RELUCTANCE MACHINES WITH FLUX ASSISTANCE

Thesis submitted for degree of Doctor of Philosophy at the University of Leicester

by

Ewan Roderick Tearlach Goodier BEng (Birmingham) Department of Engineering
 University of Leicester

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U170556
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKNOWLEDGEMENT

The author would like to thank Professor Charles Pollock and all the members of the Centre for Advanced Electronically Controlled Drives, University of Leicester, for their help and advice. I would like to thank my family for their support and I would especially like to thank my wife Rebecca for her encouragement, support and motivation for which I am truly grateful.

Abstract

\section*{Ewan Roderick Tearlach Goodier BEng (Birmingham)}

RELUCTANCE MACHINES WITH FLUX ASSISTANCE

This thesis presents three reluctance machines with flux assistance. These machines provide alternative novel geometries that provide high efficiencies with a reduction in the ampere turns in the armature windings for torque production, lowering armature winding switching losses and reducing the power electronic rating. The Dual Stack Variable Reluctance Machine is a switched reluctance variant of the homopolar inductor alternator topology. The Single Stack Variable Reluctance Machine is a simplification of the Dual Stack machine. Both machines use a toroidal field winding to provide additional flux. The methods of connecting armature coils on each stator pole to utilise the armature flux and the choice of power electronic circuitry are important. Testing shows that such machines favour unipolar excitation with single coil per pole for the armature windings. Use of the field winding in series with the armature windings improves torque production. The Dual Stack Variable Reluctance Machine can have the mechanical angular displacement between the two stator stacks varied to provide an improved back emf waveshape for smoother torque production. The Single Stack Variable Reluctance Machine has parasitic and axial air gaps that pose interesting design issues (e.g. end thrust). Magnets can be placed in steel sections where flux is unidirectional. An ideal candidate for magnet insertion is the Flux Switching Motor. A Permanent Magnet Flux Switching Motor has been built that replaces the field windings with ferrite magnets. The Permanent Magnet Flux Switching Motor achieves efficiencies of over $\mathbf{8 0 \%}$. It adds no additional cost to the fan application as cost savings in lower temperature rated thermoplastics offsets the cost of magnets. A prototyping circuit incorporating a novel micro-processor program to alter the commutation timings as the machine operates has been designed to allow fast optimisation of each machine for minimum input power.

CONTENTS

SECTION TITLE

PAGE NUMBER
ACKNOWLEDGEMENT i
ABSTRACT ii
CONTENTS iii
1 INTRODUCTION 1
2 BACKGROUND TO RELUCTANCE MACHINES WITH FLUX ASSISTANCE 4
2.1 INTRODUCTION TO TYPES OF MACHINE RELEVANT TO THESIS 4
2.2 THEORY OF TORQUE PRODUCTION 5
2.3 MACHINE TOPOLOGIES 7
2.3.1 SWITCHED RELUCTANCE MOTORS AND GENERATORS (DOUBLY SALIENT, SINGLY EXCITED) 7
2.3.2 SWITCHED RELUCTANCE WITH AN ADDITIONAL FULLY PITCHED COIL 9
2.3.3 SWITCHED RELUCTANCE MACHINES WITH PERMANENT MAGNET DC FLUX EXCITATION IN THE STATOR 9
2.3.4 SWITCHED RELUCTANCE MACHINES WITH PERMANENT MAGNETS AND FULLY PITCHED COILS ON THE STATOR 14
2.3.5 SWITCHED RELUCTANCE MACHINES WITH PERMANENT MAGNETS IN THE ROTOR 14
2.3.6 STEPPER (STEPPING) MACHINE 20
2.3.6.1 HYBRID STEPPING MACHINE 20
2.3.7 TRANSVERSE FLUX MACHINES 21
2.3.8 SWITCHED RELUCTANCE MACHINES WITH TOROIDAL PHASE WINDINGS (SINGLY EXCITED) 22
2.3.9 INDUCTOR ALTERNATOR 24
2.3.10 LAW'S RELAY LIMITED MOTION ACTUATOR 29
2.3.11 FLUX SWITCHING MACHINES 30
2.4 OTHER COMPARABLE MACHINE CLASSES OF RELEVANCE 30
2.4.1 NDUCTION MACHINES 30
2.4.1.1 SHADED-POLE MACHINES 32
2.4.2 BRUSHLESS DC MACHINE 32
2.4.3 FLUX SWITCH GENERATOR 34
2.5 RELUCTANCE MACHINE DESIGN ISSUES 35
2.6 SUMMARY 35
3 EXPERIMENTAL POWER AND CONTROL ELECTRONICS 37
3.1 INTRODUCTION 37
3.2 POWER ELECTRONICS FOR RELUCTANCE DRIVES WITH DC MAGNETIC FLUX ASSISTANCE 40
3.2.1 SHORT PITCHED WINDINGS WITH BIPOLAR EXCITATION 40
3.2.1.1 SHORT PITCHED WINDINGS WITH BIPOLAR EXCITATION WHICH ARE SINGLE COIL PER POLE 40
3.2.1.2 SHORT PITCHED WINDINGS WITH BIPOLAR EXCITATION WHICH ARE BIFILAR 42
3.2.2 SHORT PITCHED WINDINGS WITH UNIPOLAR EXCITATION 43
3.2.2.1 SHORT PITCHED WINDINGS WITH UNIPOLAR EXCITATION WHICH ARE SINGLE COIL PER POLE 43
3.2.2.2 SHORT PITCHED WINDINGS WITH UNIPOLAR EXCITATION WHICH ARE BIFILAR 43
3.2.3 FULLY PITCHED WINDINGS 44
3.2.3.1 FULLY PITCHED WINDINGS WHICH ARE SINGLE COIL PER POLE 44
3.2.3.2 FULLY PITCHED WINDINGS WHICH ARE BIFILAR 44
3.2.4 CIRCUIT CHOICE FOR MACHINE TYPES 45
3.3 EXPERIMENTAL ELECTRONICS FOR RELUCTANCE MACHINES WITH DC MAGNETIC FLUX ASSISTANCE 45
3.3.1 BACKGROUND 45
3.3.2 THE BACK EMF WAVESHAPE 45
3.3.3 EXPERIMENTAL SPEED MODES 48
3.3.3.1 NORMAL MODE (WITHOUT PULSING) 48
3.3.3.2 NORMAL MODE (WITH PULSING) 48
3.3.3.3 HIGH SPEED MODE 49
3.3.3.4 CHANGING BETWEEN SPEED MODES 50
3.3.4 IMPLEMENTATION OF CONTROL ALGORITHMS 54
3.3.5 OTHER 16F877 PROGRAM FEATURES 55
3.4 ADDITIONAL CONTROL ALGORITHMS 56
3.5 SUMMARY 57
4 DUAL STACK VARIABLE RELUCTANCE MACHINE WITH AXIALLY ORIENTATED FLUX ASSISTANCE 58
4.1 INTRODUCTION 58
4.2 MACHINE TOPOLOGY 58
4.2.1 DESIGN FOR A DUAL STACK VARIABLE RELUCTANCE MACHINE 58
4.3 COMPARISON WITH HOMOPOLAR INDUCTOR ALTERNATOR AND SWITCHED RELUCTANCE MACHINES WITH DC FLUX 61
4.4 WINDING CONFIGURATIONS 61
4.4.1 CONFIGURATION AS BIPOLAR EXCITATION, SINGLE COIL PER POLE 64
4.4.2 CONFIGURATION AS UNIPOLAR EXCITATION WITH SINGLE COIL PER POLE 64
4.4.3 CONFIGURATION AS BIPOLAR EXCITATION WITH BIFILAR WINDINGS 65
4.5 STATIC MODELLING OF 3D MAGNETIC CIRCUIT 66
4.6 DYNAMIC SIMULATION 69
4.6.1 TEMPERATURE RISE CALCULATIONS 71
4.7 INITIAL TEST RESULTS 73
4.7.1 WIRING AND BACK EMF TEST RESULTS 73
4.7.2 MOTOR TESTING 74
4.8 REMODELLING 75
4.8.1 INPROVING THE BACK EMF WAVEFORMS WITH ROTATIONAL DISPLACEMENT OF THE STATOR STACKS 76
4.8.2 SELECTION OF THEORETICAL IDEAL ANGLES 80
4.9 MEASUREMENT OF COGGING TORQUE 85
4.10 LOAD TEST RESULTS 85
4.11 DISCUSSION 87
4.12 SUMMARY 96
5 SINGLE STACK VARIABLE RELUCTANCE MACHINE WITH AXIALLY ORIENTATED FLUX ASSISTANCE 98
5.1 INTRODUCTION 98
5.2 MACHINE TOPOLOGY - DESIGN FOR A SINGLE STACK VARIABLE RELUCTANCE MACHINE 99
5.3 WINDING CONFIGURATIONS 100
5.4 STATIC MODELLING OF 3D MAGNETIC CIRCUIT 101
5.5 DYNAMIC SIMULATION 104
5.6 BACK EMF TEST RESULTS 106
5.7 MOTOR TESTING 106
5.7.1 BIPOLAR EXCITATION WITH BIFILAR WINDINGS TEST RESULTS 106
5.7.2 NO LOAD TESTING AT 5000RPM IN HIGH SPEED MODE 107
5.7.2.1 OPTIMISATION OF THE TOROIDAL FIELD WINDING 107
5.7.2.2OPTIMISE VAL7 (VALUE DETERMINING HOW ADVANCED THE PHASE FIRING STARTS AT) 107
5.7.2.3 OPTIMISE VAL6 (VALUE DETERMINING DELAY BETWEEN FIRING EACH PHASE) 107
5.7.3 NO LOAD TESTING AT 10000RPM IN HIGH SPEED MODE 109
5.7.4 RE-OPTIMISING FOR A SMALL LOAD AT 5000RPM IN HIGH SPEED MODE 109
5.7.4.1 OPTIMISATION OF THE TOROIDAL FIELD WINDING 109
5.7.4.2 REFINING OPTIMISATION METHOD 109
5.7.5 LOAD TESTING AT 5000RPM 111
5.8 REMODELLING DYNAMIC SIMULATION 115
5.9 TEST RESULTS 118
5.9.1 BIPOLAR EXCITATION WITH BIFILAR WINDINGS TEST RESULTS 120
5.9.2 UNIPOLAR EXCITATION WITH SINGLE POLE PER COIL WINDING ('CONVENTIONAL') TEST RESULTS 125
5.9.3 MEASUREMENT OF COGGING TORQUE 132
5.10 SUMMARY 132
6 THE PERMANENT MAGNET FLUX SWITCHING MOTOR (PMFSM) 134
6.1 INTRODUCTION 134
6.2 PERMANENT MAGNETS AND THE FLUX SWITCHING MOTOR 136
6.2.1 FLUX SWITCHING MOTOR FLUX PATHS 136
6.3 PERMANENT MAGNET FLUX SWITCHING MOTOR (PMFSM) 138
6.3.1 MAGNET PLACEMENT 138
6.4 MAGNETS AND MAGNET SUPPLIERS 138
6.4.1 MAGNET SELECTION AND PRICING 140
6.5 SPECIFICATION 140
6.5.1 INDUCTION MOTOR SPECIFICATION 140
6.5.2 AIR FLOW RATES 141
6.5.3 MINIMUM PMFSM SPECIFICATION 142
6.6 ELECTROMAGNETIC DESIGN 142
6.6.1 STATIC MODEL - FINITE ELEMENT ANALYSIS 143
6.6.2 STATIC MODEL - ARMATURE RELUCTANCE CALCULATIONS 144
6.6.3 DYNAMIC MODELLING OF THE PMFSM 144
6.6.4 PMFSM LAMINATION OPTIMISATION 146
6.7 MECHANICAL DESIGN AND BUILD 150
6.7.1 PLACEMENT OF POSITION SENSOR IN RELATION TO CASE DESIGN 151
6.7.2 WINDING METHODS / WIRING ARRANGEMENT 151
6.7.3 HOLDING THE MACHINE TOGETHER 152
6.7.4 AVOIDANCE OF THE CURIE TEMPERATURE 154
6.7.5 THERMOPLASTIC PROPERTIES OF MOTOR CASINGS 154
6.8 POWER ELECTRONICS CIRCUITRY 157
6.9 INITIAL TEST RESULTS 158
6.9.1 COMPARISON OF INITIAL DESIGN WITH SIMULATION 160
6.10 REFINING DYNAMIC SIMULATION WITH EMPIRICAL DATA 160
6.10.1 IMPROVED DESIGN FOR HIGHER VOLTAGE 161
6.11 TESTING OF REVISED DESIGN 162
6.11.1 REVISED DESIGN TEST RESULTS 162
6.11.2 COMPARISON OF REVISED DESIGN WITH SIMULATION 167
6.11.3 AIR FLOW COMPARISON WITH OTHER MOTORS 168
6.12 ACOUSTIC NOISE 168
6.13 FURTHER DESIGN IMPROVEMENTS 171
6.13.1 SKEWING OF THE ROTOR 171
6.13.2 COGGING TORQUE 176
6.13.3 POWDERED IRON 177
6.14 SUMMARY 177
7 COMPARISON OF RELUCTANCE MACHINES WITH FLUX ASSISTANCE 180
7.1 INTRODUCTION 180
7.2 COMPARISONS BETWEEN SINGLE AND DUAL STACK VARIABLE RELUCTANCE MACHINES 180
7.3 PERMANENT MAGNET FLUX SWITCHING MOTORS 184
7.4 PERMANENT MAGNETS AND EXCITATION COIL WINDINGS 185
7.5 AXIAL AND RADIAL FLUX PATHS 187
7.6 BIPOLAR AND UNIPOLAR CURRENT EXCITATION 188
7.7 SUMMARY 188
8 CONCLUSIONS AND FUTURE WORK 189
8.1 CONCLUSIONS 189
8.2 RECOMMENDED WORK FOR FUTURE 192
8.3 CONTRIBUTION TO KNOWLEDGE 193
8.4 SUMMARY OF CONTRIBUTION BY AUTHOR 194
BIBLIOGRAPHY 195
PUBLICATIONS 202
PUBLISHED WORK 202
UNPUBLISHED OR AWAITING FOR SUBMISSION FOR PUBLICATION 202
SOFTWARE USED 203
APPENDICES I
APPENDIX A II
A. 1 COGGING TORQUE II
A. 2 ACOUSTIC NOISE CANCELLATION TECHNIQUES III
A. 3 POWDERED IRON TECHNOLOGY V
A. 4 FAN INDUSTRY REQUIREMENTS VIII
APPENDIX B IX
B. 1 PIC16F877 PROTOTYPING CIRCUIT IX
B. 2 PIC16F84 PROTOTYPING CIRCUIT EQUIVALENT FLOW CHART X
B. 3 TEST PROCEDURE USING PROTOTYPING CIRCUITRY XI
B. 4 PROTOTYPING TEST RESULTS XIII
B.4.1 OPTIMISATION TESTING OF A SINGLE STACK VARIABLE RELUCTANCE MACHINE AT 5000RPM XIII
APPENDIX C XVI
C. 1 PIC16F877 CODING FOR ‘ON-THE-FLY’ VARIABLE LENGTH DELAYS FOR ARMATUE TIMINGS FOR TWO PHASE MOTOR WITH TWO SPEED MODES (NORMAL MODE WITHOUT PULSING AND HIGH SPEED MODE). XVI
APPENDIX D XXXIII
D. 1 LCD INFORMATION DISPLAY XXXIII
D. 2 PIC16F877 CODING FOR LCD DISPLAY FOR 'ON-THE-FLY’ TIMINGS CONTROL xxxiv
APPENDIX E LXXV
E. 1 SOLDERABLE SELF-BONDING ENAMEL (SALDAVEX AUTOVEX F) LXXV
E. 2 PACKING FACTOR CONSIDERATIONS LXXVI
E. 3 USE OF PLASTIC FORMER FOR ALIGNED STACKS LXXX
E. 4 NYLON66-ERTALON ${ }^{\oplus} 66 \mathrm{GF}-30$ LXXXI
E. 5 STEFAN'S LAW LXXXII
APPENDIX F LXXXIV
F. 1 DUAL STACK VARIABLE RELUCTANCE MACHINE CONCEPT DRAWING LXXXIV
APPENDIX G LXXXV
G.IPHOTOGRAPHS OF SINGLE STACK VARIABLE RELUCTANCE MOTOR LXXXV
G. 2 BACK EMF TEST RESULTS LxXXVI
G. 3 NO LOAD TESTING AT 10000RPM IN HIGH SPEED MODE XCII
G.3.1 OPTIMISATION OF THE TOROIDAL FIELD WINDING XCII
G.3.2 OPTIMISE VAL7 (VALUE DETERMINING HOW ADVANCED THE PHASE FIRING STARTS AT) XCII
G.3.3 OPTIMISE VAL6 (VALUE DETERMINING DELAY BETWEEN FIRING EACH PHASE) XCIII
G. 4 INTERMEDIATE STEPS IN RE-OPTIMISING FOR A SMALL
LOAD AT 5000RPM IN HIGH SPEED MODE XCIV
G.4.1 OPTIMISE VAL7 (VALUE DETERMINING HOW ADVANCED THE PHASE FIRING STARTS AT) xCIV
G.4.2 OPTIMISE VAL6 (VALUE DETERMINING DELAY BETWEEN FIRING EACH PHASE) xCIV
G. 5 SSVRM DIMENSIONS XCV
APPENDIX H xCVI
H. 1 MAGNET PLACEMENT xCVI
H. 2 SHORT-CIRCUIT FLUX PATHS WHEN MAINTIANING STATOR STRUCTURAL INTEGRITY CI
H. 3 EXAMPLE B-H CURVES CII
H. 4 PMFSM LAMINATION DIMENSIONS CIII
H. 5 SPREADSHEET FOR DYNAMIC MODELLING OF PMFSM CIV
H. 5 POWDERED IRON CVII
H. 6 PHOTOGRAPHS OF PERMANENT MAGNET FLUXSWITCHING MOTORCXI

CHAPTER 1

INTRODUCTION

This thesis presents three motor designs with novel geometry that are based on the concept of reluctance machines with flux assistance.

Five factors comprise the motivation behind this thesis:-

> Increase in energy efficiency
> Reduction in material content
> Increase in power density
> Reduction in kVA and complexity of power electronics
> Lower cost

As with any machine design, any improvement in energy efficiency compared to existing equivalent machines is desirable. With greater awareness of the limitations of the planet's resources, there is an increasing global need to have greener products. This is becoming increasingly more important, especially in consumer electrical goods. All designs should ideally use less energy, be made from recyclable materials and give fewer emissions (e.g. noise, heat). However, such improvements must not unreasonably increase the price of the product.

By improving energy efficiency, smaller machines can be built which give the same output power as larger machines. The smaller machine uses less material quantities in its design.

The power density of machines can also be improved by having machines that produce more output power per unit volume or weight. Improvements in power density can allow either same sized machines to produce greater output power or smaller machines to produce the same level of output power.

The power electronics used with each machine has a kVA rating. Higher input power machines tend to have large, expensive power electronic circuitry to provide the high kVA rating. Reductions in kVA rating through efficiency gains allow smaller and cheaper components to be used. More significantly, reluctance machines are known to have a high $\mathrm{kVA} / \mathrm{kW}$ penalty due to the need to deliver the field energy and the electromechanical energy through the power electronic converter. It is one objective of this thesis to design machines which minimise this penalty.

Cost is always an issue in the commercial environment. Machines built at lower expense but with at least the same level of quality allow the manufacturers to develop their sales markets to their advantage. Cost savings can be obtained, for example, through smaller machines needing less materials, with cheaper components and materials being used.

It has been noted [1] that motor efficiency is not always of concern to some customers of motor manufacturers such as equipment manufacturers since it is the buyers of the equipment that pay the kWh bills. The apparent lack of concern has been recognised in the USA and a Federally-sponsored study recommended the introduction of measures to encourage the inclusion of explicit efficiency data on nameplates and to even introduce mandatory minimum efficiency levels.

Greener products are becoming more marketable, notwithstanding any associated higher costs involved, as consumer awareness grows and new government legislation comes into effect. The net result has been that consumers are more likely to buy the greener product that would lower their electricity bill (through using less kWh). Examples of commercially successful 'green' electrical products that have been more expensive than similar non-'green' products are the Lo-Watt range of fans by Vent-Axia (http://www.vent-axia.co.uk) and, on a larger domestic scale, energy-saving light bulbs produced by e.g. Philips (7W c.f. 40W).

These five factors, when suitably assessed and applied to each machine application, can be used towards the design of lower cost, higher efficiency machines. Into this can be incorporated the use of higher cost materials, such as permanent magnets, that have properties known to benefit machine design.

Three motor designs based on the concept of reluctance machines with flux assistance have been designed, built and tested. Each design incorporates a novel geometry. The appropriate use of field windings and magnets in such designs was required. This thesis provides a complete account of the design procedures, testing and result analysis for the building of dual stack and single stack variable reluctance machines with toroidal field windings and for a Permanent Magnet Flux Switching Motor.

Chapter 2 covers background information regarding reluctance machines with flux assistance, introducing the relevant types of machine. The uses of field windings and permanent magnets in machine designs are discussed. The placement and flux orientation of the magnets are discussed. The basis of the motor designs within this thesis is discussed.

Chapter 3 discusses the power electronic circuitry used for reluctance based machines and shows that the choice and complexity of circuit is dependent on the type of armature windings used. Also
discussed is the development of microprocessor programs and experimental control electronics circuitry for prototyping the optimum electronic commutation timings for two phase variable reluctance and flux switching machines.

Chapter 4 describes the design, build and testing of a dual stack variable reluctance drive. The use of a dc current toroidal field winding for additional flux is shown. The design is based upon the design structure of the homopolar inductor alternator. Optimum winding types and methods of improving torque production are shown. The effect of changing the angular displacement between the two stacks is discussed.

Chapter 5 shows a simplification of the dual stack design. The design, build and testing of a single stack variable reluctance motor with a dc current toroidal field winding is described. Methods for improving torque production and the effects of magnetic forces across the air gaps not between the stator and rotor poles are discussed.

Chapter 6 discusses the replacement of a field winding in the Flux Switching Motor with permanent magnets. The Permanent Magnet Flux Switching Motor was designed to replace an induction motor in a Domus S1R 100 mm axial wall fan. The lamination design is presented through the use of Finite Element Analysis and spreadsheet calculations. The test results and conclusions are presented with factors such as dB noise levels, air flow performance, and rotor skewing included.

Chapter 7 compares all three reluctance machines with flux assistance. The use of field windings and magnets are compared, as are the types of armature windings and power electronic circuits. The geometries and flux paths of the machines are also compared.

Chapter 8 presents the conclusions from this thesis and offers suggestions for future work.

The thesis ends with a bibliography, a list of publications and the appendices.

CHAPTER 2

BACKGROUND TO RELUCTANCE MACHINES WITH FLUX ASSISTANCE

 2.1 INTRODUCTION TO TYPES OF MACHINE RELEVANT TO THIS THESISThis thesis shows the use of field windings and permanent magnets in novel geometries as novel alternative solutions to the problems of energisation and de-energisation in the armature windings.

A permanently energised dc current coil retains dc flux as a field. Sets of diametrically opposing coils can be energised in turn to produce electromagnetic energy conversion as armatures, to generate torque to turn the rotor.

It is appropriate to highlight some uses of field windings and magnets in both generator and motor applications. They are usually applied either as a generator or as a motor, but some designs are both. The use of field windings and permanent magnets in generator and machine topologies is shown to enlighten the reader for explaining the machines developed in this thesis.

The theory behind acoustic noise cancellation techniques, cogging torque reduction and the use of powdered iron as a replacement of laminated steel sections is shown. The airflow regulatory requirements for fan applications are presented. The theory is offered as background information for the reader to better understand the work presented.

Permanent magnets can be applied to both machines and generators. The advantages of their use has to be placed in context with the disadvantages. Field windings offer a source of dc flux that is varied by the level of field current. Magnets can replace field windings meaning that no field current is needed and there will be no heating effects due to $\mathrm{I}^{2} \mathrm{R}$ copper losses. The cost of magnets can be cheaper if designed correctly but their B-H curves and properties may restrict the design of machines with magnets. Permanent magnet excitation can be beneficial in smaller machines but tends to be costly and offer smaller efficiency gains in larger machines [1]. With some permanent magnet materials the field flux changes little with increasing temperature. There is little or no control of the magnet field making their use unsuitable in some applications. One of the main disadvantages of permanent magnets is demagnetisation which can occur through high armature mmfs, large mechanical disturbances (e.g. knocking, disassembly), excessive temperatures, etc.

The efficiency improvements that can be obtained with the use of magnets is increasingly being recognised in terms of environmental benefits. The lack of rotor $I^{2} R$ loss and magnetising current
stator loss in permanent magnet machines is mainly responsible for greater efficiency when compared to induction machines.

2.2 THEORY OF TORQUE PRODUCTION

Linear analysis assumes that there is no magnetic saturation, that is to say that inductance is unaffected by the current [2]. Fringing flux is ignored and all the flux is assumed to cross the air gap in a radial direction (between the stator and rotor pole faces). Mutual coupling between phases is small and is ignored. The voltage equation for one phase is (2.1):-

$$
\begin{equation*}
V=I R+\frac{d \psi}{d t}=I R+\omega \frac{d \psi}{d \theta}=I R+\omega \frac{d(L I)}{d \theta}=I R+L \frac{d I}{d t}+\omega I \frac{d L}{d \theta} \tag{2.1}
\end{equation*}
$$

where V is the terminal voltage, I is the current, ψ is the flux-linkage, R is the phase resistance, L is the phase inductance, θ is the rotor position and ω is the angular velocity. The last term of (2.1) is also known as the back emf, E (2.2). The supply voltage is dropped across a resistance volt drop, a $\mathrm{L}(\mathrm{d} / / \mathrm{dt})$ term and the back emf. A graph of inductance versus rotor position can be used to give $\mathrm{dL} / \mathrm{d} \theta$.

$$
\begin{equation*}
E=\omega I \frac{d L}{d \theta} \tag{2.2}
\end{equation*}
$$

The instantaneous electrical power is given by (2.3):-

$$
\begin{equation*}
V I=I^{2} R+L I \frac{d I}{d t}+\omega I^{2} \frac{d L}{d \theta} \tag{2.3}
\end{equation*}
$$

The rate of change of magnetic stored energy at any instant is given by (2.4):-

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} L I^{2}\right)=\frac{1}{2} I^{2} \frac{d L}{d t}+L I \frac{d I}{d t}=\frac{1}{2} I^{2} \omega \frac{d L}{d \theta}+L I \frac{d I}{d t} \tag{2.4}
\end{equation*}
$$

From the Law of Conservation of Energy, the mechanical power conversion $\mathrm{P}=\omega T$ is what is left after the resistive loss $\left(\mathrm{I}^{2} \mathrm{R}\right)$ and the rate of change of magnetic stored energy are subtracted from the input power (VI), where T is the instantaneous electromagnetic torque (2.5).

$$
\begin{equation*}
T=\frac{1}{2} I^{2} \frac{d L}{d \theta} \tag{2.5}
\end{equation*}
$$

A non-linear analysis [2] uses magnetisation curves (curve of flux linkage versus current at a particular rotor position). The stored magnetic energy, W_{f}, and co-energy, W_{c}, are defined in (2.6):-

$$
\begin{equation*}
W_{f}=\int I d \psi \quad W_{c}=\int \psi d I \tag{2.6}
\end{equation*}
$$

In a magnetically linear device with no saturation, $W_{f}=W_{c}$. When saturation is taken into account, W_{f} $<W_{c}$ (Figure 2.1). In a rotor displacement $\Delta \theta$ at constant current, the energy exchanged with the supply is (2.7):-

$$
\begin{equation*}
\Delta W_{e}=\int E I d t=\int I \frac{d \psi}{d t} d t=\int I d \psi \tag{2.7}
\end{equation*}
$$

and the change in magnetic stored energy is (2.8) (Figure 2.1):-

$$
\begin{equation*}
W_{f}=O B C-O A D \tag{2.8}
\end{equation*}
$$

The mechanical work done is (2.9) (Figure 2.1):-

$$
\begin{align*}
& \Delta W_{m}=\Delta W_{e}-\Delta W_{f} \\
& \Delta W_{m}=A B C D-(O B C-O A D) \tag{2.9}\\
& \Delta W_{m}=O A B C D-O B C \\
& \Delta W_{m}=O A B
\end{align*}
$$

and this is equated to $T \Delta \theta$, so that, in the limit, when $\Delta \theta \rightarrow 0$,

$$
\begin{equation*}
T=\left[\frac{d W_{c}}{d \theta}\right]_{\mathrm{I}=\mathrm{constant}} \tag{2.10}
\end{equation*}
$$

The average torque is (2.11):-

$$
\begin{equation*}
T_{\text {arerage }}=\frac{S W}{2 \pi} \tag{2.11}
\end{equation*}
$$

where S is the number of strokes per revolution ($\mathrm{S}=$ number of phases x number of rotor poles), and W is the area enclosed between the unaligned magnetisation curve U , the aligned magnetisation curve A and the line UA at current I (Figure 2.2).

The area W is described further in $[2,3]$ in which the use of freewheel diodes in power electronic circuits such as the asymmetric half bridge converter (Chapter 3) can aid in providing additional positive torque, as shown, by example, in Figure 2.3.

Figure 2.1 :- Coenergy, W_{c}, stored field energy, W_{f}, and calculation of instantaneous torque from the rate of change of coenergy at constant current [2].

Figure 2.2 :- Calculation of average torque [2].

Figure 2.3 :- Example of energy conversion loop showing stages comprising average torque [2].

2.3 MACHINE TOPOLOGIES

2.3.1 SWITCHED RELUCTANCE MOTORS AND GENERATORS (DOUBLY SALIENT, SINGLY EXCITED)

Switched Reluctance Machines produce torque by the excitation of a phase winding while the inductance of that phase winding is increasing due to rotation of a salient rotor pole. The magnetic circuit must be de-energised to prevent negative torque being produced when the salient rotor pole reaches a position of minimum reluctance. To continue torque production a subsequent phase winding has to be energised. A substantial amount of energy is therefore delivered and recovered due to the
continual energisation/de-energisation process. To this energy has to be included energy used in electromechanical work. Hence the power electronics have a high rating.

The Switched Reluctance Machine can be used as both motor and generator and is ideally suited as an Integral Starter/Generator, ISG, (ISA - Integrated Starter/Alternator) in applications such as aircraft engines [4, 5]. Switched reluctance generators are the dual of the machine as a motor [4, 6]. They do not require magnets or field windings. Permanent magnets, due to having a constant flux source, give problems when faults occur, as the excitation cannot be switched off. Field coils can also fault due to short or open circuits within the windings. By not having either these faults are avoided. Such starter/generator systems can be done with position sensors or sensorless as in [7].

A connecting device such as a turbine or aircraft engine turns the rotor of the generator. The generator needs a bus voltage to generate. For each phase there are two switches and two diodes. Initially, both switches are on, building up a current. When the switches turn off, current decreases due to conduction through the diodes. But when $\mathrm{dL} / \mathrm{d} \theta<0$, the back emf is negative and it tends to increase the current and convert the mechanical power into electrical power (generating) [4]. The generated current waveform is a mirror image of the motoring waveform around the aligned rotor position.

Figure 2.4a :- Switched reluctance version.

Figure 2.4 b :- Switched reluctance version.

Structure of a $6 / 4$ pole SRDC motor
Figure 2.5 :- Switched reluctance drive with auxiliary dc winding [10].

2.3.2 SWITCHED RELUCTANCE WITH AN ADDITIONAL FULLY PITCHED COIL

 The addition of a fully pitched coil to switched reluctance machines has been addressed by many researchers [8-13] and the use of a fully pitched coil or a permanent magnet that is mutually coupled to all the machine phase windings has been proposed. This additional winding is used as a commutation winding [11] to retain the flux within the motor while one winding current decreases and another winding increases. It is shown that the kVA rating of the power electronic converter was reduced. Other researchers [10, 12] have demonstrated improved motor performance from continuous energisation of the fully pitched coil. The simplest example of these systems is illustrated by Figure 2.4a and Figure 2.4b. A switched reluctance machine with four stator poles and two rotor poles has a coil wound around each stator pole with diagonally opposite coils connected together to form a phase winding. A dc current permanently energised fully pitched coil retains dc flux as a field. Two sets of diametrically opposing coils are energised in turn to produce electromagnetic energy conversion as armatures. Subsequent energisations of each armature set of coils (labelled as Phases 1 and 2 in Figures $2.4 a$ and $2.4 b$) give resultant flux that aligns the rotor with the energised stator poles.A Switched Reluctance Drive with auxiliary DC windings achieves built-in field excitation (Figure 2.5)[10]. A larger percentage of armature current is used in production of torque rather than for magnetising the motor (building the field). Up to 50% increased torque density than a conventional Switched Reluctance Drive is achieved without losing performance. To accommodate the extra copper area in the $6 / 4$ pole combination, two stator slots are deepened for the fully pitched field windings. It allows better coupling with the phase windings as it acts as a secondary winding of a transformer (absorbing and releasing transitional energy). Further information can be found in United States Patent 5,866,964 [12].

2.3.3 SWITCHED RELUCTANCE MACHINES WITH PERMANENT MAGNET DC FLUX EXCITATION IN THE STATOR

Field excitation from permanent magnets in the stator yoke has led to a doubly salient single phase permanent magnet generator with improved torque production and efficiency compared to induction and variable reluctance machines (Figure 2.6) [14, 15]. It has two permanent magnets in the 2-phase $4 / 6$ structure. The rotor has no windings on it. The structure of the stator is simple, even with the inclusion of the magnets. It is the reverse arrangement of a $6 / 4$ motor described in [16].

The phases of a Variable Reluctance Machine are decoupled from each other, making its use as a generator more appealing since the faulted condition (usually shorted) will not conduct current should the remaining phases continue to operate [17]. A problem for the Variable Reluctance Generator is that of a lack of self-excitation (c.f. Permanent Magnet and Lundell generators). A separate stack and small field winding could be installed adjacent to the main stack to provide the excitation requirements Chapter 2
during starting (Figures 2.7, 2.8) [17]. The armature windings of the main stack are extended to enclose the poles of the second stack. The alternative would be to place magnets in the core of the second stack to replace the field windings. However the magnets cannot be turned off when the generator has started but the flux from the magnets could be used for additional torque.

Figure 2.6 :- Doubly Salient Single Phase Stator Permanent Magnet Generator [14, 15].

Doubly salient doubly excited VR machine.

Showing side view of excitation when employing permanent magnets.

Figures 2.7, 2.8 :- Variable Reluctance Generator with stator permanent magnets and field winding adjacent to stator stack [17]

A
Slotless Axial-Flux PM Mactine: A, basic layout; B, cross-sectional view of one-half of the machine electromagnetic structure.

Figures 2.9, 2.10 :- Axial Flux Permanent Magnet Machine layout and rotor disc displacement [18].

An Axial Flux Permanent Magnet Machine can be used for starter/alternator concepts [18]. The magnets give axial flux that is used for torque production or for generation (Figures 2.9, 2.10). It consists of a single toroidal stator between two steel rotor discs with surface mounted permanent magnets. The magnets give axially directed magnetic field in the air gaps of the machine. The stator is a slotless toroidally wound strip-iron core that carries a three phase winding wound in a toroidal fashion by means of as many concentrated coils as numbers of poles to form each phase of the winding (i.e. one coil per pole and per phase). The coils are rectangular according to the core cross section. The axially directed end winding lengths are relatively short resulting in low resistance and lower copper losses. The active conductor lengths are the two radial portions facing the magnets, whose polarities are arranged to induce additive back emfs around a stator coil. A tangential force acts on the active conductor lengths when a current is in the stator coils to interact with the flux driven by the magnets across the two annular air gaps into the stator core. Machine torque is the contribution of all forces that act on the two working surfaces of the core. Weakened flux linkage is possible in this type of machine by a cam-spring governor and treadle lever regulating the angular phase displacement between the two permanent magnet rotor discs. The net result is a method to maintain constant back emf magnitude at higher rotor speeds.

The doubly salient permanent magnet machine also exists in a two stator stack form (Figures 2.10, 2.11)[19]. The 4 stator, 6 rotor single phase machine has high torque capability, symmetric current and inductance but cannot start from a fully aligned rotor position as there is neither permanent magnet torque nor reluctance torque. It has been solved by joining two single phase machines together by installing two rotors on the same shaft and two stators in one machine frame. The stator or rotor of one machine can be shifted with respect to the other machine by 45 degrees, producing a two phase motor. When one side of the machine is in the fully aligned position, the other side is fully unaligned, giving 90 electrical degrees out of phase. The pulsating reluctance torque (proportional to the square of current) does not contribute to energy conversion as, between each side of the motor, it is 180 degrees out of phase, cancelling itself out. There is no electromagnetic coupling between the two stacks hence a space for the windings must exist between the two stacks. The additional copper requirements and increased size are compensated by higher torque capability, smoother torque and good stating torque when compared to a $6 / 4$ Doubly Salient Permanent Magnet structure. Improved control methods for Doubly Salient Permanent Magnet Motors can be found in [20], highlighting a method for improving the unequal voltage distribution from a split capacitor power converter.

A similar magnet arrangement can be found in (Figure 2.13 and Figure 2.14)[21 and 22] where three phase $6 / 4$ doubly salient permanent magnet machines are shown.

Figure 2.11 :- 6/4 Doubly Salient Permanent Magnet Machine with magnets on stator [19].

Cross section of DSPM motor.
Figure 2.13 :- An alternative 4/6 Doubly Salient Permanent Magnet Machine [21].

Structure of 4/6 Pole Dual Stator DSPM Motor
Figure 2.12 :- Dual stator version of 6/4 Doubly Salient Permanent Magnet Machine with magnets on stator [19]

Cross Section of Doubly Salient Permanent Magnet Motor with Stator Magnet Excitation.
Figure 2.14 - Another version of the $4 / 6$ Doubly Salient Permanent Magnet Machine [22].

Structure of a doubly salient-pale homopolar machine.

Figure 2.15 :- Doubly salient homopolar machine (dual stator) with permanent magnets [23]

Figure 2.16 :- Flux Reversal Machine structure [24].

Figure 2.17 :- Flux Reversal Machine operation [25].

A doubly salient homopolar machine exists with axial flux permanent magnets between the stator cores (it is a permanent magnet synchronous machine). The magnets make one stator core a Northpole domain and the other a South-pole domain (Figure 2.15)[23]. The windings for one phase are shown and it is drawn to the reader's attention that the rotor is skewed by 45 degrees into two adjacent sections. The laminations used were those for a Switched Reluctance Motor. It was noted that the iron losses limited the speed capability of such a machine.

The Flux-Reversal Machine [24] is another type of brushless doubly-salient permanent magnet machine (Figures 2.16, 2.17). It has a three pole rotor and a two pole stator. Two magnets of opposite polarity are placed on each stator pole face. Figure $2.17 a$ is an equilibrium position where the flux is set up by the magnets circulates entirely within each stator pole and no flux is within the stator backiron. No flux links the coils in this position. In Figure 2.17 b the rotor is displaced by 30 degrees anticlockwise, so that the rotor poles overlap one or other of the magnets. Flux now passes through the coils and the back-iron and the phase flux is at a maximum at this position. In Figure 2.17 c the rotor is at a second equilibrium position, displaced from the first one by 60 degrees, hence there is no flux in the back iron and no flux linking the coils. A further 30 degree anticlockwise displacement gives Figure $2.17 d$ and phase flux is at a maximum but in the opposite direction to that in Figure 2.17b. The back emf is zero at Figure 2.17b and Figure 2.14d maximum positive at Figure $2.17 a$ and maximum negative at Figure 2.17c. The motor operates because of the variable flux-linkage induces an emf that interacts with the alternating armature current. Although field excitation is due to permanent magnets, the flux-linkage of the armature windings is modulated by the variation of the magnetic circuit reluctance as the rotor rotates, in such a way that a bipolar emf is induced without rotating magnets.

2.3.4 SWITCHED RELUCTANCE MACHINES WITH PERMANENT MAGNETS AND FULLY PITCHED COILS ON THE STATOR

Doubly Salient Permanent Magnet Motor (DSPM)
Figure 2.18 :- Doubly Salient Permanent Magnet Motor with Flux Control [8, 25]

Lower cost designs can be achieved whilst maintaining the higher efficiencies by using ferrite magnets. Such a design is a doubly salient permanent magnet motor with flux control (Figure 2.18)[8, 25]. It places the magnets between the stator teeth and the stator yoke, allowing concentration of permanent magnet flux through one tooth at a time. The area of the magnets is wide allowing the use of cheaper ferrites. The space between the magnets accommodates a dc field winding that boosts or weakens the permanent magnet flux (for low and high speeds respectively). This motor still retains some design similarities with the switched reluctance drive but is operated as a brushless dc machine as electromechanical power conversion results from interaction of permanent magnet and/or field flux with stator current. It differs from a brushless dc machine family as the flux in the air gap changes with permeance variation instead of magnet rotation.

2.3.5 SWITCHED RELUCTANCE MACHINES WITH PERMANENT MAGNETS IN THE ROTOR

The Switched Reluctance Machine has some disadvantages as part of its operation. It is known to have poor utilisation of the active copper and iron due to its variable reluctance action. The stator phases carry a current component for torque production and a current component for magnetisation, having a current commutation associated with a large turn-off inductance that reduces torque production capability, and a substantially reduced air gap is used to push the motor into the highly saturated region [26]. To reduce these 'deficiencies' permanent magnets are used to provide rotor excitation (Figure 2.19)[27]. This doubly salient permanent magnet (DSPM) motor is similar to a square-waveform PM brushless DC motor, since the torque it developed is dominated by currentmagnet interaction (mutual torque), instead of the current-iron (reluctance torque) of Switched

Reluctance motors. An electronically commutated Doubly-Salient Permanent Magnet (DSPM) motor has been developed such that it has the basic structure of a three-phase 6/4 Switched Reluctance motor, except for the presence of four high-energy (NdFeB) permanent magnets inside the rotor poles [26]. The torque is produced by the same method as for permanent magnet brushless DC motors but the cogging torque is used to keep the rotor stationary when there is no supply. The rotor poles act as flux guides for the permanent magnets. Such a motor has been designed with the aid of a magnetic equivalent circuit (Figure 2.19).

Cross-sectional configuration of the new electronically-comrnutated DSPM small motor.

Equivalent circuit for the new DSPM motor.
Figure 2.19 :- Doubly-salient permanent magnet motor with rotor magnets and its magnetic equivalent circuit [26]

The rotor configurations of PMA SynRM.
Figure 2.20 :- Increasing number of flux barriers for deepest slit inserted permanent magnet synchronous motor [28].

(a)Type A

(b) Type B

(c) Type C
Rotor configuration.

Figure 2.23 :- Magnet placement strategies within Interior Permanent Magnet Synchronous Motor [28].

The synchronous reluctance motor has higher efficiencies as it only utilises the reluctance torque generated by rotor saliency and does not use the magnetic flux of permanent magnets. The efficiency can be improved by reducing the peak current and copper losses. The use of magnets can be used to produce highly efficient magnet assisted reluctance motors (Figure 2.20) [28]. Permanent magnets can be added to a synchronous reluctance motor to reduce copper losses and increase the efficiency (to 94.4% for a 750 W motor, a 3.6% increase). They are embedded in the deepest slit of a flux barrier to take into consideration irreversible demagnetisation under a load current. The magnets produce 24% of the total torque.

A range of brushless motors named Interior Permanent Magnet Synchronous Motors (IPMSM) also exist. It has been shown that analysis of the placement of the permanent magnets within the rotor of an IPMSM can minimise iron losses and that a concentrated winding (rather than a distributed
winding) using rectangular wire rather than circular wire minimises copper losses (Figures 2.21, 2.22)[29]. If the magnets are treated as air, the flux density is greater from the concentrated winding, even though there is an asymmetry in the winding distribution due to the nature of the machine. Comparison of rotors with differing saliency ratios but with same thickness and length (hence volume) of magnets, shows that the flux density in the stator increases as the magnets are embedded deeper into the rotor (this increases the saliency ratio). The flux density affects iron losses and, as the saliency and flux density increases, so too will the iron losses. Thus a Type A [29] rotor is best for minimising the iron losses (Figure 2.23). Rectangular windings improve the packing factor and provide a reduction in the mean length per turn allowing improvements in copper losses and a reduction in overall machine size and weight.

The slotless axial flux permanent magnet machine (AFPM) is used in both generator and motor applications (Figures 2.24, 2.25)[30]. It differs from radial-flux machines due to the flux in the air gap being along the mechanical axis of the machine. The machine stator is a slotless strip-iron core that carries winding coils (the core may be in two halves joined together for production purposes). The toroidal stator is placed between two rotor discs which carry axially polarised permanent magnets. The magnets drive flux across the annular air gaps into the stator core. The flux travels circumferentially along the toroidal core, back across the air gaps then back through the back iron of the permanent magnet rotor discs. The current in the conductors interacts with the flux from the magnets to give a tangential force. A single rotor, twin stator version is discussed in [31] (Figure 2.26). Multi-stage AFPM designs (including water cooled form) also exist. The toroidal core was replaced with a water duct in a two-stage version [32] (Figure 2.27).

Schematic view of the main parts of an AFPM. (a) Slotless stator core with concentrated coils. (b) Surface-mounted PM rotor disc. Figure 2.24 :- Slotless Axial Flux Permanent Magnet Machine [30].

Schematic representation of the torque production mechanism in AFPM's.
Figure 2.25 :- Torque production within Axial Flux Permanent Magnet Machine [30].

AFPM machine flywheel arrangement.
Figure 2.26 :- Single rotor, twin stator AFPM machine [31]

Cross-section of two-stage axial-flux permanent magnet machine
with ironless water-cooled stator winding
Figure 2.27 :- Multi-stage, water cooled AFPM machine [32]

Axial Flux Circumferential Current (AFCC) machines also use permanent magnets and exist in two forms; one with an axial air gap, the other with a radial air gap. (Figure 2.28) [9, 33]. Such machines have three parts, a stator with iron poles and permanent magnets, a circumferential winding and a rotor with salient poles. The main flux provided by two nearby permanent magnets is concentrated in the stator pole and becomes axially orientated. This flux then passes across the air gap, through the rotor pole and rotor centre cylinder, returning to the adjacent stator pole. The winding links all the main flux. The rotor poles on the two end plates are shifted by one pole pitch. The axial air gaps could introduce unbalanced axial force between the rotor and stator (due to mechanical tolerances) and thus may require special axial thrust bearings. The radial air gap version of the AFCC has similar unbalanced force problems but conventional bearings can still be used.

Much work exists that compares the merits of similar machine types. One such paper compares the two stator/one rotor Axial Flux Permanent Magnet Synchronous Motor against the one external cylindrical stator/one internal cylindrical rotor Radial Flux Permanent Magnet Synchronous Motor [34]. In simplest terms the Axial Flux motor is best when the pole number is above 10 and the ratio of axial motor length to external motor diameter is below 0.3. It demonstrates that some motor designs are better suited for some applications than others.

TORUS concept machines are internal stator, external rotor designs (Figures 2.29, 2.30)[35]. The strip wound steel stator is slotted such that polyphase windings can be placed in the slots. The rotors are disc shaped and carry axially magnetised NdFeB permanent magnets on the inner surfaces. Two versions exist, the names of which show the flux direction from the magnets. The TORUS NN motor has magnet driven flux entering the stator that then travels circumferentially along the stator core. The TORUS NS motor has magnet driven flux entering the stator that then travels axially along the machine axis of rotation. The NN version has back-to-back wrapped windings and the NS version has short-pitched lap windings. Further design information can be found in [35].

An axial-airgap AFCC Machine.

A radial-airgap AFCC machine.

Figure 2.28 :- Axial Flux Circumferential Current machine in axial and radial air gap forms [33].

Slotted TORUS concept machine models (a) NN type, (b) NS type
Figure 2.29 :- TORUS concept machine layouts [35].

2.3.6 STEPPER (STEPPING) MACHINE

A stepper machine [36] uses a magnetic field to move a rotor. Stepping can be done in full step, half step or other fractional step increments. Voltage is applied to poles around the rotor. The voltage changes the polarity of each pole, and the resulting magnetic interaction between the poles and the rotor causes the rotor to move. Stepper machines provide precise positioning and ease of use, especially in low acceleration or static load applications.

There are three types of stepper machine: Multi-stack variable reluctance stepper machine, Single stack variable reluctance stepper machine, and hybrid stepper machine.

2.3.6.1 HYBRID STEPPING MACHINE

The hybrid stepper machine [36] has a rotor-mounted permanent magnet that has axially orientated flux as shown in Figure 2.31.

The excitation of each phase gives the flux paths as shown in Figure 2.31. The length of each step is simply related to the number of rotor teeth (Figure 2.32).

Figure 2.33 :- Hybrid stepping machine with axially orientated flux from the rotor magnets [37].

A two phase hybrid stepping machine has axially orientated flux permanent magnets on the rotor. Such a machine has many teeth on the rotor and stator (Figure 2.33)[37]. It was originally designed as an ac two phase synchronous machine for low speed applications so may theoretically be considered as a multi pole synchronous machine. One such machine has 8 stator poles, each with 5 teeth and has a rotor with 50 teeth. The rotor is magnetised axially by the permanent magnet such that one end is magnetically North and the other end is South. The teeth in the North pole rotor is one tooth pitch out from the teeth of the South pole rotor. By energising each of the two phases in turn, the rotor turns one step (defined increment of rotor position) at a time [36].

2.3.7 TRANSVERSE FLUX MACHINES

The transverse flux machine has permanent magnets and is capable of high torques per unit volume. The pole number can be raised without any increase in conductor volume. More information on transverse flux machines may be found in patents by Weh, Rolls Royce and Mitcham, such as, for example, EP0763880, EP0762618 (Figure 2.34), DE19507233, DE4400443, US5633551 and US5051641 (more examples may be found through patent searches). SMC's (Soft Magnetic Composites) allow high operating frequencies and enable the back iron to be made continuous [38].

Figure 2.34 :- Examples of geometry of transverse flux machines based on EP0763880 and EP0762618.
Having many poles the machine is better suited to low-speed applications but direct drive is possible due to very high specific torques.

2.3.8 SWITCHED RELUCTANCE MACHINES WITH TOROIDAL PHASE WINDINGS (SINGLY EXCITED)

There has also been a recent development for Switched Reluctance Drives. An as yet unpublished paper reports the use of simple hoop windings to solve a problem of a reduction in mmf per armature coil as the pole number increases (which means that torque does not necessarily increase with an increase in pole number (Figure 2.35)[39]. The new topology allows an increase in torque with increase in pole number. It has separate isolated phases, each consisting of a simple hoop winding enclosed by a magnetic circuit. The rotor and stator have identical tooth numbers, so the permeance of the magnetic circuit linking the hoop coil varied with rotor position. Circumferential current in the hoop drives magnetic flux up one set of rotor teeth, across the air gap, radially up the set of stator teeth, axially across the stator core, then back through the other set of rotor and stator teeth to complete the magnetic circuit through an axial return path in the rotor. Since the hoop coil does not compete for space with the teeth, the pole number can be varied without affecting the coil mmf. Solid steel is suggested for the machine, as the lower speeds of operation would not cause significant eddy currents. A larger machine would require laminations but this would detrimentally affect the three dimensional flux paths of such a machine. It is suggested that powdered iron could be used as an alternative construction technique but the magnetic properties are not always favourable. A final design proposes use of laminations where the flux paths were laminar and powdered iron where the paths were three-dimensional. The laminations cannot be constructed as a complete ring. Instead a small gap is placed at one circumferential location in each phase. The gap prevents formation of a
shorting ring that allows eddy currents to flow around circumferentially to oppose the mmf of each winding. The eddy currents would have impaired performance and caused major losses. The inclusion of the air gap prevents this. The multi phase machine comprises the phases being stacked axially but with the poles for each phase being offset from the next so that energisation of each phase in sequence causes the rotor to turn. This hybrid design could be regarded as a form of transverse flux switched reluctance machine. This design is very similar to that described in (Figure 2.36)[40]. The design of [40] (Figure 2.36) appears to be well suited for magnet insertion in the stator poles as the stator poles will have uni-directional flux present when the winding within the poles is energised.

One Phase of a hoop wound SRM.

Figure 2.35 :- Hoop winding switched reluctance machine [39].

Segment of one motor phase

Strecture of one phase of the TFR

Figure 2.36 :- Possibly the same hoop winding switched reluctance machine [40].

2.3.9 INDUCTOR ALTERNATOR

The inductor alternator was first developed to produce high-voltage AC at frequencies of 250 Hz to 200 kHz . The advent of high power radiotelegraphy meant that a source of high-frequency AC was needed. A later use of the inductor alternator was for supplying induction furnaces at 2000 Hz for industrial high-frequency-heating loads [41, 42, 43]. Generating frequencies above 1000 Hz (referred to in older books as cycles per second, c / s) requires both high speeds and large pole numbers [44]. The absence of conductors on the rotating part of the machine greatly simplified the problem of insulation. This type of alternator advantageously allows high pole numbers with high operating speeds.

Since peripheral speeds are limited by mechanical stresses, the pole pitch becomes uneconomically small and the field winding cannot be successfully accommodated in other designs. The absence of rotor windings in the inductor alternator allows the speed to be raised to the safe limit of rotor centrifugal stress.

The alternator rotor and driving motor armature are mounted on the same shaft and mounted on the same frame. The alternator fields are connected in series with the motor armature, so that as the machine is loaded the current to the armature is increased, and so increases the excitation, compensating for the drop in voltage caused by armature reaction. The motor field has to be differentially compounded to keep the speed constant.

There are two types of inductor alternator, namely the homopolar and heteropolar variants. The homopolar inductor alternator machine has two stator and two rotor cores forming a single magnetic circuit, energised by an annular dc excited winding, Figure 2.37. The heteropolar type has a single stator and rotor core. The short shaft makes possible a very short gap, an important advantage in determining the output. The stator and rotor carry varieties of slotting, and the stator periphery is divided into heteropolar zones, Figure 2.38. Only the homopolar inductor alternator will be discussed in detail.

Homopozar Inductor Altermator Figure 2.37 :- Homopolar Inductor alternator [42].

Figure 2.38 :- Slot arrangements for inductor alternator [42].

The homopolar and heteropolar inductor alternators have the same basic principle namely the pulsation or variation of the magnetic flux linking the stator coil system as a result of the cyclic changes of gap permeance round the stator bore. The permeance is most effectively varied by use of rectangular rotor teeth and a short air gap. One complete cycle of gap-permeance variation is produced through the movement of the rotor through one tooth pitch. The generated frequency, f_{g}, is independent of the stator tooth arrangement and is shown by (2.12)[42] :-

$$
\begin{align*}
\mathrm{f}_{\mathrm{g}}=\mathrm{v} . \mathrm{S}_{\mathrm{r}} \quad \text { where } \mathrm{v} & =\text { rotor speed (revolutions/second) } \tag{2.12}\\
\mathrm{S}_{\mathrm{r}} & =\text { number of rotor slots (or teeth) }
\end{align*}
$$

The stator coils should have a pitch of one-half the rotor pitch in order to fully utilise the flux variation. Figures 2.38 (a) and (b) show two arrangements for homopolar inductor alternators. One has a conventional winding: the other has coils round individual stator teeth. For comparison, a heteropolar winding arrangement is shown in Figure 2.38 (c). Here the total working flux remains substantially constant so that no appreciable alternating EMF is induced in the dc exciting coils.

The rotor slot-pitch in an inductor alternator of rotor diameter D_{r} is (2.13) [42]

$$
\begin{equation*}
\mathrm{y}_{\mathrm{r}}=\pi \mathrm{D} / \mathrm{S}_{\mathrm{r}}=\pi \mathrm{Dv} / \mathbf{v S _ { \mathrm { r } }}=\mathrm{u} / \mathrm{f} \tag{2.13}
\end{equation*}
$$

so that with the peripheral speed, u, limited mechanically by centrifugal stress, the slot-pitch must be very small for high frequencies. It then becomes necessary to use stator and rotor teeth of equal pitch (Figure 2.38 (d)), producing a pulsating flux; with the stator coils housed in larger slots of span equal to any suitable number of the smaller teeth.

The homopolar inductor alternator is usually symmetrical about the central field coil winding (Figure 2.39) [44, 45], the stator on either side being slotted and the armature winding consisting of coils wound around each tooth (labelled as 'a-c output winding'). The rotor has half as many slots as the stator, the rotor teeth being known as 'inductors' (Figure 2.39) [46]. The magnetic flux paths flux, ϕ, being produced by the excitation of the field winding follows those shown in Figure 2.40. Cast steel yokes connect the two halves of the rotor and stator (labelled as 'housing').

The polarities of the inductors are all the same on one side of the machine and not alternate as in the conventional machine. Electromotive force is generated in each armature turn since the flux linking with it will change from a maximum, as an inductor faces the tooth to a minimum, as the pole passes by and a slot takes its place. The gap permeance fluctuates as the stator and rotor teeth move in and out of alignment.

A two-core rotor of a homopolar alternator.
Metropolitan-Vickers Electrical Co., Lid.

Figure 2.39 :- Inductor alternator rotor [46]

(b)

Homopolar type inductor alternator
Figure 2.40 :- Winding arrangement for inductor alternator [44, 45, 46].

Figure 2.41 :- Flux waveform for inductor alternator [44].

	Alternator 1	Alternator 2	Alternator 3	Alternator 4
Kva.	587	520	95	30
Power factor, ${ }^{\circ}$	95	80	80	50
Frequency, Hz_{2}	3.200	3.200	3.200	3.200
Speed. rpm..	24,000	39,000	39.000	6,000
Number of poles	16	10	10	64
Subtransient reactance per unit		0.50		
Synchronous reactance per unit	0.87	1.20	1.67	0.24
Leakage reactance per unit	0.35	0.32	0.28	
Efficiency. ${ }^{\circ}$............. Harmonic content.:。:	90	90	87	
Line-to-neutral. no load rated load	10.3	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 21.0 \end{aligned}$
Line-to-line, no load rated load \qquad	1.6	4.6 6.8	2.0 1.1	0.5 0.5
Length of stator stack. in.	4.0	3.06	2.4	2.5
Number of stator stacks	4	4	2	2
Stator punching O.D.. in.	11.7	10.27	7.96	18.5
I.D., in.	9.5	7.65	6.0	15.0
Single air gap. in.	0.125	0.12	0.08	0.06
Number of stator slots	72	60	60	108
Housing length, in.	36.7	29.5	14.0	
Diameter, in.	18.3	16.5	10.0	
Weight. lb......	975	630	115	

Courtest of Department of the Armi. U'S. Army Mohtitis Fquipment Research and Development Center
Figure 2.43 :- Homopolar inductor alternator data [46]

It should be noted that the number of cycles per revolution is equal to the number of rotor projections and not half this number as with other generators. For example, to obtain 10 kHz at 3000 rpm (= $50 \mathrm{rev} / \mathrm{sec}$), 200 rotor slots are needed (from $\mathrm{f}_{\mathrm{g}}=\mathrm{v} . \mathrm{S}_{\mathrm{r}}$). For a given speed and a number of rotor 'poles' (or teeth), the inductor alternator will produce a frequency twice that of a comparable synchronous machine.

The emf waveform of each conductor will be identical with the space distribution of flux density B. This would appear in the first instance to be rectangular as the flux changes rapidly from the low value in the slot portion to the high value in the tooth. The effect of fringing at the edges of the rotor teeth modifies this considerably in practice, but the actual waveform is far from sinusoidal.

For simplicity, the flux waveform can be regarded as rectangular varying from B_{t} to B_{s} (Figure 2.41 [44]). The coil emf is due to the difference between these quantities $\left(B_{t}-B_{s}\right)$.

As the excitation F is increased, B_{t} will follow a normal type of magnetisation curve to be expected from a small gap with an associated iron circuit, but B_{s} will increase linearly over the same excitation range, since the mmf required for the much larger gap presented by the slot is very much greater.

The difference curve $\left(B_{t}-B_{s}\right)$ thus shows the anticipated shape of the open-circuit voltage characteristic Figure 2.42 [44]. The manner in which it droops at the higher values of excitation is a particular feature of the inductor-type machine.

Some data for military application homopolar inductor alternators is given in Figure 2.43 [47]. It should be noted that the homopolar inductor alternators are highly efficient and operate at very high speeds. It should also be noted that they tend to be large in diameter and have high pole numbers.

The homopolar inductor alternator is said to be more expensive to construct as it differs considerably from other standard types of electrical machine. The heavy yokes and separate cores add to their cost. The central field coil magnetises the shaft and bearing troubles are prevalent. The rotor has an abnormally large moment of inertia that imposes a heavy starting duty on the driving motor or turbine. There is a large time constant of 5 to 20 seconds of the field system since all flux is linked with a single coil. It may be difficulty to maintain constant voltage under fluctuating load conditions. The design of the heteropolar inductor alternator was to overcome these disadvantages. In one type of heteropolar inductor alternator, the field coils are in slots in the stator and are no longer concentric with the rotor shaft. The Lundell alternator (Figure 2.44)[48, 49], a synchronous claw pole alternator, has discs with protruding claws which are mounted on a hub so that the claws intermesh. A field coil wound (inside the claws) around the hub, producing North poles on the claws of one disc and South poles on the other disc, resulting in alternate magnetic poles on alternate claws. Figure 2.44 shows an example of the Lundell (claw pole) alternator and its principle of operation.

Figure 2.44 :- Lundell (claw pole) alternator and its principle of operation [48, 49].

Figure 2.45 :- Inductor Alternator based on a Switched Reluctance lamination [50]

Figure 2.46 :- 8/12 Inductor Alternator [50].

Research exists demonstrating the operation of a Switched Reluctance lamination generator using an inductor alternator based topology (Figures 2.45, 2.40)[50].

2.3.10 LAW'S RELAY LIMITED MOTION ACTUATOR

The reluctance principles as found in inductor alternators and hybrid stepper machines is also present in the Law's Relay Limited Motion Actuator [51]. It has dc field excitation in permanent magnet or field winding forms as shown in Figure 2.47 and Figure 2.48 respectively. The armature winding, when energised, (a dc current that changes polarity to change direction of rotor movement) results in a limitation in angular movement of the rotor. Such a machine may be modelled by aid of a resistive model of the magnetic circuit as shown in Figure 2.49. It should be noted that the use of the magnets results in a stator that is not a single piece.

Figure 2.47 :- Magnet version of Law's Relay Limited Motion Actuator [51]. Figure 2.48 :- Field winding version of Law's Relay Limited Motion Actuator [51].

Figure 2.49 :- Magnetic circuit for Law's Relay Limited Motion Actuator [51].

2.3.11 FLUX SWITCHING MACHINES

Figure 2.50 :- 4/2 flux switching machine - the two aligned positions achieved by switching armature current polarity (left: field positive, armature positive, right: field positive, armature negative).

The Flux Switching Machine (FSM) combines the switched reluctance machine and the inductor alternator. It exhibits machine characteristics similar to those of a D.C. machine but it uses the reluctance principle for rotation. The machine windings are fully pitched. The field and armature windings shown in Figure 2.50 have a conventional dot and cross notation to denote positive and negative currents. The field winding carries dc current at all times. The armature current carries bipolar current (the polarity changes with each phase for the two-phase $4 / 2$ machine shown). When the armature current is positive the top and bottom stator pole pair is energised which pulls the rotor into vertical alignment as shown. When the armature current is negative the stator poles on the left and right are energised which pull the rotor into the horizontal position. The field winding is permanently energised so flux is always present. The armature can be regarded as orientating the flux between the flux paths shown causing the rotor to attract and align with one stator pole pair or the other. A full explanation and background to the new flux switching technology is given in [52]. It is also of note that there are unipolar flux sections in the stator behind the field winding which reduces the iron losses in those sections.

2.4 OTHER COMPARABLE MACHINE CLASSES OF RELEVANCE

2.4.1 INDUCTION MACHINES

Induction machines have rugged construction, maintenance-free operation, and low cost [53]. In a single-phase machine, the stator field does not rotate, but alternates poles as the single sinewave voltage swings from positive to negative. Because of this, the stator field remains lined up in one direction with the poles changing position once each cycle. Since the stator magnetic field does not rotate, there is no relative motion between the stator field and the bars of the rotor. A voltage is induced in the rotor bars due to $\mathrm{d} \Phi / \mathrm{dt}$ (rate of change of magnetic flux due to sinusoidal current).

Since the bars on the rotor are short-circuited, current flows in the rotor, but the magnetic field this current produces is lined up with the stator field so no net torque is produced on the rotor. A singlephase induction machine has no means for starting itself but will run once it has been started. The double revolving-field theory of single-phase induction machines states that a stationary pulsating magnetic field can be resolved into two rotating magnetic fields, each rotating in opposite directions and each of equal magnitude. The induction machine responds to each magnetic field separately and the net torque of the machine is the sum of the torques due to each of the two magnetic fields [53]. If power is applied to a three-phase machine while it is forced to turn backwards, its rotor currents will be very high. However, the rotor frequency is also very high, making the rotor's reactance much larger than its resistance. Since the rotor's reactance is very high, the rotor current lags the rotor voltage by nearly 90 degrees, producing a magnetic field that is nearly 180 degrees from the stator magnetic field. The induced torque in the machine is proportional to the sine of the sine of the angle between the two fields, and the sine of an angle near 180 degrees is a very small number. The machine's torque would be very small, except that the extremely high rotor currents partially offset the effect of the magnetic field angles. In the single-phase machine, the forward and reverse magnetic fields are produced by the same current, each contributing a component to the total voltage in the stator. The forward rotating magnetic field, having a high effective rotor resistance, limits stator current flow in the machine. The current supplying the reverse stator magnetic field is limited to a small value and, since the reverse rotor magnetic field is at a very large angle with respect to the reverse stator magnetic field, the torque due to the reverse magnetic fields is very small near synchronous speed.

However, most of these single-phase induction machines use some sort of automatic starting and are often referred to by the starting method used. There are three basic types, namely, shaded-pole, splitphase induction, and split-phase capacitor start machines [53].

A three-phase induction machine requires a revolving stator field derived from the three-phase power source. The induction machine uses no slip rings or commutator assembly. Instead, current is induced in the rotor by the cutting of electromagnetic flux lines (from the rotating stator field) across the rotor windings. This voltage induced in the rotor causes a current to flow which sets up an electromagnetic field in the rotor. The induction machine generates its own rotor current.

Induction machines can never operate at synchronous speed. If the rotor were to turn at the same speed as the rotating field, no lines of force would be cut by the rotor conductors, and no rotor field would be produced. An induction machine rotates at something less than synchronous speed. The difference between the synchronous speed and the actual rotor rpm is called slip. The full load slip in most induction machines varies between 4 and 6 percent. Should an induction machine become
heavily overloaded or stalled (the slip would be 100\%), the rotor would be damaged. In general, slip in an induction machine should not exceed 10%.

2.4.1.1 SHADED-POLE MACHINES

A shaded-pole machine uses a small shorted shading coil wound in a small notch in the stator pole piece [53]. In some machines this coil consists of a single copper ring or copper band. When the electromagnetic field builds up around the main coil, the flux cuts across the conductors of the shading coil. Since the shading coil is shorted, current flows which produces a field opposite that of main field. The main field is then strongest on the side away from the shading coil. However, the field through the shading coil reaches maximum intensity much later - at a time when the main field is already decreasing. The electromagnetic field in the pole piece then appears to be stronger on the side nearest (or through) the shading coil. This produces a sweeping motion from side to side in the stator pole piece. The small motion of the field back and forth between shaded and unshaded portions produces a weak torque to start the machine. Because of the weak starting torque, shaded-pole machines are built only in small sizes.

An alternative machine topology has stepped poles as well to provide a reluctance augmented start.

2.4.2 BRUSHLESS DC MACHINE

DC machines [53] operate because of the interaction between magnetic and electromagnetic fields. The stationary field is not always a permanent magnetic field. It may be supplied by an electromagnetic field, as with a dc generator. The field windings are excited from a dc power supply, and provide a steady electromagnetic field. The polarity of the field is determined by the direction of the current flow through the windings. However, a machine also requires dc excitation to the armature. This could be supplied by a separate dc power supply, but often the field windings (stator) and the armature assembly (rotor) are supplied from the same source.

There are three types of dc machines: series, shunt, and compound. This refers to the method in which the field coils and the armature coils are connected. The torque produced by a dc machine is proportional to the armature and field currents.

In a direct current (DC) machine [53], a device known as a split ring commutator switches the direction of the current each half rotation to maintain the same direction of motion of the shaft. The speed of direct-current machines is controlled by varying the field or armature voltage. Brushed DC machines have built-in commutation, meaning that as the machine rotates, mechanical brushes automatically commutate coils on the rotor. Brushless DC machines use an external power drive to

Reluctance Machines with Flux Assistance

allow commutation of the coils on the stator. Brush-type machines are used when cost is a priority, while brushless machines are selected for specific requirements, such as maintenance-free operation, high speeds, and hazardous environments where sparking could be dangerous. The rotor contains a permanent magnet and the stator has the conducting coil of wire. Brushless machines offer reduced maintenance, no spark hazard, and better speed control. They are widely used in computer disk drives, tape recorders, CD drives, and other electronic devices.

A series dc machine is one in which the field coil and the armature coil are in series. Since the starting current through the armature also flows through the field coils, the series machine develops a high starting torque, but has poor speed regulation. As the speed decreases, the amount of torque delivered to the load increases because, as the armature slows down, the emf developed in the armature decreases, increasing the current through the armature and field, increasing the torque. Increasing the current through the field coils and the armature increases their fields which increases the torque. A series machine runs fast with a light load, and runs slower as the load is increased. If a series machine is allowed to run without a load, it may run so fast that the armature will fly apart. It is for this reason that series machines should not be used with belt coupling to the load. If the belt were to break, the machine would be without a load, and could destroy itself.

Shunt dc machines are connected with the field windings and the armature windings in parallel. The field windings carry only part of the excitation current, and are made of smaller-gauge wire than those of a series machine. A shunt machine has good speed regulation, but low starting torque. An increase in load torque to a shunt machine slows the machine down, causing a reduction in generated back emf, which results in an increase in armature current that causes an increase in torque to match the load torque at a lower speed. By adding a variable resistance to the field coil circuit, machine speed can be controlled above its nominal value. Increasing the field resistance decreases the field current (field weakening) and the emf induced in the armature. This causes greater current to flow through the armature, increasing the torque and the machine will speed up. Decreasing the field resistance causes the field current to increase, increasing the emf developed in the armature, thus reducing armature current. The reduced current produces less torque and the machine slows down. Thus, the speed of a shunt de machine can be relatively independent of the load.

A separately excited dc machine has a field circuit supplied from a separate constant voltage power supply. When the supply voltage to each machine is assumed constant, there is no practical difference between the separately excited and shunt dc machines.

A compound machine uses both series and shunt field windings. The advantage of this arrangement is that the compound machine can be made to produce a variety of operating characteristics. By
adjusting the polarity and placement of the field windings with respect to each other, a number of machine types can be designed. For example, when the series and shunt fields are in series-aiding, the machine is a cumulative compound machine. When the fields are series-opposing, the machine is a differential compound machine. Another factor in the design of a compound machine is the placement of the series winding. When the shunt winding is connected directly across the armature, the machine is a short shunt compound machine. When the shunt winding is connected in parallel with the armature and the series winding, the machine is a long shunt compound machine. By controlling the field strengths around the coils using cumulative/differential, or short/long shunt methods, a compound machine can produce any characteristic that can be produced by a pure series or shunt machine. A compound machine can be safely operated without a load and can have the speed characteristics of a shunt machine and the starting torque characteristics of the series machine.

Because the dc resistance of most machine armatures is low (0.05 to 0.5 ohm), and because the back emf does not exist until the armature begins to turn, it is necessary to use an external starting resistance in series with the armature of a dc machine to keep the initial armature current to a safe value. As the armature begins to turn, the back emf increases and, since the back emf opposes the applied voltage, the armature current is reduced.

2.4.3 FLUX SWITCH GENERATOR

A NASA report [54] shows different types of homopolar and heteropolar generator. Page 68 [54] shows a flux-switch generator that is a simple version of the heteropolar inductor alternator (Figure 2.51). It has two alnico magnets as the source of flux and two steel stator sections. On page 69 [54] is shown an electromagnetic flux-switch alternator, but it is only used where low outputs and waveform shape is unimportant. As is clearly shown in Figure 2.52, there are sections in the stator back-iron where flux is uni-directional and sections where the flux is bi-directional.

Figure 2.51 :- Flux switch generator [54].

Figure 2.52 :- Flux paths in electromagnetic flux-switch alternator [54].

2.5 RELUCTANCE MACHINE DESIGN ISSUES

Issues such as cogging torque, acoustic noise cancellation techniques, powdered iron technology and fan industry requirements are discussed in detail in Appendix A.

2.6 SUMMARY

There are a wide variety of generator and motor topologies that utilize field windings and permanent magnets to give desirable benefits in machine design. Some machines actually use both permanent magnets and field windings together for improved performance capability (e.g. Doubly Salient Permanent Magnet Motor with Flux Control (Figure 2.18)[8, 25]).

The homopolar inductor alternator has a common rotor and a field winding placed between two stator stacks. A back iron links the stator stacks. The homopolar inductor alternator has high pole numbers, allowing generation of high frequency ac voltages in the stator windings. The homopolar inductor alternator geometry can be used in novel variable reluctance motors with flux assistance from toroidal field windings. This is the basis of two machine topologies being used in this thesis (the Dual Stack Variable Reluctance Machine and the Single Stack Variable Reluctance Machine as described in Chapters 4 and 5 respectively).

Although the use of field windings allows production of constant flux, this requires input power. Where flux in a machine is known to be unidirectional, there is the possibility of replacing the steel in those sections with permanent magnets. This would be at the expense of increased reluctance of the magnetic circuit, but the magnets, having replaced the field windings would allow a reduction in total Chapter 2
input power. The flux switching motor is an ideal candidate for magnet insertion as there are sections in the back-iron where magnetic flux is uni-directional. A Flux Switching Motor (FSM) is reviewed for the third machine topology (the Permanent Magnet Flux Switching Motor as described in Chapter 6).

When designing motors with magnets, the choice of magnet material, its size and placement all affect machine performance. The same may be said for field windings. The additional flux from either can be utilised to reduce switching losses and to improve efficiencies. It is shown that magnets may be inserted on or even inside the rotor or be inserted in the stator. The orientation of flux from the magnets can be radial or axial. This does cause some complications regarding the flux paths within the machines. This has been overcome in newer designs by using improving magnetic capabilities of the modern generations of powdered iron and its alloys.

Axial flux from the toroidal field windings and flux from magnets can be implemented in novel geometries to be shown in this thesis in Chapters 4, 5 and 6 . All the geometries will be shown to have potential for improving torque production and lowering power electronic rating requirements for the armature windings. Low input power, high efficiency designs may therefore be attainable.

The chosen lamination shapes of the motors affects the acoustic characteristics of the motors during operation. Cogging torque may also be affected by the motor geometry and is of particular interest when constant flux sources are used. It is shown that altering the motor geometry, e.g. by skewing the rotor or stator stack, and improvements in the control algorithms may reduce the effects of cogging torque. Improving the commutation of the armature currents may result in quieter operation of these motors.

CHAPTER 3

EXPERIMENTAL POWER AND CONTROL ELECTRONICS

3.1 INTRODUCTION

The machines developed during this thesis (discussed in Chapters 4,5 and 6) require appropriate selection of power and control electronics to operate them. The selection is dependent on how the windings within each machine are connected and energised.

Figure 3.1 illustrates the field and armature winding topologies with associated power electronic circuitry that exist for reluctance machines with dc magnetic flux assistance. A discussion into their merits is discussed in [3, 92-94].

A field coil energised with dc current requires a simple dc power source. Where the field is due to a permanent magnet, a cause for concern is that of back emf in the phase (armature) windings as the rotor turns but with no armature excitation due to this permanent source of flux.

Figure 3.1 :- Field and armature winding topologies with associated power electronic circuitry for reluctance machines.

The phase windings (armature) and field windings are energised separately or together in series. The field may be from either a permanent magnet or from an energised field winding. The armature windings may be short pitched or fully pitched (Figures 3.2 and 3.3). The armature windings and field windings are chosen to be separately energised as this allows greater flexibility in testing by being able to vary the supply to the winding types.

Switched reluctance and stepping motors have developed around the concept of short pitching each phase winding, generally around a single stator tooth (Figure 3.2a). By employing such a winding torque is derived due to the rate of change of self inductance of the excited phases. Utilisation of the electric circuit is poor, due to the fact that each phase winding is restricted to periods when the self inductance is rising, so that any one winding can only contribute to positive torque for a maximum of one half of the time. Alternatively, if the machine is wound with a fully pitched winding (Figure 3.2b) then it can derive virtually all its torque from a changing mutual inductance between phases. The machine therefore becomes a dual of the conventionally wound machine, which operates entirely upon rate of change of self inductance. Because of the fundamental change in operating mode, each phase of the machine can contribute to positive torque production for considerably greater than one half of the cycle of rotation, leading to a more efficient utilisation of the winding.

Short pitched armature windings (Figure 3.2a) are energised in either a bipolar or unipolar manner due to the choice of power electronics, which is illustrated in Figure 3.1. Short pitched coils are simply wound around each stator pole.

Bipolar and unipolar excitation (the names referring to the current flow within the copper windings) is achieved through the armature windings being wound either bifilar or single coil per pole.

Fully pitched armature windings are achieved through the windings being wound either bifilar or single coil per pole. The copper spans across more than one stator pole in fully pitched windings.

Figure 3.3a :- Short pitched windings with bipolar excitation which are bifilar (only one phase shown).

Figure 3.3a :- Short pitched windings with unipolar excitation which are single coil per pole.

The choice of fully or short pitched windings, the method of current flow within the windings and the winding types determine which power electronic circuits may be used. The appropriate selection of power electronics is needed for best performance from the machine windings. An inappropriate selection could reduce the overall performance or even, at worst, result in circuitry and/or machine failure. Figures $3.3 a$ and $3.3 b$ show how the coils on the stator poles may be connected for short pitched windings with bipolar excitation which are bifilar and short pitched windings with unipolar excitation which are single coil per pole. The figures show current flow and flux paths when the coils are energised.

The control electronics manages the timings of switching the armature windings on and off by feeding control signals to the power electronics. This chapter introduces a novel experimental prototyping circuit for developing the timing characteristics for a Switched Reluctance Machine, Flux Switching Machine or a variant of either. It will control a two-phase machine with either one or two switches per phase [3, 92-94]. The position is determined via an opto sensor that changes state when the rotor is aligned with a stator pole pair (the point in back-emf testing when the back-emf changes polarity). Opto sensors are used for simplicity of rotor position detection, although other rotor position detection means such as Hall sensors and sensorless control methods are alternatives.

It is notable that machines can display different operational characteristics as they warm up and cool down during testing. A circuit that allows the timing sequences to be varied during continued testing of the machine is desirable especially if the final timing sequence needs to be determined quickly and accurately. The circuit can alter the timing sequences of the armature excitations as the machine is running through use of analogue to digital converters to provide values that can be used as time delay parameters. The circuit allows a simple, fast and reliable optimisation process for meeting machine performance requirements. The aim of the circuit is to achieve minimisation of input power for a
given load as this would mean that efficiency is maximised. The experimental electronics for this circuit, described later in this chapter, allows three types of operating mode based on the speed of the machine.

3.2 POWER ELECTRONICS FOR RELUCTANCE DRIVES WITH DC MAGNETIC FLUX ASSISTANCE

The requirements for a power electronics circuit are based upon the winding type chosen, the methodology of connecting the windings and the current conduction directions. Bifilar windings use the transformer effect to transfer current quickly from one phase to the next since the windings of each phase are wound round each other. Inverter circuits use a dc supply to give ac supply to the windings. Converter circuits use a de supply to give a pulsed dc supply to the windings. [3, 94-96].

The machines described in Chapters 4, 5 and 6 require suitable power electronic circuits depending on the selection of winding type and armature energisation required for desired flux production for each machine; the types of power electronic circuits appropriate for each selection being detailed below.

3.2.1 SHORT PITCHED WINDINGS WITH BIPOLAR EXCITATION

The requirement for bipolar current in short pitched phase windings requires the use of an inverter. A single-phase full (H) bridge inverter requires four power switches two of which have floating gate drives (Figure 3.4). Alternatively a split dc inverter circuit can be used which requires two switches one of which would have a floating gate drive (Figure 3.5).

3.2.1.1 SHORT PITCHED WINDINGS WITH BIPOLAR EXCITATION WHICH ARE SINGLE COIL PER POLE

One circuit used is the split de inverter (Figure 3.5). The short pitched winding armature coils can be in series producing a single coil per pole configuration such that both 'phases' are energised simultaneously as single phase with bipolar current (Figure 3.6).

Figure 3.4 :- Single phase full bridge inverter circuit.
Figure 3.5 :- Split dc inverter circuit.

Figure 3.6 :- H-bridge inverter circuit to use all bifilar windings as single coil per pole (at the same time) with bipolar current.

Figure 3.7 :- H-bridge inverter circuit to use all bifilar windings as single coil per pole (at the same time) with bipolar current.

The other possible circuit is a full or H-bridge circuit that requires two floating switches and two ground referenced switches.

For the same ampere turns from the armature windings, half the current, I, would be needed (as the number of turns has doubled with this method). The resistance, R, has doubled due to twice the turns being used. The resultant mechanical output power would theoretically be the same as the current flows for twice the time every cycle (3.1). Using this circuit allows the ampere turns to be potentially doubled if the windings allow the increased copper losses. If the windings and power electronics allow for increased supply then it may be possible for more ampere turns to be utilised up to double the ampere turns, hence more torque production is possible. This circuit uses all available armature copper.

$$
\begin{equation*}
2 .(0.5 \mathrm{I}) \cdot(0 \cdot 5 \mathrm{I}) \cdot(2 \mathrm{R})=\mathrm{I}^{2} \mathrm{R} \tag{3.1}
\end{equation*}
$$

The full bridge inverter circuit has twice the number of switches, two of which are floating gate drives, increasing the overall circuit complexity. True bipolar current is driven through the armature windings. Due to concerns regarding the thermal loading (the maximum ampere turns in the armature at any one time has doubled with this circuit) and difficulty of building such a circuit, this circuit was not investigated any further as the bifilar winding topology with half bridge converter circuit would give similar results with a much simpler circuit. The full bridge inverter circuit also demonstrates that a machine with bifilar windings is essentially single phase. It is single phase because, if only one coil set (1 A or 1 B) is energised, the machine operates as per normal. When operating, half the time the current is positive in sense and the remaining time the current is negative. All the windings share the
same flux linkage at all times and it is possible that one set of phase windings energised with bipolar current will operate the machine. Thus it is correct to label each set of phase windings as Phase 1A and Phase 1B (Figures 3.6, 3.7).

3.2.1.2 SHORT PITCHED WINDINGS WITH BIPOLAR EXCITATION WHICH ARE BIFILAR

Bifilar phase windings allow the use of the half-bridge converter circuit. This is shown in Figure 3.8 in which the toroidal field coil is separately excited from a dc power source. Phase 1A and Phase 1B are formed by series connection of coils positioned on all of the four stator poles (such that the back emf from each coil summate). This drive can produce torque from all rotor positions through simultaneous energisation of all stator poles of the switched reluctance stator. Only two ground referenced switches are required for this circuit.

An alternative circuit is shown in Figure 3.9. This circuit is based on a current source half bridge converter. The current source inductor is the toroidal field winding. Testing the machine with the circuit in Figure 3.8 allows the field ampere turns to be varied independently but a series connection of Figure 3.9 could be used if the desired field ampere turns were achievable with the armature currents.

The labels Phase 1A and Phase 1B refer to the two bifilar windings used for positive and negative armature current. They are each made up of coils on each stator pole. The circuits in Figures 3.8, 3.9 are for bipolar flux in the stator poles. The bifilar windings offer a transformer effect for faster transfer of current from one phase to the next during switching. When the supply to the armature is switched off (i.e. MOSFET, IGBT or transistor is turned off), the current transfers from that armature winding to the secondary winding (as would happen in a transformer, due to the windings being linked magnetically by mutual inductance) due to the windings being bifilar wound. The current then freewheels through the diode of the secondary windings.

Figure 3.8 :- Circuit used for bifilar windings for coupled windings, bipolar excitation (half bridge converter circuit).

Figure 3.9 :- Field alternative circuit for bifilar windings (current source half bridge converter circuit).

3.2.2 SHORT PITCHED WINDINGS WITH UNIPOLAR EXCITATION

3.2.2.1 SHORT PITCHED WINDINGS WITH UNIPOLAR EXCITATION WHICH ARE SINGLE COIL PER POLE

When the machine is operated with short pitched windings with unipolar current the asymmetric half bridge converter circuit is used (Figure 3.10). The flux in the stator poles is unipolar. Single coil per pole short pitched windings cannot use the transformer theory to transfer current from one phase to the next making the use of the half bridge converter and full bridge inverter circuits inappropriate. Flux is not linked between the two sets of windings so, in this form of winding type, the machine is actually two phase. Diodes give a current return path when a phase is switched off making the asymmetric half bridge circuit a good choice (Figure 3.10). It has two ground referenced gate drives and two floating gate drives making the circuit more complicated. It can have a small value power resistor (sense resistor, $\mathrm{R}_{\text {sense }}$) to be used to limit the size of the current in the armature via a closed loop feedback to the gate driver circuitry.

3.2.2.2 SHORT PITCHED WINDINGS WITH UNIPOLAR EXCITATION WHICH ARE BIFILAR

This circuit has a single switch with the diode on the coupled winding, as shown in Figure 3.11.

Figure 3.10 :- Asymmetric half bridge converter for short pitched, unipolar excitation two phase armature circuit.

Figure 3.11 :- Circuit used for short pitched windings which are bifilar with unipolar excitation.

Figure 3.12 :- Circuit used for bifilar windings (half bridge converter circuit). Figure 3.13 :- Alternative circuit for bifilar windings (current source half bridge converter circuit).

3.2.3 FULLY PITCHED WINDINGS

3.2.3.1 FULLY PITCHED WINDINGS WHICH ARE SINGLE COIL PER POLE

The choice of circuits for this winding selection is either the full bridge inverter or the split dc inverter per armature phase, as shown in Figures 3.4 and 3.5.

3.2.3.2 FULLY PITCHED WINDINGS WHICH ARE BIFILAR

Bifilar fully pitched phase windings allow use of the half bridge converter circuit. This is shown in Figure 3.12 in which the toroidal field coil is separately excited from a dc power source. Phase 1A and Phase 1B are formed by series connection of coils positioned on all four stator poles. This drive can produce torque from all rotor positions through simultaneous energisation of all stator poles. Only two switches are required for this circuit.

An alternative circuit is shown in Figure 3.13. This circuit is based on a current source half bridge converter. The current source inductor is the toroidal field winding. Testing the machine with the circuit in Figure 3.12 allows the field ampere turns to be varied independently but, once an optimum is found, the series connection of Figure 3.13 could be used.

The labels Phase 1A and Phase 1B refer to the two bifilar windings used for positive and negative armature current. They are each made up of coils on every stator pole. The bifilar windings offer a transformer effect for faster transfer of current from one phase to the next during switching.

3.2.4 CIRCUIT CHOICE FOR MACHINE TYPES

The Switched Reluctance Machine has a power electronics circuit that is dependent on the choice of winding type and how each coil of the windings is to be energised. This is true also for the Variable Reluctance Machine with dc assisted excitation.

The flux switching machine uses bifilar windings in the armature coils. It also has a field winding that can be excited in series with the armature coils. The Permanent Magnet Flux Switching Machine (PMFSM) has no field winding. Thus its can use the half bridge converter as the simplest circuit (bifilar windings with bipolar excitation). The H -bridge inverter may be used as an alternative if all the copper is used at the same time (bipolar excitation, single coil per pole) but this increases the circuit complexity.

3.3 EXPERIMENTAL ELECTRONICS FOR RELUCTANCE MACHINES WITH DC MAGNETIC FLUX ASSISTANCE

3.3.1 BACKGROUND

Switched Reluctance Machines and Flux Switching Machines cannot operate without some form of control circuitry acting on the power electronics. They require a form of rotor position sensor so the correct phase winding or correct current polarity can be energized to turn the rotor in a pre-determined direction (optical or Hall Effect sensors are commonplace but work exists for 'sensorless' detection of rotor position). The control of the phase firing timings is through the use of a microprocessor. The increase in complexity of controlling such machines does allow advantageous control. Pulse width modulation and pulsed timings can be performed to give better operational characteristics. Efficiency can be improved through greater control of the timings and it is possible to use control methods to reduce acoustic noise.

3.3.2 THE BACK EMF WAVESHAPE

The shape of the back emf curve is very important. Ideally a square wave is the optimum shape for maximum torque production. A simple power supply has only a constant power supply that may be varied manually in terms of magnitude only (pulse width modulation, PWM, is associated with more complicated power electronics). Using a simple dc machine analogy, the power supply V , the back emf E , armature IR copper loss volt drop and the inductance, L are linked by (3.2).

$$
\begin{equation*}
\mathrm{V}=\mathrm{E}+\mathrm{IR}+\mathrm{L}(\mathrm{dI} / \mathrm{dt}) \tag{3.2}
\end{equation*}
$$

Where the back emf and current waveshapes are of the same magnitude polarity, the product of back emf and current gives positive torque. When the power supply voltage is fixed, where the back emf is small the rate of rise in current is high and low amounts of torque is produced. Where the back emf is large and the current is large and increasing, a large and increasing amount of positive torque is produced, which would speed the machine up. Where the back emf falls and the current is the same the amount of torque produced is still positive but reducing in magnitude. If the back emf is negative and the current positive, negative torque is produced, which would have a tendency to slow the machine down.

It is therefore apparent that the timings of energisation of armature phase winding is energised is dependent upon the waveshape and magnitudes of the back emf curve. If the armature is energised during negative back emf, the torque is negative. There are parts of the positive sections of the back emf curve where energisation will produce greater amounts of positive torque. It may be possible to not energise sections where the back emf is positive but small in magnitude as the amount of torque produced is minimal compared to the armature $I^{2} R$ copper losses imposed. Thus it is not always appropriate to energise an armature phase winding for all the period that the back emf is positive in magnitude. Viewing the back emf waveshape, the armature current waveshape and the input and output powers will help in predicting the optimum timings for energizing each armature phase winding.

This is complicated by the speed of the machine. The back emf is proportional to the rotor speed (Figure 3.14). The faster the rotor speed, the greater the magnitude in back emf. A faster rotor means that current build up for producing more torque is limited through there being less time for current rise. Positive torque production is limited due to higher speeds. There is a method for resolving this which involves starting the energisation earlier while the back emf is still negative. Although the torque produced during the negative back emf period is negative, when the back emf is positive, the current has already built up allowing a much greater positive torque production that will overcome and greatly exceed the negative torque such that the machine produces more torque than it would have done if the energisation had not been brought forward (advanced). An optimum timing setting also exists for this type of operational mode, in a similar manner to that of the slower speeds operation.

For the purposes of this thesis, pulse width modulation, PWM, is not used for regulating the voltage supply to the armature windings, although it is appreciated that PWM has its advantages. PWM can complicate the power electronics circuitry and the control electronics. Voltage regulation is not required, per se, since the machines have been designed to operate at various manually set voltages.

Instead, the control electronics is designed with three operational modes, one for each of the specified speed ranges - start up/slow speeds, mid range speeds and higher speeds.

Conventional control is via a small and preferably inexpensive microcontroller such as those found in the PIC range by Microchip Technology [97]. Such microcontrollers e.g. PIC16F84 are EEPROM devices which are relatively simple to program and reprogram when corrections are required. The calculations of timing sequences are relatively easy to achieve.

Figure 3.14 :- Speed Modes in relation to an example sinusoidal back emf trace and an opto sensor signal.

Figure 3.15 :- Speed Modes relative to opto sensor signal.

3.3.3 EXPERIMENTAL SPEED MODES

There were three speed modes that will be referred to as Normal Mode (without pulsing), Normal Mode (with pulsing) and High Speed Mode (Figures 3.14, 3.15, 3.16, 3.17). Each Mode is designed for operating a machine depending on both the back emf waveshape and speed requirement, depending on which mode would give the maximum efficiency.

3.3.3.1 NORMAL MODE (WITHOUT PULSING)

At start up and lower speeds the Normal Mode without pulsing is used and this starts armature phase firing at the change or a delay after the change of the opto sensor state (Figures 3.14, 3.15, 3.20, 3.21). The use of an opto sensor is one way that such machines determined which phase was to be energised.

From a stationary position, the torque produced has to turn the rotor and, at low speeds, much of the available cycle is used for positive torque production to build up and maintain rotor speed.

This method was acceptable when the machine speeds are slow as the time required for current transfer between successive energised phase windings is long and allows for current build-up for positive torque production. As the machine speeds up the time for current build up is not as long as required, giving less time for positive torque. The timing sequence is referred to as Normal Mode without pulsing.

This is only possible due to use of a variable voltage supply. Pulse Width Modulation, PWM, could have been used to control the current with PWM increasing with speed until the motor is fast enough for a single pulse mode (same as Normal Mode with pulsing). PWM was not used in order to simplify the control algorithm.

3.3.3.2 NORMAL MODE (WITH PULSING)

At mid range speeds it is desirable to pulse the supply to the armature windings to give better machine performance (Normal Mode with pulsing) (Figures 3.15, 3.20). The back emf magnitude is greater at higher speeds. A pulsed energisation during a period where the back emf is of a larger magnitude gives efficient higher torque production (where the back emf is low, the torque produced is at the expense of higher copper loss in the energised armature windings due to raised current levels).

The armature phase firing started at or a delay after the opto sensor has changed state but is then switched off after a second delay but before the opto sensor has changed state again. The next phase is energised in the same way upon the next opto sensor state change.

3.3.3.3 HIGH SPEED MODE

At higher speeds the increasing back-emf inhibits the fast rise in positive torque-producing current for a given supply voltage. As the machine speeds up, the time delay between the switching phases becomes a larger fraction of the time for one cycle, resulting in the next phase having less time to build up enough current to produce a significantly useful positive torque on the rotor to keep it turning (Figures 3.15, 3.20, 3.22).

The phase firing is brought forward (advanced) to a point before the opto sensor changed state such that the back-emf is small allowing a faster current rise (Figures 3.15, 3.22). The initial negative torque produced was offset by the boost in positive torque production as the opto sensor changed state and that phase remains energised. The phase is turned off such that a small delay existed between energising each phase to allow the current in each phase to minimise before the next phase is turned on. This is called the High Speed Mode.

3.3.3.4 CHANGING BETWEEN SPEED MODES

The crossover between Modes has to occur at a definable speed (Figures 3.16-3.19). The method allows a machine speeding up to enter a faster Speed Mode but allows a slowing machine to return to a slower Speed Mode, without there being an error situation where a machine is stuck switching erratically between two Speed Modes.

Figure 3.18 :- Hysteresis between Speed Modes.

AT STARTUP OR	SPEEDS UP		SPEEDS UP	
SLOW SPEEDS		AT MID-RANGE SPEEDS ENERGISE PHASES		AT VERY FAST SPEEDS
ENERGISE PHASES		RGIL PHAS		ENERGISE PHASES
WITH NO PULSING -		NORMAL MODE WITH		WITH ADVANCED TIMING -
NORMAL MODE WITHOUT		PULSED PHASE SUPPLY		HIGH SPEED MODE
PULSED SUPPLY	SLOWS DOWN	PULSED PHASESUPPLY	SLOWS DOWN	

Figure 3.20 :- Transitions and timings behind Normal Modes.

NORMAL speed mode

Figure 3.21 :- Normal Speed Modes variable delays.

HIGH speed mode

Figure 3.22 :- High Speed Mode variable delays.

The speeds at which the machine change speed modes is variable. A variable hysteresis loop exists to prevent the machine from changing in between modes indefinitely (Figure 3.18). The machine then operates within any one of three possible Speed Modes depending upon the machine speed (Figures 3.16, 3.17, 3.19).

Some control algorithms may not want the Normal Mode with pulsing and this is shown by the flow diagram in Figure 3.16. The basic outline of the full program code is seen in Figure 3.17.

The frequency of the opto sensor is directly related to the rotor speed. For example, for a $4 / 2$ twophase machine, the frequency of each phase winding, if multiplied by 30 , represents the speed (rpm) of the machine. The changing points are definable by rpm values.

Figure 3.23 :- Simplest control flow diagram

3.3.4 IMPLEMENTATION OF CONTROL ALGORITHMS

Figure 3.23 is an example of a simple control flow diagram. A simple low cost microcontroller only uses time delays programmed into the coding and there is no easy method of altering this externally. At slow speeds the change of optical (opto) sensor signal from low to high or vice versa would signal one phase to switch off, followed by a time delay to allow the current to reduce out of that phase before the next phase was turned on (Figure 3.23). The opto edge could equally well trigger the turn on event with a timed pulse length before the switch is turned off again.

Simple microprocessor software can implement any of the Speed Modes and can easily change between them through the speed range. Such software cannot modify the armature phase firing angles in response to a user input as the angles are fixed in the software.

It is possible to calculate, for a given speed, the appropriate armature phase firing angles but it is at the expense of overly complex software program code.

Direct time delays are used instead for the phase angle timings in experimental timing applications. This control circuit is specifically designed for experimentally working out the best time delays for specific machine applications. As such, when the time delays are found which best matched the machine application, the phase angle is merely a calculation for that speed. This control circuit allowed the machine to have various time delays for different speeds i.e. a time delay profile can be designed for that machine to get best performance at various speeds.

Any requirement to alter the time delays within the program of a simple microcontroller would usually involve reprogramming the microcontroller. In simple programs used in microcontrollers such as the PIC microcontroller (for example, Figure 3.23), the time delays are fixed values put into the program code and the only way to alter it is to take the PIC out of the circuit and to reprogram it again. The machine would have to be turned off during this time. It is desirable to alter the timing sequences as the machine is running as it is easier to optimise control parameters during testing.

A problem is that, for any new machine design, it is not known how exactly the timing between phases in both speed Modes should be optimised. Likewise, it is not known which speeds the machine should have to go between the Modes or even if all the Modes are required, such as not having the High Speed Mode for slow speed machine designs.

The PIC16F8X range by Microchip [98] has 8 internal analogue to digital (A/D) converters. The voltage inputs to these converters (eight in total) are used to give variable time delays. Simple potential dividers are used to provide the variable voltage to give the variable time delays for the
armature phase firing timings. It is possible to have a program that could give all possible time delays for the firing sequences as variables that could be altered at any time without the need for stopping the machine and reprogramming the PIC. It is possible to have variable time delays with an accuracy potentially to $1 \mu \mathrm{~s}$ (for a conventional 4 MHz PIC, or even 0.2μ s for the new 20 MHz generation of PIC).

This allows the machine to be controlled and re-timed as the machine is in fact turning. Hence optimization of the machine control for specific applications is possible. The speed at which changing between Speed Modes is controllable as well as overriding the Advanced Mode to prevent it from being accessed by the machine.

The coding was such that the 20 MHz PIC could have been altered to give several 'steps' similar to a speed response curve, allowing greater optimization of the machine over a wider speed range.

The program code was such that it was transferable to smaller and cheaper microcontrollers when optimisation of the timing sequences is completed. The control coding was written so that it was easily altered for programming the much smaller PIC16F84 microcontroller using the delay times found by this development circuit (the values being fixed in such a microcontroller).

A flow diagram representing this coding is shown in Appendix B to give a brief idea of how this coding worked. The PIC16F84 version of the flow chart is shown in Appendix B demonstrating the simplicity of the conversion of the coding into the PIC16F84. By being able to do this the final circuit size is kept small. Appendix C demonstrates the coding used for the PIC16F877 for a two speed mode application (Normal Mode without pulsing and High Speed Mode). Optimization of the machine control is shown in Appendix B. The PIC16F877 has built-in analogue to digital converters that allow the timing delays to be variable. The PIC16F84 has no analogue to digital converters and, as such, requires the delays to be made fixed vales based upon optimised values obtained from the PIC16F877. The PIC16F84 is a less complex, smaller and cheaper microcontroller than the upwardly compatible PIC16F877 [97, 98].

3.3.5 OTHER 16F877 PROGRAM FEATURES

Features of this controller include starting the machine from powering up the controller (a switch exists to override this). The machine also does not have to enter the High Speed Mode as an override button exists (it is not regarded as essential to start the Machine in the High Speed Mode). If the machine is stationary for a short time period (around two seconds) it turns off all the phases automatically. User intervention is then required to restart the machine (a master reset option standard
to all such PIC microcontrollers is utilized by use of a switch). The value of the potential divider does not have to be accepted by the microcontroller as a switch is used to allow the value to be used or ignored. If timing delays are such that the machine attempts to fire both phases at the same time, it is prevented from doing so by switching off the already energized phase and then switching on the next phase following a built-in safety delay - the error being reported with a diagnostic LED. An LCD display with its own dedicated PIC microcontroller has been developed to give user timing information and error information (Appendix D). Phase windings with two switches per phase are accommodated via two outputs per phase (both have identical outputs) and one switch per phase is merely achieved by using one output only. The coding required is adaptable to smaller microprocessors so optimised values are entered at programming and the finalized control is still achievable at the smallest cost.

Changes to the timing of the machine are immediate. The machine does not require being switched off for altering the timing. The circuit only needs to be connected to the gate drivers of the armature switches. As such it is an ideal prototyping circuit.

3.4 ADDITIONAL CONTROL ALGORITHMS

There are several possible ways of energising Reluctance machines. A discussion into the merits of each type is discussed in [3, 92-94]. Some of the control circuits required are discussed in papers such as $[94,95,96]$. The use of microprocessors for control is a requirement in such machines, one such example being that of the PIC microprocessor range [97, 98].

Some machines may require more complex control algorithms for specific applications. More complex control algorithms for any of these machines may include features such as sensorless rotor position estimation [99-103] and high performance speed control [104, 105]. Such references have been included for further reading purposes only to illustrate some of the recent research publications. A simpler reference for machine control may be found in [3]. It is known that improved control algorithms may reduce the effects of cogging torque and acoustic noise. It is also a fact that some machine problems may be alleviated through redesigning the machines with the aid of 2/3D Finite Element Analysis and other design aids such as simpler two dimensional reluctance calculations [106].

3.5 SUMMARY

The choice of circuit is dependent on armature winding type and power electronic circuit complexity. The decision to have the field winding in series with the armature windings also affects circuit choice. The circuit cost is proportional to the number of components used (switches and diodes). The bipolar excitation with bifilar winding armature is ideally suited to the low cost half bridge converter circuit. The unipolar excitation with single coil per pole short pitched windings can be used with an asymmetric half bridge converter. The bipolar excitation single coil per pole configuration allows full utilisation of armature copper but is not investigated further as it has the most complex circuitry (full bridge inverter circuit) and offers the highest armature copper losses.

The gate drive input signal is generally derived from a position sensor signal, such as from an opto sensor, as current commutation in reluctance machines cannot occur without some form of rotor position detection. Microcontrollers are often required for better manipulation of the gate drive signals for improved machine performance.

A new controller is demonstrated to operate at a speed of 19020 rpm in both main speed modes for Variable Reluctance based two-phase machines. It is demonstrated to operate at up to $126,000 \mathrm{rpm}$ using signal generators. Full timing control is shown for the two speed mode possibilities. Control is 'on-the-fly' as it is immediate upon the machine in question. The PIC16F877 microprocessor does not need to be reprogrammed in order to control such machines.

The optimisation potential is demonstrated with the Variable Reluctance Drives and the PMFSM, as will be shown later in this thesis. The timing values have been successfully transferred into the smaller PIC16F84 microprocessor where the same optimised control timings were still maintained.

The control circuitry and the program coding can be used in assisting optimisation of control timings for 2-phase machines or single phase bipolar machines.

It is possible to improve this type of coding further to have more than three speed modes and that the control could then become similar to a speed response curve. This feasible concept was not investigated any further.

CHAPTER 4

DUAL STACK VARIABLE RELUCTANCE MACHINE WITH AXIALLY ORIENTATED FLUX ASSISTANCE

4.1 INTRODUCTION

An alternative way of providing additional dc flux to the systems explained in Chapter 2 is through the use of a toroidal, axially oriented coil. A Dual Stack Variable Reluctance Machine was constructed and tested in which the stator comprises two stacks separated by a coil to give axial magnetic flux. This construction was similar to a homopolar inductor alternator [38-41, 44]. This chapter describes and develops the complex magnetic structure of the machine and describes the test results. The possible power electronic and control circuits for the motor are described. The chapter describes the theory of selection of the angular orientation of the two stacks to give an improved waveform. This chapter extends this theory to discuss the relationship between crest factor and current waveform shape for armature windings. This chapter shows that optimisation of crest factor is not necessarily the best for torque production. An optimum angular position between the stacks may be obtained.

4.2 MACHINE TOPOLOGY

4.2.1 DESIGN FOR A DUAL STACK VARIABLE RELUCTANCE MACHINE

The easiest method to building a Dual Stack Variable Reluctance machine was to start with a preexisting Switched Reluctance machine. The machine chosen was a 70 mm stack length (laminated stator and rotor) two-phase $4 / 2$ Switched Reluctance lawnmower motor. The outer diameter was 92 mm . The lamination dimensions were to be used in the modelling of the motor.

A homopolar inductor alternator concept was applied to the motor. In simplest form the homopolar inductor alternator has its stator in three sections. The two end sections are stator stacks and the middle section incorporates the field winding. The two end sections of the Dual Stack Variable Reluctance Machine were derived from the stator stack laminations of the Switched Reluctance machine (by splitting up the laminations). The middle section was formed with a machined steel section that incorporates the toroidal field winding, linking the two back irons of the stator stacks. The rotor was to remain in its original state, namely a laminated two pole graded design.

The winding topology was reviewed during the design stages. The original machine had only one stator stack requiring four sets of coils (one set per stator pole). The new design had two stacks so the number of armature coils doubled. Excitation of the coils was such that one pair of diametrically Chapter 4
opposite stator poles was energised as one phase and the other pair as the other phase. The inclusion of a field winding also increased the number of winding terminations.

The flux paths within the machine differ from the Switched Reluctance concept. The flux does not travel from one pole, across the rotor, to the other diametrically opposite pole when the stator coils for those poles are energized. Instead, the flux travels along the axis of the rotor, through the stator poles and back axially through the stator (i.e. the flux travels in an unconventional direction compared to a normal switched reluctance motor). It is an axial unipolar flux. Depending on the chosen direction of the flux through the rotor axis, the current direction in the stator coil windings is chosen according as to whether they are required to 'push' or 'pull' flux into or out of the rotor.

Short pitched coil windings were wound on the stator poles to provide flux to allow control of rotor movement (Figures 4.1 and 4.2). A toroidal field winding placed internally within the machine meant that flux is produced with little or no end winding leakage (due to the nature of the proposed flux paths). Also, less flux was to be produced by the armature coils on the stator poles. It is known that end winding leakage is present in machines where parts of the coils are external to the machine. By less flux being produced by the armature coils the amount of end winding leakage from these coils is reduced. End winding flux leakage cannot be eliminated fully as part of the coil is on the outer edge of the machine.

Figure 4.1 :- Simplified model showing a possible winding layout within the machine.

Figure 4.2 :- Magnetic flux path within machine.

The axially orientated dc coil is toroidal in shape (Figure 4.1). It provides maximum packing factor (0.76) and hence excellent utilisation of winding area. There are no end winding losses associated with the toroidal field. Permanent excitation of the field winding with dc current efficiently produces axial flux within the rotor. The toroidal field winding, depending on the sense of current within it, polarises the rotor so one end was a North Pole and the other a South Pole (Figure 4.2). The current direction in the field is not important as the machine operates the same way whichever way the rotor is magnetised.

This toroidal field winding produces a significant proportion of the total magneto motive force of the machine. All the copper of the field is used as the coil is permanently energised with dc current.

4.3 COMPARISON WITH HOMOPOLAR INDUCTOR ALTERNATOR AND SWITCHED RELUCTANCE MACHINES WITH DC FLUX

It is possible to have a homopolar inductor alternator operating as a motor. Switched Reluctance laminations were used to build a Variable Reluctance machine based upon a homopolar inductor alternator concept. A constant dc supply to the centrally placed field winding gives constant dc flux with the armature windings energised to produce torque to turn the motor. The flux from the field windings was used to aid torque production, improve efficiency of the motor, and reduce the required rating of power electronic components.

Figure 4.3 demonstrates a simple design comprising two stacks, each with four stator poles, and a two pole rotor and a centrally placed toroidal field winding between the two stacks. A fast method of building such a motor involved the redevelopment of a set of pre-existing Switched Reluctance laminations. This was the starting point for building a dual stack Variable Reluctance machine.

4.4 WINDING CONFIGURATIONS

The magnetic flux paths within the machine are three-dimensional. The toroidal field winding is permanently energised with dc current. The flux it produces is axial along the length of the rotor production making the rotor magnetically polarised at its ends. The flux at the ends is guided into or out of the stator poles by the stator pole windings in order to turn the rotor. At one end flux leaves the rotor whilst at the other it enters. There are two sets of bifilar wound windings on each stator pole, the poles labelled as A, A', B, B', C , C', D and D' (Figures 4.3 and 4.4).

There are different possible winding layouts. The choice of layout affects the choice of power electronics circuit for energising the windings. The flux paths required in the machine determined the sense of current in the armature coils. One stator stack will be seen to push flux into the rotor, the other stack pulls flux out.

When a phase is energised, the energised stator poles become an effective South Pole or North Pole (Figures 4.1, 4.2 and 4.3), depending on the sense of current. The field winding magnetises the rotor axially such that the rotor pole faces were North Poles at one end and South Poles at the other.

Where there are like Poles between aligned rotor and stator pole faces, repulsion between the fluxes forces the rotor away from that stator pole pair giving the effect of reduced leakage flux from that stator pole pair. Where there are unlike Poles between unaligned rotor and stator pole faces, attraction
pulls the rotor into alignment. The rotor turns until it reaches an aligned position where the pole faces of the rotor and stator are of unlike magnetic polarity (flux crosses the air gap between them).

The effect is the same if the field current direction changes. Each phase has its own aligned rotor position. The forces of repulsion and attraction turn the rotor.

Figure 4.3 :- Coil labels for both stacks in three dimensions.

Figure 4.4 :- Coil labels for both stacks (left stack at front, right stack at rear).

Figure 4.6 :- Flux paths involved in rotation of rotor on change of stator current.

Figure 4.7 :- Series connection of back emfs such that induced voltages are in the same sense.

Figure 4.8 :- Series connection of adjacent stator pole armature windings to give summation of induced voltages.

4.4.1 CONFIGURATION AS BIPOLAR EXCITATION SINGLE COIL PER POLE

Bifilar coils are wound on each stator pole as shown in Figure 4.5. For each phase, windings from each stator pole were connected in series such that the induced back emfs would summate, with a series connection between the two stator stacks. For each stator stack, two diametrically opposite stator poles direct flux in the same direction as flux from the field coil, attracting the rotor into alignment with them, and the other stator poles prevent axial flux from entering them and repelling the rotor (Figure 4.5 and 4.6). When the stator coils are energised with positive current, the rotor is pulled into alignment with the set of coils directing flux in the same direction as flux from the field coil, with the unaligned poles pushing the rotor into alignment (Figure 4.6). Therefore, when the current direction changes, the rotor turns ninety degrees to align in the only other possible position.

The magnitude of the flux from the field coil which links each of the phase windings of the stator is modulated by the permeance of the magnetic path. As the rotor rotates the phase winding flux linkage reaches a maximum when the rotor poles align with the poles of that phase winding. An alternating emf is therefore produced in the machine phase windings. The machine phase windings on adjacent reluctance poles have emfs exactly out of phase with each other. An innovative method of driving this machine involved series connection of all the phase windings such that the induced voltages are all in the same sense (Figure 4.7). A bipolar current is then forced to flow in opposition to this induced emf to produce motoring torque. The ideal is to have a square wave current waveform in the armature windings. Switching losses in this configuration would be high as all the windings would be energised all the time, with all the copper being utilised. The required power electronic circuitry is more complex than for other winding configurations.

This configuration showed that the machine could be operated as single phase.

4.4.2 CONFIGURATION AS UNIPOLAR EXCITATION WITH SINGLE COIL PER PHASE

Another method is to use coils $\mathrm{A}, \mathrm{A}^{\prime}$ and $\mathrm{C}, \mathrm{C}^{\prime}$ as Phase 1 only and the remaining coils for Phase 2 (B, B' and D, D') (Figures 4.4 and 4.7). This however means that flux could escape through unexcited poles during operation, creating a circumferential magnetic short circuit. Not all the flux is available for torque production.

Because the machine could be operated as single phase, when there are references to two phases, as shown by coils A and B in the figures, it is actually correct practice to refer to them as phases 1 A and 1B, and any references to two phases for such machines shall be construed with the literal meaning in mind.

4.4.3 CONFIGURATION AS BIPOLAR EXCITATION WITH BIFILAR WINDINGS

To prevent flux leakage, two diametrically opposite stator poles are energised to bring the rotor into alignment and the other two poles are energised to push the rotor away for each phase, as shown in Figure 4.8. This is so that one stator pole pair provides flux in the direction of the field flux and the other pair opposes any flux leakage and pushes the rotor away which was thought to aid maximum flux usage for torque production. Only one phase is energised at a time.

When the phase changes, the transformer effect (the armature windings of one phase are magnetically linked to the armature windings of the other phase in the same manner as a transformer as both phases have parallel wound windings) provided by the bifilar windings of the second configuration reduced the switching losses and speeds up switching. The copper is thus used more effectively.

For both configurations, shown in Figures 4.9 and 4.10, half the copper is energised at any one time. For both configurations, one phase has one stator pole pair as its aligned position and the other phase has the other stator pole pair as its aligned position.

This second configuration (Figure 4.10) was to be used initially for the design of the machine. It was assumed that the transformer effect of bifilar windings would allow fast current transfer between windings that could help the motor during operation. Future diagrams may refer to the windings in sections 4.4.2 and 4.4.3 as 'conv' and 'bif' for unipolar excitation with single coil per phase and bipolar excitation with bifilar windings respectively only for the purpose of simplifying the text.

Appendix F shows an alternative diagram of one variant for the flux paths in such a machine.

Chapter 3 covers the possible power electronic circuits used for each winding configuration.

Figure 4.9 :- Unipolar excitation with single coil per pole windings ('conventional').

Figure 4.10 :- Bipolar excitation with bifilar windings (only one armature energised at a time).

4.5 STATIC MODELLING OF 3D MAGNETIC CIRCUIT

The windings, when energised, produce a magneto motive force (mmf). The flux produced by such windings, in an ideal situation, remains solely within the steel of the machine and across any air gaps between the rotor and stator poles (based on the assumption of no flux leakage). Saturation was ignored due to an assumption of linearity for ease of calculations. To evaluate a new concept, magnetic equivalent circuit techniques were more appropriate than finite element analysis as it allowed a quick method to evaluate different geometries.

The dual stack variable reluctance machine was modelled from first principles, namely by calculating the magnetic equivalent circuit by reluctance calculations [106]. The machine shape was determined in the form of a sketch of the machine and a sketch of the magnetic paths that might be found within the machine when energised in an aligned rotor position. By using the principles of magnetism an intuitive first approximation of the flux paths was determinable. It was assumed that flux permeates preferentially in steel rather than air and that all the flux permeated across deliberate air gaps between the rotor and stator. Leakage was ignored and it was assumed that the flux paths were as short as possible.

At this stage the machine dimensions were all potentially variable but reasonable care was taken to minimise areas of magnetic saturation. The machine was divided up into radial, axial and circumferential reluctances to aid determination of a magnetic equivalent circuit [106].

Reluctance is the magnetic equivalent of resistance (4.1). In motor steel it has a low value (due to high μ_{r}). In air it has a high value (due to $\mu_{\mathrm{r}}=1$). The amount of air gaps in the design should be kept minimal so as to minimise reluctance of the motor flux paths.

$$
\begin{equation*}
R=\frac{l}{\mu_{o} \mu_{r} A} \tag{4.1}
\end{equation*}
$$

$$
\text { where } \quad \begin{aligned}
& \mathrm{R}=\text { reluctance }\left(\mathrm{H}^{-1}\right) \\
& \mathrm{l}=\text { length }(\mathrm{m}) \\
& \\
& \mu_{\mathrm{O}}=4 \pi 10^{-7} \mathrm{H} / \mathrm{m}=\text { permeability of free space } \\
& \\
& \mu_{\mathrm{r}}=\text { relative permeability of material } \\
& \mathrm{A}=\text { cross sectional area }\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

Abstract

As with any design, constraints were defined which included those due to use of existing laminations. The length of the two stator stacks, the space for armature and field windings, dimensions of the linking back iron between the two stacks were all definable. As the design was an adaptation of an existing motor, the laminations gave fixed values for some dimensions but the axial length of the individual stack laminations (length b) was still variable to an upper limit (the total length of the original stack).

The flux paths were split into sections where the flux was substantially uni-directional within that section. Each section was for one material only. Where two materials were next to each other, then two sections were made even though the flux was in the same direction. This was because it aided calculation of the reluctance within the sections. Where saturation was thought to occur, extra sections were included to give extra modelling security. The adjacent sections have to be in parallel or in series with each other (Figures 4.11). By having the sections in this manner and by calculating the reluctance of each section, a magnetic reluctance equivalence was calculated for the machine (in the same manner as resistances in series or parallel) (Figure 4.12).
By having as many variables as possible defined within the reluctance calculations, as the dimensions of the machine were varied, the equivalent reluctance was calculated. The design had to incorporate space for field and armature coils (slot areas) and any former used to hold the field and stacks in position relative to each other.

Figure 4.11 :- Labelled sections for obtaining equivalent reluctance

Figure 4.12 :- Determining equivalent reluctance of Figure 4.9

Figure 4.13 :- Magnetic equivalent circuit.

The greater the number of sections used the greater the potential accuracy of any calculations. This was a crude yet effective version of Finite Element Analysis. A magnetic equivalent circuit was thus derived (Figure 4.13). For each section the flux within each was affected by the cross sectional area that the flux passed though and this was a limiting factor on how great the flux could be. The total reluctance was simplified to a function of the dimensions of the motor. Dimensional parameterisation of the reluctances allowed any dimension and variation in shape to be accommodated. The machine was then modelled with a 2 -dimensional model even though the magnetic paths were threedimensional.

The product of magnetic flux and reluctance was equal to the total ampere turns of the motor. The amount of space available for windings (copper area) was the packing factor times the slot area. Dividing this by the cross sectional area of one strand of wire gave the number of turns available. The current density times the copper area gave the expected current in the windings. Figure 4.13 shows an Chapter 4
example of the equivalent circuit for one position in which the mmf from the dc field coil is represented by M_{f}, and the mmf from an energised phase winding is represented by M_{p}. Accepting the limitations in accuracy of the simple magnetic circuit, a flux versus position versus mmf map was produced. A plot of current density and flux density against length given to stack allowed optimisation for the motor dimensions. For a given range of current densities, as the proportion of stack length for the two stacks was varied, a range of possible magnetic fluxes was possible and from this a suitable value of length for each stack was obtained. For the stack length of 70 mm , equations were developed to define magneto motive force using the magnetic equivalent circuit and using the current density equation. The distance for the axial length of the stator pole was defined by b (in mm). For a given flux density, B , and current density, J , and the motor dimensions, the equation for an optimum value of b (using a linear magnetization assumption) is shown in (4.2).

$$
\begin{equation*}
\mathrm{b}=\frac{\left.\left(7.8 \times 10^{-6} \mathrm{~J}+0.9784 \mathrm{~B}\right) \Psi\left(7.8 \times 10^{-6}+0.9784 \mathrm{~B}\right)^{2}-4(0.01398 \mathrm{~B})\left(2.654 \times 10^{-4} \mathrm{~J}-805.85 \mathrm{~B}\right)\right]^{1 / 2}}{0.02795 \mathrm{~B}} \tag{4.2}
\end{equation*}
$$

From manipulation of this equation, a value of $b=24 \mathrm{~mm}$ was chosen as an optimum value. This was because a large choice of values for either B or J could be used without making the length of b too big (as space was required in the middle for the windings).

For various values of J at $\mathrm{b}=24 \mathrm{~mm}$:-
For various values of B at $b=24 \mathrm{~mm}$:-

$$
\begin{aligned}
& 1.234 \mathrm{~T}<\mathrm{B}<1.8 \mathrm{~T} \\
& 11.538 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}<\mathrm{J}<18.270 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

A middle value of B and its corresponding value J were chosen i.e.:- $B=1.5 T, J=15.794 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$. Due to the machine using laminations it was assumed that the flux within the machine would not be as great as predicted due to cross lamination fluxes, iron losses and eddy currents. It was assumed to be a good value though. Using these values, a magnetomotive force (mmf) of almost 1232A-t was calculated. This gave an idea of the machine capability.

4.6 DYNAMIC SIMULATION

The field coil was made using self bonding wire for dimensional stability (see Appendix E).

It was assumed that there was no flux leakage and that, for a two phase $4 / 2$ motor design, a 90° revolution of the rotor gave a change in magnetic flux of $\mathrm{dB}=\mathrm{B}$. It was assumed that all the flux was used in torque production. The back emf expected for a given speed is shown in (4.3).

$$
\begin{align*}
& \mathrm{E}_{\mathrm{a}}=\mathrm{N} \frac{\mathrm{~d} \Phi}{\mathrm{dt}}=\mathrm{NA} \frac{\mathrm{~dB}}{\mathrm{dt}} \\
& \mathrm{~A}=\text { stator pole area, } \mathrm{N}=\text { turn number per phase, } \\
& \mathrm{B}=\text { flux density in stator pole } \\
& x \mathrm{rpm}=\frac{x}{60} \mathrm{rps} \tag{4.3}\\
& 1 \text { revolution takes } \frac{60}{x} \text { seconds } \\
& 1 / 4 \text { revolution takes } \frac{15}{x} \text { seconds } \\
& 1 / 4 \text { revolution } \mathrm{dB}=\mathrm{B} \\
& 1 / 4 \text { revolution } \mathrm{E}_{\mathrm{a}}=\mathrm{NA} \frac{\mathrm{~B} x}{15}
\end{align*}
$$

The model predicted the total magnetic equivalent reluctance for the machine. This value multiplied by magnetic flux was the same as the total ampere turns of the machine. The number of available turns for the field and stator (armature) windings was determined by the slot areas, packing factors and wire diameters selected during the modelling process. A dc motor equivalence was used to predict the motor performance (4.4). $\mathrm{L}(\mathrm{dI} / \mathrm{dt}$) was ignored as the current, I , was assumed to be constant, for ease of calculation.

$$
\begin{align*}
& \mathrm{V}_{\mathrm{a}}=\mathrm{E}_{\mathrm{a}}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}} \tag{4.4}\\
& \left.\mathrm{Va}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}=\mathrm{E}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}+\mathrm{I}_{\mathrm{a}}\right)_{a} \mathrm{a}_{\mathrm{a}}
\end{align*}
$$

Such a theory assumed that the field winding produced all the flux and that all this flux interacted with current in the stator coils (armature) to produce torque. As the possible number of armature turns was known then the required current was calculated and used in the dc motor equivalence equations. The supply to the armature windings equalled the sum of the back emf and the volt drop across the armature windings (current times resistance). The back emf was predicted as was the armature winding resistance as shown by the previous equations. The power calculation was a simple expansion of the dc machine voltage equation (4.4). Torque was calculated through electromechanical energy conversion in the phase winding circuit model (4.5). The interaction of the current and back emf gave rise to torque production. It was possible to predict the performance of the motor for a given speed in radians per second.

$$
\begin{array}{cl}
E_{2} I_{a}=T \omega \text { where } & E_{2}=\text { back emf }(V) \\
& I_{a}=\text { armathre coil current }(A) \\
& T=\text { torque }(\mathrm{Nm}) \\
& \omega=\text { speed } \mathrm{m} \mathrm{rads}^{-1} \tag{4.5}
\end{array}
$$

The magnetic flux was limited by the cross sectional area of sections of the motor. The smallest area was regarded as the constraining value and, for a required magnetic flux density, the mmf of the motor was calculated. The mmf produced by the stator coils and the field coil was to match this value and from the de motor equations the performance of the motor was dynamically modelled for a given rotor speed and supply voltage. The choice of wire size and packing factor were varied and the model included error detection to prevent selection of impossible dimensions and parameters.

The model ignored laminations and assumed that the steel helped flux permeation. The laminations existed in the stator stacks in the radial plane. It was suggested that the mmf needed to drive flux perpendicular to the laminations would be greater than expected. The flux paths were three dimensional but the laminations were designed for two dimensional fluxes in the same plane as the laminations. Also, effects such as iron losses and eddy currents were assumed to not exist. There was a risk that the model would over predict the flux within the machine.

The choice and dimensions of plastic formers used to hold the stator stacks parallel to each other can be found in Appendix E.

4.6.1 TEMPERATURE RISE CALCULATIONS

Work was then conducted on how much heat was produced by the motor at various magnetic flux densities. The flux density was directly linked to the current density and mmf as shown in (4.6) (the equations are specific to stator axial-based lengths of $b=24 \mathrm{~mm}$).

$$
\begin{align*}
& m m f=821.285 B=7.8 \times 10^{-5} J \tag{4.6}\\
& J=10.529 \times 10^{6} B
\end{align*}
$$

Stefan's Law was used to calculate the radiated heat as a temperature rise above ambient temperature when the wire carried a current (Appendix E). The modelling used on Microsoft Excel was such that, for any calculated slot area, mmf proportions from the windings or plastic former thickness, at any specified flux density (B), the currents in the coils, the voltages required, the $I^{2} R$ resistive losses and the associated temperature rises above ambient were instantaneously calculated. The design was optimised numerically to give the shape with minimum reluctance (Figure 4.14) and optimum thermal characteristics. This allowed the maximization of the magnetic flux for a given supply. Table 4.1 gives a list of the main dimensions and turns numbers within the machine. Figure 4.14 shows how the machine dimensions.

Figure 4.14 :- Surface area calculations for an armature coil.

TABLE 4.1-DIMENSIONS WITHIN MACHINE

	TABLE 4.1-DIMENSIONS		
	Toroid	Per Phase	Total
Turns	550	600	-
Wire Diameter	0.475 mm	0.315 mm	-
Resistance	9.820 hm	2.6150 hm	-
mmf	estimated	maximum	1478
Packing factor	0.711	0.3	-
Power wanted	-	-	$300 W$
Speed wanted	-	-	8000

4.7 INITIAL TEST RESULTS

4.7.1 WIRING AND BACK EMF TEST RESULTS

The stator stacks were initially in perfect alignment. For one stack, when one diagonally opposite set of coils for one phase was energised, they were connected so they gave a North Pole at the stator pole face. The equivalent pair on the other stack was connected so that they gave a South Pole at the stator pole face. This meant that, at an aligned rotor position with only these coils excited, the flux produced was axial along the rotor (i.e. the fluxes from each stack complemented each other, not cancelling each other out). The other poles were excited so they would give opposing pole faces to that on the same stack. The net result was that, when one phase was energised, one diagonally opposite pole pair was equivalent North Pole and the other equivalent South Pole whilst the other stack was the same except that the equivalent Poles were 90° shifted. When the field was energised the rotor had one end as a South Pole and the other as a North Pole. When one phase was energised and the flux from each diagonally opposite pole pair had two possible effects. Where the rotor pole and stator pole were of the same magnetic polarity, repulsion occurred and the rotor was forced away and, where the magnetic polarities were different, then attraction occurred and the force generated brought the rotor towards that stator pole pair. Thus each stator pole was used to generate torque.

In each stack for each phase the two pairs of diagonally opposite coils had back emfs which were inverted forms of the other. By connecting the coils such that the sense of one is the same as the sense of the coil on the adjacent stator pole it was possible to add the back emfs. This was done for each phase.

The design was connected to a dc motor and the back emf was measured from the stator windings of each phase (i.e. the motor was tested as a generator).

The back emf waveform was not square wave, as ideal, but was in fact very peaky and was probably due to the rotor having a graded design. The magnitude of the back emf was half that which was expected. The possible causes of reduction were:-

1 The value of reluctance for the magnetic circuit was approximated by using mean paths. The true flux paths are unknown and the μ_{r} value of steel was approximated. The use of laminations had not been accounted for.

2 Flux leakage was assumed to be zero.

4.7.2 MOTOR TESTING

Tests were carried out on the machine at no load (configuration as bipolar excitation with bifilar windings). The machine was not suitable for torque testing. It was very prone to overheating as the load increased (Figure 4.15). The winding temperature reached $80^{\circ} \mathrm{C}$ at no load.

Graph to show the temperature valiation against time when the armature supplied at 60 V and field foroidis supplied a 10 V

Figure 4.15 :- Temperature measurements during tests.

Figure 4.16 :- Speed of machine increases with temperature for fixed supply.

Figure 4.17 :- Test waveform for zero mechanical degree displacement (60 V armature supply, 10 V field supply).

It was noted that the motor sped up with time for fixed voltage supplies to the windings (Figure 4.16). It was suggested that the field winding resistance increases with temperature that lowered the field current hence lowering the field flux. The motor had to speed up to produce the same amount of back emf. Figure 4.17 shows an experimental waveform for a no load test. It was found that, if the packing factor was kept as tight as possible, Stefan's Law was accurate to within 2 degrees Celsius.

4.8 REMODELLING

The back emf measured in each phase was exactly half that of the expected value. More back emf was needed for improved torque production so that load testing could be performed. For an improved back emf waveform, the number of turns in the armature had to be increased. Space for the windings was limited and any increase in armature turns resulted in a decrease in field windings. A decrease in field windings limited the amount of flux that the field could produce. Table 4.2 shows dimensions and turn numbers for the remodelled machine.

TABLE 4.2 - DIMENSIONS WITHIN MACHINE

PROPFRTY	PROPERT I VALUF
Toroidal Field Outer Diameter	78 mm
Toroidal Field Inner Diameter	47 mm
Field turns	$750,0.315 \mathrm{~mm}$ diameter wire
Total length	73 mm
Length of each stack	24 mm
Outer diameter	92 mm
Armature turns per phase	$1192,0.315 \mathrm{~mm}$ diameter wire

4.8.1 INPROVING THE BACK EMF WAVEFORMS WITH ROTATIONAL DISPLACEMENT OF THE STATOR STACKS

The Homopolar Variable Reluctance Machine consists of two stacks separated by a toroidal axially orientated coil. The angle, $\theta_{\text {shift }}$, is the mechanical displacement between the two stacks (Figure 4.18). The original model used a mechanical displacement of zero degrees. That is, the two stacks were perfectly aligned with each other.

The back emf in each coil stator pole coil is produced by passing current through the field winding and turning the rotor (as in the case of a generator). This machine has an electrical angle of twice the mechanical angle.

Zero shift degrees is defined as the initial angular condition. Each stack has windings associated with each of the two armature phases. This initial condition is such that the back emf generated in the armature windings of one stack would be in phase with the same phase armature windings in the other stack (Figure 4.19).

To expand this concept further, consider the coils in one stack as being labelled as $A, A^{\prime}, B, B^{\prime}$ and in the other stack as C, C', D, D' for each phase (Figure 4.18). In each stack the diametrically opposing coils are connected such that any back emf produced in each add (not cancel each other out). The sum is termed as V_{xn} where x is the coil pair ($\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}, \mathrm{DD}^{\prime}$) and n was the phase number (1 or 2) as shown in (4.7).

$$
\begin{align*}
& \mathrm{A}+\mathrm{A}^{\prime}=\mathrm{V}_{\mathrm{An}} \tag{4.7}\\
& \mathrm{~B}+\mathrm{B}^{\prime}=\mathrm{V}_{\mathrm{Bn}} \\
& \mathrm{C}+\mathrm{C}^{\prime}=\mathrm{V}_{\mathrm{Cn}} \\
& \mathrm{D}+\mathrm{D}^{\prime}=\mathrm{V}_{\mathrm{Dn}} \quad \text { where } \mathrm{n}=1,2 \text { (the phase number) }
\end{align*}
$$

In one stack, for each phase, the back emf V_{An} adds to V_{Bn} due to the way the coils are connected. V_{An} is connected to be in phase with V_{Bn} at zero shift degrees. In the other stack, for each phase, the back emf $V_{C_{n}}$ adds to $V_{D n}$ due to the way the coils are connected. $V_{C_{n}}$ is also connected to be in phase with $V_{D n}(4.8)$.

Back emf per phase armature in Stack $_{A B}=V_{A n}-V_{B n}$
Back emf per phase armature in Stack ${ }_{C D}=V_{C n}-V_{D n}$

For each phase, the back emf generated in one stack and the back emf generated in the other stack are represented by vectors. For zero mechanical degrees the back emfs from each stack are in phase and so are zero electrical degrees different (4.9). The connections between each stack are such that for each phase there is summation of the vectors at this angle.

Zero degrees shift total back emf per phase $=\left(V_{A n}-V_{B n}\right)+\left(V_{C n}-V_{D n}\right)$

Zero degrees shift total back emf in Phase $1=\left(\mathrm{V}_{\mathrm{Al}}-\mathrm{V}_{\mathrm{BI}}\right)+\left(\mathrm{V}_{\mathrm{Cl}}-\mathrm{V}_{\mathrm{DI}}\right)$

Zero degrees shift total back emf in Phase $2=\left(\mathrm{V}_{\mathrm{A} 2}-\mathrm{V}_{\mathrm{B} 2}\right)+\left(\mathrm{V}_{\mathrm{C} 2}-\mathrm{V}_{\mathrm{D} 2}\right)$

The back emf per phase is thus $V_{\text {phasen }}=V_{\text {stack1 }}+V_{\text {stack } 2}$

$$
\begin{aligned}
\text { where } & \mathrm{V}_{\text {stack } 1}=\left(\mathrm{V}_{\mathrm{An}}-\mathrm{V}_{\mathrm{Bn}}\right) \\
& \mathrm{V}_{\text {stack } 2}=\left(\mathrm{V}_{\mathrm{Cn}}-\mathrm{V}_{\mathrm{Dn}}\right)
\end{aligned}
$$

and n is the phase number

Figure 4.18 :- Shift angle displacement between stacks, $\theta_{\text {shift }}$.

shift angle (in mechanical degrees) $=\theta_{\text {man }}$ electrical shift angle $=2 \theta_{\text {mitn }}$

Figure 4.19 :- Vector theory in relation to displacement angle between stacks.

Figure 4.22 :- Electrical displacement in relation to mechanical displacement and two examples.

This is shown in vector form below whereby the mechanical shift angle $\theta_{\text {shift }}$ is shown as an electrical angle of displacement $2 \theta_{\text {shift }}$ (Figure 4.19). This is due to the machine having two rotor poles and four stator poles per stack. As shown, the total voltage for the phase, $\mathrm{V}_{\text {phase }}$, is shown as being displaced by an electrical angle α.

The first stack is regarded, in this case, as the reference stack, so the second stack is displaced by the electrical angle $2 \theta_{\text {shift }}$.

If $\mathrm{V}_{\text {stack } 1}=\mathrm{V}_{\text {stack } 2}=\mathrm{x}$ (in magnitude value) and $\mathrm{V}_{\text {phase }}=\mathrm{V}$ (for simplicity) for a given phase, the vector diagram simplifies as below (4.10). $\mathrm{V}_{\text {stack } 2}$ is split into y and z components so that $\mathrm{V}_{\text {phase }}$ can be calculated by geometric calculations. The relationship between α and $\theta_{\text {shif }}$ is then found (Figures 4.20, 4.21).

Calculations :- $y=x \cos \left(2 \theta_{\text {shifi }}\right)$
$\mathrm{z}=\mathrm{x} \sin \left(2 \theta_{\text {shiff }}\right)$
$\tan \alpha=\left(\frac{z}{(x+y)}\right)$

$$
\begin{align*}
& \tan \alpha=\left(\frac{x \sin \left(2 \theta_{\text {shif }}\right)}{x+x \cos \left(2 \theta_{\text {shiff }}\right)}\right)=\left(\frac{x \sin \left(2 \theta_{\text {shif }}\right)}{x\left(1+\cos \left(2 \theta_{\text {shif }}\right)\right)}\right)=\left(\frac{\sin \left(2 \theta_{\text {shif }}\right)}{1+\cos \left(2 \theta_{\text {shif }}\right)}\right) \\
& \tan \alpha=\left(\frac{2 \sin \theta_{\text {shif }} \cos \theta_{\text {shif }}}{\left(1+2 \cos ^{2} \theta_{\text {shif }}-1\right)}\right)=\left(\frac{2 \sin \theta_{\text {shif }} \cos \theta_{\text {shift }}}{2 \cos ^{2} \theta_{\text {shiff }}}\right)=\left(\frac{2 \sin \theta_{\text {shif }} \cos \theta_{\text {shiff }}}{2 \cos \theta_{\text {shif }} \cos \theta_{\text {shiff }}}\right) \\
& \tan \alpha=\left(\frac{\sin \theta_{\text {shiff }}}{\cos \theta_{\text {shif }}}\right)=\tan \theta_{\text {shiff }} \\
& \text { hence } \quad \alpha=\theta_{\text {shiff }} \\
& \text { Also } \quad \sin \alpha=\frac{z}{V} \\
& V=\frac{x \sin \left(2 \theta_{\text {shff }}\right)}{\sin \alpha} \\
& \text { therefore } \quad \quad \text { but } \quad \alpha=\theta_{\text {shiff }} \\
& \quad V_{\text {phase }}=V=x\left(\frac{\sin \left(2 \theta_{\text {shiff }}\right)}{\sin \left(\theta_{\text {shif }}\right)}\right) \tag{4.10}
\end{align*}
$$

The overall electrical angle of displacement for each phase equals the mechanical angle of displacement even though the electrical angle between each stack is twice that of the mechanical angle (Figure 4.22). The back emf in each phase is shown by vector diagrams to be a function of the mechanical angle in terms of overall electrical displacement. As the mechanical angle varies so too does the effective surface area of the stator pole faces over which the flux passes through. The backemf traces are then variable in magnitude and shape.

The theory of vectors is supplemented by utilising the back emf waveform shape itself.

The back emf trace for one stack for one armature phase was recorded for one electrical cycle. This waveform is the same shape as that of the same phase on the other stack (disregarding any phase difference).

For one armature phase data points were taken and a plot of back emf in each stack against rotor position was replicated. The sum of the two waveforms (superimposed) gave the total back emf waveform for that phase winding. The Stack 1 plot was taken as the reference waveform. The Stack 2 plot was phase shifted against the Stack 1 plot according to the mechanical angle of difference between the two stacks, $\theta_{\text {shiff }}$. Dependent on the shape of the waveform for each stack, the overall waveform shape for each phase was changed as the mechanical angle, $\theta_{\text {shift }}$, was altered.

4.8.2 SELECTION OF THEORETICAL IDEAL ANGLES

For smooth torque production to be ensured, the back emf waveform shape should be as close to a square wave as possible (the ideal condition). The rate of change of permeance affects the rate of change of flux as the rotor turns and this itself is affected by the rotor and stator pole shapes. But, with this type of motor, the angular position between the two stacks was used to manipulate the back emf trace to obtain a squarer shaped trace. To aid the determination of the best value of $\theta_{\text {shif }}$ the term crest factor is introduced.

Crest factor is used to compare the ideal back emf waveforms. It is the ratio of the peak to rms of the back emf curve. A square wave is the ideal and has a value of one. Hence a value closer to one is more idealistic. A square wave back emf trace would also represent smooth torque production. The crest factor is only applicable to waveforms with a repetitive cycle.

For the ideal square wave the crest factor is 1 , for a sinusoidal wave the crest factor is $\sqrt{2}$ (1.4142). It is regarded that the nearer the crest factor is to 1 the better the waveform.

The other remaining item of interest within the back emf curve is the average of the modulus of the half cycle mean for the total back emf waveform for the armature phase.

It was then possible for a plot of peak, rms, averaged modulus half cycle mean back emfs and crest factor against stack displacement angle, $\theta_{\text {shift }}$ (Figures 4.23, 4.24, 4.25, 4.26).

Figure 4.23 :- Crest factor against mechanical displacement angle.

Figure 4.24 :- Back emf magnitudes against mechanical displacement angle.

Figure 4.25 :- Crest factor and back emf versus mechanical displacement angle.

Figure 4.26 :- Predicted back emf versus rms back emf with mechanical angle.

The total back emf waveform in each phase changed shape and magnitude as the angle of displacement between the stator poles changed. Tests were carried out every 5 degrees over a 90 degree range. It was noted that for every one mechanical degree there are two electrical degrees (Figure 4.27).

By aligning the two stacks so there was no angle difference between the stator poles of each stack the back emf for each phase had the same shape as for an individual stack but with twice the magnitude.

As shown in Figure 4.25 the overall magnitude of the phase back emf fell with angle and, at 90 mechanical degrees, the back emf generated in one stack was cancelled completely by that in the other (due to 180 -electrical degrees being antiphase).

At 0 degrees the crest factor was 2.25 (Figure 4.25). At 45 degrees the crest factor was 1.62 (Figure 4.27).

At 25 degrees the back emf waveform had already lost its large spike characteristic and the mean value over a half cycle had lowered (Figure 4.28). It had a crest factor of 1.85 .

At 45 degrees the waveform was more constant in magnitude but was decreased further in mean value (Figure 4.27). It was larger in value initially compared to the zero degree condition, that was, it is more square in shape than the 0 degree case).

As the angle approached 90 degrees the back emf waveform decreased in size and was practically nonexistent at 90 degrees as the back emf in one stack was being cancelled out by the back emf in the other stack. Figure 4.29 shows the back emf waveforms obtained when the two stacks had a mechanical shift of 85 degrees. The back emf traces were almost zero. It was the same as two waveforms in antiphase being added together.

The 45 degrees condition had an improved crest factor so would give an improved current waveform.

Figure 4.27 :- Stack 1 back emf and stack 2 back emf at 45 mechanical degree displacement between each stack and the resultant sum for Phase 1.

11 18.40%
17:02:52
Figure 4.28 :- Phase 1 and Phase 2 back emf curves at 25 mechanical degree displacement between each stack.

Figure 4.29 :- Phase 1 and Phase 2 back emf curves at 85 mechanical degree displacement between each stack

4.9 MEASUREMENT OF COGGING TORQUE

Energising the field winding with dc current gives constant flux. The flux was used to bring the rotor into the aligned position. This constant source of flux caused a cogging effect as the armature phase windings were successively energised to turn the rotor. As the field current increased the cogging torque also increased (Table 4.3). The back emf waveform gave a good indication of the torque that could be obtained from the machine. The less 'square' the waveshape, the less smooth the torque would be. It was an assumption that the change in mechanical angular displacement between the two stacks to produce smoother torque would also reduce the effect of cogging torque (Table 4.3).

TABLE 4.3-COGGING TORQUE OF DSVRM

Field current (A)	Average Cogging torque (mNm)	
	Not skewed	Skewed
0.4	54.23	40.18
0.45	60.58	44.20
0.5	66.53	48.22
0.55	74.21	52.23
0.6	81.30	56.25

4.10 LOAD TEST RESULTS

It was decided that the more sinusoidal-fashioned back emf trace at 45 degrees mechanical shift would give a better current trace. The machine was then tested as a motor at this condition (configuration as bipolar excitation with bifilar windings).

Figure 4.30 shows the current waveform at low speed (551 rpm). It was very close to a square wave indicating that the machine would produce a smoother torque. It was noted that the machine had too high a total input power at no load. It had 71.5 W input power of which 39.9 W was to the armature windings. Both the field and the armature currents were around 0.85 A which was nearing the current density limit for the windings. Figure 4.31 shows that an increase in field winding current sped the machine up whilst reducing the armature current for a given armature supply. The shape of the armature current was retained close to the ideal square shape.

[^0]15:20:02
Figure 4.30 :- Current trace at 551 rpm (45 mechanical degrees)

Figure 4.31 :- Waveforms demonstrating machine running at 2576 rpm (45 mechanical degrees).

4.11 DISCUSSION

The two stacks and the rotor were all laminated as the machine had been built from a switched reluctance stack. The 3-dimensional magnetic flux paths were hindered by this fact as it was therefore more difficult to drive flux across these laminations. Iron losses were unacceptably high as the eddy currents due to cross lamination fluxes were significant. The flux from the toroidal field winding was produced in a very effective manner as no end winding losses were associated with it. The armature windings produce only a fraction of the total flux in the machine. End winding losses associated with the armature windings were less than that of a machine energised by armature alone. The machine worked in principle but a design without laminations using powdered iron technology might have proved more useful. Increased space for a larger toroidal field would also improve performance.

Testing the machine with increasing loads was impaired heavily by the fact that the windings were prone to quickly overheating. The motor would barely run over 3000 rpm at no load without the windings exceeding $100^{\circ} \mathrm{C}$ within 6 minutes of operation. The reason for the poor torque production and performance lay in the method of the flux production. Half the windings on each stator pole were associated with one phase and the remainder with the other phase. The energised windings on the two diametrically opposite stator poles for the aligned position (for that phase energisation) generated flux that aided in pulling the rotor into the aligned position. All this flux was used in torque production. The other windings on the unaligned stator poles had a dual function. The first was that the flux produced pushed the rotor away into the aligned position. The second was that the flux produced prevented flux produced by the field winding leaking across the air gap. The flux produced in these poles was not all used in torque production. As the armature current increased with load, there was a risk that the flux in the armature windings associated with the unaligned pole would increase to the point that the flux it produced prevented field flux from being utilised fully in torque production (based on a fixed field supply with increasing load). Increasing the field current with load would help if this was indeed the situation that would require the use of a current source half bridge converter circuit for the power electronics. Unfortunately only 3D flux modelling using Finite Element Analysis could reveal the true situation of the flux paths within this machine.

The alternative method of operating the machine was to use a unipolar excitation with single coil per pole method (a modification of the 'conventional' Switched Reluctance method - explaining the term 'conventional' for this variable reluctance machine alternative). For each stack, all the windings in two diametrically opposite stator poles were for one phase only. The windings on the equivalent stator poles on the other stack (i.e. that would be in parallel if there were zero mechanical degrees displacement between the stacks) were for the same phase. The coils produced flux in a different manner than a conventional Switched Reluctance machine in that the flux from each stator pole set of windings aided the flux produced by the field winding (push flux into or out of the rotor, depending on Chapter 4
the magnetic polarity of the rotor due to the field). All the armature flux was used in flux production (excepting that which escaped as flux leakage in the unenergised stator poles). This method provided better torque production and hence gave a different performance characteristic. The machine had unipolar current with unipolar flux in the stator poles rather than the bipolar flux in the stator poles.

The motor operated with the new winding configuration but with a newly optimised mechanical displacement between the two stacks of 29°. The new angle allowed, for a marginal increase in crest factor, a larger back emf waveform that still maintained a shape indicative of reasonably smooth torque production (Figure 4.32). The amplitude and shape of the back emf in each phase was identical to that for the bifilar version. The machine was tested at various speeds with various loads and field currents to optimise the phase firing timings and supply to the field and armature for best performance.

The initial tests involved optimising the phase timing sequence so that the input power for a given speed was minimised. There were three possible speed modes that were used (Chapter 3). Initially the back emf, after the opto sensor changed state at zero volt crossing, was small and the torque produced would be small (a fast rise in armature current was seen as well). After this, the back emf quickly rose and had a period of relative large value. This section was excellent for smoother torque production (shown by a levelling off of the current waveform to a constant value with little ripple). In the last section the back emf fell towards zero. Here the torque produced was reducing (and the current would be rising again). The middle section of relatively constant back emf was the best for torque production, and this was best achieved using the Normal Mode with pulsing (Figure 4.33). By optimising when each phase was energised during each opto sensor period, the maximum efficiency was obtained through optimised torque production. Ideally the current waveform would be a square wave for smooth torque production. As was shown, the optimised firing sequence at 4000 rpm gave a current waveform that produced very smooth torque and left the machine operating audibly quieter than at zero degrees mechanical displacement between the stacks (no acoustic tests were performed). The machine operated at a much lower temperature, allowing load testing to be performed (Figure 4.34).

The effects of changing the field current for a fixed speed and load were investigated. A plot of efficiency against field supply showed that the machine increased its efficiency as the field supply increased (Figure 4.35). This suggested that having the field in series with the armature windings would improve the machines performance at higher loads.

This was confirmed in a plot of efficiency against load at 4000 rpm where the field current was increased from 0 A to 0.6 A . Increasing the field current increased the efficiency (Figure 4.36). It was hard to ascertain whether there was a marked difference in improvement in efficiency with load for
increasing field current as the graph seemed to imply towards the higher end of the loads. The initial remark was definitely true however.

Investigations into the effects of speed on efficiency versus load for a fixed field supply showed that the machine seemed to be less efficient at lower speeds. There was a marked difference in efficiency when at 3000 rpm but only a small difference between 5000 rpm and 4000 rpm (Figure 4.37). The machine did not operate successfully at 6000 rpm (its speed varied at the optimised timings so the tests were abandoned).

Figure 4.32 :- 29 and 45 degree mechanical displacement back emf waveforms for each phase.

Figure 4.33 :-Possible armature firing timings for a 29 degree mechanical displacement angle.

Figure 4.34 :- Actual optimised phase firing sequence with optimised current waveform.

Figure 4.35 :- Efficiency versus field supply.

Figure 4.36 :- Field current effect on efficiency.

Figure 4.37 :- Speed effect on efficiency.

Figure 4.38 :- Input and output powers and efficiency against load for 3000 rpm .

Reluctance Machines with Flux Assistance

Figure 4.39 :- Input and output powers and efficiency against load for 4000 rpm

Figure 4.40 :- Input and output powers and efficiency against load for 5000 rpm .

It was noted that, at start up, when the machine was at room temperature, its input power for a given speed was large. The field supply was kept constant but, as the machine warmed up, the rotor actually sped up and the armature supply had to be reduced to bring the machine back to its original speed. The machine improved its efficiency as it got warmer. The previous theory was still proposed to explain this behaviour. It must be pointed out that all tests were performed when the machine had reached its operating temperatures (when the machine ran at constant speed for at least ten minutes without having to alter the supply). All sets of tests were carried out at the same time so individual test conditions were as similar as possible to avoid this speed problem affecting the results.

Plots of the input and output powers and the efficiency of the machine at various speeds show that most of the losses in the machine are armature losses and that, as the load increases, these losses start to increase in an exponential manner (Figures 4.38, 4.39, 4.40). This implies it is increasingly more difficult to produce the flux to generate the torque. This is in part due to the difficulty in driving flux across the laminations of the two stacks (the laminations allow 2D flux and hinder 3D flux). A circuit that has the field in series with the armature would help to reduce this problem. The machine keeps its 'other losses' (windage, iron losses, hysteresis losses) relatively constant with load. The value of these losses are a significant amount of the total machine power indicating that eddy currents due to cross lamination fluxes are significant.

The maximum efficiency obtained through having the field separately excited was in the region of 30% (a value of 37% was achieved in one test but this may not be reliable). This would be improved through use of the field winding in series with the armature windings but appropriate turn numbers would be required to fully utilise the potential benefits.

The toroidal field winding is definitely an efficient source of flux that boosts the efficiency of such a machine.

Displaced stack theory can be used to give smoother torque by having a squarer shaped current. The maximum back emf obtainable and the maximum torque achievable is compromised in the process. This means that, for such a design, the optimum angle for torque production is not necessarily the best choice.

4.12 SUMMARY

The new machine construction has provided a valuable insight into alternative reluctance machine geometries and excitation schemes. The test results have demonstrated that the concept (of a switched reluctance variant of the homopolar inductor alternator topology) works and that control of the machine characteristics can be achieved via either the field current or the phase winding (armature) current.

The complex magnetic geometry has been reduced to a simple model for design purposes. However, test results have shown the model to overestimate the magnetic fluxes, indicating that eddy currents due to cross lamination fluxes may be significant. It is therefore concluded that this geometry would be very appropriate to be evaluated with powdered iron core construction. Powdered iron would allow the possibility of three dimensional flux paths with reduced iron and eddy current losses and the ability to shape a motor to benefit the complex flux paths. This machine has a topology that is ideally suited for an investigation using powdered iron technology.

One factor that partly explains efficiency limitations with this design is caused by the use of the toroidal field winding itself. The dc current in the field winding will give dc flux axially within the rotor, when considered as the only source of flux. This would not cause significant circumferential eddy currents in the steel sections with axial flux - as there is no significant change in flux magnitude to cause the eddy currents to oppose the change. But a sense coil around the field winding does show a ripple in the flux, and spikes of back emf where switching occurs in the armature coils of each phase. Thus there is a degree of eddy current losses in these motors. It is possible to reduce the circumferential eddy currents by use of powdered iron or by breaking the paths by insertion of e.g. plastic spacer so flux can still travel axially as desired but electrically insulates preventing eddy currents.

The displaced stack theory has shown that a current waveform can be improved to give a smoother torque due to the current having a squarer shape. However, this has also been shown to limit the torque capability of the motor. It is necessary to select a displacement angle that gives a higher back emf and hence torque for a slightly less square current. It was shown that optimum smooth torque was at 45 degrees mechanical displacement but 29 degrees gave a better torque output for a slightly less smooth torque. Different angles would give different machine characteristics. For this machine, smooth torque production was desired and was obtained.

The use of unipolar excitation with single coil per pole windings produces unipolar flux per stator pole. It gives a higher torque output than the first version with bipolar excitation with bifilar windings. This is due to all of the flux produced by the unipolar excitation with single coil per pole Chapter 4
windings being available for torque production. In the case of bipolar excitation with bifilar windings model, some of the flux is used to prevent flux leaking into the unaligned stator poles and to push the rotor into the aligned position. It is speculated that this bipolar excitation with bifilar windings model was detrimental to axial flux from the field winding. A three dimensional finite element analysis would be best suited for accurately modelling this style of machine. It has been modelled with two dimensional analysis with a satisfactory level of success. Only the 3D model would reveal the truth as to what happens with the flux in the bifilar windings. The 3D model would also possibly provide enough data to model $\mathrm{L}(\mathrm{dI} / \mathrm{dt})$ in the dc machine model of (4.4).

The bipolar excitation with bifilar windings version of the machine is better suited to a current source half bridge converter circuit to energise a series connection of armature and field windings. The best torque production is when unipolar excitation with single coil per pole windings is used but this requires an asymmetric half bridge converter circuit.

CHAPTER 5

SINGLE STACK VARIABLE RELUCTANCE MACHINE WITH AXIALLY ORIENTATED FLUX ASSISTANCE

5.1 INTRODUCTION

The dual stack variable reluctance machine is a complex design incorporating a three dimensional flux path. It incorporated two stacks separated by a toroidal field winding. It was realized that a simplification of the machine design would allow a smaller machine to be built. This simplification would produce a machine based upon the same homopolar inductor alternator principles [14-17, 20, 21] as the dual stack machine but with a reduction in the overall machine complexity by halving the number of stator stacks. There was still the novel method of providing additional dc flux through the use of a toroidal, axially oriented coil. A two phase $4 / 2$ variable reluctance machine was constructed and tested in which the stator comprised a single short stack adjacent to an axially orientated coil arranged to give axial magnetic flux. This construction is the machining equivalent of half a homopolar inductor alternator.

The complexity is reduced by using one stack and replacing the other stack with a steel block to complete the magnetic circuit. An example sketch of the design is shown in Figure 5.1. It is possible to house the toroidal field winding within this steel block. The rotor is altered to accommodate this housing block for the toroidal field winding. It has a conventional two pole rotor (for a $4 / 2$ design) at the stator stack end with the remainder of the rotor cylindrical at the field housing end (a boss design). This allows a novel addition of a magnetic slip ring to the machine. The magnetic slip ring forms part of the rotor (by the toroidal field winding end of the machine), giving a constant air gap around the rotor. By doing so there is a constant cylindrical air gap as part of the complete magnetic circuit but it allows minimization of overall machine axial length. The design is especially useful as the section housing the field forms part of the back-iron and the inner part of it surrounds the magnetic slip ring. The toroidal field winding is simply dropped into this housing during production and is kept in place by the stator windings on the only stack. This allows manufacturing benefits. To give extra space for the field winding, a different type of bearing is used in preference to the usual ball bearing. The needle roller bearing is just as effective in principle as the ball bearing but occupies a smaller radius, allowing more design flexibility in modelling the machine.

Figure 5.1 :- Sketch of single stack variable reluctance machine with interior view.

As with the previous design, an existing $4 / 2$ switched reluctance design of 54 mm stack length was used to make this new machine (the laminations were used in a lawnmower machine). The lamination dimensions were thus known and this allowed limitations to be imposed on the modelling process in terms of dimensional parameterization. As with the dual stack motor, the field winding was used to produce a unipolar axial magnetic flux and bifilar windings were used for the stator coils to direct the flux into or out of (as well as providing additional flux to) diametrically opposing stator poles pairs.

The machine design included cooling ducts due to the temperature problems encountered with the dual stack machine. The aluminium end caps that existed for the $4 / 2$ laminations had enough axial length to allow safe inclusion of an internal fan allowing improved cooling potential. It was proposed that the fan would suck air from the motor rather than blowing air into it as this had proven in the past to be the wiser method of motor cooling.

5.2 MACHINE TOPOLOGY - DESIGN FOR A SINGLE STACK VARIABLE RELUCTANCE MACHINE

Self-bonding wire was used in this machine (Appendix E) to keep the wire coils in their wound shapes. The wire self-bonded at $120 \mathrm{~A} / \mathrm{mm}^{2}$, although heating in an oven, using hot air streams and painting on methylated spirits were possible. The use of varnish and glues to bind the windings together were unsuccessful due to the high packing factor in the toroidal field winding (0.7).

Self-bonding wire limited the packing factor obtainable because this type of wire had an additional layer outside the insulation which bonded together with similar wire when activated by heat. The packing factor obtained in the motor for the toroidal field winding was 0.52 compared to 0.7 . This was still a high value but it imposed limitations on expectable packing factors. The self-bonding process did not appear to affect the wire resistance based on values before and after treatment.

Nylon66 was also used to hold the stator coils in place so they did not interfere with the rotor (Appendix E). The field winding was held in place by the presence of the stator coils.

The machine design had a basic initial specification of 8000 rpm at 300 W input power.

The bearings were inserted into aluminium end caps or aluminium sections held in place by end caps. Being non-magnetic the aluminium was not included in any modelling except for allowing space for inclusion of any parts.

5.3 WINDING CONFIGURATIONS

There are different possible winding configurations that could be used for this type of machine, which are based upon and explained further in terms of magnetic flux paths in Section 4.4 of Chapter 4. The winding possibilities are shown in Figures 5.2 to 5.5. Future diagrams may refer to the windings in sections 4.4.2 and 4.4.3 as 'conv' and 'bif' for unipolar excitation with single coil per phase and bipolar excitation with bifilar windings respectively only for the purpose of simplifying the text.

The toroidal field winding provides maximum packing factor and copper utilisation due to its shape. There are no end winding losses associated with the field winding. The energisation of the field winding was arbitrarily chosen to make the rotor stack a South Pole. The magnitude of the flux from the field coil linking each of the phase windings of the stator is modulated by the permeance of the magnetic path. As the rotor rotates, the coil flux linkage reaches a maximum when the rotor poles are aligned with the stator poles of that coil. An alternating emf is therefore produced in each of the stator coils. The stator coils on adjacent stator teeth have emfs exactly out of phase with each other. This is why the term armature can be used for these coils.

Figure 5.2 :- Coil labels PQRS. for single stack.

Figure 5.3 :- Bipolar excitation with bifilar windings (phase B energised shown).

Figure 5.4 :- Unipolar excitation with single coil per pole ('conventional').

Figure 5.5 :- Switched Reluctance energisation - the field winding is unenergised - a comparison model only.

An innovative method of driving this machine involves series connection of all the phase windings such that the induced voltages are all in the same sense, as shown in Figure 5.3. Forcing a bipolar current to flow in opposition to this induced emf produces motoring torque.

5.4 STATIC MODELLING OF 3D MAGNETIC CIRCUIT

As with the dual stack motor a sketch of an initial design was made, incorporating the two pole rotor with cylindrical section forming part of it and the four pole stator lamination section. The field winding was set within the steel block that surrounds the cylindrical rotor section and which formed the completion of the magnetic circuit. The potential flux paths were sketched onto this design to illustrate how flux might travel within the motor for an aligned rotor position. It was assumed that, for ease of calculation, the magnetic fields were those that were intuitively drawn for the model and that no flux leakage would occur. The use of a 54 mm stack length, 88.5 mm diameter $4 / 2$ lamination stack gave certain limitations of the size of the final machine. It was desirable to keep the final overall length of the machine the same.

The motor was modelled as a magnetic equivalent circuit such that a total reluctance for the magnetic circuit in the aligned position was calculated and the stator and field coils produced the magneto motive force to produce the flux.

The static modelling closely followed that shown in Section 4.5 of Chapter 4 but with a single stack design in mind.

Where possible all dimensions were variables such that an optimisation process for minimising machine total reluctance was possible. It was decided that, as the overall axial length of the machine was not to exceed 54 mm to maintain overall size, the axial length of the $4 / 2$ laminations could be a value less than 54 mm which would be included into the model as a variable. The model also allowed
space for the field and stator windings to be inserted. The model provided slot areas for these windings. The space for the stator coils was compromised by the inclusion of a plastic former (Nylon66 material - assumed non-magnetic - see Appendix E) to hold the stator coils in place around the stator poles. The values of slot area multiplied by the packing factor gave the available copper area (packing factors were typically $0.3-0.35$ for the stator coils and $0.5-0.7$ for the toroidal field winding). Selection criteria regarding the packing factor can be seen in Appendix E. The number of conductors possible was then rounded down value for copper area divided by the cross-sectional area for one conductor (copper wire). The space for the toroidal field winding was also not fully toroidal. The section of the steel housing (near the bearing) provided a magnetic link between the rotor and back-iron, carrying all the magnetic flux. It is known that flux does not travel well around a 90° corner and heavy saturation at that point is commonplace so it is replaced by two 45° corners to roundoff this point. The toroidal winding is wound on a specially made former to allow for this design feature.

In addition to the air gap between the stator and rotor lamination there are two air gaps within the flux return path that pose interesting design issues (Figures 5.6, 5.7). The first is the radial air gap whose function is to provide a continuation of the flux paths between the cylindrical section of the rotor and the housing of the field. Its purpose is as a return path and not for torque production and it is therefore regarded as a parasitic air gap (Figures 5.6,5.7). This air gap has to be very small (0.2 mm , ideally less) to minimise its reluctance but mechanical clearance has to be retained.

There is also a gap between the end face of the rotor and the field housing. If this is too small a large axial force (end thrust) would be produced. This axial gap was chosen to be 10 times greater than the radial gap (i.e. 2 mm) to minimise this problem.

There is a possible use of this end thrust effect. Ordinarily this effect is detrimental to the machine as bearings are not designed for axial forces. Some loads have an effect of pulling or pushing the rotor in an axial direction e.g. fan blades moving air. If the machine are connected correctly the end thrust produced by the machine could be used to reduce or cancel the axial forces caused by the load. It is noted that such a cancellation technique has to allow for the fact that, at start up, the axial load forces would be minimal. Any machine making use of the effect (not covered in this thesis) would have to be specially designed.

The resistance of the coils were predicted by knowing the average length per turn of wire (found from the model) and knowing the cross sectional area of one turn of wire (5.1). The coil resistance was proportional to the square of the number of turns (5.2).

$\rho=1.7 \times 10^{-8} \Omega \mathrm{~m}$
$\mathrm{l}=\mathrm{N}($ average length per turn $)$

$$
\begin{array}{lll}
\text { Resistance, } \mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{~A}} \quad \text { where } \quad \begin{array}{l}
\mathrm{l}=\mathrm{N} \text { (average length per turn) } \\
\mathrm{A}=\frac{\text { copper area }}{\mathrm{N}} \\
\mathrm{~N}=\text { number of turns }
\end{array} \\
\text { hence } \quad \mathrm{R}=\mathrm{kN}^{2} \quad \text { where } \quad \mathrm{k}=\frac{\rho \text { (average length per turn) }}{\text { copper area }}
\end{array}
$$

5.5 DYNAMIC SIMULATION

The back emf is the product of rate of change of flux and stator turns per phase. It is assumed that there is no flux leakage in the machine and that, for a $4 / 2$ lamination design, a 90° turn of the rotor ($1 / 4$ revolution) gives a change of flux density of $\mathrm{dB}=\mathrm{B}$. The flux is the product of flux density and stator pole cross sectional area (5.3). This area was a variable due to the modelling of the machine and hence the back emf was a variable in terms of number of turns, speed and variable cross sectional area of the stator pole.

$$
\begin{align*}
& \mathrm{E}=\mathrm{N} \frac{\mathrm{~d} \Phi}{\mathrm{dt}}=\mathrm{NA} \frac{\mathrm{~dB}}{\mathrm{dt}} \\
& \mathrm{~A}=16.6 \times 10^{-3} b \text { where } 0<b<54 \mathrm{~mm} \\
& x \mathrm{rpm}=\frac{x}{60} \mathrm{rps} \tag{5.3}\\
& 1 \text { revolution takes } \frac{60}{x} \text { seconds } \\
& 1 / 4 \text { revolution takes } \frac{15}{x} \text { seconds } \\
& 1 / 4 \text { revolution } \mathrm{dB}=\mathrm{B} \\
& 1 / 4 \text { revolution } \mathrm{E}=\mathrm{NA} \frac{\mathrm{~B} x}{15}=16.6 \times 10^{-3} \mathrm{~N} b \frac{\mathrm{~B} x}{15}
\end{align*}
$$

The model predicted the total magnetic equivalent reluctance for the machine. This value multiplied by magnetic flux is the same as the total ampere turns of the machine. The number of available turns for the field and stator (armature) windings was determined by the slot areas, packing factors and wire diameters selected during the modelling process. A dc motor equivalence was used to predict the motor performance (5.4). Such a theory assumes that the field winding produced all the flux and that all this flux interacts with current in the stator coils (armature) to produce torque. If the number of armature turns was known then the required current was calculated and was then used in the dc motor equivalence equations. The supply to the armature windings equalled the sum of the back emf and the volt drop across the armature windings (current times resistance). The back emf was predicted as was the armature winding resistance as shown by the previous equations. The power calculation (5.4) was a simple expansion of the dc machine voltage equation. The interaction of the current and back emf gave rise to torque production (5.5). It was then possible to predict the performance of the motor for a given speed in radians per second. $\mathrm{L}(\mathrm{dI} / \mathrm{dt})$ was ignored as the current, I , was assumed to be constant, for ease of calculation.

$$
\begin{align*}
& V_{a}=E_{a}+I_{a} R_{a} \tag{5.4}\\
& V_{a} I_{a}=E_{a} I_{a}+\left(I_{a}\right)^{2} R_{a}
\end{align*}
$$

$$
\begin{align*}
E_{2} I_{a}=T \omega \text { where } & E_{2}=\operatorname{back} \operatorname{emf}(V) \\
I_{a} & =\text { armature coil current }(\mathrm{A}) \\
T & =\text { torque }(\mathrm{Nm}) \\
\omega & =\text { speed in rads } \tag{5.5}
\end{align*}
$$

The magnetic flux was limited by the cross sectional area of sections of the motor. The smallest area was regarded as the constraining value and, for a required magnetic flux density, the mmf of the motor was calculated. The mmf produced by the stator coils and the field coil was to match this value and, from the dc motor equations, the performance of the motor was dynamically modelled for a given rotor speed and supply voltage. The choice of wire size and packing factor was varied and the model included error detection to prevent selection of impossible dimensions.

Temperature calculations for the windings using Stefan's Law is calculated using the same theory as in Appendix E.

It should be stressed that this model did not take into consideration that the $4 / 2$ switched reluctance section of the machine had laminations and that these laminations were highly likely to affect the modelling of the machine. It was suggested that the mmf needed to drive flux across the laminations would be greater than expected. The flux paths were three dimensional but the laminations were designed for two dimensional fluxes in the same plane as the laminations. Also, effects such as iron losses and eddy currents were assumed to not exist.

The field winding was held in place within the steel housing unit but there was some concern that the winding, being toroidal in shape, could rotate within the housing and have its insulation scraped off by the cooling ducts. The solution was to reduce the number of turns in the field and place insulation taping around the toroidal windings preventing any possible rough parts from breaking the insulation. The disadvantage of this was lost copper space hence lost ampere-turns for the field winding.

Table 5.1 gives the choice of turns for the armature and field based on the design model used. Pictures of the final design and its dimensions can be seen in Appendix G.

TABLE 5.1 - DIMENSIONS WITHIN MACHINE

	Field	per Phase	Total
Turns	1600	556	-
Wire Diameter	0.315 mm	0.315 mm	-
Resistance	36.250 hm	12.60 hm	-
mmf	-	-	1502
Packing Factor, PF	0.517	0.3	-
Power Wanted	-	-	300 W
Speed Wanted	-	-	8000 rpm

5.6 BACK EMF TEST RESULTS

A variable speed dc motor was used to drive the rotor of the Single Stack Variable Reluctance
Machine (SSVRM). A discussion of the results and the effects of a bearing imbalance are discussed in Appendix G.

5.7 MOTOR TESTING

The machine required optimisation in order to be as efficient as possible for any required specification, usually for a given load or speed. This involved the optimisation of the phase firing timing sequence to minimise the total input power. A prototyping circuit was developed to allow optimisation of the sequences. This is described in Chapter 3 and Appendices B and C.

At no load the machine achieved over 19000 rpm but no test data was recorded as it was only done to ascertain basic speed limitations. This was actually faster than the speed rating of the ball bearings (rated to $18,000 \mathrm{rpm}$). It was noted that at such speeds the motor was exceptionally noisy.

The optimisation of the timing sequence for phase firing at a fixed speed allowed testing the machine at varying loads (see Chapter 3 and Appendix G). The use of a hysteresis brake allowed small loads to be applied to the machine (by applying a dc current to the brake the load was a function of rotor speed and dc current value) (Appendix B).

5.7.1 BIPOLAR EXCITATION WITH BIFILAR WINDINGS TEST RESULTS

This winding type was assumed to provide the best method of transferring current between the phase windings as one phase turns off and the next on with the simplest power electronic circuit (half-bridge converter). The turn numbers are summarised in Table 5.2.

TABLE 5.2 - TURN NUMBERS WITHIN MACHINE

Field	Armature $(2$ phases $)$
1400 turns	$4 \times 139=556$ turns per phase
60.7 ohm	14 ohm per phase

Load tests were carried out at speeds of 5000 rpm and $10,000 \mathrm{rpm}$. The machine was initially found, for the initial given windings, to be most efficient at no load when in the High Speed Mode.

5.7.2 NO LOAD TESTING AT 5000RPM IN HIGH SPEED MODE

5.7.2.1 OPTIMISATION OF THE TOROIDAL FIELD WINDING

As can be seen in Figure 5.8 there was a minimum input power. The value chosen as the optimum was 6.6 volts for the field. The current equivalent was used as the optimised value as the ampere-turn value it gave was the magnetic circuit value required for constant flux production.

5.7.2.2 OPTIMISE VAL7 (VALUE DETERMINING HOW ADVANCED THE PHASE FIRING STARTS AT)

This value represented the delay after opto state change when the phase was energised and was such that it altered how far advanced the start of phase firing before the next opto state change was. The optimum value for minimum input power was selected to be 90 (Figure 5.9). This variable clearly had a great effect on minimising input power for this machine.

5.7.2.3 OPTIMISE VAL6 (VALUE DETERMINING DELAY BETWEEN FIRING EACH PHASE)

This variable determined the size of time delay between energising each phase. It was apparent that, for this machine, the value selected for minimum input power was near 68 (Figure 5.10).

Figure 5.8 :- Optimisation of field supply for minimum input power

Figure 5.9 :- Optimisation of Val7 for minimum input power.

Figure 5.10:- Optimisation of Val6 for minimum input power.

The total input power was thus minimised to 4.28 W of which 0.766 W was due to the field winding (17.89% of the total power). This concluded no load testing for 5000 rpm . This appeared to be very encouraging for the efficiency during load testing of the machine since the optimised input power was very small in value.

5.7.3 NO LOAD TESTING AT 10000RPM IN HIGH SPEED MODE

Similar tests were carried out as the 5000 rpm tests. The results are shown in Appendix G. The final optimised power input was 16.2 W of which 1.332 W was from the field winding (8.22% of the total).

5.7.4 RE-OPTIMISING FOR A SMALL LOAD AT 5000RPM IN HIGH SPEED MODE

A test was carried out to see whether a small load would affect the optimisation of the phase firing timings and field current. The hysteresis brake was supplied with 10 mA current. This represented a mechanical load of 7.62 mNm and 3.99 W output power at 5000 rpm .

5.7.4.1 OPTIMISATION OF THE TOROIDAL FIELD WINDING

As the graph in Figure 5.11 portrays, there was a minimum input power when there was about 20.5 V in the field winding. Using the theory that more flux would be produced by the field allowing more flexibility in the armature windings, a different field supply value was chosen. A value of 26 V across the field was selected as it allowed a small reduction in the input power required for the armature windings. The associated current was then used as this gave a fixed value of ampere turns for the machine. Appendix G shows additional optimisation steps between this step and the step discussed in the next section.

5.7.4.2 REFINING OPTIMISATION METHOD

Since the machine values were chosen from an unproved method, Val7 was rechecked and a new value of 88 was selected (Figure 5.12). This demonstrated that there was sometimes the need to reassess the optimisation timing values in order to maximise the efficiency of the machine. The minimised total input power was 39.8 W (10.4 W is due to the field). It was noted that the total input power for no load was 4.28 W and this indicated that the motor required a very large input power for increased loads and this would cause a thermal problem with overheating of the windings.

Figure 5.11 :- Optimisation of field supply for minimum input power.

Figure 5.12 :- Re-optimisation of Val7 for minimum input power.

Tek Stop: $\mathbf{2 5 . 0} \mathbf{~ k S} / \mathrm{s}$
422 Acqs

An example waveform of the machine operating during optimisation at 5000 rpm is shown in Figure 5.13. The advance angle (turn on) was 19.2° (electrical) before the optosensor changed state and the phase remained energised for $139.2^{\circ}\left(120^{\circ}\right.$ after optosensor state change). There was a delay of 40.8° before the next phase was energised.

5.7.5 LOAD TESTING AT 5000RPM

By varying the input current to the hysteresis brake the torque to the machine was varied (the mechanical output power depended upon the speed as $\mathrm{P}_{\text {out }}=$ Torque x Speed in rads $\left.{ }^{-1}\right)$. The mechanical load was a function of the hysteresis brake current for a fixed speed. The current and voltage waveforms for the field windings were both relatively constant and could be assumed as dc values.

As the load was increased, for a fixed current supply to the field winding and optimised armature phase firing timings, the armature input power supply was adjusted until the speed was at 5000 rpm . The current and voltage values for the field and armature were noted as well as the input power to the armature and associated power electronic components (via a power meter). The voltage supply to the field was adjusted to keep the field current constant to give fixed ampere turns due to temperature drift
raising the field resistance due to copper losses. The percentage ratio of the mechanical output power to the sum of the input powers was used to calculate the efficiency of the motor.

Figure 5.14 :- Input and output powers for increasing load.

Figure 5.15 :- Efficiency with increasing load.

Figure 5.16 :- Efficiency and power distribution at 5000 rpm .

Figure 5.17 :- Efficiency and power distribution at 5000 rpm .
An initial inspection of the test results for a range of very low torques showed that, for a fixed field supply, there is a fast increase in armature input power as the load increases (Figure 5.14). The graph shows that the efficiency increases with torque and it suggests that it would increase with a higher load. The thermal constraints of the armature windings prevent such testing as the wires quickly overheated with increasing load (it was accepted that $110^{\circ} \mathrm{C}$ was the safe limit before a wire burned through its own insulation). If the permanent magnet theory on replacing the flux supplied by the field winding was used, the efficiency could be boosted but the gain would diminish with increasing load as more flux would be produced by the armature than by the magnet (Figure 5.15). This of course was only a simplified demonstration as the use of a magnet would result in a different geometry machine being built (and the magnetics defining a magnet differs from that defining the field winding electromagnet). More test results at 5000 rpm are shown in Figures 5.16, 5.17.

A table giving test data for this machine in terms of input powers, output powers, torque and efficiency at 5000 rpm is shown in Table 5.3.

As can be seen from the above results, the maximum efficiency was calculated to be 29.4%. It should be noted that the input power to the windings was high and the copper losses were great. This resulted in the windings rapidly overheating during tests at higher loads. In one test the armature windings
rose from $24^{\circ} \mathrm{C}$ to over $110^{\circ} \mathrm{C}$ in under one minute. Long term operation at the conditions producing the higher efficiencies would burn out the machine hence these values.

Tests at 10000 rpm were abandoned as the motor was too inefficient at such high speeds.

TABLE 5.3 - INPUT AND OUTPUT POWERS AND EFFICIENCY WITH INCREASING LOAD TORQUE.

POWERIN (W)								POWER OUT (W)				$\begin{aligned} & \text { Hyst brake } \\ & 1(\mathrm{~mA}) \end{aligned}$	Torque (Nm)	Efficiency (\%)
Vdc(meter)	Idc(meter)	Ifms(scope)	Parm (scope)	Vrield	Hield	Pfield	Power total	Mechanical	Armature	Toroid	Remainder			
46.40	0.46	0.57	18.10	26.00	0.40	10.40	28.50	3.67	4.60	10.40	9.84	0.00	0.007	12.86
46.60	0.48	0.59	18.60	26.00	0.40	10.40	29.00	3.98	4.92	10.40	9.70	5.00	0.008	13.72
48.50	0.53	0.66	21.40	26.00	0.40	10.40	31.80	4.24	6.05	10.40	11.11	10.00	0.008	13.34
52.00	0.58	0.72	25.30	26.00	0.40	10.40	35.70	4.82	7.36	10.40	13.12	15.00	0.009	13.49
55.40	0.65	0.81	28.90	26.00	0.40	10.40	39.30	5.92	9.31	10.40	13.67	20.00	0.011	15.06
58.20	0.75	0.94	35.00	26.00	0.40	10.40	45.40	7.96	12.31	10.40	14.73	25.00	0.015	17.53
66.70	0.88	1.17	47.10	26.00	0.40	10.40	57.50	11.26	19.10	10.40	16.74	30.00	0.022	19.58
72.40	1.02	1.35	56.00	26.00	0.40	10.40	66.40	16.13	25.68	10.40	14.19	35.00	0.031	24.29
82.70	1.20	1.62	72.00	26.00	0.40	10.40	82.40	22.88	36.87	10.40	12.25	40.00	0.044	27.77
96.60	1.48	2.06	98.00	26.00	0.40	10.40	108.40	31.83	59.85	10.40	6.31	45.00	0.061	29.37
122.30	1.93	2.74	160.00	26.00	0.40	10.40	170.40	43.35	105.33	10.40	11.32	50.00	0.083	25.44
161.20	2.60	3.55	292.00	26.00	0.40	10.40	302.40	57.70	177.26	10.40	57.03	55.00	0.110	19.08

5.8 REMODELLING DYNAMIC SIMULATION

A spreadsheet originally used to determine optimum designs for Flux Switching Machines was used to model the performance of this machine. Flux Switching Motors have a constant dc winding (field) and bifilar phase windings (armature) in a manner similar to the Single Stack Variable Reluctance Machine (except the physical placement and geometries differed). The spreadsheet was adapted so that test results for the Variable Reluctance Machine were replicated within the spreadsheet with a level of acceptable accuracy. By doing so the spreadsheet was used to remodel the machine for an improved performance.

Data required were current values in the field, back-emf values and magnetic flux values all with respect to mechanical angle of the rotor from aligned position. These were calculated from back-emf testing at a known field current which was not large enough to cause magnetic saturation within the machine. The current chosen was 400 mA in the field.

The model had to predict how hot the windings would become during operation due to an overheating problem in the original winding selection. The field and armature windings would heat up as the current flowing through them increased. This was proportional to the power in the coils. The power per degree Celsius rise above room temperature $\left(25^{\circ} \mathrm{C}\right), \Upsilon$, was calculated from test results (where T was the measured temperature in $\left.{ }^{\circ} \mathrm{C}\right)(5.6)$.

$$
\begin{align*}
& \Upsilon=\frac{W}{T-25} \\
& T=\frac{W}{\Upsilon}+25 \tag{5.6}
\end{align*}
$$

The test result copper loss powers from the field and armature windings were used for calculating the Υ values for each (at 0.0152 Nm torque the temperatures were $58.3^{\circ} \mathrm{C}$ and $49.95^{\circ} \mathrm{C}$ for the field and armature respectively).

The spreadsheet used data from a test run at $5000 \mathrm{rpm}, 0.0152 \mathrm{Nm}$ torque and from back-emf testing at 1071 rpm . The spreadsheet originally predicted the performance of the machine assuming that there was no delay between switching between phases. The optimised machine incorporated a delay between energising each phase which had to be included into the model. The spreadsheet also had to be altered so that the dc field supply can be kept at a constant supply current (user defined). The temperature of the windings had to be calculated using the Υ values from actual test results. The model was also altered such that it calculated how many turns can physically be inserted within the machine. The spreadsheet had to determine the maximum number of turns possible for both the armature and field based upon available slot area and wire diameters.

This model calculated current density, resistance, power dissipation, torque, efficiency. It showed if there were fundamental errors such as overheating wires, too high a current density, and too many turns to fit in the machine.

The spreadsheet model was changed so that it predicted the current waveform for the same test conditions of armature and field supply as that of the actual test waveform for those conditions. It was then assumed that the model would give a more accurate prediction of the machine performance for a variety of speeds, loads, supply to the windings, turn off and turn on angles, and winding turn diameters and numbers. The spreadsheet was such that calculated values are fed back into the equation so that the answers were optimised (an iteration process).

Remodelling to give a better design involved altering the turns ratios and wire diameter and then altering the amount of current in the field winding. Altering the field current had the effect of having the back-emf values automatically recalculated and fed back into the spreadsheet. The supply voltage to the armature windings was kept at the same value as in the original test result that was being replicated. The above variables were changed until the original torque was obtained again. The net result was identical speed, supply voltage and torque but the efficiency varied. The aim was to maximise the efficiency then to note the effect on efficiency as the torque was increased (by increasing the supply voltage only - nothing else was altered).

A table of possible values is shown in Table 5.4 whereby the original torque was reproduced with different turn ratios. The possible torque at a higher armature supply was calculated.

By using the table, a prediction of the correct number of turns for the field and armature windings to give the best efficiency possible at 5000 rpm was made. The machine was then rewound and retested. The optimised windings are included in Table 5.5 containing data for the machine.

TABLE 5.4 - PREDICTION OF MACHINE PERFORMANCE WITH NEW TURN NUMBERS.

Ell	Ind lactor	Anvle	$\frac{\text { Anple }}{6}$							Amon						tron boss	Field	Ampure	Iron lass factarcelculated	sypatr	
								Iemo	J	tums(2)	curnem		Iemp	J	${ }^{\text {Al }}$						
$\frac{175}{87}$	$\frac{207}{207}$		${ }_{6}^{6}$	${ }_{0}^{0}$	45	0594	${ }^{56012}$	$\frac{183}{106713}$	$\frac{4}{71895}$	27	$\frac{00609}{12}$	${ }^{8}$	10818	$\frac{11,08}{10 \times 9}$	$\frac{10048}{1573}$	159	-	${ }^{1169}$	-		Q,
209	207	22	50	67	875	03	5782			312	07308								235		0015
91	208	-30	${ }^{\infty}$	675	10	72	22	a 5	730	312		${ }^{308}$	${ }^{1076}$	${ }^{173}$	188522		\%			$\frac{50}{118}$	
24.	207		0_{0}	650	0.76	0306	1:4	4.74	40565	345	0.56	40, 6	1539	8186	854.78		5089	7.54	581	582	
		30	${ }^{60}$	EFI	1.11	0.991	\%8043	${ }^{1097}$	$7{ }^{2}$	346						,			1914		
31		22	0	E 2.6		02 zan	361.3	30.7	${ }^{3} \mathrm{~B}$	${ }^{3} 1$	0.060		02	7376	${ }_{786} 65$		160	5.519			ज
10	207	-30	60	$\underline{06}$	139	0.006	255	10939	14	300	08	937.7	. 1.	15.4	16952	4.8	3.09	30.91	70.5	150	230
3.8	207	2	60	600	0.5	02488	2976	\%疗	ग9	4.5	05.00	:3]	क 5	6608	1.5	28	${ }^{3 \times 3}$	597	10.6		15
$\underline{196}$	207	30	80	¢00	136	16178	1412	2)	78616	114	07	\%9		18	172012	457	2599	${ }^{196}$			
36.	207	22	6_{0}	55	0	02.203	25345	${ }^{33}$	280	49	$0 \cdot 6$	13 2	万,	62012	88	6.	15	5.56	549	302	00152
111	207	${ }^{30}$	∞	575	133	06.02	28473	1093	8 Cm	48	07	1077	129313	14.5	${ }^{172213}$	462	392	${ }^{388}$	76%	${ }^{184}$	
305	207	22	(6)	5	13	01980	${ }^{287} 7$	36	268	${ }_{4} 88$	$0 \cdot 8$	4 C,	36564	588		56		537	4135	562	
117	207	30	0_{0}	550	13	0.64	7884	03.23	81 9	884	36	0802	103005	14.4	${ }^{1788,6}$	469	588	309	7599		0.088
412	207	. 22	6	$5 \times$	032	01631	174.405	208	2114	518	0.459	455	68	$5{ }^{5}$	5295	48	125	5292	377	82	5
123	207	. 30	60	525	1.77	0×821	592065	19	839	518	06	1039	1092	1353	1785	17.	X875	3>7	1511	20	0298
	282	-22	∞	500	0.8	1617		7_{7}	en	552	0.3311		579	553	ह17		586				
720	207	n	8	sm	1.24	क57	\%597		m	कर	05	13.7			Senc.	87	3 ma	${ }^{69}$		236	
46	207	.22	${ }^{80}$	475	021	1205	114.475	26.92	1530	(2)	0 0र20	504	P27	54 ¢	614875	35	059	5×63	3054	92	0152
133	207	30	00	475	121	0 0831	593.35	9,986	${ }^{\text {Eages }}$	586	5	1166	1008.85	12.787	182595	475	2 Sc 98	3303	73315	256	0033
57	207	${ }^{24}$	∞	450	0.185	0,12	∞		1,12	620	$0.58{ }^{\text {a }}$	1896	56	5\%	5154		0488	575	खew	58.2	0152
139	207	30	6	450	118	07445	8006	10998	9808	[20	047	1984	0933	1278	1899	17.1	2812	${ }^{177}$	1	273	0345
459	207	${ }^{28}$	\pm	423	0.145		${ }^{3} .05$	\%oz	${ }^{19}$	\square_{6}	0×277	${ }_{58}$	E/0	547	6305	27	0.318	6345	2837	c, 2	0152
145	207	30	6_{0}	125	1115	वउआ	623985	1096	9346	684	0.4809	1229	10925	1205	188208	8	26015	${ }^{3} 797$	71318		0.0631
		24	0	400	0.11		59.32	[5.52	953	6s\%	130035	610.3	1073	567	5702	23	0192	7.247	2105	59.2	015.
151	207	30	60.	300	1.11	07561	${ }^{064} 48$	10949	9,624	${ }^{2} 0$	0.426	16821	0.0925	12.73	18859	467	35	(87\%	70.2	308	0.378
417	207	24	${ }^{60}$	375	0.076	00582	414	23318	0.000	724	0330	7018	4515	6216	76.32	1.8	02878	9796	18374	59 ?	00152
								10954	9,947	${ }_{24}$	0.080					462			88.104	325	0.0388

TABLE 5.5 - REVIEWED PROPERTIES WITHIN MACHINE

PROPERTY	PROPERTY VALUE
Toroidal Field Outer Diameter	72.9 mm
Toroidal Field Inner Diameter	43.2 mm
Field turns	$950,0.315 \mathrm{~mm}$ diameter wire
Total length	54 mm (motor alone), 108 mm inclusive
Length of stack	20 mm
Outer diameter	92 mm
Armature turns per phase	$2348,0.315 \mathrm{~mm}$ diameter wire

Graph to show the Flux produced per mA field current but not compensating for residual magnetism in motor

Figure 5.18 :- Flux density versus field current in toroidal field winding.

5.9 TEST RESULTS

From the graph of flux density against field current in the field winding (determined using the equations detailed in Section G. 2 in the Appendices), saturation was seen to occur when the plot started to lose its linearity trend as the current increased (Figure 5.18). Saturation of the machine was seen to occur at about 1.22 Tesla. This method was not totally accurate as the graph was clearly nonlinear initially. An investigation to the efficiency of flux production was carried out by plotting a curve of magnetic flux per mA toroidal field current (Figure 5.19). At low field current there was the most flux per mA and this was due to the fact that back emf testing with the energisation of the field Chapter 5
had magnetised the machine. The level of residual magnetisation (when 0 mA field current was used) is found to be 0.191T. If this was taken into account and the graph of flux per mA field current was corrected then it was clear that the field had more efficient flux production at around 378 mA but this was due to magnetic saturation occurring in the machine (Figure 5.20). This is another method to aid prediction of magnetic flux saturation.

Figure 5.19 :- Flux produced per mA of field current.

Figure 5.20 :- Corrected flux produced per mA of field current.

Back emf testing showed that the back emf waveform was almost triangular in shape (Figure 5.21). It was not a good shape for torque production as, for a given voltage supply to the armature windings, the initial low back emf allowed fast current rise without significant torque production and the peak in the back emf could exceed the supply voltage at higher speeds, reducing torque production. This back emf waveshape was caused by the pole arcs of the stator and rotor laminations. The pole arcs were optimised for the use of these laminations in a switched reluctance machine. In this machine wider pole arcs would have been better. The pulsed Normal Mode supply in which current was applied in the middle of the back emf was therefore best suited for torque production. The High Speed Mode did give the minimised input power but the back emf curve was such that torque production was impaired and the machine would require more ampere-turns to generate higher torque.

5.9.1 BIPOLAR EXCITATION WITH BIFILAR WINDINGS TEST RESULTS

The rewound machine was operated with different combinations of field and armature schemes. It was initially tested in the bipolar excitation with bifilar windings configuration. The prototyping circuitry was used to optimise the machine in terms of minimising total input power (a value of 32 W at 5000 rpm was obtained at no load, including windage due to an internal fan). Figure 5.22 shows an actual test waveform taken at 5000 rpm . Under no load conditions, at 5000 rpm , the minimum input power (electrical) occurred when the turn on point was 21.6 degrees (electrical) after the back emf went through zero and turn off was 111.6 degrees after zero.

During testing the field winding was noted to have a ripple instead of being a dc value (Figure 5.23). The spikes in this ripple were due to switching between phases. The average during a cycle was used for power calculations.

As shown in Figure 5.22 the no load optimised waveform had a pulsed supply which involved energising the armature coils for only the first half of the cycle. In other words this was the same as the section of the back emf waveform from zero up until the point at which the back emf had peaked. However the load testing revealed that higher torques were obtained if the pulse was lengthened further (Figure 5.24) but the current increased in rms value, tending to cause an increase in winding temperature.

Load testing revealed that, as expected from the dc machine model, the main source of input power was via the armature windings. Armature losses were small but losses in the form of iron losses, windage, and circuitry losses were the most significant (Figure 5.25).

Tests were then carried out to ascertain about the effect of the level of excitation in the field winding on efficiency (Figure 5.26). At higher torques it was significant that a higher field current raised the efficiency. This suggested that it is appropriate to have the field in series with the armature.

Unfortunately, the winding numbers in the field and armature did not allow testing of the conclusion to be performed.

The final test was on the speed of the machine. The effect speed had on efficiency was investigated (Figure 5.27). The machine was more efficient at higher torques when the speed was reduced. This indicated the iron losses at higher speeds were a major contributing factor to the reduction in efficiency.

Figure 5.25 :- Input and Output Power distribution and efficiency over a range of mechanical output powers.

The machine was noted to self-start throughout all the tests.

Load testing yielded a peak efficiency of 19%. However, the stack and the rotor poles were laminated and this did not assist 3-dimensional flux paths. It was harder to drive flux across the laminations. Eddy currents due to cross lamination fluxes were significant. The model overestimated magnetic fluxes because of this. It was practically impossible to correct the model for such a situation.

Figure 5.26 :- The effect of field current on efficiency.

Figure 5.27 :- The effect of speed on efficiency.

5.9.2 UNIPOLAR EXCITATION WITH SINGLE COIL PER POLE WINDING ('CONVENTIONAL’) TEST RESULTS

Previous tests were carried out using bipolar excitation with bifilar windings where flux is produced in all the stator poles when each phase was energised but only half the copper was used in each pole. The unipolar excitation with single coil per pole windings method for this style of machine was to have all the copper for two diametrically opposite stator poles used for one phase only and that the flux produced by each phase aided the direction of flux into or out of the poles due to how the field winding was energised (it was termed 'conventional' as described in Chapter 4 as a reference term). The other two stator poles were left unenergised. This different winding style gave identical back emf traces as the previous winding model. The same amount of copper was used by each phase (same number of turns in each style). The difference was in how the flux was produced in the machine and how this affected the flux paths. This alternative winding topology required use of the asymmetric half bridge converter circuit.

For a better comparison between the styles, new tests for each style of winding were performed one after the other so that the test conditions were as similar as possible. To conclude testing, the machine was run as a two phase Switched Reluctance machine by altering the flux directions of the armature coils to that for such a machine and ensuring the field was unenergised. The axial residual magnetisation of the machine was noted to possibly affect the running of the machine as a Switched Reluctance variant. The machine was not demagnetised to aid testing this variant (with a reducing ac current in the field coil), which should have ideally have been performed should further testing be required for this variant. It was not performed to maintain the integrity of remaining tests (by maintaining the residual magnetisation).

Figure 5.28 :- The effect of field supply on efficiency.

As with the bipolar excitation with bifilar windings machine, the efficiency of the unipolar excitation with single coil per pole windings machine was improved as the field current increased (for a fixed speed and fixed phase timings) (Figure 5.28). The machine was also noted to improve efficiency as the speed was reduced (Figure 5.29). This followed the same trend as noted previously with the bipolar variant. When comparing the efficiencies of the bipolar and unipolar styles there were noticeable differences. For any given speed the bipolar excitation with bifilar windings current machine (first version) was shown to be less efficient (Figure 5.30).

Figure 5.29 :- The effect of speed on efficiency.

Figure 5.30 :- The effect of speed and winding type on efficiency.

Figure 5.31 :- Power distribution and efficiency for conventional windings.

Figure 5.32 :- Power distribution and efficiency for bifilar windings

Figure 5.33 :- The effect of winding type on power distribution and efficiency.

It cannot be said if there was a difference in the change in efficiency with speed as the load increased. Plots of the distribution of input and output powers at 5000 rpm (and fixed field supply) for both winding styles gave interesting results (Figures 5.31, 5.32, 5.33). The first version had a smaller copper losses compared to the 'conventional' unipolar excitation with single coil per pole windings version as the load increases. Also the bipolar excitation with bifilar windings version model had higher 'other losses' (windage, iron losses and eddy current losses). The difference in these 'other losses' increased with load between the two styles.

Plots of the ampere turns from the armature windings of each style indicated how the current waveforms differed slightly for the optimised timings (Figure 5.34). The bipolar excitation with bifilar windings version had a marginally lower rms current (0.602 A c.f. 0.607 A) but its mean during the time it was energised is higher (0.58 A c.f. 0.55 A). One theory was that ampere turns were required in the first version bifilar model to prevent flux entering the two stator poles that were to become the unaligned pole pair. The unipolar excitation with single coil per pole windings model used all its flux in torque production and allowed flux leakage in the unaligned pole pair. The bipolar excitation with bifilar windings method prevented flux entering the unaligned poles may have increased the level of eddy currents and iron losses as the load increased. This could be due the axial flux from the field winding being repelled in such a manner by these two coils that flux was being driven back across the laminations. Less total flux would be used in torque production than in the unipolar excitation with single coil per pole winding. This would be compounded at higher loads since a greater amount of flux would be required for additional torque production. This was why the input power to the armature windings was significantly higher in the bipolar excitation with bifilar winding version.

More current was thus needed for flux production in the bipolar excitation with bifilar winding model while the phase was being energised. However, the phase was energised for less time than the unipolar excitation with single coil per pole winding model and, due to the use of bifilar windings - the time for the current to fall to zero is shorter. This would explain why the copper losses were less in the bipolar excitation with bifilar winding version.

The final test was to operate the machine as a Switched Reluctance variant, by altering the flux to flow within the laminated sections and to not have the field winding energized (Figure 5.34). The machine was heavily magnetised to the point of parking itself in an aligned position when not operated so it was not an ideal test for a switched reluctance operation. The current waveform required for 5000 rpm was optimised such that when the each phase was switched off there was sufficient time for the current waveform to fall towards zero. The machine did self start during testing but its efficiency was found
to be very poor in comparison to the other winding types. The high current required to run the machine gave it an overheating problem which meant only two test results were taken (Figure 5.35).

It was conclusive that this machine operated more efficiently when a unipolar excitation with single coil per pole winding arrangement was used. The high iron losses due to the use of laminated material to carry flux perpendicular to the plane of the laminations meant that slower rotor speeds aided efficiency. Having the field in series with the armature as in a current source half bridge converter circuit was an ideal arrangement as an increase in field current boosted efficiency.

Figure 5.34 :- Current waveforms (as A-t version) for various winding types

Figure 5.35 :- Efficiency for various winding types with load.

The bipolar excitation with bifilar winding version did not benefit torque production as first thought in this machine. Bipolar excitation may possibly detrimentally reduce the amount of axial flux entering the stator poles. Energy was wasted in preventing flux entering the unaligned stator poles. It was proposed that, as the armature current increases, flux produced in these unaligned poles detrimentally affected the flux paths for the aligned poles causing additional losses. More total flux was required to generate the torque required for a given load. Having the field in series with the armature allowed more field flux to be present as the load increased. It was speculatively suggested that this arrangement could benefit the bifilar winding by having more axial flux from the field at higher loads to reduce the 'other losses' at higher loads by lessening the increase in unaligned armature coil flux as the load increased. Only three dimensional flux modelling would reveal the true situation and possible solutions.

The immediate solution was to select the 'conventional' winding topology for the armatures and to have the field winding in series with both phases.

5.9.3 MEASUREMENT OF COGGING TORQUE

TABLE 5.6-COGGING TORQUE WITHIN MACHINE

Field I (A)	Force	SSVRM	Radius (m)	Torque (mNm)
	280	2.74	0.0205	56.25
0.4	320	3.14	0.0205	64.29
0.5	390	3.82	0.0205	78.35
0.6	580	5.68	0.0205	116.52
0.7	760	7.45	0.0205	152.68

Energising the field winding with dc current gives constant flux. The flux is used to bring the rotor into the aligned position. This constant source of flux causes a cogging effect as the armature phase windings are successively energised to turn the rotor. As the field current increases the cogging torque also increases [21] (Table 5.6). The back emf waveform gives a good indication of the torque that could be obtained from the machine. The less 'square' the waveshape, the less smooth the torque would be. Skewing the rotor could have been used to improve the waveshape but was not performed as the laminations were fixed. In this machine cogging torque effects were not resolved due to this complexity.

5.10 SUMMARY

The new machine construction has provided a valuable insight into alternative reluctance machine geometries and excitation schemes. The test results have demonstrated that the concept of a switched
reluctance variant of the homopolar inductor alternator works and that control of the machine characteristics can be achieved via either the field current or the phase winding (armature) current. The power electronics only requires two power switches and can produce torque at all rotor angles.

The field winding is a very efficient source of magnetic flux and could be well suited to be placed in series with the armature windings.

The effects of end thrust could be used in a beneficial manner if the load produces an axial force opposing it as the forces could cancel each other out.

The machine appears to be more suited to a current source half bridge converter circuit to energise the armature and field windings when using bipolar excitation with bifilar windings but the asymmetric half bridge converter is the circuit for unipolar excitation with single coil per pole windings which is the winding type for best torque production. This is due to the machine being more efficient when the field coil carries a higher current. As the load increases so too does the current required to produce the increased torque. A new model with improved turns ratios between the armature and phase windings would allow this circuit to be used effectively.

The main disadvantage of the machine, as constructed, has been its low efficiency. The test results have shown that the iron losses are very significant. This was to be expected from the use of laminated material to carry flux perpendicular to the plane of the laminations. It is proposed that a significant improvement in performance could be obtained through the use of powdered iron material in parts of the machine structure. It is suggested that this machine is more suited to powdered iron than a conventional switched reluctance machine. The use of unipolar excitation with single coil per pole windings with each phase on one diametrically opposite pair of stator poles gives a greater efficiency than each phase having windings on all stator poles as more flux is used in torque production.

One factor that partly explains efficiency limitations with this design is caused by the use of the field winding itself. The dc current in the winding would give dc flux axially within the rotor, when considered as the only source of flux. This would not cause significant circumferential eddy currents in the steel sections within the field coil as there was small change in flux magnitude to cause the eddy currents to oppose the change. But a sense coil around the field winding did show a ripple in the flux, and spikes of back emf where switching occured in the armature coils of each phase. Thus there was a degree of eddy current losses in these motors. It would be possible to reduce the circumferential eddy currents by use of powdered iron or by breaking the paths by insertion of e.g. a plastic spacer so flux can still travel axially as desired but electrically insulating from eddy currents.

CHAPTER 6

THE PERMANENT MAGNET FLUX SWITCHING MOTOR (PMFSM)

6.1 INTRODUCTION

Magnets are used in many machines, from dc motors to hysteresis brakes. They provide dc flux without the need for any input of electrical power. They could be used to replace field coils that provide permanent constant dc flux. If done successfully, the machine would be able to provide the same torque but at reduced total input power (i.e. higher efficiency).

To replace a field winding with a permanent magnet, the nature by which flux is produced needs investigating. A field winding is a coil of wire (usually many turns) that passes current to produce flux in the middle of the coil in an axial direction. The coil is often surrounding a steel section that is used to direct the flux in preference to air. The coil forms no part of the magnetic circuit except that the steel sections of the magnetic circuit have to be designed such that space exists for the field coil.

This chapter introduces the use of permanent magnets in Flux Switching Motors. The design of such a motor for applications up to 100 W will be discussed.

Small motors are prone to high field magnetising losses, resulting in low efficiencies. The use of permanent magnets will be shown to improve the efficiency through replacing the field windings of Flux Switching Motor (FSM) designs.

It is difficult to make small motors that are efficient. Except for designs such as the permanent magnet brushless dc motor, the smaller the motor the greater the proportion of losses associated with the windings (high field magnetising losses). It is common for induction motors with an outer diameter in the region of 2 to 3 inches to have efficiencies in the region of 10-30\%.

One of the potential applications of such a design is for low power fans (100 W or less). This chapter shows the design of a PMFSM having the same external dimensions as an induction motor that drives a 100 mm fan (the Domus SIR 100 mm Axial Wall Fan). The PMFSM would match the induction motor in terms of its load condition (same rpm and torque hence same net output power) but better the overall efficiency by as much as possible using the cheapest and fewest magnets possible.

Motor designs are introduced as a precursor to a direct replacement to the induction motor. The replacement motor will be shown to have a reduced copper loss and reduced input power for identical
output power compared to the similarly sized induction motor. The chapter demonstrates that it is possible to increase the efficiency of the Permanent Magnet Flux Switching Motor (PMFSM) at potentially no extra cost.

Small machines are well suited for permanent magnet usage as the magnetizing losses are higher in smaller machines. By using magnets these losses can be reduced. It is possible to replace a field winding with permanent magnets in the FSM. In magnets, flux is produced from the magnet material. This means that the magnet has to be a part of the magnetic circuit. This poses interesting design issues. As the field winding is no longer required, the space available for it is no longer needed and is thus available for machine steel and/or magnet. The magnet also has a higher reluctance to an equivalent-sized steel section. The total reluctance of the machine would be different when magnets are used.

Any Switched Reluctance Machines with two or more phases is a potential candidate for magnet insertion. Take, for example, the two phase $8 / 12$ design (Figure 6.1). By looking at the flux paths when each phase is energized, there are four sections in the back iron where flux is always in the same direction (uni directional) and four sections where the flux is bidirectional. It is theoretically possible to place magnets in the sections of back iron where flux was unidirectional. This has been shown by Lipo in [12, 13, 15, 17, 20]. A NASA report [50] also shows, as discussed in Section 2.3 .3 of Chapter 2, uni- and bi-directional flux paths within the stator of a Flux Switch Generator.

The flux from the inserted magnets is in the same direction as the unidirectional flux. If the magnet properties and dimensions are selected correctly then the magnet flux aids flux produced by the armature coils. With the use of magnets, less armature ampere-turns are required for the same total level of flux within the machine, resulting in a possible efficiency boost.

Figure 6.1 :- $8 / 12$ Switched Reluctance Machine with back iron sections that could have magnets included.

In a brushless dc machine, the magnets are on the surface of the rotor and the air gap flux density is the same as the magnet flux density. Buried or interior permanent magnet rotors have the magnet at right angles to the air gap. The air gap flux density is greater than the magnet flux density because the area at the air gap is reduced, focussing the flux.

Stator based magnets, where the stator teeth are thinner than the magnet surface area, allow the use of ferrite magnets with a flux density in the region of 0.2 T to give in the region of 1 T in the air gap due to the reduction in area. The use of thinner teeth could produce a back emf trace that has an undesirable high peak waveshape. Widening the teeth would improve the back emf waveshape and reduce the reluctance in the air gap but this would also reduce flux focussing in the air gap. A trade off is necessary. There is less difficulty in constructing a suitable stator for a PMFSM when compared to the placement of magnets buried in, for example, a four segment rotor.

6.2 PERMANENT MAGNETS AND THE FLUX SWITCHING MOTOR

6.2.1 FLUX SWITCHING MOTOR FLUX PATHS

An example of a lamination that has been used in the Flux Switching Motor is shown in Figure 6.2. The armature and field windings found within the motor are shown in Figure 6.3. The field winding slot carries dc current at all times and the armature slots are energised with bi-directional mmf, alternating every 45°. Further details of such motors can be found in Chapter 2 (Section 2.2.11 and Figure 2.45) and [48].

Magnetic flux paths within the Flux Switching Motor are shown in Figures 6.4, 6.5 and 6.6 for each polarity of armature current (green and blue) for a two phase armature winding (bifilar wound) (current directions shown by arrows) (Figure 6.0). As is shown, the back-iron has sections where the flux is bi-directional (behind the armature slots) and sections where the flux is uni-directional (behind the field slots). Four orange arrows are where flux is uni-directional. The direction of the arrows are in the sense of the flux paths. It is therefore possible to remove the field winding altogether and replace the back iron sections of unidirectional flux with permanent magnets. The space that held the field windings could be used to allow more space for the permanent magnet. It is then possible to have a smaller machine using permanent magnets that operated at reasonably high efficiencies, due to removal of field losses and a reduction in magnetizing losses. This machine is termed the Permanent Magnet Flux Switching Motor.

Reluctance Machines with Flux Assistance

Figure 6.2 :- Example of lamination used in Flux Switching Motor. Figure 6.3 :- Field and armature windings of Flux Switching Motor.

Figure 6.4 :- Flux paths in aligned position.

Flux vectors. Rotor angle 45.0
Y [mm]

Figure 6.5 :- Flux paths in other aligned position.

Figure 6.6 :- All magnetic flux paths within Flux Switching Motor.

6.3 PERMANENT MAGNET FLUX SWITCHING MOTOR (PMFSM)

6.3.1 MAGNET PLACEMENT

Figure 6.7 :- More permanent magnet space possible within an initial design.
If permanent magnets were inserted into the back-iron where appropriate then the magnetic properties and dimensions of the magnets would need to be correctly selected. The magnets would have to provide the flux that the field windings did. That amount of flux in the motor would permanently exist with magnets. The only electrical power input is that from the separately excited armature windings.

The efficiency is improved by such a method as the total flux is provided with a reduced electrical input power. It is not a simple replacement theory as the magnet sections have a permeance different to the steel of the back-iron. Additional magnet ampere turns are required to drive flux through the motor as the total reluctance of an equivalent magnetic circuit would be higher than that of a Flux Switching Motor topology (based on a comparison between a FSM and the same lamination shape but with permanent magnet insertion replacing relevant back iron sections).

It is clear from the investigation into magnet placement and orientation (Appendix H) that the design shown in Figure 6.7 has simple steel stator laminations, has the shorter and simpler magnetic flux paths and the magnet space has greater diversity in terms of dimensions for modelling.

6.4 MAGNETS AND MAGNET SUPPLIERS

A permanent magnet is an energy storage device. This is because energy has to be put into the material when it is first magnetised. If the composition and design of the magnet is correct then the magnetisation and hence energy could remain constant indefinitely. Magnets vary from magnetic steel alloys to ceramic ferrites to rare-earth alloys. To avoid irreversible demagnetisation during use the permanent magnets require a high coercivity. The coercive force is the negative field required to reduce the magnetic flux to zero after saturation. A high coercivity is always preferable.

Anisotropic materials have a preferred direction of magnetisation that cannot normally be changed after the material has been manufactured. Anisotropic magnets have a considerably higher energy product when compared to the isotropic version of the same material. Isotropic materials have no preferred direction of orientation and could therefore be magnetised in any direction.

The Curie temperature is the temperature when the material ceased to have any ferromagnetic properties.

TABLE 6.1 - MAGNET EFFECTIVENESS WITHIN A COMMON LAMINATION AT FIXED ALIGNED ROTOR POSITION (SHOWING MAXIMUM FLUX DENSITY IN BACK-IRON BEHIND ARMATURE SLOT.

TABLE 6.2 - MAGNET EFFECTIVENESS WITHIN A COMMON LAMINATION AT FIXED ALIGNED ROTOR POSITION
(SHOWING MAXIMUM FLUX DENSITY IN BACK-IRON BEHIND ARMATURE SLOT

Magnet Type	Maximum Magnetic Flux Density,B (T)
NdFeB - N38	0.653
NdFeB - N35	0.6525
NdFeB - N40	0.652
NdFeB - N44	0.651
NdFeB - N33	0.65
NdFeB - N48	0.645
SmCo - 2:17	0.64
SmCo - 1:5	0.565
Alcomax	0.432
Plastic Bonded NdFeB	0.376
Fer2	0.162
Fer3	0.149
Fer1	0.0406

The magnet supplier approached was Magnet Sales [107]. Others were contacted so as to get a range of magnet types but many refused to reply. Magnet data for the range in [107] is shown in Table 6.1.

An IEE presentation into permanent magnets [108] suggests that the cost of rare earth magnets may fall soon as one of the major producers, China, is soon to lose its royalties on their production, leading to an increase in competition.

6.4.1 MAGNET SELECTION AND PRICING

B-H curves were replicated for each magnet type, example B-H curves being found in Appendix H . For a given lamination shape at a fixed rotor position (Figure 6.8), each material was used in turn as the magnet type and the peak magnetic flux density was measured in a fixed cross section of backiron. The 'effectiveness' of each was then tabulated as shown in Table 6.2. The table shows, as would be predicted, that rare-earth magnets are the most effective with the ferrites the least. Ferrites could still be used by altering the lamination geometry to offer sufficient peak air gap flux.

The decision was made to attempt to utilise Fer3 (ferrite) as the magnet for the motor, particularly on the grounds of lower cost. Fer2 could not be used as first hoped due to the fact that it was only sold in preformed blocks whereas Fer 3 could be cut to size (to 0.1 mm accuracy).

For a quote of 400,000 blocks of Fer3 magnet a year, each block would cost 15 pence each (60 p per motor) (120 p per motor N 38 magnet). One off cost was 2500 p per motor for both Fer3 and N38 magnets. From Table 6.2 it was noted that N38 gave over 4 times the flux as Fer3 but the cost was twice that of Fer3 per motor. The cost per Tesla is better with N38 but Fer3 was chosen because the need to keep magnet cost low prevails in designing a lower cost machine.

Figure 6.8 :- Lamination used for determining magnet effectiveness.

6.5 SPECIFICATION

6.5.1 INDUCTION MOTOR SPECIFICATION

Small induction motors have low efficiencies due to high field magnetising losses. Iron losses are considerable and extra ampere turns are required to generate the required flux in the motor. The associated copper losses are a significant factor in motor design. Poor efficiency motors such as the shaded pole induction motor are prone to high temperatures due to these factors. The shaded poles (copper rings) actually had marks where heat has affected the steel (Figure 6.9).

Figure 6.9 :- Shaded pole motor steel laminations.

Domus Ventilation uses induction motors to drive their fans. The Domus S1R 100mm Axial Wall Fan uses a shaded pole induction motor by GI-EM. The motor has 16 mm stack length and has a diameter of 58 mm . The induction motor was not capable of driving the hysteresis brake, even at no load. This implied that the torque from the fan is very low since the brake was meant for low-torque applications (hence the mechanical output power was small). From a data sheet from a similar motor, the torque was predicted to be 6.41 mNm at the load speed of 2520 rpm . The data from that sheet matched very closely the actual data obtained through testing. Data for the Domus motor and other 16 mm stack length induction motors is shown in Table 6.3.

TABLE 6.3 - INDUCTION MOTOR SPECIFICATION

	Stack length (mm)	Ingut Power (M)	Speed (pm)	Torque (mNm)	Output Power (W)	Copper Losses (M)	Oither losses (W)	Efficiency (\%)
Dormus S1R Induction Mator (Gl-EM)	18	15.98	2520	8.41	1.70	5.89	8.37	10.6
CCL induction motor	18	18.1	2400	8.41	1.81	not known	not known	10.0
SR18-HO2A	16	20.46	1950	10.85	2.21	not known	not known	10.8

The aim was to design a PMFSM to have the same external dimensions as the Domus S1R 100 mm Axial Wall Fan. The PMFSM was to match the induction motor in terms of its load condition (same rpm and torque hence same net output power) but to better the overall efficiency by using as few cheap magnets as possible.

Standard stack lengths used in small motor designs are $10,12,16,20,25$ and 30 mm but any value between 10 and 30 is possible. Many of the motors used in small fans are 16 mm in stack length. The Domus fan motor has two screws holding the stack in place and, between the two screws, the stacks actually splay out. The largest measurement for stack length was 17.5 mm for one such motor and, due to this the reason, a 17.5 mm stack length was used in the PMFSM.

6.5.2 AIR FLOW RATES

The fan impellar design and the speed of the rotation of the fan determin the air flow for the Domus SIR fan (given constant duct resistance). Equations exist defining the fan power, pressure generated and throughflow ($6.1,6.2 \mathrm{a}, 6.2 \mathrm{~b}$) [88,89]. P is the shaft power, Q is the throughflow of air of density
ϕ, viscosity μ, for a fan of diameter D rotating at speed N with blades having representative characteristic dimensions, a, and roughness, k .

Under conditions of geometric and dynamic similarity, such equations were used to define a range of fan characteristics for the same machine. The effects of varying the fan speed were thus highlighted.

For identical geometric and dynamic similarity, it is shown that :-

$$
\begin{equation*}
\left(\Delta \mathrm{p} / \mathrm{N}^{2} \mathrm{D}^{2} \rho\right)_{1}=\left(\Delta \mathrm{p} / \mathrm{N}^{2} \mathrm{D}^{2} \rho\right)_{2}, \quad\left(\mathrm{Q} / \mathrm{ND}^{3}\right)_{1}=\left(\mathrm{Q} / \mathrm{ND}^{3}\right)_{2} \tag{6.1}
\end{equation*}
$$

For a constant fan diameter and constant density it is shown that :-

$$
\begin{gather*}
\left(\Delta \mathrm{p} / \mathrm{N}^{2}\right)_{1}=\left(\Delta \mathrm{p} / \mathrm{N}^{2}\right)_{2}, \quad(\mathrm{Q} / \mathrm{N})_{1}=(\mathrm{Q} / \mathrm{N})_{2} \tag{6.2a}\\
\left(\mathrm{Q}_{1} / \mathrm{Q}_{2}\right)=\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right) \tag{6.2b}
\end{gather*}
$$

Thus it was assumed that as the fan speed increased, the flow of air increased proportionally (6.2b) (the power required would increase in ratio with the square of speeds).

6.5.3 MINIMUM PMFSM SPECIFICATION

A PMFSM was to be built to directly replace the induction motor that is found in the Domus S1R 100 mm Axial Wall Fan. The minimum required specification was to match the output power at the rated load speed of the Domus S1R induction motor with an input power below that of the Domus motor. The minimum specification is shown in Table 6.4. It did not matter whether the PMFSM also operated at a range of speeds above and/or below the required rated speed. The primary requirement was to meet the criteria specified in Table 6.4. The motor was to be modelled using static and dynamic analysis.

TABLE 6.4 - MINIMUM PMFSM SPECIFICATION
Stack length (mm) 17.5 Outer Diameter (mm) 58 Shaft diameter (mm) 4 Load speed (rpm) 2500 Load torque (mNm) 6.41 Output Power (W) 1.7

6.6 ELECTROMAGNETIC DESIGN

The Permanent Magnet Flux Switching Motor was designed using a combination of both FEA and Excel spreadsheet. The FEA gave data for the magnetic flux with respect to rotor angle. The spreadsheet used data obtained from FEA to aid in prediction of motor performance. Such data included flux at different rotor angles that was used to calculate armature reluctance. For an 8/4
lamination it was possible to use the rotor angle range of 0 to 45 degrees (in 4.5 degree intervals) then extrapolate the remaining 45 degrees from the data obtained. This worked only if the flux data obtained from FEA was accurate.

6.6.1 STATIC MODEL - FINITE ELEMENT ANALYSIS

A Finite Element Analysis (FEA) package called Opera (by Vector Fields) was used to predict the magnetic flux paths that existed within a PMFSM design (due to permanent magnets and due to armature currents in energised phase windings). Finite Element Analysis allowed non-linear electromagnetic equations for various excitation states and lamination geometries to be solved. The machine was parameterised for creating and solving the electromagnetics of differing lamination geometries. Finite Element Analysis allowed the size, shape and material components of the motor to be defined; the B-H curves of each material used within the motor was definable. The number of copper conductors and the current carried by them or a current density for the copper area was defined. To model the magnetics of the motor, the laminations including air gaps were split into small triangular sections ('elements') of one material type only (air, a defined laminated steel, a defined permanent magnet type, etc). All the 'elements' were connected together and electromagnetic equations were solved for each 'element' that were then combined in such a manner by the FEA package to give a complete solution for the motor. The more elements that were used, especially in zones of higher magnetic saturation, the greater the potential accuracy of the model, but at the cost of longer time to compute the results. The FEA was used to predict the effectiveness of magnets, winding numbers, lamination shapes, variations in size, etc, provided all necessary definitions were given to correctly define the motor. Data from the FEA was used in a spreadsheet for further calculations, such as inductance calculations. The effects of varying the size and types of magnets within the PMFSM was ascertained by the FEA plotting the magnitudes and directions of the flux paths produced by the magnets. A Permanent Magnet Flux Switching Motor was designed with the help of the Opera2D FEA package. The FEA process could be computationally intensive but Genetic Algorithm development could aid this problem.

The magnets had flux path orientations that had to be defined as having internal flux paths which were parallel to the tangent of the outer back-iron. The orientation of the plane of flux in each magnet had to be defined in such a manner as to replicate the flux paths that would have been produced by the field winding in a Flux Switching Motor. Opera2D did have some B-H curves for permanent magnets but other B-H curves from Magnet Sales [107] were used.

One disadvantage of this analysis was that it did not account for the effects of eddy currents and hysterisis losses. Iron losses are the most difficult calculations to make. To clarify the range of iron
losses possible, iron loss data was obtained from similarly sized motors. The Domus S1R induction motor has iron and windage losses of 8.37 W . It is a suitable hypothesis for the PMFSM to say that the iron and windage losses would be in the region of $2-4 \mathrm{~W}$ as a good first approximation based on an assumption that the PMFSM would be a better design than the Domus S1R induction motor.

6.6.2 STATIC MODEL - ARMATURE RELUCTANCE CALCULATIONS

The variation of armature inductance with rotor position was calculated for a dynamic simulation of the motor. This was found in FEA by demagnetising the magnet while retaining its permeance. FEA was performed over a 90° rotor range with a known number of armature turns at 0.1 A and 0.2 A (the choice of currents was such as to avoid saturation in the motor). The rate of change of flux with current at each angle position gave the inductance value per turn (6.3). A plot of reluctance against rotor angle was then achievable for the given lamination (Figure 6.10).

1) Inductance, $L=N\left(\frac{d \phi}{d i}\right)$ and also
2) Reluctance, $R=\frac{m m f_{-} \text {of_one_coil }}{\text { flux_of_that_coil }}$ or

Reluctance, $R=\frac{N^{2}}{L}$

Figure 6.10 :- Reluctance against rotor angle for a given lamination.

6.6.3 DYNAMIC MODELLING OF THE PMFSM

The FEA provided static data (data at fixed rotor position) that was used to calculate the dynamic performance of the motor. Such data included rotor position (at which the calculations were performed to give the data), armature flux, armature mmf and output torque and armature slot area. The spreadsheet that utilised the data was a modified version of one that was used to calculate the
dynamic performance of Flux Switching Motors. The Microsoft Excel spreadsheet took the static data and predicted running performance of the motor.

The spreadsheet allowed factors such as stack length, number of turns, wire diameter, packing factor, speed, supply voltage, armature turn on/off angles, armature windings temperature, mean length per armature turn, etc to be variable. By using these variables the performance of a motor design was predicted with a degree of known certainty (limited by the number of assumptions made). The only disadvantage was that the eddy current and iron losses could not be predicted so an estimate had to be included ($2-4 \mathrm{~W}$ when combined although 10% of the total input power was assumable at higher input powers). The workings of the spreadsheet are discussed further in Appendix H.

The performance data was extensive. Among information obtained was -

Armature current	Armature Copper losses	Supply Current RMS armature mmf
Torque	Net Mechanical Output Power	
Total Power Input	Efficiency	

The spreadsheet predicted the back-emf, current and power waveforms. The spreadsheet was used to give the same mechanical output power as the induction motor but at a greater efficiency. The spreadsheet manipulated the data to provide information about the motor. Parameters that were fed manually into the spreadsheet were intended rotor speed, armature supply voltage, armature turns, armature turn diameter, armature packing factor, turn on angle, turn off angle, and iron losses.

Finite Element Analysis predicts the flux produced by the permanent magnets that links the armature coils. The change in armature flux over a time step, $\Delta \mathrm{t}$, induces an instantaneous back emf, E_{t}, in the armature coil (6.4):-

$$
\begin{equation*}
\mathrm{E}_{\mathrm{t}}=\mathrm{N}_{\mathrm{a}}\left(\frac{\Phi_{t+\Delta t}-\Phi_{\mathrm{t}}}{\Delta \mathrm{t}}\right) \tag{6.4}
\end{equation*}
$$

where $\phi_{\mathrm{t}}=$ flux linking the armature coils, $\mathrm{N}_{\mathrm{a}}=$ number of armature turns

The polarity of the voltage applied to an armature winding switches between positive and negative as the two armatures are energised alternately (6.5):-

$$
\begin{equation*}
\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{s}} \tag{6.5}
\end{equation*}
$$

where $V_{s}=$ Supply voltage (can be positive or negative)

$$
\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{s}}
$$

where $\quad V_{s}=$ Supply voltage (can be positive or negative)e current, $I_{(t+\Delta t)}$, is given by (6.6):-

$$
\begin{equation*}
I_{(t+\Delta t)}=I_{t}+\left[\left(\mathrm{V}_{\mathrm{a}}-\mathrm{I}_{\mathrm{t}} \mathrm{R}_{\mathrm{a}}\right)-\mathrm{E}_{\mathrm{t}}\right]\left(\frac{\Delta t(\mathrm{Rel})}{\mathrm{N}_{\mathrm{a}}{ }^{2}}\right) \tag{6.6}
\end{equation*}
$$

where $I_{t} \quad$ previous instantaneous value of armature current
$\mathrm{R}_{\mathrm{a}} \quad$ Armature winding resistance
Rel Reluctance of magnetic circuit

The instantaneous output power, P_{t}, is shown in (6.7):-

$$
\begin{equation*}
P_{t}=I_{t} E_{t} \tag{6.7}
\end{equation*}
$$

The mechanical power is the average of these instantaneous values over a commutation cycle.

The effects of eddy currents and hysteresis are added to the spreadsheet as an estimated value. It is added to the input power, P_{in}, as the term iron loss, $\mathrm{P}_{\mathrm{irron}}$. The input power is calculated from the available output power, $\mathrm{P}_{\text {out, }}$, plus the copper losses from the armature windings, and the iron loss estimation (6.8):-

$$
\begin{equation*}
P_{\text {in }}=P_{\text {out }}+\left(I_{a}{ }^{2} R_{a}\right)+P_{\text {iron }} \tag{6.8}
\end{equation*}
$$

where $I_{a} \quad$ RMS armature current
$\mathrm{R}_{\mathrm{a}} \quad$ Armature winding resistance
$\mathrm{P}_{\text {iron }}$ Iron losses

The average output torque of the machine, T_{av}, is calculated using (6.9):-

$$
\begin{equation*}
\mathrm{T}_{\mathrm{av}}=\frac{\mathrm{P}_{\mathrm{out}}}{\omega} \tag{6.9}
\end{equation*}
$$

where ω is the speed of the machine (rads^{-1}) from which Δt is derived. The machine is dynamically simulated at constant speed. The time step of length Δt seconds, is a function of the angular velocity, ω, and the number of time steps per revolution. The number of time steps depend on the displacement angle of the rotor between calculations in the Finite Element Analysis (for static calculations).

6.6.4 PMFSM LAMINATION OPTIMISATION

The starting point of the FEA design is shown in Figure 6.11. It had the same rotor as used in a FSM design and had thin magnet section. There was a slot by the magnet between the stator pole teeth to allow the flux paths to enter the pole teeth and into the rotor. This slot had a tapered shape (tapering towards the magnet to prevent flux crossing the slot instead of entering the rotor poles via the stator/rotor air gap. There was no back iron surrounding the outer edge of the magnets as previous work has shown that such sections are both too thin for structural integrity and would provide paths for undesirable flux leakage.

Figure 6.11 :- Lamination used for initial test work.

Figure 6.12 :- Improved rotor lamination, Zip000.

Figure 6.13 :- Investigation into more radical rotor geometries, Zip006.

The rotor was then changed to a style that was known to give a squarer back-emf (Figure 6.12). The magnet was also made larger to enable more flux from the magnet. The armature slot was increased as well to allow an increase in wire diameter for a given number of turns. Work was undertaken varying the rotor shapes, stator pole shapes and magnet geometries (Figure 6.13). All geometries were considered but with the main aim of getting the best efficiency possible out of the motor through all possible means.

The FEA allowed the flux paths for each lamination selection to be shown in terms of both direction and magnitude. Minimisation of lost flux through improving the lamination design and use of the spreadsheet had suggested that the design shown below in Figure 6.14 was an optimum (a design that during prototyping was referred to as Zip004 - the fourth design considered). This was based upon the fact that factors such as iron losses were guessed values and, as such, until the motor was built and tested this would remain as an assumption. This was based upon the use of Fer3 as the magnet choice. More expensive rare earth magnets were not used as the gains in efficiency were not justified by the additional costs.

Figure 6.14 :- Optimum lamination, Zip004.

Flux from magnet and armature flux per unit length

Figure 6.15 :- Field and armature flux with rotor angle.

Figure 6.16 :- Back-emf against rotor angle.

Figure 6.17 :- Total effective armature current.

Shown for the selected lamination is a graph for flux against rotor position for this suggested optimum design (Figure 6.15). Back-emf plots for 36 turns per armature phase for the optimum design showed that the magnitude of voltage was small even at 2520 rpm (speed of the induction motor) (Figure 6.10). As will be shown later, although this was for a mains supply application the efficiency was still maintained.

A current waveform to be expected is shown in Figure 6.17. The data for the optimum design was summarised in Table 6.5. The lamination dimensions are shown in Appendix H.

TABLE 6.5 - EXAMPLE SPECIFICATION DATA FOR DESIGN.

The following set of diagrams were printouts for 22.6° rotor angle at 0.3 A , which was a position where current was at a maximum (Figures $6.18-6.21$). The magnet was not demagnetised at any angle.

Figure 6.18 :- Current density in armature winding.

Figure 6.19 :- Flux potential lines.

Figure 6.21 :- Flux density plot.

As was shown, the PMFSM, when operating at exactly the same condition as the induction motor and having exactly the same external dimensions gave 27.75% efficiency based on an assumed iron loss of 4 W . It only required 6.47 W input power compared to 15.96 W required to drive the induction motor. Only 9 turns per phase were inserted into the motor due to the compactness of the winding design limiting the packing factor obtainable. It was thus expected that the motor would be more effective with a lower supply voltage and that a pulsed supply would be needed for higher supply voltages as the back emf would not be as large as the supply voltage. This motor was to be referred to as Initial Design.

6.7 MECHANICAL DESIGN AND BUILD

The PMFSM was designed such that it would fit within the fan casing of the Domus S1R 100 mm Axial Wall Fan. This posed build issues relating to fitting the motor within the fan housing.

6.7.1 PLACEMENT OF POSITION SENSOR IN RELATION TO CASE DESIGN

This type of motor requires some form of position sensor to allow determination of which phase is to be energised to successfully turn the motor. An opto sensor is normally used. Internal placement is best as it keeps the external casing simple and means that the sensor is protected from external damage. An aluminium casing is a good choice but it could also be achieved with plastic injection moulding. Developments in 'sensorless' control mean opto sensors would no longer be required and the case design would be easier. The use of opto sensors is a sensible option for a prototype motor where sensorless control is not a final design requirement.

6.7.2 WINDING METHODS / WIRING ARRANGEMENT

Flux Switching Motors employ three winding methods for armature windings. Non-bifilar armature windings can be used but this requires floating gate drives and a full-bridge inverter circuit. Bifilar armature windings uses a simpler circuit such as the half bridge converter, employing only two switches. For bifilar armatures there are two possible windings as shown in Figure 6.22 and Figure 6.23. The first (Figure 6.22) has four separate coils per armature resulting in 16 terminations in total for two phases (this is reduced if the coils are continuous i.e. all wound in series, resulting in four terminations in total - not shown). The alternative (Figure 6.23) has consequent pole bifilar windings (though this type is not confined to bifilar windings, and is not motor specific). There are normally four terminations in total but, by having a common connection on the high side (the positive supply rail), only three terminations are needed for a circuit such as the half bridge converter. This latter winding type is the preferred option as it also allows a simple end cap shape to be utilised.

4 coils per armature. 8 coils in total. 16 terminations in total. Figure 6.22 :- Conventional bifilar winding.

1 coil per armature.
2 coils in total.
3 terminations in total (one common).
Figure 6.23 :- Consequent pole bifilar winding topology.

6.7.3 HOLDING THE MACHINE TOGETHER

Figure 6.24 :- Packing factor affected by plastic mould injection.
Since the motor is made from four separate steel stator sections with the magnets in between, there has to be a method of holding the entire stator together.

By convention, for motors used in household fans, one end cap forms part of or is attached to the fan housing. There are several possible methods of holding the motor together for such an application.

The simplest is to glue the steel and magnet pieces together with the aid of a former to give the circular guide. If a circular steel block is used to put the pieces around then the flux from the magnets passes through this block and aids holding the pieces together as the glue sets. However, the method would be messy and there is no strict guarantee that the pieces would set to form a perfect circular shape and that there would be a risk of the pieces being glued to the former, temporarily holding it all in place.

Another similar method is to have a former holding the pieces together in the correct place then using plastic injection moulding to make a plastic 'jacket' to hold it all together. Plastic injection moulding would create the outer casing and one end cap for a fan motor. It would also insulate the windings from the stator sections due to a thin plastic layer lining the insides where the slot area is (Figure 6.24).

An alternative for prototyping is to fill and surround the motor with plastic and machine out any unwanted plastic to make a unit to hold motor in place effectively within a fan housing. This could also be done with epoxy resin by encasing the motor in the resin and machining out any unwanted resin.

A more practical method was to drill small holes through the steel stator sections and bolt them onto aluminium end caps. The magnets could then be slid in place. That way the circular nature of the motor is ensured and the magnets would hold themselves in place allowing a fast and effective method of building and disassembling the motor. Glue could be used to permanently hold the magnets in place. From FEA of the motor as the rotor turned, there are stator sections where the magnetic flux is Chapter 6
small in value which would be best suited for holes to be drilled (Figure 6.25). The holes were drilled in a section where the strength of the stator was maintained and the hole was just large enough for a threaded stainless steel rod to be used (M2). Also, notches were added to the stator sections to allow the magnets to be held away from the stator poles (Figure 6.26). Wire erosion of steel lamination plates (0.3 mm thickness) was used to cut the required lamination shapes (a .DXF file was drawn for the machine to cut from). This incurred another design issue in that, for a flush fit between the magnet and the steel sections, there had to be an undercut of the notch to avoid a bad fit (the wire used in cutting the steel laminations was round so an undercut was needed to prevent a rounded corner point where a 90 degree point was needed).

Figure 6.25 :- Low flux stator areas where drilling may be allowed.

Figure 6.28 :- Bifilar winding to be used with the end cap configuration.

With this approach, one end cap held all the motor in place while the winding was inserted by a method as in Figure 6.23. The other end cap was a very simple end plate to ensure the motor is held tightly with the housing of the fan.

Any such method would require the placement of the opto sensor to be taken into account. Aluminium end caps were easily machined to allow space for the opto sensor. Internal placement of the opto sensor allowed a simple external shape (cylindrical) and protected the sensor from external damage. The aluminium end caps (Figure 6.27) were designed such that the windings in Figure 6.28 were used (the end caps at each end were rotated 90 degrees to each other to allow the windings to be inserted without being wrapped around the end caps as well).

6.7.4 AVOIDANCE OF THE CURIE TEMPERATURE

Above the Curie temperature the magnet material ceases to have any ferromagnetic properties. Hence, in any preparation treatment required to build the motor while magnets are present, the temperature must not exceed the Curie temperature value.

The Curie temperature of Fer 3 is in the region of $450^{\circ} \mathrm{C}$. Its normal operating temperature range is -40 ${ }^{\circ} \mathrm{C}$ to $+250^{\circ} \mathrm{C}$. For N 38 it is $310^{\circ} \mathrm{C}$ (with a maximum operating temperature of $150{ }^{\circ} \mathrm{C}$).

Most processes involving plastic injection moulding had operating temperatures below these two Curie temperatures and hence posed no problem.

6.7.5 THERMOPLASTIC PROPERTIES OF MOTOR CASINGS

The Fan Industry has always looked at ways to reduce motor costs and to improve motor efficiency to meet the stricter requirements for more environmentally friendly designs. Low efficiency motors get undesirably hot and could melt or deform cheap plastics. To solve this, more costly thermoplastics are used. The worst-case current density predicted in dynamic modelling for the PMFSM was $1 \mathrm{~A} / \mathrm{mm}^{2}$. The losses (copper, iron, hysteresis) were predicted to be less than the Domus S1R Induction Motor, indicating that the PMFSM would not get as hot as the inefficient induction motor. This was confirmed by the very low current density. The windings would not reach a high temperature which allowed the use of cheaper, lower thermal limit, thermoplastics.

Cost savings could therefore be made in the plastic casings. This in turn offset the additional cost of the magnets used in the motor. It was possible to build a motor that used magnets (the source of the additional cost) but have an end product that had a final cost of little difference to a prototype induction motor.

The lamination designs are shown in Figures 6.29 and 6.30 from which 0.3 mm thick laminations were cut by wire erosion (Figure 6.31). The magnets were cut to size and the complete stator is shown in Figure 6.32.

Figure 6.29 :- Proposed laminations to be used.

Figure 6.31 :- Actual laminations made by wire erosion method.

Figure 6.32 :- How stator would look within motor.

Figure 6.34 :- Plans of individual parts of motor for assembly into fan housing.

The motor was designed to fit within an existing fan housing. This plastic housing required some machining to remove sections that would impair insertion of the motor (Figure 6.33) as the original motor was not fully circular in outer shape. Such design limitations led to two end caps being designed so that the motor was securely clamped to the plastic housing. The opto sensor was kept internally within the motor. The opto sensor itself was housed on a printed circuit board disc and this would ideally eventually house the microcontroller and even the gate driver and switches circuitry for the armature windings. The rotor shaft needed to be 4 mm in diameter to allow the fan to be attachable to the shaft. The drawings for the extra components required are shown in Figure 6.34 and the proposed layout of the motor is shown in Figure 6.35. Appendix H shows photos of the built motor.

Figure 6.35 :- Plan of motor within plastic housing and with fan attached.

Figure 6.36 :- New bifilar windings from fan end.

Figure 6.37 :- New bifilar windings from opto sensor end.

Figure 6.36 and Figure 6.37 show how the bifilar winding arrangement actually appeared. 9 turns of 1 mm diameter wire for each phase were used in the first winding of the motor.

The same fan impellar was used in the PMFSM as the load, allowing the comparison of performance with that of the existing induction motor.

6.8 POWER ELECTRONICS CIRCUITRY

The use of a consequent pole bifilar winding topology as in Figure 6.23 meant that the main power electronic circuitry should be the half bridge converter circuit as shown in Figure 6.38 (Chapter 3). The bifilar windings acted as transformers during switching between phases, allowing faster transfer of current from the switch that has just turned off. This required the freewheel diodes of the MOSFET Chapter 6
switches. There was a possibility of needing current limiting circuitry at start up when using 240 V supply as the back-emf would not be present initially risking demagnetising currents.

6.9 INITIAL TEST RESULTS

To test the motor a Watt meter was required to measure the input power to the armature windings and switches as shown in Figure 6.39. The back emf had a shape as expected from the spreadsheet (Figure 6.40). The motor was tested over a range of fan speeds. The results were shown in Table 6.6 and Figure 6.41.

TABLE 6.6 - TEST RESULTS FROM PMFSM AND INDUCTION MOTOR COMPARISON

Opto speed	Rotor speed	V rms	1 rms	P input	P mech	IIR	other losses	Efficiency
(Hz)	(rpm)	(V)	(A)	(W)	(W)	(W)	(W)	(\%)
100	1500	5.02	2.643	2.91	0.612	0.68457	1.613425998	21.03093
125	1875	5.035	2.77	3.43	0.95625	0.75194	1.7218058	27.87901
133.3	2000	4.997	2.6	3.54	1.088	0.66248	1.78952	30.73446
166.66	2500	5.009	2.59	4.04	1.7	0.65739	1.6826062	42.07921
200	3000	5.029	2.4	4.89	2.448	0.56448	1.87752	50.06135
233.3	3500	5.06	3.073	6.83	3.332	0.92545	2.572553758	48.78477
266.66	4000	5.003	3.341	8.95	4.352	1.0939	3.504096462	48.6257
300	4500	5.008	4.511	13.43	5.508	1.99421	5.927786142	41.01266
SP IM	2520	-	-	15.96	1.7	5.89	8.37	10.6516

Figure 6.41 :- Input Power, Output Power and Efficiency versus machine speed.

The results were very encouraging. The input power was very low across the speed range. The copper losses (IIR in Figure 6.41) were very small. The iron and windage losses were also low. This resulted in a very efficient design. 42% efficiency and 4.04 W input power was obtained at 2500 rpm . It was 3.94 times more efficient than the Domus induction motor as it takes only a quarter of the input power. The motor was more efficient over a wide speed range.

As noted from the Table 6.6, the dc power supply for these speeds was not as high as expected and a pulsed armature supply was needed (Figure 6.42).

6.9.1 COMPARISON OF INITIAL DESIGN WITH SIMULATION

The original spreadsheet model used data obtained from Finite Element Analysis to give a prediction of the motor performance. The flux from the magnets was used to predict the back emf. It was noted that the actual back emf was only 65% of the predicted value. The magnets may not have been as effective as predicted. No testing was performed to verify that the magnets produced the flux that the Finite Element Analysis had predicted. It was assumed that the magnets, having been carefully handled during the build of the PMFSM, had not lost any of its remenant flux.

The motor ran at 2500 rpm with a 5 V dc supply rather than the expected 240 V . This indicated that the reluctance calculation was inaccurate. Finite Element Analysis calculated the reluctance based on one turn. The turn number actually used in the armature windings in the Finite Element Analysis was 323 (1292 turns in total per armature phase).

There were 9 turns per phase (an equivalent of 36 due to the consequent winding method chosen). The difference between the turns numbers gave a value of (323/9)x $4=144$ (3s.f). It is this value that was needed to correct the reluctance such that the spreadsheet calculation of inductance gave the correct results.

The efficiency of the motor exceeded the predicted efficiency at 2500 rpm . The assumption of iron losses to be 4 W was a factor but test results showed a true value $(1.68 \mathrm{~W})$ for iron and windage losses.

6.10 REFINING DYNAMIC SIMULATION WITH EMPIRICAL DATA

The spreadsheet had to be amended so that the predicted performance of the motor more closely matched the actual test data for the motor.

Figure 6.43 :- Example of spreadsheet current waveform to closely match actual test current waveforms.

Pulsed and non-pulsed armature timings were included in the spreadsheet. The inclusion of a pulsed armature supply had not been introduced to this spreadsheet before. The timings of the pulse were definable within the refined model.

Iron and windage losses at 2500 rpm had been evaluated and a correction for this as the rotor speed varied was included.

The magnitude of the back emf waveform was amended to be 65% of the original calculation.

The reluctance was corrected by a factor of 144 to allow a more accurate prediction of the current waveforms and hence motor performance.

With the above corrections the test waveform for 2500 rpm and a non-pulsed (conventional Flux Switching Motor timing sequence) were successfully replicated with accurate predictions for input power, losses and efficiency (Figure 6.43 c.f. Figure 6.2).

6.10.1 IMPROVED DESIGN FOR HIGHER VOLTAGE

The corrected spreadsheet was then used to remodel the motor for 240 V supply. Two coils of 295 turn, 0.2 mm diameter wire was selected. This was not as many turns as was really needed for a high supply voltage but a higher turn number reduced the wire diameter to a value that could not be wound for the motor (0.16 mm diameter was the lowest size allowable for this size of motor). One major note was that the back emf at 2500 rpm was far less than the supply voltage. 240 V may not be the best supply voltage for this type of machine at 2500 rpm as a pulsed supply would have to be used. The
positive outcome was that the new motor was able to operate at speeds fast enough to meet all The Building Regulations 1991 Approved Document F [87] requirements for air flow. 5730rpm was needed for $216 \mathrm{~m}^{3} / \mathrm{hr}$, the machine would be able to operate at $6000+\mathrm{rpm}$ (the iron losses at these high speeds was the determining factor relating to this). With the turns selected as 295turns of bifilar wound 0.2 mm diameter for each phase (Figure 6.44), the motor was predicted to be 36% efficient at 2500 rpm , with a suggested 73% efficiency at 6000 rpm . This did not take into account the non-linear increase in iron losses as the rotor speed increased nor were losses such as noise taken into account. The new motor version was to be called Design 2.

6.11 TESTING OF REVISED DESIGN

6.11.1 REVISED DESIGN TEST RESULTS

Test results at 240 V dc supply are shown in Table 6.7, Figure 6.45. The test waveform for 2500 rpm is shown in Figure 6.46.

Opto speed	Rotor speed	Vo	Vil	ilis	ofners	V ms	T ms	P inpur	P mach	Efficiency	mech pow	Air moved	Aif moved	Temp (C)
(Hz)	(rpm)	value	value	(W)	(W)	(V)	(A)	(W)	(W)	(\%)	out fectior	m 3 3/x	1 sec	after 25 mins
74	1110	255	2	0.04	3.39	241.5	0.0352	3.773	0.34	I.iil	0.20	41.74	11.59	28.9
100	1500	181	2	0.07	4.14	241.8	0.0434	4.815	0.61	12.71	0.38	56.40	15.67	
125	1875	138	2	0.09	4.70	241.4	0.051	5.747	0.96	15.64	0.50	70.50	19.58	
133.3	2000	125	2	0.10	4.91	240.9	0.0528	6.059	1.09	17.83	0.84	75.18	20.88	
168.68	2500	91	2	0.14	5.09	240	0.0835	6.931	1.70	24.53	1.00	94.00	28.11	28.8
200	3000	88	2	0.19	5.80	241.6	0.0735	8.438	2.45	29.01	1.44	112.80	31.33	
233.3	3800	50	2	0.25	8.18	241.2	0.0848	9.765	3.33	34.11	1.96	131.58	38.55	
288.66	4000	33	2	0.32	8.59	241.3	0.0953	11.253	4.35	38.67	2.58	150.40	41.78	
300	4500	14	2	0.50	10.10	241.3	0.12	16.11	5.51	34.19	3.24	189.20	47.00	
333.34	5000	3	2	0.78	12.08	240.7	0.1494	19.64	6.80	34.62	4.00	188.00	52.22	
340	5100	1	2	1.01	13.35	240	0.17	21.43	7.07	33.01	4.16	191.76	53.27	
400	6000	2	3	2.22	21.68	240	0.2524	33.57	9.79	29.08	5.76	225.60	82.67	29.5
414	6210	1	3	2.68	23.88	240	0.2783	37.06	10.49	28.30	8.17	233.50	84.88	
422	6350	1	4	5.54	30.81	240	0.3601	53.25	10.50	20.47	8.41	238.01	80.11	
SP\%	2150]	-	-	-	-	.	-	15.92	7.7	10.67839196	mproveme	at 2500 p		2.30

Figure 6.45 :- 240 V dc test results.

Tests were then carried out at 240 V ac rms. The results are shown in Table 6.8, Figure 6.47. The tests were repeated for 110 V ac rms (Table 6.8, Figure 6.48) and 40 V ac rms (Table 6.8, Figure 6.49). 110 V was the supply used in the US. The final test was to ascertain the supply voltage required for maximum efficiency at 2500 rpm . This was found to be 40 V ac rms

TABLE $6.8-240 \mathrm{~V}, 110 \mathrm{~V}$ AND 40 V AC TEST RESULTS

$\frac{\text { Opto speed }}{(H z)}$	$\frac{\text { Rotor speed }}{\text { (rpm) }}$	value	$\frac{\mathrm{V} 1}{\text { value }}$	$\frac{\mathrm{IIR}}{(\mathrm{~W})}$	$\frac{\text { others }}{(W)}$	$\frac{\mathrm{Vrms}}{(\mathrm{~V})}$	$\frac{1 \mathrm{rms}}{(\mathrm{~A})}$	$\frac{\mathrm{P} \text { Pinput }}{(W)}$	$\frac{P_{\text {mech }}}{(W)}$	Efficiency $(\%)$	$\begin{aligned} & \text { mech pow } \\ & \text { out factor } \end{aligned}$	Air moved	Air moved	$\begin{gathered} \text { Temp }(C) \\ \text { after25mins } \end{gathered}$	noise 41.1
81	1215	255	2	0.24	11.43	237.7	0.0826	12.07	0.40	3.33	0.24	45.68	12.69		56.9
100	1500	200	2	0.28	12.61	237.6	0.0899	13.5	0.61	4.53	0.36	56.40	15.67		57.4
125	1875	152	2	0.36	13.81	237	0.1015	15.12	0.96	6.32	0.56	70.50	19.58		81.8
133.3	2000	141	2	0.39	14.36	236.6	0.1054	15.83	1.09	6.87	0.64	75.18	20.88		57.2
166.66	2500	104	2	0.46	15.49	236.5	0.1155	17.65	1.70	9.63	1.00	94.00	26.11	45.30	59.6
200	3000	80	2	0.57	16.67	236.5	0.1277	19.69	2.45	12.43	1.44	112.80	31.33		61.9
233.3	3500	62	2	0.67	17.49	236.6	0.1386	21.49	3.33	15.50	1.96	131.58	36.55		59.8
266.66	4000	48	2	0.79	18.64	236.6	0.1503	23.78	4.35	18.30	2.56	150.40	41.78		62.4
300	4500	37	2	0.92	19.48	236.2	0.163	25.91	5.51	21.26	3.24	169.20	47.00		64.6
333.34	5000	27	2	1.10	20.66	236	0.1777	28.56	6.80	23.81	4.00	188.00	52.22		66.6
366.66	5500	18	2	1.31	21.66	235.6	0.1942	31.2	8.23	26.37	4.84	206.80	57.44		66.4
400	6000	9	2	1.66	23.86	235.9	0.2184	35.31	9.79	27.73	5.76	225.60	62.67		66.8
433.33	6500	3	2	2.19	27.97	235.9	0.2512	41.66	11.49	27.58	6.76	244.40	67.89		69.8
$\frac{445}{\text { S } / 1 M}$	$\frac{6675}{2620}$	1	2	2.45	29.45	235.6	0.2654	$\frac{44.02}{15.92}$	$\frac{12.12}{1.7}$	${ }^{27.53}$	$\frac{7.13}{\text { \% improv }}$	$\frac{250.98}{}$	69.72	0.90	70.4 45

Opto speed	Rotor speed	Vo	V1	IIR	others	\checkmark rms	1 rms	P input	P mech	Efficiency	mech pow	Airmoved	Air moved	Temp (C)	dB noise
(Hz)	(rpm)	value	value	(W)	(W)	(V)	(A)	(W)	(W)	(\%)	out factor	$\mathrm{m}^{\times 3} 3 \mathrm{hr}$	Usec	after 25 mins	41.1
78.5	1178	255	2	0.06	1.99	107.99	0.042	2.427	0.38	15.54	0.22	44.27	12.30		52.7
100	1500	190	2	0.07	2.05	107.9	0.045	2.736	0.61	22.37	0.36	56.40	15.67		53.3
125	1875	140	2	0.09	2.03	107.72	0.0511	3.078	0.96	31.07	0.56	70.50	19.58		54.5
133.3	2000	126	2	0.10	2.06	107.72	0.0528	3.247	1.09	33.49	0.64	75.18	20.88		52.3
166.66	2500	55	2	0.13	1.93	107.52	0.0617	3.76	1.70	45.21	1.00	94.00	26.11	24.30	52
200	3000	72	3	0.39	4.08	108.03	0.1064	6.92	2.46	35.38	1.44	112.80	31.33		56.1
233.3	3500	50	3	0.50	4.10	108.05	0.1194	7.93	3.33	42.01	1.96	131.58	36.55		57.8
266.66	4000	23	3	0.64	4.21	107.95	0.136	9.21	4.35	47.25	2.56	150.40	41.78		57.5
300	4600	9	3	1.08	5.77	107.93	0.1766	12.36	5.51	44.56	3.24	169.20	47.00		60.2
333.34	5000	12	4	1.80	7.47	107.53	0.2274	16.07	6.80	42.32	4.00	188.00	52.22		63.1
366.66	5600	12	4	2.84	9.29	107.26	0.2856	20.36	8.23	40.41	4.84	206.80	57.44		64.9
377	5656	1	4	3.23	9.80	107.24	0.3046	21.73	8.70	40.03	5.12	212.63	59.06		65.6
394	5910	1	5	4.88	12.57	107.44	0.3744	26.96	9.50	35.25	5.59	222.22	61.73		67.2
SPPM	2520	-	-	-	-	-	-	15.92	1.7	10.68	mproveme	at 2500 P		4.23	45

Opto speed	Rotor speed	Vo	V1	IIR	others	Vrms	Irms	P input	P mech	Efficiency	mech pow out factor	Air moved $\mathrm{m}^{\wedge} 3 / \mathrm{hr}$	Air moved \|/sec	$\begin{gathered} \text { Temp (C) } \\ \text { after25mins } \end{gathered}$	$\begin{gathered} \hline \mathrm{dB} \text { noise } \\ 41.1 \end{gathered}$
(Hz)	(pm)	value	value	(W)	(W)	(${ }^{\text {a }}$	(A)	(W)	(W)	(\%)					
79	1185	255	8	0.65	1.28	38.9	0.1368	2.31	0.38	16.53	0.22	44.56	12.38		45.1
100	1500	185	8	0.75	1.08	38.97	0.1469	2.44	0.61	25.08	0.36	56.40	15.67		46.8
125	1875	128	8	0.58	0.92	38.98	0.1286	2.45	0.96	39.03	0.56	70.50	19.58		47.1
133.3	2000	113	8	0.52	0.77	38.95	0.1225	2.38	1.09	45.69	0.64	75.18	20.88		45.9
166.66	2500	45	8	0.43	-0.03	38.98	0.1109	2.1	1.70	80.95	1.00	94.00	26.11	24.2	47.2
200	3000	20	9	1.07	-0.33	38.91	0.1755	3.19	2.45	76.74	1.44	112.80	31.33		50.3
233.3	3500	1	10	2.55	-0.77	38.95	0.2706	5.11	3.33	65.19	1.96	131.58	36.55		52.6
SP IM	2520	-	-	-	-	-	-	15.92	1.7	10.68	mproveme	at 2500 mp		7.58	45

Reluctance Machines with Flux Assistance

Figure 6.47 :- 240 V ac test results.

Figure 6.48 :- 110 V ac test results.

Reluctance Machines with Flux Assistance

Figure 6.49 :- 40 V ac test results.

TABLE 6.9 - ARMATURE RESISTANCE.

Resistance (ohms)	Total	Avge	
Phase A	Phase B	Th	
34.88	34.69	69.57	34.79

TABLE 6.10 - COMPARISON OF WEIGHTS BETWEEN PMFSM AND ORIGINAL INDUCTION MOTOR.

Motor (including casings)	Weight (g)
Domus S1R 100mm Axial Wall Fan	560
PMFSM 100mm Axial Wall Fan	630

The armature resistances are shown in Table 6.9. This was needed not only for copper loss calculations but also to verify the resistance calculations in the spreadsheet.

A final comparison of note was relative weights of the PMFSM and the Domus S1R Induction motor (when both were inside fan housings). The PMFSM was heavier than the Domus fan but this was possibly due to the PMFSM having a larger aluminium end cap holding it in place within the original housing (Table 6.10). The PMFSM weight may have been more similar to the Domus fan had the fan housing been built with the PMFSM in mind.

6.11.2 COMPARISON OF REVISED DESIGN WITH SIMULATION

The value from a dc power source was an averaged dc voltage. The value from an ac source was an rms voltage. This was why the results from dc and ac power sources differ.

The spreadsheet predicted 36% efficiency at 2500 rpm at 240 Vdc but the test showed 24.5% efficiency. The difference was due to where the armature pulse occurred in relation to the opto sensor signal. It was difficult to correct the spreadsheet to match the exact firing angles but the results from the spreadsheet were very comparable. The modified spreadsheet was thus successful. It was less successful at higher speeds due to the iron losses not being increased with the square of speed in the spreadsheet.

The spreadsheet did not predict the temperature of the armature windings. It was assumed that 40$60^{\circ} \mathrm{C}$ would be expected. Due to the high efficiencies obtainable, the $\mathrm{I}^{2} \mathrm{R}$ copper losses and iron losses were so small in the 110 V and 40 V cases that the motor never exceeded $30^{\circ} \mathrm{C}$ (Table 6.8).

At 240 V ac the pulse required was very short and the spreadsheet was not tested for ac supply. An amendment to the spreadsheet would have been required to allow ac supply predictions. The small turn number meant that, at lower speeds, the pulse would have to be short, as the spreadsheet confirmed. The efficiency was lower at the 240 V supply compared to the 110 V supply (it was less efficient than the induction motor at $240 \mathrm{~V}-9.63 \%$). The 110 V supply offered 45% efficiency with
3.76 W input power. Both the 240 V and 110 V versions operated at very high speeds (6675 rpm and 5910 rpm respectively) allowing wider potential applications.
81.0% (3s.f.) efficiency was obtained with a 40 V rms ac supply (2.1 W input power) (Table 6.8, Figure 6.49). This was a 7.58 times improvement on the induction motor currently used (10.7% efficient, 15.92 W input power [9.36 times more power for the same air flow rate]). The motor only had a temperature of $24.2^{\circ} \mathrm{C}$ after 25 minutes of continual use. This highlighted the very low copper losses $(0.43 \mathrm{~W}$ at 2500 rpm$)$. The use of permanent magnets had substantially improved machine performance.

6.11.3 AIR FLOW COMPARISON WITH OTHER MOTORS

To move air at the same rate as the Vent-Axia LoWatt range of machines, the speed of the motor was increased in proportion to the increase in air flow rate (Domus quoted $94 \mathrm{~m}^{3} / \mathrm{hr}$ for its induction motor model, Vent-Axia quoted $110 \mathrm{~m}^{3} / \mathrm{hr}$ (with wall kit fitted) for its permanent magnet brushless dc motor). A comparison of input power for same air movement rate showed the relative efficiencies of the designs (Table 6.11). The Vent-Axia LoWatt range of fans had been merchandised as a green product so these fans were benchmarks for a 'green' design. The PMFSM had to operate at $2500 / 94 \times 110$ $\mathrm{rpm}=2925 \mathrm{rpm}$ for $110 \mathrm{~m}^{3} / \mathrm{hr}(6.2 \mathrm{~b})$. The PMFSM was not as efficient as the LoWatt models at higher supply voltages (the LoWatt existed in a 12 V dc form format in the comparison). At 110 V rms ac, the PMFSM was similar in performance. The 40 V rms ac version took far less input power for the same air flow rate (41% less power) thus demonstrating the merit of the motor as a 'green' solution. It was shown that the PMFSM was very competitive even as a first prototype.

TABLE 6.11 - AIR FLOW COMPARISONS.

Motor	Input Power (W)	Efficiency (\%)	Input Power at 110m^3/hr air flow (W)
Vent-Axia LoWatt LP (100mm fan)	5.20	$?$	5.20
Vent-Axia LoWatt UP (150mm fan)	6.90	$?$	6.90
Domus S1R 100mm Axial Wall Fan	15.92	10.68	$\mathrm{~N} / \mathrm{A}$
PMFSM 5Vrms (dc supply)	4.04	42.00	4.89
PMFSM 240Vrms (dc supply)	6.93	24.50	6.28
PMFSM 240Vrms (ac supply)	17.65	9.63	19.20
PMFSM 110Vrms (ac supply)	3.76	45.20	6.31
PMFSM 40Vrms (ac supply)	2.10	81.00	3.07
PMFSM 40Vrms (ac supply) [one phase]	2.45	69.40	-
PMFSM 40Vrms (ac supply) [other phase]	2.52	67.50	-
PMFSM 240Vrms (ac supply) [skewed rotor]	17.95	9.50	19.50
PMFSM 110Vrms (ac supply) [skewed rotor]	6.50	26.20	7.25
PMFSM 40Vrms (ac supply) [skewed rotor]	2.73	62.30	3.94

6.12 ACOUSTIC NOISE TESTS

The Fan Industry is increasingly becoming aware of the need for greener products. Low power consumption is required and there is a possibility of EU directives enforcing strict requirements
regarding this issue. Also, the noise from the overall package is of concern. Domus had always produced machines that were quiet, a fact that it was keen to retain. Strictly speaking, the motor designed for this application had not been built to be a quiet motor - it was been built to provide a low power, high efficiency alternative to the current product range for the Fan Industry as a whole. But a comparison was made between noise emissions from the Domus induction motor package and the first prototype PMFSM package. The tests were performed in the quietest room available (an anechoic chamber would have been ideal), and the readings (measured in dBA - A weighted range) were taken 3 metres away from the motors, perpendicular to the central axis of each (Tables 6.12a, b, c, Figures 6.50 and 6.51). At low speeds, the main noises were from the motors themselves, such as bearing and shaft noises, motor vibration, and switching noises (the induction motor did not have the latter problem). At higher speeds the noise from the flow of air tended to be more prominent. It was not within the scope of this research to cover where noise was produced by the PMFSM. Short pulses in the armature windings did cause switching noise, and the size of pulse did affect the tone. This was made worse at higher supply voltages where the pulses were shorter. Longer pulses with the 40 V rms ac source provided a quieter motor. The efficiency was adversely affected by motor noise so any future spreadsheet model ought to include this to give a better indication of motor performance. The 40 V version was only 2.2 dBA louder than the Induction Motor (47.2 dBA c.f. 45.0 dBA , background level 41.1 dBA) (Figure 6.51). For a first prototype that was not built to as high a specification as a final product, it was a very encouraging sign. It would possibly be acceptable for applications such as toilets and bathrooms where the background noise is low. In applications such as the kitchen, it would not be noticed in terms of noise, as cooking and using washing machines etc will create far greater dBA levels.

It was noted that the motor could be operated with only one phase being used (the other phase was not given a gate signal to energise it). The motor could start from stationary but only when the rotor poles Chapter 6
were in the positions such that energising that phase would cause the rotor to turn. Only half the aligned rotor positions were used for torque production. The use of one phase only allowed a lengthening of the pulse for torque production and a halving of the number of pulses required. It was noted that the machine operated at lower efficiencies than the two phase version for each phase but the noise level from one phase was slightly less than the two phase version (the other was slightly more).

Figure 6.50 :- dB noise levels with rotor speed for various supply voltages.

Figure 6.51 :- dB noise levels at 2500 rpm.

6.13 FURTHER DESIGN IMPROVEMENTS

The motor indicated the potential for much improved efficiency and a wide range of practical uses at no extra final product cost. It would replace a wide range of motors.

It operated at a lower temperature than many existing motors and hence showed it does not require expensive high temperature rated thermoplastics. The reduction in plastic costs offsets the increased cost incurred by the use of the magnets. The net result would be a more expensive motor but with a same priced end product when compared to the induction motor for a fan application.

A powdered iron variant would make manufacture easier and more cost effective.

6.13.1 SKEWING OF THE ROTOR

For operating the motor at higher supply voltages the pulse width was narrow and the torque produced was highly dependent on the position of the pulse in relation to the magnitude of the back emf (Figure 6.40). The back emf waveform was practically identical to the shape shown in the Excel model (Figures 6.16 and 6.52). There were sections where the magnitude was very small but there were also sections where the back emf was flat topped (good for smoother torques). It was desired for improved torque production over a wider rotor angle. This was achieved by skewing the rotor from its nonskewed axially aligned original state. The skewing was chosen such that there would still be preferred aligned positions for the rotor in relation to the stator poles and that any air movement caused by the skewing be in the direction of air movement due to the fan blades (left to right rotation in the pictures as the air flow is towards the bottom of each photo).

A gradual skew gave a back emf that had small rotor angles where the magnitude was small (the shape was more sinusoidal) (Figure 6.53). A gradual skew split in the middle by a step change removed some of the sinusoidal shape, but there was a prominent spike at the maximal value (Figure 6.54). The shape was improved by a simple step change in the rotor stack - this was very similar to the dual stack implementation in the DSVRM machine described earlier in this thesis (Figure 6.55). It was regarded as two separate rotors combining the flux variations to give the back emf. There were no obvious sections of little back emf. Introducing a middle section to give two steps reduced the spike but also returned the sinusoidal nature of the back emf (as was confirmed by gradually skewing this middle section) (Figure 6.50).

Gradual skewing appeared to give a more sinusoidal back emf but a stepped skew maintained a section of larger back emf but there was a high value spike where the step occurred (as this step passed the stator pole) (Figure 6.57).

The preferred back emf was from that of the rotor having a single stepped skew (Figure 6.55). This demonstrated the usefulness of a dual stack theory for manipulating the back emf waveform. The resultant waveform had a back emf that was larger over a wider rotational angle of the rotor but with a slight reduction in the maximum value in back emf. This meant that the motor would be less efficient but with improved torque production at higher supply voltages. The motor took 2.73 W input power and was 62.3% efficient at 250 rpm at 40 V rms ac (c.f. $2.1 \mathrm{~W}, 81 \%$ for non-skewed version).

Tests were then performed to show how a skewed rotor affected the motor performance (Table 6.13, Figures $6.58-6.60$).

TABLE $6.13-240 \mathrm{~V}, 110 \mathrm{~V}$ AND 40 V AC SKEWED TEST RESULTS

Opto speed	Rotor speed	V0	V1	IIR	others	V ms	1 ms	P input	P mech	Efficiency	mech pow	Air moved	Air moved	$\overline{(C)}$
(Hz)	(rpm)	value	value	(W)	(W)	(V)	(A)	(W)	(W)	(\%)	out factor	m 3 /hr	$1 / \mathrm{sec}$	after 25 mins
92	1380	255	2	0.27	12.24	237.01	0.0874	13.02	0.52	3.98	0.30	51.89	14.41	
100	1500	231	2	0.28	12.66	237.4	0.0903	13.56	0.61	4.51	0.36	56.40	15.67	
125	1875	176	2	0.35	13.92	237.4	0.1007	15.23	0.96	6.28	0.56	70.50	19.58	
133.3	2000	162	2	0.38	14.19	236.9	0.105	15.66	1.09	6.94	0.64	75.18	20.88	
166.66	2500	117	2	0.47	15.78	237.4	0.1165	17.95	1.70	9.47	1.00	94.00	26.11	
200	3000	83	2	0.58	17.04	237.9	0.1291	20.07	2.45	12.20	1.44	112.80	31.33	
233.3	3500	57	2	0.68	17.98	237.5	0.1398	21.99	3.33	15.15	1.96	131.58	36.55	
266.66	4000	38	2	0.81	18.85	237.4	0.1529	24.02	4.35	18.12	2.56	150.40	41.78	
300	4500	24	2	1.00	20.47	237.4	0.1697	26.98	5.51	20.42	3.24	169.20	47.00	
333.34	5000	10	2	1.27	22.94	235.9	0.1909	31.01	6.80	21.93	4.00	188.00	52.22	
366.66	5500	20	3	4.10	46.22	235.3	0.3432	58.54	8.23	14.05	4.84	206.80	57.44	
400	6000	11	3	4.82	49.25	235	0.3724	63.87	9.79	15.33	5.76	225.60	62.67	
433.33	6500	7	3	15.20	90.20	237.5	0.6611	116.89	11.49	9.83	6.76	244.40	67.89	getting hot
SPIM	2520	-	-	-	-	-	-	15.92	1.7	10.68	Improveme	at 2500 rp		0.89

SKEWED (DUAL STACK VERSION)														
Opto speed	Rotor speed	V0	V1	IIR	others	V ms	1 ms	P input	P mach	Efficiency	mech pow	Air moved	Air moved	Temp (C)
(Hz)	(rpm)	value	value	(W)	(W)	(V)	(A)	(W)	(W)	(\%)	out factor	m^3/hr	Usec	after 25 mins
91.9	1379	255	3	0.16	3.60	108.52	0.0681	4.281	0.52	12.07	0.30	51.83	14.40	
100	1500	226	3	0.17	3.76	108.24	0.0707	4.544	0.61	13.47	0.36	56.40	15.67	
125	1875	168	3	0.26	4.07	108.12	0.0857	5.28	0.96	18.11	0.56	70.50	19.58	
133.3	2000	154	3	0.27	4.22	108.24	0.0877	5.57	1.09	19.52	0.64	75.18	20.88	
166.66	2500	99	3	0.34	4.46	108.21	0.0993	6.5	1.70	26.15	1.00	94.00	26.11	
200	3000	53	3	0.40	4.39	108.15	0.1074	7.24	2.45	33.81	1.44	112.80	31.33	
233.3	3500	25	3	0.59	4.87	108.06	0.1306	8.79	3.33	37.90	1.96	131.58	36.55	
266.66	4000	33	4	1.50	8.72	108.08	0.2079	14.58	4.35	29.85	2.56	150.40	41.78	
300	4500	14	4	1.93	9.32	108.02	0.2356	16.76	5.51	32.86	3.24	169.20	47.00	
333.34	5000	12	5	4.33	14.22	107.8	0.3528	25.35	6.80	26.83	4.00	188.00	52.22	
366.66	5500	6	6	9.36	19.66	107.88	0.5186	37.24	8.23	22.09	4.84	206.80	57.44	
380	5700	1	6	9.84	19.59	107.47	0.5318	38.26	8.84	23.10	5.20	214.32	59.53	
SPIM	2520	-	-	-	-	-	-	15.92	7.7	10.68	mprovem	at 2500rpm		2.45

SKEWED (DUAL STACK VERSION)														
Opto speed	Rotor speed	V0	V1	IIR	others	V ms	1 ms	P input	P mech	Efficiency	mech pow	Air moved	Air moved	Temp (C)
(Hz)	(rpm)	value	value	(W)	(W)	(V)	(A)	(W)	(W)	(\%)	out factor	$\mathrm{m} \times 3 / \mathrm{hr}$	//sec	after 25 mins
88	1320	255	7	0.44	1.11	39.24	0.1123	2.02	0.47	23.46	0.28	49.63	13.79	
100	1500	214	7	0.52	1.10	39.28	0.1228	2.24	0.61	27.32	0.36	56.40	15.67	
125	1875	153	7	0.65	0.96	29.24	0.1368	2.57	0.96	37.21	0.56	70.50	19.58	
133.3	2000	136	7	0.68	0.90	39.23	0.1395	2.66	1.09	40.88	0.64	75.18	20.88	
166.66	2500	42	7	0.66	0.37	39.1	0.1378	2.73	1.70	62.27	1.00	94.00	26.11	
200	3000	6	8	1.68	-0.15	39.22	0.22	3.98	2.45	61.51	1.44	112.80	31.33	
233.3	3500	1	11	3.21	-0.52	39.2	0.304	6.03	3.33	55.24	1.96	131.58	36.55	
239	3585	1	12	3.71	-0.57	39.19	0.3264	6.63	3.50	52.73	2.06	134.80	37.44	
SPIM	2520	-	-	-	-	-	-	15.92	1.7	10.68	nprovem	at 2500rp		5.83

Figure 6.58 :- 240 V ac test results (skewed).

Figure 6.59 :- 110 V ac test results (skewed).

Figure 6.60 :- 40 V ac test results (skewed).

TABLE 6.14 - BEST EFFICIENCIES

Opto speed	Rotor speed	Vo	V1	IIR	others	$\checkmark \mathrm{mms}$	1 ms	Pinput	Pmech	Ericiency	mech pow	Ais moved	Ait moved
(Hz)	(rpm)	value	value	(W)	(W)	(V)23.56	(A)	(W)	(W)	(\%)	anfactor	mr3ar	Usec
168.68	2500	1	17	0.98	-0.59	22.89	0.1681	2.094	1.70	81.18	1.00	94.00	28.11
SP/W	2520	-	-	-	-	-	-	15.92	1.7	70.68	Improveme	at 2500 r	7.60
SKEWED (DUAL STACK VERSION)													
Opto speed	Rotor speed	V0	V1	IIR	others	V ms	1 ms	P input	P moch	Efiricioncy	mech pow	Air moved	Air moved
(Hz)	(rpm)	value	value	(W)	(W)	()	(A)	(W)	(W)	(\%)	out factor	$\mathrm{m}^{\wedge} 3 \mathrm{hr}$	Usec
166.66	2500	12	17	1.07	-0.63	23.4924.21)	0.7752	2.138	1.70	79.51	1.00	94.00	28.11
SPTM	2520	-	-	-	-	-	-	15.92	1.7	10.68	Improveme	at 2500 r	7.45

A comparison with the maximum efficiencies obtainable for the non-skewed and skewed motors showed that there was a slight loss in efficiency when skewing was used (79.5% c.f. 81.2%) (Table 6.14).

6.13.2 COGGING TORQUE

When a motor contains permanent magnets there is always a source of dc flux (Figure 6.61, Figure 6.62). This causes two problems. One is that, when the armature supply voltage or signal to the armature switch is removed, until the rotor has stopped revolving a back emf is present. There is a potential for a dangerous electric shock when the rotor is turning even though the power to the armature has been removed. Correct insulation and power electronics may resolve this problem. The second problem is that of cogging torque (Table 6.15). One advantage is that the rotor parks in the aligned position. The disadvantages are that more power is required for pulling the rotor out of the aligned position and smooth torque production is impaired (ripple). If string is attached to the outer edge of the fan blade (known radius) and the string is attached to a spring balance, then the force required to pull the rotor out of the aligned position indicates the torque due to the magnets. The torque about the rotor axis is the product of the force required (shown on spring balance) and the perpendicular distance (radius). It was of interest that aligned rotor positions for one phase was greater than that for the other phase. Skewing the rotor reduced the cogging torque and the magnitude difference between the two sets of rotor poles for each phase. This in turn illustrated why single phase operation had different input powers for each phase.

TABLE 6.15 - COGGING TORQUE

Stator pole number (in rotational order)	Cogging torque (mNm)	
	Not skewed	Skewed
1	4.17	1.83
2	34.99	8.66
3	4.00	2.00
4	39.98	9.16
5	4.33	2.67
6	36.65	7.33
7	5.66	3.00
8	33.32	8.00

6.13.3 POWDERED IRON

An investigation into the use of powdered iron to replace steel laminations is shown in Appendix H.

Powdered iron has real potential for this type of motor. It is known that magnets can be made from powder materials. Replacing the laminations with powdered iron allows more complex threedimensional shapes and three dimensional flux paths. It is therefore suggested that this type of motor could be built in a mould injection system - involving fewer stages in the manufacturing process, especially if the plastic outer casing was included in the process.

6.14 SUMMARY

A PMFSM has been successfully built to fit inside a pre-existing fan housing to directly replace a shaded pole induction motor. It has one weaved coil (consequent winding) incorporating two parallel bifilar strands of wire instead of four sets of coils. The motor is similar in stack length to the Induction Motor and is identical in diameter.

It is shown that cheaper ferrite magnets can be utilised by selecting stator geometries that focus the flux from the magnets such that the air gap flux density is increased.

The PMFSM has been shown to exhibit potential for very high efficiency at lower supply voltages. The use of magnets has dramatically reduced magnetising losses incurred whilst generating flux for torque production. A maximum efficiency of 81% with only 2.1 W input power at 2500 rpm shows the potential of the design. It takes less power than the Vent Axia LoWatt range that is marketed as a 'green' product. The PMFSM would never create enough savings in an electricity bill to repay the possible retail cost but the energy savings on a global scale are of greater importance. With increasingly stringent measures and directives regarding efficiency of products there is a commercial niche that this design can fill (c.f. low watt light bulbs).

At fixed speeds increasing the supply voltage reduces the efficiency primarily due to a low number of turns in the armature coils (the back emf is not big enough). More turns would be preferable but the wire diameter becomes too thin to successfully wind on a commercial basis.

One solution would be to split the distribution of turns. One phase could have only a small number of turns to aid initial start up of the motor before the other phase runs the motor on its own - this other phase would have far more turns allowing better performance at 240 V rms ac. A second alternative would be to alter the fan design such that the motor operated at higher speeds such that the back emf

Reluctance Machines with Flux Assistance

would be greater but higher speeds incurs undesirable noise issues (air noise, increased frequency of switching noise). A third possibility would be to use NeFeB rare earth magnets to replace the Fer3 magnets currently used but the increase in back emf and efficiency boost at the expense of increased magnet cost is not necessarily a viable option. The last possible solution is to put the armature windings from each phase in series and then use an H -bridge inverter circuit to employ bipolar current. The number of turns is doubled so this will allow improved efficiency at higher supply voltages but the circuit complexity has doubled (four switches instead of two).

The 110 V rms ac version has increased efficiency compared to the Domus induction motor and operates over a wider speed range. The potential air flow rate is such that the motor can be used for all applications. The higher air flow rates are such that this design utilising a 4 inch fan could replace larger fan units. This has implications for the Fan Industry in that a single size fan unit may replace a wide range of fans, not only in terms of applications but also in terms of larger units being phased out (e.g. 6 inch and 9 inch fans). With the PMFSM having its armature phase pulses determining the speed of the fan, it is possible for one PMFSM being made such that a set of dip switches can determine how the fan is to operate (since a PIC microcontroller is easily programmable for such possibilities). The 110 V ac version also competes in terms of performance with the Vent-Axia LoWatt range.

The 40 V rms ac version is the preferred option given the current turns selection. The prototype fan is only 2 dB noisier than the Domus fan. The efficiency is 81% at the same speed as the Domus fan and the input power is 2.1 W . This is a 7.58 times the efficiency of the induction motor currently being used (10.7% efficient, 15.92 W input power [9.36 times more power for the same air flow rate]). Also, by having such a low input power, the motor only operates at $24.2^{\circ} \mathrm{C}$, allowing the use of cheaper thermoplastics. Integration with low temperature rated thermoplastic moulded products provides scope for cost savings that offsets the extra cost of the magnets so the end product is at no additional expense. The 40 V motor convincingly outperforms the LoWatt range at identical air flow rate (41% less input power required).

The model does not predict very accurately the performance of the machine at higher speeds. Losses such as noise, vibration, bearing losses cannot be predicted. Iron losses are not predicted accurately and this is a major source of potential losses at higher speeds (non-linear). A newer model would have to address these issues. Finite Element Analysis and the current spreadsheet give a clear indication of the motor performance at lower speeds and have allowed a motor to be built that is 81% efficient.

Skewing allows manipulation of the back emf waveform to allow torque production over a larger rotor angle. This is at the expense of a small amount of efficiency but it does allow a reduction in cogging torque. The use of the dual stack theory of the DSVRM design has proved to be best for this motor.

The motor is best suited for lower supply voltage to the armature coils. Higher voltages require pulsed timings and perhaps PWM control algorithms (not covered in this work). Otherwise the use of transformers or autotransformers may be needed for efficient motor operation at higher supply voltages.

Noise from the motor is an issue which has not been designed for. Longer armature pulses or operation of one phase only may improve noise from the motor. Better manufacture of the motor may reduce vibrational noise. Also, much work exists on altering the control algorithms for acoustic noise cancellation.

It may also be advisable to consider an external rotor version of the motor. The fan can be incorporated directly into the design. Less copper will be used as the mean length per turn can be reduced (reducing copper losses).

A powdered iron version of PMFSM has scope for further investigation. It is possible for magnets and stator sections to be made from powdered material allowing a simple process to incorporate the fan housing into the final design (compaction press method, for example).

With the high efficiencies, low running temperatures and wide speed ranges of the motor, it could be argued that the PMFSM is too powerful for the 2500 rpm application. It may be possible to reduce the motor diameter and/or stack length such that the motor will no longer have the ability to produce so much output power. A smaller design would be cheaper and allows an improved rotor design for a 4 inch fan blade. The fan could also have blades to move air over the windings for extra cooling and total airflow. The original specification was to design a motor that replaced the Domus induction motor unit. This has been achieved with a great amount of success to the point that further work may be considered to bring this design to a production level.

The Permanent Magnet Flux Switching Motor has shown significant commercial potential and could be used for a wider range of applications than the existing induction motor plus some of the larger fan applications (e.g. 6 inch fans). The very low power ability and its inherent electronic control has attracted interest from Domus Ventilation Ltd. and Vent Axia Ltd. who are looking at investing in furthering its development.

CHAPTER 7

COMPARISON OF RELUCTANCE MACHINES WITH FLUX ASSISTANCE

7.1 INTRODUCTION

Three machines have been designed, built and tested. The Dual and Single Stack Variable Reluctance Machines (DSVRM and SSVRM) have been built using the same design methods, using the same underlying theory regarding the use of the toroidal field winding. They differ in the shape of each machine. The Permanent Magnet Flux Switching Motor replaced the field winding with permanent magnets. This thesis investigated the design and performance of these machines. This chapter investigates similarities and differences between all three machines in terms of effectiveness of flux production. This includes use of one or two stacks for the variable reluctance machines, permanent magnets replacing the field coils, axial and radial fluxes, and bipolar versus unipolar armature currents.

7.2 COMPARISONS BETWEEN SINGLE AND DUAL STACK VARIABLE RELUCTANCE MACHINES

The dual stack variable reluctance machine is a unique machine in that its back emf waveform is in fact variable depending on the mechanical displacement angle between the two stacks. The back emf in each phase is of two components, a back emf in one stack and an additional second back emf which is phase shifted due to the angle of the displacement. The back emf at zero degrees displacement is triangular due to small stator pole arcs. There is a similar back emf shape in the single stack variable reluctance machine. Wider pole arcs would reduce this problem (or a skewing of the rotor and/or stator perhaps). The problem was overcome in the dual stack machine by being able to phase shift the back emfs within each phase by altering the displacement angle. By doing so the shape of the back emf is made less triangular and more square which allows smoother torque production over a larger rotational angle of the rotor. The disadvantage is that this reduces the magnitude of the back emf. A trade off is required that allows smoother torque production but a larger back emf (which means a larger magnitude of torque produced as well). The single stack machine does not have this capability.

The single stack machine has a smaller size. Only one stack is used instead of two. The field winding was housed in a steel section linking the back iron to the rotor. This housing allows the field winding to be simply dropped in during manufacture. The armature windings prevent the field winding from falling out. The dual stack machine needs the field winding clamped inside the cylindrical back iron
linking the two stacks. The armature windings of each stack hold the field in place. The single stack machine uses less steel (it is smaller and lighter) and is easier to build.

Both machines produce axial flux from the toroidal field winding. Both were found to be most efficient when having unipolar excitation with single coil per pole windings energised such that all the windings on two diametrically opposite stator poles are associated with one phase only. Bipolar excitation with bifilar windings hindered torque production as flux is used to prevent flux leaking out of the unaligned stator poles. The unipolar excitation with single coil per pole method does not attempt to prevent flux leakage so all its produced flux is available for torque production. Also, more flux is produced in each energized pole aiding pulling the rotor into the aligned position (the bipolar excitation with bifilar windings version has two sets of coils pulling the rotor into alignment and two more preventing flux leakage and also pushing the rotor into alignment).

The diagrams may refer to the windings as 'conv' and 'bif' for unipolar excitation with single coil per phase and bipolar excitation with bifilar windings respectively only for the purpose of simplifying the text.

Both machines are well suited for having the field winding in series with the armature windings as increasing the field current improves efficiency and torque production.

The tests carried out and the manner of the tests were identical for each machine. The dual stack machine had a tendency to improve in efficiency as it heated up, which was not noted in the single stack machine. Both machines were capable of self-starting (this is true for the angles of displacement chosen for load testing). The use of identical tests allowed a direct comparison of the performance of each machine.

The dual stack machine required more total input power at lower loads but, as the load increased, it only required a gradual increase in input power to maintain machine speed (Figure 7.1). The single stack machine started with much less input power at low load but showed a definite trend for far higher input powers at higher loads (a marked increase).

This was shown in the efficiency curves whereby the efficiency of the single stack machine was far greater than the dual stack version at low loads but the difference was far less at higher loads. The trend implied that the dual stack machine would be more efficient at higher loads if testing was continued.

Figure 7.1 :- Input powers for VRM machines at various speeds.

Figure 7.2 :- Efficiencies for VRM machines at various speeds.

Figure 7.3 :- Iron losses for VRM machines at various speeds.

Figure 7.4 :- Efficiency versus input power for VRM machines at various speeds.

The interesting note was the effect of speed on efficiency (Figure 7.2). The single stack machine was more efficient at lower speeds but the trend was reversed in the dual stack machine where lower speeds reduced the efficiency. The single stack machine was noted to require significant increases in input power for small increases in load and that the efficiency improved with a reduction in rotor speed. This implied that iron losses due to cross lamination fluxes were significant. As the load increased more input power was required to drive the flux across the laminations. Iron losses and
eddy currents also increased. This was shown in a plot of the other losses against load (other losses being iron losses, eddy current losses, windage, etc) (Figure 7.3). This was not really noted in the dual stack motor except perhaps at the highest loads (a small increase is seen). The dual stack machine was not obviously affected by iron losses and this was shown by a slight trend of improved efficiency with increasing speed.

For interest, a plot of efficiency versus input power for each motor was produced (Figure 7.4). It shows that the single stack machine would never reach 25% efficiency as increasing input power levels off the efficiency. The dual stack machine also followed the trend of increasing input power, levelling off the efficiency, but an efficiency of at least $30-35 \%$ seemed obtainable.

The field winding definitely improved torque production. The field efficiently produced the flux. The manner in which the flux was directed by the armature windings was important. The armature should aid this flux not direct it. The use of laminations hindered the efficiency of the machines as they were deigned for flux along the plane of the laminations and not three dimensional flux across the laminations. Excess energy was required to drive flux across the laminations and much energy was lost through iron losses and eddy currents. The removal of the laminations would benefit the single stack machine but the ideal would be to investigate the use of powdered iron for the stator stacks, back iron and field housing. A non-laminated rotor would be useful for both machines.

The field winding topology was very effective. By being completely internal it reduces end winding losses as any stray flux is 'absorbed' into the machine steel. It also allows less flux to be produced by the armature windings which reduces end winding losses in the armature coils and reduces the rating of the power electronic switches.

7.3 PERMANENT MAGNET FLUX SWITCHING MOTORS

The magnets in the Permanent Magnet Flux Switching Motor are placed in the back iron and provide flux in an essentially circumferential plane about the central axis of the motor. By essentially being a constant flux source the iron losses in the steel sections either side of the magnets are reduced. The iron losses are also reduced by there being no requirement to energise and completely de-energise the flux in the motor for each phase excitation.

The use of the magnets dramatically reduce the magnetizing losses during the flux provision for torque production in small motors. This allowed a low running temperature for such a motor. With losses being low in such a motor the obtainable efficiency was 81% since the required input power was low
for a given small motor application. This was compared to a same sized induction motor with an efficiency of just under 11%.

The laminations used gave back emf waveforms that had sections where the magnitudes were near to zero for too great a rotational angle of the rotor. A method of spreading the back emf over a larger angle was needed. The DSVRM motor used a displaced stack theory to improve the shape of the back emf waveform. By altering the angular displacement between the two stacks, the back emf was made more 'square' which in turn improved smoothness of torque production and allowed quieter operation to be possible. The back emf was spread over a wider rotational angle so its magnitude was larger over that angle. The back emf in the PMFSM was manipulated in a similar manner as the rotor was skewed. Skewing, like the angular displacement theory, spread the back emf over a larger angle. Both methods reduced the peak value of back emf. The PMFSM appeared to have a better back emf waveshape when the rotor was skewed by having the rotor as two half sections altered by the skewed angle. It was analogous to the displaced stator stack of the DSVRM.

Skewing the rotor and displaced stack theory both were used to reduce the effects of cogging torque. The dc energised field windings and permanent magnets gave continuous flux. This flux pulled the rotor into aligned positions. Flux from the armature had to overcome this to turn the rotor. Cogging was notable as the rotor turned. It gave a torque that was not smooth. Thus cogging was an undesirable feature of machines with a dc flux source. Skewing and stack displacement theory were used for this purpose.

The PMFSM could be made with skewed magnet sections to aid as a in smooth torque production. The magnets could also be placed in an internal stator (external rotor) design. An external rotor design could also be possible with the toroidal field winding but would require a much different motor shape than shown in this thesis.

7.4 PERMANENT MAGNETS AND EXCITATION COIL WINDINGS

All three machines required a pulsed signal to the armature windings to obtain maximal efficiencies. Flux production was best in the DSVRM and SSVRM when unipolar excitation with single coil per pole windings were used as opposed to bipolar excitation with bifilar windings. The PMFSM used bifilar windings in a consequent winding formation as they allowed a simpler winding configuration to be inserted.

Reluctance Machines with Flux Assistance

The field windings (as with any coil) concentrated flux axially along the middle of the coil - the more ampere turns there was, the greater the flux produced. The motor shape had to accommodate the winding coils of the field winding and the armature coils. End windings accounted for lost flux which was not a problem with magnet use. The field winding acts as an inductor to store magnetic energy, especially when used in a current source half bridge inverter circuit.

The dc current field coils in the single and dual stack variable reluctance machines produce a constant source of additional flux in the axial plane. This flux production requires an input energy that in turn has $I^{2} R$ copper losses. The use of magnets provides additional flux but without any input power being required (and hence no $I^{2} R$ copper losses).

The use of permanent magnets means that there is always a source of flux whereas the field windings could be switched off. This imposes safety issues when the motor excitation is switched off but the rotor is still turning (a back emf would still be present). The magnetic flux from the magnets comes from the magnet material itself - the dimensions and B-H curves determine the ampere-turn equivalence and hence flux magnitude from the magnet. The magnets are part of the complete magnetic circuit but they increase the reluctance of the magnetic circuit (magnets are often regarded as virtual air gaps). This allows the magnet shape to be altered to aid the flux paths. Powdered magnets are used for three dimensional shapes. When magnets are used there are two problems to be reviewed during the design process. The first is that of demagnetization, in either a fault condition in the armature windings or at startup, where the back emf does not limit the current from the supply voltage. This was checked with Finite Element Analysis. The second is that the magnets limited the maximum flux within the motor - it was preferable to have lower flux densities within the motor. It coincided with a fact that lower flux densities allow smaller magnets to be used. Magnets cost more than copper hence less magnet material made the overall motor cost less (rare earth magnets invariably cost far more than ferrites but there are suggestions that the cost per tonne and the difference in costs per tonne is falling [109]).

It was noted that the slot area for the bifilar armature windings was not large enough for enough turns for highly efficient higher voltage applications. It was possible that the ferrite magnets could be replaced by rare earth magnets such as Neodymium Iron Boron (NdFeB) as the flux from the stronger magnets would give more back emf.

7.5 AXIAL AND RADIAL FLUX PATHS

In addition to the air gap between the stator and rotor lamination there are two air gaps within the flux return path that posed interesting design issues within the Single Stack Variable Reluctance Machine (Figure 7.5). The first is the radial airgap whose function is to provide a continuation of the flux paths between the cylindrical section of the rotor and the housing of the field. Its purpose is for a return path and not for torque production. It is therefore regarded as a parasitic air gap.

This air gap is very small to minimise its reluctance but a mechanical clearance has to be retained. Its presence increases the equivalent magnetic reluctance for the machine and hence more ampere turns would be required for flux production. A gap of 0.2 mm was chosen for the machine.

There is also a gap between the end face of the rotor and the field housing (Figure 7.5). If this was too small a large axial force (end thrust) would be produced. This axial gap was chosen to be 10 times greater than the radial gap (i.e. 2 mm) to minimise this problem.

This end thrust effect could be used to advantage however. Ordinarily this effect is detrimental to the machine as bearings are not designed for axial forces. Some loads have an effect of pulling or pushing the rotor in an axial direction e.g. fan blades moving air. If the load were connected correctly, the end thrust produced by the machine could be used to reduce or cancel the axial forces caused by the load. This cancellation technique has to allow for the fact that, at start up, the axial load forces may be minimal and so the machine would have to be designed especially for such a use.

The problem of having an axial flux path that may not be of constant flux was that of eddy currents. Eddy currents flowed circumferentially to produce a flux in opposition to the change in axial flux. It was therefore of note that electrical insulator spacers may be inserted in the axial plane to prevent circumferential eddy currents.

Figure 7.5 :- The parasitic air gap and the production of end thrust.

7.6 BIPOLAR AND UNIPOLAR EXCITATION

From the test results, bipolar excitation with bifilar windings did not give the required efficiency when operating the machine. Flux produced in the stator poles in the unaligned pole pair for that phase energisation was not utilized fully for torque production. Instead it was partially used in preventing of flux leakage through the poles. The bipolar excitation with single coil per pole windings, from the manner in which the coils are connected, could produce more flux but would require the more complex H-bridge power electronics circuit.

The unipolar excitation with single coil per pole windings version, by having only two of the stator poles in each stack energised at any one time, had more flux available for torque production. Such a circuit required a floating gate drive (asymmetric half bridge converter) which complicated the circuitry required.

7.7 SUMMARY

Provided that the reluctance machine is designed properly, ideally with three dimensional Finite Element Analysis, and that the comments in this chapter are taken into account, it should be possible to produce variable reluctance machines with dc assisted toroidal field windings that are of noteworthy efficiency.

There are design considerations that should be noted for improved designs of Permanent Magnet Flux Switching Motors. The main improvement required would be that of higher efficiency at higher supply voltages. The use of magnets can give efficiency boosts to the design of small motors.

Both field windings and magnets reduce the switching losses in the machines as a continuous source of flux is provided.

There is potential for a hybrid motor that has field windings and permanent magnets. Such a motor uses the field winding to provide additional flux for torque production but it could be used as a flux weakening device such that the motor could operate at higher speeds. Perhaps hybrid versions of the Single and Dual Stack Variable Reluctance Machines and the Permanent Magnet Flux Switching Motor would be of worthy investigation for future research.

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 CONCLUSIONS

Reluctance drives with flux assistance have been shown to offer advantages in terms of motor performance and power electronic ratings. The use of field windings and permanent magnets may be used beneficially and without any notable increase in overall product cost.

Toroidal field windings in single and dual stack variable reluctance drives are very effective sources of axial flux. The machines were shown to prove the concept of additional flux to aid in the production of reluctance torque. The use of switched reluctance laminations were shown to give increased iron losses that did not allow the potential efficiency benefits of such a machine to be fully evaluated. The three dimensional flux paths of such machines are better suited to powdered iron technology. Iron losses would be lowered, the three dimensional flux paths would be improved as there would no longer be laminated sheets used (a particular problem was that of the laminated rotor) and eddy currents would be practically eliminated. As the machine laminations were originally designed for a conventional switched reluctance motor without a requirement for a dc flux path, both machines had peaky, almost triangular back emf waveforms that were due to small pole arcs being used in the laminations. An improved lamination shape would have aided torque production.

For both the variable reluctance machines, it was shown that bipolar exciation with bifilar windings did not give as great an efficiency as the unipolar excitation with single coil per pole. The method by which flux is produced by the armature windings has a noticeable effect of torque capability. It was also very apparent that the field windings should be placed in series with the armature windings. As the load increased an increase in field mmf improved the efficiency.

The single stack variable reluctance machine has parasitic air gaps due to a cylindrical rotor section and also has an effect called end thrust due to axial magnetic forces across an axial air gap. It was proposed that the latter effect could have been used to compensate for axial forces from rotor impellars used in fan applications.

The dual stack variable reluctance machine was successfully shown to have improved torque production by changing the mechanical angular displacement between the two stacks such that the back emfs components from each stack for each phase could be phase shifted. The net result was an ability to alter the displacement angle to give a squarer back emf (by considering the waveshape plus
the crest factor). This gave a squarer current waveform with a small current ripple and so torque production was smoother with a noticeably quieter level of operation.

The permanent magnet flux switching machine has a novel design. It is an innovative use of permanent magnets in the stator of a rotating machine. The permanent magnet flux switching motor has different flux paths compared to machines with magnets inserted in the stator, such as, for example, those by Lipo [14, 15, 17, 19, 22] (for example, in the aligned position of [14, 15], flux enters the rotor and travels radially across to the diametrically opposite rotor pole and exits out of that pole, which is different to that of the PMFSM).

The field windings and back iron behind the their slots have been replaced with cheap ferrite magnets in the Permanent Magnet Flux Switching Motor. The source of flux without any need for input power allowed a method for magnetising the motor to a level such that more flux produced by the armature coils could be used in torque production. Magnetising losses were reduced. This was the basis for an efficiency gain for a small motor for a fan application.

The Permanent Magnet Flux Switching Motor operated at very low temperatures that has allowed the possibility of using cheaper lower temperature thermoplastics for the fan housing. It is proposed that the cost savings in plastics could offset the cost addition of the magnets hence a more expensive Permanent Magnet Flux Switching Motor would not necessarily affect the overall cost of the final product.

The motor was compared with similarly priced fans commercially available from Domus and VentAxia. The price was not a condition for the comparison but it has been an added bonus that the improvements have been achieved without excessively expensive magnets and electronics etc. The Permanent Magnet Flux Switching Motor was shown to not only be capable of moving a much higher air volume per hour than its competitors but it could also operate at a fraction of the input power of induction motors and less than permanent magnet brushless dc motors. It operated at a speed of 2500 rpm with only 2.1 W of input power, at 81% efficiency and well below $30^{\circ} \mathrm{C}$ operating temperature. It was only a fraction louder (2.2 dBA louder) than the reputedly quiet commercially manufactured induction motor fan (45.0 dBA) (47.2 dBA c.f. 45.0 dBA). An improved construction would have made this difference even less noticeable.

The Permanent Magnet Flux Switching Motor was shown to be able to comfortably outperform its competitors when the armature commutation timings were optimised. This was possible by using the prototyping circuit board and PIC program developed for this thesis. For all the machines designed, built and tested, the optimum armature timings were effectively found for any test condition by
changing the timings as the motors were still operating. Fast and effective prototyping optimisation has been demonstrated for two phase reluctance machines. The only problem may have been that of no ability to PWM each phase. PWM may be required for additional current control to allow the machine to be drive a range of loads, increasing the potential of the machine in commercial products. PWM could be introduced to future improvements.

A low supply voltage design was highly efficient at 81%. The higher supply voltages to the armature did lessen the efficiency as there were not enough armature turns.

The torque production in the Permanent Magnet Flux Switching Motor was improved by increasing the rotational angle for which the back emf was a large value. This was achieved through a skewing of the rotor in a similar manner to the dual stack angular displacement.

The Permanent Magnet Flux Switching Motor has shown significant commercial potential and could be used for a wider range of applications than the existing induction motor plus some of the larger fan applications (e.g. 6 and 9 inch fans). The very low power ability and its inherent electronic control has attracted interest from Domus Ventilation Ltd. and Vent Axia Ltd. who are looking at investing in furthering its development.

It has been shown that the axial flux from the toroidal field windings and the circumferential flux from the ferrite magnets have been implemented in three novel geometries, all of which have shown much potential for improving torque production and lowering power electronic rating requirements for the armature windings. Low input power, high efficiency designs may be attainable if correct design procedures are followed. Three dimensional Finite Element Analysis is a preferred option for some design topologies but, as shown, is not essential.

The reluctance machines with flux assistance that have been built and tested were all successful proof-of-concept machines. The variable reluctance machines would be better if redesigned with optimum design shapes and improved material selection rather than using existing switched reluctance steel laminations. The author believes the Permanent Magnet Flux Switching Motor has the greatest commercial potential and only requires minor alterations for a commercial package.

8.2 RECOMMENDED WORK FOR FUTURE

It was evident that the iron losses in the two variable reluctance machines inhibited the potential efficiencies of the machines and that this was attributed to the use of laminated steel affecting the three-dimensional flux paths. Powdered iron is suggested as an alternative for such machines as complex flux paths are allowed and eddy currents can be minimized. The use of powdered iron technology such as Somaloy500 is recommended for future designs. The advantages it offers for the variable reluctance machines outweigh the reduction in maximum flux available through a lower permeability. The ability to design with complex three dimensional shapes could also be used to advantage with three dimensional flux paths.

Permanent magnets used in the variable reluctance machines to replace the toroidal field winding may be a worthy investigation. It does cause problems regarding the reluctance of the circuit and the flux paths altering due to magnet use so a direct comparison would be difficult.

An external rotor version of the permanent magnet flux switching motor is definitely warranted. By being an internal stator, copper usage is lessened and the motor can be made more compactly. Efficiencies above 81% could be realized. More work needs to be carried out on the effects of current in the armature winding sections adjacent to the magnets to verify the effects of flux from the armature on the magnets. In a manufacturing sense, powdered iron would be useful in the permanent magnet flux switching motor as simpler manufacturing may be possible.

Perhaps hybrid versions of the single and dual stack variable reluctance machines and the Permanent Magnet Flux Switching Motor with field and permanent magnets together may be of worthy investigation for future research to give controllable additional dc flux.

The use of three-dimensional Finite Element Analysis is a must where three dimensional flux paths are present. It allows a clearer insight into the paths within complex designs and may reveal where any problems exist before such a motor is built.

8.3 CONTRIBUTION TO KNOWLEDGE

C. E. Niehoff \& Co. Ltd [110, 111] design and manufacture heavy duty brushless alternators. One of the range of products is the Dual Stator Brushless Alternator. The field and stator windings are stationary and no magnets are used. It is alleged that the design is similar to that of the Dual Stack Variable Reluctance Machine (DSVRM). It has been claimed that a similar design exists from this company for a military specification. There has been no contact from the company regarding pictorial evidence of this claim as only a commercial catalogue without diagrams has been forwarded. A search for patents by the company did not provide any further information of relevance. It would be a fair assumption that the alternator has many more pole numbers and that it does not have any Switched Reluctance laminations. The alternator is not being used as a motor either. Any similarities are only regarded as that of a dual stator concept. Unless proven otherwise the DSVRM will be regarded as a novel design concept with no known similarity except as that of being based upon the design concept of the homopolar inductor alternator. The internet address [111] for C. E. Niehoff \& Co. Ltd does not offer any additional information to the product catalogue [110] supplied by the company.

Reluctance Machines with Flux Assistance

8.4 SUMMARY OF CONTRIBUTION BY AUTHOR

The author has presented the design, build and test of two reluctance machines that use field windings and one reluctance machine that uses permanent magnets to give additional dc flux via novel geometries.

The additional flux has been shown to help reduce switching losses and to reduce the ampere turns needed in the armature coils for torque producing flux. The toroidal field windings in dual and single stack variable reluctance machines are presented as switched reluctance variants of the homopolar inductor alternator topology. The field winding of the flux switching motor has been replaced with permanent magnets. The use of magnets or separately energised dc field windings has removed the field energy through the power electronic converter, lowering the $\mathrm{kVA} / \mathrm{KW}$ rating of the power electronics.

The Dual Stack and Single Stack Variable Reluctance Machines can be designed using a dc motor equivalence and by calculating the magnetic reluctance of the motor by two dimensional analysis. The appropriate choice of winding type for armature flux production in these machines is very important.

The Permanent Magnet Flux Switching Motor has been built as a low power, highly efficient motor for a fan application. The motor is more efficient than existing similarly sized machines used by the Fan Industry, such as, for example, the single phase shaded pole induction motor. It has been shown that the use of permanent magnets does not necessarily increase the overall cost of the application for the motor, as efficiency gains through lowered armature copper losses allows cheaper thermoplastics to be used in the build of the complete application containing the motor (as the PMFSM ran at a low operating temperature). Reluctance drives with flux assistance are shown to achieve efficiencies of over 80%, demonstrating improved performance over similarly sized commercially available small motors.

This thesis shows a novel microprocessor program and its circuitry for optimizing the control of the three prototype machines.

This thesis shows methods for improving torque production and reducing power electronic converter ratings in reluctance machines with flux assistance through appropriate choice of winding type, mechanical angular displacement and by skewing.

Reluctance machines with flux assistance are ideal candidates for experimental designs using powdered iron to allow three dimensional flux paths whilst reducing eddy currents.

BIBLIOGRAPHY

[1] "Permanent Magnets in Alternators and Special Drives", H. R. Bolton, First U.K. Conference on the Manufacture and Application of Permanent Magnets, London, 1980, pp101-110.
[2] "Electronic Control of Switched Reluctance Motors", T. J. E. Miller, Newnes, 2001.
[3] "Switched Reluctance Motors and Their Control", T. J. E. Miller, Oxford University Press, 1993.
[4] "Generating with the Switched Reluctance Motor", A. Radun, APEC IEEE,Volume 1, 1994, pp41-47.
[5] "A Novel High Speed Switched Reluctance Generator", W. F. Ray, M. T. Ebrahim, EPE, 1995, pp3.811-3.815.
[6] "Control of a Switched Reluctance Aircraft Engine Starter-Generator Over a Wide Speed Range", S. R. MacMinn, J. W. Sember, Proceedings IECEC 89 (Washington DC), Aug6-11, 1989.
[7] "Performance of a High-Speed Switched Reluctance Starter/Generator System Using Electronic Position Sensing", S. R. Jones, B. T. Drager, IEEE IAS 1995, Volume 1, pp249253.
[8] "Design Considerations and Test Results for a Doubly Salient PM Motor with Flux Control", F. Leonardi, T. Matsuo, Y. Li, T. A. Lipo, P. McCleer, IEEE IAS 1996, pp458-463.
[9] "Axial flux circumferential current permanent magnet (AFCC) Machine", J. Luo, D. Qin, T. Lipo, S. Li, S. Huang, 0-7803-4943-1/98, IEEE, 1998.
[10] "Switched reluctance motor with dc assisted excitation", Y Li, J.D. Lloyd, G.E. Horst, IEEE IAS Annual Meeting Conference 1996, pp. 801-807.
[11] "Variable reluctance drive system", T Lipo, F. Liang, Electric Power Research Institute, United States Patent Number 5,459,385, Oct. 17, 1995.
[12] "Reluctance Machine with Auxiliary Field Excitations", Y. Li, United States Patent 5,866,964, 2 February, 1999.
[13] "New winding configurations for doubly salient reluctance machines", B. C. Mecrow, IEEE Transactions on Industry Applications, Vol. 32, No.6, November/December 1996 pp 13481356.
[14] "A Novel Doubly Salient Single Phase Permanent Magnet Generator", B. Sarlioglu, Y. Zhao, T. A. Lipo, IEEE IAS Annual Meeting 1994, pp9-15.
[15] "Nonlinear Modeling and Simulation of Single Phase Doubly Salient Permanent Magnet Generator", B. Sarlioglu, T. A. Lipo, IEEE IAS Annual Meeting 1998, pp 18-26.
[16] "A Novel Permanent Magnet Motor with Doubly Salient Structure", Y. Liao, F. Liang, T. A. Lipo, IEEE IAS Annual Meeting 1992, pp308-314.
[17] "Self Excited Variable Reluctance Generator", T. Matsuo, J. Luo, E. Hoffman, T. A. Lipo, IEEE IAS Annual Meeting 1997, pp653-660.
[18] "Permanent-Magnet, Direct Drive, Starter/Alternator Machine with Weakened Flux Linkage for Constant-Power Operation Over Extremely Wide Speed Range", F. Caricchi, F. Crescimbini, F. G. Capponi, L. Solero, IEEE IAS Annual Meeting 2001, pp1626-1633.
[19] "Design Considerations and Test Results for a Doubly Salient PM Motor with Flux Control", F. Leonardi, T. Matsuo, Y. Li, T. A. Lipo, P. McCleer, IEEE IAS 1996, pp458-463.
[20] "New Advanced Control Methods for Doubly Salient Permanent Magnet Motor", F. Blaabjerg, L. Christensen, P. O. Rasmussen, L. Oestergaard, P. Pederson, IEEE IAS 1995, pp222-230.
[21] "Static Characteristics of a New Doubly Salient Permanent Magnet Motor", M. Cheng, K. T. Chau, C. C. Chan, IEEE IAS 1999, pp222-230.
[22] "A Permanent Magnet AC Machine Structure with True Field Weakening Capability", A. Shakal, Y. Liao, T. A. Lipo, Electric Machines and Power Systems, 24:497-509, 1996.
[23] "Characteristics of a Doubly Salient-Pole Homopolar Machine in a Constant-Power Speed Range", N. Sugitani, A. Chiba, T. Fukao, IEEE,0-7803-4943-1/98, 1998, pp 663-670.
[24] "The Flux-Reversal Machine : A New Brushless Doubly-Salient Permanent-Magnet Machine", R. P. Deodhar, S. Andersson, I. Boldea, T. J. E. Miller, IEEE IAS 1996, pp786793.
[25] "Two New Competitors Advanced motors targeted for battery-powered applications", P. J. McCleer, Appliance Manufacturer, July 1998, pp39-41.
[26] "A new doubly salient permanent magnet motor for adjustable speed drives", Y. Liao, T. A. Lipo, Proc. Symp. On Power Electronics, Electrical Drives and Advanced Electrical Motors, 1992, pp415-420.
[27] "A New Electronically-Commutated Doubly-Salient Permanent-Magnet Small Motor", M. M. Radulescu, C. Martis, K. Biro, IEE Electric Machines and Drives, Conference Publication No. 412, 1995, pp213-216.
[28] "Optimum Design of Highly Efficient Magnet Assisted Reluctance Motor", H. Murakami, Y. Honda, Y. Sadanaga, Y. Ikkai, S. Morimoto, Y. Takeda, IEEE IAS 2001, pp2296-2301.
[29] "Highly Efficient Brushless Motor Design for an Air-conditioner of the Next Generation 42V Vehicle", H. Murakami, H. Kataoka, Y. Honda, S. Morimoto, Y. Takeda, IEEE IAS Annual Conference 2001, pp 461-466.
[30] "Low-Cost Compact Permanent Magnet Machine for Adjustable-Speed Pump Application", F. Caricchi, F. Crescembini, O. Honorati, IEEE IAS 1998, pp109-116.
[31] "Design, development and testing of a high-speed axial-flux permanent-magnet machine", F. Sahin, A. M. Tuckey, A. J. A. Vandenput, IEEE IAS 2001, pp1640-1647.
[32] "Multi-Stage Axial-Flux PM Machine for Wheel Direct Drive", F. Caricchi, F. Crescembini, F. Mezzetti, E. Santini, IEEE IAS 1995, pp679-684.
[33] "Design and Experiments of A Novel Axial Flux Circumferential Current Permanent Magnet (AFCC) Machine with Radial Airgap", J. Luo, S. Huang, S. Chen, T. A. Lipo, IEEE IAS 2001, pp 1989-1996.
[34] "A Comparison Between the Axial Flux and the Radial Flux Structures for PM Synchronous Motors", A. Cavagnino, M. Lazzari, F. Profumo, A. Tenconi, IEEE IAS Annual Conference 2001, pp 1611-1618.
[35] "TORUS Concept Machines: Pre-Prototyping Design Assessment for Two Major Topologies", S. Huang, M. Aydin, T. A. Lipo, IEEE IAS Annual Conference 2001, pp 16191625.
[36] "STEPPING MOTORS: a guide to modern theory and practice", P. P. Acarnley, IEE Control Engineering Series 19, Second Edition, 1984, Peter Peregrinus Ltd.
[37] "Instantaneous Torque Analysis of Hybrid Stepping Motor", N. Matsui, M. Nakamura, T. Kosaka, IEEE IAS 1995, Volume 1, pp 701-706.
[38] "An overview of the powder processing of soft magnetic composites", G. Roberts, A. Davidson, S. Gair, J. Hajto, Engineering Science and Education Journal, December 2001, IEE, pp237-240.
[39] "Switched Reluctance Machines with Simple Hoop Windings", H. M. Amreiz, B. C. Mecrow, submitted for PEMD, 2002.
[40] "Transverse Flux Reluctance Motor for Direct Servodrive Applications", R. Kruse, G. Pfaff, C. Pfeiffer, IEEE IAS 1998, pp 655-661.
[41] "The Electrical Encyclopedia A handbook of modern electrical practice for the working electrician", Volume II DEC-IRON, S. G. Blaxland Stubbs, 1934, The Waverley Book Company, pp 670-671.
[42] "The Performance and Design of Alternating Current Machines transformers, three-phase inductions motors and synchronous machines", Third Edition, M. G. Say, 1958,Sir Isaac Pitman \& Sons, pp514-515.
[43] "Alternating Current Machines", Fourth Edition, M. G. Say, 1976, Pitman Publishing, Chapter 12.
[44] "Electrical Machines", Second Edition, A. Draper, Longman, 1967, pp 205-208.
[45] "The Theory of the Inductor Alternator", J. H. Walker, IEE Volume 89, Part 2, 1942, pp 227228.
[46] "The New Electrical Encyclopedia A practical handbook of modern electrical engineering for working engineers", Volume II DA-IS, S. G. Blaxland Stubbs, 1953, The Waverley Book Company, pp 834-836.
[47] "Electromagnetic and Electromechanical Machines", L. W. Matsch, Intext, 1972, pp 449-455.
[48] "Reluctance Models for Mechatronic System Simulation", Dr.-Ing. Karsten Schonherr, Robert Bosch, 06/09/2002.
http://www.annauniv.edu/prodetails1.htm 09/04/2003
[50] "Low Cost Brushless Generators", L. McGrow, C. Pollock, IEEE IAS Annual Conference 1999, pp 1229-1236.
[51] "Performance Prediction of Law's Relay Actuator", H. R. Bolton and Y. Shakweh, IEE Proceedings, Vol 137, Part B: Electric Power Applications, pp 1-13, Jan 1999.
[52] "The Flux Switching Motor, a DC Motor with Magnets or Brushes", C.Pollock and M. Wallace, Proceedings of the IEEE Industrial Application Society 34th Annual Meeting", Vol. 3, pp 1980-1987, 1999.
[53] "Electric Machinery Fundamentals", Second Edition, Stephen Chapman, M"Graw-Hill, 1991. "NASA Final Report - Brushless Rotating Electrical Generators for Space Auxiliary Power Systems", J. N. Ellis, F. A. Collins, National Aeronautics and Space Administration, 26 April, 1965, Contract No. NAS 3-2783.
[55] "Reduction of Cogging Torque in Spindle Motors for CD-ROM Drive", C. C. Hwang, S. B. John, S. S. Wu, IEEE Transactions on Magnetics, Volume 34, No. 2, March 1998, pp468-470.
[56] "Reduction of Cogging Torque in Permanent Magnet Motors", T. Li, G. Slemon, IEEE Transactions on Magnetics, Volume 24, No. 6, March 1998, pp2901-2903.
[57] "Torque and Cogging Torque in Sandwich Type CD-ROM Spindle Motor", C. M. Chao, S. J. Wang, C. P. Liao, D. R. Huang, T. F. Ying, IEEE Transactions on Magnetics, Volume 34, No. 2, March 1998, pp471-473.
[58] "Cogging Torque Reduction of a Single-Phase Brushless DC Motor", D. Huang, T. Ying, S. Wang, C. Zhou, IEEE Transactions on Magnetics, Volume 34, No. 4, March 1998, 20752077.
[59] "Acoustic noise and vibration of rotating electric machines", A. J. Ellison, C. J. Moore, Proceedings of the IEE, Volume 115, 1968, pp1633-1640.
[60] "Electronic Cancellation of Acoustic Noise in a Fan System Driven By a Switched Reluctance Motor", M. Brackley, C. Pollock, EPE '99.
[61] "Acoustics for Engineers", J. D. Turner, A. J. Pretlove, Macmillan Education Ltd, 1991.
[62] "The effect of skewing and pole spacing on magnetic noise in electric machinery", S. J. Makina, Transaction ASME, 1934, 5, pp711-720.
[63] "The Origin and Reduction of Acoustic Noise in Doubly Salient Variable-Reluctance Motors", D. E. Cameron, J. H. Lang, S. D. Umans, IEEE Transactions on Industry Applications, Volume 28, No. 6, November/December 1992, pp1250-1255.
[64] "The Origin of Permanent Magnet Induced Vibration in Electric Machines", B. S. Rahman, D. K. Lieu, Transaction of the ASME, Journal of Vibration and Acoustics, Volume 113, October 1991, pp476-481.
[65] "Analysis and Reduction of Acoustic Noise from a Brushless D.C. Drive", M. Brackley, C. Pollock, IEEE IAS 1999, pp888-893.
[66] "Time Domain Analysis of Vibration and Acoustic Noise in the Switched Reluctance Drive", C. Y. Wu, C. Pollock, Conference Record, $6^{\text {th }}$ International Conference on Electrical Machines and Drives, IEE, 1993, pp558-563.
[67] "Analysis and Reduction of Vibration and Acoustic Noise in the Switched Reluctance Drive", C. Y. Wu, C. Pollock, IEEE Transactions on Industry Applications, Volume 31, No. 1, January/February 1995, pp91-98.
[68] "Acoustic Noise Cancellation Techniques for Switched Reluctance Drives", C. Y. Wu, C. Pollock, IEEE IAS 1995, Volume 2, pp448-455.
[69] "Reduction of Noise and Vibration in Switched Reluctance Motors : New Aspects", A. Michaelides, C. Pollock, IEEE IAS 1996, Volume 2, pp771-778.
[70] "Comparison of the Acoustic Noise of A Flux Switching and a Switched Reluctance Drive", M. Brackley, C. Pollock, IEEE IAS 2001, pp2089-2096.
[71] http://www.hoganas.com.
"SMC update Nol 1997", Hoganas, http://www.hoganas.com, 1997.
"Permanent Magnet Machines with Powdered Iron Cores and Pre-Pressed Windings", A. G. Jack, B. C. Mecrow, P. G. Dickinson, D. Stephenson, J. S. Burdess, J. N. Fawcett, T. Evans, IEEE IAS Annual Meeting, 1999, pp97-103.
[74] "SMC update Nol 1999", Hoganas, http://www.hoganas.com, 1999.
"SMC update Nol 2000", Hoganas, http://www.hoganas.com, 2000.
"Development of a transverse flus traction motor in a direct drive system", R. Blissenbach, U. Schafer, W. Hackmann, G. Henneberger, http://www.hoganas.com.
[77] http://www.pasci.com/theproduct/release.html, 02/07/2002.
[78] "An Iron Composite Based Switched Reluctance Machine", M. Alakula, T. Cedell, M. Persson, L. Sjoberg, Stockholm Power Tech Conference, IEEE/KTH, 1995, pp251-255.
[79] "Iron Powder in Electrical Machines, Possibilities and Limitations", O. Andersson, Hoganas AB, http://www.hoganas.com, 2001.
[80] "Soft Magnetic Composite Materials - Use for Electrical Machines", A. G. Jack, B.C. Mecrow, A. G. Jack, IEEE, 1999.
[81] "Fundamental of Manufacturing for Engineers", T. F. Waters, Chapter 7, pp173-183, 1996, UCL Press.
[82] "Route from Powder to an Electrical Machine Application", O. Krogen, P. Jansson, Powder Metallurgy World Congress \& Exhibition, 1998, Proceedings Vol5, 520-525.
[83] "Iron loss in Machines with Powdered Iron Stators", M. Persson, P. Jansson, A. G. Jack, A. G. Jack, B.C. Mecrow, Electric Machines and Drives $7^{\text {th }}$ International Conference, IEE, 1995, pp242-246.
[84] "Iron-Resin Composite Materials for AC Magnetic Applications", C. Gelinas, J. M. Battison, Powder Metallurgy World Congress \& Exhibition, 1998, Proceedings Vol5, pp508-513.
[85] "Some Considerations about Soft Magnetic Materials for AC Applications", E. Enescu, E. Soptea, O. Filip, S. Gavriliu, E. Cristescu, Powder Metallurgy World Congress \& Exhibition, 1998, Proceedings Vol5, pp600-605.
[86] "Recyclability and Life Cycle Environmental Loading of PM Products", K. Halada, K. Minagawa, K. Ijima, Powder Metallurgy World Congress \& Exhibition, 1998, Proceedings Vol3, pp331-336.
[87] "The Building Regulations 1991 Approved Document F", The Department of the Environment and The Welsh Office, HMSO, 1995 Edition.
[88] "Domus Modular Ventilation Systems Extractor Fan Catalogue 2001...the complete solution", Domus Ventilation Limited, http://www.domusventilation.com, 2001.
[89] "Fluid Mechanics", J. F. Douglas, J. M. Gasiorek, J. A. Swaffield, Fourth Edition, Chapters 22 and 25, 2001, Prentice Hall.
[90] "Air Flow Vs. Pressure Characteristics", http://www.comairrotron.com/Engineering/airflow.htm, 02/15/2002.
[91] "Vent-Axia System Calculator", D. J. Clark, Vent-Axia, http://www.vent-axia.co.uk, 1997.
[92] "Electric power system components-transformers and rotating machines", R. Stein, W. Hunt, 1979,VNR.
[93] "Design and Control of a Variable Reluctance Drive with axially orientated dc flux assistance", E. R. T. Goodier, C. Pollock, IEEE IAS Annual Conference 2001, pp 2065-2072.
[94] "Homopolar Variable Reluctance Machine incorporating an Axial Field Coil", E. R. T. Goodier, C. Pollock, IEEE IAS Annual Conference 2001, pp 1997-2007.
[95] Switched Reluctance Drives: a comparative evaluation, C.Pollock and A. Michaelides, Power Engineering Journal December 1995.
[96] Variable-speed switched reluctance motors, Lawrenson Stephenson Blenkinsop Corda Fulton, IEE proceedings, Volume 127, Part B, Number 4, July 1980.
[97] MICROCHIP DATA BOOK 1994, Microchip Technology Inc.
PIC16F87X DATA SHEET, Microchip Technology Inc.
"Saliency-Based Position Estimation in PM Synchronous Motors", V. Petrovic, A. M. Stankovic, IEEE IAS Annual Conference 2001, pp 801-806.
[100] "Implementation of Sensorless Vector Control for Super-High Speed PMSM of TurboCompressor", B. Bae, S. Sul, J. Kwon, J. Shin, IEEE IAS Annual Conference 2001, pp 12031209.
[101] "High Performance Current Based Sensorless Speed Servo System of PM Motor Based on Current Estimation", K. Ohishi, Y. Nakamura, IEEE IAS Annual Conference 2001, pp 12401246.
[102] "A Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motors", C. Li, M. Elbuluk, IEEE IAS Annual Conference 2001, pp 1273-1278.
[103] "New Rotor Position Detection for Permanent Magnet Synchronous Machines Using the "Inform"-Method", M. Schrodl, T. Stefan, ETEP Volume 1 No.1, January/February, 1991, pp 47-53.
[104] 'High Performance Speed Control of Permanent Magnet Synchronous Motor with Eccentric Load", J. Park, D. Koo, J. Kim, G. Kang, J. Park, IEEE IAS Annual Conference 2001, pp 815820.
[105] "Speed control of a PMSM motor based on the new disturbance observer", Y. S. Suh, T. W. Chun, IEEE IAS Annual Conference 2001, pp 1319-1323.
[106] "Two-dimensional fields in electrical engineering", L.V. Bewley, 1963, Dover Publications.
[107] "Magnets The Complete Field", Magnet Sales \& Services Limited, Kembrey Park, Swindon, Wiltshire, SN2 6UN, 1999, http://www.magnetsales.co.uk.
[108] "Permanent magnet materials - Fundamentals, design and application", IEE Power Division Seminar at the Institute of Civil Engineers, London, 4 July 2000.
[109] "Cost and Performance Trends of Permanent Magnets in Automotive Applications", J. G. W. West, IEE Seminar Permanent Magnet Materials - fundamentals, design and application, Tuesday $4^{\text {th }}$ July, 2000, pp2/1-2/26.
[110] "C. E. Niehoff \& Co. Ltd. Brushless Alternators Product Catalogue 2001", C. E. Niehoff \& Co. Ltd, 2001.
[111] www.ceniehoff.com, December 2002.

PUBLICATIONS

PUBLISHED WORK

"Design and Control of a Variable Reluctance Drive with axially orientated dc flux assistance", E. R. T. Goodier, C. Pollock, IEEE IAS Annual Conference 2001, pp 2065-2072.
"Homopolar Variable Reluctance Machine incorporating an Axial Field Coil", E. R. T. Goodier, C. Pollock, IEEE IAS Annual Conference 2001, pp 1997-2007.
"Homopolar Variable Reluctance Machine incorporating an Axial Field Coil", E. R. T. Goodier, C. Pollock, Volume 38, Number 6, November/December 2002, IEEE Transactions on Industry Applications, pp 1534-1541.

UNPUBLISHED OR AWAITING FOR SUBMISSION FOR PUBLICATION

Mechanical angular displacement in Dual Stack Variable Reluctance Machines with axially orientated de flux assistance.

Comparison of excitation techniques in a Single Stack Variable Reluctance Machine with dc assisted axial flux excitation.

Design comparisons of Variable Reluctance Machines with axially orientated dc flux assistance.

SOFTWARE USED

Below is a list of the main software used in the preparation of work for this thesis.

Vector Fields Opera2D Finite Element Analysis

Microsoft Excel 2000
Microsoft Word 2000
Design Science MathType 4
Notetab Lite
Microchip MPLAB
Microchip MPASM
Autodesk AutoSketch 5
JASC PaintShop Pro 4
Adobe Photoshop 4
ACD Systems ACDSee32

APPENDICES

These Appendix sections relate to text in previous chapters. The information contained within each Appendix is aimed to complement the understanding of the reader.

Appendix A introduces cogging torque, acoustic noise cancellation techniques, powdered iron technology and fan industry requirements.

Appendix B shows the flow diagram for the timing control in the PIC16F877 microcontroller. The 16F84 version of this is shown with fixed delays instead of being able to vary them as in thePIC16F877 version. Included is the test procedure for using the prototyping circuitry and some test results demonstrating the optimisation obtained from using the experimental contol electronics to optimise the armature timings.

The PIC16F877 coding for a two speed variable delay length control program is in Appendix C.

The LCD circuit design and LCD display program coding (for a PIC16F877 microcontroller) to give the information obtained from the prototyping circuit is shown in Appendix D.

Data sheet information for Self Bonding Wire (Solderable Self-Bonding Enamel (SALDAVEX AUTOVEX F), packing factor considerations, the use of plastic formers and the data sheet information for Nylon66 is given in Appendix E.

A Dual Stack Variable Reluctance Machine concept diagram is shown in Appendix F.

Photographs of the Single Stack Variable Reluctance Machine, information relating to a noted bearing imbalance during back emf testing, and optimisation during load testing can be found in Appendix G .

Appendix H discusses magnetic short circuits obtained when investigating maintaining stator integrity in the Permanent Magnet Flux Switching Motor. Also shown are example B-H curves for some of the magnets considered, lamination dimensions, the dynamic modelling spreadsheet, powdered iron discussion, and photographs of the Permanent Magnet Flux Switching Motor.

The author has kept the program coding for the PIC microcontrollers as small text. This was done to minimise the number of pages used in the printing of this thesis.

APPENDIX A

A. 1 COGGING TORQUE

Cogging torque arises from interaction of flux from permanent magnets (or from energised field coils) between the rotor and stator poles. Cogging torque can increase the load of the system, increasing power dissipation. Cogging torque produces vibration and noise that may be detrimental to the performance of position and speed control systems [55]. Cogging torque can be reduced by skewing [56] but this can add complexity to the construction (the stator is skewed if the magnets are on the rotor and vice versa).

Skewing can also reduce the mechanical output torque which may be disadvantageous. Surface mounted rotor magnets can have their angular width changed in relation to the rotor tooth plus slot dimension such that the cogging torque may be reduced to 1% of rated torque [56]. A rotational shift of one rotor pole pair relative to a second rotor pole pair for a four-pole rotor design can also reduce the cogging torque [56]. Such techniques do require, for optimum results, the use of finite element analysis.

In the Sandwich Type CD-ROM spindle machine (three phase, 12 poles, 9 slots, radial winding, radial air gap type brushless dc machine) [56] used in optical drives, the large cogging torque increases the load of the servo system hence increases the power dissipation. This is an undesirable effect that can also give dead points where the machine cannot start. It is possible, in this type of machine, to design the cogging torque waveform [57] to prevent dead points. Correct design of the machine can effectively eliminate the dead points as well as reduce cogging torque (Figure A.1)[58] by having multiple radii of curvature of the salient poles.

Skewing of the rotor magnets is another suggested method of cogging torque reduction. Variation of the ratio of armature teeth to magnet pole arc can lead to a reduction in cogging torque. This has been implemented in a three-phase, Y-connected permanent magnet brushless DC machine with an external rotor (for use in a spindle machine in a CD-ROM drive).

Figure A. 1 :- Sandwich Type CD-ROM spindle machine [58].

A. 2 ACOUSTIC NOISE CANCELLATION TECHNIQUES

The reduction of acoustic noise produced by electrical machines has been reported in many papers. It is known that noise is produced by mechanical, magnetic and aerodynamic sources [59] and methods exist to reduce such noise. It is becoming increasingly more important for motor manufacturers to produce machines that are quieter than their competitors, especially as British and European regulations are becoming stricter with regards to noise emissions. The sound radiated from the machine and the vibration emitted to its supporting structure have to be studied together.

The sound pressure level is only part of the concern for domestic applications. The frequencies at which noise is produced is also of particular interest since the human ear is not uniformly sensitive across the frequency range and that certain frequencies (e.g. pure tones in the human speech frequency range) can create interference and annoyance to individuals [60,61]. Parts of the driving system can also have techniques applied for a reduction in acoustic noise, such as to reduce the amplitude of resonant frequency of the fan housing [60].

Although there is little work being carried out on acoustic noise cancellation techniques as part of this thesis, the dBA noise levels for fan motors is needed due to low noise levels being a selling point for fan applications. There are many sources of noise and vibration in machines [59]. Vibrational mechanical noises may result from unbalanced rotors, the type of bearing used, shaft curvature, and resonances due to manufacturing asymmetries unbalancing magnetic and mechanical forces.

Magnetic forces in the air gaps account for a degree of mechanical vibration (magnetostriction and flux between laminations give less vibrations). Variation in armature current in each slot and air gap lengths cause the machine to vibrate. Torque ripple may also excite stator vibrations that could emit acoustic noise. Skewing of the rotor and/or stator can reduce vibrational noise [62]. Aerodynamic noise, especially for fan motors, is due to pressure variations and turbulence in the air flow. Appendices

In doubly salient variable reluctance motors the dominant noise source is the radial deformation of the stator due to its radial magnetic attraction to the rotor [63]. It is also suggested that the stator current could interact with the local magnetic field to produce a force on the windings. The force could excite winding vibrations that would emit acoustic noise.

In brushless dc motors where the magnets are on the rotor, a principle source of vibration is the induced travelling forces from the rotating permanent magnets acting on the stator [64]. It is a more serious problem when the forcing frequencies matches one or more of the structural resonant frequencies. The stress amplitude varies with B^{2} hence rare earth magnets are more problematic than ferrites.

The acoustic noise from brushless dc motors is similar to that from switched reluctance drives [65]. As such switched reluctance motor acoustic noise analysis and noise cancellation techniques can be found in [65-69]. Radial vibrations of the stator tends to be the dominant source of mechanical vibration and acoustic noise [63]. From time domain analysis, each step change in armature winding applied voltage creates a step change in the gradient of armature current that produces a dampened vibration [65]. Acoustic noise will propagate at the natural mechanical resonance of the motor housing.

It has been demonstrated that the Flux Switching Motor is a quieter machine than the Switched Reluctance Motor (Figures A.2, A.3)[70]. Identical lamination, two phase, external rotor machines (except for the winding types required for each type of machine) were compared. Flux control methods between each motor differ considerably (the armature currents orientate the flux paths in the Flux Switching Motor, but generate all the flux in the Switched Reluctance Motor as the Flux Switching Motor has a dc current conducting field winding that is always energised). The Flux Switching Motor provides a smoother transition of flux from one stator pole set to the next as the dc field winding prevents flux being removed with every working stroke. This reduces radial forces that
results in a reduction in acoustic noise. It is therefore of importance to consider flux production and flux paths within electrical machines in order to ascertain methods of acoustic noise reduction.

To reduce vibration and acoustic noise, there is a range of different techniques. Techniques include two stage commutation [65, 67, 69], three stage commutation [68], and voltage smoothing [68]. Such controlling techniques can be implemented to accommodate for the design and construction of the motor [65]. Two stage commutation techniques can be realised for the Switched Reluctance Drive with an asymmetric half bridge inverter circuit [68]. Three stage commutation techniques are required for circuits such as the split dc power converter and the capacitor dump power converter. Vibration cancellation can be effective in the switched reluctance motor at any speed [69].

A. 3 POWDERED IRON TECHNOLOGY

Metal powders are becoming increasingly common in electric machines. Conventional machines use laminated steel to minimise magnetic field losses but this restricts the magnetic forces to two dimensions (those in the plane of the laminations). Resultant machines therefore risk being overly large, heavy and not as effective as desired. Hoganas [71, 72] are the one of the world leaders in the production of iron and steel powders (they developed the Soft Magnetic Composite, SMC, range). SMC's can be used to develop electrical machines with three-dimensional magnetic fields due to it having an isotropic nature. Such powders hence improve design flexibility. Powder metallurgical methods give minimal material wastes and can be up to 50% more cost effective than conventional lamination production methods. Complex shaped parts with good dimensional accuracy, smooth surfaces and tight tolerances are easily manufactured with powder metallurgy. Eddy current losses are low at higher frequencies due to the powder nature of the material allowing reduction in motor size and weight. Alternating magnetic fields in any direction is allowable. Also, the use of powdered materials allows improvements in recyclability compared to laminated steels (the crushing process allows quick separation of motor components) [69].

An overview of the powder metallurgy process and technological advances can be found in [70]. The paper discusses the merits of the process, the methods of pressing powders, post-pressing operations and overviews some recent developments.

Powder metallurgy is already being used to build machines. Claw pole motors, permanent magnet machines capable of high torque per unit volume, are made with SMC's.

Radial/axial machines employ permanent magnets coupled with electronic commutation. Radial and axial air gaps are utilised to achieve direct drive motor designs with minimal weight. The SMC core carries three-dimensional fields. High torques per unit volume and high efficiencies are achieved with such designs.

The University of Newcastle upon Tyne uses Hoganas Somaloy500 to build permanent magnet servomotors capable of increased torque per unit volume [71, 72]. Lyng Electronics (Norway) produce a compact electric valve actuator (Lyng Eltorque) utilising a transverse flux machine employing SMC materials in the stator core [75]. The Induction Motor represented 80% of total machine production in 2000 [76]. Its design is simple yet sturdy, making it suitable for production using SMC materials.

Somaloy 500 [74] is best used at frequencies below 10 kHz and is characterised by high induction and lowest core losses below 100 Hz . It is best used in electrical machines and ignition systems. Somaloy550 [74] is optimised for frequencies below 400 Hz and has a higher maximum permeability (higher torque potential) but is less suitable for thin sections and is not as strong as Somaloy500.

It is claimed [74] that modern rare earth magnets can be better utilised with SMC materials to produce electrical machines with output levels exceeding non-SMC machines of the same size. SMC's have been used to allow improvements in transverse flux machines as three dimensional flux paths are better realised compared to laminations in the radial and axial planes. Somaloy500 gives substantially reduced low-frequency iron losses and an unsaturated relative permeability of over 5000 with a saturation flux density of approximately 2 T .

Segway Company produces a self-balancing, electric-powered transportation device which contains a brushless servo motor (the product is named Segway Human Transporter, HT). Danaher Motion, through its Pacific Scientific business, supplies these motors. Amongst its design features, the motor's construction uses a proprietary injection-moulding process to mould key components of the motor and encapsulate the windings in one step [77]. The process simplifies manufacturing and brings the added benefits of higher quality and improved motor performance. The motor, with its new design, produces 40% more torque per unit of volume than comparably sized motors.

Powdered iron technology has been implemented in a $1.5 \mathrm{~kW} 6 / 4$ Switched Reluctance Drives [78]. For the same output power a laminated machine has 85% efficiency compared to 82% for the highdensity iron composite version (a comparable performance). Hysteresis losses were shown to be slightly higher than the laminated version but eddy current losses were negligible up to a frequency of 100 kHz .

Hoganas have published some of their papers on their internet site at http://www.hoganas.com. One paper describes the use of iron powder in electrical machines [79]. It is shown that, for medium frequency applications, iron powder components can compete with laminates. The material properties of the iron powders can be exploited in particular when considering the methods of compaction. The paper also discusses limitations of powder metallurgy. Eddy current losses increase by a power of two as the frequency of the alternating magnetic field increases (a dynamic loss). Hysteresis losses increase linearly with frequency $[79,80]$. Eddy currents can be reduced by use of smaller particle size powders, thicker coating of insulation around the particles with larger amounts of binder/lubricant. This results in components with good high frequency properties but has lower density, lower induction, lower permeability and higher hysteresis losses. High permeability is needed for minimising the magnetising currents required. High magnetic induction is needed for high torque production. Iron or Silicone-Iron laminations have been previous choices for soft magnetic properties. The magnetic properties are good in the plane of the laminates but poor in the direction normal to them. The anisotropic properties limit laminations to a two dimensional magnetic flux pattern. Coated powdered iron gives isotropic properties. Improvements in manufacture of powdered irons have removed the restriction of machine design to laminates with two dimensional flux paths. The exact properties depend on the powder used, the mix, the compaction method, and temperature [81]. Sintering cannot be used on SMC's limiting the strength compared to laminates. Smaller motors are better for SMC's as less magnetic forces tend to be prevalent. Moderate centrifugal forces are the limit for a rotor made with SMC. The isotropic nature of SMC's allows complex three dimensional shapes to be utilised fully for optimum machine performance as flux paths are no longer restricted to two planes. Radial and axial fluxes are accommodated which is very difficult to implement successfully with laminates. The machines can be designed to allow rounded corners of copper windings utilising pole faces and slot area in a manner not realistically possible before. Savings to copper used and copper losses can be implemented. The compaction press limits the size of components manufactured. Close tolerances are achievable and segmenting the machine can allow simpler winding processes to be used. The maximum relative permeability in the plane of the laminate is above 10 times that of a SMC such as Somaloy500 [82] (due to non-magnetic materials constantly present such as coatings, and pores). But, in the third plane, the laminate has poorer permeability then the powdered iron. SMC's are best used where maximum permeability is of less importance. This is of particular note in permanent magnet machines where the magnet sections can be viewed as effective air gaps. Machines with large air gaps may also be potential candidates for SMC's, depending on the application. Laminates tend to have lower hysteresis losses but higher eddy current losses. The frequency of the application determines whether the SMC gives lower losses. In the frequency range of 50 to a few hundred Hz the eddy current loss is higher in SMC components than laminates but the difference is smaller than suggested by material data $[80,83]$. The magnetic induction is dependent on the manufacture of the SMC. The permeability affects the saturation at
lower magnetic fields. High density SMC have saturation levels comparable to laminates but, below saturation, SMC's are worse due to lower permeability and hence lower magnetic induction. The use of more iron in critical regions can compensate for this. The total cost of SMC tends to be more than that of laminates but the benefits of design and reduced losses make SMC motors a realistic viable alternative.

SMC's can be tailored for individual applications and it is important that the correct material is used for each application [84, 85]. But to make full use of SMC it is important that design packages such as three dimensional Finite Element Analysis (such as by Opera) are utilised to incorporate more complex flux paths within the machine designs. It may be that, with increasing concerns regarding the global environment, the recyclability of SMC's and laminates become a greater issue in the choice of material to manufacture machines with [86].

A. 4 FAN INDUSTRY REQUIREMENTS

The Fan Industry has to produce fans that meet The Building Regulations 1991 Approved Document F [87]. For the purposes of this thesis, the regulations of interest are those regarding ventilation of rooms containing openable windows (i.e. located on an external wall) for domestic and non-domestic buildings. For kitchens the extract ventilation rate is 30 litres $/$ second ($108 \mathrm{~m}^{3} / \mathrm{hour}$) adjacent to a hob or 60 litres $/$ second ($216 \mathrm{~m}^{3} /$ hour) elsewhere. For utility rooms the extract ventilation rate is 30 litres $/$ second $\left(108 \mathrm{~m}^{3} /\right.$ hour). For bathrooms with or without a toilet the extract ventilation rate is 15 litres/second ($54 \mathrm{~m}^{3} /$ hour). The Domus S1R 100 mm axial wall fan [88] extracts at 26.1 litres $/$ second ($94 \mathrm{~m}^{3} /$ hour) at about 2520 rpm . For the same fan blade a new extraction rate can be obtained by altering the rotor speed (in proportion to the change in extraction rate) [89, 90]. Thus 15 litres/second ($54 \mathrm{~m}^{3} /$ hour) is obtained at about $1448 \mathrm{rpm}, 30$ litres/second ($108 \mathrm{~m}^{3} / \mathrm{hour}$) at about 2895 rpm and 60 litres/second ($216 \mathrm{~m}^{3} /$ hour) at about 5790 rpm . It is however common practice to build fans that exceed these extraction rates since these values are minimum values (the Domus S1R fan extracts at 26.1 litres/second rather than 15 litres/second). Issues such as ducting requirements and applications, etc. are not of concern for this thesis, but there are sources of relevant information from fan suppliers such as Vent-Axia [91].

APPENDIX B

B. 1 PIC16F877 PROTOTYPING CIRCUIT FLOW CHART

Figure B.1:- PIC program flow chart with A/D conversion allowed

B. 2 PIC16F84 PROTOTYPING CIRCUIT EQUIVALENT FLOW CHART

Figure B. 2 :- PIC program flow chart with no A/D conversion allowed.

B. 3 TEST PROCEDURE USING PROTOTYPING CIRCUITRY

The preferred method for optimisation is as follows :-

- 1. Get the machine running at no load in a chosen Speed Mode at a fixed arbitrarily chosen speed (say 5000 rpm), selecting timing delays in that Mode to obtain, by inspection, a timing sequence giving a low input power. Note down the values for the timing delays as shown by the prototyping circuit. The field supply voltage (and hence current) is at a fixed value. Vary the supply to the armature phase windings until 5000 rpm (or other chosen speed) is reached again.
- 2. Calculate the field supply power and measure (using a power meter) or calculate the armature input power supplying the phase windings (which includes power electronic circuitry power drain). The sum of these is the total input power.
- 3. For each Speed Mode there are variables that alter the timings of the phase firings. For each variable of the timings, measure the input powers as the value of that variable is altered (the other values are noted but left untouched). A value for that variable can be selected where minimum total input power is obtainable. Do the same for the other variables that affect the timings for that Speed Mode. Repeat as necessary.
- 4. Repeat stages 1-3 for a range of field winding supply. This will allow a plot of input powers (total and components) against field supply to be plotted and a minimised input power based upon field supply to be calculated. Calculate the field input supply voltage (or current) that minimises the total input power.
- 5. Repeat stages 3 and 4 until a minimised input power supply is obtained for that Speed Mode. Steps 3 and 4 can be carried out in the reverse order as optimisation will be guaranteed if the stages are repeated.
- 6. Repeat stages 1 to 5 for all Speed Modes. Do the same for a fixed load if necessary as the timings may be optimised for a given load rather than at no load.
- 7. Repeat stages 1 to 6 for a range of speeds.

The end result is a machine optimised for minimum input power for a given speed and load.

Figure B. 3 :- Opto sensor peripheral speed with rpm of rotor.

Figure B. 4 :- Hysteresis brake torque versus current curve.

From these results a machine could be optimised for changing between Speed Modes (since the timing delays involved in changing between the Speed Modes does not affect the timings within each Mode).

The prototyping control circuit being is capable of running a two phase machine of this type at speeds up to $120,000 \mathrm{rpm}$, based on tests using a signal generator as an optosensor signal.

The single stack variable reluctance machine utilises an external opto sensor disc for determining which phase should be energised at any one time. The disc in this machine has a 6 cm diameter and the outer edge speed of the disc rotates at its edge at near 135 mph at 19000 rpm (Figure B.3). If the Appendices
machine has to operate at such high speeds the disc should ideally be made smaller in diameter or be placed internally.

A hysteresis brake provides adjustable slip torque that is controlled by electrical current (Figure B.4). Cogging (pulsating output torque) is possible if the current is not reduced to zero before the rotor stops turning. The torque versus current curve has hysteresis due to the magnetic material in the brake. The torque for a given amount of current is thus different when the control current is increasing than when decreasing. Thus it is important that any load tests are performed using the same methods of increasing the current in the hysteresis brake (a torque versus current curve is known (Figure B.4) for the brake based upon the current increasing - each brake has its own unique curve as similar models typically have 1% variance in curve shape).

B. 4 PROTOTYPING TEST RESULTS

The prototyping circuit was initially tested using a signal generator. The circuit was shown to potentially operate at speeds up to $126,000 \mathrm{rpm}$ for the $4 / 2$ two phase Variable Reluctance Machines.

B.4.1 OPTIMISATION TESTING OF A SINGLE STACK VARIABLE RELUCTANCE MACHINE AT 5000RPM

One of the variables in the High Speed (Advanced) Mode is labelled as Val7. It alters the time from opto state change which the phase remains energised for. As is shown in Figure B. 5 the optimum value for Val7 for minimised input power was selected to be a value 90 . In the coding version used for the smaller PIC16F84 (which has no analogue to digital conversions and hence no variable delays), the value of 90 would be fed as a fixed value into the relevant section of coding. By following this manner of optimisation, a simplified optimised coding is achievable.

The same was done with the other variable time delays such as Val6 which represents the delay between energising each phase in the Advanced Mode (Figure B. $)$). As shown, the choice of Val6 is less clear as the trend is uncertain but optimisation is still possible so Val6 was chosen to be 67. The numerical value was used as a multiplier for the individual time delays.

The machine can be optimised for almost any criteria, for example minimum input power at no load. The total input power at no load was thus minimised to 4.28 W at 5000 rpm . The waveform achieved with optimised timing control is shown in Figure B. 7.

The main feature is that the coding is such that the numbers obtained for each channel is programmed into the smaller PIC16F84 microcontroller. The PIC16F84 microcontroller works the machine with exactly the same timing delays as determined by the prototyping circuit, but the delays are fixed values for optimised operation. The board allows optimization for any specification or requirement for example, for a given speed, torque or efficiency. Control is shown to be 'on-the-fly' as it is immediate upon the machine being optimised.

Full timing control has been demonstrated on the Single Stack Variable Reluctance Machine at speeds in High Speed Mode of up to 19020rpm.

Graph to show total input power against Advanced Mode Channel 7
(Val7) value to demonstrate optimisation process

Figure B. 5 :- Optimisation of input power by varying timing control.

Figure B. 6 :- Optimisation of input power by varying timing control.

APPENDIX C

C. 1 PIC16F877 CODING FOR 'ON-THE-FLY’ VARIABLE LENGTH DELAYS FOR ARMATUE TIMINGS FOR TWO PHASE MOTOR WITH TWO SPEED MODES (NORMAL MODE WITHOUT PULSING AND HIGH SPEED MODE).

\author{
PROGRAM WRITTEN BY ;DATE 20MHz3a.asm Ewan R T. Goodier 06/09/2000
 PIC PROCESSOR
 ;INSTRUCTION CLOCK
 [^1]}
;

DEFINITIONS FOR MAKING THE PROGRAM WORK ARE BELOW
AND THE AC TUAL PROGRAM CODING IS FOUND BELOW IT - NOTE THAT ADVANCED=HIGH SPEED

FIXED REGISTER EQUATES

;these must be defined exactly as below for the PIC16F877 microprocessor

porta	equ	05H	;defining place
portb	equ	06H	;defining place
portc	equ	07H	;defining place
portd	equ	08H	;defining place
porte	equ	09H	;defining place
tmr0	equ	01H	;defining place
status	equ	03H	;defining place
pcl	equ	02H	;defining place
pclath	equ	0 AH	;defining place
intcon	equ	OBH	;defining place
adresh	equ	1EH	;defining place
adres	equ	9 EH	;defining place
adcon0	equ	1FH	;defining place
adcon 1	equ	9 FH	;defining place
piel	equ	8 CH	;defining place
pie2	equ	8DH	;defining place
pir1	equ	OCH	;defining place
pir2	equ	ODH	;defining place
trisa	equ	85H	;defining place
trisb	equ	86H	;defining place
trisc	equ	87H	;defining place
trisd	equ	88H	;defining place
trise	equ	89H	;defining place
option_reg	equ	81H	;defining place
sspcon	equ	14H	;defining place
resta	equ	18H	;defining place

VARIABLE REGISTER EQUATES
these can have different names for each but you cannot have the same name twice and the position of the equate must fall within the designated zones for the microcontroller in question - see the data sheets for guidance

count	equ	20H	;defining place - general purpose count register
del1	equ	21 H	;defining place - time value
del2	equ	22 H	;defining place - time value
adres	equ	23H	;defining place - A/D conversion value
temp	equ	24H	;defining place - time value
tamp	equ	25H	;defining place - time value
del	equ	26 H	;defining place - time value

dell 1	equ	28H	;defining place - time value
dell11	equ	29H	;defining place - time value
val0	equ	2AH	;defining place - cho A/D value
vall	equ	2BH	;defining place - chl A/D value
val2	equ	2 CH	;defining place - ch $2 \mathrm{~A} / \mathrm{D}$ value
val3	equ	2DH	;defining place - ch3 A/D value
val4	equ	2EH	;defining place - ch4 A/D value
val5	equ	2 FH	;defining place - ch5 A/D value
val6	equ	30 H	;defining place - ch6 A/D value
val7	equ	31H	;defining place - ch7 A/D value
redell	equ	32H	;defining place - time value
redel2	equ	33H	;defining place - time value
cheq	equ	34H	;defining place - A/D channel selection shown
chec	equ	35 H	;defining place - A/D channel selection shown
zor	equ	36H	;defining place - exclusive or value
val0a	equ	37H	;defining place - ch0 A/D value
valla	equ	38H	;defining place - ch $1 \mathrm{~A} / \mathrm{D}$ value
val2a	equ	39H	; defining place - ch $2 \mathrm{~A} / \mathrm{D}$ value
val3a	equ	3AH	;defining place - ch3 A/D value
val4a	equ	3BH	;defining place - ch4 A/D value
val5a	equ	3CH	;defining place - ch5 A/D value
val6a	equ	3DH	;defining place - ch6 A/D value
val7a	equ	3EH	;defining place - ch7 A/D value
motval	equ	3FH	;defining place - value for phase firing selection
time	equ	40 H	;defining place - time value - advanced mode
timel	equ	41H	;defining place - time value - advanced mode
time2	equ	42 H	;defining place - time value - advanced mode
time3	equ	43H	;defining place - time value - advanced mode
extrachk	equ	44H	;defining place - used for showing a timing problem
times	equ	45H	;defining place - time value - advanced mode unused
distar	equ	46 H	;defining place - time value - advanced mode
nothere	equ	47H	;defining place - time value - advanced mode
d2star	equ	48H	;defining place - time value - advanced mode
d2plus	equ	49H	;defining place - time value - advanced mode
extral	equ	4AH	;defining place - time value - advanced mode
extra2	equ	4BH	;defining place - time value - advanced mode
cownt	equ	4 CH	;defining place - time value
val0b	equ	4DH	;defining place - ch0 A/D value
vallb	equ	4EH	;defining place - ch 1 A/D value
val2b	equ	4FH	;defining place - ch2 A/D value
val3b	equ	50 H	;defining place - ch3 A/D value
val4b	equ	51 H	;defining place - ch4 A/D value
val5b	equ	52 H	;defining place - ch5 A/D value
val6b	equ	52 H	;defining place - ch6 A/D value
val7b	equ	54H	;defining place - ch7 $7 / D$ value
heur	equ	55 H	;defining place - time value - advanced mode
heurl	equ	56 H	;defining place - time value - advanced mode
heur2	equ	57 H	;defining place - time value - advanced mode
heur3	equ	58H	;defining place - time value - advanced mode
heur 4	equ	59H	;defining place - time value - advanced mode
;BIT DEFINITIONS			
;BIT DEF ;registers ;aid in cla	gram	bers bu affectin	the bit number itself, they can be given names instead to nes to some of the bit numbers.
There is n mind is th	nmem ber is	ding cor	e program automatically works out which bit to aim for and does not
strtbut fast	equ	1	;start button bit
refresh	equ	5	;refresh the system bit
phase	equ	7	;adv/norm phase bit
opto	equ	6	;optosensor bit
z	equ	2	;zero bit flag
carry	equ	0	;carry bit
toif	equ	2	;TMR0 overflow interrupt flag bit
rbif	equ	0	; RB<7:4> int. flag bit
rp0	equ	5	;used in bank selector
rpl	equ	6	;used in bank selector
peie	equ	6	;peripheral interupt enable bit
gie	equ	7	;global interupt enable bit
adif	equ	6	;A/D converter interrupt flag bit
adie	equ	6	;A/D converter interrupt enable bit
go	equ	2	;A/D conversion status bit
f	equ	1	;field register
w	equ	0	;working register
;OUTPUTS			
;Uses names to define bit numbers as explained in the section above			
led3	equ	4	;LED bit - for stopped or timing problem in advanced mode
Ihslsw1	equ	0	;Phase A bottom switch
Ihshswl	equ	1	;Phase A top switch
thslsw2	equ	2	;Phase B bottom switch
rhshsw2	equ	3	;Phase B top switch

org
00h
tells assembler where to start loading the code 'goto start' is the first bit of REAL program code

START SEQUENCE			
;**			
goto	start		; goto start
init	clrf	porta	;(from start) clear porta for defining inputs/outputs
	clrf	portb	;clear portb for defining inputs/outputs
	clif	porte	;clear portc for defining inputs/outputs
	cirf	portd	;clear portd for defining inputs/outputs
	clrf	porte	;clear porte for defining inputs/outputs
	bcf	status, 6	;preparing to select bank 1

\begin{tabular}{|c|c|c|c|}
\hline \& bsf bcf bcf bcf bcf bcf cirf return \& \begin{tabular}{l}
status, 5 \\
option_reg, 7 \\
sspcon, 5 \\
resta, 7 \\
trise, 4 \\
intcon, 7 \\
piel
\end{tabular} \& \begin{tabular}{l}
;bank 1 selected \\
;portb pull-ups are enabled by individual port latches \\
;ra5,rc3,rc4,rc5 configured as I/O pins, serial port disabled \\
;disable serial port \\
;allows general purpose I/O mode for portd, disable parallel slave port mode portd \\
;disable all interupts \\
;disables peripheral \\
;go back to line below (start)
\end{tabular} \\
\hline init 1 \& \begin{tabular}{l}
moviw \\
movwf \\
movlw \\
movwf \\
movlw \\
mowwf \\
movlw \\
movwf \\
moviw \\
movwf \\
clrf \\
bcf \\
moviw \\
movwf \\
bcf \\
return
\end{tabular} \& \begin{tabular}{l}
b'01101111' \(^{\prime}\) \\
trisb \\
B'00111111' \\
trisa \\
B'00000000' \\
trisc \\
B'00000111' \(^{\prime}\) \\
trise \\
B'00010000' \\
trisd \\
adcon 1 \\
status, 5 \\
b'01000001' \\
adcon0 \\
portb,phase
\end{tabular} \& \\
\hline conv
lupe

dog

conv1 \& \begin{tabular}{l}
moviw

movwf

decfsz

goto

bsf

moviw

mowwf

decfsz

goto

btfsc

goto

return

 \& 0x0f tamp tamp,f lupe adcon0,2 $0 \times 3 \mathrm{c}$ temp temp,f dog adcon0,2 convl \&

;(from the A / D request for the channel selected) set up time delay (15 dec)

;put 15 into tamp

; decrement by 1 , skip next line if zero

;not zero so decrement again - delay required to allow internal capacitors to charge up to value of input voltage

;set A/D conversion into progress

;set up time delay (60 dec)

;put 60 into temp

;decrement by 1 , skip next line if zero

;not zero so decrement again - allows time for A / D conversions to occur

;has A / D conversion ended?

;no - recheck until it has

;A/D ended - value stored in adres 1 - got back to relevant point in coding
\end{tabular}

\hline start \& call \& init \& ;goto init then return here for line below

\hline main \& \[
$$
\begin{aligned}
& \text { call } \\
& \text { bcf }
\end{aligned}
$$

\] \& | init 1 |
| :--- |
| portb,led3 | \& ;goto initl then return here for line below ;LED off

\hline chzer \& | bcf |
| :--- |
| bcf |
| call |
| movf |
| movwf |
| goto | \& | portd,lhslswl |
| :--- |
| portd,lhshswl |
| portd,rhslsw2 |
| portd,rhshsw2 |
| portb,led3 |
| adcon0, 3 |
| adcon0,4 |
| adcon0,5 |
| conv |
| adresl,w |
| val0 |
| chone | \& | ;turn off phaseA, bottom switch |
| :--- |
| ;turn off phaseA, top switch |
| ;turn on phaseB, bottom switch |
| ;turn on phaseB, top switch all phases off so set up for normal operation again - motor speed not important |
| ;LED off |
| ;select channel zero for A/D conversion |
| (after initl has been called) |
| ;select channel zero for A / D conversion |
| ;select channel zero for A/D conversion |
| ;goto conv for A/D conversion of channel selected then return to line below |
| ;A/D value is in adrest - move it to working register |
| ;move the value in the working register to val0 - A/D for that channel now in the file register for that channel |
| ;A/D the next channel |

\hline chone \& bsf bcf bcf call movf mowwf goto \& | adcon0,3 |
| :--- |
| adcon 0,4 |
| adcon0,5 |
| conv |
| adresl, w |
| val1 |
| chtwo | \& | ;select channel one for A/D conversion ;select channel one for A / D conversion ;select channel one for A / D conversion ;goto conv for A/D conversion of channel selected then return to line below |
| :--- |
| ;A/D value is in adresl - move it to working register ; move the value in the working register to vall - A/D for that channel now in the file register for that channel ;A/D the next channel |

\hline chtwo \& bcf bsf bcf call movf mowwf goto \& | adcon0,3 |
| :--- |
| adcon 0,4 |
| adcon 0,5 |
| conv |
| adresl,w |
| val2 |
| chthr | \& | ;select channel two for A / D conversion |
| :--- |
| ;select channel two for A / D conversion |
| ; select channel two for A / D conversion |
| ;goto conv for A / D conversion of channel selected then return to line below |
| ;A/D value is in adres 1 - move it to working register |
| ;move the value in the working register to val2 - A/D for that channel now in the file register for that channel |
| ;A/D the next channel |

\hline chthr \& bsf bsf bcf call movf movwf goto \& adcon0,3 adcon 0,4 adcon0,5 conv adresl,w val3 chfou \& | ;select channel three for A / D conversion |
| :--- |
| ;select channel three for A/D conversion |
| ;select channel three for A/D conversion |
| ;goto conv for A/D conversion of channel selected then return to line below |
| ;A/D value is in adres - move it to working register |
| ;move the value in the working register to val3-A/D for that channel now in the file register for that channel |
| ;A/D the next channel |

\hline chfou \& bcf bcf bsf call movf movwf goto \& | adcon 0,3 |
| :--- |
| adcon0,4 |
| adcon0,5 |
| conv |
| adresl,w |
| val4 |
| chfiv | \& | ;select channel four for A / D conversion |
| :--- |
| ;select channel four for A / D conversion |
| ;select channel four for A / D conversion |
| ;goto conv for A / D conversion of channel selected then return to line below |
| ;A/D value is in adresl - move it to working register |
| ;move the value in the working register to val4-A/D for that channel now in the file register for that channel ;A/D the next channel |

\hline chfiv \& bsf bcf bsf call movf movwf goto \& | adcon0,3 |
| :--- |
| adcon 0,4 |
| adcon0,5 |
| conv |
| adresl,w |
| val5 |
| chsix | \& ;select channel five for A / D conversion ;select channel five for A / D conversion ; select channel five for A / D conversion ;goto conv for A/D conversion of channel selected then return to line below ;A/D value is in adres - move it to working register ;move the value in the working register to valS - A/D for that channel now in the file register for that channel ;A/D the next channel

\hline chsix \& bcf bsf bsf call movf mowwf goto \& | adcon0,3 |
| :--- |
| adcon0,4 |
| adcon0,5 |
| conv |
| adresl, w |
| val6 |
| chsev | \& ;select channel six for A / D conversion ;select channel six for A/D conversion ;select channel six for A / D conversion ;goto conv for A/D conversion of channel selected then return to line below ;A/D value is in adres 1 - move it to working register ;move the value in the working register to val6-A/D for that channel now in the file register for that channel ;A/D the next channel

\hline chsev \& | bsf |
| :--- |
| bsf |
| bsf | \& adcon0,3 adcon0,4 adcon0,5 \& ;select channel seven for A/D conversion ;select channel seven for A/D conversion ;select channel seven for A/D conversion

\hline
\end{tabular}

display	call	conv	;goto conv for AD conversion of channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf	val7	;move the value in the working register to val7-A/D for that channel now in the file register for that channel
	goto	display	;display the A/D output for whichever channel is selected using the 3 pink wires - go to display
	btfsc	portb, 3	; 3 pink wires are used to select which A/D channel is to be shown, which is detemined below
	goto	disa	;1/3/5/7 channels applicable
disa	btfsc	portb, 2	;0/2/4/6 channels applicable
	goto	disb	;2/6 channels applicable
	btfs	porta, 4	;0/4 channels applicable
	goto	four	;40ut channel 4 chosen
	goto	zero	;Oout channel 0 chosen
	btfsc	port, 2	;1/3/5/7 channels applicable
	goto	disc	;3/7 channels applicable
disb	btfsc	porta, 4	;1/5 channels applicable
	goto	five	;Sout channel 5 chosen
	goto	one	;lout channel 1 chosen
	btfsc	porta, 4	;26 channels applicable
	goto	six	;6out channel 6 chosen
disc	goto	two	;2out channel 2 chosen
	btisc	porta, 4	;3/7 channels applicable
	goto	seven	;7out channel 7 chosen
zero	goto	three	;3out channel 3 chosen
	bcf	pord, 7	;show channel number 0 using 3 leds channel 0 chosen
	bcf	pordd, 6	;show channel number 0 using 3 leds
	bcf	portd, 5	;show channel number 0 using 3 leds
	movf	val0,w	;move the value in val0 into the working register
	movwf	portc '00000000'	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	btfs	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ; the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? contents ;go start the motor (testdirl)
one	bsf	portd, 7	;show channel number 1 using 3 leds channel 1 chosen
	bcf	pord, 6	;show channel number 1 using 3 leds
	bcf	pord, 5	;show channel number 1 using 3 leds
	movf	vall,w	;move the value in vall into the working register
	mowwf	portc	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdirl)
two	bef	pord, 7	;show channel number 2 using 3 leds channel 2 chosen
	bsf	pord, 6	;show channel number 2 using 3 leds
	bcf	pordd, 5	;show channel number 2 using 3 leds
	movf	val2,w	;move the value in val2 into the working register
	movwf	portc	; move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	sublw	$\mathrm{b}^{\prime} 00000000^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip the ; next line andcontinue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdirl)
three	bsf	portd, 7	;show channel number 3 using 3 leds channel 3 chosen
	bsf	portd, 6	;show channel number 3 using 3 leds
	bcf	pordd, 5	;show channel number 3 using 3 leds
	movf	val3,w	;move the value in val3 into the working register
	movwf	portc	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	sublw	b'00000000' $^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip the ; next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdirl)
four	bcf	pord, 7	;show channel number 4 using 3 leds channel 4 chosen
	bcf	portd, 6	;show channel number 4 using 3 leds
	bsf	portd, 5	;show channel number 4 using 3 leds
	movf	val4,w	;move the value in val4 into the working register
	movwf	portc	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	sublw	b'00000000'	;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ; the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdir1)
five	bsf	pord, 7	;show channel number 5 using 3 leds channel 5 chosen
	bcf	pordd, 6	;show channel number 5 using 3 leds
	bsf	portd, 5	;show channel number 5 using 3 leds
	movf	val5,w	;move the value in val5 into the working register
	movwf	portc	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ; the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdir1)
six	bef	pord, 7	;show channel number 6 using 3 leds channel 6 chosen
	bsf	portd, 6	;show channel number 6 using 3 leds
	bsf	pord, 5	;show channel number 6 using 3 leds
	movf	val6,w	;move the value in val6 into the working register
	mownf sublw	portc. b'00000000'	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown ;subtract w from zero - if val? is above zero, the result will be negative
	bufsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip the ;next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	goto	wrongtimer	;A/D conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdirl)
seven	bsf	portd, 7	;show channel number 7 using 3 leds channel 7 chosen
	bsf	portd, 6	;show channel number 7 using 3 leds

	bsf movf movwf sublw btfsc goto goto	portd, 5 val7,w portc b'00000000' status, 0 chzer wrongtimer	;show channel number 7 using 3 leds ;move the value in val7 into the working register ;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown ;subtract w from zero - if val? is above zero, the result will be negative ;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ; the next line and continue ;val5 is zero so go back to the beginning and fix the value $; A / D$ conversions complete, channel selection output given and time delays can be made from the val? Contents ; - go start the motor (testdirl)
wrongtimer nstart	btfss goto goto btsc goto goto	portb, 0 mastflash nstart portb,strbut strflash ninit	;master timing control on? yes ;no, so see if can start motor ;test for start button being on ;no, so keep on A / D converting ;yes, so start initialisation for normal mode
strulash strtifa	goto bsf call bcf call	strffla portb,led3 strtdelay portb,led3 strtdelay	;continue A/D conversions whilst the start button detection is being carried out ;led flashes quickly - prompt for start switch to be put on - LED on ;delay timing sequence to allow visible flashing sequence - return to line below after strdelay coding has finished ;LED off - flash occurring ;delay timing sequence to allow visible flashing sequence - return to line below after strdelay coding has finished
strdelay	goto moviw movwf	chzer 0x0a dell11	;go to chzer to allow retest of start button being pressed and A / D value alteration ;load 2dec into working register - this coding allows a time delay so flashing of LED is visible ;move 2 dec from working register into dellll file register
strdelay	moviw movwf	0x58 dell1	;load 88dec into working register ;move 88dec from working register into dell 1 file register
stdelay	movlw movwf	Oxee dell	;load 238dec into working register ;move 238dec from working register into dell file register
sdlay	decfsz goto decfsz goto decfsz goto return	del 1,1 sdlay del 11,1 stdelay dell Il, 1 strdelay	;decrement dell and keep new value, skip next line if zero ;dell not zero so decrement again ;dell is zero, decrement dell 1 and keep new value, skip next line if zero ;delll not zero, reload dell again so can decrement again and maintain delay timing properly ;dell1 is zero, decrement del111 and keep new value, skip next line if zero ;dell11 not zero, reload dell and dell1 so can both decrement again and maintain delay timing properly ;time delay complete - go back to line below the call strtdelay - total ;delay $=1$ micro* $2^{*} 88^{*} 238^{*}$ 6executions $=0.251 \mathrm{sec}$
mastflash mastfla	goto bsf call bcf call goto	mastfla portb,led3 mastdelay portb,led3 mastdelay chzer	;continue A / D conversions whilst the start button detection is being carried out ;led flashes quickly - prompt for start switch to be put on - LED on ;delay timing sequence to allow visible flashing sequence - return to line below after strtdelay coding has finished ;LED off - flash occurring ;delay timing sequence to allow visible flashing sequence - return to line below after strtdelay coding has finished ;go to chzer to allow retest of start button being pressed and A / D value alteration
mastdelay	moviw movwf		;load 2dec into working register - this coding allows a time delay so flashing of LED is visible ;move 2 dec from working register into dell11 file register
masdelay	moviw movwf		;load 44dec into working register ;move 44 dec from working register into dell 1 file register
madelay	moviw	Oxee	;load 238dec into working register
mdlay	movwf decfsz goto decfsz goto decfsz goto return	dell dell, 1 mdlay dell 1,1 madelay dell11,1 masdelay	;move 238dec from working register into dell file register ;decrement dell and keep new value, skip next line if zero ;dell not zero so decrement again ;dell is zero, decrement delll and keep new value, skip next line if zero ;dell1 not zero, reload dell again so can decrement again and maintain delay timing properly ;dell1 is zero, decrement del 111 and keep new value, skip next line if zero ;dell11 not zero, reload dell and delll so can both decrement again and maintain delay timing properly ;time delay complete - go back to line below the call strtdelay - total ;delay $=1$ micro* ${ }^{*}{ }^{*} 44^{*} 238^{*} 6$ executions $=0.1257 \mathrm{sec}$
ninit	btfsc goto		;test for opto state ;opto clear ie opto $=0$
	goto	ngo2	;opto set ie opto=1
ngol	moviw movwf goto	$0 \times 5 \mathrm{c}$ motval ntests	;opto $=0$ put 5 c (hex) into working register ;store 5 c in motval file register - motval used to detect how phase firing and opto position are linked ;initialisation complete so motor works properly - go to testopto section
ngo2	moviw movwf goto	$0 \times 5 \mathrm{a}$ motval ntests	;opto $=1$ put 5 a (hex) into working register ;store 5 a in motval file register - motval used to detect how phase firing and opto position are linked ;initialisation complete so motor works properly - go to testoptos section
ntests	btfss goto goto	portb, 6 nsgoons 1 nsgoons2	
nsgoons 1	bsf bsf goto	portd,lhslsw1 portd,lhshsw1 ntestopto	
nsgoons2	bsf bsf goto	portd,hslsw2 portd,rhshsw2 ntestopto	
ntestopto	btfsc goto goto	portb,stribut chzer ntestopt	;test for start button still being on ;button off so stop motor ;button still on
ntestopt	bcf btfsc goto goto	portb,phase portb, 0 ntestopt11 chzer	;if the user wants to set more than one $\mathbf{A / D}$ time value before updating, then use this ;not required, so user happy with timing at the moment ;timing can be altered for all channels as long as the master switch is on - motor stops and is essentially reset
ntestopt11	btfss goto goto	portb, 6 ngoon 1 ngoon2	;test the state of the opto to decide which phase is to be fired first in normal timing ;opto $=0$ so phaseA on, phaseB off goto goon! ;opto=1 so phaseA off, phaseB on goto goon2
ngoon 1	movf sublw	$\begin{aligned} & \text { motval,w } \\ & 0 \times 5 \mathrm{~b} \end{aligned}$;opto $=0 \quad$ bring back value of motval to working rgister, w to determine how firing is to occur ;0x5b-w just a calculation to determine if can continue or if the motor has stopped
nfire 1	btfsc goto goto bcf bcf call bsf bsf movlw mowwf	status, 0 nstill 1 nfire 1 portd,rhslsw2 portd,rhshsw2 nxdelay 1 portd,lhslswl portd,lhshswl $0 \times 5 a$ motval	

ndisplay 1 n	btfsc goto btfsc	portb,strtbut chzer portb, 3	; 3 pink wires are used to select which A / D channel is to be shown - go to nldell is wrong channel
	goto	ndisaaln	;1/3/5/7 channels applicable
	btfs	portb, 2	;0/2/4/6 channels applicable
	goto	ndisbbln	;2/6 channels applicable
	btfsc	porta, 4	;0/4 channels applicable
	goto	nldel1	;4out channel 4 chosen
	goto	nzer1	;Oout channel 0 chosen
ndisaaln	btfsc	portb, 2	;1/3/5/7 channels applicable
	goto	ndisccln	;3/7 channels applicable
	btfsc	porta, 4	;1/5 channels applicable
	goto	nldell	;Sout channel 5 chosen
	goto	nonel	; lout channel 1 chosen
ndisbbin	btfsc	porta, 4	;2/6 channels applicable
	goto	nldell	;6out channel 6 chosen
	goto	ntwol	;2out channel 2 chosen
ndisceln	btfsc	porta, 4	;3/7 channels applicable
	goto	nldell	;7out channel 7 chosen
	goto	nthree1	;3out channel 3 chosen
nzer1	bcf	portd, 7	;show channel number 2 using 3 leds channel 0 chosen
	bcf	portd, 6	;show channel number 2 using 3 leds
	bcf	portd, 5	;show channel number 2 using 3 leds
	goto	nchzerl	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
nzerl1	btfsc	portb,refresh	;test the bit for the requirement to replace the contents of val2 with val2a - allows alterartion of timing while ; program is running
	goto	nldell	;no requirement to refresh so ignore value of valla and keep val2 as it is - go to testopt
	movwf	val0	;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence
	goto	nidell	;timing has been carried out and so continue with which motor phase firing sequence for normal operation
	bsf	portd, 7	;- go to testopt ;show channel number 3 using 3 leds channel 1 chosen
nonel	bcf	portd, 6	;show channel number 3 using 3 leds
	bcf	portd, 5	;show channel number 3 using 3 leds
	goto	nchonel	;A/D conversion for that channel and store the value in different file register to normal (val3a instead of val3)
nonel1	btfsc	portb,refresh	;test the bit for the requirement to replace the contents of val3 with val3a-allows alterartion of timing while ; program is running
	goto	n1del1	;no requirement to refresh so ignore value of val3a and keep val3 as it is -
	movwf	vall	;requirement to refresh, so val3 is given the value of val3a which is shown on the LED sequence
	goto	nldell	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
nchzer!	bcf	adcon0,3	;select channel two for A/D conversion
	bcf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon0,5	;select channel two for A / D conversion
	call	conv	;goto conv for A / D conversion oft channel selected then return to line below
	movf	adresl,w	;A/D value is in adres 1-move it to working register
	movwf	val0a	;move the value in the working register to val2a - A/D for that channel now in the different file register for that ;channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip the ;next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	movf	adres,w	;A/D value is in adresl - move it to working register
	goto	nzerl1	;go back to the A/D channel selection and see whether this value is to replace the original value
nchone 1	bsf	adcon0,3	;select channel three for A/D conversion
	bcf	adcon0,4	;select channel three for ADD conversion
	bcf	adcon0,5	;select channel three for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl,w	;A/D value is in adresl - move it to working register
	movwf	valla	;move the value in the working register to val3a - A/D for that channel now in the different file register ; for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ; skip the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	movf	adresl,w	$; \mathrm{A} / \mathrm{D}$ value is in adresl - move it to working register
	goto	nonell	;go back to the A/D channel selection and see whether this value is to replace the original value
ntwo 1			;show channel number 2 using 3 leds channel 2 chosen
	bsf	pond, 6	;show channel number 2 using 3 leds
	bcf	portd, 5	;show channel number 2 using 3 leds
	goto	nchtwol	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
ntwoll	btfs	portb,refresh	;test the bit for the requirement to replace the contents of val2 with val 2 a - allows alterartion of ; timing while program is running
	goto	nldel1	;no requirement to refresh so ignore value of valla and keep val2 as it is - go to testopt
	movwf	val2	;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence
	goto	nidel1	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ;- go to testopt
nthreel	bsf	portd, 7	;show channel number 3 using 3 leds channel 3 chosen
	bsf	portd, 6	;show channel number 3 using 3 leds
	bcf	portd, 5	;show channel number 3 using 3 leds
	goto	nchthr1	;A/D conversion for that channel and store the value in different file register to normal (val3a instead of val3)
nthree 11	btfs	port,refresh	;test the bit for the requirement to replace the contents of val 3 with val3a - allows alterartion of timing ; while program is running
	goto	nidell	;no requirement to refresh so ignore value of val3a and keep val3 as it is -
	movwf	val3	;requirement to refresh, so val3 is given the value of val3a which is shown on the LED sequence
	goto	nldel1	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
nchtwol	bcf	adcon 0,3	;select channel two for A/D conversion
	bsf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon0,5	;select channel two for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl,w	;A/D value is in adres - move it to working register
	movwf	val2a	;move the value in the working register to val $2 a-A / D$ for that channel now in the different file register ; for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw btfsc	b'00000000' status, 0	;subtract w from zero - if val? is above zero, the result will be negative ;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then

ndisplay 2 n	btfsc goto	portb,strbut chzer	
	btfsc	portb 3	; 3 pink wires are used to select which A / D channel is to be shown, which is detemined below
	goto	ndisaa2n	;1/3/5/7 channels applicable
	btfsc	port, 2	;0/2/4/6 channels applicable
	goto	ndisbb2n	;2/6 channels applicable
	btfsc	porta, 4	;0/4 channels applicable
	goto	n2del2	;4out channel 4 chosen
	goto	nzer2	;Oout channel 0 chosen
ndisaa2n	btfsc	port, 2	;1/3/5/7 channels applicable
	goto	ndisce2n	;3/7 channels applicable
	bffsc	porta, 4	;1/5 channels applicable
	goto	n2del2	;Sout channel 5 chosen
	goto	none2	; lout channel 1 chosen
ndisbb2n	btfsc	porta, 4	;2/6 channels applicable
	goto	n2del2	;6out channel 6 chosen
	goto	ntwo2	;2out channel 2 chosen
ndiscc2n	btfsc	porta, 4	;3/7 channels applicable
	goto	n2del2	;7out channel 7 chosen
	goto	nthree2	;3out channel 3 chosen
nzer2	bcf	portd, 7	;show channel number 2 using 3 leds channel 0 chosen
	bcf	portd,6	;show channel number 2 using 3 leds
	bcf	portd,5	;show channel number 2 using 3 leds
	goto	nchzer2	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
nzer22	bffsc	port,refresh	;test the bit for the requirement to replace the contents of val2 with val2a-allows alterartion of timing ; while program is running
	goto	n2del2	;no requirement to refresh so ignore value of valla and keep val2 as it is - go to testopt
	mowwf	val0	;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence
	goto	n2del2	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ;- go to testopt
none2	bsf	pord, 7	;show channel number 3 using 3 leds channel 1 chosen
	bcf	portd, 6	;show channel number 3 using 3 leds
	bcf	portd, 5	;show channel number 3 using 3 leds
	goto	nchone2	;A/D conversion for that channel and store the value in different file register to normal (val3a instead of val3)
none22	btisc	portb,refresh	;test the bit for the requirement to replace the contents of val3 with val3a-allows alterartion of timing ;while program is running
	goto	n2del2	;no requirement to refresh so ignore value of val3a and keep val3 as it is -
	movwf	vall	;requirement to refresh, so val3 is given the value of val3a which is shown on the LED sequence
	goto	n2del2	;timing has been carried out and so continue with which motor phase firing sequence for normal operation
nchzet2	bcf	adcon0,3	;select channel two for A/D conversion
	bcf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon0,5	;select channel two for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl,w	;A/D value is in adresl - move it to working register
	movwf	val0a	;move the value in the working register to valOa - A/D for that channel now in the different file register for ; that channel
	movwf	porte	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btss	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip the ;next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	movf	adresl, w	;A/D value is in adresl-move it to working register
	goto	nzer22	$; \mathrm{go}$ back to the A/D channel selection and see whether this value is to replace the original value
nchone2	bsf	adcon0,3	;select channel three for A/D conversion
	bcf	adcon0,4	;select channel three for A/D conversion
	bcf	adcon0,5	;select channel three for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf	valla	;move the value in the working register to valla - A/D for that channel now in the different file register for ; that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	movf	adresl, w	;A/D value is in adresl - move it to working register
	goto	none22	;go back to the A/D channel selection and see whether this value is to replace the original value
ntwo2	bcf	portd, 7	;show channel number 2 using 3 leds channel 2 chosen
	bsf	portd, 6	;show channel number 2 using 3 leds
	bcf	portd, 5	;show channel number 2 using 3 leds
	goto	nchtwo2	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
ntwo22	btfs	port,refresh	;test the bit for the requirement to replace the contents of val2 with val2a-allows alterartion of timing ; while program is running
	goto	n2del2	;no requirement to refresh so ignore value of val la and keep val2 as it is - go to testopt
	movwf	val2	;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence
	goto	n2del2	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
nthree2	bsf	portd, 7	;show channel number 3 using 3 leds channel 3 chosen
	bsf	portd,6	;show channel number 3 using 3 leds
	bcf	portd, 5	;show channel number 3 using 3 leds
	goto	nchthr2	;A/D conversion for that channel and store the value in different file register to normal (val3a instead of val3)
nthree22	btfsc	port,refresh	;test the bit for the requirement to replace the contents of val3 with val3a-allows alterartion of timing ; while program is running
	goto	n2del2	;no requirement to refresh so ignore value of val3a and keep val3 as it is -
	movwf	val3	;requirement to refresh, so val3 is given the value of val3a which is shown on the LED sequence
	goto	n2del2	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
nchtwo2	bcf	adcon0,3	;select channel two for A/D conversion
	bsf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon 0,5	;select channel two for AD conversion
	call	conv	;goto conv forA/D conversion of channel selected then return to line below
	movf	adresl, w	; A/D value is in adresl - move it to working register
	mownf	val2a	;move the value in the working register to val2a-A/D for that channel now in the different file register for ; that channel
	movwf	porte	;show the output from this A/D conversion in the LED sequence
	sublw	$b^{\prime} 00000000^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative

Reluctance Machines with Flux Assistance

nldisbb	goto	nonea	;lout channel 1 chosen
	btfsc	porta, 4	;2/6 channels applicable
	goto	nxdl	;6out channel 6 chosen
	goto	ntwoa	;2out channel 2 chosen
nldisce	btfsc	porta, 4	;3/7 channels applicable
	goto	nxd1	;7out channel 7 chosen
	goto	nthreea	;3out channel 3 chosen
nzeroa	bcf	portd, 7	;show channel number 0 using 3 leds channel 0 chosen
	bcf	portd, 6	;show channel number 0 using 3 leds
	bcf	portd, 5	;show channel number 0 using 3 leds
	goto	nchzera	;A/D conversion for that channel and store the value in different file register to normal (val0a instead of val0)
nzeroaa	btfsc	portb,refresh	;test the bit for the requirement to replace the contents of val0 with val0a - allows alterartion of timing ; while program is running
	goto	nxd1	;no requirement to refresh so ignore value of val0a and keep val0 as it is -go to testopt
	movwf	val0	;requirement to refresh, so val0 is given the value of val0a which is shown on the LED sequence
	goto	nxdl	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ;-go to testopt
nonea	bsf	pord, 7	;show channel number 1 using 3 leds channel 1 chosen
	bcf	pord, 6	;show channel number 1 using 3 leds
	bcf	portd, 5	;show channel number 1 using 3 leds
	goto	nchonea	;A/D conversion for that channel and store the value in different file register to normal (vall a instead of vall)
noneaa	btfsc	port,refresh	;test the bit for the requirement to replace the contents of vall with valla - allows alterartion of timing ;while program is running
	goto	nxd1	;no requirement to refresh so ignore value of valla and keep vall as it is - go to testopt
	movwf	val1	;requirement to refresh, so vall is given the value of valla which is shown on the LED sequence
ntwoa	bcf	portd, 7	;show channel number 2 using 3 leds channel 2 chosen
	bsf	portd, 6	;show channel number 2 using 3 leds
	bcf	portd, 5	;show channel number 2 using 3 leds
	goto	nchtwoa	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
ntwoaa	btfsc	portb,refresh	;test the bit for the requirement to replace the contents of val2 with val2a - allows alterartion ;of timing while program is running
	goto	nxd1	;no requirement to refresh so ignore value of valla and keep val2 as it is - go to testopt
	movwf	val2	;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence
	goto	nxd1	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ;-go to testopt
nthreea	bsf	portd, 7	;show channel number 2 using 3 leds channel 2 chosen
	bsf	pord, 6	;show channel number 2 using 3 leds
	bcf	portd, 5	;show channel number 2 using 3 leds
	goto	nchthreea	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
nthreeaa	btfsc	port,refresh	;test the bit for the requirement to replace the contents of val2 with val2a - allows alterartion of ;timing while program is running
	goto	nxd1	;no requirement to refresh so ignore value of valla and keep val2 as it is - go to testopt
	movwf	val3	;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence
	goto	nxd 1	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ;-go to testopt
nchzera	bcf	adcon0,3	;select channel zero for A/D conversion
	bcf	adcon0,4	;select channel zero for A/D conversion
	bcf	adcon0,5	;select channel zero for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adrest,w	;A/D value is in adresl-move it to working register
	movwf	val0a	;move the value in the working register to val0a - A / D for that channel now in the different file register ; for that channel
	sublw	b'00000000'	;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	movf	adrest,w	;A/D value is in adresl - move it to working register
	movwf	port	;show the output from this A/D conversion in the LED sequence
	goto	nzeroaa	;go back to the A/D channel selection and see whether this value is to replace the original value
nchonea	bsf	adcon0,3	;select channel one for A / D conversion
	bcf	adcon0,4	;select channel one for A / D conversion
	bcf	adcon0,5	;select channel one for A / D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl,w	;A/D value is in adrest - move it to working register
	movwf	valla	;move the value in the working register to val la - A/D for that channel now in the different file register ;for that channe!
	sublw	b'00000000'	;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val5 is zero so go back to the beginning and fix the value
	movf	adresh, w	;A/D value is in adresl - move it to working register
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	goto	noneaa	;go back to the A/D channel selection and see whether this value is to replace the original value
nchtwoa	bcf	adcon0,3	;select channel two for A / D conversion
	bsf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon0,5	;select channel two for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl, w	;A/D value is in adrest - move it to working register
	movwf	val2a	;move the value in the working register to val2a - A/D for that channel now in the different file register ;for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfs	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ; the next line and continue
	goto	chzer	;val5 is zere so go back to the beginning and fix the value
	movf	adrest, w	; A/D value is in adresl - move it to working register
	goto	ntwoaa	;go back to the A/D channel selection and see whether this value is to replace the original value
nchthreea	bsf	adcon 0,3	;select channel two for A/D conversion
	bsf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon0,5	;select channel two for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf	val3a	;move the value in the working register to val2a-A/D for that channel now in the different file register ; for that channel
	movwf	porte	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 0000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btsc		;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ; the next line and continue

nxdl	goto		;val5 is zero so go back to the beginning and fix the value
	movf	adresl,w	;ADD value is in adresl - move it to working register
	goto	nthreeaa	;go back to the A / D channel selection and see whether this value is to replace the original value ;master on?
	btfs	porb, 0	
	goto	chzer	;yes, so restart it all as new values wanted
	movf	val0, w	; move the value of the channel $0 \mathrm{~A} / \mathrm{D}$ conversion into the working register ;put this value in the file register dell11
	movwf	del111	
nxdeelay 1	movf	valt,w	;move the value of the channell A / D conversion into the working register ;move this value into the dell1 register
	movwf	dell1	
;nxdeeelay 1	moviw	0×02	;move the value of the 10 into the working register
	movwf	del1	;move this value into the dell register
nxdlay 1	decfsz	dell 1,1	;decrement the value in dell by one and keep the new value, skip the next line if zero
	goto	nxdlay 1	;dell not zero - go and decrement again
	decfsz	del111,1	;dell is zero - decrement the value in del11 by one and keep the new value, skip the next line if zero ;dell1 not zero - reload and decrement dell again
	goto	nxdeelay 1	;del11 not zero - reload and decrement dell again ;del11 is zero - decrement the value in dell11 by one and keep the new value, skip the next line if zero
;	decfsz	del111,1	
	goto	nxdeelay 1	;del111 not zero - reload and decrement dell and del 11 again ;dell11 is zero - end of time delay sequence total delay=1micro*5** ${ }^{*}$ executions $=$ sec?
	return		
refdisplay	btfsc	portb, 3	; 3 pink wires are used to select which A / D channel is to be shown, which is detemined below
	goto	rdisaa	;1/3/5/7 channels applicable
	bffsc	port, 2	;0/2/4/6 channels applicable
	goto	rdisbb	;2/6 channels applicable
	btfsc	porta, 4	;0/4 channels applicable
	goto	rfoura	;40ut channel 4 chosen
	goto	rzeroa	;Oout channel 0 chosen
rdisaa	btfsc	portb, 2	;1/3/5/7 channels applicable
	goto	rdiscc	;3/7 channels applicable
	bffsc	porta, 4	;1/5 channels applicable
	goto	rfivea	;Sout channel 5 chosen
	goto	ronea	;lout channel 1 chosen
rdisbb	btfsc	porta, 4	;2/6 channels applicable
	goto	rsixa	;6out channel 6 chosen
	goto	twoa	;2out channel 2 chosen
rdisce	btfsc	porta, 4	;3/7 channels applicable
	goto	rsevena	7out channel 7 chosen ;3out channel 3 chosen
	goto	rhreea	
rzeroa	bcf	portd, 7	;show channel number 0 using 3 leds channel 0 chosen;show channet number 0 using 3 leds
	bcf	portd, 6	
	bcf	portd, 5	;show channel number 0 using 3 leds ;A/D conversion for that channel and store the value in different file register to normal (val0a instead of val0)
	goto	rchzera	
rzeroaa	btfs	port,refresh	;test the bit for the requirement to replace the contents of val0 with val0a - allows alterartion of timing ; while program is running
	goto	rstill	;no requirement to refresh so ignore value of val0a and keep val0 as it is - go to testopt ;requirement to refresh, so val0 is given the value of val0a which is shown on the LED sequence ;timing has been carried out and so continue with which motor phase firing sequence for normal operation
	movwf	val0	
	goto	rstill	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
ronea	bsf	portd, 7	;show channel number 1 using 3 leds channel 1 chosen ;show channel number 1 using 3 leds ;show channel number 1 using 3 leds ;A/D conversion for that channel and store the value in different file register to normal (valla instead of vall)
	bcf	portd. 6	
	bcf	pord, 5	
	goto	rchonea	
roneaa	btfsc	port,refresh	;A/D conversion for that channel and store the value in different file register to normal (valla instead of vall) ;test the bit for the requirement to replace the contents of vall with valla - allows alterartion of timing ;while program is running
	goto	rstill	;no requirement to refresh so ignore value of valla and keep vall as it is - go to testopt ;requirement to refresh, so vall is given the value of valla which is shown on the LED sequence ;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
	movwf	val1	
	goto	rstill	
rtwoa	bcf	portd, 7	;show channel number 2 using 3 leds channel 2 chosen ;show channel number 2 using 3 leds ;show channel number 2 using 3 leds ;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2)
	bsf	pord, 6	
	bcf	portd, 5	
	goto	rchtwoa	
trwosa	btfsc	port,refresh	;A/D conversion for that channel and store the value in different file register to normal (val2a instead of val2) ;test the bit for the requirement to replace the contents of val2 with val2a-allows alterartion of timing ; while program is running
	goto	rstill	;no requirement to refresh so ignore value of valla and keep val2 as it is - go to testopt ;requirement to refresh, so val2 is given the value of val2a which is shown on the LED sequence ;timing has been carried out and so continue with which motor phase firing sequence for normal operation
	movwf	val2	
	goto	rstill	
threea	bsf	portd, 7	;- go to testopt ;show channel number 3 using 3 leds channel 3 chosen ;show channel number 3 using 3 leds ;show channel number 3 using 3 leds ;A/D conversion for that channel and store the value in different file register to normal (val3a instead of val3)
	bsf	portd, 6	
	bcf	portd, 5	
	goto	rehthra	
rthreeaa	btfs	port, refresh	;while program is ;running
	goto	rstill	;no requirement to refresh so ignore value of val3a and keep val3 as it is - go to testopt
	movwf	val3	;requirement to refresh, so val3 is given the value of val3a which is shown on the LED sequence ;timing has been carried out and so continue with which motor phase firing sequence for normal operation
	goto	rstill	
foura	bcf	portd 7	;show channel number 4 using 3 leds channel 4 chosen
	bcf	portd, 6	;show channel number 4 using 3 leds
	bsf	portd, 5	;show channel number 4 using 3 leds
	goto	rchfoua	;A/D conversion for that channel and store the value in different file register to normal (val4a instead of val4)
rfouraa	btfs	porb,refresh	;test the bit for the requirement to replace the contents of val4 with val4a-allows alterartion of timing ; while program is running
	goto	rstill	;no requirement to refresh so ignore value of val4a and keep val4 as it is - go to testopt ;requirement to refresh, so val4 is given the value of val4a which is shown on the LED sequence ;timing has been carried out and so continue with which motor phase firing sequence for normal operation
	movwf	val4	
	goto	rstill	; - go to testopt ;show channel number 5 using 3 leds channel 5 chosen
rfivea	bsf	portd, 7	
	bcf	portd, 6	;show channel number 5 using 3 leds ;show channel number 5 using 3 leds ;show channel number 5 using 3 leds ;A/D conversion for that channel and store the value in different file register to normal (val4a instead of val4)
	bsf	portd, 5	
	goto	rchfiva	
fiveaa	btfsc	port,refresh	;A/D conversion for that channel and store the value in different file register to normal (val4a instead of val4) ;test the bit for the requirement to replace the contents of val4 with val4a-allows alterartion of timing ;while program is running ;no requirement to refresh so ignore value of val5a and keep val5 as it is - go to testopt
	goto	rstill	
	movwf	val5	;requirement to refresh, so val5 is given the value of val5a which is shown on the LED sequence ;timing has been carried out and so continue with which motor phase firing sequence for normal operation
	goto	rstill	;-go to testopt ;show channel number 6 using 3 leds channel 6 chosen ;show channel number 6 using 3 leds ;show channel number 6 using 3 leds
rsixa	bcf	portd, 7	
	bsf	portd, 6	
	bsf	portd, 5	
Appendices XXVI			

Reluctance Machines with Flux Assistance

rsixaa	goto btfsc	rchsixa portb,refresh	;A/D conversion for that channel and store the value in different file register to normal (val6a instead of val6) ;test the bit for the requirement to replace the contents of val6 with val6a - allows alterartion of timing ;while program is running
	goto	rstill	;no requirement to refresh so ignore value of val6a and keep val6 as it is - go to testopt
	movwf	val6	;requirement to refresh, so val6 is given the value of val6a which is shown on the LED sequence
	goto	rstill	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ; - go to testopt
rsevena	bsf	portd, 7	;show channel number 7 using 3 leds channel 7 chosen
	bsf	pord, 6	;show channel number 7 using 3 leds
	bsf	pord, 5	;show channel number 7 using 3 leds
	goto	rchseva	;A/D conversion for that channel and store the value in different file register to normal (val7a instead of val7)
${ }^{\text {rsevenaa }}$	btfsc	port,refresh	;test the bit for the requirement to replace the contents of val7 with val7a - allows alterartion of timing ;while program is running
	goto	rstill	;no requirement to refresh so ignore value of val7a and keep val7 as it is - go to testopt
	movwf	val7	;requirement to refresh, so val7 is given the value of val7a which is shown on the LED sequence
	goto	rstill	;timing has been carried out and so continue with which motor phase firing sequence for normal operation ;-go to testopt
rehzera	bcf	adcon0, 3	;select channel zero for A/D conversion
	bcf	adcon0,4	;select channel zero for A/D conversion
	bcf	adcono, 5	;select channel zero for A/D conversion
	call	conv	;goto conv forA/D conversion of channel selected then return to line below
	movf	adresl,w	;A/D value is in adresl - move it to working register
	movwf	val0a	;move the value in the working register to val0a - A/D for that channel now in the different file register ;for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	bffsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl,w	;A/D value is in adrest - move it to working register
	goto	rzeroaa	;go back to the A/D channel selection and see whether this value is to replace the original value
rchonea	bsf	adcon0,3	;select channel one for A / D conversion
	bcf	adcon0,4	;select channel one for A / D conversion
	bcf	adcon0,5	;select channel one for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf	valla	;move the value in the working register to valla - ADD for that channel now in the different file register ;for that channe
	movwf	portc	;show the output from this AD conversion in the LED sequence
	sublw	b'00000000'	;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl, w	;A/D value is in adresl - move it to working register
	goto	roneas	;go back to the A / D channel selection and see whether this value is to replace the original value
rchtwoa	bcf	adcon0,3	;select channel two for A/D conversion
	bsf	adcon0,4	;select channel two for A/D conversion
	bcf	adcon0,5	;select channel two for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl,w	; A/D value is in adresl - move it to working register
	movwf	val2a	;move the value in the working register to val2a-A/D for that channel now in the different file register ; for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	b'00000000'	;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	goto	rtwoaa	;go back to the A / D channel selection and see whether this value is to replace the original value
rchthra	bsf	adcon0,3	;select channel three for A/D conversion
	bsf	adcon0,4	;select channel three for A/D conversion
	bcf	adcon0,5	;select channel three for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl,w	;A/D value is in adresl - move it to working register
	movwf	val3a	;move the value in the working register to val3a - A/D for that channel now in the different file ; register for that channel
	movwf	porte	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl,w	; $/$ /D value is in adresl - move it to working register
	goto	threeaa adcon0,3	; ${ }_{\text {jo back to }}^{\text {select channel four for } A / D \text { channel selection and see whether this value is to replace the original value }}$
rchfoua	bcf	adcon 0,4	;select channel four for A/D conversion ;select channel four for A/D conversion
	bsf	adcon0,5	;select channel four for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adresl, \mathbf{w}	;A/D value is in adresl - move it to working register
	movwf	val4a	;move the value in the working register to val4a-A/D for that channel now in the different file register ;for that channel
	movwf	porte	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl, w	;A/D value is in adresl - move it to working register
	goto	rfouraa	;go back to the A/D channel selection and see whether this value is to replace the original value
rchfiva	bsf	adcon0,3	;select channel five for A/D conversion
	bef	adcon0,4	;select channel five for A/D conversion
	bsf	adcon0,5	;select channel five for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then returm to line below
	movf	adresl,w	;A/D value is in adresl - move it to working register
	movwf	val5a	;move the value in the working register to val5a-A/D for that channel now in the different file ; register for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} \mathbf{0} 0000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	bffs	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl, w	;A/D value is in adresl - move it to working register
	goto	rfiveaa	;go back to the A/D channel selection and see whether this value is to replace the original value

Reluctance Machines with Flux Assistance

rchsixa	bcf	adcon0,3	;select channel six for A/D conversion
	bsf	adcon0,4	;select channel six for A/D conversion
	bsf	adcon0,5	;select channel six for A/D conversion
	call	conv	;goto conv forA/D conversion oft channel selected then return to line below
	movf	adrest,w	;A/D value is in adresl - move it to working register
	movwf	val6a	;move the value in the working register to val6a-A/D for that channel now in the different file register ; for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl,w	;A/D value is in adres 1 - move it to working register
	goto	rsixaa	;go back to the A / D channel selection and see whether this value is to replace the original value
rchseva	bsf	adcon0,3	;select channel seven for A/D conversion
	bsf	adcon 0,4	;select channel seven for A/D conversion
	bsf	adcon0, 5	;select channel seven for A/D conversion
	call	conv	; goto conv forA/D conversion oft channel selected then retum to line below
	movf movwf	adresl, w val7a	;A/D value is in adresl - move it to working register ;move the value in the working register to val7a - A/D for that channel now in the different file register
			; for that channel
	movwf	portc	;show the output from this A/D conversion in the LED sequence
	sublw	$\mathrm{b}^{\prime} 00000000{ }^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btfs	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	movf	adresl,w	;A/D value is in adresl - move it to working register
	goto	rsevenaa	;go back to the A/D channel selection and see whether this value is to replace the original value
rstill	movf	motval,w	;opto=1 bring back value of motval to working rgister,w to determine how firing is to occur
	sublw	0×56	;0x5b-w just a calculation to determine if can continue or if the motor has stopped
	btfsc	status, 0	;check value of carry the carry bit shows the result to be +'ve or 've
	goto	nlrefirl1	;+'ve(carry bit set) 0x5b-0x5a go back to still coding
	goto	n2refir22	;-'ve(carry bit clear) 0x5b-0x5c go back to still coding
advanced	btse	port,fast	;can it go to adv mode?
	goto	norm	;no, so go to norm
	goto	accel	;yes, so adv mode timing
norm	bsf	porb, led3	;LED on to show not allowed to be in this mode
	goto	ntestopto	;can't go to advance mode as not allowed to, so go back to start
accel	bcf	portd, lhslsw1	;turn off phaseA, bottom switch
	bcf	portd,lhshsw1	;turn off phaseA, top switch
	bef	portd,thslsw2	;tum off phaseB, bottom switch
	bcf	pord, rhshsw2	;turn off phaseB, top switch
	bsf	portb,phase	;advance phase
	btfss	port, 0	;master button on?
	goto	chzer	yes so continue
	btfsc	porb,fast	;can it go to adv mode?
	goto	norm	;no, so go to norm
	bcf	port,led3	;LED off to show allowed to be in this mode
	btfsc	portb,stribut	;test for start button being on
	goto	chzer	;off
	goto	fopto	;on
fopto	btfss	portb,6	; test current state of opto. Can only begin firing at new change of opto state
	goto	fastclr	;opto clear - now wait til set
	goto	fastset	;opto set - now wait til clear
fastclr	btfs	portb,6	;test for set
	goto	fastclr	;still clear
	goto	setfast	;set so start firing in adv mode opto=1
fastset	btfsc	port, 6	;test for clear
	goto	fastset	;still set
	goto	clrfast	;clear so start firing in adv mode opto $=0$
seffast	bsf	portd, rhslsw2	;turn on phaseB, bottom switch opto=1
	bsf	portd, rishsw2	;turn on phaseB, top switch
setfast1	moviw	$0 \times 5 \mathrm{a}$;opto $=0$ put Sa(hex) into working register
	mowwf	motval	;store 5a in motval file register - motval used to detect how phase firing and opto position are linked
	bffsc	port,refresh	;update the value?
	goto bsf	flrefre portb,phase	;advance phase
	bef	adcon0,3	;select channel 4 for A/D conversion
	bcf	adcon0,4	;select channel 4 for A/D conversion
	bsf	adcon0,5	;select channel 4 for A/D conversion
	call	conv	/goto conv for A/D conversion of channel selected then return to line below
	movf	adrest, w	;A/D value is in adres - move it to working register ;move the value in the working register to val4a-A/D for that channel now in the file register for that channel
	sublw	b'00000000' $^{\prime}$;subtract w from zero - if val? is above zero, the result will be negative
	btisc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	bsf	adcon0,3	;select channel 5 for A/D conversion
	bcf	adcon0,4	;select channel 5 for A/D conversion
	bsf	adcon0,5	;select channel 5 for A/D conversion
	call	conv	;goto conv for A / D conversion of channel selected then return to line below
	movf	adresl, w	;A/D value is in adrest - move it to working register
	movwf	val5a ${ }^{\text {b }}$, 00000000 ,	;move the value in the working register to val5a-A/D for that channel now in the file register for that channel ;subtract w from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	bcf	adcon0,3	;select channel 6 for A/D conversion
	bsf	adcon0,4	;select channel 6 for A/D conversion
	bsf	adcon 0,5	;select channel 6 for A/D conversion
	call	conv	;goto conv for A/D conversion of channel selected then return to line below
	movf	adresl,w	;A/D value is in adresl - move it to working register
	movwf	val6a	;move the value in the working register to val6a - A/D for that channel now in the file register for that channel
	sublw bffsc	b' $^{\prime} 00000000^{\prime}$ status, 0	;subtract w from zero - if val? is above zero, the result will be negative ;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then
			;skip the next line and continue
	goto bsf	chzer adcon0,3	;val? is zero so go back to the beginning and fix the value ;select channel 7 for A/D conversion

	bsf	adcon0,4	;select channel 7 for A/D conversion
	bsf	adcon0,5	;select channel 7 for A/D conversion
	call	conv	;goto conv for A/D conversion of channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf sublw	val7a b' $^{\prime} 00000000^{\prime}$;move the value in the working register to val7a - A/D for that channel now in the file register for that channel
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then skip ;the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
fastdisp1	btfsc	port, 3	$; 3$ pink wires are used to select which A/D channel is to be shown, which is detemined below
	goto	fldisa	;1/3/5/7 channels applicable
	btfs	portb, 2	;0/2/4/6 channels applicable
	goto	fldisb	;26 channels applicable
	btfsc	porta, 4	;0/4 channels applicable
	goto	flfour	;40ut channel 4 chosen
	goto	flrefre	;Out channel 0 chosen
fldisa	btfsc	port, 2	;1/3/5/7 channels applicable
	goto	fldisc	;3/7 channels applicable
	btfsc	porta, 4	;1/5 channets applicable
	goto	flfive	;5out channel 5 chosen
	goto	flrefre	;lout channel 1 chosen
fldisb	btfsc	porta, 4	;2/6 channels applicable
	goto	flsix	;6out channel 6 chosen
	goto	flrefre	;2out channel 2 chosen
fldisc	btfsc	porta, 4	;3/7 channels applicable
	goto	flseven	;7out channel 7 chosen
	goto	flrefre	;3out channel 3 chosen
flfour	bcf	portd, 7	;show channel number 4 using 3 leds channel 4 chosen
	bcf	portd, 6	;show channel number 4 using 3 leds
	bsf	pord, 5	;show channel number 4 using 3 leds
	movf	val4a, w	;move the value in val4a into the working register
	movwf btfsc	portc portb,refresh	;move the contents of the working register to the LED sequence and so the A / D result for this channel is shown ;update the value?
	goto	flfou	;no, so keep original value
	mowwf	val4	;yes, so make val? ${ }^{\text {become val? }}$
	goto	flrefre	;master update?
flfou	goto	flrefre	;master update?
flfive	bsf	portd, 7	;show channel number 5 using 3 leds channel 5 chosen
	bcf	portd, 6	;show channel number 5 using 3 leds
	bsf	portd, 5	;show channet number 5 using 3 leds
	movf	val5a,w	;move the value in val5a into the working register
	movwf btfsc	portc portb,refresh	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown ;update the value?
	goto	flfiv	;no, so keep original value
	movwf	val5	; yes, so make val? become val?
	goto	firefre	;master update?
flfiv	goto	firefre	;master update?
flsix	bcf	pord, 7	;show channel number 6 using 3 leds channel 6 chosen
	bsf	portd, 6	;show channel number 6 using 3 leds
	bsf	port, 5	;show channel number 6 using 3 leds
	movf	val6a, w	;move the value in val6a into the working register
	movwf	portc	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	btfsc	port, refresh	;update the value?
	goto	flsixe	;no, so keep original value
	mownf	val6	yes, so make val? become val?
	goto	flrefre	;master update?
flsixe	goto	flrefre	;master update?
flseven	bsf	portd 7	;show channel number 7 using 3 leds channel 7 chosen
	bsf	pond, 6	;show channel number 7 using 3 leds
	bsf	portd, 5	;show channel number 7 using 3 leds
	movf	val7a,w	;move the value in val7a into the working register
	mowwf	porte	;move the contents of the working register to the LED sequence and so the A/D result for this channel is shown
	btfsc	portb,refresh	;update the value?
	goto	flsev	;no, so keep original value
	mowwf	val7	;yes, so make val? ${ }^{\text {become val? }}$
	goto	flrefre	;master update?
flsev	goto	flrefre	;master update?
flrefre	btfss	port, 0	;is the master update button on?
	goto	chzer	; yes, so restart everything
	goto	faststrt	;no, so continue
faststrt	btfsc	portb,strbut	;is the start button still on?
	goto	chzer	;no, so restart everything
	goto	fastadv1	;yes, so check if the motor can go into advance mode
fastadv1	btfsc	port,fast	;can it go to adv mode?
	goto	norm	;no, so go to norm .
	goto	fldel	;yes, so adv mode timing
fldel	moviw	0×12	
	movwf	heur3	
tsla	movf	val7,w	
	movwf	heur2	
11	decfsz	heur2,f	
	goto	tla	
	goto	${ }^{\text {tlb }}$	
t1a	btfs	portb,6	;opto is 1 , has it gone to 0 too early - ie is timing wrong
	goto	$t 1$;opto=1- still okay
	goto	erorl	;opto $=0$ - timing wrong
tlb	decfsz	heur3,f	
	goto	tsla	
	goto	fin 1	
erorl	bsf	portb,led3	;LED on
	bcf	portd,thslsw2	;turn off phaseB, botiom switch
	bcf	portd,rhshsw2	;turn off phaseB, top switch
	call	wdelay	;v smalldelay
	bsf	portd,lhslsw 1	;turn on phaseA, bottom switch
	bsf	portd,lhshswI	;tum on phaseA, top switch
	goto	clrfast0	;goto next section CORRECT??????
finl	bcf	portd,rhslsw2	;turn off phaseB, botom switch
	bcf goto	portd,rhshsw2 fldell	;turn off phaseB, top switch

Reluctance Machines with Flux Assistance

fldel 1	movlw movwf	0×05 heur3	
tslla	movf	val6,w	
	movwf	heur2	
111	decfsz	heur2,f	
	goto	tlla	
	goto	tllb	
tlla	btfsc	port, 6	;opto is 1 , has it gone to 0 too early - ie is timing wrong
	goto	$t 11$;opto $=1$ - still okay
	goto	erorl1	;opto $=0$ - timing wrong
t11b	decfsz	heur3,f	
	goto	tslla	
	goto	fin 11	
erorll	bsf	port,led3	;LED on TIMING WRONG
	bsf	portd,lhslsw1	;turn on phaseA, bottom switch
	bsf	pord, hhshsw1	;turn on phaseA, top switch
	goto	ciffasto	;goto next section CORRECT???????
finll	bsf	pord, Ihslsw1	;turn on phaseA, bottom switch
	bsf	portd, lhshsw1	;turn on phaseA, top switch
	goto	quik1	;still fast enough for advanced mode?
quik1	movf	val5,w	
	movwf	heur3	
ts111a	movf movwf	val4,w heur2	
ts111b	movlw	Ox0a	
	movwf	heur1	
t111	decfsz	heurl,f	
	goto	t111a	
	goto	t111b	
tilla	bffsc	portb,6	;opto is 1 , want it to go to 0 now
	goto	$t 111$;opto $=1$ so continue countdown
	goto	clrfastl1	;opto $=0$ - changed within the time limit thus stay in advanced
tlllb	decfsz	heur2,f	
	goto	ts111b	
	goto	t111c	
t111c	decfsz	heur3,f	
	goto	ts111a	
	goto	slow1	;too slow - go to normal mode
clrfast11	bcf	port, led3	;LED off TIMING OKAY
	goto	clrfast0	
wdelay	moviw	0x0a	;load 2 dec into working register - this coding allows a time delay so flashing of LED is visible
	movwf	del111	;move 2 dec from working register into dell11 file register
wtrdelay	moviw	0x02	;load 2dec into working register
	movwf	delll	;move 2dec from working register into dell1 file register
wtdelay	moviw	0×02	;load 2dec into working register
	movwf	dell	;move 2 dec from working register into dell file register
wdlay	decfsz	del 1,1	;decrement dell and keep new value, skip next line if zero
	goto	wdlay	;dell not zero so decrement again
	decfsz	dell 1,1	;dell is zero, decrement dell 1 and keep new value, skip next line if zero
	goto	wtdelay	;dell1 not zero, reload dell again so can decrement again and maintain delay timing properly
	decfsz	del111,1	;dell1 is zero, decrement del 111 and keep new value, skip next line if zero
	goto retum	wtrdelay	;del111 not zero, reload del 1 and dell1 so can both decrement again and maintain delay timing properly ;time delay complete - go back to line below the call strtdelay - total ;delay $=1$ micro* $2^{*} 2^{*} 2^{*}$ 6executions $=48$ microsec
clfast	bsf	portd, lhslsw1	;turn on phaseA, bottom switch opto $=0$
	bsf	portd,lihshsw1	;turn on phaseA, top switch
crfast0	movtw	OxSc	;opto $=0$ put 5 c (hex) into working register
	mowwf	motval	;store 5 c in motval file register - motval used to detect how phase firing and opto position are linked
	btfsc	port,refresh	;update the value?
	goto	forefre	
	${ }_{\text {bsf }}$	portb,phase adcon03	;advance phase ${ }^{\text {select channel } 4 \text { for A/D conversion }}$
	bcf	adcon0,4	;select channel 4 for A/D conversion
	bsf	adcon0,5	;select channel 4 for A/D conversion
	call	conv	;goto conv for A / D conversion of channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf sublw	val4a b'00000000'	;move the value in the working register to val4a-A/D for that channel now in the file register for that channel ;subtract w from zero - if val? is above zero, the result will be negative
	bufsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	bsf	adcon0,3	;select channel 5 for A/D conversion
	bcf	adcon0,4	;select channel 5 for A/D conversion
	bsf	adcon 0,5	;select channel 5 for A/D conversion
	call	conv	;goto conv for A / D conversion of channel selected then return to line below
	movf	adresl, w	; A/D value is in adresl - move it to working register
	movwf	val5a b'00000000'	;move the value in the working register to val5a - A/D for that channel now in the file register for that channel ;subract w from zero -if val? is above zero, the resul will be negative
	sublw btfsc	$b^{\prime} 00000000^{\prime}$ $\text { status, } 0$;subtract w from zero - if val? is above zero, the result will be negative ;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then
			;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	bcf	adcon0,3	;select channel 6 for A/D conversion
	bsf	adcon0,4	;select channel 6 for A/D conversion
	bsf	adcon0,5	;select channel 6 for A/D conversion
	call	conv	;goto conv for A/D conversion of channel selected then return to line below
	movf	adresl, w	;A/D value is in adresl - move it to working register
	movwf sublw	val6a b'00000000'	;move the value in the working register to val6a - ADD for that channel now in the file register for that channel ;subtract \mathbf{w} from zero - if val? is above zero, the result will be negative
	btfsc	status, 0	;test the carry bit, if set, then val5 is zero and makes the time delay wrong, if val? is above zero, then ;skip the next line and continue
	goto	chzer	;val? is zero so go back to the beginning and fix the value
	bsf	adcon0,3	;select channel 7 for A / D conversion
	bsf	adcon0,4	;select channel 7 for A/D conversion
	bsf	adcon0,5	;select channel 7 for A / D conversion
	call	conv	;goto conv for A/D conversion of channel selected then return to line below
	movf movwf	adresl,w val7a	;A/D value is in adresl - move it to working register ;move the value in the working register to val7a - A/D for that channel now in the file register for that channel

APPENDIX D

D. 1 LCD INFORMATION DISPLAY

A second microcontroller powers a LCD display to give information about the speed mode, A/D values for selected channels, update options, etc (Figure D.1). The microcontroller improves the display of the timing delay values. The main microprocessor shows each selected channel delay by 8 LED's representing the 8 -bit binary number of the A/D conversion for that channel. The second PIC16F877 drove a 16x2 LCD alphanumeric display. The PIC converts the input from the selected channel into a decimal number in terms of hundreds, tens, and ones (in a similar manner to an abacus) and then converts each one into the correct 8 -bit number for the LCD display.

The second PIC also uses information from the first PIC16F877 to give the following LCD display features :-

The time delay channel chosen
The value of that channel
The speed Mode that channel affects
The speed Mode the machine is in
The fact whether the value is being updated into the time delay or not

The working A/D circuit and accompanying LCD display circuit is shown below in Figure D. 1. The basic flow diagram for the LCD display coding is shown in Figure D. 2 but this did not show the fact that the LCD program was very coding-intensive (Appendix D.2).

Figure D. 1 :- Prototyping circuit running in Advanced Mode.

Figure D. 2 :- LCD display flow chart.

D. 2 PIC16F877 CODING FOR LCD DISPLAY FOR 'ON-THE-FLY’ TIMINGS CONTROL

call	latch
call	delay
moviw	b'11111110'
movwf	porb
call	latch
call	delay
movlw	$\mathrm{b}^{\prime} 1111111{ }^{\prime}$
mowwf	portb
call	latch
call	delay
moviw	$\mathrm{b}^{\prime} 1111111{ }^{\prime}$
movwf	portb
call	latch
call	delay
moviw	$\mathrm{b}^{\prime} 11111110^{\prime}$
movwf	portb
call	latch
call	delay
moviw	$\mathrm{b}^{\prime} 1111111{ }^{\prime}$
movwf	portb
call	latch
call	delay
moviw	b'11111110'
movwf	portb
call	latch
call	delay
moviw	$\mathrm{b}^{\prime} 11111110$
movwf	port
call	latch
call	delay
bcf	porters
moviw	$\mathrm{b}^{\prime} 11000000$
movwf	portb
call	latch
call	delay
bsf	porters
movf	decentl,w
movwf	port
call	latch
call	delay
movf	decent2,w
movwf	portb
call	latch
call	delay
movf	deccnt3,w
movwf	portb
call	latch
call	delay
moviw	$\mathrm{b}^{\prime} 11111110^{\circ}$
movwf	portb
call	latch
call	delay
movf	decent4,w
movwf	portb
call	latch
call	delay
movf	decent5,w
movwf	portb
call	latch
call	delay
movf	decent1,w
movwf	portb
call	latch
call	delay
movlw	b'11111110'
movwf	portb
call	latch
call	delay
movlw	b'1111110' $^{\prime}$
movwf	portb
call	latch
call	delay
movlw	$\mathrm{b}^{\prime} 11111110^{\prime}$
movwf	portb
call	latch
call	delay
moviw	$\mathbf{b}^{\prime} 11111110$
movwf	portb
call	latch
call	delay
moviw	$\mathbf{b}^{\prime} 11111110^{\circ}$
movwf	portb
call	latch
call	delay
movlw	b'11111110'
movwf	portb
call	latch
call	delay
moviw	$\mathrm{b}^{\prime} 1111110^{\prime}$
movwf	portb
call	latch
call	delay
moviw	b'11111110'
movwf	portb
call	latch
call	delay
bcf	porte, rs
moviw	$\mathrm{b}^{\prime} 00000011{ }^{\prime}$
movwf call	portb latch

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
movwf \\
call \\
call \\
moviw \\
movwf \\
call \\
call \\
moviw \\
movwf \\
call \\
call \\
movlw \\
movwf \\
call \\
call \\
moviw \\
movwf \\
call \\
call \\
moviw \\
movwf \\
call \\
call \\
btfss \\
goto \\
goto
\end{tabular} \& \begin{tabular}{l}
portb \\
latch \\
delay \\
b'01101100' \\
portb \\
latch \\
delay \\
b' \(^{\prime} 11111110^{\prime}\) \\
portb \\
latch \\
delay \\
b'01100011' \\
portb \\
latch \\
delay \\
b'01100011' \\
portb \\
latch \\
delay \\
b'01110100' \\
portb \\
latch \\
delay \\
portc, 5 \\
chazer \\
Icdon 1
\end{tabular} \& \\
\hline chazer \& goto \& chzer \& \\
\hline conv
lupe

dog

conv1 \& \begin{tabular}{l}
moviw

movwf

decfsz

goto

bsf

moviw

movwf

decfsz

goto

btfsc

goto

return

 \&

OxOf

tamp

tamp,f

lupe adcon0,2

$0 \times 3 \mathrm{c}$

temp

temp,f

dog

adcon 0,2

convl
\end{tabular} \& ```

;(from the A/D request for the channel selected) set up time delay (15dec)
;put }15\mathrm{ into tamp
;decrement by 1, skip next line if zero
;not zero so decrement again - delay required to allow internal capacitors to charge up to value of input voltage
;set A/D conversion into progress
;set up time delay (60dec)
;put }60\mathrm{ into temp
;decrement by 1, skip next line if zero
;not zero so decrement again - allows time for A/D conversions to occur
;has A/D conversion ended?
;no - recheck until it has
;A/D ended - value stored in adresl - got back to relevant point in coding

``` \\
\hline chzer & bcf movlw movwf call call bcf bef bcf call movf movwf goto & \begin{tabular}{l}
portc,rs \\
b'0000001 1' \\
portb \\
latch \\
delay \\
adcon 0,3 \\
adcon 0,4 \\
adcon0,5 \\
conv \\
adresl,w \\
val0 \\
chone
\end{tabular} & \begin{tabular}{l}
;reset and home \\
;select channel zero for \(\mathrm{A} / \mathrm{D}\) conversion \\
(after initl has been called) \\
;select channel zero for \(\mathrm{A} / \mathrm{D}\) conversion \\
;select channel zero for A/D conversion \\
;goto conv for \(A / D\) conversion of channel selected then return to line below \\
;A/D value is in adresl - move it to working register \\
;move the value in the working register to val0-A/D for that channel now in the file register for that channel \\
;A/D the next channel
\end{tabular} \\
\hline chone & bsf bcf bcf call movf movwf goto & \begin{tabular}{l}
adcon0,3 \\
adcon0,4 \\
adcon0,5 \\
conv \\
adresl,w \\
vall \\
chtwo
\end{tabular} & \begin{tabular}{l}
;select channel one for \(A / D\) conversion \\
;select channel one for A/D conversion \\
; select channel one for A/D conversion \\
;goto conv for \(\mathrm{A} / \mathrm{D}\) conversion of channel selected then return to line below \\
;A/D value is in adres1 - move it to working register \\
;move the value in the working register to vall - A/D for that channel now in the file register for that channel \\
;A/D the next channel
\end{tabular} \\
\hline chtwo & bcf bsf bcf call movf movwf goto & \begin{tabular}{l}
adcon 0,3 \\
adcon 0,4 \\
adcon0,5 \\
conv \\
adresl,w \\
val2 \\
chthr
\end{tabular} & \begin{tabular}{l}
;select channel two for \(A / D\) conversion \\
;select channel two for A/D conversion \\
;select channel two for A/D conversion \\
;goto conv for A/D conversion of channel selected then return to line below \\
;A/D value is in adresl - move it to working register \\
;move the value in the working register to val2 - A/D for that channel now in the file register for that channel ;A/D the next channel
\end{tabular} \\
\hline chthr & bsf bsf bcf call movf movwf goto & \begin{tabular}{l}
adcon0,3 \\
adcon 0,4 \\
adcon0,5 \\
conv \\
adresl,w \\
val3 \\
chfou
\end{tabular} & \begin{tabular}{l}
;select channel three for A/D conversion \\
;select channel three for \(A / D\) conversion \\
;select channel three for \(\mathbf{A / D}\) conversion \\
;goto conv for A/D conversion of channel selected then return to line below \\
;A/D value is in adresl - move it to working register \\
;move the value in the working register to val3-A/D for that channel now in the file register for that channel ;A/D the next channel
\end{tabular} \\
\hline chfou & bcf bcf bsf call movf movwf goto & \begin{tabular}{l}
adcon 0,3 \\
adcon0,4 \\
adcon0,5 \\
conv \\
adresl,w \\
val4 \\
chfiv
\end{tabular} & \begin{tabular}{l}
:select channel four for A/D conversion \\
;select channel four for A/D conversion \\
;select channel four for A/D conversion \\
;goto conv for A/D conversion of channel selected then return to line below \\
;A/D value is in adresi - move it to working register \\
;move the value in the working register to val4-A/D for that channel now in the file register for that channel ;A/D the next channel
\end{tabular} \\
\hline chfiv & bsf bcf bsf call movf movwf goto & \begin{tabular}{l}
adcon0, 3 \\
adcon 0,4 \\
adcon0,5 \\
conv \\
adresl, w \\
val5 \\
chsix
\end{tabular} & \begin{tabular}{l}
;select channel five for \(A / D\) conversion \\
;select channel five for \(A / D\) conversion \\
;select channel five for \(A / D\) conversion \\
;goto conv for A/D conversion of channel selected then return to line below \\
;A/D value is in adresl - move it to working register \\
;move the value in the working register to val5 - A/D for that channel now in the file register for that channel ;A/D the next channel
\end{tabular} \\
\hline chsix & bcf bsf bsf call movf movwf goto & \begin{tabular}{l}
adcon 0,3 \\
adcon0,4 \\
adcon0,5 \\
conv \\
adresl,w \\
val6 \\
chsev
\end{tabular} & \begin{tabular}{l}
;select channel six for A/D conversion \\
;select channel six for \(\mathrm{A} / \mathrm{D}\) conversion \\
;select channel six for A/D conversion \\
;goto conv for A/D conversion of channel selected then return to line below \\
;A/D value is in adresl - move it to working register \\
;move the value in the working register to val6 - A/D for that channel now in the file register for that channel ;A/D the next channel
\end{tabular} \\
\hline chsev & bsf bsf bsf call & \begin{tabular}{l}
adcon 0,3 \\
adcon0,4 \\
adcon0,5 \\
conv
\end{tabular} & ;select channel seven for A/D conversion ;select channel seven for A/D conversion ;select channel seven for A/D conversion ;goto conv for A/D conversion of channel selected then return to line below \\
\hline
\end{tabular}

\section*{Reluctance Machines with Flux Assistance}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
movf \\
movwf \\
goto
\end{tabular} & adres,w val7 chandetect & ;A/D value is in adresl - move it to working register ;move the value in the working register to val7 - A/D for that channel now in the file register for that channel ;display the A/D output for whichever channel is selected using the 3 pink wires - go to display \\
\hline \multirow[t]{7}{*}{chandetect} & btfse & portc, 1 & ; 3 pink wires are used to select which \(\mathrm{A} / \mathrm{D}\) channel is to be shown, which is detemined below \\
\hline & goto & disal & ;1/3/5/7 channels applicable \\
\hline & btfsc & port, 2 & ;0/2/4/6 channels applicable \\
\hline & goto & disb 1 & ;2/6 channels applicable \\
\hline & btfsc & port, 3 & ;0/4 channels applicable \\
\hline & goto & four & ;4out channel 4 chosen \\
\hline & goto & zerol & ;Oout channel 0 chosen \\
\hline \multirow[t]{5}{*}{disal} & btfsc & port, 2 & ,1/3/5/7 channels applicable \\
\hline & goto & disc1 & ;3/7 channels applicable \\
\hline & btfsc & port, 3 & ;1/5 channels applicable \\
\hline & goto & fivel & ;Sout channel 5 chosen \\
\hline & goto & onel & ; lout channel 1 chosen \\
\hline \multirow[t]{3}{*}{disb1} & btisc & portc, 3 & ;2/6 channels applicable \\
\hline & goto & six1 & ;6out channel 6 chosen \\
\hline & goto & twol & ;2out channel 2 chosen \\
\hline \multirow[t]{3}{*}{discl} & btfsc & portc, 3 & ;3/7 channels applicable \\
\hline & goto & seven 1 & ;7out channel 7 chosen \\
\hline & goto & three 1 & ;3out channel 3 chosen \\
\hline \multirow[t]{4}{*}{zerol} & moviw movwf & b'001 \(^{\prime} 10000^{\prime}\) ledcha & \\
\hline & movf & val0, w & \\
\hline & mowwf & ADent & \\
\hline & goto
moviw & numer b'00110001' \(^{\prime}\) & \\
\hline \multirow{4}{*}{one1} & movwf & Icdcha & \\
\hline & movf & val1,w & \\
\hline & movwf & ADent & \\
\hline & goto
moviw & \begin{tabular}{l}
numer \\
b'00110010'
\end{tabular} & \\
\hline \multirow[t]{4}{*}{twol} & movwf & Icdcha & \\
\hline & movf & val2,w & \\
\hline & movwf & ADent & \\
\hline & goto
moviw & numer b'001 \(^{\prime} 10011^{\prime}\) & \\
\hline \multirow{4}{*}{threel} & movwf & lcdcha & \\
\hline & movf & val3,w & \\
\hline & movwf & ADcnt & \\
\hline & goto
moviw & \begin{tabular}{l}
numer \\
b'00110100'
\end{tabular} & \\
\hline \multirow{4}{*}{four 1} & movwf & lcdcha & \\
\hline & movf & val4,w & \\
\hline & movwf & ADcnt & \\
\hline & goto & numer & \\
\hline \multirow[t]{4}{*}{fivel} & movlw & \(\mathrm{b}^{\prime} 0011010 \mathrm{I}^{\prime}\) & \\
\hline & movwf & \({ }_{\text {l }}^{\text {l }}\) Icdcha & \\
\hline & movwf & ADcnt & \\
\hline & goto & numer & \\
\hline \multirow[t]{5}{*}{six 1} & moviw & \(\mathrm{b}^{\prime} 00110110{ }^{\prime}\) & \\
\hline & movwf & Icdcha & \\
\hline & movf & val6,w & \\
\hline & movwf & ADent & \\
\hline & goto movlw & & \\
\hline \multirow{3}{*}{seven 1} & movwf & ledcha & \\
\hline & movf & val7,w & \\
\hline & movwf goto & ADent & ;LCD chan values done, val? put into ADcnt \\
\hline showitl & goto & letsgo & \\
\hline numer & movf & ADentw & \\
\hline \multirow[t]{3}{*}{leddetect} & btfs & pord, 0 & ;find the LED value - stated A/D value - not necessarily the correct one \\
\hline & goto & bit01 & \\
\hline & goto & bit00 & \\
\hline \multirow[t]{2}{*}{bit01} & bsf & ledent, 0 & \\
\hline & goto & det1 & \\
\hline bit00 & bcf
goto & \begin{tabular}{l}
ledent, 0 \\
det 1
\end{tabular} & \\
\hline \multirow[t]{3}{*}{det 1} & bffs & pord, 1 & \\
\hline & goto & bit11 & \\
\hline & goto & bit10 & \\
\hline \multirow[t]{2}{*}{bit11} & bsf & ledent, 1 & \\
\hline & goto & \({ }_{\text {deter }}\) ledent 1 & \\
\hline bit10 & \[
\begin{aligned}
& \text { bcf } \\
& \text { goto }
\end{aligned}
\] & \begin{tabular}{l}
ledent, \\
\(\operatorname{det} 2\)
\end{tabular} & \\
\hline \multirow[t]{3}{*}{det2} & bffs & pord, 2 & \\
\hline & goto & bit21 & \\
\hline & goto & bit20 & \\
\hline \multirow[t]{2}{*}{bit21} & bsf & ledent, 2 & \\
\hline & goto & \({ }_{\text {det }}\) & \\
\hline bit20 & goto & \({ }_{\text {det }}{ }^{\text {lea }}\) & \\
\hline \multirow[t]{3}{*}{det3} & bffs & portd, 3 & \\
\hline & goto & bit31 & \\
\hline & goto & bit30 & \\
\hline bit31 & bsf & ledcnt, 3 & \\
\hline \multirow[t]{2}{*}{bit30} & bcf & ledent, 3 & \\
\hline & goto & det 4 & \\
\hline \multirow[t]{3}{*}{det4} & btfsc & portd, 4 & \\
\hline & goto & bit41 & \\
\hline & goto & bit40 & \\
\hline Appendices & & & X \\
\hline
\end{tabular}



Reluctance Machines with Flux Assistance


\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{abit0is 1} & btfss & alpha, 1 & ;xxxxxxx 1 \\
\hline & goto & aabitl is0 & \\
\hline & goto & aabitlis 1 & \\
\hline \multirow[t]{3}{*}{abitl is0} & btfss & alpha, 2 & ;xxxxxx00 \\
\hline & goto & abit2is0 & ; \\
\hline & goto & abit2is 1 & \\
\hline \multirow[t]{3}{*}{abitlisl} & btfss & alphas, 2 & ;xxxxxx10 \\
\hline & goto & aabit2 is0 & \\
\hline & goto & aabitis 1 & \\
\hline \multirow[t]{3}{*}{aabitlis0} & btfss & alpha, 2 & ;xxxxxx01 \\
\hline & goto & aaabitis0 & ; \\
\hline & goto & aaabit2is1 & \\
\hline \multirow[t]{3}{*}{aabitlis 1} & btfs & alpha, 2 & ;xxxxxx11 \\
\hline & goto & aaaabit2is0 & \\
\hline & goto & aaaabit2is 1 & \\
\hline \multirow[t]{3}{*}{abit2is0} & btfs & alpha, 3 & ;xxxxx000 \\
\hline & goto & abit3is0 & ; \\
\hline & goto & abit3is1 & \\
\hline \multirow[t]{3}{*}{abit2is1} & btfss & alpha, 3 & ;xxxxx 100 \\
\hline & goto & aabit3is0 & \\
\hline & goto & aabit3is 1 & \\
\hline \multirow[t]{3}{*}{aabil2is0} & btfss & alpha, 3 & ;xxxxx010 \\
\hline & goto & bbit3is0 & , \\
\hline & goto & bbit3is 1 & \\
\hline \multirow[t]{3}{*}{aabit2is1} & btss & alpha, 3 & ;xxxxx 110 \\
\hline & goto & bbbit3is0 & \\
\hline & goto & bbbit3is1 & \\
\hline \multirow[t]{3}{*}{aaabiLis0} & btfss & alpha, 3 & ; \(\mathbf{x x x} \times \mathbf{x} 001\) \\
\hline & goto & cbit3is0 & ; \\
\hline & goto & cbit3is1 & \\
\hline \multirow[t]{3}{*}{aaabitis 1} & btfss & alpha, 3 & ;xxxxx101 \\
\hline & goto & ccbit3is0 & \\
\hline & goto & ccbit3is 1 & \\
\hline \multirow[t]{3}{*}{aaaabitis0} & btfs & alpha, 3 & ;xxxxx011 \\
\hline & goto & dbit3is0 & ; \\
\hline & goto & dbit3is 1 & ; \\
\hline \multirow[t]{3}{*}{aaabibizis 1} & bffs & alpha, 3 & ; \(\mathbf{x x x x x} 111\) \\
\hline & goto & ddbithis0 & \\
\hline & goto & ddbitbis 1 & \\
\hline \multirow[t]{3}{*}{abitis0} & btfss & alpha, 4 & ; \(\mathbf{x x x} \times 0000\) \\
\hline & goto & abit4is0 & \\
\hline & goto & abit4is1 & \\
\hline \multirow[t]{3}{*}{abit3is 1} & btfss & alpha,4 & ;xxxx 1000 \\
\hline & goto & aabit4is0 & \\
\hline & goto & aabit4is 1 & \\
\hline \multirow[t]{3}{*}{aabit3is0} & btfs & alpha, 4 & ;xxxx0100 \\
\hline & goto & bbiti4is0 & \\
\hline & goto & bbit4is1 & \\
\hline \multirow[t]{3}{*}{aabit3is1} & btfs & alpha, 4 & ;xxxx 1100 \\
\hline & goto & bbbit4is0 & \\
\hline & goto & bbbititis1 & \\
\hline \multirow[t]{3}{*}{bbit3is0} & btfs & alpha, 4 & ;xxxx0010 \\
\hline & goto & cbitis0 & \\
\hline & goto & cbit4is 1 & \\
\hline \multirow[t]{3}{*}{bbit3is 1} & btfss & alpha, 4 & ;xxxx 1010 \\
\hline & goto & ccbit4is0 & \\
\hline & goto & ccbit4is! & \\
\hline \multirow[t]{3}{*}{bbbit3is0} & bffs & alpha 4 & ;xxxx0110 \\
\hline & goto & dbit4is0 & \\
\hline & goto & dbit4is 1 & \\
\hline \multirow[t]{3}{*}{bbbit3is 1} & btfs & alpha, 4 & ;xxxx1110 \\
\hline & goto & ddbiti4is0 & \\
\hline & goto & ddbit4is1 & \\
\hline \multirow[t]{3}{*}{cbit3is0} & btfs & alpha, 4 & ;xxxx0001 \\
\hline & goto & ebitis0 & \\
\hline & goto & ebitis 1 & \\
\hline \multirow[t]{3}{*}{cbit3is1} & btfs & alpha, 4 & ;xxx 1001 \\
\hline & goto & eebit4is0 & \\
\hline & goto & eebithis 1 & \\
\hline \multirow[t]{3}{*}{ccbit3is0} & btfs & alpha, 4 & ;xxxx0101 \\
\hline & goto & fbitis0 & \\
\hline & goto & fbitis \({ }^{\text {d }}\) & \\
\hline \multirow[t]{3}{*}{ccbit3is1} & btfss & alpha, 4 & ;xxxx 1101 \\
\hline & goto & ffbit4is0 & \\
\hline & goto & ffbit4is 1 & \\
\hline \multirow[t]{3}{*}{dbitis 0} & btfs & alpha, 4 & ;xxxx0011 \\
\hline & goto & gbitis0 & \\
\hline & goto & gbitis 1 & \\
\hline \multirow[t]{3}{*}{dbit3is 1} & btfss & alpha, 4 & ;xxxx 1011 \\
\hline & goto & ggbit4is0 & \\
\hline & goto & ggbit4is 1 & \\
\hline \multirow[t]{3}{*}{ddbit3is0} & btfss & alpha 4 & ;xxxx0111 \\
\hline & goto & hbitis0 & \\
\hline & goto & hbitis 1 & \\
\hline \multirow[t]{3}{*}{ddbit3is1} & btfss & alpha, 4 & ;xxxx1111 \\
\hline & goto & hhbit4is0 & \\
\hline & goto & hbbitisis] & \\
\hline \multirow{4}{*}{abit4is0} & & & \\
\hline & btfss & alpha, 5 & ;xxx00000 \\
\hline & goto & abitis0 & \\
\hline & goto & abit5is1 & \\
\hline \multirow[t]{3}{*}{abit4is 1} & btfs & alpha, 5 & ;xxx10000 \\
\hline & goto & aabit5is0 & \\
\hline & goto & aabitis \({ }^{\text {a }}\) & \\
\hline \multirow[t]{3}{*}{aabit4is0} & btfs & alpha, 5 & ;xxx01000 \\
\hline & goto & bbitis0 & \\
\hline & goto & bbitisis 1 & \\
\hline \multirow[t]{2}{*}{aabit4is1} & btfss & alpha, 5 & ;xxx11000 \\
\hline & goto
goto & bbbit5is0 bbbit5is! & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{bbit4is0} & btfss & alpha, 5 & ;xxx00100 \\
\hline & goto & cbit5is0 & \\
\hline & goto & cbit5is 1 & \\
\hline \multirow[t]{3}{*}{bbit4is 1} & btfs & alpha 5 & ;xxx10100 \\
\hline & goto & ccbit5is0 & \\
\hline & goto & cebit5is 1 & \\
\hline \multirow[t]{3}{*}{bbbit4is0} & btfs & alphas 5 & ;xxx01100 \\
\hline & goto & dbit5is0 & \\
\hline & goto & dbit5is 1 & \\
\hline \multirow[t]{3}{*}{bbbit4is1} & btfs & alpha, 5 & ;xxx11100 \\
\hline & goto & ddbit5is0 & \\
\hline & goto & ddbit5is 1 & \\
\hline \multirow[t]{3}{*}{cbit4is0} & btfs & alpha, 5 & ;xxx00010 \\
\hline & goto & ebit5is0 & \\
\hline & goto & ebit5is 1 & \\
\hline \multirow[t]{3}{*}{cbit4is 1} & btfs & alpha, 5 & ;xxx 10010 \\
\hline & goto & eebit5is0 & \\
\hline & goto & eebit5is 1 & \\
\hline \multirow[t]{3}{*}{ccbit4is0} & btfs & alpha, 5 & ;xxx01010 \\
\hline & goto & fbit is0 & \\
\hline & goto & fbitis 1 & \\
\hline \multirow[t]{3}{*}{ccbit4is1} & btfss & alpha, 5 & ;xxx11010 \\
\hline & goto & ffbit5is0 & \\
\hline & goto & ffbitSis 1 & \\
\hline \multirow[t]{3}{*}{dbit4is0} & btfss & alpha, 5 & ;xxx00110 \\
\hline & goto & gbit5is0 & \\
\hline & goto & gbit5is 1 & \\
\hline \multirow[t]{3}{*}{dbit4is 1} & btfss & alpha, 5 & ;xxx10110 \\
\hline & goto & ggbit5is0 & \\
\hline & goto & ggbit5is 1 & \\
\hline \multirow[t]{3}{*}{ddbit4is0} & btfs & alpha 5 & ;xxx01110 \\
\hline & goto & hbit5is0 & \\
\hline & goto & hbit5is 1 & \\
\hline \multirow[t]{3}{*}{ddbit4isl} & btfss & alpha, 5 & ;xxx11110 \\
\hline & goto & hhbitsis0 & \\
\hline & goto & hhbit5is 1 & \\
\hline \multirow[t]{3}{*}{ebit4is0} & btfs & alpha, 5 & ;xxx00001 \\
\hline & goto & ibitSis0 & \\
\hline & goto & ibit5is 1 & \\
\hline \multirow[t]{3}{*}{ebit4is1} & btfss & alpha, 5 & ;xxx 10001 \\
\hline & goto & iibit5is0 & \\
\hline & goto & iibit5is] & \\
\hline \multirow[t]{3}{*}{eebitisis0} & btfss & alpha, 5 & ;xxx01001 \\
\hline & goto & jbitSis0 & \\
\hline & goto & jbit5is1 & \\
\hline \multirow[t]{3}{*}{eebitis 1} & btfss & alpha, 5 & ;xxx11001 \\
\hline & goto & jibitSis0 & \\
\hline & goto & jibitsis] & \\
\hline \multirow[t]{3}{*}{fbitis0} & btfss & alpha, 5 & ;xxx00101 \\
\hline & goto & kbit5is0 & \\
\hline & goto & kbit5is 1 & \\
\hline \multirow[t]{3}{*}{fbit4is 1} & btfs & alpha, 5 & ;xxx 10101 \\
\hline & goto & kkbit5is0 & \\
\hline & goto & kkbit5is1 & \\
\hline \multirow[t]{3}{*}{ffbit4is0} & btfss & alpha, 5 & ;xxx01101 \\
\hline & goto & 1bit5is0 & \\
\hline & goto & bit5is 1 & \\
\hline \multirow[t]{3}{*}{ffbit4is 1} & btfss & alpha, 5 & ;xxx11101 \\
\hline & goto & IlbitSis0 & \\
\hline & goto & Hibitis 1 & \\
\hline \multirow[t]{3}{*}{gbit4is0} & btfss & alpha, 5 & ;xxx00011 \\
\hline & goto & mbit5is0 & \\
\hline & goto & mbitisi & \\
\hline \multirow[t]{3}{*}{gbit4is 1} & btfss & alpha, 5 & ;xxx10011 \\
\hline & goto & mmbit5is0 & \\
\hline & goto & mmbit 5 is 1 & \\
\hline \multirow[t]{3}{*}{ggbit4is0} & btfss & alpha, 5 & ;xx01011 \\
\hline & goto & nbitis0 & \\
\hline & goto & nbitisis & \\
\hline \multirow[t]{3}{*}{ggbit4is 1} & btfss & alpha, 5 & ;xxx11011 \\
\hline & goto & nnbitisis & \\
\hline & goto & nnbit5is1 & \\
\hline \multirow[t]{3}{*}{hbit4is0} & btfs & alpha, 5 & ;xxx00111 \\
\hline & goto & obitSis0 & \\
\hline & goto & obit5is 1 & \\
\hline \multirow[t]{3}{*}{hbittis 1} & btfss & alpha, 5 & ;xx10111 \\
\hline & goto & oobit5is0 & \\
\hline & goto & oobit5is1 & \\
\hline \multirow[t]{3}{*}{hhbitis0} & btfss & alpha, 5 & ;xxx01111 \\
\hline & goto & pbitSis0 & \\
\hline & goto & pbitis 1 & \\
\hline \multirow[t]{3}{*}{hhbit4is1} & btfss & alpha, 5 & ;xxx11111 \\
\hline & goto & ppbitsis0 & \\
\hline & goto & ppbit5is 1 & \\
\hline \multirow[t]{6}{*}{abitis0} & & & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx000000 \\
\hline & goto & abit6is0 & \\
\hline & goto & abit6is 1 & \\
\hline \multirow[t]{5}{*}{abit5is 1} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx100000 \\
\hline & goto & aabit6is0 & \\
\hline & goto & aabit6is 1 & \\
\hline \multirow[t]{4}{*}{aabit5is0} & bcf & pclath,3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfss & alpha, 6 & ;xx010000 \\
\hline & goto
goto & bbit6is0 bbit6is 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{aabit5is1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx110000 \\
\hline & goto & bbbit6is0 & \\
\hline & goto & bbbitris 1 & \\
\hline \multirow[t]{5}{*}{bbit5is0} & bcf & pclath,3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx001000 \\
\hline & goto & cbit6is0 & \\
\hline & goto & cbit6is1 & \\
\hline \multirow[t]{5}{*}{bbit5is 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx101000 \\
\hline & goto & ccbit6is0 & \\
\hline & goto & ccbit6is1 & \\
\hline \multirow[t]{5}{*}{bbbit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btiss & alpha, 6 & ;xx011000 \\
\hline & goto & dbit6is0 & \\
\hline & goto & dbit6is 1 & \\
\hline \multirow[t]{5}{*}{bbbit5isl} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx111000 \\
\hline & goto & ddbit6is0 & \\
\hline & goto & ddbit6is 1 & \\
\hline \multirow[t]{5}{*}{cbitis0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx000100 \\
\hline & goto & ebit6is0 & \\
\hline & goto & ebit6is 1 & \\
\hline \multirow[t]{5}{*}{cbit5is 1} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx100100 \\
\hline & goto & eebit6is0 & \\
\hline & goto & eebit6isl & \\
\hline \multirow[t]{5}{*}{ccbit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx010100 \\
\hline & goto & fbit6is0 & \\
\hline & goto & fbitbis1 & \\
\hline \multirow[t]{5}{*}{ccbitisis 1} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & butss & alpha, 6 & ;xx110100 \\
\hline & goto & ffbitisis & \\
\hline & goto & ffititis 1 & \\
\hline \multirow[t]{5}{*}{dbit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx001100 \\
\hline & goto & gbit6is0 & \\
\hline & goto & gbit6is 1 & \\
\hline \multirow[t]{5}{*}{dbitsis 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx 101100 \\
\hline & goto & ggbit6is0 & \\
\hline & goto & ggbit6is 1 & \\
\hline \multirow[t]{5}{*}{ddbit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx011100 \\
\hline & goto & hbit6is0 & \\
\hline & goto & hbitisis 1 & \\
\hline \multirow[t]{5}{*}{ddbit5is1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx111100 \\
\hline & goto & hhbit6is0 & \\
\hline & goto & hhbit6is 1 & \\
\hline \multirow[t]{5}{*}{ebit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx000010 \\
\hline & goto & ibit6is0 & \\
\hline & goto & ibit6is 1 & \\
\hline \multirow[t]{5}{*}{ebit5is 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx100010 \\
\hline & goto & iibit6is0 & \\
\hline & goto & iibit6is1 & \\
\hline \multirow[t]{5}{*}{eebit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx010010 \\
\hline & goto & jbit6is0 & \\
\hline & goto & jbit6is 1 & \\
\hline \multirow[t]{5}{*}{eebit5is 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx110010 \\
\hline & goto & ijbit6is0 & \\
\hline & goto & jibit6is1 & \\
\hline \multirow[t]{5}{*}{fbitSis0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx001010 \\
\hline & goto & kbit6is0 & \\
\hline & goto & kbit6is 1 & \\
\hline \multirow[t]{5}{*}{fbit5is 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline & btfss & alpha, 6 & ;xx101010 \\
\hline & goto & kkbit6is0 & \\
\hline & goto & kkbit6is 1 & \\
\hline \multirow[t]{5}{*}{ffbit 5 is0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx011010 \\
\hline & goto & lbit6is0 & \\
\hline & goto & lbit6is 1 pclath, 3 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{gbit5is0} & bsf btfss & \begin{tabular}{l}
pclath, 4 \\
alpha, 6
\end{tabular} & ;xx111010 \\
\hline & goto & \(1176 i t 6\) is0 & \\
\hline & goto & llbit6is1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{gbit5is 1} & btfs & alpha, 6 & ;xx000110 \\
\hline & goto & mbit6is0 & \\
\hline & goto & mbitisis 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 6 & ;xx100110 \\
\hline \multirow{5}{*}{ggbit5is0} & goto & mmbittis0 & \\
\hline & goto & mmbit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx010110 \\
\hline \multirow{5}{*}{ggbit5is1} & goto & nbit6is0 & \\
\hline & goto & nbitisis 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx110110 \\
\hline \multirow{5}{*}{hbit5is0} & goto & nnbit6is0 & \\
\hline & goto & nnbit6is 1 & \\
\hline & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx001110 \\
\hline \multirow{4}{*}{hbit5is 1} & goto & obit6is0 & \\
\hline & goto & obit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{hhbit5is0} & btiss & alpha, 6 & ;xx101110 \\
\hline & goto & oobit6is0 & \\
\hline & goto & oobit6is1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx011110 \\
\hline \multirow{4}{*}{hhbit5is} & goto & pbit6is0 & \\
\hline & goto & pbit6is 1 & \\
\hline & bef & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline \multirow{5}{*}{ibit5is0} & btfss & alpha, 6 & ;x111110 \\
\hline & goto & ppbit6is0 & \\
\hline & goto & ppbit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline \multirow{5}{*}{ibit5is1} & btfs & alpha, 6 & ;xx000001 \\
\hline & goto & qbit6is0 & \\
\hline & goto & qbit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline \multirow{5}{*}{iibitSis0} & btfs & alpha, 6 & ;xx 100001 \\
\hline & goto & qqbit6is0 & \\
\hline & goto & qqbit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{iibit5is 1} & btfs & alpha, 6 & ;xx010001 \\
\hline & goto & rbit6is0 & \\
\hline & goto & mit6is1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline \multirow{6}{*}{jbitSis0} & btiss & alpha, 6 & ;xx10001 \\
\hline & goto & nrit6is0 & \\
\hline & goto & rrbit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline & btfss & alpha, 6 & ;xx001001 \\
\hline \multirow{4}{*}{jbitSis1} & goto & sbit6is0 & \\
\hline & goto & sbit6is1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline \multirow{5}{*}{jibit5is0} & btfs & alpha, 6 & ;xx101001 \\
\hline & goto & ssbitbis0 & \\
\hline & goto & ssbit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{jjbit5isl} & btfss & alpha, 6 & ;xx011001 \\
\hline & goto & tbit6is0 & \\
\hline & goto & tbit6isl & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{kbit5is0} & btfss & alpha, 6 & ;xx11001 \\
\hline & goto & ttbit6is0 & \\
\hline & goto & thit6is1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{kbit5is 1} & btfs & alpha, 6 & ;xx000101 \\
\hline & goto & ubit6is0 & \\
\hline & goto & ubit6is 1 & \\
\hline & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{kkbitSis0} & btfs & alpha, 6 & ;xx100101 \\
\hline & goto & uubit6is0 & \\
\hline & goto & uubit6is 1 & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow[b]{4}{*}{kkbit5is1} & btfss & alpha, 6 & ;xx010101 \\
\hline & goto & vbit6is0 & \\
\hline & goto & vbit6is 1 & \\
\hline & bcf
bsf & pclath, 3 pclath, 4 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{7}{*}{1bit5is0} & btfss & alpha, 6 & ;xx110101 \\
\hline & goto & vvbit6is0 & \\
\hline & goto & vvbit6is & \\
\hline & bcf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 6 & ;xx001101 \\
\hline & goto & wbit6is0 & \\
\hline & goto & wbit6is 1 & \\
\hline \multirow[t]{5}{*}{lbit5is1} & bcf & pclath, 3 & \\
\hline & bsf & \({ }_{\text {pclath, }}\) & \\
\hline & btfss & alpha, 6 & ;xx10110] \\
\hline & goto & wwbittis0 & \\
\hline & goto & wwbittis 1 & \\
\hline \multirow[t]{5}{*}{\(11 \mathrm{bit5} 50\)} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx011101 \\
\hline & goto & xbit6is0 & \\
\hline & goto & xbitios 1 & \\
\hline \multirow[t]{5}{*}{1lbit5is1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & bffs & alpha, 6 & ;xx111101 \\
\hline & goto & xxbit6is0 & \\
\hline & goto & xxbit6is1 & \\
\hline \multirow[t]{5}{*}{mbitsis0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx000011 \\
\hline & goto & ybitiso & \\
\hline & goto & ybit6is 1 & \\
\hline \multirow[t]{5}{*}{mbit5is1} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx100011 \\
\hline & goto & yybit6is0 & \\
\hline & goto & yybit6is 1 & \\
\hline \multirow[t]{5}{*}{mmbitisis} & bcf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline & btfss & alpha, 6 & ;xx010011 \\
\hline & goto & zbit6is0 & \\
\hline & goto & zbit6is 1 & \\
\hline \multirow[t]{5}{*}{mmbitsis 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 6 & ;xx110011 \\
\hline & goto & zzbit6is0 & \\
\hline & goto & zzbit6is 1 & \\
\hline \multirow[t]{5}{*}{nbitsis0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & bffss & alpha, 6 & ;xx00101 \\
\hline & goto & daabittis0 & \\
\hline & goto & daabitisis & \\
\hline \multirow[t]{5}{*}{nbitsis 1} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx101011 \\
\hline & goto & daaabit6is0 & \\
\hline & goto & daaabit6is 1 & \\
\hline \multirow[t]{5}{*}{nnbit5is0} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx011011 \\
\hline & goto & dabbitis0 & \\
\hline & goto & dabbitisis & \\
\hline \multirow[t]{5}{*}{nnbitisis} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx111011 \\
\hline & goto & dabbbitbis0 & \\
\hline & goto & dabbbit6is 1 & \\
\hline \multirow[t]{5}{*}{obit5is0} & bcf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 6 & ;xx000111 \\
\hline & goto & dactitiois0 & \\
\hline & goto & dacbitbis1 & \\
\hline \multirow[t]{5}{*}{obit5is 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx100111 \\
\hline & goto & daccbit6is0 & \\
\hline & goto & daccbitisis 1 & \\
\hline \multirow[t]{5}{*}{oobitisis0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;x010111 \\
\hline & goto & dadbit6is0 & \\
\hline & goto & dadbittis 1 & \\
\hline \multirow[t]{5}{*}{oobit5is 1} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx10111 \\
\hline & goto & daddbit6is0 & \\
\hline & goto & daddbitisis 1 & \\
\hline \multirow[t]{5}{*}{pbitSis0} & bcf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx001111 \\
\hline & goto & daebit6is0 & \\
\hline & goto & daebit6is 1 & \\
\hline \multirow[t]{5}{*}{pbitsis 1} & bef & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx10111 \\
\hline & goto & daeebitisis & \\
\hline & goto & daeebit6is 1 & \\
\hline \multirow[t]{5}{*}{ppbitsis0} & bcf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 6 & ;xx011111 \\
\hline & goto & dafbitbis0 & \\
\hline & goto & dafbitbis 1 & \\
\hline \multirow[t]{3}{*}{ppbitisis} & bcf & pelath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 6 & ;xx11111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{org abit6is0} & \multirow{4}{*}{0x1000} & \[
\begin{aligned}
& \text { goto } \\
& \text { goto }
\end{aligned}
\] & daffbit6is0 daffbit6is 1 & \\
\hline & & & & ;PAGE1 \\
\hline & & bffss & alpha 7 & ;x00000000 \\
\hline & & goto & abit7is0 & \\
\hline \multirow{3}{*}{abit6is1} & & goto & abit7is1 & \\
\hline & & btfss & alpha, 7 & ; \(\times 10000000\) \\
\hline & & goto & aabit 7 is0 & \\
\hline \multirow{3}{*}{aabit6is0} & & goto & aabitis 1 & \\
\hline & & btfs & alpha, 7 & ;x0100000 \\
\hline & & goto & bbit7is0 & \\
\hline \multirow{3}{*}{aabit6is 1} & & goto & bbit7is 1 & \\
\hline & & btfss & alpha, 7 & ;1100000 \\
\hline & & goto & bbbit7is0 & \\
\hline \multirow{3}{*}{bbit6is0} & & goto & bbbit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0010000 \\
\hline & & goto & cbit 7 is0 & \\
\hline \multirow{3}{*}{bbit6is 1} & & goto & cbit 7 is 1 & \\
\hline & & btfss & alpha, 7 & ; \(\times 1010000\) \\
\hline & & goto & ccbit7is0 & \\
\hline \multirow{3}{*}{bbbit6is0} & & goto & ccbit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0110000 \\
\hline & & goto & dbit7is0 & \\
\hline \multirow{3}{*}{bbbit6is1} & & goto & dbit7is 1 & \\
\hline & & btfss & alpha, 7 & ;x1110000 \\
\hline & & goto & ddbit7is0 & \\
\hline \multirow{3}{*}{cbit6is0} & & goto & ddbit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0001000 \\
\hline & & goto & ebit7is0 & \\
\hline \multirow{3}{*}{cbit6is 1} & & goto & ebit7is1 & \\
\hline & & bufs & alpha, 7 & ;x1001000 \\
\hline & & goto & eebit7is0 & \\
\hline \multirow{3}{*}{ccbit6is0} & & goto & eebit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0101000 \\
\hline & & goto & fbit7is0 & \\
\hline \multirow{3}{*}{ccbit6is1} & & goto & fbit7is 1 & \\
\hline & & btfss & alpha, 7 & ;x1101000 \\
\hline & & goto & ffbitis0 & \\
\hline \multirow{3}{*}{dbit6is0} & & goto & flbitis 1 & \\
\hline & & btfss & alpha, 7 & ;x0011000 \\
\hline & & goto & gbit7is0 & \\
\hline \multirow{3}{*}{dbit6is 1} & & goto & gbit7is 1 & \\
\hline & & bufs & alpha, 7 & ;x1011000 \\
\hline & & goto & ggbit7is0 & \\
\hline \multirow{3}{*}{ddbit6is0} & & goto & ggbit7is1 & \\
\hline & & btiss & alpha, 7 & ;x0111000 \\
\hline & & goto & hbit7is0 & \\
\hline \multirow{3}{*}{ddbit6is1} & & goto & hbit7is 1 & \\
\hline & & btfs & alpha, 7 & ;x1111000 \\
\hline & & goto & hhbit7is0 & \\
\hline \multirow{3}{*}{ebit6is0} & & goto & hhbit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0000100 \\
\hline & & goto & ibit7is0 & \\
\hline \multirow{3}{*}{ebit6is 1} & & goto & ibit7is 1 & \\
\hline & & btfss & alpha, 7 & ;x1000100 \\
\hline & & goto & iibit7is0 & \\
\hline \multirow{3}{*}{eebit6is0} & & goto & iibit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0100100 \\
\hline & & goto & jbit7is0 & \\
\hline \multirow{3}{*}{eebit6is1} & & goto & jbit7is1 & \\
\hline & & btfss & alpha 7 & ;x1100100 \\
\hline & & goto & jibit7is0 & \\
\hline \multirow{3}{*}{fbit6is0} & & goto & jibit7is1 & \\
\hline & & btfss & alpha, 7 & ;x0010100 \\
\hline & & goto & kbit7is0 & \\
\hline \multirow{3}{*}{fbitbis 1} & & goto & kbit7is 1 & \\
\hline & & btfss & alpha, 7 & ; \(\times 1010100\) \\
\hline & & goto & kkbit7is0 & \\
\hline \multirow{3}{*}{ffbit6is0} & & goto & kkbit7is 1 & \\
\hline & & btfs & alpha, 7 & ;x0110100 \\
\hline & & goto & Ibit7is0 & \\
\hline \multirow{3}{*}{ffbit6is 1} & & goto & lbit7is1 & \\
\hline & & btfss & alpha, 7 & ;x1110100 \\
\hline & & goto & \(116 i t 7\) is0 & \\
\hline \multirow{3}{*}{gbit6is0} & & goto & \(1 \mathrm{lbit7}\) is 1 & \\
\hline & & btfs & alpha, 7 & ;x0001100 \\
\hline & & goto & mbit7is0 & \\
\hline \multirow{3}{*}{gbit6is 1} & & goto & mbit7is1 & \\
\hline & & btfss & alpha, 7 & ; \(\mathbf{1 0 0 1 1 0 0}\) \\
\hline & & goto & mmbit7is0 & \\
\hline \multirow{3}{*}{ggbit6is0} & & goto & mmbit7is 1 & \\
\hline & & bsf & pclath, 3 & \\
\hline & & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{ggbit6is1} & & btfss & alpha, 7 & ;x0101100 \\
\hline & & goto & nbit7is0 & \\
\hline & & goto & nbit7is 1 & \\
\hline & & bsf & pclath,3 & \\
\hline & & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{hbit6is0} & & btfss & alpha, 7 & ;x1101100 \\
\hline & & goto & nnbit7is0 & \\
\hline & & goto & nnbit7is1 & \\
\hline & & bsf & pclath, 3 & \\
\hline & & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{hbit6is 1} & & btfs & alpha, 7 & ;x0011100 \\
\hline & & goto & obit7is0 & \\
\hline & & goto & obit7is 1 & \\
\hline & & bsf & pclath, 3 & \\
\hline & & bsf & pclath, 4 & \\
\hline & & btfss
goto & alpha, 7
cobit7is0 & ; \(\times 1011100\) \\
\hline
\end{tabular}

Appendices
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{hhbit6is0} & goto & oobit 7 is 1 & \multirow{6}{*}{;x0111100} \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & \\
\hline & goto & pbit7is0 & \\
\hline \multirow{5}{*}{hhbit6is1} & goto & pbitisl & \\
\hline & bsf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1111100 \\
\hline & goto & ppbit7is0 & \\
\hline \multirow{6}{*}{ibit6is0} & goto & ppbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0000010 \\
\hline & goto & qbit7is0 & \\
\hline & goto & qbit7is 1 & \\
\hline \multirow[t]{5}{*}{ibit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline & btfss & alpha, 7 & ;x1000010 \\
\hline & goto & qqbit7is0 & \\
\hline & goto & qqbit7is1 & \\
\hline \multirow[t]{5}{*}{iibit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0100010 \\
\hline & goto & rbit7is0 & \\
\hline & goto & roit7is1 & \\
\hline \multirow[t]{5}{*}{iibit6is1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1100010 \\
\hline & goto & rrbit 7 is0 & \\
\hline & goto & rrbit7is 1 & \\
\hline \multirow[t]{5}{*}{jbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & bffss & alpha, 7 & ;x0010010 \\
\hline & goto & sbit7is0 & \\
\hline & goto & sbit7is1 & \\
\hline \multirow[t]{5}{*}{jbit6is1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1010010 \\
\hline & goto & ssbit7is0 & \\
\hline & goto & ssbittis 1 & \\
\hline \multirow[t]{5}{*}{jibit6is0} & bsf & pelath,3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0110010 \\
\hline & goto & tbit7is0 & \\
\hline & goto & tbit7is1 & \\
\hline \multirow[t]{5}{*}{jibit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x1110010 \\
\hline & goto & ttbit7is0 & \\
\hline & goto & ttbit7is1 & \\
\hline \multirow[t]{5}{*}{kbit6is0} & bsf & pelath, 3 & \\
\hline & bsf & pclath,4 & \\
\hline & btfss & alpha, 7 & ;x0001010 \\
\hline & goto & ubit7is0 & \\
\hline & goto & ubit7isl & \\
\hline \multirow[t]{5}{*}{kbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ; \(\times 1001010\) \\
\hline & goto & uubit7is0 & \\
\hline & goto & uubit 7 is 1 & \\
\hline \multirow[t]{5}{*}{kkbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0101010 \\
\hline & goto & vbit7is0 & \\
\hline & goto & vbit7is1 & \\
\hline \multirow[t]{5}{*}{kkbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ; \(\times 1101010\) \\
\hline & goto & wvintis0 & \\
\hline & goto & vbit7is1 & \\
\hline \multirow[t]{5}{*}{1bit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & bfss & alpha, 7 & ;x0011010 \\
\hline & goto & wbit7is0 & \\
\hline & goto & wbit7is 1 & \\
\hline \multirow[t]{5}{*}{lbit6is1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ; \(\times 1011010\) \\
\hline & goto & wwbit7is0 & \\
\hline & goto & wwbit7is1 & \\
\hline \multirow[t]{5}{*}{1lbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 7 & ;0111010 \\
\hline & goto & xbit7is0 & \\
\hline & goto & xbit7is 1 & \\
\hline \multirow[t]{5}{*}{libit6is1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x111010 \\
\hline & goto & xxbit7is0 & \\
\hline & goto & xxbit7is 1 & \\
\hline \multirow[t]{5}{*}{mbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0000110 \\
\hline & goto & ybit7is0 & \\
\hline & goto & ybit7is1 & \\
\hline \multirow[t]{4}{*}{mbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ; \(\times 1000110\) \\
\hline & goto
goto & yybit7is0
yybitis1 & \\
\hline
\end{tabular}

Appendices
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{mmbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha 7 & ;x0100110 \\
\hline & goto & zbit7is0 & \\
\hline & goto & zbit7is1 & \\
\hline \multirow[t]{5}{*}{mmbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1100110 \\
\hline & goto & zzbit7is0 & \\
\hline & goto & zzbit7is1 & \\
\hline \multirow[t]{5}{*}{nbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0010110 \\
\hline & goto & fdabit7is0 & \\
\hline & goto & fdabit7is1 & \\
\hline \multirow[t]{5}{*}{nbir6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1010110 \\
\hline & goto & fdaabit7is0 & \\
\hline & goto & fdaabit7is 1 & \\
\hline \multirow[t]{5}{*}{nobit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha 7 & ;x0110110 \\
\hline & goto & fdbbit7is0 & \\
\hline & goto & fdbbit7isl & \\
\hline \multirow[t]{5}{*}{nnbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1110110 \\
\hline & goto & fdbbbit7is0 & \\
\hline & goto & fdbbbit7is1 & \\
\hline \multirow[t]{5}{*}{obit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0001110 \\
\hline & goto & fdcbit7is0 & \\
\hline & goto & fdcbit7is & \\
\hline \multirow[t]{5}{*}{obit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfss & alpha, 7 & ;x1001110 \\
\hline & goto & fdccbit7is0 & \\
\hline & goto & fdecbit7is 1 & \\
\hline \multirow[t]{5}{*}{aobit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0101110 \\
\hline & goto & fddbitis0 & \\
\hline & goto & fddbitis 1 & \\
\hline \multirow[t]{5}{*}{oobit6isl} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x1101110 \\
\hline & goto & fdddbit7is0 & \\
\hline & goto & fdddbit 7 is 1 & \\
\hline \multirow[t]{5}{*}{pbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0011110 \\
\hline & goto & fdebit7is0 & \\
\hline & goto & fdebit7is1 & \\
\hline \multirow[t]{5}{*}{pbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1011110 \\
\hline & goto & fdeebit7is0 & \\
\hline & goto & fdeebit7is 1 & \\
\hline \multirow[t]{5}{*}{ppbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha 7 & ;x0111110 \\
\hline & goto & fdfbit7is0 & \\
\hline & goto & fdfbit 7 is 1 & \\
\hline \multirow[t]{5}{*}{ppbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1111110 \\
\hline & goto & fdffititis0 & \\
\hline & goto & fdffbit7is1 & \\
\hline \multirow[t]{5}{*}{qbit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0000001 \\
\hline & goto & fdgbit7is0 & \\
\hline & goto & fdgbit7is & \\
\hline \multirow[t]{5}{*}{qbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x1000001 \\
\hline & goto & fdgebit 7 is0 & \\
\hline & goto & fdggbit7is 1 & \\
\hline \multirow[t]{5}{*}{qqbit6is0} & bsf & pclath,3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & appha, 7 & ;x0100001 \\
\hline & goto & fdhbit7is0 & \\
\hline & goto & fdhbitisis & \\
\hline \multirow[t]{5}{*}{qqbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1100001 \\
\hline & goto & fdhhbit 7 is0 & \\
\hline & goto & fdhhbitis1 & \\
\hline \multirow[t]{5}{*}{roit6is0} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0010001 \\
\hline & goto & fdibit7is0 & \\
\hline & goto & fdibit7is1 & \\
\hline \multirow[t]{4}{*}{rbit6is 1} & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x1010001 \\
\hline & goto & fdiibit7is0 & \\
\hline mbit6is0 & \[
\begin{aligned}
& \text { goto } \\
& \text { bsf }
\end{aligned}
\] & fdibit 7 is 1 pclath,3 & \\
\hline
\end{tabular}

Appendices
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{mbit6is 1} & bsf btfss & \begin{tabular}{l}
pclath, 4 \\
alpha, 7
\end{tabular} & ;x0110001 \\
\hline & goto & fdjbit 7 is0 & \\
\hline & goto & fdjbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{sbit6is0} & btfs & alpha, 7 & ;x1110001 \\
\hline & goto & fdjjbit7is0 & \\
\hline & goto & fdjibit7is & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0001001 \\
\hline \multirow{5}{*}{sbit6is1} & goto & fdkbit7is0 & \\
\hline & goto & fdkbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ; \(\times 1001001\) \\
\hline \multirow{4}{*}{ssbit6is0} & goto & fdkkbit7is0 & \\
\hline & goto & fdkkbit 7 is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{ssbit6is 1} & bffs & alpha, 7 & ;0101001 \\
\hline & goto & fdibitis0 & \\
\hline & goto & fdibitis 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{tbit6is0} & btfs & alpha, 7 & ;x1101001 \\
\hline & goto & fdllbit 7 iso & \\
\hline & goto & fdilbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{tbit6is 1} & bffs & alpha 7 & ;0011001 \\
\hline & goto & fdmbit7is0 & \\
\hline & goto & fdmbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{ttbit6is0} & btfs & alpha 7 & ;x1011001 \\
\hline & goto & fdmmbit7is0 & \\
\hline & goto & fdmmbitis 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0111001 \\
\hline \multirow{5}{*}{ttbit6is 1} & goto & fdnbit7is0 & \\
\hline & goto & fdnbithis 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;1111001 \\
\hline \multirow{5}{*}{ubit6is0} & goto & fdnnbit7is0 & \\
\hline & goto & fdnnbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;x0000101 \\
\hline \multirow{5}{*}{ubit6is \({ }^{\text {l }}\)} & goto & fdobit7is0 & \\
\hline & goto & fdobit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 7 & ;x1000101 \\
\hline \multirow{4}{*}{uubit6is0} & goto & fdoobit7is0 & \\
\hline & goto & fdoobit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline \multirow{6}{*}{uubit6is 1} & btfs & alpha, 7 & ;x0100101 \\
\hline & goto & fdpbit7is0 & \\
\hline & goto & fdpbitisi & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfs & alpha, 7 & ;1100101 \\
\hline \multirow{4}{*}{vbit6is0} & goto & fdppbit7is0 & \\
\hline & goto & fdppbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{vbit6is 1} & btfs & alpha, 7 & ;0010101 \\
\hline & goto & fdqbitis0 & \\
\hline & goto & fdqbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{vvbit6is0} & btfs & alpha, 7 & ;x1010101 \\
\hline & goto & fdqqbit7is0 & \\
\hline & goto & fdqqbit 7 is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{vvbit6is1} & btfs & alpha, 7 & ;0110101 \\
\hline & goto & fdrbit7is0 & \\
\hline & goto & fdrbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{wbit6is0} & btfs & alpha, 7 & ;x1110101 \\
\hline & goto & fdrmitis0 & \\
\hline & goto & fdrrbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{wbit6is 1} & btfs & alpha, 7 & ;0001101 \\
\hline & goto & fdsbit7is0 & \\
\hline & goto & fdsbitis 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow[b]{4}{*}{wwbit6is0} & btfs & alpha, 7 & ;x1001101 \\
\hline & goto & fdssbitis0 & \\
\hline & goto & fdssbit 7 is 1 & \\
\hline & bsf & pclath, 3 pclath, 4 & \\
\hline
\end{tabular}

Appendices
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{wwbit6is 1} & btfss & alpha 7 & ;0101101 \\
\hline & goto & fdibit7is0 & \\
\hline & goto & fdtbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{xbit6is0} & btfs & alpha, 7 & ;x1101101 \\
\hline & goto & fdttbit7is0 & \\
\hline & goto & fdttbit7is & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{xbit6is 1} & btfs & alpha, 7 & ;x0011101 \\
\hline & goto & fdubitis0 & \\
\hline & goto & fdubitis & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline \multirow{6}{*}{xxbit6is0} & btfss & alpha, 7 & ;x1011101 \\
\hline & goto & fduubit7is0 & \\
\hline & goto & fduubit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0111101 \\
\hline \multirow{5}{*}{xxbit6is 1} & goto & fdvbit7is0 & \\
\hline & goto & fdvbitis 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1111101 \\
\hline \multirow{4}{*}{ybit6is0} & goto & fdvvbit7is0 & \\
\hline & goto & fdvvbit7is1 & \\
\hline & bsf & pelath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{ybit6is 1} & btfs & alpha, 7 & ;x0000011 \\
\hline & goto & fdwbit7is0 & \\
\hline & goto & fdwbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfs & alpha, 7 & ;x1000011 \\
\hline \multirow{5}{*}{yybit6is0} & goto & fdwwbit7is0 & \\
\hline & goto & fdwwbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline & btfss & alpha, 7 & ;x0100011 \\
\hline \multirow{5}{*}{yybit6is 1} & goto & fdxbit7is0 & \\
\hline & goto & fdxbitis 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1100011 \\
\hline \multirow{5}{*}{zbit6is0} & goto & fdxxbit7is0 & \\
\hline & goto & fdxxbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0010011 \\
\hline \multirow{5}{*}{zbit6is 1} & goto & fdybit7is0 & \\
\hline & goto & fdybit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1010011 \\
\hline \multirow{4}{*}{zzbittis0} & goto & fdyybit7is0 & \\
\hline & goto & fdyybit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{zzbit6is 1} & btfss & alpha, 7 & ;x0110011 \\
\hline & goto & fdzbit7is0 & \\
\hline & goto & fdzbit7is1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline \multirow{5}{*}{daabit6is0} & btfs & alpha, 7 & ;x1110011 \\
\hline & goto & fdzzbit7is0 & \\
\hline & goto & fdzzbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{daabit6is 1} & btfs & alpha, 7 & ;x0001011 \\
\hline & goto & gfabit7is0 & \\
\hline & goto & gabit 7 is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{6}{*}{daaabit6is0} & btfss & alpha, 7 & ;x1001011 \\
\hline & goto & gfabit 7 is0 & \\
\hline & goto & gfabit 7 is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x0101011 \\
\hline \multirow{5}{*}{daaabit6is 1} & goto & gfbbit7is0 & \\
\hline & goto & gftbit7is] & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline & btfss & alpha, 7 & ;x1101011 \\
\hline \multirow{4}{*}{dabbittis0} & goto & gfbbbit7is0 & \\
\hline & goto & gfbbbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pclath, 4 & \\
\hline \multirow{5}{*}{dabbit6is 1} & btfss & alpha, 7 & ;x0011011 \\
\hline & goto & gfcbit7is0 & \\
\hline & goto & gfcbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf & pelath, 4 & \\
\hline \multirow{5}{*}{dabbbit6is0} & btfss & alpha, 7 & ;x1011011 \\
\hline & goto & gfccbit7is0 & \\
\hline & goto & gfccbit7is 1 & \\
\hline & bsf & pclath, 3 & \\
\hline & bsf
btfss & pclath, 4 alpha, 7 & ;x0111011 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{5}{*}{dabbbitisis 1} & goto & gdabitis0 & \multirow{7}{*}{;x111011} & \\
\hline & goto & gfdbitis 1 & & \\
\hline & bsf & pclath, 3 & & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{dacbit6is0} & goto & gfddbit7is0 & & \\
\hline & goto & gfddbit7is 1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;0000111} & \\
\hline & bsf & pclath,4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{4}{*}{dacbit6is 1} & goto & gfebit 7 is0 & & \\
\hline & goto & gfebit7is 1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{; \(\times 1000111\)} & \\
\hline & bsf & pclath, 4 & & \\
\hline \multirow{6}{*}{daccbit6is0} & bffss & alpha, 7 & & \\
\hline & goto & gfeebit7is0 & & \\
\hline & goto & gfeebit7is 1 & & \\
\hline & bsf & pclath, 3 & \multirow{4}{*}{;00100111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{daccbit6is 1} & goto & gffbitis0 & & \\
\hline & goto & gffiitis1 & \multirow{6}{*}{; \(\times 1100111\)} & \\
\hline & bsf & pclath, 3 & & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{4}{*}{dadbit6is0} & goto & gfffbitis0 & & \\
\hline & goto & gfffbit7is 1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;x0010111} & \\
\hline & bsf & pclath, 4 & & \\
\hline \multirow{6}{*}{dadbit6is 1} & btfs & alpha, 7 & & \\
\hline & goto & gfgbit 7 is 0 & & \\
\hline & goto & gfgbitis 1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;x101011} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfs & alpha, 7 & & \\
\hline \multirow{5}{*}{daddbit6is0} & goto & gfggbit7is0 & & \\
\hline & goto & gfggbit 7 is 1 & & \\
\hline & bsf & pclath, 3 & \multirow{4}{*}{;x0110111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{daddbit6is 1} & goto & gfhbit7is0 & & \\
\hline & goto & gfhbitis & \multirow{6}{*}{;x1110111} & \\
\hline & bsf & pclath, 3 & & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{daebit6is0} & goto & gfhhbit7is0 & & \\
\hline & goto & gfhbbit7is1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;x0001111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & bffs & alpha, 7 & & \\
\hline \multirow{5}{*}{daebit6is 1} & goto & gribit7is0 & & \\
\hline & goto & gribit7is1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;1001111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{daeebit6is0} & goto & gfribit7is0 & & \\
\hline & goto & gfiibit7is1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;x0101111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{daeebit6is 1} & goto & gfibitis0 & & \\
\hline & goto & gfjbit7is1 & & \\
\hline & bsf & pclath, 3 & \multirow{5}{*}{;x1101111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{dafbit6is0} & goto & gfijbit7is0 & & \\
\hline & goto & gfjibit7isl & & \\
\hline & bsf & pclath, 3 & \multirow{4}{*}{;00011111} & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline \multirow{5}{*}{dafbit6is 1} & goto & gfkit7is0 & & \\
\hline & goto & gfkbit7is 1 & \multirow{6}{*}{;x1011111} & \\
\hline & bsf & pclath, 3 & & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha 7 & & \\
\hline \multirow{4}{*}{daffbit6is0} & goto & gfkłbit7 7 is & & \\
\hline & goto & gfkkbit7is1 & & \\
\hline & bsf & pclath, 3 & \multirow{4}{*}{;x0111111} & \\
\hline & bsf & pclath, 4 & & \\
\hline \multirow{8}{*}{daffbit6is 1} & btfss & alpha, 7 & & \\
\hline & goto & gflbit 7 is0 & & \\
\hline & goto & gflbit7is1 & \multirow{6}{*}{;1111111} & \\
\hline & bsf & pclath, 3 & & \\
\hline & bsf & pclath, 4 & & \\
\hline & btfss & alpha, 7 & & \\
\hline & goto & gfllbit7is0 & & \\
\hline & goto & gflibitis 1 & & \\
\hline \multirow[t]{7}{*}{abit7is0} & & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & :00000000 000 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00111101' & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00100001{ }^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{4}{*}{abit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10000000 128 & 1st \\
\hline & movwf & decent4 & \multirow[t]{3}{*}{;decimal value in ;decimal value in} & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2 nd \\
\hline & \({ }_{\text {mover }}\) & deccents
b'00111000 & & 3rd \\
\hline
\end{tabular}

\section*{Reluctance Machines with Flux Assistance}


Appendices


Appendices

Reluctance Machines with Flux Assistance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{hhbit7is1} & \begin{tabular}{l}
moviw \\
movwf \\
goto \\
bcf \\
bsf
\end{tabular} & b'001 \(^{\prime} 0000^{\prime}\) decent6 showit3 pclath, 3 pclath, 4 & ;decimal value in & 3rd \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010{ }^{\prime}\) & ;11111000 248 & 1st \\
\hline & movwf & decent4 \({ }^{\text {b }}\) (00110100 & ,decimal value in & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movtw & \(\mathrm{b}^{\prime} 00111000^{\prime}\) & & 3rd \\
\hline & movwf goto & decent6 showit3 & ;decimal value in & \\
\hline \multirow[t]{7}{*}{ibit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00000100 4 & 1st \\
\hline & mowwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{6}{*}{ibit7is1} & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ; \(10000100{ }_{\text {dec }} 132\) & 1st \\
\hline & mownf & deccnt \({ }^{\text {a }}\) & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2 nd \\
\hline & movwf & deccent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110010\) & ; decimal value in & 3rd \\
\hline & goto & showit3 & ;decimal value in & \\
\hline \multirow[t]{7}{*}{iibit7is0} & moviw & b'00110000' & ;01000100 68 & Ist \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\circ}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & b'00111000' \(^{\prime}\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{6}{*}{iibit 7 is 1} & movlw & \({ }^{\prime} 00110001^{\prime}\) & ;11000100 196 & Ist \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & b'00111001' & & 2 n \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110110^{\circ}\) & & 3 rd \\
\hline & movwf & deccent6 & ;decimal value in & \\
\hline \multirow[t]{7}{*}{jbit7is0} & goto & showit \({ }^{\text {b }} 00110000{ }^{\text {a }}\) & ;00100100 36 & Ist \\
\hline & movwf & deccnt4 & ,decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011{ }^{\prime}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & b'001 10110' \(^{\prime}\) & & 3 rc \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{7}{*}{jbit7is1} & movlw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;10100100 164 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \({\text { b'001 } 10110^{\circ}}\) & & 2 n \\
\hline & mowwf & deccnts & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{7}{*}{jijbit7is0} & moviw & b'00110001' \(^{\prime}\) & ;01100100 100 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & b'00110000' & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{6}{*}{jjbit7is1} & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 1st \\
\hline & movwf
moviw & deccnt4
b'001 10010 & ;decimal value in & 2 nd \\
\hline & movwf & decent5 & ,decimal value in & \\
\hline & moviw & b'00111000' \(^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{7}{*}{kbit7is0} & moviw & b'00110000' & ;00010100 20 & Ist \\
\hline & movwf & decent4 & ,decimal value in & \\
\hline & moviw & b'001 \(^{\prime} 10010\) & & 2 nd \\
\hline & movwf & deccnt5 & ,decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{7}{*}{kbit7is 1} & movlw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;10010100 \({ }^{148}\) & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011010{ }^{\circ}\) & & 2 nd \\
\hline & movwf & deccnts & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{7}{*}{kkbit7is0} & \[
\begin{aligned}
& \text { bcf } \\
& \text { bsf }
\end{aligned}
\] & pclath, 3 pclath, 4 & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;01010100 84 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 0011100{ }^{\circ}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011010{ }^{\circ}\) & & 3 3rd \\
\hline & movwf goto & decent6 showit3 & ;decimal value in & \\
\hline \multirow[t]{7}{*}{kkbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11010100 212 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit3 & & \\
\hline \multirow[t]{2}{*}{lbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00110100 52 & 1st \\
\hline & movwf & \({ }^{\text {decent4 }}\) b'00110101' & ;decimal value in & 2 nd \\
\hline
\end{tabular}

\section*{Reluctance Machines with Flux Assistance}


Reluctance Machines with Flux Assistance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{oobit7is0} & moviw & b'00110000
deccnt4 &  & 1st \\
\hline & movwf movlw & decent4 \(b^{\prime} 00111001^{\prime}\) & ;decimal value i & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{oobit7is 1} & moviw & b'00110010' \(^{\prime}\) & ;11011100 220 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & b'00110000' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{pbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00111100 60 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & b'00110000' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{pbitis 1} & movlw & b'00110001' & ;10111100 188 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00111000' \(^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ; decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111000^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{ppbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;01111100 124 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{ppbit7is1} & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11111100 252 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110101' \(^{\prime}\) & & 2nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{qbit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & \(; 00000010 \quad 2\) & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & b'00110010' \(^{\prime}\) & & 3 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{qbit 7 is 1} & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;10000010 130 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2nd \\
\hline & mowwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{qqbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;01000010 66 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2nd \\
\hline & movwf & deccnts & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{qqbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;11000010 194 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(b^{\prime} 00111001^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 3 3rd \\
\hline & movwf & deccnt6 showit & ;decimal value in & \\
\hline \multirow[t]{7}{*}{rbit7is0} & goto
moviw & showit
\(\mathrm{b}^{\prime} 000110000{ }^{\circ}\) & ;00100010 34 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto movlw & showit \({ }^{\text {b'001 }} 10001\) ' & ;10100010 162 & 1st \\
\hline \multirow[t]{6}{*}{rit7is1} & mowwf & decent4 & ;decimal value in & 1 st \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\circ}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & \({ }_{\text {moto }}^{\text {goviw }}\) & showit \({ }^{\text {a }}\) & & Ist \\
\hline \multirow[t]{6}{*}{rriti 7 is0} & movwf & decent4 & ;decimal value in & 1 st \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111001\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \({ }^{\prime} 000111000{ }^{\circ}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{nbit7is 1} & moviw & b'001 \(^{\prime} 0010^{\prime}\) & ;1100010 226 & 1st \\
\hline & \({ }_{\text {mover }}^{\text {moviw }}\) & \({ }^{\text {deccnta }}\) b'00110010' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{2}{*}{sbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00010010 18 & 1st \\
\hline & movwf moviw & decent4
\[
b^{\prime} 00110001^{\prime}
\] & ;decimal value in & 2nd \\
\hline
\end{tabular}

Reluctance Machines with Flux Assistance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{7}{*}{sbit7is 1} & mowwf & deccnt5 & ;ecimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111000{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & movlw & b'001 \(10001 '^{\prime}\) & ;10010010 146 & 1st \\
\hline & mowwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011010{ }^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{ssbit7is0} & moviw & b'00110110' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & b'001 10000' & ;01010010 82 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{ssbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & b'00110010' & ;11010010 210 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{6}{*}{tbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00110010 50 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110101\) & & 2nd \\
\hline \multirow{8}{*}{tbit7is1} & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \({ }^{\text {'000 }} 10000^{\circ}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & b'00110001' & ;10110010 178 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110111^{\prime}\) & & 2 nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline \multirow{7}{*}{tubit7is0} & movlw & \(\mathrm{b}^{\prime} 00111000\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & b'001 \(10001 ' ~_{\text {' }}\) & ;01110010 114 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{ttbit7isl} & moviw & b'001 10100' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11110010 242 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{ubit7is0} & moviw & \(\mathrm{b}^{\prime} 0011001{ }^{\circ}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00001010 10 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{ubit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10001010 138 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00110011' & & 2nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline \multirow{7}{*}{uubit7is0} & moviw & b'00111000' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;01001010 74 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110111^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{uubit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11001010 202 & 1st \\
\hline & movwf & deccent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{vbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00101010 42 & 1 st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 2nd \\
\hline & movwf & deccent & ;decimal value in & \\
\hline \multirow{5}{*}{vbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10101010 170 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline \multirow{10}{*}{vvbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110111{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;01101010 106 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 2nd \\
\hline & mownf & deccnt5 & ;decimal value in & \\
\hline & \({ }_{\text {moviw }}^{\text {movwf }}\) & decent6 & ;decimal value in & 3rd \\
\hline
\end{tabular}

Reluctance Machines with Flux Assistance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{8}{*}{vvit7is1} & goto & showit & & \\
\hline & movlw & b'001 10010 & ;11101010 234 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110011{ }^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & b'001 10100' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{wbit7is0} & moviw & b'001 \(10000^{\prime}\) & ;00011010 26 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2 nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline & moviw & b'001 \(^{\prime} 0110^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{wbit7is1} & moviw & b'00110001' & ;10011010 154 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110101^{\prime}\) & & 2nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{wwbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;01011010 90 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00111001' \(^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{wwbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11011010 218 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111000{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{xbit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00111010 58 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 0011010 \mathrm{I}^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & b'00111000' \(^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{xbit7is 1} & movlw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ; 10111010186 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111000{ }^{\text {a }}\) & & 2nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\text {'0001 }} 10110^{\prime}\) & & 3rd \\
\hline & movwf & decent6 showit & ;decimal value in & \\
\hline \multirow[t]{7}{*}{xxbit7is0} & moviw & b'001 10001 & ;01111010 122 & ist \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{xxbit7is1} & movlw & b'001 10010' & ;11111010 250 & 1st \\
\hline & mowwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110101^{\prime}\) & & 2nd \\
\hline & moviw &  & ;decimal value in & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{ybit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00000110 6 & 1 st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\circ}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline \multirow[t]{6}{*}{ybit7is 1} & movlw & \({ }^{\text {showit }}\) beolloe01' & ;10000110 134 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline \multirow[t]{6}{*}{yybit7is0} & movlw & b'001 \(^{\text {coneor }}\) & ;01000110 70 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & modw & \(\mathrm{b}^{\prime} 00110111^{\prime \prime}\) & & 2nd \\
\hline & mowwf & deccnts & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 3rd \\
\hline & movwf & decent6 showit & ;decimal value in & \\
\hline \multirow[t]{6}{*}{yybit7is1} & movlw & \(\mathrm{b}^{\prime} 00110001\) & ;11000110 198 & 1 st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111001\) & & 2nd \\
\hline & mowwf & deccnts & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000{ }^{\circ}\) & & rd \\
\hline & movwf & decent6 showit & ;decimal value in & \\
\hline \multirow[t]{6}{*}{\({ }^{2}\) bit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00100110 38 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'001 \(10011^{\prime}\) & & nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111000^{\prime}\) & & rd \\
\hline & movwf goto & decent6 showit & ;decimal value in & \\
\hline zbit7is1 & moviw movwf & \[
\text { b'001 } 10001
\]
\[
\text { decent } 4
\] & \[
; 10100110 \quad 166
\]
;decimal value in & 1st \\
\hline
\end{tabular}

Appendices

\section*{Reluctance Machines with Flux Assistance}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{6}{*}{fddbit7is0} & movwf goto & decent6 showit & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00101110 46 & 1st \\
\hline & movwf & decent4 b'00110100' & ;decimal value in & 2 nd \\
\hline & movwf & decent5 & ;'decimal value in & \\
\hline & moviw & b'00110110' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline \multirow[t]{7}{*}{fddbit7is1} & goto & \({ }_{\text {showit }}\) b'00110001, & & \\
\hline & movwf & decent 4 & ;10101110 174 decimal value in & 1 st \\
\hline & moviw & b'00110111' & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & b'00110100' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdddbit7is0} & moviw & b'00110001' & ;01101110 110 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110001' & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & b'00110000' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdddbit7is 1} & moviw & b'00110010' & ;11101110 238 & 1 st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110011' & & 2 nd \\
\hline & movwf & deccnts & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdebit7is0} & moviw & \(\mathrm{b}^{\prime} 001110000{ }^{\prime}\) & ;00011110 30 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110011' & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & b'00110000' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdebit7is1} & movlw movwf & \[
\begin{aligned}
& \mathrm{b}^{\text {'0001 } 10001^{\prime}}{ }^{\text {deccnt4 }}
\end{aligned}
\] & \[
\begin{aligned}
& \text {; } 10011110 \quad 158 \\
& \text {;decimal value in }
\end{aligned}
\] & 1st \\
\hline & moviw & b'00110101' & & 2nd \\
\hline & movwf & deccnts & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000{ }^{\prime}\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdeebit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;01011110 94 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & b'00111001' & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & & & \\
\hline \multirow[t]{6}{*}{fdeebit7is1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11011110 222 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110010' & & 2 nd \\
\hline & moviw & \({ }^{\text {decent }}\) '00110010' & ;decimal value in & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fafbitis0} & moviw & \(\mathrm{b}^{\prime} 001110000^{\prime}\) & :00111110 62 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011011{ }^{\prime}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline \multirow[t]{6}{*}{fdfbitis 1} & moto & b'00110001' \(^{\prime}\) & ;10111110 190 & 1st \\
\hline & mowwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00111001' & & 2nd \\
\hline & movwf & deccent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 001110000\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline \multirow[t]{6}{*}{fdfbit7is0} & movlw & b'00110001' & ;01111110 126 & 1st \\
\hline & movwf & deccnt4 & ; decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 001110010^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011011{ }^{\prime}\) & & 3 rd \\
\hline & movwf goto & deccnt6 showit & ;decimal value in & \\
\hline \multirow[t]{6}{*}{fdfbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;00111100 254 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\text {b }}\) dectil10101' & -decimal value in & 2 nd \\
\hline & movw &  & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{5}{*}{fdgbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00000001 \({ }^{\text {decimal }}\) value in & 1st \\
\hline & movwf & \({ }^{\text {deccnt4 }}\) & ;decimal value in & 2 nd \\
\hline & mowwf & decent5 & 'decimal value in & 2 nd \\
\hline & moviw & b'00110001' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline \multirow[t]{6}{*}{fdgbit7is1} & \({ }_{\text {goto }}^{\text {moviw }}\) & b'001 \(10001^{\prime}\) & ;10000001 129 & 1 st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'001 \(^{\text {10010 }}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal vatue in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111001^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline fdggbit7is0 & goto moviw & showit
b'00110000' & ;01000001 65 & 1st \\
\hline
\end{tabular}

Appendices

Reluctance Machines with Flux Assistance

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{5}{*}{fdkbit7is \({ }^{\text {l }}\)} & moviw mownf goto & \begin{tabular}{l}
b'00111001' \(^{\prime}\) \\
decent6 \\
showit
\end{tabular} & ;decimal value in & 3rd \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10001001 137 & 1st \\
\hline & movwf movlw & decent4 \(b^{\prime} 00110011^{\prime}\) & ;decimal value in & 2 nd \\
\hline & movwf & deecnt5 & ;decimal value in & \\
\hline & moviw & b'00110111' & & 3 rd \\
\hline \multirow{5}{*}{fdkkbit7is0} & movwf goto & decent6 showit & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;01001001 73 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110111{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{6}{*}{fdkkbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110011{ }^{\prime}\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \[
b^{\prime} 00110010^{\prime}
\] & \[
; 11001001 \quad 201
\] & 1st \\
\hline & moviw & b'001 \(^{\text {co000' }}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{6}{*}{fdibit7is0} & moviw & b'001 \(10001 '^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto
movlw & showit
b'00110000' & .00101001 41 & 1st \\
\hline & movwf & decent4 & decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110100\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;10101001 169 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2nd \\
\hline & movwf & deccont5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdlbit7is0} & moviw & \(\mathrm{b}^{\prime} 00111001\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;01101001 105 & 1 st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & & 2 nd \\
\hline & mowwf & deccnts & ;decimal value in & \\
\hline \multirow{7}{*}{fdllbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110101{ }^{\prime}\) & & 3 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11101001 233 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw &  & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{6}{*}{fdmbit7is0} & moviw & \(\mathrm{b}^{\prime} 0011001{ }^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto &  & & \\
\hline & moviw & decent4 & ;00011001 25 & \(1 s t\) \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{6}{*}{fdmbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110101 \mathrm{l}\) & & 3rd \\
\hline & mowwf & deccnt6 & ;decimal value in & \\
\hline & goto
moviw & \({ }^{\text {showit }}\) be0110001' & ;10011001 153 & 1st \\
\hline & mowwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011010{ }^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{6}{*}{fdmmbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\circ}\) &  & 1st \\
\hline & movlw & b'001 \(^{\text {c }} 11000{ }^{\text {a }}\) & & 2nd \\
\hline & movwf & deccnts & ;decimal value in & \\
\hline \multirow{5}{*}{fdmmbit7is 1} & movlw & \(\mathrm{b}^{\prime} 00111001\) ' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw movwf & b'001 10010' decent4 & \[
\begin{aligned}
& \text {;11011001 } 217 \\
& \text {;decimal value in }
\end{aligned}
\] & 1st \\
\hline & moviw & b'00110001' \(^{\prime}\) & & 2nd \\
\hline \multirow{7}{*}{fdnbit7is0} & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110111{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\circ}\) & & 1st \\
\hline & movwf &  & ;decimal value in & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{5}{*}{fdnbit7is1} & movlw & b'00110111' \(^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10111001 185 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline \multirow{11}{*}{fdnnbit 7 is0} & moviw & \(\mathrm{b}^{\prime} 0011100{ }^{\circ}\) & & 2nd \\
\hline & movwf & deccnt5 & ,decimal value in & \\
\hline & moviw & b'001 \(^{\text {c }}\) (101' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit \({ }^{\text {a }}\) & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;01111001 121 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & & 3rd \\
\hline & \begin{tabular}{l}
movwf \\
goto
\end{tabular} & decent6 showit & ;decimal value in & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{fdnnbit7is 1} & movew & b'001 \(^{\prime} 10010^{\circ}\) & ;1111001 \({ }^{249}\) & 1st \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100\) & ;decimal value in & 2 nd \\
\hline & mownf & decent5 & 'decimal value in & \\
\hline & movlw & b'00111001' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdobitis0} & movlw & b'001 10000' & ;00000101 5 & 1 st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'001 10000' & & 2nd \\
\hline & movwf & deccnt5 & ,decimal value in & \\
\hline & moviw & b'00110101' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdobit7is1} & movlw & b'00110001' & ;10000101 133 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110011' \(^{\prime}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdoobit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;01000101 69 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00110110' \(^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & b'00111001' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline \multirow[t]{8}{*}{fdoobit7is1} & goto & & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;11000101 197 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00111001' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & b'00110111' & & 3rd \\
\hline & mowwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdpbit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00100101 37 & Ist \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 001110011^{\prime}\) & & 2 nd \\
\hline & movwf & deccnts & ,decimal value in & \\
\hline & moviw &  & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline \multirow[t]{7}{*}{fdpbit7is1} & movlw & \({ }^{\text {b }}\) '00110001 \({ }^{\text {a }}\) & & 1st \\
\hline & movwf & deccent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2 nd \\
\hline & mowwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110101^{\prime}\) & & 3 rd \\
\hline & mownf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdppbit7is0} & moviw & \(\mathrm{b}^{\prime} 0011000{ }^{\prime}\) & ;01100101 101 & 1st \\
\hline & mowwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & b'00110001' \(^{\prime}\) & & 3 rd \\
\hline & movwf goto & decent6 showit & ;decimal value in & \\
\hline \multirow[t]{7}{*}{fdppbit7is1} & movlw & b'00110010' \(^{\prime}\) & ;11100101 229 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \({\text { b'001 } 10010^{\prime}}^{\prime}\) & & 2 nd \\
\hline & movwf & deccnts & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 0011100{ }^{\prime}\) & & 3 d \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{fdqbit7is0} & moviw & b'001 10000 & ;00010101 21 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \({ }^{\prime} 00110001\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdqbit7is1} & moviw & \({ }^{\prime} 00110001^{\prime}\) & ;10010101 149 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100{ }^{\prime}\) & & 2nd \\
\hline & movwf & \({ }^{\text {deccnt5 }}\) & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\text {deocant }}\) (11001' & & 3 rd \\
\hline & \begin{tabular}{l}
movwf \\
goto
\end{tabular} & decent6 showit & ;decimal value in & \\
\hline \multirow[t]{6}{*}{fdqqbit7is0} & movlw & \(\mathrm{b}^{\prime} 001110000^{\circ}\) & ;01010101 85 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 0011100{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movwf & deccnt6 & ; decimal value in & 3rd \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdqqbit7is 1} & movlw & \(\mathrm{b}^{\prime} 00110010\) & ;11010101 213 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001\) ' & & 2 nd \\
\hline & movwf
moviw & deccnts \({ }_{\text {b'00110011 }}\) & ;decimal value in & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{fdrbit7is0} & movlw & b'001110000'
decent4 & \[
; 00110101 \quad 53
\] & 1st \\
\hline & moviw & \({ }^{\text {b'00110101 }}\) & & 2nd \\
\hline & movwf & deccont & ,decimal value in & \\
\hline & moviw & b'001 \(10011{ }^{\prime}\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{2}{*}{fdrbit 7 is 1} & movlw & \(\mathrm{b}^{\prime} 00110001\) ' & \(; 10110101181\) & 1st \\
\hline & movwf & deccent4
b'00111000' & ;decimal value in & 2nd \\
\hline
\end{tabular}

Appendices

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{5}{*}{fdvbit7is0} & goto & showit & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00111101 61 & 1st \\
\hline & movwf & deccnt4 \({ }^{\prime}\) & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdvbit7is1} & moviw & b'00110001' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001\) & ;10111101 189 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000^{\circ}\) & & 2 nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline \multirow{7}{*}{fdvwbit 7 is0} & moviw & b'00111001' \(^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & b'00110001' & ;01111101 125 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00110010' \(^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdvvit 7 is 1} & moviw & b'00110101' \(^{\prime}\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & b'00110010' \(^{\prime}\) & ;11111101 253 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110101^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdwbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00000011 3 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdwbit7is1} & movlw & b'00110011' & & 3rd \\
\hline & movwf & & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & b'001 10001' & ;10000011 131 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011001 \mathrm{l}^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdwwbit7is0} & moviw & b'001 10001' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;01000011 67 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdwwbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110111^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & ;11000011 195 & 1 st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111001\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdxbit7is0} & moviw & b'00110101' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00100011 35 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2nd \\
\hline & movwf & deccent5 & ;decimal value in & \\
\hline \multirow{6}{*}{fdxbit7is1} & movlw & \(\mathrm{b}^{\prime} 00110101 \mathrm{l}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto
moviw & \({ }^{\text {showit }}\) b 00110001 ' & ;10100011 163 & 1st \\
\hline & movwf & decent4 & ;decimal value in & Ist \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2nd \\
\hline & movwf & decents & ;decimal value in & \\
\hline \multirow{6}{*}{fdxxbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & \[
; 01100011 \quad 99
\] & 1st \\
\hline & movwf
movlw & \({ }^{\text {decent4 }}{ }^{\text {b }}\) '00111001 \({ }^{\prime}\) & & 2nd \\
\hline & mowwf & decent5 & ;decimal value in & \\
\hline \multirow{7}{*}{fdxxbit7is1} & moviw & \(\mathrm{b}^{\prime} 00111001^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & \({ }^{\text {b'000 }}\) deccnt 00010 & \[
\begin{aligned}
& \text {;11100011 } 227 \\
& \text {;decimal value in }
\end{aligned}
\] & 1st \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110111{ }^{\prime}\) & & 3rd \\
\hline \multirow{4}{*}{fdybit7is0} & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00010011 19 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline \multirow{11}{*}{fdybit7is 1} & moviw & \(\mathrm{b}^{\prime} 0011000{ }^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 0011100 \mathrm{I}^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;10010011 147 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110100{ }^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110111{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline \multirow[b]{2}{*}{fdyybit7is0} & goto & showit & & \\
\hline & moviw & \(b^{\prime} 00110000^{\prime}\) decent4 & \begin{tabular}{l}
;01010011 83 \\
;decimal value in
\end{tabular} & 1st \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{6}{*}{gfcbit7is1} & movwf goto & decent6 showit & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & :10011011 155 & 1st \\
\hline & movwf movlw & \begin{tabular}{l}
decent4 \\
b'00110101'
\end{tabular} & ;decimal value in & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110101\) ' & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline \multirow[t]{8}{*}{gfccbit7is0} & goto & showit \({ }^{\text {b }}\), 00110000 . & & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;01011011 91 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime 0} 0111001\) ' & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001\) ' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfccbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11011011 219 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & b'001 10001 ' & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111001\) ' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfdbit7is0} & moviw & b'001 10000' & ;00111011 59 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00110101' & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111001\) & & 3 rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfdbit7is1} & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10111011 187 & 1 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00111000{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110111^{\prime}\) & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfddbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110001\) & ;01111011 123 & 1st \\
\hline & movwf & deccent 4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & & 2 nd \\
\hline & mownf & decent5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfddbit7is 1} & movlw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11111011 251 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110101^{\prime}\) & & 2 nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & & 3rd \\
\hline & movwf & deccnto & ; decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfebit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & ;00000111 7 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\text {a }}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110111{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfebit7is1} & moviw & \(\mathrm{b}^{\prime} 0011000{ }^{\prime}\) & ;10000111 135 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110101{ }^{\prime}\) & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfeebit7is0} & movlw & \(\mathrm{b}^{\prime} 0011000{ }^{\prime}\) & ;01000111 71 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110111' \(^{\prime}\) & & 2 nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{gfeebit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110001\) ' & ;11000111 199 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 0011100 \mathrm{l}^{\prime}\) & & 2nd \\
\hline & movwf & \({ }^{\text {decents }}\) booll1001' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gffitisis0} & moviw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & \[
; 00100111 \quad 39
\] & 1 st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111001\) ' & & 3 rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{gffitisi} & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & \[
; 10100111 \quad 167
\] & 1st \\
\hline & movwf & deccnt4 \({ }^{\text {a }}\) & ;decimal value in & \\
\hline & moviw &  & ,decimal value in & 2nd \\
\hline & moviw & b'00110111' \(^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{6}{*}{gffibit \({ }^{\text {is }} 0\)} & moviw & \(\mathrm{b}^{\prime} 00110001^{\prime}\) & ;01100111 103 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110000{ }^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011{ }^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline gffibit7is 1 & goto movlw & showit
b'001 10010 & ;11100111 231 & 1st \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{8}{*}{gfjibit 7 is0} & moviw movwf goto & \begin{tabular}{l}
b'001 \(^{\prime} 10101^{\prime}\) \\
decent6 \\
showit
\end{tabular} & ;decimal value in & 3rd \\
\hline & moviw & b'001 10001' & ;01101111 111 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & b'00110001' & & 2nd \\
\hline & movwf & decent5 & ; decimal value in & \\
\hline & moviw & b'00110001' & & 3rd \\
\hline & movwf & decent6 & ; decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfjbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11101111 239 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111001\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfkbit7is0} & movlw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ;00011111 31 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110011^{\text {' }}\) & & 2nd \\
\hline & movwf & decent5 & ; decimal value in & \\
\hline & movlw & b'001 \(10001{ }^{\prime}\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfkbit7is 1} & moviw & \(\mathrm{b}^{\prime} 00110001{ }^{\prime}\) & ;10011111 159 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 0011010{ }^{\prime}\) & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111001\) & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfkkbit 7 is0} & moviw & b'001 10000' & ;01011111 95 & 1st \\
\hline & movwf & decent4 & ;decimal value in & \\
\hline & movlw & b'00111001' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & moviw & b'00110101' & & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gfkkbit 7 is 1} & moviw & \(\mathrm{b}^{\prime} 00110010^{\prime}\) & ;11011111 223 & 1st \\
\hline & mowwf & decent4 & ;decimal value in & \\
\hline & moviw & b'00110010' & & 2 nd \\
\hline & mownf & decent5 & ;decimal value in & \\
\hline & movlw & b'00110011' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gflbit7is0} & moviw & \(\mathrm{b}^{\prime} 00110000^{\prime}\) & ,00111111 63 & 1st \\
\hline & mowwf & deccnt4 & ;decimal value in & \\
\hline & moviw & \(\mathrm{b}^{\prime} 00110110^{\prime}\) & & 2nd \\
\hline & movwf & deccnt5 & ; decimal value in & \\
\hline & moviw & b'00110011' & , & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gflbit7is} & movlw & b'001 10001' & ;10111111 191 & 1st \\
\hline & mownf & deccnt4 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00111001\) ' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & b'00110001' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gflbit7is0} & moviw & b'00110001' & ;01111111 127 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & movlw & b'001 10010' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & b'00110111' & & 3rd \\
\hline & movwf & deccnt6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{7}{*}{gflbit7is1} & movlw & b'001 \(^{\prime} 0010^{\prime}\) & ;1111111 255 & 1st \\
\hline & movwf & deccnt4 & ;decimal value in & \\
\hline & moviw & b'00110101' & & 2nd \\
\hline & movwf & decent5 & ;decimal value in & \\
\hline & movlw & \(\mathrm{b}^{\prime} 00110101{ }^{\prime}\) & , & 3rd \\
\hline & movwf & decent6 & ;decimal value in & \\
\hline & goto & showit & & \\
\hline \multirow[t]{3}{*}{showit} & bcf & pclath, 3 & & \\
\hline & bcf & pclath, 4 & & \\
\hline & goto & showitl & ;PAGE0 & \\
\hline
\end{tabular}

\section*{APPENDIX E}

\section*{E. 1 SOLDERABLE SELF-BONDING ENAMEL (SALDAVEX AUTOVEX F)}
(as provided by Scientific Wire Company, London)

\section*{Applications}

Round copper wires used in wirings of electrical machines and electrical instruments.

\section*{Chemical and Physical Properties}
-Composition of resin modified polyurethane, polyamide, polyvinilbutiral (PVB), with self-bonding properties.
-Thermal class (IEC172) 155.
- Softening temperature of bonding layer \(160-190^{\circ} \mathrm{C}\).

\section*{Storage and Handling}
-Special transport precautions - none.
-Special storage precautions - none.
-Personal protection measures - none.

Inflammability and Explosion Danger
-Not inflammable without primer.
-With primer it is inflammable at temperatures over \(400^{\circ} \mathrm{C}\).
-It is immediately auto-extinguishing.
-It is not explosive.

\section*{Toxicological Data}

Hazardous fumes or dust may be generated when soldering, welding, hot staking, burning, wire brushing, melting, or processing magnet wires. Excessive exposure to dust may cause irritation to the eyes, skin, and/or respiratory systems. Wear proper protective eye, skin and breathing equipment. Avoid breathing fumes.

During the curing of AUTOVEX wire, some fumes are produced. These are made by the wire surface lubrication (wax and paraffin) and by the residue of AUTOVEX resin solvents (aromatic hydrocarbon, etilglycole).
These fumes are less than \(0.01 \%\) of the mass. It is better to evacuate these solvents fumes by a cowl on the bonding place.
In case of total destruction for fire (for example by a persisting flame at approximately \(700^{\circ} \mathrm{C}\) ), before self-extinguishing, the product will exale \(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}\) steam and will leave a carbon residue.

Round wires are lubricated using a minimum quantity of wax materials of \(\max 75 \mathrm{mg} / \mathrm{m}^{2}\) of wire surface, which for diameter ranging around 0.50 mm corresponds to a max of 75 mg per kg of wire, or following Customer Specifications.

Testing with such wires showed that when a high enough current was in the coil to start the selfbonding process the coil became more malleable and the temperature within the coil of over \(100^{\circ} \mathrm{C}\) was usually sufficient to enable the process (the size of coil affected the temperature required due to the heating effects of copper losses).

Self-bonding wire is a wire which, when subject to a short duration of a higher current than normal operation rating current, will bond together and maintain its overall shape. It will not have short circuits if done correctly.

\section*{E. 2 PACKING FACTOR CONSIDERATIONS}

The range of values of packing factor for wire in the field and stator coils needs to be calculated.
Since the wire is essentially circular in cross-section, then there must be a proportion of the allowed space for the coils which cannot be filled, the remaining fraction (the packing factor) is for copper (the coils) (E.1).
\[
\begin{array}{ll}
\text { e.g. } & \text { number of turns }=\mathrm{N} \\
& \text { radius of one copper turn }=\mathrm{r} \\
& \text { area of one turn }=\pi \mathrm{r}^{2}=\mathrm{a} \\
& \text { total area }=\mathrm{A} \\
\text { Packing factor }=P F=\frac{N a}{A}=\frac{N \pi r^{2}}{A} \tag{E.1}
\end{array}
\]


Figure E. 1 :- Simplest packing calculation method.


Figure E. 2 :- Best conventional packing method.


Figure E. 3 :- Insulation layer.
Assume that the wire is packed as in Figure E. 1 (a simple winding style, viewable as a pessimistic method of winding the coils)
area of square \(=4 r^{2}\)
area of circle \(=\pi r^{2}\)
ratio of circle area to square area \(=\pi / 4=0.7854=\) Packing Factor

A more efficient packing is as shown in Figure E.2. As shown, more wires occupy the squares (same length of 2 r as the first example). The centres of each circle are linked by isosceles triangles. The area of each triangle can be shown to be \(\sqrt{3} r^{2}\) where \(r\) is the radius of the wire. As shown the middle of each triangle is air space. The area which is copper is 3 individual \(60^{\circ}\) segments, each of area \(1 / 12 r^{2}\). The packing factor is then \(\frac{\sqrt{3} r^{2}-3\left(1 / 12 r^{2}\right)}{\sqrt{3} r^{2}}=\frac{(\sqrt{3}-1 / 4) r^{2}}{\sqrt{3} r^{2}}=\frac{(\sqrt{3}-1 / 4)}{\sqrt{3}}=0.855662\)

The next problem to investigate is that of insulation layers, since it is common form to give diameter of the copper only, not of the diameter of the copper plus its insulation layer. A simple diagram highlighting the situation is shown in Figure E.3. Suppose the radius \(r\) is made up of the actual radius of copper, \(R\), plus the insulation layer, \(x\). Thus the total area is (E.3):-
\[
\begin{equation*}
\pi r^{2}=\pi(R+x)(R+x)=\pi\left(R^{2}+2 R x+x^{2}\right) \tag{E.3}
\end{equation*}
\]

If the wire was to be packed as in the first example (Figure E.1), for argument sake, the total available area would now be :-
\[
4 r^{2}=4(R+x)(R+x)=4\left(R^{2}+2 R x+x^{2}\right)
\]
and the packing factor, PF, would be (E.4):-
\[
\begin{equation*}
P . F .=\frac{\pi\left(R^{2}+2 R x+x^{2}\right)}{4\left(R^{2}+2 R x+x^{2}\right)}=\frac{\pi}{4} \tag{E.4}
\end{equation*}
\]

This gives a packing factor of \(\pi / 4\) again in that the amount of wire that can be fitted in the space is a fixed proportion as the total radius varies. The value of \(x\) determines how much of this is actually for copper, since the total radius is actually a variable copper radius, \(R\), plus an assumed fixed value of insulation thickness. Hence the true packing factor will vary with total wire radius (E.5):--
\[
\begin{equation*}
\text { P.F. }=\frac{\pi R^{2}}{4\left(R^{2}+2 R x+x^{2}\right)}<\frac{\pi}{4} \tag{E.5}
\end{equation*}
\]

For small changes in total wire radius where the insulation layer is small compared to the total wire thickness it can be acceptable to assume a calculated packing factor based on actual test data, especially if little effort was put into compacting the wire into the space. This is shown below where \(R\) is very much bigger than \(x\) (E.6):-.
\[
R^{2}+2 R x+x^{2} \rightarrow R^{2} \quad \text { if } \quad R \gg x
\]
thus
\[
\text { P.F. }=\frac{\pi R^{2}}{4\left(R^{2}+2 R x+x^{2}\right)} \quad R \gg x
\]
hence \(\quad P . F .=\frac{\pi R^{2}}{4\left(R^{2}\right)}=\frac{\pi}{4}\)

The equation shows that, in this situation, x has little or no real effect on the packing factor and hence the packing factor and true packing factor have almost identical values.

The more pessimistic a value of packing factor, the greater is the chances of the turns fitting within the given slot area e.g. \(80 \%\) of the calculated value could be used for all wire types.

Self bonding wire has a third layer on its outside that is used to bond wires together during bonding treatment (Figure E.4). This third layer has caused a reduction in the packing factor for the wire. A conventional 0.315 mm diameter wire in a manually wound toroidal coil can have a packing factor of 0.7 . The self bonding 0.315 mm equivalent in a similar sized toroidal coil only offers 0.52 as a packing factor. This would mean that an initial assumption of the packing factor of self bonding wire is \(74 \%\) of that for similar sized conventional wire. This is due to the thickness, y , of the additional layer that performs self bonding. Let the wire thickness of 0.315 mm be the size of the copper plus insulation \((\mathrm{R}+\mathrm{x})\) and let the self-bonding layer be y . Calculating the areas of a conventional wire and a self bonding wire and incorporating the packing factors allows the thickness of y to be calculated (E.7).


Figure E. 4 :- Copper layer, insulation layer and self-bonding layer.
\[
\begin{align*}
& \pi(0.315+y)^{2}=\pi(0.315)^{2}\left(\frac{0.7}{0.52}\right) \\
& (0.315+y)^{2}=(0.315)^{2}(1.346)=0.134  \tag{E.7}\\
& 0.315+y=0.365 \\
& y=0.05 \mathrm{~mm}=50 \mu \mathrm{~m}
\end{align*}
\]

The self bonding wire is therefore 0.415 mm in diameter based on this calculation, a \(31 \%\) increase in size. The self bonding layer is \(50 \mu \mathrm{~m}\) thick. This explains the reduction in packing factor. The packing factor will improve with thicker wire choice to a value more similar to that of conventional copper wire.

\section*{E. 3 USE OF PLASTIC FORMER FOR ALIGNED STACKS}


Figure E. 5 :- Dual Stack Machine in section displaying field (toroid) and bifilar armature windings [test windings included].


Figure E. 6 :- Nylon66 former to hold stacks in place with two perspex discs to hold toroidal windings in place.

A plastic former is required to guarantee that the toroidal field winding was held in place and that the two stacks are held in perfect alignment (Figures E. 5 and E.6). This has to be incorporated into the design of the dual stack variable reluctance machine. Perspex was originally used but was found to be thermally unsuitable. 1 mm thickness was also wanted as it allowed more copper area. However the
former could only be made from 2 mm thickness. This means that more current is required in the windings to give the same ampere turns as a 1 mm design. This gave rise to concerns over increased temperatures in the windings during operation. Nylon66 was used in the final zero degree alignment model. It comprises of \(30 \%\) glass-filled engineering plastic (Nylon66 - see below for more data). It offers dimensional stability, easier machining, high melting point and excellent electrical insulation. When the stator stacks were displaced, the former was removed (the field was wound so as to hold itself in place between the armature coils within the DSVRM).

\section*{E. 4 NYLON66-ERTALON \({ }^{\text {® }} 66\) GF-30}
(as provided by October 1999 Farnell Industrial catalogue)
This is 30\% Glass-filled Engineering Plastic.

\section*{Properties}
-High strength and stiffness
-Excellent creep resistance
-Good dimensional stability
-Black colour or white
-Continuous working temperature \(\left(120^{\circ} \mathrm{C}\right)\). Maximum \(145^{\circ} \mathrm{C}\)
-Good chemical resistance ( pH 5 to pH 11 )
-Good hydrolysis resistance
-Excellent electrical insulator
-The addition of \(30 \%\) glass fibre produces an outstanding composite material which is ideal for demanding compression/load bearing applications :-
gears, bearings, rollers, wheels, cams, nuts, valve seats, pulleys, gaskets, electrical insulators
\begin{tabular}{ll}
-Specific gravity & \(=1.35\) \\
-Water absorption & \(=5.5 \% \mathrm{max}\) \\
-Tensile strength \(\left(23^{\circ} \mathrm{C}\right.\) dry \()\) & \(=190 \mathrm{~N} / \mathrm{mm}^{2}\) \\
-Flexural strength \(\left(23^{\circ} \mathrm{C}\right.\) dry \()\) & \(=270 \mathrm{~N} / \mathrm{mm}^{2}\) \\
-Hardness (Rockwell) & \(=\mathrm{M} 100\) \\
-Melt point & \(=255^{\circ} \mathrm{C}\) \\
-Thermal conductivity & \(=0.24 \mathrm{~W} / \mathrm{k} \cdot \mathrm{m}\) \\
-Flammability & \(=\mathrm{UL} 94-\mathrm{HB}\) \\
-Volume resistivity & \(=1013 \Omega \mathrm{~cm}\) \\
-Dielectric strength & \(=45 \mathrm{kV} / \mathrm{mm}\) \\
-Surface resistivity & \(=1020 \Omega\)
\end{tabular}

\section*{E. 5 STEFAN'S LAW}

Stefan's Law is used to calculate the radiated heat as a temperature rise above ambient temperature when the wire carried a current (E.8). The modelling used on Microsoft Excel was such that, for any calculated slot area, mmf proportions from the windings or plastic former thickness, at any specified flux density (B), the currents in the coils, the voltages required, the \(I^{2} R\) resistive losses and the associated temperature rises above ambient were instantaneously calculated. The design was optimised numerically to give the shape with minimum reluctance and optimum thermal characteristics. This allowed the maximization of the magnetic flux for a given supply.

The temperature rise, \(\mathrm{T}_{\text {risen }}\) (in Kelvin), had to have 293 Kelvin subtracted to get temperature rise above an ambient temperature of \(20^{\circ} \mathrm{C}\). The total surface areas of the windings were calculated (Figures E.7, E.8). For ease of calculation, each area was regarded as the surface area if each set of windings were just a single large wire of cross-sectional area equalling the proportion of the slot area available. Stefan's Law was only provides an indication of the radiated heat from the wires by linking the \(I^{2} R\) resistive losses to radiated heat into the air. Conduction and radiation by the outer surface of the motor were not taken into account. Work was carried out to model how heat was conducted into the motor's metal body and, from this, how heat was lost from the whole motor by radiation. This was halted as it would have become a research study in its own right. Work concentrated on maximizing the radiated heat loss from the stators as a whole and the field on its own. Equilibrium temperature rises from the motor at various flux densities (and hence currents) had to be measured experimentally when the motor was built, to verify the Stefan's Law calculations.
\[
\begin{align*}
& P=\sigma \quad \text { Ae }\left[\left(T_{\text {nsen }}\right)^{4}-\left(T_{\text {orgigalal }}\right)^{4}\right] \\
& \sigma=6.67 \times 10^{-8} \quad W / \mathrm{m}^{4} K^{4} \\
& A=\text { surface } \quad \text { area } / \mathrm{m}^{2}  \tag{E.8}\\
& e=\text { emissivity }(0.7 \quad \text { for copper }) \\
& T=\text { temperature } / \text { Kelvin } \\
& P=i^{2} R \quad \text { power loss }
\end{align*}
\]


Figure E. 7 :- Surface area calculations for field coil.


Tolal Surface Area = 4(AD+AC+BE+DE-2BC-BD-CD)
Figure E. 8 :- Surface area calculations for an armature coil.

It is possible to calculate the thermal model for all the windings if the \(I^{2} R\) power losses and the dimensions are known for the windings in question. It gave an insight into the possible temperature performance of the machine. This theory assumed no fan was present.

The static and dynamic modelling process gives information about the machine. The power loss from the windings was known, the total surface area was calculated and the ambient temperature was used as \(T_{\text {original }}\) leaving \(T_{\text {risen }}\) as the unknown. The temperature rise above ambient was found from subtracting \(T_{\text {orignal }}\) from \(T_{\text {unknowr }}\).

Magnetic flux travels through the rotor axially, is directed by the phase aligning the rotor into that phase's stator pole pair, back along the back-iron and into the rotor again by the same method as before


The dc energised toroidal field produces axial flux

\section*{Flux paths shown by} red and lie armows red and Jlue arrow by orance arrows. The rotor is a continuous structure common to both sel of stator pole laminations

\section*{APPENDIX G}
G. 1 PHOTOGRAPHS OF SINGLE STACK VARIABLE RELUCTANCE MOTOR


Figure G. 9 :- Space for cylindrical section of rotor.
Figure G. 10 :- Complete machine.

\section*{G. 2 BACK EMF TEST RESULTS}

The maximum speed obtained from the dc motor was slightly above 1100 rpm . The two sets of stator coils (labelled as Phasel and Phase2) were connected to the oscilloscope so the generated voltage (back-emf) could be seen and measured. The source of the magnetic flux for back-emf production was the field winding. The current in the field winding was varied for different speeds so an indication of the back emf waveform at higher speeds (e.g. 8000 rpm ) was obtainable through interpolation of the data (since the dc motor would not operate over 1105 rpm ).

The initial test was to ensure that the back emfs from each coil for each phase summed in the correct manner for each winding topology used to drive the machine. The total back emf waveform in one armature phase winding would be the same size but in antiphase to that in the other armature phase winding.

The magnetic flux produced can be calculated from the back emf waveform. From Faraday's Law (G.1):-
\begin{tabular}{ll} 
& \(\mathrm{E}=\mathrm{N} \frac{\mathrm{d} \Phi}{\mathrm{dt}}\) \\
Integration of both sides will yield & \(\int \mathrm{Edt}=\int \mathrm{Nd} \Phi\) \\
Further simplification gives the flux linkage & \(\mathrm{Et}=\mathrm{N} \Phi\) \\
The magnetic flux is then & \(\Phi=\mathrm{Et} / \mathrm{N} \quad\) where \(\quad \Phi=\mathrm{BA}\) \\
The magnetic flux density is calculated as & \(\mathrm{B}=\frac{\mathrm{Et}}{\mathrm{NA}}\)
\end{tabular}

The magnetic flux linkage was thus a function of time (motor speed) and back-emf value (G.1). Instead of trying to integrate a non-sinusoidal back-emf waveform, calculating areas under the waveform using trapezoid area calculations is a fast and effective alternative, as shown in the example back-emf waveform of Figure G.11. The sum of all the individual trapezoids gives the magnetic flux linkage. Dividing this by the number of turns in the phase winding gives the magnetic flux. The magnetic flux can be converted to magnetic flux density as the cross-sectional area, A, of the stator poles is known. The cross-sectional area of one stator pole was \(3.4793 \times 10^{-4} \mathrm{~m}^{2}\) for the SSVRM.

Actual waveform and associated calculated magnetic flux linkage waveforms are shown for the Single Stack Variable Reluctance Machine in Figures G. 12 to G.15. These values are accurate at the speed at which back-emf testing was carried out. For predicting the waveforms for an operating speed of 5000 rpm , the back-emf was increased by the proportional difference in speed ( 1071 rpm to 5000 rpm was a 4.67 increase in proportion). The magnetic flux was increased in a similarly crude manner and hence linearity was assumed for simplistic comparisons. It is possible to regard these values as
acceptable since the actual calculated maximum magnetic flux density was in the region of about 0.8 T (which is close to the point at which saturation would start).


Sumofareas as time increments gives the total magnetic fux linkage up to that point in time. Ifan area is negative (i.e.back-erkk ifnegative) then the sum value decreases. This value, ifdivided bythe number oftums in the ammature winding, will give the magnetic fux value at that point in time Depending on the speed the time can be converted into electrical angle or mechanical angle.

Figure G. 11 :-Summation of area under curve yields flux linkage.


Figure G. 12 :- 1071 rpm back emf and flux linkage.


Figure G. 13 :- 1071 rpm back emf and flux density.


Figure G. 14 :- 5000rpm back emf and flux linkage.


Figure G. 15 :- 5000 rpm back emf and flux density.
The waveform seen in one phase was in antiphase to the other ( \(\pi\) radians difference). For each half cycle, the mean generated voltage was noted and the time for that half cycle noted. The product of these two values equalled the magnetic flux linkage for that half cycle. The value of generated voltage (which represented the back-emf) was positive when that phase would be switched on if it were to be run as a machine (and hence negative when it would be switched off). The zero volt cross-over of the back emf curve occurred when the rotor was at the aligned position. The opto sensor was positioned to change state at this point.

The field winding current is responsible for production of all the magnetic flux within the machine during back emf testing. The back-emf generated in each phase was measured for 50 mA increments in the field current (the field had 1600 turns, so current multiplied by turn number gave the field ampere-turns). It was assumed that, for a fixed speed, based upon Faraday's Law, as the field current increased to provide more magnetic flux, the back-emf generated would increase linearly until saturation occurred.

Initial testing with the SSVRM produced some interesting results most significantly at higher field currents (Figure G.17). The modulus of back-emf for each half cycle of each phase was plotted as graphs of peak and mean generated back emfs against field current and as magnetic flux linkage against field current. It was noted that, as the field current increased from zero, the general trend between phases was similar. But as the current increased further the half cycle values differed within each phase but the sums of the half cycles for each phase matched very closely that of the other phase.

\section*{Reluctance Machines with Flux Assistance}

The half cycle values for each phase should all have been identical regardless of field current value. A bearing problem was discovered which caused the discrepancy.

The original \(4 / 2\) switched reluctance machine used ball bearings to hold the rotor shaft in place. The original ball bearings had an inner diameter of 8 mm , which implied that an 8 mm inner diameter needle roller bearing would be a suitable replacement. On closer inspection, it was discovered that the bearing was in fact 8 mm inner diameter as expected but the shaft was slightly less than that. Two suggestions were that it was perhaps an Imperial shaft of \(5 / 16\) inch \((7.94 \mathrm{~mm})\) or that the shaft had become worn.

The rotor of the SSVRM has a cylindrical section that is inside a narrowly larger cylinder (which formed the inner part of the toroidal field housing). The magnetic flux should ideally be the same throughout the constant radial airgap between the cylinders. If, as shown (Figure G.10), the axis is not centrally placed because the shaft of the rotor was not held still by the bearings. The force of gravity acts upon the rotor as the rotor is not fixed in place due to the bearing mismatch. As the phase armature windings are energised in sequence, the magnetic fluxes from each phase attempt to align the rotor with the relevant stator poles. The magnetic forces are affected by gravity and the rotor does not remain in a fixed axial plane. The planes of the stator poles affect the positions of the rotor axis as the rotor turns. The unwanted axial plane movement of the rotor axis causes additional unwanted acoustic noise that increases with speed. If the cylindrical part of the rotor were loose enough to be in contact with the field housing then friction would provide additional noise and heating effects. This was possible as the radial airgap was very small \((0.2 \mathrm{~mm})\).


Figure G. 16 :- Explanation of mismatch in back emf curves.


Figure G. 17 :- Back emf test results at 1070 rpm .

The small (suggested to be 0.06 mm ) shaft discrepancy was enough to cause the strange results (Figure G.17), where the magnitudes of negative and positve half cycle peaks of the back emf traces varied more with increasing flux (increasing field current) but the average magnitudes for each phase were similar. As the positive cycle increased in magnitude, the negative cycle decreased and vice versa, for each phase. This was due to the bearing problem. The solution was to re-machine the shaft down to 7 mm which meant that a ball bearing replaced the needle roller bearing to hold the rotor in a fixed, centred, axial plane.

\section*{G. 3 NO LOAD TESTING AT 10000RPM IN HIGH SPEED MODE}

\section*{G.3.1 OPTIMISATION OF THE TOROIDAL FIELD WINDING}

As shown in Figure G. 18 the field supply gave minimum total input power when at 9 volts. The ampere-turn equivalent was then used as the optimum value.

\section*{G.3.2 OPTIMISE VAL7 (VALUE DETERMINING HOW ADVANCED THE PHASE FIRING STARTS AT)}

The value represented the delay after opto state change when the phase was energised and was such that it altered how far advanced the start of phase firing before the next opto state change was. The optimum value was less clear but the below graph showed a minimum input power at a value of 38 (Figure G. 19).


Figure G. 18 :- Optimisation of field supply for minimum input power.


Figure G. 19 :- Optimisation of Val7 for minimum input power.


Figure G. 20 :- Optimisation of Val6 for minimum input power.

\section*{G.3.3 OPTIMISE VAL6 (VALUE DETERMINING DELAY BETWEEN FIRING EACH PHASE)}

This variable determines the size of time delay between energising each phase. The optimum value was not a clear choice from the results but a smoothed curve parabola for the best fit indicated that minimum power occurs at a value of 40 (Figure G.20).

As was shown, the final optimised power input was 16.2 W of which 1.332 W was from the field winding \((8.22 \%\) of the total). This concluded the no-load testing at \(10,000 \mathrm{rpm}\).

\section*{G. 4 INTERMEDIATE STEPS IN RE-OPTIMISING FOR A SMALL LOAD AT 5000RPM IN HIGH SPEED MODE}

\section*{G.4.1 OPTIMISE VAL7 (VALUE DETERMINING HOW ADVANCED THE PHASE FIRING STARTS AT)}

As clearly shown there was a minimum input power when Val7 is at 91 (Figure G.21).

\section*{G.4.2 OPTIMISE VAL6 (VALUE DETERMINING DELAY BETWEEN FIRING EACH PHASE)}

As happened in the no load 5000rpm optimisation process, Val6 was less obvious to optimise and a value of 115 was regarded to be a preferred value (Figure G.22).


Figure G. 21 :- Optimisation of Val7 for minimum input power.

Reluctance Machines with Flux Assistance


Figure G. 22 :- Optimisation of Val6 for minimum input power.

\section*{G. 5 SSVRM DIMENSIONS}


Figure G. 23 :- Optimisation of Val6 for minimum input power.

\section*{APPENDIX H}

\section*{H. 1 MAGNET PLACEMENT}

Parts of the back-iron can be cut away allowing the magnetic material to be 'dropped' in. The possible variants and their advantages and disadvantages are shown and discussed in Figures H. 1 to H. 6.


Figures H. 1 and H.2:- Outer insertion of permanent magnet and variant with aluminium ring to hold magnets in place. This potentially weakens the back-iron and the thinned section of the back-iron left by the cutting out of the back-iron provides a magnetic short-circuit path for the flux paths from the permanent magnet. The magnet has to be held in place. Flux is lost in the short circuit meaning selecting a larger magnet or selecting a magnet with a greater magnetic remanent flux density, \(\mathrm{B}_{\mathrm{F}}\), either of which means a greater cost in motor production.


Figures H. 3 and H.4:- Inner insertion of permanent magnet and variant with aluminium ring to ensure machine held stably. The potentially weak back-iron probably needs strengthening (outer casing of aluminium, for example) and the thinned sections by the magnets provides a magnetic short-circuit path for the flux paths from the magnets. The magnets have to be held in place to stop falling into the middle of the machine. Flux is lost in the short circuit means selecting a larger magnet or selecting a magnet with a greater magnetic remanent flux density, \(\mathrm{B}_{\mathrm{r}}\), either of which means a greater cost in motor production.


Figure H. 5 :- Magnets directly replacing back-iron sections and variant with aluminium ring to ensure machine is held stably. This has no magnetic short circuit by the magnets but the magnets need holding in place and the stator sections need to be held firmly in place with, for example, an external aluminium ring.


Figure H. 6 :- Magnetic short circuit at axial ends of motor. Structural integrity of stators is improved, but magnets still need to be held in place, possibly with an external casing such as an aluminium casing. The main difference between a magnetic short circuit at the end relative to being in the back-iron is that magnetic cross lamination flux is needed to get flux into the end ring so reducing the amount of short circuit and there is no method for holding the magnets in place.


Figure H. 7 :- Aluminium end caps holding magnets in place. A reduction in the amount of aluminium casing used to hold the motor together may be advantageous. This can be done by the use of conventional motor end cap (a gain from this would be reduced costs in the motor since less metal is needed in motor design).


Figure H. 8 :- More permanent magnet space within an initial design.

The preferable design concept is that of no short-circuit sections associated with the magnets and the possible use of an aluminium casing to prevent the magnetic sections from falling out. The permanent magnet is to replace the field windings. Removal of the field windings allows the space they occupied to become available for insertion of extra permanent magnet material. Finite Element analysis aids in the determination of the best magnet type, magnet shape, and optimum machine lamination shape. A simple untested initial solution was proposed as below (Figure H.8).

It is noted that the magnets are often sold at lower cost when in preformed shapes, many of which having right angles since it is easy to cut them to these shapes. Any low cost motor design should therefore follow this geometry (square or rectangular).

The stator sections could be compacted together to maximise the packing factor of the armature windings within the sections while leaving the back-iron mechanically strong. The permanent magnet materials could not be compacted in such a manner as they are generally too brittle and would shatter (especially with rare earth magnets).

The permanent magnets could provide the flux that the field winding would have done. The magnets must be placed in the back-iron sections where unidirectional flux existed. Figures H. 9 and H. 10 show the actual flux paths due to the permanent magnet for an aligned position for a first concept. The rotor lamination is left alone for all the magnet orientations discussed in this section. The steel stator laminations are simple in shape and the associated flux paths in the motor appear to be short and simple. Note the dimensions of the magnets and the fact that the magnitude of the magnet end face area is a guide to the magnitude of magnetic flux produced and that the magnet length (in the direction of flux inside the magnet) represents magnetomotive force ( mmf ) from the magnet. This orientation was used as a reference against the other possible magnet orientations. It was called 'original concept orientation'.


Figures H.9, H. 10 :- Original design (called zip004) with flux directions shown. Easiest design. Shortest flux paths.


Figures H. 11, H. 12 :- Magnets at diagonal angle. More complex steel laminations, risk of unwanted areas of saturation (* in diagram), but longer meaning more flux due to larger end face area. Thinner magnet giving less mmf. Longer flux paths

Another possible orientation is shown by Figures H.11, H.12. The magnets are orientated at a diagonal angle. The end face area of each magnet is larger than those in Figures H.9, H. 10 which meant that there is more magnetic flux from the magnets but the magnet is thinner (when constraining the inner and outer radii of the stator sections to be constant in all cases) so less magnetomotive force is produced by the magnets. The positioning of the magnets presented the problems of magnetic saturation occurring in sections other than the rotor and stator poles (which are the only places where saturation is potentially wanted). These saturation problem areas are shown by the symbol * in Figure H.11. The magnetic flux paths are longer than those shown in Figure H.10. The steel stator laminations are more complex in shape than the original concept orientation. This design is not as desirable as that of Figure H. 10.

The next possible orientation is that of magnets inserted at 90 degrees to that of the original concept orientation (Figures H.13, H.14). To prevent magnetic short circuits (a loss in useful magnetic flux) there are sections of air or aluminium inserted to guide the magnetic flux in the paths shown in Figure H.13. The steel stator laminations are complex in shape and there is great potential for unwanted magnetic saturation in the sections shown by the symbol * in Figure H.13. The magnetic flux paths
are longer and more complicated and the magnet end face area is reduced with a potential reduction in magnet length. The effectiveness of the magnets is compromised so this orientation is not good.

The final orientation type is a new approach to this problem. Figure H. 15 shows the main shape of Figure H. 9 but with a few alterations. There are spacers (plastic or aluminium) where the magnets used to be. The magnets are now four sections making a rubber ring magnet which surround the original lamination. This is enclosed by a steel ring to provide the completion of the magnetic flux path circuit (Figure H.16). The sections of the rubber permanent magnet provide radial flux. The steel ring outside this provides completion of the flux paths for the magnets. The bi-directional path sections in the inner back-iron aid directing the flux from the magnets into the stator poles (bidirectional due to armature winding energisation). The spacers have to be non-magnetic to avoid magnetic short circuits and, as such, would be plastic or aluminium. Solid spacers hold the laminations in place. Air spacers make holding the machine innards in place more difficult as the laminations have to be glued in place. Generally, this orientation type would make the design more complex as well as increasing the overall size. Very long and complex flux paths exist and it should be noted that the motor is the largest of all the concepts introduced.


Figure H.13, H. 14 :- Magnets flux rotated 90 degrees. Shaded areas to be air or aluminium. More complex steel laminations, shaded areas of air or aluminium to reduce flux leakage paths, risk of saturation in sections other than stator poles (surrounding the magnets) (* in diagram), magnet size is reduced. Very long flux paths.


Appendices


Figure H. 16 :- Magnetic flux from a rubber ring permanent magnet.
Chapter 6 summarises this investigation into magnet placement topologies.

\section*{H. 2 SHORT-CIRCUIT FLUX PATHS WHEN MAINTIANING STATOR STRUCTURAL INTEGRITY}

As shown in Figures H. 17 and H.18, there is lost torque producing flux when the back-iron behind the magnets is maintained as flux is lost in the short circuit.. For small machines, a narrower short-circuit loses stator structural integrity due to being too thin and hence it is better to have no short circuit and then to address methods for holding the magnets and stator sections together.


Figure H. 17 :- Magnetic short circuit causing loss of 'useful' magnetic flux.


Figure H. 18 :- Flux paths within motor as magnet occupies increasing proportion of back-iron.

\section*{H. 3 EXAMPLE B-H CURVES}

B-H curves were for Fer2 (Figure H.19) and N48 (Figure H.20).


Figure H. 19 :- BH curve for Fer2.


Figure H. 20 :- BH curve for N 48.

Reluctance Machines with Flux Assistance

\section*{H. 4 PMFSM LAMINATION DIMENSIONS}


Figure H. 22 :- Stator lamination.

\section*{H. 5 SPREADSHEET FOR DYNAMIC MODELLING OF PMFSM}

The spreadsheet used to model the Permanent Magnet Flux Switching Motor is based upon the spreadsheet developed by Professor Charles Pollock and his staff and students at the Centre for Advanced Electronically Controlled Drives, now based at the University of Leicester, to model Flux Switching Motors. This section of the Appendices compliments Chapter 6 of this thesis.

The spreadsheet has been written using Microsoft Excel. The spreadsheet used to model the Flux Switching Motor assumes that each phase, energised in sequence, will have permanent supply of armature voltage to each phase i.e. the model does not support a pulsed armature supply voltage. The model does allow the start of energisation of each phase to be varied in relation to rotor position. The spreadsheet uses iterative mathematic equations to allow a cycling of data to produce an optimum solution based upon the given data supplied (dynamic modelling).

Finite Element Analysis performs static analysis of the machine at different rotor positions - the rotor angles being selected to provide suitable data points for the spreadsheet. The spreadsheet is given data from the Finite Element Analysis - the data being based on rotor position defined by the number of rotor and stator poles. The Finite Element Analysis usually provides data in relation to flux from field windings, but it was able to measure field flux from the magnets used due to the way it calculated the flux.

Magnetic reluctance against rotor position is needed for the spreadsheet. As magnets are used in the PMFSM, the Finite Element Analysis model had to be modified. This requires the magnet material used in the Finite Element Analysis model to be 'demagnetised' whilst retaining its permeance (same shape of its B-H curve). The magnet sections can be redefined as having mathematically translated BH curves such that the B-H curve is the same shape as that for the magnet but the magnet produces no flux, giving a B-H curve akin to a steel or similar alloy. The flux from small currents (e.g. 0.1A and 0.15 A , with a known small number of armature turns, Na e.g. \(\mathrm{Na}=10\) ) is calculated using Finite Element Analysis for the 'demagnetised' machine at fixed rotor positions. The change in flux due to the change in current is measured from the Finite Element Analysis data. The change in flux multiplied by the number of turns and divided by the change in current gives a value for inductance from which the reluctance can be calculated. The reluctance at a given rotor position is suitably termed in the spreadsheet as RELUCTANCE.

The spreadsheet had been given its own Microsoft Excel cell reference definitions, based upon it being originally used for modelling the Flux Switching Motor.

The maximum angle over which a phase should be energised for is defined as (Figure H.23) HALF_ELEC_ANGLE \(=360^{*}((1 / \mathrm{Nr})-(1 / \mathrm{Ns}))\), where Nr is defined as the number of rotor poles and Ns is defined as the number of stator poles.

In the PMFSM spreadsheet model, 'ON' defines a negative angle value. This angle allows the angular position of determining when energisation of the phase may be started to be selected (as the Finite Element Analysis does not necessarily have zero degrees rotor position at the point where a back emf trace would be changing polarity at the zero crossing (this angle allows the Finite Element data and spreadsheet model to be matched). Adding the angular value of 'DIFF' to 'ON' defines the angle when to turn on the armature winding for that phase (Figure H.23). Adding the angular value of 'OFF' to 'ON' defines when to turn the phase off (Figure H.23). This is the basis for allowing the spreadsheet to model a pulsed supply.

Vs is defined as the armature supply voltage in the spreadsheet. When a phase is energised, it is given Vs as the supply and the armature current in that phase increases in magnitude. When the phase turns off, the voltage is -Vs due to freewheel diodes of the half bridge converter circuit and the current will start to fall. The spreadsheet calculates the current for the rotor positions and stops the current becoming negative in the following rotor position by forcing the current to zero for that following position if it is attempting to become negative, and also setting the supply voltage is to \(\mathrm{Vs}=0\) until the next phase is energised (the current is forced to zero until the next phase is energised. This requires a degree of complexity in the Microsoft Excel equations used.


Figure H. 23 :- defining how spreadsheet model determines turning on one phase using angles relative to rotor angle.

Figure 6.44 in Chapter 6 shows the main user interface of the spreadsheet used to model the PMFSM. The spreadsheet was adapted to show the air moved per minute such that the potential applications of the designed motor are instantly shown. The spreadsheet allows the rotor speed to be changed, the armature supply voltage to be varied, and the armature turn numbers and turn diameter to be changed.

Shown below is a list of main calculations added and amended in the spreadsheet for the first phase energisation (the second phase energisation requires minor alterations to the coding, such as changing ' \(<\) ' to ' \(>\) ', etc, so as to ensure the spreadsheet worked correctly. Also shown are some of the basic equations required to facilitate understanding the calculations. This list is incomplete due to the complexity of the spreadsheet. The spreadsheet uses iterative calculations to determine an optimum solution for the given parameters and supplied data, by feeding back answers back into the equations.

\author{
BASIC EQUATIONS:- \\ INSTANTANEOUS_POWER =MOTIONAL_EMF*ARMATURE_CURRENT
}

TOTAL_ARMATURE_MMF=Na*ARMATURE_CURRENT

TIME_FOR_CHANGE_IN_ANGLE=(ROTOR_ANGLE-PREVIOUS_ROTOR_ANGLE)/(SPEED*6)

MOTIONAL_EMF=INDUCED_ARMATURE_VOLTS_PER_TURN*Na*BACK_EMF_CORRECTION

AVERAGED_MOTIONAL_EMF_CD=(MOTIONAL_EMF_AT_PREVIOUS_ANGLE_STEP+MOTIONAL_EMF+MOTIONAL_EMF_A T_NEXT_ANGLE_STEP)/3

ROTOR_ANGLE_POSITION = determined from rotor and stator pole numbers and from choice of number of rotor positions used in Finite Element Analysis

\section*{ADAPTED EQUATIONS:-}

ARMATURE_1_SWITCH_LOGIC \(=I F\left(A N D\left(R O T O R \_A N G L E \_P O S I T I O N>=(O N+D I F F+(360 / 2 / N r)), R O T O R \_A N G L E \_P O S I T I O N<(O F\right.\right.\) \(\mathrm{F}+(360 / 2 / \mathrm{Nr})), \overline{1}, 0)\)

ARMATURE_2_SWITCH_LOGIC=IF(OR(AND(ROTOR_ANGLE_POSITION \(\left.>=O N+D I F F, R O T O R \_A N G L E \_P O S I T I O N<O F F\right), A N D(~\) ROTOR_ANGLE_POSITION>=ON+DIFF+(360/Nr),ROTOR_ANGLE_POSITION<OFF+(360/Nr)), 1,0\()\)

VOLTAGE_POLARITY=ARMATURE_2_SWITCH_LOGIC-ARMATURE_1_SWITCH_LOGIC
APPLIED_VOLTAGE \(=\mathrm{IF}(\mathrm{ABS}(\) VOLTAGE_POLARITY \()=0, \mathrm{IF}(\) PREVIOUS_ROTOR_POSITION_CURRENT \(>0\),\(\left.1^{*} \mathrm{Vs}, 0\right),(\mathrm{V} s)^{*}\) VOLTAGE_POLARITY)

ARMATURE_CURRENT=IF((PREVIOUS_ROTOR_POSITION_CURRENT+((APPLIED_VOLTAGE-(PREVIOUS_ROTOR_POSITION_CURRENT*Ra)-
AVERAGED_MOTIONAL_EMF_CD)*TIME_FOR_CHANGE_IN_ANGLE/Na/Na*RELUCTANCE)<0),0,PREVIOUS_ROTOR_POSIT ION_CURRENT+((APPLIED_VOLTAGE-(PREVIOUS_ROTOR_POSITION_CURRENT*Ra)AVERAGED_MOTIONAL_EMF_CD)*TIME_FOR_CHANGE_IN_ANGLE/Na/Na*RELUCTANCE))

ARMATURE_CURRENT_SQUARED =ARMATURE_CURRENT*ARMATURE_CURRENT
ARMATURE_1_CURRENT \(=\operatorname{IF}((\operatorname{IF}(((\operatorname{IF}(\) AND \((\) ROTOR_ANGLE_POSITION \(>=(\mathrm{ON}+(360 / 2 / \mathrm{Nr}))\), ROTOR_ANGLE_POSITION<(OFF+(360/2/Nr))),1,0))+ARMATURE_1_SWITCH_LOGIC+ARMATURE_2_SWITCH_LOGIC)=1,1,0)) = 1, ARMATURE_CURRENT, 0 )

ARMATURE_2_CURRENT \(=\operatorname{IF}\left(\left(\operatorname{IF}\left(\left(\left(\operatorname{IF}\left(A N D\left(R O T O R \_A N G L E \_P O S I T I O N>=(O N+(360 / 2 / \mathrm{Nr}))\right.\right.\right.\right.\right.\right.\right.\),
ROTOR_ANGLE_POSITION<(OFF+(360/2/Nr))),1,0))+ARMATURE_1_SWITCH_LOGIC+ARMATURE_2_SWITCH_LOGIC \(=1,1,0)\) ) \(=0,-1\) *ARMATURE_CURRENT,0)

\section*{H. 6 POWDERED IRON}

To possibly lower the iron losses in the motor the steel laminations could be replaced with powdered iron (Figures H.24, H.25). The rotor may not always be manufactured with powdered iron due to the possibility of the material falling apart at higher speeds due to rotational forces (there would have to be an upper rotor speed limit depending on the rotor shape and size). There are three grades based upon the densities of a powdered iron called Somaloy500 \(\left(6.97 \mathrm{~g} / \mathrm{cm}^{3}, 7.23 \mathrm{~g} / \mathrm{cm}^{3}, 7.31 \mathrm{~g} / \mathrm{cm}^{3}\right)\) (made by Hoganas in Sweden). The densities vary due to differences in the compaction process used. The B-H curves for Somaloy500 (a powdered iron) (Figures H.26, H.27, H.28) confirm that any motor using this material requires more armature ampere turns to derive the same total flux within the motor when compared to steel. The reduction in permeability in flux is due to the iron powder particles in Somaloy500 being coated in insulating material and also containing compounds used for bonding resulting in less flux for a given magnetic field. This reduction in permeability requires an increase in armature current to provide the same flux level which in turn increases the copper losses. There is a requirement to find the trade off point where the reduction in iron losses is more than the increase in copper losses. The difference between a steel lamination design and same lamination shape designs incorporating Somaloy500 in the stator only or stator plus rotor are shown by graphs of armature flux versus rotor position (Figures H.28, H.29, H.30). These graphs compare (using all three grades of Somaloy500) an all steel lamination design (that has been built i.e. the PMFSM), a laminated steel rotor plus Somaloy500 stators design, and a Somaloy500 rotor plus stator design.


Figure H. 24 :- powdered iron microscopically


Figure H. 25 :- Somaloy500 (stator) and steel (rotor) FE model of Zip004 design


Figure H. 26 :- BH curves for Somaloy500.


Figure H. 27 :- BH curves for Somaloy500 and steel.


Figure H. 28 :- BH curves for Somaloy500 and steel.


Figure H. 29 :- Armature flux per rotor cycle for materials.


Figure H. 30 :- Armature flux per rotor cycle for materials.

The original lamination shape is used as a test for powdered iron (hence using the Zip004 design used to build the PMFSM motor). Appropriate steel sections were replaced with powdered iron (Somaloy500) in the Opera 2D FE environment to allow the comparisons to be made. Each variant was modeled to maintain the same torque and speed specification as the steel Zip004 design. The copper losses for each were then noted - 0.45 W copper losses steel model, 0.68 W copper losses Somaloy500 ( \(7.23 \mathrm{~g} / \mathrm{cm}^{3}\) ). Thus, for this lamination, the copper losses increase when powdered iron is used. The increase in copper loss for the Somaloy 500 variants could be offset by the reduction in iron losses.

Reluctance Machines with Flux Assistance
H. 7 PHOTOGRAPHS OF PERMANENT MAGNET FLUX SWITCHING MOTOR


Figure H. 31 :- Fan end of motor.


Figure H. 33 :- Optosensor end of motor.


Figure H. 35 :- Optosensor end of motor in parts.


Figure H.32:- Comparison between PMFSM (lower) and induction motor (upper).


Figure H. 34 :- Optosensor disc in place.


Figure H. 36 :- Optosensor end of motor assembled.


Figure H. 37 :- Assembled induction motor (left) and PMFSM (right).


Figure H. 38 :- Motor operating at 2500 rpm at 4 W input power.```


[^0]:    $118.40 \%$

[^1]:    WHAT THIS PROGRAM INTENDS TO DO <br> The program is to perform A/D conversions on all the channels and to show the output for the selected channel <br> Depending on the opto state, the phase firing routine is determined for a two-phase motor. <br> The program then starts the motor <br> The outputs from the A/D conversions represent time delays for the firing of each phase <br> Opportunity is given to update the time delays as the motor is turning allowing the opportunity to maximise performance <br> Also, as the motor turns, its speed is noted and if the motor gets fast enough, it is allowed to enter a new firing sequence. This is the advanced phase firing mode and needs different time delays compared to before <br> The A/D conversions also provide such time delays to suit and these can be updated as the motor turn <br> Updating the $A / D$ timing occurs through the channel selection and then allowing the chance to update if the channel $A / D$ ouput <br> is preferred. THERE IS NO WAY OF SHOWING WHAT THE OLD VALUE WAS SO MAKE SURE IT IS NOTED AT ALL TIMES <br> As the motor is in advanced phase firing, it is monitored by a crude time delay sequence to see if it is always fast enough to maintain <br> advanced firing mode. If there is a timing delay problem, the motor will still continue but will light up an LED if wrong. <br> If the motor is too slow then the motor will return to normal phase firing mode. <br> ;The aim is to allow full control on an experimental basis of a two-phase switched reluctance motor where the timing of the normal firing of the phases is unknown, the point at which an advance phase firing may be beneficial (plus the timing of the phase firing in advance phase mode is unknown) all need to be found to allow maximum performance of the motor <br> The motor can be prevented from entering Advanced Mode or brought out of it manually to allow additional testing capability NORMAL MODE PHASE FIRING? (for a change in opto state) <br> Phasel off, a time delay, Phase 2 on, wait for opto to change state, when it does then next line <br> Phase2 off, a time delay, Phasel on, wait for opto to change state, when it does then above line <br> ADVANCED MODE PHASE FIRING (REQURES THOUGHT!!!) - ADVANCED=HIGH SPEED <br> Wait until other opto state is on, long time delay, Phase2off, small time delay. Phasel on, should be a time gap before opto changes state, then next line <br> ;Long time delay, Phasel off, small time delay, Phase2 on, should be a time gap before opto changes state, then this line again but opposite phase <br> The advanced mode phase firing requires a diagram to show it properly, but instead of the phase coming on after the opto changed state and going off when the opto enters a new state, the aim is to turn the phase on before the opto has entered the first state and switches the phase off before it reaches the second state, but maintaining a time gap between one phase switching off and the other on (the two phases should not be on at the same time nor should there be an instantaneous switching between the phases (hence the delays - it makes the motor more efficient as switching losses may be reduced)

