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Abstract  

This thesis focuses on the challenges of evidence synthesis to inform healthcare decision 

making within public health. It encompasses both methodological advancement and practical 

application of existing synthesis methodology, using as an example - accidents prevention in 

children to illustrate application of the methods within a public health context.  

The thesis commences with a systematic review of NICE public health appraisals to identify 

the barriers to quantitative synthesis of evidence in public health. Then focusing on the 

prevention of unintentional poisonings in pre-school children, a series of network meta-

analyses of the effectiveness evidence are conducted, demonstrating how complex synthesis 

methodology can be employed to help overcome some challenges of evidence synthesis in  a 

identified in the review of the NICE public health appraisals. 

New synthesis methodology is then developed in which the standard network meta-analysis 

model is first extended to include a covariate for the baseline risk and then to a multiple 

outcome settings. Baseline risk is a proxy for unmeasured but important patient-level 

characteristics, which may be modifiers of the treatment effect in a meta-analysis. Thus 

adjusting for it can account for heterogeneity across different study populations and identify 

those more likely to benefit from the intervention. The multiple outcome models account for 

the dependency structure within the data which is important in a decision modelling context, 

as correlations between effect estimates on different outcomes may have implications for 

estimating the net benefit associated with treatment.  

Finally, a substantive decision analytic model is presented incorporating results from the 

network meta-analysis and application of the methodology developed to the poison 

prevention data. The analyses suggest that compared to usual care, more intensive home 

safety interventions are more effective in preventing medicinal poisonings in pre-school 

children but are unlikely to be cost-effective for the UK NHS unless policy makers are 

willing to pay upwards of £75,000 for every QALY gained. 
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Chapter 1  Introduction 

1. INTRODUCTION 

1.1 Thesis aims 

When summarising evidence to inform economic evaluations, it is essential that a structured 

systematic and coherent approach to synthesis of the evidence is followed, to minimise 

various forms of biases, including biases associated with arbitrary decisions about which 

piece(s) of evidence to include in the analysis and to ensure overall transparency of the 

process. Meta-analysis of well conducted trials (ideally from a systematic review of the 

evidence), has traditionally been considered as the highest form of evidence, yet use of these 

methods in public health (PH) evaluation of interventions appear to be limited. This thesis 

aims to: 

a) Review how evidence is currently synthesised (i.e. determine what is currently being 

done or not done) when summarising evidence to inform economic evaluation 

within PH, 

b) Identify the barriers to quantitative synthesis of evidence in PH evaluations,  

c) Demonstrate how complex synthesis methodology (including methods that current 

exists as well as new methodology developed specifically in this thesis) can be 

applied in PH context to overcome the barriers identified in (b) and facilitate a 

more realistic modelling of the data in order to answer the relevant policy 

questions, and 

d) Demonstrate how the methods identified and described in (c) can be integrated with 

other evidence in a decision analytic modelling framework assessing the cost-

effectiveness of interventions in public health.    

 

In the remainder of this chapter, the challenges of evidence synthesis in PH evaluation of 

interventions and the example problem will be introduced, followed by a chapter by chapter 

outline of the thesis. The introduction to the challenges of evidence synthesis within PH and 

the example problem presented in the sections below are based on two recent papers - the 

first paper (Achana et al., 2014b) has already published in the Journal of Clinical 

Epidemiology whilst the second paper (Achana et al. 2014d) has been submitted to the 

journal PLOS ONE and is currently going through the peer review process.  
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Chapter 1  Introduction 

1.2 Background 

Systematic reviews and economic evaluations conducted within a decision modelling 

framework are two important tools in healthcare evaluation (Novielli et al., 2010; Cooper et 

al., 2011b). Systematic reviews with or without meta-analyses have been accepted as 

providing a transparent and consistent way of obtaining research evidence about the clinical 

and cost-effectiveness interventions in a way that minimizes bias (Higgins and Green, 2011).  

Decision analytic models offer additional framework through which effectiveness evidence, 

ideally from a systematic review, may be integrated with other relevant evidence and 

information on resource utilisation in order to derive comparative estimates of cost-

effectiveness. By providing a framework for assessing clinical and cost-effectiveness, these 

methods enable policy relevant questions, such as which interventions represent the best use 

of healthcare resources, to be answered (Drummond et al., 2005).  For example, the National 

Institute for Health and Care Excellence (NICE, 1999) produces guidance and 

recommendations through its technology appraisal programme (www.nice.org.uk/ta) about 

the clinical and cost-effectiveness of new and existing treatments for use within the National 

Health Service (NHS) in England. Similarly, the Health Technology Assessment (HTA) 

programme of the UK National Institute for Health Research (NIHR) commissions and 

disseminates research information (available online from www.hta.ac.uk) about effectiveness, 

costs-effectiveness and broader impact of healthcare interventions to help in healthcare 

planning and delivery throughout the NHS. 

 

A key component of the systematic review is how the evidence, on outcomes such as 

effectiveness and adverse events, is synthesised. Meta-analysis when used in a systematic 

review to combine quantitative information from multiple well-conducted randomised 

controlled trials (RCTs) is considered at the top of the hierarchy of evidence for intervention 

effectiveness (Sutton et al., 2009). An alternative approach to evidence synthesis, when meta-

analysis is considered inappropriate (for example, a significant degree of heterogeneity in the  

patient populations, study design, methods and other characteristics of the included studies 

may render meta-analysis inappropriate), is narrative synthesis (also referred to as qualitative 

synthesis (Rodgers et al., 2009; Eden et al., 2012). In this approach, individual studies 

identified in the systematic review are summarised using a variety of formats without 

combining the results of the systematic review quantitatively.  
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Meta-analysis is widely applied in reviews of clinical effectiveness evidence including, 

treatments and medical device technologies where the interventions and health outcomes are 

usually well defined and evaluated in well conducted RCTs (Weatherly et al., 2009). In other 

fields of healthcare evaluation, however, things may not always be as clear cut. A good 

example is PH, where interventions are often more complex and less well defined than 

clinical interventions (Armstrong et al., 2008). There may also be a lack of good quality 

evidence, particularly from RCTs in PH, for a number of well documented reasons (Petticrew 

and Egan, 2006; Rosen et al., 2006) including: (i) limited generalisability of the findings of 

RCTs to the wider population due to highly selected study populations, (ii) a narrow 

definition of intervention strategies and outcomes, and (iii) a focus on the individual instead 

of the community that is of interest in PH.  Even when feasible, many have argued that RCTs 

may not always be possible to conduct in PH for other reasons; for example, ethical concerns 

may be raised regarding not offering the control population a possibly beneficial intervention 

(Rosen et al., 2006). Also, many of the RCTs conducted in PH tend to be cluster randomised 

trials and hence have more complex designs that need adjusting for in the meta-analysis. In 

addition, the best available PH evidence may often come from observational non-randomised 

studies (Armstrong et al., 2008), despite the increased risk of bias associated with the lack of 

randomisation. For these reasons, the use of quantitative evidence synthesis methods, such as 

meta-analysis in PH raises a number of methodological challenges. These include: 

i) Increased methodological heterogeneity and risk of bias from including studies with 

different designs (RCTs, cluster-RCTs, controlled before-and-after studies and 

other observational non-randomised studies). 

ii) The interventions or ‘programme’ being evaluated is often described in little detail 

and less clearly defined compared to, for example, pharmaceutical treatments and 

medical device technologies.  

iii) A wide range of outcomes measures (including intermediate and/or surrogate 

outcomes) are often used and defined inconsistently across studies.  

In the next section, an active area of PH research, namely accidents prevention in children 

will be introduced as the motivation problem and used throughout the thesis to demonstrate 

how advancements in synthesis methodology (including existing methods as well as 
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methodology developed specifically in this thesis) can be employed to help overcome some 

of the challenges listed above present in synthesis of evidence in a PH evaluation context.  

 

1.3 Example problem: Accidents prevention in children 

Unintentional childhood injury is a major public health concern. According to a UK Audit 

Commission report ‘better safe than sorry’ (The Audit Commission, 2007), unintentional 

injury is currently the leading cause of death among pre-school children (i.e. the 0-4 years old 

age group) in England. Falls, poisoning and thermal (burns and scalds) injuries are by far the 

most common injuries reported for this age group in hospital emergency departments in the 

UK (The Audit Commission, 2007). The importance of reducing childhood injuries and their 

inequalities is emphasised again and again in many UK government reports (Department of 

Health, 1999; Department of Health, 2002; Children Act, 2004; Department of Health, 2005; 

Health, 2007; The Audit Commission, 2007) but evidence of a systematic approach to NHS 

injury prevention in children is lacking (The Audit Commission, 2007). In response to these 

concerns, the NIHR funded the ‘Keeping Children Safe at Home’ (KCS) programme of 

research to look into causes and prevention of childood accidents in the home. KCS is a 5-

year multi-centre programme of research lead by Professor Denise Kendrick at the University 

of Nottingham with participating centres at the Universities of Leicester, Newcastle, Norwich 

and of the West of England (Bristol). The overall aim of KCS is to identify the most effective 

and cost-effective strategies for preventing unintentional injury (primarily focusing on falls, 

burns, scalds and poisonings) in pre-school children (0-4 year olds) at home. 

 

Many of the issues typical of PH appraisals outlined in Section 1.2 above, such as including 

evidence from studies of different designs and heterogeneity of the interventions and outcome 

measures, are particularly relevant to accidents prevention in children. Thus, when this area 

was previously evaluated by NICE PH30 (NICE, 2010b), only narrative summaries of the 

evidence identified from the systematic review of the clinical and cost-effectiveness evidence 

were conducted (Pearson et al., 2009) and estimates from individual studies were used to 

inform the subsequent cost-effectiveness analyses (Pitt et al., 2009). This goes against the 

tenets of evidence-based decision making where decisions should ideally be made based on 

all the available evidence relevant to the decision problem (Welton et al., 2012). 
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In this thesis, accidents prevention in children is revisited as part of the KCS project with a 

focus on evaluating the clinical and cost-effectiveness of strategies to prevent unintentional 

poisonings in pre-school children at home. In doing so, data from two published systematic 

reviews of the effectiveness evidence (Kendrick et al., 2012b; Young et al., 2013) will be 

used to provide a) an example context for illustrating how recent advances in quantitative 

synthesis methodology help address the challenges of evidence sythesis in PH outlined in 

Section 1.2, and b) a basis  for further methodological developments undertaken here to deal 

with specific issues of the heterogeneity in the baseline risk across studies and borrow 

information across a series of evidence networks. Note that as part of the KCS project, the 

evaluation of strategies to increase uptake of functional smoke alarms in households with 

children and ultimately prevent thermals injuries (primarily burns) has been completed 

(Saramago Goncalves, 2012) and published in a peer-reviewed journal (Cooper et al., 2011a; 

Saramago et al., 2014). The evaluation of strategies to prevent falls (Hubbard et al., 2014) 

and other thermal injuries (primarily scalds) is currently being undertaken as a separate 

subproject under the KCS programme remit.  

 

1.4 Structure of thesis 

The remainder of the thesis is structured as follows: Chapters 2 and 3 introduce the 

methodology of evidence synthesis and economic evaluation (conducted within a decision 

analytic modelling framework) respectively as applied to healthcare decision making. These 

methods will be used to evaluate the clinical and cost-effectiveness of poison prevention 

practices described in Chapters 5 and 8. They will also form the foundation for development 

of new synthesis methodology in Chapters 6 and 7 briefly outlined below. Before that, 

Chapter 4 presents the outcome of a systematic review conducted to i) determine the current 

state of affairs (i.e. what is currently being done/not done) regarding the use of evidence 

synthesis methods in PH evaluations and ii) establish a baseline or quality bar for 

development and application of methodology (outlined in this thesis) to PH evaluation of 

interventions. 
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Chapters 5, 6 and 7 demonstrate how recent developments in synthesis methodology (some of 

which has been developed as part of this thesis) over and above current practices established 

in Chapter 4, can be applied to overcome challenges of evidence synthesis in PH. 

Specifically, the methodology of network meta-analysis is applied to the poison prevention 

data in Chapter 5. Network meta-analysis (NMA) enables simultaneous comparison of many 

interventions while preserving randomisation. Such methods offer some advantages over 

pairwise meta-analysis, including the possibility to relax the need for seemingly similar but 

different interventions to be ‘lumped’ into two treatment groups for the purpose of 

conducting a pairwise meta-analysis – a particularly present issue in many PH systematic 

reviews as described in Chapter 4.  

 

 

Chapters 6 and 7 introduce new synthesis methodology by extending the standard NMA 

model to deal with some specific issues. The methods developed in these two chapters are 

quite general in the sense that they are applicable to evaluation of clinical and pharmaceutical 

interventions as well as evaluation of PH interventions. Chapter 6 concerns the problem of 

how include a covariate to account for baseline imbalances in the control group event rate 

(often referred to as baseline risk) in a network meta-analysis. This covariate is typically 

measured with error and has been of considerable interest to statisticians and clinicians alike 

as a proxy for unmeasured but important patient- and or study-level characteristics, which 

may be modifiers of treatment effect and a potential source of heterogeneity.  In the PH 

context as exemplified by the accidents data introduced above, baseline risk meta-regression 

can be used to account for residual heterogeneity in the definition of the control group 

intervention which may persist even after interventions are classified into more homogenous 

treatment packages as will be shown in Chapter 5. 

 

Chapter 7 presents methods for synthesis of evidence across multiple outcomes. The methods 

allow for appropriate modelling of the correlation structure within the data, which is 

important when summarising evidence to inform an economic evaluation. Further extensions 

of the modelling approach are developed to borrow information across studies, treatments 

and outcomes which can be useful in situations where the evidence base is either sparse or 

limiting in some important respects, as is often the case in PH evaluations. This type of 
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analysis can be used to produce firmer estimates of the treatment effects by making use of all 

available information relevant to the decision problem (including information from closely 

related evidence networks) which may be beneficial in reducing decision uncertainty.    

 

Chapter 8 presents the development of a probabilistic decision model to evaluate the cost-

effectiveness of home safety interventions to prevent unintentional poisoning injury in pre-

school children. Results from the analyses carried out in Chapters 5, 6 and 7 will be used to 

inform parameters of the decision model. 

 

Finally, Chapter 9 concludes the thesis by summarising the important findings from the work 

presented in this thesis and discusses how recent developments in synthesis methodology 

(including methods developed in this thesis) can help overcome the challenges of evidence 

synthesis in PH evaluations. Limitations of the methodology outlined and applied throughout 

the thesis are also discussed together with opportunities for further work. 
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2. REVIEW OF EVIDENCE SYNTHESIS METHODS 

2.1 Chapter overview 

This Chapter introduces statistical methods for summarising evidence from multiple sources. 

The methods covered mainly concern meta-analysis of summary or aggregate data and their 

extensions to allow for inclusion of study-level covariates. An introduction to network meta-

analysis (NMA) for simultaneous comparison of multiple interventions will also be given. 

The  methods introduced in this chapter be used in the subsequent chapters to synthesise the 

evidence on intervention effectiveness. They will also serve as foundation for development of 

new synthesis methodology. Note that methods for meta-analysis of individual patient data 

(IPD) (Simmonds et al., 2005; Riley et al., 2007c) have not been reviewed because the thesis 

mainly concerns the synthesis of aggregate or summary level data.   

 

2.2 Pairwise meta-analysis 

Glass (Glass, 1976) was one of the first to define meta-analysis as a statistical method for 

summarising results of several independent studies. Pairwise meta-analysis methods are 

useful for comparing two interventions with one another when there are multiple sources of 

evidence on the two interventions. By combining information from all relevant studies, a 

meta-analysis can provide a more precise estimate of the effect of one intervention relative to 

another. 

 

2.2.1 Fixed and random effects models 

There are two types of meta-analysis models in most common use – fixed effect and random 

effects models. In a fixed effect model, it is assumed that effect estimates from a set of N 

studies are estimating the same underlying effect, so that they can be pooled to obtain a 

summary estimate of all effect sizes as follows (Welton et al., 2012): 

                          








i

i
i n

s
dY

2

,Normal~   Ni ,,2,1 =                                                            (2.1) 
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where iY , 2
is  and in  respectively represent the effect size, within-study variance and 

number of individuals in the ith study, and d is the underlying mean effect common to all the 

studies, and of interest in the meta-analysis. In practice, the 2
is s are usually assumed to be 

known and estimated by the within-study variance ( 2
iυ ) from the summary data: 

               ( )2,Normal~ ii dY υ   Ni ,,2,1 =                                                                    (2.2) 

In many medical applications, however, the assumption of a common underlying true effect 

may not always hold due to differences in patient populations, and study location and settings 

(Sutton et al., 2000; Welton et al., 2012). If there are doubts about the validity of this 

assumption, then a random effects meta-analysis may be preferable. In the random effects 

model, the assumption of a single or common true underlying effect is relaxed to allow for 

between-study variability (also known as heterogeneity): 

              ( )2,Normal~ iiiY υδ   Ni ,,2,1 =             

                  ( )2,Normal~ σδ di                                                                                            (2.3) 

where iδ  is the true effect size specific to the ith study, assumed to be drawn from a normal 

distribution with overall population mean d and between-study variance 2σ .  It has been 

suggested however, that the mean of a random-effects distribution, as the average of the 

individual study effects, may not accurately represent the different study populations 

especially if there is high degree of heterogeneity (Ades et al., 2005; Higgins et al., 2009). 

Instead, the predictive effect in a new study, newd , which takes into account heterogeneity in 

the data, has been suggested as representing a more accurate and robust summary of the data 

than the random effects mean. If fitted within a Bayesian framework (see as discussed in the 

next paragraph) the predictive effect in a new study can be obtained as follows (Higgins et 

al., 2009): 

  

                ( )2,Normal~ σddnew                                                                                             

(2.4) 
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where d and 2σ  represents the same quantities as in equation (2.3), namely the mean of the 

random effects distribution and the between-study variance respectively.  

 

The models specified above can be fitted using Frequentist or Bayesian methods. Under the 

Frequentist approach to statistical inference, all the information about the parameters of the 

model is contained in the data; hence the analysis can be conducted and parameters estimated 

by finding values of  d  and 2σ  that maximise the likelihood functions under equations (2.2) 

and (2.3) (Welton et al., 2012). The Bayesian approach to statistical inference on the other 

hand, uses Bayes theorem to combine external information (termed prior beliefs) with the 

information contained in the data (termed the likelihood) to obtain a posterior summary of all 

the available information upon which inference is based (Ntzoufras, 2009; Lunn et al., 2012; 

Welton et al., 2012): 

 

                priorlikelihoodposterior ×∝                                                                             (2.5) 

Thus in addition to the likelihood for the data that can be derived from equations (2.1) to (2.3) 

above, prior distributions also need to be specified for the parameters d and 2σ when 

conducting a meta-analysis within the Bayesian framework. If there were no other available 

evidence about the parameters external to the data, then flat or ‘vague’ prior distributions 

could be specified over plausible ranges supported by the parameters of the model. In that 

case, any flat or ‘vague’ prior distribution containing a minimal amount of information will 

be completely dominated by the data and a Bayesian analysis should produce results close to 

what will be obtained from a frequentist analysis. For example, in the meta-analysis of binary 

outcome data, the effect size iY  would normally be a log (odds ratio) so that the following 

prior distributions, which are considered to be minimally informative on the log-odds ratio 

scale for most practical medical applications (Dias et al., 2012; Welton et al., 2012)  can be 

specified for the parameters d and σ : 

            ( )310,0Normal~d                                                                                                (2.6) 

                 ( )2,0Uniform~σ                                                                                                 (2.7) 

Unless otherwise stated, all analyses in this thesis will be conducted from the Bayesian 

framework mainly because of the flexibility with which increasingly complex models can be 

fitted. In addition to the increased flexibility, the Bayesian approach also allows for the 
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uncertainty around the between-study variance parameter, 2σ  to be taken into account 

automatically in the meta-analysis (Higgins et al., 2009; Welton et al., 2012). The software 

of choice for fitting the Bayesian meta-analyses carried out in this thesis is the WinBUGS 

software (Lunn et al., 2000) which uses Markov Chain Monte Carlo (MCMC) simulations to 

obtain posterior summary estimates of the parameters of interest. Again unless otherwise 

stated, ‘vague’ or minimally informative prior distributions will be specified for the model 

parameters, so that the results of the analysis are very close to what would have been 

obtained if fitted using Frequentist methods.  

 

2.2.2 Heterogeneity  

Between-study variability in the treatment effect (i.e. systematic differences in effect sizes 

across studies) which is more than can be attributed to sampling error alone is termed 

statistical heterogeneity  (Sutton et al., 2000; Borenstein et al., 2009). As stated in the 

previous section, a random effects model should be fitted, and its magnitude quantified by the 

parameter 2σ specified in equation (2.3) if unexplained heterogeneity in the effect estimates 

is expected across studies. Alternative measures of heterogeneity include the Cochran Q-

statistic which provides a test of homogeneity of the effect sizes across studies and the I2-

statistic which is based on the Q-statistic and estimates the proportion of the total variability 

in the effect sizes that could be attributed to heterogeneity (Higgins and Thompson, 2002). 

 

 

Statistical heterogeneity is explainable if the variability in the treatment effect is attributable 

to differences in the characteristics of the studies such as methods, design and patient 

populations. Statistical heterogeneity that is not explained by observable characteristics as 

above is said to be residual, and is accounted for in a random effects meta-analysis.  When 

there is evidence of substantial heterogeneity, sub-group analyses or meta-regression methods 

can be performed to investigate sources of the heterogeneity and if possible adjust for it 

(Higgins et al., 2009).  

 

2.2.3 Meta-regression 
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The random effects model described above will account for the heterogeneity between studies 

but does not explain it. To try and explain or explore potential sources of the heterogeneity, 

the meta-analysis can be extended to include study and aggregate patient characteristics as 

study-level covariates as follows:  

               ( )2,Normal~ iiiY υδ     

          ( )( )2,Normal~ σβδ xxd ii −+                                                                              (2.8) 

where the regression coefficient in equation (2.8) gives a measure of the relationship 

between the treatment effect and the covariate ix  (e.g. mean age) in study i centred on mean 

x  (e.g. the mean of the mean ages across studies), d is the mean treatment effect when 

xxi = (i.e. at the mean covariate value) and 2σ gives a measure of the remaining 

heterogeneity unexplained by the covariate. If subgroup analysis is required then ix  will be 

categorical covariate with values indicating the subgroup to which the ith study belongs. All 

other parameters have the same interpretation as before. If performed under a Bayesian 

framework, prior distributions need to be specified for parameters d, β and σ. Note that if 

required, Equation (2.8) can easily be extended to include more than one covariate or 

subgroups and multiple interaction terms in the meta-analysis. Meta-regression models may, 

however, lack sufficient power to detect the associations they intend to measure since a 

typical meta-analysis will involve relatively few studies (Egger et al., 2000). Also, as in any 

regression analysis, the model is susceptible to confounding by unknown variables and 

aggregation or ecological bias may arise if the relationship between aggregated study-level 

characteristics and outcomes do not reflect the true relationship at the individual level (Sutton 

et al., 2000). For these reasons, the results of a meta-regression should be treated with caution 

and as associative rather than causative.  

 

2.2.4 Publication bias 

Publication bias refers to the tendency for studies that show evidence of a statistically 

significant effect to be published over and above those that do not (Dickersin et al., 1987; 

Peters et al., 2008).  Such biases, if present, have the potential to distort the results of a meta-

analysis, leading to inaccurate and misleading conclusions. Methods exist to detect and adjust 
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for publication bias; see for example (Egger et al., 1997; Egger et al., 2000; Peters et al., 

2008; Moreno et al., 2009). The funnel plot (Figure 2.1) is the simplest of these methods. 

This is a scatter plot with the effect size on the x-axis and some measure of the precision of 

the effect sizes such as the inverse of the standard error on the y-axis (Sterne and Egger, 

2001).  
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Figure 2.1: Example of a funnel plot 
Pseudo 95% confidence limits are represented as dotted lines. Log(OR) refers to 
log(odds ratio). 

 

A funnel plot should be symmetric with a characteristic funnel shape appearance when no 

publication bias is present so that greater variability in the effect sizes is observed in the 

smaller and less precise studies towards the lower part or base of the funnel (Peters et al., 

2008). Note that funnel asymmetry can also occur for other reasons, such as small study 

effects, If there is evidence of funnel plot asymmetry, the extent of bias may be quantified by 

employing tests for ‘publication bias’ assessment that have been proposed (Egger et al., 

1997; Harbord et al., 2006; Rucker et al., 2008; Peters et al., 2010).  However, these tests 

typically have low power and it is recommended that test of funnel plot asymmetry should 

only be carried only if there are at least 10 studies in the meta-analysis (Sterne et al., 2011). 
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Methods used to correct publication bias include trim and fill (Duval and Tweedie, 2000) and 

several regression based methods described in detail in Moreno et al. (Moreno et al., 2009).   

 

 

2.3 Network meta-analysis  

2.3.1 Model for binary outcome data 

Network meta-analysis (Lumley, 2002) also called mixed treatment comparisons (Lu and 

Ades, 2004; Caldwell et al., 2005) or multiple treatment meta-analysis (Salanti et al., 2008), 

methods extend standard meta-analysis to enable simultaneous comparison of multiple 

treatments while maintaining randomisation. These methods enable ‘direct evidence’ (i.e. 

studies that directly compared the two treatments under consideration) and ‘indirect 

evidence’ (i.e. the remaining studies in the network under the consistency assumption) on 

pairwise contrasts to be pooled under the assumption that there is consistency (see Section 

2.3.3 below for explanation and assessment of evidence consistency) between the direct and 

indirect evidence, hence they are often referred to as mixed treatment comparisons (Lu and 

Ades, 2004; Caldwell et al., 2010; Welton et al., 2012). For example, in the following 

ensemble of evidence on 3 interventions labelled A, B and C taken from Welton et al. 

(Welton et al., 2012), trials comparing interventions A and B (AB trials) will provide direct 

evidence to estimate effect of B relative to A, denoted as dir
ABd


. At the same time, trials of A 

versus C (AC trials) and those of B versus C (BC trials) will provide indirect evidence to 

estimate effect of intervention B relative to A, denoted as indir
ABd


 through the relationship:  

                          dir
BC

dir
AC

indir
AB ddd



−=                                                                                          

(2.9) 

where dir
ACd


 and dir
BCd


 represent direct estimates from AC trials and BC trials respectively. The 

essential requirements for this type of analysis are that: i) the interventions should be linked 

with each other, forming a connected network of treatments as shown in Figure 2.2, and ii) 

there should be consistency in the evidence structure when direct and indirect evidence are 

pooled on pairwise contrast as explained in Section 2.3.3. 
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Figure 2.2: An example of a connected network from the example dataset  
Interventions that have been compared in trials included in the meta-analysis are 
connected by lines; the number of trials is indicated on the lines  
 

Given binary outcome data from treatment arms of each study included in the meta-analysis, 

a random effects NMA may be specified using the method of Lu and Ades (Lu and Ades, 

2004). It is assumed that the occurrence of ikr events from a total of ikn individuals in the kth-

arm ( ,,,, CBAk = ) of the ith-study follow a binomial distribution with underlying event 

probability ikp : 

              ( )ikikik npr ,Binomial~   

                 ( )




>+
=

=
bkif
bkif

p
ibkib

ib
ik ,

,
logit

δµ
µ

                 for ,,,, CBAb =                     (2.10) 

                 ibkbkibk d εδ += , ( )2,0Normal~ bkibk σε                                                    

where dAA = 0 (i.e. the intervention effect in the reference or baseline intervention for the 

entire network is set to 0) and k>b implies intervention k comes alphabetically after b. The 

parameter ibµ is the effect of baseline intervention b (log odds) in study i and ikε denote a 

random effect indicating that the study-specific effects (log odds ratios) of intervention k 

relative to b, ibkδ , are normally distributed with mean bkd and between-study variance 2
bkσ . 

Note that a fixed effect model is obtained if 02 =bkσ . 
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The fundamental assumption underlying random effects network meta-analysis is that the 

intervention effects are exchangeable (see Section 2.3.3 for explanation of the concept of 

exchangeability) across the entire network of trials regardless of whether or not treatments b 

and k are included in trial i (Lu and Ades, 2004). Validity of this exchangeability assumption 

means that the pooled intervention effects bkd can further be expressed as functions of basic 

parameters taken with reference to treatment A, (i.e. AbAkbk ddd −= ).  Effect estimates from 

trials with more than 2 treatment groups will be correlated through sharing a common 

comparator treatment. The correlation may be taken into account by assuming homogenous 

variances (i.e. 22 σσ =bk  for all b and k) so that  the covariance is equal to 
2

2σ
(Lu and Ades, 

2004). Alternatively, heterogeneous variance models have also been proposed (Lu and Ades, 

2006). The analysis if conducted within the Bayesian framework, require prior distributions 

to be specified for the parameters bkd  and ibµ   as in equation (2.6) and σ as in equation (2.7). 

Parameter estimation is then by Markov chain Monte Carlo simulation implemented in the 

WinBUGS software (Lunn et al., 2000). 

 

2.3.2 Assessing which intervention is the best 

As explained above, network meta-analysis enables simultaneous comparison of multiple 

interventions by using all available data in a connected network of studies. The main 

advantage of NMA is that interventions can be ranked in terms of their efficacy and used to 

estimate the probability that each intervention is the best option (Welton et al., 2012). This 

can easily be implemented in WinBUGS using the ‘rank’ and ‘equals’ functions as follows: 

 

                  
( )

( )



<−+
<

=
harmconfers1ratiooddsfi,)1(
benefitconfers1ratiooddsif,

kK
k

rk drank
drank

                            (2.10) 

                 ( )1,kk rbest equals=                                                                                            (2.11) 

where for Kk ,,2,1 = , kr  indicates the rank for the kth intervention (the most effective 

intervention is ranked number 1), and kbest indicates  the probability that intervention k  is 

the best, K is the total number of interventions being evaluated in the NMA and d is a vector 

of mean effects relative to the reference intervention. When reporting the ranking of 
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interventions in this thesis, the posterior median estimate is preferred to instead of posterior 

mean (can be a whole number of decimal). This ensures that kr  takes the value 1 if k is the 

best intervention and K if k is the worst intervention (Welton et al., 2012).  

 

2.3.3 Assessing evidence consistency 

NMA assume that the trial-specific effects ibkδ   are normally distributed around a common 

mean with variance 2
bkσ . In other words, the ibkδ s are assumed to be exchangeable which is to 

say they are different but there is no way of predicting the rankings of their magnitude a 

priori (Welton et al., 2012).  This assumption is unlikely to be met if there are evidence loops 

in the network where the direct and indirect evidence on pairwise contrasts are inconsistent, 

or do not agree (Dias et al., 2010).  Note that evidence loops formed solely by multi-arm 

trials are excluded from the consistency assessment, since by definition, evidence from a 

multi-arm trial cannot be inconsistent (Dias et al., 2010). Doubts about the validity of NMA 

have been expressed because of concerns that direct and indirect evidence from disparate 

sources may not be consistent and should not be pooled together (Song et al., 2003; Song et 

al., 2011). Therefore, carrying out checks for evidence inconsistency in NMA is crucial if the 

results of the analysis are to be trusted. 

 

Methods for assessing evidence inconsistency have been published, for example the papers 

by  Lu and Ades, 2006 (Lu and Ades, 2006), Dias et al., 2011 (Dias et al., 2011b)  and the 

recently released NICE Decision Support Unit Technical Support Document 4 (Dias et al., 

2011b). In this thesis, one of these methods, called node-splitting (Dias et al., 2011b), will be 

used to assess the consistency of the evidence when NMAs are used to compare intervention 

effectiveness. Briefly, for each pairwise contrasts in a closed loop of evidence, the node-

splitting method enable separate estimates of the mean treatment effect based on the direct 

evidence and indirect evidence to be calculated. The difference between these two estimates 

can be used to construct a test for inconsistency and derive a 2-sided p-value for the null 

hypothesis that direct and indirect estimates are different. Note that, the test may lack 

sufficient power to detect inconsistency especially if the number of studies in the meta-

analysis is small (Dias et al., 2013). Therefore failure to reject the null hypothesis does not 

necessarily imply consistency of the evidence. In addition, the node splitting method can 
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detect inconsistency but does not explain it. That is to say the method does not identify the 

pairwise comparisons in the network that are inconsistent. Therefore, when inconsistencies 

are detected in a network of evidence it is important to go back and re-examine the entire data 

to see if the cause of the inconsistency can be identified from available evidence (Dias et al., 

2013). It is also important to consider carefully whether reliable conclusions can be drawn 

from combining direct and indirect evidence when there is inconsistency in the evidence 

structure.  

 

2.3.4 Assessing publication bias in network meta-analysis 

There are as yet no methods for assessing publication bias in network meta-analysis, 

therefore assessment of publication bias in this thesis will be carried out using the methods 

reviewed in Section 2.2.4 for assessing publication bias in pairwise meta-analysis. 

 

2.3.5 Convergence diagnostics  

When using MCMC based estimation procedures implemented through the WinBUGS 

software, it is important to carefully assess and report choice of  prior distributions, 

initial/starting values, number and length of iterations in addition to checking for evidence 

that convergence of the simulated samples is adequate (Spiegelhalter et al., 2000).  This is 

because the results of the analysis can be sensitive to the choice of prior distributions, initial 

values, length of ‘burn-in’ and so on. Convergence can be assessed by examining the history, 

kennel density, autocorrelation and Brooks-Gelman diagnostic plots available from the 

WinBUGS menu as follows: 

i)  The history plot shows successive realisations of the MCMC sampler plotted against the 

iteration number for each parameter of interest (Lunn et al., 2012). A stable plot with ‘fat 

hairy caterpillar-like’ appearance is evidence that the Markov Chain has reached stability 

(and may have converged) whereas a snake-like appearance may indicate a high degree 

of autocorrelation or evidence of non-convergence (Lunn et al., 2012).    

ii) Posterior kernel density plots are used to assess whether or not the distributional form of 

model parameters appear as expected, whilst the autocorrelation plots assesses the degree 

of correlation between successive iterations of the sampler.  Rapid or gradual thinning 
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out towards zero if observed in the autocorrelation plot should indicate low correlation 

between 40 sequential iterations of the sampler and vice versa. Low autocorrelation 

would usually indicate faster mixing and convergence whereas higher autocorrelation 

indicate slow mixing convergence, hence necessitating longer running of the sampler.  

iii)  The Brooks-Gelman diagnostic plot (Brooks and Gelman, 1998)  compares the within 

and between chain variances from simultaneous running of multiple chains with different 

starting values to assess evidence of convergence for each parameter being monitored.  

The green line of the plot represent the normalized width of the central 80% interval of 

the pooled runs (B), blue line represents the normalized average width of the 80% 

intervals within the individual runs (W) and red is R where R= B/W.  Convergence is 

deemed to have occurred if R has converged to 1 and B and W have converged to 

stability (Spiegelhalter et al., 2007). 

 

2.3.6 Goodness fit and model selection 

The posterior mean residual deviance, defined as the deviance for the fitted model minus 

deviance for the saturated model, will be used to assess how well the model predictions fit the 

observed data (McCullagh and Nelder, 1989; Spiegelhalter et al., 2002). Under the null 

hypothesis that the model fits the data well, the posterior mean residual deviance is expected 

to be approximately equal the number of unconstrained data points. Therefore models would 

be judged to provide adequate fit if the residual deviance is close to the number of data points 

in the model. The fit of alternative models (for example, fixed effect versus random effects 

model) can be compared using the Deviance Information Criterion (DIC) (Spiegelhalter et 

al., 2002; Spiegelhalter et al., 2014). The DIC is the sum of the posterior mean residual 

deviance and the effective number of parameters and, as such, provides a measure of model 

fit that penalizes for model complexity. 

 

2.4 Chapter summary 

The statistical methods for summarising evidence from multiple sources were reviewed in 

this chapter. The NMA methods presented in Section 2.3 especially will used to synthesis the 

evidence on the effectiveness of interventions to increase uptake of poison prevention 
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measures presented in Chapter 5.. The NMA model described in Section 2.3  is then extended 

to include a covariate for the baseline risk in Chapter 6 based on methods developed in 

Achana et al.(Achana et al., 2013) and to multiple outcome settings in Chapter 7 based on 

methodology developed in Achana et al (Achana et al., 2014a). he results from the analyses 

in Chapters 5, 6 and 7 are used to inform the cost-effectiveness evaluation of poison 

prevention practices in Chapter 8. Before that, an introduction to methods for economic 

evaluation of healthcare interventions is presented next in Chapter 3.  
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3. REVIEW OF DECISION ANALYTIC MODELLING METHODS  

3.1 Chapter overview 

Methods for quantitative synthesis of evidence from diverse sources were reviewed in chapter 

2. In this chapter, the methods for economic evaluation of healthcare interventions are 

introduced.  Emphasis will be placed on methods for economic evaluations conducted within 

a decision analytic modelling framework as opposed to the conduct of economic evaluations 

alongside clinical trial data. 

 

3.2 Economic evaluation in healthcare 

3.2.1 Introduction 

Healthcare decision makers all over the world are faced with the problem of deciding how 

best to allocate resources within limited budgetary constraints. Hence clinical and economic 

dimensions of healthcare provision should be taken into account in making decisions about 

which interventions to fund if resources are to be efficiently allocated. Economic evaluation 

of healthcare interventions offers a framework for synthesis of data on clinical outcomes and 

resource use in order to estimate the costs and benefits associated with two or more 

competing interventions (Briggs et al., 2006; Gray et al., 2011).   

 

Evaluations may be conducted alongside a randomised controlled trial (RCT) or through a 

modelling exercise. Economic evaluations conducted through modelling exercises are called 

decision analytic models. They provide an explicit quantitative approach to synthesis of 

information from multiple sources and are useful for comparing the cost-effectiveness of 

competing interventions that may not have been directly considered in a single RCT and also 

in situations where there may be limited or non-existent trial data on long term costs and 

effects (Welton et al., 2012; Baio, 2013). For these reasons, modelling is increasingly being 

employed by decision making bodies such as NICE when deciding which interventions 

should be funded by the NHS (NICE, 2008; NICE, 2012).  
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Ultimately the goal of any economic evaluation is to compare the costs and benefits 

associated with competing interventions. This can be done either through a ‘cost-benefit’ or a 

‘cost-effectiveness’ analysis. Cost-benefit analysis attempts to assess whether the monetary 

value of health benefits is greater or less than the costs of obtaining the benefits by expressing 

both the clinical outcomes and the resource use purely in monetary terms (Gray et al., 2011). 

Cost-effectiveness analysis, on the other hand, compares costs and effects of two or more 

interventions using either disease-specific or generic measures of health. Disease specific 

measures, as the name implies, are specific to a particular disease or health condition. 

Examples include the number of symptom free days, true positive cases of cancer detected, 

number of deaths averted, and so on.  Generic measures of health (also referred to as utilities) 

are non-disease specific, thus can be used to measure the health benefit across different 

disease domains. Examples include Life Year (LY), the Quality Adjusted Life Year (QALY) 

and the Disability Adjusted Life Year (DALY). Cost-effectiveness analyses in which the 

health outcomes are expressed in terms of these generic measures are referred to as a cost-

utility analysis (Briggs et al., 2006; Welton et al., 2012).  

 

3.2.2 Measuring health outcomes 

The Quality Adjusted Life Year, or QALY for short, is one of the most frequently used utility 

measures as it incorporates both quality and quantity of life when valuing health (Phillips, 

2005). As stated above, QALYs are useful when comparing the value of health generated by 

interventions across different disease domains. Thus, they are the preferred measure of health 

outcomes for NICE reference case analysis.  Generally, QALYs allow health to be valued on 

a scale of 0 to 1, with 0 being equivalent to death and 1 being equivalent to one-year life 

expectancy in perfect health. In some instances, negative QALY values can be used to 

indicate health states considered worse than death (Baio, 2013). 

 

As mentioned in the section above, there are other generic units for measuring health 

outcomes in economic decision analysis such as the Life-Year. Another is the DALY which 

specifically takes into account excess morbidity and mortality in a given population and is the 

preferred measure for valuing health by the World Health Organisation (World Health 

Organisation, 2014). However, for the reasons stated above, the QALY will be the main 
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measure of health outcome in cost-effectiveness evaluations presented in Chapter 8 as 

commended by NICE (NICE, 2012; NICE, 2013).  

 

3.2.3 Measuring resource use and unit costs 

In any cost-effectiveness evaluation, careful thought and attention should be given to 

collection of data on resource use and unit costs because the results of the evaluation can 

change substantially depending on what is included in the estimation of costs. There are two 

issues to consider in any costing exercise (Baio, 2013). The first concerns identifying what 

items to include in the costing analysis. This will be influenced by many factors including the 

perspective of the analysis and the natural history of the disease. Costs and benefits should be 

considered from the viewpoint of the decision maker and this is often referred to as the 

perspective of the economic evaluation (Briggs et al., 2006; Gray et al., 2011). For example, 

when appraising new technologies for a centrally funded healthcare system such as the UK 

National Health Service (NHS), NICE recommends that potential impact on resource use, 

costs and savings should be considered from the perspective of the NHS and personal social 

services in its base case analysis (NICE, 2013). However, the NICE methods manual for the 

development of NICE public health guidance (NICE, 2012) suggested that other perspectives 

such as that of employers, the private sector or the wider society can be considered when 

evaluating PH interventions if considered more appropriate than a health sector perspective.  

 

The second issue concerns identifying sources of evidence on unit costs and resource use 

relevant to the decision problem and deciding on how best to incorporate such evidence into 

the analysis. Evidence on unit costs and resource use may come from a number of sources, 

including data collected as part of a clinical trial, a costing study, another economic 

evaluation or routinely published datasets of unit costs. For example, the ‘Unit Costs of 

Health and Social Care’ (Curtis, 2012) published annually by the Personal Social Services 

Research Unit (PSSRU) in the UK and the Diagnosis Related Groups (DRG) payments 

developed for the United States (US) Medicare system provide routine costing data on 

clinical activities. Once the data has been collected, it may be necessary to make certain 

adjustments (for example using to Bank of England’s inflation calculator (Bank of England, 

2014)) to bring all prices to a common base year. This will account for the effect of inflation 
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when costs are incurred over different time periods and also adjust for currency differences if 

information from countries with different currency units is included in the analysis. 

 

3.2.4 Discounting costs and utilities 

It is widely recognised that costs and benefits occurring over a period of time are worth more 

in the present than in the future (Briggs et al., 2006; Gray et al., 2011; Baio, 2013). This is 

because of the opportunity cost associated spending money in the present rather than waiting 

(for example, the interest forgone in delaying to make an investment) and a desire by 

individuals and societies to enjoy benefits in the present rather than in the future (Torgerson 

and Raftery, 1999). Discounting is thus used in economic evaluations to account for the 

differential timings in costs and outcomes and hence, ensure the results of the analysis reflect 

the present value of costs and benefits that have accrued over the time horizon of the analysis 

(NICE, 2008). This is achieved by discounting costs and benefits in evaluations with longer 

time horizons (more than 1 year) by a factor of 1/ ( )td+1 , where d is the discount rate and t is 

the time at which the costs and benefits are realised (Drummond et al., 2005). There is 

currently ongoing debate about whether or not future benefits should be discounted at all and 

if so what rate of discount to use (Torgerson and Raftery, 1999; Baio, 2013). The discount 

rate for both costs and benefits suggested by NICE when appraising healthcare technologies 

(NICE, 2013)  and PH interventions (NICE, 2012) is of 3.5% per annum. This rate will be 

used to discount costs and health utilities in the decision analytic model developed in Chapter 

8. 

 

 

3.3 Decision analytic modelling methods 

3.3.1 Cohort versus individual patient-simulation 

Estimates of expected costs and effects required in a cost-effectiveness evaluation can be 

obtained using cohort-level or patient-level (also called micro-simulation) simulation based 

methods. In patient-level simulation, costs and effects are first modelled for each individual 

patient and then averaged across a sufficiently large sample of patients to obtain the expected 

costs and effects. In a cohort-level model, individual patients are aggregated into a group (i.e. 
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the cohort) with expected costs and effects estimated for the whole group rather than for 

individual patients (Davis et al., 2014). Cohort models are currently the most commonly used 

techniques in decision analytic based cost-effectiveness analysis. As such, cohort models will 

be the focus of the remainder of this chapter, and of the decision models developed in 

Chapter 8. The two most commonly used cohort simulation models are decision trees and 

Markov models. These are discussed next. 

 

3.3.2 Decision tree models 

A decision tree is a branching tree system that can be used to estimate the cost-effectiveness 

of healthcare interventions. Decision trees have nodes and branches. The nodes represent 

stages in the pathway where choices or events of uncertain outcome occur. There are three 

types of nodes in a simple decision tree structure: i) decision node, ii) chance node and iii) 

terminal node (Gray et al., 2011). A decision node is usually indicated by a squared box and 

represents the choices or options available to the decision maker. Chance nodes are circular 

and represent events of uncertain outcome while terminal nodes are triangular and represent 

final outcomes in the decision process (Gray et al., 2011). The branches of the tree represent 

mutually exclusive pathways or the sequence of events that can occur over time (Briggs et 

al., 2006; Gray et al., 2011) and indicate the flow of information (usually from left to right) 

through the model. 

 

 

 

 

 

 

Figure 3.1: Simplified diagram of a decision tree model 

 

Decision 

 

 

Intervention 1 
Success             

Failure              

Outcome    Costs      Benefits 

 

 

Intervention 2 
Success            

Failure             
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Figure 3.1 gives a simplified example of a decision tree model taken from Welton et al. 

(Welton et al., 2012). The options available to the decision maker concern whether to 

recommend one of two possible interventions represented by the branches of the decision 

node. In this simplified example, each choice leads to one of two mutually exclusive chance 

events (i.e. whose occurrence is determined by some underlying event probability). 

Assessment of cost-effectiveness is then based on comparing the estimated payoffs (i.e. the 

expected costs and benefits) for each intervention, calculated as a sum of pathway values 

weighted by the respective pathway probabilities.    

 

In principle, decision trees are simple to construct, easy to understand and more transparent 

than complicated modelling techniques. However, they are mainly suited to modelling acute 

conditions where events occur over short time horizons. They are not suitable for modelling 

chronic disease progression or complex health conditions where the  individuals move 

between different disease/health states and events play over longer time periods as the  

decision tree quickly become bushy, cumbersome and difficult to handle (Briggs et al., 

2006). For these reasons, economic evaluations of chronic and complex conditions are often 

conducted using Markov models.  

 

3.3.3 Markov Models 

Markov models are techniques for analysing uncertain processes that occur over time. In 

healthcare decision making, they are suited to modelling diseases that are chronic or 

repetitive in nature in which costs and effects are spread over longer time periods (Gray et al., 

2011). The basic idea of a Markov model is that the disease in question is divided into 

distinct health states, which are chosen to represent important clinical and economic events in 

the disease process. During the modelling process, over a fixed time period called 

‘Markovian circle’ (Briggs and Sculpher, 1998), patients may stay in the same state or move 

between states. These movements are governed by transition probabilities, the values of 

which are determined by the clinical prognosis or natural history of the disease. The length of 

the ‘Markovian circle’ is chosen so as to be clinically meaningful for the disease and to 

ensure patients remain in health states long enough for costs and benefits/clinical effects 

associated with a given health state to be realised. To evaluate the model, costs and effects 
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are attached to each state at the end of each circle. The analysis is then run for a sufficient 

number of cycles (known as the time horizon) to allow for all individuals to reach an 

‘absorbing state’, defined as a state from which once entered individuals cannot leave (for 

example, death). An example of a Markov model for injury progression in pre-school 

children following accidental ingestion of a toxic substance is presented in Figure 3.2. There 

are 4 health states (well, injury, death from injury and death from causes unrelated to injury 

mechanism being evaluated). The two death states are absorbing states, hence individuals can 

enter but not leave once in these states. This is indicated in Figure 3.2 by the only arrows 

coming out of these states looping back unto the same states.   

 

 

 

 

 

 

 

 

 

Markov models have some properties which make them attractive. First of all, structuring the 

analysis around distinct health states increases flexibility with which chronic disease or 

complex health processes can be modelled. Secondly, events unfolding over time can be 

represented as transitions between health states over several Markov cycles. The underlying 

assumption is that transition probabilities remain constant over time and that transition 

between states depends only on the current health state of the individual regardless of any 

previous states the individual may have resided  (Briggs et al., 2006). This lack of memory 

also called the ‘Markovian assumption’ implies that patients in a given state at a given time 

have the same prognosis irrespective of pathways taken to arrive at the respective state. This 

memoryless assumption greatly simplifies the mathematics and computations involved but 

also limits applicability of Markov models as disease prognosis most often depends on the 

previous history of the disease (Sun and Faunce, 2008). However, if required, temporary and 
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Figure 3.2: A simplified example of Markov model 
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tunnel states can be built into the model in order to relax the Markovian assumption and 

capture short but important health outcomes. 

 

 

3.3.4 Comprehensive decision analysis 

The conventional approach to decision analytic modelling (whether using a decision tree or 

Markov model) is a two-stage process. In the first stage, meta-analysis to summarise 

evidence from multiple studies and to derive an estimate of intervention effect(s). The 

effectiveness estimates are then combined with data on resource use, unit costs and utilities in 

a second stage analysis to estimate the expected costs and benefits. This process of separating 

out the evidence synthesis from the rest of the decision analysis effectively ignores important 

correlations between the effectiveness and cost-effectiveness measures which may have 

implication for estimating expected costs and effects associated with the interventions being 

evaluated. As an alternative, Cooper et al. (Cooper et al., 2004) proposed a one-stage model, 

called a comprehensive decision model, in which evidence synthesis and the decision 

analysis are conducted in a single unified/integrated stage. When implemented within a 

Bayesian framework, the comprehensive decision modelling approach has the advantage of 

incorporating uncertainty and the correlations between the parameters and propagating these 

automatically to the model outputs in a coherent fashion. For these reasons, the models 

developed in Chapter 8 will utilise the comprehensive decision analysis approach.  

 

3.3.5 Incorporating uncertainty  

Uncertainty is an inherent phenomenon in any decision making process that should be 

handled appropriately to increase confidence in the results of the analysis. Uncertainty in the 

cost-effectiveness estimates may arise for several reasons, but the two mostly widely reported 

sources of uncertainty in the health economics literature are i) uncertainties concerning the 

value of model inputs or parameters and ii) uncertainties about model structure, assumptions 

and the methods used to evaluate the model (Briggs, 2000; Briggs et al., 2006; Gray et al., 

2011). 
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Uncertainties about the model structure (for example, how many health states to include and 

the assumptions that go into making these decisions about the model structure) can  

contribute to uncertainty in the model outputs and results (Gray et al., 2011). This type of 

uncertainty, collectively termed structural uncertainty, may be handled either through model 

averaging techniques (Bojke et al., 2009; Jackson et al., 2009) or more commonly through 

deterministic sensitivity and scenario analyses in which the impact of varying model 

assumptions and structure can be investigated under different scenarios. 

 

Parameter uncertainty relates to the precision with which input parameters are estimated and 

incorporated into the decision model. Uncertainty in model inputs such as effectiveness 

estimates, transition probabilities, unit costs, resource use and utilities can be incorporated in 

the cost-effectiveness evaluation through  probability distributions (Gray et al., 2011; Welton 

et al., 2012). This type of analysis in which the parameters are characterised by probability 

distributions is often referred to as a probabilistic decision analysis to distinguish it from a 

deterministic analysis where point estimates (usually the mean value of each parameter) are 

included in the model without taking account of the uncertainty around the input parameters 

(Welton et al., 2012). 

 

3.4 Presenting results of economic evaluations 

3.4.1 Cost-effectiveness plane 

The ultimate aim of an economic evaluation is to estimate expected costs and effects 

associated with two or more interventions in order to derive estimates of cost-effectiveness. 

The estimates of cost-effectiveness in this process are normally presented in terms of a ratio 

statistic known as the Incremental Cost-Effectiveness Ratio (ICER) (Welton et al., 2012).  

The ICER represents the cost incurred per additional unit of effectiveness as defined by the 

equation: 

                     
( ) ( )
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−
−
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                                                                         (3.1) 

where ( )tC  and ( )tE represent the costs  and effects (benefits) in the intervention group, ( )cC  

and ( )cE  represent the corresponding values in the control group, C∆  and E∆  represent 
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incremental costs and effects, and λ  is a Willingness-to-pay or ceiling ratio indicating the 

maximum amount that a decision maker is willing to pay per additional unit of effectiveness 

(Welton et al., 2012).   

 

 

 

 

 

 

 

 

 

 

One way of presenting the results of a probabilistic decision model is to plot the simulated 

ICERs on a cost-effectiveness (CE) plane (Figure 3.3). The CE plane is divided into four 

quadrants with incremental effectiveness, E∆ , displayed along the x-axis and incremental 

costs, C∆ displayed along the y-axis. It will be relatively uncontroversial to make decisions 

on the basis of ICERs that lie either in the south-east or the north-west quadrants of Figure 

3.3 as these quadrants indicate that the intervention is more effective and cheaper than the 

control or vice versa. However, in the situation where the ICER falls in the north-east or 

south-west quadrants, decisions about which intervention is cost-effective will depend on the 

amount the decision maker is willing to pay and hence which side of the dashed line, 

represented by λ , that the ICER falls. The intervention is considered cost-effective at the 

specified value of λ  if the ICER lies below (i.e. the right hand side of) the dashed line and 

cost-ineffective if the ICER lies above the dash line. This criterion can be used to calculate 

the probability that an intervention is cost-effective at a specified λ  in a probabilistic cost-

effectiveness analysis as explained in the next section. 

Figure 3.3: Cost-effectiveness plane (adapted from Welton et al ., 2012)) 
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3.4.2 Cost-effectiveness acceptability curve 

The exact value of λ , the amount a decision maker may be willing to pay for an additional 

unit of health benefit (for example 1 QALY) may be unknown in practice (Welton et al., 

2012). In the UK, NICE currently uses λ  values of £20,000 to £30,000 per QALY gained 

when appraising the cost-effectiveness of health technologies (NICE, 2013).  In a 

probabilistic analysis, this problem can be overcome by calculating the probability that a new 

intervention is cost-effective for different values of λ  and then plotting these probabilities 

against λ  to form a cost-effectiveness acceptability curve (CEAC). An example of such a 

plot is shown in Figure 3.4. These probabilities can be obtained in two ways. First, the 

simulated values of a probabilistic ICER are plotted and the required probabilities that the 

intervention is cost-effective at different values of λ  are obtained simply by counting the 

proportion of the simulations below the dash lines representing different threshold values of 

interest to the decision maker.  

 

 

Figure 3.4: An example of CEAC for 2 interventions (20K = £20,000) 
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Alternatively, the required probabilities can be derived from the Incremental Net Benefit 

(INB) function which is defined as: 

                   0>∆−∆= CEINB λ                                                                                            (3.2) 

The parameters in equation (3.2) have the same definition as in equation (3.1). The 

probability that the intervention is cost-effective compared to the control intervention at a 

givenλ , denoted as ( )λpCE  is then given by: 

                                                                       (3.3) 

Equations (3.2) and (3.3) will be applied to decision analytic models developed in Chapter 8 

to calculate ( )λpCE  and used to plot CEACs for the interventions being evaluated. 

 

3.5 Chapter summary 

This Chapter has reviewed the methods for economic evaluation of healthcare interventions 

within a decision analytic modelling framework. It is the last of the chapters reviewing the 

methods that will be used to carry out the analyses in the remainder of this thesis.  In the 

remainder of the thesis (specifically Chapters 5 to 8), the ability of new synthesis 

methodology (including new methods developed in this thesis) to address the challenges of 

evidence synthesis in a PH context will be demonstrated and critically evaluated with 

applications to the example problem. Before that, a review of PH appraisals published by 

NICE is conducted to understand how evidence is currently synthesised in PH evaluation of 

interventions.  
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4. SYSTEMATIC REVIEW OF SYNTHESIS METHODS IN PUBLIC 

HEALTH EVALUATION OF INTERVENTIONS 

4.1 Chapter overview 

This Chapter presents the outcome of a systematic review of the synthesis and decision 

modelling methods that were used to inform the development of NICE public health 

appraisals published between 2006 and 2012.  The review was conducted with the aim of 

identifying the current state of affairs (i.e. what is already done and/or not done) and the 

barriers to quantitative synthesis of evidence in public health evaluation of interventions.  It is 

anticipated that the review findings will provide the basis for establishing a quality bar to 

guide application (and where necessary development) of new synthesis methodology with 

potential to address some of the challenges of evidence synthesis in PH evaluations.  The part 

of the review relating to use of evidence synthesis methods in public health have been 

published in the Journal of Clinical Epidemiology and is given in Appendix VI - Research 

paper 1(Achana et al., 2014b). 

 

 

4.2 Introduction 

The challenges of evidence synthesis in PH evaluations of interventions were discussed in the 

introductory chapter. Many of the issues identified there are methodological challenges 

arising from the heterogeneous nature of PH evidence including studies of different designs, 

interventions, outcomes and patient populations. Despite these difficulties, there have been 

increasing calls for PH decision making to be based on the best available evidence whenever 

possible. For example, a 2004 Department of Health report (Wanless, 2004) on improving 

health and reducing health inequalities in England called for economic evaluations of PH 

interventions to ensure judicious use of scarce resources. Following this report, the remit of 

NICE which already evaluated pharmaceutical interventions, was expanded to include the 

development of guidance for PH based on sound appraisals of intervention effectiveness and 

cost-effectiveness (Chalkidou et al., 2008). Consequently, a number of PH appraisals were 

produced by NICE since 2006 on a wide range of issues including smoking cessation, 
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alcohol-use, and, particularly of relevance to the example used in the example problem in this 

thesis, accidents prevention in children. 

 

To help address specific methodological challenges and provide advice on the technical 

aspects of the appraisal development process, NICE published a methods manual for PH 

evaluation in 2006 (NICE, 2006), which was subsequently updated in 2009 (NICE, 2009). (A 

further update was published in September 2012 (NICE, 2012) after this review was 

completed but the guidance was unchanged). The guidance recommended: 

 “Meta-analysis may be used to produce a graph if the data (usually from RCTs) are 

sufficiently homogenous and if there are enough relevant and valid data from comparable (or 

the same) outcome measures. Where such data are not available, the synthesis may have to be 

restricted to a narrative overview of individual studies looking at the same question”,  

“Before pooling or combining the results of different studies, the degree of heterogeneity in 

the data should be assessed to determine how the results have been affected by the 

circumstances in which studies were carried out”, and  

“Publication bias (Dickersin et al., 1987; Sutton et al., 2000) should be critically assessed and 

reported in the interpretation of the meta-analysis results”.  

These recommendations match well to the challenges in systematic review/meta-analysis in 

PH highlighted by the Cochrane Collaboration (Armstrong et al., 2008) and the 2011 Institute 

of Medicine (IOM) report on standards for systematic reviews (Eden et al., 2012).  

In view of the aforementioned challenges facing PH evaluations, and recommendations for 

synthesis of PH evidence contained in the NICE methods manuals, a review of all NICE PH 

appraisals published since 2006 was conducted. The conduct and findings of this review 

forms the subject matter of the remainder of this chapter.   

 

4.3 Systematic review methods 

Completed PH appraisals published between 01/03/2006 and 25/09/2012 were identified for 

inclusion in the review through the NICE website 
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 (http://www.nice.org.uk/Guidance/PHG/Published). Each PH appraisal consisted of a 

number of articles such as qualitative reviews, epidemiologic reviews, expert opinions; field 

reports and other similar non-quantitative review reports as well as quantitative systematic 

reviews of effectiveness and cost-effectiveness, and decision analytic modelling reports. 

These were retrieved from the ‘background information’ sections and assessed for eligibility. 

The ‘how this guidance was produced’ sections were also searched for relevant articles if 

none were identified under ‘background information’.  Articles considered for inclusion in 

this review were systematic reviews of the quantitative effectiveness and cost-effectiveness 

evidence and/or decision analytic modelling reports. Qualitative evidence reviews, 

epidemiologic reviews, field reports, expert opinions and other similar non-quantitative 

evidence review reports were excluded. In addition, the final appraisal/guidance documents 

developed for each PH appraisal area were also excluded as these did not contain relevant 

information on the conduct of the evidence synthesis and decision modelling, which are of 

interest in this review. All except two (PH1 and PH2) of the appraisals were published after 

the 2006 NICE methods manual (NICE, 2006) so should have had access to the guidance for 

quantitative effectiveness evidence synthesis techniques.   

 

Information extracted from the retrieved articles was used to assess the methods used to 

synthesise the effectiveness evidence and subsequent incorporation of the evidence into the 

decision models (where developed) that informed the PH appraisal. The assessment criteria 

for the synthesis methods were: 

• Type of systematic review – narrative summary versus meta-analysis; 

• Included studies – RCT versus observational (non-randomised) studies; 

• Methods used to synthesise the evidence (if undertaken), including specification of 

the statistical model (including fixed and/or random effects models),  heterogeneity 

and publication bias  and the outcome measures used, as well as presentation of 

results; and  

• How evidence from the systematic review was used to inform the cost-effectiveness 

analysis, if applicable. 
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Where economic decision models were developed as part of a public health appraisal, the 

following criteria were used to assess the methodology based on guidelines for good 

practice in decision analytic modelling  (Philips et al., 2004; Philips et al., 2006): 

• Model structure – decision tree/Markov processes/other model types; 

• Perspective of the base case analysis; 

• Interventions under consideration; 

• Unit of analysis – individual/household/other; 

• Time horizon;   

• Quantification  (Yes/No) - incorporation of uncertainty in model structure, 

assumptions and parameters – deterministic /probabilistic sensitivity analysis; 

• Discounting (Yes/No); 

• Final measures of health outcomes – generic measures such as the QALY and life-

year gained or disease specific utility measures.    

 

4.4 Systematic review results 

Thirty-nine completed PH appraisals published since 2006 were identified from the NICE PH 

website. Within these 39 appraisals, 371 potentially relevant articles were retrieved and, after 

screening the titles and reading the introduction and/or abstract sections, 164 were excluded 

as they failed to meet the inclusion criteria outlined above. Fifty-two articles, identified as 

duplicates and supplementary appendices, were combined with the corresponding main report 

and counted as one article leaving a total of 155 articles for inclusion in this review. No 

relevant supporting document meeting the inclusion criteria existed for one appraisal (PH36) 

which evaluated prevention and control of hospital infection. Therefore, the number of 

included articles per appraisal ranged from 0 to 10 with a median of approximately 4 articles 

per appraisal.  

 

4.4.1 Type of review 

Table 4.1 lists all 39 PH appraisals by summary of the evidence synthesis and cost-

effectiveness analyses undertaken to inform each appraisal development.  One appraisal  

(PH36) reported neither effectiveness and cost-effectiveness evidence reviews nor a decision 
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model, 2 appraisals (PH33 and PH34) reported reviews of evidence but conducted no cost-

effectiveness analysis and a 4th appraisal (PH7) reported evidence reviews and decision 

models but no estimates of cost-effectiveness were presented. 

 

Twenty-nine (74.4 %) of the 39 appraisals contained systematic reviews in which only a 

narrative summary of the evidence was conducted, another 7 (18 %) conducted both narrative 

summary and meta-analysis, 2 appraisals (5%) conducted only meta-analysis, and 1 (2.6%) 

appraisal had no systematic review and hence no evidence synthesis.  In the narrative 

summary approach, the review findings were summarised study by study in the text and 

through tables. Sometimes forest plots were used to display results of primary studies but no 

overall mean or pooled result was presented (see PH4 for an example). Eight of the 29 

appraisals using only a narrative summary approach did not report the reasons for not pooling 

the data, 2 included only review level evidence from overview of reviews, and 19 cited 

heterogeneity as the reason why meta-analysis was not considered appropriate. The reported 

causes of heterogeneity are presented in Appendix I. 

 

4.4.2 Included studies – RCTs versus non-randomised studies 

Two (PH23 and PH38) of the 38 appraisals (containing a systematic review) included 

evidence from RCTs only in the effectiveness review. The remaining 36 appraisals were 

informed by reviews of both randomised and observational (non-randomised) evidence 

identified from individual study reports and/or published systematic review reports. All 38 

appraisals (containing a systematic review) graded the quality of primary studies and assessed 

the applicability of the evidence adhering to the PH appraisal methods guidelines (NICE, 

2006; NICE, 2009). 
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Table 4.1: NICE PH appraisals and summary of evidence synthesis methods and decision modelling used to inform their development 

 Review of the effectiveness and cost-effectiveness evidence and decision analysis for ach appraisal 
NICE public health appraisal title Systematic review 

of effectiveness 
(narrative 
summary) 

Systematic review of 
effectiveness (At least 

one M-A)† 

Cost-
effectiveness 

reviews 

Study 
quality 

Decision 
Model 

Source of effectiveness 
estimate used in decision 

model‡ 

Brief interventions and referral for smoking cessation (PH1)  xnr    Published review 
Four commonly used methods to increase physical activity (PH2)  xnr    Individual study1 
Prevention of sexually transmitted infections and under 18 conceptions (PH3)      Published review 
Interventions to reduce substance misuse among vulnerable young people 
(PH4) 

 xo    Individual study1 

Workplace interventions to promote smoking cessation (PH5)  xm    Individual study3 
Behaviour change (PH6)  xnr    Individual study4 
School-based interventions on alcohol (PH7)      Individual study1 
Physical activity and the environment (PH8)  xi,m,o    Individual study3 
Community engagement (PH9)  xi,m,o,p   x Not applicable 
Smoking cessation services (PH10)      New Meta-analysis 
Maternal and child nutrition (PH11)  xm    Individual study5 
Social and emotional wellbeing in primary education (PH12)      Individual study5 
Promoting physical activity in the workplace (PH13)  xnr    Individual study5 
Preventing the uptake of smoking by children and young people (PH14)  xm,o    Individual study1 
Identifying and supporting people most at risk of dying prematurely (PH15)  xi,m,p    Individual study1 
Mental wellbeing and older people (PH16)  xi,m,o    Individual study1 
Promoting physical activity for children and young people (PH17)  xi,m,o    Analyst estimate4 
Needle and syringe programmes (PH18)  xnr    Individual study3 
Management of long-term sickness and incapacity for work (PH19)      New meta-analysis 
Social and emotional wellbeing in secondary education (PH20)  xi,m,o    Individual study2 
Reducing differences in the uptake of immunisations (PH21)  xnr    Individual study4 
Promoting mental wellbeing at work (PH22)  xi    Individual study3 
School-based interventions to prevent smoking (PH23)      New Meta-analysis 
Alcohol-use disorders - preventing harmful drinking (PH24)  xnr    Published review 
Prevention of cardiovascular disease (PH25)  xnr    Individual study5 
Quitting smoking in pregnancy and following childbirth (PH26)  xi,m,o    Published review 
Weight management before, during and after pregnancy (PH27)      Not clear5 reported 
Looked-after children and young people (PH28)  xm,o,p    Individual study3 
Strategies to prevent unintentional injuries among under-15s (PH29)  xi    Individual study3 
Preventing unintentional injuries among under-15s in the home (PH30)  xi,o    Individual study3 
Preventing unintentional road injuries among under-15s: road design (PH31)  xi    Individual study2 
Skin cancer prevention: information, resources and environmental changes 
(PH32) 

 xi,m    Individual study3 
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Increasing the uptake of HIV testing among black Africans in England 
(PH33) 

 xm  x x Not applicable 

Increasing the uptake of HIV testing among men who have sex with men 
(PH34) 

 xnr  x x Not applicable 

Preventing type 2 diabetes - population and community interventions (PH35)      New meta-analysis 
Prevention and control of healthcare-associated infections (PH36)  x x x x Not applicable 
Tuberculosis - hard-to-reach groups (PH37)  xnr    Individual study5 
Preventing type 2 diabetes - risk identification and interventions for 
individuals at high risk (PH38) 

     New Meta-analysis 

Smokeless tobacco cessation - South Asian communities (PH39)  xs    Published review 

Ticks indicates a systematic review of evidence, meta-analysis or decision model have been conducted whilst x indicate such analyses have not been conducted. 
†Reported reason why meta-analysis was not done (i=heterogeneity of interventions, m=heterogeneity methods, design and settings, o= heterogeneity of outcome measures, p= heterogeneity of study populations, 
s= heterogeneity of studies (specific cause not stated), nr= not reported or reported that studies do not support a meta-analysis). 
‡Selection of individual study estimate of intervention effect used in decision model (1= used a pre-specified criteria reported in the decision model report, 2=discussion with NICE or estimates selected based on 
quality grading of evidence using the methods guide manuals, 3= selected studies based on relevance of the intervention to the decision problem, 4= assumption/analyst estimated based on an assumption, 5 =not 
clearly reported). 
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4.4.3 Quantitative evidence synthesis 

Only 9 of the 39 appraisals (23%) contained one or more systematic review with a meta-

analysis (Table 4.2). In total, there were 10 systematic review and/or decision analytic 

modelling reports with at least one meta-analysis within the 9 appraisal areas (Note: PH10 

has two systematic review reports in which a meta-analysis was conducted). Four of the 10 

meta-analyses included RCTs only and 6 included both RCT and observational (non-RCT) 

studies. Six of the 10 meta-analyses were conducted on ‘final outcomes’; that is, the main 

outcome measures on which the corresponding cost-effectiveness analyses were based (e.g. 

PH10 Smoking abstinence). The remaining 4 meta-analyses were conducted on ‘intermediate 

outcomes’ (e.g. PH3 Uptake of Chlamydia screening in schools rather than prevention of 

Chlamydia).  

 

There was evidence that interventions may have been ‘lumped’ (Caldwell et al., 2005; 

Caldwell et al., 2010) into two broad intervention groups to facilitate inclusion of more 

studies in 7 of the 10 reports with a meta-analysis. For example, in PH23, which investigated  

the effect of school-based interventions on alcohol consumption, seemingly different 

interventions (such as lessons delivered by teachers or other professionals as part of the 

curriculum; peer led education by other pupils; external contributions from, for example, the 

police, life education centre staff; and implementation of school policy type interventions) 

were lumped together to form one ‘intervention group’ which was then compared to the no 

intervention control in a pairwise meta-analysis. 

 

Seven of the 10 review reports conducted random effects pairwise meta-analysis, one 

conducted both fixed and random effects analysis,  one conducted a random effects mixed 

treatment comparison (described in Section 2.3) alongside the pairwise analysis and  another 

one did not clearly present the statistical model used. Six of the 10 systematic reviews 

presented forest plots with heterogeneity statistics displayed on them, 2 (PH3 and PH1) 

presented forest plots without heterogeneity statistics and one review (PH35) did not present 

a forest plot.  Only one review (PH23) assessed publication bias using funnel plot and 

Egger’s test for asymmetry. 
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Table 4.2: Review of quantitative methods used to synthesise public health evidence for NICE public health appraisal 

Appraisal title Systematic review report 
title 

Included 
RCTs only 

Main 
outcome 

Description of 
main outcome  

Outcome 
measure: 
statistic 

Type of 
synthesis 

Model type Lumping1  of 
interventions 

Presentati
on of 
results 

Assessed 
publication 
bias 

Software 
Used result of 
M-A in 
decision 
model 

Prevention of 
sexually transmitted 
infections and under 
18 conceptions 
(PH3) 

Review 2 - Review of 
evidence for the 
effectiveness of 
screening for genital 
chlamydial infection in 
sexually active young 
women and men 

No I Uptake of 
proactive 
chlamydia 
screening using 
home-collected 
specimens 

Rate (%) M-A Random 
effects 

No FP/Txt No RevMan, 
Stata 

No 

School-based 
interventions on 
alcohol (PH7) 

Alcohol and schools: 
effectiveness and cost-
effectiveness review 

No F Alcohol use WMD M-A Random 
effects 

Yes FP/Txt No  Not 
stated 

No 

Smoking cessation 
services (PH10) 

Cut down to quit' with 
nicotine replacement 
therapies 

Yes F 6 or more months’ 
sustained 
abstinence 

RR and  
Cohen's d 

M-A Random 
effects 

Yes FP/T/ Txt No RevMan 
Yes 

Smoking cessation 
services (PH10) 

Final report No F 6  or months’ 
sustained 
abstinence 

Cohen’s d M-A Fixed & 
random 
effects 

Yes FP/T/ Txt No RevMan 
No 

Social and 
emotional wellbeing 
in primary education 
(PH12) 

Teesside review  Yes I Social problem 
solving 

SMD M-A Random 
effects 

Yes FP/T No RevMan 
No 

Management of 
long-term sickness 
and incapacity for 
work (PH19) 

PH19 Management of 
long-term sickness and 
incapacity for work: 
Economic analysis 
report 

No Y Number returning  
to work following 
sickness 

RR M-A Random Yes FP/T/Txt No Revman 
Yes 

School-based 
interventions to 
prevent smoking 
(PH23) 

School-based 
interventions to prevent 
smoking: quantitative 
effectiveness review 

Yes F smoking uptake OR M-A Random 
effects 

Yes FP/Txt Yes Stata 
Yes 

Weight management 
before, during and 
after pregnancy 
(PH27) 

Weight management 
before, during and after 
pregnancy: evidence 
review 

No I Number 
exceeding IoM2 
guidelines for 
healthy weight 
gain 

RR M-A Random 
effects 

Yes FP/T/ Txt No RevMan 
No 
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Preventing type 2 
diabetes - population 
and community 
interventions 
(PH35) 

PH35 Preventing type 2 
diabetes - population and 
community 
interventions: report on 
cost-effectiveness 
evidence and methods 
for economic modelling 

No I Body mass index WMD M-A Not 
reported 

Yes T/Txt No Not 
reported 

Yes 

Preventing type 2 
diabetes - risk 
identification and 
interventions for 
individuals at high 
risk (PH38) 

Prevention of type 2 
diabetes: systematic 
review & meta-analysis 
of lifestyle, 
pharmacological and 
surgical interventions   

Yes F Reduce progress 
to diabetes for 
people with IGT 

HR M-A & 
NMA 

Random 
effects 

No FP/TxT No RevMan   
(M-A) 
WinBU
GS 
(NMA) 

Yes 

Presentation of results (FP = Forest plot, T=Table, Txt=Text), M-A = pairwise meta-analysis, NMA = network meta-analysis 
Main outcomes (I = intermediate outcome, F= Final outcome) 
Outcome measure (RR = Risk ratio, OR= Odds ratio, SMD = Standardised mean difference, WMD = Weighted mean difference) 
1 = lumping is a term used in the literature(Caldwell et al., 2005; Caldwell et al., 2010) to described the tendency to aggregate or treat seemingly similar but disparate /different interventions as one intervention group in 
order for example to facilitate inclusion of many studies in a meta-analysis. A classic example is treating different doses of a drug as if they were the same treatment 
2 = American Institute of Medicine (IOM) Guidelines on Weight Management in Pregnancy. 
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4.4.4 How evidence from systematic reviews were incorporated into the model 

Thirty-five (89.7%) of the 39 appraisals were informed by cost-effectiveness evaluations 

contained in one or more decision analytic modelling reports (Table 4.1). Twenty-three 

(66%) of these used estimates of intervention effectiveness derived from individual studies 

identified in the systematic review to inform the decision analysis (reasons for using the 

studies selected are given in Table 4.1), 5 (14%) used previously published systematic review 

results, another 5 (14%) used estimates from a meta-analysis of studies identified in the 

systematic review, 1 used expert opinion/analyst estimate and another one did not clearly 

report the source(s) of the intervention effect.   

 

4.4.5 Decision analytic modelling methods 

The characteristics of the economic decision models identified in the review for each 

appraisal are summarised in Figure 4.1. A detailed summary of the models developed for 

each appraisal are given in Table 4.3. Five of the 39 appraisals (PH9, PH32, PH33, PH34 and 

PH36) reported no economic decision analysis, 35 presented one economic decision model, 

one appraisal (PH21) presented two models, and another appraisal (PH32) presented 3 

models. 

 

Thirty-one of the 35 appraisals with at least one decision model, had either decision tree 

(n=16), Markov (n=13) or a combination of decision tree and Markov (n=2) structures. Of the 

remaining 4 appraisals, 2 were infectious disease models (PH18 and PH21) whilst another 2 

appraisals did not clearly report the model structure (PH25 and PH26).   
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Figure 4.1: Review of Decision analytic modelling methods in public health 
*Other unit of analysis refers to ‘traveller community’ in PH 19 and ‘household’ in PH29 and PH30, 
**Other measures of health (cost per case averted, net present value or life years gained). 
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Table 4.3: Review of decision analytic models evaluating the cost-effectiveness of interventions for NICE public health appraisals 

  Review of the Decision analytic modelling methods 

Year Appraisal reference and title Decision 
model 

Perspective 
Base case 

Decision 
tree 

Markov / 
Other 

Proba-
bilistic 

Unit of 
analysis5 

Time 
horizon 

SA6 Health 
outcome7 

2006 PH1(Brief interventions and referral for smoking cessation)  NHSPSS    I Lifetime U,T QALY 

 PH2 (Four commonly used methods to increase physical activity)  NHSPSS    I Lifetime U QALY 

2007 PH3 (Prevention of sexually transmitted infections and under 18 conceptions)  NHS    I 1 year T QALY 

 PH4 (Interventions to reduce substance misuse among vulnerable young people)  Societal    I Lifetime U QALY 

 PH5 (Workplace interventions to promote smoking cessation)  NHS    I Lifetime M QALY 

 PH6 (Behaviour change)  NHS    I 20 years U,M,T QALY 

 PH7 (School-based interventions on alcohol)  NHS    I NS None C/C 

2008 PH8 (Physical activity and the environment)  NHS    I Lifetime U QALY 

 PH9 (Community engagement ) x         

 PH10 (Smoking cessation services)  Not clear    I Lifetime U QALY 

 PH11 (Maternal and child nutrition)  None    I Lifetime U QALY 

 PH12 (Social and emotional wellbeing in primary education)  None    I 3 years P QALY 

 PH13 (Promoting physical activity in the workplace)  Employer    I Lifetime U QALY 

 PH14 (Preventing the uptake of smoking by children and young people)  NHS    I Lifetime U QALY,LY 

 PH15 (Identifying and supporting people most at risk of dying prematurely)  PS    I 20years U QALY 

 PH16 (Mental wellbeing and older people)  PS    I 1year U, T QALY 

2009 PH17 (Promoting physical activity for children and young people)  PS    I NA U,T QALY 

 PH18 (Needle and syringe programmes)  NHSPSS  IDM3  I 20 years U,T,S QALY 

 PH19 (Management of long-term sickness and incapacity for work)  NHSPSS    Tra4 Lifetime U,T,P QALY 

 PH20 (Social and emotional wellbeing in secondary education)  PS    I Lifetime U,M,T,P QALY 

 PH21 (Reducing differences in the uptake of immunisations)2  NHSPSS   IDM  I Lifetime None QALY 

 PH22 (Promoting mental wellbeing at work)  NHS    I Lifetime None QALY 

2010 PH23 (School-based interventions to prevent smoking)  PS    I Lifetime U,T QALY 

 PH24 (Alcohol-use disorders - preventing harmful drinking)  NHSPSS    I NS U,P LY,QALY 

 PH25 (Prevention of cardiovascular disease)  None NS NS NS NS 10 years None QALY,LY 

 PH26 (Quitting smoking in pregnancy and following childbirth)  None NS NS  I Lifetime U QALY 
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 PH27 (Weight management before, during and after pregnancy)  NHSPSS    I 15 years U,P QALY 

 PH28 (Looked-after children and young people)  NHSPSS    I Lifetime U,P QALY 

 PH29 (Strategies to prevent unintentional injuries among under-15s)  PS    H 30 years U QALY,NPV 

 PH30 (Preventing unintentional injuries among under-15s in the home)  PS    H 100 years U,P QALY 

 PH31 (Preventing unintentional road injuries among under-15s: road design)  PS    I 95 years U,P QALY,NPV 

2011 PH32 (Skin cancer prevention: information, resources & environmental 
changes)2  

 PS    I Lifetime U, P QALY 

 PH33 (Increasing the uptake of HIV testing among black Africans in England) x         

 PH34 (Increasing the uptake of HIV testing among men who have sex with 
men) 

x         

 PH35 (Preventing type 2 diabetes - population and community interventions)  PS    I 80 years U QALY 

 PH36 (Prevention and control of healthcare-associated infections) x         

2012 PH37 (Tuberculosis - hard-to-reach groups)  PS    I 20 years T QALY 

 PH38 (Preventing type 2 diabetes - risk identification and interventions for 
individuals at high risk) 

 PS    I Lifetime P QALY, C/C 

 PH39 (Smokeless tobacco cessation - South Asian communities)  Not clear    I Lifetime U QALY 
 1=No cost-effectiveness analysis presented; 

2=More than 1 models presented 
3=IDM=Infectious disease model; 
4=traveller community; 
5=Unit of analysis (I=individual; H=household; stated given if other); 
6=Sensitivity analysis (U=unidirectional, M=multidirectional, P=probabilistic, T=threshold); 
7=outcomes (QALY = quality adjusted life year; C/C = cost per cases averted; LY= life year; NPV = net present value) 
Other abbreviations 
D = Deterministic model; 
P=Probabilistic model; 
NS=Not stated; 
PS = Public sector 
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Infectious disease modelling was used to evaluate the cost-effectiveness of interventions 

linked to needle and syringe programmes for injecting drug users (PH18) and of interventions 

to reduce differences in the uptake of childhood immunisations (PH21).   

 

Twenty-two (54%) of the 35 appraisals were informed by a deterministic decision analysis, 

12 (29%) were probabilistic and one appraisal (3%) reported no sensitivity analysis. The most 

preferred measure of health outcomes was the QALY with 28 of the 35 appraisals (80%) 

using only QALYs to measure cost-effectiveness, 6 (17%) using both QALYs and Life Years 

(LY) gained or Net Present Value (NPV) and one appraisal (3%) based cost-effectiveness on 

Cases averted.  

 

4.5 Discussion of systematic review findings 

This review of completed NICE public health appraisals illustrates the current situation 

regarding the use of evidence synthesis methods to inform public health decision making in 

the UK. It identified that effectiveness evidence was mostly synthesised using narrative 

summaries and that quantitative synthesis was not carried out for the majority of evaluations 

in PH systematic reviews.  Of the 39 appraisals published since 2006, only 9 (23%) were 

informed by at least one systematic review with a meta-analysis. The other 30 appraisals may 

have refrained from meta-analysis due to a lack of randomized trials, or heterogeneity in 

study design, i.e. a mix of RCTs and non-RCTs.  Moreover, systematic reviews opting for a 

quantitative summary tended to use the simplest methods such as fixed or random effects 

pairwise meta-analysis which only enables comparison between two interventions at any one 

time and thus potentially limiting the scope of the analysis and the utility of the findings. 

These findings would seem to indicate that, despite great advances in quantitative synthesis 

techniques, application in PH evaluation is still very much in its infancy and appears to lag 

behind other areas of healthcare such as the evaluation of clinical interventions. There are 

several reasons for this, including the heterogeneous nature of PH evidence arising from i) 

variations in many aspects of study design, ii) the exact nature of the interventions; iii) 

varying/differential outcome measures; iv) the wider scope of many PH research questions; 

and v) the quantitative skills of the researchers including familiarity with Bayesian software 

and modelling techniques (Mills et al., 2011).  
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The review found nearly 80% of PH NICE appraisals did not attempt a quantitative synthesis 

at all due to what investigators believe are insurmountable problems owing to the 

heterogeneous nature of the evidence base.  NICE guidance states that ‘‘Meta-analysis may 

be used to produce a graph if the data (usually from RCTs) is sufficiently homogenous’’ 

(Section 5.4.4.2 of NICE guidance 2012). Often the evidence from RCTs is limited and the 

best available evidence is from the non-RCTs. However, provided reviewers quality assess 

non-RCTs (as they would RCTs) to identify well-conducted studies, to limit confounding 

by selection bias, then meta-analysis can be considered. In addition, exploring heterogeneity 

and attempting to account for it should be part of the analysis and greater awareness of 

modern methods, and greater expertise in using them, will yield fruit for future PH reports. 

Underlying this desire for PH reviews to become more quantitative, in the face of the 

challenges encountered, is a firm belief that a structured and transparent description and 

analysis of the decision question is desirable. However, there are several other reasons why 

conducting a meta-analysis may not be advisable;  for example: (i) a small number of studies 

may mean that statistical heterogeneity is underestimated; (ii) some studies are too biased to 

draw a valid conclusion from them; (iii) there is evidence of publication bias; and (iv) 

incomplete or selective reporting of outcomes. 

 

This review is limited to only considering NICE PH appraisals in the review and does not 

claim to have all the answers to all evidence synthesis challenges that exist in PH evaluation. 

For example, none of the above considers directly the influence of the study quality/validity 

of the individual studies going into an analysis – although others are doing work in other 

contexts that could be adapted, for example including different, both observational and 

randomised, evidence (Turner et al., 2009).  Public health evaluations are notoriously messy 

and complex, with many factors to consider. But if a decision has to be made, explicit, 

transparent and appropriate analysis of the data should be preferred to current alternatives.  

 

4.6 Chapter summary 

This chapter reviewed completed published NICE public health appraisals to illustrate the 

current situation regarding the use of evidence synthesis methods to inform public health 
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decision making in the UK. There was evidence from the review that effectiveness evidence 

was mostly synthesised using narrative summaries and that quantitative synthesis was not 

carried out for the majority of evaluations in PH systematic reviews. In the next three 

chapters, more complex synthesis models will be presented that offer the opportunity to  

model the types of data commonly available in PH appraisals more appropriately rather than 

carrying out less focused and detailed reviews of the literature.  
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5. EFFECTIVENESS OF INTERVENTIONS TO INCREASE UPTAKE 

OF POISONING PREVENTION MEASURES IN HOUSEHOLDS 

WITH CHILDREN: NETWORK META-ANALYSES 

 

5.1 Chapter overview 

There is evidence from previous systematic reviews and meta-analyses (DiGuiseppi et al., 

2001; Kendrick et al., 2012c) that home safety interventions are effective in promoting a 

range of poison prevention behaviours in households with children. However, these two 

meta-analyses compared any intervention against a “usual care or no intervention” which 

potentially limits the usefulness of the results in a cost-effectiveness evaluation. In this 

chapter, network meta-analysis will be used to re-analyse the data from the two systematic 

reviews and evaluate the effectiveness of different poison prevention strategies in households 

with children. The effectiveness estimates from the analysis presented in this chapter will be 

used to inform a decision analytic model developed in chapter 8 in order to determine the 

most cost-effective strategy for preventing unintentional poisoning injuries in children under 

5 years of age. The analyses and results presented here have been submitted to the Journal 

PLOS ONE and the submission is currently undergoing peer-review (Appendix VI – 

Research paper 2).    

 

5.2 Effectiveness evidence 

5.2.1 Data sources 

The main source of effectiveness evidence is a Cochrane systematic review of home safety 

education and provision of safety equipment for injury prevention in children. This review 

was first published in 2007 (Kendrick et al., 2007) and updated in 2012 (Kendrick et al., 

2012b). The remaining evidence came from an overview of reviews (Young et al., 2013) 

conducted to identify newly published studies and studies which did not meet the inclusion 

criteria for the Cochrane review but judged suitable for inclusion in the overview of reviews 

(Young et al., 2013)  and the analyses described in this chapter (e.g. studies which compared 
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2 active interventions). Both reviews included randomised controlled trials (RCTs), 

controlled before-and-after studies, and other non-randomised study designs if they reported 

home safety interventions of interest.  

 

5.2.2 Poisoning prevention outcomes 

The Cochrane review identified 6 poisoning prevention practices or behaviours in the 

literature, of which 5 (safe storage of medicines, safe storage of other household products, 

safe storage of poisons, safe storage of poisonous plants and possession of poison control 

centre (PCC) telephone number) are included in the analysis reported here. Possession of 

syrup of ipecac was excluded (together with studies reporting only this outcome) because its 

use is no longer recommended (Benson et al., 2013; Hojer et al., 2013). Safe storage of 

poisons refers to the combined endpoint of medicinal and non-medicinal substances in studies 

that reported just one combined outcome for storage of medicinal and non-medicinal 

substances instead of two separate outcomes. Safe storage was defined in the Cochrane 

review and subsequent related publications as storing potentially toxic substances (medicinal 

or non-medicinal) at adult eye level  and/or in locked cupboards/drawers/cabinets where they 

are inaccessible to children (Kendrick et al., 2008).  

 

5.2.3 Description of included studies 

Twenty-four primary studies were identified from the 2012 review and 3 from the overview 

of reviews. One study (Minkovitz et al., 2003) divided patients into a randomised and a 

quasi-randomised study groups and analysed the two groups separately. This study was 

included in the analysis reported here as two separate studies, thus increasing the total 

number to 28. Of the 3 studies not included in the Cochrane review, one  (Reich et al., 2011) 

had been published since the Cochrane review and the other two (Minkovitz et al., 2003; 

Johnston et al., 2006) reported an intervention (i.e. healthy steps for young children program) 

that was not considered suitable to be included in either of the two intervention groups 

considered in the Cochrane review.  The healthy steps program was considered to be different 

from the generic safety education considered in the other studies because it provided intense 

parental training in managing all aspects of a child’s development, including safety 

education. The advantage of the analysis reported in this chapter is that this intervention can 
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be evaluated together with the other interventions by including it as a separate strategy in the 

network meta-analysis.  

 

Table 5.1 presents summary characteristics of the 28 studies.  One study (Babul et al., 2007)  

had 3 intervention arms (i.e. 3-arm study). The remaining 27 studies were either two-arm 

studies or were converted into two-arm if two or more arms were considered similar enough 

to be combined into 2-arm studies. For example, Nansel et al. (Nansel et al., 2008) is a 3-arm 

study but two of the arms (i.e. the tailored injury prevention information arm and the tailored 

injury prevention plus tailored summary information for providers arm) were combined be 

combined as one intervention in the analyses reported here. Twenty-one (75%) of the 28 

studies were conducted in the USA, 5 (18%) in Europe (of which 3 were conducted in the 

UK), 1 study in Canada and another in South Africa. Nineteen (68%) were RCT and 9 (32%) 

were observational non-RCT studies. There were 10 (35%) studies with a cluster design, of 

which 5 were randomised and 5 non-randomised studies.   
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Table 5.1: Summary of studies evaluating poison prevention measures in households with children 

Comparison Study Study quality List of free and or low cost equipment 
provided as part of intervention scheme 

Safe storage 
of medicines 

Safe storage of 
other household 
products 

Safe storage of 
poisons 

Safe storage 
of poisonous 
plants 

Possession of  
pcc2 telephone 
number 

Usual care (1) vs. 
Education (2)  
 

Kelly (1987)a, RCT, 
USA 

A=U,B=Y,F=N Not applicable 54/54 
55/55 
 

43/54 
49/55 
 

   

Nansel (2002)b, 
RCT, USA 

A=Y,B=U,F=Y Not applicable 83/89 
79/85 

65/89 
66/85 

  59/89 
63/85 

Kelly (2003)c, 
Cluster-RCT, USA 

A=U,B=Y,F=Y Not applicable     45.56/136.68c 
112.95/137.63c 

McDonald (2005), 
RCT, USA 

A=Y,B=U,F=N Not applicable 6/60 
4/57 

3/57 
6/61 

   

Gielen (2007), RCT, 
USA 

A=Y,B=N,F=Y Not applicable 178/271 
188/249 

44/62 
57/73 

222/333 
245/322 

  

Nansel (2008), Non-
RCT, USA 

A=U,B=N,F=N Not applicable 72/74 
140/144 

59/73 
117/144 

  50/59 
90/119 

Reich (2011)c, RCT, 
USA 

A=U,B=N,F=N Not applicable   Log-OR(SE) =        
-0.192(0.2863) d 

  

Equipment only (1) vs. 
Education + Equipment (3) 

Woolf (1987), 
Cluster-RCT,  USA 

A=U,B=Y,F=N Sticker with poison control centre 
telephone number, bottle of ipecac 

    29/143 
47/119 

Woolf (1992), 
Cluster-RCT, USA 

A=U,B=Y,F=N Kitchen cabinet locks, a coupon for 
purchase of syrup of ipecac, and two 
telephone stickers with the telephone 
number of the poison centre. 

 60/151 
89/150 

  59/151 
117/150 

Clamp (1998), RCT, 
UK 

A=U,B=N,F=Y Smoke alarm, 2 window locks, 3 cupboard 
locks, 6 socket covers and a door slam 
device. 

68/82 
79/83 

49/82 
59/83 

   

Usual care (1)  vs. 
Education + Equipment (3) 

vs.   
Education + Equipment + 
Home Safety inspection (4)  

Babul (2007), RCT, 
Canada 

A=Y,B=N,F=N Smoke alarm, a coupon for 50% savings 
on a safety gate, corner cushions, cabinet 
locks, blind cord windups, water 
temperature card, doorstoppers, electrical 
outlet covers and a poison control sticker. 

147/149 
171/173  
160/163 

  112/147 
136/172 
123/160 

 

Usual care (1)  vs. 
Education + Equipment + 
Home Safety inspection (4)  

Kendrick (1999), 
Cluster non-RCT, 
UK 

B=N,F=N,C=Y Stair gates, fireguards, cupboard locks and 
smoke alarms. 

 317/367 
322/363 

   

Sangvai (2007), 
RCT, USA 

A=Y,B=Y,F=N Smoke detectors, gun locks, cabinet locks 
and water temperature cards. 

  3/10 
13/16 

  

Swart (2008), Non 
RCT, South Africa 

A=U,B=Y,F=Y Child-proof locks and paraffin container 
safety caps. 

70.26/79.58c 
74.07/80c 

46.86/57.96c 
50.87/58.27c 

   

Hendrickson (2002), 
USA, RCT 

A=N,B=N,F=Y Full publication or report not available to 
extract information on equipment 
provision. 

 14/40 
34/38 

  8/40 
34/38 

Usual care (1)  vs. 
Education +  Equipment (3)  

Watson (2005), 
Cluster-RCT, UK 

A=Y,B=N,F=Y Stair gates, fire guards, smoke alarms, 
cupboard locks and window locks. 

683/738 
712/762 

327/669 
368/693 
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Usual care (1)  vs. 
Education + Home Safety 
inspection (6)  

Petridou (1997), 
Cluster non-RCT, 
Greece 

B=N,F=Y,C=Y      67.26/100.12c 
71.08/97.83c 

Usual care (1)  vs. 
Education + Equipment + 
Home Safety inspection + 
Installation (7)  

Schwarz (1993), 
Cluster non-RCT, 
USA 

B=N,F=N,C=Y Smoke detectors, batteries, bathwater 
thermometer, nightlight, a bottle of syrup 
of ipecac, a sticker for the telephone with 
emergency telephone numbers. 

88.42/248.37c 
128.16/248.3

7c 

    

Phelan (2011), RCT, 
USA 

A=Y,B=N,F=Y Full publication or report not available to 
extract information on equipment 
provision. 

  17/149 
2/150 

 16/138 
71/139 

Usual care (1)  vs. 
Education + Home visit (8)  

Minkovitz (2003a)e, 
RCT, USA 

A=Y,B=N,F=Y Not applicable   463/761  
523/832 

  

Minkovitz (2003b)e, 
Cluster non-RCT, 
USA 

B=N,F=Y,C=Y Not applicable   596/955 
754/1189 

  

Johnston (2006), 
non-RCT, USA 

B=N,F=Y,C=Y Not applicable   155/232 
71/91 

 82/91 
222/232 

Education (2)  vs. 
Education + Equipment (3)  

Posner (2004), RCT, 
USA 

A=Y,B=Y,F=N Not applicable 14/47 
19/49 

22/47 
34/49 

 9/16 
11/16 

27/47 
35/49 

Bulzachelli (2009), 
Non-RCT, USA 

A=U,B=N,F=N Not applicable   5/49 
10/105 

  

Education (2)  vs. 
Education +  Equipment (5)  

Sznajder (2003), 
RCT, France 

A=Y,B=N,F=Y Cupboard and drawer latches, door handle 
covers, table protection corners, electric 
outlet covers, a non-skid bathtub mat, a 
smoke detector, and a phone sticker with 
the number of the poison control centre. 

44/49 
43/45 

32/41 
40/48 

 48/49 
41/48 

 

Education+ equipment (3)  
vs. 

Education + Equipment + 
Home Safety inspection (4)  

Gielen (2002)c, 
Cluster-RCT, USA 

A=U,B=U,F=N Safety products (e.g., ipecac syrup, cabinet 
latches, safety gates, smoke alarms, 
batteries, and hot water thermometers) are 
sold at 10% to 15% below retail cost in a 
homelike environment where their use can 
be demonstrated. 

  6.87/56.93c 
5.89/58.89c 

  

Education+ equipment (3)  
vs. 

Equipment only (9) 

Dershewitz (1977), 
RCT, USA, 

A=U,B=Y,F=N Electric outlet covers and three 
kindergards, which are easily installed 
plastic locking devices intended to prevent 
children from getting into cabinets. 

22/102 
20/104 

1/101 
0/104 

   

Education + Equipment + 
home Safety inspection (4) 
vs. 
Education +  equipment + 
home safety inspection + 
Fitting (7)  

King (2001), RCT, 
USA 

A=Y,B=Y,F=Y Coupons from a national retail store  for a 
$10 discount per item (to a maximum of 
$50) when purchasing recommended 
safety devices. 

 261/469 
273/482 

   

 
 
 
 
Abbreviations: A = adequate allocation concealment; B = blinded outcome assessment; C, prevalence of confounders does not differ by more than 10% between treatment arms; CBA, controlled before-and-after study; 
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F = at least 80% participants followed up in each arm; NMA, network meta-analysis; RCT, randomized clinical trial; U = unclear; Y= yes. 
1Figures are number of events/total number households in the intervention with lowest code followed by the intervention with the highest code  
2PCC = Poison control centre 
a Study was excluded from analysis for safe storage of medicines because both treatment and control arms reported 100% event rate. 
b Two intervention arms were combined (tailored advice and tailored advice + care provider feedback) 
c Figures adjusted for the effect of clustering using ICC and method reported Kendrick et al (2012) 
d Combined from two log-odds ratios for Education book vs. No Book (OR=0.80, SE=0.41) and Education Book vs. Non-Education Book (OR=0.85, SE=0.40) reported in Reich et al. (2011) 
e  Minkovitz (2003) included as two separate studies (reason given in the results section) 
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5.2.4 Classification of interventions 

The Cochrane review compared a generic home safety intervention versus no intervention 

using pairwise meta-analysis methods. Interventions trialled by individual studies were 

therefore placed in an intervention and a control group to facilitate inclusion of studies in the 

analysis.  The net effect of this was that seemingly similar but different strategies were 

grouped together as one intervention, potentially increasing the heterogeneity in intervention 

definition across studies. In addition, studies reporting interventions that could not be fitted 

into one of the two groups above (for example Minkovitz and Johnson et al.’s studies) were 

excluded from the Cochrane systematic review analysis. To minimise the heterogeneity and 

include all the relevant evidence available for the NMA reported here, the Cochrane review 

interventions were reclassified into 9 relatively homogenous intervention packages as 

follows: 

1) Usual care - including usual safety education or no education (UC) 

2) Education - more than usual safety education (E) 

3) Education + provision of free/low cost equipment (E+FE) 

4) Education + provision of free/low cost equipment + home safety inspection (E+FE+HSI) 

5) Education + provision of free/ low cost equipment + fitting (E+FE+F) 

6) Education + home safety inspection (E+HSI) 

7) Education + free/low cost equipment + home safety inspection + fitting (E+FE+HSI+F) 

8) Education + home visit - Healthy Steps for Young Children program (E+HV) and  

9) Free/low cost equipment only (FE). 

 

Usual safety education as included in the intervention (1) above is defined to include the level 

of standard safety education for all injury types (scalds, falls and poisonings) in the home and 

is not just limited to the prevention of poisonings. Figure 5.1 displays the network diagrams 

(one for each of the 5 outcomes listed in Section 5.2.2) showing the comparisons between 

interventions made by the individual studies. The network diagrams give a visual description 

of the evidence available for each outcome. The oval circles represent interventions with lines 

linking any two interventions indicating treatment pairs that have been compared head-to-

head in at least one study. The number on each line shows the number of such pairwise 

comparisons. Interventions that have not directly been compared in a study are therefore not 

linked directly. For example, there are 5 head-to-head studies comparing usual care versus 

education in the safe storage of medicines network (Panel A) but there is no direct line 
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linking usual care to low cost/free equipment, since there were no direct comparisons 

between these interventions.  
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A) Safe storage of medicines
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E) Safe storage of  poisonous plants
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E (2) 

1

1

1
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Figure 5.1: Network diagrams for poison prevention outcomes 
PCC = poison centre control number.  Nodes/oval circles represent intervention with the intervention number in brackets. E = 
education, F = Fitting, FE = low cost/free equipment, HSI = Home safety inspection, HV = Home visit 
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Also, the 3-arm Babul study (Babul et al., 2007) which compared usual care versus 

‘education plus low cost/free equipment’ versus ‘education plus low cost/free equipment and 

home safety inspection’ is indicated by the bold red lines in the networks for the safe storage 

of medicines (panel A) and poisonous plants (panel E). 

 

5.3 Methods 

5.3.1  Binary outcome data 

All the poisoning prevention outcomes described above are binary as they consider whether 

or not a household safely stores (i.e. out of reach of children) potentially toxic substances 

(e.g. medicines, other household products, etc.).  The data available on each outcome are the 

number of events (e.g. the number of households with safe storage of medicines) and the total 

number of households in the intervention and control arms of studies that reported the 

respective outcome (Table 5.1). The analysis reported in this chapter evaluates the 

effectiveness of the interventions for each of these outcomes separately using existing 

synthesis methodology described in Chapter 2 (i.e. univariate pairwise and network meta-

analysis models without taking into account the potential correlation between outcomes 

measures). In Chapter 7, new synthesis methodology will be developed as part of this thesis 

and used to combine evidence on multiple interventions across multiple poison prevention 

measures in order to account for correlations between the effect estimates on different 

outcomes. 

 

5.3.2 Standard pairwise meta-analysis 

Standard pairwise meta-analyses were used to compare interventions if head-to-head data 

from two or more studies was available. Effect sizes were calculated from the available data 

and pooled across studies inverse variance weighting methods as described in Chapter 2 

Section 2.2.1.  Both fixed and random effects models were fitted. However, due to the 

difficulty of obtaining reliable estimate of the between-study variance when the number of 

studies is small, only fixed effect models were fitted if fewer than 5 studies were available for 

the meta-analysis. The models were fitted in Stata version 12 (Stata Corporation, 2012) using 

the metan command. Pooled estimates of the intervention effects are presented as odds ratios 

(OR) and 95% confidence intervals. Statistical heterogeneity was assessed using the χ2-test 
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and quantified using the I2-statistic and the between-study variance, σ2, which was defined in 

equation (2.3) of Chapter 2.  

 

5.3.3 Network meta-analysis 

The NMA models were fitted using the method of Lu and Ades (Lu and Ades, 2004; 

Caldwell et al., 2005) with usual care intervention taken as the reference or baseline 

intervention in all the networks. The model equation is given by equation (2.10) of Chapter 2.   

Analyses were conducted within a Bayesian framework using Markov Chain Monte Carlo 

(MCMC) simulations in WinBUGS version 1.4.3 (Lunn et al., 2000). The WinBUGS code 

was taken from the NICE Technical Support Document 2 (Dias et al., 2011a). Initially, as 

suggested in this technical document, minimally informative prior distributions were 

specified for parameters of the model as indicated in Chapter 2 and repeated here for clarity: 

              ( )310,0Normal~, ibAkd µ  and ( )2,0Uniform~σ               

To investigate the effect these priors have on parameter estimates, sensitivity analyses were 

conducted using alternative ‘vague’ prior distributions as presented later in Section 5.6.2. 

Parameter estimation was based on the posterior median and the 95% credible intervals. 

These were obtained after running 3 MCMC chains for 40 000 iterations using different 

starting values. The first 10 000 iterations were discarded as ‘burn-in’ samples to ensure that 

the starting values did not influence the samples on which inference is based (Spiegelhalter et 

al., 2007). For each parameter of interest (namely, the pooled effect of interventions relative 

to one another and the between-study standard deviation), the history, density and Brooks-

Gelman diagnostic plots (Brooks and Gelman, 1998) were examined for evidence that the 

MCMC simulations were stable and  convergence was satisfactory. The probability each 

intervention was the best and the relative rankings of interventions were obtained as 

described in Section 2.3.2.  

 

5.3.4 Convergence, goodness- of-fit and model selection 

As described in Section 2.3.5 of Chapter 2, convergence of the MCMC samples were 

assessed by examining the history, kennel density, autocorrelation and Brooks-Gelman 

diagnostic plots available from the WinBUGS menu.  The posterior mean residual deviance 
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was used to assess how well the model predictions fit the observed data (McCullagh and 

Nelder, 1989; Spiegelhalter et al., 2002). Under the null hypothesis that the model fits the 

data well, the posterior mean residual deviance is expected to be approximately equal the 

number of unconstrained data points. Therefore models were judged to provide adequate fit if 

the residual deviance is close to the number of data points in the model. The Deviance 

Information Criterion (DIC) (Spiegelhalter et al., 2002) was used to discriminate between the 

fit of alternative model candidates (for example, fixed effect versus random effects model) 

and to select the best fitting model. 

 

5.3.5  Assessment of heterogeneity and evidence consistency 

Statistical heterogeneity was quantified using the between-study standard deviation, σ, in the 

random effects NMA models.  The degree of heterogeneity was assessed as reasonable, high 

or extremely high based on guidelines for interpreting σ on the log-odds ratio scale suggested 

by Spiegelhalter et al. (Spiegelhalter et al., 2004). These guidelines state that values of σ 

from 0.1 to 0.5 may be considered as indicating a reasonable degree of heterogeneity in most 

situations, 0.5 to 1 as high and values above 1 as very extreme heterogeneity.  The 

consistency of each network in Figure 5.1 was checked using the method of node-splitting 

(Dias et al., 2010) introduced in Chapter 2 Section 2.3.3.  Briefly node-splitting involves first 

calculating two estimates of the intervention effect – one based on direct evidence and the 

other based on the indirect evidence for each pairwise comparison that have both sources of 

evidence. The direct and indirect estimates are then compared with each other for evidence of 

conflict. The whole process is repeated for all relevant pairs of interventions in the network 

forming part of closed loops of evidence and hence having both sources of evidence. 

 

5.3.6 Sensitivity analysis 

As explained in Chapter 2 Section 2.3.5, the results of analyses conducted within the 

Bayesian framework and using MCMC simulations to estimate model parameters can be 

sensitive to specification of prior distributions and choice of starting values, among other 

issues. In particular, it is well known that priors intended to be ‘vague’, or minimally 

informative can be problematic to specify for the variance and standard deviation terms 
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(Lambert et al., 2005).  Because of this, it has been suggested good practice, when carrying 

out MCMC based Bayesian analysis (Spiegelhalter et al., 2000; Lambert et al., 2005; Dias et 

al., 2011a; Lunn et al., 2012), to investigate sensitivity of results to model assumptions and 

specification of ‘vague’ prior distributions. 

 

Three groups of sensitivity analyses were therefore conducted.  As the quality of included 

studies varied, the first group of sensitivity analyses were conducted to investigate the effect 

of study quality by restricting the analyses to data from RCTs only. It was not possible to 

repeat the analysis for safe storage of poisonous plants by excluding non-randomised studies 

because only 3 studies provided data for this outcome. 

 

The second group of sensitivity analyses explored the effect of using continuity corrections to 

facilitate inclusion of one study with zero events in one arm (Dershewitz and Williamson, 

1977) and another study with 100% event rate in intervention-arm (Kelly et al., 1987). This is 

because, although the Bayesian approach has the advantage of not requiring artificial cell 

corrections to accommodate study arms with zero or 100% event rates, occasionally the 

model may fail to run, especially when the data is sparse  (Dias et al., 2011a) as is the case 

for the poisoning prevention data (Table 5.1). Two solutions to this problem suggested for the 

NMA context in NICE Technical Support Document 2 (Dias et al., 2011a) are to: i) apply the 

usual continuity correction by for example adding 0.5 and 1 to numerator and denominators 

of the affected studies respectively, and ii) assume a model for the baseline effects, μiA in 

order  to make them identifiable.  

 

Finally, the third group of sensitivity analyses were carried out to investigate influence of 

‘vague’ prior distributions on estimates of intervention effects and the between-study 

variance parameters. For this, the Normal (0, 103) prior distributions on the baseline effects, 

μiA and dk, the pooled effect of intervention k relative to usual care were replaced with 

Normal (0, 106). Sensitivity to prior distribution for the between-study standard deviation σ 

was also assessed by replacing σ ~ Uniform (0, 2) with the following prior distributions 

suggested as being weakly informative (Lambert et al., 2005): i) σ ~ Uniform (0, 100),  ii) σ ~ 

Normal (0, 100) truncated at 0 and iii) σ2 ~ Inverse-Gamma (0.001, 0.001).   
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5.4 Results 

Table 5.2 displays the goodness of fit and DIC statistics from the NMA models fitted to each 

of the 5 poison prevention outcomes. These statistics were used to discriminate between fixed 

and random effects models on the bases of goodness of fit to the data. The statistics in Table 

5.2 are therefore referred to in the sections below where the results of the NMA for each 

outcome are presented. In addition and for each outcome, the results of the pairwise meta-

analyses and those from the NMA for each outcome are presented alongside each other to aid 

comparison of effect estimates obtained using only direct evidence (i.e. evidence from studies 

that have directly compared the two interventions) and those from using both direct and 

indirect evidence (NMA).  
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Table 5.2: Model fit statistics for the network meta-analysis models 

 Outcomes 

 Safe storage of 
medicines 

 Safe storage of 
other household 

products 

 Safe storage of 
Poisons 

 Possession of 
PCC number 

 Safe storage of 
poisonous plants 

Statistic FE 
model 

RE 
model 

 FE 
model 

RE 
model 

 FE 
model 

RE 
model 

 FE 
model 

RE 
model 

 FE 
model 

RE 
model 

N 24 24  30 30  19 19  20 20  6  

DRes 24.3 23.5  43 30.9     59.2 19.5  6.6  

DIC 144.5 146  199 193.3  126.8 125.1  168 132  41.7  
DRes = Residual deviance and is used compare fit of model to the data. A better fitting model should have residual deviance close to the number of data points 
DIC = Deviance Information Criterion, is used to choose between models. Model with the lowest DIC is preferred based on a difference of  about 5 DIC points between models being 
considered important  
FE= Fixed effect, RE=Random effects model 
N= number of data points in model 
PCC= Poison centre control telephone number 
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5.4.1 Storage of medicines 

Fifteen of the 29 studies investigated the effectiveness of 7 interventions to promote safe 

storage of medicines (Figure 5.1 plot A). Eleven (85%) studies were RCTs and 2 (15%) were 

non-RCTs (Table 5.1). One study (Kelly et al., 1987) reported a 100% event rate for this 

outcome in both arms. The model failed to run when this study was included. The study was 

therefore excluded from the analysis. To investigate the problem further, however, a 

sensitivity analysis was conducted by adding  0.5 and 1 to the numerators and denominators 

of Kelly et al.’s study as suggested in the NICE technical guidance for network meta-analysis 

(Dias et al., 2011a). 

 

 

Table 5.2 presents model fit statistics for safe storage of medicines.  The residual deviance 

was 24.29 and 23.36 in the fixed effect and random effects models respectively. These are 

very close to 24 (the number of data points in the model), indicating that both models fitted 

the data well. Both fixed and random effects models also have comparable DIC values (DIC 

= 144.48 for the fixed effect and 146.02 for the random effects model) and therefore very 

little to choose between them based on the DIC statistic. The random effects results are 

however preferred for making inference as they are slightly more conservative due to the fact 

that the estimated between-study heterogeneity of 0.269 (95% CrI 0.009 to 1.034) (see 

Section 5.5.2, Table 5.9 for the heterogeneity statistics), although reasonable on the log-odds 

ratio scale (Spiegelhalter et al., 2004), was not zero as assumed under a fixed effect model. 

Table 5.3 presents the random effects estimates alongside those from the pairwise meta-

analysis (fixed effect estimates were also obtained but are not presented). The pairwise meta-

analysis results are included in Table 5.3 to allow comparison between effectiveness 

estimates from NMA and the corresponding estimates obtained using only direct evidence 

(pairwise meta-analysis) where available. The results show that home safety interventions 

increase safe storage of medicines with ‘education plus low cost/free equipment’ the most 

likely to be effective (probability best = 0.39) (see Table 5.8), with an estimated odds ratio 

compared to usual care of 2.51 (95% CrI: 1.01 to 6.00). When the effect of study design on 

the NMA results was assessed, by repeating the above analysis using only data from the 11 

RCTs, the results were similar, although for this analysis the network was limited to only 6 

interventions (i.e. excluding the intervention ‘education plus low cost/ free equipment and 

home safety inspection’). 
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Table 5.3: Estimated odds ratios (95% confidence/credible intervals) from pairwise and 
random effects network meta-analysis model for safe storage of medicines 
Pairwise meta-analysis results are presented above the diagonal line whilst NMA results 
are presented below the diagonal line 

 

Inter-
vention* 

(1)  
UC 

(2)  
E 

(3) 
E+FE 

(4) 
E+FE+HSI 

(5)  
E+FE+F 

(7) 
E+FE+ 
HSI+F 

(8) 
FE 

(1) UC  
 

1.63 
(1.17, 2.26)‡ 

1.16 
(0.20, 8.36) 

1.33 
(0.53, 3.31) 

1.15 
(0.77, 1.71) 

1.93 
(1.35, 2.76) 

 

(2) E  1.39 
(0.73, 2.28) 

 1.27 
(0.59, 2.71) 

 2.44 
(0.45, 13.28) 

  

(3) E+FE  2.51 
(1.01, 6.00) 

1.85 
(0.77, 4.60) 

 0.62 
(0.10, 3.78) 

 0.69 
(0.35, 1.35) 

0.86 
(0.43, 1.67) 

(4) 
E+FE+HSI  

1.41 
(0.46, 3.89) 

1.02 
(0.31, 3.34) 

0.54 
(0.15, 1.90) 

    

(5) E+FE+F  1.31 
(0.64, 3.47) 

0.94 
(0.43, 3.06) 

0.52 
(0.17, 1.88) 

0.95 
(0.28, 4.09) 

   

(7) E+FE+ 
HSI +F  

1.93 
(0.76, 5.12) 

1.38 
(0.52, 4.79) 

0.77 
(0.22, 2.80) 

1.37 
(0.36, 6.12) 

1.48 
(0.37, 4.74) 

  

(9) FE  2.13 
(0.51, 8.42) 

1.53 
(0.40, 6.72) 

0.83 
(0.28, 2.53) 

1.51 
(0.30, 8.86) 

1.60 
(0.28, 7.19) 

1.08 
(0.20, 5.72) 

 

 
 
 
 
 
*Interventions components (UC = Usual care, E = Education, FE = Free/low cost equipment, HSI = Home safety inspection, F 
= Fitting of equipment) 
Blank cells indicate that no direct evidence on the specific pairwise comparison was available. 
NMA estimates are from random effects model. ‡ indicate estimate is from a random effects pairwise meta-analysis model. All 
other pairwise results are individual study or fixed effect estimates 
The intervention with the lowest number  is always the comparator, e.g. 1.39 (0.73, 2.28) is the NMA estimate for Education (2) 
vs. Usual care (1) whereas 1.63 (1.17,  2.26) is corresponding estimate from pairwise meta-analysis 
 
 
 

Pairwise estimates (Above the diagonal line) 

NMA estimates (Below the diagonal line 

 

5.4.2 Storage of other household products 

Sixteen studies with 7 interventions were included in the network for safe storage of other 

household products (Figure 5.1B), of which 11 (73%) studies were RCTs and 4 (27%) were 

non-RCTs (Table 5.1). One study (Dershewitz and Williamson, 1977) reported zero events 

(i.e. none of households surveyed had reported safe storage of other household products) in 

the provision of ‘low cost/free equipment’ intervention arm. The model failed to run when 

this study was included in the analysis, possibly due to the fact that only this study in the 

network had investigated the effect of ‘low cost/free equipment’ on safe storage of other 
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household products. To facilitate inclusion of this study in the analysis, a continuity 

correction was applied by adding 0.5 and 1 to the denominator and numerator of the affected 

study respectively. The data were re-analysed as part of the sensitivity analysis (results 

presented in Section 5.6.1) without the continuity correction by: i) firstly placing a model on 

the baseline effects, μiA as suggested in NICE technical support document (Dias et al., 2011a) 

which facilitated inclusion of the affected study; and ii) secondly excluding the affected study 

all together. 

  

 

The model fit statistics (Table 5.2) for other household products indicated that the fixed 

effects model fitted the data poorly (as the residual deviance of 43 is not close to 30, the 

number of data points in the model, DIC=199). The corresponding statistics for the random 

effects model indicates a better fit (residual deviance of 30.94 is very close to 30, DIC=193). 

The results of random effects NMA model are presented for storage of other household 

products in Table 5.4 together with the pairwise results. These show that home safety 

interventions increased safe storage of other household products but only ‘education plus low 

cost/free equipment plus home safety inspection’ (OR 2.53, 95% CrI 1.11 to 7.20) showed 

significant improvement when compared to ‘usual care’.   
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Table 5.4: Estimated odds ratios (95% confidence/credible intervals) from pairwise and 
random effects network meta-analysis model for safe storage of other household 
products 
Pairwise meta-analysis results are presented above the diagonal line whilst NMA results 
are presented below the diagonal line 

Inter-
vention* 

(1)  
UC 

(2)  
E 

(3) 
E+FE 

(4) 
E+FE+HSI 

(5)  
E+FE+F 

(7) 
E+FE+ 
HSI+F 

(8) 
FE 

(1) UC 
 

1.36 
(0.93, 1.98) 

2.01 
(1.38, 2.92) 

1.78 
(1.23, 2.57) 

1.18 
(0.96, 1.47) 

  

(2) E  1.27 
(0.68, 2.47) 

 2.58 
(1.12, 5.94) 

 1.41 
(0.49, 4.06) 

  

(3) E+FE  2.26 
(0.94, 5.60) 

1.78 
(0.67, 4.72) 

   1.04 
(0.81, 1.35) 

0.32 
(0.01, 7.96) 

(4) E+FE+ 
HSI  

2.53 
(1.10, 7.13) 

1.99 
(0.71, 6.71) 

1.12 
(0.34, 4.45) 

    

(5) 
E+FE+F  

1.33 
(0.47, 4.30) 

1.06 
(0.35, 3.47) 

0.59 
(0.15, 2.47) 

0.54 
(0.12, 2.10) 

   

(7) E+FE+ 
HSI +F  

2.60 
(0.55, 15.68) 

2.06 
(0.38, 13.61) 

1.15 
(0.19, 8.62) 

1.04 
(0.26, 4.19) 

1.93 
(0.28, 15.24) 

  

(9) FE  0.37 
(0, 15.10) 

0.29 
(0, 12.31) 

0.17 
(0, 6.05) 

0.14 
(0, 6.34) 

0.27 
(0, 12.87) 

0.13 
(0.00, 7.67) 

 

 
 
 
  
*Interventions components (UC = Usual care, E = Education, FE = Free/low cost equipment, HSI = Home safety inspection, F = 
Fitting of equipment) 
 
Blank cells indicate that no direct evidence on the specific pairwise comparison was available. 
 
NMA estimates are from random effects model,  pairwise results are individual study or fixed effect estimates 
 
The intervention with the lowest number  is always the comparator, e.g. 1.27 (0.68, 2.47) is the NMA estimate for Education vs. 
Usual care whereas 1.36 (0.93, 1.98) is corresponding estimate from pairwise meta-analysis 
 

 

Pairwise estimates (Above the diagonal line) 

NMA estimates (Below the diagonal line 

The effect of study design on the NMA results was assessed by repeating the above 
analysis using only data from the 11 RCTs limiting the network to 6 interventions (i.e. 
excluding education only).  The results changed slightly but the most intensive 
intervention was still most likely to be the most effective (probability best = 0.56) closely 
followed by the intervention ‘education plus low cost/ free equipment and home safety 
inspection’ (probability best = 0.44) (Table 5.8).   
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5.4.3 Safe storage of poisons 

Ten studies provided data on effectiveness of 5 interventions to increase safe storage of 

poisons in households with children (Figure 5.1C). Six (67%) studies were RCTs and 3 

(33%) were non-RCTs (Figure 5.1C). Nine of the 10 studies reported arm-level outcome data 

(i.e. number of households with a PCC number/total number of households in each treatment 

arm). Therefore, the likelihood for the 9 studies is specified using equation (2.8).  The 

remaining study by Reich et al (Reich et al., 2011) reported two ORs and standard errors (i.e. 

OR1= education book vs. no book intervention and OR2= education book vs. non-

educational book intervention; see Table 5.1).  The two ORs were combined using a fixed 

effect meta-analysis. The combined log OR was given a normal likelihood and included in 

the analysis as follows:              

                 ( ) ( )2,Normal~log ibkibkibk seOR δ                                                                         (5.1)                    

where ( )ibkORlog  is the combined treatment effect with variance 2
ibkse from Reich et al (2011) 

and ibkδ  is the study-specific effect of intervention k relative to intervention b. The model fit 

statistics (Table 5.2) indicated that both fixed and random effects models fitted the data well. 

However, the random effects model results were preferred again as they were slightly more 

conservative than the fixed effect results (Table 5.5).  There was evidence to suggest that 

compared to usual care, the most intensive intervention, i.e. ‘education plus low cost/free 

equipment plus home safety inspection plus fitting’ (OR 11.24, 95% CrI 1.92 to 114.70) was  
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Table 5.5:  Estimated odds ratios (95% confidence/credible intervals) from pairwise and 
random effects network meta-analysis model for safe storage of poisons 
Pairwise meta-analysis results are presented above the diagonal line whilst NMA results 
are presented below the diagonal line 

 

Inter- 
vention*  

(1) UC (2) E (3) E+FE (4) 
E+FE+HSI 

(7) E+FE+ 
HSI+F 

(8) E+HV 

(1) UC 
 

1.50 

(1.09, 2.05) 

 10.11 

(1.60, 64.01) 

9.53 

(2.16, 42.03) 

0.98 

(0.86, 1.12) 

(2) E 1.31 

(0.65, 2.82) 

 0.93 

(0.30, 2.87) 

   

(3) E+FE 2.35 

(0.56, 11.50) 

1.79 

(0.45, 7.92) 

 0.81 

(0.25, 2.60) 

  

(4) E+FE+ 
HSI 

3.26 

(0.98, 11.84) 

2.69 

(0.59, 14.85) 

1.50 

(0.38, 6.58) 

   

(7) E+FE+ 
HSI+F 

11.24 

(1.92, 114.70) 

8.61 

(1.25, 94.30) 

5.01 

(0.82, 42.85) 

3.53 

(0.53, 31.75) 

 

 

(8) E+HV 0.92 
(0.42, 1.74) 
 

0.69 
(0.22, 1.73) 
 

0.43 
(0.13, 1.25) 
 

0.25 
(0.04, 1.25) 
 

0.09 
(0.01, 0.34) 
 

 

 
 
 
 
Blank cells indicate that no direct evidence on the specific pairwise comparison was available. 
The intervention with the lowest number  is always the comparator, e.g. 1.31 (0.65, 2.82)  is the estimate for NMA estimate for Education 
(2) vs. Usual care (1) whereas 1.50 (1.09, 2.05) is corresponding estimate from pairwise meta-analysis 
NMA estimates are from random effects model. Pairwise results are individual study or fixed effect estimates 
*Interventions components (UC = Usual care, E = Education, FE = Free/low cost equipment, HSI = Home safety 
inspection, F = Fitting of equipment, HV=Home visit) 

Pairwise estimates (Above the diagonal line) 

NMA estimates (Below the diagonal line 

 effective in promoting safe storage of poisons in the home. Repeating the analysis using only 

data from the 6 RCTs identified both education and low/free equipment (Probability best 

0.38), and education, low cost/free equipment, home safety inspection and installation 

(Probability best 0.36) to be the most effective at promoting the number of households with 

storage of poisons compared to usual care intervention (Table 5.8). 

 

5.4.4 Possession of a PCC number 

Ten studies with 7 interventions were included in the network for possession of a PCC 

number (Figure 5.1C), of which 7 (70%) were RCTs and 3 (30%) were non-RCTs (Table 

5.1). The model fit statistics indicated that only the random effects NMA model fitted the 

data well (Table 5.2), and therefore only the results from this model are presented alongside 

the pairwise results (Table 5.6). There was evidence that compared to usual care; education 
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plus low cost/free equipment and home safety inspection (OR 39.25, 95% CrI 2.35 to 724.40) 

increased the number of households with a PCC number.  

 

Table 5.6: Estimated odds ratios (95% confidence/credible intervals) from pairwise and 
random effects network meta-analysis model for possession of PCC number 
Pairwise meta-analysis results are presented above the diagonal line whilst NMA results 
are presented below the diagonal line 

 

Interven
tion 

(1)  

UC 

(2) 

E 

(3) 

E+FE 

(4) 

E+FE+HSI 

(6) 

E+HSI 

(7) 

E+FE+HSI+F 

(8) 

E+HV 

(1) UC  2.69 

(1.91, 3.78) 

3.89 

(2.69, 5.63) 

34 

(9.33, 123.97) 

1.30 

(0.71, 2.39) 

7.96 

(4.29, 14.77) 

2.44 

(0.96, 6.21) 

(2) E 2.04 

(0.50, 7.82) 

 1.85 

(0.79, 4.32) 

    

(3) E+FE 3.81 

(0.77, 18.75) 

1.87 

(0.32, 11.50) 

     

(4) E+FE 
+HSI 

39.25 

(2.35, 724.4) 

19.43 

(0.84, 499.8) 

10.36 

(0.40, 279.1) 

    

(6) 
E+HSI 

1.31 

(0.09, 17.89) 

0.64 

(0.03, 12.52) 

0.34 

(0.02, 7.50) 

0.03 

(0.00, 1.55) 

   

(7) 
E+FE+H
SI+F 

8.14 

(0.60, 114.1) 

3.9 

(0.21, 78.45) 

2.12 

(0.10, 46.29) 

0.21 

(0.00, 10.12) 

6.21 

(0.15, 266.3) 

  

(8) 
E+HV 

2.41 

(0.16, 37.34) 

1.19 

(0.06, 25.55) 

0.63 

(0.03, 14.77) 

0.06 

(0.0, 3.22) 

1.85 

(0.04, 81.59) 

0.30 

(0.01, 13.40) 

 

 
 
 
 
*Interventions components (UC = Usual care, E = Education, FE = Free/low cost equipment, HSI = Home safety inspection, F = 
Fitting of equipment, HV=Home visit) 
Blank cells indicate that no direct evidence on the specific pairwise comparison was available. 
NMA estimates are from random effects model. Pairwise results are individual study or fixed effect estimates 
The intervention with the lowest number  is always the comparator, e.g. 2.04 (0.50,7.82)  is the NMA estimate for Education (2) vs. Usual care (1) 
whereas 2.69 (1.91, 3.78) is corresponding estimate from pairwise meta-analysis 
 

 

5.4.5 Safe storage of poisonous plants 

Three studies, one of which is the 3-arm (Babul et al., 2007) study, provided data on 5 

interventions for safe storage of poisonous plants (Figure 5.1E). Only a fixed effect NMA 

model was fitted due to the small number of studies (i.e. only 3 studies) available for this 
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outcome. There was no evidence that home safety education interventions are effective in 

increasing safe storage of poisonous plants (Table 5.7).  

 

Table 5.7: Estimated odds ratios (95% confidence/credible intervals) from pairwise and 
random effects network meta-analysis model for safe storage of poisonous plants. 
Pairwise meta-analysis results are presented above the diagonal line whilst NMA results 

Intervention (1) 
UC 

(2) 
E 

(3) 
E+FE 

(4) 
E+FE+HSI 

(5) 
E+FE+F 

(1) UC 
 

 1.18  
(0.70, 2.0) 

1.04 
 (0.61, 1.76) 

 

(2) E 0.68 
(0.13, 3.16) 

   0.12 
 (0.01, 1.03) 

(3) E+FE 1.18 
(0.70, 2.01) 

1.74 
(0.40, 8.44) 

 0.88 
(0.52, 1.48) 

 

(4) 
E+FE+HSI 

1.04 
(0.60, 1.77) 

1.53 
(0.32, 8.16) 

0.88 
(0.52, 1.48) 

   

(5) E+FE+F 0.05 
(0.00, 0.84) 

0.08 
(0, 0.62) 

0.04 
(0, 0.66) 

0.05 
(0, 0.81) 

 

 
 
 
 
*Interventions components (UC = Usual care, E = Education, FE = Free/low cost equipment, HSI = Home 
safety inspection, F = Fitting of equipment, HV=Home visit) 
Blank cells indicate that no direct evidence on the specific pairwise comparison was available. 
The intervention with the lowest number  is always the comparator, e.g. 0.68 (0.13, 3.16)  is the NMA 
estimate for Education vs. Usual care with corresponding no estimate from the pairwise meta-analysis, hence 
the cell is blank 
NMA estimates are from random effects model. Pairwise results are individual study or fixed effect estimates 
 
 

Pairwise estimates (Above the diagonal line) 

NMA estimates (Below the diagonal line 

  

5.4.6 Assessment of best intervention 

Table 5.8 presents estimates of the probability that each intervention is the ‘best’ for each 

poison prevention measure. Relative ranking of the interventions are also presented with the 

most effective intervention ranked as number one. Overall, the estimated probabilities were 

generally low across all injury prevention outcomes, suggesting that no one intervention 

completely dominated the others when it comes to promoting poisoning prevention 

behaviours in the home. The only possible exception was ‘education plus low cost/free 

equipment plus home safety inspection’ which had an 82% probability of being the  most 

effective intervention for safe storage of poisons  and ‘education plus low cost/free 

equipment, with a 68% probability of being the most effective intervention for increasing 

uptake of PCC number.  
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Table 5.8: Assessment of the best intervention 

Intervention Safe storage of 
medicines 

 Safe storage of other 
household products 

 Safe storage of poisons  Safe storage of 
poisonous plants 

 Possession of PCC 
number 

 Prob(Best)1 Rank2  Prob(Best) Rank  Prob(Best) Rank  Prob(Best) Rank  Prob(Best) Rank 

(1) UC 0.00 6 (7, 3)  0.00 6 (7, 4)  0.00 5 (6, 3)  0.16 3 (4, 1)  0.00 6 (7, 4) 

 (2) E 0.04 4 (6, 1)  0.01 5 (7, 2)  0.00 4 (6, 2)  0.21 4 (4, 1)  0.01 5 (7, 2) 

(3) E+FE 0.28 2 (6, 1)  0.22 3 (5, 1)  0.04 3 (6, 1)  0.43 2 (4, 1)  0.04 3 (7, 1) 

(4)E+FE+HSI 0.10 5 (7, 1)  0.22 2 (5, 1)  0.14 2 (5, 1)  0.20 2 (4, 1)    

E+FE+F 0.08 5 (7, 1)  0.05 4 (7, 1)     0.00 5 (5, 5)  0.68 1 (5, 1) 

E+HSI             0.03 5 (7, 1) 

E+FE+HSI+F 0.27 3 (7, 1)  0.37 2 (7, 1)  0.82 1 (3, 1)     0.19 2 (7, 1) 

E+HV       0.00 6 (6, 3)     0.06 4 (7, 1) 

FE 0.23 3 (7, 1)  0.14 7 (7, 1)          

Prob(Best)1  = probability intervention is the best. 
Rank2 = posterior median estimate and (95% credible intervals) – rationale for using median estimate instead of the mean is given in Section 2.3.2. 
Blank cells indicate none of the studies have considered that intervention/outcome combination. 
Interventions components. 
UC = Usual care 
E = Education 
FE = Free/low cost equipment 
HSI = Home safety inspection 
F = Fitting of equipment 
HV = Home visit 
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5.5 Convergence, heterogeneity and consistency assessment results 

5.5.1 Convergence diagnostics 

Diagnostic plots for kd , the pooled effect of intervention k relative to usual care on the log-

odds ratio scale, and σ , the between-study standard deviation, from the NMA for safe storage 

of medicines are presented in Figures 5.2 to 5.5. Similar plots were also obtained for the other 

outcomes but these are not reported in this thesis. The density plots (Figure 5.2) for kd look 

reasonably smooth with the characteristic bell-shaped appearance of a parameter that is 

assumed to follow a normal distribution. The density plot for σ (Figure 5.2) is truncated at 

zero because standard deviations and variances are defined on the positive scale. The history 

plots (Figure 5.3) looked reasonably stable with a ‘fat caterpillar’ appearance, indicating 

reasonable degree of convergence. The autocorrelation plots (Figure 5.4) show successive 

iterations of the two parameters seem to be sampled from independent posterior distributions 

leading to good mixing and faster convergence. Examination of the Brooks-Gelman 

diagnostic plot (Figure 5.5) shows R has converged to 1, and B and W have converged to 

stability, given further evidence of convergence of samples. Overall, the diagnostic plots 

seem to indicate that the posterior estimates for kd  and σ were obtained from samples with a 

reasonable degree of convergence. 

 

In contrast to the plots above, Figure 5.6 displays plots for 7d , the log (OR) for ‘low cost/free 

equipment’ versus ‘usual care’ from the sensitivity analysis (baseline effects, μiA were 

assumed to be normally distributed as explained in Section 5.4.2) for safe storage of other 

household products.  These show the samples have not converged even after running a large 

number of iterations (200,000 samples). There was insufficient information in the data to 

reliably estimate 7d   because the only study (Dershewitz and Williamson, 1977)  which 

considered the equipment only intervention reported zero events for safe storage of other 

household products. This is supported by the fact that reasonably stable diagnostic plots were 

observed in the alternative models where a continuity correction was applied to the affected 

study (diagnostic plots not presented). 
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Figure 5.2: Posterior density plots for the pooled effect of intervention k relative to 
usual care, dk and the between-study standard deviation (sd), σ on the log-odds ratio 
scale 
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Figure 5.4: Autocorrelation plots for the pooled effect of intervention k relative to usual 
care, dk and the between-study standard deviation (sd), σ on the log-odds ratio scale 
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Figure 5.5: Autocorrelation plots for the pooled effect of intervention k relative to usual 
care, dk and the between-study standard deviation (sd), σ on the log-odds ratio scale 
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Figure 5.6: Diagnostic plots showing evidence of non-convergence in d7, the effect 
estimate for low cost/free equipment versus usual care from the random baseline model 
for safe storage of other household products 

 

 

5.5.2 Heterogeneity results 
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Estimates of the between-study standard deviation σ, on the log-odds ratio scale are presented 

in Table 5.9. Based on the criteria for interpreting σ outlined in Spiegelhalter et al. 

(Spiegelhalter et al., 2002), these figures would seem to indicate a reasonable degree of 

heterogeneity in the intervention effects for safe storage of medicines and safe storage of 

poisons, high degree of heterogeneity for safe storage of other household products and 

extremely high heterogeneity for possession of a PCC number. The credible intervals, 

however, show that there is great uncertainty in the estimation of σ possibly as a result of the 

relatively small number of studies providing direct evidence on pairwise contrast in each 

network (Figure 5.1).  

 

 

Table 5.9: Heterogeneity statistics from NMA models (log odds ratio scale) 

Outcome No. of studies Posterior median of the between-study standard 
deviation, σ  and 95% CrI in brackets 

Safe storage of medicines 13 0.269 (0.009 to 1.034) 

Safe storage of other household 
products 

15 0.561 (0.128, 1.270) 

Safe storage of poisons 10 0.361 (0.029, 1.436) 

Possession of a PCC number 10 1.165 (0.574, 1.926) 

Safe storage of poisonous plants 3 Fixed effects model fitted, hence σ = 0 assumed 

 

 

5.5.3 Evidence consistency assessment results 

As stated in Section 5.3.5 (assessment of heterogeneity and evidence consistency), only the 

relative effects for interventions that form part of a closed loop of evidence in the network 

(excluding loops formed by multi-arm studies) have both direct and indirect evidence and 

hence needed to be checked for inconsistency. 

 

 

There are 3 closed loops of evidence in the network for safe storage of medicines (Figure 

5.1A). One loop (indicated by thick red lines in Figure 5.1A) contains evidence from the 3-

arm Babul et al. study. Relative effects between the interventions contained in this loop 

cannot be inconsistent since by definition there can be no inconsistency in the evidence from 
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a multi-arm study (Dias et al., 2010). Therefore only the 5 relative effects from the two 

remaining loops have ‘direct’ and ‘indirect’ sources of evidence and needed to be checked for 

inconsistency.  

 

 

The network for safe storage of other household products has two closed loops of evidence 

and no multi-arm trial (Figure 5.1B). Therefore 5 relative effects needed to be checked for 

inconsistency in the network for this outcome.  The networks for safe storage of poisons 

(Figure 5.1C) and possession of PCC telephone number (Figure 5.1D) each has one closed 

loop of evidence. Hence only relative effects between interventions in each loop needs to be 

checked for inconsistency.  The network for storage of poisonous plants has one closed loop 

formed by the three-arm Babul study (Babul et al., 2007). That means there can be no 

inconsistency in the evidence structure for this outcome since multi-arm studies are assumed 

to provide consistent evidence on all treatment pairs (Dias et al., 2010). 

 

 

Estimated log odds ratios for the relative effects that have both direct and indirect evidence 

are presented in Table 5.10. Estimates based on the direct and indirect were obtained 

separately using the method of node splitting described in Section 2.3.3. The combined 

estimates are the estimates from the NMA model for the respective outcome. The results 

showed no evidence of inconsistency between the direct and indirect evidence in all networks 

(i.e. all the p-values in Table 5.10 were not statistically significant at the 5% significance 

level). This can be seen in Figure 5.7, where the posterior densities of the estimated 

intervention effect based on the direct, indirect and the combined evidence for the 

intervention pairs of interest in storage of medicines network show a degree of overlap when 

plotted side by side. However, it should be noted that relatively small number of studies were 

available in each network, which means that the analyses may have limited power to detect 

any inconsistencies in the evidence even if they exist. 
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Table 5.10: Evidence consistency checks for Safe storage of medicines and other household products 
Posterior mean (standard error) of the Log ORs using the full NMA network, direct and indirect evidence on each pairwise contrast 

 
Pair-wise contrast 

Combined 
evidence from 
NMA model 

Direct 
evidence 
 

Indirect evidence 
 

Inconsistency 
estimate† 

p-value* 

Safe storage of medicines      

Usual care (1) vs.  Education (2) 0.40 (0.30)   0.50 ( 0.34) 0.79 (0.86)   0.89 ( 0.97)   0.306 

Usual care (1) vs.  Education + Free/low cost Equipment (3) 0.74 (0.61) 0.48 (1.23) 0.38 (0.36) -0.31 (1.46) 0.820 

Usual care (1)  vs. Education + Equipment + Fitting (5) 0.35 (0.49) 0.14 (0.56) 1.55 (1.15) -1.41 (1.27) 0.232 
Education (2) vs.  Education + Free/low cost Equipment (3) 0.34 (0.58) 0.41 (0.79) 0.12 (1.20) 0.29 (1.44) 0.778 
Education (2) vs.  Education + Equipment + Fitting (5) -0.05 (0.54) 1.24 (1.09) -0.32 (0.68) 1.56 (1.27) 0.189 

 
Safe storage of non-medicines 

     

Usual care (1) vs.  Education (2) 0.24 (0.32) 0.36 (0.38) -0.24 (0.73) 0.61 (0.83) 0.408 

Usual care (1) vs.  Education + Free/low cost Equipment (3) 0.82 (0.43) 0.68 (0.54) 1.29 (0.91) -0.61 (1.05) 0.499 

Usual care (1)  vs. Education + Equipment + Fitting (5) 0.30 (0.54) 0.17 (0.76) 0.60 (1.01) -0.43 (1.27) 0.698 

Education (2) vs.  Education +  Equipment (3) 0.58 (0.48) 0.96 (0.85) 0.34 (0.67) 0.61 (1.07) 0.508 

Education (2) vs.  Education + Equipment + Fitting (5) 0.07 (0.56) 0.31 (0.93) -0.12 (0.83) 0.43 (1.25) 0.690 

 
Safe storage of poisons 

     

Usual care (1) vs.  Education (2) 0.34 (0.52) 0.20 (0.46) 2.72 (1.61) -2.52(1.68) 0.118  

Usual care (1)  vs. Education + Equipment + Home safety inspection  (4) 1.36 (0.93) 2.39 (1.22) -0.07(1.32) 2.46 (1.77) 0.107 

Education (2) vs.  Education + Free/low cost Equipment (3) 0.60 (0.84) -0.01 (0.88) 2.61(1.51) -2.62 (1.76) 0.124 

Education + Equipment (3) vs. Education + Equipment + Home safety inspection  (4) 0.42 (0.82) -0.28 ( 0.82) 2.44(1.50) -2.74 (1.71) 0.083 

 
Possession of a PCC number 

     

Usual care (1) vs.  Education (2) 0.71 (0.68) 0.70 (0.81) 0.72 (1.72) -0.02 (1.89) 0.989 

Usual care (1) vs.  Education +  Equipment (3) 1.33 (0.78) 1.34 (0.97) 0.69 (0.81) 0.04 (1.90) 0.986 

Education (2)  vs. Education + Equipment  (3) 0.63 (0.879) 0.63 (1.43) 0.63 (1.26) 0.00 (1.91) 0.992 
†inconsistency estimate = direct estimate – indirect estimate of the treatment effect (log-OR) 
*p-value =   which gives the 2-sided probabilities that the direct and indirect evidence are different  
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Posterior density plots of the log-odds ratio showing the distribution of estimates based 
on the direct evidence, indirect evidence and the combined evidence. Panel A = 
education versus usual care 
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Figure 5.7: Safe storage of medicines (random effects model) 
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5.6 Sensitivity analyses results 

5.6.1 Continuity corrections 

As stated in the results section for safe storage of medicines (Section 5.4.1) and safe storage 

of other household products (Section 5.4.2), continuity corrections were used to facilitate 

inclusion of  Kelly et al. (Kelly et al., 1987) in the NMA for safe storage of medicines and 

Dershewitz and Williamson’s study (Dershewitz and Williamson, 1977) in the model for 

other household products. Sensivity analyses were thus conducted by re-analysing the data 

with the two studies excluded from the syntheses for their respective outcomes. Figure 5.8A 

is a summary forest plot showing the intervention effects relative to ‘usual care’ from the 

model for safe storage of medicines with and without the continuity correction applied to the 

study by Kelly et al (Kelly et al., 1987). The plot shows that including Kelly et al.’s study had 

minimal impact on effect estimates with both models producing virtually identitical 

estimates.  

 

For the other household products analysis, in addition to conducting a sensitivity analysis 

using a continuity correction to facilitate inclusion of the study by Dershewitz and 

Williamson, a third model was fitted in which the baseline effects, μiA, were assumed to 

follow a normally distribution (i.e. a NMA model with random baseline effects).  Figure 5.8B 

displays the summary forest plot results of these sensitivity analysis for other household 

products. Putting random effects on μiA enabled the model to run but led to problems of non-

convergence for the paramater d7, the effect estimate for ‘low cost/free equipment’ versus 

‘usual care’ as shown in the diagnostic plots in Figure 5.6.  As a result no reliable estimates 

were obtained for ‘provision of low cost/free equipment’ from this model [note that effect 

estimates were not available for ‘low cost/free equipment’ from the random baseline model 

and the model that excluded Dershewitz and Williamson (1977) because only this study 

compared that particular intervention (i.e. low cost/free equiment)]. Finally, the forest plot in 

Figure 5.9 shows that using different estimates of the intervention effect from  Reich et al. 

(Reich et al., 2011) resulted in small changes in the pooled intervention effects for safe 

storage of poisons but not enough to change the conclusions of the analysis.  
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5.6.2 Sensitivity analysis to prior distributions 

Sensitivity analyses to specification of alternative prior distribution for the baseline effects, 

μiA, and the pooled effect of intervention k relative to usual care dk were performed but not 

reported. The results from these analyses suggest that pooled estimates of the intervention 

effects were not sensitive to prior distributions placed on μiA and dk. The prior distributions 

for the variance terms (i.e. σ and σ2) were however quite influential on estimates of the 

uncertainty around pooled intervention effects. Figure 5.9 presents summary forest plots of 

effect estimates compared to usual care from models with different prior distributions for σ 

for safe storage of medicines. In Figure 5.9, the two uniform priors - σ ~ Uniform(0,2) and σ 

~ Uniform(0,100) - had the widest intervals with greatest uncertainty around parameter 

estimates followed by σ ~ N(0,1000)I(0,) with σ2 ~ Inverse-Gamma(0.0001, 0.0001)  

producing the narrowest and more precise credible intervals.  The prior for σ is less 

influential when the heterogeneity is low and highly influential when the degree of 

heterogeneity is high.   
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0.3 1 3 10

Safe storage of medicines OR (95% CrI)

Model 2: Excluded Kelly (1987) 1.81 (0.30, 9.54)

Model 1: Applied CC to Kelly (1987) 1.74 (0.30, 9.26)

FE only (9)

Model 2: Excluded Kelly (1987) 1.93 (0.61, 6.06)

Model 1: Applied CC to Kelly (1987) 1.94 (0.62, 6.03)

E+FE+HI+F (7)

Model 2: Excluded Kelly (1987) 1.35 (0.61, 4.46)

Model 1: Applied CC to Kelly (1987) 1.35 (0.60, 4.28)

E+FE+F (5) 

Model 2: Excluded Kelly (1987) 1.37 (0.41, 4.32)

Model 1: Applied CC to Kelly (1987) 1.36 (0.41, 4.37)

E+FE+HI (4) 

Model 2: Excluded Kelly (1987) 2.11 (0.61, 6.72)

Model 1: Applied CC to Kelly (1987) 2.05 (0.61, 6.33)

E+FE (3)

Model 2: Excluded Kelly (1987) 1.51 (0.78, 2.63)

Model 1: Applied CC to Kelly (1987) 1.50 (0.79, 2.58)

E (2)

0.3 1 3 10

Non medicines out of reach OR (95% CrI)

Model 3: Excluded Dershew itz (1977) —
Model 2: Applied CC to Dershew itz (1977) 0.40 (0.00, 19.38)
Model 1: Baseline effects ~ Normal* —

FE only (9)

Model 3: Excluded Dershew itz (1977) 2.60 (0.56, 15.91)
Model 2: Applied CC to Dershew itz (1977) 2.60 (0.56, 15.90)
Model 1: Baseline effects ~ Normal* 2.61 (0.61, 14.81)

E+FE+HI+F (7)

Model 3: Excluded Dershew itz (1977) 1.34 (0.47, 4.26)
Model 2: Applied CC to Dershew itz (1977) 1.34 (0.48, 4.34)
Model 1: Baseline effects ~ Normal* 1.35 (0.50, 4.08)

E+FE+F (5) 

Model 3: Excluded Dershew itz (1977) 2.53 (1.12, 7.30)
Model 2: Applied CC to Dershew itz (1977) 2.53 (1.11, 7.20)
Model 1: Baseline effects ~ Normal* 2.54 (1.17, 6.93)

E+FE+HI (4) 

Model 3: Excluded Dershew itz (1977) 2.26 (0.95, 5.55)
Model 2: Applied CC to Dershew itz (1977) 2.26 (0.96, 5.57)
Model 1: Baseline effects ~ Normal* 2.22 (0.99, 5.37)

E+FE (3)

Model 3: Excluded Dershew itz (1977) 1.26 (0.67, 2.50)
Model 2: Applied CC to Dershew itz (1977) 1.26 (0.68, 2.46)
Model 1: Baseline effects ~ Normal* 1.25 (0.68, 2.35)

E (2)

Figure 5.8: Estimated odds ratios (ORs) for home safety interventions compared with usual care 
CC = continuity correction, E=Education, F= Fitting, FE= Free/low cost Equipment, HI = Home safety inspection. *Model for baseline 
effects, ( )2

μiA σ,μNormal~μ
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0.3 1 3 10 50

Posession of a PCC number OR (95% CrI)

Model 3: log(sd)~U(0,2) prior 2.45 (0.07, 80.65)
Model 2: sd-sq ~ Inverse-Gamma** prior 2.44 (0.14, 44.46)
Model 1: sd ~ U(0,2) prior 2.41 (0.16, 37.34)

E+HV (8)

Model 3: log(sd)~U(0,2) prior 8.16 (0.26, 259.20)
Model 2: sd-sq ~ Inverse-Gamma** prior 8.15 (0.49, 143.30)
Model 1: sd ~ U(0,2) prior 8.14 (0.60, 114.10)

E+FE+HI+F (7)

Model 3: log(sd)~U(0,2) prior 1.32 (0.05, 41.00)
Model 2: sd-sq ~ Inverse-Gamma** prior 1.30 (0.08, 20.91)
Model 1: sd ~ U(0,2) prior 1.31 (0.09, 17.89)

E+HI (6) 

Model 3: log(sd)~U(0,2) prior 40.31 (1.03, 1496)
Model 2: sd-sq ~ Inverse-Gamma** prior 39.51 (1.90, 886.6)
Model 1: sd ~ U(0,2) prior 39.25 (2.35, 724.4)

E+FE+HI (4) 

Model 3: log(sd)~U(0,2) prior 3.79 (0.46, 30.08)
Model 2: sd-sq ~ Inverse-Gamma** prior 3.82 (0.68, 20.67)
Model 1: sd ~ U(0,2) prior 3.81 (0.77, 18.75)

E+FE (3)

Model 3: log(sd)~U(0,2) prior 2.01 (0.33, 12.18)
Model 2: sd-sq ~ Inverse-Gamma** prior 2.06 (0.46, 8.90)
Model 1: sd ~ U(0,2) prior 2.04 (0.50, 7.82)

E (2)

   
 

Figure 5.9: Estimated odds ratios (ORs) for home safety interventions compared with 
usual care for safe storage of poisons from sensitivity analysis using different estimates 
from Reich et al. (2011) 

. 
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0.3 1 3 10

Safe storage of medicines OR (95% CrI)

sd.sq ~ Inverse-Gamma(0.001,0.001) 1.79 (0.45, 6.84)
sd ~ Normal (0, 1000)I(0,) 1.77 (0.34, 8.56)
sd ~ Uniform(0, 100) 1.75 (0.30, 9.83)
sd ~ Uniform(0, 2) 1.81 (0.30, 9.68)

FE only (9)

sd.sq ~ Inverse-Gamma(0.001,0.001) 1.94 (0.92, 4.06)
sd ~ Normal (0, 1000)I(0,) 1.93 (0.68, 5.46)
sd ~ Uniform(0, 100) 1.93 (0.59, 6.21)
sd ~ Uniform(0, 2) 1.93 (0.60, 6.10)

E+FE+HI+F (7)

sd.sq ~ Inverse-Gamma(0.001,0.001) 1.29 (0.72, 2.91)
sd ~ Normal (0, 1000)I(0,) 1.34 (0.64, 3.97)
sd ~ Uniform(0, 100) 1.35 (0.60, 4.48)
sd ~ Uniform(0, 2) 1.35 (0.60, 4.49)

E+FE+F (5) 

sd.sq ~ Inverse-Gamma(0.001,0.001) 1.36 (0.50, 3.90)
sd ~ Normal (0, 1000)I(0,) 1.34 (0.44, 4.27)
sd ~ Uniform(0, 100) 1.35 (0.41, 4.44)
sd ~ Uniform(0, 2) 1.37 (0.40, 4.32)

E+FE+HI (4) 

sd.sq ~ Inverse-Gamma(0.001,0.001) 2.10 (0.77, 5.68)
sd ~ Normal (0, 1000)I(0,) 2.06 (0.66, 6.32)
sd ~ Uniform(0, 100) 2.07 (0.61, 6.73)
sd ~ Uniform(0, 2) 2.11 (0.61, 6.74)

E+FE (3)

sd.sq ~ Inverse-Gamma(0.001,0.001) 1.52 (0.94, 2.35)
sd ~ Normal (0, 1000)I(0,) 1.51 (0.83, 2.56)
sd ~ Uniform(0, 100) 1.51 (0.79, 2.66)
sd ~ Uniform(0, 2) 1.51 (0.78, 2.64)

E (2)

   
 

Figure 5.10: Estimated odds ratios (ORs) for home safety interventions compared with 
usual care for safe storage of medicines 
Sensitivity analysis to prior distribution for heterogeneity parameter, σ, sd refers to σ 
and sd.sq = σ2.  E=Education, F= Fitting 
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5.7 Discussion 

5.7.1 Summary of findings 

In this chapter, NMAs were used to compare the different interventions with one another for 

promoting poison prevention behaviours by households with children. This analysis has 

allowed comparisons of strategies not addressed within any of the individual primary studies.  

The findings showed that more intensive interventions are more effective than education 

alone for each of the poison prevention practices being evaluated. Education plus low cost 

/free equipment was most effective in promoting safe storage of medicines, ‘education plus 

low cost/free equipment plus home safety inspection and fitting’ was most effective in 

promoting safe storage of other household products and poisons, and ‘education plus low 

cost/free equipment plus home safety inspection’ was most effective in promoting possession 

of a PCC number. There was no evidence that any of the interventions was more effective 

than the others at promoting safe storage of poisonous plants. 

 

5.7.2 Strengths and limitations 

NMA is a useful synthesis tool for comparing multiple injury prevention interventions which 

are often complex and multi-faceted, and where the number of studies evaluating the same 

comparisons is small. NMA enables interventions to be ranked in terms of their effectiveness 

in promoting safety practices providing results which are more likely to be useful to 

policymakers, service commissioners and providers when making choices between multiple 

alternatives than multiple pairwise meta-analyses.     

 

No evidence of inconsistency between direct evidence and indirect evidence was found in the 

analyses, although the power to detect inconsistency will have been limited by sparse data, 

particularly for analyses involving very few studies. The inclusion of non-randomised study 

designs allowed greater number of studies to be included in the analysis, but also resulted in 

the inclusion of studies with greater potential for bias. Sensitivity analyses restricting 

analyses to RCTs produced similar results suggesting the findings were robust to exclusion of 

non-randomised studies. The quality of studies included in the analyses (assessed in terms of 
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allocation concealment (RCTs only), blinded outcome assessment, balance of confounders 

(non-RCTs only) and completeness of follow-up) was variable.  It was not possible to explore 

the impact of the individual measures of quality on the results since such an analysis would 

be extremely limited due to the large number of parameters being estimated in the NMA 

relative to the number of studies and may even lead to disconnected networks.  

 

Although NMA allows interventions to be classified into more categories than standard 

pairwise meta-analysis, there is, inevitably, still some “lumping” of interventions within these 

categories. For example, education may differ in intensity across studies; that is, from a 

leaflet or brochure distributed by post, to intensive face-to-face classes teaching home safety.  

Subcategorising the interventions further, to avoid “lumping”, is reliant on detailed 

information being reported in the primary study publications. However, in the case of poison 

prevention education, insufficient detail was often reported to enable further sub 

categorisation.  

 

 

5.7.3 Comparisons with existing work  

The findings from the analyses carried out in this chapter are consistent with findings from 

the two previous pairwise meta-analyses. DiGuiseppi found interventions promoting “child-

proofing” the home delivered in clinical settings had a modest effect (odds ratio 1.8, 

statistical significance not reported) on safe storage of cleaning products substances 

(DiGuiseppi and Higgins, 2000). The second meta-analysis by Kendrick et al. (Kendrick et 

al., 2012c), found that education, with or without the provision of safety equipment was 

effective in increasing safe storage of medicines (OR 1.53, 95% CI 1.27-1.84), safe storage of 

household products (OR 1.55, 95% CI 1.22- 1.96) and, increasing availability of poison 

control centre numbers (OR 3.30, 95% CI 1.70- 6.39). These findings extend those from the 

previous meta-analyses by demonstrating which elements of multifaceted interventions are 

most effective. Furthermore, one of the previous meta-analyses failed to find significant 

effects of education, with or without the provision of safety equipment on  keeping 

(unspecified) poisons (OR 0.57, 95%CI 0.31-1.07) or plants out of reach (OR 1.18, 0.40-
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3.48), but the analyses reported in this chapter demonstrated that some poison prevention 

interventions are effective in promoting these safety practices. 

 

The effect sizes in the NMA for safe storage of medicines, other household products and 

availability of the poison control centre number are all larger than the effect sizes found in the 

pairwise meta-analyses previously reported (DiGuiseppi et al., 2001; Kendrick et al., 2012c). 

It is likely that, by reducing clinical heterogeneity of interventions, the NMAs may explain 

some of the statistical heterogeneity in effect sizes found in previous pairwise meta-analyses. 

The findings also suggest pairwise meta-analyses combining all interventions, (which include 

less intensive, and as it has been shown, less effective interventions) may underestimate the 

effect of more intensive interventions.   

 

4.4 Implications for practice and research 

The findings from the analysis in this chapter suggest that the “best” interventions for 

increasing a range of poison prevention practices are the more intensive interventions. These 

include, at a minimum, education and providing equipment, but for some poison prevention 

practices the most effective intervention requires education, equipment provision and fitting 

and home safety inspection. The most effective intervention varied by poison prevention 

practice, so commissioners and providers of poison prevention interventions should tailor the 

interventions they commission or provide to the poison prevention practices they wish to 

promote.  Knowing which interventions are most effective is important, but is only part of the 

information required to commission or provide poison prevention and cost-effectiveness is an 

essential part of any decision making process. The effect sizes from this NMA will be used in 

subsequent decision analyses to determine the most cost effective interventions for increasing 

poison prevention practices in Chapter 8. Such an analysis is vital to determine which 

interventions provide best value for money, as more intensive interventions, which have 

shown to be the most effective, will also be the most expensive. 

 

Despite 28 studies being included in at least one of the NMAs, the maximum number 

included in any single NMA was 15 and many comparisons contained only a small number of 
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studies. Further studies are therefore required to increase precision of effect estimates, to 

increase power to explore effects by study quality, and to check for inconsistency between 

direct and indirect evidence of effectiveness.  In addition, a more detailed description of the 

intervention in future studies, in particular of the content of the educational elements of 

interventions, would be helpful in allowing a finer sub-categorisation and exploration of 

individual educational components. Methods  to incorporate individual level data into NMA 

analyses are now available (Saramago et al., 2012), and these would  be useful for exploring 

whether the effect of interventions vary by characteristics of study population (e.g. 

deprivation) and the potential impact of interventions on inequalities in prevention practices.   

 

5.8 Chapter summary 

The NMAs demonstrated that the most effective interventions varied by poison prevention 

practice but overall the more intensive interventions were more effective than education alone 

for each poison prevention practice. These analyses were carried out by fitting the standard 

NMA model to each poison prevention outcome separately and will inform the base case of 

the decision analytic model in Chapter 8. Before that, further modelling extensions of the 

standard NMA model will be presented first to allow for a baseline risk covariate to be taken 

into account in the analysis (Chapter 6) and secondly to extend the NMA model to multiple 

outcomes setting (Chapter 7) in order to account for correlations between the effectiveness 

estimates and borrow strength across outcomes.  
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6. ADJUSTING FOR A BASELINE RISK COVARIATES IN 

NETWORK META-ANALYSIS 

6.1 Chapter overview 

When summarising evidence to inform an economic evaluation, it is important that potential 

sources of heterogeneity are explored, to account for variation in the intervention effect 

across different populations and identify those more likely to benefit from the intervention. In 

the previous chapter, network meta-analysis (NMA) models were used to synthesise evidence 

from the example data and compare the effectiveness of poison prevention strategies in 

households with children. This chapter presents methods that extend the standard NMA 

model to account for baseline imbalances in the ‘non-active’ intervention group event rate. 

The non-active intervention (i.e. usual care intervention in the poison prevention data 

described in Chapter 5) arm may represent quite different strategies in different studies. For 

example, ‘usual care’ may be ‘no safety education’ in one study but ‘standard or usual safety 

education’ in another. Such differences in the definition of the ‘usual safety education’ arise 

due to differences in study protocols, safety practices in the countries where studies were 

conducted and so on. The methods presented in this chapter can be used to account for 

residual heterogeneity in the definition of the non-active intervention group and help reduce 

both heterogeneity and possibly inconsistency in a network meta-analysis. The methods 

presented here have been published in ‘Statistics in Medicine’ (Appendix VI - Research paper 

3) (Achana et al., 2013).   

 

6.2 Introduction  

In meta-analyses of clinical trials, differences in patient or trial/study level characteristics 

often give rise to variation in treatment effect estimates between studies - also called 

heterogeneity (Sutton et al., 2000). Between-study variance in the treatment effects is usually 

taken into account through including a parameter for the residual heterogeneity in a random 

effects meta-analysis (Sutton et al., 2000; Borenstein et al., 2009). A random effects model 

quantifies the degree of heterogeneity but does not explain it. To explain the source of the 

heterogeneity, patient and study level characteristics are sometimes included in the analysis 

as covariates (Sutton et al., 2000; Borenstein et al., 2009). A trial-level covariate of interest 
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as a possible source of heterogeneity is the ‘baseline risk’ or the underlying risk of the 

disease. The baseline risk reflects the burden of disease in a study population and defines the 

average risk of a patient to experience the outcome of interest if they have not been treated 

(Higgins and Green, 2011). It is potentially an important proxy for the distribution of patient-

level characteristics such as age, sex, medical history and disease severity that collectively 

influence a patient’s response to treatment (Thompson et al., 1997). In addition to 

heterogeneity, baseline imbalances between trials may also give rise to inconsistency (i.e. 

variability in the treatment effect between pair-wise contrasts (Cooper et al., 2009) in a 

NMA). Therefore, adjusting for baseline covariates may have the benefit of reducing both 

heterogeneity and inconsistency in NMA and improve the overall model fit.  

 

Various measures have been used for the baseline risk in meta-analyses. Examples include 

the observed event rate in the  placebo or non-active intervention  arm, the observed placebo 

arm log odds and the average of the observed event rates in the placebo and treatment arms 

(Brand and Kragt, 1992; Sharp et al., 1996; Walter, 1997). However, including observed 

measures of baseline risk in a meta-regression can be problematic because of the 

measurement error in both response (i.e. treatment effect) and explanatory variables, and 

functional relationship between the two (Thompson et al., 1997). The problem has received 

considerable attention in the literature with several authors proposing alternative model based 

solutions.  Examples include the methods of McIntosh (McIntosh, 1996), Walter (Walter, 

1997), Thomson et al. (Thompson et al., 1997), Sharp and Thomson (Sharp and Thompson, 

2000), Arends et al. (Arends et al., 2000) and van Houwelingen et al. (van Houwelingen et 

al., 2002). The objective is to extend these methods applicable to pairwise meta-analysis to 

network meta-analysis (NMA) where it may be of interest to adjust for baseline imbalance in 

the underlying risk across studies. The main reason for so doing is to reduce between-study 

heterogeneity and possible inconsistency in the direct and indirect trial evidence on pairwise 

comparisons. This objective is complicated by missing data, due to the fact that not all studies 

in a network may have a placebo or non-active treatment control, and thus an observed 

covariate value. 

 

The remainder of the chapter is structured as follows: A review of the pair-wise meta-analysis 

methods for investigating the relationship between treatment effect and baseline risk is 
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presented in Section 6.2. Section 6.3 presents an approach which primarily extends the 

methods of Thompson et al. (Thompson et al., 1997; Sharp and Thompson, 2000) and Arends 

et al. (Arends et al., 2000) from pair-wise to NMA where it is of interest to adjust for the 

baseline risk. The methods presented complements previous general multivariate meta-

regression models suggested for NMA (see Cooper et al. (Cooper et al., 2009), Salanti et al. 

(Salanti et al., 2008; Salanti et al., 2009) and Stijnen et al. (Stijnen et al., 2010))  by allowing 

for: 

i) Alternative distributional assumptions to be made about the nature of the ‘‘true’’ 

unobserved baseline risk measure, 

ii) The inclusion of trials without a non-active treatment control and hence no baseline 

risk measure and  

iii) Allows for the interactions to be exchangeable or even 

different (i.e. as many regression coefficients as there are treatment effects).  

 

The methods are applied in Section 6.5  using data from two published systematic review 

and NMAs (McDaid et al., 2010; Cooper et al., 2011a) and the poison prevention data on 

safe storage of medicines outcome described in Chapter 5. The first example has a  binary 

outcome and examines effectiveness of home safety education interventions to promote 

ownership of functional smoke alarm in households with children (Cooper et al., 2011a) . 

The second example has a continuous outcome measure and examines the effectiveness 

of analgesic treatments in reducing post-operative morphine consumption in adult patients 

following major surgery (McDaid et al., 2010). The results of these applications are 

presented in Section 6.6. The chapter concludes with a discussion of the findings from the 

example datasets, the strengths and limitations of the approach and a summary.  

 

6.3 Review of baseline risk models for pair-wise meta-analysis 

Sharp and Thompson (Sharp and Thompson, 2000) and Arends et al. (Arends et al., 2000) 

both present good introductions to baseline risk adjustment and detailed review of available 

methods for pair-wise meta-analysis.  Table 6.1 summarises the important features of six of 

the methods that are considered relevant to the modelling approach developed in this chapter 

for NMA. A common feature in these methods is to model the relationship of interest in three 

parts, although this was only stated explicitly in Arends et al. (Arends et al., 2000). This 
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involves specifying in any order i) an appropriate likelihood for the data, ii) a regression 

model relating the ‘true’ treatment effect as explanatory variable and the ‘true’ baseline risk 

as the covariate  and iii) a model for the distribution of the baseline risk across studies. 

 

Differences between approaches have mostly arisen from slightly different strategies adopted 

for each part of the model. For example, Thompson et al. (Thompson et al., 1997) Arends et 

al. (Arends et al., 2000) and Sharp and Thompson (Sharp and Thompson, 2000) assumed a 

binomial likelihood for a binary outcome whereas McIntosh (McIntosh, 1996), Walter 

(Walter, 1997) and van Houwelingen et al. (van Houwelingen et al., 2002) used a normal 

distribution to model a binary outcome measure (e.g. log odds or log odds ratio). 

Approximating a log odds ratio with a normal distribution can be mathematically and 

computationally convenient but the normality assumption may be inappropriate if there are 

trials in the meta-analysis with zero or small numbers of events (Sharp and Thompson, 2000). 

Secondly, except for the method of Walter (Walter, 1997), all the other methods assumed 

random study-specific effects.  Walter’s (Walter, 1997) model is fixed effect in that no 

allowance is made for any residual heterogeneity other than that explained by the baseline 

risk, although expecting residual heterogeneity is more realistic in most applications where it 

is of interest to adjust for the baseline risk.   

 

Finally, the approaches outlined in Table 6.1 make different assumptions about the 

distribution of the ‘true’ unobserved baseline risk across studies (McIntosh, 1996; Ghidey et 

al., 2011).  Some models assumed a vague or minimally informative normal prior distribution 

(e.g. Thompson et al. (Thompson et al., 1997), Sharp and Thompson (Sharp and Thompson, 

2000) and also in Arends et al. (Arends et al., 2000)); a common parametric formulation is to 

assume that the baseline risk is normally distributed across trials as in McIntosh (McIntosh, 

1996), van Houwelingen et al. (van Houwelingen et al., 2002) and also Arends et al. (Arends 

et al., 2000). Additionally, Arends et al. (Arends et al., 2000) also proposed a more flexible 

model for the distribution of the baseline risk comprising a mixture of two normal 

distributions with different means but common between-study variance.
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Table 6.1: Summary of methods for modelling the relationship between treatment effect and baseline risk in pair-wise meta-analysis 
with a binary outcome 

Method Outcome 
data 

Likelihood model   Distribution of 
baseline risk 

Method of 
estimation 

Further notes  

Method 1 (Walter, 1997) Arm level  Two normal distributions ( Observed treatment 
and control group log-odds with normal errors 

None, RE ML or  WSL with 
bias correction  
 

Gives only fixed effects results as no allowance 
for excess heterogeneity. Narrow standard 
errors for regression slope   
 

Method  2 (McIntosh, 
1996) 
 

Trial level Bivariate normal (BVN) approximation: - 
Log-OR & control group log-odds assumed 
bivariate normal with known variance and  
covariance-matrix estimated from data) 
 

Normal (RE on 
baseline risk) 

ML  & Bayesian BVN assumption may be inappropriate if there 
are trials with small number of events. May 
result in more extreme estimates of slope   
and lower estimates of between-study 
heterogeneity,  
 
Normality of baseline risk across trials may be 
hard to justify 
 

Method 3 (van 
Houwelingen et al., 2002) 
 

Arm level Bivariate normal (BVN) approximation for 
binary outcome data (treatment & Control group 
log-odds or  observed treatment effect & control 
group log-odds assumed BVN with known 
covariance-matrix estimated from data) 
 

Normal (RE on 
baseline risk) 

EM algorithm & 
SAS Proc Mix 

Method  4a (Thompson et 
al., 1997), 2000(Sharp and 
Thompson, 2000)) ; 
(Arends et al., 2000) 
 

Arm level  Exact binomial model (Observed number of 
events in each treatment-arm assumed binomial) 

Fixed, flat prior Bayesian Eliminates need for zero-cell corrections 
 
Useful  in situations where  trials with small 
sampled sizes are included in the meta-analysis 

Method 4b (Arends et al., 
2000) 

Arm level Exact binomial model (Observed number of 
events in each treatment-arm assumed binomial) 
 

Normal (RE)  Bayesian 

Method 4c (Arends et al., 
2000) 

Arm level Exact binomial model (Observed number of 
events in each treatment-arm assumed binomial) 

Mixture of two 
normal 
distributions 

Bayesian Eliminates need for zero-cell corrections 
Useful  in situations where  trials with small 
sampled sizes are included in the meta-analysis 
Flexible distributional assumptions for the 
baseline risk measure 

ML = Maximum Likelihood, WLS = Weighted least square, Log-OR = Log-odds ratio; MA=Meta-analysis, FE=Fixed effects, RE=Random effects 
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Whether or not to assume a model for the baseline risk is a much debated issue with as yet no 

clear consensus among methodologists (van Houwelingen and Senn, 1999; Arends et al., 

2000; Sharp and Thompson, 2000; van Houwelingen et al., 2002). More recently, Ghidey et 

al. (Ghidey et al., 2007; Ghidey et al., 2011) proposed semi-parametric models for the 

distribution of the baseline risk as well as models that do not make any distributional 

assumptions.  In the next section, methods for the baseline risk adjustment in NMA are 

presented that incorporate the different assumptions about the baseline risk distribution across 

studies in order to assess the effect of these assumptions on parameter estimates.    

 

6.4 Methods 

6.4.1 Model with no covariate adjustment 

Suppose in a meta-analysis of 1, 2, ,i N=  studies, we have , , , Tk A B N=   interventions 

being compared with one another where TN is the total number of interventions. Take 

intervention A as the overall baseline or reference intervention of the entire network. For a 

binary outcome, we assume  events occur out of   patients in arm k of study i according 

to a binomial distribution with underlying event probability . Standard random effects 

NMA for a binary outcome with no covariate previous specified in equation 2.9 of Chapter 2 

is restated below:           

         

                  ( )ikikik npr ,Binomial~   

                 ( )




>+
=

=
bkif
bkif

p
ibkib

ib
ik ,

,
logit

δµ
µ

                 for ,,,, CBAb =                     (6.1) 

                 ibkbkibk d εδ += , ( )2,0Normal~ bkibk σε                                                    

where dAA = 0 (i.e. the intervention effect in the reference or baseline intervention for the 

entire network is set to 0) and k>b implies intervention k comes alphabetically after b. The 

parameter ibµ is the effect of baseline intervention b (log odds) in study i and ibkε denote a 

random effect indicating that the study-specific effects (log odds ratios) of intervention k 

relative to b, ibkδ , are normally distributed with mean bkd and between-study variance 2
bkσ .  
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As described in Chapter 2 Section 2.3.1, multi-arm studies can be included in the analysis 

under the homogenous variance assumption (i.e. 22 σσ =bk  for all b and k) so that  the 

covariance is equal to 
2

2σ (Lu and Ades, 2004). All other parts of the model including 

specification of prior distributions and estimation of parameters are as described in Section 

2.3.1 of Chapter 2.   

 

6.4.2 Extending the NMA to include a covariate for the baseline risk 

Using the ‘true’ but unobserved non-active control or placebo group log-odds, iAµ  (i.e. for b 

= intervention A) in study i as a measure of the baseline risk, the study-specific intervention 

effects in equation (6.1) can be made to depend on the baseline risk through  the following 

regression: 

                    ( ) ibkiAbkbkibk d εµµβδ +−+=                                                                          (6.2) 

where ( )2,0Normal~ bkibk σε , ibkδ and 2
bkσ  are defined as in equation (6.1), bkd  is the mean 

effect of treatment k relative to baseline intervention b adjusted for the baseline risk and bkβ  

is the change in the log odds ratio of an event per unit change in the baseline risk for 

intervention k relative to b at the mean baseline risk across studies. The baseline risk 

covariate is centred on µ , the mean log odds in the non-active control group (treatment A), to 

improve convergence of the model (Draper and Smith, 1998). For trials with an active 

intervention control (i.e. baseline intervention b ≠ A), the following substitution 

AbAkbk ddd −=  is made under evidence consistency in equation (6.2):  

                 ( ) ( ) ( ) ibkiAAbAkAbAkibk dd εµµββδ +−×−×−=                                                 (6.3) 

where ibkε  and all other variables are as defined in equations (6.1) and (6.2). Although 

intervention A is not actually included in trial i of equation (6.3), the fundamental assumption 

on exchangeability means that intervention arms can be assumed to be missing at random 

without loss relative potency of the intervention. This assumption makes it possible to 

imagine that there would still be a baseline risk in studies without intervention A and hence, 

borrow strength from other studies. Therefore, no new parameters are needed for including 
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for example a B versus C study, and all other aspects of the model will remain the same. For 

multi-arm studies, the model takes the form of a multivariate regression to accommodate the 

within-study correlations between effect estimates arising from such studies. The multivariate 

form of equation (6.2) with bold characters denoting vectors and matrices is given by: 

 

                       iii εβXδ +=                                                                                                  (6.4) 

where ( )Σε ,0Normal~i , iδ is a vector of study-specific effects in study i with elements 

( )
1

,,, 21 −iiNTii δδδ  , iNT  is the total number of treatment effects in trial i, and Σ  is a variance-

covariance matrix. The design matrix iX  contain the covariate information with entries 

indicating the intervention effects being estimated in trial i and β is a vector of regression 

coefficients including the intercept and slope terms.  Following other formulations (Salanti et 

al., 2008) as an example, consider a network of 4 studies and 3 interventions labelled A, B 

and C in which study 1 is AB (i.e. A versus B study), study 2 is AC, study 3 is ABC and 

study 4 is BC (i.e. no non-active control). With intervention A taken as the overall baseline 

treatment and assuming homogenous variances (i.e. 22 σσ =bk  for all b and k), equation (6.4) 

can be written in full for this network as: 
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and ( )TACABACAB dd ββ=β is the 14×  matrix of regression coefficients representing 

the pooled effects of interventions B and C relative to intervention A and the effect of 

baseline risk on intervention effect estimates.  All that remains is to specify models for the 
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distribution of the ‘‘true’’ baseline risk across trials and distribution of the regression 

coefficients. These are presented in the next section. 

 

6.4.3 Models for the baseline risk and treatment by covariate interactions 

As stated in the review of previous models presented in Section 6.3, there is no consensus in 

the literature about what form of distribution the baseline risk should take. The following 

models were specified for the distribution of the baseline risk across studies following the 

example in Arends et al. (Arends et al., 2000):  

1. Model 1 assumes that baseline risk is independent or unconstrained so that each study 

has its own baseline risk measure. This is equivalent to specifying a vague normal prior 

distribution for the baseline risk across studies: ( )310,0Normal~iAµ . 

2. Model 2 assumes that the baseline risk from each study is drawn from a normal 

distribution with common mean and between-study variance: ( )2,Normal~ µσµµ iA . 

 Prior distributions are specified for µ  and µσ : 

 ( )310,0Normal~µ  and ( )100,0Uniform~µσ . 

3. Model 3 assumes the baseline risk is drawn from a mixture of two normal distributions 

with a common between-study variance:  

( ) ( ) ( )1
2

21
2

1 1,Normal,Normal~ ppiA −×+× µµ σµσµµ  with prior distributions:  

( )3
21 10,0Normal~,µµ , ( )100,0Uniform~µσ  and ( )1Dirichlet~1 =cp α  for 2,1=c . 

Similar to the models for the distribution of the baseline risk, models were also specified for 

the treatment  by covariate interactions following the example in Cooper et al. (Cooper et al., 

2009): 

A. Common treatment ×  covariate interactions: ββ =Ak , ( )310,0Normal~β . 

B. Exchangeable treatment ×  covariate interactions: ( )2,Normal~ βσββ Ak  

and ( )100,0Uniform~βσ . 

C. Independent and unrelated treatment ×  covariate interactions: ( )310,0Normal~Akβ . 

This implies that a total 9 models can be fitted based on the combination of assumptions 

about distribution of the baseline risk and the treatment ×  covariate interaction terms: 
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Model A1: Unconstrained baseline risk and common slope.  

Model A2: Normal distribution for baseline risk and common slope. 

Model A3: Mixture distribution for baseline risk and common slope.  

Model B1: Unconstrained baseline risk and exchangeable slopes 

Model B2: Normal distribution for risk and exchangeable slopes 

Model B3: Mixture distribution for baseline risk and exchangeable slopes. 

Model C1: Unconstrained baseline risk and independent slopes. 

Model C2: Normal distribution for baseline risk and independent slopes. 

Model C3: Mixture distribution for baseline risk and independent slopes. 

 

6.4.4 Goodness of fit and model selection 

In the applications which follow, adequacy of model fit to the data was assessed through the 

residual deviance and the Deviance Information Criteria (DIC) is used to select the best 

fitting model as described in Chapter 2 Section 2.3.5. 

 

6.5 Application examples 

6.5.1 Functional smoke alarm example 

The data comes from a published NMA  (Cooper et al., 2011a) and consists of 20 randomised 

and non-randomised studies that evaluated the effectiveness of home safety education to 

increase ownership of functioning smoke  alarm (FSA) systems in households with children. 

The outcome of interest is whether or not a household had a FSA.  Thus, each study supplied 

arm level data on the number of households with a FSA and the total number of households 

surveyed. The FSA data are used here to illustrate application of the method to binary 

outcome data. The full data are displayed in FSA NMA paper (Cooper et al., 2011a) with 
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Figure 6.1A displaying a network diagram for the 7 interventions and 40 data points from the 

20 studies.   The baseline or non-intervention arm is the usual care intervention.  

Felix Achana PhD Thesis, September 2014 102 



Chapter 6  NMA with baseline risk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COX-2 

Placebo 

NSAID 

 

B: Post-operative 
pain relief 

Paracetamol 

 

 
33 15 

10 

5 

 

 
1 

Figure 6.1: Intervention network for possession of functional smoke alarm, p-operative pain relief data and safe storage of medicines  
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Seven of the 20 studies did not have a usual care intervention and therefore had no baseline 

risk covariate. Baseline functioning smoke alarm ownership in the remaining 13 studies 

ranged from about 3% to about 96%. Evidence of significant inconsistency was also detected  

(Cooper et al., 2011a)  using the method of node-splitting (Dias et al., 2010). Hence it is of 

interest to know whether baseline differences in FSA ownership across studies can explain 

the heterogeneity and inconsistency. For this example where the outcome is binary, a 

binomial likelihood was assumed for the arm-level data and NMA without covariate 

adjustment (model 0) fitted based on the model defined by equation (6.1). The relationship 

between intervention effect and baseline FSA ownership was then investigated using the 

methods described in Section 6.4.2. The covariate was centred on the observed mean baseline 

log odds of 0.81 (calculated outside WinBUGS) for FSA ownership in the 13 studies with a 

usual care arm. In total, 10 models were fitted (the 9 models described in Section 6.4.3 in 

addition to the unadjusted model) using Markov Chain Monte Carlo (MCMC) simulation in 

the WinBUGS software (Spiegelhalter et al., 2007). The following prior distributions were 

used and intended to be minimally informative: 

σ , µσ , ( )~ Uniform 0,100Bσ  

Akβ , B , Akd , ibµ , ( )3~ Normal 0,10µ  

Models were run for 100 000 iterations, discarding the first 30 000 as burn-in samples after 

checking the history, and autocorrelation plots for evidence that convergence of samples is 

adequate. There was evidence of poor convergence for the models that assumed 

separate/independent treatment ×  covariate interactions (model C1, model C2 and model 

C3). This may be due to  i) 7 out of 20 studies not having a usual care intervention arm and 

hence ii) there being relatively few data points compared to the number of parameters which 

needed to be estimated. Therefore parameter estimates from models C1 to C3 are not 

presented in the results in Section 6.6.1.  

 

6.5.2 Pain relief example  

The second dataset consists of 56 RCTs with 116 data points from a published Health 

Technology Assessment (HTA) report (McDaid et al., 2010). This HTA examined 

effectiveness of 3 non-opioid analgesics (paracetamol, NSAIDs or COX-2 inhibitors) and 

placebo in reducing morphine consumption following major surgery in adults. The outcome 
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of interest is the amount of morphine in milligrams (mg) consumed over a 24 hour period 

(continuous outcome). Each study provided arm-level information on the number of patients 

together with the mean 24 hour morphine consumption and its standard deviation (SD). The 

treatment network is given in Figure 6.1B. The dataset is available from the HTA report 

(McDaid et al., 2010). Two of the trials have no placebo group (i.e. have compared two 

active treatments) and 4 are 3-arm trials. There is considerable variability in the 24 hour 

morphine consumption in the placebo arm of trials ranging from a low of 8.6 mg (SD 5.2 mg) 

to a high of 142 mg (SD 80mg). The average across the placebo group is 45.26 mg. 

Therefore, a sensitivity analysis was conducted in the original report (McDaid et al., 2010) to 

investigate the effect of this baseline imbalance in morphine use on the treatment effects 

estimates.  To include the two studies that did not have placebo, the original analysis in the 

published report was first carried out without these studies in order to derive an estimate of 

baseline morphine consumption for the two trials. The derived estimates were then included 

in the sensitivity analysis that adjusted for the baseline morphine use. In the analysis carried 

out in this chapter, however, exchangeability of the baseline effects across studies was 

assumed, which allowed for trials without a placebo arm and thus baseline risk measure to be 

included in the analysis. 

 

Since 24 hour morphine consumption is a continuous outcome, the binomial likelihood and 

logistic regression model in equation (6.1) was replaced with a normal distribution for the 

observed arm-specific outcome (i.e. mean 24 hour morphine), ikY  in treatment arm k of trial i: 

                 ( )2,Normal~ ikikik SY θ  

                




>+
=

=
bk
bk

ibkib

ib
ik fi,

fi,
δµ

µ
θ                  for ,,,, CBAb =                                 (6.6) 

                ( ) ibkiAbkbkibk d εµµβδ +−+=  

where ( )2,0Normal~ bkibk σε ,  ikθ  is the ‘true’ unobserved mean morphine consumption in 

treatment arm k of trial i with variance, 2
ikS  assumed known but estimated from the data (van 

Houwelingen et al., 2002). The baseline morphine consumption iAµ  was centred on 45.26 mg, 

the average consumption across the placebo arms to improve convergence. All other aspects 
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of the modelling assumptions and model fit remain the same as in example 1 except for the 

minimally informative prior distributions specified as follows: 

σ , µσ , ( )~ Uniform 0,100Bσ  

Akβ , B , Akd , ibµ , ( )3~ Normal 0,10µ  

The MCMC simulations were run using WinBUGS for 100 000 iterations, discarding the first 

30 000 as burn-in samples after checking the history, and autocorrelation plots for evidence 

that convergence of samples is adequate. The results are presented in Section 6.6.2 below.  

 

6.5.3 Safe storage of medicines example 

The poison prevention data were not available in complete form when the methods for 

including a baseline risk covariate in NMA were being developed. This is because the 

overview of reviews (Young et al., 2013) described in Section 5.2.1 was still being conducted 

to identify studies not included in the Cochrane home safety systematic review update 

(Kendrick et al., 2012b). It was therefore decided to use the FSA and Pain relief data 

described above to illustrate application of the NMA with baseline risk models developed in 

this Chapter.  The models were latter applied to the subset of the poison prevention data 

relating to the safe storage of medicines outcome (see Table 5.1) when the full data became 

available. Safe storage of medicines was used to illustrate the methods because the decision 

analytic model in Chapter 8 investigated the cost-effectiveness of strategies for preventing 

poisonings caused by accidental exposure to medicines. This also allowed the effect of 

adjusting effectiveness estimates for baseline risk on the cost-effectiveness of home safety 

interventions to be investigated in a sensitivity analysis. Only the model with unconstrained 

baseline risk covariate and assuming a common regression slope (Model 1A) was fitted and 

the results presented in Section 6.6.3 below.  
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6.6 Results 

6.6.1 Functional smoke alarm example  

In this example, the log odds ratio was regressed on the ‘true’ control group log odds (usual 

care intervention) taken as a measure of baseline risk. Table 6.2 displays estimates of the 

residual heterogeneity σ,  interactions (regression slopes) and model 

fit statistics excluding the three models (C1, C2 and C3) which showed evidence of non-

convergence.   Firstly, different assumptions about the distribution of the baseline risk did not 

seem to affect estimates of the  interaction terms in this case. The 

slopes of the regression lines are slightly steeper when minimally informative prior 

distributions were assumed for the baseline risk (models A1 and B1) than in models that 

assumed a normal baseline distribution (model A2) or a mixture of two normal distributions 

(model B2). Secondly, the posterior credible intervals for the slope terms included zero in all 

models, indicating that none of these are statistically significant. Therefore, baseline 

imbalance in smoke alarm distribution across studies was not significantly related to 

effectiveness of home safety education to promote FSA ownership in households with 

children (provided this analysis is powered appropriately for effects under investigation). 

Consequently the heterogeneity and also the inconsistency were not significantly reduced in 

all models that adjusted for the baseline risk compared with the unadjusted model (Table 6.2).  

 

Using the posterior mean residual deviance as a measure of model fit to the data (Table 6.2), 

both adjusted and unadjusted models predicted values close to the 40 unconstrained data 

points in the FSA data, indicating that these models fit the data equally well.  Since baseline 

risk appears to be unrelated to intervention effect, there was very little difference to choose 

between these models; hence only the results from the common slope or treatment ×  

covariate interaction models are reported for convenience. Posterior median estimates of the 

slope is -0.08 (95% Credible interval (CrI); -0.41 to 0.28) from model A1, -0.03 (95% CrI; -

0.41 to 0.35) from model A2 and -0.03 (95% CrI; -0.39 to 0.34) from model A3, which all 

indicate non-significant decrease in intervention effectiveness with increasing baseline FSA 

ownership.  
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6.6.2 Pain relief example 

For pain relief data, the treatment effect, expressed as the mean difference in 24 hour 

morphine use was regressed on the ‘true’ but unobserved 24 hour mean morphine 

consumption in the placebo group (taken as baseline risk measure).  There were no problems 

with convergence of the MCMC simulations and all 9 models described in Section 6.4.3 were 

fitted in addition to the unadjusted model. Parameter estimates of interest and model fit 

statistics are presented in Table 6.3. Firstly, estimates of the regression slopes from the 9 

adjusted models were all negative, suggesting evidence of increasing treatment effect with 

increasing baseline morphine consumption. Estimate of the common regression slope is -0.34 

(95% CrI; -0.41 to -0.27) for the unconstrained baseline model (model A1), and -0.31 (95% 

CrI; -0.38 to -0.23) for models with normal (model A2) and mixture of two normal 

distributions (model A3) for baseline risk.  Similar estimates of the relationship between 

treatment effects and baseline risk were also obtained from the independent and exchangeable 

slope models, but only the estimates for NSAIDS and COX-2 were statistically significant.  

Again, the three modelling assumptions about the distribution of the baseline risk seem to 

have very little impact on  interactions. Figure 6.2 plots treatment 

effects versus baseline 24-hour morphine use from the model with independent/separate 

slopes (model C1) for paracetamol, NSAIDS and COX-2. The plot shows: i) evidence of 

increasing effectiveness with increasing baseline morphine use for all three classes of 

analgesics; ii) NSAIDS and COX-2 are increasingly more effective than paracetamol at 

higher baseline morphine use, and iii) little difference between NSAIDS and COX-2.  The 

vertical distance between the line of no effect and each treatment regression line gives an 

estimate of the treatment effect relative to placebo at a given baseline morphine consumption. 

Similarly, the relative effectiveness of any two analgesics at a given baseline morphine 

consumption can be obtained from the plot as the vertical distance between the two 

regression lines.  Secondly, adjusting for the baseline risk reduced the residual heterogeneity 

and improves the overall model fit. From Table 6.3, the posterior mean estimate of the 

residual heterogeneity σ is 5.44 mg (95% CrI; 4.5 to 5.98) in the unadjusted model and 

3.48mg (95% CrI; 3.24 to 4.57) in model C1, the adjusted model with the least reduction in 

heterogeneity.  Compared to the unadjusted models there is at least a 40% reduction in 

between-study heterogeneity. 
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Figure 6.2: NMA adjusting for baseline morphine use assuming independent slopes for 
different treatment effects and unconstrained baseline risk 
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Table 6.2: NMA with baseline risk adjustment applied to functional smoke alarm data  

Regression slopes Model 0: 
Unadjusted 
model 

Model A1: 
Unconstrained 
baseline; common 
slope 

Model A2: Baseline 
normally 
distributed; common 
slope 

Model A3: Baseline 
mixture  of two 
normal; common 
slope 

Model B1: 
Unconstrained 
baseline;  
Exchangeable slopes 

Model B2: Baseline 
normally distributed; 
exchangeable slopes 

Model B3:Mixture 
model; Exchangeable 
slopes 

Common  β - -0.08 (-0.41, 0.28) -0.03 (-0.41, 0.35) -0.03 (-0.39, 0.34) - - - 
 
Education ( )  

     
-0.13 (-0.42, 0.22) 

 
-0.09 (-0.39, 0.25) 

 
-0.09 (-0.40, 0.27) 

Education + Equipment ( )     0.19 (-0.59, 1.38) 0.26 (-0.57, 1.54) 0.25 (-0.57, 1.50) 

Education + Equipment + HIS ( )     -1.08 (-2.75, 0.201) -1.20 (-2.81, 0.163) -1.16 (-2.63, 0.28) 

Education + Equipment + Fitting 
( ) 

    0.26 (-0.32, 1.05) 0.35 (-0.25, 1.20) 0.35 (-0.28, 1.22) 

Education + HIS ( )     -0.07 (-3.34, 3.02) -0.07 (-3.45, 3.08) -0.08 (-3.55, 2.54) 

Education + Equipment + Fitting + 
HSI ( ) 

    0.09 (-1.69, 2.48) 0.19 (-2.01, 2.66) 0.165 (-1.98, 2.38) 

 
Mean random effects  β  

- - - - -0.09 (-1.55, 1.28) -0.07 (-1.58, 1.42) -0.07 (-1.63, 1.30) 

 
Residual heterogeneity, σ  

 
0.77 (0.34,1.47) 

 
0.83 (0.39, 1.56) 

 
0.84 (0.40, 1.59) 

 
0.84 (0.40, 1.59) 

 
0.59 (0.16, 1.35) 

 
0.57 (0.167, 1.30) 

 
0.59 (0.14, 1.38) 

SD  for random effects  β - - - - 0.88 (0.07, 3.31) 1.02 (0.12, 3.45) 0.97 (0.09, 3.41) 

 
Model fit statistics 

       

Residual deviance ( ) 41.72 41.49 40.86 40.99 40.33 39.98 40.04 

Effective number  of parameters 
(pD) 

35.28 35.85 35.70 36.65 35.53 34.97 35.091 

Deviance information criteria (DIC) 77.00 77.34 76.56  75.86 74.95 75.131 

= interaction term for Education relative to Usual care 
SD = standard deviation in treatment effect estimate 
Figures are posterior median and 95% credible intervals in brackets. 
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Table 6.3: NMA with baseline risk adjustment applied to pain relief data  

Parameter Model 0: 

Unadjusted 
model 

Model A1: 

Unconstrained 
baseline; 
common slope 

Model A2: 

Baseline 
normally 
distributed; 
common 
slope 

Model A3: 

Baseline 
mixture  of two 
normal; 
common slope 

Model B1: 

Unconstrained 
baseline; 
exchangeable 
slopes 

Model B2: 

Baseline 
normally 
distributed; 
exchangeable 
slopes 

Model B3: 

Mixture 
model;   
exchangeable 

slopes 

Model C1: 

Unconstraine
d baseline; 
separate 
slopes 

Model C2: 

Baseline 
normally 
distributed; 
separate slopes 

 

Model C3: 

Mixture model;   
separate 

slopes 

Common  β  -0.34 
(-0.41, -0.27) 

-0.31 
(-0.38,  -0.23) 

-0.31 
(-0.38, -0.23) 

- - - - - - 

Paracetamol ( )      -0.22 
(-0.39, 0.003) 

-0.18 
(-0.35, 0.04) 

-0.19 
(-0.36, 0.01) 

-0.16 
(-0.36, 0.04) 

-0.15 
(-0.34, 0.06) 

-0.13 
(-0.34, 0.10) 

NSAIDS ( )     -0.36 
(-0.44, -0.28) 

-0.34 
(-0.42, -0.25) 

-0.33 
(-0.42, -0.25) 

-0.36 
(-0.45, -0.28) 

-0.34 
(-0.43, -0.26) 

-0.34 
(-0.43, -0.26) 

COX-2 ( )     -0.34 
(-0.450, -0.18) 

-0.27 
(-0.43, -0.09) 

-0.27 
(-0.42, -0.09) 

-0.35 
(-0.53, -0.19) 

-0.25 
(-0.44, -0.06) 

-0.26 
(-0.44, -0.05) 

 
Random effects  mean 
(β)  

     
-0.30 
(-0.93, 0.34) 

 
-0.26 
(-1.00, 0.47) 

 
-0.27 
(-0.98, 0.48) 

   

 
Residual 
heterogeneity, σ  

 
5.44  
(4.50, 5.98) 

 
3.19 
(2.15, 4.47) 

 
3.19 
(2.14, 4.51) 

 
3.22 
(2.15, 4.56) 

 
3.20 
(2.15, 4.49) 

 
3.13 
(2.06, 4.50) 

 
3.13 
(2.04, 4.50) 

 
3.28 
(2.20, 4.57) 

 
3.16 
(2.06, 4.51) 

 
3.20 
(2.06, 4.53) 

SD  for random effects  
(β) 
 

- - - - 0.35 
(0.01, 2.18) 

0.39 
(0.01, 2.37) 

0.36 
 (0.01, 2.32) 

- - - 

Model fit statistics           

Residual deviance ( ) 124 119.5 121.90  
 

121.1 
 

117.60 
 

121.10 
 

120.30 
 

116.40 
 

120.60 
 

119.70 
 

Effective number  of 
parameters (pD) 

90.63 84.11 81.97 82.31 85.27 82.58 82.57 85.56 82.58 82.96 

Deviance information 
criteria (DIC) 

214.63 202.61 203.87 203.41 202.87 203.68 202.87 201.964 203.18 202.66 

β = common regression slope or mean of random slope 
= interaction term for paracetamol  relative to placebo 

SD = standard deviation in treatment effect estimate 
Figures are posterior median and 95% credible intervals in brackets. 
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6.6.3 Safe storage of medicines example 

Table 6.4 presents the results from applying Model 1A to the safe storage of medicines 

example. The estimated regression coefficient β  was -0.152 (95% CrI 0.359 to 0.115) 

suggesting that no evidence of an association between intervention effects and baseline rate 

of safety practice in households with children. Consequently, estimates of the between-study 

variance σ and the model fit statistics were similar in the adjusted and unadjusted models 

suggesting adjusting for baseline risk did reduce the heterogeneity in effect estimates across 

studies or improve the fit of the model to the data. 

 

Table 6.4: NMA with baseline risk adjustment applied to safe storage of medicines data  
Figures are posterior median and 95% credible intervals in brackets 

 

 

6.7 Discussion 

The work described in this chapter shows how methods for baseline risk covariate adjustment 

can be extended from pair-wise meta-analysis to NMA when it is of interest to account for 

differences in underlying risk across trial populations. This type of analysis can help identify 

potential treatment effect modifiers which may give rise to heterogeneity in effect estimates 

and/or inconsistency in the direct and indirect evidence on pair-wise contrasts in a network of 

trials. The pain relief example shows how adjusting for baseline risk can greatly reduce 

heterogeneity and improve overall model fit.  Similar results and conclusions have been 

reported before, for example, by Lu et al. (Lu et al., 2007) in a NMA at multiple follow-up 

times where the baseline effects were adjusted at different follow-up points. However, there 

Regression slopes Model 0: 

Unadjusted model 

Model A1: 

Unconstrained baseline; common 
slope 

Common  β - -0.1634 (-0.401 to 0.127) 
 
Residual heterogeneity, σ  

 
0.269 (0.009 to 1.034) 

 
0.248 (0.009 to 1.034) 

 
Model fit statistics 

  

Residual deviance ( ) 22.99 23.31 
Deviance information criteria (DIC) 148.69 150.0 
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was no evidence of baseline effect in the two accident prevention examples (i.e. FSA and 

storage of medicines data), and the inconsistencies identified in Cooper et al. (2011) were not 

resolved by FSA baseline risk adjustment model. In meta-analyses of studies evaluating 

complex and/or public health interventions such as the accidents prevention data, 

interventions may not always be clearly defined and studies are often of variable quality, and 

conducted in populations with different characteristics. These factors can introduce 

heterogeneity in both meta-analyses of clinical trials and studies of non-complex and/or 

public health interventions, but the problem is more pronounced in public health. The FSA 

network included both RCTs and non-randomised observational studies both of which are of 

variable quality. Although care was taken to categorise the interventions appropriately, 

‘lumping’ of interventions within categories could not be completely ruled out (Cooper et al., 

2011a). Lumping of interventions creates relative contrasts that are unevenly distributed 

across contrast and has been cited as a possible source of heterogeneity and inconsistency in 

NMA (Caldwell et al., 2010).  

 

The main advantage of the approach described in this chapter is that the models can be easily 

implemented by making simple modifications to freely available WINBUGS code for NMA 

(Dias et al., 2011a) (see code in Appendix III). Specifying the models in WinBUGS, and 

analysing them using Markov Chain Monte Carlo simulation  is beneficial as it allows the 

adjustment to be carried out without excluding trials with missing placebo or no treatment 

control group (and hence no baseline risk covariate). The imputation step is implemented 

automatically in WinBUGS through the model jointly specified by the likelihood and prior 

distribution placed on the ‘baseline risk’ (described section 6.4.3). Since parameters are 

considered as random variables within the Bayesian framework requiring a distribution 

(Ntzoufras, 2009), the ‘missing covariate’ is treated as any other unknown parameter to be  

estimated under exchangeability (see Mason (2009), page. 117). Alternatively, the analysis 

can also be carried outside of a Bayesian framework using multivariate meta-analysis 

methods (for example Stijnen et al. (Stijnen et al., 2010)) fitted in standard statistical 

software or self-written programs.  However, validity of the results obtained from either 

classical or Bayesian analyses will depend on appropriateness of the assumption that the non-

active intervention arm of studies without a baseline risk are missing at random. 
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Fitting models with separate and/or exchangeable regression slopes described in Cooper et al. 

(Cooper et al., 2009), in addition to the common slope model can be useful for assessing the 

appropriateness of these assumptions. For example, the common slope assumption can be 

tested by first calculating the difference between estimates of any two slopes in the separate 

slope model followed by  a probability that this difference is greater than zero using the step 

function in WinBUGS (Spiegelhalter et al., 2007). A two-sided P-value can then be derived 

using the formula . However, as shown by the 

FSA example, fitting models with separate/independent slopes may not always be feasible, 

possibly because of limited availability of data. In those circumstances, the exchangeable 

slope or even common slope models can be considered as a compromise (Cooper et al., 

2009).  Under the exchangeable regression slope assumption, power is improved by 

borrowing strength across regression slopes which shrinks treatment effect estimates towards 

each other. This can have policy implications especially in a decision making context where 

manufacturers of alternative interventions may see the effectiveness of their products 

"shrink" towards that of the competitor. Also the exchangeable slope assumption can reduce 

heterogeneity in the effect estimates (σ), but the regression slopes themselves can be quite 

variable as illustrated by the pain relief example where the σB’s are larger than σ. This shows 

that the regression slopes are much more variable than the treatment effects and therefore a 

common regression coefficient may not be the best model for this example.  

 

Finally going back to the review of pair-wise meta-analysis models presented in Section 6.3, 

a much-debated issue in modelling the relationship between treatment effect and baseline risk 

has been whether or not to assume a parametric distribution for the baseline risk and what 

form if any such a distribution should take. Ghidey et al.(Ghidey et al., 2011) examined the 

issue in a published methods review paper using real and simulated data for pair-wise meta-

analysis. The simulated results found no difference between models that assumed normality 

for the baseline risk and those that did not with both models producing robust/unbiased 

estimates of the regression slope when the baseline risk is normally distributed across studies 

(Ghidey et al., 2011). However, the estimate of the regression slope was found to be less 

biased under the functional modelling approach when normality of the baselines was violated 

but the relative difference in bias was small.  
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The results from the approach outlined in this chapter for network meta-analysis appear 

consistent with the findings from Ghidey et al.(Ghidey et al., 2011)  and also with Arends et 

al (Arends et al., 2000). Estimates of regression slopes from both FSA and pain relief 

examples were slightly less negative, and tended to shrink towards zero in models that 

assumed normally distributed baselines (models A2, A3, B2, B3 in Table 6.2 and models  

A2-A3, B2-B3 and C2-C3 in Table 6.3) compared to the unconstrained or minimally 

informative prior distributions for the baseline risk (models A1-C1).   The effect of different 

distributional assumptions about the baseline risk were however, very minimal as both 

unconstrained and normally distributed baseline risk models produced practically identical 

estimates of regression slopes. 

 

6.8 Chapter Summary 

In this chapter, the standard NMA model was extended to take account of differences in the 

underlying risk across trial populations which may be an important source of heterogeneity in 

the meta-analysis.  Application of the methods in a PH context was demonstrated using two 

examples from the accidents data on the effectiveness of interventions to increase uptake of 

functional smoke alarms and safe storage of medicines in households with children. The next 

chapter tackles another extension of the standard NMA model, this time to enable 

simultaneous evaluation of multiple interventions across multiple outcomes. This type of 

analysis is appealing because many studies and systematic reviews usually focus on broad 

health effects and therefore typically report several outcome measures.  
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7. MODELLING EFFECTIVENESS ACROSS MULTIPLE OUTCOME 

MEASURES  

7.1 Chapter overview 

It is useful, especially in a PH evaluation context where the evidence base is often scarce or 

limited in one way or another, that all available evidence relevant to the decision problem is 

taken into account when summarising evidence to inform an economic evaluation. This 

chapter extends the standard NMA model from the single outcome analyses presented in 

Chapter 5 to multiple outcome settings. These multiple outcome NMA models appropriately 

account for the correlation structure within the data, which is important in a decision 

modelling context, as correlations between effect estimates on different outcomes may have 

implications for estimating the net benefit associated with treatment. The methods are 

illustrated using the following three outcomes of the poison prevention data described in 

Chapter 5 (Table 5.1): i) safe storage of medicines, ii) safe storage of other household 

products, and iii) possession of a poison centre control telephone number. The chapter starts 

with a brief introduction to multivariate meta-analysis followed by a description of part of the 

example data that is used to illustrate the methodology developed here. Next, the 

methodology is described starting with a revisit to the standard NMA model introduced in 

Chapter 2 followed by extensions to the multiple outcomes setting. The results of applying 

the methods to the example problem are then presented together with a discussion and 

conclusions. The methods presented here have been published in ‘BMC Medical Research 

Methodology’ (Achana et al., 2014a)  (Appendix VI - Research paper 4).      

 

7.2 Introduction 

One area of meta-analysis that has seen significant methodological development is the 

application of multivariate statistical methods for the comparison of treatments on two or 

more endpoints (usually known as multivariate meta-analysis) (Berkey et al., 1998; Arends et 

al., 2003; Nam et al., 2003; Riley et al., 2007b; Riley et al., 2008; Jackson et al., 2011). 

These methods are appealing because many studies and systematic reviews focus on broad 

health effects and therefore typically report several outcome measures (Berkey et al., 1998; 
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Nam et al., 2003; Kendrick et al., 2007). In such instances, the multivariate approach offers 

some advantages over separate univariate analyses, including the ability to account for the 

inter-relationship between outcomes and to borrow strength across studies as well as across 

outcomes (Bujkiewicz et al., 2013) through modelling the correlation structure (Riley et al., 

2007a; Riley et al., 2007b). This can potentially reduce outcome reporting bias (Kirkham et 

al., 2012) and the uncertainty with which intervention effects are estimated. 

 

Additionally, in a decision making context where the synthesis is meant to inform a health 

economic evaluation, accounting for the correlations between effect estimates on different 

outcomes is important as the dependence between outcomes may have implications for 

estimating quality of life or economic consequences associated with treatment (Ades et al., 

2010).  An example is the situation where a particularly effective treatment for a disease 

condition is associated with a large side effect profile. Ignoring information about the inter-

relationships between beneficial and ‘side effect’ endpoints in such instances may have 

implications for quantifying the benefits associated with treatment. 

 

When summarising effectiveness evidence, correlations between the effectiveness estimates 

typically arise at either within-study and/or between-study levels. At the within-study level, 

correlations arise mainly due to differences in patient-level characteristics. They are rarely 

reported in the published literature and usually have to be estimated from external sources 

such as individual patient level data if available or elicited from expert opinion (Riley et al., 

2008; Riley, 2009; Efthimiou et al., 2014).  At the between-study level, correlations arise 

from i) differences in the distribution of patient-level characteristics across studies, in which 

case they will be related to the within-study correlations and/or ii) differences in the 

distribution of other study-level characteristics such as study design, population and baseline 

disease severity (Rodgers et al., 2009). The within-study correlations thus give an indication 

of the association between multiple endpoints within a study while the between-study 

correlations indicate how the underlying true study-specific effects on different outcomes 

vary jointly across studies.  
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A second area of rapid methodological development is NMA. NMA  methods extend 

standard pairwise meta-analysis to enable simultaneous comparison of multiple treatments 

while maintaining randomisation of individual studies (Caldwell et al., 2005) – see Chapter 2 

Section 2.3). In brief, the method enables ‘direct’ evidence (i.e. evidence from studies 

directly comparing two interventions of interest) and ‘indirect’ evidence (i.e. evidence from 

studies that do not compare the two interventions directly) to be pooled under the assumption 

of evidence consistency (Dias et al., 2010). Estimates of intervention effects can then be 

obtained, including effects between treatments not directly compared within any one 

individual study (Caldwell et al., 2010). NMA methods thus provide a coherent framework 

for appraising all available evidence relevant to a specific decision problem. The results from 

such analyses are increasingly being used to inform economic evaluations in healthcare 

decision making where coherent decisions (about judicious use of scarce resource) need to be 

made based on sound appraisal of all available evidence. 

 

Approaches to extend NMA methodology to multiple outcome settings have been proposed 

in the literature (Lu et al., 2007; Welton et al., 2008; Ades et al., 2010; Hong et al., 2013), 

initially focusing on mutually exclusive competing risk outcomes (Ades et al., 2010) or a 

single outcome measured at multiple time points (Lu et al., 2007; Dakin et al., 2011). More 

recently, Efthimiou et al. (Efthimiou et al., 2014) proposed a method for modelling multiple 

correlated outcomes in networks of evidence with binary outcome measures. The proposed 

method accounts for both the within-study and between-study correlation structure and 

includes a strategy for eliciting expert opinion to inform the within-study correlations. In 

these methods, on one hand, however, either the within-study correlations are assumed to be 

zero (Dakin et al., 2011) or the likelihood factorised (Ades et al., 2010) so that the within-

study correlations do no need to be explicitly included in the model. In Efthimiou et al. 

(Efthimiou et al., 2014) proposed a method, the within-study correlations are incorporated at 

the level of the study-specific effects which greatly increases the complexity of the model 

when multi-arm studies are included in the analysis. The methodology described in the 

reminder of this chapter contributes to this growing literature on the simultaneous evaluation 

of correlated outcomes in two ways: 

i) Firstly, the within-study level model or likelihood for the data is developed at the 

treatment arm-level (rather than at the study specific treatment effect level as 
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explained above) in the first stage analysis labelled as model 2 in the remainder of 

this chapter. This greatly simplifies the likelihood for multi-arm studies since 

treatment arms can be considered to be independent as consequence of 

randomisation (Section 7.4.2). 

ii) Secondly, in the second stage (labelled as model 3 in the remainder of the chapter), 

additional information is borrowed across outcomes based on ideas for combining 

evidence across human and animal studies originally proposed by DuMouchel and 

Harris (DuMouchel and Harris, 1983) and also revisited by Jones et al. (Jones et 

al., 2009).  

As will be explained later in this Chapter (Section 7.4.3, the proposed second stage 

analysis allows a) disconnected treatments to be incorporated as nodes in a network of 

evidence and b) prediction of intervention effects for outcomes where evidence from 

primary studies is either sparse or not directly available from any one study included in 

the analysis. The motivating application area here is injury prevention in children where a 

broad array of outcomes and intervention packages have been evaluated with the aim of 

increasing safety practices around the home (to ultimately reduce household injuries). 

 

7.3 Data  

The example data comes from two published systematic reviews (Kendrick et al., 2012b; 

Young et al., 2013) of the evidence on home safety education and provision of safety 

equipment for injury prevention in children (see Table 5.1 of Chapter 5 description of the full 

set of studies identified from the two reviews). The models developed in this chapter are 

applied to a subset of the review evidence comprising 22 studies that provided information on 

3 of the 5 poison prevention outcomes described in Chapter 5:  

a) Safe storage of medicines 

b) Safe storage of other household products (e.g. cleaning products) and 

c) Possession of a poison control centre (PCC) telephone number. 

Of the remaining two poison prevention outcomes that were not considered appropriate for 

inclusion in the multivariate models developed here, there was insufficient data to on the one 

outcome (safe storage of poisonous plants). The other outcome considered in Chapter 5 but 

excluded from the multivariate models developed in this Chapter is safe storage of poisons. 
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This is a composite of safe storage of medicines and safe storage of other household products 

and hence is not suitable for inclusion in a model where the two components are considered 

as separate outcomes. Table 7.1 presents the data from 22 studies, 13 of which considered at 

least two of the three outcomes listed above that were included in models developed in this 

chapter. Of these, 8 considered storage of medicines and storage of other household products, 

2 considered storage of other household products and possession of a PCC telephone number, 

and 3 considered all three outcome measures. Individual patient data (IPD) were available for 

8 of the 13 studies, of which 7 were in a format suitable for the analysis reported here as 

explained by the footnotes in Table 7.1. The interventions trialled in the 22 studies were 

classified into 9 relatively homogenous treatment packages: 

(1) Usual care (UC) 

(2) Education (E) 

(3) Education + provision of free/low cost equipment (E+FE) 

(4) Education + provision of free/low cost equipment + home safety inspection 

(E+FE+HSI) 

(5) Education + provision of free/low cost equipment + fitting of equipment (E+FE+F) 

(6) Education + home safety inspection (E+HSI) 

(7) Education + provision of free/low cost equipment + home safety inspection + fitting 

of equipment (E+FE+HSI+F) 

(8) Education + home visit (E+HV) 

(9) Provision of free/low cost equipment (FE) 

Figure 7.1 shows the same network diagrams presented in Panels A, B and D of Figure 5.1 

reproduced here for clarity. The network diagrams show the comparisons between the 

interventions that were made by individual studies and the number of comparisons in each 

network.  All studies compared 2 intervention strategies, except Babul et al. (2007) (Babul et 

al., 2007) which compared 3 strategies. Data on each outcome was not available for all 

interventions; i.e. for the storage of medicines and other household products outcomes, 

interventions ‘education plus home safety inspection’ and ‘education plus home visit’ were 

not investigated in any of the included studies, and for possession of a PCC number 

interventions, ‘education, provision of free/low cost equipment and fitting of equipment’ and 

provision of free/low cost equipment alone were not available. 
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Table 7.1: Subset of the poison prevention data displayed in Table 5.1  

   Outcome information (no. of events/no. of households in control versus (vs.) treatment 
arm) 

Comparison First author and year of 
publication 

IPD Safe storage of medicines Safe storage of other household 
products 

Possession of a PCC number 

Usual care (1) vs. Education (2) Gielen 2007 Yes 178/271 vs. 188/249  44/62 vs. 57/73   

Nansel 2002 Yes 83/89 vs. 79/85 65/89 vs. 66/85 59/89 vs. 63/85 
Nansel 2008 Yes 72/74 vs. 140/144† 59/73 vs. 117/144† 50/59 vs. 90/119† 
Kelly B 1987 No 54/54 vs. 55/55 43/54 vs. 49/55  
McDonald 2005 No 4/57 vs. 6/60 3/57 vs. 6/61  
Kelly N 2003 No   45.56/136.68 vs. 

112.95/137.63* 
Usual care (1) vs. Education + free/low cost safety equipment (3) Clamp 1998 Yes 68/82 vs. 79/83 49/82 vs. 59/83  

Woolf 1987 No   29/143 vs. 47/119 
Woolf 1992 No  60/151 vs. 89/150 59/151 vs. 117/150 

Usual care (1) vs. Education + equipment (3) vs. Education + equipment + home 
safety inspection (4) 

Babul 2007 Yes 147/149 vs. 171/173 vs. 
160/163 

  

Usual care (1) vs. Education + equipment + home safety inspection (4) Hendrickson 2002 Yes  14/40 vs. 34/38 8/40 vs. 34/38 
Swart 2008 No 70.26/79.58 vs. 74.07/80* 46.86/57.96 vs. 50.87/58.27*  
Kendrick 1999 Yes  317/367 vs. 322/363  

Usual care (1) vs. Education + equipment + fitting (5) Watson 2005 Yes 683/738 vs. 712/762 327/669 vs. 368/693  
Usual care (1) vs. Education + home safety inspection (6) Petridou 1997 No   67.26/100.12 vs. 71.08/97.83* 
Usual care (1) vs. Education + equipment + home safety inspection + fitting (7) Schwarz D 1993 No 88.42/248.37 vs. 

128.16/248.37* 
  

Phelan 2011 No   16/138 vs. 71/139 
Usual care (1) vs. Home visit (8) Johnson 2006 No   82/91 vs. 222/232† 
Education (2) vs. Education + equipment (3) Posner 2004 Yes 14/47 vs. 19/49 22/47 vs. 34/49 27/47 vs. 35/49 
Education (2) vs. Education + equipment + fitting (5) Sznajder 2003 Yes 44/49 vs. 43/45 32/41 vs. 40/48  
Education + equipment + home safety inspection (4) vs. Education + equipment + 
home safety inspection + fitting (7) 

King J 2001 No  261/469 vs. 273/482  

Education + equipment (3) vs. Equipment (9) Dershewitz 1979 No 22/101 vs. 20/104 1/101 vs. 0/104  
Treatment abbreviation and codes 
Usual care = UC (1) 
Education = E(2) 
Education + free/low cost equipment = E + FE (3) 
Education + equipment + home safety inspection = E + FE + HSI (4) 
Education + equipment + fitting = E + FE + F (5) 
Education + home safety inspection = E + HSI (6) 
Education + equipment + home safety inspection + fitting = E + FE + HSI + F (7) 
Education + home visit = E + HV (8) 
Free/low cost equipment = FE(9) 
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*Effective sample size reported for cluster randomised studies after adjusting clustering, hence not whole numbers (details given in Kendrick et al. 2012[31]) 
 The IPD for Gielen 2007 shows information on safe storage of medicines and safe storage of other household products was collected from different sets of households in this study (i.e. all the households that provided 
information for storage of medicines had missing data for safe storage of other household products and vice versa). Hence the Gielen 2007 IPD was not used to estimate the within-study correlations. †The intervention 
arms of Nansel 2008 and Johnson 2006 [32] comprises two groups that received different versions of a home safety intervention. The two versions were considered to be similar, hence combined into one intervention 
group for the analysis reported here. 
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Figure 7.1: Intervention networks for the poisoning prevention outcome. 
These diagrams are same as Panels A, B and D of Figure 5.1. 
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7.4 Methods  

In this section, a recap of the standard NMA model introduced in Chapter 2 Section 2.3.1 is 

first presented and then extended to the multiple outcome setting. Throughout the chapter, the 

single and multiple outcome models are referred to as univariate and multivariate NMAs 

respectively.  Where studies report multiple outcomes, these will not be independent as each 

household provides information on the different outcome measures within intervention arms.  

The multivariate model takes this correlation structure into account by allowing the 

intervention effects measured by one outcome to be correlated with the intervention effects 

measured by other outcomes.   

 

7.4.1 Model 1: Univariate NMA 

Given arm-level binary data of the form presented in Table 7.1,  the random effects NMA 

model of Lu and Ades (Lu and Ades, 2004) previously specified in Chapter 2 Section 2.3.1 is 

reproduced below for clarity. It is assumed that the occurrence of  events out of a total of 

households in the kth-arm (k=A,B,C,….,) of the ith-study follow a binomial distribution 

with underlying event probability ikp : 

                 ( )ikikik npr ,Binomial~  
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where 0=AAd , ibµ  is a study-specific baseline effect (i.e. the log-odds for the control group 

in study i with baseline treatment b), )(bkiδ  is a study-specific log-odds ratio, )(bkd  is the 

pooled effect of treatment  k relative to treatment b (a quantity usually of interest in a meta-

analysis) and ( )
2
bkσ  is the between-study variance or heterogeneity parameter. As explained in 

section Chapter 2 Section 2.3.1, the homogeneous variance assumption allows for the 

distribution of effects (in a study with an arbitrary number of arms) to be expressed as a 

univariate marginal distribution and a series of univariate conditional distributions. 
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Specifically, for the ith-study with p+1 arms and p treatment effect estimates relative to the 

reference treatment, if  
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then the marginal and conditional univariate distributions for arm j, given the previous 
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Again, all other parts of the model including specification of prior distributions and 

estimation of parameters are as described in Section 2.3 of Chapter 2. Accordingly, 

minimally informative prior distributions were specified corresponding to a ( )310,0Normal  

prior distribution )(bkd , and ibµ  and a ( )2,0Uniform  prior distribution for the between-study 

standard deviation log odds ratio scale  σ (Dias et al., 2011a). 

 

7.4.2 Model 2: Multivariate NMA 

The univariate NMA model defined above is extended to the multiple outcomes settings in 

order to account for correlations between intervention effects on different outcomes. The 

method presented here is developed  from the NMA with competing risks model (Ades et al., 

2010) where only the within-study correlations were taken into account. Their method is 

extended to account for the between-study correlation as well.  
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In Ades et al. (2010), a multinomial likelihood was appropriate as the three binary outcomes 

(relapse during treatment for Schizophrenia, discontinuation because of intolerable side 

effects, and discontinuation for other reasons) are mutually exclusive and event probabilities 

sum to 1 across outcomes. Here, however, a multinomial likelihood will not be appropriate 

for the example dataset because each household can have one, two or all three outcome 

events simultaneously, so that the event probabilities do not sum to 1 across outcomes. 

Instead, it was assumed that in each study i and for each kth arm, the estimates ikmθ


 of the 

observed log-odds of an event on the mth outcome ( )M,,2,1 

 jointly follow a multivariate 

normal distribution: 
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                                                                (7.5)  

where KCBA ,,,  are as defined in equation (7.1), (μib1,  μib2, , μibM ) and (δi(bk)1,  δi(bk)2, 

,  δi(bk)M) represent vectors of ‘true’ baseline and study-specific effects in study i with 

baseline treatment b respectively. The quantities ( )1 2
ˆ ˆ,  , ,  ik ik ikMθ θ θ

 and (θik1,  θik2, ,  θikM) 

represent vectors of observed and ‘true’ log-odds of response in arm k of study i and ikS  is 

the associated within-study covariance matrix usually assumed known but estimated in 

practice from the data here as well (van Houwelingen et al., 2002).  

Elements of the vector ( )1 2
ˆ ˆ,  , ,  ik ik ikMθ θ θ

and the diagonal elements of ikS  were calculated 

using standard formulae for log-odds and variance of the log-odds (Sutton et al., 2000). 

Continuity corrections were applied by adding 0.5 to the numerators and 1 to the 

denominators of studies with 0% or 100% event rate in one of the treatment arms 

(Dershewitz and Williamson, 1977; Kelly et al., 1987). The off-diagonal elements of ikS  were 
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calculated from estimates of within-study correlations mn
ikr  between outcomes m and n 

(m≠n) in arm k of study i obtained from studies with IPD (see Box 7.1 and Table 7.3 below). 

The method used to estimate the correlations from the IPD is described in the implementation 

section below.  

 

When summarising evidence across multiple endpoints, it is common to encounter instances 

where some studies do not report information for all outcomes of interest leading to 

incomplete vectors with missing study-specific effects for the outcomes not reported (Jackson 

et al., 2011; Bujkiewicz et al., 2013). Such studies can be included in the model under the 

assumption that the effects for outcomes not reported are missing at random. When 

implemented using the WinBUGS software, the missing study effects and standard errors are 

coded as NA in the data, a strategy previously outlined  in Bujkiewicz et al. (Bujkiewicz et 

al., 2013) and Dakin et al. (Dakin et al., 2011). This enables WinBUGS to automatically 

‘impute’ values with predicted distributions for the missing information under the missing at 

random assumption  

 

Equation (7.5) is referred to as the within-study model and the model describing the 

distribution of the ‘true’ effects across studies (presented below) as the between-study model 

following standard terminology in multivariate meta-analysis (Nam et al., 2003; Riley et al., 

2007a; Jackson et al., 2011; Mavridis and Salanti, 2012; Bujkiewicz et al., 2013; Wei and 

Higgins, 2013a).  For a network of two-arm trials, the between-study model for the ith study 

is thus given by: 

                          

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

1 1 1 1

2 1
( )1 ( )1 ( )

2
( )
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 
 
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 
 

 



 

                                                                   (7.6) 
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where the ‘true’ effects mbki )(δ  ( 1, 2, ,m M= 
) jointly follow a Normal distribution with 

mean effects ( )bk md . The parameters in equation (7.6) have the same interpretation as in 

equation (7.2) except that they are now specific to each outcome. The covariance matrix ( )bkΣ  

contains terms for the between-study variances, ( )
2

mbkσ  for each outcome m and the between-

study correlations mn
bkρ  between effects measured by outcome m and n ( ) specific to 

each k versus b comparison.  Fitting the full model would thus require a large number of 

possibly multi-arm studies in order to make ( )bkΣ  identifiable (Ades et al., 2010; Jackson et 

al., 2011). The number of parameters in ( )bkΣ , can however be reduced if reasonable 

assumptions can be made about the covariance structure. In particular, most practical 

applications of NMA methods involve the assumption of a common between-study variance 

across treatment arms, often referred to as a homogenous variance assumption (Caldwell et 

al., 2005; Cooper et al., 2006; Carter et al., 2014). Therefore, to simplify ( )bkΣ  the additional 

assumption in this context of a common between-study correlation ( )mnmn
bk ρρ =  was made 

leading to the following simplified between-study covariance structure for two-arm studies:  
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( ) ( ) ( )
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     = −    
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 

Σ =  
 
 

 



 

                                                                                            (7.7) 

where, as in the univariate case, mσ   represents the common between-study standard 

deviation or heterogeneity parameter specific to outcome m. Multi-arm studies are included 

in the analysis by extending equations (7.3) and (7.4) to the multiple outcome settings as 

shown in Appendix III. To complete model 2, ibmµ and ( )mAkd are given minimally 

informative prior distributions: 

                                           ( ) ( )310,0Normal~, mAkibm dµ  
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Prior distributions also need to be specified for ( )MM×Σ  which, in general, is non-trivial 

because of the positive definite constraint. Initially an Inverse-Wishart distribution 

(Spiegelhalter et al., 2007) was specified:  

                                         ( ) ( )MMM ,WishartInverse~ KΣ −×  

where K is MM × scale matrix and M is the total number of outcomes. Specifying minimally 

informative Inverse-Wishart prior distributions is, however, problematic, especially when the 

amount of data is small relative to the dimensions of ( )MM×Σ  as is the case for the example 

data. Therefore, to allow for flexibility in formulating a prior distribution for ( )MM×Σ , the 

strategy outlined by (Lu and Ades, 2009) and more recently by Wei and Higgins (Wei and 

Higgins, 2013a) was followed to express ( )MM×Σ  in terms of a diagonal matrix of standard 

deviations 2
1V  and squared positive semi-definite matrix of correlations R based on a 

separation strategy Barnard et al. (Barnard et al., 2000)): 

                                2
1

2
1 RVVΣ =  

where the off-diagonal elements of R contain correlation terms and diagonal elements equal 

1. Lu and Ades (Lu and Ades, 2009) and also Wei and Higgins (Wei and Higgins, 2013a)  

showed that R can be written as R = LTL using Cholesky decomposition where L is an upper 

triangular matrix. The spherical parameterization technique (Lu and Ades, 2009; Wei and 

Higgins, 2013a) can be used to express  R in terms of sine and cosine functions of the 

elements in L. Using this latter technique, Uniform  prior distributions were specified 

for the spherical coordinate mnφ  in the model to ensure that elements of the correlation 

matrix R lie in the interval ( )1,1 − . Finally, the elements of 2
1V  correspond to the between-

study standard deviation terms in ( )MM×Σ  and are given independent Uniform  prior 

distributions as in the univariate case (model 1). 

 

7.4.3 Model 3: Borrowing information outcomes  

From Table 7.1, it can be seen that none of the studies had considered the interventions 

E+HSI and E+HV for storage of medicines and other household products. Similarly, 
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interventions E+FE+F and FE were not trialled by any of the included studies on possession 

of a PCC number. To estimate the full set of 24 basic intervention effects relative to usual 

care from 9 interventions on 3 outcomes, ideas originally proposed by DuMouchel and Harris 

(DuMouchel and Harris, 1983) and revisited by DuMouchel and Groer (DuMouchel and 

Groer, 1989) and Jones et al. (Jones et al., 2009) were applied to the example problem. In 

doing so, it was assumed that the pooled effects of treatment k relative to usual care 

intervention ( )Ak md , can be expressed as a sum of a treatment-specific effect   and an 

outcome-specific effect . This assumption replaces the minimally informative prior 

distribution ( )310,0Normal  specified for ( )Ak md in model 2 with:                 

              ( ) ( )2,Normal~ τγα mkmAkd + , KCBk ,,, = ; Mm ,,2,1 =                            (7.8) 

 

 

where K is the total number of treatments being evaluated across M outcomes, and for k=A 

(i.e. reference treatment A), ( )Ak md equal to zero. Note that on the logarithmic scale, this would 

imply that the ratio of any intervention effects is constant across outcomes as the  cancel: 

                          ( ) ( )( ) ( )2
( ) ~ Normal , 2bk m k bAk m Ab md d d α α τ= − −                                      (7.9) 

Equation (7.8) thus embodies an assumption of equal or constant relative potency of 

treatments across outcomes which imply exchangeability of the relative effects between the 

non-reference/baseline interventions indicated by equation (7.9). For the example dataset, this 

implies that missing intervention effects for comparisons with the usual care can be predicted 

directly from equation (7.8) as a linear combination of kα  and mγ  assuming that each 

treatment effect relative to usual care is reported on at least one outcome. The missing 

intervention effects between non- reference/baseline treatments if required can similarly be 

predicted directly from the model as linear combinations of the intervention effects relative to 

usual care. The parameter controls the accuracy of the constant relative potency 

assumption. Values of  close to zero would thus indicate a high degree of confidence (and 

support from the data) in the parallelism of effect profiles across outcomes and the constant 

relative potency assumption. Conversely, larger values of  would correspond to the 

possibility of substantial deviation from parallelism of effect profiles across outcomes.   
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Multi-arm studies are included in model 3 based on the strategy outlined in Appendix II in 

the same way as in model 2.  To complete model 3, the parameters  and   are given 

minimally informative prior distributions. For the mean effects, this is a normal distribution 

with zero mean and large variance: 

                                         ( )310,0Normal~, mk γα . 

The parameter τ  was given a Uniform (0, 2) prior distribution, which is considered to be 

minimally informative on the log-odds ratio scale for most meta-analyses of effect sizes in 

medical applications (Dias et al., 2011a). Sensitivity analyses were conducted to assess the 

impact of specifying alternative prior distributions for  that are also considered minimally 

informative (Lambert et al., 2005):  

i) Normal prior distribution centred on 0 with large variance and constrained to be positive, 

( ) 0,10,0Normal~ 2 ≥ττ   

ii)  Gamma prior distribution placed on the precision: ( )001.0,001.0Gamma~2τ . 

 

7.4.4 Some limitations when fitting model 3 

There is a limitation to the amount of data (i.e. intervention effects relative to the usual care) 

on outcomes allowed to be missing for the model hyper-parameters to be identifiable. For K 

interventions and M outcomes, there will be ( )1K M− ×  equations of the form in equation 

(7.8) that are used to estimate a total of ( )1K M− +  hyper-parameters (i.e. ( )1K −  of kα  and 

M of mγ  hyper-parameters). Therefore no more than ( )( ) ( )( )1 1K M K M− × − − +  missing 

values in total are allowed. For example, for 3K =  treatments and M = 2 outcomes, data has 

to be available on both outcomes for both treatment comparisons with the baseline when the 

prior distributions are non-informative. When a large number of data on outcomes is missing, 

placing informative prior distributions on the hyper-parameters can make them identifiable 

and improve convergence of the model. 
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7.5 Implementation 

7.5.1 Estimating within-study correlations from IPD  

A total of four models were fitted, models 1 and 3 as described above and two versions of 

model 2. In model 2a, an inverse-Wishart prior distribution was specified for the between-

study covariance matrix ( )MM×Σ , whilst in model 2b, independent prior distributions were 

specified for the elements of ( )MM×Σ  based on the separation strategy in the previous section.  

All four models allowed for multi-arm trials to be included in the analysis. To fit the 

multivariate NMA models, the quantities ( )321
ˆˆˆ
ikikik θθθ and the diagonals of ikS  were 

estimated using standard 2x2-table formulae (Sutton et al., 2000). Next, estimates of the 

within-study correlations were obtained from the IPD studies using the following three 

methods: i) Pearson correlation coefficient between the observed outcome events ii) 

Bootstrapping as described in Daniel and Hughes (1998), and iii) fitting a Generalised 

Estimating Equations model to each IPD study. The code used to fit these three estimation 

methods is presented Box 7.1 whilst the estimated correlations from the IPD data are 

presented in Table 7.2.  
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Box 7.1: Stata and R codes to estimate correlations between two log(odds) from IPD  
Note: y1 and y2 refer to outcome 1 and outcome 2 respectively and take value 1 if a household has the desired 
outcome and 0 otherwise , t is a treatment group indicator taken values 0 for control group and 1 for intervention 
group  
 
**Pearson correlation***  
    pwcorr y1 y2    
 
** GEE model ** 
** reshape from wide to long and fit GEE  *** 
    qui reshape long y, i(id) j(outcome) 
 
** create indicator variables, interaction terms and xtset data ** 
     tab outcome, gen(s) 
     forvalues i=1/2 {  
           gen  x1_`i' = s`i'*t  
     } 
       
** fit GEE model and estimate correlations between  pairs of log-odds ** 
   xtset id outcome  
     xtgee y s1 s2, nocons i(id) link(logit) family(binom) robust 
     estat vce, cor 
 
** fit GEE model and estimate correlations between  pairs of log-odd ratios ** 
     xtgee y s1 s2 x1_1 x1_2, nocons i(id) link(logit) family(binom) corr(uns) robust 
     estat vce, cor 
 
# Correlation between pair of log-odds using bootstrap in R  (Daniel and Hughes 1998) 
   Nb<-10000 
   lodds1<-lodds2<-array(0,dim=Nb) 
   p1<-p2<-c(rep(0,Nb)) 
   s<-seq(1:n) 
   for (i in 1:Nb){ 
   sam<-sample(s, replace=T) 
   new_out1<-y[sam,1] 
   new_out2<-y[sam,2] 
   p1[i]<-mean(new_out1) 
   p2[i]<-mean(new_out2) 
   lodds1[i]<-log(p1[i]/(1-p1[i])) 
   lodds2[i]<-log(p2[i]/(1-p2[i])) 
  } 
  # pairwise correlations 
   cor(lodds1,lodds2)          

As can be seen in Table 7.2, all three methods produced broadly identical estimates of the 

correlations between pairs of outcome specific log-odds when fitted to each IPD study. 

 

Table 7.2: Estimates of within-study correlations between pairs of log-odds ratios 
obtained from studies with IPD 

IPD Study Pearson correlation 
coefficient† 

 GEE Model‡  Bootstrap+ 
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Nansel 2002 0.212 -0.115 0.072  0.212 -0.115 0.072  0.204 -0.000 0.104 

Nansel 2008 0.235 0.013 -0.016  0.235 0.013 -0.016  0.234 0.010 -0.013 

Clamp 1998 0.114    0.114    0.120   

Hendrickson 
2002 

      0.458     

Watson 2005 0.235    0.235    0.197   

Posner 2004 0.324 -0.055 0.096  0.324 -0.055 0.096  0.396 -0.055 0.089 

Sznajder 2003 -0.014    -0.014    -0.0004 

 

  

Mean (SE) 
0.184 
(0.118) 

-0.05 
(0.064) 

0.051 
(0.059)  

0.184 
(0.118) 

0.052 
(0.064) 

0.153 
(0.209)   

0.192 
(0.131) 

-0.015 
(0.035) 

0.060 
(0.064) 

†Pearson correlation = correlation between observed outcome events obtained using pwcorr command in Stata. 
‡GEE Model with unstructured correlation structure fitted in Stata using xtgee command (code given below). 
+Bootstrap code given below. 
Products, hence unable to estimate correlation from this IPD. 
Outcome1 = Safe storage of medicines 
Outcome2 = Safe storage of other household products 
Outcome3  = Possession of a poison centre telephone number 

 = correlation between logs(odds) for outcome m and log(odds) for outcome n (m≠n) 
 
 

7.5.2 Formulating prior distributions for the within-study correlations 

The Pearson estimates were used to construct informative prior distributions for the 

correlation terms in ikS  of equation (7.5) by transforming the mean and standard error of each 

correlation term into parameters of the Uniform distribution (Lunn et al., 2012): 

                           ( )mnmnmn
ik bar ,Uniform~  

where the 
( )













 ×
−=

2
var12 mn

mnmn r
ra , 

( )












 ×
+=

2
var12 mn

mnmn r
rb , mn

ikr  is the within-

study correlation between the outcomes m and n effects measured on the  log-odds scale in 

arm k of study i, and  mnr  and var (rmn) are the mean and variance of the within-study 

correlation between outcomes m and n effects measured by IPD respectively.  

 

7.5.3 Assessing inconsistency in NMA with multiple outcomes 

Currently, there are no known methods for assessing the inconsistency in the NMA with 

multiple outcomes. So the consistency of the evidence was assessed separately for each 
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outcome network using the node-splitting method (Dias et al., 2010) which was introduced in 

Chapter 2 Section 2.3.3l. The results of these consistency assessments are displayed in Table 

5.10. As stated in Section 5.5.3 of Chapter 5, these assessments found no evidence of conflict 

between the direct and indirect sources of evidence in all three outcome networks. 

 

7.5.4 Goodness-of-fit and model selection 

As explained in Chapter 2 Section 2.3.6, for analysis conducted within the Bayesian 

framework, the posterior mean residual deviance (McCullagh and Nelder, 1989) and the 

Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) are used to assess the 

goodness-of-fit of models to the data and compare the fit of alternative models. These model 

fit assessments were however, not carried out in the analyses presented in this chapter. This is 

because, the multivariate models specified above contain missing information (from studies 

that do not report effects for all outcomes) which prevents automatic estimation and reporting 

of the DIC in WinBUGS. This was investigated further and the following albeit 

unsatisfactory explanation from 

 http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-dic/#q13 (accessed 5th June 

2014) was found: “Why is DIC greyed out? DIC is currently greyed out in WinBUGS when 

one of the stochastic parents is a discrete node. The formal basis for DIC relies on 

approximate posterior normality for the parameter estimates and requires a plug-in estimate 

of each stochastic parent - for discrete nodes it is not clear which estimate to use”. It was not 

clear how to calculate the DIC manually for a multivariate likelihood with missing data. A 

possible solution suggested by one reviewer (Jochem König) when the methods described in 

this Chapter were submitted for publication (Achana et al., 2014a) is to assess model fit by 

calculating the residuals (i.e. differences between ( )mAkd  of model 2 and model 3) and 

comparing these to the degrees of freedom available for estimating the extra parameter τ  in 

model 3. However, because of limitations to the length of thesis, it was not possible to fully 

explore this further in the thesis, and will be suggested as possible opportunity for future 

work in the concluding chapter.  

 

7.5.5 Model evaluation 
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All models described above were fitted in WinBUGS (Lunn et al., 2000) using Markov Chain 

Monte Carlo (MCMC) simulations. The univariate models were fitted separately for each 

outcome using WinBUGS code available from Dias et al. (Dias et al., 2011a). The 

WinBUGS code for the multivariate models is provided in Appendix IV. Convergence was 

assessed by examination of the trace and autocorrelation plots and the Rubin-Gelman statistic 

after running 400 000 simulations and discarding the first 200 000 samples as ‘burn in 

samples’.  

 

7.6 Results 

7.6.1 Univariate and multivariate analyses 

Parameters of interest were the posterior median estimate (and 95% credible intervals) of the 

pooled intervention effects relative to the usual care intervention, and the posterior median 

estimate (and 95% credible intervals) of the between-study standard deviation and correlation 

terms. Summary forest plots displaying effectiveness estimates relative to usual care on the 

odds ratio (OR) scale are presented in Figure 7.2. It can be seen that, all 4 models produced 

broadly similar estimates when the treatment effect is not extreme compared to the other 

effect estimates for the same outcome. Compared to the univariate analysis, the multivariate 

models produced noticeably less extreme estimates of intervention effects. This can be seen 

in the effect of ‘education plus low cost/free equipment’ on possession of PCC number being 

shifted towards the line of no effect from an OR of 39.35 (95% CrI 2.37 to 732.30) in model 

1 to 23.55 (95% CrI 1.39, to 456.80) in model 2a, 20.37 (95% CrI 0.72, to 706.00) in model 

2b and 4.20 (95% CrI 1.59 to 13.16) in model 3. Similarly, the OR for ‘provision of low 

cost/free equipment alone’ on safe storage of other household products shifted from 0.37 

(95% CrI 0.00 to 15.10) in model 1 to 1.81 (95% CrI 0.63, to 5.37) in model 3.   
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Model 3

3.86 (0.68, 17.60)
1.81 (0.44, 5.52)
1.75 (0.47, 5.67)

3.04 (0.22, 31.12)
1.45 (0.08, 15.13)
1.42 (0.09, 14.49)

4.56 (1.71, 14.16)
2.10 (1.14, 4.34)
2.09 (1.13, 4.27)

1.42 (0.19, 15.59)
0.64 (0.05, 7.97)
0.66 (0.06, 7.09)

2.80 (0.95, 9.46)
1.26 (0.67, 2.59)
1.27 (0.68, 2.43)

4.20 (1.59, 13.16)
1.95 (1.12, 3.93)
1.93 (1.06, 3.94)

4.68 (1.52, 13.46)
2.13 (1.15, 3.91)
2.11 (1.08, 3.94)

2.85 (1.14, 8.31)
1.32 (0.78, 2.15)
1.32 (0.71, 2.16)

Figure 7.2:  Summary forest plot of intervention effects relative to usual. Outcomes are safe storage of medicines, safe storage of other household chemicals and possession of a 
PCC telephone number 
Mode1 1: Univariate NMA.  Model 2a: Multivariate NMA (Wishart prior distribution). Model 2b: Multivariate NMA (separation strategy). Model 3: Multivariate NMA allowing 
for the relative effects between non-usual interventions to be exchangeable across outcomes.  Effect estimate for which direct study data was not available are marked are indicated 
by xx on the forest plot. Intervention components: E = Education, FE=low cost/free equipment, HSI = Home safety inspection, HV = Home visit and F= Fitting of equipment 

Odds ratio and 95% credible intervals in brackets (log-scale) 
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E+FE+HSI+F (7)

PCC 1.31 (0.09, 17.92)
Other household products xx
Medicines xx

E+HSI (6)

PCC xx
Other household products 1.33 (0.47, 4.30)
Medicines 1.32 (0.64, 3.52)

E+FE+F (5)

PCC 39.35 (2.37, 732.3)
Other household products 2.53 (1.10, 7.13)
Medicines 1.39 (0.46, 4.24)

E+FE+HSI (4)

PCC 3.81 (0.77, 18.57)
Other household products 2.26 (0.94, 5.60)
Medicines 2.55 (1.07, 6.05)

E+FE (3)

PCC 2.04 (0.50, 7.88)
Other household products 1.27 (0.68, 2.47)
Medicines 1.37 (0.72, 2.25)

E (2) 
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xx

7.95 (0.82, 79.12)
2.53 (0.50, 14.84)
1.95 (0.47, 7.61)

1.32 (0.13, 12.42)
xx
xx

xx
1.34 (0.45, 4.15)
1.44 (0.47, 4.80)

23.55 (1.39, 456.8)
2.46 (1.00, 6.73)
1.40 (0.39, 4.82)

3.74 (0.98, 13.70)
2.23 (0.95, 5.32)
2.36 (0.81, 6.47)

2.02 (0.63, 6.02)
1.30 (0.69, 2.59)
1.29 (0.60, 2.65)
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Posterior median and 95% credible intervals of the between-study standard deviations and 

correlations are presented in Table 7.3. The posterior medians of the between-study 

correlations from the multivariate models were small and estimated with considerable 

uncertainty (i.e. all had large variances). Estimates of the between-study standard deviations 

were broadly similar for the univariate NMA (model 1) and the multivariate NMA using the 

separation strategy (model 2b), and relatively high for multivariate NMA using the inverse-

Wishart prior distribution (model 2a).  

 

7.6.2 Model 3: Borrowing strength across outcomes 

It can be seen from Figure 7.2 that the effect of ‘education plus home safety inspection’ and 

‘education plus home visit’ relative to usual care intervention on safe storage of medicines 

and safe storage of other household products, and ‘education plus low cost/free equipment 

plus fittings’ and ‘provision of low cost/free equipment alone’ on possession of a PCC 

telephone number were only estimated in model 3 as none of the studies had trialled these 

interventions on the respective outcomes. In this model, estimates of relative effects between 

non- reference/baseline treatments were assumed to be exchangeable across outcomes, which 

enabled estimates to be obtained for all outcomes by predicting effects where the 

interventions have not been considered for the particular outcome of interest. For the 

intervention/outcome pair where data from trials were available, the extrapolation step had 

the additional effect of producing more precise estimates of the treatment effect in 

comparison to the models that do not assume exchangeability effects across outcomes. 
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Table 7.3: Posterior median and 95% credible intervals of the between-study standard deviation and correlation parameters 

Parameter Description/Prior distribution  Model 1 
Univariate 

Model 2a 
Multivariate using 
inverse-Wishart prior 
distribution for Σ(M × M) 

Model 2b 
Multivariate using a 
separation strategy to specify 
priors for elements of Σ(M × M) 

Model 3 
Multivariate with 
extrapolation of effects 
across outcomes 

σ1 Between-study standard deviation: safe 
storage of medicines 

 0.26 (0.03, 1.02) 0.58 (0.33, 1.18) 0.27 (0.01, 1.08) 0.23 (0.01, 0.80) 

σ2 Between-study standard deviation: safe 
storage of other household products 

 0.56 (0.13, 1.27) 0.62 (0.35, 1.15) 0.47 (0.04, 1.18) 0.31 (0.01, 0.81) 

σ3 Between-study standard deviation: PCC  1.16 (0.57, 1.93) 0.94 (0.53, 1.99) 1.18 (0.57, 1.93) 1.08 (0.58, 1.85) 
τ Primary analysis: τ ~Uniform (0, 2)     0.10 (0.01, 0.53) 
τ Sensitivity analysis: τ ~ Normal(0, 102), τ ≥ 0     0.11 (0.00, 0.56) 
τ Sensitivity analysis: τ2 ~ Inverse − Gamma 

(0.001, 0.001) 
    0.08 (0.02, 0.36) 

ρ12 Between-study correlation[medicines, other 
household products ] 

  0.03 (−0.73, 0.76) 0.05 (−1.00, 1.00) 0.45 (−0.99, 1.00) 

ρ13 Between-study correlation[medicines, PCC]   0.06 (−0.80, 0.81) 0.20 (−1.00, 1.00) 0.50 (−0.98, 1.00) 
ρ23 Between-study correlation[Other household 

products , PCC] 
  0.08 (−0.81, 0.83) 0.13 (−0.97, 0.98) 0.60 (−0.87, 0.99) 
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7.6.3 Sensitivity analysis 

The results of the sensitivity analyses are presented in Figure 7.3. The posterior median and 

95% credible intervals of intervention effects relative to usual care were unaffected by 

placing alternative minimally informative prior distributions on . The posterior median and 

credible intervals for  (Table 7.3) were similarly not sensitive to the choice of prior 

distribution placed on  in the primary and sensitivity analyses. The posterior median 

estimates were all close to zero, which suggest that assumptions about the parallelism of 

effect profiles across outcomes is supported by the data.  
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Odds ratio and 95% credible intervals in brackets (log-scale) 

Figure 7.3: Results of sensitivity analysis to different specifications of prior distributions for  in model 3. Intervention components: E = Education, FE=Free equipment, 
HSI = Home safety inspection, HV = Home visit and F= Fitting of equipment. IG = Inverse-Gamma distribution, N=Normal distribution and U = Uniform distribution  
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FE Only (9)
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Medicines 1.59 (0.08, 17.21)
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E+FE+F (5)

PCC 4.41 (1.57, 13.09)
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E+FE+HSI (4)

PCC 5.00 (1.87, 14.70)
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E+FE (3)

PCC 2.98 (1.14, 8.11)

Other household products 1.28 (0.78, 2.11)
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Model 3: tau ~ N2(0.001, 0.001)
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0.58 (0.03, 8.89)

0.59 (0.03, 9.21)

2.85 (0.96, 8.94)
1.24 (0.70, 2.42)

1.26 (0.71, 2.36)

4.44 (1.46, 12.83)

1.90 (1.08, 3.79)
1.93 (1.05, 3.76)

5.03 (1.81, 14.18)

2.20 (1.26, 3.89)
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2.97 (1.12, 8.06)

1.29 (0.79, 2.15)
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Model 3: tau2 ~ IG(0.001, 0.001)

4.34 (1.17, 15.74)

1.87 (0.63, 5.26)
1.90 (0.61, 5.32)

3.46 (0.29, 38.62)

1.50 (0.10, 18.62)

1.53 (0.10, 18.47)

4.51 (1.75, 12.94)

1.94 (1.13, 3.95)

2.00 (1.17, 3.47)

1.28 (0.14, 10.67)
0.55 (0.05, 5.95)

0.54 (0.05, 6.22)

2.87 (1.07, 8.01)
1.23 (0.76, 2.25)

1.26 (0.74, 2.13)

4.38 (1.68, 12.23)

2.17 (1.33, 3.71)
1.92 (1.11, 3.59)

5.03 (2.00, 13.06)

1.29 (0.83, 2.07)
2.22 (1.20, 3.89)

2.98 (1.23, 7.81)

1.20 (0.38, 3.58)

1.33 (0.79, 1.99)
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7.7 Discussion 

In this chapter, methods were developed for simultaneous comparison of multiple treatments 

across multiple outcome measures while preserving the internal randomisation of individual 

studies. The methods may be viewed as an extension of Ades et al.’s (2010) NMA with 

competing risks paper (Ades et al., 2010) wherein only the within-study correlation is taken 

into account. Their method was extended to account for the dependency between outcome 

effects across studies as well as within-studies. In this particular application of the 

multivariate approach to the example dataset, accounting for the correlation between 

outcomes alone (models 2a and 2b) did not reduce the uncertainty around estimates of 

intervention effects compared to analysing each outcome separately (model 1).  Assuming 

that intervention effects are exchangeable across outcome did however lead to a modest 

reduction in uncertainty around effectiveness estimates (model 3).  

 

The between-study correlations were estimated with considerable uncertainty (Table 7.3) and 

appear to have little impact on overall effect estimates. This may be because the between-

study correlation arises due to, among other things, differences in study-level characteristics 

that also give rise to between-study heterogeneity in a meta-analysis. Based on a criterion 

outlined in Spiegelhalter et al. (Spiegelhalter et al., 2004) the posterior median estimates of 

the between-study standard deviations,   and  on the log odds ratio scale  (Table 7.3) 

could be interpreted as indicating evidence of low to moderate heterogeneity for storage of 

medicines and storage of other household products outcomes. Only the estimates for 

possession of poison control centre number exhibited a considerable degree of heterogeneity.  

Correspondingly, the posterior medians of the between-study correlations were small. There 

was therefore very little gain (in terms of increasing the precision of estimates) from 

formulating the between-study covariance structure described for the analysis presented here. 

Accounting for the between-study correlation is likely to be beneficial in situations where the 

between-study variance (heterogeneity) is large relative to within-study variances.  

 

The within-study correlations were incorporated through the arm-specific effects (log-odds) 

rather than the study-specific treatment difference (log-odds ratio) as is often done in 

multivariate meta-analysis (Berkey et al., 1998; Arends et al., 2003; Riley, 2009; Mavridis 
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and Salanti, 2012). This approach greatly simplifies the likelihood for multi-arm studies 

because treatment arms can be considered independent as a consequence of randomisation. 

Hence, there is no requirement to account for the additional correlations between effect 

estimates which share a common comparator treatment in the model likelihood (Franchini et 

al., 2012). The arm-based approach is also likely to be useful when (as is typical with many 

practical application of multivariate meta-analysis) the within-study correlations are not 

available (Riley, 2009; Kirkham et al., 2012; Bujkiewicz et al., 2013; Wei and Higgins, 

2013b) and have to be obtained from an external source such as expert opinions (Efthimiou et 

al., 2014). In such situations, formulating questions about correlations between outcome-

specific event probabilities (which can be used directly in an arm-based approach) is more 

likely to be intuitive and easily understood by non-statistician healthcare experts than 

questions about correlations between intervention effects. The correlations between the 

intervention effects if required can easily be obtained from the correlations between the 

outcomes (Wei and Higgins, 2013b; Efthimiou et al., 2014).  

 

At the between-study level, a common correlation structure was assumed in equation (7.7) 

across treatments in addition to the common variance assumption underlying most practical 

application of NMA methods. The common correlation assumption implies that if several 

separate multivariate meta-analyses were conducted with the same outcomes, each with a 

different set of k versus b comparison, the assumption is that the between-study correlations 

would be the same across the different sets of bk comparisons. This structure was suggested 

to simplify the covariance structure and reduce the number of parameters in the model.  

 

Initially an inverse-Wishart prior distribution was specified for the between-study covariance 

matrix . However, this prior distribution is believed to be influential due to the small 

number of studies in the example dataset relative to the number of outcomes. Under these 

conditions, the inverse-Wishart prior distribution produced upwardly-biased estimates of    

and  and downward bias in the estimate for   when compared to the corresponding 

estimates obtained from the univariate model (Table 7.3). These findings are consistent with 

observations in the univariate case where the use of a Gamma prior distribution (which is the 

univariate analogue of the Inverse-Wishart prior distribution) can lead to an overestimation of 

the heterogeneity parameter when the true value is close to 0 (Lambert et al., 2005; Gelman, 
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2006).  As an alternative to an inverse-Wishart prior distribution, the spherical decomposition 

technique suggested by Lu and Ades (Lu and Ades, 2009) was followed to specify prior 

distributions for the correlation and standard deviations terms in ( )MM×Σ . This 

parameterization offered greater flexibility in formulating independent prior distributions for 

the standard deviation and correlation terms in ( )MM×Σ . 

 

An obvious limitation to implementation of the multivariate models presented in this chapter 

is the limited availability of data including i) the problem of missing within-study 

correlations and ii) the requirement for a relatively large number of studies to estimate all 

model parameters. The problem of missing within-study correlations has traditionally 

hampered the widespread application of multivariate meta-analysis (Riley et al., 2007b; 

Riley, 2009; Bujkiewicz et al., 2013). In the example data used in this chapter, IPD was 

available from a proportion of the included studies, allowing the within-study correlations to 

be estimated. Alternative approaches to dealing with missing within-study correlations when 

IPD is not available include: i) using the observed correlation from the summary study-

specific effects (Kirkham et al., 2012), ii) eliciting information about the correlations from 

external sources such as clinical experts (Efthimiou et al., 2014) and iii) specifying  ‘vague’ 

prior distributions for analysis  conducted within a Bayesian framework (Nam et al., 2003). 

 

The second data issue concerns the number of studies needed to estimate the full unstructured 

between-study covariance matrix presented in equation (7.6). It is anticipated that a large 

number of multi-arm studies reporting across the three outcomes will be needed to identify 

 and estimate all model parameters. This can be problematic considering the fact that 

most applications of network meta-analysis typically include mostly two-arm studies with 

very small numbers of multi-arm studies. Even with the simplification of the between-study 

covariance matrix given in equation (7.5), a relatively large number of studies in comparison 

to the total number of outcomes being considered may still be needed. It is, however, not 

clear how many studies should be considered large enough for a NMA with multiple 

outcomes. As a guide, Wei and Higgins (Wei and Higgins, 2013a) recently estimated 15, 27 

and 42 studies as a minimum for multivariate pairwise meta-analysis with two, three and 

four-outcomes respectively. Hence, an even larger number of studies may be required for the 

NMA with multiple outcomes. 
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Another limitation of the multivariate models presented here is that they rely on the normal 

approximation to binomial distribution to incorporate the within-study correlations in the 

model. The normal approximation frequently fails and may not provide adequate fit to the 

data in the presence of studies with zero or a small number of events, necessitating use of 

continuity corrections.  An exact binomial distribution was not used to model the within-

study likelihood specified in section 7.4.2 because the primary interest was to develop models 

for summary binary data where outcomes are not mutually exclusive, and where it is not 

reasonable to assume that within-study correlations are zero so that the likelihood factorises 

easily as in Arends et al. (Arends et al., 2003). Further methodological investigations into 

modelling multivariate summary data that is not normally distributed will therefore be useful. 

An example is provided in Chu et al. (Chu et al., 2009) where parameterization of the within-

study model enabled the special case of diagnostic sensitivity and specificity to be jointly 

modelled with disease prevalence using a trivariate binomial likelihood. In the interim, an 

alternative formulation which bypasses the need for approximating normal distributions is to 

model the IPD directly where this is available. This will require extending Saramago et al.’s 

(Saramago et al., 2012) NMA model with aggregate and individual participant level data 

from single outcome to multiple outcome settings.   

 

The consistency of each outcome network was assessed separately using the method of node 

splitting (Dias et al., 2010) and found no evidence of conflict between the direct and indirect 

sources on the pairwise contrasts that have both sources of evidence. The consistency of the 

multivariate estimates partly was however not assessed because the current methods may not 

easily generalise to the multivariate case. Extensions of the node-split method to multiple 

outcome networks and the effect of jointly synthesising evidence across multiple endpoints 

on evidence consistency are currently being investigated in a simulation study. 

 

The initial motivation for a multiple outcome NMA was to estimate intervention effects for 

all the outcomes, including effects of interventions on outcomes not considered by any of the 

studies included in the analysis.  This requires the correlation structure between effects on 

multiple outcomes to be appropriately modelled and also implementing a mechanism of 

"borrowing strength" across outcomes through the assumption of exchangeability of the 

random effect across outcomes. This implies a priori assumption that outcomes are related 

but different and that there is no way of knowing the order of magnitude of effects on 

outcomes. If this assumption does not hold, it may potentially lead to worse or more biased 
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effectiveness estimates. In the example, the outcomes are similar and measured on the same 

scale. It would be clearly inappropriate to assume that intervention effects are exchangeable 

across outcomes that are different in some important respects such as being measured on 

different scales (e.g. where one outcome reports a weighted mean difference and another 

outcome reports a log-odds ratio) as such estimates will differ in terms of the precision with 

which they are estimated. 

 

7.8 Chapter summary 

Methods for simultaneous comparison of multiple treatments across multiple outcome 

measures while preserving the internal randomisation of individual studies were presented in 

this chapter. Application of the method to the poison prevention data yielded similar point 

estimates of treatment effect to those obtained from a univariate NMA but the uncertainty 

around the multivariate estimates increased or decreased depending on the prior distributions 

specified for the between-study covariance structure. Application of the results from both 

methods in the economic evaluation of PH interventions will be demonstrated through 

sensitivity analysis in Chapter 8.  
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8. MEDICINAL POISONS DECISION MODEL  

8.1 Chapter overview 

This chapter describes a probabilistic decision model developed to evaluate the cost-

effectiveness of home safety interventions to prevent accidental poisonings in pre-school 

children introduced in Chapter 1 Section 1.3. Results of the network meta-analysis conducted 

in Chapter 5 are used to inform the effectiveness estimates for the base case analysis. 

Sensitivity analyses are conducted using results from fitting the methods developed in 

Chapter 6 (Achana et al., 2013) and Chapter 7 (Achana et al., 2014a) to the example data to 

investigate the effect of adjusting for the control group event rate and accounting for the 

correlations between interventions effects across multiple outcomes on the cost-effectiveness 

estimates.  

 

8.2 Base case analysis  

The base case analysis is developed for the prevention of unintentional poisons resulting from 

exposure to medicinal substances.  The cost-effectiveness of interventions to prevent non-

medicinal poisonings is investigated through sensitivity analysis. Table 8.1 summarises the 

important features of the base analysis. The population of interest is pre-school children (i.e. 

children aged 0-4 years old), the exposure variable is safe storage of medicines in the home 

and the reference intervention for the purpose of estimating cost-effectiveness is usual care, 

which is defined to include usual or no safety education. Safe storage is defined as storage 

above adult eye level or in locked cabinets and/or drawers so that they are out of reach of 

children (Kendrick et al., 2008).  The outcome variable is medically attended for 

unintentional ingestion of medicinal substance. 
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Table 8.1: Base case analysis for safe storage of medicines 

 

The unit of analysis is the household when estimating the relative effectiveness of 

interventions but the individual when modelling cost-effectiveness.  Households were chosen 

as the unit of analysis because households were the primary unit of randomisation in the 

effectiveness evidence described in Chapter 5 Section 5.2. It is assumed that interventions act 

to increase the proportion of households with safe storage (at a rate determined by the relative 

effectiveness estimates) above and beyond the baseline prevalence of safety practices in the 

UK. Households with safe storage are assumed to present a lower risk of accidental ingestion 

compared to households without safe storage. The aim of the decision analysis then is to 

estimate the likelihood of an unintentional poisoning event in pre-school children for a given 

intervention and use this to estimate NHS costs and consequences/benefits associated with 

treating such events over the life time of the individual. 

Parameter Description 

Type of economic evaluation  Cost-effectiveness analysis 

Modelled population Preschool children (0-4 years of age) 

Exposure variable  Safe storage of medicines 

Outcome event Accidental ingestion of medicinal substance 

Unit of analysis Household with at least one child 

Perspective on costs UK NHS and Personal and Social Services (PSS) 

Health outcomes (Utilities) Quality Adjusted-Life Year (QALY) 

Base year for calculating costs/prices  2012 

Currency unit British pound (£) 

Hypothetical cohort size 100,000 households 

Effectiveness evidence (Chapter 5) 13 studies 

Comparator or reference intervention Usual care1 intervention 

Number of intervention strategies ( Chapter 5) 7 

Number of health states (Markov model) 6 

Cycle length for Markov model  1 year 

Half-cycle correction No 

Time horizon 100 

Discount rate for costs  3.5% 

Discount rate for utilities  3.5% 

1Usual care (UC) intervention is defined to include usual safety education or no safety education. 
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The model has a cycle length of 1 year and a life–time horizon of 100 years. These were 

chosen to ensure that individuals remain in health-states long enough for the costs and 

consequences associated with poisoning injury to be realised and to ensure that long-term 

costs and consequences associated with injury during the pre-school years are captured. 

Health outcomes are expressed using quality-adjusted life years (QALYs).  Costs are 

considered from the perspective of UK NHS and personal social services (PSS). Costs and 

QALYs are discounted over the time horizon at 3.5% per annum in line with the NICE 

methods guidance for public health evaluations (NICE, 2012). Therefore to costs incurred by 

parents for lost time from work to care for child and other similar non-medical or health 

sector costs are not included in the analysis. The base year is set to 2012 for purpose of 

estimating costs and inflating prices incurred in the past.   

 

8.3 Model structure 

A cohort simulation model is developed to estimate the life-time costs and QALYs associated 

with home safety intervention compared to usual care intervention. The structure comprises 

of both decision tree and Markov models which were described in Chapter 3 and is based on 

two previous decision analytic models developed to evaluate the cost-effectiveness of smoke 

alarm give-away schemes on health outcomes in children (Pitt et al., 2009; Saramago et al., 

2014). Figure 8.1 shows the structure of the model. It comprises three distinct but interlinked 

sub-models: 

i) First stage decision tree model referred to as the ‘intervention model’ 

ii) Second stage Markov state transition model referred to as the ‘preschool model’ and 

iii) A third stage Markov state transition model referred to as the ‘long-term model’. 
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Figure 8.1: Decision model structure.  Arrow heads indicate direction of movement of households/individuals through the model 

 

 

 

Felix Achana PhD Thesis, September 2014 150 



Chapter 8  Medicinal poisonings decision model 
 

8.3.1 Intervention model 

The first part of the decision model uses a decision tree introduced in Chapter 3 Section 3.3.2 

to estimate costs and outcomes associated with the interventions being evaluated.  The 

costing element concerns mainly the cost of providing the intervention strategies while the 

outcomes are the proportion of households in each intervention cohort with or without safe 

storage. Costs and outcomes were estimated by taking account of the baseline prevalence of 

safety practices in the general population, the acceptance rate of interventions in the modelled 

population and the relative effectiveness of interventions. In the model, interventions act to 

increase the proportion of households with safe storage (at a rate determined by the relative 

effectiveness estimates) above and beyond the baseline prevalence of safe storage practices in 

the UK. The outcomes from the intervention model serve as inputs for the second stage 

‘preschool’ model which is described below. 

 

8.3.2 Stage 2: Preschool model 

The preschool model utilizes the Markov model structure introduced in Chapter 3 Section 

3.3.3 to estimate the costs and QALYs associated with each intervention strategy being 

evaluated in the first 5 years of life (ages 0-4years). There are 6 distinct health states as 

shown in Figure 8.1: safe storage (S1), no safe storage (S2), safe storage with disability (S3), 

no safe storage with disability (S4), death from poisoning injury (S5) and death from causes 

unrelated to poisoning injury (S6). As stated above, the intervention model provides the input 

parameters for the pre-school model. This implies that households initially enter the 

preschool model through one of two states (S1 - Safe storage or S2 - No safe storage) based 

on the outcomes from the intervention model. Subsequent movement of individuals between 

health states permitted in the model are indicated by lines joining the respective health states 

with the arrows pointing in the direction of movement (Figure 8.1). Individuals move 

between health states in yearly cycles or remain in their respective states. The transition 

probabilities governing these movements are estimated based on the available evidence 

assembled from the literature and described in section 8.4. It is assumed that any disability or 

chronic health condition caused by a poisoning injury is permanent and persists for the rest of 

the individual’s life (hence individuals in S3 and S4 cannot return to S1 or S2). The two death 
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states are S5 and S6 and represent absorbing states so that individuals cannot leave once in 

these states.   

The model does not account for multiple events in households with two or more pre-school 

children in the same year. In other words, although it is possible for households to have more 

than one child, it is assumed that only one child can experience an accidental poisoning event 

in any one single year. Observed or suspected cases of accidental ingestion are assumed to 

present to the emergency department for assessment and or treatment. No attempt is made to 

account for seeking outside the standard emergency response system (defined here as 

ambulance to emergency department).  

 

On arrival at the emergency department, cases are assumed to be triaged on initial assessment 

as either serious/toxic or not serious/not toxic. This categorisation was arrived at with input 

from specialists in emergency department medicine (Personal communication Dr Philip 

Miller). There was no information available from reviewing the literature to classify 

poisoning cases as minor, moderate and major/severe.  There was, however, information from 

Hospital Episode Statistics (Health & Social Care Information Centre, 2013b) on the 

proportion of cases admitted for an in-patient stay following a period of assessment at 

emergency department. Based on this information, it was assumed that only cases triaged as 

serious/toxic are admitted for a period of inpatient stay and treatment. Consequently, minor 

cases are assumed to be treated and discharged from the emergency department. Finally, the 

preschool model allows for the possibility of serious poisoning cases to be fatal, chronic (i.e. 

lead to long-term health condition) or completely resolved (with a return to full health).  

 

8.3.3 Stage 3: Long-term model 

This part of the model applies to individuals aged from 5 years and accounts for the lifetime 

costs and QALYs associated with chronic injury in the first 5 years of life and assumed to last 

the life time of the individual. A Markov structure with 3 health states (S3, S4 and S6 defined 

above) as shown in Figure 8.1 is used to model the long-term costs and consequences 

associated with injuries that occur during the preschool years. No cases of accidental 

ingestion are assumed to occur during this period (i.e. at ages above 5 years), or if they do 
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occur they are not taken into account in the model. Therefore, the only possible transitions in 

this part of the model are movements of individuals from disability states to death from 

causes unrelated to the poisoning injury. This also implies that deaths from a poisoning 

related injury are assumed to occur before and not after age 5 in the model. 

 

8.4 Evidence for base case analysis 

This section describes the sources of evidence used for the intervention and preschool models 

described above. Table 8.2 summarises the parameters of the model and the underlying 

evidence base informing each parameter. 
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Table 8.2: Probabilities used in the base case (medicinal poisons) decision analysis 

Parameter Description Source Value  Distribution 

pSafe(1) Baseline prevalence of safe 
storage of medicines? 

Prevalence rate among community controls from study A  1527/ 2033 = 75% Beta 

pAccept(k) Probability of accepting the 
intervention k (k = 2, …., 7) 

Assumption based on value in Functional smoke alarm model(Saramago et al., 2014). Set the 
same for all interventions. 

90% Fixed 

 
pEff((k) 

 
Probability intervention k is 
effective, k (k= 1,2, …., 7) 

 
NMA analysis (Achana et al 2014) :  
(1) Usual care  
(2) Education 
(3) Education + provision of low cost/free equipment 
(4) Education + provision of low cost/free equipment + home safety inspection 
(5) Education + provision of low cost/free equipment + fitting 
(6) Education + provision of low cost/free equipment + home safety inspection + fitting 
(7) Provision of low cost/free low cost/free equipment 

Mean (95% CrI) 
=0.90 (0.84, 0.94) 
=0.87 (0.83, 0.91) 
=0.95 (0.89, 0.98) 
=0.90 (0.76, 0.96) 
 =0.90 (0.81, 0.96) 
=0.93 (0.83, 0.97) 
=0.94 (0.78, 0.98) 

 

 
pIngest(1) 

 
Probability of accidental 
exposure/ingestion 

 
Poisoning cases in pre-school children (n=10837), UK pre-school population in 2005-2009 
period (n=3599180) from (Orton et al 2014, unpublished).  The numerator (n=10837*0.6 = 
6502) was derived based on information (Tyrrell et al., 2012) suggesting that 1316 (60%) of the 
2193 medically reported poisonings identified in the THIN database were due to ingestion of a 
medicinal substance  

 
6502/3599180 = 

0.181% 

 
Beta 

orIngest Relative risk of exposure to a 
medicinal substance comparing 
children with a poisoning to 
community controls  

Study A:  Community controlled adjusted analysis OR=1.67 (95% CI 1.23 to 2.27) -0.513 (0.155)* Normal 

pAmb Probability of using emergency 
ambulance  

Hospital Episode Statistics (2012b): 24.2% of all cases arrived by emergency transfer 
(ambulance/helicopter). 

0.242 Fixed 

pAdmit Probability of  in-patient 
admission following a medicinal 
poisoning injury (ICD-10: X40-
X44)  

Hospital Episode Statistics, 2012-2013)(Health & Social Care Information Centre, 2013b): 
Number of poisoning cases (X40-X44) admitted in 0-4yr olds (period 2012-2013) in England= 
3909. Scaled up by a factor of 1.163 (i.e. 3909*1.163= 4546 cases for whole of UK) based on 
mid-2012 population estimates for UK and England, ONS 2012a(Office for National Statistics, 
2013). 

4546/ 6502 = 69.92% Beta 
 
 
 

pSevere Probability of severe injury NPDS 2012 report (Mowry et al., 2013), Table 13, page 968) 1.91% of major poisoning cases 
(across all age groups) resulted in a permanent health condition . Numerator = 0.019* 4546 =87. 

87/ 4546= 1.91% Beta 

pFatal Probability of fatal injury UK mortality statistics (Office for National Statistics). 1 fatality from medicinal poisonings in 0-
4 years old (assumed fatality occur after a long inpatient stay). 

1/86 = 1.16% Beta 

pDead UK mortality statistics UK mortality statistics(Office for National Statistics, 2010)    Normal 
*log odds ratio and standard error in brackets 
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8.4.1 Intervention strategies  

The evidence on intervention effectiveness was derived primarily from the Cochrane home 

safety systematic review (Kendrick et al., 2012b) supplemented with evidence from the 

overview of reviews (Young et al., 2013). Chapter 5 describes the network meta-analyses that 

were used to summarise the evidence on 9 interventions across 5 poison prevention 

outcomes. Seven of the 9 interventions were included in the NMA for safe storage of 

medicines (which is the exposure variable for the base case analysis reported here):  

• Usual care  

• Education  

• Education + provision of low cost/free equipment  

• Education + provision of low cost/free equipment + home safety inspection  

• Education + provision of low cost/free equipment + fitting 

• Education + provision of low cost/free equipment + home safety inspection + fitting 

• Provision of low cost/free low cost/free equipment 

 

The effectiveness estimates from the NMA were reported as odds ratios in the analysis 

presented in Chapter 5. The probability of having safe storage of medicines for each 

intervention is obtained by applying the odds ratios to baseline risk in the population of 

interest. This is achieved automatically in the decision analytic model when implemented 

within the comprehensive decision modelling framework (Cooper et al., 2004). Estimates of 

the probabilities of safe storage for the intervention strategies obtained this way are 

summarised in Table 8.2. 

 

 

Note that categorising the interventions into seven distinct intervention packages above does 

not completely remove all heterogeneity in intervention definition across studies. For 

example, education may be something as simple as home safety information leaflet, or face-

to-face interview with a trained professional, or a computer programme designed to deliver 

tailored home safety advice.  Similarly, low cost or free equipment may be related to poison 

prevention (for example, cupboard locks and latches) or unrelated equipment such as smoke 

alarms, for example. Equipment may be provided as a stand-alone scheme or as part of an 

equipment package scheme that includes non-poison prevention related equipment such as 
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smoke alarms, stair gates and window locks. This type of heterogeneity in the intervention 

classification will most likely have implications for estimating relative effectiveness and 

costs for each intervention. However, it was not possible to classify the intervention strategies 

further into more tightly defined intervention categories while maintaining a connected and 

consistent network of evidence required in order to fit a network meta-analysis model. While 

it is not possible to disentangle the effectiveness between varying degrees of intervention 

strategies without reclassification of intervention strategies, it would be at least possible to 

assign costs based on alternative definitions of strategies being evaluated. Therefore, 

sensitivity analysis will be used (see Section 8.8.2) to investigate the influence of assigning 

costs based on alternative more refined definition of interventions on results of the analysis.  

 

 

8.4.2 Baseline prevalence of safety practices    

The probability of moving from a ‘no safe storage state’ to a ‘safe storage state’ in cycles 1 to 

5 for households in the usual care intervention cohort, denoted by ( )1pSafe  was assumed to be 

equal to the baseline prevalence of safety practices in the general population.  The parameter 

was informed by evidence from a case control study of poison risk factors (Majsak-Newman 

2014, unpublished, published protocol (Kendrick et al., 2012a)) suggesting that 1527 (75%) 

out of a total of 2033 households among community controlled cohort have safe storage of 

medicines (Table 8.2). The parameter ( )1pSafe  was assumed to be drawn from a beta 

distribution with parameters based on the evidence from the published study to allow for 

parameter uncertainty:  

 

 

                   ( ) ( )15272033,1527Beta~1 −== bapSafe                                                       (8.1) 

 

 

 Next, the probability of moving from ‘no safe storage state’ to ‘safe storage state’ for 

households in each of the active intervention cohorts, denoted by ( )kpSafe , is derived by 

combining the effectiveness probability ( )k
effp  for intervention k and the baseline probability of 

safe storage  as follows:             
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                 ( ) ( ) ( )( ) ( )kk pEffpSafepSafepSafe ×−+= 11 1      Kk ,3,2=                              (8.2) 

 

where K=7 is the total number of interventions being evaluated for safe storage of medicines.   

 

 

8.4.3 Probability of accidental ingestion 

The probability of accidental ingestion (of a medicinal substance) given  ‘no safe storage’ 

was derived using estimates of the annual number of poisoning cases amongst preschool 

children presenting at emergency departments in the UK, the proportion of cases caused by 

exposure to a medicinal substance and the at risk population (number of preschool children in 

the UK). Evidence on the annual number of poisoning cases presenting at emergency 

departments was obtained from Orton et al (2014, unpublished) based on analysis of injury 

rates reported in the Health Improvement Network (THIN), a nationally representative 

dataset of the UK population. Orton et al. estimated that on average, approximately 10387 

first episode cases of unintentional poisonings present annually at the emergency department 

among a UK preschool population of 3599180 children in the period 2005-2009. To obtain 

the number of cases attributed to ingestion of a medicinal substance given no safe storage, the 

10387 estimated cases were multiplied by 0.6 based on evidence from Orton et al 2012 which 

shows that approximately 60% of the unintentional poisonings among preschool children 

recorded in the THIN database are caused by accidental ingestion of a medicinal substance. 

The required probability (i.e. of accidental ingestion of a medicinal substance given no safe 

storage for the pre-school age group) , denoted by ( )1pIngest , was then estimated to be 

0.018% based on the above data as follows: 

                  

                 ( ) 00181.0
3599180

6502
3599180

6.0108371 ==
×

=pIngest                                                   (8.3) 

 

The uncertainty around this estimate was taken into account by expressing ( )1pIngest  as a 

beta distribution with parameters (a= 6502 and b=3599180-6502) as in equation (8.1).  Next, 

the probability of unintentional ingestion (of a medicinal substance) given safe storage, 

denoted by ( )2pIngest  was derived by applying  the relative risk ratio, orIngest  comparing 
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the risk of unintentional ingestion given safe storage to the risk of corresponding risk given 

no safe storage as follows: 

                     ( ) ( ) orIngestpIngestpIngest ×= 12                                                                    (8.4) 

Evidence on the effectiveness of safe storage to prevent accidental ingestion of a medicinal 

substance was obtained from the case control study of the risk and protective factors for 

poisoning injury in childhood (Majsak-Newman et al., 2014). The adjusted community 

controlled analysis from this study indicated that compared with no safe storage, safe storage 

reduced the risk of accidental ingestion of a medicinal substance by about 40% (OR 0.60, 

95% CI 0.44 to 0.81). To incorporate the uncertainty around this estimate, the odds ratios 

were assumed to be normally distributed on the logarithmic scale with mean d and 

variance 2
dσ :   

                 ( ) ( )2,Normal~log ddorIngest σ                                                                             (8.5) 

where ( ) 511.06.0log −==d  and ( ) 557.1
92.3

)44.0log(81.0log2 =
−

=dσ . In the model odds ratios 

were assumed to be equivalent to relative risk and used to derived ( )2pIngest  using equation 

(8.4) which has a mean value of 0.011%.  

   

8.4.4 Probability of inpatient admission following a poisoning injury 

The probability of inpatient admission following assessment at the emergency department 

was based on evidence from the Hospital Episode Statistics (Health & Social Care 

Information Centre, 2013b) for England which  indicated that approximately 3909 cases of 

medicinal poisoning (ICD-10 codes X40-X44) in pre-school age group were admitted in the 

year 2012. Because the estimates reported in Orton et al (2014) were for the whole UK 

population, the number of admitted cases in England was scaled up by 1.16 to give 4534 as 

the estimated annual number of medicinal poisoning cases admitted for the whole of UK. The 

scaling factor was based on the assumption that approximately 84% of the UK population 

live in England (i.e. 16% live in the rest of the UK).  The probability of inpatient admission 

was then calculated by dividing 4543 by 6502 to obtain 70% as the proportion of cases 

admitted. As was done in equation (8.1) this information was encoded as a beta distribution 
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with parameters a=6502 and b= (3599180-6502) to account for uncertainty in the estimate. 

The probability of a minor injury was obtained by subtracting the probability of inpatient 

admission from 1 based on the assumptions that only serious cases were admitted as outlined 

previously.  

 

8.4.5 Probability of moderate, severe and fatal poisoning injury 

In the preschool model described in section 8.3.2, admitted cases were classed as either 

moderate, if the individual makes a complete recovery without any long term health problems 

on discharge, or severe if the injury is fatal or the individual develops a chronic/long term 

health condition. No evidence was found from a review of the literature to support this 

severity based classification of poisoning injury. The only (next best) evidence available was 

obtained from the 2012 report of the American Association of Poison Control Centres 

(Mowry et al., 2013) which indicated that approximately 1.91% of major poisoning cases (in 

all age groups) resulted in a chronic/permanent injury. This figure was therefore taken as the 

probability of a severe injury among the cases admitted for a period of inpatient stay. This 

also suggests that the majority (about 98%) of cases admitted for an inpatient stay make a 

complete recovery in the model. Applying the 1.19% (i.e. the probability of a major 

poisoning) to the number of admitted cases estimated in section 8.4.4 resulted in 88 (out of 

the estimated 4543 poisoning cases admitted) cases classed as severe, of which 1 would be 

fatal on average based on data from the 2012 UK mortality statistics (Office for National 

Statistics, 2012). 

 

In summary, based on the above evidence, the following probabilities were used in the 

model: 

Probability of a severe injury among the admitted cases, pSevere= 0.0191. 

Probability of moderate injury among the admitted cases, pModerate = 1-pSevere= 0.9810. 

Probability of a fatal injury among the severe cases, pFatal = 1/88 = 0.0114. 

These probabilities were inputted in the model by expressing them as beta distributions to 

account for uncertainty in the estimation, based on equation (8.1).   

 

8.5 Costs 
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This section describes the procedure used to estimate costs and resource use and also reports 

the source of evidence informing each estimate. Costs are considered from the NHS/PSS 

perspective; therefore only the cost of providing the interventions and the NHS costs of 

treating unintentional poisoning related injuries are considered. Costs incurred or reported 

prior to 2012 are converted to 2012 prices using the Bank of England inflation calculator to 

take account of inflation (as described in Chapter 3 Section 3.2.4).  

 

8.5.1 Intervention costs 

It can be seen from the effectiveness evidence presented in section 8.4.1 that each of the 

intervention strategies consisted of a number of components either alone or in combination 

with each other. Therefore, the cost of providing each intervention was estimated by 

summing up the costs of the constituent components, and adding to this, a fixed cost 

associated with setting up the intervention scheme to cover things like administrative, 

transport and telephone costs (Table 8.3). The fixed cost of setting up an intervention scheme 

was obtained from the functional smoke alarm decision analysis (Saramago et al., 2014) 

which provided an estimate of £79,529 as the cost of setting up a smoke alarm give way 

scheme in the year 2012 for a cohort of 100,000 households. The cost of home visit or home 

safety inspection was estimated to be £22.67, based on the mean hourly rate for a local 

authority (LA) funded home care worker of £34 (Curtis, 2012), and assuming a typical home 

safety inspection took 40 minutes to complete. 

 

Also as noted in Section 8.4.1, there was still heterogeneity in the way the interventions were 

defined even after being categorised into more homogenous groups. This has implications for 

estimating the costs of the interventions. For example, home safety education may involve a 

face-to-face contact with trained professionals and is hence likely to be more expensive than 

providing a home safety information leaflet.  
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Table 8.3: Intervention costs used in base case model 

Parameter Description Source Value Distribution 
cFixed Fixed cost of setting up an 

intervention scheme for 
100 000 households 

Functional smoke alarm model  (Saramago 
et al., 2014) 

£79,529 Fixed 

cEdu Cost of home safety 
education (based on 20 
minutes of local authority 
working time) 

PSSRU 2012(Curtis, 2012)  £6.66 Fixed 

cAccept Cost of accepting 
intervention 

Functional smoke alarm model  (Saramago 
et al., 2014) 

£0.46  Fixed 

cHSI Cost of 40 minutes home 
safety inspection 

PSSRU (Curtis, 2012)  –  the mean hourly 
cost of local authority funded homecare 
was £34, hence 40 minutes = 0.67*£34 = 
£22.67 

£22.67 Fixed 

cEquip Cost of safety equipment 
(cupboard locks x2) 
updated to 2012 prices 
 

Locks for kitchen cupboards (£3, range £2-
6 per lock in 2009) reported in NICE PH30 
costing template (NICE, 2010a).  

£6.8 (range 
£4.54 – 
£13.62 

Fixed 

cInstall Cost of installing 
cupboard locks (x2) 

Functional smoke alarm model  (Saramago 
et al., 2014) 

£11.83 Fixed 

 

In the base case analysis, it was assumed that education was a face-to-face activity delivered 

by a trained professional costing approximately 20 minutes of a local authority workers time. 

Similarly, free or low cost equipment was assumed to consist of two sets of cupboard locks 

provided at a cost of £6.80 (range £4.54 to £13.62) per set as reported in the costing template 

for NICE PH30 (NICE, 2010a). Sensitivity analyses were conducted to investigate the impact 

of providing: i) a home safety information pack costing £0.56 (including VAT) per family 

(Errington et al. 2011) instead of a face-to-face educational activity, and ii) equipment 

schemes as  part of the intervention package. The cost of installing the 2 sets of cupboard 

locks was assumed to be the same as the cost of installing a smoke alarm reported in 

DiGuiseppi et al. (DiGuiseppi and Higgins, 2001) and estimated to be £11.83 updated to 

2012 UK pound sterling.  
 

8.5.2 Healthcare costs of treatment 

The cost of treating unintentional poisoning injury was estimated based on NHS reference 

costs for hospital services obtained from PSSRU Unit Costs of Health and Social Care 2012    

(Curtis, 2012). The NHS reference costs in Curtis (2012) were reported as national averages 

together with the interquartile range. The standard error associated with each cost element 

was therefore derived from the interquartile statistics under assumptions of normality:  
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675.02×

−
= XX

X
LQUQσ                                                                                      (8.6) 

where XUQ  and XLQ  represent the upper and lower quartiles and Xσ  is the required 

standard error for cost element X. 

 

Estimates of the health sector costs used in the base case analysis are presented in Table 8.4. 

The mean cost (standard error) was £263 (£21.48) for emergency transfers, £112 (£27.41) for 

cases treated and discharged from the emergency department and £146 (£42.22) for cases 

admitted for inpatient stay following emergency department assessment and or treatment. The 

mean (standard error) cost of hospital inpatient admission was £586 (£223.70) for non-

elective short-stay (<2 days) and £2,461 (£810.37) for non-elective long inpatient admission 

(≥2days). 

 

Table 8.4: Health sector costs (2012 prices) 

Parameter Description Source Value (SE)  Distribution 

cAmb   Cost of emergency transfers PSSRU (Curtis, 2012) £263 ( £21.48) Gamma 

cED1 Cost of emergency department 
treatment of cases not leading to 
hospital inpatient stay (minor injury) 

PSSRU (Curtis, 2012) £112 (£27.41) Gamma 

cED2 

 

Cost of emergency department 
treatment for cases leading to hospital 
inpatient stay  (major injury) 

PSSRU (Curtis, 2012) £146 (£42.22) Gamma 

cAdmit1 

 

Cost of a non-elective short (<2 days)  
inpatient admission 

PSSRU (Curtis, 2012) £586 (£223.70) Gamma 

cAdmit2 Cost of a non-elective long (≥2days)  
inpatient admission 

PSSRU (Curtis, 2012) £2461 (£810.37) Gamma 

cChro Annual cost of chronic ill-health HALO study (Nicholls 2009) £386.42 (£96.72) Gamma 

cFatal Cost of fatal injury Functional smoke alarm 
model  (Saramago et al., 
2014) 

£205.50   

 

Fixed 

cGP 

 

Cost of 11.7 minutes GP consultation PSSRU (Curtis, 2012) £43 

 

Fixed 
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cHV Cost of a Health visitor lasting 40 
minutes 

PSSRU (Curtis, 2012) £44 (£15.56) Gamma 

 

Uncertainty around the cost estimates was taken into account using a gamma distribution:  

                       ( )XXX bCaCC ,Gamma~                                                                               (8.7) 

where 
σ
µ

2

2

X

X
XaC = , 

σ
µ

2
X

X
XbC = , Xµ  is the mean of cost of element X and Xσ  is the associated 

standard error. For example, the cost of emergency transfer with mean 263£=Xµ  and 

standard error 48.21£=Xσ  will be included in the analysis as ( )570.0,89.149Gamma   

distribution. Other health sector costs considered in the analysis (Table 8.4) are the additional 

costs of a poisoning related fatality (i.e. coroners, autopsy), follow-up GP consultation lasting 

11 minutes, health visitors’ time lasting 40 minutes and the annual costs of chronic ill-health.  

 

Evidence from the Hospital Episode Statistics indicates that approximately 24% of 

emergency department attendances arrived by emergency ambulance in the 2011-12 reporting 

period (Health & Social Care Information Centre, 2013a). Therefore the cost of emergency 

transfer was weighted by 0.242 to account for the fact that not all cases of accidental 

poisoning would incur emergency transfer costs.  Also as stated in the preschool model 

(section 8.3.2), cases were assumed to be admitted for short-inpatient stay if the injury was 

moderate leading to complete recovery, and to long-inpatient stay if the injury was severe 

leading to a chronic health condition or fatality . It was assumed that only admitted cases 

were referred for follow-up GP consultation and only severe cases were referred for follow-

up home visitation in addition to GP consultation. The additional cost of a fatality, GP 

follow-up consultation and home visitor follow-up were included in the analysis as fixed 

costs as there was no measure of uncertainty available for these two costs. The NHS costs of 

treating poisoning injuries with varying degree of severity estimated based on the above cost 

information and analysis are summarised in Table 8.5. 
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Table 8.5: Estimates of the NHS cost of treating poisoning injury by severity category 

Injury 
Category 

Cost components Mean cost (95% CrI)  

Minor  ( ) 1242.0 cEDcAmbcMinor +×=  £175.70 

(£128.10, £235.30) 

Moderate  ( ) cGPcShortcEDcAmbcModerate +++×= 2242.0  £842.70 

(£478.00, £1368.00) 

Severe  ( ) cHVcGPcLongcEDcAmbcSevere ++++×= 2242.0  £2758.00 

(£2663.00, £4591.00) 

Fatal ( ) cFatalcGPcLongcEDcAmbctFatal ++++×= 2242.0  £2882.00 

(£2788.00, £4724.00) 

cAmb = cost per case of emergency transfer  
cED1 = cost per case of emergency department treatment (cases  not admitted) 
cED2 = cost per case of emergency department treatment (cases  admitted) 
cShort = cost per case of non-elective short inpatient stay  
cLong = cost per case of non-elective inpatient stay 
cFatal = cost per case fatality 
cGP = cost of 11.3 minutes follow-up GP consultation  
cHV = cost of a home visit 
 

 

8.6 Utilities 

The primary unit of health benefit (utility) in the analysis is the quality adjusted life-year 

(QALY). These were estimated at each cycle of the model and summed across all cycles to 

obtain the total QALYs associated with each intervention group.  Because of the way the 

decision model is structured, utilities are not directly attached to health-states within the 

Markov state-transition structure (i.e. the preschool and long-term models) described in 

Section 8.3. Instead, the total utility for each health-state at the end of each cycle was 

calculated as a weighted sum of utilities associated with the health outcomes and weighted by 

the product of the respective pathway probabilities. This requires baseline data on age-

specific utilities for individuals with no poison-related injury and data on the utility 

decrement associated with poison-related injuries of varying severity. Utility for non-injured 

individuals (i.e. those with no poison-related injury) was obtained from general UK 

population utility norms (Kind et al., 1998) for people aged 18 years and above (Table 8.6).  
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Table 8.6: Utilities used in base case analysis 

Parameter Description Source Value (SE) Distribution 
uPop UK non-injured 

population utilities  
(Kind et al., 1998) <25yrs     0.94 (SE=0.12) 

25-34yrs  0.93 (SE=0.15) 
35-44yrs  0.91 (SE=0.16) 
45-54yrs  0.85 (SE=0.25) 
55-54yrs  0.80 (SE=0.26) 
65-74yrs  0.78(SE=0.26) 
≥75yrs     0.73 (SE=0.27) 
 

Normal 

uMinor Utility deficit for  
minor injury  

Miller 2000 (Miller et al., 2000). 
Assumed standard error is 10% of 
mean(Anokye et al., 2011; Pavey 
et al., 2011)  

0.03 (SE=0.003) Beta 

uModerate Utility deficit for  
moderate injury  

 Utility decrement 0.046 for 
poisoning injury (Miller et al., 
2012) 

0.046 (SE=0.0046) Beta 

uSevere Utility deficit for 
severe injury 

Utility decrement 0.046 for 
poisoning injury (Miller et al., 
2012) and decrement associated 
with disability of  0.1 from the 
HALO study  

0.146 (SE=0.0146) Beta 

uChronic Utility deficit 
associated with 
disability per year 

HALO Study (Nichol et al 2009) 0.10 (SE=0.025) Beta 

 

There was no baseline utility data for the non-injured individuals younger than 18 years in the 

UK and a paucity of evidence on decrement associated with poison related injuries in 

children under 5 years old.  As a result, assumptions were made in order to allow the cost-

effectiveness analysis to be conducted using the available evidence. It was assumed that non-

injured individuals under 18 years of age have the same quality of life value as individuals 

between the age 18 to 25 year olds (Kind et al., 1998). 

Evidence on quality of life associated with unintentional poisoning injury in childhood came 

from two articles by the same author (Miller et al., 2000; Miller et al., 2012).  Miller et al. 

(2000) reported a QALY loss of 0.046 while Miller et al. (2012) reported a QALY loss of 

0.08 for childhood poisoning injury (Table 8.6). These two figures are estimates of the utility 

for any poison-related injury irrespective of the severity of the injury. It was therefore 

assumed that minor poisoning injury were associated with a QALY decrement of 0.046 (the 

lower of the two estimates) and moderate injury was associated with QALY decrement of 

0.046 (the upper estimate). The utility decrement for severe injury was obtained by adding 

the upper estimate of 0.046 to the QALY decrement associated with chronic injury reported 

in the HALO study (Nichol et al. 2009). It is not clear whether this is a reasonable 

assumption to make. However, given paucity of data on poison related utilities and the 
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definition of severe injury as any poison injury that causes a permanent or chronic health 

condition in the preschool model, it was felt this is the best way to make use of the available 

evidence. Uncertainty was incorporated in estimating the utilities by using a strategy reported 

in Anokye et al. (Anokye et al., 2011) where it was assumed that the standard error of each 

utility decrement equals 10% of the mean value. Sensitivity analyses are conducted (the 

results of which are displayed in Table 8.9 and reported in Section 8.8.2 to investigate the 

extent to which the cost-effectiveness estimates are affected by the estimates of QALY 

decrements used in the analysis. 

 

8.7 Model evaluation 

8.7.1 Outcomes of economic evaluation  

As stated in Chapter 3 Section 3.4, the ultimate objective in a cost-effectiveness analysis is to 

estimate the expected costs and QALYs associated with the interventions being evaluated. 

From these two statistics, an incremental cost-effectiveness ratio (ICER) can be calculated 

and used to compare the costs and effects of one intervention relative to another (equation 

(3.1) in Section 3.4.1). The probability that each intervention is the most cost-effective can 

then be calculated for a range of willingness-to-pay ratios (i.e. the price that a decision maker 

is willing to pay for a unit of effectiveness, usually the QALY) and plotted on a cost-

effectiveness acceptability curve (Section 3.4.2). In the sections that follow from this point, 

the methods introduced in Chapter 3 will be applied to each part of the decision analytic 

model outlined in Figure 8.1 and used to estimate ICERs for intervention k 

),,3,2( Kk = relative to ‘usual care’ and the probability that each intervention is the most 

cost-effective at various willingness-to-pay ratios. 

 

Figure 8.2 shows a decision tree diagram showing the pathways through the intervention 

model and the respective pathway probabilities at each decision node. The intervention model 

is evaluated at the beginning of the decision model (i.e. at time, c= 1). It is assumed that all 

individuals initially enter the model in a state of good health; hence only costs associated 

with providing the intervention are incurred and no utility decrement is applied at this stage 

of the model. 
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Figure 8.2: Decision tree diagram of the intervention model 
Probabilities attached to each decision tree node are defined in Table 8.2 
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Therefore, the total cost incurred, ( )
1

kCost and total utility, ( )
1

kUtility  at time c=1 for 

intervention k are given by:  

                ( ) ( ) ( )( ) ( ) ( )( )( )NcAcceptcIntervcFixedCost k
c

k
b

kkk ×+×++= ππ1                           (8.8) 

                ( )
11 µ×= NUtility k                                                                                                  (8.9) 

where cInterv(k) is the cost of intervention k, estimated as a sum of the costs of the constituent 

components, cFixed is the fixed cost of setting up an intervention scheme, ( )kcAccept is the 

cost associated with the intervention being accepted, 1u  is the age-specific baseline utility 

corresponding to time c=1, N is the cohort size and the probabilities ( )k
bπ  and ( )k

cπ  are as 

defined in Figure 8.2 (i.e. the probabilities of safe storage and non-safe storage given that the 

intervention is accepted). 

 

The outcome of the intervention model determines the number of households that enter the 

Markov model at time  c=2 in the safe storage state with probability ( ) ( ) ( )k
b

k
a

k πππ +=1   or in 

the no safe storage state with probability ( ) ( ) ( )k
c

k
c

k πππ +=2   as shown Figure 8.2 for the kth 

intervention cohort. The Markov part of the model was evaluated by simulating the 

movement of individuals in a hypothetical cohort of size N between health states defined in 

Figure 8.1 and estimating the costs and QALYs associated with each intervention over a life 

time horizon (i.e. 100 years). Figure 8.3 displays the possible pathways that individuals are 

able to take in moving between health states in any one cycle. Let ( )k
ssλ ′ be the transition 

probability from state s to s′  and ( )k
csm ′  be the number of individuals in state s′  at time cycle 

c specific to kth intervention cohort. 
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Figure 8.3: Movement of individuals between health-states in preschool model 
Probabilities defined in Table 2 (orIngest1 = 1 if starting in no safe storage state). Health-states are labelled S1 to S6. 
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Then the distribution of individuals among the S states at time cycle (c+1) is given by: 

                    ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 11
k k k k k k k

c s c s cS Sc sm m m mλ λ λ+ = + + +  

                               ( ) ( )

1

S
k k

cs s s
s

m λ′ ′
′=

= ∑                                                                                    (8.10) 

where the vector ( ) ( )( ) ( )( )( )1 , 1 , 0, 0, 0, 0k k kN Nπ π= × −m  represent the distribution 

of households at c=1.  Equation (8.10) is an inner product of the vector ( )k
cm  representing the 

number of individuals in the various states at time cycle c, and the transition probability 

matrix ( )kλ . Note that in this model, the matrix ( )kλ  is time dependent as it incorporates age-

specific mortality statistics which depends on the age of the individual.   

 

Once the number of individuals is known, the total cost and total QALYs in the remaining 

cycles can be estimated. Firstly, the costs and QALYs associated with each state at time cycle 

c >1 is calculated by summing up all the costs and utilities associated with the pathways that 

individuals take through the model to arrive at the given state weighted by the respective 

pathway probabilities as depicted in Figure 8.3. The total costs incurred across all states in 

each cycle for the intervention k, denoted as ( )k
cCost  is then obtained by summing up the 

product of the weighted cost ( )k
csc and the number of individuals ( )k

csm  in health-state, s and 

discounted at a rate, r = 3.5% per cycle as recommended by NICE (NICE, 2012):  

 

                   ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( )1
2211

1 −−

+++
= c

k
cs

k
cs

k
c

k
c

k
c

k
ck

c r
cmcmcm

Cost
                      

                                 

( ) ( )

( )( )
1

11

S
k k

cs cs
s

c

m c

r
=

−
=

−

∑
                                                                                    (8.11) 

The total utility gained at each cycle is obtained in a similar way at each cycle: 
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                    ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( )
1 1 2 2

11

k k k k k k
k c c c c cS cS

c c

m u m u m uUtility
r −
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S
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−
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where ( )k
cUtility is the total utility gained in cycle c for intervention k and ( )k

csµ   is the utility in 

health state s. The results of equations (8.11) and (8.12) are used to estimate the mean costs 

and mean utility by summing up the costs and utilities across all cycles divided by the 

number of individuals in the cohort: 

                 ( ) ( )

1

1 T
k k

c
c

MeanCost Cost
N =

= ∑                                                                               

(8.13) 

                 ( ) ( )

1

1 T
k k

c
c

MeanUtility Utility
N =

= ∑                                                                          

(8.14) 

To assess the cost-effectiveness of each of the 6 active interventions compared to usual care 

in the base-case analysis, the incremental-cost-effectiveness ratio was calculated as a 

difference between the mean costs and the mean utility as:  

                ( )
( ) ( )

( ) ( )

( )

( )

1

1

kk
k C

k k
E

MeanCost MeanCostICER
MeanUtility MeanUtility

−
= =

−
∆
∆

                                              

(8.15) 

The ICERs obtained from equation (8.15) can be used to estimate an incremental net 

monetary benefit and the probability that each intervention k is cost-effective for a range of 

ceiling or willingness-to-pay ratios per additional unit of health,α . To do this, the 

incremental net benefit ( )kINB  for intervention k compared to usual care is given by the 

equation (Welton et al., 2012): 

                    ( ) ( ) ( ) 0k kk
E CINB α= − >∆ ∆                                                                              (8.16) 
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For a probabilistic decision model, the net benefit function in equation (8.16) can be used to 

estimate the probability that the intervention k is the most cost-effective compared to usual 

care at different values of α : 

                ( )
( )Number of simulations 0

Total number of simulations

k
k INBpCE α

α
>

=                                                     (8.17) 

A plot of ( )kpCEα  against α  gives the cost-effectiveness acceptability curve (CEAC) for 

intervention k relative to usual care intervention.   

 

8.7.2 Implementing the analysis 

The analysis was conducted within a Bayesian framework utilising the comprehensive 

decision modelling approach introduced earlier in Section 3.3.4. This allows the synthesis of 

evidence (i.e. network meta-analysis model) and the cost-effectiveness evaluation to be 

conducted in one analysis model.  This approach has the advantage that correlations between 

model parameters are automatically incorporated and propagated through to model outputs 

together with uncertainty (Cooper et al., 2004; Welton et al., 2012). All data sources used to 

inform model parameters are presented in Tables 8.1 to 8.6. The parameters of the decision 

model itself are given informative prior distributions based on the available evidence; hence 

minimally informative prior distributions were specified only for the parameters of the 

network meta-analysis embedded within the comprehensive decision model. Accordingly the 

pooled mean effects relative to usual care intervention and the study-specific effects were 

given Normal (0, 103) prior distributions and the between-study standard deviation was given 

a Uniform(0,2) prior distribution which are considered to be minimally informative on the 

log-odds ratio scale (Dias et al., 2012).  

 

The model was fitted in WinBUGS with the parameters estimated by means of Markov Chain 

Monte Carlo (MCMC) simulations. Estimates were obtained after running 3 MCMC chains 

for 30 000 iterations using disparate starting values. The first 10 000 iterations from each 

chain were discarded as ‘burn-in’ samples to ensure that the starting values do not influence 

the samples on which inference is based (Spiegelhalter et al., 2007). Convergence diagnostics 
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were assessed in the same way as reported in Chapter 5. The WinBUGS code used to 

implement the model is given in Appendix V. 

 

8.7.3 Incorporating uncertainty 

Uncertainty in the model was addressed through probabilistic modelling and deterministic 

sensitivity and scenario analyses. The uncertainty in model inputs was taken into account by 

expressing parameters in the model as probability distributions. In addition to the base-case 

analysis, a number of sensitivity analyses (SA) were also conducted to investigate: i) the 

impact of assumptions underlying the model on estimates of cost-effectiveness, ii) 

uncertainty associated with multiple sources of evidence for a single parameter where it was 

uncertain as to which was the most appropriate, iii) parameters included in the model as fixed 

values due to lack of data on the appropriate measure of variability and iii) what if scenarios 

and best-case versus worse-case scenarios. The list of sensitivity analyses that were 

conducted are displayed in Box 8.1. 

 
Box 8.1: List of sensitivity analyses 
 
SA1 Baseline probability of safe storage changed from 75% (KCS community controls) to 93% (Patel et al 

2008) 
SA2 Baseline probability of safe storage changed from 75% (KCS community controls) to 50% 

(Assumption) 

SA3 Probability intervention is accepted changed from 90% to 50% (Assumption) 

SA4 Proportion admitted changed from 70% (HSE, 2012) to 83.3% (Phil Miller, personal communication) 

SA5 Probability of permanent injury among admitted cases changed from 1.9% (NSPD 2012 report) to 
4.2% (Assumption based on HASS 2002) 

SA6 Cost of education changed from £11.33 (based on 20 minutes of a local authority workers time) to 
£0.56 (cost of home safety information pack per family reported in the Safe At Home Project report, 
2011). 

SA7 Reduce the number of cupboard locks from two locks (costing £6.80) to one lock costing £3.40. 

SA8 Increase the number of children in a household from 1 to 1.8. 

SA9 Increase the uncertainty associated with the utility decrements for poisoning injuries changed from 
10% of the utility decrement value to 20% (i.e. utility decrement entered in the model as fixed values 
without uncertainty). 

SA10 The uncertainty associated with the utility decrements for poisoning injuries changed from 10% of the 
utility decrement value to zero (i.e. utility decrement entered in the model as fixed values without 
uncertainty). 
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8.8 Results 

8.8.1 Base case analysis 

The results of the base case cost-effectiveness evaluation are presented in Table 8.7. 

Estimates of the mean and incremental costs and QALYs are expressed per 1000 households 

because the gain in utility per household was very small for the intervention groups compared 

to usual care. The expected utility per 1000 households was about 25056 years (or a slightly 

more than 25 years per individual) of perfect health for all intervention groups. It can be seen 

that the usual care cohort has the lowest mean cost (about £4,582.484 (95% CrI £3,206.543 to 

£6,794.282) per 1000 households). The intervention with ‘education, home inspection and 

provision and installation of equipment’, which is also the most intensive strategy, has the 

highest mean cost of about £14,139.442 (95% CrI £12,575.590 to £16,392.710). This is to be 

expected as the low incidence of accidental ingestion implies that most households receiving 

the intervention with associated costs do not have unintentional poisoning injury and 

therefore do not have the substantial costs associated with the treatment pathways through the 

model. Compared to usual care, the interventions with the lowest cost and hence the lowest 

ICERs were education (£75,090.867, 95% CrI £44,454.684 to £175,345.172) per QALY 

gained and provision of low cost/free equipment (£74,073.852, 95% CrI £43,436.203 to 

£175,604.781) per QALY gained while the most intensive intervention comprising of 

‘education, low cost/free equipment, home safety inspection and fitting’ has the highest ICER 

at £360,345.594 (95%CrI £220,222.875 to £807,064.000) per QALY gained. 
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Table 8.7: Base case analysis results 

Intervention Expected                           
QALYs 

Expected                      
Costs (£s) 

Incremental 
QALYs 

Incremental          Costs 
(£s) 

ICER                                                   
(£s per QALY) 

Probability 
CE 
(£30,000) 

Probability 
CE 
(£50,000) 

UC 25,056.324 
(25,039.085 to 25,073.410) 

4,582.484 
(3,206.543 to 6,794.282) 

   1 1 

 E 25,056.349 
(25,039.112 to 25,073.439) 

6,527.061 
(5,183.626 to 8,672.029) 

0.026 
(0.012 to 0.042) 

1,943.250 
(1,758.051 to 2,108.687) 

75,090.867 
(44,454.684 to 175,345.172) 

0 0 

FE 25,056.349 
(25,039.114 to 25,073.439) 

6,553.776 
(5,209.264 to 8,695.595) 

0.026 
(0.012 to 0.043) 

1,968.446 
(1,773.344 to 2,140.042) 

74,073.852 
(43,436.203 to 175,604.781) 

0 0 

E + FE 25,056.349 
(25,039.114 to 25,073.439) 

8,039.002 
(6,670.992 to 10,190.743) 

0.026 
(0.012 to 0.043) 

3,453.429 
(3,191.833 to 3,716.915) 

130,234.188 
(78,037.828 to 299,593.656) 

0 0 

E + FE + HSI 25,056.347 
(25,039.112 to 25,073.435) 

11,491.245 
(10,022.280 to 13,693.583) 

0.026 
(0.012 to 0.042) 

6,897.82 
(6,417.179 to 7,404.3260) 

268,942.563 
(163,016.766 to 608,722.000) 

0 0 

E + FE + F 25,056.347 
(25,039.112 to 25,073.439) 

10,703.370 
(9,264.202 to 12,896.240) 

0.026 
(0.012 to 0.042) 

6,114.845 
(5,686.187 to 6,559.178) 

238,080.594 
(144,275.344 to 534,364.813) 

0 0 

E + FE + HSI + F 25,056.349 
(25,039.114 to 25,073.441) 

14,139.442 
(12,575.590 to 16,392.710) 

0.026 
(0.012 to 0.043) 

9,538.38 
(8,868.862 to 10,244.129) 

360,345.594 
(220,222.875 to 807,064.000) 

0 0 

Data are expected QALY (95% credibility interval) and expected costs (95% credibility interval) per 1,000 households. UC = usual care; (2) E = education; (3) E + FE = education + low cost/free 
equipment; (4)  E + FE+HSI = education + low cost/free equipment + home safety inspection; (5) E+ FE + F = education + low cost/free equipment + Fitting; (6) E + FE + HSI + F+ fitting = 
education + low cost/free equipment + home safety inspection + Fitting; (7) FE = low cost/free equipment . Probability CE = probability that intervention is cost effective at a £30,000/£50,000 
threshold value. QALYs = quality-adjusted life years. 
 

 

Felix Achana PhD Thesis, September 2014 175 



Chapter 8  Medicinal poisonings decision model 
 

Figure 8.4 is a plot of simulated 4000 samples of the incremental costs versus incremental 

QALYs for each of the 6 interventions compared to usual care on a cost-effectiveness plane. 

Each of the simulated (4000 samples) results of probabilistic ICERs for all 6 interventions 

compared to usual care is presented on a cost-effectiveness plane. All the ICERs lie in the 

north-east quadrant of the plane, suggesting that each of the 6 intervention strategies is more 

costly but also more effective than usual care. Education and low cost/free equipment have 

identical ICERs compared to usual care intervention; hence the simulated results for these 

two ICERs almost completely overlap each other in Figure 8.4.   
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Figure 8.4: Cost-effectiveness of home safety interventions to reduce unintentional 
poisoning in children under 5years old from the base case analysis 
Abbreviations (E=Education, FE= Provision of free/low cost equipment, HSI= Home 
safety inspection, F=Fitting of equipment). NB: education and low cost/free equipment 
have similar ICERs compared to usual care, hence the simulated ICERs representing 
these two interventions overlap each other  
 

Also notice that simulated ICERs are almost all parallel to the x-axis in Figure 8.4. This 

suggests all the interventions produced a broadly similar gain in QALYs but differed only in 
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the incremental cost which increased with increasing intensity of intervention. Hence the cost 

of providing the intervention was the main driver of cost effectiveness in the base case 

analysis. The probabilistic ICERs for education and low cost/free equipment as stand-alone 

interventions therefore overlap each other on the cost-effectiveness plane while the ICERs for 

‘education, low cost/free equipment, home safety inspection and fitting’ lie at the top end of 

the plot as it is the intervention with the most incremental costs. At a willingness-to-pay ratio 

of £30,000 per QALY gained, usual care has a 100% probability of being the most cost-

effective intervention (Table 8.7).  

 

Figure 8.5 is a plot of the probability that each intervention is the most cost-effective at 

different willingness-to-pay ratios (α ) for the base case analysis. Usual care, education and 

provision of free/low cost equipment are the only interventions that have non-zero 

probabilities of being the most cost-effective intervention between α  values ranging from £0 

per QALY to £100,000 per QALY gained. Hence only the cost-effectiveness acceptability 

curves for these three interventions are displayed on Figure 8.5. The plot shows that the usual 

care intervention has the greatest probability of being the most cost-effective intervention at 

α  values below £75, 000 per QALY above which low cost/free equipment becomes the 

most cost-effectiveness intervention at higher values of α .  
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Figure 8.5: Cost-effectiveness acceptability curves for the base case analysis 
Curves indicate the probability that each intervention is the most cos-effective for a 
range of willingness-to-pay ratios (20K stands for £20,000/QALY etc.) 
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8.8.2 Sensitivity analyses I results 

Tables 8.8 and 8.9 and display the results of sensitivity analyses conducted to investigate the 

effect of varying particular assumptions and parameters of the model on the cost-

effectiveness estimates. Only results for the three interventions (usual care, education and low 

cost/free equipment) with a non-zero probability of being the most cost-effective intervention 

at α values range from £0 - £100,000 per QALY are presented. These results show that cost-

effectiveness estimates are robust to changes of assumptions and parameter estimates tested 

in most of the sensitivity analyses. At a willingness-to-pay ratio of £30,000/QALY, usual 

care continues to have the highest probability of being the most cost-effective strategy.  
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Table 8.8: Probability that an intervention is the most cost-effective at a willingness-to-pay ratio of £30,000 per QALY from base-case 
and a number of sensitivity analyses.  

Analysis Description 

Probability intervention is the most cost-effective 
at  £30,000 per QALY 

Usual Care Education  Equipment 

BCA Base case analysis 1 0.000 0.000 

SA1 Baseline probability of safe storage changed from 75% (KCS community controls) to 93% (Patel et al 2008) 1 0.000 0.000 

SA2 Baseline probability of safe storage changed from 75% (KCS community controls) to 50% (Assumption) 1 0.000 0.000 

SA3 Probability intervention is accepted changed from 90% to 50% (Assumption) 1 0.000 0.000 

SA4 Proportion admitted changed from 70% (HSE, 2012) to 83.3% (Phil Miller, personal communication) 0.998 0.0004 0.001 

SA5 Probability of permanent injury among admitted cases changed from 1.9% (NSPD 2012 report) to 4.2% 
(Assumption based on HASS 2002) 0.881 0.037 0.082 

SA6 Cost of education changed from £11.33 (based on 20 minutes of a local authority workers time) to £0.56 (cost of 
home safety information pack per family reported in the Safe At Home Project report, 2011). 0.224 0.776 0.000 

SA7 Reduce the number of cupboard locks from two locks (costing £6.80) to one lock costing £3.40. 0.916 0.000 0.084 

SA8 Increase the number of children in a household from 1 to 1.8. 0.854 0.040 0.106 

SA9 Increase the uncertainty associated with the utility decrements for poisoning injuries changed from 10% of the 
utility decrement value to 20% (i.e. utility decrement entered in the model as fixed values without uncertainty). 1 0.000 0.000 

SA10 The uncertainty associated with the utility decrements for poisoning injuries changed from 10% of the utility 
decrement value to zero (i.e. utility decrement entered in the model as fixed values without uncertainty). 1 0.000 0.000 
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Only changing the cost of the intervention and increasing the number of children per 

household from 1 to 1.8 appeared to influence the cost-effectiveness estimates. In sensitivity 

analysis 6, for example, the cost of home safety education was reduced from £11.33 (based 

on 20 minutes of a local authority workers time) to £0.56 (which is the cost of home safety 

information pack per family reported in the Safe At Home Project report (Errington et al., 

2011)). This makes education the most cost-effective intervention with a probability of 1 (at 

000,30£=α per QALY gained) and an ICER of £22,193.77 (95% CrI £11,091.88 to 

£58,994.16) per QALY gained compared to usual care (see SA6 of Table 8.9). Similarly, 

reducing the number of cupboard locks supplied as part of an intervention scheme from two 

locks (costing £6.80) to one lock (costing £3.40) reduced the ICER for low cost/free 

equipment to £41,152.13(95% CrI 24,131.23 to £97,558.10) per QALY gained compared 

with usual care (see SA7 of Table 8.9). Probability of being the most cost-effective 

intervention at 000,30£=α per QALY gained in this sensitivity analysis was 0.342 for low 

cost/free equipment and 0.677 for usual care.  
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Table 8.9: Results of sensitivity analysis from the decision analysis carried out in Chapter 8 
Only results for the three interventions (usual care, education and low cost/free equipment) are displayed 

 
Expected QALYs Expected Costs (£s) Incremental QALYs Incremental Costs (£s) ICER (£s per QALY) Probability CE 

(£30,000) 
Probability CE 
(£50,000) 

SA1: Baseline probability of safe storage changed from 75% (KCS community controls) to 93% (Patel et al 2008) 

 UC 25,056.379 
(25,039.171 to 25,073.389) 

5,408.819 
(3,821.254 to 7,859.981) 

   1.000 1.000 

E 25,056.406 
(25,039.200 to 25,073.420) 

8,736.729 
(7,202.928 to 11,099.263) 0.030(0.014 to 0.051) 

3,327.817 
(3,124.751 to 

3,510.758) 

108,672.828 
(63,916.242 to 252,348.609) 

0.000 0.000 

FE 25,056.406 
(25,039.202 to 25,073.421) 

8,794.313 
(7,258.048 to 11,161.565) 0.031(0.014 to 0.052) 3,384.031 

(3,173.847 to 3,571.45) 
107648.438 
(62768.465 to 253147.891) 

0.000 0.000 

SA2: Baseline probability of safe storage changed from 75% (KCS community controls) to 50% (Assumption) 

UC 25,056.425 
(25,039.188 to 25,073.523) 

3,365.399 
(2,145.585 to 5,368.190) 

   1.000 1.000 

 E 25,056.429 
(25,039.188 to 25,073.524) 

4,603.245 
(3,309.709 to 6,677.042) 0.002(0.000 to 0.004) 1,211.478(989.988 to 

1,609.363) 
764,751.625 
(351,516.000 to 2,194,121.50) 

0.000 0.000 

FE 25,056.429 
(25,039.188 to 25,073.524) 

4,613.529 
(3,317.301 to 6,688.691) 0.002(0.000 to 0.004) 1,220.869(994.35 to 

1,627.865) 
748,935.625 
(345,134.312 to 2,173,635.750) 

0.000 0.000 

SA3: Probability intervention is accepted changed from 90% to 50% (Assumption) 

UC 25,056.324 
(25,039.085 to 25,073.410) 

4,582.488 
(3,206.546 to 6,794.293) 

   1.000 1.000 

E 25,056.337 
(25,039.103 to 25,073.425) 

6,017.573 
(4,659.133 to 8,190.004) 

0.014 
(0.006 to 0.023) 

1,433.045 
(1,330.156 to 1,524.955) 

99,734.570 
(59,950.289 to 229,715.234) 

0.000 0.000 

FE 25,056.339 
(25,039.103 to 25,073.425) 

6,030.925 
(4,674.281 to 8,201.463) 

0.015 
(0.007 to 0.024) 

1,447.043 
(1,338.653 to 1,542.374) 

98,156.273 
(58,349.586 to 229,039.672) 

0.000 0.000 

SA4: Proportion admitted changed from 70% (HSE, 2012) to 83.3% (Phil Miller, personal communication) 

UC 25,056.532 
(25,039.431 to 25,073.469) 

5,227.188 
(3,556.498 to 7,888.824) 

   1.000 1.000 

E 25,056.562 
(25,039.471 to 25,073.498) 

7,136.789 
(5,514.080 to 9,733.726) 

0.029 
(0.013 to 0.047) 

1,909.374 
(1,702.26 to 2,089.349) 

65,745.500 
(38,683.371 to 156,058.344) 

0.000 0.000 
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FE 25,056.566 
(25,039.473 to 25,073.500) 

7,160.833 
(5,535.07 to 9,758.969) 

0.030 
(0.013 to 0.049) 

1,934.151 
(1,718.117 to 2,121.301) 

64,822.867 
(37,509.660 to 157,791.625) 

0.000 0.000 

SA5: Probability of permanent injury in admitted cases changed from 1.9% (NSPD 2012 report) to 4.2% (Assumption based on HASS 2002) 

UC 25,056.211 
(25,039.001 to 25,073.324) 

5,652.26 
(4,052.068 to 7,963.166) 

   0.737 0.185 

E 25,056.253 
(25,039.028 to 25,073.355) 

7,504.056 
(5,956.074 to 9,775.334) 

0.042 
(0.018 to 0.070) 

1,861.689 
(1,652.01 to 2,056.304) 

44,502.5703125 
(24,908.361 to 111,361.195) 

0.090 0.274 

FE 25,056.255 
(25,039.026 to 25,073.357) 

7,542.185 
(5,993.337 to 9,809.694) 

0.043 
(0.018 to 0.072) 

1,897.872 
(1,681.319 to 2,101.732) 

44,093.344 
(24,551.545 to 113,724.445) 

0.173 0.541 

SA6: Cost of education changed from £11.33 (based on 20 minutes of a local authority workers time) to £0.56 (cost of home safety information pack per family reported in the Safe At Home 
Project report, 2011). 

UC 25,056.324 
(25,039.085 to 25,073.410) 

4,582.488 
(3,206.546 to 6,794.293) 

   0.000 0.000 

E 25,056.349 
(25,039.112 to 25,073.439) 

5,163.133 
(3,824.456 to 7,298.587) 

0.026 
(0.012 to 0.042) 

579.268 
(416.319 to 706.119) 

22,193.7734375 
(11,091.881 to 58,994.156) 

1.000 1.000 

FE 25,056.349 
(25,039.114 to 25,073.439) 

6,553.782 
(5,209.266 to 8,695.605) 

0.026  
(0.012 to 0.043) 

1,968.446 
(1,773.343 to 2,140.041) 

74,073.836 
(43,436.219 to 175,604.594) 

0.000 0.000 

SA7: Reduce the number of cupboard locks from two locks (costing £6.80) to one lock costing £3.40. 

UC 25,056.324 
(25,039.085 to 25,073.410) 

4,582.488 
(3,206.546 to 6,794.293) 

   0.677 0.155 

E 25,056.349 
(25,039.112 to 25,073.439) 

6,527.066 
(5,183.629 to 8,672.038) 

0.026 
(0.012 to 0.042) 

1,943.249 
(1,758.050 to 2,108.686) 

75,090.891 
(44,454.703 to 175,345.063) 

0.000 0.000 

FE 25,056.349 
(25,039.114 to 25,073.439) 

5,791.69 
(4,455.652 to 7,929.708) 0.026(0.012 to 0.043) 1,208.62 

(1,031.219 to 1,349.098) 
45,325.625 
(25,627.043 to 111,643.75) 

0.323 0.844 

SA8: Increase the number of children in a household from 1 to 1.8 

UC 25,056.324 
(25,039.085 to 25,073.41) 

4,582.488 
(3,206.546 to 6,794.293) 

   0.534 0.090 

E 25,056.349 
(25,039.112 to 25,073.439) 

6,527.066 
(5,183.629 to 8,672.038) 

0.026 
(0.012 to 0.042) 

1,943.249 
(1,758.050 to 2,108.686) 

41,717.160 
(24,697.057 to 97,413.930) 

0.123 0.239 

FE 25,056.349 
(25,039.114 to 25,073.439) 

6,553.782 
(5,209.266 to 8,695.605) 

0.026 
(0.012 to 0.043) 

1,968.446 
(1,773.343 to 2,140.041) 

41,152.133 
(24,131.232 to 97,558.102) 

0.342 0.671 
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SA9: Increase the uncertainty associated with the utility decrements for poisoning injuries changed from 10% of the utility decrement value to 20%  

UC 25,056.496 
(25,039.32 to 25,073.778) 

4,598.429 
(3,187.581 to 6,815.030) 

   1.000 1.000 

E 25,056.524 
(25,039.343 to 25,073.799) 

6,544.405 
(5,164.149 to 8,696.96) 

0.026 
(0.011 to 0.042) 

1,942.735 
(1,758.842 to 2,107.723) 

74,677.891 
(44,061.750 to 178,996.891) 

0.000 0.000 

FE 25,056.526 
(25,039.343 to 25,073.801) 

6,570.660 
(5,193.505 to 8,723.189) 

0.026 
(0.012 to 0.043) 

1,969.168 
(1,778.752 to 2,139.504) 

74,041.211 
(43,100.152 to 181,167.438) 

0.000 0.000 

SA10: The uncertainty associated with the utility decrements for poisoning injuries changed from 10% of the utility decrement value to zero (i.e. utility decrement entered in the model as fixed 
values without uncertainty). 

UC 25,056.479 
(25,039.433 to 25,074.003) 

4,597.515 
(3,202.75 to 6,749.747) 

   1.000 1.000 

 E 25,056.503 
(25,039.463 to 25,074.028) 

6,540.991 
(5,191.194 to 8,643.058) 

0.026 
(0.012 to 0.041) 

1,943.535 
(1,759.033 to 2,107.683) 

74,984.555 
(44,704.977 to 176,456.95) 

0.000 0.000 

FE 25,056.503 
(25,039.461 to 25,074.028) 

6,564.879 
(5,214.495 to 8,655.904) 

0.027 
(0.012 to 0.043) 

1,967.813 
(1,775.796 to 2,137.956 

73,625.648 
(43,590.629 to 177,627.906) 

0.000 0.000 
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8.8.3 Sensitivity analysis II: Baseline risk adjusted  

The effectiveness estimates from the NMA that informed the economic evaluation were 

adjusted for baseline risk based on the methodology developed in Chapter 6 (Achana et al., 

2013). Specifically, Model 1A of section 6.4.3 which assumed a common regression 

coefficient for all treatment ×  covariate interactions (i.e. ββ =Ak ) with unconstrained 

baseline risk, iAµ  across studies was used and β and iAµ  given minimally informative prior 

distributions:                         

                              ( )310,0Normal~, iAµβ     

This adjusted analysis was conducted first to demonstrate application of the new synthesis 

methodology to economic evaluation within a PH context and secondly to investigate 

whether or not differences in the distribution of the control group event rate (i.e. proportion 

of households with safe storage of medicines in the usual care intervention arm) have an 

effect on the cost-effectiveness estimates. The regression coefficient β  was estimated to be   

-0.152 (95% CrI -0.359 to 0.115) indicating that there was no evidence to suggest the 

intervention effects were associated with baseline safety practices as estimated by the 

proportion of households with safe storage of medicines rates in the usual care arm of studies.  

Consequently using the adjusted estimates in the decision analysis had no effect on the cost-

effectiveness estimates. These are displayed in Table 8.10 and are almost identical to the 

results for the base case analysis with usual care still being the most cost-effective 

intervention at λ values of £30,000 and £50,000 per QALY respectively. 

 

Note that if required, the models specified in Chapter 6 can be used to predict the treatment 

effect parameters in a population with known baseline risk. For example, the predicted effect 

of treatment k relative to treatment b denoted by pred
ibkd   for a population i with baseline risk ix  

follows: 

                        ( )xxdd ibkbk
pred

ibk −+= β                                                                             (8.18) 

where bkd  and bkβ  are as defined in equation 6.2 (namely bkd  is the mean effect of 

intervention k relative to intervention b adjusted at the centred baseline risk value x , and bkβ  
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is the change in the log-odds ratio of an event per unit change in the baseline risk for 
intervention k relative to b).  The predicted effectiveness estimates pred

ibkd , can then be 
incorporated directly into the decision analytic model as described above.  
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Table 8.10: Sensitivity analysis results incorporating adjusted estimates based on the methods presented in Chapter 6. 

Intervention Expected                           
QALYs 

Expected                      
Costs (£s) 

Incremental 
QALYs 

Incremental          Costs 
(£s) 

ICER                                                   
(£s per QALY) 

Probability 
CE (£30,000) 

Probability 
CE (£50,000) 

UC 25,056.49 
(25,039.261 to 25,073.671) 

4,589.209 
(3,180.039 to 6,828.071) 

   1 1 

 E 25,056.519 
(25,039.282 to 25,073.698) 

6,537.452 
(5,161.843 to 8,714.782) 

0.027 
(0.012 to 0.044) 

1,943.498 
(1,758.1630 to 2,106.994) 

71,177.08 
(42,410.88 to 165,196.80) 

0 0 

FE 25,056.519 
(25,039.282 to 25,073.702) 

6,562.115 
(5,188.673 to 8,736.221) 

0.028 
(0.013 to 0.045) 

1,967.684 
(1,775.143 to 2,137.254) 

69,956.44 
(41,288.46 to 165,001.90) 

0 0 

E + FE 25,056.52 
(25,039.282 to 25,073.70) 

8,053.416 
(6,643.763 to 10,234.573) 

0.028 
(0.013 to 0.045) 

3,452.978 
(3,191.665 to 3,707.736) 

123,048.90 
(74,170.0 to 283,082.0) 

0 0 

E + FE + HSI 25,056.519 
(25,039.282 to 25,073.70) 

11,490.844 
(10,001.724 to 13,718.154) 

0.028 
(0.013 to 0.045) 

6,890.954 
(6,403.567 to 7,389.143) 

246,780.80 
(150,953.0 to 553,591.40) 

0 0 

E + FE + F 25,056.519 
(25,039.282 to 25,073.698) 

10,709.185 
(9,243.674 to 12,920.988) 

0.027 
(0.012 to 0.044) 

6,109.439 
(5,680.384 to 6,549.414) 

222,093.10 
(135,688.1 to 495,035.0) 

0 0 

E + FE + HSI + F 25,056.519 
(25,039.282 to 25,073.70) 

14,150.879 
(12,569.782 to 16,442.518) 

0.027 
(0.012 to 0.044) 

9,545.723 
(8,868.781 to 10,238.464) 

349,557.40 
(213,685.8 to 776,726.60) 

0 0 

Data are expected QALY (95% credibility interval) and expected costs (95% credibility interval) per 1,000 households. UC = usual care; E = education; E + FE = education + low cost/free 
equipment; E + FE+HSI = education + low cost/free equipment + home safety inspection; E+ FE + F = education + low cost/free equipment + Fitting; E + FE + HSI + F+ fitting = education + 
low cost/free equipment + home safety inspection + Fitting; FE = low cost/free equipment. Probability CE = probability that intervention is cost effective at a £30,000/£50,000 threshold value. 
QALYs = quality-adjusted life years. 
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8.8.4 Sensitivity analysis III: Using effectiveness estimates from the multivariate analysis 

In this sensitivity analysis, the methodology developed in Chapter 7  (Achana et al., 2014a) to 

synthesise effectiveness evidence across multiple outcomes (i.e. injury prevention domains) 

is applied to the comprehensive decision model developed this Chapter. As stated in the 

overview of Chapter 7, this type of analysis enable all available evidence relevant to a 

decision problem to be taken into account when summarising evidence to inform an 

economic evaluation. This can be useful in a PH evaluation context where the evidence base 

is often scarce or limited in one way or another. 

 

The results of the first stage multivariate analysis (Achana et al., 2014a) described in Chapter 

7 (see section 7.4.2) are not used because these were broadly similar to estimates from the 

univariate NMA used in the base case decision model. Thus in this sensitivity analysis, only 

the results of the second stage multivariate analysis (i.e. Model 3 of Chapter 7 Section 7.4.3) 

are used to inform the cost-effectiveness analysis. In this model, intervention effects were 

assumed to be exchangeable across outcomes which enabled more precise effectiveness 

estimates to be obtained for all interventions including predicted estimates of effects where 

direct trial data is not available. For example the estimate for education versus usual care on 

safe storage of medicines changed from an OR of 1.39 (95% CrI 0.73 to 2.28) in standard 

NMA analysis to 1.32 (95% CrI 0.71 to 2.16) in the second stage multivariate model. 

 

To fit this analysis within the comprehensive decision model, iAµ , representing the log-odds 

of safe storage in the usual care arm of studies were assumed to be normally distributed with 

mean µ  and variance 2
µσ  in order to make missing iAµ s from studies that do not have usual 

care-arm identifiable: 

                      ( )2,Normal~ µσµµiA   

where ( )310,0Normal~µ  and ( )2,0Uniform~µσ  prior distributions were specified for the 

respective parameters. 
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Table 8.11 displays the cost-effectiveness estimates for based for this sensitivity analysis. 

First, it can be seen that ICERs were obtained for all 8 interventions relative to usual care 

including estimates for ‘education and home safety inspection’ and ‘education and home 

visit’ which were not available from the base case analysis. The estimated ICERs in were 

lower in the multivariate analysis than those obtained from the base case model but UC 

remained the most cost-effective intervention at 000,30£=λ  per QALY with probability 

0.69 followed by provision of low cost/free equipment alone with probability 0.19 and 

education alone with probability 0.12 (Figure 8.6). All the other interventions have a zero 

probability of being the most cost-effective intervention at λ values up to £100,000 per 

QALY, so cost-effectiveness acceptability curves for these are not displayed in Figure 8.6. 
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Table 8.11: Sensitivity analysis using effectiveness estimates on safe storage of medicines from multivariate NMAs (model 3) presented 
in Chapter 7. 

Intervention Expected                           
QALYs 

Expected                      
Costs (£s) 

Incremental 
QALYs 

Incremental          
Costs (£s) 

ICER                                                   
(£s per QALY) 

Probability 
CE (£30,000) 

Probability 
CE (£50,000) 

UC 25,056.225 
(25,039.469 to 25,073.578) 

5,393.226 
(3,971.242 to 7,563.625) 

   0.929 0.410 

 E 25,056.252 
(25,039.492 to 25,073.605) 

6,552.195 
(5,173.962 to 8,663.757) 

0.024 
(0.011 to 0.039) 

1,163.253 
(987.578 to 1,323.656) 

47,876.14 
(27,001.615 to 119,470.5) 

0.040 0.347 

FE 25,056.252 
(25,039.492 to 25,073.605) 

6,585.009 
(5,208.121 to 8,698.240) 

0.024 
(0.010 to 0.040) 

1,194.933 
(1,013.128 to 1,359.812) 

49,366.21 
(27,060.912 to 131,775.0) 

0.031 0.243 

E + FE 25,056.253 
(25,039.494 to 25073.606) 

8,067.562 
(6,662.20 to 10,193.320) 

0.026 
(0.011 to 0.042) 

2,671.604 
(2,416.564 to 2,925.679) 

103,187.70 
(61,917.477 to 241,381.5) 

0 0 

E + FE + HSI 25,056.253 
(25,039.494 to 25,073.605) 

11,502.769 
(10,021.366 to 13,685.529) 

0.026 
(0.011 to 0.042) 

6,104.935 
(5,623.281 to 6,593.228) 

237,496.2 
(144,462.047 to 544,826.9) 

0 0 

E + FE + F 25,056.252 
(25,039.492 to 25,073.605) 

10,729.288 
(9,270.933 to 12,895.501) 

0.024 
(0.011 to 0.040) 

5,331.774 
(4,905.398 to 5,762.07) 

218,508.9 
(130,430.039 to 511,820.2) 

0 0 

E+HSI 25,056.248 
(25,039.492 to 25,073.597) 

10,029.7 
(8,579.253 to 12,192.57) 

0.019 
(0.005 to 0.038) 

4,635.095 
(4,250.595 to 5,019.478) 

237,447.9 
(118,198.68 to 985,403.2) 

0 0 

E+HV 25,056.25 
(25,039.494 to 25,073.606) 

10,011.304 
(8,563.152 to 12,172.209) 

0.022 
(0.005 to 0.040) 

4,614.602 
(4,230.198 to 5,002.835) 

209,116.8 
(112,401.719 to 895,005.9) 

0 0 

E + FE + HSI + 
F 

25,056.253 
(25,039.494 to 25,073.603) 

14,157.283 
(12,566.775 to 16,383.749) 

0.026 
(0.011 to 0.042) 

8,754.287 
(8,085.174 to 9,435.503) 

338,497.6 
(207,613.844 to 770,333.4) 

0 0 

Data are expected QALY (95% credibility interval) and expected costs (95% credibility interval) per 1,000 households. UC = usual care; E = education; E + FE = education + low cost/free 
equipment; E + FE+HSI = education + low cost/free equipment + home safety inspection; E+ FE + F = education + low cost/free equipment + Fitting; E + FE + HSI + F+ fitting= education + 
low cost/free equipment + home safety inspection + Fitting; FE = low cost/free equipment. Probability CE = probability that intervention is cost effective at a £30,000/£50,000 threshold value. 
QALYs = quality-adjusted life years. 
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Figure 8.6: Cost-effectiveness acceptability curves using estimates from the multiple 
outcomes NMA (Model 3) for safes storage of medicines described in Chapter 7. 

 

 

8.9 Discussion 

8.9.1 Summary of findings 

The analysis presented in this chapter is believed to be the first to evaluate the cost-

effectiveness of interventions to prevent medicinal poisonings in children under 5 years of 

age. Interventions that have one safety element or component such as home safety education 

alone or providing low cost/free equipment alone were associated with the lowest ICERs 

compared to usual care, whereas multi-component interventions generally had higher ICERs. 

Compared to usual care intervention, education alone was estimated to provide an extra 

QALY at £75,090 (95% CrI £44,454 to £175,345) where as providing low cost or free 

equipment alone provided an extra QALY at £56,346.99 (95% CrI 34,364.35 to 133,447.67).  

All other interventions had much higher ICERs when compared to usual care. The analysis 

above has been conducted from the perspective of the UK health service and Personal Social 

Services, and, as stated in Chapter 3 Section 3.4.2, NICE (NICE, 2013) would usually 
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consider ICERs below £30,000 per QALY gained as cost-effective use of NHS resources 

when appraising health technologies. Applying this criterion to the base case analysis results 

would thus suggest that home safety education and/or provision of safety equipment 

interventions are unlikely to be cost-effective compared to usual care unless policy makers 

are willing to pay more than £75,000 for a unit of health (QALY).   

 

There was considerable uncertainty in these estimates and a number of sensitivity analyses 

were carried out to assess the robustness of the findings. These extra analyses indicate the 

base case results were largely robust to alternative model specifications and to most model 

inputs including adjusting the effectiveness estimates from the NMA for baseline risk 

differences across studies (Achana et al., 2013). However, the results were quite sensitive to 

the cost of home safety education and provision of low cost/free equipment. For example, 

reducing the cost of home safety education from £11.33 (based on 20 minutes of a local 

authority workers time) to £0.56 (based on the cost of home safety information pack per 

family reported in the Safe At Home Project report (Errington et al., 2011) increased the 

probability that education is the most cost-effective intervention from 0 in the base case 

analysis to 0.88 at a willingness-to-pay ratio of £30,000 per QALY gained. Similarly, the 

probability of low cost/free equipment provision being the most cost-effective intervention 

changed from 0 in the base case analysis to 0.32 at willingness-to-pay ratio of £30,000 per 

QALY gained when the  number of cupboard locks was reduced from two (costing £6.80) to 

one lock costing £3.40. These findings would seem to suggest that the key driver of cost-

effectiveness in the analysis presented here is the cost of providing the intervention strategy 

with the more expensive multi-component interventions having the highest ICERs compared 

to usual care. 

 

The results were also sensitive when the effectiveness estimates from the multivariate 

analysis (Model 3), where information was borrowed across different outcome networks 

(Achana et al., 2014a), were used to inform the cost-effectiveness analysis.  In this particular 

case, the ICERs for education and provision of low cost/free equipment were £47,876.14 

(27,001.62 to £119,470.5) and £49,366.21 (95% CrI £27,060.91 to £131,775.0) per QALY 

gained compared with usual care. Hence usual care continues to be the most cost-effective 

strategy at a willingness-to-pay ratio of £30,000 per QALY with a probability of 0.929. 
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8.9.2 Strengths and limitations 

The cost-effectiveness evaluations in this chapter have a number of strengths and limitations. 

The evaluations are fully probabilistic, allowing for parameter uncertainty to be taken into 

account in the cost-effectiveness estimates. Where uncertainty remains, for example because 

of model assumptions or uncertainty about which piece of evidence to use when multiple 

sources are available for the same parameter, these were investigated through scenario and 

deterministic sensitivity analyses. These sensitivity analyses indicated that the cost-

effectiveness estimates were largely robust to most changes in parameter values with the 

exception of the costs associated with providing the intervention.  

 

The approach to evidence synthesis adopted throughout this thesis, and which have been used 

to inform the decision analysis, strengthens the analysis presented here in that using the 

network meta-analysis (NMA) has enabled the simultaneous evaluation of the effectiveness 

and cost-effectiveness of multiple interventions in a single coherent analysis. This ensures 

that correlations between the effectiveness estimates are taken into account and propagated 

through the model to produce final estimates of the cost-effectiveness together with 

uncertainty (Cooper et al., 2004; Welton et al., 2012).  

 

The main limitation of the analysis presented in this chapter is the lack of data to inform 

several parameters of the model. Data on clinical history and prognosis of the childhood 

poisoning injuries, background utilities, and quality of life data associated with childhood 

poison injuries were either lacking or when available, of poor quality and in a form unsuitable 

for use in the cost-effectiveness analysis. Because of this, a number of assumptions were 

made in order to simplify the model structure and make use of the available data. The 

assumptions are a potential source of uncertainty in the model results. As much as possible, 

robustness of the results to such modelling assumptions was assessed through sensitivity 

analyses.  
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8.9.3 Comparisons with previous work 

The only other known economic evaluation to have considered the cost-effectiveness of 

strategies for preventing accidental injuries in children is the analysis undertaken to inform 

the development of NICE PH30 [Preventing unintentional injuries among under-15s in the 

home]  (Pitt et al., 2009).  Pitt et al. evaluated a generic home safety intervention versus no 

intervention for the prevention of any injury in the home irrespective of injury mechanism 

(i.e. injury included falls, scalds, poisonings, etc.). The generic intervention in Pitt et al. was 

described as “General home safety programme includes measures such as: home safety 

consultation visits, provision of educational materials and advice, as well as the free supply 

and installation of a range of home safety equipment (including smoke alarms, stair gates, 

cupboard and window locks, etc.). The analysis presented in this Chapter builds on Pitt et 

al.’s by evaluating the cost-effectiveness of several interventions (all of which are more 

homogenously defined than the strategy in Pitt et al.) to prevent medicinal poisons in pre-

school children.  

 

8.10 Chapter summary 

In this Chapter, a probabilistic decision-analytic model was developed to evaluate the cost-

effectiveness of home safety interventions compared with usual care intervention in 

preventing unintentional medicinal poisonings in children under 5 years old. In the recently 

published systematic review of synthesis methods in PH evaluations (Achana et al., 2014b), a 

number of issues were identified as barriers to quantitative synthesis of PH evidence 

including heterogeneity of methods, outcomes and intervention across studies.  It was 

suggested and demonstrated in that review that more complex synthesis methodology can be 

employed to overcome some of the issues identified as barriers to quantitative synthesis in 

PH evaluations. The analyses presented in this chapter demonstrated how the 

recommendations in Achana et al., to make PH evaluations more quantitative, can be 

implemented within a decision-analytic modelling framework when evaluating the cost-

effectiveness of PH interventions. The methodology employed here involved using network 

meta-analysis and various extensions of it that were developed in this thesis (Achana et al., 

2013; Achana et al., 2014a). These methods allow for heterogeneity in intervention 

definitions to be taken into account through extending the network to include multiple 

interventions and outcomes (Achana et al., 2014a) and to adjust for the baseline risk (Achana 
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et al., 2013) as a proxy for measured or unmeasured modifiers of the treatment effect and 

hence a potential source of heterogeneity in the meta-analysis. 
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9. DISCUSSION 

9.1 Chapter summary 

In this concluding chapter, a summary of the main findings of the work undertaken in the 

thesis is presented. The strengths and limitations of the work are also discussed. The Chapter 

concludes by looking at opportunities for further work.   

 

9.2 Thesis summary 

The thesis considered the challenges present when summarising evidence to inform an 

economic evaluation of public health (PH) interventions by: 

a) Reviewing the evidence to identify the barriers to quantitative synthesis in PH 

evaluations of interventions, 

b) Developing and applying new synthesis methodology to overcome the challenges of 

evidence synthesis identified in (a) above, and 

c) Applying the methods developed in (b) above to a substantive decision analytic model 

in order to assess the effectiveness and cost-effectiveness of poison prevention 

strategies for preschool children at home.  

 

In the account below, a summary of the key features and principal findings of the 8 chapters 

preceding this discussion chapter is presented. The first three chapters provided a background 

introduction to the challenges of evidence in PH, the example problem and an overview of 

the methods to be used in the thesis. 

 

Chapter 4 then presented a systematic review (Achana et al., 2014b) carried out to determine 

how evidence is currently being synthesised in the NICE PH appraisal process and to 

determine barriers to quantitative synthesis of evidence in PH evaluations. The review 

identified that the main barrier to the use of quantitative synthesis methods in PH systematic 
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reviews is the heterogeneous nature of PH evidence. Specific issues identified include 

heterogeneity in i) many aspects of study designs, ii) definition of intervention strategies and 

outcome measures, and iii) the wider scope of many PH research questions. This last point 

makes it increasingly impractical to define interventions and outcomes clearly. Even where 

an attempt was made to summarise the evidence from the systematic review quantitatively, 

the synthesis tended to use the simplest methods such as fixed or random effects pairwise 

meta-analysis. Although carrying out pairwise meta-analysis may be preferred than carrying 

out a less focused narrative summary of the evidence, only comparison between any two 

interventions is possible at any one time which potentially limits the scope of the analysis and 

the utility of the findings (Achana et al., 2014b). 

 

Exploration of quantitative synthesis methods carried out in response to the systematic review 

findings indicated that more advanced synthesis methodology can be employed to overcome 

some of the issues identified as barriers to widespread use of meta-analysis in PH evaluations 

(Achana et al., 2014b). Such methods have the potential to model the data more realistically 

and to answer policy relevant questions directly. Examples of the methods being advocated in 

Achana et al.(2014b) include extending the standard pairwise meta-analysis to: i) incorporate 

individual participant data (where available)  and adjust for both summary and individual-

level covariates (Sutton et al., 2008), and ii) network meta-analysis and meta-regression 

(Cooper et al., 2009) of summary (Caldwell et al., 2005) and individual-level (Saramago et 

al., 2012) data where a large number of interventions can be compared with one another in a 

coherent analysis (Caldwell et al., 2005). The second of these two points was implemented in 

Chapter 5 where NMAs were used to compare the effectiveness of different interventions in 

promoting poison prevention behaviours in households with children (Achana et al. 2014, 

paper under review). The results of the NMAs suggested that more intensive interventions 

were more effective than education alone in promoting uptake of poison prevention practices 

in the home. These findings could not have been established using pairwise meta-analysis 

which would have required interventions of differing intensity to be lumped together in order 

to facilitate quantitative summary of the evidence, as was done in the Cochrane home safety 

systematic review (Kendrick et al., 2012b). 

 

Felix Achana PhD Thesis, September 2014 197 



Chapter 9  Discussion 
 

Further modelling extensions of the standard network meta-analysis model to include a 

covariate for the baseline risk (Achana et al., 2013) and to compare multiple interventions 

across multiple outcomes (Achana et al., 2014a) were developed in Chapters 6 and 7 

respectively. The methods developed in Chapter 6 specifically allowed for baseline 

imbalances in the control group event rate across studies (often referred to as baseline risk) to 

be taken into account in the network meta-analysis. This is important in a decision making 

context as heterogeneity in the baseline risk (i.e. in the control group event rate) may have 

implications when deciding which patient groups are most likely to benefit from the 

intervention. Application of the baseline risk NMA model to the accidents data found no 

evidence to suggest that the effectiveness estimates were related to the baseline rate of safety 

practices in households with children. In Chapter 7, a multivariate NMA model was 

developed to allow for multiple interventions to be compared with one another across 

multiple outcome measures while accounting for the correlation structure between outcomes 

(Achana et al., 2014a). Extensions of the model allowed for extrapolation of evidence across 

a series of evidence networks. This enabled information sharing on the effectiveness of 

interventions across a wide range of different poison prevention measures. This type of 

analysis can lead to more precise estimates of the treatment effects by making use of all 

available information relevant to the decision problem (including information from closely 

related evidence networks). This can have the added benefit of reducing decision uncertainty 

when the analysis is used to inform an economic evaluation. Such an analysis would be 

useful in situations where the evidence base is either sparse or limited in other respects as is 

often the case in PH evaluations. 

 

Finally in Chapter 8, a probabilistic decision analytic model was developed to assess the cost-

effectiveness of poison prevention strategies for pre-school children in the home. This 

economic evaluation is believed to be the first to look at the cost-effectiveness of strategies to 

prevent accidental poisons in children under 5 years of age. The methods and analysis 

reported in Chapters 5, 6 and 7 were employed to synthesise the evidence on intervention 

effectiveness and used to inform the cost-effectiveness analysis. The base case analysis 

suggested that home safety interventions were unlikely to be cost-effective compared to usual 

care (i.e. do nothing approach) for the UK NHS unless policy makers are willing to pay 

upwards of £75,000 for every QALY gained. There was however considerable uncertainty in 
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these estimates due mainly to limitations of the data but also because of uncertainties about 

model structure and assumptions. The sensitivity analyses indicated that the base case results 

were largely robust to those changes in the parameter values and assumption of the model 

that were implemented. However, the results were quite sensitive to the cost of home safety 

education and/or provision of low cost/free equipment, lending support to the conclusion that 

cost-effectiveness of poison prevention strategies were largely driven by the cost of providing 

the intervention. 

 

9.3 Strengths and limitations 

This section takes a general overview of the strengths and limitations of the more quantitative 

approach to PH evaluations advocated and implemented in this thesis. Detailed discussions of 

the advantages and limitations of the specific analysis or methodology developed have been 

presented in the concluding sections of the respective chapters. In the account below, the 

strengths and limitations of the evidence synthesis models are presented first, followed by 

those relating to the decision analytic models. 

 

 

• Evidence synthesis  

This section discusses the synthesis of PH evidence and is based on the issues identified in 

the systematic review by Achana et al. (Achana et al., 2014b). Many of the challenges of 

evidence synthesis identified in that review (often cited as reasons for not pooling the data in 

PH systematic reviews) are related to the heterogeneous nature of PH evidence and include 

variations in many aspects of study design, interventions and outcome measures. The 

quantitative synthesis of PH evidence suggested and applied throughout this thesis 

demonstrated that more advanced evidence synthesis methodology can be employed to 

overcome the specific issues of heterogeneity. These methods enable a more realistic 

modelling of the type of data commonly available in PH evaluations. They are potentially 

more useful when summarising evidence to inform an economic evaluation than carrying out 

simple pairwise meta-analysis or less focused and detailed reviews of the literature.  

Underlying this desire for public health evaluations to become more quantitative, in the face 

of the challenges encountered, is a firm belief that a structured and transparent description 
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and analysis of the decision question is desirable. This belief is based on the premise that 

while concluding the evidence base to be “too heterogeneous for meta-analysis”, may be 

better than carrying out a naively simple meta-analysis, not being able to present a 

quantitative analysis severely restricts the utility of the review; particularly for decision 

making (Achana et al., 2014b). 

 

 

The more quantitative approach to evidence synthesis in PH evaluations advocated in this 

thesis thus far is not without limitations. Firstly, the systematic review (Achana et al., 2014b) 

carried out to identify the barriers to meta-analysis of PH evidence only considered 

evaluations carried out by NICE. The review findings and conclusions may therefore not 

directly apply to PH evaluations in other contexts. Secondly, as exemplified by the poison 

prevention data presented in Chapter 5 and articulated earlier on in this thesis (Chapter 1 

Section 1.2), many PH systematic reviews include observational evidence and non-

randomised study designs which are more prone to high risk of bias than the traditional RCT. 

Despite this, beyond carrying out a risk of bias assessment and sensitivity analyses excluding 

non-RCT studies, none of the methods and analyses outlined directly considered the 

influence of the study quality/validity in the effectiveness and cost-effectiveness evaluations 

in this thesis. This is a potential limitation of the evidence synthesis undertaken in this thesis.  

An alternative, potentially more useful and sophisticated approach than a ‘leave one study 

out’ sensitivity analysis, is to model the various sources of biases in each study more directly 

when including observational evidence (Turner et al., 2009; Thompson et al., 2010). Finally, 

regarding the specific injury prevention context, for the analyses presented in Chapter 5, even 

when categorising the interventions into seven distinct groups, there is still residual 

heterogeneity in intervention definition; for example, education may be a leaflet designed for 

the prevention of an injury in the home, but it may also include a face-to-face interview, or a 

computer questionnaire producing tailored advice based on the user answers.  

 

• Decision analysis 

The analysis presented in Chapter 8 represents a transparent attempt to assess the cost-

effectiveness of several home safety interventions compared with usual care to prevent 

unintentional medicinal poisons in preschool at home. The only other economic analysis in 

the area of childhood accidents prevention (Pitt et al., 2009) evaluated the cost-effectiveness 
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of a generic home safety intervention versus no intervention for all home accidents 

irrespective of the mechanism or cause of injury (i.e. injury included falls, scalds, poisonings, 

etc). In contrast, this analysis considered interventions that are more clearly defined than the 

generic intervention in Pitt et al. (2009) and aimed at the prevention of medicinal poisons in 

pre-school children. This analysis therefore directly answers the question – ‘What is the most 

cost-effective strategy for the prevention of accidental poisonings in the preschool age group 

who are most at risk of accidental injury?’. 

 

The cost-effectiveness evaluation is also fully probabilistic, allowing for parameter 

uncertainty to be taken into account in the analysis. Where there remains uncertainty in 

model assumptions and structure, or uncertainty regarding multiple sources of evidence to 

use, these were investigated through scenario and deterministic sensitivity analyses. These 

sensitivity analyses indicated that the cost-effectiveness estimates were largely robust to 

changes in those model inputs that were investigated. Nevertheless, there are a number of 

limitations, the most obvious of which is the paucity of data that was available to inform the 

decision model. Data on the clinical history and outcomes of childhood poison injury was not 

always available in a form suitable for the analysis, necessitating assumptions in order to 

carry out the analysis. For example, data on the number of unintentional poison cases being 

admitted was only available for England rather than for the whole UK population as required 

in the decision model. In another example, the  proportion of poison cases that developed into 

permanent injuries was taken from an American study (Mowry et al., 2013) that may not be 

very relevant to the UK population. These data limitation issues and the resulting 

assumptions all represent sources of uncertainty that are difficult to quantify without 

availability of good data.  

 

Utility data were also poor and almost not available in a form suitable for the cost-

effectiveness evaluations. Data on the general background utility for the non-injured UK 

population under 18 years of age was not available. Hence utility norms for children in the 

model were assumed equal to the utility norm for the 18-25 year group in the UK population 

utility norms report (Kind et al., 1998). There was also paucity of data on the utility 

decrement for poison injuries of varying severity. Only two sources (Miller et al., 2000; 
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Miller et al., 2012) of utility decrement in the form of QALY loss for poison related injury in 

children were found. Both sources were American studies, which hence may not adequately 

quantify the impact of poison injury in a UK population. Sensitivity analyses were thus 

conducted in which the uncertainty associated with the utility decrements used in the model 

was increased from 10% to 20% of the respective mean value. These analyses suggested the 

cost-effectiveness estimates were largely robust, but it must be stressed that the impact of 

such sensitivity analysis (which were based on the analyst’s personal opinion rather than 

supported evidence) is itself uncertain and highly speculative.  

 

9.4 Future work 

This section outlines potential further extensions (both applied and methodological) of the 

work presented in this thesis. A number of these investigations concern issues that came to 

light during the conduct of the analysis in this thesis but were not adequately addressed for 

reasons such as lack of data and methods to conduct an appropriate analysis and constraints 

imposed by time resources and the permitted length of the thesis. First the opportunities for 

further work relating to the evidence synthesis models are discussed followed by those 

relating to the decision analysis. 

 

• Evidence Synthesis 

The network meta-analyses carried out in Chapter 5, results of which informed the decision 

analyses in Chapter 8, could be extended to include both summary data and individual patient 

data (IPD) when available. Methods already exist to allow network meta-analysis to be 

conducted using IPD (Donegan et al., 2012; Saramago et al., 2012). This would enable 

heterogeneity in intervention effects and patient-level treatment-by-covariate interactions to 

be fully explored and used to assess the appropriateness of the underlying assumptions of the 

network meta-analysis. Further methodological work in this area can also be undertaken 

including extending the IPD NMA model to the multiple outcomes setting, building on the 

work of Achana et al. (Achana et al., 2014a). Such modelling extensions will potentially 

allow for treatment-by-covariate effects to be explored while accounting for the correlation 

structure within the data.  
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As a starting point and for IPD with a binary outcome variable, a Bernoulli distribution could 

be used to model the within-study covariance structure in a hierarchical modelling 

framework. This would avoid the need to introduce artificial cell corrections when studies 

report a 0 or 100% event rate in one of the intervention arms as in Achana et al. (Achana et 

al., 2014a). The IPD network meta-regression models could then be integrated within a 

decision analytic model to carry out a cost-effectiveness analysis (Saramago Goncalves, 

2012). This would potentially increase the statistical power of the modelling, allowing 

differential effects over population subgroups to be explored in order to customise the cost-

effectiveness analysis to specific patient groups (for example, to evaluate the cost-

effectiveness in populations with different levels of deprivation).   

 

• Decision analysis  

The decision analyses presented in this thesis were conducted from the perspective of the 

NHS and Personal Social Services. Thus only heath sector costs and benefits were considered 

in the cost-effectiveness evaluations. Further modelling extensions could be carried out to 

encompass alternative perspectives, for example, a societal perspective which can be argued 

to be a more appropriate in economic evaluation of PH interventions because of the emphasis 

on the community and society rather than the individual in PH (Weatherly et al., 2009). This 

is because the benefits of PH interventions could extend beyond health benefits to include 

non-health-related benefits. Therefore, it may be argued that only analyses conducted from 

the perspective of the public sector could incorporate the full extent of the benefits and 

consequences associated with PH health intervention. 

 

As stated above, a number of assumptions were made during the construction of the decision 

model, in some cases to simplify the model structure and in others simply to facilitate the 

conduct of the analysis given the available data. These assumptions introduce a degree of 

uncertainty in the decision model results. It would be useful to investigate the impact or 

otherwise of such modelling assumptions when feasible to do so. As an example, to simplify 

the model, the incidence of accidental poisonings as a result of exposure to a medicinal 

substance was assumed to be constant in the first five years of a child’s life. However, there 

is evidence to suggest that the rate of accidental poisonings in children increases with age in 

the first years of life to a peak in about year 2 and then decreases with increasing age between 
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years 2 and 5 (Tyrrell et al., 2012). This can easily be incorporated in the analysis simply by 

allowing the rate of accidental poisonings to depend on age.  

 

As pointed out in Section 9.3 above, the main limitation of the cost-effectiveness evaluation 

was the paucity of data to populate the decision analytic models. Further primary research is 

therefore required to, for example, map out the clinical history and prognosis of childhood 

poisonings and estimate health outcomes and quality of life information (QALYs) for 

childhood poisoning injury. Given the paucity of data to conduct even the basic cost-

effectiveness evaluation, no attempt was made to investigate and quantify the value of further 

research in reducing decision uncertainty associated with parameters of the model where 

there was a high degree of uncertainty (Chapter 12 of Welton et al. 2012 - “Expected value of 

information for research prioritisation and study design”). This type of value of information 

analysis has already been used to assess the value of conducting further research on decision 

uncertainty associated with whether or not to adopt a smoke alarm give away scheme in 

households with children (Saramago et al., 2014). Similar analyses can be carried out if and 

when data becomes available, to quantify expected costs and consequences associated with 

decision uncertainty about whether or not to adopt a particular poison prevention strategy, 

given the available information. 

 

 

9.5 Conclusion 

In conclusion, this thesis has demonstrated through application to an active area of PH 

research, that, when summarising evidence to inform an economic evaluation within PH, 

more advanced synthesis methods can be employed to handle issues of heterogeneity. This 

will allow for a more realistic modelling of data and answer the policy relevant questions in 

PH evaluations than is often possible with pairwise meta-analysis or narrative summary of 

the evidence. Researchers working on PH evaluations should therefore consider expanding 

their toolbox and skills in the use of more sophisticated synthesis methods. Regarding the 

specific PH example (namely the prevention of unintentional poisonings in preschool 

children at home) used in this thesis, although the approach to synthesis of the effectiveness 

enabled more realistic analysis of the data, the cost-effectiveness evaluations were limited by 
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the lack of good data to inform many parameters of the model. The findings of the cost-

effectiveness analyses should therefore be interpreted in the light of these limitations. 

Nevertheless, the cost-effectiveness analysis carried out in this thesis represent a more 

coherent and transparent process of integrating multiple and diverse sources of evidence, and 

is an example of approaches which could be more widely adopted in PH contexts. This helps 

answer policy relevant questions such as “what the most cost-effective strategy(s) that the 

NHS should adopt for preventing unintentional poisoning in pre-school children”.    
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APPENDICES 

Appendix I: Extra table of results for Chapter 4 

 

Reported reasons why meta-analysis was not conducted in systematic review of the effectiveness and or cost-effectiveness evidence for 
NICE Public Appraisals 

Appraisal title (Reference number) Systematic review title Reported reasons for not doing a meta-analysis (page number) Source of 
heterogeneity+ 

Brief interventions and referral for 
smoking cessation (PH1) 

Review 25 January 2006 Overview of reviews. Summarised review level evidence nr 

Four commonly used methods to 
increase physical activity (PH2) 

Brief interventions review 25 Jan 2006 Not reported 
 
 

nr 

Pedometers Review 25 Jan 2006 Not reported 
Exercise referral Review May 2006 Not reported 
Walk Cycling Review 25 Jan 2006 Not reported 

Interventions to reduce substance 
misuse among vulnerable young 
people (PH4) 

Substance misuse: effectiveness review - main 
report (PHIAC 5.3a revised) 

A narrative approach to synthesis was undertaken since despite common primary outcome data (i.e. 
substance use), there was great variation across primary studies in how this was collected and reported 
(page 73). 

o 

Workplace interventions to promote 
smoking cessation (PH5) 

PH5 Workplace interventions to promote 
smoking cessation: effectiveness review 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 16). m 

Behaviour change (PH6) 
 

Behaviour change: Review 1 - Effectiveness 
review 

No formal synthesis (such as meta-analysis) was undertaken, as a narrative summary of the results was 
more appropriate for a review of reviews (page 8).  

nr Behaviour change: Review 2 - Road safety No formal synthesis was undertaken as this was a review of reviews; instead, a narrative summary of the 
results was provided (page 19). 

Physical activity and the 
environment (PH8) 
 

Building design evidence review It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 22). 

 
 
 
 

i,m,o 

Environmental correlates of physical activity 
review 

As there are different ways that exposure and outcome factors have been measured, a formal synthesis and 
quantitative comparison is not possible (page 4). 

Natural environment evidence review It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 21). 

Policy evidence review It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 18). 

Transport evidence review It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 22). 

Urban planning & design evidence review It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 22). 
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http://www.nice.org.uk/nicemedia/live/11679/34742/34742.doc
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http://www.nice.org.uk/nicemedia/live/11679/34748/34748.doc
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Community engagement (PH9) 

Community engagement: review 2 - 
approaches and methods 

As this work covered differing methodologies, several community engagement methods/approaches, 
numerous intervention strategies, health behaviours and outcome measures it was considered inappropriate 
to synthesise the data using meta-analysis (page 31). 

i,m,o,p 

Maternal and child nutrition (PH11) 

PH11 Maternal and child nutrition: review 1 
preconception 

Not stated 

m 

PH11 Maternal and child nutrition: review 2 - 
nutrition 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 22). 

PH11 Maternal and child nutrition: review 3 
post-partum 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 27). 

PH11 Maternal and child nutrition: review 4 - 
milk feeding 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 28). 

PH11 Maternal and child nutrition: review 5 - 
6-24 months 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 24). 

PH11 Maternal and child nutrition: review 6 - 
2-5 years 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 24). 

PH11 Maternal and child nutrition: review 7 - 
vitamin D 

Not stated. 

Promoting physical activity in the 
workplace (PH13) 

Promoting physical activity in the workplace: 
final evidence review 

Evidence is provided using a narrative synthesis, supported by evidence tables, drawing out the key 
features of each study (page 5). nr 

Preventing the uptake of smoking 
by children and young people 
(PH14) 

Preventing the uptake of smoking by children 
and young people: review of effectiveness 
 

Overall, due to heterogeneity of design among the studies, a narrative synthesis was conducted (page 29). 

m,o 

 

Services in disadvantaged areas: Smoking 
review 

 
Some studies did not include quantifiable outcomes. As a result, it was not possible to conduct data 
synthesis in the traditional way by, for example, pooling intervention effects between studies and 
generating forest plots to illustrate effects (page 17). 

Identifying and supporting people 
most at risk of dying prematurely 
(PH15) 
 

Services in disadvantaged areas: Statins report There was a large degree of heterogeneity in terms of interventions, settings, and populations so a 
narrative synthesis of the results was carried out (page 8). i,m,p 

Mental wellbeing and older people 
(PH16) 

PH16 Mental wellbeing and older people: 
effectiveness and cost effectiveness review 

Often the diversity of the interventions, the settings in which they were delivered, and the outcomes 
measured means that pooled estimates of effect are not appropriate (page 41). i,m,o 

Promoting physical activity for 
children and young people (PH17) 
 
 

 

Promoting physical activity for children: 
review 2 - quantitative correlates  

Overview of reviews. Summarised review level evidence 

i,m,o 
 

Promoting physical activity for children: 
review 4 - interventions for under eights 
(revised July 2008) 

It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 20). 

Promoting physical activity for children: 
review 5 - active travel interventions (revised 
July 2008 

It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page26). 

Promoting physical activity for children: 
review 6 - interventions for adolescent girls 

It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 24). 

Promoting physical activity for children: 
review 7 - family and community interventions  

It was not appropriate to use meta-analysis to synthesise the outcome data as interventions, methods and 
outcomes were heterogeneous (page 27). 

Needle and syringe programmes 
(PH18) 

PH18 Needle and syringe programmes: review 
of effectiveness and cost effectiveness, revised 
full report October 2008 

The results of the data extraction and quality assessment for each study of effectiveness are presented in 
structured tables and as a narrative summary (page 21). nr 
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http://www.nice.org.uk/nicemedia/live/11668/37486/37486.pdf
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Social and emotional wellbeing in 
secondary education (PH20) 

PH20 Social and emotional wellbeing in 
secondary education: effectiveness review 

The heterogeneity of the interventions aim, design and outcome measures used preclude a meta-analysis of 
their results (page 61). i,m,o 

Reducing differences in the uptake 
of immunisations (PH21) 

PH21 Reducing the differences in the uptake 
of immunisations: revised analysis of the 
evidence 

Not stated 

nr 
PH21 Reducing the differences in the uptake 
of immunisations: evidence review 

Not stated  

Promoting mental wellbeing at 
work (PH22) 

Promoting mental wellbeing at work: 
economic review 

Given the heterogeneity of the interventions considered in the retained studies, this review is restricted to a 
narrative overview of those studies (page 10). i 

Alcohol-use disorders - preventing 
harmful drinking (PH24) 

Screening and brief interventions for 
prevention and early identification of alcohol 
use disorders in adults and young people 

Pre-specified outcomes are tabulated in evidence tables and presented within a narrative synthesis (page 
41).  

 
nr Interventions on control of alcohol price, 

promotion and availability for prevention of 
alcohol use disorders 

Pre-specified outcomes were tabulated in evidence tables and are presented within a narrative synthesis 
(page 32). 

Prevention of cardiovascular 
disease (PH25) 

PH25 prevention of cardiovascular disease: 
reviews and primary studies - 1 effectiveness 

Synthesis was narrative and meta-analysis was not employed (page ix). 

 
 

nr 

PH25 prevention of cardiovascular disease: 
reviews and primary studies - 2 effectiveness 

Synthesis was narrative and meta-analysis was not employed (page ix). 

PH25 prevention of cardiovascular disease: 
reviews and primary studies - 3 effectiveness 

Synthesis was narrative and meta-analysis was not employed (page ix). 

Quitting smoking in pregnancy and 
following childbirth (PH26) 

 

Quitting smoking in pregnancy and following 
childbirth: systematic review 

The heterogeneity of the interventions aim, design and outcome measures used preclude a meta-analysis of 
their results (page 43). 

i,m,o 
Quitting smoking in pregnancy and following 
childbirth: interventions to improve partner 
support and partner cessation during pregnancy 

Due to heterogeneity of design among the studies, a narrative synthesis was conducted (page19). 

Quitting smoking in pregnancy and following 
childbirth: rapid review of interventions to 
prevent relapse in pregnant ex-smokers 

Overview of reviews. Summarised review level evidence 

Looked-after children and young 
people (PH28) 

Review E1 - Transition support services Because of the variation in variables, methods and measures used, it was not possible to conduct a meta-
analytical review (page 24). m,o,p Review E2 - Training and support for carers Because of the variation in variables, methods and measures used, it was not possible to conduct meta-
analysis. P20 

 

Review E3 - Improving access to services Because of the variation in variables, methods and measures used, it was not possible to conduct a meta-
analytical review (page 20).  Review E4 - Correlates Because of the variation in variables, methods and measures used, it was not possible to conduct a meta-
analytical review (page 22). 

Strategies to prevent unintentional 
injuries among under-15s (PH29) 

 

Review 1: International comparative analyses 
of injury prevention policies, legislation and 
other activities 

Not stated 

i 

Review 2: Risk factors for unintentional 
injuries among under 15s 

In accordance with previous NICE Public Health correlates reviews, we undertook a qualitative approach 
to data synthesis rather than a formal pooling of outcomes using meta-analysis (page 22). 

Review 3: Strategies and frameworks to 
prevent unintentional injury among under 15s 
– Road design 

No formal quantitative pooling of effectiveness results was possible or desirable especially given the wide 
range of non-automated enforcement and other strategies in our review (page 20). 

Review 4: Strategies and frameworks to 
prevent unintentional injury among under 15s 

We used narrative synthesis methods rather than formal data pooling (page 24). 
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–  Home 

Review 5: Strategies, frameworks and mass 
media to prevent unintentional injury among 
under 15s - Outdoor play and leisure  

Narrative synthesis was used because quantitative data pooling was not possible (page 20). 

Preventing unintentional injuries 
among under-15s in the home 
(PH30) 

Preventing unintentional injuries among under 
15s in the home: Review of effectiveness and 
cost effectiveness 

A formal meta-analysis was not conducted in view of the heterogeneity of interventions and measurement 
of outcomes (page 38). i,o 

Preventing unintentional road 
injuries among under-15s: road 
design (PH31) 

Preventing unintentional road injuries among 
under 15s: road design: Review of 
effectiveness and cost effectiveness - Main 
Report 

Due to the heterogeneity of the interventions studied, it was considered inappropriate to combine the 
studies statistically using a meta-analysis (page 30). i 

Skin cancer prevention: 
information, resources and 
environmental changes (PH32) 

Skin cancer prevention: information, resources 
and environmental changes: Review 1: 
Effectiveness and cost effectiveness evidence 
review - phase 1 

Where possible a narrative summary across similar studies was undertaken. 

i,m Skin cancer prevention: information, resources 
and environmental changes: Review 4: 
Effectiveness and cost effectiveness evidence 
review - phase 2 

Data were then grouped by setting and intervention category (changes to the built or natural environment, 
provision of sun protection resources, and multi-component interventions) and presented as a narrative 
synthesis (page 25). 

Increasing the uptake of HIV testing 
among black Africans in England 
(PH33) 

PH33 Increasing the uptake of HIV testing 
among black Africans in England: review of 
effectiveness and cost effectiveness 

Nearly all the identified studies used Framework or Grounded Theory as the methodological approach to 
analysis. As a result, the review team decided that thematic meta-analysis would be the most appropriate 
method for synthesising the data (page 19). 

m 

Increasing the uptake of HIV testing 
among men who have sex with men 
(PH34) 

PH34 Increasing the uptake of HIV testing 
among men who have sex with men: review of 
effectiveness, cost-effectiveness and barriers  

The studies of effectiveness did not support meta-analysis and were synthesised narratively, as were the 
cost-effectiveness studies (page 22). nr 

Tuberculosis - hard-to-reach groups 
(PH37) 

Review 2 - Evidence review on the 
effectiveness and cost-effectiveness of 
interventions aimed at identifying people with 
tuberculosis and/or raising awareness of 
tuberculosis among hard-to-reach groups 

The studies of effectiveness did not support meta-analysis and were synthesised narratively, as were the 
cost-effectiveness studies (page 25). 

nr 
Review 3 - Evidence review on the 
effectiveness and cost-effectiveness of 
interventions aimed at managing tuberculosis 
in hard-to-reach groups 

In most cases, the studies of effectiveness did not support meta-analysis and were reported narratively, as 
were the cost-effectiveness studies (page 25) 

Smokeless tobacco cessation - 
South Asian communities (PH39) 

PH39 Smokeless tobacco cessation - South 
Asian communities: evidence reviews 1 and 2 

Meta-analysis and the use of forest plots was not appropriate for the studies included in this review since 
there was a high degree of heterogeneity across studies (page 47). s 

+Sources of heterogeneity (i=interventions, m=study method/design/setting, o=outcomes, p=study populations, s=heterogeneity studies and nr= not reported). 

 

Appendix II: Between-study covariance for multi-arm studies reporting multiple outcomes 
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Appendix 
 

We show that under evidence consistency and the homogenous between-study covariance structure, ( )
22
mbk σσ =  and mnmn

bk ρρ = , equation (7.3) 
can be extended to the multiple outcome settings by formulating the distribution of effects in a multi-arm study i with p+1 arms  reporting on 

1,2, ,m M= 
outcomes as follows:  
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                                                                                                                                                                                                 Equation (A1) 

where p is the number of treatment effect estimates. The corresponding marginal and conditional distributions for arm j, given the previous 
( )1,,2,1 −j

 arms are: 
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Equations (A1) and (A2) are the multiple outcome versions of equations (7.3) and (7.4) of Chapter 7. These equations can be derived by 
noting that, a random effects between-study model for a multi-arm study i with K treatments labelled A, B, C,…, K reporting a total of M 
outcomes labelled 1, 2, …, M can be specified as:  
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Where δi(Ak)m and d(Ak)m are study-specific and mean effect of treatment k relative A (reference treatment) on outcome m in study i respectively 
and ΣFULL is the full (K-1) × (K-1) blocks of M × M within-treatment between-outcome covariance matrix. The parameters in ΣFULL have the 
following interpretation:  

( ( )
2

mAkσ ) indicate the variance of the effect of treatment k (k = B, C, , K) relative to A on outcome m across studies. 

( , )
mn
Ak Akρ  indicate the correlation between δi(Ak)m and δi(Ak)n (i.e. the correlation between the effect of treatment k relative to A on outcome m and the 

effect of treatment k relative to A on outcome n (m ≠ n)) specific to the Ak comparison. 

( )
mm

AkAh,ρ indicate the correlation between δi(Ah)m and δi(Ak)m (i.e. the correlation between the effect of treatment h relative to A on outcome m and the 
effect of treatment k relative to A (h ≠ k) on outcome m because they share a common comparator A). 

The diagonal block matrices in ΣFULL thus carry terms for the between-study variance ( ( )
2

mAkσ ) while the off-diagonal blocks carry terms for the 
between-study correlations. We make two assumptions to simplify and reduce the number of parameters in ΣFULL. First, we assume homogenous 
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variances for intervention effects within outcomes [20]. This implies ( )
22
mmAk σσ =  and ( ) 2

1
, =mm
AkAhρ  as in the single outcome network meta-analysis 

case [20,34]. Second, we make the assumption of homogenous between-study correlations for the intervention effects from different outcomes. 
Under this assumption we can express ( )

mn
AhAh,ρ  and ( )

mm
AkAk ,ρ  in terms of a common correlation parameter ρmn by noting that for any 3-treatment (A, 

h, k) configuration, the covariance between outcome m and n effects across studies can be expressed as a covariance between two sums under 
evidence consistency: 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ), , ,

, ,

, , ,

,

2

i hk m i hk n i Ak m i Ah m i Ak n i Ah n

i Ak m i Ak n i Ak m i Ah n i Ah m i Ak n

i Ah m i Ah n

mn mn mn
m nAk Ak Ah Ah Ak Ah

COV

COV COV COV

COV

δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ

ρ ρ ρ σ σ

   = − −   
     = − −     
 +  

= + −

                               Equation (A4) 

The homogenous between-study correlation assumption implies ( ) ( )
mnmn

AkAk
mn

AhAh ρρρ == ,, and ( )
mnmm

AkAh ρρ
2
1

, =  for the inequality 

( ) ( ) ( )( ) 121 ,,, ≤−+≤− mm
AkAh

mm
AhAh

mm
AkAk ρρ  to hold. Substituting these expressions into equation (A1), we see that the between-study correlation terms 

equal ρmn in the diagonal block of matrices and mnρ
2
1  in the off-diagonal block of matrices of in ΣFULL leading to the following simplification of 

the between-study covariance matrix: 
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                                                                                                             Equation (A5) 

By relabeling the reference treatment A as b, (δi(AB)1, , δi(AK)m) as ( ) ( )( )1,  ,i AB i AK mδ δ

 and (d(AB)1,  , d(AK)M) as ( ) ( )( )1 1,   ,  
ji bk i bk M

δ δ

, equation (A5) 
can be rewritten as equation (A1) which is the multivariate form of equation (7.3) of Chapter 7.  Furthermore, we can use the law of total 
variance to decompose equation (A5) into univariate marginal and univariate series of conditional distributions as shown in equation (A2). To do 
so, it is helpful to rewrite equation (A5) using matrix algebra.  

Let ( ) ( ) ( )( )TMbkibki 11
1 δδ =

1bkiδ , ( ) ( ) ( )( )TMbkibki 222
1 δδ =bkiδ , ( ) ( ) ( )( )TMbkibki pp

δδ 1=
pbkiδ  and ( )1bkd , ( )1bkd  ( )1bkd  represent the 

corresponding vectors of mean treatment effects. 
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In general, for j=p, we have ( )
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 which is equation (A2).
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Appendix III: WinBUGS Code for baseline risk adjustment models in Chapter 6 

#Model 
model{ 
for(i in 1:ns){  
tmp1[i] <- id[i] 
w[i,1] <-0 
delta[i,1]<-0 
bl[i,1]<-0    #No covariate adjustment the non-intervention / control arm 
 
#Baseline models 
mu[i] ~ dnorm(0,.0001)    #model 1: vague priors for trial baselines 
#mu[i] ~ dnorm(mu.mean,taumu)  #model 2:normal distr. for trial baselines  
#mu[i] ~dnorm(lambda[T[i]],taumu)  #model 3:Two normal dist.for trial baselines 
#T[i] ~ dcat(P[])    #Categorical variable for mixture   
  
for(k in 1:na[i]) {  
    #Model for binary outcome (example 1) 
    #r[i,k] ~ dbin(p[i,k],n[i,k])                #binomial likelihood               
    #logit(p[i,k])<-mu[i] + delta[i,k]                                   #model        
    #rhat[i,k] <- p[i,k] * n[i,k]                                                         #expected value of the numerators      
    #dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))                   #Deviance 
    #+ (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))  
   
    #Model for continuous outcome (example 2)             
    var[i,k] <- pow(se[i,k],2)                 #calculate variances 
    prec[i,k] <- 1/var[i,k]                                  #set precisions 
    y[i,k] ~ dnorm(theta[i,k],prec[i,k])                                  #Normal likelihood 
    theta[i,k]<-mu[i] + delta[i,k]   
    dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]        #Deviance contribution     

   
  }  
   
  sumdev[i]<-sum(dev[i, 1:na[i]])                                                  #summed residual deviance contribution for this trial  
   
  for(k in 2:na[i]){ 
       delta[i,k] ~ dnorm(md[i,k],taud[i,k])                                  #trial-specific LOR distributions 
       md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]+ bl[i,k]                     #mean of LOR distributions 
       taud[i,k] <- tau *2*(k-1)/k                                                       #precision of LOR distributions                            
     
      w[i,k] <- (delta[i,k]-((d[t[i,k]]-d[t[i,1]])+bl[i,k]))                    #adjustment,multi-arm RCTs         
      sw[i,k] <-sum(w[i,1:k-1])/(k-1)                   #cumulative adjust,multi-arm trials 
      bl[i,k] <-(beta[t[i,k]]-beta[t[i,1]])*(mu[i]-m.mu)                 #baseline risk adjustment             
   }  
}    
 
      ssumdev<-sum(sumdev[])#total residual deviance 
      d[1]<-0 
      beta[1]<-0 
 
for(k in 2:nt){ 
     d[k] ~ dnorm(0,.0001)   #vague prior for basic parameters 
     beta[k] <- B    #common covariate effect (Model A) 
     #beta[k] ~ dnorm(B,tauB)                   #exchangeable covariate effect (Model B) 
     #beta[k] ~ dnorm(0,0.0001)                  #independent covariate effect (Model C) 
 }    
 
     #mu.mean~ dnorm(0,0.0001)                  #vague prior for mean baseline log-odds 
     sd~dunif(0,30)                         #vague prior for between-study standard deviation  
     tau<-1/pow(sd,2)                  #1/between-study variance (treatment effects) 
     B~ dnorm(0,0.0001)                 #vague prior for common covariate effect  
     #sdmu~dunif(0,30)                                 #vague prior for random effects standard deviation  
     #taumu<-1/pow(sdmu,2)                        #1/between-study variance (baseline log-odds) 
     #sdB~dunif(0,30)                                   #vague prior for random effects standard deviation  
     #tauB<-1/pow(sdB,2)                            #1/between-study variance 

}#END 

 

Felix Achana PhD Thesis, September 2014 226 



Appendix 
 

 

Data file 1 

list(nt=7,ns=13, m.mu=-1.32) 

 
Data File 2 
 

id[] t[,1] t[,2] t[,3] r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] na[] 

9007 1 2 NA 178 271 188 249 NA 1 2 

26 1 2 NA 83 89 79 85 NA 1 2 

9019 1 2 NA 72 74 140 144 NA 1 2 

48 1 2 NA 54.5 55 55.5 56 NA 2 2 

344 1 2 NA 4 57 6 60 NA 1 2 

4 1 3 NA 68 82 79 83 NA 1 2 

9002 1 3 4 147 149 171 173 160 163 3 

9023 1 4 NA 70.26 79.58 74.07 80 NA 1 2 

345 1 5 NA 683 738 712 762 NA 1 2 

35 1 6 NA 88.42 248.37 128.16 248.37 NA 1 2 

12 2 3 NA 14 47 19 49 NA 1 2 

29 2 5 NA 44 49 43 45 NA 1 2 

14 3 7 NA 22 101 20 104 NA 1 2 

END           

 
#Initial values 
list(d = c(NA,0,0,0,0,0,0), sd=1) 
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Appendix IV: WinBUGS Code for the multivariate NMAs in Chapter 7 

 
    

Model {     #model 2b of Chapter 7 
                              
    # i = data point  (one for each arm of each study), 
    # arm = study arm 
    # s = study 
    # m = outcome 
   
    #Likelihood for arm level data 
    #======================= 
    for(i in 1:N1){   
        tmp1[i] <- studyid[i]                                                                  # study  id not used in the model 
        y[i,1:3] ~ dmnorm(mean.y[study[i],arm[i],1:3],omega[i,,])      # multivariate likelihood 
        omega[i,1:3,1:3] <- inverse(cov.mat[i,,])                                   # within-study precision matrix 
       
        #define elements of within-study covariance matrix 
        cov.mat[i,1,1] <-  pow(se[i,1],2)  
        cov.mat[i,2,2] <-  pow(se[i,2],2)  
        cov.mat[i,3,3] <-  pow(se[i,3],2)  
        cov.mat[i,1,2] <-  se[i,1]*se[i,2]*cor[i,1]  
        cov.mat[i,1,3] <-  se[i,1]*se[i,3]*cor[i,2]  
        cov.mat[i,2,3] <-  se[i,2]*se[i,3]*cor[i,3]  
        cov.mat[i,2,1] <-  cov.mat[i,1,2]  
        cov.mat[i,3,1] <-  cov.mat[i,1,3]  
        cov.mat[i,3,2]  <- cov.mat[i,2,3] 
 
        for(m in 1:no){  
             se[i,m] ~ dnorm(0, prec.se[m])I(0,)                        # input missing standard errors 
             unif.a[i,m] <- mn.rhoW[m] - (sqrt(12)*se.rhoW[m]/2)        # parameter a of uniform distribution  
             unif.b[i,m] <- mn.rhoW[m] +(sqrt(12)*se.rhoW[m]/2)        # parameter b of uniform distribution 
             cor[i,m]   ~  dunif(unif.a[i,m], unif.b[i,m])                           # within-study correlation model 
       } 
  } 
 
    for(j in 1:ns){  
        for(k in 1:NA[j]) {  
            for(m in 1:no){ 
                 mean.y[j,k,m] <- mu[j,m] + delta[j,k,m]                          # define study-specific treatment effects 
            } 
      } 
   } 
 
  #Random effects between-study model  
  #================================= 
  for(j in 1:ns) {   
       for(m in 1:no) { 
          delta[j,1,m] <-0               # delta in control arm to zero for all outcomes 
          w[j,1,m]    <-0                 # multi-arm adjustment in control group set to zero 
       } 
   
  for(k in 2:NA[j]){    
     delta[j,k,1:no] ~ dmnorm(md[j,k,1:no],precBK[j,k,1:no,1:no])     #random effects model  
         
        for(m in 1:no){ 
           for(mm in 1:no) {  
              precBK[j,k,m,mm] <- prec[m,mm]*2*(k-1)/k                  # between-study precision matrix 
             }  
         }  
     } 
  } 
   
  #Consistency relations between basic parameters 
  #===================================== 
  for(i in 1:N2) { 
       tmp2[i] <- studyid1[i]                               # temp variable to identify study id, not used 
      for(k in 2:na[i]) { 
            md[s[i],k,out[i]] <-  (d[out[i],t[i,k]] - d[out[i],t[i,1]])*equals(o[i],out[i])  + sw[s[i],k,out[i]]  
            w[s[i],k,out[i]] <- (delta[s[i],k,out[i]] - (d[out[i],t[i,k]] - d[out[i],t[i,1]]))*equals(o[i],out[i]) 
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            sw[s[i],k,out[i]] <- sum(w[s[i],1:k-1,out[i]])/(k-1) 
       } 
  } 
  
   #Constraints 
   # Effect in usual care arm is set to zero 
# There are 9 interventions in total, but only 7 are trialled for each outcome, hence interventions 8 and 9 refer to the interventions were 

outcome information is not available.  
  d[1,1] <- 0  
  d[2,1] <- 0 
  d[3,1] <- 0 
  d[1,8] <- 0  
  d[1,9] <- 0 
  d[2,8] <- 0 
  d[2,9] <- 0 
  d[3,8] <- 0 
  d[3,9] <- 0 
   
  #Prior distributions and parameter to estimate 
  prec[1:no,1:no] <- inverse(sigma[,])         #hash out if using inverse-wishart (model 2a) 
  sd.se~ dunif(0, 2)  
 
   for(m in 1:no) {  
      prec.se[m] <- pow(sd.se,-2)  
      sigma[m,m] <- pow(sd[m],2)       # hash out if using inverse-wishart (model 2a) 
      sd[m] ~ dunif(0, 2)                       # hash out if using inverse-wishart (model 2a) 
       
      for(j in 1:ns){  
         mu[j, m] ~ dnorm(0,0.001)  
      } 
  
      for(k in 2: nt.total[m]){   
         or[m,k] <- exp(d[m,k])   
            d[m,k]  ~ dnorm(0,0.001) 
        } 
  }       
  
  #spherical parameterization (Wei and Higgins 2013) 
  #hash out if using inverse-wishart (model 2a) 
  pi <- 3.1415  
  for(i in 1:2) { 
       for(j in (i+1):no) { 
            sigma[i,j] <- rho[i,j]*sd[i]*sd[j] 
            sigma[j,i] <- sigma[i,j] 
        g[j,i] <- 0 
     a[i,j] ~ dunif(0, pi) 
     rho[i,j] <- inprod(g[,i], g[,j]) 
      } 
  }  
   
  g[1,1] <- 1 
  g[1,2] <- cos(a[1,2]) 
  g[2,2] <- sin(a[1,2]) 
  g[1,3] <- cos(a[1,3]) 
  g[2,3] <- sin(a[1,3])*cos(a[2,3]) 
  g[3,3] <- sin(a[1,3])*sin(a[2,3]) 
 
  #Inverse-Wishart prior (model 2a) hash 
  #prec[1:no, 1:no] ~ dwish(R[1:no,1:no],no)       
  #sigma[1:no,1:no] <- inverse(prec[,]) 
 
  #between-study standard deviations 
  #sd[1] <- sqrt(sigma[1,1]) 
  #sd[2] <- sqrt(sigma[2,2]) 
  #sd[3] <- sqrt(sigma[3,3]) 
   
  #between-study correlations 
  #rho[1,2] <- sigma[1,2]/(sd[1]*sd[2]) 
  #rho[1,3] <- sigma[1,3]/(sd[1]*sd[3]) 
  #rho[2,3] <- sigma[2,3]/(sd[2]*sd[3]) 
}           
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Model 2 of Chapter 7: Data file 1 of 3 
list( 
N1=45,                                                             #no of datapoints 
N2=66,                                                              # no of studies x no of outcomes (22x3=66)  
ns=22,                                                               # no of studies 
no=3,                                                                 #no of outcomes 
nt.total =c(7,7,7),                                              # no of interventions for outcomes 1, 2 and 3 
mn.rhoW =c(0.184,-0.052,0.051),                    #mean of within-study correlations from IPD 
se.rhoW = c(0.118,0.064,0.059,1),                    #se of within-study correlations from IPD 
NA = c(2,2,2,2,2,  2,2,2,2,3,  2,2,2,2,2,  2,2,2,2,2,   2,2), # no. of arms in each study 
#R = structure(.Data = c(1,0,0,  0,1,0, 0,0,1),.Dim = c(3,3)) # needed for model 2a 
)) 
 
 
Model 2 of Chapter 7: Data file 2 of 3 

studyid[] study[] arm[] y[,1] y[,2] y[,3] se[,1] se[,2] se[,3] 

9007 1 1 0.649184 0.893818 NA 0.127948 0.279791 NA 
9007 1 2 1.125568 1.270463 NA 0.147352 0.28292 NA 

26 2 1 2.627081 0.996333 0.67634 0.422747 0.238854 0.224238 

26 2 2 2.577688 1.245216 1.052092 0.423468 0.260352 0.247644 

9019 3 1 3.583519 1.43848 1.714798 0.71686 0.297284 0.362093 

9019 3 2 3.555348 1.466337 1.132514 0.507093 0.213504 0.213527 

48 4 1 4.691348 1.363305 NA 1.420686 0.337883 NA 

48 4 2 4.70953 2.100061 NA 1.42057 0.432522 NA 

344 5 1 -2.584 -2.89037 NA 0.518525 0.593171 NA 

344 5 2 -2.19722 -2.21557 NA 0.430332 0.42994 NA 

203 6 1 NA NA -0.69315 NA NA 0.181449 

203 6 2 NA NA 1.520952 NA NA 0.222198 

4 7 1 1.58045 0.395313 NA 0.293487 0.225192 NA 

4 7 2 2.983154 0.899484 NA 0.512502 0.242107 NA 

41 8 1 NA NA -1.3689 NA NA 0.207978 

41 8 2 NA NA -0.42652 NA NA 0.187525 

42 9 1 NA -0.41651 -0.44425 NA 0.1663 0.166789 

42 9 2 NA 0.377762 1.265666 NA 0.166221 0.197104 

9002 10 1 4.297286 NA NA 0.711901 NA NA 

9002 10 2 4.448516 NA NA 0.71123 NA NA 

9002 10 3 3.976562 NA NA 0.582738 NA NA 

279 11 1 NA -0.61904 -1.38629 NA 0.331497 0.395285 

279 11 2 NA 2.140066 2.140066 NA 0.528594 0.528594 

9023 12 1 2.02004 1.440219 NA 0.34861 0.333812 NA 

9023 12 2 2.524986 1.927793 NA 0.426773 0.393438 NA 

49 13 1 NA 1.846879 NA NA 0.152166 NA 

49 13 2 NA 2.060979 NA NA 0.165819 NA 

345 14 1 2.519162 -0.04485 NA 0.140164 0.077344 NA 

345 14 2 2.656055 0.124258 NA 0.146303 0.07612 NA 

28 15 1 NA NA 0.716309 NA NA 0.212838 

28 15 2 NA NA 0.977271 NA NA 0.22683 

35 16 1 -0.59276 NA NA 0.13252 NA NA 

35 16 2 0.064039 NA NA 0.126971 NA NA 

9042 17 1 NA NA -2.03143 NA NA 0.265889 

9042 17 2 NA NA 0.043172 NA NA 0.169677 

10001 18 1 NA NA 1.921813 NA NA 0.309077 
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10001 18 2 NA NA 3.100092 NA NA 0.323272 

12 19 1 -0.85745 -0.12783 0.300105 0.318954 0.292326 0.29502 

12 19 2 -0.45676 0.81831 0.916291 0.293198 0.309965 0.316228 

29 20 1 2.174752 1.268511 NA 0.47194 0.377308 NA 
29 20 2 3.068053 1.609438 NA 0.723364 0.387298 NA 

24 21 1 NA 0.226982 NA NA 0.092947 NA 

24 21 2 NA 0.267138 NA NA 0.091911 NA 

14 22 1 -1.27841 -4.20469 NA 0.241066 0.822567 NA 

14 22 2 -1.43508 -5.34233 NA 0.248807 1.417593 NA 

END         
 
  
 
Model 2 of Chapter 7: Data file 3 of 3        

studyid1[] s[] t[,1] t[,2] t[,3] o[] out[] na[] 

9007 1 1 2 NA 1 1 2 

9007 1 1 2 NA 2 2 2 

9007 1 1 2 NA 0 3 2 

26 2 1 2 NA 1 1 2 

26 2 1 2 NA 2 2 2 

26 2 1 2 NA 3 3 2 

9019 3 1 2 NA 1 1 2 

9019 3 1 2 NA 2 2 2 

9019 3 1 2 NA 3 3 2 

48 4 1 2 NA 1 1 2 

48 4 1 2 NA 2 2 2 

48 4 1 2 NA 0 3 2 

344 5 1 2 NA 1 1 2 

344 5 1 2 NA 2 2 2 

344 5 1 2 NA 0 3 2 

203 6 1 2 NA 0 1 2 

203 6 1 2 NA 0 2 2 

203 6 1 2 NA 3 3 2 

4 7 1 3 NA 1 1 2 

4 7 1 3 NA 2 2 2 

4 7 1 3 NA 0 3 2 

41 8 1 3 NA 0 1 2 

41 8 1 3 NA 0 2 2 

41 8 1 3 NA 3 3 2 

42 9 1 3 NA 0 1 2 

42 9 1 3 NA 2 2 2 

42 9 1 3 NA 3 3 2 

9002 10 1 3 4 1 1 3 

9002 10 1 3 4 0 2 3 

9002 10 1 3 4 0 3 3 

279 11 1 4 NA 0 1 2 

279 11 1 4 NA 2 2 2 

279 11 1 4 NA 3 3 2 
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9023 12 1 4 NA 1 1 2 

9023 12 1 4 NA 2 2 2 

9023 12 1 4 NA 0 3 2 

49 13 1 4 NA 0 1 2 

49 13 1 4 NA 2 2 2 

49 13 1 4 NA 0 3 2 

345 14 1 5 NA 1 1 2 

345 14 1 5 NA 2 2 2 

345 14 1 8 NA 0 3 2 

28 15 1 8 NA 0 1 2 

28 15 1 8 NA 0 2 2 

28 15 1 5 NA 3 3 2 

35 16 1 6 NA 1 1 2 

35 16 1 6 NA 0 2 2 

35 16 1 6 NA 0 3 2 

9042 17 1 6 NA 0 1 2 

9042 17 1 6 NA 0 2 2 

9042 17 1 6 NA 3 3 2 

10001 18 1 9 NA 0 1 2 

10001 18 1 9 NA 0 2 2 

10001 18 1 7 NA 3 3 2 

12 19 2 3 NA 1 1 2 

12 19 2 3 NA 2 2 2 

12 19 2 3 NA 3 3 2 

29 20 2 5 NA 1 1 2 

29 20 2 5 NA 2 2 2 

29 20 2 8 NA 0 3 2 

24 21 4 6 NA 0 1 2 

24 21 4 6 NA 2 2 2 

24 21 4 6 NA 0 3 2 

14 22 3 7 NA 1 1 2 

14 22 3 7 NA 2 2 2 

14 22 3 9 NA 0 3 2 

END        
 

 
 
 
 
WinBUGS code for model 3 of Chapter 7 
 

#Model 3 code 
 
 Model {     #model 3 
                              
    #Likelihood for arm level data 
    #======================= 
    for(i in 1:N1){                                                  
        tmp1[i] <- studyid[i]                                        # study  id not used in the model 
        y[i,1:3] ~ dmnorm(mean.y[study[i],arm[i],1:3],omega[i,,])   # multivariate likelihood 
        omega[i,1:3,1:3] <- inverse(cov.mat[i,,])                   # within-study precision matrix 
       
        #define elements of within-study covariance matrix 
        cov.mat[i,1,1] <-  pow(se[i,1],2)  
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        cov.mat[i,2,2] <-  pow(se[i,2],2)  
        cov.mat[i,3,3] <-  pow(se[i,3],2)  
        cov.mat[i,1,2] <-  se[i,1]*se[i,2]*cor[i,1]  
        cov.mat[i,1,3] <-  se[i,1]*se[i,3]*cor[i,2]  
        cov.mat[i,2,3] <-  se[i,2]*se[i,3]*cor[i,3]  
        cov.mat[i,2,1] <-  cov.mat[i,1,2]  
        cov.mat[i,3,1] <-  cov.mat[i,1,3]  
        cov.mat[i,3,2] <-  cov.mat[i,2,3] 
 
        for(m in 1:no){  
             se[i,m] ~ dnorm(0, prec.se[m])I(0,)                     # input missing standard errors 
             unif.a[i,m] <- mn.rhoW[m] - (sqrt(12)*se.rhoW[m]/2)    # parameter a of uniform distribution  
             unif.b[i,m] <- mn.rhoW[m] +(sqrt(12)*se.rhoW[m]/2)    # parameter b of uniform distribution 
             cor[i,m]   ~  dunif(unif.a[i,m], unif.b[i,m])              # within-study correlation model 
       } 
  } 
 
    for(j in 1:ns){  
        for(k in 1:NA[j]) {  
            for(m in 1:no){ 
                 mean.y[j,k,m] <- mu[j,m] + delta[j,k,m]           # define study-specific treatment effects 
            } 
      } 
   } 
 
  #Random effects between-study model  
  #================================ 
  
  for(j in 1:ns) {           

      
        tmp2[j] <- studyid1[j]  
        tmp3[j] <- s[j] 
 
     for(m in 1:no) {    
           delta[j,1,m] <-0     #delta's in control arm to zero for all outcomes 
          w[j,1,m] <-0           #multi-arm adjustment in control group set to zero 
        } 
   
      for(k in 2:na2[j]) {    
   delta[j,k,1:no] ~ dmnorm(md[j,k,1:no],precBK[j,k,1:no,1:no])  #trial specific trt effects drawn from mvn distribution  
  for(m in 1:no){ 
     md[j,k,m] <-  (d[m,t[j,k]] - d[m,t[j,1]])+ sw[j,k,m]       #consistency equations     

    
  w[j,k,m] <- delta[j,k,m] - (d[m,t[j,k]] - d[m,t[j,1]])     #multi-arm adjustemnt for treatment  k 
   sw[j,k,m] <- sum(w[j,1:k-1,m])/(k-1)   
    
      for(mm in 1:no) {  
    precBK[j,k,m,mm] <- prec[m,mm]*2*(k-1)/k 
   }  
    } 
 } 
}   
 
  #Constraints 
  #There are 8 trts in total, but only 7 treatments are trialled for each outcome, hence 8 is code 
  # when trt has not been considered for the outcome. also effect in usual care arm is set to zero 
  d[1,1] <- 0  
  d[2,1] <- 0 
  d[3,1] <- 0 
   
  #Prior distributions and parameter to estimate 
  prec[1:no,1:no] <- inverse(sigma[,])         #hash out if using inverse-wishart (model 2a) 
  sd.se~ dunif(0, 2)  
 
   for(m in 1:no) {  
      prec.se[m] <- pow(sd.se,-2)  
      sigma[m,m] <- pow(sd[m],2)       #hash out if using inverse-Wishart (model 2a) 
      sd[m] ~ dunif(0, 2)                 #hash out if using inverse-Wishart (model 2a) 
     for(j in 1:ns){  
         mu[j, m] ~ dnorm(0,0.0001)  
      } 
   }       
 
  #spherical parameterization (Wei and Higgins 2013) 
  pi <- 3.1415  
  for(i in 1:2) { 
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       for(j in (i+1):no) { 
           sigma[i,j] <- rho[i,j]*sd[i]*sd[j] 
          sigma[j,i] <- sigma[i,j] 
          g[j,i] <- 0 
         a[i,j] ~ dunif(0, pi) 
         rho[i,j] <- inprod(g[,i], g[,j]) 
      } 
  }  
   
  g[1,1] <- 1 
  g[1,2] <- cos(a[1,2]) 
  g[2,2] <- sin(a[1,2]) 
  g[1,3] <- cos(a[1,3]) 
  g[2,3] <- sin(a[1,3])*cos(a[2,3]) 
  g[3,3] <- sin(a[1,3])*sin(a[2,3]) 
   
# Borrowing information across outcomes 
#=========================================== 
#intervention effects exponentiated and prior distributions 
    for(k in 2: nt){  
      for(m in 1:no) {    
      meanD[m,k-1] <- alpha[k-1] + gamma[m]  #outcome and intervention effects 
      d[m,k] ~ dnorm(meanD[m,k-1], prec.btw)  #trt effects  
      OR[m,k-1] <- exp(meanD[m,k-1])           # extrapolated effects of interest in model 3  
          or[m,k] <- exp(d[m,k])                       #shrunken estimates based on equation (7)  
      } 
     } 
   
  for(m in 1:no) {gamma[m] ~ dnorm(0, 0.0001) } 
  for(k in 1:(nt-1)) {alpha[k] ~ dnorm(0, 0.0001) } 
  prec.btw <- pow(sd.btw,-2) 
  sd.btw ~ dunif(0, 2) 
}  
#END 
 
Model 3: Data file 1 of 3 
list( 
N=45,  #no of datapoints 
ns=22,  # no of studies 
no=3,    #no of outcomes 
nt =9, 
mn.rhoW =c(0.184,-0.052,0.051),      #mean of within-study correlations from IPD 
se.rhoW = c(0.118,0.064,0.059,1),    #se of within-study correlations from IPD 
NA = c(2,2,2,2,2,  2,2,2,2,3,  2,2,2,2,2,  2,2,2,2,2,   2,2),  # no. of arms in each study 
 
) 
 
Model 3: Data file 2 of 3 is the same as in model 2 of Chapter 7 
 
  
Model 3: Data file 3 of 3        

studyid1[] s[] t[,1] t[,2] t[,3] na2[] 

9007 1 1 2 NA 2 

26 2 1 2 NA 2 

9019 3 1 2 NA 2 

48 4 1 2 NA 2 

344 5 1 2 NA 2 

203 6 1 2 NA 2 

4 7 1 3 NA 2 

41 8 1 3 NA 2 

42 9 1 3 NA 2 

9002 10 1 3 4 3 

279 11 1 4 NA 2 

9023 12 1 4 NA 2 

49 13 1 4 NA 2 

Felix Achana PhD Thesis, September 2014 234 



Appendix 
 

345 14 1 5 NA 2 

28 15 1 6 NA 2 

35 16 1 7 NA 2 

9042 17 1 7 NA 2 

10001 18 1 8 NA 2 

12 19 2 3 NA 2 

29 20 2 5 NA 2 

24 21 4 7 NA 2 

14 22 3 9 NA 2 

END      
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Appendix V: WinBUGS Code to fit decision analytic model 

 
#-------------  DECISION MODEL FOR POISONING PREVENTION VERSION 1 ------------ 
#-------------  FELIX ACHANA (MARCH 2014) ------------------------------------ 
#----------------------------------------------------------------------------- 
 
# NHS Perspective 
# K= Intervention strategy  
# S=Health states (1=Safe storage(SS),2=NO SS,3=SS/disability,4=NO SS/disability 
# 5=death from fatal  fatal injury and 6=Death other causes 
 
# N=Number of households 
# C=Cycle 
# T=Total number of years (time horizon) 
 
# INTERVENTIONS 
# 1Usual care 
# 2Education 
# 3Education + low/free equipment 
# 4Education + low/free equipment + Home safety inspection 
# 5Education + low/free equipment + Fitting 
# 6Education + low/free equipment +Home safety inspection + Fitting 
# 7Education + Home visit 
# 8Equipment only 
 
 
#---------------- NMA MODEL --------------------------------------------------- 
#------------------------------------------------------------------------------ 
 
model{ 
  for(i in 1:NS) {       
     tmp[i] <- id[i] 
     w[i,1] <- 0       
     delta[i,1] <- 0         
     mu[i] ~ dnorm(0,.0001)      
  
     #binomial likelihood model 
     for(k in 1:na[i]){     
        r[i,k] ~ dbin(pMTC[i,k],n[i,k])   
        logit(pMTC[i,k]) <- mu[i] + delta[i,k]         
     } 
    
     #random effects model with multi-arm adjustment 
     for(k in 2:na[i]){ 
        delta[i,k] ~  dnorm(md[i,k],taud[i,k])              
        md[i,k]    <- d[t[i,k]]-d[t[i,1]]+sw[i,k]                    
        taud[i,k]  <- tau *2*(k-1)/k                                     
        w[i,k]     <- (delta[i,k]-d[t[i,k]]+d[t[i,1]])                 
        sw[i,k]    <- sum(w[i,1:k-1])/(k-1)  
    }                        
 }    
  
 d[1]<-0       #trt effect in placebo group set to zero 
 sd~dunif(0,2)              #vague prior for re sd  
 tau<-pow(sd,-2) 
  
 for(k in 2:NT){ 
    d[k] ~ dnorm(0, 0.0001)  #vague priors for basic parameters 
 } 
            
 
 for(i in 1:NS){  
    mu1[i] <- mu[i]*equals(t[i,1],1)  #Trt A baseline.  
 } 
 
 for(k in 1:NT){ 
    logit(pMTCfunc[k]) <- sum(mu1[])/NBS+d[k]  
 } 
 
 #Ranking  
  for(k in 1:NT) {  
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    rk[k]<-NT+1 - rank(pMTCfunc[k],k) 
    best[k]<-equals(rk[k],1) 
 } 
 
#Pairwise ORs 
 for(c in 1:(NT-1)){   
    for(k in (c+1):NT){   
       lor[c,k] <- d[k] - d[c] 
       log(or[c,k]) <- lor[c,k] 
      # RR[c,k]<-or[c,k]/(1-mn.mu1+mn.mu1*or[c,k]) 
    } 
 } 
     
 
 
 
#---- DECISION MODEL ----------------------------------------------------------------------------------- 
#------------------------------------------------------------------------------------------------------- 
 
 
#DATA ON PROBABILITIES 
 pSafe1     ~  dbeta(pSafe1.a, pSafe1.b) #Estimate 1:KCS community controls 
 pSafe2     <- exp(mnSafe2)/(1.0+exp(mnSafe2))  #Estimate 2:Patel 2008 (see meta-analysis below) 
 piSafe     <- pSafe1                           #set piSafe to estimate 1  
#orIngest   ~  dlnorm(muLor, precLor)         #relative risk of accidental ingestion|SS 
 orIngest   <- exp(lnOR)                        #relative risk of accidental ingestion|SS 
 lnOR       ~  dnorm(mu.lnOR,prec.lnOR)         #log relative risk of accidental ingestion|SS 
 pIngest[2] ~  dbeta(pIngest.a, pIngest.b)      #prob(accidental ingestion|NO SS) 
 pIngest[1] <- pIngest[2]*orIngest 
 pIngest[3] <- pIngest[2]*orIngest 
 pIngest[4] <- pIngest[2] 
   
 pAdmit     ~  dbeta(pAdmit.a, pAdmit.b)        #prob(admission following poisoning incident) 
 pLong  ~  dbeta(pLong.a, pLong.b)              #prob(long stay, no complete recovery serious poisoning incident) 
 pFatal     ~  dbeta(pFatal.a, pFatal.b)        #prob(admission ff poisoning incident) 
 
    
#bSafe1: MA of baseline safety practices reported in Patel 2008 
 for(i in 1:7){ 
     rSafe2[i] ~ dbin(pi.Safe2[i], nSafe2[i]) 
     logit(pi.Safe2[i]) <- delta.Safe2[i] 
     delta.Safe2[i] ~ dnorm(mnSafe2, tauSafe2) 
 } 
 
#Prior distributions 
 mnSafe2 ~ dnorm(0,0.001) 
 sdSafe2 ~ dunif(0,2) 
 tauSafe2 <- pow(sdSafe2,-2) 
 
  
#----- PART 1: INTERVENTION MODEL (TIME t=1) ------------------------------------------------------------ 
#-------------------------------------------------------------------------------------------------------- 
 n1[1]<-N*piSafe                                    #N households with SS at baseline 
 n2[1]<-0 
 n3[1]<-0 
 n4[1]<-N*(1-piSafe)                                #N households with no SS at baseline 
   
 for( k in 2:K){                                                 
    n1[k]<-N*piSafe                                 #SS prior to intervention 
    n2[k]<-N*(1-piSafe)*pAccept[k]*pMTCfunc[k]      #SS after intervention 
    n3[k]<-N*(1-piSafe)*pAccept[k]*(1-pMTCfunc[k])  #NO SS after intervention 
    n4[k]<-N*(1-piSafe)*(1-pAccept[k])              #NO SS, refuse intervention 
 } 
 
 for(k in 1:K){ 
    pi[1,k,1]<-n1[k]+n2[k]                         #state 1=SSM 
    pi[1,k,2]<-n3[k]+n4[k]                         #state 2=NO SSM 
    pi[1,k,3]<-0                                   #state 3=SSM:Chronic injury  
    pi[1,k,4]<-0                                   #state 4=NO SSM:Chonic injury  
    pi[1,k,5]<-0                                   #state 5=Death fatal injury 
    pi[1,k,6]<-0                                   #state 6=Death other causes 
    #sums to N  
    CHECK[1,k]<-pi[1,k,1]+pi[1,k,2]+pi[1,k,3]+pi[1,k,4]+pi[1,k,5]+pi[1,k,6]  
 } 
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#Account for households no longer having safe storage after 12 months 
 for(k in 1:K){ 
    pSafe[k,1]<-  piSafe*(1-decay[k])  
    pSafe[k,3]<-  pSafe[k,1] 
    pSafe[k,2]<-  0 
    pSafe[k,4]<-  0  
    decay[k]  <-  0 #assumes households will continue to have safe storage 
 } 
 
 
#----- PART 2: PRE-SCHOOL MODEL(cYCLES 2 TO 5) --------------------------------------------------------- 
#-------------------------------------------------------------------------------------------------------  
#Define pathways through the model 
 for(c in 2:C){                       #cycles 
    for(k in 1:K){                    #interventions 
       for(s in 1:4){                 #health states 
          #No unintentional ingestion 
          o1[c,k,s]<- (1-pIngest[s])*pDead[c]             
   o2[c,k,s]<- (1-pIngest[s])*(1-pDead[c])*pSafe[k,s]        
   o3[c,k,s]<- (1-pIngest[s])*(1-pDead[c])*(1-pSafe[k,s]) 
              
          #Ingestion but not admitted 
          o4[c,k,s]<- pIngest[s]*(1-pAdmit)*pDead[c]    
   o5[c,k,s]<- pIngest[s]*(1-pAdmit)*(1-pDead[c])*pSafe[k,s] 
   o6[c,k,s]<- pIngest[s]*(1-pAdmit)*(1-pDead[c])*(1-pSafe[k,s]) 
  
          #Ingested, admitted short-inpatient stay (assumed for cases leading to complete recovery) 
          o7[c,k,s]<-  pIngest[s]*pAdmit*(1-pLong)*pDead[c] 
          o8[c,k,s]<-  pIngest[s]*pAdmit*(1-pLong)*(1-pDead[c])*pSafe[k,s] 
          o9[c,k,s]<-  pIngest[s]*pAdmit*(1-pLong)*(1-pDead[c])*(1-pSafe[k,s]) 
           
          #Ingested, admitted long-inpatient stay (assumed for cases leading to fatal or chronic injury) 
          o10[c,k,s]<- pIngest[s]*pAdmit*pLong*pFatal    
          o11[c,k,s]<- pIngest[s]*pAdmit*pLong*(1-pFatal)*pDead[c] 
          o12[c,k,s]<- pIngest[s]*pAdmit*pLong*(1-pFatal)*(1-pDead[c])*pSafe[k,s] 
          o13[c,k,s]<- pIngest[s]*pAdmit*pLong*(1-pFatal)*(1-pDead[c])*(1-pSafe[k,s]) 
                 
          #Check sums to 1 
          TOT[c,k,s]<-o1[c,k,s]+o2[c,k,s]+o3[c,k,s]+o4[c,k,s]+o5[c,k,s]+o6[c,k,s]+o7[c,k,s]+ 
          o8[c,k,s]+o9[c,k,s]+o10[c,k,s]+o11[c,k,s]+o12[c,k,s]+o13[c,k,s] 
       } 
    } 
 } 
 
#Estimate transition probabilities between health states  
 for(c in 2:C){ 
    for(k in 1:K){ 
       for(s in 1:2){       
          lamb[c,k,s,1]<-o2[c,k,s]+o5[c,k,s]+o8[c,k,s]            #From state s to state 1  
          lamb[c,k,s,2]<-o3[c,k,s]+o6[c,k,s]+o9[c,k,s]            #From state s to state 2  
          lamb[c,k,s,3]<-o12[c,k,s]       #From state s to state 3   
   lamb[c,k,s,4]<-o13[c,k,s]       #From state s to state 4  
   lamb[c,k,s,5]<-o10[c,k,s]      #From state s to state 5  
   lamb[c,k,s,6]<-o1[c,k,s]+o4[c,k,s]+o7[c,k,s]+o11[c,k,s] #From state s to state 6    
       } 
     
       for(s in 3:4){       
   lamb[c,k,s,1]<-0                                         #From state s to state 1    
   lamb[c,k,s,2]<-0                                         #From state s to state 2      
          lamb[c,k,s,3]<-o2[c,k,s]+o5[c,k,s]+o8[c,k,s]+o12[c,k,s]  #From state s to state 3   
   lamb[c,k,s,4]<-o3[c,k,s]+o6[c,k,s]+o9[c,k,s]+o13[c,k,s]  #From state s to state 4  
   lamb[c,k,s,5]<-o10[c,k,s]       #From state s to state 5  
   lamb[c,k,s,6]<-o1[c,k,s]+o4[c,k,s]+o7[c,k,s]+o11[c,k,s]  #From state s to state 6    
       } 
       
       for(s in 5:S){  
   lamb[c,k,s,1]<- 0              #From state s to state 1  
          lamb[c,k,s,2]<- 0              #From state s to state 2  
   lamb[c,k,s,3]<- 0              #From state s to state 3   
   lamb[c,k,s,4]<- 0              #From state s to state 4  
   lamb[c,k,s,5]<- equals(s,5)    #From state s to state 5  
   lamb[c,k,s,6]<- equals(s,6)    #From state s to 6 
       } 
  
       #Checks to ensure each row sums to 1 
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       for(s in 1:S){           
          TOTAL[c,k,s]<-lamb[c,k,s,1]+lamb[c,k,s,2]+lamb[c,k,s,3]+lamb[c,k,s,4]+lamb[c,k,s,5]+lamb[c,k,s,6] 
       } 
    } 
 }     
 
 
#----------- DM PART 3: CYCLES 6 TO 100 ----------------------------------------------------------------------- 
#-------------------------------------------------------------------------------------------------------------- 
 
 for(c in C+1:T){ 
    for(k in 1:K){ 
       for(s in 1:4){ 
          lamb[c,k,s,1]<-(1-pDead[c])*equals(s,1)  
   lamb[c,k,s,2]<-(1-pDead[c])*equals(s,2)  
   lamb[c,k,s,3]<-(1-pDead[c])*equals(s,3)  
   lamb[c,k,s,4]<-(1-pDead[c])*equals(s,4)  
          lamb[c,k,s,5]<- 0 
   lamb[c,k,s,6]<- pDead[c] 
       } 
 
       for(s in 5:S){ 
   lamb[c,k,s,1]<- 0  
   lamb[c,k,s,2]<- 0  
   lamb[c,k,s,3]<- 0  
   lamb[c,k,s,4]<- 0  
   lamb[c,k,s,5]<- equals(s,5) 
   lamb[c,k,s,6]<- equals(s,6) 
       } 
      
       for(s in 1:S){            
          TOTAL[c,k,s]<-lamb[c,k,s,1]+lamb[c,k,s,2]+lamb[c,k,s,3]+lamb[c,k,s,4]+lamb[c,k,s,5]+lamb[c,k,s,6] 
       } 
    } 
 }  
   
#Number of individuals in each state at time t>1 
 for(c in 2:C){ 
    for(k in 1:K){ 
       for(s in 1:S){ 
   pi[c,k,s]<-inprod(pi[(c-1),k,],lamb[c,k, ,s]) 
       } 
 
          CHECK[c,k]<-pi[c,k,1]+pi[c,k,2]+pi[c,k,3]+pi[c,k,4]+pi[c,k,5]+pi[c,k,6]  #Check sums to N 
    } 
 } 
  
#Number of individuals in each state at time >C 
 for(c in C+1:T){ 
    for(k in 1:K){ 
       for(s in 1:S){ 
          pi[c,k,s]<-inprod(pi[(c-1),k,],lamb[c,k, ,s]) 
       } 
 
   CHECK[c,k]<-pi[c,k,1]+pi[c,k,2]+pi[c,k,3]+pi[c,k,4]+pi[c,k,5]+pi[c,k,6]  #Check sums to N 
    } 
 } 
     
   
#---------------------- COSTS AND UTILITIES ------------------------------------------------------------- 
#-------------------------------------------------------------------------------------------------------- 
 
#DM PART 1 COSTING 
#Costs  and  AQLYS of each intervention at time point c=1 
 for(k in 1:K){ 
    cInterv[k]<- cEdu[k]+cEqp[k]+cHSI[k]+cInstall[k] #cost of each strategy   
    c_n1[k]<-n1[k]*0     #cost=0 for usual care 
    c_n2[k]<-n2[k]*(cInterv[k]+cAccept)   #accept intervention (SSM after intervention) 
    c_n3[k]<-n3[k]*(cInterv[k]+cAccept)   #accept intervention (NO SSM after intervention) 
    c_n4[k]<-n4[k]                                      #decline intervention (NO SSMt) 
    ct[1,k]<-cFixed[k]+c_n1[k]+c_n2[k]+c_n3[k]+c_n4[k]  #total cost for each intervention 
    ut[1,k]<-uPop[1]*N                                  #total QALYs for each intervention 
 } 
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#DM PART 2 COSTING  
#Health sector costs estimates (ambulance costs weighted by probability of emergency transfer = 24.2% reported in HES 2012b) 
 cMinor    <- 0.242*cAmb+cED[1]                          #cost of minor injury = costs of ED for cases not admitted 
 cModerate <- (0.242*cAmb)+cED[2]+cAdmit[1]+cGP[1]       #cost of moderate injury = Ambulanace + ED(cases leading to adm) + 

Short-inpat. adm + 11 mins GP consult.  
 cSevere   <- (0.242*cAmb)+cED[2]+cAdmit[2]+cGP[1]+cHV   #cost of severe injury = Ambulanace + ED(cases adm) + Short-inpat. 

adm + 11 mins GP consult. 
 ctFatal   <- (0.242*cAmb)+cED[2]+cAdmit[2]+cFatal       #total cost of fatal injury = Ambulanace + ED(cases leading to adm) + long-

inpat. adm 
 cAmb ~ dgamma(cAmb.a, cAmb.b)                           #per episode cost paramedic ambulance unit 
 cHV ~ dgamma(cHV.a, cHV.b)                              #per episode cost of health vistor contact  
 cChronic ~ dgamma(cChro.a, cChro.b)                     #annual costs of chronic ill-health or disability 
 cGP.temp <- cGP[2]                                      #cost of 17 mins GP consultation set to temp. variable as its not used in model 
  
for( i in 1:2){ 
    cED[i] ~ dgamma(cED.a[i], cED.b[i]) 
    cAdmit[i] ~ dgamma(cAdmit.a[i], cAdmit.b[i]) 
 } 
  
 for(k in 1:K){ 
    for(s in 1:4){ 
       cSafe[k,s] <-cSafe1                  #annual cost of maintaining safe storage =0 
    } 
 } 
     
 
for(c in 2:C){ 
    for(k in 1:K){ 
       for(s in 1:2){  
          #No unintentional ingestion 
          c_o1[c,k,s]<-o1[c,k,s]*0 
   c_o2[c,k,s]<-o2[c,k,s]*cSafe[k,s] 
   c_o3[c,k,s]<-o3[c,k,s]*0 
 
          #Ingestion but not admitted 
   c_o4[c,k,s]<-o4[c,k,s]*cMinor 
   c_o5[c,k,s]<-o5[c,k,s]*(cMinor+cSafe[k,s]) 
   c_o6[c,k,s]<-o6[c,k,s]*cMinor 
   
          #Ingested, admitted, short-stay (i.e. moderate injury) 
          c_o7[c,k,s]<-o7[c,k,s]*cModerate 
   c_o8[c,k,s]<-o8[c,k,s]*(cModerate+cSafe[k,s]) 
   c_o9[c,k,s]<-o9[c,k,s]*cModerate 
 
   c_o10[c,k,s]<-o10[c,k,s]*ctFatal   
          c_o11[c,k,s]<- o11[c,k,s]*cSevere 
   c_o12[c,k,s]<- o12[c,k,s]*(cSevere+cSafe[k,s]) 
   c_o13[c,k,s]<- o13[c,k,s]*cSevere 
           
          cost[c,k,s]<-c_o1[c,k,s]+c_o2[c,k,s]+c_o3[c,k,s]+c_o4[c,k,s]+c_o5[c,k,s]+c_o6[c,k,s]+c_o7[c,k,s] 
                       +c_o8[c,k,s]+c_o9[c,k,s]+c_o10[c,k,s]+c_o11[c,k,s]+c_o12[c,k,s]+ c_o13[c,k,s] 
       } 
       
       for(s in 3:4){    
          c_o1[c,k,s]<-o1[c,k,s]*0 
   c_o2[c,k,s]<-o2[c,k,s]*(cSafe[k,s]+cChronic) 
   c_o3[c,k,s]<-o3[c,k,s]*(0+cChronic) 
   c_o4[c,k,s]<-o4[c,k,s]*cMinor #dead 
   c_o5[c,k,s]<-o5[c,k,s]*(cMinor+cSafe[k,s]+cChronic) 
   c_o6[c,k,s]<-o6[c,k,s]*(cMinor+0+cChronic) 
    
          c_o7[c,k,s]<-o7[c,k,s]*cModerate #dead 
   c_o8[c,k,s]<-o8[c,k,s]*(cModerate+cSafe[k,s]+cChronic) 
   c_o9[c,k,s]<-o9[c,k,s]*(cModerate+cChronic) 
    
          c_o10[c,k,s]<-o10[c,k,s]*ctFatal 
   c_o11[c,k,s]<- o11[c,k,s]*cSevere 
   c_o12[c,k,s]<- o12[c,k,s]*(cSevere+cSafe[k,s]+cChronic) 
   c_o13[c,k,s]<- o13[c,k,s]*(cSevere+cChronic) 
           
          cost[c,k,s]<-c_o1[c,k,s]+c_o2[c,k,s]+c_o3[c,k,s]+c_o4[c,k,s]+c_o5[c,k,s]+c_o6[c,k,s]+c_o7[c,k,s] 
                       +c_o8[c,k,s]+c_o9[c,k,s]+c_o10[c,k,s]+c_o11[c,k,s]+c_o12[c,k,s]+ c_o13[c,k,s] 
       } 
 
          cost[c,k,5]<-0    #No costs associated with dead states  
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          cost[c,k,6]<-0    #No costs associated with dead states  
    } 
 } 
 
#DM PART 3 COSTING 
 for(c in C+1:T){ 
    for(k in 1:K){ 
        cost[c,k,1]<- 0  
        cost[c,k,2]<- 0 
        cost[c,k,3]<- cChronic 
        cost[c,k,4]<- cChronic 
        cost[c,k,5]<- 0 
        cost[c,k,6]<- 0 
    } 
 }       
 
 
#UTILITIES IN EACH STATE 
#General UK population utility:1 to 100 yrs  
 for(i in 1:T){ 
     uPop[i]~dnorm(mn.uPop[i], prec.uPop[i]) 
 } 
 
 uMinor ~ dbeta(uInj.a[1], uInj.b[1]) 
 uModerate ~ dbeta(uInj.a[2], uInj.b[2]) 
 uSevere ~ dbeta(uInj.a[3], uInj.b[3]) 
 uChronic ~ dbeta(uChro.a, uChro.b) 
  
 for(k in 1:K){ 
    u[1,k,1]<-uPop[1] 
    u[1,k,2]<-uPop[1] 
    u[1,k,3]<-uPop[1] 
    u[1,k,4]<-uPop[1] 
    u[1,k,5]<-0 
    u[1,k,6]<-0 
 
    for(c in 2:C){ 
       for(s in 1:2){  
          #No unintentional ingestion    
          u_o1[c,k,s]<-o1[c,k,s]*0 
          u_o2[c,k,s]<-o2[c,k,s]*uPop[c]   
          u_o3[c,k,s]<-o3[c,k,s]*uPop[c]  
 
          #Ingestion but not admitted 
          u_o4[c,k,s]<-o4[c,k,s]*0 
          u_o5[c,k,s]<-o5[c,k,s]*(uPop[c]-uMinor) 
          u_o6[c,k,s]<-o6[c,k,s]*(uPop[c]-uMinor) 
          
          #Ingested, admitted, short-inpatient stay (complete recovery) 
          u_o7[c,k,s]<-o7[c,k,s]*0           
          u_o8[c,k,s]<-o8[c,k,s]*(uPop[c]-uModerate) 
          u_o9[c,k,s]<-o9[c,k,s]*(uPop[c]-uModerate) 
          
          #Ingested, admitted, long stay (no complete recovery or fatal injury assumed) 
          u_o10[c,k,s] <- o10[c,k,s]*0          
          u_o11[c,k,s] <- o11[c,k,s]*0 
          u_o12[c,k,s] <- o12[c,k,s]*(uPop[c]-uSevere) 
          u_o13[c,k,s] <-o13[c,k,s]*(uPop[c]-uSevere) 
          
          u[c,k,s]<- u_o1[c,k,s]+u_o2[c,k,s]+u_o3[c,k,s]+u_o4[c,k,s]+u_o5[c,k,s]+u_o6[c,k,s]+u_o7[c,k,s]+ 
                     u_o8[c,k,s] +u_o9[c,k,s]+u_o10[c,k,s]+u_o11[c,k,s] +u_o12[c,k,s]+u_o13[c,k,s] 
       } 
 
       for(s in 3:4){     
          u_o1[c,k,s]<-o1[c,k,s]*0 
          u_o2[c,k,s]<-o2[c,k,s]*(uPop[c]-uChronic)   
          u_o3[c,k,s]<-o3[c,k,s]*(uPop[c]-uChronic)  
           
          #Ingestion but not admitted 
          u_o4[c,k,s]<-o4[c,k,s]*0 
          u_o5[c,k,s]<-o5[c,k,s]*(uPop[c]-uMinor-uChronic) 
          u_o6[c,k,s]<-o6[c,k,s]*(uPop[c]-uMinor-uChronic) 
            
          #Ingested, admitted, short-inpatient stay (complete recovery)          
          u_o7[c,k,s]<-o7[c,k,s]*0 
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          u_o8[c,k,s]<-o8[c,k,s]*(uPop[c]-uModerate-uChronic) 
          u_o9[c,k,s]<-o9[c,k,s]*(uPop[c]-uModerate-uChronic) 
           
          #Ingested, admitted, long stay (no complete recovery or fatal injury assumed) 
          u_o10[c,k,s] <- o10[c,k,s]*0 
          u_o11[c,k,s] <- o11[c,k,s]*0 
          u_o12[c,k,s] <- o12[c,k,s]*(uPop[c]-uSevere-uChronic) 
          u_o13[c,k,s] <-o13[c,k,s]*(uPop[c]-uSevere-uChronic) 
          
          u[c,k,s]<- u_o1[c,k,s]+u_o2[c,k,s]+u_o3[c,k,s]+u_o4[c,k,s]+u_o5[c,k,s]+u_o6[c,k,s]+u_o7[c,k,s]+ 
                     u_o8[c,k,s] +u_o9[c,k,s]+u_o10[c,k,s]+u_o11[c,k,s] +u_o12[c,k,s]+u_o13[c,k,s] 
       } 
  
  
       u[c,k,5]<- 0 
       u[c,k,6]<- 0 
    } 
 } 
 
#DM PART 3 UTILITIES 
 for(k in 1:K){ 
    for(c in C+1:T){ 
          u[c,k,1]<- uPop[c]  
          u[c,k,2]<- uPop[c]  
          u[c,k,3]<- uPop[c]-uChronic  
          u[c,k,4]<- uPop[c]-uChronic  
          u[c,k,5]<- 0  
          u[c,k,6]<- 0  
    } 
 }   
 
#--------------------------- MODEL EVALUATION --------------------------------------- 
#------------------------------------------------------------------------------------ 
 
#Costs in each cycle of model 
 for(k in 1:K){ 
    for(c in 2:T){ 
       ct[c,k]<-inprod(pi[c,k, ],cost[c,k, ])/pow((1+d.rate),(c-1)) 
    } 
 } 
 
#Utlities in each cycle of model 
 for(k in 1:K){ 
    for(c in 2:T){ 
       ut[c,k]<-inprod(pi[c,k, ],u[c,k, ])/pow((1+d.rate),(c-1)) 
 } 
 
   TotC[k]<-sum(ct[,k]) 
   mean.C[k]<-TotC[k]/N 
 
   TotU[k]<-sum(ut[,k]) 
   mean.U[k]<-TotU[k]/N 
 } 
 
 Cost.diff[2]<-mean.C[2]-mean.C[1] #Intervention2 compared to usual care 
 Cost.diff[3]<-mean.C[3]-mean.C[1] #Intervention3 compared to usual care 
 Cost.diff[4]<-mean.C[4]-mean.C[1] #Intervention4 compared to usual care 
 Cost.diff[5]<-mean.C[5]-mean.C[1] #Intervention5 compared to usual care 
 Cost.diff[6]<-mean.C[6]-mean.C[1] #Intervention6 compared to usual care 
 Cost.diff[7]<-mean.C[7]-mean.C[1] #Intervention6 compared to usual care 
 
 Util.diff[2]<-mean.U[2]-mean.U[1] #Intervention2 compared to usual care 
 Util.diff[3]<-mean.U[7]-mean.U[1] #Intervention3 compared to usual care 
 Util.diff[4]<-mean.U[4]-mean.U[1] #Intervention4 compared to usual care 
 Util.diff[5]<-mean.U[5]-mean.U[1] #Intervention5 compared to usual care 
 Util.diff[6]<-mean.U[6]-mean.U[1] #Intervention6 compared to usual care 
 Util.diff[7]<-mean.U[7]-mean.U[1] #Intervention6 compared to usual care 
 
#Cost-effectiveness 
 for(b in 2:K){ 
    ICER[b]<-Cost.diff[b]/Util.diff[b]     #Iincremental cost-effectiveness ratio (ICER) 
 }  
 
 for(j in 1:J){ 
    Rc[j]<-(j-1)*2000 
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    for(k in 1:K){ 
       NB[k,j]<-Rc[j]*mean.U[k]-mean.C[k]    #Net monetary benefit 
       pCE[k,j]<-equals(rank(NB[,j],k),NT)   #Probability CE for cost-effectiveness Acceptability Curves 
    } 
 } 
 
} 
 
 

 

 

APPENDIX VII: RESEARCH PAPERS 

Research paper 1 
The paper entitled ‘An exploration of synthesis methods in public health evaluations of 
interventions concludes that the use of modern statistical methods would be beneficial’ has 
been published in the Journal of Clinical Epidemiology [PMID: 24388291].  

Research paper 2 
The paper entitled ‘The effectiveness of different interventions to promote poison prevention 
behaviours in households with children: a network meta-analysis’ has been submitted to 
PLOS ONE and is currently under review. 

 

Research paper 3 
The paper entitled ‘Extending methods for investigating the relationship between treatment 
effect and baseline risk from pairwise meta-analysis to network meta-analysis’ has been 
published in Statistics in Medicine [PMID: 22865748]. 

 

Research paper 4 
The paper entitled ‘Network meta-analysis of multiple outcome measures accounting for 
borrowing of information across outcomes’ has been published in BMC Medical Research 
Methodology. http://www.biomedcentral.com/1471-2288/14/92. 
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Abstract
Objectives: To review the methods currently used to synthesize evidence in public health evaluations and demonstrate the availability
of more sophisticated approaches.

Study Design and Setting: A systematic review of National Institute for Health and Care Excellence (NICE) public health appraisals
published between 2006 and 2012 was performed to assess the methods used for the synthesis of effectiveness evidence. The ability of new
developments in evidence synthesis methodology to address the challenges and opportunities present in a public health context is
demonstrated.

Results: Nine (23%) of the 39 NICE appraisals included in the review performed pairwise meta-analyses as part of the effectiveness
review with one of these also including a network meta-analysis. Of the remainder, 29 (74.4%) presented narrative summaries of the ev-
idence only, and 1 (2.6%) appraisal did not present any review of effectiveness and/or cost-effectiveness evidence. Heterogeneity of out-
comes, methods, and interventions were the main reasons given for not pooling the data. Exploration of quantitative synthesis methods
shows that pairwise meta-analyses can be extended to incorporate individual participant data (when it is available), extend the number
of interventions being compared using a network meta-analysis, and adjust for both subject- and summary-level covariates. All these
can contribute to ensuring the analysis answers directly the policy-relevant questions.

Conclusion: More sophisticated methods in evidence synthesis should be considered to make evaluations in public health more useful
for decision makers. � 2013 Elsevier Inc. All rights reserved.

Keywords: Public health evaluation; Network meta-analysis; Decision making; Meta-analysis; Systematic review
1. Introduction

Systematic reviews and economic evaluations conducted
within a decision modeling framework are two important
tools in health-care evaluation [1,2]. Systematic reviews
with or without meta-analyses have been accepted as
providing a transparent and consistent way of obtaining
research evidence on effectiveness of interventions in a
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way that minimizes bias [3]. Decision analytical models
offer an additional framework through which effectiveness
evidence, ideally from a systematic review, may be inte-
grated with other relevant evidence and information on
resource utilization to derive comparative estimates of
cost-effectiveness. By providing a framework for assessing
effectiveness and cost-effectiveness, these methods enable
policy-relevant questions such as which interventions repre-
sent the best use of scarce health-care resources to be
answered [4].

A key component of a systematic review is how the evi-
dence, on outcomes such as effectiveness and adverse
events, is synthesized. Meta-analysis, when used in a sys-
tematic review to combine quantitative information from
multiple well-conducted randomized controlled trials
(RCTs), is considered at the top of the hierarchy of evidence
for intervention effectiveness [5]. An alternative approach
to evidence synthesis, when meta-analysis is considered
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What is new?

Key findings
� Quantitative synthesis is not carried out in the sys-

tematic reviews for most public health (PH)
evaluations.

� When quantitative synthesis is done, it tends to use
the simplest methods, for example, a fixed- or
random-effects meta-analyses comparing two
groups, which potentially limits the scope of the
analysis.

What this adds to what was known?
� Demonstrates how more sophisticated synthesis

methods can be used in PH appraisals to more real-
istically model the data and answer the relevant
policy questions.

What is the implication and what should change
now?
� Researchers working on PH evaluations should

consider expanding their toolbox and using more
sophisticated methods many of which have
recently been developed, motivated, and applied
in pharmaceutical evaluations.
inappropriate, is narrative synthesis (also referred to as
qualitative synthesis [6]). In this approach, individual
studies identified in the review are summarized using a va-
riety of formats without combining results quantitatively
[7].

Meta-analysis is widely applied in reviews of the effec-
tiveness of clinical interventions, treatments, and medical
device technologies where the interventions and health
outcomes are usually well defined and evaluated in
well-conducted RCTs [8]. In other fields of health-care
evaluation, however, things may not always be as clear
cut. A good example is public health (PH), where interven-
tions are often more complex and less well defined than
clinical interventions [9]. There may also be a lack of
good-quality evidence, particularly from RCTs in PH, for
a number of well-documented reasons [10,11] including
limited generalizability of the findings of RCTs to the wider
population due to highly selected study populations, a nar-
row definition of intervention strategies and outcomes, and
a focus on the individual instead of the community that is of
interest in PH. Even when feasible, many have argued that
RCTs may not always be possible to conduct in PH for
other reasons, for example, ethical concerns may be raised
regarding not offering the control population a possibly
beneficial intervention [10]. Also, many of the RCTs con-
ducted in PH tend to be cluster randomized trials and hence
have more complex designs that need adjusting for in the
analysis. In addition, the best available PH evidence may
often come from observational nonrandomized studies
[9], despite the increased risk of bias associated with the
lack of randomization. For these reasons, the use of quan-
titative evidence synthesis methods such as meta-analysis
in PH raises a number of methodological challenges. These
include (1) increased methodological heterogeneity and
risk of bias as a result of including studies with different
study designs (RCTs, cluster RCTs, controlled before-
and-after studies, and other observational nonrandomized
studies), (2) the interventions or ‘‘program’’ being evalu-
ated is often described in little detail, (3) a wide range of
outcomes measures are often used, which may be variously
defined across studies, and (4) the use of intermediate and/
or surrogate outcome measures.

There are growing calls for PH decision making to be
based on the best available evidence whenever possible.
For example, a 2004 Department of Health report [12] on
improving health and reducing health inequalities in En-
gland called for economic evaluations of PH interventions
to ensure judicious use of scarce resources. Following this
report, the remit of the UK National Institute for Health and
Care Excellence (NICE), which already evaluated pharma-
ceutical interventions, was expanded to include the devel-
opment of guidance for PH based on sound appraisals of
intervention effectiveness and cost-effectiveness [13].
Consequently, a number of PH appraisals have been pro-
duced by NICE since 2006 on a wide range of issues
including smoking cessation, alcohol use, and, particularly
of relevance to the example used in this article, uninten-
tional injuries in children.

To help address specific methodological challenges and
provide advice on the technical aspects of the appraisal
development process, NICE published a manual of methods
for PH evaluation in 2006 [14], which was subsequently up-
dated in 2009 [15] (a further update was published in
September 2012 [16] after this review was completed, but
the guidance was not changed). The guidance recommen-
ded ‘‘Meta-analysis data may be used to produce a graph
if the data (usually from RCTs) are sufficiently homoge-
nous and if there are enough relevant and valid data from
comparable (or the same) outcome measures. Where such
data are not available, the synthesis may have to be
restricted to a narrative overview of individual studies look-
ing at the same question,’’ ‘‘Before pooling or combining
the results of different studies, the degree of heterogeneity
in the data should be assessed to determine how the results
have been affected by the circumstances in which studies
were carried out,’’ and ‘‘Publication bias [17,18] should
be critically assessed and reported in the interpretation of
the meta-analysis results.’’ These recommendations match
well to the challenges in systematic review/meta-analysis
in PH highlighted by the Cochrane Collaboration [9] and
the 2011 Institute of Medicine report on standards for sys-
tematic reviews [6].
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In view of the aforementioned challenges facing PH eval-
uations and recommendations for synthesis of PH evidence
contained in the NICE manuals of methods, a review of all
NICE PH appraisals published since 2006 was conducted.
The aim of this article is twofold: (1) to identify the current
situation (ie, what is already done and/or not done) with re-
gards to addressing problems in synthesis of PH evidence
and (2) to illustrate the application of new synthesis methods
(ie, beyond those recommended by NICE [14e16] and Co-
chrane [9]) including methods from other fields such as
health technology assessment to PH evidence that we
believe have the potential to address many of the challenges
in PH evaluation as aforementioned and thus improve the
quality of evidence syntheses in PH interventions.
2. Systematic review of NICE PH appraisals

2.1. Methods

Completed PH appraisals published between March 1,
2006 and September 25, 2012 were identified for inclusion
in the review through the NICE Web site (http://www.nice.
org.uk/Guidance/PHG/Published). Each PH appraisal con-
sisted of a number of articles such as qualitative reviews,
epidemiologic reviews, expert opinions, field reports, and
other similar nonquantitative review reports, quantitative
systematic reviews of intervention effectiveness and cost-
effectiveness, and decision analytical modeling reports.
These were retrieved from the ‘‘background information’’
sections and assessed for eligibility. The ‘‘how this guid-
ance was produced’’ sections were also searched for rele-
vant articles if none were identified under ‘‘background
information.’’ Articles meeting the inclusion criteria were
systematic reviews of the quantitative effectiveness and
cost-effectiveness evidence and/or decision analytical
modeling reports. Qualitative evidence reviews, epidemio-
logic reviews, field reports, expert opinions, and other
similar nonquantitative evidence review reports were
excluded. In addition, the final appraisal/guidance docu-
ments developed for each PH appraisal area were also
excluded as these did not contain relevant information on
the conduct of the evidence synthesis and decision
modeling, which is of interest in this review. All except
two (PH1 and PH2) of the appraisals were published after
the 2006 NICE manual of methods [14] so should have fol-
lowed the guidance for quantitative effectiveness evidence
synthesis techniques.

Information extracted from the retrieved articles was
used to assess the methods used to synthesize the effective-
ness evidence and subsequent incorporation of the evidence
into the decision models (when developed) that informed
the PH appraisal. The assessment criteria for the synthesis
methods were

1. Type of systematic reviewdnarrative summary vs.
meta-analysis;
2. Included studiesdRCT vs. observational (non-
randomized) studies;

3. Methods used to synthesize the evidence (if under-
taken), including specification of the statistical model
(including fixed- and/or random-effects models), het-
erogeneity, publication bias, and the outcome mea-
sures used, as well as presentation of results; and

4. How evidence from the systematic review was used to
inform any cost-effectiveness analysis.

2.2. Results of systematic review

Thirty-nine completed PH appraisals published since
2006 were identified from the NICE PH Web site. Within
these 39 appraisals, 371 potentially relevant articles were
retrieved, and after screening the titles and reading the
introduction and/or abstract sections, 164 were excluded
as they failed to meet the inclusion criteria. Fifty-two arti-
cles, identified as duplicates and supplementary appen-
dices, were combined with the corresponding main report
and counted as one article leaving a total of 155 articles
for inclusion in this review. The median number of included
articles per appraisal was 4 (range 0 to 10). [No relevant
supporting document meeting our inclusion criteria existed
for one appraisal (PH36dprevention and control of hospi-
tal infection).]

2.2.1. Type of review
Table 1 lists all 39 PH appraisals by summary of

the evidence synthesis and cost-effectiveness analyses
undertaken to inform each appraisal development. One
appraisal (PH36) reported neither effectiveness and cost-
effectiveness evidence reviews nor a decision model, two
appraisals (PH33 and PH34) reported reviews of evidence
but conducted no cost-effectiveness analysis, and the fourth
appraisal (PH7) reported evidence reviews and decision
models; however, no estimates of cost-effectiveness of in-
terventions were presented.

Twenty-nine (74.4%) of the 39 appraisals contained
systematic reviews in which only a narrative summary
of the evidence was conducted, another seven (18%) con-
ducted both narrative summary and meta-analysis, two
appraisals (5%) conducted only meta-analysis, and one
(2.6%) appraisal had no systematic review and hence no
evidence synthesis. In the narrative summary approach,
the review findings were summarized study by study in
the text and through tables. Sometimes, forest plots were
used to display results of primary studies, but no overall
mean or pooled result was presented (see PH4 for an
example). Eight of the 29 appraisals using only a narrative
summary approach did not report the reasons for not pool-
ing the data, 2 included only review-level evidence from the
overview of reviews, and 19 cited heterogeneity as the
reason why meta-analysis was not considered appropriate.
The reported causes of heterogeneity are presented in
Appendix at www.jclinepi.com.
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Table 1. NICE public health appraisals and summary of evidence synthesis methods and decision modeling used to inform their development

NICE public health appraisal title

Review of the effectiveness and cost-effectiveness evidence and decision analysis used to inform each appraisal

Systematic review
of effectiveness

(narrative summary)

Systematic review of
effectiveness (at least

one M-A)a
Cost-effectiveness

reviews
Study
quality

Decision
model

Source of effectiveness
estimate used in
decision modelb

Brief interventions and referral for smoking
cessation (PH1)

U xnr U U U Published review

Four commonly used methods to increase
physical activity (PH2)

U xnr U U U Individual study1

Prevention of sexually transmitted infections and
under 18 conceptions (PH3)

U U U U U Published review

Interventions to reduce substance misuse among
vulnerable young people (PH4)

U xo U U U Individual study1

Workplace interventions to promote smoking
cessation (PH5)

U xm U U U Individual study3

Behaviour change (PH6) U xnr U U U Individual study4

School-based interventions on alcohol (PH7) U U U U U Individual study1

Physical activity and the environment (PH8) U xi,m,o U U U Individual study3

Community engagement (PH9) U xi,m,o,p U U x Not applicable
Smoking cessation services (PH10) U U U U U New meta-analysis
Maternal and child nutrition (PH11) U xm U U U Individual study5

Social and emotional wellbeing in primary
education (PH12)

U U U U U Individual study5

Promoting physical activity in the workplace
(PH13)

U xnr U U U Individual study5

Preventing the uptake of smoking by children
and young people (PH14)

U xm,o U U U Individual study1

Identifying and supporting people most at risk of
dying prematurely (PH15)

U xi,m,p U U U Individual study1

Mental wellbeing and older people (PH16) U xi,m,o U U U Individual study1

Promoting physical activity for children and
young people (PH17)

U xi,m,o U U U Analyst estimate4

Needle and syringe programmes (PH18) U xnr U U U Individual study3

Management of long-term sickness and
incapacity for work (PH19)

U U U U U New meta-analysis

Social and emotional wellbeing in secondary
education (PH20)

U xi,m,o U U U Individual study2

Reducing differences in the uptake of
immunisations (PH21)

U xnr U U U Individual study4

Promoting mental wellbeing at work (PH22) U xi U U U Individual study3

School-based interventions to prevent smoking
(PH23)

U U U U U New meta-analysis

Alcohol-use disorders - preventing harmful
drinking (PH24)

U xnr U U U Published review

Prevention of cardiovascular disease (PH25) U xnr U U U Individual study5

Quitting smoking in pregnancy and following
childbirth (PH26)

U xi,m,o U U U Published review

Weight management before, during and after
pregnancy (PH27)

U U U U U Not clear5 reported
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http://guidance.nice.org.uk/PH14
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http://guidance.nice.org.uk/PH17
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http://guidance.nice.org.uk/PH21
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http://guidance.nice.org.uk/PH23
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http://guidance.nice.org.uk/PH24
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Looked-after children and young people (PH28) U xm,o,p U U U Individual study3

Strategies to prevent unintentional injuries
among under-15s (PH29)

U xi U U U Individual study3

Preventing unintentional injuries among under-
15s in the home (PH30)

U xi,o U U U Individual study3

Preventing unintentional road injuries among
under-15s: road design (PH31)

U xi U U U Individual study2

Skin cancer prevention: information, resources
and environmental changes (PH32)

U xi,m U U U Individual study3

Increasing the uptake of HIV testing among
black Africans in England (PH33)

U xm U x x Not applicable

Increasing the uptake of HIV testing among men
who have sex with men (PH34)

U xnr U x x Not applicable

Preventing type 2 diabetesdpopulation and
community interventions (PH35)

U U U U U New meta-analysis

Prevention and control of healthcare-associated
infections (PH36)

x x x x Not applicable

Tuberculosis - hard-to-reach groups (PH37) U xnr U U U Individual study5

Preventing type 2 diabetes - risk identification
and interventions for individuals at high risk
(PH38)

U U U U U New meta-analysis

Smokeless tobacco cessation - South Asian
communities (PH39)

U xs U U U Published review

Abbreviations: NICE, National Institute for Health and Care Excellence; M-A, meta-analysis.
Ticks indicate a systematic review of evidence, meta-analysis, or decision model have been conducted, whereas x indicates analysis have not been conducted.
a Reported reason why meta-analysis was not done [i 5 heterogeneity of interventions, m 5 heterogeneity of methods, design, and settings, o 5 heterogeneity of outcome measures,

p 5 heterogeneity of study populations, s 5 heterogeneity of studies (specific cause not reported), and nr 5 not reported or reported that studies do not support a meta-analysis].
b Selection of individual study estimate of intervention effect used in the decision model (1 5 used a prespecified criteria reported in the decision model report, 2 5 discussion with NICE or

estimates selected based on quality grading of evidence using the guide manuals of methods, 35 selected studies based on the relevance of the intervention to the decision problem, 45 assump-
tion/analyst estimated based on an assumption, and 5 5 not clearly reported).
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2.2.2. Included studiesdRCTs vs. nonrandomized
studies

Two (PH23 and PH38) of the 38 appraisals (containing a
systematic review) included evidence from RCTs only in
the effectiveness review. The remaining 36 appraisals were
informed by reviews of both randomized and observational
(nonrandomized) evidence identified from individual study
reports and/or published systematic review reports. All 38
appraisals (containing a systematic review) graded the qual-
ity of primary studies and assessed the applicability of the
evidence adhering to the guidelines for PH appraisal
methods [14,15].
2.2.3. Quantitative evidence synthesis
Only 9 of the 39 appraisals (23%) contained one or more

systematic review with a meta-analysis (Table 2). In total,
there were 10 systematic reviews and/or decision analytical
modeling reports with at least one meta-analysis within the
nine appraisal areas. (Note: PH10 has two systematic re-
view reports in which a meta-analysis was conducted.) Four
of the 10 meta-analyses included RCTs only, and six
included both RCT and observational (non-RCT) studies.
Six of the 10 meta-analyses were conducted on ‘‘final out-
comes’’; that is, the main outcome measures on which the
corresponding cost-effectiveness analyses were based (eg,
PH10 Smoking abstinence). The remaining four meta-
analyses were conducted on ‘‘intermediate outcomes’’
(eg, PH3 Uptake of Chlamydia screening in schools rather
than prevention of chlamydia).

There was evidence that interventions may have been
‘‘lumped’’ [19,20] into two broad intervention groups to
facilitate inclusion of more studies in 7 of the 10 reports
with a meta-analysis. For example, in PH23, which inves-
tigated the effect of school-based interventions on alcohol
consumption, seemingly different interventions (such as
lessons delivered by teachers or other professionals
as part of the curriculum; peer-led education by other
pupils; external contributions from, for example, the
police, life education center staff; and implementation
of school policyetype interventions) were lumped toge-
ther to form one ‘‘intervention group,’’ which was then
compared with the no intervention control in a pairwise
meta-analysis.

Seven of the 10 review reports conducted random-effects
pairwise meta-analysis, one conducted fixed- and random-
effects analyses, one conducted random-effects mixed
treatment comparisons [20] (also referred to as network
meta-analysis [21,22]dsee later) alongside the pairwise
analysis, and another one did not clearly present the statisti-
cal model used. Six of the 10 systematic reviews presented
forest plots with heterogeneity statistics displayed on them,
two (PH3 and PH1) presented forest plots without heteroge-
neity statistics, and one review (PH35) did not present a for-
est plot. Only one review (PH23) assessed publication bias
using funnel plot and Egger’s test for asymmetry.
2.2.4. How the evidence from the systematic reviews
was incorporated into the model

Thirty-five (89.7%) of the 39 appraisals were informed
by cost-effectiveness evaluations contained in one or more
decision analytical modeling reports (Table 1). Twenty-
three (66%) of these used estimates of intervention effec-
tiveness derived from individual studies identified in the
systematic review to inform the decision analysis (reasons
for using the studies selected given in Table 1), 5 (14%)
used previously published systematic review results,
another 5 (14%) used estimates from a meta-analysis of
studies identified in the systematic review, 1 used expert
opinion/analyst estimate, and another one did not clearly
report the source(s) of the intervention effect.
3. Exposition of new synthesis methodology applied in
a PH evaluation context

In this section, we outline new developments in evidence
synthesis methodology, many of them motivated by the
evaluation of medical interventions and others motivated
specifically by challenges in PH. We also show how such
methods can be applied in a PH context to help address
challenges and opportunities that exist in this context and
thus, in some situations, raise the quality bar (established
in the first part of this article) for PH interventions.

We use, for illustration, a topic area in which the authors
have actively been working for several yearsdaccident pre-
vention among preschool children at home. This area of ac-
cident prevention among children at home was recently
appraised by NICE PH30 (Table 1) using only narrative sum-
maries for the systematic review of intervention effective-
ness and thus using estimates from individual trials to
inform the cost-effectiveness analyses. We have found acci-
dent prevention to have many of the issues typical of PH ap-
praisals including studies of different designs, heterogeneity
in both study design [eg, specific nature of interventions,
level of randomization (individual or cluster), etc.] and study
results, and interest in differential treatment effects across
degrees of population inequality such as accommodation
type, proportion of black and minority ethnicity, and propor-
tion of single-parent families.

The account discussed later follows an approximately
chronological path and details the development and adapta-
tion of methods to synthesize the evidence by making the
best use of available data. In this study, we restrict our
attention to strategies to reduce falls among children at
home, in particular, to increase the possession of a fitted
stair gate(s) in homes.

We start by discussing the analyses performed in a
recently updated Cochrane review [23] of interventions to
prevent unintentional injuries to children at homed
pairwise meta-analysis, subgroup analyses to explore het-
erogeneity, and meta-regression incorporating individual
participant data (IPD). We then present a network meta-



Table 2. Review of quantitative methods used to synthesize public health evidence for NICE public health appraisal

Appraisal title
Systematic review

report title
Included
RCTs only Main outcome

Description of main
outcome

Outcome
measure:
statistic

Type of
synthesis

Model
type

Lumpinga

interventio
resentation
of results

Assessed
publication

bias Software

Used result
of M-A in
decision
model

Prevention of
sexually
transmitted
infections
and under 18
conceptions
(PH3)

Review 2 - Review of
evidence for the
effectiveness of
screening for
genital chlamydial
infection in
sexually active
young women and
men

No Intermediate Uptake of proactive
chlamydia
screening using
home-collected
specimens

Screening
response
rate (%)

M-A Random
effects

No FP/Txt No RevMan, Stata No

School-based
interventions
on alcohol (PH7)

Alcohol and schools:
effectiveness and
cost-effectiveness
review

No Final Alcohol use Weighted mean
difference

M-A Random
effects

Yes FP/Txt No Not stated No

Smoking cessation
services (PH10)

Cut down to quit’
with nicotine
replacement
therapies

Yes Final 6 or more months’
sustained
abstinence

Relative risk
and Cohen’s d

M-A Random
effects

Yes FP/T/Txt No RevMan Yes

Smoking cessation
services (PH10)

Final report No Final 6 or more months’
sustained
abstinence

Cohen’s d M-A Fixed and
random
effects

Yes FP/T/Txt No RevMan No

Social and
emotional
wellbeing in
primary
education (PH12)

Teesside review Yes Intermediate Social problem
solving

Standardized
mean
difference

M-A Random
effects

Yes FP/T No RevMan No

Management of
long-term
sickness and
incapacity
for work (PH19)

PH19 Management
of long-term
sickness and
incapacity for
work: Economic
analysis report

No Yes Number returning
to work following
sickness

Relative risk M-A Random Yes FP/T/Txt No RevMan Yes

School-based
interventions
to prevent
smoking (PH23)

School-based
interventions to
prevent smoking:
quantitative
effectiveness
review

Yes Final Smoking uptake Odds ratio M-A Random
effects

Yes FP/Txt Yes Stata Yes

Weight management
before,
during and after
pregnancy
(PH27)

Weight management
before, during and
after pregnancy:
evidence review

No Intermediate Number exceeding
IoMb guidelines
for healthy
weight gain

Relative risk M-A Random
effects

Yes FP/T/Txt No RevMan No

(Continued )
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Table 2. Continued

Appraisal title
Systematic review

report title
Included
RCTs only Main outcome

Description of main
outcome

Outcome
measure:
statistic

Type of
synthesis

Model
type

Lumpinga of
interventions

Presentation
of results

Assessed
publication

bias Software

Used result
of M-A in
decision
model

Preventing type 2
diabetes -
population and
community
interventions
(PH35)

PH35 Preventing
type 2 diabetes -
population and
community
interventions:
report on cost-
effectiveness
evidence and
methods for
economic
modelling

No Intermediate Body mass index Weighted mean
difference

M-A Not
reported

Yes T/Txt No Not reported Yes

Preventing type 2
diabetes - risk
identification
and interventions
for
individuals at high
risk (PH38)

Prevention of type 2
diabetes:
systematic review
& meta-analysis of
lifestyle,
pharmacological
and surgical
interventions

Yes Final Reduce progress
to diabetes
for people with
IGT

Hazard ratio M-A and
NMA

Random
effects

No FP/TxT No RevMan (M-A)
WinBUGS
(NMA)

Yes

Abbreviations: NICE, National Institute for Health and Care Excellence; RCT, randomized controlled trial; M-A, pairwise meta-analysis; FP, forest plot; T, table; Txt, Text; IGT, impaired glucose
tolerance; NMA, network meta-analysis.

a Lumping is a term used in the literature [19,20] to describe the tendency to aggregate or treat seemingly similar but disparate/different interventions as one intervention group, for example,
to facilitate inclusion of many studies in a meta-analysis. A classic example is treating different doses of a drug as if they were the same treatment.

b American Institute of Medicine (IOM) guidelines on weight management in pregnancy.
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Fig. 1. Forest plot illustrating the findings of the random-effects meta-analysis of interventions aimed at increasing the uptake of safety equipment
for the outcome ‘‘possession of a fitted stair gate.’’ a References for all the studies can be found in the updated Cochrane review [23]. OR, odds
ratio; CI, confidence interval.
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analysis that allows the interventions to be ranked and pro-
vides more informative evidence for a cost-effectiveness
analysis.
3.1. Pairwise meta-analysis

A random-effects meta-analysis was used to synthesize
the evidence for the possession of fitted stair gate(s)
outcome, which comprised 12 studies [10 RCTs (2 clusters
allocated) and 2 non-RCTs (1 cluster allocated)]. Because
the original reporting of the cluster randomized studies
had ignored the effect of clustering in their analysis, the
meta-analysis was adjusted using external data to estimate
the likely effects of such clustering on the certainty of the
results [24]. Fig. 1 displays a forest plot of the results. Inter-
vention arms were more likely to possess fitted stair gate(s)
than the control arms [odds ratio (OR), 1.61; 95% confi-
dence interval (CI): 1.19, 2.17]. Considerable heterogeneity
was observed between study results (I2 5 76%) [25].
3.2. Subgroup analyses

Potential sources of heterogeneity were explored using
subgroup analyses based on a priori explanations, which
were (1) whether the intervention included the provision
of safety equipment, (2) follow-up period (up to and
including 3 months and 4 or more months), (3) whether
the intervention was delivered in a clinical setting or at home
or community, (4) use of a randomized or nonrandomized
design, and (5) study quality (allocation concealment, blind-
ing of outcome assessment, and at least 80% follow-up in
each treatment arm). Some of the heterogeneities were
partly explained by different settings and the provision
of stair gates, but significant heterogeneity remained in the
different subgroups.

3.3. Meta-regression using IPD and summary data

In an attempt to explain further variability between
study resultsdto address whether differential intervention
effects could be discerned to be related to indicators of
deprivationdand thus try and answer questions relating
to inequalities in health care, a number of subject-level
covariates were explored. To achieve this, the IPD were
requested from the researchers responsible for all the
relevant primary studies. By obtaining IPD, the power of
meta-regression to explore subject-level covariates (eg, if
the subject lived in owned or rented accommodation,
etc.) is much increased over the use of summary data
(eg, the percentage of subjects living in an owned house
in a particular study) [26]; in fact, obtaining IPD is consid-
ered the gold standard way to carry out meta-analysis
generally [27].

IPD were successfully obtained for approximately half of
the studies across all types of injury prevention included in
the review, with varying degree of success for the different
injury prevention domains. But this partial success pre-
sented an analysis challenge. We wanted to not only use
the IPD but also include the other studies in the analysis
for which only summary data were available. This involved
using a model developed for the original Cochrane review in
this area [28], which essentially ‘‘married’’ summary and
IPD meta-analysis models including covariates within a sin-
gle analysis based on all available data [29]. This approach
also accounted for the correct analysis of the cluster-
allocated studies through appropriate reanalysis of the IPD
(when available) and through utilization of adjustment
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methods for the summary data as aforementioned. Impor-
tantly, using IPD allowed the use of data on outcomes that
had not been reported in the articles; for example, some
studies had reported composite measures of home safety
and not individual safety practices, but the IPD included
data on these individual safety practices.

For the possession of fitted stair gate(s) outcome, IPD
were obtained for 10 of the 12 studies. Treatment interac-
tions were investigated for child age, ethnic group, gender,
family type (single or two parents), housing tenure (rented
or owned), and parental unemployment. Most of the find-
ings indicated little difference between the subgroups,
except for the analysis of housing tenure, which combined
the analyses of IPD for two cluster and five noncluster
studies, and one study for which only summary data were
available. The OR for intervention effect in noneowner-
occupied households was 1.98 [95% credible interval
(CrI, which is similar to a CI generated using Bayesian sta-
tistics): 1.48, 2.66], and in owner-occupied households, the
OR was 1.22 (95% CrI: 0.96, 1.61), providing evidence to
suggest that the intervention effect was larger in none
owner-occupied households (ratio of ORs, 1.62; 95% CrI:
1.18, 2.24).

It is interesting to note that such covariates could have
been investigated without obtaining IPD through the use
of meta-regression on summary-level covariates (ie, per-
centage of study participants in noneowner-occupied
households), but such an analysis has much diminished po-
wer and is more prone to ecological/aggregation biases
[30]. Running such an analysis on the same eight studies,
but not using any IPD, produces an exponentiated regres-
sion coefficient of 1.01 (95% CI: 0.998, 1.022), indicating
that there is no evidence of an increase in the odds of
possession of fitted stair gate(s) for a oneepercentage point
increase in percentage of families living in noneowner-
occupied household. This result is very different from the
findings from the IPD analysis, which suggest that the odds
of possessing fitted stair gate(s) are 62% higher among
those in noneowner-occupied household than those in
owner-occupied household.
3.4. Network meta-analysis

Our next refinement to the analysis, not included in the
Cochrane review, came from concerns with the interpret-
ability of the effect sizes from pairwise analyses of the type
presented previously. We were aware that the interventions
to increase the uptake of safety practices varied between
studies (eg, interventions ranged from educational initia-
tives, through vouchers to reduce the price of equipment,
through to the free provision and fitting of equipment),
and therefore, by fitting the data into a meta-analysis frame-
work of ‘‘intervention’’ vs. ‘‘usual care,’’ the interpretation
of the resulting pooled effect was uncleardexactly what
does the pooled effect relate to? This was especially impor-
tant as the effectiveness results were to be used to inform
the cost-effectiveness of injury prevention interventions
evaluated via a decision model, which would require
explicit interventions to be defined and costed. Thus, an
analysis in which the different interventions were kept as
unique was required. Once this was established, it became
possible to include further relevant literature, known about
but not used in the initial meta-analysis, in the analysis,
namely, studies which compared different interventions to
increase safety equipment uptake directly (but which had
no ‘‘usual care’’ control groupdhence their omission thus
far). Further literature searches were conducted to identify
all such studies. Network meta-analysis, which was being
increasingly used in the evaluation of pharmaceuticals for
funding bodies such as NICE [31], presented an analysis
approach that would both keep interventions distinct and
include trials with direct comparisons.

The meta-analysis of possession of fitted stair gate(s)
outcome presented in the Cochrane review included all
studies that compared a control group with an enhanced
intervention group, but these controls and interventions
varied considerably as outlined in Fig. 2A. In fact, seven
distinct controls and interventions (including usual care)
were identified across the included studies. To better un-
derstand the structure of the evidence base, when interven-
tions are defined in this more refined way, a network
diagram of the form presented in Fig. 2B [32] can be con-
structed. Network meta-analysis methods allow a simulta-
neous analysis of all the comparisons presented on the
network. Table 3 [33] presents the ORs for the pairwise
comparisons between the interventions produced both
from the network meta-analysis and the direct comparisons
from a trial or, when there was more than one trial, a pair-
wise meta-analysis of that particular comparison. In the
network meta-analysis, the most intensive intervention
(education þ low-cost/free equipment þ home safety
inspection þ fitting) was most effective for the possession
of a fitted stair gate outcome compared with all other inter-
ventions. The probability that each intervention is best and
the median rank (with uncertainty) of each intervention
[31] calculated from the network meta-analysis are pre-
sented in Table 4. These data show that the most intensive
intervention clearly had the highest probability (0.97) of
being the most effective and a median rank of 1 (95%
CI: 1, 2).

Although we believe such an analysis is more refined,
interpretable, complete, and thus more helpful than the
standard pairwise meta-analysis presented initially, it only
considered summary study data, some of which were ob-
tained from IPD, and did not include any potential
treatment-modifying covariates. We had developed models
to include covariates in network meta-analysis of summary
data [34] (including a special model to deal with the inclu-
sion of the control group event rate as a covariate in
network meta-analysis [35], which is not illustrated here
but potentially very useful in a PH context in which in-
equalities are of interest, particularly when IPD are not



A

B

Fig. 2. Network diagrams indicating how intervention groups were defined and the number of studies in the (A) Cochrane review and (B) network
meta-analysis.
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available). We have also extended the network meta-
analysis covariate model to allow the inclusion of IPD
and thus subject-level covariates when possible [36].
4. Discussion

This review of completed NICE PH appraisals illustrates
the current situation regarding the use of evidence synthesis
methods to inform PH decision making in the United
Kingdom. It identified that effectiveness evidence was
mostly synthesized using narrative summaries and that
quantitative synthesis was not carried out for most evalua-
tions in PH systematic reviews. Of the 39 appraisals pub-
lished since 2006, only 9 (23%) appraisals were informed
by at least one systematic review with a meta-analysis.
The other 30 appraisals may have refrained from meta-
analysis because of a lack of randomized trials or heteroge-
neity in study design (ie, a mix of RCTs and non-RCTs).
Moreover, systematic reviews opting for a quantitative
summary tended to use the simplest methods such as fixed-
or random-effects pairwise meta-analyses, which only en-
ables comparison between two interventions at any one
time and thus potentially limiting the scope of the analysis
and the utility of the findings. These findings would seem to
indicate that despite great advances in quantitative synthe-
sis techniques, application in PH evaluation is still very
much in its infancy and appears to lag behind other areas
of health care such as the evaluation of clinical interven-
tions. There are several reasons for this, not least due to
the often heterogeneous nature of PH evidence including
variations in many aspects of study design, including (1)
the exact nature of the interventions, (2) outcome measures,
(3) the wider scope of many PH research questions, and (4)
the quantitative skills of the researchers involved.

Underlying our desire for PH reviews to become more
quantitative, in the face of the challenges encountered, is
a firm belief that a structured and transparent description
and analysis of the decision question is desirable. Our re-
view found that nearly 80% of NICE PH appraisals did
not attempt a quantitative synthesis at all because of, what
investigators believe but we want to challenge, insurmount-
able problems due to the heterogeneous nature of the evi-
dence base. We believe that the more complex synthesis
models, described in Section 3, can often more appropri-
ately model the types of data commonly available in PH ap-
praisals than carrying out less focused and detailed reviews
of the literature.

NICE guidance states that ‘‘Meta-analysis data may be
used to produce a graph if the data (usually from RCTs)



Table 3. Results of a network meta-analysis (above stepped line) and pairwise meta-analysis (below stepped line) for possession of a fitted stair gate expressed as odds ratios (95% CrI) a,b

Abbreviation: CrI, credible interval.
Blank cells indicate that no direct evidence on specific pairwise comparisons was available.
a Values above the stepped line are results from the NMA; those below the line are direct estimates from a trial or, when more than one was available, a meta-analysis.
b Column and row headings signify intervention or comparison (intervention number).
c Significant at the 5% level.
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Table 4. Assessment of which intervention is best for possession of a fitted stair gate

Intervention

Possession of a stair gate

Probability treatment
is best

Median treatment
rank (95% CrI)

Usual care (1) 0.00 7 (5, 7)
Education (2) 0.002 4 (2, 7)
Education þ equipment (3) 0.004 3 (2, 7)
Education þ equipment þ home inspection (4) 0.001 5 (2, 7)
Education þ equipment þ fitting (5) 0.008 4 (2, 7)
Education þ home inspection (6) 0.013 4 (2, 7)
Education þ equipment þ fitting þ home inspection (7) 0.97 1 (1, 2)
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is sufficiently homogenous’’ (Section 5.4.4.2 n NICE guid-
ance 2012 [16]). For PH reviews, the evidence from RCTs
is often limited, and the best available evidence may be
from non-RCTs, which reviewers may be reluctant to pool
because of the risk of bias (Cochrane chapter 13 [9], Valen-
tine and Thompson[37], and Moher et al. [38]). However,
provided reviewers quality assess non-RCTs (as they would
RCTs) to identify well-conducted studies, to limit con-
founding by selection bias, then meta-analysis can be
considered.

Although concluding the evidence base to be ‘‘too het-
erogeneous for meta-analysis’’ may be better than carrying
out a naive simple meta-analysis, not being able to present
a quantitative analysis severely restricts the utility of the
review, particularly for decision making. Exploring hetero-
geneity and attempting to account for it should be part of
the analysis, and greater awareness of modern methods,
and greater expertise in using them, will yield fruit for
future PH reports. There are several other reasons why con-
ducting a meta-analysis may not be advisable, however, for
example, a small number of studies may mean that statis-
tical heterogeneity is underestimated; some studies are
too biased to draw a conclusion from them; there is evi-
dence of publication bias; and insufficient reporting of
outcomes.

We acknowledge that although softwares to undertake
pairwise meta-analysis are widely available (eg, RevMan,
Comprehensive Meta-Analysis), analyses such as the most
complex ones previously described require advanced statis-
tical expertise in evidence synthesis to implement (and
some groundwork regarding the Bayesian theory underpin-
ning such an approach may be required by nonstatistical
PH specialists). Our software package of choice is Win-
BUGS. This is a freely available Bayesian simulation pack-
age [39] and is extremely powerful for fitting models not
immediately available in other packages. (It even allows
economic decision models to be included in the same
program as the synthesis model, allowing a truly compre-
hensive assessment [40].) With the recent publication of
the NICE technical support documents on evidence synthe-
sis methodology [32,41,42] including all WinBUGS code
to implement the models, together with more widely avail-
able specialist training courses and the new introductory
WinBUGS book [43], the time is ripe for getting to grips
with the more complex evidence synthesis methodologies
currently being embraced by health technology appraisals
[1,44]. A detailed discussion of specific technical chal-
lenges in Bayesian random-effects synthesis models is
available elsewhere [45].

This article is limited to only considering NICE PH ap-
praisals in the review and does not claim to have all the an-
swers to all evidence synthesis challenges that exist in PH
evaluation. For example, none of the above analyses con-
siders directly the influence of the study quality/validity
of the individual studies going into an analysis, although
others are doing work in other contexts that could be adapt-
ed, for example, including different, both observational and
randomized, evidence [46].

Regarding the specific injury prevention context, for the
analyses presented previously, even when categorizing the
interventions into seven distinct groups, there is still resid-
ual heterogeneity in intervention definition, for example,
education may be a leaflet designed for the prevention of
an injury at home, it may also include a face-to-face inter-
view, a computer-based questionnaire producing tailored
advice based on the user answers, and so forth. We are
developing further modeling extensions including how
to extrapolate across a series of evidence networks
to allow information sharing on the effectiveness of inter-
ventions in promoting other safety practices for the pre-
vention of falls. We hope such analyses will be more
efficient and robust than individual analyses of each
outcome. Note that all the data considered only relate to
an increase in the uptake of safety practice and not to
reduction in accidents per se. Therefore, a further initiative
is to develop models, which extend those presented to
include the direct evidence between safety practices and
injury data. This problem is similar to the use of surrogate
end points in clinical evaluation, and we plan to adapt
methods developed there.

PH evaluations are notoriously messy and complex, with
many factors to consider. But if a decision has to be made,
explicit, transparent, and appropriate analysis of the data
should be preferred to current alternatives. Just as evalua-
tions of clinical interventions are becoming more sophisti-
cated, we think there is a pressing need to do the same for
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PH contexts and we hope this article can contribute to the
initiation of such an initiative.
Appendix

Supplementary data

Supplementary data related to this article can be found at
http://dx.doi.org/10.1016/j.jclinepi.2013.09.018.
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Abstract

Background

There is evidence from 2 previous meta-analyses that interventions to promote poison prevention

behaviours are effective in increasing a range of poison prevention practices in households with

children. The published meta-analyses compared any intervention against a “usual care or no

intervention” which potentially limits the usefulness of the analysis to decision makers. We aim to

use network meta-analysis to simultaneously evaluate the effectiveness of different interventions to

increase prevalence of safe storage of i) Medicines only, ii) Other household products only, iii)

Poisons (both medicines and non-medicines), iv) Poisonous plants; and v) Possession of poison

control centre (PCC) telephone number in households with children.

Methods

Data on the effectiveness of poison prevention interventions was extracted from primary studies

identified in 2 newly-undertaken systematic reviews. Effect estimates were pooled across studies

using a random effects network meta-analysis model.

Results

28 of the 47 primary studies identified were included in the analysis. Compared to usual care

intervention, the intervention with education and low cost/free equipment elements was most

effective in promoting safe storage of medicines (odds ratio 2.51, 95% credible interval 1.01 to

6.00) while interventions with education, low cost/free equipment, home safety inspection and

fitting components were most effective in promoting safe storage of other household products (2.52,

1.12 to 7.13), safe storage of poisons (11.10, 1.60 to 141.50) and possession of PCC number (38.82,

2.19 to 687.10). No one intervention package was more effective than the others in promoting safe

storage of poisonous plants.
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Conclusion

The most effective interventions varied by poison prevention practice, but education alone was not

the most effective intervention for any poison prevention practice. Commissioners and providers of

poison prevention interventions should tailor the interventions they commission or provide to the

poison prevention practices they wish to promote.

Keywords

Poison prevention, network meta-analysis, childhood

Highlights

 Network meta-analysis is useful for comparing multiple injury-prevention interventions

 More intensive poison prevention interventions were more effective than education alone

 Education and low cost/free equipment was most effective in promoting safe storage of
medicines

 Education, low cost/free equipment, home safety inspection and fitting was most effective in
promoting safe storage of household products and poisons

 Education, low cost/free equipment and home inspection were most effective in promoting
possession of a poison control centre number.

 None of the intervention packages was more effective than the others in promoting safe
storage of poisonous plants.
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Introduction
Globally poisonings result in approximately 45,000 deaths[1] and approximately 2.4 million

disability adjusted life years (DALYS) lost (GBD 2010) each year in children and young people

aged 0-19 years. They are a particular problem in young children with 13% of deaths[1] and 11% of

the DALYs lost (GBD 2010) occurring in children aged 0-4 years. Each year, poisonings result in

approximately 25,000 emergency department attendances in the UK in 0-4 year olds [2], 63,000 ED

attendances in the USA for drug poisoning alone in the 0-5 year olds[3] and more than 1.2 million

calls to poison control centres each year following poisoning in the under 5s in the USA[4].

Poisonings among 0-15 year olds have been estimated to cost the NHS more than £2 million each

year[5]. In the US despite an estimated saving of $7 to $15 for every $1 spent on poison control

centres[6], non-fatal poisonings resulted in $48 million medical costs for hospitalisations and ED

attendances in 2005 for the under 5s[7].

There is evidence from 2 previous meta-analyses that interventions to promote poison prevention

behaviours are effective in increasing a range of poison prevention behaviours [8,9]. The first meta-

analysis in 2001 found a modest effect (statistical significance not reported) of interventions in a

clinical setting on safe storage of cleaning products[9]. More recent meta-analyses found home

safety education, with or without the provision of safety equipment was effective in increasing safe

storage of medicines, safe storage of non-medicinal products and increasing availability of poison

control centre numbers[8]. These meta-analyses compared any intervention against a “usual care or

no intervention” comparison group. The interventions comprised various combinations of

education, home safety inspection, provision of free or low cost safety latches for cabinets, drawers

or cupboards and fitting of safety latches. Some of these interventions were aimed only at

preventing poisonings, but most aimed to prevent a range of injuries and also included the provision

of education and other items of safety equipment. Health care commissioners and housing

providers, amongst others, have to make decisions about the “best” intervention for preventing
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poisoning and this requires comparisons between these multiple interventions. Therefore meta-

analyses which have been conducted to date that combine effects across all interventions and

compare against usual care or no intervention can only make a limited contribution to these

decisions.

Network meta-analysis (NMA) methods[10,11] (also known as mixed treatment

comparison[12,13]) extend standard (pair-wise) meta-analysis to allow simultaneous comparison of

all evaluated interventions within a single coherent analysis. Therefore all interventions can be

compared with one another, including comparisons not evaluated within any of the primary studies.

These analyses are increasingly being used in health technology assessment to help decide on the

optimal intervention for a particular condition[14]. The objective of this research was to evaluate

the effectiveness of different interventions to promote poison prevention behaviours by households

with children. We believe this is the first application of NMA in this area of injury prevention.

Methods

Study identification

For the NMAs, data on the effectiveness of poison prevention interventions was extracted from

primary studies identified in 2 newly-undertaken systematic reviews: a systematic review of

reviews [15] and a systematic review of primary studies published since the most comprehensive

systematic review [16].

The review included systematic reviews and meta-analyses of experimental study designs

(randomised controlled trials (RCTs), non-RCTs and controlled before-and after (CBA) studies) and

controlled observational studies (case control and cohort studies), and primary studies of

experimental or controlled observational designs published since the most recently published

comprehensive systematic review. Studies including children aged 0-19 years and their families that
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provided interventions to promote poison prevention behaviours were included. Legislative

interventions to reduce poisonings were excluded. Interventions to promote possession of ipecac

were reported in many papers included in the systematic review, but were excluded from the NMA

as use of ipecac is no longer recommended[17,18].

We searched MEDLINE, Embase, CINAHL, ASSIA, PsycINFO and Web of Science from date of

inception to January 2012. We searched a range of other electronic sources in January 2013 and

hand searched the journal Injury Prevention (March 1995 – January 2012) and abstracts from 1st-

10th World Conferences on Injury Prevention and Control (1989 – 2010). Reference lists of

included reviews and primary studies were searched for relevant citations. Full-text articles were

retrieved regardless of language and translated where necessary. The search terms were adapted for

study design and the same sources were searched from 2001 – January 2012 to identify primary

studies. The search strategy used to search Medline and adapted as necessary for other databases is

shown in Supplementary material S1 and the other sources searched are given in supplementary

material S2.

Titles and abstracts of articles were scanned independently by 2 researchers to identify articles to

retrieve in full. Where an article appeared to be eligible based on the title, but an abstract was

unavailable, it was retrieved in full. Full articles were independently reviewed by 2 researchers

using a standard form listing inclusion criteria. Disagreement between researchers was dealt with by

referral to a 3rd member of the research team and consensus-forming discussions.

Data was extracted onto a standard form which recorded data on study design, participants,

interventions, outcomes and numerators and denominators in each treatment arm. Data were

extracted by 2 researchers independently and compared. Any discrepancies were investigated by

referral back to the original article by a senior member of the research team. Authors were asked to
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supply individual participant data (IPD) or unpublished aggregated data where the published data

did not report numerators and or denominators or intra-class correlation coefficients (ICCs) for

clustered data. Where studies did not adjust for clustered allocation of intervention, we estimated

the effective sample size based on the design effect using published ICCs[19] or ICCs estimated

from IPD where the author provided it.

The quality of included primary studies was assessed in terms of the following criteria: allocation

concealment, blinding of outcome assessment and completeness of follow up for randomised

studies, and blinding of outcome assessment, completeness of follow up and balance of confounders

between treatment arms for non-randomized studies. Non-randomised studies were considered to be

balanced in terms of confounders if the prevalence of confounders did not differ by more than 10

percent between the treatment arms, and unclear with respect to balance of confounders if the

intervention and control groups were matched on various characteristics but no data was provided to

judge the adequacy of this matching. The quality of controlled observational studies (case control

and cohort studies) was assessed using the Newcastle-Ottawa scale[20].

Statistical methods

The five poisoning prevention outcomes considered in the NMAs were i) safe storage of medicines

(Yes/No), ii) safe storage of other household products (Yes/No), iii) safe storage of poisons

(Yes/No), iv) safe storage of poisonous plants (Yes/No), and iv) possession of poison control centre

(PCC) telephone number (Yes/No). The safe storage of poisons outcome refers to storage of any

potentially toxic substance and includes studies where the reported outcome included both

medicines and other household products (i.e. where the outcomes were not reported separately).

Safe storage was defined as storing potentially toxic substances (medicinal or non-medicinal) at
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adult eye level and/or in locked cupboards/drawers/cabinets where they are inaccessible to children

[16].

For each of the outcomes, NMA[11] was implemented to enable the comparison of all interventions

with one another using all the available data in a connected network of studies; thus allowing

comparisons of interventions not directly compared in studies but linked through a connected

network of studies (indirect evidence). For example, a comparison of the following 4 interventions;

usual care, education, equipment giveaway and home inspection, could be achieved using studies

containing the following pair-wise comparisons, usual care vs. education, education vs. equipment

giveaway, equipment giveaway vs. home inspection. However, if only studies of usual care vs.

education and equipment giveaway vs. home inspection existed then the network would be

disconnected; in such cases the analysis would be limited to performing only direct pairwise

comparisons. For randomised trials, NMA preserves the within-study randomised treatment

comparison of each trial while combining all available comparisons between interventions. Such

analyses assume that there is consistency across evidence. For example, if an equipment giveaway

arm had been included in the studies of usual care vs. education the estimate of education vs.

equipment giveaway would be consistent across studies (i.e. the underlying estimates are assumed

to be identical or exchangeable depending on whether fixed or random effects are assumed) with

education vs. equipment giveaway.

For these analyses, a standard NMA random effects model with a binary outcome [11,12] was fitted

to the data. We obtained pooled estimates of intervention effects for all combinations of pair-wise

comparisons from the NMAs and for completeness we also present estimates from the head-to-head

evidence for each pair-wise comparison where available. Effectiveness estimates are presented as

odds ratios and summarised using forest plots developed by Tan et al[21]. Interventions were

ranked based on absolute intervention effects (derived using a underlying rate based on the usual
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care arms) and the probability that each intervention is best for a particular outcome[11,12] was

calculated.

To assess the goodness of fit of the model to the data, the posterior mean residual deviance (defined

as the difference between the deviance for the fitted model and the deviance for the saturated

model, where the deviance measures the fit of the model to the data points using the likelihood

function[22] was calculated. Under the null hypothesis that the model provides an adequate fit to

the data, it is expected that the posterior mean residual deviance would have a mean equal to the

number of unconstrained data points[23,24].

The between-study standard deviation parameter,  was used to quantify the heterogeneity of the

network (i.e. the variability in treatment effects within pair-wise comparisons above that expected

by chance)[25]. The degree of heterogeneity was assessed as reasonable, high or extremely high

based on guidelines for interpreting  on the log-odds ratio scale suggested by Spiegelhalter et al.

[26]. These state that values of  from 0.1 to 0.5 may be considered as indicating a reasonable

degree of heterogeneity, 0.5 to 1 as high and values above 1 as very extreme heterogeneity. In NMA

it is important to assess consistency between the ‘direct’ and ‘indirect’ evidence of the dataset; this

was evaluated using a method based on ‘node splitting’[27] which calculates the probability that the

mean treatment effect estimates based on the direct evidence (i.e. studies that directly compared the

two treatments under consideration) exceeds the mean treatment effect estimates based on the

indirect evidence (i.e. the remaining studies in the network under the consistency assumption). A 2-

sided p-value was then derived (using the formula 2 x minimum(prob, 1-prob)[27]. Note that only

pairs of interventions that are part of a closed loop in the network of interest have both direct and

indirect evidence available[13] and therefore can be assessed for consistency.
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Sensitivity analysis

As the quality of included studies varied, analyses for all outcomes except safe storage of poisonous

plants were repeated restricted to data obtained from RCTs only. It was not possible to conduct this

repeat analysis for safe storage of poisonous plants as only 3 studies provided data for this outcome.

All of the analyses were conducted using a Markov chain Monte Carlo method and fitted in the

WinBUGS software[28]. Further technical details of the analysis together with the WinBUGS code

are available from the corresponding author. The analysis and subsequent reporting adhere to the

PRISMA statement (supplementary material S3) guidelines[29] and the implied criteria for

reporting the results of NMA outlined in Bafeta et al[30].

Results
The process of selection of studies is shown in Fig. 1. One hundred and eighty two papers were

assessed for inclusion. This included 125 papers from the search for systematic reviews and 57 from

the search for primary studies published since the review we considered to be most comprehensive

[31] which was published in 2001. In total 47 primary studies were identified for inclusion in the

review, of which 27 were selected for inclusion in at least one of the NMAs (S4 Table). One

study[32] divided patients into a randomised and a quasi-randomised study groups and analysed the

two groups separately. This study was therefore counted as two separate studies, thus increasing the

total number of studies included in the NMAs to 28. A detailed description of the characteristics of

included studies have been published elsewhere [15,16]. A table of studies excluded from the NMA

is given in the accompanying supplementary material (S5 Table). Summary characteristics of the 28

studies included in the NMAs together with their study quality which was observed to be variable

across studies are reported in the accompanying supplementary material (S4 Table). Twenty (71%)
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of the 28 studies were RCTs and 8 (29%) were non-RCTS. Overall, the following 9 intervention

packages were evaluated across the 5 networks and no single study compared all interventions

directly:

1) Usual care - including usual safety education or no education (UC)

2) Education - more than usual safety education (E)

3) Education + free/low cost equipment (E+FE)

4) Education + free/low cost equipment + home safety inspection (E+FE+HSI)

5) Education + free/ low cost equipment + fitting (E+FE+F)

6) Education + home safety inspection (E+HSI)

7) Education + free/low cost equipment + fitting +home safety inspection (E+FE+HSI+F)

8) Education + home visit as part of Healthy Steps for Young Children program (E+HV) and

9) Free/low cost equipment only (FE).

Fig. 1. PRISMA flow chart for the systematic overview of reviews and systematic review of

primary studies.

The free/low cost equipment component of interventions varied between studies [15,16] and

included items such as a smoke alarm, batteries, cabinet and window locks, fire guards and stair

gates, among others. A detailed list of the equipment reported by each study is presented in are

reported in the accompanying supplementary material (S4 Table). Fitting refers to installation of

safety equipment by for example a researcher or professional as part of the intervention package

[33,34].
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Storage of medicines

Thirteen of the 28 studies compared the effectiveness of 7 interventions to promote safe storage of

medicines (Panel A, Fig. 2). Eleven (85%) studies were RCTs and 2 (15%) were non-RCTs (S4

Table). One study[35] reported a 100% event rate in both treatment and control arms. This study

was excluded from the analysis as it contributed no information on relative effectiveness of the

interventions that is of interest in the analysis.

Fig. 2. Network Diagrams of interventions to increase safety practices to prevent poisonings

in pre-school children in the home. PCC = poison control centre telephone number. Nodes/oval

circles represent an intervention (E = education, F = Fitting, FE = low cost/free equipment, HSI =

Home safety inspection, HV = Home visit). For example E+FE+HSI = Education + low cost/free

equipment + home visit intervention. The lines connecting any two nodes represent the pairwise

comparison. The numbers on each line represent the total number of studies and the number of non-

RCTs (in brackets) contributing to each pairwise comparison.

Pooled estimates of 21 possible pairwise comparisons between the 7 interventions, together with the

available direct within-trial estimates, are reported in Fig. 3. The results show that home safety

interventions increase safe storage of medicines with education and low cost/free equipment the

most likely to be effective (probability best = 0.39), with an estimated odds ratio compared to usual

care of 2.51 (95% CrI: 1.01 to 6.00). When the effect of study design on the NMA results was

assessed, by repeating the above analysis using only data from the 11 RCTs, the results were

similar, although for this analysis the network was limited to only 6 interventions (i.e. excluding the

intervention education, low cost/ free equipment and home safety inspection).
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Fig. 3. Network meta-analysis results for safe storage of medicines. H-H trials refer to the

number of head-to-head trials available for the specified pairwise comparison.

Storage of other household products

Fifteen studies evaluated 7 interventions for promoting safe storage of other household products

(Panel B, Fig. 2) of which 11 (73%) studies were RCTs and 4 (27%) were non-RCTs (S4 Table).

One study (Dershewitz 1977) reported zero events (i.e. none of the households surveyed safely

stored other household products) in the equipment only (9) intervention arm. To facilitate inclusion

of this study in the analysis, a continuity correction was applied by adding 0.5 and 1 to the

denominator and numerator.

The NMA estimated the 21 possible pairwise comparisons between the 7 interventions trialled

across the included studies (Fig. 4). The most intensive intervention (education, low cost/free

equipment, home safety inspection and fitting) was most likely to be effective (probability best =

0.37), with an estimated odds ratio compared to usual care of 2.59 (95% CrI: 0.59 to 15.16).

Fig. 4. Network meta-analysis results for safe storage of other household products. H-H trials

refer to the number of head-to-head trials available for the specified pairwise comparison.

The effect of study design on the NMA results was assessed by repeating the above analysis using

only data from the 11 RCTs limiting the network to 6 interventions (i.e. excluding education only).

The results changed slightly but the most intensive intervention was still most likely to be the most

effective (probability best = 0.56) closely followed by the intervention education, low cost/ free

equipment and home safety inspection (probability best = 0.44).
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Safe storage of poisons

Nine studies provided data on the effectiveness of 5 interventions to increase safe storage of poisons

in households with children (Panel C, Fig. 2). Six (67%) studies were RCTs and 3 (33%) were

non-RCTs (S4 Table).

The NMA estimated the 10 possible pairwise comparisons between the 5 interventions trialled

across the included studies (Fig. 5). There was evidence to suggest that the most intensive

intervention (i.e. education, low cost /free equipment, home safety inspection and installation)

was most effective in promoting the number of households with storage of poisons compared to

usual care intervention (Probability best = 0.78; OR=11.10, 95% CrI= 1.60 to 141.50).

Fig. 5. Network meta-analysis results for safe storage of poisons. H-H trials refer to the number

of head-to-head trials available for the specified pairwise comparison.

Repeating the analysis using only data from the 6 RCTs identified both education and low/free

equipment (Probability best 0.38), and education, low cost/free equipment, home safety inspection

and installation (Probability best 0.36) to be the most effective at promoting the number of

households with storage of poisons compared to usual care intervention.

Safe storage of poisonous plants

Three RCTs, one of which is the 3-arm study [36] provided data on 5 interventions for storage of

poisonous plants (Panel D, Fig. 2; S4 Table). The NMA estimated the 10 possible pairwise

comparisons between the 5 interventions trialled across the included studies (Fig. 6). There was no

evidence that any of the intervention was more likely to be effective than the others at promoting

safe storage of poisonous plants.
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Fig. 6. Network meta-analysis results for safe storage of poisonous plants. H-H trials refer to

the number of head-to-head trials available for the specified pairwise comparison.

Possession of a PCC number

Ten studies evaluated 7 interventions to promote uptake of PCC number (Panel D, Fig. 2). 7 (70%)

studies were RCTs and 3 (30%) were non-RCTs (S4 Table). There was evidence that the

intervention education, low cost/free equipment and home safety inspection was more effective than

usual care in increasing uptake of PCC number (Probability best = 0.76; OR=39.25, 95% CrI 2.19

to 687.10) (Fig. 7). When the effect of study design on the NMA results was assessed by repeating

the above analysis using only data from the 7 RCTs based on 5 interventions (i.e. the following 2

interventions were excluded from the network: education and home safety inspection, and education

and home visit) the results were very similar.

Fig. 7. Network meta-analysis results for possession of poison control centre number. H-H trials

refer to the number of head-to-head trials available for the specified pairwise comparison.

Evaluation of models

Overall, the NMA models fitted the data well with the posterior mean residual deviance being close

to the number of data points in each network (Table 1). The between study standard deviations for

each of the NMA models are reported in Table 1 and indicate moderate between-study

heterogeneity for storage of medicines and poisons, high heterogeneity for other household products

and extremely high for possession of PCC number. The uncertainty in the estimation of the

heterogeneity parameter reflects the relatively low number of studies providing direct evidence for

each pairwise comparison. Where both direct and indirect evidence was available, consistency was

checked for closed loops (excluding loops formed by multi-arm studies) in the network, using the
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node-split method. There was no evidence of inconsistency between the direct and indirect

evidence in all networks; that is all the p-values were not statistically significant at the 5%

significance level (S6 Table).

Table 1: Evaluation of model fit

Outcome No. of
studies

Residual deviance Posterior median of the between-
study standard deviation,  and
95% CrI in brackets

Safe storage of
medicines

12 23.5 (cf 24 data points) 0.331 (0.013 to 1.239)

Safe storage of other
household products

15 30.9 (cf 30 data points) 0.561 (0.128, 1.270)

Safe storage of
poisons

10 21.0 (cf 21 data points) 0.361 (0.029, 1.436)

Safe storage of
poisonous plants

3 6.6 (cf 7) 1.00 (0.003 to 3.818

Possession of a PCC
number

10 19.5 (cf 20 data points) 1.165 (0.574, 1.926)

Discussion

Principal findings

In this NMA, we have been able to compare the different interventions evaluated with one another

for promoting poison prevention behaviours by households with children. This analysis has

allowed comparisons of strategies not addressed within any of the individual primary studies. The

findings showed that more intensive interventions are more effective than education alone for each

of the poison prevention practices we evaluated. Education and low cost/free equipment was most

effective in promoting safe storage of medicines; education, low cost/free equipment, home safety

inspection and fitting was most effective in promoting safe storage of other household products and

poisons; and education, low cost/free equipment and home inspection was most effective in
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promoting possession of a PCC number. There was no evidence that any of the interventions was

more effective than the others at promoting safe storage of poisonous plants.

Strengths and limitations

NMA is a useful synthesis tool for comparing multiple injury prevention interventions which are

often complex and multi-faceted, and where the number of studies evaluating the same comparisons

is small. NMA enables interventions to be ranked in terms of their effectiveness in promoting safety

practices providing results which are more likely to be useful to policymakers, service

commissioners and providers when making choices between multiple alternatives than multiple

pairwise meta-analyses.

We did not find evidence of inconsistency between direct evidence and indirect evidence in our

analyses, although the power to detect inconsistency will have been limited by sparse data,

particularly for analyses involving very few studies. The inclusion of non-randomised study designs

allowed us to include a greater number of studies in our analysis, but also resulted in the inclusion

of studies with greater potential for bias. Eight (29%) of the 28 studies included in our analysis were

non-RCTs. Of these, only 2 were assessed as not balanced or unclear in terms of the distribution of

confounders between study-arms was unclear is reported (S4 Table). Sensitivity analyses restricting

analyses to RCTs produced similar results suggesting our findings were robust to exclusion of non-

randomised studies. The quality of studies included in our analyses (assessed in terms of allocation

concealment (RCTs only), blinded outcome assessment, balance of confounders (non-RCTs only)

and completeness of follow-up) was variable. It was not possible to explore the impact of the

individual measures of quality on our results since such an analysis would be extremely limited due to

the large number of parameters being estimated in the NMA relative to the number of studies and may even lead to

disconnected networks.
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Although NMA allows interventions to be classified into more categories than standard pairwise

meta-analysis, there is, inevitably, still some “lumping” of interventions within these categories. For

example, education may differ in intensity across studies; that is, from a leaflet or brochure

distributed by post, to intensive face-to-face classes teaching home safety. Subcategorising the

interventions further, to avoid “lumping”, is reliant on detailed information being reported in the

primary study publications. However, in the case of poison prevention education, insufficient detail

was often reported to enable further sub categorisation.

Comparisons with existing work

Our findings are consistent with findings from two previous pairwise meta-analyses. DiGuiseppi

found interventions promoting “child-proofing” the home delivered in clinical settings had a modest

effect (odds ratio 1.8, statistical significance not reported) on safe storage of cleaning products

substances[37]. The seconds meta-analysis by the authors of this paper[8], found that education,

with or without the provision of safety equipment was effective in increasing safe storage of

medicines (OR 1.53, 95% CI 1.27-1.84), safe storage of household products (OR 1.55, 95% CI

1.22- 1.96) and, increasing availability of poison control centre numbers (OR 3.30, 95% CI 1.70-

6.39). Our findings extend those from the previous meta-analyses by demonstrating which elements

of multifaceted interventions are most effective. Furthermore, one of the previous meta-analyses

failed to find significant effects of education, with or without the provision of safety equipment on

keeping (unspecified) poisons (OR 0.57, 95%CI 0.31-1.07) or plants out of reach (OR 1.18, 0.40-

3.48), but we now demonstrate that some poison prevention interventions are effective in promoting

these safety practices.
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The effect sizes in our NMA for safe storage of medicines, other household products and

availability of the poison control centre number are all larger than the effect sizes found in the

pairwise meta-analyses previously reported[8,9]. It is likely that, by reducing clinical heterogeneity

of interventions, our NMAs may explain some of the statistical heterogeneity in effect sizes found

in previous pairwise meta-analyses. Our findings also suggest meta-analyses combining all

interventions, (which include less intensive, and as we have shown, less effective interventions)

may underestimate the effect of more intensive interventions.

Implications for practice and research

Our findings suggest that the “best” intervention for increasing a range of poison prevention

practices are more intensive interventions. These include, at a minimum, education and providing

equipment, but for some poison prevention practices the most effective intervention requires

education, equipment provision and fitting and home safety inspection. The most effective

intervention varied by poison prevention practice, so commissioners and providers of poison

prevention interventions should tailor the interventions they commission or provide to the poison

prevention practices they wish to promote. Knowing which interventions are most effective is

important, but is only part of the information required to commission or provide poison prevention

and cost-effectiveness is an essential part of any decision making process. The effect sizes from this

NMA will be used in subsequent decision analyses to determine the most cost effective

interventions for increasing poison prevention practices and these analyses will be presented

elsewhere. Such an analysis is vital to determine which interventions provide best value for money,

as more intensive interventions, which we have shown to be the most effective, will also be the

most expensive.
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Despite 28 studies being included in at least one NMA, the maximum number included in any

NMA was 15 and many comparisons contained only a small number of studies. Further studies are

therefore required to increase precision of effect estimates, to increase power to explore effects by

study quality and inconsistency between direct and indirect evidence of effectiveness. In addition, a

more detailed description of the intervention in future studies, in particular of the content of the

educational elements of interventions would be helpful in allowing a finer subcategorisation and

exploration of individual educational components. Methods to incorporate individual level data

into NMA analyses are now available [38], and these would be useful for exploring whether the

effect of interventions vary by characteristics of study population (e.g. deprivation) and the

potential impact of interventions on inequalities in prevention practices.

Conclusions
Network meta-analysis has demonstrated that the most effective interventions varied by poison

prevention practice, with more intensive interventions being more effective than education alone for

each poison prevention practice. Education and the provision of home safety equipment are

important components for all poison prevention practices. Home safety inspections are more

important for promoting safe storage of non-medicinal poisons and plants and for possession of

PCC numbers. Commissioners and providers of poison prevention interventions should tailor the

interventions they commission or provide to the poison prevention practices they wish to promote.
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Extending methods for investigating the
relationship between treatment effect
and baseline risk from pairwise
meta-analysis to network meta-analysis
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Stephen J. C. Rice,c Denise Kendrickd and Alex J. Suttona

Baseline risk is a proxy for unmeasured but important patient-level characteristics, which may be modifiers of
treatment effect, and is a potential source of heterogeneity in meta-analysis. Models adjusting for baseline risk
have been developed for pairwise meta-analysis using the observed event rate in the placebo arm and taking
into account the measurement error in the covariate to ensure that an unbiased estimate of the relationship is
obtained. Our objective is to extend these methods to network meta-analysis where it is of interest to adjust
for baseline imbalances in the non-intervention group event rate to reduce both heterogeneity and possibly
inconsistency. This objective is complicated in network meta-analysis by this covariate being sometimes missing,
because of the fact that not all studies in a network may have a non-active intervention arm. A random-effects
meta-regression model allowing for inclusion of multi-arm trials and trials without a ‘non-intervention’ arm is
developed. Analyses are conducted within a Bayesian framework using the WinBUGS software. The method is
illustrated using two examples: (i) interventions to promote functional smoke alarm ownership by households
with children and (ii) analgesics to reduce post-operative morphine consumption following a major surgery. The
results showed no evidence of baseline effect in the smoke alarm example, but the analgesics example shows that
the adjustment can greatly reduce heterogeneity and improve overall model fit. Copyright © 2012 John Wiley &
Sons, Ltd.

Keywords: network meta-analysis; mixed-treatment comparison; baseline risk; underlying risk; MCMC;
meta-regression

1. Introduction

In meta-analyses of clinical trials, differences in patient-level or trial/study-level characteristics often

give rise to variation in treatment effect estimates between studies, also called heterogeneity [1].

Between-study variance in the treatment effects is usually taken into account through including a param-

eter for the residual heterogeneity in a random-effects meta-analysis [1, 2]. A random-effects model

quantifies the degree of heterogeneity but does not explain it. To explain the source of the heterogeneity,

patient-level and study-level characteristics are sometimes included in the analysis as covariates [1,2]. A

trial-level covariate of interest as a possible source of heterogeneity is the ‘baseline risk’ or the underly-

ing risk of the disease. The baseline risk reflects the burden of disease in a study population and defines

the average risk of a patient to experience the outcome of interest if they have not been treated [3]. It

is potentially an important proxy for a number of unmeasured (and even measured) patient-level char-

acteristics such as age, sex, medical history and disease severity that collectively influence a patient’s
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response to treatment [4]. In addition to heterogeneity, baseline imbalances between trials may also give

rise to inconsistency [i.e. variability in the treatment effect between pairwise contrasts [5] in a network

meta-analysis (NMA)]. Therefore, adjusting for it may have the benefit of reducing both heterogeneity

and inconsistency in NMA and improve the overall model fit.

Various measures have been used for the baseline risk in meta-analyses. Examples include the

observed event rate in the placebo or non-active intervention arm, the observed placebo arm log

odds and the average of the observed event rates in the placebo and treatment arms [6–8]. However,

including observed measures of baseline risk in a meta-regression can be problematic because of the

measurement error in both response (i.e. treatment effect) and explanatory variables and functional

relationship between the two [4]. The problem has received considerable attention in the literature

with several authors proposing alternative model-based solutions. Examples include the methods of

McIntosh [9], Walter [8], Thomson et al. [4], Sharp and Thomson [10], Arends et al. [11] and van

Houwelingen et al. [12]. However, these methods are directly applicable mainly in pairwise meta-

analysis. Our objective is to extend these methods to NMA where it may be of interest to adjust for

baseline imbalance in the underlying risk across studies. The main reason for doing this would be to

reduce between-study heterogeneity and possible inconsistency in the direct and indirect trial evidence

on pairwise comparisons. This objective is complicated by missing data, due to the fact that not all studies

in a network may have a placebo or non-active treatment control and thus an observed covariate value.

A review of the pairwise meta-analysis methods for investigating the relationship between treatment

effect and baseline risk is presented in Section 2. In Section 3, we present an approach that primar-

ily extends the methods of Thompson et al. [4, 10] and Arends et al. [11] from pairwise to NMA

where it is of interest to adjust for the baseline risk. The method we present complements previous gen-

eral multivariate meta-regression models suggested for NMA [5, 13–16] by allowing for the following:

(i) alternative distributional assumptions to be made about the nature of the ‘true’ unobserved baseline

risk measure and (ii) the inclusion of trials without a non-active treatment control and hence no baseline

risk measure while allowing for the treatment� covariate interactions to be exchangeable or even differ-
ent (i.e. as many regression coefficients as there are treatment effects). Section 4 presents application of

the method to two recently published NMAs [17,18]. The first example has a binary outcome and exam-

ines effectiveness of home safety education interventions to promote ownership of functional smoke

alarm in households with children [17]. The second example has a continuous outcome measure and

examines the effectiveness of analgesic treatments in reducing post-operative morphine consumption in

adult patients following major surgery [18]. In Section 6, we discuss the results and the findings from

the example datasets followed by the strengths and the limitations of the approach outlined in this paper.

2. Review of baseline risk models for pairwise meta-analysis

Both Sharp and Thomson [10] and Arends et al. [11] present good introductions to baseline risk adjust-

ment and a detailed review of available methods for pairwise meta-analysis. We have summarised

important features of six of the methods that we consider most relevant to our modelling approach

for NMA in Table I. A common feature in these methods is to model the relationship of interest in three

parts, although this was only stated explicitly by Arends et al. [11]. This involves specifying in any order

the following: (i) an appropriate likelihood for the data; (ii) a regression model relating the ‘true’ treat-

ment effect as an explanatory variable and the ‘true’ baseline risk as the covariate; and (iii) a model for

the distribution of the baseline risk across studies.

Differences between approaches have mostly arisen from slightly different strategies adopted for each

part of the model. For example, Thompson et al. [4], Arends et al. [11] and Sharp and Thompson [10]

assumed a binomial likelihood for a binary outcome, whereas McIntosh [9], Walter [8] and

van Houwelingen et al. [12] used a normal distribution to model a binary outcome measure (e.g. log

odds or log-odds ratio). Approximating a log-odds ratio with a normal distribution can be mathemati-

cally and computationally convenient, but the normality assumption may be inappropriate if there are

trials in the meta-analysis with zero or small numbers of events [10]. Secondly, except for the method

of Walter [8], all the other methods assumed random study-specific effects. Walter’s [8] model is a fixed

effect in that no allowance is made for any residual heterogeneity other than that explained by the base-

line risk, although we believe expecting residual heterogeneity is more realistic in most applications

where it is of interest to adjust for the baseline risk.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Finally, the approaches outlined in Table I make different assumptions about the distribution of

the ‘true’ unobserved baseline risk across studies [9, 19]. Although some models assumed a vague or

minimally informative normal prior distribution (e.g. [4,10] and also in [11]), a common parametric for-

mulation is to assume that the baseline risk is normally distributed across trials as in McIntosh [9], van

Houwelingen et al. [12] and also Arends et al. [11]. Additionally, Arends et al. [11] also proposed a more

flexible model for the distribution of the baseline risk comprising a mixture of two normal distributions

with different means but common between-study variance. Whether or not to assume a model for the

baseline risk is a much debated issue with as yet no clear consensus among methodologists [10–12,20].

More recently, Ghidey et al. [19, 21] proposed semi-parametric models for the distribution of the base-

line risk as well as models that do not make any distributional assumptions. In the next section, we

aim to develop methods for the baseline risk adjustment in NMA that incorporate the different assump-

tions about the baseline risk distribution across studies to assess the effect of these assumptions on

parameter estimates.

3. Network meta-analysis with baseline risk covariate

3.1. Network meta-analysis model with no covariate adjustment

Suppose in a meta-analysis of i D 1; 2, . . . . , N trials, we have k D A; B; C; � � � ; NT treatments being

compared with one another where NT is the total number of treatments under consideration. Take treat-

ment A as the overall baseline or reference treatment of the entire network. For a binary outcome, we

assume rik events occur out of nik patients in treatment arm k of trial i according to a binomial distri-

bution with underlying event probability pik . Standard random-effects NMA for a binary outcome with

no covariate can be specified using logistic regression [22, 23],

rik � Binomial.pik; nik/ with �ik D logit.pik/I

�ik D

�

�ib k D bI b 2 fA; B; C; � � � g
�ib C ıibk k > bI b 2 fA; B; C; � � � g

ıibk D dbk C "ibk with "ibk �N
 

0; �2
bk

�

Note W dAA D 0; k > b implies treatment k comes alphabetically after b

(1)

where �ik is a continuous measure of the treatment effect in arm k of trial i (log odds in the case of a

binary outcome), �ib is the effect of baseline treatment b (log odds) in trial i and "ibk denotes a ran-

dom effect indicating that the trial-specific effects (log-odds ratios) of treatment k relative to b, ıibk ,

are normally distributed with mean dbk and between-study variance �2
bk
. The fundamental assumption

underlying random-effects NMA is that the treatments effects are exchangeable across the entire net-

work of trials regardless of whether or not treatments b and k are included in trial i [22, 24]. Validity

of this assumption means that the pooled treatment effects, dbk , can further be expressed as functions

of basic parameters taken with reference to treatment A (i.e. dbk D dAk  dAb/ [25]. Effect estimates

from trials with more than two treatment groups will be correlated through sharing a common compara-

tor treatment. The correlation is taken into account by assuming homogenous variances
 

�2
bk
D �2

�

so

that the covariance is equal to �2=2 [23]. Alternatively, heterogeneous variance models have also been

proposed [26]. Modelling is conducted within the framework of Bayesian analysis using MCMC simu-

lation through the WinBUGS software [27, 28] with minimally informative prior distributions specified

for dAk; �ib and � .

3.2. Extending the network meta-analysis to include a covariate for the baseline risk

Using the ‘true’ but unobserved non-active control or placebo group log odds �iA (i.e. for b D
treatment A) in trial i as a measure of the baseline risk, the trial-specific treatment effects in Equation (1)

can be made to depend on the baseline risk through the following regression:

ıibk D dbk C ˇbk .�iA  N�/C "ibkI "ibk �N
 

0; �2
bk

�

(2)

Note W dAA; ˇAA D 0

where ıibk and �2
bk
are defined as in Equation (1), dbk is the mean effect of treatment k relative to

baseline treatment b adjusted for the baseline risk and ˇbk is the change in the log-odds ratio of an event
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per unit change in the baseline risk for treatment k relative to b at the mean baseline risk across trials.

We centred the baseline risk covariate on N�, the observed mean log odds in the non-active control group
(treatment A), to improve convergence of the model [29]. For trials with an active treatment control

(baseline treatment b ¤ A), we make use of the substitution dbk D dAk  dAb under consistency of

evidence arising from the exchangeability assumption [25] to express Equation (2) as

ıibk D .dAk  dAb/C .ˇAk  ˇAb/� .�iA  N�/C "ibk

"ibk �N
 

0; �2
bk

� (3)

All variables in Equation (3) have the same interpretation as in the previous equations. Although treat-

ment A is not actually included in trial i of Equation (3), the fundamental assumption on exchangeability

means that treatment arms can be assumed to be missing at random without loss to efficacy [25,30]. This

allows us to imagine that there would still be a baseline risk in trials without treatment A and, thus, bor-

row strength from other trials. Therefore, no new parameters are needed for including for example a B

versus C trial, and all other aspects of the model will remain the same. For multi-arm trials, the model

takes the form of a multivariate regression to accommodate the within-study correlations between effect

estimates arising from such trials. The multivariate form of Equation (2) with bold characters denoting

vectors and matrices is given by

ıi DX i ˇC "i I "i �M VN .0; †/ (4)

where ıi with elements ıi;1ıi;2 � � � ıi;NTi 1 for trial i is now a vector of relative effects (e.g. log-odds

ratios), NTi 1 is the total number of treatment effects in trial i , "i is a vector of random effects asso-

ciated with trial i and † is a variance–covariance matrix (as defined for the network in Equation (5)).

The design matrix X i contains the covariate information with entries indicating the treatment effects

being estimated in trial i , and ˇ is a vector of regression coefficients including the intercept and slope

terms [31]. Following Salanti et al. [13] as an example, consider a network of four trials with three

treatments A, B and C in which trial 1 is AB (i.e. A versus B), trial 2 is AC, trial 3 is ABC and trial 4

is BC (i.e. no non-active control). With treatment A taken as the overall baseline treatment, assuming

homogenous variances
 

i.e.�2
bk
D �2

�

, we can write Equation (4) in full for this network as

0

B

B

B

@

ı1;AB
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ı4;BC
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@
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0
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where ˇ D .dAB dAC ˇAB ˇAC /T is the 4� 1 matrix of regression coefficients representing the pooled
effects of treatments B and C relative to treatment A and the effect of baseline risk on treatment effect

estimates. All that remains is to specify models for the distribution of the ‘true’ baseline risk across trials

and distribution of the regression coefficients. These are presented in the next section.

3.3. Models for the baseline risk and treatment� covariate interactions

As stated in the review of previous models (Section 2), there is no consensus in the literature about what

form of distribution the baseline risk should take. We follow the example of Arends et al. [11] to specify

models from three different assumptions about the distribution of the baseline risk as follows:

1. Model 1 assumes that baseline risk is independent or unconstrained so that each trial has its own

baseline risk measure. This is equivalent to specifying a vague normal prior distribution for the

baseline risk across trials: �i;A �N.0; 103/

2. Model 2 assumes that the baseline risk across trials is drawn from a normal distribution with com-

mon mean and between-study variance: �i;A � N
 

N�; �2
�

�

. Prior distributions are specified for N�

and ��: N��N.0; 103/ and �� � Uniform.0; 100/
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3. Model 3 assumes that the baseline risk is drawn from a mixture of two normal distributions

with a common between-study variance: �i;A � p1N
 

N�1; �2
�

�

C .1 p1/ N
 

N�2; �2
�

�

with prior

distributions N�1; N�2 �N.0; 103/, �� � Uniform.0; 100/;

p1 � ddirch.˛c D 1/I c D 1; 2

Similar to the models for the distribution of the baseline risk, we also specify models for the interaction

terms from the following three assumptions described by Cooper et al. [5]:

A. Common effect treatment� covariate interactions: ˇAK D BIB �N.0; 103/

B. Exchangeable treatment � covariate interactions: ˇAK � N
 

B; �2
B

�

; B � N.0; 103/ and �B �
Uniform.0; 100/ and

C. Independent and unrelated treatment� covariate interactions: ˇAK �N.0; 103/

Therefore, a total of nine models are fitted on the basis of the combination of assumptions about

distribution of the baseline risk and the treatment� covariate interactions (slopes):

Model A1: Unconstrained baseline risk and common slope

Model A2: Normal distribution for baseline risk and common slope

Model A3: Mixture distribution for baseline risk and common slope

Model B1: Unconstrained baseline risk and exchangeable slopes

Model B2: Normal distribution for risk and exchangeable slopes

Model B3: Mixture distribution for baseline risk and exchangeable slopes

Model C1: Unconstrained baseline risk and independent slopes

Model C2: Normal distribution for baseline risk and independent slopes

Model C3: Mixture distribution for baseline risk and independent slopes

3.4. Goodness of fit and model selection

In the applications that follow, adequacy of model fit to the data was assessed through the residual

deviance where a model is judged to adequately fit the data if the residual deviance closely matches the

actual number of unconstrained data points available [27]. The overall goodness of fit and model selec-

tion criteria were based on the deviance information criteria, a measure of model fit that penalises model

complexity [27], where the model with the lowest deviance information criteria is generally preferred

and differences of 3 or 5 are considered significant [32].

4. Application examples

4.1. Example 1: functional smoke alarm data

The data come from a published NMA [17] and consist of 20 randomised and non-randomised studies

that evaluated the effectiveness of home safety education to increase ownership of functioning smoke

alarm (FSA) systems in households with children. The outcome of interest is whether or not a house-

hold had an FSA. Thus, each study supplied arm-level data on the number of households with an FSA

and the total number of households surveyed. We used the FSA data here to illustrate application of

the method to binary outcome data. Table AI of Appendix A displays the full data, with Figure 1A

displaying a network diagram for the seven interventions and 40 data points from the 20 studies. The

baseline or non-intervention arm is the usual-care intervention. Seven of the 20 studies did not have a

usual-care intervention and therefore had no baseline risk covariate. [Note: In the data-coding step, these

seven studies are included by using NA to represent missing information on the number of events in the

usual-care arm (see Appendix C data for WinBUGS)]. Baseline functioning smoke alarm ownership in

the remaining 13 studies ranged from about 3% to about 96%. We also detected evidence of significant

inconsistency [17] using the method of node splitting [25]. Hence, it is of interest to know whether base-

line differences in FSA ownership across studies can explain the heterogeneity and inconsistency. For

this example, where the outcome is binary, we assumed a binomial likelihood for the arm-level data and

fitted NMA without covariate adjustment (model 0) on the basis of the model defined by Equation (1).

We then investigated the relationship between intervention effect and baseline FSA ownership using the

methods described in Section 3.2. The covariate was centred on the observed mean baseline log odds of

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Figure 1. Intervention network for (A) possession of functional smoke alarm and (B) post-operative pain relief.

0.81 (calculated outside WinBUGS) for FSA ownership in the 13 studies with a usual-care arm. In total,

10 models were fitted (the nine models described in Section 3.3 in addition to the unadjusted model)

using MCMC simulation in the WinBUGS software [27]. A modified version of the NMA code from

Dias et al. [15] was used and is given in Appendix B. The following prior distributions were used and

intended to be minimally informative:

�; �� and �B � Uniform.0; 100/

ˇAk; B; dAk; �ib; N��N.0; 103/

Models were run for 100 000 iterations, discarding the first 30 000 iterations as burn-in samples to

ensure convergence of the MCMC sampler. There was evidence of poor convergence for the models

that assumed separate/independent treatment � covariate interactions (models C1, C2 and C3). This
may be due to the following: (i) seven out of 20 studies not having a usual-care intervention arm, and

(ii) hence, relatively few data points compared with the number of parameters needing to be esti-

mated [5]. Therefore, parameter estimates from models C1 to C3 are not presented in the results

in Section 5.1.

4.2. Example 2: pain relief data

The second dataset consists of 56 RCTs with 116 data points from a published Health Technol-

ogy Assessment report [18]. The report examined the effectiveness of three non-opioid analgesics

[paracetamol, non-steroidal anti-inflammatory drugs (NSAIDs) or cyclooxygenase 2 (COX-2)

inhibitors] and placebo in reducing morphine consumption following major surgery in adults. The

outcome of interest is the amount of morphine in milligrammes consumed over a 24-h period

(continuous outcome). Each study provided arm-level information on the number of patients together

with the mean 24-h morphine consumption and its standard deviation (SD). The treatment network is

given in Figure 1B. The dataset is presented in Table AII of Appendix A, in order of increasing mean

morphine consumption in the placebo group (baseline risk). Two trials have no placebo, and four of

the trials are three-arm studies. There is considerable variability in the 24-h morphine consumption in

the placebo arm of trials ranging from a low of 8.6 mg (SD 5.2 mg) to a high of 142 mg (SD 80 mg).

The average across the placebo group is 45.26 mg. Therefore, a sensitivity analysis was conducted in

the original report [18] to investigate the effect of this baseline imbalance in morphine use on the treat-

ment effect estimates. To include the two studies that did not have placebo, the original analysis in the

published report was first carried out without these studies to derive an estimate of baseline morphine

consumption for the two trials. The derived estimates were then included in the sensitivity analysis that

adjusted for the baseline morphine use. In our analysis, however, we make use of the exchangeabil-

ity assumption mentioned earlier [Equation (3)] to include the trials without a placebo arm and thus

baseline risk measure. [Note: In the data-coding step, these two studies are included by using NA to

represent missing mean morphine consumption and 1 for its standard error (see data for WinBUGS

in Appendix D)].

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012



F. A. ACHANA ET AL.

Because 24-h morphine consumption is a continuous outcome, we replace the binomial likelihood

and logistic regression model in Equation (1) with a normal distribution for the observed arm-specific

outcome (i.e. mean 24-h morphine), Oyik in treatment arm k of trial i :

Oyik �N
 

�ik; S2
ik

�

; i D 1; 2; � � � ; 56 and k D 1; 2; � � � ; 4

�ik D

�

�ib k D bI b 2 f1; 2; 3; 4g
�ib C ıibk k > bI b 2 f1; 2; 3; 4g

ıibk D dbk C ˇbk � .�i1  N�/C "ibk with "ibk �N.0; �2/

(6)

where �ik is the ‘true’ unobserved mean morphine consumption in treatment arm k of trial i with

variance S2
ik
assumed known but estimated from the data [12]. We centred the baseline morphine con-

sumption �i1 on 45.26 mg, the average consumption across the placebo arms. All other aspects of the

modelling assumptions and model fit remain the same as in example 1 including the specification of

minimally informative prior distributions as follows:

�; �� and �B � Uniform.0; 100/

ˇbk; B; dbk; �ib; N��N.0; 103/

The MCMC simulations were run using WinBUGS for 50 000 iterations, discarding the first 20 000

iterations as burn-in samples to ensure convergence. The results are presented in Section 5.2.

5. Results

5.1. Example 1: functioning smoke alarm model

In this example, the log-odds ratio was regressed on the ‘true’ control group log odds (usual-care inter-

vention) taken as a measure of baseline risk. Table II displays estimates of the residual heterogeneity � ,

treatment� covariate interactions (regression slopes) and model fit statistics excluding the three models
(C1, C2 and C3), which showed evidence of non-convergence. Firstly, different assumptions about the

distribution of the baseline risk did not seem to greatly affect estimates of the treatment�covariate inter-
action terms in this case. The slope of the regression lines is slightly steeper when minimally informative

prior distribution was assumed for the baseline risk (models A1 and B1) than in models that assumed a

normal baseline distribution (model A2) or a mixture of two normal distributions (model B2). Secondly,

the posterior credible intervals for the slope terms included 0 in all models, indicating that none of these

is statistically significant. Therefore, baseline imbalance in smoke alarm distribution across studies was

not significantly related to effectiveness of home safety education to promote FSA ownership in house-

holds with children (provided this analysis is powered appropriately for effects under investigation).

Consequently, the heterogeneity and also the inconsistency were not significantly reduced in all models

that adjusted for the baseline risk compared with the unadjusted model (Table II).

When we use the posterior mean residual deviance as a measure of model fit to the data (Table II), both

adjusted and unadjusted models predicted values close to the 40 unconstrained data points in the FSA

data, indicating that these models fit the data equally well. Because baseline risk appears to be unrelated

to intervention effect, there was very little difference to choose between these models, and we report only

the results from the common slope or treatment � covariate interaction models for convenience. Poste-
rior median estimates of the slope are  0.08 (95% Credible Interval (CrI);  0.41 to 0.28) from model
A1,  0:03 (95% CrI;  0:41 to 0.35) from model A2 and  0:03 (95% CrI;  0:39 to 0.34) from model

A3, which all indicate non-significant decrease in intervention effectiveness with increasing baseline

FSA ownership.

5.2. Example 2: pain relief model

For pain relief data, the treatment effect, expressed as the mean difference in 24-h morphine use, was

regressed on the ‘true’ but unobserved 24-h mean morphine consumption in the placebo group (taken

as baseline risk measure). There were no problems with convergence of the MCMC simulations, and all

nine models described in Section 3.3 were fitted in addition to the unadjusted model. We present param-

eter estimates of interest and model fit statistics in Table III. Firstly, estimates of the regression slopes

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Table III. Network meta-analysis with baseline risk adjustment applied to pain relief data.

Model A1: Model A2: Model A3: Model B1:

unconstrained baseline baseline unconstrained

Model 0: baseline; normally mixture of two baseline;

unadjusted common distributed; normal; exchangeable

model slope common slope common slope slopes

Regression slopes Mean (95% CrI) Mean (95% CrI) Mean (95% CrI) Mean(95% CrI) Mean(95% CrI)

Common ˇ  0:34  0:31  0:31 —

( 0:41,  0:27) ( 0:38,  0:23) ( 0:38,  0:23)

Paracetamol (ˇ2)  0:22

( 0:39, 0.00)

NSAIDs (ˇ3)  0:36

( 0:44,  0:28)

COX-2 (ˇ4)  0:34

( 0:450,  0:18)

Random effects  0:30

mean ˇ ( 0:93, 0.34)

Residual 5.44 3.19 3.19 3.22 3.20

heterogeneity � (4.50, 5.98) (2.15, 4.47) (2.14, 4.51) (2.15, 4.56) (2.15, 4.49)

SD for random — — — — 0.35

effects ˇ (0.01, 2.18)

Model fit

statistics

Residual 124 119.5 121.90 121.1 117.60

deviance (D)

Effective number 90.63 84.11 81.97 82.31 85.27

of parameters

Deviance 214.63 202.61 203.87 203.41 202.87

information

criteria

Estimates of the residual heterogeneity � and the regression coefficients; ˇk of intervention k relative to usual care (control

intervention) measuring the relationship between treatment effect (mean difference in 24-h morphine use in milligrammes) and placebo

group morphine use in milligrammes.

COX-2, cyclooxygenase 2; CrI, credible interval; NSAIDs, non-steroidal anti-inflammatory drugs; SD, standard deviation.

from the nine adjusted models were all negative, suggesting evidence of increasing treatment effect with

increasing baseline morphine consumption. Estimate of the common regression slope is  0:34 (95% CI;

 0:41 to  0:27) for unconstrained baseline model (model A1) and  0:31 (95% CI;  0:38 to  0:23)

for models with normal distribution (model A2) and a mixture of two normal distributions (model A3)

for baseline risk. Similar estimates of the relationship between treatment effect and baseline risk were

also obtained from the independent and exchangeable slope models, but only the effects of NSAIDs

and COX-2 are statistically significant. Again, the three modelling assumptions about the distribution

of the baseline risk seem to have very little impact on treatment � covariate interactions. Figure 2
plots treatment effects versus baseline 24-h morphine use from the model with independent/separate

slopes (model C1) for paracetamol, NSAIDs and COX-2. The plot shows the following: (i) evidence of

increasing effectiveness with increasing baseline morphine use for all three classes of analgesics; (ii)

NSAIDS and COX-2 are increasingly more effective than paracetamol at higher baseline morphine use;

and (iii) little difference between NSAIDs and COX-2. The vertical distance between the line of no

effect and each treatment regression line gives an estimate of the treatment effect relative to placebo at

a given baseline morphine consumption. Similarly, the relative effectiveness of any two analgesics at

a given baseline morphine consumption can be obtained from the plot as the vertical distance between

the two regression lines. Secondly, adjusting for the baseline risk reduced the residual heterogeneity and

improved the overall model fit. From Table III, the posterior mean estimate of the residual heterogeneity

� is 5.44 mg (95% CI; 4.5 to 5.98) in the unadjusted model and 3.48 mg (95% CI; 3.24 to 4.57) in model

C1, the adjusted model with the least reduction in heterogeneity. Compared with the unadjusted models,

model C1 has at least a 40% reduction in between-study heterogeneity.
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Table III. Continued.

Model B2:

baseline Model C2:

normally Model B3: Model C1: baseline Model C3:

distributed; mixture model; unconstrained normally mixture model;

exchangeable exchangeable baseline; distributed; separate

slopes slopes separate slopes separate slopes slopes

Regression slopes Mean(95% CI) Mean(95% CI) Mean(95% CI) Mean(95% CI) Mean(95% CI)

Common ˇ — — — — —

Paracetamol (ˇ2)  0:18  0:19  0:16  0:15  0:13

( 0:35, 0.04) ( 0:36, 0.01) ( 0:36, 0.04) ( 0:34, 0.06) ( 0:34, 0.10)

NSAIDs (ˇ3)  0:34  0:33  0:36  0:34  0:34

( 0:42,  0:25) ( 0:42,  0:25) ( 0:45,  0:28) ( 0:43,  0:26) ( 0:43,  0:26)

COX-2 (ˇ4)  0:27  0:27  0:35  0:25  0:26

( 0:43,  0:09) ( 0:42,  0:09) ( 0:53,  0:19) ( 0:44,  0:06) ( 0:44,  0:05)

Random effects  0:26  0:27

mean ˇ ( 1:00, 0.47) ( 0:98, 0.48)

Residual 3.13 3.13 3.28 3.16 3.20

heterogeneity � (2.06, 4.50) (2.04, 4.50) (2.20, 4.57) (2.06, 4.51) (2.06, 4.53)

SD for random 0.39 0.36 — — —

effects ˇ (0.01, 2.37) (0.01, 2.32)

Model fit statistics

Residual 121.10 120.30 116.40 120.60 119.70

deviance (D)

Effective number 82.58 82.57 85.56 82.58 82.96

of parameters

Deviance 2 202.87 201.964 203.18 202.66

information

criteria

Paracetamol vs. placebo

NSAID vs. Paracetamol

-40

-30

-20

-10

0

0 25 50 75 100

 Baseline 24-hr morphine use (mg)

Paracetamol
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Figure 2. Network meta-analysis adjusting for baseline morphine use assuming independent slopes for dif-

ferent treatment effects and unconstrained baseline risk. COX-2, cyclooxygenase-2; NSAIDs, non-steroidal

anti-inflammatory drugs.

6. Discussion

We have shown how methods for baseline risk covariate adjustment can be extended from pairwise to

NMA when it is of interest to account for differences in underlying risk across trial populations. This

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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type of analysis can help identify potential treatment effect modifiers, which may give rise to hetero-

geneity in effect estimates and/or inconsistency in the direct and indirect evidence on pairwise contrasts

in a network of trials. The pain relief example shows how adjusting for baseline risk can greatly reduce

heterogeneity and improve overall model fit. Similar results and conclusions have been reported before,

for example, by Lu et al. [33] in an NMA at multiple follow-up times where the baseline effects were

adjusted at different follow-up points. However, there was no evidence of baseline effect in the FSA

example, and the inconsistencies identified by Cooper et al. [17] were not resolved by baseline risk

adjustment. In meta-analyses of studies evaluating complex and or public health interventions such as

the FSA data, interventions may not always be clearly defined, and studies are often of variable quality

and conducted in populations with different characteristics. These factors can introduce heterogene-

ity in both meta-analyses of clinical trials and studies of complex and or public health interventions,

but the problem is more pronounced in public health. The FSA network included both RCTs and non-

randomised observational studies, both of which are of variable quality. Although care was taken to

categorise the interventions appropriately, ‘lumping’ of interventions within categories could not be

completely ruled out [17]. Lumping of interventions creates relative contrasts that are unevenly dis-

tributed across contrast and have been cited as a possible source of heterogeneity and inconsistency in

NMA [34].

The main advantage of the approach described in this paper is that the models can be easily imple-

mented by making simple modifications to freely available WinBUGS code for NMA [35] (see code

in Appendix B). Specifying the models in WinBUGS, and analysing them using MCMC simulation, is

beneficial as it allows the adjustment to be carried out without excluding trials with missing placebo

or no treatment control group (hence no baseline risk covariate). The imputation step is implemented

automatically in WinBUGS through the model jointly specified by the likelihood and prior distribution

placed on the ‘baseline risk’ (described in Section 3.3). Because parameters are considered as random

variables within the Bayesian framework requiring a distribution [36], the ‘missing covariate’ is treated

as any other unknown parameter to be estimated under exchangeability [37, p. 117]. Alternatively, the

analysis can also be carried outside a Bayesian framework using multivariate meta-analysis methods

(for example, [16]) fitted in standard statistical software or self-written programs. However, validity of

the results obtained from either classical or Bayesian analyses will depend on appropriateness of the

assumption that the non-active intervention arm of studies without a baseline risk is missing at random.

Fitting models with separate and or exchangeable regression slopes described by Cooper et al. [5], in

addition to the common slope model, can be useful for assessing the appropriateness of these assump-

tions. For example, the common slope assumption can be tested by first calculating the difference

between estimates of any two slopes in the separate slope model followed by a probability that this

difference is greater than 0 using the step function in WinBUGS [27]. A two-sided P-value can then

be derived using the formula 2 � minimum.probability; 1  probability/ [25]. However, as shown by

the FSA example, fitting models with separate/independent slopes may not always be feasible, possibly

because of limited availability of data. In those circumstances, the exchangeable slope or even common

slope models can be considered as a compromise [5]. Under the exchangeable regression slope assump-

tion, power is improved by borrowing strength across regression slopes, which shrinks treatment effect

estimates towards each other. This can have policy implications especially in a decision-making context

where manufacturers of alternative interventions may see the effectiveness of their products ‘shrink’

towards that of the competitor. Also, the exchangeable slope assumption can reduce heterogeneity in the

effect estimates (� ), but the regression slopes themselves can be quite variable as illustrated by the pain

relief example where the �B ’s are larger than � . This shows that the regression slopes are much more

variable than the treatment effects, and therefore, a common regression coefficient may not be the best

model for this example.

Finally, going back to the review of pairwise meta-analysis models presented in Section 2, a much

debated issue in modelling the relationship between treatment effect and baseline risk has been whether

or not to assume a parametric distribution for the baseline risk and what form if any such a distribution

should take. Ghidey et al. [19] examined the issue in a recently published methods review paper using

real and simulated data for pairwise meta-analysis. The simulated results found no difference between

models that assumed normality for the baseline risk and those that did not, with both models producing

robust/unbiased estimates of the regression slope when the baseline risk is normally distributed across

studies [19]. However, the estimate of the regression slope was found to be less biased under the func-

tional modelling approach when normality of the baselines was violated, but the relative difference in

bias was small. The results from the approach outlined in this paper for NMA appear consistent with

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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the findings of Ghidey et al. [19] and also Arends et al. [11]. Estimates of regression slopes from both

FSA and pain relief examples were slightly less negative and tended to shrink towards 0 in models that

assumed normally distributed baselines (models A2, A3, B2 and B3 in Table II and models A2–A3,

B2–B3 and C2–C3 in Table III) compared with the unconstrained or minimally informative prior distri-

butions for the baseline risk (models A1–C1). The effect of different distributional assumptions about

the baseline risk was, however, very minimal as both unconstrained and normally distributed baseline

risk models produced practically identical estimates of regression slopes.

Appendix A

Table AI. Example 1 data: effectiveness of home safety education to promote possession of a functional

smoke alarm.

No. of smoke alarms/total Proportion with smoke

Comparison (control no. households surveyed (control alarm in usual-care group

Study versus intervention) arm versus intervention arm ) (baseline risk) (%)

Mock 2003 Usual care versus education 10/297 vs. 18/308 3

DiGuiseppi 2002 Usual care versus education + 5/30 vs. 8/44 17

equipment + fitting

Miller 1982 Usual care versus education + 46 (9.34)/105 (21.31) vs. 44

equipment 61 (12.38)/108 (21.92)

Sangvai 2007 Usual care versus education + 5/10 vs. 16/17 50

equipment + HSI

Hendrickson 2002 Usual care versus education + 26/40 vs. 37/38 65

equipment + HSI

Schwrz 1993 Usual care versus education + 816/1060 vs. 866/902 77

equipment + fitting + HSI

Bulzacchelli 2009 Usual care versus education 55/71 vs. 109/139 77

Phelan 2010 Usual care versus education + 112/138 vs. 130/140 81

equipment + fitting + HSI

Watson 2005 Usual care versus education + 619/737 vs. 692/764 84

equipment + fitting

Clamp 1998 Usual care versus education + 71/82 vs. 81/83 87

equipment

Gielen 2005 Usual care versus education 325/375 vs. 345/384 87

Kendrick 1999 Usual care versus education + 321 (245.62)/363 (277.76) vs. 88

equipment + HSI 325 (248.68)/361 (276.23)

Gielen 2001 Usual care versus education 54 (52.02)/56 (53.95) vs. 96

77 ( 74.18)/80 (77.07)

Matthews 1988 Education + equipment + 6/12 vs. 6/12 NA

HSI versus education + HSI

Johnston 2000 Education + equipment + 211 (20.05)/211 (21.15) vs. NA

HSI versus education + HSI 136 (31)/133

Gielen 2002 Education + equipment versus 47 (44.20)/56 (52.66) vs. NA

education + equipment + HSI 47 (44.21)/58 (54.54)

Barone 1988 Education versus education + 34 (20.08)/38 (22.45) vs. NA

equipment 39 (23.04)/41 (24.22)

Sznaider 2003 Education versus education + 6/50 vs. 27/47 NA

equipment + fitting

King 2001 Education + equipment + HSI 394/469 vs. 406/482 NA

versus education + HSI

Harvey 2004 Education + equipment + 997/1545 vs. 1421/1583 NA

HSI versus education

+ equipment + fitting + HSI

Figures in brackets adjusted for clustering; adjusted figures used in analysis; usual-care arm not available.

HSI, home safety inspection; equipment, low cost/free equipment.
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Table AII. Example 2 data: reduction in 24-h post-operative morphine consumption.

Placebo Paracetamol NSAID COX-2

Study author (N /mean/SD) (N /mean/SD) (N /mean/SD) (N /mean/SD)

Inan 2007 20/8.55/5.18 20/5.4/4.3

Cakan 2008 20/12.45/7.02 20/11.25/8.42

Peduto 1998 10/14.90/15.1 10/17.4/12.7

Fogarty Mack 2001 29/17.40/8.8 30/12.6/6.5

Cheng 2004 15/19.50/8.3 15/16.9/6.5

Xuerong 2008 47/20.10/12.8 42/12.1/9.9

Kvalsvik 2003 30/21.10/11 30/16.8/8.4

Varrassi 1994 47/21.70/19.88 48/15/13.2

Cassinelli 2008 12/22.10/18 13/8/7.5

Fong 2008 20/27/7.2 40/12.5/5.76

Karaman 2006 20/29.7/3.8 40/23/3.41

Hsu 2003 48/30.8/19.4 45/20.9/14.9

Munro 1998 19/30.9/22.6 18/17.4/15.5

Riest 2008 80/31.3/21.8 240/25.93/20.73

Trampitsch 2003 22/31.6/3.91 44/28.33/4.24

Fletcher 1997 15/32.9/25.2 15/28/20.3 15/25.7/17

Durmus 2003 20/34.9/10.35 20/25.6/5.92

El-Halafawy 2004 30/35.5/12.6 30/25.5/8.3

De Decker 2001 15/36.5/20.3 45/23.53/15.82

Chau-in 2008 15/36.6/8.9 34/26.8/10.42

Fayaz 2004 20/37/15 17/27/12

Plummer 1996 49/38/20 55/32/18

Thompson 2000 18/38.2/20.8 18/33.2/16.9

Vandermeulen 1997 256/39.2/27.6 258/34.6/25.9

Delbos 1995 30/43.1/15.9 30/34.5/12.7

Hernandez-Palazon 2001 21/43.3/15.3 21/26/12.2

Hubbard 2003 63/43.5/18.7 126/33.97/17.77

Ready 1994 45/44/26 96/31.96/23.23

Siddiqui 2008 100/44.2/8.2 100/35.1/7

Colquhoun 1989 15/44.8/24 15/44.6/20.7

Jirarattanaphochai 2008 60/45.2/21 60/28/14.1

Martinez 2007 21/47/27 41/25.54/12.32

Owen 1986 31/48.2/25.1 29/39.1/17.1

Rao 2000 19/51/23.86 20/33/16.03

Tang 2002 18/51/27 37/33.51/20.21

Alexander 2002 32/51.6/22.2 67/41.34/27.11

Rowe 1992 14/51.6/28.1 13/36.3/23.82

Cobby 1999 21/54.9/28.3 24/35/20.4 20/32.7/27.4

Blackburn 1995 29/55/22 30/43/17

Hegazy 2003 15/55.1/12 15/36.6/9

Moodie 2008 41/56.5/30.73 82/46.05/37.48

Sinatra 2005 52/57.4/52.3 99/39.56/32.57

Malan 2003 65/57.5/31.83 116/40.35/35.62

Balestrieri 1997 66/58.1/24.9 133/44.01/24.26

Sevarino 1992 12/58.75/58.89 23/30/45.6

Hodsman 1987 31/59/27.84 31/38/22.27

Schug 1998 26/59.5/42.3 25/50.3/40.1

Etches 1995 78/64.2/38.6 79/39.6/26.7

Siddik 2001 20/66.7/20 20/61.1/23 20/36/18

Ng 2003 17/72/27.22 19/54/23.86

Gillies 1987 18/78/38.18 39/53.97/30.53

Pertunnen 1992 15/80.4/43.37 15/32.4/25.17

Celik 2003 20/93/6 20/63/6

Lee 2008 18/141.5/74.9 38/73.56/59.42

Alhashemi 2006 NA 22/65/30 23/58/25

Munishankar 2008 NA 24/54.5/28.5 25/44.1/24.4

COX-2, cyclooxygenase 2; mean, mean 24-h morphine consumption (mg); N , sample size; NSAID, non-steroidal

anti-inflammatory drug; SD, standard deviation.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Appendix B. Modified WinBUGS code for baseline risk adjustment (taken from

Dias et al.[15])

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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Appendix C. Functional smoke alarm data coding for WinBUGS (data with

decimals are from cluster randomised trials and have been adjusted for clustering)

Initial Values example 2 (Functional smoke alarm data)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012
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#Initial values for example 2 (Post operative analgesics data)
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Network meta-analysis of multiple outcome
measures accounting for borrowing of
information across outcomes
Felix A Achana1*, Nicola J Cooper1, Sylwia Bujkiewicz1, Stephanie J Hubbard1, Denise Kendrick2, David R Jones1

and Alex J Sutton1
Abstract

Background: Network meta-analysis (NMA) enables simultaneous comparison of multiple treatments while preserving
randomisation. When summarising evidence to inform an economic evaluation, it is important that the analysis accurately
reflects the dependency structure within the data, as correlations between outcomes may have implication for estimating
the net benefit associated with treatment. A multivariate NMA offers a framework for evaluating multiple treatments
across multiple outcome measures while accounting for the correlation structure between outcomes.

Methods: The standard NMA model is extended to multiple outcome settings in two stages. In the first stage,
information is borrowed across outcomes as well across studies through modelling the within-study and between-study
correlation structure. In the second stage, we make use of the additional assumption that intervention effects are
exchangeable between outcomes to predict effect estimates for all outcomes, including effect estimates on
outcomes where evidence is either sparse or the treatment had not been considered by any one of the studies included
in the analysis. We apply the methods to binary outcome data from a systematic review evaluating the effectiveness of
nine home safety interventions on uptake of three poisoning prevention practices (safe storage of medicines, safe
storage of other household products, and possession of poison centre control telephone number) in households with
children. Analyses are conducted in WinBUGS using Markov Chain Monte Carlo (MCMC) simulations.

Results: Univariate and the first stage multivariate models produced broadly similar point estimates of intervention
effects but the uncertainty around the multivariate estimates varied depending on the prior distribution specified
for the between-study covariance structure. The second stage multivariate analyses produced more precise effect
estimates while enabling intervention effects to be predicted for all outcomes, including intervention effects on
outcomes not directly considered by the studies included in the analysis.

Conclusions: Accounting for the dependency between outcomes in a multivariate meta-analysis may or may not improve
the precision of effect estimates from a network meta-analysis compared to analysing each outcome separately.

Keywords: Network meta-analysis, Mixed treatment comparisons, Multiple outcomes, Multivariate, WinBUGS
Background
Meta-analysis or the quantitative synthesis of evidence, usu-
ally from systematic reviews, has become a popular tool in
healthcare evaluations [1,2]. Largely driven by a desire for
more realistic synthesis of complex healthcare evidence, in-
creasingly sophisticated methodology has been developed.
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One area of meta-analysis that has seen significant meth-
odological development is the application of multivariate
statistical methods for the comparison of treatments on two
or more endpoints (usually known as multivariate meta-
analysis) [3-8]. These methods are appealing because many
studies and systematic reviews focus on broad health effects
and therefore typically report several outcome measures
[4,6,9]. In such instances, the multivariate approach offers
some advantages over separate univariate analyses including
the ability to account for the inter-relationship between
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outcomes and borrow strength across studies as well as
across outcomes [10] through modelling the correlation
structure [7,11]. This can potentially reduce outcome report-
ing bias [12] and the uncertainty with which intervention ef-
fects are estimated. Additionally, in a decision making
context where the synthesis is meant to inform a health eco-
nomic evaluation, accounting for the correlations between
effect estimates on different outcomes is important as the
dependence between outcomes may have implication for es-
timating quality of life or economic consequences associated
with treatment [13]. An example is the situation where a
particularly effective treatment for a disease condition is as-
sociated with a large side effect profile. Ignoring information
about the inter-relationships between beneficial and ‘side ef-
fect’ endpoints in such instances may have implications for
quantifying the benefits associated with treatment.
When summarising effectiveness evidence, correlations

between the effectiveness estimates typically arise at either
within-study and or between-study levels. At the within-
study level, correlations arise mainly due to differences in
patient-level characteristics. They are rarely reported in the
published literature and usually have to be estimated from
external sources such as individual patient level data if avail-
able or elicited from expert opinion [8,11,14,15]. At the
between-study level, correlations arise from i) differences in
the distribution of patient-level characteristics across studies,
in which case they will be related to the within-study corre-
lations and/or ii) differences in the distribution of other
study-level characteristics such as study design, population
and baseline disease severity [16]. The within-study correla-
tions thus give an indication of the association between mul-
tiple endpoints within a study while the between-study
correlations indicate how the underlying true study-specific
effects on different outcomes vary jointly across studies.
A second area of rapid methodological development is

network meta-analysis (NMA) [17], also known as mixed
treatment comparison meta-analysis [18-20] or multiple
treatment meta-analysis [21-23]. NMA methods extend
standard pairwise meta-analysis to enable simultaneous
comparison of multiple treatments while maintaining ran-
domisation of individual studies [18]. The method enables
‘direct’ evidence (i.e. evidence from studies directly com-
paring two interventions of interest) and ‘indirect’ evi-
dence (i.e. evidence from studies that do not compare the
two interventions directly) to be pooled under the as-
sumption of evidence consistency [24]. Estimates of inter-
vention effects can then be obtained, including effects
between treatments not directly compared within any one
individual study [19]. NMA methods thus provide a co-
herent framework for appraising all available evidence
relevant to a specific decision problem. The results from
such analyses are increasingly being used to inform eco-
nomic evaluations in healthcare decision making where
coherent decisions (about judicious use of scarce resource)
need to be made based on sound appraisal of all available
evidence.
Approaches to extend NMA methodology to multiple

outcome settings have been proposed in the literature
[13,25-27], initially focusing on mutually exclusive compet-
ing risk outcomes [13] or a single outcome measured at
multiple time points [26,28]. More recently, Efthimiou et al.
[14] proposed a method for modelling multiple correlated
outcomes in networks of evidence with binary outcome
measures. The proposed method accounts for both the
within-study and between-study correlation structure and
includes a strategy for eliciting expert opinion to inform the
within-study correlations. This paper contributes to the
growing literature on the simultaneous evaluation of corre-
lated outcomes. We do this in two stages. In the first stage
(labelled as model 2 in the remainder of the paper), informa-
tion is borrowed across studies as well as across outcomes
through modelling the correlations between effectiveness es-
timates on different outcomes. In the second stage (labelled
as model 3 in the remainder of the paper), additional infor-
mation is borrowed across outcomes based on ideas for
combining evidence across human and animal studies ori-
ginally proposed by DuMouchel and Harris [29] and also
revisited by Jones et al. [30]. The proposed second stage
analysis methods allows: i) disconnected treatments to be in-
corporated as nodes in a network of evidence and ii) predic-
tion of intervention effects for outcomes where evidence
from primary studies is either sparse or not directly available
from any one study included in the analysis. The motivating
application area is injury prevention in children where a
broad array of outcomes and intervention packages have
been evaluated with the aim of increasing safety practices
around the home (to ultimately reduce household injuries).
The remainder of this paper is structured as follows: the

example dataset is first described followed by a Methods
section describing the statistical models developed and
implementation of the models. These are followed by sec-
tions presenting the results of applying the methods to the
motivating dataset and a discussion.

Dataset
The example data comes from a recently updated
Cochrane systematic review of home safety education
and provision of safety equipment for injury prevention
in children [31]. The models developed in this paper are
applied to a subset of the review evidence relating to the
prevention of poisoning injuries. Table 1 presents the
data from 22 studies for the following outcomes:

a) Safe storage of medicines
b) Safe storage of other household products

(e.g. cleaning products) and
c) Possession of a poison control centre (PCC)

telephone number.



Table 1 Summary of the available evidence

Outcome information (no. of events/no. of households in control
versus (vs.) treatment arm)

Comparison First author
and year of
publication

IPD Safe storage
of medicines

Safe storage of other
household products

Possession of a PCC
number

Usual care (1) vs. Education (2) Gielen 2007 Yes 178/271 vs. 188/249Ɨ 44/62 vs. 57/73Ɨ

Nansel 2002 Yes 83/89 vs. 79/85 65/89 vs. 66/85 59/89 vs. 63/85

Nansel 2008 Yes 72/74 vs. 140/144† 59/73 vs. 117/144† 50/59 vs. 90/119†

Kelly B 1987 No 54/54 vs. 55/55 43/54 vs. 49/55

McDonald 2005 No 4/57 vs. 6/60 3/57 vs. 6/61

Kelly N 2003 No 45.56/136.68 vs.
112.95/137.63*

Usual care (1) vs. Education + free/low
cost safety equipment (3)

Clamp 1998 Yes 68/82 vs. 79/83 49/82 vs. 59/83

Woolf 1987 No 29/143 vs. 47/119

Woolf 1992 No 60/151 vs. 89/150 59/151 vs. 117/150

Usual care (1) vs. Education + equipment
(3) vs. Education + equipment + home
safety inspection (4)

Babul 2007 Yes 147/149 vs. 171/173
vs. 160/163

Usual care (1) vs. Education + equipment +
home safety inspection (4)

Hendrickson 2002 Yes 14/40 vs. 34/38 8/40 vs. 34/38

Swart 2008 No 70.26/79.58 vs. 74.07/80* 46.86/57.96 vs.
50.87/58.27*

Kendrick 1999 Yes 317/367 vs. 322/363

Usual care (1) vs. Education + equipment +
fitting (5)

Watson 2005 Yes 683/738 vs. 712/762 327/669 vs. 368/693

Usual care (1) vs. Education + home safety
inspection (6)

Petridou 1997 No 67.26/100.12 vs.
71.08/97.83*

Usual care (1) vs. Education + equipment +
home safety inspection + fitting (7)

Schwarz D 1993 No 88.42/248.37 vs.
128.16/248.37*

Phelan 2011 No 16/138 vs. 71/139

Usual care (1) vs. Home visit (8) Johnson 2006 No 82/91 vs. 222/232†

Education (2) vs. Education + equipment (3) Posner 2004 Yes 14/47 vs. 19/49 22/47 vs. 34/49 27/47 vs. 35/49

Education (2) vs. Education + equipment +
fitting (5)

Sznajder 2003 Yes 44/49 vs. 43/45 32/41 vs. 40/48

Education + equipment + home safety
inspection (4) vs. Education + equipment +
home safety inspection + fitting (7)

King J 2001 No 261/469 vs. 273/482

Education + equipment (3) vs.
Equipment (9)

Dershewitz 1979 No 22/101 vs. 20/104 1/101 vs. 0/104

Treatment abbreviation and codes:
Usual care = UC (1).
Education = E (2).
Education + free/low cost equipment = E + FE (3).
Education + equipment + home safety inspection = E + FE + HSI (4).
Education + equipment + fitting = E + FE + F (5).
Education + home safety inspection = E + HSI (6).
Education + equipment + home safety inspection + fitting = E + FE + HSI + F (7).
Education + home visit = E + HV (8).
Free/low cost equipment = FE (9).
*Effective sample size reported for cluster randomised studies after adjusting clustering, hence not whole numbers (details given in Kendrick et al. 2012 [31]).
ƗThe IPD for Gielen 2007 shows information on safe storage of medicines and safe storage of other household products was collected from different sets of
households in this study (i.e. all the households that provided information for storage of medicines had missing data for safe storage of other household
products and vice versa). Hence the Gielen 2007 IPD was not used to estimate the within-study correlations. †The intervention arms of Nansel 2008 and
Johnson 2006 [32] comprises two groups that received different versions of a home safety intervention. The two versions were considered to be similar,
hence combined into one intervention group for the analysis reported here.
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Thirteen of the 22 studies considered at least two of
the three outcomes. Of these, 8 considered storage of
medicines and storage of other household products, 2
considered storage of other household products and pos-
session of a PCC telephone number, and 3 considered all
three outcome measures. Individual patient data (IPD)
were available for 8 of the 13 studies, of which 7 were in a
format suitable for the analysis reported here as explained
by the footnotes in Table 1.
We classified the interventions trialled in the 22 stud-

ies into 9 relatively homogenous treatment packages:

1) Usual care (UC)
2) Education (E)
3) Education + provision of free/low cost equipment

(E + FE)
4) Education + provision of free/low cost equipment +

home safety inspection (E + FE + HSI)
5) Education + provision of free/low cost equipment +

fitting of equipment (E + FE + F)
6) Education + home safety inspection (E + HSI)
Safe storage of medicines

E+FE+ F (5)

UC (1)

E+FE+ 

HSI+F (7)

E+FE (3)

E+FE+ 

HSI (4)

E (2)

1
1

5

1

2

1 2

1

FE (9)

1

Possession of a PCC telepho

E+FE (3)

E+FE+

HSI (4

E (2) 

1 3

E+

2

Figure 1 Intervention networks for the poisoning prevention outcom
control centre telephone number.
7) Education + provision of free/low cost equipment +
home safety inspection + fitting of equipment
(E + FE + HSI + F)

8) Education + home visit (E + HV)
9) Provision of free/low cost equipment (FE).

Figure 1 shows the comparisons between the inter-
ventions that were made by individual studies and the
number of comparisons in each network. All studies
compared 2 intervention strategies, except Babul et al.
(2007) [33] which compared 3 strategies. Data on each
outcome was not available for all interventions; i.e. for
the storage of medicines and other household products
outcomes, interventions E + HSI and E + HV were not
investigated in any of the included studies, and for
possession of a PCC number interventions, E + FE + F
and FE were not available.

Methods
In this section, we first present the NMA statistical model
for one binary outcome measure and then extend it to
Safe storage of other household products 

E+FE+ F (5)

UC (1)

E+FE+ 

HSI+F (7)

E+FE (3)

E+E+ HSI 

(4)

E (2)

1
1

5

2

3

1

FE only 

(9)

1

1

ne number*

UC (1)

E+HV 

(8)

 

)

E+FE + 

HSI+F (7)

1

1
1

HSI 

1

es (thick red lines indicate multi-arm comparisons). *PCC= poison
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compare multiple interventions across multiple outcomes.
Throughout the paper, we refer to these single and multiple
outcome models as univariate and multivariate NMAs re-
spectively. Where studies report multiple outcomes, these
will not be independent as each household provides infor-
mation on the different outcome measures within interven-
tion arms. The multivariate model takes this correlation
structure into account by allowing the intervention effects
measured by one outcome to be correlated with the inter-
vention effects measured by other outcomes.

Model 1: Univariate NMA
Given arm-level binary data of the form presented in
Table 1, a random effects NMA may be specified using
the method of Lu and Ades [20]. It is assumed that the
occurrence of rik events out of a total of nik households in
the kth-arm (k = A,B,C,….,) of the ith-study follow a bino-
mial distribution with underlying event probability pik:

rik e Binomial pik ; nikð Þ; logit pikð Þ ¼ θik

θik ¼ μib
μib þ δi bkð Þ

if k ¼ b
if k > b

�
b ¼ A;B;C;

ð1Þ

δi bkð Þ eNormal d bkð Þ ¼ d Akð Þ−d Abð Þ ; σ2bkð Þ
� �

Note : dAA ¼ 0
ð2Þ

where μib is a study-specific baseline effect (i.e. the log-odds
for the control group in study i with baseline treatment
b), δi(bk) is a study-specific log-odds ratio, d(bk) is the pooled
effect of treatment k relative to treatment b (a quantity
usually of interest in a meta-analysis) and σ2bkð Þ is the
between-study variance or heterogeneity parameter. Ran-
dom effects NMA assumes that intervention effects are
exchangeable across the network regardless of whether or
not treatments b and k are included in study i [18]. This
assumption implies that the pooled effects d(bk), can be
expressed as functions of basic parameters with reference
to a common comparator or baseline treatment (i.e. d(bk) =
d(Ak) − d(Ab)) [24]. Throughout this paper, we take usual
care (UC) intervention to be the reference or ‘baseline’
treatment (i.e. UC is taken as treatment A of equation (2)
above). Multi-arm studies (i.e. studies with more than 2
treatment groups) present a special problem in network
meta-analysis because they produce evidence on multiple
treatment effects that are correlated through sharing a
common reference or ‘baseline’ treatment. Under a homo-
genous variance assumption ( σ2

bkð Þ ¼ σ2 ), the covariance
between any two effects that share a common reference
treatment is σ2

2 [20]. The homogeneous variance assump-
tion allows for the distribution of effects (in a study with
an arbitrary number of arms) to be expressed as a uni-
variate marginal distribution and a series of univariate
conditional distributions. Specifically, for the ith-study
with p + 1 arms and p treatment effect estimates
relative to the reference treatment, if

δi bk1ð Þ
δi bk2ð Þ

⋮
δi bkpð Þ

0BB@
1CCAeNormal

 
d bk1ð Þ
d bk2ð Þ
⋮

d bkpð Þ

0BB@
1CCA; 

σ2
σ2

2
⋮
σ2

2

σ2

2
σ2

⋮
σ2

2

⋯
⋯
⋱
⋯

σ2

2
σ2

2
⋮
σ2

!! ð3Þ

then the marginal and conditional univariate distribu-
tions for arm j, given the previous 1,⋯, (j − 1) arms are:

δi bk1ð ÞeNormal d bk1ð Þ ; σ2
� �

for j ¼ 1:

δi bkjð Þj
δi bk1ð Þ

⋮
δi bkj−1ð Þ

0@ 1AeNormal d bkjð Þþ
1
j

Xj−1
t¼1

δi bktð Þ−d bktð Þ
� �

;
jþ 1ð Þ
2j

σ2
 !

for j ¼ 2;…; p

ð4Þ

The analysis is conducted within a Bayesian framework
requiring prior distributions to be specified for all model
parameters. Accordingly, we specified minimally inform-
ative prior distributions corresponding to a Normal (0,103)
prior distribution for the pooled mean effects relative to
usual care, d(Ak) and the study-specific baseline effects, μib
and a Uniform (0,2) prior distribution for the between-
study standard deviation on the log odds ratio scale σ [34].

Model 2: Multivariate NMA
We extend the univariate NMA model defined above
to the multiple outcomes settings in order to account
for correlations between intervention effects on dif-
ferent outcomes. The method presented here follows
from Ades et al. (2010) NMA with competing risks
model [13] where only the within-study correlations
are taken into account. We extend their method to
account for the between-study correlation as well.
Note that in Ades et al. (2010), a multinomial likelihood

was appropriate as the three binary outcomes (relapse dur-
ing treatment for Schizophrenia, discontinuation because
of intolerable side effects, and discontinuation for other
reasons) are mutually exclusive and event probabilities sum
to 1 across outcomes. A multinomial likelihood will not be
appropriate for our example dataset because each house-
hold can have one, two or all three outcomes simultan-
eously so that the event probabilities do not sum to 1
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across outcomes. Instead, we use a Normal distribution on
the log-odds scale to take account of the within-study cor-
relations between outcomes. We assume that in each study

i and for each k-th arm, the estimates θ̂ ikm of the observed
log-odds of an event on the mth outcome (m = 1, 2,⋯,M)
jointly follow a multivariate normal distribution:

θ̂ ik1

⋮
θ̂ ikM

0@ 1Ae Normal
θik1
⋮

θikM

 !
;

 

Sik ¼
s2ik1 ⋯ r1Mik sik1sikM

⋱ ⋮
s2ikM

0@ 1A!

 
θik1
⋮

θikM

!
¼

(
μib1
⋮

μibM

 !

μib1 þ δi bkð Þ1
⋮

μibM þ δi bkð ÞM

0@ 1A
if k ¼ b
if k > b

for b ¼ A;B;C; …

ð5Þ

where (μib1, μib2,⋯, μibM) and (δi(bk)1, δi(bk)2,⋯, δi(bk)M)
represent vectors of ‘true’ baseline and study-specific
effects in study i with baseline treatment b respectively.
The quantities θ̂ ik1; θ̂ ik2;⋯; θikM

� �
and (θik1, θik2,⋯, θikM)

represent vectors of observed and ‘true’ log-odds of re-
sponse in arm k of study i and Sik is the associated
within-study covariance matrix usually assumed known
but estimated in practice from the data [35]. We calcu-
lated θ̂ ik1; θ̂ ik2 ;⋯; θ̂ ikM

� �
and the diagonal elements of Sik

using standard formulae for log-odds and variance of the
log-odds [2]. We applied a continuity correction by adding
0.5 to the numerators and 1 to the denominators of stud-
ies with 0% or 100% event rate in one of the treatment
arms [36,37]. The off-diagonals of Sik were calculated from
estimates of within-study correlations rmn

ik between out-
comes m and n (m ≠ n) in arm k of study i obtained from
studies with IPD (see Additional file 1: Table S1). The
method used to estimate the correlations from the IPD is
described in the implementation section below.
When summarising evidence across multiple end-

points, it is common to encounter instances where some
studies do not report information for all outcomes of
interest leading to incomplete vectors with missing
study-specific effects for the outcomes not reported
[5,10]. Such studies can be included in our model under
the assumption that the effects for outcomes not re-
ported are missing at random. When implemented using
the WinBUGS software, the missing study effects and
standard errors are coded as NA in the data, a strategy
previously outlined in Bujkiewicz et al. [10] and Dakin
et al. [28]. This enables WinBUGS to automatically
‘impute’ values for the missing information under miss-
ing at random assumption with predicted distributions.
We refer to equation (5) as the within-study model and

the model describing the distribution of the ‘true’ effects
across studies (presented below) as the between-study
model following standard terminology in multivariate meta-
analysis [5,6,10,11,38,39]. For the network of two-arm trials,
the between-study model for the ith study is thus given by:

δi bkð Þ1
⋮

δi bkð ÞM

0@ 1AeNormal
d bkð Þ1 ¼ d Akð Þ1−d Abð Þ1

⋮
d bkð ÞM ¼ d Akð ÞM−d Abð ÞM

0@ 1A; Σ bkð Þ

0@ 1A

Σ bkð Þ ¼
σ2bkð Þ1 ⋯ ρ1Mbk σ bkð Þ1σ bkð ÞM

⋱ ⋮
σ2bkð ÞM

0@ 1A
ð6Þ

where the ‘true’ effects δi(bk)m (m = 1, 2,⋯,M) jointly
follow a Normal distribution with mean effects d(bk)m.
The parameters in equation (6) have the same inter-
pretation as in equation (2) except that they are now
specific to each outcome. The covariance matrix Σ(bk)

contains terms for the between-study variances, σ2
bkð Þm

for each outcome m and the between-study correla-
tions ρmn

bk between effects measured by outcome m and
n (m ≠ n) specific to each k versus b comparison. Fit-
ting the full model would thus require a large number
of possibly multi-arm studies in order to make Σ(bk)

identifiable [5,13]. The number of parameters in Σ(bk),
can however be reduced if reasonable assumptions can
be made about the covariance structure. In particular,
most practical applications of NMA methods involve the
assumption of a common between-study variance across
treatment arms, often referred to as a homogenous vari-
ance assumption [18,40,41]. Therefore, to simplify Σ(bk)

we make the additional assumption in this context of a
common between-study correlation (ρmn

bk ¼ ρmn) lead-
ing to the following simplified between-study covari-
ance structure for two-arm studies:

δi bkð Þ1
⋮

δi bkð ÞM

0@ 1AeNormal
d bkð Þ1 ¼ d Akð Þ1−d Abð Þ1

⋮
d bkð ÞM ¼ d Akð ÞM−d Abð ÞM

0@ 1A;Σ M�Mð Þ

0@ 1A

Σ M�Mð Þ ¼
σ21 ⋯ ρ1M σ1σM

⋱ ⋮
σ2
M

0@ 1A
ð7Þ

where, as in the univariate case, σm represent the com-
mon between-study standard deviation or heterogeneity
parameter specific to outcome m.
To include multi-arm studies in our model, we extend

equations (3) and (4) to the multiple outcome setting.
We show in Appendix A, that under evidence consistency
and the homogenous between-study covariance structure
(σ2

bkð Þm ¼ σ2m and ρmn
bk ¼ ρmn), equation (3) can be extended
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to the multiple outcome settings by formulating the distribu-
tion of effects in a multi-arm study i with p + 1 arms report-
ing onm= 1, 2,⋯,M outcomes as follows:
δi bk1ð Þ1
⋮

δi bk1ð ÞM

0@ 1A
δi bk2ð Þ1

⋮
δi bk2ð ÞM

0@ 1A
⋮
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⋮
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0B@
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0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal
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⋮
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⋮
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⋮
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⋮
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0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
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0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
Σ Mp�Mpð Þ ¼

σ21 ⋯ ρ1Mσ1σM
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ρ1Mσ1σM ⋯ σ2
M
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M
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1
2

σ2
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⋮ ⋱ ⋮
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ð8Þ
where p is the number of treatment effect estimates. The
corresponding marginal and conditional distributions for
arm j, given the previous 1,⋯, (j − 1) arms are:
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δi bkj−1ð ÞM

0B@
1CA

0BBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCA

eNormal

d bkjð Þ1 þ
1
j

Xj−1
t¼1

δi bktð Þ1−d bktð Þ1
� �
⋮

d bkjð ÞM þ 1
j

Xj−1
t¼1

δi bktð ÞM−d bktð ÞM
� �

0BBBBB@

1CCCCCA;Σ
0 ¼ jþ 1ð Þ

2j
Σ M�Mð Þ

0BBBBB@

1CCCCCA
for j ¼ 2; …; p

ð9Þ
To complete model 2, μibm and d(1k)m are given min-
imally informative prior distributions:

μibm; d 1kð Þm e Normal 0; 103
� �

Prior distributions also need to be specified for Σ(M ×

M) which, in general, is non-trivial because of the posi-
tive definite constraint. Initially we specified an Inverse-
Wishart distribution [42]:

Σ M�Mð ÞeInverse −Wishart K;Mð Þ

where K is M ×M scale matrix and M is the total num-
ber of outcomes. Specifying minimally informative
Inverse-Wishart prior distribution is, however, problem-
atic, especially when the amount of data is small relative
to the dimensions of Σ(M ×M) as is the case for our
example data. Therefore, to allow for flexibility in for-
mulating a prior distribution for Σ(M ×M), we also
followed a strategy outlined by Lu and Ades (2009)
[43] and more recently by Wei and Higgins (2013)
[39] to express Σ(M ×M) in terms of a diagonal matrix of
standard deviations V1/2 and squared positive semi-definite
matrix of correlations R based on a separation strategy
(Barnard et al. [44]):

Σ M�Mð Þ ¼ V1=2 R V1=2
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where the off-diagonal elements of R contain correlation
terms and diagonal elements equal 1. Lu and Ades [43]
and also Wei and Higgins [39] showed that R can be
written as R = LTL using Cholesky decomposition where
L is an upper triangular matrix. The spherical para-
meterization technique [39,43] can be used to express R
in terms of sine and cosine functions of the elements in
L. Using this later technique, we specified Uniform (0,π)
prior distributions for the spherical coordinate φmn in
our model to ensure that elements of the correlation
matrix R lie in the interval (−1,1). Finally, the elements
of V1/2 correspond to the between-study standard de-
viation terms in Σ(M ×M) and are given independent
Uniform (0,2) prior distributions as in the univariate case
(model 1).

Model 3: Borrowing strength across interventions and
outcomes
From Table 1, it can be seen that none of the studies
had considered the interventions E + HSI and E + HV for
storage of medicines and storage of other household
products. Similarly, interventions E + FE + F and FE were
not trialled by any of the included studies on possession
of a PCC number. To estimate the full set of 24 basic
intervention effects relative to usual care from 9 inter-
ventions on 3 outcomes, we applied methods originally
proposed by DuMouchel and Harris [29] and revisited
by DuMouchel and Groer [45] and Jones et al. [30]. We
assume that the pooled effects of treatment k relative to
usual care intervention d(Ak)m, can be expressed as a
sum of treatment-specific effect αk and outcome-specific
effect γm. This assumption replaces the minimally inform-
ative prior distribution N(0, 103) specified for d(Ak)m in
model 2 with:

d Akð Þm e Normal αk þ γm; τ2
� �

k ¼ 2; 3; ⋯K ; m ¼ 1; 2; M

ð10Þ

where K is the total number of treatments being evalu-
ated across M outcomes, and for k = 1 (i.e. reference
treatment A), d(Ak)m equal to zero. Note that on the
logarithmic scale, this would imply that the ratio of any
intervention effects is constant across outcomes as the
γm cancel, i.e.

d bkð Þm ¼ d Akð Þm−d Abð Þm
� �eNormal αk−αb; 2τ2

� � ð11Þ

Equation (10) thus embodies an assumption of equal
or constant relative potency of treatments across out-
comes which imply exchangeability of the relative effects
between the non-reference/baseline treatments indicated
by equation (11). For our example dataset, this implies
that missing intervention effects for comparisons with
the usual care intervention can be predicted directly
from equation (10) as a linear combination of γm and αk
assuming that each treatment effect relative to usual
care is reported on at least one outcome. The missing
intervention effects between non- reference/baseline
treatments if required can similarly be predicted directly
from the model as linear combinations of the interven-
tion effects relative to usual care.
The parameter τ controls the accuracy of the constant

relative potency assumption. Values of τ close to zero would
thus indicate a high degree of confidence (and support from
the data) in the parallelism of effect profiles across outcomes
and the constant relative potency assumption. Conversely,
larger values of τ would indicate otherwise.
Multi-arm studies are included in model 3 based on

equations (8) and (9) in the same way as in model 2. To
complete model 3, the parameters αk, γm and τ are
given minimally informative prior distributions. For the
mean effects, this is a normal distribution with zero
mean and large variance:

αk ; γme Normal 0; 103
� �

We give τ a Uniform (0, 2) prior distribution, consid-
ered to be minimally informative on the log-odds ratio
scale. Sensitivity analyses were conducted to assess the
impact of specifying alternative prior distributions for τ
that are also considered minimally informative [46]:

i. Normal prior distribution centred on 0 with large
variance and constrained to be positive, τ ~N
(0, 102), τ ≥ 0

ii. Gamma prior distribution placed on the precision:
τ− 2 ~ Gamma(0.001, 0.001).

The results of the sensitivity analyses are presented in
Additional file 1: Figure S1.
There is a limitation to the number of data (i.e. inter-

vention effects relative to the usual care) on outcomes
allowed to be missing for the model hyper-parameters to
be identifiable. For K interventions andM outcomes, there
will be (K − 1) ×M equation (10) that are used to estimate
a total of (K − 1) +M hyper-parameters (i.e. (K − 1) of αk
and M of γm hyper-parameters). Therefore no more than
((K − 1) ×M) − ((K − 1) +M) missing values in total are
allowed. For example, for K = 3 treatments and M=2 out-
comes, data has to be available on both outcomes for both
treatment comparisons with the baseline when the prior dis-
tributions are non-informative. When large number of data
on outcomes is missing, placing informative prior distribu-
tions on the hyper-parameters can improve convergence.

Implementation of the models
We fitted a total of four models, models 1 and 3 as de-
scribed above and two versions of model 2. In model 2a,



Achana et al. BMC Medical Research Methodology 2014, 14:92 Page 9 of 16
http://www.biomedcentral.com/1471-2288/14/92
we specified an inverse-Wishart prior distribution for
the between-study covariance matrix Σ(M ×M) whilst in
model 2b, we specified a prior distribution for Σ(M ×M)

based on the separation strategy. All four models
allowed for multi-arm trials to be included in the ana-
lysis. To fit the multivariate NMA models, the quan-
tities θ̂ik1; θ̂ik2; θ̂ik3ð Þ and the diagonals of Sik were
estimated using standard 2×2–table formulae [2].
Next, we obtained estimates of the within-study corre-
lations from the IPD studies using the following three
methods: i) Pearson correlation coefficient between the
observed outcome events ii) Bootstrapping as described in
Daniel and Hughes (1998), and iii) Generalised Estimating
Equations (See details in Additional file 1). All three
methods produced identical estimates of the correlations
between pairs of outcome specific log-odds of event from
each IPD study (Additional file 1: Table S1). Therefore, we
formulated informative prior distributions for the correl-
ation terms in Sik of equation (5) using the estimates of
the correlations between the observed outcome events
(Pearson correlation) as follows:

rmn
ik e Uniform amn; bmnð Þ with

amn ¼ rmn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� var rmnð Þp

2

 !
and

bmn ¼ rmn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� var rmnð Þp

2

 !

where rmn
ik is the within-study correlation between the

outcomes m and n effects measured on the log-odds
scale in arm k of study i, and rmn and var (rmn)are the
mean and variance of the within-study correlation be-
tween outcomes m and n effects measured by IPD
respectively.
We also assessed consistency of the evidence within

each network using a method based on node splitting
[24]. We found no evidence of conflict between the dir-
ect and indirect sources (Additional file 1: Table S2) in
all three outcome networks.
We fitted all models described above in WinBUGS

[47] using Markov Chain Monte Carlo (MCMC) simula-
tions. The univariate models were fitted separately for
each outcome using WinBUGS code available from Dias
et al. [48]. The WinBUGS code for the multivariate
models is provided in the appendices 1 and 2 of the
Additional file 1. Convergence was assessed by examin-
ation of the trace and autocorrelation plots and the
Rubin-Gelman statistic after running 400 000 simula-
tions and discarding the first 200 000 samples as ‘burn
in samples’.
Results
Univariate and multivariate analyses
Parameters of interest were the posterior median esti-
mate (and 95% credible intervals) of the pooled inter-
vention effects relative to the usual care intervention
and the posterior median estimate (and 95% credible in-
tervals) of the between-study standard deviation and
correlation terms. Summary forest plots displaying ef-
fectiveness estimates relative to usual care on the odds
ratio (OR) scale are presented in Figure 2. It can be seen
that, all 4 models produced broadly similar estimates
when the treatment effect is not extreme compared to
the other effect estimates for the same outcome. Com-
pared to the univariate analysis, the multivariate models
produced noticeably less extreme estimates of interven-
tion effects. This can be seen in the effect of FE + HSI
(3) on possession of PCC number being shifted towards
the line of no effect from an OR of 39.35 (95% CrI 2.37
to 732.30) in model 1 to 23.55 (95% CrI 1.39, to 456.80)
in model 2a, 20.37 (95% CrI 0.72, to 706.00) in model 2b
and 4.20 (95% CrI 1.59 to 13.16) in model 3. Similarly,
the OR for FE (9) on safe storage of other household
products shifted from 0.37 (95% CrI 0.00 to 15.10) in
model 1 to 1.81 (95% CrI 0.63, to 5.37) in model 3.
Posterior median and 95% credible intervals of the

between-study standard deviations and correlations are
presented in Table 2. The posterior medians of the
between-study correlations from the multivariate models
were small and estimated with considerable uncertainty
(i.e. all had large variances). Estimates of the between-
study standard deviations were broadly similar for the
univariate NMA (model 1) and the multivariate NMA
using the separation strategy (model 2b), and relatively
high for multivariate NMA using the inverse-Wishart
prior distribution (model 2a).

Borrowing strength across outcomes
It can be seen from Figure 2 that the effect of E + HSI
and E + HV relative to usual care intervention on safe
storage of medicines and safe storage of other household
products, and E + FE + F and FE on possession of a
PCC telephone number were only estimated in model 3
as none of the studies had trialled these interventions on
the respective outcomes. In this model, estimates of rela-
tive effects between non- reference/baseline treatments
were assumed to be exchangeable across outcomes,
which enabled estimates to be obtained for all outcomes
by predicting effects where the interventions have not
been considered for the particular outcome of interest.
For the intervention/outcome pair where data from trials
were available, this extrapolation step had the additional
effect of producing more precise estimates of the treat-
ment effect in comparison to the models that do not as-
sume exchangeability effects across outcomes.



Figure 2 Summary forest plot of intervention effects relative to usual. Outcomes are safe storage of medicines, safe storage of other
household products and possession of a PCC telephone number. Model 1: Univariate NMA. Model 2a: Multivariate NMA (Wishart prior
distribution). Model 2b: Multivariate NMA (separation strategy). Model 3: Multivariate NMA allowing for the relative effects between non-usual care
interventions to be exchangeable across outcomes. Effect estimate for which direct study data was not available are indicated by xx on the forest
plot. Intervention components: E = Education, FE = low cost/free equipment, HSI = Home safety inspection, HV = Home visit and F= Fitting
of equipment.

Table 2 Posterior median and 95% credible intervals of the between-study standard deviation and correlation
parameters

Parameter Description/prior distribution Model 1:
univariate

Model 2a: Multivariate
using inverse-Wishart
prior distribution for
Σ(M ×M)

Model 2b: Multivariate
using a separation
strategy to specify
priors for elements
of Σ(M ×M)

Model 3: Multivariate
with extrapolation
of effects across
outcomes

σ1 Between-study standard deviation:
safe storage of medicines

0.26 (0.03, 1.02) 0.58 (0.33, 1.18) 0.27 (0.01, 1.08) 0.23 (0.01, 0.80)

σ2 Between-study standard deviation:
safe storage of other household
products

0.56 (0.13, 1.27) 0.62 (0.35, 1.15) 0.47 (0.04, 1.18) 0.31 (0.01, 0.81)

σ3 Between-study standard deviation:
PCC

1.16 (0.57, 1.93) 0.94 (0.53, 1.99) 1.18 (0.57, 1.93) 1.08 (0.58, 1.85)

τ Primary analysis: τ ~Uniform (0, 2) - - - 0.10 (0.01, 0.53)

τ Sensitivity analysis: τ ~ Normal (0, 102),
τ ≥ 0

- - - 0.11 (0.00, 0.56)

τ Sensitivity analysis: τ2 ~ Inverse −
Gamma (0.001, 0.001)

- - - 0.08 (0.02, 0.36)

ρ12 Between-study correlation [medicines,
other household products]

- 0.03 (−0.73, 0.76) 0.05 (−1.00, 1.00) 0.45 (−0.99, 1.00)

ρ13 Between-study correlation [medicines,
PCC]

- 0.06 (−0.80, 0.81) 0.20 (−1.00, 1.00) 0.50 (−0.98, 1.00)

ρ23 Between-study correlation [Other
household products, PCC]

- 0.08 (−0.81, 0.83) 0.13 (−0.97, 0.98) 0.60 (−0.87, 0.99)
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The posterior median and 95% credible intervals of
intervention effects relative to usual care were un-
affected by placing alternative minimally informative
prior distributions on τ (Additional file 1: Appendix 2).
The posterior median and credible intervals for τ
(Table 2) were similarly not sensitive to the choice of
prior distribution placed on τ in the primary and sensi-
tivity analyses. The posterior median estimates of τ were
all close to zero, which suggest that assumptions about
the parallelism of effect profiles across outcomes is sup-
ported by the data. The estimates of τ would thus sug-
gest with 95% probability, that based on the information
in our example dataset, the extrapolation model could
be accurate to within a factor of about e(2 × 0.10) = 1.24
(95% CrI 1.01 to 2.87).

Discussion
We have presented methods for simultaneous compari-
son of multiple treatments across multiple outcome
measures while preserving the internal randomisation of
individual studies. Our method may be viewed as an ex-
tension of Ades et al.’s (2010) NMA with competing
risks paper [13] wherein only the within-study correl-
ation is taken into account. We have extended their
method to account for the dependency between out-
come effects across studies as well as within-studies.
In this particular application of the multivariate ap-

proach, accounting for the correlation between out-
comes alone (models 2a and 2b) did not reduce the
uncertainty around estimates of intervention effects
compared to analysing each outcome separately (model 1).
Assuming that intervention effects are exchangeable
across outcome did however lead to a modest re-
duction in uncertainty around effectiveness estimates
(model 3).
The between-study correlations were estimated with

considerable uncertainty (Table 2) and appear to have
little impact on overall effect estimates. This may be
because the between-study correlation arises due to,
among other things, differences in study-level charac-
teristics that also give rise to between-study heterogen-
eity in a meta-analysis. Based on a criterion outlined in
Spiegelhalter et al. [49] the posterior median estimates
of the between-study standard deviations, σ1 and σ2 on
the log odds ratio scale (Table 2) could be interpreted
as indicating evidence of low to moderate heterogeneity
for storage of medicines and storage of other household
products outcomes. Only the estimates for possession
of poison control centre number exhibited a consider-
able degree of heterogeneity. Consequently, the posterior
medians of the between-study correlations were small.
There was therefore very little gain (in terms of increasing
the precision of estimates) from formulating the between-
study covariance structure described for the analysis
presented here. Accounting for the between-study correl-
ation is likely to be beneficial in situations where the
between-study variance (heterogeneity) is large relative to
within-study variances.
We opted to incorporate the within-study correlation

through the arm-specific effects (log-odds) rather than
the study-specific treatment difference (log-odds ratio)
as is often done in multivariate meta-analysis [3,4,15,38].
This approach greatly simplifies the likelihood for multi-
arm studies because treatment arms can be considered
independent as a consequence of randomisation. Hence,
there is no requirement to account for the additional
correlations between effect estimates which share a com-
mon comparator treatment in the model likelihood [50].
The arm-based approach is also likely to be useful when
(as is typical with many practical application of multi-
variate meta-analysis) the within-study correlations
are not available [10,12,15,51] and have to be obtained
from an external source such as expert opinion [14].
In such situations, formulating questions about corre-
lations between outcome-specific event probabilities
(which can be used directly in an arm-based approach)
is more likely to be intuitive and easily understood by
non-statistician healthcare experts than questions
about correlations between intervention effects. It is
acknowledged however, that the correlations between
the intervention effects if required can easily be ob-
tained from the correlations between the outcomes
[14,51].
At the between-study level, we assumed a common

correlation structure across treatments in addition to the
common variance assumption underlying most practical
application of NMA methods. The common correlation
assumption implies that if several separate multivariate
meta-analyses were conducted with the same outcomes,
each with a different set of k versus b comparison, the
assumption is that the between-study correlations would
be the same across the different sets of bk comparisons.
We suggested this structure to simplify the covariance
structure and reduce the number of parameters in the
model. Appropriateness of such modelling assumptions
would need to be considered carefully and assessed
when it is feasible to do so.
Initially we specified an inverse-Wishart distribution

for the between-study covariance matrix Σ(M ×M). How-
ever, we believe this prior distribution to be influential
due to the small number of studies in our example data-
set relative to the number of outcomes. Under these
conditions, the inverse-Wishart prior distribution pro-
duced upwardly-biased estimates of σ1 and σ2 and down-
ward bias in the estimate for σ3 when compared to the
corresponding estimates obtained from the univariate
model (Table 2). These findings are consistent with ob-
servations in the univariate case where the use of a
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Gamma prior distribution (which is the univariate analogue
of the Inverse-Wishart prior distribution) can lead to an
overestimation of the heterogeneity parameter when the
true value is close to 0 [46,52]. As an alternative to an
inverse-Wishart prior distribution therefore, we followed
the spherical decomposition technique suggested by
Lu and Ades [43]. This parameterization offered greater
flexibility in formulating independent prior distribu-
tions for the standard deviation and correlation terms
in Σ(M ×M).
An obvious limitation to implementation of the multi-

variate models presented in this paper is the limited
availability of data including i) the problem of missing
within-study correlations and ii) the requirement for a
relatively large number of studies to estimate all model
parameters. The problem of missing within-study corre-
lations has traditionally hampered the widespread appli-
cation of multivariate meta-analysis [7,10,15]. In our
example, IPD was available from a proportion of the in-
cluded studies and we have used correlations estimated
from the IPD to formulate informative prior distribu-
tions for the within-study model. Alternative approaches
to dealing with missing within-study correlations when
IPD is not available include: i) using the observed correl-
ation from the summary study-specific effects [12], ii)
eliciting information about the correlations from exter-
nal sources such as clinical experts [14] and iii) specify-
ing ‘vague’ prior distributions for analysis conducted
within a Bayesian framework [6].
The second data issue concerns the number of stud-

ies needed to estimate the full unstructured between-
study covariance matrix presented in equation (6). We
anticipate a large number of multi-arm studies report-
ing across the three outcomes will be needed to iden-
tify Σ(bk) and estimate all model parameters. This can
be problematic considering the fact that most applica-
tions of network meta-analysis typically include mostly
two-arm studies with very small numbers of multi-arm
studies. Even with the simplification of the between-
study covariance matrix given in equation (5), a rela-
tively large number of studies in comparison to the
total number of outcomes being considered may still
be needed. We are unable to answer the question of
how many studies should be considered large enough
for a NMA with multiple outcomes. As a guide, Wei
and Higgins [39] recently estimated 15, 27 and 42
studies as a minimum for multivariate pairwise meta-
analysis with two, three and four-outcomes respect-
ively. Hence, we believe an even larger number of
studies will be required for the NMA with multiple
outcomes.
Another limitation of the multivariate models presented

here is that they rely on the normal approximation to
binomial distribution to incorporate the within-study
correlations in the model. The normal approximation
frequently fails and may not provide adequate fit to the
data in the presence of studies with zero or a small
number of events, necessitating use of continuity cor-
rections. We were unable to use the exact binomial
distribution as our primary interest was to develop
models for summary binary data where outcomes are
not mutually exclusive, and where it is not reasonable
to assume that within-study correlations are zero so
that the likelihood factorises easily as in Arends et al.
[3]. Further methodological investigations into model-
ling multivariate summary data that is not normally
distributed will therefore be useful. An example is pro-
vided in Chu et al. [53] where parameterization of the
within-study model enabled the special case of diag-
nostic sensitivity and specificity to be jointly modelled
with disease prevalence using a trivariate binomial
likelihood. In the interim, an alternative formulation
which bypasses the need for approximating normal
distributions is to directly model the IPD where this
is available. This will require extending Saramago et al.’s
[54] NMA model with aggregate and individual partici-
pant level data from single outcome to multiple outcome
settings.
We assessed the consistency of each outcome network

separately using the method of node splitting [24]. We
found no evidence of conflict between the direct and in-
direct sources on pairwise contrasts that have both
sources of evidence in model 1. We did not assess the
consistency of the multivariate estimates partly because
we are unaware of current methods for carrying out this
type of assessment. We are investigating extensions of
the node-split method to multiple outcome networks
and investigate the effect of jointly synthesising evidence
across multiple endpoints on evidence consistency in a
simulation study.
Our initial motivation for a multiple outcome NMA

was to estimate intervention effects for all the outcomes,
including effects of interventions on outcomes not con-
sidered by any of the studies included in the analysis.
This requires the correlation structure between effects
on multiple outcomes to be appropriately modelled and
also ensuring the mechanism of “borrow strength”
across outcomes through the assumption of exchange-
ability of the random effect across outcomes. This im-
plies a priori assumption that outcomes are related but
different and that there is no way of knowing the order
of magnitude of effects on outcomes. If this assump-
tion does not hold, it may potentially lead to worse or
more biased effectiveness estimates. In our example,
the outcomes are similar and measured on the same
scale. It would be clearly inappropriate to assume that
intervention effects are exchangeable across outcomes
that are different in some important respects such as
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being measured on different scales (e.g. where one out-
come reports a weighted mean difference and another
outcome reports a log-odds ratio) as such estimates
will differ in terms of the precision with which they are
estimated.

Conclusion
Our aim in this paper was to present methods for simul-
taneous comparison of multiple treatments across
multiple outcome measures while preserving the in-
ternal randomisation of individual studies. Application
of the method to the poison prevention data yielded
similar point estimates of treatment effect to those
obtained from a univariate NMA but the uncertainty
around the multivariate estimates increased or de-
creased depending on the prior distribution specified
for the between-study covariance structure. The proposed
method followed the usual hierarchical approach to
multivariate meta-analysis where correlations between
outcomes are modelled at the within-study and or be-
tween-study levels.
Appendix A
Between-study covariance for multi-arm studies reporting
multiple outcomes
For a multi-arm study i with K treatments labelled A, B,
C, …, K reporting a total of M outcomes labelled 1, 2, …,
M. A random effects between-study model can be repre-
sented as:

δi ABð Þ1
⋮

δi ABð ÞM

0@ 1A
δi ACð Þ1

⋮
δi ACð ÞM

0@ 1A
⋮

δi AKð Þ1
⋮

δi AKð ÞM

0@ 1A

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

di ABð Þ1
⋮

di ABð ÞM

0@ 1A
di ACð Þ1

⋮
di ACð ÞM

0@ 1A
⋮

di AKð Þ1
⋮

di AKð ÞM

0@ 1A

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
;ΣFULL

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ðA1Þ
ΣFULL ¼
σ2

ABð Þ1 ⋯ ρ1MAB;ABð Þσ ABð Þ1σ ABð ÞM
⋮ ⋱ ⋮

ρ1MAB;ABð Þσ ABð Þ1σ ABð ÞM ⋯ σ2
ABð ÞM

0@ 1A ρ11AB;ACð Þσ ABð Þ1σ ACð Þ1 ⋯
⋮ ⋱

ρ1MAB;ACð Þσ ABð Þ1σ ACð ÞM ⋯

0@
σ2

ACð Þ1 ⋯
⋮ ⋱

ρ1MAC;ACð Þσ ACð Þ1σ ACð ÞM ⋯

0@
Where δi(Ak)m and d(Ak)m are study-specific and mean ef-
fect of treatment k relative A (reference treatment) on
outcome m in study i respectively and ΣFULL is the full
(K-1) × (K-1) blocks of M ×M within-treatment between-
outcome covariance matrix. The parameters in ΣFULL

have the following interpretation:
(σ2

Akð Þm) indicate the variance of the effect of treatment k (k =
B,C,⋯,K) relative to A on outcome m across studies.
ρmn

Ak;Akð Þ indicate the correlation between δi(Ak)m and δi(Ak)n
(i.e. the correlation between the effect of treatment k relative
to A on outcome m and the effect of treatment k relative to
A on outcome n (m ≠ n)) specific to the Ak comparison.
ρmm

Ah;Akð Þ indicate the correlation between δi(Ah)m and δi

(Ak)m (i.e. the correlation between the effect of treatment
h relative to A on outcome m and the effect of treatment
k relative to A (h ≠ k) on outcome m because they share
a common comparator A).
The diagonal block matrices in ΣFULL thus carry terms

for the between-study variance (σ2Akð Þm) while the off-

diagonal blocks carry terms for the between-study co-
variance. We make two assumptions to simplify and re-
duce the number of parameters in ΣFULL. First, we
assume homogenous variances for intervention effects
within outcomes [20]. This implies σ2

Akð Þm ¼ σ2
m and

ρmm
Ah;Akð Þ ¼ 1

2 as in the single outcome network meta-

analysis case [20,34]. Second, we make the assumption
of homogenous between-study correlations for the
intervention effects from different outcomes. Under
this assumption we can express ρmn

Ah; Ahð Þ and ρmn
Ak; Akð Þ in

terms of a common correlation parameter ρmn by not-
ing that for any 3-treatment (A, h, k) configuration, the
covariance between outcome m and n effects across
studies can be expressed as a covariance between two
sums under evidence consistency:

δi hkð Þm; δi hkð Þn
	 
 ¼ COV δi Akð Þm−δi Ahð Þm

� �
; δi Akð Þn−δi Ahð Þn
� �	 


¼ COV δi Akð Þm; δi Akð Þn
	 


−COV δi Akð Þm; δi Ahð Þn
	 


−COV δi Ahð Þm; δi Akð Þn
	 
þ COV δi Ahð Þm; δi Ahð Þn

	 

¼ ρmn

Ak;Akð Þ þ ρmn
Ah;Ahð Þ−2ρ

mn
Ak;Ahð Þ

� �
σmσn

ðA2Þ
ρ1MAB;ACð Þσ ABð Þ1σ ACð ÞM
⋮

ρMM
AB;ACð Þσ ABð ÞMσ ACð ÞM

1A⋯
ρ11AB;AKð Þσ ABð Þ1σ AKð Þ1 ⋯ ρ1MAB;AKð Þσ ABð Þ1σ AKð ÞM

⋮ ⋱ ⋮
ρ1MAB;AKð Þσ ABð Þ1σ AK ;AKð ÞM ⋯ ρMM

AB;AKð Þσ ABð ÞMσ AKð ÞM

0@ 1A
ρ1MAC;ACð Þσ ACð Þ1σ ACð ÞM

⋮
σ2ACð ÞM

1A ⋮
ρ11AC;AKð Þσ ACð Þ1σ AKð Þ1 ⋯ ρ1MAC;AKð Þσ ACð Þ1σ AKð ÞM

⋮ ⋱ ⋮
ρ1MAC;AKð Þσ ACð Þ1σ ACð ÞM ⋯ ρMM

AC;AKð Þσ ACð ÞMσ AKð ÞM

0@ 1A
⋱ ⋮

σ2
AKð Þ1 ⋯ ρ1MAK ;AKð Þσ AKð Þ1σ AKð ÞM
⋮ ⋱ ⋮

ρ1MAK ;AKð Þσ AKð Þ1σ AKð ÞM ⋯ σ2
AKð ÞM

0@ 1A
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The homogenous between-study correlation assumption
implies ρmn

Ah;Ahð Þ ¼ ρmn
Ak;Akð Þ ¼ ρmn and ρmn

Ak;Ahð Þ ¼ 1
2 ρ

mn for

the inequality −1≤ ρmn
Ak;Akð Þ þ ρmn

Ah;Ahð Þ−2ρ
mn
Ak;Ahð Þ

� �
≤1 to hold.

Substituting these expressions into equation (A1), we
see that the between-study correlation terms equal
ρmn in the diagonal block of matrices and 1

2 ρ
mn in the

off-diagonal block of matrices of in ΣFULL leading to
the following simplificationfollowing simplification of
the between-study covariance matrix:
δi ABð Þ1
⋮

δi ABð ÞM

0@ 1A
δi ACð Þ1

⋮
δi ACð ÞM

0@ 1A
⋮

δi AKð Þ1
⋮

δi AKð ÞM

0@ 1A

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

d ABð Þ1
⋮

d ABð ÞM

0@ 1A
d ACð Þ1

⋮
d ACð ÞM

0@ 1A
⋮

d AKð Þ1
⋮

d AKð ÞM

0@ 1A
;Σ Mp�Mpð Þ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA

with Σ Mp�Mpð Þ ¼

σ2
1 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2
M

0@ 1A 1
2

σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2

M

0@ 1A ⋯
1
2

σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2

M

0@ 1A
σ2
1 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2M

0@ 1A⋮
1
2

σ2
1 ⋯ ρ1Mσ1σM
⋮ ⋱ ⋮

ρ1Mσ1σM ⋯ σ2M

0@ 1A
σ21 ⋯ ρ1Mσ1σM

⋮ ⋱ ⋮
ρ1Mσ1σM ⋯ σ2M

0@ 1A

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA
ðA3Þ
Finally by relabeling the reference treatment A as b,

(δi(AB)1, ⋯, δi(AK)m) as δi bk1ð Þ1; ⋯; δi bkjð ÞM
� �

and (d(AB)1, ⋯,

d(AK)M) as d bk1ð ÞM; ⋯; d bkjð ÞM
� �

, equation (A3) can be

rewritten as equation (A4).
δi bk1ð Þ1
⋮

δi bk1ð ÞM

0@ 1A
δi bk2ð Þ1

⋮
δi bk2ð ÞM

0@ 1A
⋮

δi bkpð Þ1
⋮

δi bkpð ÞM

0B@
1CA

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
eNormal

d bk1ð Þ1
⋮

d bk1ð ÞM

0@ 1A
d bk2ð Þ1

⋮
d bk2ð ÞM

0@ 1A
⋮

d bkpð Þ1
⋮

d bkpð ÞM

0B@
1CA

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; Σ Mp�Mpð Þ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ðA4Þ
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Additional file

Additional file 1: (WinBUGS Code for model 2): Network meta-analysis
of multiple outcome measures accounting for borrowing of information
across outcomes.
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