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Abstract

We look at aspects of error analysis for interpolation by translates of a basic function. In 
particular, we consider ideas of localisation and how they can be used to obtain improved 
error estimates. We shall consider certain seminorms and associated spaces of functions 
which arise in the study of such interpolation methods. These seminorms are naturally 
given in an indirect form, that is in terms of the Fourier Transform of the function rather 
than the function itself. Thus, they do not lend themselves to localisation. However, work 
by Levesley and Light [17] rewrites these seminorms in a direct form and thus gives a 
natural way of defining a local seminorm. Using this form of local seminorm we construct 
associated local spaces. We develop bounded, linear extension operators for these spaces 
and demonstrate how such extension operators can be used in developing improved error 
estimates. Specifically, we obtain improved L 2 estimates for these spaces in terms of the 
spacing of the interpolation points. Finally, we begin a discussion of how this approach to 
localisation compares with alternatives.
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Chapter 1

Introduction

Interpolation is an important tool in the physical sciences and has a variety of applications. 

In general we are trying to solve the following type of problem. Information in the form 

of real or complex values is known only on a finite set of sampling points or nodes in H n. 

Our aim is to find a function s : ]Rn -» 1R whose value at each of the nodes agrees with 

the given data. The specifics of the interpolation scheme are, of course, dependent on the 

application in hand. For example, we may require the interpolant s to have a certain degree 

of smoothness or behaviour at infinity. Some considerations, however, must be taken into 

account in any interpolation scheme. In order to avoid numerical instability, we must ensure 

the problem is posed in such a way as to guarantee a unique solution. In addition, we would 

like small changes in the data to imply small changes in the interpolant. The question of 

error is also of importance; we would hope to have some means of evaluating how well our 

scheme works.

The work in this thesis is motivated by interpolation by translates of a basic function. 

This is now a well-established and relatively simple method of interpolation which can be
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applied to scattered data. We shall discuss some of the relevant theory in this chapter 

and introduce certain seminorms and spaces of functions which arise naturally in the study 

of this type of interpolation problem. The aim of this work is to produce improved error 

estimates for these spaces by applying localisation methods.

1.1 The Interpolation Problem

We shall be concerned with the following interpolation problem. Interpolation data is given 

in the form of x \ , . . . ,  x m G ]Rn and corresponding values d i , . . . ,  dm G IR. Let X  be a space 

of real-valued functions on IRn. We wish to find a function s G X  such that

s(xi) =  di for alH  =  1 , . . . ,  m.  (1.1)

It is useful to assume that X  is a linear space of functions for the following reasons. Suppose 

si G X  interpolates data d \ , . .. ,dm G IR at the points x \ , . .. , x m G !Rn, in the sense of

(1.1). Then, if X  is a linear space, given any a  G IR the function as  £ X  interpolates 

the data ad i , . . . ,  adm G IR at x i , . . . ,  x m. Suppose also that s2 E X  interpolates the data 

a 1 , ,  am G H  at # 1 , . . . ,  x m G !Rn. Then, again provided X  is a linear space, the function 

«5i +  « 2  £ X  interpolates the data d\ -1- aq, . . . ,  dm +  am at the points x i , . . . ,  x m.

In order to provide stability for the system it is important that the interpolation condi­

tions (1.1) ensure that s is uniquely defined. Thus, we require that the only function in X  

which vanishes on the interpolation points is the zero function. However, work dating back 

to Mairhuber [24] shows that difficulties occur when considering a multidimensional situa­

tion. Specifically, suppose X  is an m-dimensional space of continuous real-valued functions
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on a domain 17 C !Rn. Suppose also that given any set of points {rci, . . . ,  x m} C 17, the only 

function /  E X  satisfying f{x i)  =  0 for all* =  1, . . .  ,m,  is the zero function. Then, either 

m  =  1 or the domain 17 is just one dimensional. This result forces us to make X  dependent 

on the given interpolation data.

A solution to this problem presents itself in the form of radial basic function interpo­

lation. We begin with a basic function 3> which is real-valued on IR+ =  {x  e  R  : x >  0}. 

Letting A = {x \ , . . . ,  x m} we define the interpolation space X  = X a  to consist of all 

functions from IRn to IR of the form

m
x  i-» ^ 2  d j$ ( \x  — Xj\), with cx.j E IR for all j  = 1 , . . . ,  m.

j =i

Here | • | denotes the Euclidean norm. Having specified our interpolation space X  to be data 

dependent, we now have a chance of being able to solve the interpolation problem uniquely 

for s. However, certain restrictions must be placed on the function $  in order to ensure 

this.

1.2 Conditionally Positive D efin ite Functions

We have the following radial basic function interpolation problem. Let $  be a real-valued 

function on ]R+ . Given values d i , . . .  ,dm E IR and points a?i,. . .  , xm E IRn, we wish to 

determine
m

s (x ) = x - xi\)>
j =i

where the aj  are constants to be found subject to the interpolation conditions

s(xi) = di, for all i = 1 , . . . ,  m.
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This is equivalent to solving the linear system

n
Y  aj$(\x i  — Xj |) =  di for all t =  1 , . . . ,  m.
3 =1

Writing this in matrix form we have

A a  = d,

where A  is the m  x m  matrix whose components are given by Aij = <£(|:e; — Xj\), a  = 

( a i , . . . ,  ctm) G !Rm and d = (di , . . . ,  dm) G !Rm. Clearly we can solve this system uniquely 

for a  provided A  is invertible. With minimal effort one can prove this is the case if $  is 

strictly positive definite in the following sense.

D efin ition  1.2.1 Let 3> : 1R+ —> M. If, for any set of distinct points y \ , . . .  ,yr G Mn and 

constants c i , . . . ,  cr G IR, the quadratic form

r r

E E  <HCj$(\yi -  Vj\) > 0
*=i j =l

then we say $  is positive definite. If, in addition,

r r

Y Y cic3®(\y i -y j \ )  = 0
i=i j=i

if  and only if Ci =  0 for all i =  1, . . .  ,r, then we say $  is strictly positive definite.

The interpolation problem is uniquely solvable provided the function $  is strictly positive 

definite. The Gaussian, defined by <I>(r) =  e~r , is an example of a strictly positive definite 

function, see Powell [28, p. 118]; so is the inverse multiquadric defined by $(r )  =  (c2 + 

|r |2) - 1/2? where c > 0. However, some of the first interpolants of this kind to be used 

successfully in applications involved basic functions $  which do not possess this property, for



example, Duchon’s thin plate splines [6], in which <E»(r) =  r 2ln r  and Hardy’s multiquadric 

surfaces [14], in which 4>(r) =  (r2 +  c2)1/2, for c >  0. However, these functions do possess 

the following property.

D efin itio n  1.2.2 Let $  : JR+ —> JR. If, for any set of distinct points y \ , . . .  ,yr E Mn and 

constants c\ , . . . ,  Cr E JR, the quadratic form

r r
- y j \ )  > 0

i=1 j - l

whenever
r

c iP (V i )  =  0 f o r  al1 P  e  n A:-l(^n), (1-2)
i=l

then we say is conditionally positive definite of order k. If, in addition, c i , . . . ,  cr satisfy

(1.2) and
r r

'%2'}TciCj <f>(\yi - y j \ )  = 0  
i=i j - i

if  and only if Ci =  0 for all i = l , . . . , r ,  then we say 4> is conditionally strictly positive 

definite of order k.

We note that the above definition can be extended to functions \I/ : —» IR by considering

~  Vj) instead of -  y,|).

When considering functions 4> which are conditionally positive definite of order k we 

add a polynomial of degree k — 1 to the interpolant. Assume n*;_i(lRn) has dimension I 

and suppose polynomials p i , . . .  ,pj form a basis for Hfc_i(lRn). We then let

m I
S(X) ~  ^ 2  a 3®(\X ~  Xj \) +  11, PkPkix ) for x  £ H",

j =1 k=1

and hope to solve for constants ct\, . . . ,  a m and /3\,. . . ,  (3i subject to the conditions



(1) s(xi) =  di, for all* =  1, . . . ,  ra,

(2) Y J L i OLjpk(xj) =  0, for all k = 1 , . . . ,  /.

The additional degrees of freedom introduced by the polynomial in the interpolant com­

pensate for the addition of condition (2) to the interpolation constraints. We can write the

above system of equations in matrix form as follows,

,  D \  /  _ \  /A P  

\ P T  ° )

a

where A  is the m  x m  matrix given by Aij =  — X j \ ) ,  P  is the m  x I matrix given by

Pij =  pj{xi), d = (di , . . . ,  dm) G K m , a =  ( a i , . . . ,  a m) G lRm and (3 = (f i i , . . . , # )  G H l.

This system can be solved uniquely provided the (m + 1) x (m +  Z) matrix

/
M  =

A P  

P T 0

is invertible. We shall see that this is true if $  is conditionally positive definite of order k

\

and if in addition the interpolation points x \ , . . . ,  x m have the following property.

D efin ition  1.2.3 We say that yi,--- ,ym £ Q>re unisolvent with respect to Ilk(lRn) if, 

whenever p G Uk(Mn) and p{yi) =  0, for all i = 1, • • •, m, p is the zero polynomial.

L em m a 1.2.4 Let $  be conditionally strictly positive definite of order k, and let x i , . . . ,  x m 

be unisolvent with respect to IIfc_i(iRn). Assume (Mn) has dimension I and suppose 

polynomials p i , . . . , pz  form a basis for IIfc_i(Mn). Let A  be the m  x m  matrix given by

A ^  =  — x j |) and P  be the m  x I matrix given by P{j =  pj(xi). Then the matrix

M  =

\ P T  ° )



is invertible.

P ro o f. Suppose u =  ( i q , . . . , um) G H m and v = (iq, . . . ,  u/) G IR* are such that (u, v) G 

]Rm+i is in the kernel of M.  Then we have

Au  +  Pv = 0 (1-3)

and

P Tu =  0. (1.4)

Equation (1.4) implies uTP  =  0. Pre-multiplying Equation (1.3) by uT and making the 

substitution uTP  = 0 gives

ut A u =  0.

Expanding gives
m m

Y , Y , UiU jH \X i -X j \ )  = 0 . 
i=1 j=l

Also from Equation (1.4) we have

m
^ 2  uiPj{x i) = 0 for all j  = 1 , . . . ,  I.
i=1

Hence, since $  is conditionally strictly positive definite of order k we must have u = 0. 

From Equation (1.3) we now have Pv = 0. Expanding gives

q(xi) = Pi(xi)vi +P 2 (xi)v2 +  . . .  +Pi(xi)vi = 0, for all i = 1 , . . . ,  m.

Thus q is a polynomial in Hfc_i(]Rn) with q(xi) = 0, for alH  =  1, . . .  ,m.  Hence, by the 

unisolvency of x i , . . .  , x m, q = 0. Thus, v = 0. Therefore, the kernel of M  is trivial and 

hence M  is invertible. ■
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The seminal paper by Micchelli [26] shows that the multiquadric is conditionally strictly 

positive definite of order one. Micchelli also proves that it is possible to solve the multi­

quadric interpolation problem without a polynomial term being added to the interpolant. 

This is an interesting feature of conditionally strictly positive definite functions of order one. 

In the multiquadric case this result backed up Hardy’s experimental evidence. In addition, 

Micchelli gives the following characterisation of conditionally positive definite functions of 

order k , which extended the work of Schoenberg [35] who had considered the case k = 0.

D efin ition  1.2.5 A function f  is said to be completely monotone on (0, oo) if f  G C 00^ ,  oo) 

and (—1 )mf ( m)(t) > 0 for all t  > 0 and m = 0,1,2, . . . .

T h eo rem  1.2.6 Let 3> G C[0, oo) D C00^ ,  oo) and suppose that (—l) fc<I>(fc) is completely 

monotone but not constant on (0, oo). Let function ’F be defined by \£(t) =  $ ( t2), for 

t G (0, oo). Then ^  is conditionally strictly positive definite of order k.

We have seen that in order to guarantee a solution to the interpolation problem when 

the basic function $  is conditionally strictly positive definite of order k , we must ensure 

that the interpolation points satisfy a unisolvency condition. However, for many common 

choices of 3>, k is at most two. Thus, the unisolvency condition is not as problematic as 

it seems at first glance. For example, in two dimensions with k = 2, we would simply 

require three non-collinear points in order to be able to solve the system. If k = 0 then no 

requirement is made on the points at all.
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Some common examples of $  are listed below.

Bare norm $ (r) =  r k = 1

Thin plate spline $ (r) =  r2 ln r  k = 2

k = 1

Multiquadric $ (r) =  y/r2 + c2 k = 1

Gaussian $ (r) =  e_r2 A; =  0

1.3 Variational Theory

The first radial basic function interpolants to be actively researched were the thin plate

splines. The original motivation came from the aeronautical industry in the early seventies

infinite thin plates subject to interpolation constraints. Duchon, building on earlier work

interpolant is shown to be a minimal norm interpolant in the following sense. Let Hilbert

functionals on X.  Suppose that /  G X  is known only on the points x \ , . . . ,  x m G !Rn. We 

wish to find s G X  such that

i) s{xj) — f(x j ) ,  for all j  = 1 , . . . ,  m,

ii) \s\ < M, for all v G X  satisfying v (x j ) =  f ( x j ) for all j  = 1 , . . . ,  m.

Duchon used spaces of distributions which were generalisations of Beppo-Levi spaces (see 

[5]); the related seminorm taking the form

[13]. The problems focussed on finding splines which minimised the bending energy of

by Atteia [3], took these ideas of minimisation and extended them to higher dimensions. His

papers [6, 7] were seminal in the development of a variational theory for these problems. The

space X ,  with seminorm | • | defined on X, be such that point evaluations are bounded linear
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for fixed integer k > 0 and known constants cQ. In this case the solution to the above 

variational problem takes the form

m
s (x ) =  “  *̂1) +P(X)’

i=l

where p  is a polynomial of degree k — 1 and the function $  has the form

r2k-n jn r  ̂ for n even , 

r2k~n otherwise .
3>(r) =  <

Such interpolants are known as surface splines and in one dimension they coincide with 

natural splines of order 2k.

Recent work of Light and Wayne [20] generalised that of Duchon, and provides the 

motivation for much of the work contained in this thesis. A measurable weight function 

v : IR” —y IR is introduced and the seminorm is defined, for fixed integer k, by

\f\k = (  ^ 2  ca [  \Daf (x ) \2v ( x ) d x \
\H =* m  J

The Fourier transform here is taken in the distributional sense (see Section 1.6) and the 

constants ca are defined by the algebraic identity

y :  cax 2a = \x\2k, for all x  G !Rn.
\a\=k

The associated space of functions is given by

Z*(Rn) =  { / e  S ' : D ^J  € Lioc(TRn) and J  \D ^ f  (x)\2v(*) dx < oo,

for all a  G ZE” with |a | =  /c}.

Here we use S'  to denote the space of tempered distributions, which we discuss further in 

Section 1.6.
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In order to consider an interpolation problem on these spaces we need to ensure point 

evaluations make sense. Light and Wayne [20] demonstrated this by proving that Z^(lRn) 

was embedded in (7(IRn). However this is dependent on the weight function v satisfying the 

following conditions,

(1) V e C(M”\{0}),

(2) v(x) > 0 if x  5  ̂ 0,

(3) 1/v € L U lR "),

(4) there is a p  G IR such that (w(x))-1 =  0(\x \~2tl) as | r c | —> oo.

These conditions also ensure that Z^(lRn) is complete with respect to \ ■ \k-

Using the fact that v(x) > 0 if x  ^  0, one can show that the kernel of the seminorm | • \k 

is n fc_!(]Rn). Hence, we can define a norm on Rn) as follows. Let o i , . . .  , a* G !Rn be 

unisolvent with respect to n^_i(lRn). Then define

( 1 \ 1/2 
l l / I k  =  ( £  l/(°»)|2 +  I / l l )  for all /  € Z(lR").

Equipped with this norm Z^(IRn) is a Hilbert function space. Using reproducing kernel 

techniques, Light and Wayne [20] were able to show that the minimal norm interpolant to 

/  G Zk([Rn), on points x i , . . . , x m G H n unisolvent with respect to Hfc_i(lRn), takes the 

form
m

s (x ) =  ^ 2  OLj${x — Xj )  +  p ( x ) .
3 =1
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The function p(x) is a polynomial of degree k — 1, and $  is a tempered distribution which 

satisfies

$v\ ■ \2k = 1.

In addition, $  is a continuous function and, in a link with the previous section, is also 

conditionally positive definite of order k. We remark, however, that the basic function $  is 

not radial.

1.4 Error E stim ates

We turn our attention now to the subject of error estimates in order to provide motivation 

for the work contained in Chapter 2.

Let X  be a space of real valued functions on lRn with seminorm | • |. Suppose we 

interpolate a function /  G X  at points x \ , . . . ,  x m G IR.n by s G X .  Thus,

s(xi) = f{xi),  for alH  =  1, . . .  m.

A typical error estimate has the form

| f{x)  — s(^)| < V ( x , # 1 , . . . ,  x m)\ f  — s|, for all x  G lRn.

Here V  is the so-called power function and we shall give more details on how it is derived 

in Chapter 3. In order to be able to use this estimate we need to know f  — s everywhere 

on ]Rn. Duchon [7] described for his spaces of distributions how one could use localisation 

to obtain improved error estimates. Instead of the above global estimate he obtains for
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0  C ]Rn a ‘local’ estimate of the form

\f{x) -  s(z)| <  V ( x , x i , . . . , x m)\ f  -  s|n, for all a; E ft. (1.5)

Note that a localised version of the seminorm appears on the right-hand side and the error 

estimate is now only true for x  E ft. Using this local estimate Duchon is able to obtain 

improved estimates in terms of the spacing of the interpolation points x i , . . . , x m. Let 

A = {x \ , . . .  , x m} and

h =  sup inf \y — x\.yenxeA

Suppose using the original estimate one can obtain a constant C  independent of /  and h 

such that | | /  — s||p,ft <  Ch@\f\ for some /?. Making use of the localised error estimate it is 

possible to improve this to | | /  — s ||p,ft < (7h^+n/p|/|ft. Exact details of how Duchon obtains 

these results can be found in [7] or the later work of Light and Wayne [19].

The aim of this work is to apply Duchon’s localisation techniques to spaces having a 

seminorm of the form

l / u =

as introduced in the previous section. The first step is to indicate what we mean by a local 

version of the seminorm \-\f~- We notice that this is defined in terms of the Fourier transform 

of the function. Thus, there is currently no natural way of defining the local seminorm. 

W hat is needed is a direct version of the seminorm, defined in terms of the function itself, 

and not its Fourier transform. The recent paper of Levesley and Light [18] concerned itself 

with this task. We assume the weight function v satisfies the following conditions,

15
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(1) v G S'  H C(]Rn) and v(x) > 0 for almost all x  G R n,

(2) v is a measurable function and for any neighbourhood N  of the origin, v G L1(lRn\Ar),

(3) v(y) = v ( - y )  for all y  G !Rn,

(4) |u(2/)| =  0(\y\s) as y —> 0 , where n +  s +  2 >  0,

(5) u(0) = 0  and v(x) < 0 for almost all x  G R n.

Under these conditions, Levesley and Light proved that for all /  G Zk{K n),

f n „ \D^f(x) \2v(^)dx  =  v(x -  y)\(Daf ) (x )  -  (Daf ) (y )  |2 dxdy.

Now we can simply define our local seminorm by

If \k ,n=  /  w (x ~ y ) \ (Daf ) ( x ) -  (DOtf)(y) \2 dxdv
\ \a \= k  ^

where w =  —\v.

The second, and less obvious, requirement for the development of the localised version 

of the error estimate is having to hand certain extension operators. Duchon worked in 

a Sobolev space setting where the relevant extension theorems were already well known. 

The development of the required extension operators for the above seminorm is the aim of 

Chapter 2.

We begin by working with some spaces of continuous functions. Let Cq (]Rn) denote the 

set of all compactly supported functions on K n which have continuous derivatives up to the 

k-th order. For fl, an open subset of ]Rn, we define X(f2) =  : g G Cq (Hn) and \g\k,n <

oo}. Similarly we define X(lRn) =  { / G Co(lRn) : |/|fc < oo}. Now, under appropriate
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hypotheses on w, | • \kfn defines a seminorm on X(Cl). We develop a linear extension 

operator from X(f2) to X(]Rn), subject to Cl and the weight function w satisfying certain 

properties which are detailed in Chapter 2. Using this result we deduce the existence of 

extensions for functions in the completion of X(f2) with respect to the seminorm

I ■ U,n- Outlined below is our principal extension result, the proof of which can be found in 

Section 2.3 and is again dependent on a suitable choice of Cl and w.

T h eo rem  1.4.1 Given f  E there exists a function f e E y(Mn) such that

1) f e \n = f

2) I fe I Mn — ^ 1 / ln  f or some constant M  independent of f .

In Chapter 3, using an adaptation of Duchon’s methods, we shall demonstrate how these 

extension theorems can be used to derive improved error estimates for the spaces ^(]Rn).

1.5 N ative Spaces

We discussed in Section 1.3 how the surface splines of Duchon [6, 7] arise naturally from 

a variational problem described on certain spaces of functions. The work of Madych and 

Nelson [21, 22, 23] extends this to other radial basic function interpolants, for example 

multiquadric surfaces. The approach is different to that of Duchon, where the focus is 

on the seminorm and associated space of functions. Here one begins with a conditionally 

positive definite function and uses it to construct a native space of functions in which one 

can carry out the appropriate variational arguments. Other papers in this area include 

those of Wu and Schaback [39], those of Dyn [8, 9] and several papers by Schaback which
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are accessible through the survey [31].

Many authors considering native spaces work on the whole of ]Rn. However, definitions

the work of Schaback [32] and Iske [16]. In Chapter 4 we shall look at how this approach

the Levesley-Light direct form seminorm [18]. Of particular interest will be the following 

convolutional characterisation of the local native space given by Iske.

Let Cl be an open, bounded subset of IR". Let $  : IR" —» IR be continuous and strictly 

positive definite. We define <7o°(fi) to be the set of all functions in C'o°(lR") whose support 

is contained in Cl. A bilinear form (•, •)$ is defined on Co°(0) via

Assume that there exists a continuous and positive function ^  : 1R"\{0} —* IR such that

Then the quantity || • ||$ =  >/(•, •)$ defines a norm on Cq°(CI). Since <I> G C(1R"), the 

convolution * w is well defined for all w G C q0 ^ )  and is given by

of local native spaces, and corresponding extension theorems, can be found for example in

to localisation compares to that described in the previous section, which makes use of

Let

I(Cl) = { /  |q : /  =  4> * w for some w G C 'o ° ( f i) } .

Iske’s local native space of $  is defined as the closure with respect to || ■ ||$ of / (Cl). We remark
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that this is the simplest case of Iske’s results. One could also work with a conditionally 

positive definite function.

1.6 D istribution  Theory and N otation

We end this chapter with some notation and results that will be of use in later chapters. In 

particular, we introduce some of the theory of distributions which will be needed in Chapter

4. The definitions are taken from Rudin [30] in which further details and proofs of all the 

results given here can be found.

The space of test functions D consists of the vector space Co°(IRn), whose topology is 

described in [30, Definition 6.3]. The space of distributions, denoted D \  consists of all linear 

functionals on D which are continuous with respect to this topology. If /  is a distribution 

and 4> is a test function, then we shall use the notation [/, 4>] to denote the action of the 

distribution on the test function.

For multi-index a  =  (ati . . .  , a n) G the differential operator D a is given by

and has order \a\ = a\  -I-. . .  -1- an.

The space of rapidly decreasing functions consists of those functions for which

sup sup (1 +  \x\2)N \Daf  (x)\ <  oo N  =  0 ,1 ,2 , ___ (1.6)
|a |< iV  x e lR .71

These functions form a vector space S  whose topology is given by the countable collection 

of norms (1.6). We denote by S'  the space of tempered distributions, that is the set of all 

continuous linear functionals on S.
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We quote now some useful properties of tempered distributions which will be needed 

in subsequent chapters. If /  is a tempered distribution and (f> E S  then <pf is a tempered 

distribution whose action is defined by

^  e S.

For f  E S  the Fourier transform of /  is defined by

1[x) = (2̂ 7* L  f(y)e~iXV dy’ "eRn-
Furthermore, the Fourier transform is a continuous, linear, one-to-one mapping of £  onto

S. We can extend the Fourier transform to tempered distributions by defining for /  E S ' ,

= [/,$} <t>e s.

This distributional Fourier transform is also a continuous, linear, one-to-one mapping of S' 

onto S'. For f , g  G L2(Hn), the Parseval formula states that

L  rg=L  n• (l-7)
Taking /  =  g in Equation (1.7) yields the Plancherel Theorem,

|2 =  | | / | |2, for all f  € £ 2(1R").

The operator B  is defined for (f) G S' by (B<f))(x) =  4>{—x) for all x 6 lRn. A useful 

result is that (0) =  Bcf), for </> 6 S. Given x £ H n, the shift operator Tx : S  —> S  is

defined by (Tx(f)){y) = (fi(y — x), y G ]Rn. The operators Tx and B  are extended to tempered 

distributions by defining [Tx/ ,  4>] = [/,T _X0] and [Bf, 0] =  [f,B<f>] for all (p E S.
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The convolution of two functions /  and g on ]Rn is given by

( /  * 9 ) M  =  f ( x  -  y)g(y) dy

whenever the integral exists. For 4> and iJj in S  the convolution </> * if; is well-defined and 

is itself an element of S. This convolution also satisfies the properties (0 * \f>f =  (fr'ip and 

(4>/ip)^ = (f) * ip. The convolution of a tempered distribution /  with <fi E S  is given by

Furthermore, it can be shown that /  * 0 E C°° H S', ( f  * 4>) = f4> and (f4>) =  /  * 4>.

Finally we end with a remark on notation. We have already in this chapter used the 

symbol | - j to denote both the Euclidean norm and a generic seminorm. However, as we 

believe the intended meaning is clear in all cases we have chosen not to develop an alternative 

piece of notation.
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Chapter 2

Extension Theorems

In Section 1.4 we introduced the idea of a direct form seminorm, with particular reference to 

the seminorm of Levesley and Light [18]. The advantage of a direct form seminorm is that 

it delivers a very natural way of defining a local seminorm, and hence corresponding local 

spaces. In this chapter, we shall be interested in spaces of functions which arise from the 

Levesley-Light direct form seminorms. In particular, we wish to develop certain extension 

theorems for these spaces, the motivation being that such extension theorems can then be 

employed in the development of improved error estimates. We shall discuss this application 

further in Chapter 3.

A special case of the Levesley-Light seminorm is that used in non-integer valued Sobolev 

space seminorms. Extension theorems for these spaces, both integer and non-integer valued, 

are well known, see for example Adams [1] or Showalter [36]. We shall make use of this 

in the sense that our overall strategy of proof follows that used in the Sobolev extension 

theorems. However, at the level of generality we are considering, new techniques must be 

developed.
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2.1 An E xtension on 1R+

We begin with some results on the half plane 1R” ; that is, the set of all points in lRn whose 

last coordinate is positive. This focus on the last coordinate means we shall often write a 

point x  G I T  in the form x  =  (x ',xn), where x' G ]Rn _ 1  and x n G H . Using this notation, 

we can write 1R+ =  {(x ',xn) : x n > 0 }.

We define now a linear operator Ea, which extends functions defined on 1R” , to functions 

defined on the whole of ]Rn. This operator will prove essential, not only to the current 

development, but to subsequent work in this chapter. Indeed, it provides the backbone of 

the extension operators we shall construct in Section 2.3 for domains more general than

D efin ition  2.1.1 Let k G Z+ and define A i,. . . ,  Afc+i to be the unique solution of the 

system

For each f  : IR™ —> 2R and each a = ( a i , . . . ,  a n) G define E af  : Mn —>• M by
f

f ( x ' , x n), i f x n > 0

B a f { x  , X n ) =  }

Many of the results in this section will concern Eq, where 9 = (0, . . . ,0 ) .  We begin 

by describing how this operator behaves with regards to continuous functions. We shall 

initially be interested in the space Yfc(]R” ) =  { p |^  : g G Co(lRn)}, where k is some 

positive integer. The corresponding space Y k(TRn) is simply Cq (H n).

otherwise.

23



T heo rem  2.1.2 Let 6  =  (0, . . . ,0 )  and let f  G Yfc(JR” ); for some k G Z+. Then E g f  G 

Cq(Mu) and D a E g f  =  E a D a f ,  for all a  G with |a | <  k.

P ro o f. Suppose x  =  (a;', x n) G H n, with rrn < 0, and o  =  ( a i , . . . ,  a n) G ZK” with |a | <  k. 

Then,

The relation D aEgf(x) = E aD af(x )  for x = (x', x n) with x n > 0 is clear and so the formula 

D aEef  = E aD af  is established for all /  G Y*(lRJ).

It remains to show that E g f  G C q ( H n ) . We know from above that D a E g f  =  E a D a f .  

Since /  G Yfc(lR” ), D a f  G Y°(]R” ). Thus it is clear from the definition of E a  that

We now introduce a measurable weight function w : H n —> 1R. We shall assume through­

out this section that w satisfies the following two properties,

(W l) w(x) > 0 for almost all x  G !Rn;

(W2) there exists a constant M  > 0 such that if x = (x ',xn) G lRn and y = (x',yn) G lRn 

with \xn\ > \yn \ then w(x) < Mw(y).

Now take a  G Z ” , and define, for /  G YlQl(lR!j:),

k+ 1

D aE ef ( x ' , x n) =  D a Y ^ Xi f ( x '’~ x n /j)

E aD af ( x ' , x n).

E a D a f  G Co(IEln). Hence D a E g f  G (7o(]Rn) and the result follows.
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The form of the integral is exactly that found in the Levesley-Light seminorm [18]. We 

shall be interested in functions for which this integral is finite. Thus, we define X Q(1R™) 

to be the set of all /  G Yla l(]R![.) which satisfy I/IqJR,™ < oo. The quantity | / | a ^  and 

space X Q(lRn) are similarly defined. We now prove an extension theorem for functions in 

X a (lR” ).

T heorem  2.1.3 There exists a linear operator E  : X CL(]R7 fr.) —> X a(Mn) such that for all 

f  G X a{Rn+),

(i) E f ( x ) =  f{x ) ,  for all x  G -K+,

(a) W \ a , e r  <  A \ f \ajft^, for some positive constant A  independent of f .

P roof. Our claim is that a suitable choice for E  is the one we have already defined prior to

this theorem, E  — E q, providing \a\ < k. Take /  G X a (IR™). It follows immediately from 

the construction of E  that E f(x )  = f (x )  for all x  G JR+. We consider

l£ /la,Jt" = jRJ Rn w (x -  v )P “B/(*) -  D aE f ( y ) I2 dxdy.

For convenience we define a measurable function 2  by

z(x ,y) = w(x — y)\DaE f(x )  — D aE f ( y ) |2, for almost all x ,y  G !Rn.

Let x++ be the characteristic function of 1R™ x 1R” , \+ -  be the characteristic function of 

1R™ x (]Rn\lR™), and similarly for x~+ and X Then

l^ la ,]R n =  ^++ +  I+-  + ----------- ^-

25



where, for example,

/_+  =  x-+ {x ,y)z{x ,y) dxdy.
«/]R J JR,

Now,

dxndx'dyndy'.

r roo p rO
I-+  = , /  /  , /  w(s# -  y', rrn -  yn)

+ JBr-'Jo JBT-'J-oo
fk+1 /  1 \ l Qnl \
( E  ( - j )  “ * n / j )  1 -  ^ “ / ( y 7, Vn)

Recall that since |a n | < A: we have (~  j )  ^  =  1. Using this fact and an application

of the Cauchy-Schwarz inequality gives

A + 1 /  1 \|On| \
( E Ai ( ~ j J  D a f { x ' , - x n/ j ) \  - D a f ( y ' , y n)

fc+1 /  1 \  lanl / \
5 3  A,  (  —  )  ( D a f ( x ' , - x n/ j )  -  D a f ( y ' , y n ) )
.7 =  1 V 3 '

Ofe+ 1

s IE
J = 1

x ^ - 7 )

1 \  lQn| 2 \  ( fc+l
\Daf ( x \  - x n/ j )  -  D af ( y ' , yn)

i=i

Let Ai =  E*±J |Aj- | 2  ( - i ) 2'a"'. Then,

&+1 p pcx> r  rO

Sk ' - i I - oow (x ' ~ yl' X n ~ Vn)

\Daf ( x ' , - x n/ j )  -  D af ( y \ y n ) \ 2 dxndx'dyndy'.

Making the substitution x n = —j s n in the appropriate integral gives

fc+l P poo P PCX)

' - +  S ^ i E U r - X  L - ' L  w V - y ' ’ - j ° n - y n )

\Daf ( x ' , s n) -  D af ( y ' ,y n ) \ 2 dsndx'dyndy'
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Since j , sn, and yn only take positive values,

I j ^ n  Vnl  == |j ^ n  “f~ 2/n| =  j $ n  ~t“ Un ^  "k Hn ^  |^ n  Vnl-

Hence, by (W2), we can find a number A 2 > 0 such that

\Daf ( x ' , s n) -  Daf ( y ' , y n) | 2 dsndxf dyndy’.

Letting A3 =  A2 3 we obtain,

/ - +  < ^ 3  [  f  w{x -  y) |D af(x )  -  L>a / f e ) | 2 dxdy.

An almost identical argument furnishes the existence of a constant A 4  such that

I+- < M  f  [  w(x -  y) |D af(x )  -  D af ( y ) \ 2 dxdy.
J  Jax+

Now, by reasoning very similar to above, we deduce the existence of A5 > 0 such that

|D af{x ',  - x n/ j ) -  D af(y ',  - yn/ j ) \ 2 dxndx'dyndy'. 

The change of variables xn = —j s n and yn — —j t n gives,

\Daf ( x ' , s n) -  D af ( y ’, t n) |2  dsndx'dtndy'. 
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Again, since sn, t n and j  take only positive values, we have

Ij^n j sn\ —j\Sn tn| ̂  |5n ^n\t

and so an application of (W2) furnishes a constant A q such that

Finally, using

— I + +  +  I -\— + 1—i- +  I —

< (1 +  A 3 +  A 4 +  M ) f ^ n j . w ( x  -  y)\Daf(x )  -  D af { y ) | 2 dxdy ,

we obtain \E f\a^ n  < y/ 1  +  A 3 +  A 4 + A 6 | / | Q)]R£. ■

We end this section with some results that will be of use later.

L em m a 2.1.4 Let 6  =  (0 , . . . ,  0) E ^/+. Let k € Z+, and suppose a  € satisfies |a | < k. 

For f  6  X a{]R7\ )  define E f  = E$f as in Definition 2.1.1. Then there exists a constant C  

such that

for all f  E X * ^ ) .

P roo f. We can write
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We consider the second integral. Let

»0 *+J / l^|an|
\

r- '

An application of the Cauchy-Schwarz inequality gives 

/ <

' - L - L & ' h ) dx 7ii dx «

r rO A + l  /  1 \ | a n |  2\  A + l  \

/nr- L  (g A' ("j) j (g |0“/(x'’ j rfx'
I /  \ l a n| |2

Letting c\ =  Z)jSi Uj (—j )  > and making the change of variables x n =  — snj  we have

/* f°° o
/  <  Cl L n  1 \Daf ( x ' , s n)\ dsndx '.

J]Rn 1 Jo

Letting C2 =  ci J2j=i j  we have

/ < < *  J  \Daf ( x ) \ 2 dx.

Hence,

/ Rn I ^ B / W I 2  dx < J  \D ° f(x ) \ 2 dx + c2 f Rn \Daf ( x ) \ 2 dx 

=  ( 1  +  C2 ) / _ n |DQ/ 0 z ) | 2 dx. M
•/JK_|_

D efin ition  2.1.5 Ta&e A: G and let f  G Y k(]R+). We define

II/HjR; =  S  I ' n \Daf ( x ) \ 2 dx->
aeZl a e Z l JR+
|a|=/c

where the ca are constants. Let || • || Rp. be similarly defined.

T heorem  2.1.6 Let 0 = (0,. . .  ,0) G Z ^ .  For f  G f]\a\=k X a (JR\), let E f  = Eef  be 

defined in Theorem 2.1.2. Then, for all f  G f)|a|=A; X a (JK+)

as
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for some constant M  independent of f  .

P roo f. Take /  E fl|a|=A; -ATa 0R” ). Then, by Theorem 2.1.3 and Lemma 2.1.4, there exist a 

constants M\ and M2 , independent of /  such that

construction of the extension operator is deferred until Section 2.3; here we shall discuss 

some technical results that will be essential to our later development. We also introduce 

some definitions and notation which we will adhere to throughout the rest of the chapter. 

We begin by recalling the form of the Levesley-Light direct seminorm.

Take k E 7L+ and suppose Q is an open subset of ]Rn. Let w : IRn —> 1R be a measurable 

weight function, which will be required to satisfy certain properties as we proceed. For 

/  G Ck(Q) we define,

Taking M 2 =  max{Mi, M2 } gives the result.

2.2 Some Preparatory R esults

In this section we begin to move towards an extension for more general domains. The actual

1/2

(2 .1)

where the constants ca are defined by the algebraic identity

for all x  G H n.
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As in Section 2.1, we shall be interested in functions for which | • |q is finite. We denote by 

X (0 )  the set of all /  restricted to 0  such that /  G Cq (3Rn) and |/ |n  <  oo. On X (0 ) ,  | • |n

Then, if is bounded, || • ||n defines a norm on X(O).

In the construction of our extension operators we will make use of domain transforma­

tions which are ^-smooth, by which we mean the following.

D efinition 2.2.1 Let and O2 be domains in Mn, and $  a bijection from fli to O2 . We

say that is k-smooth if, writing $(rr) =  (4 >\{x\,. . . , x n) , . . . ,  4>n(x 1 , . . . ,  x n)) and $ _ 1 (:r) =  

ty(x) =  ( - 0 1  (a;i,. . .  , x n) , . . .  ,ipn(x 1 , . . .  , x n)), then the functions (f) 1 , . . .  ,cf)n belong to Cfc(Oi) 

and 'ipi, . . .  j'j/’n belong to Ck(^ 2 )- If  k = 0 then we will refer to $  as smooth.

D efin ition  2.2.2 Let $  be a bijection from IRn to Mn. We say $  is locally k-smooth if  $

is k-smooth on every bounded domain in Mn .

As we have already indicated, the results in this section will often need w to satisfy 

certain conditions. We gather together all the required hypothesis here:

(Wl) w G L1(lRn\N )  for any neighbourhood N  of the origin;

(W2) w(y) =  0(\y\s) as y —> 0, where n +  s +  2 > 0;

(W3) f A w > 0 whenever A  has positive measure;

defines a seminorm with kernel consisting of polynomials restricted to O of degree at most

k. We define, for /  G Cfc(Hn),

for /  G JC(fi). (2.2)
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(W4) w(y)  =  w ( —y)  for all y  G lRn;

(W5) for every locally (k +  l)-smooth map <f> on ]Rn, and every bounded subset Q of ]Rn, 

there is a K  > 0 such that w(4>(x) — <f)(y)) < K w (x  — y), for all x ,y  GO;

(W6 ) there exists a constant M  > 0 such that if x  =  (x \ x n) G !Rn and y = (x',yn) G H n 

with \xn\ > \yn\, then w(x) < Mw(y).

We remark that in the previous section we assumed that w satisfied w{x) > 0 for almost

all x  G !Rra. We again assume this here, albeit in the stronger form of (W3). We are now

ready to begin developing the technical results needed in Section 2.3. We begin by quoting 

two standard analysis results which will be of use later (see, for example, Rudin [29] and 

Apostol [2]).

T heo rem  2.2.3 (F ub in i’s Theorem ) Let f  be a measurable function on Mn x Mm and 

suppose at least one of the integrals

h = L { L lf{x’y]ldx) dy

l2 = L ( f m J f i x 'y]ldy) dx
exists and is finite. Then I\ = I 2 .

T h eo rem  2.2.4 (L ebesgue’s M onotone C onvergence T heo rem ) Let A  C Mn be mea­

surable. Let { fn} be a sequence of measurable functions satisfying

(i) 0 < fi(x) < f 2 {x) < • • • < 00  for almost every x  G A,

(ti) fn(x ) f{x )  as n  —> 0 0 , for almost every x G A.
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Then f  is measurable, and

/  fn(x) dx-+ f ( x)  dx
Ja Ja

as n -a- oo.

L em m a 2.2.5 Let w : Mn -A M be a measurable function satisfying (W1)-(W3). Then the 

mapping y \y\2 w(y) for y G JRn is in L\0C(R n).

Proof. Choose <5 > 0 and set N  = {y G K n : \y\ < £}. Then there exists A  > 0 such 

that \w(y)\ < A\y\s for all y G N.  Since w G L1(lRn\N ) ,  it is clear that the mapping 

y i-A \y\2 w(y) for y G R n is in Ljoc(Mn\ N ) . It suffices to show that this same mapping is in 

L 1 (N). For some appropriate constant B ,

[  \y\2 w(y) dy < A [  \y \s + 2  dy < A B  f  r n + s + 1  dr < oo,
J n  Jn  Jo

by property (W2). ■

L em m a 2.2.6 Let Q, be an open, convex, bounded subset of Mn . Let w : lRn -A  M be a 

measurable function satisfying (W1)-(W4)- There exists A  >  0 such that for each f  G 

C l (U),

{  [  w ( x - y ) \ f ( x )  -  f ( y ) \ 2  dxdy < A (  \Daf ( x ) \ 2  dx.
Jci Jn I , .  Jn\a\=l

P roof. Since /  G Crl(f2), Taylor’s formula with integral remainder [15, pg.13] allows us to 

write

\ f ( x ) - f { y ) \ 2 =  [  ( y - x ) aDaf ( x  + t ( y - x ) )
J ° |oe| =  l

2 

dt
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< ^  1 d t j  ^  | Y l  (y -  x) aD a f ( x  +  t ( y  -  x))  2 dtj

< JQ Xj  \ ( y ~ x ) aD af ( x  +  t ( y - x ) ) f ^ dt.

Now, let xn  be the characteristic function of the set O. Extend each D af  to a function 

on IRn by setting it to be zero outside Q. Two applications of Fubini’s theorem plus the 

change of variables y = z + x  gives

[  [  w ( x - y ) \ f ( x )  -  f ( y ) | 2 dxdy 
Jn Jn

-  71 [  [  w (x - y ) [  \{y -  x )aD af  (x + t{y -  x ) ) \ 2 dtdydx
|a |= l  Q n  0

= n Y l  f  L n L n w(x - y ) x n ( x ) x n ( y ) \ ( y  ~ x )aD af ( x  + t ( y - x ) ) \ 2 dydxdt
I .  -| J  0 J  Jiv|a |= l

= n J 2  [  L n  L n w (z )xn{x)xn{x + z ) \z a \2 \Daf { x  + t z ) \ 2 dzdxdt
i i  , JO  J Jrt yJn,
a  =1

=  n  f  L n  w ( z ) \ z<* \ 2 [  \ D a f  (x + t z ) \ 2 xn (x )xn (x  + z) dxdzdt.
Jo J W 1 Jnn(n -z )

Since Q is bounded, we can find S > 0 such that if \z\ > S then Q D (f2 — z) is empty. Let

& 6  — {y £ : \y\ < <̂}- Then the change of variables x +  tz  = v gives

f  f  w(x - y ) \ f ( x )  -  f ( y ) \ 2 dxdy 
Jn Jn

< n E  / f  w (z )\za |2 /  \Daf  (x + tz ) \ 2 xn{x)xn{x  + z) dxdzdt
|Q|_i Jo J13$ J nn(n—z)

34



= n 52 f  f  w (z)\za \2 [  x n { v - t z ) x n { v  + {1- t ) z ) \ D af ( v ) \ 2 dvdzdt 
iIT î Jo Jbs JRa  = 1  °

< n '52 [  [  ™ M k a | 2 L n \Daf { v ) \ 2 dvdzdt 
• JO J B S J KH=i

< n ^ 2  [  w ( z ) \ z \2 [  \D<Xf i v ) \ 2 dvdz,
|a|=l ^B* Q

since (Daf ) ( v ) =  0 for v 0  £1. Now by Lemma 2.2.5, there is a constant A > 0 independent

of /  such that

[  [  w(x  -  y)\f{x) -  f ( y ) \ 2 dxdy < An f  \Daf (v) \ 2 dv. ■
•/fl wfl I I -J\a\=l

L em m a 2.2.7 Let U, H,  G be measurable subsets of ]Rn satisfying the following properties

1) H  is a bounded set and U C H  C G;

2) there exists a 8  > 0 such that for all x  G G \H  and y E U, \x — y\ > S.

Let w : Mn —» M be a measurable function satisfying (W l). Then there exists a constant K

such that for all y € U,

/  w{x -  y) 
J g \ h

dx < K.

P roo f. Define /  : U —> H  by f (y)  = f G^H w(x — y) dx for y G U. Making the change of 

variables x = s +  y gives

f (y)  = j  w(s) ds ,
JTy

where Ty = G\ H — y. Take s G Ty. Then s =  x  — y for some x G G \ H  and so by Condition
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(2), \x — y\ > S. Now take N  = {s G lRn : |s| < £}. Then Ty C lRn\ N  and 

\f(y)\ = f  w{s) ds\ < [  |w(s)| ds < [  |w(3 >| ds.
JTy  1 JTy J H n\ N

Setting K  = |w(s)| ds gives the result. ■

In the proof of the next lemma we use of the notion of lower semicontinuity, which we 

define below. In particular we exploit the fact that a lower semicontinuous function attains 

its infimum on compact sets. A proof of this can be found in [25].

D efinition 2.2.8 Let f  be a function from a topological space to the extended reals. We

say f  is lower semicontinuous if the set {x : f {x)  > a} is open for every real a.

L em m a 2.2.9 Let H  be a bounded subset of Mn. Let U be a subset of H  such that H \U  

has positive measure. Let w : Mn —̂ M be a measurable function satisfying (W l) and (WS).

Then there is a number K  > 0 such that,

/  w(x — y) dx > K , for all y E U.
J H \ U

P roo f. Define /  from ]Rn to the extended reals by

f (y)  = /  w(x - y )  dx = /  w(s) ds, 
J h \ u  J t «' H \ U

where Ty = H \ U  — y and y G lRn. Because Ty has positive measure, f (y)  > 0 for all y G !Rn. 

We claim /  is a lower semicontinuous function on ]Rn. That is, the set Ya = {y G IRn : 

/  (y ) > a} is open for each a  G 1R. Clearly if a < 0 then Ya is the whole of H n and so is 

open. Thus we fix a  > 0. We will show that the set Y£ = {y G 1R : f {y)  < a} is closed. Let
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t>e a sequence in Y£. Then,

for all j  =  0 ,1 ,----

For convenience we shall write Tj  for TVj. Suppose that lim ^oo Vj = v. We wish to show 

that v G Yqc. Let N  be any neighbourhood of the origin. We define A = Tv fl N  and 

Aj  = Tj fl N.  Since w G L 1 (lRn\iV) we have

Let 5 (0 ,1/m) =  {x G H n : |ar| < 1/m} and define Lm = Tv fl 5 ( 0 ,1/m). Let Xm be the

Now, for all x G H n,

i) 0  < wo(x) < w\(x) < . . .

ii) lim ^oo Wk(x) = w(x).

Note that in order to ensure Condition (ii) for x  = 0, we need to define w(0) =  0. Now, the 

Lebesgue Monotone Convergence Theorem and Equation (2.3) give,

Therefore, v G Y£ and Y£ is closed. Hence, /  is lower semicontinuous. Since U C H  and H  

is bounded, U lies in some closed ball, centred on the origin. Now /  attains its (positive)

The following result seems to be absolutely crucial in all extensions theorems of this 

nature. It examines the integral

(2.3)

characteristic function of L m. Consider the sequence defined by Wk = (1 — Xk)w-

/ w(x) dx — lim / (1 — Xk){x )w ix ) dx = lim / w(x) dx < a.
Tv k—>oo J tv /s—>oo JTv \L k/s—>oo JTv \L k

infimum on this ball, and so the required conclusion follows. ■
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in the case where /  is compactly supported on U C G. Now if U C H  C G we find that, 

under certain circumstances, we can in some sense disregard contributions of integrals over 

H  x (G\H).

Lem m a 2.2.10 Let U C H  C G be measurable subsets of Mn, with H  bounded. Suppose 

that for some 6  > 0, \x — y\ > 6  for all x  G G \H  and y G U. Suppose w : Mn —> M

is a measurable function satisfying (W l), (W3) and (W4)- Let X  consist of all functions

f  G C(G) for which the mapping F  : G x G —>• JR given by F (x , y ) =  w(x — y) \ f ( x ) — f ( y ) | 2  

for x, y G Mn is in L l {G x G). There is a number K  such that

/  /  F(x,  y) dxdy < K  /  F(:r, y) dxdy ,

/or all f  € X  with support in U.

Proof. Let /  G X ,  then /  is supported on U and F{x,y)  = w(x — y)\ f (x)  — f ( y ) \ 2 G 

L 1(G x G). Furthermore, since w satisfies (W 4), F  is symmetrical. Thus we can write

+  /  /  F(x,y)  dxdy 
J u j u



+  /  /  F(x, y)  dxdy 
J u j u

2 [  [  F (x , y) dxdy + [  [  F(x,  y) dxdy.
J u J g \ h  J h j hW  J G \ H

Now, again using the facts that F  € L l {G x G), and /  is supported in U,

[  [  F( x :y) dxdy = /  \ f (y ) \ 2 w ( x - y ) d x d y .
J u  J g \ h  J u  J g \ h

Lemmas 2.2.7 and 2.2.9 show that there exists constants K \ , K 2 > 0  such that

f w(x -  y) dx < K i < ^  [  w(x -  y) dx.
J G \ H  2 J H \ U

Since /  is supported on U, we conclude that

[  [  F(x,y)  dxdy < ^  f  \f{y)\2 [  w{x -  y) dxdy
J u  J g \ h  F 2 J u  J h \ u

= Tr" f  f  F(x, y)  dxdy.
F 2 J u  J h \ u

Finally,

f  [  F{x,y)  dxdy < [  [  F(x, y)  dxdy + f  [  F{x,y)  dxdy
J g J g  -n-2 J u J h \ u  J h J h

< I +  1 ^ f ^ J ^ F ( x , y )  dxdy.Kj_
K 2

We turn our thoughts now to fc-smooth mappings as defined at the beginning of this 

Section. It is important that we have an understanding of them as they will be essential
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to the development of our extension operator. The necessary results in this area are given 

in the next four lemmas and in Theorem 2.2.15 which is one of the central results of this 

Section.

Lem m a 2 .2 . 1 1  Let Hi, H2 be domains in JRn, and (j) a k-smooth bijection from Hi to H2 . 

For each f  G Ck(£t2 ) and <2 £ with |a | <  k,

D a(i°4>)=  E  J W P 'V W L  (2.4)
0< |/? |< |a |

where each Pap is a polynomial of degree at most \(3\ in derivatives of the components of (f> 

of orders at most |or|.

P roof. The proof is by induction on |a|. If a  =  0, then the result holds with Poo =  1- Now 

assume Equation (2.4) holds for all a  G Z ” with |a | < m  < k. Take a  G with |or| =  m. 

Then a  = (3 + 7  where \/3\ < m  and ['y| =  1. Now employing the induction hypothesis,

D a ( f  o <j>) =  D W ^ ( f  o<j>)

=  d A  E PpA ( d ''S)°4>]\
\ 0 <|i/|<m—1 /

0 < \u \< m —l

The induction hypothesis can now be employed again on part of the second term in the 

parentheses above giving

D 1 [(D'/})  o <f>] = E * w [ P M+17 W ]
0< |/z |< l
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Thus,

=  P-ro [ ( C 7 ) » # ] +  E
H=i

D a ( f o  </>) =  X  (D y Pp, +  Ppl,P-1o)[(D ‘' f ) o 4 , ]
0 <|i/|<m—1

X  (D'>Ppl, + Pp,P7o)HDI' f )o4, ]
0 <M<m—1

+ E
l< M < m

( \

Y  f y s l 7/i
+̂<5=i/
M=i \  <*>o

[ ( D * 7 )  o  f l .

We can therefore write

where

Pnv — *

D 1 P/3 o +  PpoPjO,

D^Pp,; +  P ^ P 7o +  £ M+*=I/ P^P-yn, 1 < |^| < m -  1
|/x|=i
J>0

^/x+5=i/ PpfiP'YIJ’i 
\ n \ = i  
S>  0

zd =  m.

The result now follows by induction.
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Lem m a 2.2.12 Let <f> be a k-smooth bijection between bounded domains Oi and O2 in 2Rn . 

There exists a constant K  such that for all a  E with |o;| < k and for all f  E C k(0 2 ),

[  \Da( f  o4>)(x) \ 2 dx < K  max f  \ (D^f ){x ) \ 2 dx.
Jn 1 \P\<\a\Jn2

Proof. Take f  E Ck(0 2 ) and a  E 2Z” with |o;| < k. Then, using Lemma 2.2.11

D a( f  o(f>)(x) = p ap(x )[(Dl3 f)°<f>\(x),
m< m

where each Pap is a polynomial of degree at most \(3\ in derivatives of the components of 4> 

of orders at most |a|.

Thus, using the Cauchy-Schwarz inequality, we have

f  \Da( f  o(fj)(x)\2dx = f  I p ap(x )[(D 0 f )  °<t>]{x) 
Jni Jn 1 iA|<|a|

2
dx

-  ( L  i ^ m i 2  i p 'V )  °^](*)
WKIal

2
dx

< ( l )  max fmax \Pag(x ) \ 2 f  [(D^f) o <f>](x)
2

dx ) .

Now suppose the maximum above over \{3\ < |a | occurs at {3 = (3o- Since is a bounded 

domain, we can assume that there is a number K \ such that

J 2  1 ) m ax |PQ̂ 0 (rr) | 2 < i(Ti.
JKIal /  ^
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Then,

f  \Da(}o4,)(x)\2 d x < K y f  I[(£>£/) o0](x ) ' 2  
Jfi, l

Making the change of variables x = (p~l {y), we obtain

dx.

j f  |D“ ( /  o « ( x ) | 2  dz <  if> /  |(D * /) (y ) | 2  | V , ( # ) |  dy,

where J^-i is the corresponding Jacobian. Since ^ 2  is bounded, this Jacobian is bounded 

on O2 , and so there is a number K 2 , such that

f  IDa( f  O 4>)(x) | 2 drr <  i f ! i f 2 [  \ ( D ^ f ) ( x ) \ 2  dx 
JClx JQ2

as required. ■

Lem m a 2.2.13 Let (p be a (k+l)-smooth bijection between bounded domains fii and O2 in 

JRn. Let a,/3 G with |a |, \(3\ < k. Let Pap be as in Lemma 2.2.11. Let w be a measurable 

function satisfying (W1)-(W3). Then there exists a constant K  such that

[  w{x -  y) |Pap(x) -  Pap{y) | 2 dx < K , 
JVL1' f2i

for all y G fii.

P roo f. Recall from Lemma 2.2.11, that Pap is a polynomial of degree at most \(3\ in

derivatives of the components of cp of orders at most |a|. Let

<p(x) =  ( ( f>i(xu  • • ■ , Z n ) ,  • • • . . . , X n )) .

Because (p is (k+l)-smooth, the functions < p \ , . . . , ( p n are in C'/c+1 (fli). Hence, we can find

a constant K\  such that for all 1 < i < n,

\(D 1 <!>i){x) -  (£>7 &)(y)| < if i |x  -  y\,
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for all x ,y  G £ti and for all 7  G 2Z" with I7 I < k. Consequently, we can find a constant 

K 2 such that |Pap(x) -  Pap(y)\ < K 2\x -  y\ for all x ,y  G Oi and for all a , (3 G Z ” with 

|a|> \P\ < k. Hence,

[  w(x -  y) |Pap(x) -  Pap(y ) | 2 d x < K \  [  \x -  y\2 w(x  -  y) dx.
Jrii Jsi 1

Using the change of variables x — y = s we have

[  w(x -  y) \Pap(x) -  Pap(y ) | 2 d x < K \  [  |s |2 w(s) ds.
JSli-y

Lemma 2.2.5 establishes the existence of a constant K 3 {y) > 0 such that

f  w(x -  y) |Pap{x) -  Pap(y) |2 dx <  K $K 3 {y).

Again by Lemma 2.2.5, the map s 1-4 |s|2 u;(s) is in Lj0C(TRn). Therefore, the function y 

ftti-y  ls |2y;(s) ds is continuous. Since fii is bounded, it follows that supyGQ1 K 3 (y) < 0 0 . 

Thus the required result is obtained by taking

K  =  K l  sup K 3 (y). ■
Z/€fti

In the following result we will make use of the following simple inequality. For all 

a , b e  1RZ,

|a +  6 | 2 < |a | 2 +  2|a||6| +  |5| 2 < 3(|a | 2 4 -15|2). (2.5)

L em m a 2.2.14 Let 4> be a (k+l)-smooth bijection between bounded domains and Q2 

in Mn. Let w be a measurable function satisfying (W1)-(W3) and (W5). There exists a 

constant K  such that for all f  G Ck(£l2) and all a  G with |a | <  k,

[  [  w ( x - y ) \ D a{f  o(p)(x) -  D a{f  o ' /  ' 2 dxdy 
J J Jh
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< K \  f w(x -  v)\(dPf)(x) - (°pf)(y)\2 dxdy + K [ \(Dl3f)(x)\2 d x -\P\<\<*\ Jn2 Jn2 \0\<\a\Jn2

Proof. Take /  G Ck($l2 ) and a G such that |a | < k. Observe first that by Lemma

2 .2 . 11 ,

for x  G fii,

where each Pap is a polynomial of degree at most \f3\ in derivatives of the components of 

4> of orders at most |a |. Therefore, using the Cauchy-Schwarz inequality and the remark 

preceding this Lemma,

\Da( f o 4 , ) ( x ) - D a(fo4, ) (y ) \ 2

£  (PaP(x)(DPf  o 4)(x) -  Pa0 (y) (D^f  o 0)(j/))
3 | < | a |

 ̂ ( E  1 E \Pa0 (x)(D?f o ^ ) ( x ) - P a0 ( y ) { D ^ f c ^ ( y )
K l a l  I  V l j S K I a l

s  3 (  £  q  ( £  i ^ w i 2 |(D ^ f 0 4, ) ( x ) - ( D » } o ^ ) ( y )
\I/3|<H /  \\0 \<\a\

+  Y 1  \(d P f  0 <f>)(y) IPaf i (x)  -  Pa f i ( y ) f
10 \<\a\

Put K i = 3 S |/3|<|ai 1- Then,

[  [  w (x  ~  y ) \ D a ( f  o  <p)(x) -  D a ( f  o 4>){y) \ 2 dxdy 
Jni Jrh

<  K i  ] T  [  [  w (x  ~  y ) \ P a p { x ) \ 2 ( D ^ f  o <f>)(x) — ( D ^ f  o 4>)(y) d x d y
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+K l l L  f  W f ° t ) { y ) \ 2 (  w { x - y ) \ P a/3 (x) -  Pap(y ) \ 2 dxdy. 
f/5|<l«l 1

We examine each of the above integrals in turn. Firstly, since Oi is bounded we can assume 

that \Pap(x ) \ 2 < K 2 for all \(3\ < |orj and for all x  £ Oi- Thus, making the changes of 

variables x  =  </>- 1 (s) and y = ),

w ( x -  y)\Pa(3 (x ) \ 2 |( D^ f  o 4>)(x) -  (Dfif  o 4>){y) 2 dxdy

< K 2 [  f  w(x -  y) \(Dpf  o 4>)(x) -  (Dpf  o 4>){y) dxdy 
Jill Jcii 1

< K 2 [  f  w t f - ' W - t - 1® )  (DPf)( 3 ) - ( D * f ) ( t ) 2 \J t- i(s)J t- i( t) \d sd t.
J n 2 J n 2

Using hypothesis (W5) and the fact that \ is bounded on the domain Q2, we infer the 

existence of a constant K 3 such that

In In Wi"X ~ y ^ P“^ x ^  0  ~ (Dll f  ° 2 dxdy

< K z f  [  w ( s - t )  (Ddf ) ( s ) - ( D ? f ) ( t )  
JQo Jno

dsdt.

Considering now the second integral, by Lemma 2.2.13 there is a constant K 4 such that

J ^ f  o <f>)(y)\ w{x -  y)\Paj3 (x) -  Pap(y ) \ 2 dxdy < K 4 \[D&f o <f>](

Applying Lemma 2.2.12 there is a constant K$ such that

x) dx.

[  \{D^f  o (f))(y)\ f  w{x -  y)\Pap(x) -  Pap(y ) \ 2 dxdy < K b max [  (Dpf)(x)  
J n i '  1 Jn  1 \P\<\ot\Jn2

Thus, assuming (with no loss of generality) that K$ > A 3 ,

[  f  w(x -  y)\Da( f  o 4>)(x) -  Da( f  o 4>){y) \ 2 dxdy 
J J

dx.
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< K tK 3  E  /  /  H s - t )  ( D ^ f ) ( s ) - ( D^ f ) ( t ) \
,',|<|a| 9,2 n2

dsdt

+ K xK b .JPS*, f  \(D$f ) ( x ) \ 2 dx
' T<H 1̂1 —la l 2 1

< K i K b \ J 2  1 ) /  [  w (s - t )  (D/3 f ) ( s ) ~  (DPf)(t)\ dsdt

*1 J n2

Taking K  = K \K ^  ]C|/?|<|a| 1 completes the proof. ■

Our final result concerning /.-smooth mappings and the remaining results in this Section 

will concern the quantity || • ||n as defined at the beginning of this Section. Recall that for 

bounded domains Cl, || • ||q defines a norm on X(fi).

T heo rem  2.2.15 Let 4> be a (k+l)-smooth bijection from a convex, bounded domain 

into ]Rn. Let w : Mn —» M be a measurable function satisfying (W1)-(W6). Then there is 

a number K  such that

11/  ° <£lk < K\\f\\H(ll), for all f  6  X ^ Q , ) ) .

Proof. Set CI2 — Prom Lemmas 2.2.12 and 2.2.14 we infer the existence of a constant

K\  > 0 such that

\\f°<f>\\h =  E  f  \Da(focf>)(x)\2 dx
\a\<kJni

47



+ 2̂ Ca f \ w(x ~  y ) \ D a U  °  0 ) 0 * 0  ~  Da(f °  M y ) I2 d x d y
|a|=fc ni fil

< K \  max [ f w(x -  y) \D^f (x)  -  D ^ f ( y ) \ 2  dxdy 
\p\<k Jn2 Jn2

+K\ max f \ D^ f ( x ) \ 2 dx. 
\8 \<kJno\P\<kJn2

Prom Lemma 2.2.6 we infer the existence of a constant K 2 >  0 such that

11/ ° <f>\\k < K i \ K 2 £  /  \ DV{x) \ 2 dx
\  |T|<fc

+  1 2  c «  [  I  \w (x  ~  y ) \ Dnff ( x ) -  D ^ f { y ) I2 d x d y
|7 |=fc ° 2

+K\  max [  \D@f(x)\2dx
m <kJn2

< K \{K 2 +  2 )||/||fj2,

as required. ■

L em m a 2.2.16 Let u G C^{lRn) and let Q be a convex, bounded domain. Letw : IRn —» 1R 

satisfy (W1)-(W4). There exists a constant C such that for all 7  G with \j\ = k,

[  [  w(x -  y ^D 1  {uf){x) -  £>7 (u/)(t / ) | 2 dxdy < C\\f\\^
Jn Jn

for all f  G l ( f i ) .

48



P roof. Let

h  = f [  w(x -  2/)|D7(u/)(a;) -  £>7(u/)(y) |2 dxdy.  
Jn Jn

The Leibniz formula (see [30, Section 6.15]) allows us to write

£ > > / )  =  E

m < h \

where the C7/g are suitable numbers. Using this and the Cauchy-Schwarz inequality gives

h  =  f  f  w ( x - y )I ^  Clf3 { ( D 7~pu)(x)(DPf)(x)  -  {D'y~/3u) (y) (Dpf ) ( y ) \  f  dxdy
J J \ o \ ̂  \ \I<l7l

< ( E \c^ n U a^ x -v){  £  |(d^ u)(x)(d f̂)(X)
i< lT l |/?|<|7 |

- ( D 1 pu)(y) (Dpf ) ( y ) ^  dxdy.

Now set ci =  E | / 3 | < | 7 | Then using inequality (2.5) we obtain

h  < 3ci *£2 f  [  w(x -  y) \D7~^u(x)l2\D/3f (x)  -  D l3f ( y )\2 dxdy  
\ 0 \ < h \

+3ci E [  f  ™ ( x - y ) \ D (3f (y) \2\D'v-(3u ( x ) - D ' i - f3u(y)\2 dxdy.  
\ P \ < h \  n  Q

Now set

C2 =  max sup {D1 ^u(x)|2. 
I^l<l7l*en

Lemma 2.2.6 shows that there is a constant C3 such that 

h  <  3cic2 J2  f  [  w(x - y ) \ D pf (x)  - D pf ( y )\2 dxdy
, aTT, , J n  JVLl<M
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+3ci 53 f  f  w(x -  y)\Dpf(y) \ 2 \D7  &u(x) -  D 1  ^u(y ) \ 2 dxdy
m < h \  n  n

< 3cic2 53 [  f  w(x - y ) \ D^ f ( x )  -  D pf ( y ) \ 2 dxdy 
\B\=k n n

+3cic2c3 53  (  IDPf ( y ) ? dy
l<|yS|<A:

+3ci 53 /  \D l 3f ( y )\2 f  w i x - y ^ D 1  pu(x) -  D 1  pu(y ) \ 2 dxdy.
\ p \ < \ 7 \ J n  Jn

If we can now show that for each y G O and every a  G 2Z” with \a\ < k,

h ( y )  := [  w(x -  y)\Dau(x) -  D au{y ) \ 2 dx 
Jn

is bounded by a constant c4 dependent only on u and a , then we will obtain

h  < 3cic2 53  [  [  w { x - y ) \ D ^ f ( x )  -  D ^ f ( y ) \ 2 dxdy
, z r 1, Jn Jn

+ 3 c i c 2 c 3 5 3  [  IDl3f ( y ) \ 2 d v
i<\p\<k

+3cic4 5 3  /  \D 0 f (y) \ 2 dy-
I< l7 l

This completes the proof. For the boundedness of / 2 we note that, since u G Cq^IR/1), there 

exists a constant c$(a) dependent on a , such that

|£>au(:r) -  D au(y)\ < c5 (a)\x -  y\,
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for all x ,y  G H n. Using the change of variables x — y = s, we obtain

h (y )  < c5(a) /  w(x -  y)\x -  y\2 dx 
Jn

= 0 5 (a) / u>(s)|s|2 ds.
J n - y

Lemma 2.2.5 now establishes the boundedness of / 2  on 11. ■

Lemma 2.2.17 Let Q  be a bounded, convex, open subset of M n . Let w : M n —¥ JR be a

measurable function satisfying (W1)-(W4)- Let u G Co°(iRn). Then there is a number

C > 0 such that \\uf\\n < C ||/ ||n  for all f  G X(Q ).

Proof. Let /  G X(Q). An application of Lemma 2.2.16 shows that

< c«cill/l ln +  Y2 f  \Da(u f)(x)\2 dx, (2.7)
|a|=A: ^

for some c\ independent of / .  The Leibniz formula guarantees the existence of constants 

cap such that

D a( u f) =  Y ,  ca0(Da^ u ) ( D ^ f ) .
\ 0 \ < W

Hence, for any a  G THf with |a | =  k, an application of the Cauchy-Schwarz inequality gives



^  ( E  lc<*/j|2 ] f  E  1-°“ 0u(x)D l>f ( x ) f  
\I/>I<M J M<M

dx.

Setting

gives,

c 2  =  Y  \C<*P\2 .Spapc sup|JOQ pu(x)\2 
|0|<|a| l l̂<lQlx€n

f  \Da(u f)(x )\2 dx < c2 Y  [  l ^ / W I 2 dx ^  c2|I/IIq- 
Jn i^Ti ,JnI <W

Substituting this result back in (2.7) gives

ll«/||S <  E  caCl\ \ f fn + E  call/I^ ,
|a|=fc

which is the required result providing we take

C > J Y  CaCl + S  C2-
y |a|=fc |QI<̂

2.3 E xtension Theorem s for M ore General Dom ains

We are ready now to construct an extension operator for domains Q which are considerably 

more general than 1R+. Some restrictions on the domain ft are nevertheless needed. For 

example, we shall always assume that fl is bounded. We also require a certain level of 

smoothness of the boundary of Q, which we now detail.

Let B  = {(yi,2/2,...,3/n) € H n : \Vj\ < 1 ,  1 < j  < n], and set B+ = {y e B  : y = 

{y',yn) and yn > 0} and B q — {y E B  \ y = (y \ y n) and yn = 0}. We shall assume k is a 

fixed natural number throughout this section.
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D efinition  2.3.1 A bounded, open, convex set Vt in Mn with boundary dQ. will be called a 

V-domain if the following hold,

(V I) there exist open sets G i,. . . ,  Gn  C Mn such that d£l C UyLi Gj\

(V2) there exist locally (k+l)-smooth maps (f)j : Mn —> ]Rn such that <j>j{B) = Gj,

<f>j(B+) = Gj DQ and <f>j(Bo) = Gj fl dVt, j  = 1 ,... ,N ;

(V3) let Qs be the set of all points in Vt whose distance from dVt is less than 6. Then

for some S > 0,

^6  C  j j  4>j ( j ( 2 / l , 2 / 2 , - - -  ,2/n) G M n : \yj\ <  1 < 3  <  •

We continue to use the notations | • |n and || • ||n as defined in Equations (2.1) and (2.2), as 

well as the space X (fi).

We now embark on the construction which will define our extension. We presume O is 

a V-domain and develop a linear extension operator L : X(f2) —> X  (]Rn). We note that the 

notation we are developing here will be used throughout this section in the various results 

we shall establish. Let

Q =  {(2/1,2/2,  •■ • , 2 /n )  £ l R n  : 12/j I <  £ -q 7 y ,  1 < i  < n | .

Now set Vi =  <j>i(Q), i = 1 ,N . By virtue of (V3) for some <5 > 0 , V\ , . . . ,  Vn  form an 

open cover of • Consequently, we can find an open set Vo such that dist(:r, dQ) > S for all 

x  € Vo, and fI C UyLo Now construct a partition of unity uq, . . .  , un £ Co°(Kln) such 

that,
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(Al) each Uj is supported in Vj,

(A2) Uj ( x )  > 0 for all x  G R n,

(A3) J2f=ouj( x ) =  1 f°r x £

Now take /  G A"(Q). Then f  = g \q for some g G Co(IR,n) with |p|n =  \f\n  <  oo. Thus 

we can think of /  as being in Cq (]Rn). We can write,

N

/(* )  =  E  U j ( x ) f ( x )  for x  G fh
i=o

Now define ipj : ]Rn —>• 1R by ^  =  (% /) o (f>j, j  = 1 , . . . , JV. Note that (ujf)((f)j(x)) =  0 if

$ 7  0*0 &Vj = QjiQ)' Hence xfjj is supported on Q.

Lem m a 2.3.2 Le£ s G Cq (JRn ) be supported on Q. Define t =  s and the extension 

operator E  as in Definition 2.1.1. Then E t  G Cq^IR71) and is supported in B.

P roof. The fact that E t G CoQR”) is the substance of Theorem 2.1.2. To see that E t 

is supported in J5, suppose x $ B. If x n > 0 then (Et)(x) = t(x) = s(x) =  0, since s is 

supported on Q and Q C B. If xn < 0, then

fc+1 /c+l
E t(x) = Ait{x \ - x n/ i ) =  ^ 2  Ais (x \ - x n/i).

i= l  i—1

Suppose \xn\ > 1. Then for 1 < i < k +  1,

|Xn/i| -  (jfcTiy1* " 1 -  (jfeTT)-

If \xn\ < 1, then since x £ B , there is a j  with 1 < j  < n — 1 such that



We conclude from this that if x £ B ,  then (x', —x n/i) £ Q for 1 < i < k +  1. Hence, 

(Et)(x) = 0. ■

Define Sfrj = ipj |j^n . Then by Lemma 2.3.2, E ^ j  is in Cq (]Rn) and is supported in B .  

Define 0j — E^ f j  o If x  Gj,  it follows that 4>J1(x) £  B  and so E ^  j{4>~1 {x)) =  0. 

From this we conclude that the support of Qj is in Gj,  j  =  1 , . . . ,  N .  We are now finally in 

a position to define our extension operator L  as

N

L f  = uo f + '520i- (2 .8 )
i—1

Lem m a 2.3.3 Let Q be a V-domain. We have Lf ( x )  — f (x)  for all x  E fi.

P roof. Take x  E fh By reordering if necessary, we can assume that x  belongs to G \ , . . . ,  G m  

but not to Gm +i , ■ ■ ■ ,G n - Then,

M
Lf(x)  = U0(x)f(x)  + J 2 0i(x)

i=1

M
= uo(x)f (x)  +  ^ E ^ i { ( j ) r l (x)). 

i—1

Now for i — 1 , . . . ,  M , x  E Vl D Gi and so 4>~l {x) E B +. Hence,

*)) =  =  (u,S)(x).

Finally, because Ui(x) = 0 , i = M  +  1 , . . . ,  N,

M  N

Lf (x)  =  u0(x)f (x)  +  ^ 2  ud x ) f ( x ) = u0{x)f(x)  +  ui(x ) f ( x ) =  /  W - ■
z= l i—1
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From Lemma 2.3.3, we see that L certainly has the potential to be the required extension 

operator. However, we need to address the question of whether L  is bounded. To this end 

we make the simple observation that

N

\\L f \ \n n ^  I N / l l i r  +  M i r -
j -  1

The next result examines the quantities HfyHjR/1. We shall drop the subscript j  temporarily 

and simply work with 0 = E o (fr1 supported on a set G, which typifies Gj.

Lem m a 2.3.4 Let O be a V-domain. Let w satisfy (W 1)-(W 6). There exists a number 

C > 0 such that,

\\0\\]Rr <  C\\uf\ \n,  fo r  all f  e  X ( Q ) .

P roof. Let /  G X(Q). For a  G 2Z+, \a\ < k we consider the integrals

I\ =  f  n f  w(x — y)\Da9(x) — D a9(y) | 2 dxdy and I 2 — f  \Da0(x)\2 dx.
JH J1R JTR

Let Q be a bounded subset of ]Rn which contains G. Moreover, suppose there exists rj > 0

such that \x — y\ > 77 for all x  G G and y G !Rn\£ . Then, because 9 is supported on G ,

Lemma 2.2.10 provides a number c\ such that

I\ < C\ f  [  w{x — y)\D a9{x) — D a9{y) |2 dxdy.
Jg Jg

Again, because 9 is supported on G ,

/ 2 =  [  \Da6(x)\2 dx,
Jg

and so we conclude that < ci||0||g. Since f r 1 is a locally (k +  l)-smooth map­

ping, Theorem 2.2.15 shows there is a number C2 > 0 such that \\6\\g = o (f~l \\g <
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0211^ 110- 1(0 ). Now, by Theorem 2.1.6, we can find a constant C3 >  0 such that 

| |0 | |r b < ^1 c211 11 </>-1 (0 ) < ClC2| |^ 1®r||R» < C3||^||]R^.

Since ^  is supported on Q+ C B  fl H ” , we can again apply Lemma 2.2.10 to obtain a 

constant C4 such that

for all a  G 2Z” with |a | <  k. Therefore, there exists a constant C5 such that

ll l̂l]Rn < C3||^||]RB < C5 ||W ||b + =  c5 ||^ ||fl+.

Moreover, since ip = (uf )  o</>, an application of Theorem 2.2.15 shows that there is a constant 

Cq such that

||0||r » <  C5 | | w /  o  <f>\\B+ < C6 | | u / | | 0 ( 5 + )

=  CQ\\uf\\cinG  

< C6||tl/||n. ■

T h eo rem  2.3.5 Let £1 C Mn be a V-domain. Let w : H n M be a measurable function

satisfying (W 1)-(W 6). Let f  G X (f2). Then there exists a continuous, linear mapping 

L  : X(f l )  —> X(JRn) such that for all f  G X(£l),

1) L f  |n =  /

%) \\Lf\\fiin < M \\f\\n for some constant M  independent of f .
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P roof. Let /  6  X(O) and define L f  as in Equation (2.8). By Lemma 2.3.3, (L f ) ( x ) =  f ( x )  

for all x G Q. Furthermore,

N

\\L f\\-Rn < II^o/IIb” +  X) llfyllir-
3= 1

An application of Lemma 2.3.4 shows that ||^  ||]f^n < ci\\ujf\\n  for some suitable constant 

ci > 0. Thus,
N

\\L f \ \n n ^  I N / l l i r  +
i

An application of Lemma 2.2.17 gives

N

IIA/llir < IN/llir + ^c^WfWn,
j - 1

for some number C2 independent of / .  Furthermore, since uq is supported on Vo C  0  we can 

use Lemma 2.2.10 and a further application of Lemma 2.2.17 to obtain constants C3 , c\ > 0, 

independent of / ,  such that

IIA/lllR11 < c3||u0/ | |n  +  ATc1 c2| | / |b

< c3 c4 \ \ f \ \ n+Nci c 2 \\f\\n

< (c3 c4 + N c i c 2 ) | | / | | f i .

Using this result and the fact that /  G X  (O) we have,

\L f \ n n ^  \\L f \ \n n

< {C3 C4 + N cic 2 )\\f\\n

=  ( C s c i  +  N c ^ l  £  f  \Daf (x) \2 d x ^ \ f \ 2n )
\H<fc n J

1/2

< 00.
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Thus L f  G X(lRn). ■

Let X{£l) be the completion of X(fi) with respect to || ■ ||^. Let ^ ( E ”) be likewise 

defined. We shall make use of the following standard abstract analysis result, a proof of 

which can be found in [17].

L em m a 2.3.6 Let P  be a normed space and Q a complete normed space. Let V  be a dense 

linear subspace of P  and let To be a continuous mapping o fV  into Q. Then there is a unique 

continuous mapping T  from P  to Q that extends Tq. Further T  is linear and ||T|| =  ||To||.

We note that the above result also holds if one is considering seminormed rather than 

normed spaces, the only exception being that the extension T  is no longer unique. A 

straightforward application of Lemma 2.3.6 allows us to deduce the existence of extension 

results for functions in X(Q)  as follows.

T heo rem  2.3.7 Let C  M n be a V-domain. Let w : M n —* ]R be a measurable function 

satisfying (W 1)-(W 6). There exists a continuous linear operator C : X(Q) X(lRn) such 

that for all f  G X(Q),

1 )  C f \ n  =  f

ll^/lljR71 ^  A f||/||n , for some constant M  independent of f .

Now, let T (K n) be the completion of X(lRn) with respect to | • |. Since I f l j ^  < ||/||]Rn 

for all /  G X(]Rn), the following result follows immediately from Theorem 2.3.5 .
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Theorem  2.3.8 Let Q C IRn be a V-domain. Let w : Mn M be a measurable function 

satisfying (W 1)-(W 6). Let f  G X(fi). Then there exists a continuous, linear mapping 

L : X(fi) -» y ( M n) such that for all f  G X(Q),

1 )  L f \ n  =  f

%) \Lf\mr < M ||/ ||n  for some constant M  independent of f .

In a similar way to Lemma 2.3.7 we can obtain a second extension result for functions in 

X{9).

Theorem 2.3.9 Let Q, C Mn be a V-domain. Let w : Mn —> HR be a measurable function 

satisfying (W 1)-(W 6). There exists a continuous linear operator C : X{Q) —> y(]Rn) such 

that for all f  G X{Q),

1 )  C f \ n  =  f

IA/"liRn ^  M ||/ ||n , for some constant M  independent of f .

Proof. Again this result is derived from Theorem 2.3.8, using Lemma 2.3.6 . ■

Before proving our final extension theorems we quote two more results from abstract 

analysis which we shall require.

Theorem  2.3.10 Let X  and Y  be normed spaces. I f there is an open, continuous mapping 

from X  onto Y  and X  is complete, then so is Y.

Theorem  2.3.11 Suppose that | | . | | i  and | | . | |2  are two norms on X  both making the space 

complete. I f there exists an a  > 0 such that



then the norms are equivalent

Proofs of these results can be found in [17], pages 179 and 218 respectively.

T heorem  2.3.12 Let Q C JRn be a V-domain. Let w : Mn —¥ M be a measurable function 

satisfying (W 1)-(W 6). Given f  G <T(f2) ,  there exists a function f e G y ( M n) such that 

1) / e In =  /

%) \fe\]Rn — M\ f \ n  for some constant M  independent of f .

Proof. Let Il^n  =  {p |^: p  G IIfc(]Rn)}. We shall work with the quotient space

* (n ) /n * ,n = { /  +  n*,n : /  e

For /  G X(Q)  define

11/ + n^nlli = |/|n ,

11/ +  n*>n||2 =  inf{|u|R « : u G y (K n) and u |n =  /} .

We claim that || • ||i and || • | |2  are norms on X(Q,)/Hkjn. Now, |/ |q  =  0 if and only if

/  £ n fc>n, and so || • ||i is clearly a norm on X(Q,)/U.k^ .  Given /  G A’(fi), Theorem 2.3.7

allows us to find an C f  G ^(IR/1) which satisfies C f \n = f  and \C f \ĵ ji < oo. Hence,

| | /  +  n*||2 exists. Let f e G 3>(lRn) satisfy | / e|R» =  infflulun : u G ^ ( R n) and u |n =  /} .

Suppose | | /  +  n fc||2 =  0, then \fe\ j c  = 0 and f e G Uk. Since f e \n = f  this implies /  G Tlk,n-

Conversely, suppose /  G n ^ .  Then f e is just the polynomial in for which f e |n =  / ,

since then | / e|]Rn =  0. Hence || • ||2 is a norm on X {Q )/Iik^ .

The quotient map Q : X{Q) —>• X( Q) / Ukin is defined by Q(f )  = /  +  n ^ ,  for /  G X(Q).

This is a linear, continuous, open map from X{Q) to X(Q,)/Ukjn, (see for example [30,
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p.31]). Since X{Vt) is complete we can thus deduce from Lemma 2.3.10 that the normed 

spaces (X(f l)/Uk,  || • ||i) and (Af(S7)/IIfc, || • H2 ) are also complete. For all /  G A’(fi), we 

have the simple inequality

11/ +  n fc)n||i =  |/ |n  =  \fe\n < l / e | ] R n  =  11/ +  n*,n||2.

Hence, using Lemma 2.3.11, there exits a (3 > 0 such that

\fe \nn = 11/ +  H W Ia < fi\\f +  n*,n||i =  0 |/ |n ,  for all /  G X(9) .  m

Our final extension theorem involves the spaces ^V(O) which we define as the completion 

of X(Q)  with respect to | ■ |. Before we prove this final result we remark that the following 

Corollary can be deduced trivially from the previous theorem.

C oro llary  2.3.13 Let C Mn be a V-domain. Let w : Mn M be a measurable function 

satisfying (W1)-(W6). Given f  G there exists a function f e G y(JRn) such that

1)  f e \ n  =  f

2) \fe\Mn < M |/ |n  for some constant M  independent of f .

T h eo rem  2.3.14 Let Vt C lRn be a V-domain. Let w : Mn —>• M be a measurable function 

satisfying (W1)-(W6). Given f  G there exists a function f e G y(Mn) such that

1 ) fe In =  /

V  l / e l  jftn < M\ f \ a  for some constant M  independent of f .

Proof. By Corollary 2.3.12, such extensions exist for functions in X (fl). Since X(Q)  is 

dense in y(fl), Lemma 2.3.6 implies the required result. ■
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2.4 The W eight Function w  and the D om ain

The extension results developed in the previous section are dependent on the weight function 

w satisfying conditions (W1)-(W6), as given in Section 2.2. We give now some examples of 

weight functions for which these properties hold.

We begin with the familiar non-integer valued Sobolev seminorms. Here the weight 

function w is defined by w(x ) =  \x\~n~x for x £ !Rn and 0 < A < 2. It is clear that w 

satisfies conditions (W1)-(W4) and (W6). To see that (W5) is satisfied, let 0 be a locally 

1-smooth map on R n. Then 4>~1 is also locally 1-smooth. Let O be a bounded domain. By 

Taylor’s formula, there exists a constant K  > 0 such that for all x, y £ O,

\ x - y \  = k _1(0 k ) )  -  0 _1(0(y))I <  K\<t>(x) -  <f>(y)|.

Hence, for all x, y E with x y£ y,

» (« * )  -  4>(y)) =  W x ) ^ \ (y)ln+x < -  V).

Since (f> is a bijection, x = y implies w(<fi(x) — 4>(y)) = w(x — y) = w(0).  Hence, w(cf)(x) — 

4>{y)) < max{Ifn+A, 1} w(x — y) for all x ,y  E fi,. Hence, condition (W5) is satisfied.

For our second example let w(x) = e- ^ 2 for x  E !Rn. Again, it is easily verified that w 

satisfies conditions (W1)-(W4) and (W6). Let <f> be a locally smooth map on 1R". Let Q 

be a bounded domain. For all x, y  £ Q,

k  -  y\2 -  k k )  -  <t>(y)I2 < k  -  y\2 < sup \x -  y\2.
x , y£f l

Because is bounded we can find a K  > 0 such that sup,,, ,yen k  ~  y I2 < K - Then,

\<j>{x) — 4>{y)\2 > k  — y\2 ~  K  f°r x ,y  £ Q.
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Thus, for all x, y  G Q,

w(4>(x) -  </>(y)) = < e-lI -i'l2+K =  eKw(x -  y).

Consequently, condition (W5) holds.

Our previous example forms part of a family of such examples. Let w be a continuous, 

positive-valued function in L1(lRn) satisfying w(—x) = w(x) for all x  G lRn. We also 

assume that there exists some ball B$ = {x G IRn : |rr| < $} such that on IRn\5,$, w(x)  

is a decreasing function of \x\. It is straightforward to see that w satisfies (W2)-(W4). 

Furthermore, there exists A  > 0 such that w(x) < A for all x  G !Rn. Let ^  be a locally 

smooth map on ]Rn and let O be a bounded domain. Since w is continuous we can find 

M  > 0 such that w(x  — y) > M  for all x, y G O. Thus

w((f>(x) — <j)(y)) < A  < —  u;(x — y ) for all x, y G fi.

Hence, (W5) is satisfied. Finally, we examine condition (W6). Take y G !Rn. If y G B$ then 

a similar argument to that above proves the existence of C > 0 such that w(y) > Cw( x ) 

for all x  G !Rn. If y £ B$, then w(y) > w(x) for all x G !Rn with |a?| > \y\. Thus 

w(y) > m in{l,C} w(x)  whenever |rc| > \y\, showing (W6) holds.

The condition on the domain is more difficult to exemplify. If O is a domain which lies 

locally on one side of its boundary dQ, then Conditions (1^1) and (V2) in Definition 2.3.1 

will hold if the boundary dQ is an (n — 1)-dimensional, (k +  l)-smooth manifold in lRn, (see 

Oden and Reddy [27]). An easy example of a set Q in H 2, which satisfies (F3), is given by 

any disc. To construct the open sets Gj  for the disc 5(0, r) =  {x  G 1R2 : |z| < r} we can
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take, for j  =  1 , . . . ,  8,

Gj  =  jcc G K 2 : x  — (pcosO, psind)  and < p < *jf, ^ ~ 1)7r < 6 <

The condition that be a V-domain is a fairly strong requirement on the smoothness of

dft.  Of importance to us in Chapter 3 will be the fact that this condition implies the cone

condition as defined below, (see Wloka [38, Section 2]).

D efin itio n  2.4.1 A domain O is said to have the cone property if  there exists a finite cone 

C such that each point x  E £1 is the vertex of a finite cone contained in ft and congruent to 

C.

65



Chapter 3

Error Estim ates

An important question in the study of any interpolation method is tha t of error. Specifically, 

we wish to know how well the interpolant reconstructs the original function. Thus, we 

now turn  our attention to the subject of error estimates. As indicated previously, the 

motivation behind the derivation of the extension results in Chapter 2 was their use in 

obtaining improved error estimates. In this chapter, we shall provide full details of how 

this is achieved. However, we shall begin by giving a brief introduction to the subject in 

a general setting, giving an indication of how one might construct a typical error estimate. 

We shall introduce the use of the so-called power function in the development of pointwise 

error estimates, and go on to obtain a simple L 2 estimate.

3.1 Power Functions and T ypical Error E stim ates

The development we shall use in this section follows that used by Light and Wayne [19], 

and has its roots in the variational theory of Golomb and Weinberger [11].

Let X  be a linear space of continuous real valued functions on IRn, with semi-inner
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product (•,•). We define a seminorm on X  by

I/I =  for /  e  x

We suppose that | • | has a finite dimensional kernel 1C. Let be a bounded subset of 3Rn.

Let A  be a finite subset of Q and suppose that a i , . . . , a i  £ A  are unisolvent with respect

to JC. We can define an inner product on X  by

l
i f , g)  =  53/(a*)^(fli) +  (/»p), for

3= 1

This induces a norm, || • ||, on X  via

l|p||2 =  (0,0), for g e X .

We shall assume that X  is complete with respect to || ■ || and, for each x e  lRn, there exists 

an M  > 0 such that

\g{x)\ < M(g,g) ,  for all g e  X.

Thus X  is a Hilbert function space. Given /  £ X, let U f  e  X  be the minimal norm 

interpolant to /  on A.  By this we mean U f ( a ) =  f (a)  for all a £ A,  and, if v £ X  also 

satisfies v(a) = f (a)  for all a £ A,  then ||?7/|| < ||v||. A useful property of the minimal 

norm interpolant is that | | /  — Uf\ \2 = | | / | |2 — ||£^/||2, see Cheney and Light [4, Chapter 30, 

Theorem 1]. It is straightforward to deduce from this that the minimal norm interpolant 

also satisfies \ f  — U f  |2 =  | / | 2 — |t^ / |2, a fact we shall make use of later.

We are ready now to begin constructing a pointwise error estimate. We define G , a 

subspace of X, by

G = { v  £ X  : v(a, i)  = 0 for all i =  1 , . . . ,  £}.
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Note that G is also a Hilbert space. Let

P(x)  = sup{|v(a;)| : |v| =  1}.
v e G

Then, for any g € G,  we have

p(x)  >  for all X 6  R n.
Iff!

Rearranging gives,

\g(x)\ < P(x)\g\,  for all x  G !Rn. (3.1)

Now consider f  — Uf .  Clearly ( /  — Uf)(ai )  =  0 for alH  =  1, . . .  and so /  — U f  G G.  

Thus, using Equation (3.1) and the property of the minimal norm interpolant mentioned 

above, we have

\ ( f ~ U f ) ( x ) \ 2 < {P{x)}2\ f - U f \ 2

= { P ( x ) ? ( \ f \ 2 ~ \ U f ? )

< { P ( * ) } 2\ f \ 2-

We have derived an error estimate of the form

|/(z )  -  Uf(x) \  < P(x) \ f  -  Uf \  < P{x)\ f \ ,  for all * G lRn. (3.2)

However, we need to learn more about P  for this to be of any practical use. Since G is a 

Hilbert space, we may make use of the Reisz representation theorem. This establishes, for 

each x  G !Rn, the existence of a unique representer rx G G , such tha t (rx, / )  =  f ( x )  for all 

/  G G. Fix x G lRn and recall that

P{x) = sup{|u(a;)| : |v| =  1}.
v £ G
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Now, |v(x)| =  |(v,ra;)| for all v  G G  and so we can write

P(x)  = sup{|(u ,rx)| : |v| =  1}.
v£G

Now, if v G G,  then |u| =  \\v\\. Thus, using the Cauchy-Schwarz inequality, we have for all 

v G G with |v| =  1,

\(v,rx)\ < ||v|| ||rx || =  |v| ||rx || =  ||rx ||.

Thus, P(x)  <  ||rx ||. Also, since rx G G,

P ( x )  > t e l  =  Jlpdf =  nrx ||.
y x \  IMxll

Thus, P(x)  = ||rx || =  y/{rx , rx) = y/rx (x) and we have, from Equation (3.2),

|f ( x )  -  U f ( x )| < yjrx {x) | /  -  Uf \  < yjrx (x) | / | ,  for all x  G !Rn.

The form of the representer rx can be explicitly calculated. As an example, we recall 

the spaces of Light and Wayne [20] discussed in Chapter 1. We have a measurable weight 

function v : ]Rn —> 1R and, for non-negative integer k , we define

Z k( R n) = { /  € S ' : D ^ f  6 L}0C(W i) and f  \ D^f (x) \ 2v(x) dx < oo,
i]Rn

for all a  G 7U\_ with |a | =  k}.

Let cf) e  S'  satisfy <fr = {| • |2fcu}-1 and suppose p\ , . . . , p£  G Ilfc_i(]Rn) are such that 

Ps{dj) =  1 if s = j ,  and is zero otherwise. Subject to certain conditions on the weight 

function v, the representer rx has the form

l i t  
rx (x) =  m  -  £ Pj ( x M x  -  aj) -  ^2pj(x)<f>(aj -  x )  +  ] T  pi(x)pj(x)<f>(ai -  aj). 

j =1 j —1 i,j=1
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Details of how this is obtained can be found in [19].

The function P  is often referred to as the power function, the name originating from 

Schaback [33]. Schaback uses a different approach to the one described above; however, 

ultimately, he obtains the same function (cf. Light and Wayne [19]).

Having obtained an explicit form for the power function P , we can examine its asymp­

totic behaviour to establish an error estimate in terms of the spacing of the interpolation 

points. The usual measure of how densely the points in A  ‘fill ou t’ ft is given by

h =  sup inf |y — x\.yenxeA

One hopes to obtain a bound of the form |P (^)| <  C\hP, where C\ is a constant independent 

of /  and h , and (3 > 0. Having derived such a bound, we can substitute it into Equation 

(3.2) to give an error estimate of the form

|f ( x )  -  U f ( x ) I2 < C?h2l3\f \2, for all x  6 1R".

Then, as we would expect, the error on Q between the function and its interpolant goes to 

zero as h tends to zero. It is straightforward to move from this inequality to an L 2 error 

estimate. Integrating both sides over gives

f  \ } ( x ) - U } ( x ) \ 2 <  C2h ^ \ } \2 f  1
Jn Jn

< C2h,2li\ f \2

for some constant C2 , since O is bounded. Thus we have

11/ -  U f\\2,(i < x/Chh^lfl, 

where C2 is independent of /  and h.
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3.2 Im proved Error E stim ates U sing L ocalisation

We move now from this general setting and return to the spaces considered in Chapter 2. 

We begin by recalling the relevant definitions. Let w : H n -> R  be a measurable weight 

function which will be required to satisfy certain assumptions as we proceed. Let k be a 

fixed non-negative integer and define

* (]R n) =  { /  e  C f (]Rn) : f  (  w ( x  -  y ) \ D af ( x )  -  D af ( y )\2 d x d y  < oo,
J  Jrt J  H

for all a  G with \a\ = k }.

For /  G X (H n) define,

1/2

l / l n n =  ( J 2  Ca L n  L n  w (x  -  y) \D a f ( x ) -  D a f ( y ) I2 dx dy  
\|a |=A : K  K

where the constants ca are defined by the algebraic identity

^  cax 2a = \ x^k, for all x  G IRn.
|a|=A;

Let ^(!Rn) denote the completion of X(lRn) with respect to | • Ijp^. Then | • |jpn defines 

a seminorm on 3^(lRn) with kernel ITfc(]Rn). We shall assume that IIjt(]Rn) has dimension 

i. Suppose u i , . . .  G !Rn are unisolvent with respect to II^(]Rn). We can then define a 

norm on ^(]Rn) via

WfWy =  l / ( a*)l2 +  I / I r 71’ f°r /  e
i= 1

We shall see that 3>(lRn) is complete with respect to this norm, making (^(IRn), || ■ Hy) a 

Hilbert space.
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L em m a 3.2.1 The space y(Mn) is complete with respect to || • ||y.

P ro o f. Let { /n}£Li be a Cauchy sequence in [y(]Rn) with respect to || • \ \y. Take e >  0, 

then there exists a threshold N  G IN such tha t for all m, n > TV,

II f n  /mll^ —

It follows that |f n — /m lK n < c whenever m ,n  > iV. Hence { fn}%Li is a Cauchy sequence 

with respect to H ir". Since ^ (H n) is complete with respect to |-|, there is a limit /  G iV(lRn) 

such that | /  — / n|]Rn tends to zero as n tends to infinity. Furthermore, for each i = 1, . . .  f, 

Ifn(a>i) ~  fm(a>i)\2 <  c whenever m , n >  N.  Thus, is a Cauchy sequence of real

numbers, and so has a limit bi G R  such that \fn{a>i) ~ h \  tends to zero as n tends to infinity.

Now, since a \ , . . .  , G !Rn are unisolvent with respect to IIfc(]Rn), there exists a poly­

nomial q G IIfc(]Rn) such tha t q(ai) = + f(ai )  for alH  =  1 , . . . ,  I. Then,

t
\\fn -  ( /  -  q)\ \y =  Y .  |fn(aj )  ~  / ( « i )  +  g f a ) |2 +  \ fn  ~  /  +  q ^ n

2 = 1

I
< Y \ f n ( a i) -  f  i a i) + q f a i )  I2 + (I f n  ~  f  |]R» + M]Rn)2 

2 = 1  

I
=  Y  I f n ( a i )  ~  f ( a i )  +  q ( a i )  |2 +  I f n  ~  / l ] R n 

2 = 1  

i
= Y  IfnjO'i) ~  bj\2 +  |f n ~  /llRn- 

2 = 1

Therefore, | | /n — ( /  — ^)||y tends to zero as n tends to infinity. Since /  — q G this

completes the proof. ■

For bounded subset Q of ]Rn, we define local spaces X(fi) by,

X( Q)  = { /  |n : /  G Co(lRn) and [  [  w(x -  y) \Daf (x )  -  D af (y) \ 2 dxdy < oo,
JnJfi
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for all a  G 2Z” with |a| =  k}.

For /  G X(Q,), define

Then | • |q defines a seminorm on X(f2), with kernel II^o  =  {p |^: p  G IIfc(]Rn)}. We denote 

by the completion of X(Q.) with respect to | • |n-

We now recall the assumptions (W1)-(W6) made on the weight function w in the pre­

vious chapter as we shall refer to these again:

(W l) w G L l (JRJri\N )  for any neighbourhood N  of the origin;

(W2) w(y)  =  0( \y\ s) as y  —» 0, where n +  s +  2 > 0;

(W3) f A w > 0 whenever A  has positive measure;

(W4) w(y) = w( —y) for all y G !Rn;

(W5) for every locally (k  +  l)-smooth map 0 on lRn, and every bounded subset of ]Rn, 

there is a K  > 0 such that w(<f)(x) — <fi(y)) < K w ( x  — y),  for all x , y  G

(W6) there exists a constant M  > 0 such tha t if x = ( x \ x n) G !Rn and y = {x' ,yn) G !Rn 

with \xn\ > \yn \, then w(x) < Mw(y) .

We shall also require the following additional homogeneity type condition,

(W7) there exists a function /  : 1R —> 1R such that w( \ x)  = f ( \ ) w( x )  for all x G !Rn, 

A G H; furthermore /(A) ^  0 whenever A /  0.
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Now, let 17 be an open subset of K n. Let A  be a finite subset of 17 such that a i , . . . ,  a,£ E A  

are unisolvent with respect to 11̂  (Hn). Suppose that there is a (3 > 0 and a constant C  

independent of h such that, if g E ^(lRn) satisfies g(ai) =  0 for a l i i  =  1, . . .  ,1, then

\g(x)\ < Ch^\g\^n  for all x  E 17.

Let U f  E be the minimal norm interpolant to /  E 3^(Hn) on A.  Now, applying the

arguments of the previous section, we could deduce the L 2 error estimate

W f - V f h f l K K r f W i r ,  (3.3)

where K\  is independent of /  and h. However, the arguments found in the remainder of 

this chapter will demonstrate that, by using a localisation argument, this can be improved 

to

11/ -  U f h f l  <  i f 2^ +n/2|/ln , 

where K 2 is a constant independent of /  and h. Comparing this to Equation (3.3) we 

notice that instead of we now have / ^ +n/2 and the local seminorm now appears on the 

right-hand side of the equation. Furthermore, we need only know /  on 17, that is, we can 

take /  G 3^(f7) rather than in the full space The argument we shall use is based on

tha t found in Light and Wayne [19], which itself uses the work of Duchon [7]. In these two 

papers, a Sobolev space setting is used. Thus a certain amount of generalisation is needed 

to ensure this technique works for our spaces. In particular, difficulties occur because our 

seminorm involves a weight function and a double integral. We shall need some preliminary 

results before we are able to deduce the improved L 2 error estimate. We begin by recalling 

the main result of Chapter 2.
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T h e o re m  3.2.2 Let fI C lRn be an open, bounded, V-domain. Let w : JRn —► 2R be 

a measurable function satisfying (W 1)-(W 6). Given f  E there exists a function

f e E y ( M n) such that

(1) f e \ n  = f

(2) l/eliRn < M\ f \ n  for some constant M  independent of f .

Our next step is to demonstrate that if Q is an open ball in ]Rn, then the constant M  

in Theorem 3.2.2 can be taken independent of Q.

L em m a 3.2.3 Let Q be a measurable subset of Mn. Let a,b E Mn and h > 0. Define 

cr(x) = b +  h(x — a), for x  E JRn. Let w : !Rn —» M be a measurable function satisfying 

(W7). Then there exists a constant Ch, dependent on h, such that for all u E

M n =  Ch\ u o a

P ro o f. Take u E then

Mn =  E  Ca (  [  w (x  ~  v)\D au(x) -  D au(y) |2 dxdy.
|q|=/c Q

Making the transformation x  = a(s) and y = a(t) we have

M n =  ^2n E Ca f  f  w(a(s)  — cr(t))\Dau(a(s)) — D au(cr(t))\2 dsdt.
|a(=A. Jcr-H n)Ja-HQ)

Now, since w satisfies (W7), there exists a function /  : 1R —>■ ]R with f (h)  ^  0 such that

w(a(s) — a(t)) = w(b +  h(s — a) — b — h(t  — a))

= w(h(s — t))

= f  (h)w(s — t).
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Also, for \a\ =  fc,

{Dau)(£) =  [Da(u o a o  a _1)](0  =  h~k[Da(u o cr)](cr_1 (^)).

Thus,

{(Dau) o <r](£) =  (D»u)(a(€)) =  h - k[Da (u o *)]({).

Hence,

M n = f{h )h 2n~2k ca f  f  w(s — t)\D a(u o a)(s) — D a(u o a)(t)\2 dsdt
1̂ .  J<T-nn)JcT -l( f i)

  r  f  j . \ i . 2 n —2k \ |2— f {h)h \u o a | ff- i (n).

Taking C/* =  ^ f  (h)h2n~2k gives the result. ■

L em m a 3.2.4 Le£ L? 6e any open ball with radius h in Stn . Let w : ]Rn —»• ]R be a measur­

able function satisfying (W 1)-(W 7). Given f  G y{B) ,  there exists a function f s  E y { Mn) 

such that

(1) fB  \b  =  /

(2) I /b Ijr71 < A f |/ |#  for some constant M  independent of f  and B .

P ro o f. Let /  G y(B), then, using Lemma 3.2.2, there exists an /#  G T(lRn) such that 

Jb  I B = f  and |/b |r » <  M \ f \ s  for some constant M  independent of / .  By choosing /#  

to be the minimal norm extension we can assume that if v G 3^(lRn) is such that v IB = f  

then |/s |]R n < M]Rn- We need to show that the constant M  can be taken independent of

B.
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We can write B  = {x G 1R” : \x — a\ < h} for some a G K n. Let Bo = {x E IR.n : |x| < 1} 

and define a(x) = h~l (x — a), for x E H n. Then a(B)  = Bo. Let F  = f  o a " 1, then 

F  G y(B o). Thus, by Lemma 3.2.2, there exists a function Fe G ^(lR n) such that Fe \b 0 =  F  

and |-Fe|]R,n < F (B q)\F \bq, f°r some constant K ( B q) independent of F  but dependent on 

Bo . We claim that

(i) fB  ° &-1 |Bo =  F

(ii) | / s  o £j—1 |j^n <  M]Rn for all v G ^ ( R ” ) such that v \b 0 =  F.

Take x  G Bo, then a ~ 1(x) G B.  Since f s  \b— f ,  it follows tha t / s(cr_1(a;)) =  f ( a ~ l (x)). 

Hence, ( f s  ° <7-1 )(:r) =  ( /  o cr_1)(a;) for all x  G Bo and (i) is satisfied. Now suppose 

v G J^IR” ) satisfies?; |jg0 =  f o a ~ l . Then v(a{x)) = f ( x)  for all a: G B . Thus (voa) \ b=  f  \b 

and the properties of /#  imply that |/s |]R n <  |v o ct|]r«. By Lemma 3.2.3, there exists a 

constant Ch ^  0 such that

l/£°<7-1 |]Rn =  CyJ/sljRn

< Ch\voa\-^n

=  c h{Ch]~l \ v \ ^

=  M]Rn-

Thus, claim (ii) is satisfied. Now, since Fe |#0 =  F  and — ^ ( B q)\F\bq we have

\}b  <  l^elR” < K (B 0)\F\Bo = K ( B o ) \ f o „ - % 0.

By Lemma 3.2.3, there exists a constant C/j /  0 such that

\fs\wLn = l/fi ° cr_1 ° cr|]Rn 
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= [Cfc] l \ f B ° c r  1 |]Rn 

< [C/l]-1iC(Bo)|/°<T“1|Bo 
= [ C d - ' K i B o W f l B  

= K { B 0) \ f \ B ,

as required. ■

Throughout the remainder of this chapter we shall make use of the following notation. 

For c, r  6 H n we define B (c , r) to be the closed ball in H n with centre c and radius r.

L em m a 3.2.5 (L igh t a n d  W ayne [19]) Let {v \ , . . . v i }  be a set of U.k(]Rn)-unisolvent 

points in Mn. Then there exists a 8 > 0 such that if  (ci , . . . ,  eg) € B(vi , S)  x B( v 2 ,S) x . . .  x 

B ( v £ , 5 ) ,  then {ci , . . .  , q }  is a set of Uk(Mn)-unisolvent points.

D efin itio n  3.2.6 A domain is said to have the cone property if  there exists a finite cone 

C such that each point x  E £1 is the vertex of a finite cone contained in Q and congruent to

C.

L em m a 3.2.7 (D uchon  [7]) Let Q be an open subset of Mn having the cone property. 

Then, there exists M , M \ and m  > 0 such that to each 0 < h < m , there corresponds a set 

Th C with

(i) B(t ,  h) C for all t G T^,

(ii) n  C U te^  B( t , Mh) ,

(Hi) J2teTh X B ( t , M h ) <  ■
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We shall require a slightly modified version of the above lemma, the proof of which is taken 

from Light and Wayne [19, Lemma 3.6]

L e m m a  3.2.8 Let be an open subset of ]Rn having the cone property. Let A  be a finite 

Tlk(]Rn) -unisolvent subset of Q, with

m axm in \y — x\ < h.
y£Q x £ A

Then there exists M i, M 2 , ho > 0, and a set Th C Q, such that 

(i) O C |J tzTh B{t, M \h ),

(H) U t e n  XB(t,Mih) <  

provided 0  <  h < ho-

Furthermore, given t G T^, there exists a \ , . . . , a i  G B (t , M \h ) ft A  such that a \ , . . . , an 

are unisolvent with respect to IIfc(lRn).

P r o o f . Let { v i , . . .  v i }  be a set of n^(]Rn)-unisolvent points in ]Rn. By Lemma 3.2.5 there 

exists a <5 >  0 such that if ( c i , . . . , q )  G B ( v \ , 6 )  x . . .  x B ( v£,6),  then { c i , . . . , q }  is a 

set o f IIfc(]Rn)-unisolvent points. Dilation by a factor of 1 / 5  creates a new set of points 

u i , . . . U £  such that if (c\ , . . . ,  q )  G B ( u \ ,  1) x . . .  x B ( u£, 1), then { c i , . . . ,  q }  is a set of 

E[fc(]Rn)-unisolvent points.

Choose R  > 0 such that B(ui, 1) C B (0 ,R )  for all i = 1 , . . . , £ .  By Lemma 3.2.7, 

we can find constants M , M 2 and m > 0 , such that there exists a set C with 

B (t, Rh) C O , f i C  UteTh B (t, M R h) and ' E t e n  XB{t,MRh) < M 2 , providing 0 <  Rh <  m. 

Taking M \ — M R  and ho = m /R  delivers the first part of the lemma.
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Fix t  G T/! and h >  0 such that 0 < h <  ho- We shall construct o i , . . . ,  at  G B(t ,  M\h)C\A

such that are unisolvent with respect to IIfc(IRn). Define a  : B ( t , M R h )  —>

B (0 ,M R )  by a(y) = h~1(y — t) for y G B (t,M R h ). Due to the spacing of the points in 

A , each ball B(ui, 1 ) must contain at least one image under a  of a point in A. Thus, we 

can choose a \ . . . , at G A  such that o{af) G B(ui, 1), and so (c r(a i),. . . ,  <r(a^)} is a nfc(]Rn)- 

unisolvent set. It follows that { a i , . . .  ,a^} is a IIfc(]R,n)-unisolvent subset of B (t,M R h ) = 

B {t,M ih ). m

We are finally ready to compute our improved L 2 error estimate.

L em m a 3.2.9 Let Q C Mn be an open, bounded, V-domain. Let w : Mn —> M be a 

measurable function satisfying (W 1)-(W 7). Let A  be a finite IIk(M n)-unisolvent subset of 

Q with

m axmin \y — x\ < h. y€f2 xeA

We assume that there exists a /3 > 0 and a constant C independent of h such that if A is a 

IIk(M n)-unisolvent subset of A , and g G y (M n) satisfies g(a) = 0 for all a G A, then

\g(x)\ < for all x  G Mn.

Given f  G let U f  G y (M n) be the minimal norm interpolant to f  on A . There exists

an ho > 0 and a constant K  > 0, independent of f  and h, such that, provided h < ho,

11/  -  U f  ||2,n < Kh,P+n,2 \f\n , for all f  £ y(Q ).

P ro o f. By Lemma 3.2.8, there exists constants M i, M 2 , ho > 0, and a set C ft such 

that, C Uterh B (t,M \h )  and J2teTh XB(t,M!h) < M 2 provided 0 < h < ho- Fix h < ho.
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Take t G Th, then, also by Lemma 3.2.8, we can construct a \ , . . . ,  at  G B ( t ,  M \h )  fl A  such

that a i , . . .  ,a£ axe unisolvent with respect to IIfc(IR,n). For ease, we shall now write B  for

Take /  G and let G 3>(lRn) be the extension of /  as described in Lemma 3.2.2. 

We shall, for the next part of the proof, write /  for fa . Let ( /  — U f ) s  also be as in Lemma 

3.2.2. Thus ( /  -  U / ) b  \b  = ( f  ~  Uf )  \b , and, due to Lemma 3.2.4, | ( /  -  C//)b|]r« < 

C \\ f  — U f \ s  for some C\  independent of B.

Now, ( /  — Uf)(ai)  =  0 for alH  =  1 ,. . .  Since a i , . . .  ,a / G B  it follows that ( /  — 

Uf)s{o>i) = 0 for all i — 1 , . . .  Thus, for all x  G H n,

\ { f - U f ) B(x)? < C 2 h2» \(f - U f ) B\%n 

< C 2 C ^ \ f - U f \ % .

For x  G B  we have ( /  — U f)B{%) =  ( /  — Uf)(x) .  Thus, for all x  G B,

\{f -  U f ) ( x ) \ 2 < C2 h2l3\ f  -  Uf\%,

where C2 = C 2 C \ is independent of /  and h. Integrating over B  gives

11/ -  U f\ \ lB < C2 h 2P\f -  Uf\% f  1
J B

< C2 C2 h2̂ +n\} -  C //II,

for some appropriate constant C3 .

Let fl* = UteTh B (t,M \h ). Then,

\ \ f - U f \ \ l a  < \ \ f - U f \ \ l n .
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^ ^ 2  Wf ~  U f \ \ \ ,B { t ,M i h )
t e r h

< C2C3hW+n J 2 \ f - U f \ l {tMlhy
t e n

Let Bt =  B ( t , M \h) and define, for x ,y  G R n,

z (x , y)  = J 2  c<*™(x~y)\D a ( f - U f ) ( x ) ~ D a( f - U f ) ( y )|2.
|q|=/c

Then,

J 2  \ f =  J 2  f  [  Z(X’V) d x d y
l.eTh teTh 1 1

 ̂ T. Ln L z{x̂  dxd,y
t e r h JBt

=  E  L n  L , XBt (X)z(x,  V) dx dy
t£Th

s 4  A-
-  j R ’‘ J i c M2z{x’y )d x d y

Thus,

11/ -  U f Win < C2 C3 M 2 h2̂ \ f  -  U f

Recall now that we are writing /  for /n- Thus, using properties of the minimal norm 

interpolant, we have

W f - U f W l n  < C2 C3 M 2 h2̂ +n\}n -  U f n \ y  

= C2 C3 M 2 h 2l3+n(\fn \2R „ -  \Ufn \2Rn) 

< C2 C3 M 2 h 2 l3+n\fn\R n .
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Using the properties of the extension /n , there is a constant C\ independent of /  and h 

such that

11/ - 07ll2.fi <

Letting K  =  y/C^C^C^M^ we have

11/  -  0 / | | 2,fi < K h ^ 2\f\n . U
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Chapter 4

A lternative Local Spaces and 

Seminorms

Many of the ideas discussed in the previous two chapters stem from a variational approach 

to the interpolation problem. One begins with a Hilbert space of functions and recognises 

the interpolant as the solution of a variational problem described on the given space. In 

particular, we have focussed on the spaces of distributions introduced by Light and Wayne 

[20], and the associated direct form seminorms developed by Light and Levesley [18]. These 

allowed us to construct the local spaces and seminorms of Chapter 2, for which extension 

theorems were developed.

An alternative approach to the variational one uses the ideas introduced in Section 1.5. 

Here one begins with a conditionally positive definite function and constructs around it a 

native Hilbert space in which to study the interpolation problem. This theory leads to its 

own definitions of local spaces and seminorms. Clearly it is of interest to know whether 

these two approaches generate the same spaces, particularly with regards to localisation.
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This chapter attem pts to answer some aspects of this question.

There are many different characterisations of the native space. We shall be interested in 

tha t given by Iske in [16]. Beginning with the spaces of Madych and Nelson [23], Iske devel­

ops a convolutional representation of the native space. The technical details of this useful 

reformulation are not trivial. Thus, here, we shall merely quote the relevant definitions.

4.1 Spaces on lRn

We begin our discussion with a comparison of spaces described on the whole of H n. In 

particular, we shall focus on the native spaces of Iske [16] and the spaces of distributions of 

Light and Wayne [20]. We begin with some definitions and assumptions.

Throughout this section we assume v : ]Rn R  to be a measurable function which 

satisfies

(vl) V  e C (R "\{0}),

(v2 ) v(x) > 0  for all x  ^  0 ,

(v3) l /o  6  Ljoc(R n),

(v4) there is a fi G 1R such that fi > n  and {^(a; ) } " " 1 =  0{\x\~^) as |rr| —> oo.

We define, for non-negative integer k ,

Z k(\Rn) =  { /  G S' : D af  e  Ljoc(\Rn) and J ^ n \Daf (x) \ 2 v(x) dx < oo

for all a  G 2Z+ with |a | =  k}.
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This is the space of distributions introduced by Light and Wayne [20], and is discussed in 

Section 1.3. We shall, in this section, concern ourselves only with the case k = 0. Therefore, 

the relevant space is simply

Zo(lRn) = {g e  S ' : g €  Ljoc(Mn) and (  \g(x)\2 v(x) dx < oo}.
VJrv,

For ease of notation we shall, henceforward, write Z(JRn) for Zo(E.n). A norm is defined 

on Z ( n n) by,

I\d\\z  =  \9(x)\2 v(x) d x j  , for g G Z(JRn).

We make the assumptions (vl), (v2) and (v4) on v in order to ensure tha t Z(]Rn) is a subset 

of the continuous functions, see [20, Theorem 2.18]. The additional assumption, (v3), allows 

us to derive some useful results concerning the function v.

L em m a 4.1.1 Let v : Mn —> M be a measurable function satisfying (vl)-(v4), then 1/v G 

L 1 (lRn).

P ro o f. We can write

I lC  |v(a;)| dX I\x |<i |v(®)| dX + I\x\>i |u(®)| dX’

By assumption (v3) on i>, 1/v G ^ ^ ( IR 71), and so the first integral is finite. Now, since 

v G C(IRn\{0}) and v(x) > 0 for all x ^  0, 1/v is continuous on the set {x G IRn : |a;| > 1}. 

Hence, using this and property (v4) of v, there is a constant C  and a fi > n, such that 

{■u(:r) } - 1  < C |^ |_M for all i G { x G  mn : |a;| > 1}. Hence,



Using polar coordinates we can find a B  > 0 such that

r 1 r ° °
/  i-TTT d x < B  r - '‘+" - 1 dr.

J\x\>l  \V{X)\ J 1

This final integral is finite since —ji +  n — 1 <  — n + n — 1 =  — 1. ■

Lem m a 4.1.2 Let v : JRn ]R be a measurable function satisfying (vl)-(vJ^). Then there 

exists a ip G S' such that

=  1 /v .

Furthermore, i\) is a bounded continuous function on JRn, and ip(x) tends to zero as \x\ 

tends to infinity.

P ro o f. By Lemma 4.1.1, 1/v G L 1 (H n). Hence 1/v  is a tempered distribution, whose

action on a test function <fi G S  is given by

[ 1 /v,(f)\=  [  - j —- 6 {x) dx.
m n v(x)

The distributional Fourier transform is a one to one mapping of S'  onto S'. Hence, there 

exists a ip € S ’ such that

xj) — 1 /v.

Then, by properties of Fourier transforms,

Bxp =  xf) = (1/v).

Since 1/v E L 1 (lRn), it also possesses a Fourier transform in the classical sense, which is 

continuous and bounded on ]Rn, and approaches zero at infinity. Since the classical and
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distributional Fourier transform for 1/v must coincide, it follows that ip possesses these 

properties. ■

We demonstrate now that the ip of the previous lemma is also positive definite. In order to 

do so we make use of the following definition from Gel’fand and Vilenkin [10, Chapter II, 

Section 3.1].

D efin ition  4 .1 .3  A distribution A & S' is called positive definite if  for all (p € S,

[A, <p<p\ > 0 .

Lem m a 4.1.4 Let v : Mn —t l R b e a  measurable function satisfying (vl)-(vJ^). Let ip € S' 

satisfy ip = 1/v.  Then ip is positive definite.

Proof. Take <p G S. Then,

=  [i/v ,44] = J ^ n dx ^  °»

since, by assumption (v2 ), v(x) > 0  if x ^  0 . ■

The space Z(JRn) has delivered a continuous positive definite function ip. We shall now 

take ip and generate its native space according to Iske [16]. Intuitively we would expect this 

space to be identical to Z(lRn). We shall show that, under the right circumstances, this is 

indeed the case.

D efin ition  4.1.5 Let v : JRn —> M be a measurable function satisfying (vl)-(vJ^). Let 

ip G S ’ be such that ip = 1/v. We define

I ( Mn) =  {g : g = ip * / ,  for some f  G C J° (^ n)}.
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Some remarks about the definition of J(lRn) seem to be required here. An element of /(]Rn) 

is a convolution of the form ip * / ,  with /  G Co°(Iln). This convolution can be taken in two 

senses. By Lemma 4.1.2, ip G C(lRn). Therefore, the convolution ip * f  is well defined in 

the classical sense and is given by

{ip * f ) ( x)  = [  ip(x -  y) f (y )  dy, for x  G !Rn.
J]Rn

Also, ip € S'  and, since /  G Co°(lRn), we have /  G S. Hence, the convolution ip * f  is well 

defined in the distributional sense and is given by

i P * f  = [iP,TxBf].

We would expect these two interpretations of the convolution to coincide. We now demon­

strate that this is indeed the case. Since ip G C(lRn), its action on a test function in Cq^IR,” ) 

is given by integration. Thus, for /  G Co°(lRn) we have,

[iP,TxBf]  = J ^ n iP(y)(TxB f ) ( y ) d y  

= V>(y ) B f ( y  -  x) dy

= J ^ n *P(y)f{x -  y) dy

=  / n y ( x - y ) f ( y ) d y .

We give now some insights into the elements of 7(lRn).

Lem m a 4.1.6 Let I ( Mn) be as in Definition 4 - 1 - 5 .  Suppose g G I{lRn) with g — ip* f  and 

f e C $ ° { M n). Then,

(i) g ec° ° { t t i n) n s ' ,
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(ii) s  =  r t 6 L ‘ ( n

The Fourier transform here is taken in a distributional sense.

Proof. Take g G 7(IRn) with g = ip * f  and /  G Co^lR71). Then, since ip € S ' and 

/  G (^ ( I R 71) C  S, properties of distributions ensure g G S ' D C ^ I R 71), and g = fip. 

Since /  G Cq^IR71), it follows that /  G S.  By Lemma 4.1.1, ip =  1/v G Z^flR71). Thus, 

f ipeL^WC1). m

D efinition 4 .1 .7  For each g G I (Mn), with g = ip * f ,  and f  G Co°(]Rn), we define

The use of the notation || • ||/ here is not abusive as we shall now demonstrate that this 

quantity defines a norm on 7(]Rn).

Lem m a 4.1.8 Let I ( M n ) and || ■ ||j be as in Definitions 4 - 1 - 5  and 4 - 1 - 7 .  Then || • ||/ defines 

a norm on I ( M n ).

Proof. We shall use a distributional argument and make frequent use of the properties 

of distributions described in Section 1.6. Take g G 7(IRn). Then g = ip * f  for some 

f  G Cq^IR71). By Lemma 4.1.6, g G C ^ I R 71) and thus g is a distribution whose action on 

a test function (p G ( ^ ( I R 71) is given by

M \2i  =  JRn 9 (x) f (x)  dx = / mn j^ n ip(x -  y ) f ( y ) f ( x )  dydx.

Thus, we can write
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Since /  G 5, there is a 6  E S  such that 9 — / .  Thus, using simple properties of distributions,

M /  =  \o J]  = [9 A  =  [g,0].

By Lemma 4.1.6, g =  fip. Thus, again using simple properties of distributions,

b f i  =  L A M ]  =  f o f e ]  =  [ i > J { B j ) }  =  t f j T ) .

By Lemma 4.1.1, ip = 1/v G L 1 (Hn), and thus, as a tempered distribution, its action on a 

test function in S  is given by integration. Hence,

M l/ =  f ^ n $(x) ( f7 ) ( x )  dx

= j ^ j ( x ) \ m ? d x .

Since, by assumption (v2), v(x) > 0 for all x  ^  0, it is clear th a t ||p ||/ >  0. Further more, 

\\g\\l = 0 implies /  =  0. If /  =  0, then /  =  0  and we must have g = ip * f  = 0 . ■

The native space of ip is given by the closure of 7(lRn) with respect to || • ||/. We want to 

compare this space with our original space Z(lRn). Our aim is to show that, under suitable 

circumstances, 7(lRn) is a dense subset of Z (H n). We begin by examining the two norms 

|| • ||/ and || • Hz-

T h eo rem  4.1.9 I f  g G I { R n), then \\g\h =  ||#||z .

P ro o f. Take g G 7(lRn), then g = ip * /  for some /  G Cq^IR71). An identical argument to 

tha t found in the proof of Lemma 4.1.8 gives

M 2i = f nn  $ ( x ) f ( x ) f ( x )  dx.
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Now, v/p =  1, thus since v is real valued we have

V'lp =  V'lp =  1 .

Using this and the fact that, by Lemma 4.1.6, g = ipf, we have

IIpII/ =  Jn Jv< $)(x)${x)J{x)f{x) dx

= f  f$ (x )T $ {x)v(x ) dx 
J JR

=  L n 9 (x)g(x)v(x) dxJ Jrv

=  JR n \g(x)\2vdx  

= M l -  ■

Lem m a 4.1.10 We have I ( Mn) C Z ( Mn).

P ro o f. Take g E 7(lRn), then by Lemma 4.1.6, g E S' and g E L 1 (lRn). By Lemma 4.1.9,

\\g\\z =  \\g\\i < oo. Hence g E Z(lRn). ■

The following density result concerning ^(IR” ) can be found in [20].

Lem m a 4.1.11 The set {g E Z(Mn) : g E Co°(lRn)} is dense in Z(lRn).

In order to show that 7(lRn) is a dense subset of Z (H n) we need to make some further

assumptions on the weight function v. Specifically, we strengthen property (vl) and assume 

v E C(lRn) f l  S'. We also assume 1/v E Lpoc(lRn).

Lem m a 4.1.12 Let v : lRn —> 1R be a measurable function satisfying (v2)-(v4), v E

C(]Rn) f l  S' and 1/v  E Lfoc(]Rn). Let \Jj E 5" be such that i/j = 1/v. Let

I ( Mn) = {g : g = \J) * / ,  for some f  E C™(lRn)}.
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Then I(JRn) is dense in Z(]Rn).

P ro o f. By Lemma 4.1.10, / ( H n) C  Z(IR,n). Take g G Z(3Rn). Lemma 4.1.11 allows us to 

assume that g G Co°(]Rn). Note that this implies g G S  C  L 2 (]Rn). Since v G <S", G 5 '. 

Hence, since g G S', the convolution /  =  B v  * g is well defined and /  G S' f l  C'°°(IRn). By 

properties of distributions we then have

Since g G Co°(lRn) and v G C(lRn), it follows that f  G CopR.” ) C  L 2 (lRn). Hence, /  G 

L 2 (Hn) fl C ^ p R ”). Since v =  1/ip we can write g = (g/ip)ip =  ftp.

For n G IN we can define 0n G C ^ p R ”) such that 0 < 6n(x) < 1 for all x G 1R71, and

gn G 7pRn), and, by Lemma 4.1.6, gn =  f nip. Since ip G L 2oc(H n) and f n G Co°(IRn), we

f  =  (Bv  * g) =  gBv  = gv.

1, Irrl < n
071M  =  {

1 0 , |a;| >  n +  1

Define f n = f 0n, then, since /  G C ^ p R ” ), / „  G Co°QRn). Let =  ip * f n- Then

have for some compact set i f ,

Thus gn G L 2 (lRn) and it follows that gn G L 2 pRn).

We now consider the function g — gn. Firstly,

(9 -  9 n) = 9 -  9 n = -  M  = { f -  f n ) $  =  ( /  “  fn)*P-

Now,
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= 9n){x){g  -  9 n) ( x ) v ( x )  dx

= f U n ( 9 ~  9 n ) { x ) { f  ~  f n) ( x ) $ v ( x )  dx  

= f n n  ( 9 ~  9 n ) ( x ) ( f  ~  f n ) ( x )  dx.

The final equality is due to the fact that i/jv = 1. Since / ,  / n, g and gn are in L2 (lRn), it 

follows that f  — fn  and g — gn are in L 2 (]Rn). Thus, we can apply Parseval’s Theorem to 

obtain,

\ \ 9 - 9 n \ \ z  = Jw l {9 - 9 n ) ( x ) ( f - f n ) ( x ) d x  

=  | (9 ~  9 n ) ( x ) ( f  ~  fn)  {x) dx

< Jnn  Ktf -  9n)(x)11( /  -  fOn){x)I dx

=  f  \{(9 - 9 n ) f ) ( x ) \ \ ( l - Q n) ( x ) \ d x
J\x\>n

<  f \ { ( g - 9 n ) f ) ( x ) \ d x .
J\x\>n

Using the Cauchy-Schwarz inequality,

[  \((9 ~  9n)f)(x)\  dx <  ( I \{g -  gn){x)\2 d x \  i f  \ f(x)\2dx)  <00,
J \x \ >n  /  \ ,' l a:l > n  /

since <7, gn and /  are in L 2(\R”). Thus (g — gn) f  £ L 1(Mn) and

[  , \({g ~  9n)f){x)  | dx
J | a ; | > n

tends to zero as n  tends to infinity. Hence \\g — g n \ \z  tends to zero as n tends to infinity 

and I(JRn) is dense in Z(]Rn). ■
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4.2 Spaces on D om ains in lRn

We turn  now to spaces defined on a domain 0  C  H n. We begin with a discussion of local 

native spaces. Let ip : lRn —> 1R be continuous and positive definite. As in the previous 

section we define

7(IRn) =  {g : g =  ip * /  for some /  G Co°(lRn)}.

A norm on 7(lRn) is defined for g = ip * / ,  with /  G Cq^IR71), by

IMI/ =  9 (x)f (x)  dx =  ip(x -  y ) f ( y ) f ( x )  dydx.

The form of the above definitions delivers a very natural way of defining a local space 1(0,) 

and a local norm || • ||/(n)- We define

7(0) =  {<7 |q : g = f  *ip for some /  G Co°(]Rn) with support in O}.

For each g = f  * ip G 7(0), with /  G Co°(lRn) having support in 0 , let

IMI/(n) =  9 &)f (x)  dx = J^ip(x  -  y ) f ( y ) f ( x )  dydx.

The local native space of Iske [16] is obtained by taking the closure of 7(0) with respect 

to || • ||/(o). Note tha t here we have chosen to assume ip to be positive definite in order 

to simplify the arguments that follow. One could also work with a conditionally positive 

definite function.

An interesting property of this definition of the native space it tha t it is straightforward 

to define an extension operator from 1(0) to 7(lRn). Suppose g G 1(0),  then g = ( f  * ip) | n

for some /  G Cq^IR”) with support in O. We can extend g to a function, Eg  G 7(lRn)
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simply by taking Eg = f  * ip. Two properties of this extension are in stark contrast to 

our own extension theorems of Chapter 2. Firstly, this extension makes no demands on the 

domain ft. Our own extensions required a certain degree of smoothness of the boundary of 

ft. Secondly, since the definition of the norm || • exploits the fact that /  is compactly 

supported on 17, we have

\\9 \\2i,n = f f ~  y ) f ( x ) f ( y )  dxdy Jn Jn

=  f  f w l i ’{ x ~ y ) f ( x ) f ( y )  dxdy

=  w m l
Thus the extension is isometric. Our own extension operators certainly do not enjoy this 

property.

Clearly the existence of isometric extensions from the local to the global native space, 

regardless of the domain ft, is due the chosen definition of the local native space and local 

norm. We examine now how this compares with other approaches to localisation, beginning 

with the particular example of Sobolev spaces. Define

W m’p( lT )  = { u e  ] 7 { u n) : D au e  Lp(lRn),0 <  H  < m}.

Of particular interest is W m,2 (lRn), m  >  n / 2 , since it can be shown that this is the native 

space for the positive definite function ip(r) = rm~n/ 2 K m_n/ 2 {r) (Schaback [34]). Here K  

is a Bessel or MacDonald function, defined by

tt1/ 2 {z / 2 ) v
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where T(z) =  / 0°° t z l e 1 dt. Now, classically, one defines the local Sobolev space as

= { u £  Lp(fi) : D au £ LP(Q), 0 <  \a\ < m}.

We shall show that, for certain domains Q, this does not correspond to the localised native 

space. For, if Q has a suitably irregular boundary, then there exist no extensions from 

W m'2 (Q) to W m,2 (IRn). This is in contrast to the local native space for which extensions 

exist irrespective of the particular domain Q.

D efinition 4.2.1 Let Q be a domain in ]Rn and let xo be a point on its boundary. Let 

B(r,xo) be the open ball of radius r centre xo with boundary d B( r , x o). Let Sr = dB( r , xo)fl 

and A(Sr) be the surface area of Sr . We say that ft has an exponential cusp at xo if  for 

every real number k,

V M S r )  n lim V  =  0 .r—>0+ rK

The following theorem can be found in [1, p. 122].

T heorem  4.2.2 Let Cl be a domain in 2Rn with an exponential cusp. I f  q > p then there 

exists u £ W m,p(fl) such that u £ L q(Q).

Lem m a 4.2.3 Let m  > n /2  and Q be a bounded domain in Mn. Then W m,2 (]Rn ) In c  

L q(Q) for all q > 1.

Proof. If m > n/2  then by the Sobolev Imbedding Theorem (see [1, p. 97]), W m,2 (]Rn) C  

C(lRn). Thus, if v £ W m’2 (K n) then v £ L qloc(JRn) for all q > 1. Since Q. is bounded it 

follows that v |n £ L q(fl). ■
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L em m a 4.2.4 Let m  > n /2  and VI be a bounded domain in Mn having an exponential cusp. 

Then there exists u G W m,2 (Q) with u f  W m,2(]Rn) |n.

P ro o f. From Theorem 4.2.2 there exists a u G W m,2(Vt) such th a t u £ L g(Vt) for q > 2. By 

Lemma 4.2.3 it follows that u ^ Wm,2 (lRn) \q . ■

We return now to the spaces of distributions discussed in the previous section. Thus we 

have a measurable function v : lRn —> 1R and we define

Z (R n) =  {g G S ' : /  G and [  \g(x)\2v(x) dx <  oo}.
J]Rn

A norm is defined on Z (R n) by,

M \ z  =  \d(x)\2v(x) dx^j , for g G Z{ IRn).

Any immediate attem pt to define a corresponding local space or norm is hampered by the 

inclusion of the Fourier transform in the definition of || • ||z and Z(lRn); if a function is only 

defined on a domain VI then we are unable to compute its Fourier transform. As discussed 

in Section 1.5, a solution to this problem can be found in Levesley and Light [18]. We 

suppose that v satisfies the following conditions:

(Al) « G 5 ' f l  (7(11” ) and v(x)  > 0 for almost all x  G R n,

(A2) v is a measurable function and, for any neighbourhood N  of the origin, v G L 1 (IRn\iV), 

(A3) v(y) = v(—y) for all y G 1R” ,

(A4) |u(2/)| =  0(\y\s) as y —> 0 , where n +  s +  2  >  0,
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(A5) v(0) =  0 and v(x)  < 0  for almost all x  G R n.

The main result of Section 3 of [18] is that, provided v satisfies the above conditions, then

M z  =  L n  L n  w (x ~  y)\d(x ) ~  9(y)I2 dxdy for all g G Z (H n),
jJR, J  JR,

where w = —v/2.  This gives us a natural way of defining a local norm. Given ft C R n we 

define for g : Q, —> H n,

M n  = [  (  w (x  -  y)\9ix ) -  g(y) I2 dxdy-Jn Jn

There are many ways of constructing a local space Z(Q),  although we clearly wish to 

consider functions g for which ||^||o <  oo. In Chapter 2 we chose to mirror the construction 

of local Sobolev spaces. Specifically, we defined Z(fl) to be the completion of the set 

{9 |n : 9 € C*o(]Rn) and \\g\\n < 0 0 } with respect to || • ||n. This made the construction of 

extension theorems for Z(Ct) simpler, as we effectively were working with a subset of the 

continuous functions.

An important feature of the Iske local native spaces and norms was that they lead to 

isometric extension theorems. We demonstrate now that however one chooses to construct 

the local space Z(S7), the form of the local norm II • lb  makes it difficult to construct an 

isometric extension theorem. Suppose that /  : —> IRn is such that | | / |b  < 00• Let E f  be

any extension of /  to the whole of ]Rn. Now, clearly

[  [  w{x -  y)\g(x) -  g(y ) | 2 dxdy < (  f  w(x -  y ) \Ef (x)  -  E f ( y ) | 2 dxdy. (4.1) 
Jn Jn J]R J}R

Let z(x,y)  = w(x — y) \Ef {x)  — E f ( y ) | 2 for x , y  G H n. Then we can write,
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+ z(x ,y)  dxdy.
Jn Jn

In order to get equality in Equation (4.1), we would require the contributions of integrals 

over (Hn\f2) x (]Rn\f2) and (Rn\fl) x f2 to be zero. This is not necessarily true even in the 

simple case where E f  is obtained by setting /  to be zero outside of fb
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Chapter 5

Conclusions and Further Work

Many of the ideas discussed here have centred around questions of localisation. We began

with the seminorms and associated spaces of distributions introduced by Light and Wayne

[2 0 ] which arise naturally in the study of interpolation by translates of a basic function. 

These seminorms are defined in an indirect form, that is in terms of the Fourier transform of 

the function rather than  the function itself, and thus do not lend themselves to localisation. 

To overcome this we use the direct form of such seminorms given by Light and Levesley in

[18] since this delivers a very natural way of defining a local seminorm. For O C H n and 

fixed k G 2Z+ we define

Recall that here w is a measurable weight function and the ca are known constants.

Using this form of local seminorm we can construct associated local spaces. We chose to 

consider the spaces X (fi) =  {^|n : g G Cq (]Rn) and |(/|n < oo} and 3^(0), the completion of 

X (O) with respect to the seminorm | • |p. In Chapter 2 we proved certain extension theorems

1 /2
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for these spaces. In particular, we constructed a bounded, linear extension operator from 

y(£l) to ^ (H n), subject to restrictions on the domain and the weight function w. The 

motivation for the development of such extensions was their use in obtaining improved error 

estimates, and in Chapter 3 we gave a demonstration of this application. Specifically, by 

adapting work by Duchon [7], we obtained improved L<i estimates for the spaces T(lRn) in 

terms of the spacing of the interpolation points.

Finally, in Chapter 5 we began a discussion of how this approach to localisation com­

pares with alternatives. We looked at native spaces and, in particular, the convolutional 

characterisation given by Iske [16]. Here, the local space was simply the restriction of the 

global space to the domain in question. On the whole of H n we saw that, under the right 

circumstances, Iske’s spaces coincide with the spaces of distributions introduced by Light 

and Wayne [20]. However, when looking at the localisation of these spaces things are not 

so clear. In the particular case of Sobolev spaces we saw that, for certain domains with 

sharp cusps, the Iske local space was smaller than the classical definition of a local Sobolev 

space. More generally, we might ask how the Levesley-Light local space, which adopts a 

classical approach to localisation, compares with that of Iske. As in the special case of 

Sobolev spaces, is the Iske space smaller for unfriendly domains? On the other hand, what 

properties must a domain possess in order for the native space approach to deliver the same 

space as a more classical approach? The definition of the local native space as a restriction 

space implies the existence of extension operators from the local to the global native space 

irrespective of the chosen domain. This is in contrast to the extension theorems we have
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developed for the Levesley-Light local spaces which rely on the domain having a certain 

degree of smoothness. Furthermore, Iske’s extensions are norm-preserving whilst the form 

of the Levesley-Light local seminorm makes it difficult for any associated extension operator 

to be isometric. Clearly there axe some questions on the relationships between these two 

approaches to localisation which remain a subject for further discussion.

Other questions arising from this work are those of optimal local approximation orders 

in Lp. That is, can the error estimates achieved in Chapter 3 be improved? Existing work in 

this area, including tha t of Wendland [37], suggests that in the case of thin plate splines, for 

example, the answer is no. However, work by Gutzmer and Iske [12], suggests improvements 

may be obtainable if, say, one considers functions with some added degree of smoothness. 

Thus, this is another area which would benefit from further study.
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