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Building on the time-varying-coefficient (TVC) model, we propose a generalization of the 

concept of cointegration, allowing for the possibility that a set of variables measured with 

error entails a nonlinear relationship with unknown functional form. Both the dependent and 

explanatory variables of this relationship may be nonstationary (not necessarily of unit-root 

type), but there exists a nonlinear combination of all these explanatory variables that 

completely explains all the variation in the dependent variable. The TVC model allows us to 

test for the presence of this generalized cointegration in the absence of knowledge of the true 

nonlinear functional form and the full set of explanatory variables. We present the basic stages 

of the technique and discuss in detail how the issues of nonstationarity and cointegration affect 

each stage of the TVC estimation procedure. 
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1. INTRODUCTION 
 
As a concept, cointegration is fundamental to empirical work in macroeconomics, as 

it is at the heart of understanding dynamic structures.
1
 The link between cointe-

gration and causality, which is emphasized by the Granger representation theorem, 

makes this very clear. The conventional definition of cointegration, however, will 

identify an economic structure if that structure happens to be linear, but will fail to 

work adequately if the true structure is nonlinear. Clearly, most macroeconomic 

theory gives rise to nonlinear structures and so, in general, conventional coin-

tegration is not applicable. In this paper, we relate the recent literature dealing with 

the time-varying-coefficient (TVC) model to the concept of cointegration.
2
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Specifically, we develop a more general definition of cointegration than has been 

previously provided in the literature.
3
 The extension to the literature in what follows 

makes the link between cointegration and causality even more apparent because it 
places emphasis on the need for identifying true economic structures.  

Although developments in cointegration have been a focus of time-series econo-

metrics for about 20 years, these developments have occurred largely within a linear 

framework. Although there have been various extensions to a nonlinear framework, 

these extensions have generally been limited to specific nonlinear functional forms.
4
 

The reason for this situation is as follows: In light of its stan-dard definition, given 

in Engle and Granger (1987), cointegration becomes much easier to implement 

when the functional form of the relationship is assumed to be linear. Therefore, 

although it was found to be relatively straightforward to ask whether a linear 

functional form linked two or more variables together to produce a cointegrating 

combination, it was not obvious how to answer the more interesting question: Is 

there an unknown functional form, with possibly omitted variables, that would link 

two or more variables together in a structural relationship? Of course, the spirit of 

this question is precisely what was being asked in the cited paper by Engle and 

Granger, as well as in other work on cointegration [e.g., Cuthbertson et al. (1990); 

Enders (2009)]. However, there had been no way to make this general question 

tractable. Consequently, a much more limited linear framework is typically adopted. 

In this paper, we depart from the standard defi-nition of integration of a variable, 

which is an inherently linear concept, to work more generally within a nonlinear 

framework.  
The remainder of the paper is divided into three sections. In Section 2, we in-

troduce the concept of generalized cointegration. In Section 3, we present 

unusual interpretations of the coefficients of a nonlinear relationship and its 

underlying assumptions. In Section 4 we conclude. 

 
2. GENERALIZED COINTEGRATION AND THE DEFINITION 
OF INTEGRATION 
 
The idea underlying cointegration is that if there is a stable structural relation-ship 

linking a dependent variable with a group of explanatory variables, then, regardless 

of the time-series properties of these variables, there should be a com-bination 

(function) of the explanatory variables that gives a plausible explanation of the 

dependent variable. This combination is usually expressed within a linear regression 

framework in terms of integrated variables. A unit-root nonstation-ary series is 

integrated of order d, denoted I(d), if it becomes stationary after being first-

differenced d times. In a special linear case, if yt is a vector of n variables, all 

integrated of the same order d, then _
d
 yt = C(L)εt , where there are no linearly 

deterministic components; {εt }, t = −∞, +∞, is a sequence of zero-mean, uncorrelated 

n-vectors with the same finite constant covariance matrix; C(L) is an n × n invertible 

matrix of the polynomials in the lag operator L; and (1 − L)
d

 yt = _
d

 yt is the dth 

difference of yt . Cointegration is said to occur if 
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two constant n-vectors, say α and β, exist such that the error term of the model β _

d
 yt = β 

C(L)εt of _
d

 yt is stationary and the error term of the model α yt of yt is integrated of order d 

– b (I(d - b)), d ≥ b > 0. The difference d – b may not be zero unless d = 1. It is known 

that both α and β are not unique; for a survey of cointegration, see Dolado et al. (2001). 

The TVC models discussed in this paper have the models with unique coefficients and 

error terms as their bases. Our concept of uniqueness is given in note 2.  
In the preceding discussion, we used a unit-root nonstationary process to de-

scribe the conventional linear cointegration model. We now turn to the nonlinear 

case. To deal with a potentially nonlinear data-generating model, which is as-sumed 

to have an unknown functional form, we need a more general definition of 

nonstationarity and cointegration than is typically assumed. Consider a variable that 

is integrated of order d. When d = 0, such a variable is (weakly or strongly) 

stationary, and when d = 1, it is unit-root nonstationary. Yet it is straightforward to 

demonstrate that there are also nonstationary variables that are not unit-root non-

stationary. In this connection, consider an example provided by Cramer´ (1946), 

who showed that, for any general nonstationary process {xt }, there is a uniquely 

determined decomposition xt = xt
∗ + εt , where xt

∗ and εs are uncorrelated ∀t, xt
∗ is 

deterministic, and εt is purely nondeterministic. The last may be represented as  
∞   

(1) 
 

ε
t  =

c
j t at −j ,  

 

j =0 
∞ 2 

 
 

where the cj t  are time-dependent such that < ∞ for all t, and {at } is 
 

j =0 
c
j t 

 

a sequence of uncorrelated variables. As this definition makes clear, the time-

dependent coefficients (cj t ) are associated with nonstationary processes. 

Further-more, as shown by Swamy et al. (2003), model (1) of xt can be 
transformed into an autoregressive model with time-dependent coefficients. 

Thus, a simple nonstationary process may be expressed as
5
 

x
t  = 

γ
0t + 

γ
1t 

x
t −1

,
 (2) 

where γ0t and γ1t are time-dependent and xt is dependent on xt −1.
6
 Thus, equation  

(2) is linear in variables and nonlinear in coefficients and its first difference may 
be expressed as 

_x
t  = 

x
t − 

x
t −1 = 

γ
0t + 

γ
1t 

x
t −1 − 

γ
0t −1 − 

γ
1t −1

x
t −2 

= 
_γ

0t + 
γ

1t 
x

1t −1 − 
γ

1t −1
x

t −2 + 
γ

1t 
x

t −2 − 
γ

1t 
x

t −2 

(3) 

 

= 
_γ

0t + 
γ

1t 
_x

1t −1 + 
_γ

1t 
x

t −2

,
 

 

which typically is neither stationary nor unit-root nonstationary because the last 

term in (3) contains the level of xt −2. Hence, xt in (2) is non-unit-root 
nonstationary and is not integrated.  

The upshot of this discussion is that the dependent variables of nonlinear 

autoregressive relationships are not integrated [see Swamy et al. (2003) and 
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Berenguer-Rico and Gonzalo (2012)]; the same is true of the dependent variable of a nonlinear 

relationship of the form yt = ft (x1t , . . . , xLt ,t ), although one or more of its regressors x1t , . . . , xLt ,t may 

be integrated unless all of its regressors follow 
nonlinear relationships of the form xgt  
for g = 1, . . ., Lt [see Swamy et al. 

(2010)]. Also, _xt in (3) does not possess a finite unconditional mean if xt and/or 

the coefficients of (2) follow random-walk processes. Furthermore, it can be 

seen from (3) that, every time equation (2) is differenced, additional terms enter 

into the resulting expression, giving a nonpar-simonious representation unless 

equation (2) is linear or its intercept (excluding its error term component) and 

slope are constant, which will not generally be the case.  
Economic theory makes it clear that most economic relationships are nonlinear. In 

addition, many economic variables are not, in theory, integrated variables (e.g., any 

series that exhibits long-term growth is not integrated, although its logarithm is 

integrated; any series that exhibits a break in its growth rate is not integrated, etc.). 

Thus, although the notion of cointegration is an extremely general one, the specific 

implementation of it in the standard way is very limited.  
In sum, although there are a number of alternative definitions of 

cointegration, there is no simple formal definition that captures the essence of 

cointegration in a fully general way.  
One recent important generalization of cointegration is the asymptotic nonpara-

metric estimation of a model such as Yt = f (Xt ) + Wt , set out in Karlsen et al. (2007), 

who assume that f (Xt ) is some nonlinear function of a nonstationary process Xt and 

that the error process {Wt } is stationary.
7
 Those authors use a nonparametric kernel 

estimator, in that f (Xt ) is treated as an unknown function. However, this approach 
considers only part of the problem that we attempt to tackle here, as their work 
assumes that X is a single variable, or at least that if X is a vector, then the complete 
set of X variables is included. In the approach we adopt in the following, our 
definition of generalized cointegration and our implementation of the concept allow 
the researcher to observe only a subset of the complete X vector, whereas, at the 
same time, it permits this subvector to be observed with error. This approach 
requires a rather different definition of cointegration, as we now explain.  

To generalize the notion of cointegration, we propose the following definition, 

which allows for nonlinearity and omitted regressors. The key to our definition is 

that we assert that the existence of cointegration implies a structural economic re-

lationship. By this, we mean that a (possibly) nonlinear relationship exists between a 

dependent variable and a set of variables that includes all relevant preexisting 

conditions, besides all the determinants of the dependent variable. As shown in the 

following, this relationship (i) involves certain regressors for which there are no data 

and, hence, is reduced to another relationship in which the intercept contains three 

components, including the function (with the correct functional form) of certain 

“sufficient sets” of omitted regressors treated as the error term, and (ii) the 

coefficient on each included regressor contains three components including two 

(specification) bias terms and one bias-free term. This bias-free component of 

 = 
ψ
gt 

(x
1t 

, . . . , x
g−1,t 

, x
g+1,t 

, . . . , x
Lt ,t 

)
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the coefficient on an included explanatory variable is the partial derivative of the 

dependent variable with respect to the explanatory variable, holding constant the 

values of all relevant preexisting conditions and the determinants of the dependent 

variable other than the explanatory variable. As also shown in the following, these 

coefficients, including the intercept, are expressed as linear functions of certain 

coefficient drivers and error terms that can be stationary. Thus, in this framework, 

there are several error terms. We may think of this either as a full dynamic model, in 

which case the error terms should be white noise, or as a long-run relationship 

involving only the nonstationary variables, in which case the error terms would 

normally be stationary ARMA processes and would capture the relevant dynamics. 

 
DEFINITION 
 
With this background, the variables yt and xt are cointegrated in a general sense 
if y and x are nonstationary and the “true” bias-free component of the time-

varying coefficient of xt (that is, its coefficient without specification biases) in 

the relation ofyt to xt is nonzero.
8
 

To explain, consider the following (real world) structural general relationship 
between y, x, and a set of other variables w, all of which are assumed to be  
nonstationary:  

yt  = ft (xt , wt ), (4) 
where wt includes all relevant preexisting conditions, besides all the determinants of 

yt other than xt . Therefore, under our definition of generalized cointegration, y and 
x, both of which are measured without errors, are cointegrated if  

∂yt 

=_ 0, (5) 
 

∂xt 
  

where the values of all the elements of wt are held constant. Under this 

definition of generalized cointegration
9
, cointegration is clearly defined as a 

property of the real world—not of any particular statistical model. This 
definition allows y and x to have different forms of nonstationarity, as w (which, 
of course, may be a vector) will allow us to reduce any spurious correlation to 
zero by letting us control for all relevant preexisting conditions while 

maintaining balance in the overall equation.
10

  
The preceding formulation is very much in keeping with the original idea of 

cointegration. That is, cointegration should arise only if there is a (possibly 

nonlinear) stable structural relationship holding a set of variables together. If 
there is such a relationship, it implies that the true effect of x on y will be 

nonzero. Thus, if the following equation holds, 
 

∂ft (xt , wt ) 

= 0, (6) 
 

∂xt   
it implies that there is no structural relationship between the variables (yt ,xt ,wt ), so 

that any observed correlation between the two variables (yt ,xt ) is spurious. 
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Alternatively, if we run a standard regression between x and y, we may falsely 

obtain a significant coefficient. To make this definition of cointegration 

operational, we need an estimation technique that will provide bias-free 

estimates of parameters for which the true functional form is unknown and 

where, in addition, there may be omitted regressors. 

 
3. UNUSUAL INTERPRETATIONS OF THE COEFFICIENTS OF A 

NONLINEAR RELATIONSHIP AND ITS UNDERLYING ASSUMPTIONS 
 
3.1. Interpretations of Model Coefficients and Appropriate Assumptions 
 
In this section, we will begin by giving a largely intuitive account of our esti-

mation strategy, which makes the idea of generalized cointegration 

operational.
11

 TVC estimation proceeds from an important theorem that was 

first established by Swamy and Mehta (1975) and that was subsequently 

confirmed by Granger (2008). This theorem states that any nonlinear functional 

form can be exactly represented by a model that is linear in variables but that 

has time-varying coef-ficients. The implication of this result is that, even if we 

do not know the correct functional form of a relationship, we can always 

represent this relationship as a time-varying coefficient relationship and thus 

estimate it. Hence, any nonlinear real-world relationship may be stated as 
 

yt  = γ0t + γ1t x1t + . . . + γK −1,t xK −1,t    (t = 1, . . . , T ). (7)  
Consequently, this theorem leads to the result that, if we have the complete set of 

relevant variables with no measurement error, then by estimating a TVC model, we 

will get consistent estimates of the true partial derivatives of the dependent variable 

with respect to each of the independent variables, given the unknown, nonlinear 

functional form. If we then allow for the fact that we do not know the full set of 

independent variables and that some, or all, of them may be measured with error, 

then the TVC become biased (for the usual reasons).
12

 What we would like is to 

have is some way to decompose the full, biased, time-varying coefficients into two 

parts, the bias component and the remaining part, which would again be a consistent 

estimate of the true component. Of course, this is asking a great deal of an 

estimation technique. However, that is precisely what TVC estimation aims to 

provide [see Swamy et al. (2010)]. This technique builds from the Swamy and 

Mehta theorem, mentioned previously, to produce such a decomposition.
13

  
Swamy et al. (2010) show exactly what happens to the time-varying coefficients 

as other forms of misspecification are added to the model. If we omit some relevant 

variables from the model, then the true partial derivative components of the time-

varying coefficients get contaminated by a term that involves the relationship 

between the omitted and included variables. Also, if we allow for measurement 

error, then the time-varying coefficient gets further contaminated by a term that 

allows for the relationship between the exogenous variables and the error terms. 

Thus, as one might expect, the estimated time-varying coefficient is no longer a 
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consistent estimate of the true partial derivatives of the nonlinear function, but 

is now biased because of the effects of omitted variables and measurement 

error. There are exact mathematical proofs for our statements up to this point.  
To make TVC estimation fully operational, we need to make some 

parametric assumptions. We make two key assumptions. First, we assume that 

the time-varying coefficients themselves are determined by a set of stochastic 

linear equa-tions, which makes them functions of a set of variables, which we 

call driver (or coefficient-driver) variables. This is a relatively uncontroversial 

assumption. Sec-ond, we assume that some of these drivers are correlated with 

the misspecification in the model and some of them are correlated with the time 

variation coming from the nonlinear (true) functional form. Having made this 

assumption, we can then simply remove the bias from each time-varying 

coefficient by removing the effect of the set of coefficient drivers that are 

correlated with the misspecification. This procedure, then, yields a consistent 

set of estimates of the true partial derivatives of the unknown nonlinear 

function, which may then be tested by constructing t tests in the usual way. 
 
3.2. Identification and Coefficient Drivers 
 
We have argued that generalized cointegration takes place if the bias-free com-

ponent of the coefficient linking two variables is nonzero. To test whether this 

situation applies. we are interested in the bias-free components of γ ‘s—not in the 

omitted-variable and measurement-error biases. To obtain accurate estimates of theαj
∗
t ’s using the observations in (7), we need to first decompose each γj t of (7) into its 

bias and unbiased components. Our method of identifying these compo-nents and 

performing the decomposition is based on the following assumptions.
14

  
Assumption 1 (Auxiliary Information). Each coefficient is linearly related to 

certain drivers plus a random error, 
 

p−1 

γj t  = πj 0 +πj d zdt + εj t    (j = 0, 1, . . . , K − 1), (8) 
d=1  

 
where the π s are fixed parameters and the zdt are what we call the coefficient 
drivers; different coefficients of (7) can be functions of different sets of 
coefficient drivers. 
 

The regressors and the coefficients of (7) are conditionally independent of each 

other given the coefficient drivers.
15

 These coefficient drivers are merely a set of 

variables that, to a reasonable extent, jointly explain the movement in γj t . If the 

variation in the coefficients is due to some form of misspecification (say, omitted 
variables), then any variable that is correlated with the misspecification may act as a 
driver; for example, the drivers might include lagged explanatory variables. If the 
variation is due to nonlinearity, then, again, lags in some of the variables in the 
model will likely be related to the changing coefficient. An important part of our 
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contention here is that it is relatively straightforward in practice to find variables 

that are correlated with the misspecification.  
The total number of components in each coefficient of (7) is three, as shown 

in note 12. If the number of nonconstant coefficient drivers we could find is 

greater than or equal to 3K, then in equation (8), for each coefficient of (7) there 

will be at least three appropriate nonconstant coefficient drivers, one constant, 

and one error term. In this case, there will be at least one nonconstant coefficient 

driver to estimate each component of every coefficient of (7). To estimate a 

component accurately, we need to choose at least one nonconstant coefficient 

driver in such a way that a linear function of the chosen driver or drivers has the 

same kernel density estimator as the component. Such coefficient drivers exist 

and Assumption 1 is not unrealistic. Thus, although it is not easy to find such 

coefficient drivers, it is easy to prove their existence.  
Under our method, the coefficient drivers included in equation (8) have two uses. 

Insertion of equation (8) into equation (7) parameterizes the latter equation. This is 

the first use of the coefficient drivers. Here, the issue of identification of the 

parameterized model (7) is important.
16

 The other important use of the drivers is to 

allow us to separate the bias and bias-free components of the coefficients.  
We divide the complete set of coefficient drivers in each equation (8) into three 

sets, the first of which is associated with the time variation in the true coefficient, 

the second with the omitted-variable bias, and the third with any measurement error. 

This division allows us to identify separately the bias-free, omitted-variables, and 

measurement-error bias components of the coefficients of (7).  
This division is the key to making our procedure operational; it is the division 

in which we can associate the various forms of specification biases with the 

second and third sets, which means that the first set simply explains the time 

variation in the coefficients, which is caused by the nonlinearity in the true 

function with unknown functional form. If the true (or data-generating) model is 

linear, then all that is required for the first set is to contain the constant of (8). If 

the true model is nonlinear, then the bias-free components should be time-

varying and the set of drivers belonging to the first set will explain the time 

variation in these components. 

 
3.3. Consistent Estimation 
 
Under certain conditions, the iteratively rescaled generalized least-squares esti-

mators of the coefficients in (8) are consistent. With these estimates, Lehmann and 

Casella’s (1998, Theorem 5.3, p. 467) method of solving the likelihood equations 

gives asymptotically efficient estimators.
17

 The distributional theory underlying this 

estimation technique and the method for conducting inference are given in Swamy et 

al. (2010). It may seem surprising that the inference is standard rather than 

dependent on the Dickey–Fuller distribution (or some other nonstandard 

distribution); the intuitive reason that this comes about is that the distribution of the 

TVCs is derived from the errors in the coefficient driver equations (8). As long 
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as these errors are stationary, the distribution of the coefficients of (7) will be of 

the Cavanagh–Rothenberg (1995, 279–280) type [see Swamy et al. (2010)]. 

This might be thought to be a challenging requirement, as of course the time-

varying coefficients may well be nonstationary, and so, to achieve a stationary 

error process in the fixed coefficient linear driver, equation (8) might at first 

seem to require conventional cointegration to exist here. However, this is not 

the case, as the driver equations may be dynamic and therefore may contain lags 

of all the variables included in (7). It is possible to show [using Cramer’s´ 

(1946) decomposition] that sufficient lags in these variables will always ensure 

a stationary error in (8), and hence inference is standard.  
To illustrate, consider the standard case of testing a linear relationship between x 

and y for cointegration. Dolado et al. (2001, 639–642) give a clear description of 

these tests. Assume we have xt ∼ I (1), yt ∼ I (1). Then the conventional approach 

would be to run the regression yt = β0 + β1xt + εt using ordinary least squares and to 

test whether the resulting residuals are I(1) against the alternative that they are I(0). 

If, with some adjustments discussed in Dolado et al. (2001), the alternative is 

accepted, then it is concluded that x and y are cointegrated. We first estimated the 

regression yt = β0 + β1xt + εt under the null of no cointegration, εt ∼ I (1), and then 

drew the conclusion of cointegration under the alternative of cointegration, εt ∼ I (0), 
and it is this change in the properties of the errors under the null and the alternative 

that gives rise to the nonstandard distributions. In the generalized 

cointegration/TVC framework, the problem would be formalized in the following 

way. We would run the time-varying regression 
 

yt = β0t + β1t xt , 
where the coefficient driver equation would be  

βit  = αi0 + αi1xt −1 + αi2yt −1 + vit    i = 0, 1.  
Now, substituting the driver equations into the model yields 

y
t  = 

α
00 + 

α
01

x
t −1 + 

α
02

y
t −1 + 

(α
10 + 

α
11

x
t −1 + 

α
12

y
t −1

)x
t + 

v
0t + 

v
1t 

x
t 

.
  

Under the null of no cointegration, β1t = 0 for all t, β1t = 0 for all t, α00 = α01 = 0, and α02 = 1 
and the errors from this regression are stationary if there are no omitted lagged dependent 

variables. Under the alternative of cointegration, β1t = β1 = α10, α11 = α12 = α01 = α02 = 0 and 
again the error process is stationary if there are no omitted regressors. So under both the null 
and the alternative, the errors are stationary and standard inference results.  

Generalized cointegration does two things. First, it allows for the possibility that 

we may have important omitted variables. Second, it allows for the possibility that 

we may have misspecified or not know the true functional form. That is, under 

generalized cointegration, we are able to estimate bias-free relationships among a 

set of variables even if we do not know the true, underlying functional form and 

even if there are missing regressors. Underlying generalized cointegration is 
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TABLE 1. Coefficient drivers versus instruments 
 
 Coefficient drivers Instruments 
   

Correlation with error term No assumption Zero correlation; if this 
  fails instruments are 
  invalid 
Correlation with the Should be correlated with Should be uncorrelated 

misspecification the misspecification with misspecification, 
  but correlated with the 
  variable being 
  instrumented 
Correlation between variables Set of variables correlated No assumption 
 with the true coefficient  

 should be uncorrelated  

 with the other sets  
   

 
a new way of thinking about, and testing for, cointegration that emphasizes the 

properties of the real-world relationship rather than a particular model. If, in the 

real world, a causal cointegrating vector exists that determines a variable, say, 

the demand for a particular commodity, then, obviously, if one of the variables 

(say X) in that relationship changes, demand will also change. This implies that 

the partial derivative of demand with respect to X is nonzero. 
 
 
3.4. Coefficient Drivers versus Instruments 
 
How do coefficient drivers differ from instruments? In a practical application 

the choice of the coefficient drivers and the decision as to how to use them are 

somewhat arbitrary, in much the same way as the choice of instruments in an 

instrumental variable estimation. Different drivers can give different answers, as 

can dividing the drivers into the relevant three sets in different ways. It is worth 

contrasting the different assumptions regarding drivers and instruments; Table 1 

provides a comparison.  
For instrumental variables we need variables that are relevant (correlated with 

the variable being instrumented), but independent of the error process (the mis-

specification in the model); for good drivers we need variables that are 

correlated with the misspecification, but that can be split into two sets that 

identify the bias from the total coefficient. In practice, it is typically much easier 

to find variables correlated with the misspecification than variables uncorrelated 

with the misspecification, so this argues in favor of the driver approach. 
 
 
4. CONCLUSIONS 
 
Building on the TVC model, we proposed a generalization of the standard def-

inition of cointegration that allows for the existence of an unknown structural 
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nonlinear relationship among a set of nonstationary variables. The idea underly-

ing this definition is straightforward: If a structural relationship exists between 

two or more variables, then the implication is that there will be a nonzero bias-

free effect of any of the independent variables on the dependent variable. Thus, 

the significance of an estimate of this bias-free effect becomes a simple direct 

test of generalized cointegration. Furthermore, we can estimate this effect and 

test its significance without knowing the true functional form of the relationship 

or the full set of regressors that should enter into it. This definition can be made 

operational by applying the TVC estimation technique, which provides an 

estimate of the bias-free effect.  
Nonstationarity does not pose any problem for TVC estimation. TVC 

estimation by construction produces a unique error term that is the correct 

function of certain “sufficient sets” of omitted variables, whereas standard 

cointegration aims at a stationary error term, but does not always produce such 

a stationary error. How-ever, as in other modeling situations, the explicit 

recognition of nonstationarity does offer advantages—n particular, in the 

identification of the correct set of coef-ficient drivers to identify the bias-free 

component of the time-varying coefficient correctly. 

 
NOTES 
 

1. See, for example, Arouri et al. (2012), and Lee (2013).   
2. A recent and expanding literature has been concerned with building on the TVC model of 

Swamy (1971, 1974). In this connection, Granger (2008) argued that TVC models will be the next 

major development in econometrics. The so-called correlated random coefficient model is rigorously 

derived in a long sequence of papers that include Swamy and Tavlas (2001) and Swamy et al. 

(2014). Here the term “rigorously derived model” is used to convey the idea that the coefficients and 

error term of the model are unique. The coefficients and error term of a model are said to be unique 

if they remain invariant under equivalent changes in the relationship between the included and 

excluded regressors of the model.   
3. We use the term “generalized cointegration” despite the fact that integration is an inherently 

linear concept, as we believe that this conveys the essence of what we are doing here, which is to 

extend the notion of cointegration to a nonlinear framework.   
4. See, for example, Park and Phillips (2001); Kanas (2003); Gonzalo and Pitarakis (2006); 

Karlsen et al. (2007); Kasparis (2008, 2011); Al-Abri and Goodwin (2009); Wang and Phillips 

(2009); Choi and Saikkonen (2010); Schienle (2011); Banerjee and Pitarakis (2012) ; and 

Berenguer-Rico and Gonzalo (2012).   
5. It is also possible to represent the process as a function of more than one lag. However, this is 

the easiest form of the process to handle and is most relevant in demonstrating our point simply. To 

avoid any misunderstanding here, we point out that between two models that perform equally well 

in explanation and prediction, the one with fewer unknown parameters is parsimonious. We are not 

claiming here that equation (2) is a parsimonious model.   
6. If the true process is a conventional random walk without drift, then γ0t should be a white noise 

process, γ1t should be equal to 1 for all t and the model should be linear. Hence, the usual random walk 
case is a special case of equation (2).   

7. See, also, the references cited in Karlsen et al. (2007).   
8. As discussed in what follows, by “true” we mean the coefficient that links x to y in the real world 

structural relationship under consideration. The notion that y and x are themselves nonstationary is not 

crucial to our argument. In fact, in a nonlinear world, it is even possible to think of a variable being  
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stationary at one point in time and nonstationary at another. However, this assumption does keep the 

analysis closer to the original spirit of cointegration.  
9. To give some specific examples, consideryt = βxt + εt (which we consider to be the true 

model), where xt ∼ I (2) and, therefore,yt ∼ I (2). Here the symbol I(d) denotes integrated of order d; a 

nonstationary series is integrated of order d if it becomes stationary after being first differenced d 

times [see Greene (2008, p. 740)]. Then yt and xt are cointegrated in the conventional sense and in 

our generalized sense as dy/dx = β. As another example, consider a true nonlinear relationshipyt = βxt
2
 

+ vt , where xt ∼ I (1) and v ∼ I (0); then y will not generally be integrated and y and x will not be 

cointegrated in the Engle–Granger sense. However, in this nonlinear case, y and x can be 

cointegrated in our generalized sense under the conditions of Swamy, Tavlas, and Hall (in press).   
10. For a standard way to reduce spurious correlations to zero by controlling for all relevant 

preex-isting conditions, see Skyrms (1988, p. 59), and for the definition of a balanced nonlinear 

relationship based on the concepts of the order of summability of a stochastic process and 

cosummability of stochastic processes, see Berenguer-Rico and Gonzalo (2012, p. 9). See also 

Swamy and von zur Muehlen (1988).   
11. A formal and detailed description of the approach may be found in Swamy and Tavlas (2001, 

2006) and Swamy et al. (2009, 2010, 2014, in press).  

12. The intercept γ0t of (7) is the sum of the true intercept, the correct function of certain “sufficient sets” of omitted regressors, 

and the measurement error in the dependent variable. For j = 1, . . ., K – 1, γj t is the sum of the partial derivative of the true value of yt 

with respect to the true value of xj t and the corresponding omitted-regressor and measurement-error biases.  
 

13. Mathematically, model (7) may appear to be the same as the observation equation of a state 

space model. To show that this similarity is only apparent, we point out that the interpretations of 

the coefficients of the observation equation in the standard state space representation are quite 

different from those of the coefficients of (7). Omitted-variable biases, measurement-error biases, 

and the correct functions of certain “sufficient sets” of excluded regressors are not considered parts 

of the coefficients of the observation equations of state-space models. Also, the problem of the 

dependence of the coefficient of a regressor on the regressor does not arise in state space models. 

These are the major differences between (7) and the observation equations of a standard state-space 

model. Jawadi (2012) discusses the use of time-varying models in macroeconomics.   
14. We say that the condition of identification of the components of coefficients is satisfied if the 

bias-free component of each coefficient is accurately estimated. This condition is different from 

Lehmann and Casella’s (1998, 24 and 57) condition of identification. The latter condition is used to 

identify the fixed coefficients of equation (8) in this paper.   
15. Given the coefficient drivers, the error terms of (8) are assumed to be conditionally 

independent of the regressors of (7). The distributional assumptions about the errors in (8) are given 

in Swamy et al. (2010).   
16. To deal with this issue, we use Lehmann and Casella’s (1998, 24 and 57) concept of identification.   
17. A computer program that implements this technique is available at http://www.le.ac.uk/ 

ec/sh222/soft.htm.  
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