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predict pesticide exposure in multiple surface water resources to support operational and strategic risk
assessments.
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1. Introduction
Pesticides are widely used in modern conventional agriculture and
contribute to increased yield and quality. However, a small fraction of
some active ingredients can be transported, via a range of different
pathways, to ground and surface waters. If the receiving water body is
used for drinking water supply, then these substances may periodically
present compliance risks for water companies if the treatment technol-
ogies in place are unable to reduce concentrations to the limits required
by the prevailing legislation. In the European Union (EU), individual
pesticides must not have concentrations N0.1 μg L−1 in drinking water
supplies (post treatment) and the total concentration of all pesticides
must be b0.5 μg L−1 (Drinking Water Directive - DWD; EC, 1998). In
order to anticipate the levels of exposure which will be experienced at
different drinking water abstraction points under current or future
land use andmeteorological scenarios, water companies are increasing-
ly employing numericalmodels (Bloodworth et al., 2015). Thesemodels
can help to assess DWD compliance risks and guide timing of sampling
and the choice of analytical methods used on samples collected atwater
intakes. They can also be used to explore the potential of different catch-
mentmanagement interventions for mitigating pesticide exposure (e.g.
changing crop rotations, switching active ingredients, using different
dose rates), as required by Article 7 of the Water Framework Directive
(WFD; EC, 2000).

There are a number of pesticide fate models that describe pesticide
transfers from soil to surface and ground waters that could be used at
the catchment scale (understood in this context to be over 100 ha or
1 km2; Köhne et al., 2009). These range from simple screening models
such as the Groundwater Ubiquity Score (GUS) developed by
Gustafson (1985), the soil fugacity model (SoilFug) of Di Guardo et al.
(1994) and the Pesticide Risk Management Profiling Tool (PRoMPT:
Whelan et al., 2007), all based largely on pesticide properties, through
to detailed field-scale one dimensional models, such as MACRO (a
model of water flow and solute transport in macroporous soil: Larsbo
and Jarvis, 2003; Larsbo et al., 2005), Pesticide Emission Assessment at
Regional and Local scales (PEARL: Tiktak et al., 2000), PEsticide Leaching
Model (PELMO: Klein, 1991) and the Pesticide Root ZoneModel (PRZM:
Mullins et al., 1993). Many simpler models (e.g. GUS) are not dynamic
(i.e. they are not able to make predictions in time) and often lack
good description of spatial variations in leaching due to varying soil
characteristics, weather, topography and land use. The latter one-
dimensional models are all employed as risk screening tools using
standardised scenarios in the pesticide registration process in the EU
(e.g. FOCUS, 2000, 2001) but can also be up-scaled to catchment and re-
gional scales (e.g. GeoPEARL: Tiktak et al., 2003 andMACRO-SE: Steffens
et al., 2015). Although such up-scaling can be successful, detailed
models typically have high data requirements and incur long run
times to solve the partial differential equations describing one-
dimensional transport of water and solutes by numerical methods.
This is exacerbated when applied to large heterogeneous catchments
which require simulations to be performed for various (independent
or connected) units representing different soil type and land use combi-
nations and topographic locations. They are, therefore, often unsuitable
for catchment-scale applicationswhere evaluationsmay be required for
many different pesticides (possibly all feasible combinations of active
ingredients currently on the market) and for many different combina-
tions of weather, soil types and land uses.

The aim of themodel described here is to predict pesticide transport
from agricultural land to surface waters in order to inform and support
water company risk assessments inmultiple catchments over a range of
scales. This application requires a model that contains a sufficient de-
scription of process complexity to yield realistic concentrations in a
wide range of catchment types (i.e. it should be process-based rather
than empirically-based) using readily available input data (e.g. on soil
properties and meteorological data). However, it also needs to be com-
putationally efficient so that it can be run for a wide range of pesticides,
crops, soils and weather combinations over large heterogeneous areas.
This problem of finding an optimal combination between fidelity
to real process operation and simplicity (to reduce run times) is a peren-
nial problem in environmental modelling and has recently been
attempted for pesticides by, inter alia, Gassmann et al. (2013) and
Steffens et al. (2015). In the case of ZIN-AgriTra, the model described
by Gassmann et al. (2013), a fully distributed approach was taken
with soil water and pesticide dynamics represented at 10 min time
steps in 10 m grid cells across a 1.95 km2 catchment in Switzerland.
The explicit representation of material transfers within and between
many grid cells in this catchment resulted in long run times which
would be problematical for exposure assessments for several pesticides
in larger catchments. In contrast, the one dimensional MACROmodel is
used in MACRO-SE model (Steffens et al., 2015) to calculate leaching to
2 m depth for a set of independent soil and crop combinations, which
are then integrated at the catchment scale via weighted averaging.
This approach is more efficient than running computations for all grid
cells in a catchment (although it lacks the ability to account for land-
scape connectivity) but still requires a number of computationally in-
tensive one-dimensional runs to be performed. Furthermore, whilst
MACRO is based on a realistic and mechanistic representation of water
and material transfers in one dimension, accurate catchment scale up
of suchmodels is not always straightforward andmay require addition-
al calibration (e.g. Beven, 1989).

This paper presents the development of IMPT (Integrated Model for
Pesticide Transport), a conceptual, parameter efficient model for
predicting pesticide fate and transport at the catchment outlet. It is
intended to fill the gap between one dimensional aspatial leaching
models such as the ones used in FOCUS and fully distributed catchment
scale models which have yet to be employed widely for operational en-
vironmental management. The model was initially applied to a small
(0.15 km2) sub-catchment for which detailed data on flows and pesti-
cide concentrations were available in order to demonstrate its ability
to predict concentrations at the ‘edge offield’ scale and to underpin con-
fidence in process representation. The model was then applied to five
larger catchments (479–1653 km2) to assess its performance under a
range of different soil, land use, pesticide use and climatic conditions.

2. Model description

Theunderlying philosophy of themodel is to represent soil-to-water
transport in a simple, but physically realistic, way. This necessitates the
implementation of a good hydrological model as catchment hydrologi-
cal response plays a critical role in determining how solutes, including
agriculturally-applied pesticides, are transported from land to water
(Holvoet et al., 2005).

2.1. Soil water balance

The model is “semi-distributed” and performs calculations for ho-
mogenous soil type and land use combinations (sometimes referred to
as Hydrological Response Units). A soil water balance model is used to
predict the hydrological (and pesticide) transport pathways. For each
soil type, the soil is divided into two discrete stores: the top soil and
the subsoil. A separate moisture balance (e.g. Ward and Robinson,
1999) is calculated for each store i.e.

dSTOP
dt

¼ P− f TOP:ETa−qOLF−qDRAIN−qLAT top ð1Þ

dSSUB
dt

¼ qDRAIN− f SUB:ETa−qGW−qLAT sub ð2Þ

where TOP and SUB refer to the topsoil and subsoil stores, respectively, S is
the storage in each layer (mm), t is time (days), P is the precipitation,
ETa is the actual evapotranspiration, fTOP and fSUB are the fractions of
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total root mass in the topsoil and subsoil layers, respectively, qOLF is the
overland flow rate, qLAT_top is the rate of lateral water transfer through
the topsoil, qDRAIN is the rate of vertical water transfer from the top soil
layer to the subsoil later, qGW is percolation to groundwater and qLAT_sub
is the rate of lateral water transfer through the subsoil, either as
throughflow or as artificial drainage. All flux terms have units of
mm d−1. Both equations are solved via Euler's method of integration
with a small time step (e.g. 1 h).

A gravity flow approximation to soil water flow (Whelan and
Gandolfi, 2002; Whelan et al., 2002; Jury and Horton, 2004) is used
to represent drainage, in which a unit hydraulic gradient is assumed
and where the unsaturated hydraulic conductivity is predicted
using the Mualem-van Genuchten model (van Genuchten, 1980) from
(S − Sr) / (SMAX − Sr) where Sr (mm) is the residual moisture storage
(assumed here to be the storage at the permanent wilting point - i.e.
the water content at−1500 kPa tension) and SMAX (mm) is the storage
at saturation over the depth of the soil store under consideration. Note
that the residual moisture content employed in the application of the
Mualem-van Genuchten model in soil physics is often lower than the
wilting point but here the equations are used in a different way and
with different physical significance for the parameters, which represent
effective area responses rather than describing hydraulic properties at
the Darcy scale.

2.1.1. Evapotranspiration
For many catchments, the full set of meteorological variables re-

quired for the Penman-Monteith equation is not available. Reference
evapotranspiration is, therefore, calculated from air temperature data
using the Hargreaves equation (Hargreaves and Samani, 1985):

ETO ¼ 0:135 � KT � T þ 17:8ð Þ � T max−T minð Þ0:5 � Ra ð3Þ

where ETO is reference evapotranspiration (mm d−1), KT is an empirical
coefficient (−) assumed to be fixed at 0.17 (Hargreaves and Allen,
2003; Weiß andMenzel, 2008), Tmax is the maximummonthly temper-
ature (°C), T is daily average temperature (°C), Tmin is the minimum
monthly temperature (°C) and Ra is extra-terrestrial radiation flux den-
sity in units of equivalent water evaporation (i.e. the flux density divid-
ed by the latent heat of evaporation: mm d−1).

Potential crop evapotranspiration is calculated as:

ETC ¼ ETO � KC ð4Þ

where ETC is the potential evapotranspiration (mmd−1) and KC is a crop
coefficient (−) intended to adjust ETO to account for crop characteristics
at particular growth stages. KC values are taken from Holman et al.
(2005) for key stages in the plant growth cycle. Linear interpolation is
used to provide daily estimates of KC between stages.

Actual evapotranspiration (ETa) is calculated fromAllen et al. (1998)
as:

ETa ¼ ETC � KS ð5Þ

where ETa is the actual evapotranspiration (mmd−1) andKs is thewater
stress coefficient (−) i.e. the ETa:ETC ratio is assumed to decrease below
unity at a fixed threshold soil moisture content and reach zero at the
permanent wilting point.

The contribution of the topsoil and subsoil stores to total daily
evapotranspiration depends on the fraction of the total root length as-
sumed in each store (Finch, 1998). Assuming water uptake is propor-
tional to the root density (Huang and Fry, 2000) and root zone density
decreases with depth, Hansen et al. (1979) proposed a triangular func-
tion to describe root water extraction with depth, with the greatest
water-uptake taking place near the surface (Finch, 1998; Ragab et al.,
1997). This approach has been adopted here.
In autumn and winter, bare soil is common in arable environments
in the UK. The potential evaporation from bare soil is calculated as:

ES ¼ ETO � Ke ð6Þ

where ES is evaporation from bare soil (mm d−1) and Ke is a bare soil
evaporation coefficient (−), set at 1.10 (Rushton, 2003). In Eq. (1), ETa
is replaced by ES and fTOP is set to 1. In the subsoil, loss of water via evap-
oration frombare soil is considered to be negligible (i.e. fSUB=0). Actual
evaporation from bare soil is adjusted for water availability in the top-
soil via KS (see Eq. (5)).

2.2. Modelling hydrological pathways from the soil to surface water

The hydrological pathways (overland flow, lateral throughflow,
drainflow and/or percolation to groundwater) from soil to surface wa-
ters are assumed to drive pesticide transport. Each soil type is assigned
to one of three broad (but physically realistic) classes representing con-
trasting boundary conditions at the base of the subsoil (A: unsaturated
and free draining; B: low permeability with and without drains; and
C: partially saturated subsoil; Fig. 1). The boundary condition assigned
is based on a soil's Hydrology of Soil Type (HOST) class (Boorman
et al., 1995), a widely-accepted classification of hydrological settings
of soil in the UK, which has also been applied across Europe
(Schneider et al., 2007). A similar approach was taken by Steffens
et al. (2015) in MACRO-SE where soil types are assigned to four classes
(rather than three).

In the unsaturated, free-draining bottom boundary condition
(A) there are no restrictions to vertical percolation into the unsaturated
zone, which represents themajor drainage pathway out of the soil. Per-
colation is calculated assuming a gravity flow approximation to soil
water flow inwhich a unit hydraulic gradient is assumed. The saturated
hydraulic conductivity and parameters describing the shape of the
water retention curve (van Genuchten, 1980) were derived from soil
type-specific data in the National Soil Map database.

In the low permeability bottom boundary condition (B), the princi-
pal pathway for water movement is lateral (Fig. 1). In the UK, approxi-
mately 66% of arable land is drained (De la Cueva, 2006). Where
artificial field drains are assumed to be in place, this is the principal
transport pathway to surface water. In such situations drainflow from
the subsoil store is calculated using an exponential equation similar to
that employed in TOPMODEL (Beven et al., 1984; Beven and Kirkby,
1979):

qAD ¼ Cd � exp −Dsub=Cmð Þ ð7Þ

where qAD is the flow generated from artificial drainage (mm d−1), Dsub

is a deficit from saturation (mm) calculated from the water balance in
the subsoil (Dsub=0when the subsoil is saturated), Cd is themaximum
drainflow rate (mm d−1) and Cm is a drainflow parameter that controls
the shape of the recession curve (mm).

When drains are not present, lateral throughflow is considered to be
the dominant pathway from the subsoil (Carter, 2000). The generation
of lateral throughflow in the topsoil store of IMPT is predicted to occur
only when the subsoil is temporarily saturated, thereby restricting
drainage from the topsoil store, or when predicted drainage from the
topsoil store exceeds the saturated hydraulic conductivity of the subsoil
store. An exponential storage model is also used to describe lateral
throughflow in the subsoil:

qLT ¼ Klat � exp −Dsub=Clatð Þ ð8Þ

where qLT is the lateral flow generated in the subsoil (mm d−1), Klat

is the saturated lateral hydraulic conductivity (mm d−1) and Clat is a
parameter that controls the shape of the curve (mm).

Percolation into the unsaturated zone in the presence of low perme-
ability material is possible (Jackson and Rushton, 1987; Klinck et al.,



Fig. 1. Schematic diagram of the three boundary conditions considered in IMPT at the base of the subsoil store.
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1996) and is conceptualised in IMPT as described for condition A but
with a low value for the saturated hydraulic conductivity which reduces
its importance as a hydrological pathway.

The partially-saturated bottom boundary condition C is assumed to
occur in soils that have a permanent groundwater table within 2 m of
the soil surface, typical of alluvial soils. No percolation is assumed
under this boundary condition and the pathway for water is assumed
to be entirely via field drains (Fig. 1).

Overland flow (saturation excess and infiltration excess) can occur
in the topsoil under all three boundary conditions. Overlandflow, as sat-
uration excess, is generated in IMPT when the available storage in the
topsoil reaches zero. Infiltration excess overland flow occurswhen rain-
fall intensity is greater than the soil infiltration rate. This is difficult to
estimate using daily data because high intensity rainfall events tend to
occur for short durations which can only be predicted using hourly or
sub-hourly data. Such data are often not available in many catchments.
In their absence, infiltration excess overland flow is approximated by
assuming that a fraction of rainfall above a certain threshold cannot in-
filtrate sufficiently quickly. This threshold is set as a proportion (p2;−)
of the Minimum Standard Rainfall Volume (MSRV; mm) – a parameter
associated with the HOST class (Brown and Hollis, 1996). Thus, for an
event of magnitude Rwhich is greater thanMSRV.p2, infiltration excess
overland flow (qOF) is:

qIEOF ¼ R−MSRV � p2ð Þ � f R ð9Þ

where qIEOF is the infiltration excess overland flow generated (mmd−1)
and fR is the fraction of the “excess” rainfall that flows over the surface
(−). This is similar to the storage threshold approach used by Kirkby
et al. (2008). A low MSRV is associated with soils which are expected
to require only a small volume of rainfall to induce a stream response.

2.3. Modelling solute transport

The pesticide mass balance in the soil takes the form:

dMSOIL

dt
¼ E−k:MSOIL− J ð10Þ

whereMSOIL is the mass of pesticide in a soil layer (μg m−2) at any par-
ticular time t (d), E is the application rate (μg m−2 d−1), k is first-order
dissipation rate constant (d−1) and J is themass flux of pesticides out of
the soil in mobile soil water (μg m−2 d−1). Again, this is solved numer-
ically via Euler's method with a sufficiently small time step to avoid
significant integration errors.

The fate of pesticides in the soil after application is accounted for in
two stages: (1) pesticide fate and transport between “significant”
rainfall events and (2) pesticide displacement during such events. Sig-
nificant rainfall events are considered to be those capable of transferring
a fraction of the soil pore water and associated pesticide to an adjacent
surface water body. Following a significant rainfall event any remaining
pesticide is assumed to continue undergoing internal redistribution.

2.3.1. Pesticide fate in the soil
On application, pesticide is assumed to immediately penetrate the

soil uniformly to a given depth – nominally 2 mm (Brown and Hollis,
1996). There is no consideration of crop interception. Thepesticide is as-
sumed to diffuse through the ‘non-excluded’ water filled pore space
(Brown and Hollis, 1996) and to equilibrate between water and the
soil solid phase (assuming hydrophobic interactions dominate resulting
in a linear sorption isotherm). Pesticide partitioning between the gas
phase and other phases is not considered so themodel is only applicable
to non-volatile compounds (although most modern pesticides are not
volatile to any extent which would affect significantly their concentra-
tions in water). The non-excluded water filled pore volume is defined
as the difference between the current volumetric water content of the
soil and 50% of the volumetric water content at permanent wilting
point. Pesticides are assumed to be excluded from the most strongly
held water due to slow diffusion and size exclusion phenomena
(Brown and Hollis, 1996).

In the soil water phase a pesticide is assumed to be subject to vertical
advective transport due to gravity as long as the soil is wet enough
(Kördel et al., 2008). This is assumed to be proportional to the unsatu-
rated hydraulic conductivity, calculated using the Mualem-van
Genuchten (1980) equation, subject to retardation due to sorption to
the surrounding soil matrix. The concentration of pesticide in the non-
excluded pore water (CNE, μg L−1) is calculated as the ratio of the
mass of pesticide in the dissolved phase and the non-excluded water
volume, i.e.:

CNE ¼ Msoilwater

θNE � Zð Þ ¼ Msoil

Z � θNE þ Kd � ρBð Þ ð11Þ

whereMsoilwater is themass of pesticide in the dissolved phase (μgm−2),
θNE is the volumetric non-excluded fraction (assumed to be uniform
throughout the topsoil store; m3 m−3), Z is the soil depth (mm) to
which pesticide has penetrated, Kd is the linear sorption coefficient
(L kg−1) and ρB is the soil bulk density (kg L−1).

At the time of a rainfall event, a fraction (fd) of the so-called ‘mobile’
water-filled pore volume (θmob) is assumed to be displaced by rainfall.
This mobile water refers to the largest water filled pores and is defined
as the difference between the current volumetric water content and a
mobile threshold (i.e. the volumetric water content at 200 kPa tension:
again, after Brown and Hollis, 1996). If the volumetric water content is
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less than θ200 (i.e. the volumetricwater content at 200 kPa) then the vol-
ume of mobile water is zero. This mobility threshold has also been used
by Addiscott et al. (1986).

The fraction of the mobile water displaced, fd, is assumed to be a
function of the ratio of the unsaturated hydraulic conductivity K(θ)
and the saturated hydraulic conductivity (Ksat), such that a larger vol-
ume of water will be displaced the closer the soil is to saturation:

f d ¼ Vd

θmob:Z

� �
¼ K θð Þ

Ksat
ð12Þ

where Vd is the volume of displaced water from the most mobile pores
(L m−2) i.e.:

The pesticide mass, J (μg m−2), generated by the displacement of Vd
is calculated as:

J ¼ CNE � Vd: ð13Þ

This mass is assumed to be transported to surface water and/or to
the water table based on the relative importance of different hydrolog-
ical pathways.

Between subsequent rainfall events the remainingmass of pesticide
is assumed to undergo further equilibrium partitioning, first order deg-
radation and vertical advective transport.

2.3.2. Pesticide transport from the soil
Pesticide transport from soil is intrinsically linked to hydrological re-

sponse. The pathways of pesticide transport through the soil during a
rainfall event (i.e. via macropores or through the bulk matrix) are not
explicitly represented due to their complexity and associated uncer-
tainties, which bedevil description using only a few readily-available
parameters. Instead, wemake an implicit assumption that the displaced
pesticide mass bypasses the soil matrix during an event and is
transported directly to surface water (e.g. by overland flow, drainflow
or lateral throughflow and/or to the top of the unsaturated zone). We
recognise that this is probably not realistic for all soil types and may
lead to an overestimation of pesticide transport for sandy soils where
bypass flow tends to be less important. However, it is also important
to recognise that Vd will depend on θmob and the ratio K(θ): KSAT

(Eq. (12)) and will be lower for coarse textured soils which tend to be
drier in spring and summer.

Pesticide at the top of the unsaturated zone is available for further
transfer to the water table but this is not covered further here (see
Pullan, 2014 for more information). The pesticide flux to surface water
(Jsw, i, j; μg m−2d−1) is calculated as:

Jsw;i; j ¼ Ji; j:
qOLFi; j þ qLATi; j

qOLFi; j þ qLATi; j þ qGWi; j

 !
ð14Þ

where i and j are indices for soil type and crop type, respectively, qOLF is
overlandflow, qLAT is thewater flux generated fromdrainflow and later-
al throughflow (from both the topsoil and subsoil) and qGW is the water
percolating through the base of the subsoil in boundary conditions A
and B which is not assumed to reach the receiving water body (all in
mm d−1).

Total flow in the river (QCATCH, mm d−1) is calculated as the sum of
baseflow from a groundwater store (QBASE, mm d−1) and a weighted
contribution of runoff from different soil type and crop combinations
within the catchment.

QCATCH ¼ QBASE þ
XNsoil
i¼1

XNcrop
j¼1

qOLFi; j þ qLATi; j
� �

:wi: j

0
@

1
A ð15Þ

where Nsoil and Ncrop are the numbers of soil types and crop types in
the catchment and wi,j is the relative area of soil type i covered by
crop type j. It is assumed that

QBASE ¼ Cg : exp −GWt=BFð Þ ð16Þ

where Cg is the groundwater flow constant (mmd−1), GWt is a ground-
water storage deficit (mm) which is depleted by percolation from the
soil and augmented by baseflow to the river, and BF is a baseflow con-
stant that controls the shape of the recession (mm). The groundwater
store is assumed to have the same catchment boundary as the surface
water catchment.

The pesticide mass at the catchment outlet (JCATCH, μg m−2 d−1) is
calculated as a weighted average flux from different soil type and land
use combinations.

JCATCH ¼
XNsoil
i¼1

XNcrop
j¼1

JSWi; j:wi; j: f TREAT;i
� �

ð17Þ

where fTREAT, i is the fraction of crop type i which is treated with the
pesticide in question.

The pesticide concentration at the catchment outlet (CCATCH; μg L−1)
will be subject to dilution fromwater originating from soil type and land
use combinations where pesticides have not been applied, as well as
dilution from baseflow:

CCATCH ¼ JCATCH
QCATCH

: ð18Þ

3. Model set-up, calibration and validation

Themodel was applied to a small head-water sub-catchment and in
five larger catchments representing a range of sizes, land use distribu-
tions and physical characteristics.

3.1. Study catchments and monitoring data

3.1.1. Headwater sub-catchment
A 15.5 ha sub-catchment in the upper reaches of the river Cherwell

in central England was described in detail by Tediosi et al. (2012,
2013). Briefly, it is comprised of two fields: a drained arable field
(8.6 ha) and, upslope, an undrained interfluve area (6.9 ha). The arable
field is primarily underlain by heavy clay soil of the Denchworth series.
On the interfluve, the soils are lighter and made up of soils of the
Banbury Association which overlie the Northampton Sand. The flows
at the drain outlet also include a baseflow component from the North-
ampton Sand, which is assumed to be recharged solely in the interfluve
area (Tediosi et al., 2013). The arable field was cropped with oilseed
rape in 2009/10 and two pesticides were applied: propyzamide on the
7th of November 2009 at a rate of 800 g ha−1 and carbetamide on the
15th of February 2010 at a rate of 2100 g ha−1 (Tediosi et al., 2012).
This is not normal agricultural practice, as the carbetamide was applied
for experimental reasons only.

Hourly rainfall and temperature data were collected, together with
5 min flow data from a Venturi flume connected to the main drain via
a stainless steel collecting tank. Samples were collected every 8 h for
pesticide analysis. DT50 values of 56 days and 8 days and KOC values
of 840 L kg−1 and 89 L kg−1 were assumed for propyzamide and
carbetamide, respectively (Tediosi et al., 2012, 2013). IMPT was run at
an hourly time-step for this system.

3.1.2. Larger catchments
The model was also applied to five larger surface water catchments

in England and Wales covering a range of size, climate, runoff, land
use, soil types and geology: the Lugg, Teme, Waveney, Wensum and
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Yare for eight pesticides: 2,4-D, carbetamide, clopyralid, chlorotoluron,
isoproturon, MCPA, mecoprop and propyzamide.

Regular pesticide monitoring has been conducted in these catch-
ments as part of Catchment Sensitive Farming (CSF Evidence Team,
2011). Daily flow data were available for all five catchments. However,
in all cases, the flow monitoring point is located a short distance up-
stream of the pesticide monitoring point resulting in different catch-
ment sizes (see Table 1). Dominant geology and soil associations in
each catchment are shown in Table 1 although it should be stressed
that each catchment contains a complexmosaic of soils and parent ma-
terials which are not always reflected by the dominant class.

All flows are calculated on an area-normalised basis (i.e. inmmd−1)
and the land use and soil type distributions in both the gauged and sam-
pled catchments were assumed to be the same. Similarly, the ground-
water store is assumed to have the same catchment boundary as the
surface water catchment. IMPT was run at a daily time-step for these
catchments.

3.2. Input data at the catchment scale

In order to be applicable to a wide range of catchment types in the
UK, IMPT has been designed to runwith readily available data: the data-
base of theNational Soil Map (available fromhttp://www.landis.org.uk/
data/natmap.cfm) and CORINE land cover data (CLC, 2000). Rainfall and
temperature data were taken from the British Atmospheric Data Centre
(BADC), with a single weather station chosen to represent each catch-
ment (Table 1).

The distribution of soil types in each catchment was determined
from the 1:250,000 scale National Soil Map for England and Wales,
with the soil properties (Table 2) of the dominant soil type used to rep-
resent all soils in each mapping unit. Soil properties are available for
four broad land uses: arable, long-term ‘permanent’ grassland, short-
term rotational ‘ley’ grassland, and ‘other’ (i.e. land that is semi-
natural). Soil properties for arable land were used unless arable land is
not found on that soil type in the catchment. In this instance, the most
suitable land use group is used instead. Each soil type was assigned a
priori into one of the three contrasting boundary condition classes (A,
B or C) by expert judgement on the basis of their HOST class. This allo-
cation can be found in the Supplementary Material File (Table SM3).

The land cover in each catchment was determined using CORINE
Land Cover 2000 which was grouped into four broad categories: arable,
grassland, urban and other (e.g. forests, moorland and estuaries). The
arable land cover category in each catchment was further divided into
the two most common arable crop types in England: winter wheat
and winter oilseed rape, based on the DEFRA June Survey statistics
(DEFRA, 2010). Grass is used to represent all grass-based land uses as
well as the urban and other land use categories. Although in urban
areas, vegetated surfaces, such as gardens and parks, can cover signifi-
cant areas (Grimmond and Oke, 1999) and affect hydrological response
(e.g. Huang et al., 2008), their extent in the predominantly rural study
catchments was small. Pesticides are only assumed to be applied in
the “grassland” and “arable” land use categories and not in the urban
and other land use categories.

The following vegetation-specific parameters are required to calcu-
late actual evapotranspiration: rooting depth at emergence, maximum
rooting depth, Kc (initial, mid growth and end), the depletion factor
(p) and growth stage dates (planting, emergence, 10% cover, 100%
cover, senescence and harvest). Crop development parameters and
evapotranspiration parameters (e.g. Kc for various stages) were taken
from Holman et al. (2005). The parameters for grass are assumed to
be constant all year round, i.e. a constant root depth andKC are assumed.

Pesticide properties (KOC and DT50) were taken from the Pesticide
Properties Database (University of Hertfordshire, 2013), manufacturers'
safety data sheets and EFSA conclusions (European Food Safety Author-
ity, 2010). KOC and DT50 exhibit a large degree of variability (Table 3)
which can lead to issues of subjectivity about which values to choose

http://www.landis.org.uk/data/natmap.cfm
http://www.landis.org.uk/data/natmap.cfm
http://www.wensumalliance.org.uk/publications/CSFpesticidesreport_2006_2012_061112.pdf
http://www.wensumalliance.org.uk/publications/CSFpesticidesreport_2006_2012_061112.pdf
http://www.wensumalliance.org.uk/publications/CSFpesticidesreport_2006_2012_061112.pdf
http://www.wensumalliance.org.uk/publications/CSFpesticidesreport_2006_2012_061112.pdf
http://www.wensumalliance.org.uk/publications/CSFpesticidesreport_2006_2012_061112.pdf
http://www.wensumalliance.org.uk/publications/CSFpesticidesreport_2006_2012_061112.pdf


Table 2
Soil properties required in IMPT.

Soil property Symbol

Water content at saturation (0 kPa; cm3 cm−3) θsat
−5 kPa,−10 kPa,−200 kPa and−1500 kPa tension; cm3 cm−3) θ5, θ10, θ200, θ1500,
Bulk density (g cm−3) pb
Sub-vertical saturated hydraulic conductivity (mm d−1) Ksat

Lateral saturated hydraulic conductivity (mm d−1) Klat

van Genuchten n parameter (−) n
Organic carbon content (%) OC
Depth of topsoil and subsoil layer (mm) Ztop, Zsub
Drain installation depth (mm) Zdrain
Maximum hydraulic conductivity of the last soil horizon (mm d−1) KBC

For each soil type
Hydrology of soil type classification (−) HOST
Minimum standard rainfall volume (mm) MSRV
Baseflow index (−) BFI
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(Boesten and Gottesbüren, 2000; Dubus et al., 2003). Therefore, IMPT
was run using a best case combination (a high KOC and a low DT50)
and a worst case combination (a low KOC and a high DT50) to capture
the edges of the pesticide property envelope (see Table 3).

The treated area of winter wheat and winter oilseed rape was esti-
mated from the national average usage using data from 2008
(Garthwaite et al., 2010) and crop statistics (DEFRA, 2009). The grass
treated area was estimated from 2005 data (Garthwaite et al., 2006)
and the crop statistics from DEFRA (2006). The application window
for each pesticide was estimated using product labels and Whitehead
(2006). In each catchment, the percentage of the catchment treated
with a pesticide is split equally over the application window. For exam-
ple, propyzamide has a 17 week application window. If 34% of the oil-
seed rape in each catchment is assumed to receive propyzamide, this
equates to 2.0% applied each week across the catchment. In the model
the application day is assumed to be a Monday, unless rainfall is
N2 mm d −1, in which case the application day moves forward to the
next day, assuming that most farmers will not spray during rainfall
events. The application rate is assumed to be the maximum label rate
for a single application (Table 3).

3.3. Model calibration and validation

In the upper Cherwell sub-catchment themodel run was split into a
calibration period (October 2009–December 2009) and a validation pe-
riod (February 2010–March 2010). A “warm-up” period was also used,
which employed a copy of the rainfall and temperature data from the
calibration period.

In the other catchments, model runs were split into a two year
warm-up period (1989–1991 in the Lugg, Teme, Wensum and Yare
and 1991–1993 in the Waveney), a calibration period (1992–2011 in
Table 3
Pesticide properties (KOC andDT50), main uses in theUK, typical application rate and typical app
and highest values reported for each compound (University of Hertfordshire, 2013).

Pesticide active
ingredient

Organic carbon to water partition
coefficient KOC (L kg−1)

Soil DT50
(days)

M
U

2,4-D 5–212 2–59 G
C

Carbetamide 45–180 15–60 O
Chlorotoluron 108–384 26–40 C
Clopyralid 2–30 14–56 O
Isoproturon 67–235 13–40 C
Mecoprop 10–40 7–21 G

C
MCPA 10–57 6–43 G

C
Propyzamide 128–990 16–54 O

a Treated area for grass estimated with pesticide usage statistics from 2005 (Garthwaite et a
oilseed rape estimated from pesticide use statistics from 2008 (Garthwaite et al., 2010) and cr
the Lugg, Teme, Wensum and Yare and 1994–2002 in the Waveney)
and a validation period (2002–2010 in the Lugg, Teme, Wensum and
Yare and 2003–2010 in the Waveney). Seven catchment-specific pa-
rameters were adjusted in calibration: drainflow parameters (Cm and
Cd), baseflow parameters (Cg and BF), infiltration excess overland
flow parameters (p2 and fractR) and a subsoil lateral throughflow pa-
rameter (Clat). Calibration was performed via a manual trial and error
procedure with parameter values adjusted one at a time. Although
this involves a certain degree of subjectivity and may result in identify-
ing local rather than global optima, the physical significance of parame-
ters is often eroded by any optimisation routine – even automated ones
(Beven, 1989). Furthermore, there may be several combinations of pa-
rameter values which result in similar goodness of fit (equifinality:
Beven, 2006).

Two model performance statistics: Nash Sutcliffe Efficiency (NSE;
Nash and Sutcliffe, 1970) and Percent Bias (PBIAS) were used to assess
goodness-of-fit. In the calibration period the parameter set was chosen
so as tomaximise theNSE, whilstminimising the PBIAS (see Tables SM1
and SM2 in the supplementary material). No calibration of pesticide-
specific parameters or the parameters pertaining to themoisture reten-
tion curve (e.g. θmob) was performed at either scale.

Validation of model performance for predicting pesticide concentra-
tions was relatively straightforward at the headwater scale due to the
high frequency of sampling. However, in the larger catchments, mea-
sured data were only available at approximately fortnightly intervals
and sometimes longer. This presents challenges for evaluating IMPT
predictionswhich aremade on a daily time step. Resultswere evaluated
against themeasured data via a combination of visual comparisons and
comparing cumulative frequency distributions.

4. Results and discussion

4.1. Upper Cherwell

Observed and predicted drainflow and pesticide concentrations in
the Cherwell sub-catchment are shown in Fig. 2, split between the cali-
bration (Fig. 2a) and validation periods (Fig. 2b). The overall perfor-
mance of IMPT for predicting drainflow was good: NSE values were
0.66 and 0.56 for the calibration and validation periods, respectively,
and BIAS values were 12.6% and −20.5%, respectively. These metrics
compare favourably with the performance of MACRO (Larsbo and
Jarvis, 2003; Larsbo et al., 2005), a one-dimensional dual permeability
solute transport model combined with baseflow contributions from
the Northampton Sand in the same catchment (Tediosi et al., 2012,
2013). The timing and magnitude of peak drainflow prediction during
the calibration period was particularly good with only a slight over-
prediction of the first two events (Fig. 2a). In the validation period,
there was a general underestimation in drainflow by IMPT. This could
licationwindow. OSR=Oil Seed rape. Ranges given forKOC and SoilDT50denote the lowest

ain uses in the
K

Application
rate

Application
windows

Treated area
(%)a

rass 1.65 kg/ha 15 Mar–15 Apr 0.5%
ereal 1.25 kg/ha 31 Mar–5 Apr 0.3%
SR 3.5 kg/ha 15 Oct–28 Feb 10%
ereals 3.5 kg/ha 1 Oct–25 Mar 5%
SR 0.2 kg/ha 20 Feb–29 Apr 6%
ereals 1.5 kg/ha 1 Oct–20 Apr 41%
rass 1.3 kg/ha 1 Mar–31 Jul 0.6%
ereal 1.3 kg/ha 25 Mar–30 Apr 21%
rass 1.6 kg/ha 1 Mar–31 May 1.7%
ereal 1.6 kg/ha 15 Oct–15 Apr 1.5%
SR 0.8 kg/ha 1 Oct–31 Jan 34%

l., 2006) and crop statistics from DEFRA (2006). Treated area for winter wheat and winter
op statistics from DEFRA (2009).



Fig. 2. Rainfall, observed (solid line) and predicted (dashed line) drainflow in the Cherwell sub-catchment during (a) the calibration period and (b) the validation period. Observed and
predicted concentrations of (a) propyzamide and (b) carbetamide are also shown.
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be attributed to high snow fall in this period resulting in both snowmelt
contributing to observed drainflow and a probable under-estimation of
precipitation by the rain gauge (Tediosi et al., 2013).
The prediction of timing and magnitude of peak propyzamide con-
centrations (Fig. 2a) and peak carbetamide concentrations (Fig. 2b) in
comparison with the measured data are also reasonable suggesting



Table 4
Model performance statistics and overall model performance of IMPT for the prediction of
flow at the catchment outlet in the five larger catchments.

Catchment Calibration Validation

NSE PBIAS Overall model
performancea

NSE PBIAS Overall model
performancea

Lugg 0.71 3.6 Very good 0.72 9.3 Very good
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that the IMPT model structure is able to predict the chemograph peaks
accurately. However, the clear quasi-exponential post-storm recessions
in concentrations for both pesticides do not appear to be well captured
by IMPT. This is because pesticide displacement out of the soil profile is
not predicted at times when there is no rainfall (although internal
redistribution via vertical advective transport is predicted to occur:
Section 2.3.1).
Teme 0.71 19.6 Good 0.72 9.1 Very good
Waveney 0.54 −14.8 Good 0.59 −11.3 Good
Wensum 0.25 29.6 Poor 0.19 1.7 Poor
Yare 0.53 12.8 Good 0.45 2.1 Poor

a Adapted from Henriksen et al. (2003).
4.2. Hydrograph simulations in the larger catchments

The model's ability to reproduce the hydrograph in both the calibra-
tion and validation periods was good in four out of five cases in the
Fig. 3. Measured and predicted flow during the validation period in (a) the river Lugg at Lugwardine (b) the river Teme at Knightsford Bridge, (c) the river Waveney at Needham Mill
(d) the river Wensum at Costessey Mill and (e) the river Yare at Colney.
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larger catchments. Observed and predicted flows for the validation pe-
riod are shown in Fig. 3. Model performance statistics for the calibration
and validation periods are shown in Table 4. Observed and predicted
flows for the calibration period and cumulative frequency distributions
for pesticide concentrations are provided in the supplementary
material.

In both the Lugg and the Teme catchments, IMPT reproduced both
the timing and magnitude of peak flows reasonably well, particularly
in the autumn and winter (Fig. 3a and b). In the Lugg validation period
there was a slight over estimation of some peak events by the model
(Fig. 3a), but these were generally above the rating curve limit of
3.13 mm d−1 imposed in 2002.

In the Waveney catchment, model performance in the autumn and
winter was also good for flow timing and magnitude. However, be-
tween May and September the measured flow was underpredicted in
both the calibration and validation periods. Note that due to missing
flow data in 2006 the results in Fig. 3c start from January 2007.

In the Yare catchment, model performance in the calibration period
was good, but decreased in the validation period (Table 4; Fig. 3e). Over-
all, IMPT reproduced the timing of peak flows quite well and only
missed a few peaks, principally in the summer periods. However,
there was a slight tendency to over-predict peak flow events during
the autumn and winter periods. This over-prediction could potentially
affect the NSE as this metric is sensitive to extreme outliers due to the
use of squared differences (Krause et al., 2005; Legates and McCabe,
1999; McCuen et al., 2006).

The Wensum is the only study catchment for which the model per-
formed poorly in both the calibration and validation periods (Table 4).
Typically the observed hydrograph was under predicted for long pe-
riods and peak flows were over-predicted for high magnitude events.
In addition, the model failed to reproduce the timing of some events
(Fig. 3d). The relatively poor model performance for the Wensum may
be due to a failure to account for artificial influences in the catchment,
such as water abstraction, effluent return flows and the influence of
mill structures (and associated impoundments) which have been built
along two-thirds of the main river course which can regulate the flow
via sluices. This means that the river can behave more like a series of
lakes (EA, 2010a). Another possible reason for poor model performance
could be the use of an unrepresentative rainfall station.

4.3. Pesticide simulations in the five CSF catchments

The measured and predicted frequency of detections N0.1 μg L−1 in
the larger catchments are compared in Table 5. The range in predicted
Table 5
Measured and modelled frequency of detections N0.1 μg L−1 for each pesticide catchment com

Lugg Teme

Measured Predicted# Measured Predicted# Meas

2,4–D 0% 0–3% 0 % 0–3% 1 

Carbetamide 0.4% 0.2–13% 0.7 % 0–14% 21 

Chlorotoluron 9% 6–20% 7 % 3–25% 1 

Clopyralid 0% 0–0.3% 0.7 % 0–0.1% 9 

Isoproturon 10% 18–29% 15 % 21–35% 46 

MCPA 3% 0.1–9% 4 % 0.2–11% 10 

Mecoprop 3% 13–25% 7 % 13–21% 15 

Propyzamide 3% 0–15% 2 % 0–19% 15 

R (Spearman) 0.80* 0.87*

Key: Green blocks are predicted ranges which span the measured frequency of con centra

greater than the measured frequency and orange blocks are where the predicted frequen
# Range of predicted frequencies of detectionfor best case to worst case Koc and DT50 com

* Significant at p<0.05
frequencies was derived considering the parameter envelope of
best case and worst case KOC and DT50 combinations. Themeasured fre-
quency was captured by the model range in 17 out of the 40 pesticide/
catchment combinations andwas typically within a factor of three in all
but three of the remaining combinations. In the East Anglian catch-
ments (Waveney,Wensum and Yare) the predicted frequency of detec-
tions was typically less than the measured frequency but in the Lugg
and the Teme frequencies were better predicted and, on occasion,
over-predicted.

Spearman's rank correlation coefficients for the rank order of fre-
quencies are also shown in Table 5. In three of the catchments (Lugg,
Teme and Wensum), the correlation between measured and predicted
ranks was significant (p b 0.05). In theWaveney and the Yare the corre-
lation coefficientwas positive andmoderately high (but not significant)
suggesting that predictions of the likelihood of challenging Drinking
Water Directive compliance are uncertain.

As an example, the time-series of measured and predicted
propyzamide concentrations are shown in Fig. 4 for all five catchments
between September 2006 and September 2007. Results for other pesti-
cides (2,4-D, carbetamide, chlorotoluron, clopyralid, isoproturon, MCPA
and mecoprop) are presented in the supplementary material. In all five
catchments, IMPT tends to predict peak concentrations greater than
those typically observed in the measured data and earlier than those
observed at the catchment outlet.

4.4. Discussion

Changes in pesticide concentrations in surface water often follow
the hydrograph, increasing on the rising limb and falling during reces-
sion (Leu et al., 2004; Müller et al., 2003; Taghavi et al., 2010, 2011;
Tediosi et al., 2012). Therefore, good hydrological predictions often
underpin adequate predictions of pesticide exposure.

In the headwater sub-catchment of the upper Cherwell the
drainflow hydrograph was well reproduced as were the peak concen-
trations of propyzamide and carbetamide. In the larger catchments
hydrograph predictions from October to March, when autumn-applied
herbicides are used were also generally very good for the Lugg, Teme,
Waveney and Yare. For the Wensum, although the magnitude of peak
events was not well simulated, the observed timing of the rising limb
was usually identified, at least for the winter period.

Hydrograph discrepancies between IMPT predictions and observa-
tions could be due to inaccuracies and spatial variability in rainfall
data and ETO estimations. For convenience, a single weather station
was chosen for each catchment (Table 2) which is unlikely to be always
bination.

Waveney Wensum Yare

ured Predicted# Measured Predicted# Measured Predicted#

% 0–0.4% 1 % 0–0.4% 3 % 0–0.2% 

% 6–18% 5 % 2–19% 11 % 0–20% 

% 10–13% 3 % 9–21% 0.5 % 10–22% 

% 0–0.4% 0.8 % 0–0.5% 4 % 0–0.3%

% 11–13% 27 % 18–24% 35 % 20–26% 

% 0.7–2% 6 % 0.2–4% 8 % 0.1–4%

% 11–13% 7 % 16–22% 12 % 18–23% 

% 0.2–18% 7 % 0–20% 10 % 0–20% 

0.60 0.76* 0.61

tions greater than 0.1 µg L–1, blue blocks are where the predicted frequency is 

cy is less than the measured frequency and orange blocks 

binations. 



Fig. 4. Comparison of predicted and measured propyzamide concentrations and predicted flow between September 2006 and September 2007 in the (a) Lugg, (b) Teme, (c) Waveney,
(d) Wensum and (e) Yare catchments. Note the different scales in different catchments.
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representative of average conditions across the catchment over the
whole period, particularly for rainfall. The estimation of ETO in IMPT
was based on temperature using the Hargreaves method, which is
known to be less accurate than the Penman-Monteith equation (e.g.
López-Moreno et al., 2009).

The under-estimation of observed peak flows during the summer, in
all five large catchments (Fig. 3) could (at least in part) be a result of
an inadequate prediction of infiltration excess overland flow in the
model due to the use of daily meteorological data. As a consequence
the prediction of some spring-applied pesticide transfers could be
underestimated if pesticide transport is predominantly via this path-
way. Elsewhere, overland flow has been reported to contribute greater
annual loads to surface water than tile drains for spring-applied herbi-
cides such as MCPA between April and September (e.g. Logan et al.,
1994) although the conditions occurring in this study (Ohio, USA) are
probably not particularly representative of UK catchments. Other possi-
ble reasons for poorer summer performance of IMPT include failure to
predict saturation excess overland flow from areas of topographic con-
vergence, the possibility that macropore flow to field drains is not well
simulated in summer (the field-scale test of the model was performed
under winter conditions) and a poorer prediction of herbicide usage
rates, particularly on grassland.

Some discrepancies betweenmeasured andmodelled pesticide con-
centrations will certainly result from the low frequency of sampling
(typically grab samples once every twoweeks)which is unlikely to cap-
ture the highly episodic pattern of pesticide transfers reported for many
surface water systems (e.g. Holvoet et al., 2007; Kreuger, 1998; Tediosi
et al., 2012). Low sampling frequency for such pollutants often tends to
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lead to an under-estimation of peak concentrations (Rabiet et al., 2010).
Peak concentrations are typically highest in the first substantial rainfall
event after application (e.g. Capel et al., 2001; Leu et al., 2004; Tediosi
et al., 2012). In addition, point sources for pesticides such as spills on
hard standings during fill up and washdown operations of spraying
equipment could also contribute to exposure in the first subsequent
storm event (Kreuger, 1998; Rose et al., 2001). This will not be captured
by low frequency sampling but, equally, it will not be predicted by
models such as IMPT. Similarly, pseudo-point-sources, such as the use
of 2,4-D to treat Giant Hogweed (Heracleum mantegazzianum) on river
banks (EA, 2010b) and the use of herbicides in urban areas and along
roads and railways, could also lead to pesticide exposure which would
not be predicted by the model.

Given the good model performance in the upper Cherwell, where
application information was known and where samples were collected
frequently, discrepancies between themeasured and themodelled pes-
ticide concentrations in thefive larger catchments could also result from
inadequacies in land management data (e.g. pesticide treated area,
application rate and timing of application). The application window
assigned to each crop/pesticide combination will not reflect year-to-
year variations in actual application patterns, which will be influenced
by factors such as crop rotation, disease and weed pressure, weather
and ground conditions, crop growth stage and sprayer availability
(HSE, 2009; Matthews, 2008; West et al., 2003).

The model described here only makes exposure predictions for sur-
face waters (i.e. groundwater exposure is not included and shallow
groundwater incursion into the soil is assumed to be pesticide free –
Eq. (15)). Surface water contamination with pesticides is currently a
more acute problem for most water supply companies in the UK than
the contamination of groundwater. However, this is not to say that
groundwater contamination is not a serious problem. Long residence
times in both the vadose zone and in aquifers mean that where ground-
water is contaminated, recovery times can be significant (several de-
cades or more: e.g. Howden et al., 2011). It is possible to use IMPT for
predicting groundwater contamination potential (Pullan, 2014) by
moderating predicted leaching losses for sorption and dispersion
below the base of the soil profile and by using a weighted average loss
for recharge areaswithin source protection zones, if these have been de-
fined. Predicting contamination levels at individual boreholes is, how-
ever, complicated by complex flow patterns in the saturated zone,
which would require coupling IMPT predictions of pesticide inputs to
the water table with a groundwater flow and contaminant transport
model.

5. Conclusions

There is a clear need for catchment-scale modelling tools to predict
pesticide exposure in surface waters, particularly when used for drink-
ing water abstraction. Models used for assessing the risks of exposure
in ground and surface water for pesticide registration are focussed on
the propensity of a pesticide to leach rather than on the actual patterns
of concentration which might result at a catchment scale from its oper-
ational application. Thesemodels are usually based on amechanistic de-
scription of pesticide transport in one dimension. Although such a
description can be used successfully to represent pesticide losses at
the hillslope scale (Tediosi et al., 2013), its use in large catchments
with a range of soil types, topography and land uses ismore challenging,
not least due to the high data requirements of many of these tools (e.g.
Steffens et al., 2015). Here, we introduce a new model (IMPT) which
captures the most important processes affecting pesticide fate and
transport using data which are readily available at a national scale.
The work described in this paper demonstrates that such an approach
can generate acceptable reproductions of both hydrograph response
and pesticide concentrations at scales ranging from the headwater
(0.15 km2) to the catchment (several hundred km2). Predicted hydro-
logical behaviour in drainflow in the upper Cherwell and at the outlets
of the five larger catchments was generally reasonable in terms of NSE
and PBIAS, suggesting that the representation of key hydrological path-
ways is adequate.

The predicted pesticide concentrations were also reasonable com-
pared with the available observations, particularly at the headwater
scale. In the five larger catchments, observed pesticide concentrations,
with respect to frequency of detections N0.1 μg L−1, were typically
well predicted within the frequency envelope generated by uncer-
tainties in KOC andDT50. In the time-series comparison of concentrations
in the larger catchments, the model tended to predict an exposure peak
sooner than that seen in themeasured data,whichmay reflectmodelled
inadequacies in land management data (particularly timing of applica-
tion) as well as infrequent sampling.

Overall, the applications reported here suggest that IMPT is applica-
ble across a range of catchment types andhydrogeological settingsmak-
ing it useful for identification and prioritisation of catchment-specific
monitoring strategies, the spatial targeting of catchment management
interventions and the prediction of the efficacy of different intervention
options, as well as highlighting potential problems that could arise
under future scenarios (e.g. climate and land use changes and shifts in
pesticide usage).
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