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Abstract

This thesis focuses on the challenges of evidence synthesis to inform healthcare decision
making within public health. 1t encompasses both methodological advancement and practical
application of existing synthesis methodology, using as an example - accidents prevention in

children to illustrate application of the methods within a public health context.

The thesis commences with a systematic review of NICE public health appraisals to identify
the barriers to quantitative synthesis of evidence in public health. Then focusing on the
prevention of unintentional poisonings in pre-school children, a series of network meta-
analyses of the effectiveness evidence are conducted, demonstrating how complex synthesis
methodology can be employed to help overcome some challenges of evidence synthesis in a
identified in the review of the NICE public health appraisals.

New synthesis methodology is then developed in which the standard network meta-analysis
model is first extended to include a covariate for the baseline risk and then to a multiple
outcome settings. Baseline risk is a proxy for unmeasured but important patient-level
characteristics, which may be modifiers of the treatment effect in a meta-analysis. Thus
adjusting for it can account for heterogeneity across different study populations and identify
those more likely to benefit from the intervention. The multiple outcome models account for
the dependency structure within the data which is important in a decision modelling context,
as correlations between effect estimates on different outcomes may have implications for

estimating the net benefit associated with treatment.

Finally, a substantive decision analytic model is presented incorporating results from the
network meta-analysis and application of the methodology developed to the poison
prevention data. The analyses suggest that compared to usual care, more intensive home
safety interventions are more effective in preventing medicinal poisonings in pre-school
children but are unlikely to be cost-effective for the UK NHS unless policy makers are
willing to pay upwards of £75,000 for every QALY gained.
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Chapter 1 Introduction

1. INTRODUCTION

1.1 Thesis aims

When summarising evidence to inform economic evaluations, it is essential that a structured
systematic and coherent approach to synthesis of the evidence is followed, to minimise
various forms of biases, including biases associated with arbitrary decisions about which
piece(s) of evidence to include in the analysis and to ensure overall transparency of the
process. Meta-analysis of well conducted trials (ideally from a systematic review of the
evidence), has traditionally been considered as the highest form of evidence, yet use of these
methods in public health (PH) evaluation of interventions appear to be limited. This thesis
aims to:

a) Review how evidence is currently synthesised (i.e. determine what is currently being
done or not done) when summarising evidence to inform economic evaluation
within PH,

b) Identify the barriers to quantitative synthesis of evidence in PH evaluations,

c) Demonstrate how complex synthesis methodology (including methods that current
exists as well as new methodology developed specifically in this thesis) can be
applied in PH context to overcome the barriers identified in (b) and facilitate a
more realistic modelling of the data in order to answer the relevant policy
questions, and

d) Demonstrate how the methods identified and described in (c) can be integrated with
other evidence in a decision analytic modelling framework assessing the cost-

effectiveness of interventions in public health.

In the remainder of this chapter, the challenges of evidence synthesis in PH evaluation of
interventions and the example problem will be introduced, followed by a chapter by chapter
outline of the thesis. The introduction to the challenges of evidence synthesis within PH and
the example problem presented in the sections below are based on two recent papers - the
first paper (Achana et al., 2014b) has already published in the Journal of Clinical
Epidemiology whilst the second paper (Achana et al. 2014d) has been submitted to the
journal PLOS ONE and is currently going through the peer review process.
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1.2 Background

Systematic reviews and economic evaluations conducted within a decision modelling
framework are two important tools in healthcare evaluation (Novielli et al., 2010; Cooper et
al., 2011b). Systematic reviews with or without meta-analyses have been accepted as
providing a transparent and consistent way of obtaining research evidence about the clinical
and cost-effectiveness interventions in a way that minimizes bias (Higgins and Green, 2011).
Decision analytic models offer additional framework through which effectiveness evidence,
ideally from a systematic review, may be integrated with other relevant evidence and
information on resource utilisation in order to derive comparative estimates of cost-
effectiveness. By providing a framework for assessing clinical and cost-effectiveness, these
methods enable policy relevant questions, such as which interventions represent the best use
of healthcare resources, to be answered (Drummond et al., 2005). For example, the National
Institute for Health and Care Excellence (NICE, 1999) produces guidance and

recommendations through its technology appraisal programme (www.nice.org.uk/ta) about

the clinical and cost-effectiveness of new and existing treatments for use within the National
Health Service (NHS) in England. Similarly, the Health Technology Assessment (HTA)
programme of the UK National Institute for Health Research (NIHR) commissions and

disseminates research information (available online from www.hta.ac.uk) about effectiveness,

costs-effectiveness and broader impact of healthcare interventions to help in healthcare
planning and delivery throughout the NHS.

A key component of the systematic review is how the evidence, on outcomes such as
effectiveness and adverse events, is synthesised. Meta-analysis when used in a systematic
review to combine quantitative information from multiple well-conducted randomised
controlled trials (RCTSs) is considered at the top of the hierarchy of evidence for intervention
effectiveness (Sutton et al., 2009). An alternative approach to evidence synthesis, when meta-
analysis is considered inappropriate (for example, a significant degree of heterogeneity in the
patient populations, study design, methods and other characteristics of the included studies
may render meta-analysis inappropriate), is narrative synthesis (also referred to as qualitative
synthesis (Rodgers et al., 2009; Eden et al., 2012). In this approach, individual studies
identified in the systematic review are summarised using a variety of formats without

combining the results of the systematic review quantitatively.
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Meta-analysis is widely applied in reviews of clinical effectiveness evidence including,
treatments and medical device technologies where the interventions and health outcomes are
usually well defined and evaluated in well conducted RCTs (Weatherly et al., 2009). In other
fields of healthcare evaluation, however, things may not always be as clear cut. A good
example is PH, where interventions are often more complex and less well defined than
clinical interventions (Armstrong et al., 2008). There may also be a lack of good quality
evidence, particularly from RCTs in PH, for a number of well documented reasons (Petticrew
and Egan, 2006; Rosen et al., 2006) including: (i) limited generalisability of the findings of
RCTs to the wider population due to highly selected study populations, (ii) a narrow
definition of intervention strategies and outcomes, and (iii) a focus on the individual instead
of the community that is of interest in PH. Even when feasible, many have argued that RCTs
may not always be possible to conduct in PH for other reasons; for example, ethical concerns
may be raised regarding not offering the control population a possibly beneficial intervention
(Rosen et al., 2006). Also, many of the RCTs conducted in PH tend to be cluster randomised
trials and hence have more complex designs that need adjusting for in the meta-analysis. In
addition, the best available PH evidence may often come from observational non-randomised
studies (Armstrong et al., 2008), despite the increased risk of bias associated with the lack of
randomisation. For these reasons, the use of quantitative evidence synthesis methods, such as

meta-analysis in PH raises a number of methodological challenges. These include:

i) Increased methodological heterogeneity and risk of bias from including studies with
different designs (RCTs, cluster-RCTs, controlled before-and-after studies and
other observational non-randomised studies).

i) The interventions or ‘programme’ being evaluated is often described in little detail
and less clearly defined compared to, for example, pharmaceutical treatments and
medical device technologies.

iii) A wide range of outcomes measures (including intermediate and/or surrogate

outcomes) are often used and defined inconsistently across studies.

In the next section, an active area of PH research, namely accidents prevention in children
will be introduced as the motivation problem and used throughout the thesis to demonstrate

how advancements in synthesis methodology (including existing methods as well as

Felix Achana PhD Thesis, September 2014 3



Chapter 1 Introduction

methodology developed specifically in this thesis) can be employed to help overcome some

of the challenges listed above present in synthesis of evidence in a PH evaluation context.

1.3 Example problem: Accidents prevention in children

Unintentional childhood injury is a major public health concern. According to a UK Audit
Commission report ‘better safe than sorry’ (The Audit Commission, 2007), unintentional
injury is currently the leading cause of death among pre-school children (i.e. the 0-4 years old
age group) in England. Falls, poisoning and thermal (burns and scalds) injuries are by far the
most common injuries reported for this age group in hospital emergency departments in the
UK (The Audit Commission, 2007). The importance of reducing childhood injuries and their
inequalities is emphasised again and again in many UK government reports (Department of
Health, 1999; Department of Health, 2002; Children Act, 2004; Department of Health, 2005;
Health, 2007; The Audit Commission, 2007) but evidence of a systematic approach to NHS
injury prevention in children is lacking (The Audit Commission, 2007). In response to these
concerns, the NIHR funded the ‘Keeping Children Safe at Home’ (KCS) programme of
research to look into causes and prevention of childood accidents in the home. KCS is a 5-
year multi-centre programme of research lead by Professor Denise Kendrick at the University
of Nottingham with participating centres at the Universities of Leicester, Newcastle, Norwich
and of the West of England (Bristol). The overall aim of KCS is to identify the most effective
and cost-effective strategies for preventing unintentional injury (primarily focusing on falls,
burns, scalds and poisonings) in pre-school children (0-4 year olds) at home.

Many of the issues typical of PH appraisals outlined in Section 1.2 above, such as including
evidence from studies of different designs and heterogeneity of the interventions and outcome
measures, are particularly relevant to accidents prevention in children. Thus, when this area
was previously evaluated by NICE PH30 (NICE, 2010b), only narrative summaries of the
evidence identified from the systematic review of the clinical and cost-effectiveness evidence
were conducted (Pearson et al., 2009) and estimates from individual studies were used to
inform the subsequent cost-effectiveness analyses (Pitt et al., 2009). This goes against the
tenets of evidence-based decision making where decisions should ideally be made based on

all the available evidence relevant to the decision problem (Welton et al., 2012).
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In this thesis, accidents prevention in children is revisited as part of the KCS project with a
focus on evaluating the clinical and cost-effectiveness of strategies to prevent unintentional
poisonings in pre-school children at home. In doing so, data from two published systematic
reviews of the effectiveness evidence (Kendrick et al., 2012b; Young et al., 2013) will be
used to provide a) an example context for illustrating how recent advances in quantitative
synthesis methodology help address the challenges of evidence sythesis in PH outlined in
Section 1.2, and b) a basis for further methodological developments undertaken here to deal
with specific issues of the heterogeneity in the baseline risk across studies and borrow
information across a series of evidence networks. Note that as part of the KCS project, the
evaluation of strategies to increase uptake of functional smoke alarms in households with
children and ultimately prevent thermals injuries (primarily burns) has been completed
(Saramago Goncalves, 2012) and published in a peer-reviewed journal (Cooper et al., 2011a;
Saramago et al., 2014). The evaluation of strategies to prevent falls (Hubbard et al., 2014)
and other thermal injuries (primarily scalds) is currently being undertaken as a separate

subproject under the KCS programme remit.

1.4 Structure of thesis

The remainder of the thesis is structured as follows: Chapters 2 and 3 introduce the
methodology of evidence synthesis and economic evaluation (conducted within a decision
analytic modelling framework) respectively as applied to healthcare decision making. These
methods will be used to evaluate the clinical and cost-effectiveness of poison prevention
practices described in Chapters 5 and 8. They will also form the foundation for development
of new synthesis methodology in Chapters 6 and 7 briefly outlined below. Before that,
Chapter 4 presents the outcome of a systematic review conducted to i) determine the current
state of affairs (i.e. what is currently being done/not done) regarding the use of evidence
synthesis methods in PH evaluations and ii) establish a baseline or quality bar for
development and application of methodology (outlined in this thesis) to PH evaluation of

interventions.
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Chapters 5, 6 and 7 demonstrate how recent developments in synthesis methodology (some of
which has been developed as part of this thesis) over and above current practices established
in Chapter 4, can be applied to overcome challenges of evidence synthesis in PH.
Specifically, the methodology of network meta-analysis is applied to the poison prevention
data in Chapter 5. Network meta-analysis (NMA) enables simultaneous comparison of many
interventions while preserving randomisation. Such methods offer some advantages over
pairwise meta-analysis, including the possibility to relax the need for seemingly similar but
different interventions to be ‘lumped’ into two treatment groups for the purpose of
conducting a pairwise meta-analysis — a particularly present issue in many PH systematic

reviews as described in Chapter 4.

Chapters 6 and 7 introduce new synthesis methodology by extending the standard NMA
model to deal with some specific issues. The methods developed in these two chapters are
quite general in the sense that they are applicable to evaluation of clinical and pharmaceutical
interventions as well as evaluation of PH interventions. Chapter 6 concerns the problem of
how include a covariate to account for baseline imbalances in the control group event rate
(often referred to as baseline risk) in a network meta-analysis. This covariate is typically
measured with error and has been of considerable interest to statisticians and clinicians alike
as a proxy for unmeasured but important patient- and or study-level characteristics, which
may be modifiers of treatment effect and a potential source of heterogeneity. In the PH
context as exemplified by the accidents data introduced above, baseline risk meta-regression
can be used to account for residual heterogeneity in the definition of the control group
intervention which may persist even after interventions are classified into more homogenous

treatment packages as will be shown in Chapter 5.

Chapter 7 presents methods for synthesis of evidence across multiple outcomes. The methods
allow for appropriate modelling of the correlation structure within the data, which is
important when summarising evidence to inform an economic evaluation. Further extensions
of the modelling approach are developed to borrow information across studies, treatments
and outcomes which can be useful in situations where the evidence base is either sparse or

limiting in some important respects, as is often the case in PH evaluations. This type of
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analysis can be used to produce firmer estimates of the treatment effects by making use of all
available information relevant to the decision problem (including information from closely

related evidence networks) which may be beneficial in reducing decision uncertainty.

Chapter 8 presents the development of a probabilistic decision model to evaluate the cost-
effectiveness of home safety interventions to prevent unintentional poisoning injury in pre-
school children. Results from the analyses carried out in Chapters 5, 6 and 7 will be used to

inform parameters of the decision model.

Finally, Chapter 9 concludes the thesis by summarising the important findings from the work
presented in this thesis and discusses how recent developments in synthesis methodology
(including methods developed in this thesis) can help overcome the challenges of evidence
synthesis in PH evaluations. Limitations of the methodology outlined and applied throughout

the thesis are also discussed together with opportunities for further work.
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2. REVIEW OF EVIDENCE SYNTHESIS METHODS
2.1  Chapter overview

This Chapter introduces statistical methods for summarising evidence from multiple sources.
The methods covered mainly concern meta-analysis of summary or aggregate data and their
extensions to allow for inclusion of study-level covariates. An introduction to network meta-
analysis (NMA) for simultaneous comparison of multiple interventions will also be given.
The methods introduced in this chapter be used in the subsequent chapters to synthesise the
evidence on intervention effectiveness. They will also serve as foundation for development of
new synthesis methodology. Note that methods for meta-analysis of individual patient data
(IPD) (Simmonds et al., 2005; Riley et al., 2007¢) have not been reviewed because the thesis
mainly concerns the synthesis of aggregate or summary level data.

2.2 Pairwise meta-analysis

Glass (Glass, 1976) was one of the first to define meta-analysis as a statistical method for
summarising results of several independent studies. Pairwise meta-analysis methods are
useful for comparing two interventions with one another when there are multiple sources of
evidence on the two interventions. By combining information from all relevant studies, a
meta-analysis can provide a more precise estimate of the effect of one intervention relative to

another.

2.2.1 Fixed and random effects models

There are two types of meta-analysis models in most common use — fixed effect and random
effects models. In a fixed effect model, it is assumed that effect estimates from a set of N
studies are estimating the same underlying effect, so that they can be pooled to obtain a
summary estimate of all effect sizes as follows (Welton et al., 2012):

g2

Y, ~ Normal{d,n—'J i=12,---,N (2.1)
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where Y;, Si2 and N, respectively represent the effect size, within-study variance and

number of individuals in the ith study, and d is the underlying mean effect common to all the

studies, and of interest in the meta-analysis. In practice, the st are usually assumed to be

known and estimated by the within-study variance (Uiz) from the summary data:
Y, ~ Normal(d,0?) i=12,---,N (2.2)

In many medical applications, however, the assumption of a common underlying true effect
may not always hold due to differences in patient populations, and study location and settings
(Sutton et al., 2000; Welton et al., 2012). If there are doubts about the validity of this
assumption, then a random effects meta-analysis may be preferable. In the random effects
model, the assumption of a single or common true underlying effect is relaxed to allow for

between-study variability (also known as heterogeneity):
Y, ~ Normal(&i,uf) i=12,---,N
S~ Normal(d,az) (2.3)

where &, is the true effect size specific to the ith study, assumed to be drawn from a normal

distribution with overall population mean d and between-study variance &2. It has been
suggested however, that the mean of a random-effects distribution, as the average of the
individual study effects, may not accurately represent the different study populations
especially if there is high degree of heterogeneity (Ades et al., 2005; Higgins et al., 2009).

Instead, the predictive effect in a new study, d .., which takes into account heterogeneity in

the data, has been suggested as representing a more accurate and robust summary of the data
than the random effects mean. If fitted within a Bayesian framework (see as discussed in the
next paragraph) the predictive effect in a new study can be obtained as follows (Higgins et
al., 2009):

d., ~ Normal(d : az)
(2.4)
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where d and & represents the same quantities as in equation (2.3), namely the mean of the

random effects distribution and the between-study variance respectively.

The models specified above can be fitted using Frequentist or Bayesian methods. Under the
Frequentist approach to statistical inference, all the information about the parameters of the
model is contained in the data; hence the analysis can be conducted and parameters estimated
by finding values of d and & that maximise the likelihood functions under equations (2.2)
and (2.3) (Welton et al., 2012). The Bayesian approach to statistical inference on the other
hand, uses Bayes theorem to combine external information (termed prior beliefs) with the
information contained in the data (termed the likelihood) to obtain a posterior summary of all
the available information upon which inference is based (Ntzoufras, 2009; Lunn et al., 2012;
Welton et al., 2012):

posterior o likelihood x prior (2.5)

Thus in addition to the likelihood for the data that can be derived from equations (2.1) to (2.3)
above, prior distributions also need to be specified for the parameters d and o*when
conducting a meta-analysis within the Bayesian framework. If there were no other available
evidence about the parameters external to the data, then flat or ‘vague’ prior distributions
could be specified over plausible ranges supported by the parameters of the model. In that
case, any flat or “vague’ prior distribution containing a minimal amount of information will
be completely dominated by the data and a Bayesian analysis should produce results close to
what will be obtained from a frequentist analysis. For example, in the meta-analysis of binary

outcome data, the effect size Y, would normally be a log (odds ratio) so that the following

prior distributions, which are considered to be minimally informative on the log-odds ratio
scale for most practical medical applications (Dias et al., 2012; Welton et al., 2012) can be

specified for the parameters d and o :
d ~ Normal(0,10°) (2.6)
o ~ Uniform(0,2) (2.7)

Unless otherwise stated, all analyses in this thesis will be conducted from the Bayesian
framework mainly because of the flexibility with which increasingly complex models can be

fitted. In addition to the increased flexibility, the Bayesian approach also allows for the
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uncertainty around the between-study variance parameter, o to be taken into account
automatically in the meta-analysis (Higgins et al., 2009; Welton et al., 2012). The software
of choice for fitting the Bayesian meta-analyses carried out in this thesis is the WinBUGS
software (Lunn et al., 2000) which uses Markov Chain Monte Carlo (MCMC) simulations to
obtain posterior summary estimates of the parameters of interest. Again unless otherwise
stated, ‘vague’ or minimally informative prior distributions will be specified for the model
parameters, so that the results of the analysis are very close to what would have been
obtained if fitted using Frequentist methods.

2.2.2 Heterogeneity

Between-study variability in the treatment effect (i.e. systematic differences in effect sizes
across studies) which is more than can be attributed to sampling error alone is termed
statistical heterogeneity (Sutton et al., 2000; Borenstein et al., 2009). As stated in the
previous section, a random effects model should be fitted, and its magnitude quantified by the
parameter o specified in equation (2.3) if unexplained heterogeneity in the effect estimates
is expected across studies. Alternative measures of heterogeneity include the Cochran Q-
statistic which provides a test of homogeneity of the effect sizes across studies and the 12-
statistic which is based on the Q-statistic and estimates the proportion of the total variability

in the effect sizes that could be attributed to heterogeneity (Higgins and Thompson, 2002).

Statistical heterogeneity is explainable if the variability in the treatment effect is attributable
to differences in the characteristics of the studies such as methods, design and patient
populations. Statistical heterogeneity that is not explained by observable characteristics as
above is said to be residual, and is accounted for in a random effects meta-analysis. When
there is evidence of substantial heterogeneity, sub-group analyses or meta-regression methods
can be performed to investigate sources of the heterogeneity and if possible adjust for it
(Higgins et al., 2009).

2.2.3 Meta-regression
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The random effects model described above will account for the heterogeneity between studies
but does not explain it. To try and explain or explore potential sources of the heterogeneity,
the meta-analysis can be extended to include study and aggregate patient characteristics as

study-level covariates as follows:
Y, ~ Normal(&i,uf)
S ~ Normal(d + B(x - >‘<),02) (2.8)

where the regression coefficient 5 in equation (2.8) gives a measure of the relationship

between the treatment effect and the covariate X; (e.g. mean age) in study i centred on mean

X (e.g. the mean of the mean ages across studies), d is the mean treatment effect when

X; =X (i.e. at the mean covariate value) and o?gives a measure of the remaining

heterogeneity unexplained by the covariate. If subgroup analysis is required then X; will be

categorical covariate with values indicating the subgroup to which the ith study belongs. All
other parameters have the same interpretation as before. If performed under a Bayesian
framework, prior distributions need to be specified for parameters d, # and o. Note that if
required, Equation (2.8) can easily be extended to include more than one covariate or
subgroups and multiple interaction terms in the meta-analysis. Meta-regression models may,
however, lack sufficient power to detect the associations they intend to measure since a
typical meta-analysis will involve relatively few studies (Egger et al., 2000). Also, as in any
regression analysis, the model is susceptible to confounding by unknown variables and
aggregation or ecological bias may arise if the relationship between aggregated study-level
characteristics and outcomes do not reflect the true relationship at the individual level (Sutton
et al., 2000). For these reasons, the results of a meta-regression should be treated with caution

and as associative rather than causative.

2.2.4 Publication bias

Publication bias refers to the tendency for studies that show evidence of a statistically
significant effect to be published over and above those that do not (Dickersin et al., 1987;
Peters et al., 2008). Such biases, if present, have the potential to distort the results of a meta-

analysis, leading to inaccurate and misleading conclusions. Methods exist to detect and adjust
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for publication bias; see for example (Egger et al., 1997; Egger et al., 2000; Peters et al.,
2008; Moreno et al., 2009). The funnel plot (Figure 2.1) is the simplest of these methods.
This is a scatter plot with the effect size on the x-axis and some measure of the precision of
the effect sizes such as the inverse of the standard error on the y-axis (Sterne and Egger,
2001).
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Figure 2.1: Example of a funnel plot
Pseudo 95% confidence limits are represented as dotted lines. Log(OR) refers to
log(odds ratio).

A funnel plot should be symmetric with a characteristic funnel shape appearance when no
publication bias is present so that greater variability in the effect sizes is observed in the
smaller and less precise studies towards the lower part or base of the funnel (Peters et al.,
2008). Note that funnel asymmetry can also occur for other reasons, such as small study
effects, If there is evidence of funnel plot asymmetry, the extent of bias may be quantified by
employing tests for ‘publication bias’ assessment that have been proposed (Egger et al.,
1997; Harbord et al., 2006; Rucker et al., 2008; Peters et al., 2010). However, these tests
typically have low power and it is recommended that test of funnel plot asymmetry should

only be carried only if there are at least 10 studies in the meta-analysis (Sterne et al., 2011).
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Methods used to correct publication bias include trim and fill (Duval and Tweedie, 2000) and

several regression based methods described in detail in Moreno et al. (Moreno et al., 2009).

2.3 Network meta-analysis
2.3.1 Model for binary outcome data

Network meta-analysis (Lumley, 2002) also called mixed treatment comparisons (Lu and
Ades, 2004; Caldwell et al., 2005) or multiple treatment meta-analysis (Salanti et al., 2008),
methods extend standard meta-analysis to enable simultaneous comparison of multiple
treatments while maintaining randomisation. These methods enable ‘direct evidence’ (i.e.
studies that directly compared the two treatments under consideration) and ‘indirect
evidence’ (i.e. the remaining studies in the network under the consistency assumption) on
pairwise contrasts to be pooled under the assumption that there is consistency (see Section
2.3.3 below for explanation and assessment of evidence consistency) between the direct and
indirect evidence, hence they are often referred to as mixed treatment comparisons (Lu and
Ades, 2004; Caldwell et al., 2010; Welton et al., 2012). For example, in the following
ensemble of evidence on 3 interventions labelled A, B and C taken from Welton et al.

(Welton et al., 2012), trials comparing interventions A and B (AB trials) will provide direct
evidence to estimate effect of B relative to A, denoted as &gg At the same time, trials of A
versus C (AC trials) and those of B versus C (BC trials) will provide indirect evidence to

estimate effect of intervention B relative to A, denoted as 6,‘3;” through the relationship:

Jindir _ Jdir  qdir
dAB - dAC _dBC

(2.9)

where d f\'é and d S'é represent direct estimates from AC trials and BC trials respectively. The

essential requirements for this type of analysis are that: i) the interventions should be linked
with each other, forming a connected network of treatments as shown in Figure 2.2, and ii)
there should be consistency in the evidence structure when direct and indirect evidence are
pooled on pairwise contrast as explained in Section 2.3.3.
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Education +
Equipment +
Fitting

Education +
Equipment

Education +
Equipment +
HSI + Fitting

Equipment only

Education +
Equipment + HSI

Figure 2.2: An example of a connected network from the example dataset
Interventions that have been compared in trials included in the meta-analysis are
connected by lines; the number of trials is indicated on the lines

Given binary outcome data from treatment arms of each study included in the meta-analysis,
a random effects NMA may be specified using the method of Lu and Ades (Lu and Ades,

2004). It is assumed that the occurrence of r, events from a total of n, individuals in the kth-
arm (k = A, B,C,---,) of the ith-study follow a binomial distribution with underlying event

probability p,, :
r, ~ Binomial(p, ,n, )

_ wer if k=b
logit(p, )= for b= AB,C,---, 2.10
git(py ) {uib+5ibk, if k>b (2.10)

2
5ibk = dbk + gibk’ Eibk -~ Normal(o, Gbk)

where daa = 0 (i.e. the intervention effect in the reference or baseline intervention for the
entire network is set to 0) and k>b implies intervention k comes alphabetically after b. The

parameter s, is the effect of baseline intervention b (log odds) in study i and &, denote a
random effect indicating that the study-specific effects (log odds ratios) of intervention k

relative to b, &,, , are normally distributed with mean d,, and between-study variance o7 .

Note that a fixed effect model is obtained if 5, =0.
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The fundamental assumption underlying random effects network meta-analysis is that the
intervention effects are exchangeable (see Section 2.3.3 for explanation of the concept of
exchangeability) across the entire network of trials regardless of whether or not treatments b
and k are included in trial i (Lu and Ades, 2004). Validity of this exchangeability assumption

means that the pooled intervention effects d,, can further be expressed as functions of basic
parameters taken with reference to treatment A, (i.e. d,, =d, —d,, ). Effect estimates from

trials with more than 2 treatment groups will be correlated through sharing a common

comparator treatment. The correlation may be taken into account by assuming homogenous

2
o
variances (i.e. szk =o’ for all b and k) so that the covariance is equal to 7(Lu and Ades,

2004). Alternatively, heterogeneous variance models have also been proposed (Lu and Ades,
2006). The analysis if conducted within the Bayesian framework, require prior distributions

to be specified for the parameters d,, and «, as in equation (2.6) and o as in equation (2.7).

Parameter estimation is then by Markov chain Monte Carlo simulation implemented in the
WinBUGS software (Lunn et al., 2000).

2.3.2 Assessing which intervention is the best

As explained above, network meta-analysis enables simultaneous comparison of multiple
interventions by using all available data in a connected network of studies. The main
advantage of NMA is that interventions can be ranked in terms of their efficacy and used to
estimate the probability that each intervention is the best option (Welton et al., 2012). This
can easily be implemented in WinBUGS using the ‘rank’ and ‘equals’ functions as follows:

[ rank(d,k) if odds ratio <1 confers benefit (2.10)
“ (K +1)—rank(d,k) if odds ratio <1 confers harm '
best, =equals(r, 1) (2.11)

where for k =1,2,---,K, I, indicates the rank for the kth intervention (the most effective
intervention is ranked number 1), and best, indicates the probability that intervention k is

the best, K is the total number of interventions being evaluated in the NMA and d is a vector

of mean effects relative to the reference intervention. When reporting the ranking of
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interventions in this thesis, the posterior median estimate is preferred to instead of posterior

mean (can be a whole number of decimal). This ensures that r, takes the value 1 if k is the

best intervention and K if k is the worst intervention (Welton et al., 2012).

2.3.3 Assessing evidence consistency

NMA assume that the trial-specific effects 6,, are normally distributed around a common

mean with variance o/, . In other words, the &, s are assumed to be exchangeable which is to

say they are different but there is no way of predicting the rankings of their magnitude a
priori (Welton et al., 2012). This assumption is unlikely to be met if there are evidence loops
in the network where the direct and indirect evidence on pairwise contrasts are inconsistent,
or do not agree (Dias et al., 2010). Note that evidence loops formed solely by multi-arm
trials are excluded from the consistency assessment, since by definition, evidence from a
multi-arm trial cannot be inconsistent (Dias et al., 2010). Doubts about the validity of NMA
have been expressed because of concerns that direct and indirect evidence from disparate
sources may not be consistent and should not be pooled together (Song et al., 2003; Song et
al., 2011). Therefore, carrying out checks for evidence inconsistency in NMA is crucial if the

results of the analysis are to be trusted.

Methods for assessing evidence inconsistency have been published, for example the papers
by Lu and Ades, 2006 (Lu and Ades, 2006), Dias et al., 2011 (Dias et al., 2011b) and the
recently released NICE Decision Support Unit Technical Support Document 4 (Dias et al.,
2011b). In this thesis, one of these methods, called node-splitting (Dias et al., 2011b), will be
used to assess the consistency of the evidence when NMAs are used to compare intervention
effectiveness. Briefly, for each pairwise contrasts in a closed loop of evidence, the node-
splitting method enable separate estimates of the mean treatment effect based on the direct
evidence and indirect evidence to be calculated. The difference between these two estimates
can be used to construct a test for inconsistency and derive a 2-sided p-value for the null
hypothesis that direct and indirect estimates are different. Note that, the test may lack
sufficient power to detect inconsistency especially if the number of studies in the meta-
analysis is small (Dias et al., 2013). Therefore failure to reject the null hypothesis does not
necessarily imply consistency of the evidence. In addition, the node splitting method can
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detect inconsistency but does not explain it. That is to say the method does not identify the
pairwise comparisons in the network that are inconsistent. Therefore, when inconsistencies
are detected in a network of evidence it is important to go back and re-examine the entire data
to see if the cause of the inconsistency can be identified from available evidence (Dias et al.,
2013). It is also important to consider carefully whether reliable conclusions can be drawn
from combining direct and indirect evidence when there is inconsistency in the evidence

structure.

2.3.4 Assessing publication bias in network meta-analysis

There are as yet no methods for assessing publication bias in network meta-analysis,
therefore assessment of publication bias in this thesis will be carried out using the methods
reviewed in Section 2.2.4 for assessing publication bias in pairwise meta-analysis.

2.3.5 Convergence diagnostics

When using MCMC based estimation procedures implemented through the WinBUGS
software, it is important to carefully assess and report choice of prior distributions,
initial/starting values, number and length of iterations in addition to checking for evidence
that convergence of the simulated samples is adequate (Spiegelhalter et al., 2000). This is
because the results of the analysis can be sensitive to the choice of prior distributions, initial
values, length of ‘burn-in’ and so on. Convergence can be assessed by examining the history,
kennel density, autocorrelation and Brooks-Gelman diagnostic plots available from the

WinBUGS menu as follows:

1) The history plot shows successive realisations of the MCMC sampler plotted against the
iteration number for each parameter of interest (Lunn et al., 2012). A stable plot with “fat
hairy caterpillar-like’ appearance is evidence that the Markov Chain has reached stability
(and may have converged) whereas a snake-like appearance may indicate a high degree
of autocorrelation or evidence of non-convergence (Lunn et al., 2012).

ii) Posterior kernel density plots are used to assess whether or not the distributional form of
model parameters appear as expected, whilst the autocorrelation plots assesses the degree

of correlation between successive iterations of the sampler. Rapid or gradual thinning
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out towards zero if observed in the autocorrelation plot should indicate low correlation
between 40 sequential iterations of the sampler and vice versa. Low autocorrelation
would usually indicate faster mixing and convergence whereas higher autocorrelation
indicate slow mixing convergence, hence necessitating longer running of the sampler.

iii) The Brooks-Gelman diagnostic plot (Brooks and Gelman, 1998) compares the within
and between chain variances from simultaneous running of multiple chains with different
starting values to assess evidence of convergence for each parameter being monitored.
The green line of the plot represent the normalized width of the central 80% interval of
the pooled runs (B), blue line represents the normalized average width of the 80%
intervals within the individual runs (W) and red is R where R= B/W. Convergence is
deemed to have occurred if R has converged to 1 and B and W have converged to
stability (Spiegelhalter et al., 2007).

2.3.6 Goodness fit and model selection

The posterior mean residual deviance, defined as the deviance for the fitted model minus
deviance for the saturated model, will be used to assess how well the model predictions fit the
observed data (McCullagh and Nelder, 1989; Spiegelhalter et al., 2002). Under the null
hypothesis that the model fits the data well, the posterior mean residual deviance is expected
to be approximately equal the number of unconstrained data points. Therefore models would
be judged to provide adequate fit if the residual deviance is close to the number of data points
in the model. The fit of alternative models (for example, fixed effect versus random effects
model) can be compared using the Deviance Information Criterion (DIC) (Spiegelhalter et
al., 2002; Spiegelhalter et al., 2014). The DIC is the sum of the posterior mean residual
deviance and the effective number of parameters and, as such, provides a measure of model

fit that penalizes for model complexity.

2.4  Chapter summary

The statistical methods for summarising evidence from multiple sources were reviewed in
this chapter. The NMA methods presented in Section 2.3 especially will used to synthesis the

evidence on the effectiveness of interventions to increase uptake of poison prevention
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measures presented in Chapter 5.. The NMA model described in Section 2.3 is then extended
to include a covariate for the baseline risk in Chapter 6 based on methods developed in
Achana et al.(Achana et al., 2013) and to multiple outcome settings in Chapter 7 based on
methodology developed in Achana et al (Achana et al., 2014a). he results from the analyses
in Chapters 5, 6 and 7 are used to inform the cost-effectiveness evaluation of poison
prevention practices in Chapter 8. Before that, an introduction to methods for economic

evaluation of healthcare interventions is presented next in Chapter 3.
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3. REVIEW OF DECISION ANALYTIC MODELLING METHODS

3.1  Chapter overview

Methods for quantitative synthesis of evidence from diverse sources were reviewed in chapter
2. In this chapter, the methods for economic evaluation of healthcare interventions are
introduced. Emphasis will be placed on methods for economic evaluations conducted within
a decision analytic modelling framework as opposed to the conduct of economic evaluations

alongside clinical trial data.

3.2 Economic evaluation in healthcare
3.2.1 Introduction

Healthcare decision makers all over the world are faced with the problem of deciding how
best to allocate resources within limited budgetary constraints. Hence clinical and economic
dimensions of healthcare provision should be taken into account in making decisions about
which interventions to fund if resources are to be efficiently allocated. Economic evaluation
of healthcare interventions offers a framework for synthesis of data on clinical outcomes and
resource use in order to estimate the costs and benefits associated with two or more

competing interventions (Briggs et al., 2006; Gray et al., 2011).

Evaluations may be conducted alongside a randomised controlled trial (RCT) or through a
modelling exercise. Economic evaluations conducted through modelling exercises are called
decision analytic models. They provide an explicit quantitative approach to synthesis of
information from multiple sources and are useful for comparing the cost-effectiveness of
competing interventions that may not have been directly considered in a single RCT and also
in situations where there may be limited or non-existent trial data on long term costs and
effects (Welton et al., 2012; Baio, 2013). For these reasons, modelling is increasingly being
employed by decision making bodies such as NICE when deciding which interventions
should be funded by the NHS (NICE, 2008; NICE, 2012).

Felix Achana PhD Thesis, September 2014 21



Chapter 3 Review of decision modelling methods

Ultimately the goal of any economic evaluation is to compare the costs and benefits
associated with competing interventions. This can be done either through a ‘cost-benefit’ or a
‘cost-effectiveness’ analysis. Cost-benefit analysis attempts to assess whether the monetary
value of health benefits is greater or less than the costs of obtaining the benefits by expressing
both the clinical outcomes and the resource use purely in monetary terms (Gray et al., 2011).
Cost-effectiveness analysis, on the other hand, compares costs and effects of two or more
interventions using either disease-specific or generic measures of health. Disease specific
measures, as the name implies, are specific to a particular disease or health condition.
Examples include the number of symptom free days, true positive cases of cancer detected,
number of deaths averted, and so on. Generic measures of health (also referred to as utilities)
are non-disease specific, thus can be used to measure the health benefit across different
disease domains. Examples include Life Year (LY), the Quality Adjusted Life Year (QALY)
and the Disability Adjusted Life Year (DALY). Cost-effectiveness analyses in which the
health outcomes are expressed in terms of these generic measures are referred to as a cost-
ut