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Abstract

Given a sequence of n elements from a totally ordered set, and a position in the sequence, the nearest larger neighbor (NLN) query
returns the position of the element which is closest to the query position, and is larger than the element at the query position.
The problem of finding all nearest larger neighbors has attracted interest due to its applications for parenthesis matching and in
computational geometry [1, 2, 3]. We consider a data structure version of this problem, which is to preprocess a given sequence of
elements to construct a data structure that can answer NLN queries efficiently. We consider time-space tradeoffs for the problem
in both the encoding (where the input is not accessible after the data structure has been created) and indexing model, and consider
cases when the input is in a one dimensional array, and also initiate the study of this problem on two-dimensional arrays.
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1. Introduction and Motivation

Given a sequence of n elements from a totally ordered set, and a position in the sequence, the nearest largest
neighbor (NLN) query asks for the position of an element which is closest to the query position, and is larger than the
element at the query position. More formally, given an array A[1 . . . n] of length n containing elements from a totally
ordered set, and a position i in A, we define the query:
NLN(i): return the index j such that A[ j] > A[i] and |i− j| = min{k : A[i + k] > A[i] or A[i− k] > A[i] for k > 0}. Ties
are broken to the left, and if there is no element greater than the query element, the query returns the answer∞.

In a similar way, we define NLRN (right nearest larger neighbor), and NLLN (left nearest larger neighbor) queries,
which return the position of the nearest larger neighbor to the right and left, respectively, of the query position. In a
symmetric way, one can also define nearest smaller neighbor problems. In this paper, we will stick to the version that
seeks the larger neighbors.

IPreliminary version of these results have appeared in the proceedings of the 25th International Workshop on Combinatorial Algorithms
(IWOCA-2014) [4] and in the proceedings of International Workshop on Algorithms and Computation (WALCOM-2015) [5]
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(Venkatesh Raman), r.raman@leicester.ac.uk (Rajeev Raman), ssrao@cse.snu.ac.kr (Srinivasa Rao Satti)
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2-dimensional NLN. We also consider a natural extension of the NLN problem to two-dimensional arrays. Here,
we define the NLN of a query position as the closest position in the array, in terms of the L1 distance, that contains
an element larger than the element at the query position. More formally, given a position (i, j) in A[1 . . . n][1 . . . n],
NLN((i, j)) = (i′, j′) such that A[i′, j′] > A[i, j], and |i− i′|+ | j− j′| = min{(|x|+ |y| : A[i + x, j + y] > A[i, j]}. If there
is no element greater than the query element, the query returns the answer (∞,∞).

Encoding and indexing models. We consider the data structure versions of these problems in two different models
that have been studied in the succinct data structures literature, namely the indexing and encoding models. In both
these models, the data structure is created after preprocessing the input data. In the indexing model, the queries can be
answered by probing the data structure as well as the input data, whereas in the encoding model, the query algorithm
cannot access the input data. The size of the data structure in the encoding model is also referred to as the effective
entropy [6] (of the input data, with respect to the problem).

Previous Work and Motivation. The problem of computing all (right) nearest larger neighbors has attracted much
attention due to its importance as a preprocessing routine for answering range minimum queries, triangulation algo-
rithms, reconstructing a binary tree from its traversal orders and matching a sequence of balanced parentheses [3].
While Berkman et al. [3] have given efficient parallel algorithms for the problem, recently Asano et al. [1] have given
sequential time-space tradeoff results.

Fischer et al. [7] considered the problem of supporting NLRN and NLLN, and showed how a data structure
supporting these two queries can be used in obtaining entropy-bounded compressed suffix tree representation. (They
considered the min version of the problem instead of max, and named the operations NSV and PSV, for the next and
previous smaller values, respectively.) They considered the problem of supporting NLRN and NLLN in the indexing
model, and obtained the following time-space tradeoff result. For any 1 ≤ c, ` ≤ n, one can use:

O
(

n
c

lg c + `
n lg lg n

lg n
+

n lg n
c`

)
1

bits of space and answer queries in O(c`) time. As given, they are unable to go below O(n lg lg n/ lg n) space, and
use more space than we do whenever c = ω(lg n). As mentioned later, we improved the trade-off to O((n/c) lg c) bits
with O(c) time. To attain O((n/c) lg c) space for c = (lg n)Ω(1), one can choose ` = O(1) and obtain O(c) time. For
smaller values of c, the middle term in the space usage will never dominate for reasonable values of ` (clearly, we
must always choose c ≥ 2 and ` = O(lg lg n) in this range) and it suffices (and is optimal) to choose ` = O(lgc lg n) =

O(lg lg n − lg lg c). Thus, for any c = O(lg n), their running time for space O((n/c) lg c) is O(c(lg lg n − lg lg c)), and
our solution is better for small enough c.

Fischer et al. [7] also gave an encoding that supports the PSV and NSV queries in constant time, using 4n + o(n)
bits. The encoding size was later reduced to the optimal 2.54n + o(n) bits by Fischer [8]. We observe that this can be
further improved to 2n + o(n) bits if all the elements are distinct.

For the case of binary sequences, the data structure version of the NLN problem can be solved by building an
auxiliary structure to support rank and select queries on the bit vector [9]. This uses o(n) bits of extra space, in
addition to the input array, and answers NLN (and also NLRN and NLLN) queries in O(1) time.

Given a two-dimensional array, Asano et al. [1] considered the All Nearest Larger Neighbours problem which asks
for computing the NLN values for all the elements in the input array. They showed that this problem can be solved
in O(n2 lg n) time (and more generally, for any d-dimensional array in O(nd lg n) time). To the best of our knowledge,
the data structure version of the two-dimensional NLN problem, in which we are interested in constructing a data
structure that answers online queries efficiently, has not been considered earlier.

Our results. For the case of one dimension, we first observe in Section 2.1, a 2n − o(n)-bit lower bound for NLRN in
the encoding model, by relating the problems to the well studied range minimum queries (RMQ). We also give an in-
dependent lower bound proof by directly counting the number of distinct configurations, which maybe of independent
interest. In terms of upper bounds in the encoding model, a 2n + o(n) bits to answer NLRN queries and a 2.54n + o(n)

1We use lg n to denote log2 n
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bit structure to answer NLN queries exist through a structure of Fischer et al. [7]. We develop a 2n+o(n) bits structure
for NLN if all elements are distinct.

Then in Section 2.2, we look at the problems in indexing model. We give a lower bound for time-space tradeoff

for NLN and NLRN queries adapting the lower bound tradeoff proof of Brodal et al. [10] for RMQ. We also pro-
vide an algorithm that matches the tradeoff for NLN. For NLRN, our algorithm achieves the time-space product of
O((n/c) lg c) (where the query takes O(c) time) while the lower bound is Ω(n).

For the 2-dimensional NLN problem in the encoding model, we first show that Ω(n2) bits are necessary to encode
the array to support NLN queries, even when all the elements are distinct. We then describe an asymptotically optimal
Θ(n2)-bit encoding that answers queries in O(1) time. One can achieve this result easily when all the elements in
the array are distinct. But, distinctness is a strong assumption in these kinds of problems. For example, in the 1-D
case with distinct values, NLRN and NLLN can both be trivially encoded by the Cartesian tree (giving a 2n − O(lg n)
bit encoding). By contrast, if we do not assume distinctness, the optimal space is about 2.54n bits, and the data
structure achieving this bound is also more complex [8]. Also, Asano et al. [1] remark that the ANLN problem for any
dimension is “simplified considerably” if one assumes distinctness.

We also remark that in 1-D case, the NLRN and NLLN problems are closely connected to the RMQ problem
(see e.g. [8]), another problem of wide interest. In the 1-D case, there is no asymptotic difference between the
encoding complexity of RMQ and NLRN/NLLN. The 2-D RMQ problem has received a great deal of attention lately
[11, 12, 13, 14]. It is known that any 2-D RMQ encoding takes Ω(n2 lg n) bits [11, 12]; thus, this result shows that
NLN is different from RMQ in the 2-D encoding scenario.

We assume a standard word RAM model [15] with O(1)-time arithmetic and bitwise boolean operations, and we
count space in terms of the number of bits used.

2. Data structures for one dimensional arrays

In this section, we give upper and lower bounds for answering the NLN and NLRN queries on a one dimensional
(1-D) array, in the encoding and indexing models.

2.1. Data structures for 1-D in the encoding model

NLRN. We first show tight space bounds for NLRN encodings.
Given an array A, the query RMQ(i, j) (range maximum query) returns a position k between i and j such that A[k]

is a maximal element among A[i, . . . , j]. Suppose we have a data structure to solve NLRN query, then one can answer
the query RMQ(i, j) by finding the leftmost position k ∈ {i, . . . , j} such that NLRN > j. From the 2n − Θ(lg n)-bit
lower bound for RMQ in encoding model [16], it follows that any encoding of NLRN requires the same space. We
now give an alternative proof, which may be independent interest, for the space lower bound for NLRN.

Theorem 2.1. Any data structure answering NLRN and NLN queries in the encoding model requires 2n−Θ(lg n) bits.

Proof. We first define what are called answer arrays. An answer array for array A is defined as an array B such that
B[i] = NLRN(A[i])) − i if NLRN(A[i] , ∞ and is ∞ otherwise. We calculate the total number of possible answer
arrays for all permutations of n distinct elements.

Let E(n) be the set of all answer arrays for all inputs of size n and L(n) be the set of all answer arrays for all inputs
of size n where the element at nth position is the largest element (i.e. n). First we show that |L(n)| = |E(n − 1)|.
To prove the above relation, we show that there is a bijection between L(n) and E(n − 1).

For an answer array B, of an array A corresponding to E(n − 1), we simply consider the answer array B′ corre-
sponding to the array A′ which is A appended with the element n (in the last position). Conversely for an answer array
B corresponding to an array in L(n), we simply map it to the answer array of the array with the last element removed.

Adding a new element larger than each of the elements at the right end of the input doesn’t change the answer of
those indices which already have a NLRN, and the indices that have ∞ as NLRN, change the answer of their indices
to direct it to the last position.

Similarly removing the largest element from the end doesn’t change the answer of those indices which didn’t point
to this position, and the indices which pointed to this position will have their answer changed to ∞. This establishes
the bijection and hence |L(n)| = |E(n − 1)|.
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Consider all the inputs which have their largest element at index i. In those permutations, all indices j < i do not
have their NLRN beyond index i. The last n− i indices also do not need information regarding the first i indices, since
each of these elements need to locate the NLRN on the right of their index. So the first i and last n − i indices of the
input become disjoint subproblems. Thus, the total number of solutions for these input cases is |L(i)| ∗ |E(n− i)|, since
the first i indices would have |L(i)| number of solutions, while the last n − i indices have |E(n − i)| solutions. The total
number of answer sets for all permutations on n elements can be found by summing up the total number of answer
sets, when the largest element of the input is at ith index for all possible values of i.

|E(n)| =
n∑

i=1
|L(i)| ∗ |E(n − i)| which can be re-written as |E(n)| =

n∑
i=1
|E(i − 1)| ∗ |E(n − i)|

This recurrence solves to be the Catalan number Cn, which is Θ(4n/n3/2).
Thus, we need at least 2n − O(lg n) bits to represent any NLRN structure to answer all the NLRN queries without

access to input at query time (i.e. in encoding model).
To extend the proof for NLN problem, we notice that number of answer sets F(n) when the largest element is in

the first position and the number of answer sets L(n) when the largest element is at the last position are the same. This
is because if we reverse the array, then the answer array for NLN also gets reversed.

Also the recursion |E(n)| =
n∑

i=1
|L(i)| ∗ |E(n− i)| for NLRN changes to

n∑
i=1
|L(i)| ∗ |F(n− i+1)| =

n∑
i=1
|L(i)| ∗ |L(n− i+1)|

which also solves to the Catalan number asymptotically. 2

The converse of the simulation in the proof of Theorem 2.1 – i.e., supporting NLRN queries using RMQ data
structure also works, giving a 2n+o(n)-bit encoding that supports NLRN queries in O(lg n) time. In fact, the query time
can be improved to O(1) using a 2d-Max-Heap as observed by Fischer [16]. We give the description for completeness.

Lemma 2.1 ([7, 16]). There exists a data structure in the encoding model that solves NLRN queries using 2n + o(n)
bits in O(1) time.

Proof. A 2d-Max-Heap analogous to 2d-Min-Heap as described by Fischer [16] is constructed on array A[1, n + 1].
The original structure in that paper solves the nearest smaller left neighbor problem.

The 2d-Max-Heap MA of A is a labeled ordered tree with vertices v1 . . . vn+1 and each vertex corresponds to an
index i. The root is labelled with n + 1, and we treat A[n + 1] as ∞. The parent node of vi is v j if and only if i < j,
A[i] < A[ j], and A[k] ≤ A[i] for all i < k ≤ j. I.e. as we read the array from right to left, we make vi the child of v j if
v j is the nearest larger element (in the right) to vi. It is clear that the sibling values are in increasing order from left to
right, and that the parent of the node labelled vi corresponds to the NLRN of A[i].

As explained by Fischer [16], the 2d-Min-Heap can be represented using any of the succinct ordinal tree represen-
tations, taking 2n + o(n) bitsto support NLRN in constant time. 2

NLN. Clearly an NLN query can be answered by constructing two data structures that support NLLN and NLRN
queries. This results in a space of 4n + o(n) bits. Fischer [8] has given a data structure that takes 2.54n + o(n) bits to
answer both NLLN and NLRN queries.

It is not clear whether NLN can be answered without explicitly answering NLLN and NLRN, and hence whether
a representation using (2.54 − ε)n bits suffice to answer NLN queries. We conjecture that this is not possible, i.e.,
2.54n + o(n) bits are necessary to answer NLN queries. However, when all elements are distinct, we show that one
can do better.

Theorem 2.2. There exists a data structure that uses 2n + o(n) bits and can answer NLLN and NLRN queries in O(1)
time, when all elements are distinct.

Proof. We show how to support NLLN and NLRN using a succinct representation of a Cartesian tree [17]. Given a
node v in the Cartesian tree corresponding to a position i in the input array, the position j corresponding to the parent
of v is either NLLN(i) or NLRN(i), depending on whether j < i or j > i [3]. Suppose that j < i (the other case is
symmetric). Then the node corresponding to the position NLRN(i) is the lowest ancestor of v which corresponds to a
position greater than i, which is in fact the next node in preorder after the rightmost leaf of v. This can be computed in
O(1) time using any succinct binary tree representation that supports rank and select of nodes in preorder and subtree
size. The binary tree representation of [17] supports all these operations in O(1) time. 2
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2.2. Data structures for 1-D in the indexing model

NLN. Recall that in the indexing model, the input can be accessed at query time, and hence significant space saving
should be possible. We first observe that this can be extended to a time-space tradeoff for NLN.

Theorem 2.3. For any parameter c, where 1 ≤ c ≤ n, there exists a data structure which solves NLN queries in the
indexing model using O(n/c) bits in O(c) time.

Proof. Break the input array A of n elements into chunks of size c. Extract the maximal of each block and construct a
conceptual array B of size n/c. Build an encoding data structure for B that answers NLLN and NLRN queries, using
2.54 · n/c + o(n/c) bits.

To solve an NLN query for index i, check in O(c) time by scanning the original input array, whether A[i] is a
maximal element of its block. If A[i] is a maximal element in its block, use the encoding structure for B to find the
blocks containing its NLLN and NLRN. Now, sequentially scan these two blocks to find the NLN of the query element
(in fact, if the two blocks are not at the same distance from the block containing the query element, it is enough to
scan the nearest one). If A[i] is not the maximum of the block then in O(c) time, check the block containing the query
index, as well as the block before the query index and the block after the query index, by sequentially scanning the
elements and find the NLN. The space used in addition to the input is 2.54 · n/c + o(n/c) bits, and the time taken to
solve a query is O(c). 2

In the indexing model, Brodal et al. [10] proved a lower bound for space-time tradeoff of the RMQ problem. The
proof is in the non-uniform cell probe model [15]. In this model, computation is free, and time is counted as the
number of cells accessed (probed) by the query algorithm. The algorithm is also allowed to be non-uniform, i.e., for
different values of input parameter n, we can have different algorithms.

For n and any value of c, where 1 ≤ c ≤ n, they define a set of arrays Cn,c and a set of queries Q. They argue that
for any RMQ algorithm which has access to an index of size n/c bits (in addition to the input array A), there exists an
array in Cn,c and a query in Q for which the algorithm is required to perform Ω(c) probes into A. The following lower
bound for NLRN and NLN follows along those lines.

Theorem 2.4. Any data structure which stores O(n/c) bits and answers NLRN (or NLN) queries in the indexing
model, requires at least Ω(c) query time.

Proof. The proof follows the argument of Brodal et al. [10] who proved a lower bound for space-time tradeoff of the
RMQ problem. For completeness, here, we reproduce some of their analysis.

Let n and c be two integers, where 1 ≤ c ≤ n. The set Cn,c contains the arrays A[1...n] such that the elements of A
are from the set {0, 1}, and in each block A[(i − 1)c + 1...ic] for all 1 ≤ i ≤ n/c, there is exactly a single “1” element.

The number of possible data structures of size n/c bits is 2n/c, and the number of arrays in Cn,c is cn/c. By the
pigeonhole principle, for any algorithm G there exists a data structure DG which is shared by at least (c/2)n/c input
arrays in Cn,c. Let CDG

n,c ⊆ Cn,c be the set of these inputs. Let qi = NLRN(ic + 1). The set Q = {qi | 0 ≤ i ≤ n/c − 1}
contains n/c queries, where NLRN(x) returns the index of NLRN of query index x.

For algorithm G and data structure DG , we define a binary decision tree capturing the behavior of G on the inputs
from Cn,c to answer a query q ∈ Q. Let G be a deterministic algorithm. For each query q ∈ Q, we define a binary
decision tree Tq(DG). Each internal node of Tq(DG) represents a probe into a cell of the input arrays from Cn,c. The
left and right edges correspond to the output of the probe: left for zero and right for one. Each leaf is labeled with the
answer to q.

For each algorithm G, we have defined n/c binary trees depicting the probes of the algorithm into the inputs from
CDG

n,c to answer the n/c queries in Q. Note that the answers to all these n/c queries uniquely determine the input. We
compose all the n/c binary trees into a single binary tree TQ(DG) in which every leaf determines a particular input. We
first replace each leaf of Tq1 (DG) with the whole Tq2 (DG), and then replace each leaf of the obtained tree with Tq3 (DG),
and so on. Every leaf of TQ(DG) is labeled with the answers to all the n/c queries in Q which were replaced on the
path from the root to the leaf. Every two input arrays in CDG

n,c correspond to different leaves of TQ(DG). Otherwise the
answers to all the queries in Q are the same for both the inputs which is a contradiction. Therefore, the number of
leaves of TQ(DG) is at least (c/2)n/c , the minimum number of inputs in Cn,c.
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We next prune TQ(DG) as follows: First we remove all nodes not reachable by any input from Cn,c . Then we
repeatedly replace all nodes of degree one with their single child. Since the inputs from Cn,c correspond to only
reachable leaves, in the pruned tree, the number of leaves becomes equal to the number of inputs from Cn,c which
is at least (c/2)n/c . In the unpruned tree, the result of a repeated probe is known already and one child of the node
corresponding to the probe is unreachable. Therefore, on a root to leaf path in the pruned tree, there is no repeated
probe. Every path from the root to a leaf has at most n/c right edges (one probes), since the number of one elements in
each input from Cn,c is n/c. The branches along each of these paths represents a binary sequence of length at most d
containing at most n/c ones where d is the depth of the pruned tree. By padding each of these sequences with further
0s and 1s, we can ensure that each sequence has length exactly d + n/c and contains exactly n/c ones. The number of
these binary sequences is at most

(
d+n/c

n/c

)
, which becomes an upper bound for the number of leaves in the pruned tree.

Comparing the lower and upper bounds from the above discussion for the number of leaves of TQ(DG), we have( c
2

)n/c
≤

(
d + n/c

n/c

)
Using Stirling’s formula, we obtain the following

lg(
c
2

)
n/c
≤

n
c

lg(
c
2

) ≤ lg
(
d + n/c

n/c

)
≤

n
c

lg
[ (d + n/c)e

n/c

]
which implies c/2 ≤ (d + n/c)e , and therefore d ≥ n( 1

2e −
1
c ). For any arbitrary algorithm G, the depth d of TQ(DG)

equals the sum of the depths of the n/c binary trees composed into TQ(DG). By the pigeonhole principle, there exists
an input x ∈ CDG

n,c and an i, where 1 ≤ i ≤ n/c, such that the query qi on x requires at least d/(n/c) = Ω(c) probes into
the array A. This shows the lower bound for NLRN.

For NLN, we change qi = NLRN(ic+1) to qi = NLN(ic+c/2), and the rest of the proof remains the same, proving
the same query time and space tradeoff for the NLN problem. 2

NLRN. Now we give a result for the NLRN problem in the indexing model analogous to Theorem 2.3. The approach
follows closely the proof of Fischer et al. [7], which in turn adapts ideas from Jacobson’s representation of balanced
parentheses sequences [18], and is given in full for completeness.

We begin with some definitions. Given a string X over an alphabet Σ, define the following operations:

- rankα(X, i) returns the number of occurrences of α in the first i positions of X, for any α ∈ Σ.
- selectα(X, i) returns the position of the ith α in X, for any α ∈ Σ.

Lemma 2.2 ([19]). Given a string X over {0,1} with length n, containing m 1s, it can be represented in O(m lg(n/m))
bits such that rank1 and select1 can be supported in O(n/m) time.

Theorem 2.5. Given a 1-D array A of size n, there exists a data structure which supports NLRN queries in the
indexing model in O(c) time using O((n/c) lg c) bits for any parameter 2 ≤ c ≤ n.

Proof. Divide A into n/c blocks of size c. For any value 1 ≤ i ≤ n, if i and NLRN(i) are in the same block, say that i
is a near value, otherwise say that i is a far value. Consider a block B and suppose that one or more of its far values
have an NLRN in a block B′. Then the leftmost far value in B whose NLRN is in B′ is called a pioneer, and its NLRN
is called its match. It is known that there are O(n/c) pioneers in A [18].

We maintain a bit-vector V in which the i-th bit is a 1 if A[i] is a pioneer or a match of one, and 0 otherwise. This
bit-vector has length n and contains O(n/c) 1’s, so by Lemma 2.2, we can store it in O((n/c) lg c) bits and perform
rank/select queries on it in O(c) time. Next, we take the sub-sequence S P consisting of all pioneers and their matches.
This subsequence is of length O(n/c). We represent this sequence using Lemma 2.1 using O(n/c) bits, to support
NLRN queries in O(1) time. We claim that for any pioneer in the list, its NLRN in the sequence of pioneers/matches
is the same as its NLRN in the original sequence. Suppose that this claim is not true. This means there is a pioneer ip

such that NLRN(ip) is the value between ip and the match of ip. It cannot be the case that ip and NLRN(ip) are in the
same block, since ip is a far value. If ip and NLRN(ip) are in different blocks, then NLRN(ip) is the match of ip. So
the claim is true.

6



To answer the query NLRN(i), we first check to see if the answer is in the same block as i taking O(c) time. If
so, we are done. Else, (assuming wlog that A[i] is not a pioneer value) we find the first pioneer pi before position i
by doing rank/select on V . As A[i] < A[pi], NLRN(i) is less than or equal to the match of pi. Since i is the far value
in this case, NLRN(i) and NLRN(pi) are in the same block. We find NLRN(pi) using the NLRN encoding of S P and
find the corresponding position iap in A using rank/select on V . Finally we scan left from iap to find NLRN(i). The
overall time taken to answer the query is O(c). 2

3. NLN on two dimensional binary arrays

In this section, we first give an optimal encoding for NLN, and using this obtain an almost optimal trade-off for an
NLN index for a 2-D binary array. We use the following lemma:

Lemma 3.1 ([9]). Given a string X of length n over an alphabet Σ, |Σ| = O(1), there is an encoding of X using O(n)
bits, that supports rankα and selectα in O(1) time, for any α ∈ Σ.

Theorem 3.1. There is a data structure that takes O(n2) bits for a binary array A[1 . . . n][1 . . . n] which supports
NLN queries in O(1) time.

Proof. Given a query position p, we compute the NLN(p) by computing the positions of the nearest larger values in
all four quadrants induced by a vertical and a horizontal lines passing through p, and then returning the closest of
these four positions as the answer. Thus, it is enough to describe a structure that supports finding the position of the
nearest larger value in (say) the upper-right quadrant; in the rest of this proof, we use NLNNE to denote this.

Given a position p = (i, j), let q = (i′, j′) be its NLNNE if there is a 1 in the upper-right quadrant of p. We give a
label from the alphabet {R,C,D,O,Z} as follows. The position (i, j) is labeled with: (1) O if A[p] = 1; (2) R if i = i′;
(3) C if j = j′; (4) D if i < i′ and j < j′; and (5) Z if A[p] = 0 and there is no 1 in the upper-right quadrant of p.

Now, given a query position p, if the position p is labeled with O or Z, then we conclude that NLNNE does not
exist (in this quadrant). Otherwise, if the label is R, we can find its answer by following the positions (i, j + k), for
k = 1, 2, . . . (i.e., elements in the same row) till we reach a position with label O, and return that position as the
answer. Also, one can easily show that all the intermediate positions have label O. Analogously, if the label is C, then
we follow the positions in the same column until we reach position with label O and return that position. Finally, if
the label is D, then we first follow the positions (i + k, j + k), for k = 1, 2, . . . till we reach the first position (i + `, j + `)
with a label different from D. The label of position (i+ `, j+ `) can be O, R or C. If it is O, then we return that position
as the answer. In the other two cases, we can find the answer by following the row or column as described above.
The data structure simply stores the labels of all positions in the array (for each quadrant). In addition, to support
the queries faster, we build rank/select structures (over constant alphabet strings) for the encoding of each row, each
column and each diagonal. By Lemma 3.1,the total space usage is clearly O(n2) bits. Now, queries can be supported
in constant time by using rank/select to jump to the appropriate positions as described in the above procedures. 2

Now we describe an index for a given 2-D binary array, in the bit-probe model. We begin by introducing some
notation that will be used later. Suppose we divide an n × n array A into blocks of size c × c, for 1 ≤ c ≤ n, and divide
each block into c sub-blocks of size

√
c ×
√

c. We define an (i, j)-block as the sub-array A[(i − 1)c + 1 . . . ic][( j −
1)c . . . jc] and an (i, j, k, l)-sub-block as the sub-array A[(i−1)c+(k−1)

√
c . . . (i−1)c+k

√
c][( j−1)c+(l−1)

√
c . . . ( j−

1)c + l
√

c]. For each (i, j)-block, we define eight regions, consisting of sets of blocks (some of which can be empty)
as follows: the region
N(i, j) consists of all (i, l)-blocks with l > j;
S (i, j) consists of all (i, l)-blocks with l < j;
E(i, j) contains all (k, j)-blocks with k > i;
W(i, j) contains all (k, j)-blocks with k < i;
NE(i, j) contains all (k, l)-blocks with k > i and l > j;
NW(i, j) contains all (k, l)-blocks with k < i and l > j;
S E(i, j) contains all (k, l)-blocks with k > i and l < j; and
S W(i, j) contains all (k, l)-blocks with k < i and l < j.
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Similarly, for each (i, j, k, l)-sub-block, we also define the regions Ni, j(k, l), S i, j(k, l), Ei, j(k, l), Wi, j(k, l), NEi, j(k, l),
NWi, j(k, l), S Ei, j(k, l) and S Wi, j(k, l) in the same way.

We construct an n/c × n/c array A′[1 . . . n/c][1 . . . n/c] such that A′[i][ j] = 1 if there exists at least a single 1 in
the (i, j)-block, and 0 otherwise. We also construct another n/

√
c × n/

√
c array A′′[1 . . . n/

√
c][1 . . . n/

√
c] such that

A′′[i][ j] = 1 if there exists at least a single 1 in the (bi/cc, b j/cc, i − bi/cc, j − b j/cc)-sub-block, and 0 otherwise.

Theorem 3.2. Given a binary array A[1 . . . n][1 . . . n] one can construct an index of size O(n2/c) bits to support
NLN queries in O(c) time for 1 ≤ c ≤ n.

Proof. We divide the array A into blocks and sub-blocks as mentioned earlier. Suppose the query q is in the (i, j, k, l)-
sub-block. If A′′[ic + k, jc + l] = 1, scanning O(1) sub-blocks is enough to find the NLN of q, and this takes O(c)
time.

Now, consider the case when A′′[ic + k, jc + l] = 0 but A′[i, j] = 1. In this case, it is clear that we can identify O(c)
sub-blocks in which the answer may lie – namely all the sub-blocks in its block, and in the eight neighbouring blocks.
We find the potential answer in each of the eight directions (E, W, N, S, NE, NW, SE, and SW), and then compare
their positions to find the actual answer. To find the the answer in E direction, we scan the bits in A′′ that are to the
right of the current sub-block, till we find a 1. We then scan this sub-block, and the sub-block to its right to find the
potential answer in this direction. Similarly, we can find the potential answers in the W, S, and N directions. Next, we
find the nearest one to the query in the NEi, j(k, l) region. This element is the nearest one from the bottom-left conner
of (i, j, k + 1, l + 1)-sub-block. The nearest one from the bottom-left conner of (a, b, c, d)-sub-block in the NEa,b(c, d)
region is same as either the nearest one in the same block, or is the nearest one from the bottom-left corners of one
of these three blocks: (1) (a, b, c + 1, d)-sub-block, (2) (a, b, c, d + 1)-sub-block, or (3) (a, b, c + 1, d + 1)-sub-block.
Therefore we encode each sub-blocks using 2 bits indicating the case it belongs to ((1), (2) or (3)), which takes a total
of O(n2/c) bits. Now, to find the answer in the NE direction, we scan O(c) sub-blocks to find the sub-block which
contains the nearest one from q in NE(i, j, k, l). Once we find the corresponding sub-block, finding the nearest one
from the bottom-left conner in the sub-block takes O(c) time. We can find the nearest one in the NWi j(k, l), S Ei j(k, l)
and S Wi j(k, l) regions in the same way. Then NLN of q is the closest one among these eight candidates.

Finally, consider the case when A′[i, j] = 0. By storing the data structure of Theorem 3.1 for the array A′ using
O(n2/c2) bits, we can find the nearest block to the query position which contains a one, in O(1) time. Let this block
be the (i′, j′)-block, let ` be the L1 distance from (i, j) to (i′, j′) in A′. The value `c is an estimate (within an additive
factor of 2c) for the L1 distance from q to its NLN. Assume, wlog, that (i′, j′) is in the NE(i, j) region. We first describe

Figure 1. Suppose the nearest block that contains one from (2,2)-block is (4,3)-block, Then d(4, 3) are the blocks colored by green and we can find
the nearest one in NE(2,2) using RMQ for D4,3[2, 3] and D4,4[1 . . . 3]

how to find the nearest one in NE(i, j) region. Define d(i, j) as the set of blocks in the top-left to the bottom-right
diagonal that contains the (i, j)-block and define the array D(i, j) of size at most n/c such that D(i, j)[m] is the distance
from the bottom-left element to the nearest one in the m-th block in d(i, j). Now we construct a linear-bit RMQ (range
minimum query) data structure for each D(i, j) (using a total of O(n2/c) bits), so that RMQ queries can be supported
in O(1) time. Now, we find the two potential blocks in NE(i, j) region that may have the nearest one from q by
performing RMQs on D(i′, j′) and D(i′, j′+1) among all the blocks that are contained in the NE(i, j) region (it is easy to
see that they form a consecutive range). We then choose the closer one between these two from the q. (Figure 1 shows
the example). Note that if (i′, j′) is in a different region from NE(i, j), then we may not find any potential answer in

8



NE(i, j), as all the ‘relevant’ blocks in D(i′, j′) and D(i′, j′+1) may be empty. We can find the nearest one in NW(i, j),
S E(i, j) and S W(i, j) in a similar way.

Next, we describe how to find the nearest one in the N(i, j) region (finding the nearest one in the S (i, j), E(i, j) and
W(i, j) regions is analogous). For each position in the bottom row of an (a, b)-block with A′[a, b] = 1, we store two
bits indicating whether its answer within the block is in (1) the same column (H), or (2) some column to the left (L), or
(3) some column to the right (R). (The query algorithm simply “follows” the L or R “pointers” till it reaches a H, and
then scans the column upwards till it finds a one in that column. Note that L and R cannot be in two adjacent columns.)
This takes O(c × n2/c2) = O(n2/c) bits over all the blocks. This encoding enables us to find the closest one within
the block from any column in the bottom row of that block in O(c) time. Since ` is the L1 distance between (i, j) and
(i′, j′) in A′, we know that all the blocks A[i, j − r], for 1 ≤ r < ` are empty (otherwise, we have a closer non-empty
block than (i′, j′)). Let k be the column corresponding to the query position q. We claim that the closest one to q in the
N(i, j) region is closest one to the bottom row and column k of the either (i, j + `)-block or (i, j + ` + 1)-block. These
can be computed in O(c) time using the above encoding, and then compared to find the required answer. Finally we
can find NLN of q by comparing these eight candidate answers. 2

4. NLN on two dimensional arrays

Consider an n×n 2-dimensional (2-D) array A[1 . . . n][1 . . . n]. Given two positions (i, j) and (i′, j′) in A, we define
dist((i, j), (i′ j′)) = |i − i′| + | j − j′|. A trivial solution to the NLN problem in 2-D array is to store NLN((i, j)), for
1 ≤ i, j ≤ n. This requires O(n2 lg n) bits, and supports queries in O(1) time. In the following, we obtain improved
results for the 2-D NLN in the encoding and indexing models, and also describe some trade-off results.

4.1. 2-D NLN in the encoding model – distinct case

When there is no restriction on the elements of the array, one can show an n2-bit lower bound for NLN encoding
(follows easily for the case of a bit array). Using a simple encoding method, one can prove that the same asymptotic
lower bound applies even when all the elements of the array are distinct to obtain the following.

Figure 2. useful and dummy elements in A2

Theorem 4.1. Any data structure which supports NLN queries on an n× n array A[1 . . . n][1 . . . n] in encoding model
requires at least n2/6 bits, even when all the elements in A are distinct.

Proof. We define a setA of 2n2/6 matrices, such that the answers to the NLN queries in any array A ∈ A can be used
to distinguish A fromA\ {A}. This proves that encoding for an arbitrary array A inA requires at least n2/6 bits in the
worst case.
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Each array A ∈ A contains elements from the set {1, 2, . . . , n2}, where each element appears exactly once. To
describe the arrays in A, we classify the elements of each array into useful and dummy elements. The elements from 1
to 2n2/3 constitute the dummy elements, and the rest (from 2n2/3 + 1 to n2) constitute the useful elements. As shown
in Figure 2, the positions (3i + 1, 2 j) and (3i + 2, 2 j), for 0 ≤ i < n/3 and 1 ≤ j ≤ n/2, contain useful elements, and the
remaining 2n2/3 positions contain the dummy elements. For all the positions containing dummy elements, we assign
the values of dummy elements in any fixed order; this assignment is same for every array A ∈ A. Also, given two
adjacent positions containing useful elements, (3i + 1, 2 j) and (3i + 2, 2 j), for 0 ≤ i < n/3 and 1 ≤ j ≤ n/2, the values
of elements for these two positions respectively are fixed, arbitrarily, to be two elements x and y, or y and x. Since
there are n2/6 such adjacent pairs, and for each pair, we have two choices for the order of its elements, there are, in
total, 2n2/6 matrices inA.

Now, it is easy to see that given the answers to the NLN queries of all adjacent pairs of useful elements, we can
distinguish the array A fromA \ {A}. 2

We now obtain an asymptotically optimal upper bound for 2-D NLN encoding for the distinct case.

Lemma 4.1. A 2-D array A[1 . . . n][1 . . . n] can be encoded using O(n2) bits to support NLN queries, provided all
elements are distinct.

Proof. The main idea is to divide the array recursively into blocks of geometrically increasing size, and store the
NLN values of all elements, except the largest element and the elements whose answers are stored at a previous level,
in each block explicitly. The following argument shows that this requires O(n2) bits overall.

In the first level, we divide A into n2/4 blocks of size 2 × 2 each. Except for the largest element in each 2 × 2
block, the distance of NLN answer for the other three elements are bounded by 2. In general, at level k, we divide A
into n2/4k blocks of size 2k × 2k each. In each of these 2k × 2k-sized blocks, there are four elements left for which
we need to store the answer to their NLN queries. For three of these four elements, which do not correspond to the
maximum value in the block, we store their answers at level k. Since the distance to the NLN answer for these three
elements is bounded by 2k+2, we can store these answers using O(k) bits. Thus the total space usage is bounded by∑lg n

k=1(3n2/4k) ∗ O(k) = O(n2) bits. 2

We now describe another O(n2)-bit encoding for the 2-D NLN problem that supports queries in constant time.

Theorem 4.2. A 2-D array A[1 . . . n][1 . . . n] can be encoded using O(n2) bits to support NLN queries in O(1) time,
provided all elements are distinct.

Proof. The encoding is a small variant of the encoding described in the proof of Lemma 4.1. For each position in
A, in some canonical order (say, row-major order), we write down the relative position (i.e., the distance in from the
position to its answer in horizontal and vertical directions) of its NLN answer. We use a variable-length encoding,
such as γ-code or δ-code [20], to write these answers. The proof of Lemma 4.1 implies that the sum of the lengths
of all these answers is O(n2). We also store an indexable bit vector [9] indicating the starting positions of each code.
This enables us to find the position where the answer to a given query starts and ends, in constant time. 2

4.2. 2-D NLN in the encoding model – general case

In this section, we give an encoding which supports NLN queries in a 2-D array with O(n2) bits in the general
case. Before starting the 2-D case, we consider the 1-D case first. Theorem 2.2 shows how to encode an array A with
n distinct items using O(n) bits to answer NLN queries. We give an alternate proof of this, based on ideas from [2]:

Lemma 4.2. There exists an encoding of an array A[1 . . . n] that uses O(n) bits while supporting NLN queries,
provided all elements are distinct.

Proof. We write down the sequence d(1), d(2), . . . , d(n) explicitly, where d(i) = n if A[i] is the maximum elements of
A, and d(i) = |i − NLN(i)| otherwise, for 1 ≤ i ≤ n, together with a sequence of n bits that indicate if i < NLN(i) or
i > NLN(i). Because the elements in A are distinct, there are ≥ n/2k elements for which d(i) ≤ 2k, and d(i) for these
elements can be encoded in O(k) bits. In all,

∑lg n
k=1(n/2k · O(k)) = O(n) bits are used. 2
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If the elements in A are not distinct, the above argument does not hold. So instead of encoding the NLN of a
position i explicitly as in Lemma 4.2, we encode the distance between i and the nearest value which is ≥ A[i] in the
same direction as NLN(i). Formally, we define dl(i) = i − (max j<i,A[ j]≥A[i] j) and dr(i) = (min j>i,A[ j]≥A[i] j) − i and
d(i) = dl(i) if NLN(i) < i and d(i) = dr(i) otherwise. For each i, we encode d(i) and store a bit stating whether
d(i) = dr(i) or d(i) = dl(i), and view this as a “pointer” to j = i + dr(i) or j = i − dl(i) respectively. Finally, we also
store a bit indicating whether or not A[i] = A[ j]. With this encoding, NLN(i) can be easily found by following the d(·)
“pointers” from i until we reach a position that is greater than A[i]. We now show that this encoding uses O(n) bits2:

Lemma 4.3. For any array A[1 . . . n], D =
∑n

i=1 lg d(i) = O(n).

Proof. Consider the array A′[1 . . . n] of size n, where A′[i] = A[i]+εi if NLN(i) > i and A′[i] = A[i]−εi if NLN(i) < i
for some ε > 0. If we set ε small enough then if A[i] > A[ j] for some i, j then A′[i] > A′[ j] as well, but all elements
in A′ are distinct. So if we define d′(i) and NLN′ on A′ analogously to d(i) and NLN on A, D′ =

∑n
i=1 lg d′(i) = O(n)

by Lemma 4.2. We now show that D ≤ 2D′.
To prove this claim, let 0 ≤ i0 < · · · < ir ≤ n with r > 0 be a maximal sequence of indices such that A[i0] > A[i1],

A[ir−1] < A[ir], A[ii] = A[i2] = · · · = A[ir−1] and for all i0 < j < ir, A[ j] < A[i1]. For 0 ≤ k ≤ r, let ik be the index
such that NLN(il) = i0 for all 0 < l ≤ k and NLN(il) = ir for all k < l ≤ r − 1 . Then by the definition of A′, for all
k < l ≤ r − 1, NLN′(il) = il+1 so d(il) = d′(il). For the elements to the left of ik, we can consider the case that there
exist 0 < m ≤ k such that NLN′(il) = il−1 for all 0 < l ≤ m − 1 and NLN′(il) = il+1 for m ≤ l ≤ k. Then:

D − D′ =

n∑
i=1

lg d(i) −
n∑

i=1

lg d′(i)

=

m−1∑
i=1

lg d(i) +

r−1∑
i=k+1

lg d(i) +

k∑
j=m

lg(i j − i j−1)

 −
m−1∑

i=1

lg d′(i) +

r−1∑
i=k+1

lg d′(i) +

k∑
j=m

lg(ik+1 − i j)


=

k∑
j=m

lg(i j − i j−1) −
k∑

j=m

lg(ik+1 − i j)

≤ lg(im − im−1) − lg(ik+1 − ik) (∵ i j − j j−1 ≤ ik+1 − i j−1 for all 0 ≤ j ≤ k)
≤ lg(im − im−1) ≤ lg(im − i0) ≤ lg(ir − im) (∵ NLN(im) = i0)

≤ lg(ik+1 − im) +

r−1∑
j=k+1

lg(i j+1 − i j) (by the concavity of lg function)

≤

n∑
i=1

lg d′(i) = D′

2

We now extend this encoding to encode NLNs for a 2-D array A[1 . . . n][1 . . . n]. In our encoding, each (i, j) “points
to” another location (i′, j′), such that A[i′, j′] ≥ A[i, j], as follows: |i− i′| is encoded using O(1+ lg |i′ − i|) (the row cost
of the pointer) and | j− j′| is coded using O(1 + lg | j′ − j|) bits (the column cost of the pointer), the direction from (i, j)
to (i′, j′) is given using two bits, and finally one extra bit indicates whether or not A[i′, j′] > A[i, j]. Now we explain
how to specify the pointers. Pick an element A[i, j] and without loss of generality assume that NLN(i, j) = (i∗, j∗)
with i∗ ≥ i, j∗ ≥ j. We choose pointers as follows:
Case (1) Let i′ > i be the smallest value such that i′ ≤ i∗ and A[i, j] = A[i′, j]. If i′ exists, we store a pointer to (i′, j)
and set the extra bit to 0.
Case (2) If not, let j′ > j be the smallest value such that j′ ≤ j∗ and A[i, j] = A[i, j′]. If j′ exists, we store a pointer
to (i, j′) and set the extra bit to 0.

2Note that this encoding cannot be obtained by simply breaking ties among equal elements in some arbitrary fashion and applying Lemma 4.2.
For example, if A[i] = A[i + 1] and A[i − t] and A[i + 1 + t] for some t > 1 are the nearest larger values, then in the current encoding, neither A[i]
nor A[i + 1] would point to one another. If we break ties then either A[i] points to A[i + 1] or A[i + 1] points to A[i].
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Case (3) Otherwise we store a pointer to (i∗, j∗) and set the extra bit to 1.
We call this encoding scheme encoding2−D. To obtain NLN(i, j), we follow pointers starting from (i, j) until we

follow one with the extra bit set to 1, and return the position pointed to by this pointer. The correctness of this
procedure is shown in the following lemma.

Lemma 4.4. Given a 2-D array A[1 . . . n][1 . . . n], for all 1 ≤ i, j ≤ n, NLN(i, j) is obtained by the above procedure.

Proof. The proof is by induction on k, the distance between (i, j) and NLN(i, j) = (i∗, j∗). The base case k = 1 follows
directly from case 3) above.

Assume the induction hypothesis holds for all NLNs at distance ≤ k, and choose an (i, j) such that NLN(i, j) =

(i∗, j∗) and dist((i, j), (i∗, j∗)) = k + 1. Assume wlog that the pointer from (i, j) has its extra bit set to 0 (other-
wise, the induction step is trivial) and it points to (i′, j) with i′ > i. Assume that NLN(i′, j) = (x, y) , (i∗, j∗), and
dist((x, y), (i, j)) > dist((x, y), (i∗, j∗)). Since A[i′, j] = A[i, j], dist((i′, j), (x, y)) ≤ dist((i′, j), (i∗, j∗)) < dist((i, j), (i∗, j∗)) =

k + 1. By the induction hypothesis, following pointers from (i′, j) leads to (x, y). Now:

dist((i, j), (x, y)) ≤ dist((i, j), (i′, j)) + dist((i′, j), (x, y))
≤ dist((i, j), (i′, j)) + dist((i′, j), (i∗, j∗)) (∵ NLN(i′, j) = (x, y))
≤ dist((i, j), (i∗, j∗)),

contradicting the assumption that dist((x, y), (i, j)) > dist((x, y), (i∗, j∗)). 2

Theorem 4.3. There exists an encoding of a 2-D array A[1 . . . n][1 . . . n] that supports NLN queries, using O(n2) bits.

Proof. We describe an encoding, called encodinggrid as follows. We first encode each column and row of A using
Lemma 4.3, using O(n2) bits. These pointers are called grid pointers. However, the maximal values in each row and
column do not have pointers by Lemma 4.3, as their NLN is not defined. So, in addition, for each row r which has
(locally) maximum values in columns i1 < . . . < ik, we store extra pointers in both directions from (i j, r) to (i j+1, r)
for j = 0, . . . , k, taking i0 = 0 and ik+1 = n + 1. The space taken by these extra pointers is O(lg i1 +

∑k−1
j=2 lg (i j − i j−1) +

lg (n + 1 − ik)) = O(n) bits for row r. We do this for all rows and columns, at a cost of O(n2) bits overall.
Although encodinggrid does not encode NLN, we use it to upper bound the space used by encoding2−D. Let a grid

pointer and a 2-D pointer refer to a pointer in encodinggrid and encoding2−D respectively. For any 2-D pointer, the
cost of encoding it can be upper-bounded by the cost of encoding (one or more) grid pointers. Each grid pointer will
be used O(1) times this way. Below, we show how to upper bound all case 2) 2-D pointers and the row cost of all case
3) 2-D pointers by grid pointers in rows, using each grid pointer at most thrice. The costs of Case (1) 2-D pointers
and the column cost of Case (3) 2-D pointers can similarly be bounded by the costs of grid pointers in the columns.
This will prove the theorem.

We consider a fixed location (i, j), and assume wlog that NLN(i, j) = (i∗, j∗) with i∗ ≥ i and j∗ > j (if j∗ = j then
the pointer from (i, j) will have row distance 0 and there is nothing to bound). There are four cases to consider (see
Figure 3).

Case (a) Let j′ > j be the minimum index such that A[i, j′] ≥ A[i, j]. Suppose that j′ exists and there and there is a
pointer from (i, j) to (i, j′) or vice versa. There are two sub-cases:

(a.1) The 2-D pointer from (i, j) points to (i, j′). We use the cost of this grid pointer to upper bound the cost of
the 2-D pointer. Observe that if there is a 2-D pointer from (i, j) to (i, j′), there cannot be a 2-D pointer
from (i, j′) to (i, j), so the grid pointer is used for upper-bounding only once in this case.

(a.2) The 2-D pointer from (i, j) points to (i∗, j∗). Observe that j′ ≥ j∗, since otherwise either (i, j′) is a larger
value that is closer than (i∗, j∗), a contradiction, or we would have a Case (2) 2-D pointer from (i, j) to
(i, j′). The pointer between (i, j) and (i, j′) will only be used twice for upper-bounding in this case.

Case (b) There is either no value A[i, j′] ≥ A[i, j] for j′ > j, or if there is, then there are no grid pointers either from
(i, j) to (i, j′) or vice versa. As before, we consider two sub-cases.
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Figure 3. Pointers in encoding2−D and encodinggrid

(b.1) First suppose that the 2-D pointer from (i, j) points to (i, j′), where j′ > j is the smallest index such that
A[i, j′] ≥ A[i, j], and there is no grid pointers between (i, j) and (i, j′) in either direction.
If A[i, j] is a maximal value in row i, the cost of the pointer is upper-bounded by the extra pointer between
(i, j) and (i, j′). If not, the absence of grid pointers between (i, j) and (i, j′) implies that the NLN of (i, j)
in the i-th row is (i, j0) for some j0 < j. Note that | j0 − j| ≥ dist((i, j), (i∗, j∗)), otherwise NLN(i, j) would
be (i, j0). As dist((i, j), (i∗, j∗)) = | j− j′|+ | j′ − j∗|+ |i∗ − i|, | j0 − j| ≥ | j′ − j|. The path p between (i, j) and
(i, j0) in encodinggrid may comprise a number of grid edges. We can bound the cost of the 2-D edge from
(i, j) to (i, j′) by the total cost of the grid edges on the path p (since the log function is concave, the sum
of the costs of the path p is no less than the cost of a single edge from (i, j) to (i, j0)). Let p comprise the
elements j = jl, jl−1, . . . , j1, j0 (omitting the row number for brevity). Note that for any 0 < k < l, no 2-D
pointer from (i, jk) can end up in Case (b), so this path can only be used twice to upper-bound the cost of
a 2-D edge: once from (i, j) and once (possibly) from (i, j0).

(b.2) The 2-D pointer from (i, j) points to (i∗, j∗), and either there is no value ≥ A[i, j] in locations A[i, j′] for
j′ > j, or if there is, and j′ is the minimum such value, then there is no grid pointer between (i, j) and
(i, j′). If A[i, j] is a maximal value in row i, then if j′ exists, then it must be that j′ > j∗, and the row cost
of the 2-D pointer is bounded by the extra pointer between (i, j) and (i, j′). On the other hand, if j′ does
not exist, then the row cost of the 2-D pointer is bounded by the extra pointer from (i, j) to (i, n + 1).
If A[i, j] is not maximal, then arguing as above, we see that the NLN of (i, j) in the i-th row is (i, j0) for
some j0 < j, that | j0 − j| ≥ | j− j∗|, and so we can upper-bound the row cost of this 2-D pointer by the total
cost of all the grid pointers between j and j0, and each of these grid pointers is used at most twice (once
each for the pointers out of (i, j) and (i, j0) in Case (b) to upper bound a 2-D pointer. 2

Now we describe the O(n2)-space data structure that supports NLN query in constant time on 2-D array A[1 . . . n][1 . . . n].
To support this, first divide A into blocks of size b × b and divide each block into sub-blocks of size s × s.

Also we divide the outside of blocks and sub-blocks into 8 areas (N, S, W, E, NW, NE, SE, SW) as defined in
Section 3. Now we prove the main theorem.

Theorem 4.4. There exists an encoding of 2-D array A[1 . . . n][1 . . . n] that uses O(n2) bits while supporting NLN
queries in O(1) time.

Proof. For each element A[i, j], we assign a color from the set {C1,C2, . . . ,C9}, as follows. If NLN(i, j) is in one of
the 8 regions, we give one of the colors from C1 to C8; and if the answer is within the block containing (i, j), then
we give the color C9. Also for block B, let Bmax be the set of NLN of the maximal elements in B. Then for each
boundary element eB in block B, we store a pointer to an element in Bmax which is closest to eB. These structures take
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O(b2 + b lg n) bits, for each block. For each sub-block, we maintain similar structure as above using O(s2 + s lg b)
bits. (Note that a maximal element in a sub-block which is not a maximal element in its block can have its answer
outside the block, but its distance to NLN is bounded by O(b). So, we can store the answer explicitly.) Also for each
element, we assign the color c1 to c9 by the position of its NLN analogous to C1 to C9. To support NLN quries for
non-maximal elements in a sub-block, we encode each sub-block together with its 24 neighboring sub-blocks, using
the encoding of Theorem 4.3, using O(s2) bits. In addition, we construct a precomputed table that is indexed by the
above O(s2)-bit encoding of a sub-block and a position within it, and returns the NLN for that position.

We now describe the query algorithm. Consider the query q = A[i, j] and let Bq (bq) be the block (sub-block) that
contains q. We first check whether q is a maximal element in bq. If q is not a maximal element in bq, we use the
precomputed table to find the answer, in O(1) time. Otherwise, if q is not a maximal element in Bq, then NLN(q) can
be answered in O(1) time by finding the nearest boundary in the direction corresponding to q’s assigned color. If q
is a maximal element in Bq, we can find its NLN in O(1) time by a similar procedure using colors C1 to C9. So total
query time is O(1), and total space is O(n2/b2 × (b2 + b lg n) + n2/s2 × (s2 + s lg b) + 2O(s2)) bits. If we set b = lg n and
s = c

√
lg n, we can encode A with supporting NLN queries in O(n2) bits. 2

5. Conclusions

Our main contribution is a systematic study of data structures for NLN and NLRN in one dimensional arrays, and
NLN in two dimensional arrays, in the encoding and indexing models. We end with specific open problems that can
trigger further work.

• Is there a data structure that takes less than 2.54n + o(n) bits and can answer NLN queries in a one dimensional
array in constant time in the general case (when elements may repeat) in the encoding model?

• For a 1-D array, is there an index for NLRN that uses O(n/c) bits and supports queries in O(c) query time?

• For a 2-D array, is there an index for NLN that uses O(n2/c) bits and supports queries in O(c) query time?
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[7] J. Fischer, V. Mäkinen, G. Navarro, Faster entropy-bounded compressed suffix trees, Theor. Comput. Sci. 410 (51) (2009) 5354–5364.
[8] J. Fischer, Combined data structure for previous- and next-smaller-values, Theor. Comput. Sci. 412 (22) (2011) 2451–2456.
[9] R. Raman, V. Raman, S. R. Satti, Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets, ACM

Transactions on Algorithms 3 (4) (2007) Article 43.
[10] G. S. Brodal, P. Davoodi, S. S. Rao, On space efficient two dimensional range minimum data structures, Algorithmica 63 (4) (2012) 815–830.
[11] E. D. Demaine, G. M. Landau, O. Weimann, On cartesian trees and range minimum queries, Algorithmica 68 (3) (2014) 610–625.

doi:10.1007/s00453-012-9683-x.
[12] G. S. Brodal, P. Davoodi, S. S. Rao, On space efficient two dimensional range minimum data structures, Algorithmica 63 (4) (2012) 815–830.
[13] G. S. Brodal, P. Davoodi, M. Lewenstein, R. Raman, S. S. Rao, Two dimensional range minimum queries and Fibonacci lattices, in: ESA,

2012, pp. 217–228.
[14] G. S. Brodal, A. Brodnik, P. Davoodi, The encoding complexity of two dimensional range minimum data structures, in: ESA, 2013, pp.

229–240.
[15] P. B. Miltersen, Cell probe complexity - a survey, FSTTCS: Advances in Data Structures Workshop.
[16] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays, SIAM Journal on Computing 40 (2)

(2011) 465–492.
[17] P. Davoodi, R. Raman, S. R. Satti, Succinct representations of binary trees for range minimum queries, in: J. Gudmundsson, J. Mestre,

T. Viglas (Eds.), COCOON, Vol. 7434 of Lecture Notes in Computer Science, Springer, 2012, pp. 396–407.
[18] G. Jacobson, Space-efficient static trees and graphs, in: FOCS, IEEE Computer Society, 1989, pp. 549–554.
[19] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dictionary, in: Proceedings of the Nine Workshop on Algorithm

Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007, 2007. doi:10.1137/1.9781611972870.6.
[20] P. Elias, Universal codeword sets and representations of the integers, IEEE Transactions on Information Theory 21 (2) (1975) 194–203.

14


