined for g = ¢ * f, with f € C§°(R"), by

lolf = o o@F@ do= [ [ v(@-1)7@)T@ dyds.

The form of the above definitions delivers a very natural way of defining a local space I(2)

and a local norm || - [|;(q).- We define
I(Q) = {gla : g = f*1 for some f € Cj°(R"™) with support in 2}.

For each g = f x ¢ € I(Q), with f € C§°(IR") having support in 2, let

ol = | s@F@) dz = [ [ 4@~ 9)f(w)T@) dydz.

The local native space of Iske [16] is obtained by taking the closure of I(2) with respect
to || - [l1(). Note that here we have chosen to assume 1 to be positive definite in order
to simplify the arguments that follow. One could also work with a conditionally positive
definite function.

An interesting property of this definition of the native space it that it is straightforward
to define an extension operator from I(f2) to I(IR™). Suppose g € I(2), then g = (f *x %) |a
for some f € C§°(IR™) with support in Q. We can extend g to a function, Eg € I(IR")
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simply by taking Eg = f % 1. Two properties of this extension are in stark contrast to
our own extension theorems of Chapter 2. Firstly, this extension makes no demands 'on the
domain 2. Our own extensions required a certain degree of smoothness of the boundary of
2. Secondly, since the definition of the norm || - ||;,o exploits the fact that f is compactly

supported on 2, we have

lgllo = /n /Q V(o — 1) f (@) f(y) dady
N /n Rn¢($—y)f(w)f(y) dzdy

= | Egl}.

Thus the extension is isometric. Our own extension operators certainly do not enjoy this
property.

Clearly the existence of isometric extensions from the local to the global native space,
regardless of the domain {2, is due the chosen definition of the local native space and local
norm. We examine now how this compares with other approaches to localisation, beginning

with the particular example of Sobolev spaces. Define
W™P(IR") = {u € LP(R") : D%*u € LP(R"),0 < |a| < m}.

Of particular interest is W™?2(IR™), m > n/2, since it can be shown that this is the native
space for the positive definite function ¥(r) = r™ 2K, __ /2(r) (Schaback [34]). Here K

is a Bessel or MacDonald function, defined by

B 7r1/2(z/2)”

Ko@) = v 12)

oo
/ e—zt(t2 _ 1)1}—1/2 dt,
1
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where I'(z) = [;°t*"le~* dt. Now, classically, one defines the local Sobolev space as
W™P(Q) = {u € IP(Q) : D% € LP(Q),0 < |a] < m}.

We shall show that, for certain domains €2, this does not correspond to the localised native
space. For, if €2 has a suitably irregular boundary, then there exist no extensions from
W™2(Q2) to W™?2(IR™). This is in contrast to the local native space for which extensions

exist irrespective of the particular domain Q.

Definition 4.2.1 Let Q2 be a domain in IR" and let ¢ be a point on its boundary. Let
B(r,z0) be the open ball of radius r centre xy with boundary 0B(r,z¢). Let S, = 0B(r,zo)N
Q and A(S;) be the surface area of S,. We say that Q has an exponential cusp at zo if for

every real number k,

lim A(5r)

= 0.
r—0+ 'rk

The following theorem can be found in [1, p. 122].

Theorem 4.2.2 Let Q be a domain in IR™ with an exponential cusp. If ¢ > p then there

exists u € W™P(Q) such that u ¢ LI(N2).

Lemma 4.2.3 Let m > n/2 and Q be a bounded domain in R™. Then W™2(R™) |q C

LI(S2) for allg > 1.

Proof. If m > n/2 then by the Sobolev Imbedding Theorem (see [1, p. 97]), W™2(IR"™) C
C(R™). Thus, if v € W™2(IR") then v € L] (IR"™) for all ¢ > 1. Since Q is bounded it

loc

follows that v |q € LI(R). [
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Lemma 4.2.4 Let m > n/2 and Q be a bounded domain in R™ having an exponential cusp.

Then there exists u € W™2(Q) with u ¢ W™2(R"™) |q.

Proof. From Theorem 4.2.2 there exists a u € W™?2(Q) such that u ¢ LI() for ¢ > 2. By

Lemma 4.2.3 it follows that u ¢ W™2(R™) |q. [

We return now to the spaces of distributions discussed in the previous section. Thus we

have a measurable function v : R®™ — IR and we define
Z(R") = {ge §': f e LL (R") and /R" 15(2)|%v(2) dz < oo}
A norm is defined on Z(IR™) by,

1/2
lollz = (. 8@ Po@) do) for g € Z(R").

Any immediate attempt to define a corresponding local space or norm is hampered by the
inclusion of the Fourier transform in the definition of || - ||z and Z(IR"); if a function is only
defined on a domain €2 then we are unable to compute its Fourier transform. As discussed
in Section 1.5, a solution to this problem can be found in Levesley and Light [18]. We

suppose that v satisfies the following conditions:

(A1) v € S’NC(R"™) and v(z) > 0 for almost all z € R™,

(A2) 9 is a measurable function and, for any neighbourhood N of the origin, 5 € L!(R"\N),
(A3) v(y) =v(—y) for all y € R",

(A4) |v(y)] = O(ly|®) as y = 0, where n + s + 2 > 0,
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(A5) v(0) =0 and 9(z) < 0 for almost all z € R".

The main result of Section 3 of [18] is that, provided v satisfies the above conditions, then

lollz = [ | w(e—v)lo@) 9w drdy for all g € Z(R")

where w = —%/2. This gives us a natural way of defining a local norm. Given 2 C R" we

define for g : 2 —» R",

lol = [ [ wie—v)lg(z) - 9w)? dedy.

There are many ways of constructing a local space Z(f2), although we clearly wish to
consider functions g for which ||g||q < co. In Chapter 2 we chose to mirror the construction
of local Sobolev spaces. Specifically, we defined Z(2) to be the completion of the set
{g la: g € Co(R™) and ||g|la < oo} with respect to || - ||o. This made the construction of
extension theorems for Z(f2) simpler, as we effectively were working with a subset of the
continuous functions.

An important feature of the Iske local native spaces and norms was that they lead to
isometric extension theorems. We demonstrate now that however one chooses to construct
the local space Z(2), the form of the local norm || - ||o makes it difficult to construct an
isometric extension theorem. Suppose that f: Q@ — R” is such that || f|lq < co. Let Ef be

any extension of f to the whole of R™. Now, clearly
[ [ w=vle@ - @) dady < [ [ wz-yIEf() - BEf@)P dody.  (41)
QJa R™ /R
Let z(z,y) = w(z — y)|Ef(z) — Ef(y)|? for z,y € R™. Then we can write,

/n/ L 2(z,y) dzdy = /"\Q/ "\Qz(x,y) d:z:dy+2/ n\ﬂ/ﬂz(w,y) dzdy
9

9



+/Q/Qz(:z:,y) dzdy.

In order to get equality in Equation (4.1), we would require the contributions of integrals
over (R™\Q) x (R™\2) and (R™\Q) x Q to be zero. This is not necessarily true even in the

simple case where Ef is obtained by setting f to be zero outside of Q.

100



Chapter 5

Conclusions and Further Work

Many of the ideas discussed here have centred around questions of localisation. We began
with the seminorms and associated spaces of distributions introduced by Light and Wayne
[20] which arise naturally in the study of interpolation by translates of a basic function.
These seminorms are defined in an indirect form, that is in terms of the Fourier transform of
the function rather than the function itself, and thus do not lend themselves to localisation.
To overcome this we use the direct form of such seminorms given by Light and Levesley in
[18] since this delivers a very natural way of defining a local seminorm. For  C R"™ and

fixed k € Z we define

1/2
7l = (z o [ [ wle=n)I(0°N@) - (D“f)(y)lzdwdy) .
|a|l=k

Recall that here w is a measurable weight function and the ¢, are known constants.
Using this form of local seminorm we can construct associated local spaces. We chose to
consider the spaces X () = {g|a : g € CE(R™) and |g|q < oo} and Y(£2), the completion of

X () with respect to the seminorm |-|q. In Chapter 2 we proved certain extension theorems
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for these spaces. In particular, we constructed a bounded, linear extension operator from
Y(Q) to Y(IR™), subject to restrictions on the domain 2 and the weight function w. The
motivation for the development of such extensions was their use in obtaining improved error
estimates, and in Chapter 3 we gave a demonstration of this application. Specifically, by
adapting work by Duchon [7], we obtained improved L estimates for the spaces Y(IR") in
terms of the spacing of the interpolation points.

Finally, in Chapter 5 we began a discussion of how this approach to localisation com-
pares with alternatives. We looked at native spaces and, in particular, the convolutional
characterisation given by Iske [16]. Here, the local space was simply the restriction of the
global space to the domain in question. On the whole of R™ we saw that, under the right
circumstances, Iske’s spaces coincide with the spaces of distributions introduced by Light
and Wayne [20]. However, when looking at the localisation of these spaces things are not
so clear. In the particular case of Sobolev spaces we saw that, for certain domains with
sharp cusps, the Iske local space was smaller than the classical definition of a local Sobolev
space. More generally, we might ask how the Levesley-Light local space, which adopts a
classical approach to localisation, compares with that of Iske. As in the special case of
Sobolev spaces, is the Iske space smaller for unfriendly domains? On the other hand, what
properties must a domain possess in order for the native space approach to deliver the same
space as a more classical approach? The definition of the local native space as a restriction
space implies the existence of extension operators from the local to the global native space

irrespective of the chosen domain. This is in contrast to the extension theorems we have
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developed for the Levesley-Light local spaces which rely on the domain having a certain
degree of smoothness. Furthermore, Iske’s extensions are norm-preserving whilst the form
of the Levesley-Light local seminorm makes it difficult for any associated extension operator
to be isometric. Clearly there are some questions on the relationships between these two
approaches to localisation which remain a subject for further discussion.

Other questions arising from this work are those of optimal local approximation orders
in Lp. That is, can the error estimates achieved in Chapter 3 be improved? Existing work in
this area, including that of Wendland [37], suggests that in the case of thin plate splines, for
example, the answer is no. However, work by Gutzmer and Iske [12], suggests improvements
may be obtainable if, say, one considers functions with some added degree of smoothness.

Thus, this is another area which would benefit from further study.
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