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SOMMARY

The author has investigated the properties of Hamiltonian circuits 
in a class of trival^t planar graphs and he has attempted, with partial 
success, to establish conditions for the existence of Hamiltonian cir
cuits in such graphs.

Because the Hamiltonian circuits of a trivaient planar graph are 
related to the four-colourings of the graph some aspects of the four- 
colour problem are discussed* The author describes a colouring algor
ithm which extends the early work of Kempe, together with an algorithm 
based on the Heawood congruences which enables the parity of the number 
of four-colourings to be determined without necessarily generating aH 
of the four-colourings # It is shown that the number of Hamiltonian cir
cuits has the same parity as the number bf four-colourings and that the 
number of Hamiltonian circuits which pass through any edge of a trivaient 
planar graph is either even or" zero. A proof is given that the latter 
number is non-zero, for every edge of the graph, whenever the family of 
four-colourings has either of twô properties #

The author describes two original algorithms, independent of four- 
colourings, which generate a family of Hamiltonian circuits in a triva
ient planar graph. One algorithm embodies a transformation procedure 
which enables a family of Hamiltonian circuits to be generated from a 
given Hamiltonian circuit, while the other generates directly all Hamil
tonian circuits which include a chosen ec%e of the graph.

In a new theorem the author proves the existence of Hamiltonian 
circuits in any trivalent planar graph whose property is that one or 
more members of a family of related graphs has odd parity.
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CHAPTER 1 
INTRODUCTION

1.0. The first paper on graphs was written by the Swiss mathematician,
7Leonhard Euler • The Konigsberg Bridge problem, the famous unsolved 

problem of his day, had attracted Euler* s interest and in 1 738 he proved, 
using a graph theoretic method, that the problem had no solution.
Euler* s subsequent work laid the foundations of topological graph theory.
A century later graph theory was still largely a * fringe* subject, assoc
iated with certain types of mathematical puzzles and games. In 1852 

16Francis Guthrie posed the problem which has become known as the four- 
colour conjecture and which is still the most celebrated of all unsolved 
problems in graph theory. The concept of a Hamiltonian circuit - a 
simple circuit which passes through every vertex of a graph - arose as 
the spin-off of a mathematical game invented in 1859 by Sir William Rowan 
Hamilton ̂ . In the latter half of the nineteenth century, however, graph 
theory began to find applications within the physical sciences and the 
subject itself began to profit from the interplay of theory and applica
tion. Systematic methods for the analysis of electrical networks, first

5.
investigated by Kirchhoff̂  ̂in l8b7 and developed by Maxwell ^ in 1892,
are built on the foundations of Euler*s graph theory. In 1889 Cayley*s' 
work on chemical identification problems led to the introduction into 
graph theory of the *tree* - a concept now of fundamental importance and 
central to modern topological network theory. During the present century 
the subject has developed at an ever increasing rate and the last ten 
years in particular has seen a large increase in the annual output of pub
lished papers dealing with graph theory and its applications: because of 
their intuitive diagrammatic representation graphs have been found



extremely useful in modelling systems which arise in science, engineer
ing, social science and economics,

1,1. The author was introduced to graph theory a generation ago while 
receiving his education in communication engineering, but only in recent 
years has he experienced a quickening of interest in the subject. In 
preparation for research within the field of finite automata the author 
felt the need to extend his knowledge of graph theory and in the course 
of his studies he found himself increasingly drawn towards some of the 
fundamental problems of the subject. Attracted in particular by the 
nature of Hamiltonian circuits the author conducted some preliminary 
investigations which led him to discover an important property of the 
family of Hamiltonian circuits in trivaient planar graphs (the property 
referred to in Chapter 2 as the property FI ) and also to construct a 
counter-example to the proposition that all such graphs possess Hamilto
nian circuits. Only at a later stage did he learn from the literature

23 2lthat this property had been discovered by Tutte and by Smith in 19U6,
23and that the identical counter-example had been obtained by Tutte in 

19U6. The author was not too discouraged by this revelation for by this 
time he had formulated a conjecture for which he was unable to find eith
er a proof or a counter-example - a new challenge had thus presented it
self. What ought, perhaps, to have dissuaded him from pursuing this 
conjecture was the realisation that a proof, had it existed, would have 
implied the solution to the four-colour problem. Undeterred, however, 
the author continued his research, and his investigations into the pro
perties of Hamiltonian circuits was well under way idien he eventually 
discovered that graphs which constituted counter-examples to his conjec
ture had already been constructed by Tuttê ^̂ ^̂  and others. Although



he has failed to achieve results of major significance the author believes 
that the new concepts and original algorithms which emerge from his work 
could well be of value to further research in this field. The author 
does not claim that his research will find immediate application in engin
eering but he believes that it has latent potential in the field of cir
cuit theory. The advent of printed circuits has emphasised the import
ance of planar (as distinct from non-planar) networks and in recent years 
Chen̂  and others have found uses for Hamiltonian circuits within the con
text of topological network analysis. Finally, it might be pertinent to 
remark that a question posed by a final-year undergraduate (of Leicester 
University) during a recent lecture on electrical network theory, was 
answered satisfactorily only after a lengthy and interesting discussion 
between the lecturer concerned and the author on the subject of Hamilton
ian circuits in trivaient planar graphs.

1.2. Conjectures concerning the existence of Hamiltonian circuits in tri
vaient planar graphs are described towards the end of Chapter 2 which first 
establishes the conceptual framework and terminology necessary to an under
standing of these conjectures and of their relationship to the four-colour 
problem. Chapter 3 provides a brief historical background to the four-
colour problem. The treatment does not bring the subject up-to-date but

11 22 10 concentrates on the earlier work of KeiQ)e , Tait and Heawood whose
ideas the author has found to be relevant to his own research. This chap
ter includes two algorithms, devised by the author, which extend the work 
of Kempe and Heawood. • Chuter h begins with a study of the relationships 
between the family of Hamiltonian circuits and the family of four-colourings 
of a graph. The author then describes two algorithms which generate a



family of Hamiltonian circuits by methods which are independent of four- 
colour properties. This chapter concludes with a new theorem tdiich 
proves the existence of Hamiltonian circuits in graphs which possess cer
tain properties. In Chapter 5 the author discusses the conclusions to 
be drawn from hin work and, by posing questions, he suggests a programme 
of further research.



CHAPTER 2
CONCEPTS AND CONJECTURE

2.0. Conjectures concerning the existence of Hamiltcrlan circuits in 
trivalent planer graphs are described towards the end of this chapter. 
The preliminary discussion introduces the concepts and terminology 
relevant to an understanding of these conjectures and their relationship 
to the classical four-colour conjecture, and paves the way for the more 
detailed investigations of later chapters.

Graphs.

2.1. In what follows the term * graph* will be taken to mean a planar
■}Hfgraph which is undirected, connected and trivalent (every vertex is of 

order 3). The term *dual* will imply the dual of such a graph. Clearly 
the dual is planar, undirected and connected and has the property that 
each face is triangular.

2.2. Consider the graph Ĝ  and its dual Gj shown in Fig. 1 • The ver
tices of Ĝ  are arbitrarily numbered and the faces of Gj are numbered 
correspondingly. Each face of G^, and the corresponding vertex of Ĝ j, 
is similarly assigned an index letter. It will be observed that Ĝ ^̂  
contains a circuit of length 2 because vertices a and c are connected by 
2 edges. Consider also the graph Gg and its dual Gg shown in Fig. 2. 

Reference 3 provides a good introduction to graph theory.
The terminology of graph theory is not standardised. Some 
authorities use the term *map* rather than * graph* and * cubic* 
rather than * trivalent *.
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It Is apparent that in addition to those circuits which bound the faces 
of and which are necessarily of length 3* Gg contains a circuit of 
length 3 which is not a face circuit - viz* the circuit acd which encom
passes the vertices ê  f and g.

*2.3. The term prime graph will be used to denote a graph whose dual con
tains no circuits of length 3> or less than 3, other than face circuits. 
The graphs G^ and Gĵ shown, together with their duals, in Fig. 3 and Fig.
U respectively, are prime graphs. The graph Gg may be derived by nesting 
the graph within the graph Ĝ  in such a way that the face adc of the 
dual G|J is embedded within the face adc of the dual Gy the corresponding
edges of these faces being merged. Thus, the non-prime graph Gg may be 

*factored into the prime grephs G^ and Ĝ .̂

Hamiltonian Circuits.

2.U. A Hamiltonian circuit, or H-circuit. in a graph G is a simple cir
cuit which passes once through each vertex of G. An account of the ori
gin of this concept, which stems from the work of Sir William Rowan 
Hamilton, is given in the next chapter. Fig. 5(a) shows an H-circuit in 
Ĝ . Clearly, by symmetry, Ĝ  possesses 3 H-circuits. To each H-circuit 
in a graph G there corresponds a particular two-tree in the dual G' such 
that the tree edges of the two-tree are in one-to-one correspondence with 
the non-circuit edges of the H-circuit in G. Such a two-tree will be 
called an H-tree*« and has the property (not common to all two-trees) 
that one, and only one, tree edge is associated with each face of the 
dual. Fig. 5(b) shows the H-tree in Gi which corresponds to the

* The author’s terminology.
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(q ) H- c ircu it in

FIG. 5

(b) H-tree in

(a) H-circuit in G^ ( b ) H- tree in G 1

FIG. 6.
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H-circiilt of shown In Fig# $(a). In this (somewhat trivial) example 
each #f the two trees comprises a single edge of the dual* Pig. 6 shows 
an H-drcult In and the corresponding R-tree In Gĵ . From the symmet
ries ef the graph It Is apparent that G^ possesses 6 H-clrcults. Less 
trivially. Fig. 7 shows an H-clrcult (one of 2$) in a more cosplex graph 
Ĝ , together with the corresponding H-tree In Gg. In this exauce each 
of the two components of the H-tree Is branched.

The Family of H-clrcults.

2.^. The coa^ete set of H-clrcults belonging to a graph G will be 
called the family* of H-clrcults In G. Correspondingly the dual G^ poss
esses a family of H-trees. A graph G will be said to have odd or even 
parity according as the number of H-clrcults In the family Is odd or 
even. Thus G^ has odd parity (the family has three members) and G^ has 
even parity (the family comprises 6 H-clrcults).

2.6. An Important property of the family, later t# be proved (and easily 
verified for the given examples) ̂ may be stated as followsx

PI. For any graph G the number of H-*clrcults which pass through 
any given edge ef G Is either even or zero.
From this property, other properties of Interest may be derived.
Let T be the total number of H-clrcults In the family of G,

Tg be the number of H-drcults which Include some edge E of G, 
and Tg be the number of H-drcults lAlch do not Include the edge E.

Then Tg • T - Tg .

* The author* s terminology.



(a) H-circuit in G
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(b) H -tree in Ĉ '

FIG. 7



12

If G has odd parity then T is odd and therefore Tg is odd because Tg is 
even (by property PI ). Hence, for any edge E of G, there exists at 
least one H-circuit which does not include E. Because each vertex of G 
is trivalent it follows that if an H-clrcult excludes one edge at any 
vertex v then the H-clrcult must pass through the other two edges at v. 
Hence the property;

F2. If G has odd parity then the number of H-clrcults which pass 
through any given edge of G Is even and non-zero (I.e. Tg > 0).

2.7. If G has even parity then T, Tg and Tg are all even or zero. It 
Is not possible to prove from property PI that Tg > 0. îlg. 8 shows an 
H-clrcult In a graph Ĝ , together with the corresponding H-tree in the 
dual Ĝ . From the reflectlonal and rotational symmetries It Is apparent 
that G^ has a family of 6 H-clrcults and hence G^ has even parity. A 
study of the family reveals that Tg > 0 for every edge and that Tg > 0 
for all edges except dk, fk and hk. Thus every H-clrcult Includes these 
three edges and, correspondingly, there is no H-tree in the dual which 
has one of these edges as a tree edge. While In general Tg f 0 for 
every edge of a graph which has even parity, all the graphs so far consid
ered have the property Tg > 0 for every edge E.

2.8. Let the dual Ĝ , of Fig. 8(b), be redrawn as In Fig. 9 so that the 
face dek becomes the exterior face DEE. The vqpper-case letters distin
guish the re-drawn graph from the original. There Is no H-tree for 
which dk In Fig. 8(b) or DK in Fig. 9 Is a tree edge. Now let a new 
dual Gy be formed by nesting Fig. 9 Into the dek face of Fig. 8(b) in 
such a way that the vertices D,E,K are Identified with vertices e,k,d 
respectively, so that edge DE merges with edge ek, EK with kd and KD with
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(a) H - circuit in G
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( b) H- tree in G^ 

FIG. 8
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FIG. 9. A re -d ra w in g of Gg

FIG. 10 Gp-A  graph with no FI-circuits



de. Whereas the graph Gg is prime the new graph Gy, whose dual is Gy, 
is non-prime. The H-trees of Gy are obtained by taking a pair* of H-trees, 
one appropriate to Fig. 8(a) and one appropriate to Fig* 9, which are com
patible at the merged edges. This compatibility constraint, co\ç>led with 
the observations made earlier, imply that the H-trees of Gy are formed by 
combining an H-tree for Fig. 6(a) which has ek as a tree edge with an H- 
tree for Fig. 9 which has DE as a tree edge, the resulting composite H- 
trees all having the property that the merged edge joining De with Ek is 
a tree edge. Hence, for the corresponding edge in the graph Gy, Tg « 0. 

The graph Gy thus has the property that H-circuits exist but that Tg 0 

for all edges of Gy.

2 .9 . The nesting procedure may be taken one step further to form the 
graph Gg, shown in Fig. 10, whose dual is a three-fold development of the 
dual Ĝ  shown in Fig. 8(t̂ . There are now no compatible groupings of H- 
trees from Gg to form composite H-trees in Gg, so that Gg does not poss
ess H-circuits.

2 .1 0 . The graphs Gy (for which T > 0 but Tg f  0 for all edges) and Gg 

(for which T « 0 and hence T_ = 0 for all edges) are non-prime. The 
author’s early experiments led him to conjecture that all prime graphs 
possess Hamiltonian circuits and he was motivated to search for a coun
ter-example by the realisation that this conjecture, if valid, would 
imply the solution of the four-colour problem. It is pertinent there
fore, at this stage in the discussion, to review the essential proper
ties of the four-colourings of a graph.



Four-colourings of a Graph.

*2.11. A graph G is four-colourable if each face of G may be assigned 
one of four symbols in such a way that no two faces which possess a common 
bounding edge have the same symbol. Correspondingly, the dual g' is four- 
colourable in the sense that no two adjacent vertices (vertices linked by 
an edge) are assigned the same symbol. The graph G^ has only the one four- 
colouring (permutations of the four symbols being excluded) because, as 
shown in Fig. 11, if three faces meeting at a vertex are arbitrarily 
assigned the symbols a, p and If, then the remaining face must be assigned 
the fourth symbol 6. The graph G^ has a family of h four-colourings, 
shown in Fig. 12 (one of these requires only 3 of the U available symbols).

The Four-colour Conjecture.

2.12. The four-colour conjecture asserts that any planar graph (not nec
essarily restricted by the conditions of para. 2.1) is face-colourable in 
not more than four colours. The conjecture has defied proof (or dis
proof by counter-example) for over a century and remains one of the class
ical unsolved problems in topological graph theory. The historical back
ground to this conjecture will be reviewed in Chapter 3.

2.13. It is well known^'^^that if the four-colour conjecture could be 
proved for prime graphs (as defined by paras. 2.1 and 2.3) then the proof

* For a general planar grai^ the term ’four-colouring’ may refer either 
to a colouring of the faces or to a colouring of the vertices. Within the 
context of this thesis the term will is^y a face colouring of the graph 
(vertex-colouring of the dual).
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'I
FIG. 11. The four-colouring of Ĝ  and its dual G^
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FIG. 12 The family of four - colourings of G/̂



18

for any planar graph would be established. Consider, for example, the 
non-trivalent graph f whose dual f' is shown in Pig. 13. To show that 
r is four-colourable it is sufficient to obtain a vertex four-colouring 
of r'. The dual F' may be modified by the addition of further edges so 
as to make each face triangular. The modification can be achieved in a 
variety of ways and one such choice of additional edges results in the 
dual shown..in Fig. lU. This will be recognised as Ĝ , which is non
prime and îdiich has prime factors G^ and G^ that are four-colourable.
By an appropriate permutation of the colourings of the three external 
vertices of G^ any one of the four-colourings of G^ can be embedded into 
the four-colouring of Ĝ  in such a way that the merged vertices are com
patible in colour. One of the resultant four-colourings of Gg is shown 
in Fig. 15. Finally, the additional edges may be removed thus leaving 
a four-colouring of the original dual F'.

The. Relationship between Hamiltonian Circuits and Four-colourings, of, a 
Graph.

2.ill. A graph idiich possesses an H-circuit is four-colourable. In 
order to prove this statement it is convenient to consider the H-tree in 
the dual G' which corresponds to the given H-circuit in G. Because the 
set of edges which constitute each of the two components form a tree, 
and hence have no closed circuits, it is always possible to assign diff
erent colours to the adjacent vertices of a tree edge by using two sym
bols ( a and p) to colour alternate vertices of one component and the 
other two symbols ( y and 6) to colour alternate vertices of the other 
component. Because one, and only one, tree edge is associated with 
each face of the dual it follows that the two vertices connected by each
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T 1
FIG. 13. The dual, T , of q non-trivaient planar 

graph r

FIG. U. modified by the addition of edges (Gj  )
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6

(□)The four-colouring of oj  (b) A four-colouring of G,̂

6

(c) The resultant four-colouring ofG%

FIG. 15



21

non-tree edge of are also assigned different colours, one Arom the 
set la,pi and one from the set This procedure is illustrated in
Fig. 16 which shows a four-colouring of based on the H-circuit given 
in Fig. 7.

2.15. It is not necessarily true that a graph which is four-colourable 
possesses an H-circuit. The grê h Gg, for example, does not possess an 
H-circuit but it is four-colourable because its three prime-factors, 
each of tdiich is the graph Gg, are four-colôurable. One of the four- 
colourings of Gg is shown in Fig. 17.

2.16. While the number of H-circuits of a graph is not, in general, 
equal to the number of four-colourings it will be observed from the given 
examples that these numbers are either both odd or both even. For ex
ample G^ has 3 H-circuits and 1 four-colouring; ; G|̂ has 6 H-circuits and
four-colourings. It will be proved in Chapter U that this relation

ship is true for all graphs and hence one may refer unambiguously to the 
parity of a graph in the context either of the family of H-circuits or 
of the family of four-colourings.

Conjecture.

2.17. The preceding paragrê hs have shown that the existence of a 
Hamiltonian circuit in a graph implies the existence of a four-colouring 
but that the converse is not necessarily true (unless the number of four- 
colourings is odd). In this sense a conjecture concerning the existence 
of H-circuits is stronger than a conjecture concerning the existence of 
four-colourings. In I88I; Tait conjectured that the graph of every
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(a) A face colouring of Gi

(b) A vertex colouring 
of Gt'

FIG. 16
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FfG. 17 A four -  colouring of Gg



2U

convex polyhedron possesses a Hamiltonian circuit. Because a graph is
a skeleton of a convex polyhedron if and only if it is planar and 3-
connected*, Tait's conjecture implies that every 3-connected planar graph

23has an H-circuit. In Tutte found a counter-example to Tait»s 
conjecture, this counter-example being identical to the graph Gg of Fig. 
10 (which was obtained independently by the author using a method essen
tially similar to that employed by Tutte).

2.18. The observations made in paragraph 2.10 led the author to conjecture 
that any prime graph possesses a family of Hamiltonian circuits such that 
each edge of the graph is included in at least two circuits (i.e. T̂  > 0
for every edge). Before he was able to devise a counter-example, how-

2^ 26 13 ever, the author discovered that Tutte * , Lederberg , and Kozyrev
20and Grinberg had already constructed prime graphs which are non-Hamil

tonian (i.e. which have no Hamiltonian circuits). Two of these, the 
graph of Kozyrev and Grinberg (1968) and one of Tutte* s graphs (1972), 
are shown in Fig. 18. Although these graphs are non-Hamiltonian all 
are four-colourable.

A graph is k-connected if every pair of distinct vertices v and 
w are joined by at least k chains which have no common vertices 
except V and w. See, for exanple, reference 3«
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(a) Graph' of Kozyrev and Grinberg

(a) A Tutte graph 

FIG. 18. Non -  Hamiltonian graphs
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CHAPTER 3 
THE FOUR-COLOUR PROBLEM

3.0. The author’s main concern has been to investigate the properties
of families of Hamiltonian circuits in prime graphs, a specific goal being 
the attempt to establish conditions for the existence of Hamiltonian cir
cuits in such graphs. Because of the link between H-circuits and four- 
colourings it seemed reasonable to begin the investigation by seeking po
tentially useful results from within the well established field of study 
associated with the four-colour problem. This chapter reviews the histor
ical background to the four-colour conjecture, discusses some of the ear
lier contributions to the subject which the author has found to be rele
vant and helpful, and describes two algorithms which represent the author’s 
attempts to develop these ideas.

The Four-colour Conjecture.

3.1. Accounts of the historical origins of the four-colour problem and
I i<the early attempts at a solution are given by Ball and May • The first 

known written statement of the conjecture appeared in a letter^from 
Augustus De Morgan, Professor of Mathematics at University College, London, 
to his fWLendSir William Rowan Hamilton at Trinity College, Dublin. In 
this letter, dated October 23rd, 18̂ 2, De Morgan wrote

"A student of mine asked me today to give him a reason for a fact 
which I did not know was a fact and do not yet. He says that if 
a figure be anyhow divided, and the compartments differently 
coloured, so that figures with any portion of a common boundary
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line are differently coloured - four colours may be wanted but no 
more. Query : cannot a necessity for five or more be invented?...”

The student was Frederick Guthrie, whose brother, Francis, also at one 
time a student of De Morgan, had first posed the prèblem and claimed to 
have a solution. The four-colour problem is sometimes known as Guthrie's 
problem, although Francis Guthrie, who later became Professor of Mathe
matics at the South Âfldcan University, Cape Town, never published any
thing on the subject.

3.2. During the quarter-century following De Morgan's communication 
the problem aroused little interest and did not appear in print until 
1878 idien Cayley'̂  published an inquiry as te whether the conjecture had 
been proven. In 1879 Kempe ̂ published a 'proof* of the conjecture.
In 1890 Heawood̂ p̂ointed out the error in Kendo's proof and was able to 
establish, using Kenq}e's approach to the problem, that a planar graph 
can always be coloured with five colours. Although subsequent attempts 
to find a planar graph which could not be coloured using only four col
ours have been in vain, progress has been made on characterising some of 
the properties which must be possessed by a counter-example to the four-

o
colour conjecture if one exists. In 1922 Franklin proved that a plan
ar graph requiring five colours must have at least 26 faces and later

17researchers have extended this number. In 19̂ 9 Ore and Stemple 
proved that a counter-exanple would need to have at least 39 faces.

3.3. In 18̂ 9 Sir William Rowan Hamilton invented a peculiar puzzle
Awhich he named ”Around the World”. The puzzle comprised a regular 

dodecahedron made of wood, the twenty vertices being labelled with the
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names of various Important cities, and the objective was to find a cyclic 
route which passes #nce through each vertex. Because the dodecahedron 
was cumbersome Hamilton also produced a version of the puzzle in which 
the solid was replaced by a planar graph isomorphic to the graph formed 
by the edges of the dedecahedron. This graph, together with, one #f its 
circuits is shewn on the title page. Hamilton sold his idea to a
game manufacturer in Dublin for about twenty-five guineas but the puzzle 
was not a commercial success.

223.Ü. Tait showed, in 1880, that the existence of a Hamiltonian circuit
in a trivaient planar graph inplies a four-colouring of the graph. In

1A1891 Peterson proved that either the vertices of a trivaient planar 
graph can be toured by a Hamiltonian circuit or there exists a collection 
of mutually exclusive subcircuits such that each vertex is on one sub
circuit. It follows, using a result due to Tait (given later in this
chapter), that if all the subcircuits are of even length then the graph

27is four-colourable. In 1931 Whitney proved that the dual of a prime 
graph always has a Hamiltonian circuit.

Kempe*s 'Proof*.

3.̂ . Kempe'ŝ âttempt at a proof of the four-colour conjecture illus
trates both the simplicity of concept and the apparent proximity of a 
solution ** two features which have attracted many mathematicians, both 
professional and amateur, to the problem. The essence of Kempe *s 
approach is set out below but, for convenience, the eirgument is restricted
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to prime graphs (as defined in paras. 2.1 and 2.3) and considers a vertex- 
colouring of the dual rather than a face-colouring of the graph.

3.6. A well-known formulâ  first derived by Euler̂ ,̂ relates the num
bers of vertices, edges and faces of any planar graph. Euler's formula 
states that

v + f « e + 2  (1)

where v, f and e are, respectively, the numbers of vertices, faces and 
edges. Each face of a dual is triangular. Hence, because each edge 
is associated with two faces,

3f « 2e (2)

The order of a vertex is the number of edges incident at that vertex.
Let be the number of vertices of order k. The dual of a prime graph 
has no vertices of order < 3 (para. 2.3^ and hence, because each edge is 
associated with two vertices,

V» ^  ^  + *'*" (3),

and 2e ** + 6̂ g + + 84>q + * .... (U).

From equations (l ), (2), (3) and (U) one obtains

“ 12 + <̂>7 + 2(f>Q + 3<̂  + .... (5)

Because each of the 0» s is a positive integer or zero it follows from 
equation ($) that and cannot both be zero. Thus, the dual of a 
prime graph always contains vertices of order 1; or

3.7. Kempe's method proceeds by induction. Assume that all prime
duals with n, or fewer, vertices are four-colourable and consider the
*
With the sole exception of the prime graph Ĝ .
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vertex colouring of a dual with n + 1 vertices* By the previous argument 
this dual must contain vertices of order U or First suppose that the 
dual has a vertex, V, of order I4. If V is merged with any one of its 
four neighbours, by contracting the edge which joins them, one obtains a 
dual with n vertices which, by assumption, is four-colourable. The prob
lem therefore is to assign a colour to V given a four-colouring of the 
other n vertices of the dual.

*3.8. If the four vertices neighbouring V are coloured using only two 
colours, as shown in Fig. 19(a), or three colours (Fig. 19(b)), then 
clearly V can be coloured appropriately. Assume then that the neighbour
ing vertices are differently coloured a, b, c and d. Suppose that the 
vertices coloured a and c (Fig. 19(c)) are linked by a chain of edges 
which passes through vertices alternately coloured a and c. This ac 
chain, together with the two edges which form a return path through V, 
form a closed circuit. A new four-colouring is obtained by interchanging 
the colourings of those vertices within this circuit which were originally 
coloured b and d, the colourings of the vertices outside the circuit being 
unaltered. The vertex adjacent to V which was originally coloured b is 
now coloured d (choosing, arbitrarily, the 'inside’ of the ac circuit to 
be that region which contains this vertex), thus releasing b for the 
colouring of V. If the vertices coloured a and c are not linked by an 
ac chain then a bd chain must link the neighbour vertices coloured b 
and d (Fig. 19(d)). A similar argument releases c for the colouring 
of V. Hence, in all possible circumstances, a vertex of order 4 can be 
coloured.

* In this chapter the symbols a, b, c and d will denote colourings 
rather than distinctive labellings of the vertices.
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FIG, 19, Colouring a Vertex of order 4
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3.9. If the dual with n + 1 vertices does not contain a vertex of order 
li then it must contain a vertex V of order 5. The problem is to assign 
a colour to V given a four-colouring of the other n vertices of the dual. 
If the five neighbour vertices use only three of the four colours then V 
is assigned the fourth colour (Pig. 20(a)). If the neighbouring vertices 
use all four colours then, without loss of generality, one may suppose 
them to be coloured as in Fig. 20(b). If a be chain exists then, by 
the previous colour reversal argument, the neighbour vertex coloured d 
may be re-coloured a thus releasing d for the vertex V. A similar argu
ment applies if a bd chain exists (Fig. 20(c)). If neither a be 
chain nor a bd chain exists then there must be both ad and ac chains. 
Suppose, as in Fig. 20(d), that these chains do not intersect, then the 
neighbour vertices coloured b may be re-coloured c and d respectively 
thus releasing b for the colouring of V. If, however, the ad and ac 
chains intersect, as for example in Fig. 20(e), then it might not be 
possible to interchange the colourà within each independently. Follow
ing an interchange within the ad circuit the ac chain might be broken.
In this case a %d' chain exists but if this bd chain intersects the ad 
chain the argument is not advanced because the new situation (Pig. 20(f)) 
is essentially similar to that which preceded it (Fig. 20(e)). (A simi
lar situation might arise if the initial interchange is within the ac 
circuit).

3.10. It was Kempe*s failure to appreciate fully this latter possibility 
which led him to believe that he had proved the four-colour conjecture 
because, but for this special case, he had shown that any dual with n + 1 
vertices could be four-coloured if all duals with n vertices are four- 
colourable and the induction seemed complete. Kempe *s * proof* went
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FIG. 20. Colouring a Vertex of order 5
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10unchallenged for eleven years until the error was pointed out by Heawood , 
who, by using an obvious extension of Kenqpe*s method, proved that planar 
graphs are five-colourable.

A Colouring Algorithm.

3.11. The author has devised and explored the following algorithm, sugges
ted by the special case referred to above, for the colouring of a vertex 
of order The algorithm involves an iterative sequence of interchanges 
and in order to define precisely the interchange operation it is necess
ary to consider the possibility of more than one chain, as illustrated in 
Fig. 21 • The interchange is to be effected within the innermost circuit 
- i.e, that circuit formed by an ac chain, together with the two corres
ponding edges through V, which is not bridged internally by some part of 
an ac chain. (The inside of the circuit is that region idiich contains 
just one of the vertices neighbouring V3 the outside contains two such 
vertices.). Clearly the innermost circuit, so defined, is unique.

1.12. The procedure is illustrated by Fig. 22, where it is assumed that 
the starting situation. Fig. 22(a), has both ad and ac circuits which 
might, or might not, intersect. Initially one may interchange either 
within the (innermost) ac circuit or within the (innermost) ad circuit: 
suppose that the ac circuit is chosen. Following an interchange within 
the ac circuit either an ad. chain exists, in which case an interchange 
within it releases b for the colouring of V, or a be chain exists, in 
which case the situation is that shown in Fig. 22(b). This completes 
one iteration. The next iteration involves an interchange within the
be circuit,following which either an ac chain exists, and the algorithm
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FIG. 21 Innermost c ircu it
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ad and ac chains

b ^ d  interchange within ac circuit

a c and be chains

d a interchange within be circuit

be and bd chains

—►c interchange within bd circuit 

bd and da chains 

c-<—►b interchange within da  circuit

da and ac chains

b-*—►d interchange within ac circuit

b.
by permutations 

c -«—► a
d —► b

FIG. 22. Coiourina alqorithm
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terminates in a solution (the release of d for the colouring of V), or a 
bd chain exists and the algorithm proceeds by a further iteration. Be
cause the total number of four-colourings of the dual is finite (< 
either the algorithm terminates after a finite number of steps or it 
closes on itself to restore the original four-colouring of Fig. 22(a).
In the latter cjse had the initial interchange been within the ad cir
cuit instead of the ac circuit the cycle of iterations would have been 
traversed in the opposite direction, the algorithm being reversible.

3.13. Suppose that the algorithm progresses through five iterations from 
the situation of Fig. 22(a) to that of Fig. 22(f). In order to compare 
these four-colourings it is convenient to permute the colours of Fig. 22 
(f) by the interchanges o*-* a and d<-» b throughout the dual (this permu
tation does not constitute a new four-colouring). It is apparent that 
the colouring of Fig. 22(f) can not be identical to that of Fig. 22(a) 
because the colourings of two of V*s neighbours are reversed. However 
a further sequence of five interchanges will reverse these yet again. 
Consequently in order that the algorithm should close on itself, rather
than halt at a solution, the number of iterations in the cycle must be

of
an integral multiple 1̂0. The author has atten̂ ted to construct a dual 
for which the algorithm does cycle in this manner but so far he has 
failed to find one. Such a dual, if it exists, would not necessarily 
provide a counter-example to the four-colour conjecture (it would merely 
indicate a failure of this particular colouring algorithm) but it would 
have interesting properties, probably exhibiting some foim of symmetry 
based on the number 10.
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Conjectures Equivalent to the Four-colour Conjecture.

3.IU. Taii?̂ has shown that if a trivaient planar graph is face-colourable 
in four colours then the edges of the graph may be coloured using only 
three colours in such a way that the three edges which meet at any vertex 
are differently coloured. Conversely, if the edges of the graph are 
three-colourable, in the above sense, then the faces are four-colourable. 
Consequently the conjecture that the edges of a trivaient planar graph 
are three-colourable is equivalent to the four-colour conjecture. 
Correspondingly in the dual, if the vertices are four-colourable then 
the edges are three-colourable, the three edges bounding each triangular 
face being differently coloured.

3.1 A Tait three-colouring of the dual is obtained immediately from a 
given four-colouring of the vertices by the following rule:-

a b or c d
An edge which links vertices coloured J a c or b d

ad or be
j1

is coloured J 2

I
Because the three vertices associated with any triangular face of the 
dual are differently coloured it immediately follows that no two edges 
of the face can be assigned the same edge colouring, and the condition 
for a three-colouring is satisfied. The procedure is illustrated by 
Fig. 23 which shows a four-colouring of Gg together with the correspond
ing Tait three-colouring. A trivaient planar graph which possesses a 
Hamiltonian circuit, or a collection of mutually exclusive subcircuits
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FIG, 23. Tait and Heawood colourings of G r



ho

aXL of even length (see para. 3»h) is always Tait three-colourable and 
hence four-colourablê  for one may associate the edge colours 1 and 2 
with alternate edges of the H-circuit (iidiich is always of even length) or 
of each of the subcircuits, the non- circuit edges being assigned the 
colour 3.

3.16. Heawooj^obtained an equivalent conjecture which involves a two- 
colouring of the vertices of a trivaient. planar graph, or, correspondingly, 
a two-colouring of the faces of the dual. Suppose that a Tait colouring 
of the dual is given and consider, for each face, a cyclic tour of the 
three bounding edges such that the edge colourings are encountered in the 
order 1 -> 2 3. A face is assigned the value +1 or -1 according as the 
tour is described in the clockwise or anticlockwise direction. This 
procedure is exemplified in Fig. 23 which shows the Heawood two-colouring 
as well as the Tait three-colouring and vertex four-colouring. The con
sistency of the Heawood and Tait colourings requires, for every vertex
of the dual, that the summation of the face values around a vertex shall 
be zero modulo 3. Conversely, if the faces of a dual can be assigned 
values x^ (+1 or -1) such that around each vertex Sx̂  m 0 (mod 3), then 
the dual has a Tait colouring and hence a four-colouring. The sign con
vention, as defined above, is arbitrary and a reversal of the signs of 
all the x^ does not constitute a new Heawood colouring. Consequently, 
without loss of generality, one of the faces may be arbitrarily assigned 
the fixed value +1 •

3.17. Because there exists a one-one relationship between a Heawood col
ouring and a four-colouring, the family of four-colourings of a graph 
may be obtained as the solution set of a system of congruence equations
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10,16
and Heawood has investigated the properties of such a system* The 
Heawood formulation is well suited to the construction of a computer al
gorithm for the determination of the solution set but the extent of the 
search makes it impracticable to use a connuter for other than relatively 
simple graphs. Given that f is the number of faces of a trivaient plan
ar graph then, by Euler* s formula, the number of vertices is 2f - h*
The dual has 2f - U faces, one of which may be assigned the fixed value
+1, and the determination of the solution set of the congruence equations

2f—5requires a search through 2 combinations of values - a number which 
exceeds one million for a graph with as few as thirteen faces.

A Parity Algorithm*

3.16. The author has devised a procedure which, by reducing the field of 
search from 2 combinations to 2 ” combinations, allows the solution 
set of the Heawood congruence equations to be obtained more economically. 
The author’s primary interest is not, however, in the full solution set 
but rather in the parity (i.e. whether the number of four-colourings is 
odd or even) and the procedure has been developed into an algorithm for 
determining the parity of a given prime graph. The method will be 
illustrated by means of an example.

3.19. Whitneŷ  ̂has shown that the dual of any prime graph (as defined 
in paras. 2.1 and 2.3) has a Hamiltonian circuit. Given a prime dual 
the algorithm begins by choosing (arbitrarily) some Hamiltonian circuit 
of the dual and assigning symbols x̂  ̂to those faces lying on one side 
of the circuit and symbols to those faces lying on the other side.
If the given graph has f faces then the dual has f vertices and 2f - U
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faces, f - 2 faces on each side of the Hamiltonian circuit. Each of the 
f vertices of the dual gives rise to a congruence equation but the equa
tions are not independent and it is sufficient to consider only f - 2 
equations provided that the two omitted relate to a pair of vertices (any 
pair) which are adjacent on the Hamiltonian circuit. The resultant set 
of congruences comprises f - 2 equations relating the f - 2 x values and 
the f - 2 y values. The matrix of coefficients for these equations may 
be partitioned in the form

[I X] ,
where I and T are the square matrices of order f - 2 formed by the coeffi
cients of the and ŷ  respectively. By using a Hamiltonian circuit to 
partition the coefficients it is always possible so to arrange the equa
tions that either I or Y is a matrix with each of the elements

*of the leading diagonal equal to unity • Hence both Î and Y are non
singular and the equations can be solved for the x^ in terms of the ŷ , 
or vice-versa.

,20. The procedure is illustrated in Fig. 2h which shows the dual 
(Fig. li) re-drawn so as to emphasise an arbitrarily chosen Hamiltonian 
circuit. The set of congruence equations arising from the vertices 
1, 2, 3 and h, arranged so that X is a matrix, is
vertex
1* Xi+Xg+x, +y^ “ 0 (mod 3)
1 Xg + - 0

3 *3 * *1+ * Xi + Xg ” °
2 Xfj + yj + 73 + » 0

(1)

* A general proof that a Hamiltonian partitioning has this property is 
given in the Appendil.
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FIG. 2U. Hamiltonian partitioning of G
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(If the eqiiations are written in the vertex order 1, 3, 2 and h then Y 
is a Angvkr matrix),
Solving these equations for the x̂  in terms of the gives

- (y, + 2̂ + yij) I
^  “ (y, + 72 - 73) :
X3 - - (7i - 73 - 71*) ^

Xj* - - (72 + 73 + 7i*)

(2)

It will be observed that these values automatically satisfy the congruence 
equations which arise from vertices  ̂and 6* Because each of the x^ and

in the Heawood solution set has the value +1 or -1 the full set of 
solutions is obtained from the equations

7, +72 + 7i* - + 1 ' (mod 3) i
7, + 72 - 73 - + 1 I

1̂ - ̂ 3 - ’
(3)

3̂  + 73 + 7i* - ++ 1

Because one of the y^ may be arbitrarily assigned the value +1 the number 
of variables involved in the reduced set of congruences, (3)> is three, 
as coiiçared with seven in the original set of congruences, (1). Taking 
ŷ  = + 1, a search through the eight possible combinations of yg, ŷ  and 
y|̂ reveals the set of four solutions

(ŷ j 72» 73, 7l*>

i

(1»  1, 1, - 1)  I
(1, -1,1, -1) I 
(1, -1,1,1) 
(1, -1,-1,1)

the corresponding values of the x^ being obtained from (2), and hence
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has a family of U four-colourings# In general terms the reduction 
procedure removes f - 2 variables from the Heawood congruence equations, 
thus reducing the search field from 2 to 2 combinations#

1.21. The set of equations (3) can be combined into a single equation by 
multiplying together the expressions on the left-hand side and equating 
the result to + 1, the resultant equation being simplified by setting 
ŷ  « 1 for all i (since * + 1 ) and by combining like terms using mod
ulo 3 arithmetic. For the given example the result is

y, 72 ♦ 7i 73 - 72 71* * 7^ ^3 ’

or, after setting ŷ  = + 1,

72 + 73 - 72 7l* + 73 7l* + 72 73 7l* - ± 1 (W

A search algorithm based on equation (U) rather than the set of equations 
(3) requires only one test instead of, in general, f - 2 tests for each 
possible combination of the ŷ #

3,22# The form of equation exemplified by (U) involves products of the 
variables but is necessarily linear in each of the variables considered 
separately and is well suited to an algorithm for determining the parity 
of a solution set# One of the variables, yg say, is selected and the 
equation written in the form A + ŷ # B %» + 1, where A and B are functions 
of the variables other than yg# For any particular combination of these 
other variables each of A and B has the value 0, +1 or -1 (the arithmetic 
being modulo 3)> hence the possible situations are:-

a) A " 0# B = 0# In this case there is no value of ŷ  which satisfies 
A + yg# B = + 1. Consequently this particular combination of 
variables is not a member of the solution set.
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b) A « 0, B « + 1 • In this case A + yg' B = + 1 either if y-g « + 1 
or if yg « - 1, irrespective of the values of the other variables 
(providing A = 0 and B « + 1 ). Hence the situation gives rise to 
two solutions•

c) Aa+1,B*»0. Again A + yg. B « + 1 either if yg « + 1 or if
yg = - 1. This situation also gives rise to two solutions.

d) A o  + 1,B« + 1. Because 1 +1 » - 1 (mod 3) and - 1 - 1 - + 1
(mod 3) it follows that for each of the four possible combinations 
of values of A and B there is a unique value of yg (+1 or -1 ) such 
that A+yg. B = + 1. This situation gives rise to one solution.

Because cases a, b and c each contribute an even, or zero, number of 
solutions to the solution set of (U) it follows that the parity of the 
solutions contributed by category d situations is the same as that of the 
total solution set. The equations A « 1 and B *» + 1 may be combined
into a single equation A. B « + 1 d̂iich, after multiplying out, is similar 
in form to (It) but has one fewer variable. The process is repeated, 
eliminating one variable at each step, until either A or B is identically 
zero or only a single variable remains and the constants A and B are both 
+ 1. Because the parity is preserved at each iteration the parity of 
the original equation (U), and hence of the associated graph, is odd if
the final values of A and B are both + 1 ; otherwise the parity is even.

3.23. The first step in applying this algorithm to equation (U)

72 + yj - 72 7J* + 7 3 7t* + 72 7 3 71, “ i 1 (̂ )

is to express the equation in the form

(73 + 73 7],) + 72 (1 - 71, + 73 71,) “ + 1 •
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Thus, A « (ŷ  + ŷ  ĵ ) and B « (1 - ŷ  ̂+ ŷ  
and the reduced equation Is

(73 + 7 3  7i,)(1 - 71, + 7 3  71,) - i  1 , 
or, on multiplying out,

1 + 7i, -  + 1 (5)

The second step amounts to expressing equation (S) in the form (linear

in 73),
(1 + 7ij) + 73' 0 - + 1

Thus A « (1 + ŷ ) and B « 0. Because B » 0 the algorithm
terminates and the parity of the solution set of equation (h) (and hence 
the parity of the graph is even.

3.2li. The algorithm described above enables the parity of any prime graph 
to be determined without the necessity #f ebtaining the full solution 
set - i.e. the number of four-coleurings, but the procedure is tedious 
for all but the simplest graphs. Ihe author’s research in this area was 
motivated by the hope that some insight might be gedned into those pro
perties ef a graph idiich determine the parity, but it would appear that, 
in general, there is no simple topological formula fcr parity and any 
parity algorithm must involve a tedious combinatorial process.

3.25. An interesting result cenceming the non-existence of feur-colour- 
ings in a prime graph is obtainable using the methods of the preceding 
paragraphs. For a given prime dual, the procedure described in para
graphs 3.19 - 3.21 leads to an equation of the form
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*0 + *2 ?2 + °3 ?3 + ...
+ C23 72 73 + 72... ........

* ®23lt ^2 ^3 * °23S ^2 ^3 ^5 *

+ 1 (6 )

Â necessary and sufficient condition that this equation has no 
solutions, and hence the greph has no four-colourings, is that each of 
the coefficients on the left-hand size is zero (rood 3). Clearly the 
condition is sufficient. To show that the condition is necessary let 
the left-hand side be expressed in the foim

A + y-g.B

«here A - + O3 73 + .....+ «3̂  73 7^ + .... + 73 7), 7g +

B - «2 + °23 ̂ 3 * •••• * ®23U ̂ 3 + •••• + °23U5 ̂ 3 5% ̂ 5 * “

Given that equation (6) has no solutions it follows that A + B = 0 and 
A - B a 0 and hence, for all combinations of the ŷ , i > 2, A » 0 and 
B a 0. Now A and B are both similar in form to the expression on the 
left of (6), but with one fewer variable. The above procedure may be 
repeated, eliminating one variable at each step, the ultimate result 
being that each of the coefficients in (6) is identically zero. This 
result must, of course, apply irrespective of whichever Hamiltonian cir
cuit in the dual is used to partition the original set of Heawood con
gruences and therefore implies some relationship between the coefficients 
in these congruence equations. A further understanding of this rela
tionship might offer insight into the topological properties of a coun
ter-example to the four-colour conjecture, if one exists.
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Conclusion.

.26. The Tait and Heawood conjectures are but two of many possible
19variations on Guthrie’s original conjecture. The literature on the 

four-colour problem is very extensive but, surprisingly in view of the 
long history of the problem, not until 196? were the significant results 
of research in this field brought together in the form of a text-boolĉ  
devoted solely to the subject. Although the problem has so far defied 
solution the attempts to solve it have generated new concepts and tools 
which have greatly enriched the field of graph theory. This chapter 
has high-lighted just a few aspects of the problem, emphasising those 
early ideas which the author has found helpful and have led him to 
develop algorithms which extend the work of Kerape and Heawood. The hope 
that these developments might result in a simple topological parity for
mula has not materialised. Such a formula would have had a bearing on 
later work because, as will be shown in the next chapter, the parity of 
the family of four-colourings is the same as that of the family of 
Hamiltonian circuits.
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CHAPTER U 
HAMILTONIAN CIRCUITS

h.O. This chapter, which forms the principal part of the thesis, gives 
an account of the author’s research into the properties of families of 
Hamiltonian circuits and of the problems encountered in the search for 
existence theorems. The chapter begins with a study of the relation
ships between the family of H-circuits of a graph and the family of 
four-colourings. Subsequent sections describe two algorithms, both in
dependent of four-colourings, for the generation of a family of H-cir
cuits, The first of these is essentially topological in nature while 
the second involves a combinatorial process. The chapter concludes 
with an existence theorem based on the parity properties of graphs and 
their families.

Four-colourings and Hamiltonian Circuits

U.1. The upper part of Fig. 2$ shows a four-colouring, , together 
with the corresponding Tait colouring, of a prime dual Ĝ . It will be 
observed that the edges coloured 2 together form an H-tree. Likewise 
the edges coloured 3 constitute an H-tree. To each of these H-trees 
there corresponds an H-circuit in the graph Ĝ . The edges coloured 1 
do not form an H-tree because four of these edges make a closed circuit. 
Viewed from the standpoint of the vertex four-colouring these four 
edges constitute a cd circuit within which, using Kempe’s principle of 
interchange, one may transpose the vertex colours a and b te obtain 
another four-colouring Cg, shown in the lower part of Fig. 2̂ . From 
the standpoint of the Tait colouring this amounts to an interchange of
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H-tree! 3H-tree 2

b interchange 
in cd circuit

H-tree (2) H-tree(3)

FIG. 25. Colouring of G,
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the edge colourings 2 and 3 within the circuit of edges coloured 1 •
The interchange operation will be said to transform the colouring into 
the colouring (or vice-versa, the operation being reversible). Assoc
iated with Cg are two more H-trees, formed by the edges coloured 2 and 
the edges coloured 3. The dual has one other four-colouring, Oy
not linked with or This colouring is shown in Fig. 26. Assoc
iated with are three H-trees formed by the edges coloured 1,2 and 3 
respectively, there being no circuits.

iu2. The relationship between the family of three four-colourings of Ĝ  
and the family of seven H-trees may conveniently be depicted by the 
transformation diagram of Fig. 27. In this diagram each circle repre
sents a four-colouring and a line joining two circles represents a trans
formation between colourings (i.e. a circuit interchange), the number 
associated with the line being the Tait colouring of the edges which form 
the circuit. Each dot represents an H-tree and the line joining the dot 
to a circle relates the H-tree to its parent four-colouring. The line 
is labelled with the Tait colouring of the edges which form the H-tree. 
The transformation diagram for Ĝ  consists of two separate components.

h.3. The transformation diagram for any dual may be constructed in a 
similar manner but in order that the diagram shall be unique it is 
necessary to formulate certain rules of procedure:-
a) The diagram is valid with respect to some chosen face of the dual. 
Without loss of generality it is convenient to choose the infinite face 
as the basis of the transformation because it is always possible to draw 
the dual in such a way that any arbitrarily chosen face becomes the 
infinite face.
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H-tree (2) H-tree (3 )

a

H -tree  (1 )

FIG. 26 A colouring of G g

FIG. 27 Transformation diagram for Gg



t) The outside region of any circuit within which a colour interchange 
is effected is defined as that region which contains the infinite face of 
the dual. Thus an interchange within a circuit leaves unaltered the 
vertex and edge colourings associated with the infinite face. If the 
transformation diagram contains more than one component the vertices and 
edges of the infinite face are assigned the same colourings for each com
ponent. These colourings are the invariants of the transformation,
c) For a given four-colouring the edges of the dual which have a par
ticular Tait colouring may, in general, form more than one circuit. The 
transformation is defined as applying simultaneously to all these cir* 
cuits - i.e. all vertex (and edge) colourings idiich are eligible for in
terchange are so changed.

Each conqponent of a transformation diagram constructed in accord
ance with the foregoing rules is characterised by:

a set of circles (four-colourings), each having three links 
with other circles or dots (one link for each of the three 
Tait colourings);
a set of dots (H-trees), each having one link with a circle; 
and a set of links, each bearing a number (Tait colouring) 
which relates to a specific edge of the Infinite face of the 
dual.
A change in basis (making some other face of the dual the infinite 

face) leaves the topological structure of the diagram unaltered but, in 
general, this change results in a different numbering of the links.

ii.U. From the properties of the transformation diagram one derives cer
tain general relationships between the four-colourings and the H-trees 
of any dual G'. For the sub-family of four-colourings represented by
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any component of the diagram let

c be the number of four-colourings,
h^ (k « 1, 2 or 3) be the number of H-trees with Tait colour k,

and h » h.j + hg + ĥ  be the total number of H-trees#

Consider any link labelled k. Either this link connects two four- 
colourings or it joins a four-colouring to an H-tree included in the 
number ĥ # Every four-colouring of the component and every H-tree 
included in h^ is associated with one such link# Hence h^ and c are
either both even or both odd# It follows that h.j, hg, ĥ , h and 6 all
have the same parity# Because each H-tree in G' is in one-one corres
pondence with an H-circuit in G, the following property holds for any 
graph G:

Parity •property# For each separate sub-family, and therefore 
for the family as a whole, the parity of the H-circuits is the 
same as the parity of the four-colourings#

By definition h^ is the number of H-trees which include, as a tree 
edge, that edge of the infinite face of the dual which has the (invar
iant) Tait colouring, k. The number of H-trees which exclude this 
edge, h - ĥ , is necessarily even (or zero) because h and h^ have the 
same parity. A change in basis results, in general, in a change in the 
values of h.j, hg and ĥ , but the parities of the h^ are unaffected be
cause h and c are invariant. Hence, for each sub-family, the number of 
H-trees which exclude any given edge of G' is even (or zero). Thus the 
following property holds for any graph G:

Closure property# For each separate sub-family, and therefore 
for the family as a whole, the number of H-circuits which include
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any given edge of G is either even or zero#
Suppose that some H-circuit is given# This alone does not satisfy the 
closure property, therefore a second H-circuit exists# Because this is 
distinct from the first the two H-circuits will have some, but not all, 
of their edges in common# These two circuits together fail to satisfy 
the closure property and therefore at least one more H-circuit is 
required to ensure closure - i#e. to form a complete sub-family# Thus, 
if a graph has one H-circuit it must have at least three# In its global 
form - i.e. as applied to the family as a whole - the closure property

23(referred to in para. 2.6 as the property FI) was established by Tutte
in 19U6. In the same year a further proof of this property was communi-

21cated privately to Berge by C.A.B. Smith #

U.6# The author*s investigations into the properties of transformation 
diagrams were conducted in the hope that an answer might be found to the 
following question:

Given that a prime graph G has a (non-empty) family of H-circuits, 
in what circumstances can it be proved that the number of H-circuits 
which pass through any given edge of G is non-zero?

The question can be answered for those graphs vhose transformation 
diagrams exhibit one or both of two specific features:
a) Suppose that a sub-family (represented by a component of the trans
formation diagram) has odd parity. Then h^ > 0 (k*»1, 2 or 3), and 
therefore h - h^ > 0# Hence, by the argument of paragraph h#2, H-circuits 
pass through any given edge of any graph which has at least one sub-family 
of odd parity irrespective of the global parity of the graph.
b) Suppose that the transformation diagram includes a four-colouring
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which has links with two H-trees. Because the H-trees have different 
Tait colourings it follows that the tree edges of one are distinct from 
the tree edges of the other; hence the two corresponding H-circuits to
gether include every edge of the graph.
Each component of the transformation diagram shown in Fig. 27 exhibits 
one, or both, of these properties. The same is true of the transfor
mation diagram for (vide Fig. 7) which is given in Fig. 29# Neither 
property applies to the transformation diagram for Ĝ  shown in Fig. 28.
This diagram has only one component, of even .parity, with one H-tree 
associated with each four-colouring. Nevertheless, because the H-trees 
do not all have the same colouring it follows that H-trees exist which 
exclude any given edge of the infinite face of Ĝ . By changing the 
beisis it can be shown that the same property holds for every face; hence 
the family of H-circuits together include every edge of the graph Gg.

!i.7. If a component of the transformation diagram of a graph does not 
possess the property (b) above, then each four-colouring of the compon
ent must be included in a closed circuit of linkages with other four- 
colourings. If the parity of this component is even then it is possible, 
for some basis, that all of its H-trees will have the same colouring.
Such a component, considered in isolation, does not support the hypothe
sis that every edge of the parent graph is included in at least two H-
circuits. The prime dual Ĝ ,̂ shown together with its transformation 
diagram in Fig. 30, has been constructed to illustrate this property.
Every edge of G^q is included in at least two H-circuits because the larger 
component of the transformation diagram exhibits property (b), but this 
cannot be proved by applying the transformation procedure to the four- 
colouring Cl (Fig. 30).
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FIG. 28. Transformation diagram for
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1
FIG. 29. Transformation diagram for G^
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I
FIG. 30. Transformation d iag ram for G.
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h.8. Transformation diagrams have interesting properties but they fail 
to provide a complete answer to the question posed in paragraph U«6* In 
particular, two subsidiary questions still require an answer.
a) What properties are possessed by the transformation diagram of a 
prime graph which are not necessarily found in the diagram of a non
prime graph? The properties developed in this section in no way dep
end upon the graph being prime.
b) Is there some global closure property, embracing the whole 
family, which goes beyond the sub-family closure property described 
in paragraph b.2? The example provided by the graph G.jq shows 
that unless one can establish some relationship between the sub
families little progress can be made towards answering the main 
question.
Because his primary interest is in the family of H-circuits rather than 
in the four-colourings of a graph, the author has devised a transforma
tion which, by abandoning the dependence on four-colourings, provides 
a comprehensive link between the H-circuits of the family.

A Transformation Algorithm.

L.9. Given a graph G, together with one of its H-circuits, the procedure 
to be described generates a family of H-circuits. The essential feat
ure of the procedure is an algorithm which, by means of an iterative 
sequence of elementary operations, transforms the given H-circuit into 
another H-circuit. This algorithm will be explained in the context of 
an illustrative example.

h.10. In Fig. 31 (a) the graph G^ (whose dual appears in Figs. 2̂  and 26)
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is drawn in such a way as to enphasise a particular H-circuit. It is 
helpful to imagine that the bold lines of the figure, representing the 
circuit edges, result frcxn the superposition of twelve bold markerŝ  on 
the otherwise uniformly feint edges of the graph. Siçpose that the 
marker presently on the edge (2,3) - i.e. the edge connecting vertices 
2 and 3 - is moved to lie on the edge (2,6), as shown in Fig. 31(b), as 
though it were pivoted at vertex 2. This constitutes the first step in 
the algorithm (the arbitrary nature of this first move will be discussed 
later). The resultant pattern of marked edges forms a closed circuit 
of nine edges together with a tail of three edges. Vertex 6, where the 
tail joins the circuit, is the only vertex at which three marked edges 
meet. Two of the three markers incident at vertex 6 lie on the circuit, 
one being the marker on the edge (6,2) which featured in the first move, 
while the other, on the edges (6,7), is the next to be moved. At the 
second step the algorithm requires that the marker on (6,7) be moved, as 
though pivoted at vertex 7, to the vacant edge (1,7). The markers now 
occupy the positions shown in Fig. 31(c).

U.11. The algorithm may be generalised as follows. Prior to each step, 
except the first, the markers form a circuit together with a tail.
The vertex t, at the end of the tail, is associated with one marker.
All three edges incident at the vertex j, the junction of tail and cir
cuit, have markers. Every other vertex has two marked edges. Of the 
two markers incident at vertex j which lie on the circuit one was moved 
at the previous step while the other, on the edge (v,j) where v is a 
vertex adjacent to j, is the subject of the next move. Because vertex

The author has found it convenient to use matchsticks as movable
markers.
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1st move

2nd move
b)

11 th move\

Id)

FIG. 31. Transformation algorithm for Gg
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V is distinct from both j and t and therefore has two marked edges, there 
is necessarily one, and only one, unmarked edge (v,w) incident at v, 
where w is a vertex adjacent to v. The algorithm requires that the mar
ker on the edge (v,j) shall be moved to the edge (v,w). The situation 
following the move is dependent on whether or not the vertices w and t 
are distinct* If w is distinct from t then w now has three marked edges 
and becomes the junction, while t still has one marked edge. All ver
tices other than w and t have two incident markers. Hence the markers 
form a circuit together with a tail and the algorithm proceeds by a fur
ther iteration. If the vertex w is identical with t then, following 
the move, every vertex has two associated markers; there is no longer a 
tail. Therefore the algorithm terminates with the markers forming an 
H-circuit.

U.12. The sequence of operations defined by the algoiithm is unique 
(except for the first step) and reversible. When applied in the reverse 
direction the algorithm restores the original H-circuit. In the forward 
direction the algorithm must terminate in an H-circuit, distinct from 
the original, after a finite number of iterations (the number of possible 
arrangements of the markers being finite). For the illustrative example, 
starting with the H-circuit of Fig. 31(a) and the given first move, the 
algorithm terminates, after eleven iterations, in the H-circuit shown in 
Fig. 31(d).

Ij.l 3. Two further properties of the transformation need to be considered. 
Firstly, it is apparent that the algorithm can never require the movement 
of the marker which denotes the extreme edge of the tail. Consequently 
this edge is common to both the initial H-circuit and the H-circuit which
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results from the transformation. Secondly, any one of the markers on 
the edges which form the given H-circuit may be chosen for the first move 
and the selected marker can be placed in either of two positions accord
ing to which end of the edge is regarded as the pivotal vertex. Thus, 
by an appropriate choice of initial move, any one of a number of differ
ent H-circuits can be generated from the one given H-circuit.

U.1U. These two properties, together with the closure property, make 
possible the generation of a family of H-circuits. Suppose that, at 
some stage in the generation procedure, the set of H-circuits generated 
by the transformation do not satisfy the closure property. Then there 
exists (at least) one edge E of the graph which is included in an odd 
number of H-circuits from the set. The transformation algorithm may be 
applied to each of these H-circuits in turn, choosing for the first move 
that marker which is on the circuit edge next to E when viewed in an 
anticlockwise sense (to make the move unique). This ensures that E is 
the extreme tail edge and hence that E is common to the initial and final 
H-circuits. This procedure must result in the generation of an even 
number of distinct H-circuits which include the edge E. The procedure 
is repeated for other edges until the closure property is satisfied.
The family of comprises seven H-circuits s from the H-circuit given 
in Fig. 31(a) each of the other six can be generated by an appropriate 
choice of first move.

b.l2. In the absence of a truly global closure property there is no 
guarantee that the transformation procedure described above will generate 
all members of the family of H-circuits of a graph, but for each of the 
many graphs investigated by the author the procedure does generate the
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complete family. Although this transformation is essentially more powerful 
than that based on four-colourings the author has so far been unable to de
termine the circumstances in which the generated family has the property of 
including any edge of a graph in at least two H-circuits but he believes 
that a deeper study of the properties of the transformation might reveal 
the necessary conditions.

A Generation Algorithm

I1..I6. Although the transformation procedures described in previous para
graphs offer insights into the relationships between the members of the 
family of H-circuits of a graph, their deficiencies as family generators 
have led the author to seek a different approach idiich necessarily gener
ates the complete family. The algorithm now to be described generates 
directly the sub-set {Hgj of {H], where [H} denotes the set of all H-cir- 
cuits of a graph G‘- i.e. the complete family - and (Hg) represents those 
members of the family which includes a given edge E of G. The formal 
specification of the algorithm will follow a preliminary discussion of the 
underlying principle.

li.l 7. To each H-circuit in G which passes through the edge E there corres
ponds an H-tree in Ĝ  which excludes the edge E' (idiere E' in Ĝ  corres
ponds to E in G). In the context of this algorithm it is convenient to 
assign a direction to each of the tree edges of the H-tree, the directions 
being dependent on the chosen edge E' . The two vertices in G' which 
are connected by E' are the root vertices of the directed two-tree and 
the tree edges are directed towards the roots. In Fig. 32 an H-tree 
of G^ is drawn so as to show the edge directions appropriate to
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FIG. 32. Directed edges of an H-tree 
in G_
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the choice of g and h as root vertices. It is evident that from each 
vertex of other than the root vertices, there emanates exactly one 
outwardly directed edge. This property clearly extends to any H-tree 
by virtue of the properties of the tree structure.

U.18. Assume that G (and hence Ĝ ) is given and that some edge E of G 
(and hence E' of G') is specified. Suppose that a sub-set of the edges 
of G' be assigned directions in such a way as to satisfy each of the two 
conditions which follow:

Condition 1. Let the two vertices connected by E' be the root vertices 
and from each vertex of G' other than the root vertices let one, and 
only one, of the incident edges be chosen as an outwardly directed edge. 
The total number of directed edges must equal the number of non-root 
vertices - i.e. if an edge is chosen to be a directed edge for both of 
the vertices with which it is associated, then this edge must be counted 
twice (once in each direction).

If condition 1 is satisfied then, starting from any vertex other than a 
root vertex, and following only directed edges one proceeds by a unique 
path which either terminates in a root vertex or enters a directed cir
cuit. (The chosen edges cannot form a circuit other than a directed 
circuit for this would imply that at least one vertex possesses more 
than one outwardly directed edge).

Condition 2. Let the directed edges be so chosen that not more than 
one directed edge bounds each triangular face of G%
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The next step is to prove that if condition 2 is satisfied then 
directed circuits cannot arise. Consider a circuit formed by a set 
#f directed edges satisfying condition 1 • Because the two root ver
tices are connected by the edge E % which is not a directed edge and 
hence is not on the circuit, it follows that the root vertices both 
lie on the same side of the circuit. Consider that region, R, of 
which is bounded by the circuit and which does not contain the root 
vertices•

Let n be the number of edges on the circuit, and let v, f, e be 
respectively the number of vertices, faces and edges within R. Apply
ing Euler’s relation to the regi#n R gives

v+f**e + 1 , 

and because each face is triangular it follows that

3f - n 4 2e .

Hence, eliminating e,

2v + n- f + 2 •

Now the number of directed edges arising within R is v (one f#r 
each internal vertex) and each of these is associated with two faces.
The number of directed edges on the circuit is n and each of these is 
associated with one face within R. But 2v + n = f + 2 >f, hence it 
cann#t be true that each #f the faces is bounded by only one directed 
edge and condition 2 is vitiated. Therefore if both conditions 1 and 
2 are satisfied it folltws that circuits cannot arise and the directed 
edges constitute an H-tree in G' t# which there corresponds an H-circuit 
in G within the set {Hg}.
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4.19. The foregoing principle suggests the following algorithmic 
procedure which is set out in three steps.

1. Let each triangular face of be arbitrarily assigned an index
number (represented by p, q, r .... ) and each vertex an index letter 
(represented by a, b, c, .... k, ••• ). Let each edge be denoted by 
an un-ordered number pair (p, q) where p and q are the index numbers of 
the faces which are separated by that edge.

2. For each vertex, k, other than the two root vertices (those assoc
iated with the specified edge E'), form the vertex sum

« [(p, q) + (q̂  r) + .... + (z, p)] 

where each term corresponds to an edge incident on that vertex.

3. Form the product function

c
•f All these vertex sums where the product operator * is defined as 
follows.

The product ŝ  * ŝ  is the su»4 ef terms such as (p, q) (r, s) 
where (p, q) is any term in ŝ  and (r, s) any term in ŝ  such that the 
index numbers p, q, r, s are all different. Thus, if ŝ  includes the 
term (1, 2) and ŝ  includes the terms (2, 5) and (3, 4), the product 
ŝ  * 8̂  will include the term (1,2) (3, h) but not (1, 2) (2, 5)*
No significance attaches to the ordering of the product terms, thus 
(1, 2) (3, U) = (3, U) (1,2)- (li, 3) (1, 2) etc.

Similarly the product ŝ  * ŝ  * ŝ  is the sum of terms such as 
(p, q) (r, s) (t, u), formed by taking one term from each of ŝ , 3̂  
and 8̂ , such that p, q, r, s, t, u are all different. The extension
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ft.SSCcirfi.UVe
to higher erder products is ebvious. The _ law holds for
the product operation so that the vertex sums may be multiplied succ
essively in any order and f̂ / is unique* If f̂ / / 0 each term in fg/, 
is formed by taking one term (representing an edge) from each of the 
vertex sums, thus satisfying condition 1 • Furthermore the definition 
of the product operatien ensures that, in each term of f^/, no face 
index number appears more than once. Hence each face is associated 
with #ne, and only one, directed edge and condition 2 is satisfied. It 
follows that the set of edges represented by the components of any term
of fg/ form an H-tree in G' such that E' is not a tree edge. Thus f̂ / 
represents the whole family of such H-trees and hence the algorithm 
generates the set [Ĥ J in G.

4.20. Although the algorithm has been described in terms of the dual G', 
the generating function f̂  can be obtained directly frem G and the 
terms #f f̂  interpreted as the H-circuits in G which include the edge 
E. The components of each term of fg now represent non-circuit edges 
- i.e. if these are deleted from G the remaining edges ferm a Hamilton
ian circuit through E. The procedure will be illustrated by means ef 
a specific example. The graph Ĝ  (the subject of previous examples) 
is shown, together with its dual, in Fig. 33»

Vertices in G^ (corresponding to faces in Ĝ ) are arbitrarily 
assigned index numbers and faces in Ĝ  are arbitrarily assigned index 
letters. The aim is to form the set {Hgj where E is the edge linking 
vertices 1 and 12 in Ĝ . Observe that E separates the faces g and h 
which correspond to root vertices in Ĝ .

First form the face sums for faces a, b, c, d, e, f. Thus
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FIG.33. Generation algorithm for Gg
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s. = [(1,2) + (2,3) + (3,1*) + (L,g) + (3,1)] ,a
%  - [(2,3) + (3,10) + (10,11) + (11,2)] ,

etc.

Then 8̂  ̂* 8̂  = [(1,2)(3,10) + (1,2)(10,11)
+ (2,3)(10,11)
+ (3,1*)(10,11) + (3,U)(11,2)
+ (1*,3)(2,3) + (1*,S)(3,10) + (1*,5)(10,11) + (1*,5)(11,2)
+ (5,1)(2,3) + (3,1)(3,10) + (3,1)(10,11) ♦ (5,1)(11,2)]

The subsequent steps In forming the product function are straight
forward (though tedi*usl) and one finally obtains

- =a * *b * =0 * =d * =e *
= [(1,2)(3,10)(1*,5)(8,J)(6,7)(11,12)

+ (2,3)(1,3)(8,10)(1*,9)(6,7)(11,12)
+ (1,2)(3,10)(1*,9)(3,6)(7,8)(11,12)
+ (1,2)(3,li)(3,6)(8,9)(lO,11 )(7,12) ]

The first term in f̂  represents the H-circuit obtained by dele
ting the edges which join vertices 1 and 2,3 and 10,L and S, etc, in G,
This circuit is shown in Fig. 3U(e). Similarly the other terms of f_£
represent the ether three members of shown in Fig. 3U(g), (3U(f) 
and 3U(d).

L.21. The procedure is modified if the aim is to obtain {h ! , the 
entire family of H-circuits. Clearly every member of {h ! passes 
through two of the three edges incident at any vertex. Choose any 
vertex, vertex 1 for example, and form the partial product function

P « B, * s * 8, * s * S» b c d e f
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which excludes the terms ŝ , ŝ  ̂ŝ  corresponding to the three faces 
incident at vertex 1. Then P * ŝ  ̂generates the H-circuits which pass 
through edge E, separating g and h as previously shown* Similarly 
P * Sg generates the H-circuits which pass through the edge which separ
ates a and h, and P * ŝ  generates the H-circuits which pass through the 
edge which separates a and g* Thus the function (ŝ  + ŝ  + ŝ ) * P
generates each member of {h J* It will be observed that the determina
tion of P, which forms the bulk of the procedure, needs to be performed 
once only,. so that the formation of (H i involves little more work than 
that required to obtain (Hgj.

Application of this procedure to in the example results in the 
family of seven H-circuits shown in Fig* 3U*

L.22* The generating function, fg, and its partial products possess a 
simple parity property* This property leads immediately to a proof
that the number of H-circuits vdiich pass through any edge of G is even*
(In this section the term * even number* will be taken to mean an even 
integer or zero)* Consider the face sum, s, for any face of G. Let 

be the number of terms in s which contain the vertex number k, and 
the number of terms which contain both k and 6*

Thus, if s = [(1,2) + (2,3) + (3,U) + (U,?) + (5,1)3,
then = 2, ** 2, « 0 etc*

and ̂ 12  ̂ 1̂3 * ̂  etc.

It is evident from the definition of s that = 2 or 0 according 
as k is, or is not, a vertex on the boundary of the face which generates 
s. The value of is 1 if k and 6 are joined by an edge which bounds
the face - otherwise, = 0*
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Let erg be the number of terms In s which do not contain the index 
number k, and be the number of terms which contain neither k nor 6. 
Then ‘'k “ S - and - S -

where S is the total number of terms in s.
Consider next a product t of any number of face sums

t « s * S, * 8 a b c
i.e. t is either a partial product of fg or t = fg.

’’k » V  ' ’’k ' 13
be defined for t in the same way as

 ̂ * *k " *1#
are defined for s. Thus, in the product ŝ  * ŝ  of the example given 
in paragraph ii.20,

T, = 6 , t 2̂ " **» ^23 “ 5 , ry  <• 7, T—  = 3 .

Now suppose that a new partial product t' is obtained by forming
the product of t with some face sum s, giving t̂  a t *  s.

From the definition of the product operator, it follows that the 
number of terms in t' which contain some arbitrary index number p is 
given by

®  ̂T  ̂T a-r-p k pk pk k pk pk 

where the summation ranges over all index numbers k except k *» p.

Hence
% -1 "pk - "p - "k * "pk] + i "pk "pk]

where T is the total number of terms in t.

But
k "pk " "p k "pk " "p '
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therefore,

"p “ "P̂ " V  • ̂"P"P " V  "pk
_ Z O' T . Z T a k pk k k pk k *

Now, even for all k* If it is assumed that is even for all
k it follows that is even whatever the parity of and 7̂ .̂
Because p was chosen arbitrarily is even for all k. Hence, by in
duction, is even for any partial product and, in particular, for the 
complete generating function fg.

An extension of the argument shows that, for any partial product.

k̂̂  k̂6m* ̂ k6mno  ̂
are mil even (where is the number of terms which contain all of 
k, t and m etc.) 
whereas

^k6mn ̂  ........ *
may be either odd or even.

U.23. The results obtained in the previous paragraph lead directly to 
a proof of the closure property. Each term in the function fg contains 
every vertex index number. In particular each term contains the index 
number 1. But is even and therefore the number of terms in fg is 
even, for every choice of the edge E. Hence,

the number of H-circuits which pass through any edge of a
trivalent planar graph is either even or zero.

The following parity property is also of interest. Suppose that, for 
some dual G', a partial product P (para, h•2̂  ) excludes the terms corres
ponding to the vertices a, b and c which define a triangular face of g1
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Let this face be numbered 1 and let the adjacent face separated by the 
edgê be numbered 2. Every term of the partial product necessary excludes 
1 (because this face number appears only in ŝ , and ŝ ) and also ex
cludes one other face number (not necessarily 2). For each term in P 
which excludes 2 there exists an H-tree in G which includes ab as a tree 
edge (each of these H-trees corresponds to a tena in both P * ŝ  and P * 
ŝ ). Hence the number, r— , of such terms has the same parity as the 
complete family of H-trees. Because is even it follows that T— has
the same parity as the total number of terms in P.
Hence,

the parity of a graph G is equal to the parity of the number of 
terms in the partial product of all the face sump excepting 
those which correspond to the three faces incident at some cho
sen vertex of G.

It.2lj. The author had hoped to establish the necessary and sufficient con
ditions such that for every edge E of a prime graph G, fg / 0. The fail
ure to obtain these conditions is a consequence of the author’s present 
inability to impose on the combinatorial procedure the constraints inqpli- 
cit in the topological structure of the graph - in particular the con
straint which results from the assumption that the graph is prime. When 
the topological and combinatorial problems are better understood it might 
be possible to use this algorithm to establish existence theorems. In 
the meantime the author has had to be content with such results as can 
be obtained from parity relationships. Parity properties, in parti
cular the closure property which states that fg is even, can be made 
to yield existence proofs only if it is assumed that some
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property of the graph or Its families has odd parity. Thus, for 
example, it is easily proved that fg 0 for those graphs 
which have an odd number of four-colourings, or which have a sub
family of odd parity. In order, therefore, that this chapter shall 
close on a more positive and optimistic note a further example of such 
an existence proof is given. As far as the author is aware the exis
tence theorem which follows has not previously appeared in the litera
ture.

An Existence Theorem.

h.2G. Consider some edge E' of a dual G Let the vertices connected
by Ê  be labelled c and d and let the other two vertices associated 
with the faces separated by E' be a and b, as shown in Fig. 35(a). Now 
suppose that E ' be switched so that it connects a and b instead of c and 
d. This change results in a different dual,̂ Gg/(Fig. 35(b)), which 
will be called the conjugate of Ĝ  with respect to E .̂ To this dual 
there corresponds a graph Ĝg which is the conjugate of G with respect 
to E (where the edge E in G corresponds to E ' in G 0 • Suppose that 
the edge E' in G' is contracted so that vertices c and d merge into the 
single vertex v. This change results in yet another dual, Ĝg/, which 
will be called the reduction of Ĝ  with respect to the edge E'. Next 
consider any H-tree in Ĝ  which includes E^ as a tree edge (Fig. 35(c)).
Te this H-tree there corresponds an H-tree in _̂ '/ which differs fromXt £l
the original H-tree only in that one tree edge has been eliminated. The 
H-tree in ̂ Gg/ is such that neither av nor vb are tree edges (Fig. 35(d)). 
Similarly any H-tree in the conjugate ^Gg, which has both cb and db as 
tree edges (Fig. 35(e)) reduces to give an H-tree in ̂ Ĝ /, again with
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FIG 35. An existence theorem
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the elimination of one tree edge, the edges cb and db having merged 
(Fig. 32(f)). For this H-tree vb is a tree edge but av is not. Now 
the closure property applied to requires that the number of H-treesft £j
for which av is not a tree edge shall be even (or zero). Therefore 
the number of such H-trees for which vb is a tree edge (Fig# 32(f)) has 
the same parity as the number for which vb is not a tree edge (Fig. 32 
(d)). If each of these numbers is odd it follows that the parity of 
is odd and also that an odd number of H-trees of the conjugate Ĝ̂ /have 
the configuration shown in Fig# 32(e). Hence the theorem.

Theorem. If a graph G has odd parity then the conjugate graph 
with respect to any edge E possesses H-circuits which pass 
through E (this edge being switched in the conjugate)•

The theorem has two important corollaries :

Corollary 1. If some edge E of a graph G gives rise to a 
conjugate graph having odd parity then G possesses H-circuits 
which include E.

Corollary 2. If at least one of the conjugate graphs of a 
given graph G has odd parity, then G possesses a family of 
H-circults.

This theorem does not require G to be prime. The singlest prime graph 
(■as far as the author is aware ) which does not have at least one 
conjugate of odd parity is Hamilton’s graph (title page). For this graph 
the conjugates are all identical (by symmetry) and have even parity.
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CHAPTER 2 
CONCLUSION

2.0. In conclusion the author recapitulates his achievements and comments 
•n what he had hoped to achieve when he began this research. Suggestions 
for further research are offered in the form of questions.

The Four-colour Problem

2.1. The colouring algorithm described in paragraph 3.11 has no direct 
bearing on the properties #f Hamiltonian circuits but, because the four- 
colour problem is of interest in its own right, the author has devoted 
some of his time to an exploration of the algorithm. In particular he 
has attempted to construct a dual for which the algorithm does not term
inate but cycles. The experimental procedure used by the author involves 
the building-up of the dual step by step, starting with an incomplete dual 
(not all of the faces being triangular). At each iteration of the al
gorithm new edges and, if necessary, new vertices (suitably coloured) are 
added to the dual in such a way as to bring about a colour chain which 
forces the algorithm to proceed to a further iteration. In all such ex
periments the author found that it was not possible to prevent the al
gorithm terminating without the frequent addition of new vertices and he 
feels intuitively that if an upper limit is set to the permitted number 
of vertices then the algorithm will eventually terminate however the dual 
is constructed. But intuition does not constitute proof and the follow
ing question remains open:

Question 1. Does there exist a prime dual having no vertices of order h.
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together with a four-colouring of all vertices except for one vertex, v, 
of order 2̂  such that the colouring algorithm applied to v fails to term
inate?

Such a dual, if it exists, would not necessarily constitute a counter
example to the four-colour conjecture but it might have interesting pro
perties: in particular, because the cycle length is a multiple of 10, it 
would probably exhibit some form of symmetry. The author’s experiments 
suggest the further question:...................................

Question 2. If the answer to question 1 is affirmative, what is the min
imum number of vertices which a dual having this property must possess?

Any dual which forms a counter-exanç)le to the four-colour conjecture must 
have at least this minimum number of vertices.

2.2. The algorithm described in paragraph 3.18, which the author devised 
as a means of determining the four-colour parity of a graph, leads also 
to a result which is directly relevant to the four-colour conjecture.
In paragraph 3.22 the author has shown that a necessary and sufficient 
condition for a graph t# have no four-colourings is that each of the co
efficients in a certain equation based on the Heawood congruences is zero 
(mod 3). This result suggests the composite question:

Question 3. What topological properties of a graph are implied by the 
author’s condition? Can it be proved that no graph possesses these 
properties? If no proof is possible can a graph having these properties 
be constructed?
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The Generation and Properties of Hamiltonian Circuits#

2.3. In the first part of Chapter U the author has shown that the rela
tionships between the four-colourings and the Hamiltonian circuits of a 
graph can conveniently be represented by means of a transformation dia
gram, and he has proved that each component of a transformation diagram 
exhibits the parity property (para. h»h) and the closure property (para. 
li.2). This latter result raises the question:

Question U. Is there some global closure property, stronger than the 
sub-family closure property, which necessarily embraces the complete 
family of Hamiltonian circuits?

The author has also shown (para. ii.6) that if the transformation diagram 
of some graph possesses either of two specific properties then every 
edge of the graph is Hamiltonian - i.e. is included in a non-empty set 
of Hamiltonian circuits. The absence of these properties does not nec
essarily imply that some edges of the graph are non-Hamiltonian. From 
a given Hamiltonian circuit a sub-family of H-circuits can be generated 
by means of the four-colour transformation procedure, but, in general, 
this procedure will not generate the complete family - the transformation 
diagram consists of a collection of unrelated components. Because the 
properties of the complete family cannot be inferred from the properties 
of any one sub-family (para. U.7) it is not̂ possible, solely by means of 
the transformation procedure (and bjse given H-circuit), to determine 
whether or not any given edge of the graph is Hamiltonian.

2.1i. Because it is independent of four-colourings the transformation 
algorithm of paragraph h*9 is more powerful ; in all the experiments 
which the author has conducted it has proved possible to generate the
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complete family of Hamiltonian circuits from any given H-circuit. The 
author had hoped that this transformation might reveal the necessary and 
sufficient conditions for every edge of a prime graph to be Hamiltonian. 
Experiments with graphs which include non-Hamiltonian edges (e.g. Ĝ ) 
have given the author some insight into the problem and he feels that a 
deeper understanding of the properties of the transformation might lead 
to an answer to the question;

Question 2. Given a prime graph together with a Hamiltonian circuit and 
some edge E not on the circuit, in what circumstances can it be proved 
that, with a suitable choice of initial move, the author’s transformation 
will generate a Hamiltonian circuit which includes E?

2.2. Although the transformation procedure helps to establish relation
ships between the members of the family of Hamiltonian circuits, no proof 
can be offered that it necessarily generates all members of the family 
from a given H-circuit. A direct and certain means of generating the 
complete family is afforded by the generation algorithm described in para
graph U.19. Because this algorithm generates directly all the Hamilto
nian circuits which include some given edge of the graph it would seem to 
be potentially capable of determining the necessary and sufficient condi
tions for each edge to be Hamiltonian. Those general properties of the 
generating function which the author has obtained (para. 1;.22) refer to 
the parity of occurrence of the face index numbers but in deriving these 
results no account has been taken of the fact that the index numbers al
ways enter the expression in pairs, each pair corresponding to an edge 
of the graph. Furthermore no use has been made of the assumption that 
the graph is prime. The author has not yet found a satisfactory way of
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imposing these additional constraints on the combinatorial process to 
obtain stronger properties of the generating function. The outstanding 
question, therefore, is:

Question 6. Can the generation algorithm be made to yield necessary and 
sufficient conditions a) for a prime graph to be Hamiltonian, b) for 
every edge of a prime graph to be Hamiltonian?

Parity Relationships and Existence Proofs.

2.6. The only existence proofs to emerge from the author’s work are 
those based on parity relationships. The author has shown (para. U.6) 
that if a graph has an odd number of Hamiltonian circuits, or a sub
family of odd parity, then every edge of the graph is Hamiltonian. Be
cause the parity of the family of four-colourings is the same as the pa
rity of the family of H-circuits (para. U.U) the global parity of a graph 
is one of its most important properties. The global parity may be found 
either from the parity algorithm (para. 3.18) or from the generation al
gorithm (para. U.23). The author had hoped that these algorithms might 
reveal some relatively simple topological formula for the parity of a 
graph but he has not found such a formula. Hence the question:

Question 7. Is there some topological formula, simpler than the author’s 
parity algorithm, which determines the parity of a prime graph?

(The parity of a non-prime graph is equal to the product of the parities 
of its prime factors).
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2.7. The author has shown that by Involving the conjugate and reduced 
graphs the closure property can be made to yield further existence theo
rems (para. U.22). In particular he has proved the existence of Hamil
tonian circuits in any graph which has at least one conjugate graph of 
odd parity. The example of Hamilton’s graph shows that this is a suff
icient but not necessary condition for the existence of Hamiltonian cir
cuits. The author believes that prime graphs idiich have no conjugate 
graphs of odd parity (e.g. the non-Hamiltonian graphs of Fig. 18) are very 
rare and exhibit special symmetries • Only within this class of graphs 
will a counter-example to the four-colour conjecture (if one exists) be 
found.

Finale

2.8. The author has shared in the disappointment and frustrations of the 
many who have entered this field only to find that their problems - espec
ially those which have implications for the four-colour conjecture - are 
apparently intractable. The four-colour problem is presently analogous 
to the rainbow - fascinating, elusive, but seeming to have a definite 
conclusion not too far away. Perhaps the end will for ever lie just over 
the horizon but so long as it is (almost) in prospect someone will cont
inue the quest for the proverbial crock of gold.
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APPENDIX
HAMILTONIAN PARTITIONING OF THE FACES OF A DUAL

A.O. The procedure described in paragraph 3.19 uses a Hamiltonian 
circuit to partition the faces of the dual of a prime graph, symbols 

being given to faces lying on one side of the circuit and symbols 
7̂  to those faces lying on the other side. By means of the following
algorithm the indexing of the faces and the ordering of the congruence 
equations is accomplished in such a way that the matrix. I, of the 
coefficient of the x̂  in the equations, is a matrix having
each of the elements of the leading diagonal equal to unity.

(Alternatively, the matrix Y may be so structured).

The Indexing Algorithm.

A.1. Assume that a prime dual is given, together with one of its 
Hamiltonian circuits. Choose any pair of vertices which are adjacent 
on the circuit and let these be assigned index letters v and w. The 
matrix X is a square matrix of order n, where n + 2 is the number of 
vertices of the dual. Each column of this matrix corresponds to one 
of the n faces within the circuit and each row corresponds to one ef the 
vertices other than v and w. The matrix is generated column by column, 
one face index number and one vertex index number being assigned at each 
step. Prior to the step (l < k < n) index numbers have been assig
ned to fc' • 1 faces and to k - 1 vertices, and k - 1 columns of the matrix 
X have been completed. Each vertex of every face already indexed has 
been assigned an index number or letter. Of the faces within the cir
cuit and not yet indexed at least one has precisely one vertex which is
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not yet indexed* Choose any one of these faces (if there are more 
than one) and assign the index number k to this face and to its un
indexed vertex. The k^^ column of the matrix is completed by enter-

tViing 1 in the k row.and in the other rows (if any) which correspond 
to those index numbers associated with the two previously indexed 
vertices# All other entries in the k̂ ^ column of the matrix are O’s.

A.2. This procedure is illustrated by the example shown in Fig. 36. 
Prior to the first step the only vertices indexed are those labelled
V and w. Only one face within the circuit is associated with both
V and w, and the first step of the algorithm assigns the index number
1 to this face and to the third vertex of this face. The first col
umn of the X matrix is completed by entering 1 as the first element and 
0 for each of the other elements because no other numbered vertices 
are associated with the first face. At the second step either of the 
two faces adjacent to the previously indexed face may be chosen - in 
the example the face which includes vertex w is selected arbitrarily. 
The second column of the matrix has 1*s in the first two rows and 0*s 
e].sewhere because face number 2 is not associated with any vertices 
other than those previously indexed (1, 2 and w). The procedure 
finally results in the matrix :
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FIG ■ 36 Hamiltonian partitioning
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vertex ^ 2 3 h 2 6 7 8 9 10 11 12

Index
1

-
1 1 1 0 1 0 0 0 0 0 0 1

2 0 1 0 0 0 0 0 0 0 1 0 1

3 0 0 1 1 1 1 0 1 0 0 0 0

h 0 0 0 1 0 0 0 1 1 0 0 0

2 0 0 0 0 1 1 1 0 0 0 0 0
6 0 0 0 0 0 1 1 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0

9 0 0 0 0 0 0 0 0 1 0 0 0
10 0 0 0 0 0 0 0 0 0 1 1 0
11 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 1
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