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ABSTRACT [First-level Header] 

 

Objectives: It is standard practice for diagnostic tests to be evaluated against gold 

standards in isolation. In routine clinical practice, however, it is commonplace for multiple 

tests to be used before making definitive diagnoses. This paper describes a meta-analytic 

modelling framework developed to estimate the accuracy of the combination of two 

diagnostic tests, accounting for the likely non-independence of the tests.  

 

Methods: A novel multi-component framework was developed to synthesise information 

available on different parameters in the model. This allows data to be included from 

studies evaluating single tests or both tests. Different likelihoods were specified for the 

different sources of data and linked by means of common parameters. The framework 

was applied to evaluate the diagnostic accuracy of Ddimer and Wells score for Deep Vein 

Thrombosis, and the results compared to a model where independence of tests was 

assumed. All models were evaluated using Bayesian Markov Chain Monte Carlo 

simulation methods. 

 

Results:  The results showed the importance of allowing for the (likely) non-

independence of tests in the meta-analysis model when evaluating a combination of 

diagnostic tests. The analysis also highlighted the relatively limited impact of those 

studies that evaluated only one of the two tests of interest.     

 

Conclusions: The models developed allowed the assumption of independence between 

diagnostic tests to be relaxed while combining a broad array of relevant information from 

disparate studies. The framework also raises questions regarding the utility of studies 

limited to the evaluation of single diagnostic tests. 
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Introduction [First-level Header] 

 

Accurate diagnosis is a prerequisite for the efficient allocation of treatments. Diagnostic 

tests with perfect or very high accuracy (reference tests) are often expensive and/or 

invasive; therefore, index tests, which are usually cheaper and less invasive but also less 

accurate, often play an important role in medical diagnosis. Rarely is the application of 

one index test sufficient to diagnose a particular condition, and diagnostic strategies 

involving multiple tests are often used in routine clinical practice. Where multiple tests are 

used for diagnosis, however, it is important to acknowledge that the diagnostic results 

from the different tests may not be independent of one another and therefore, when 

synthesising evidence to evaluate the accuracy of the combination of tests this 

interdependence needs to be taken into account,  which is seldom done in practice. 

 

Systematic reviews and, consequently, meta-analyses are routinely used to identify the 

evidence for medical decision making [1] and, more specifically, for clinical/economic 

decision analytic modelling [2]; since optimal decisions should not be based solely on 

single study results when multiple studies with relevant data exist [3,4]. Systematic 

reviews and meta-analyses of diagnostic test accuracy studies have focused on the 

performance of individual tests which, at least in part, is due to a large proportion of 

primary studies focusing on the evaluation of single tests. A recent systematic review of 

Health Technology Assessment reports [5] found that where economic decision models 

had been used to evaluate different combinations of tests, the accuracy of each 

combination was calculated based either 1) on the assumption of conditional 

independence between tests, or 2) by assuming the accuracy of the second test to be 

perfect. There is evidence that when the assumption of dependence between tests is not 

met, then both the meta-analysis (for the estimates of the accuracy rates) and the 

economic evaluation (informed by the meta-analysis results) have the potential to give 
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misleading conclusions [6]. In this paper we focus solely on clinical effectiveness with an 

associated paper [7] focusing on cost-effectiveness implications. 

A number of approaches already exist to model test accuracy data allowing for 

conditional dependence between tests; however, these only consider data from a single 

study. These include 1) the estimation of the covariance between test results conditional 

on disease status [8-12]; 2) use of latent variable models [13-15];  3) use of linear 

discriminant procedures to select the best combination of tests according to some 

maximising functions [16-22]; and 4) use of approaches based on distribution free 

statistics [22-24]. While the vast majority of the meta-analytic methodological literature 

focuses on estimating performance of individual tests, Siadaty et al. [25] do consider the 

simultaneous estimation of multiple tests allowing for dependency between patients for 

which multiple tests are available (i.e. where individual studies considered multiple tests). 

This approach, however, did not consider the estimation of the accuracy of combinations 

of the tests considered in their framework. Further, there is a growing methodological 

literature [26] on the estimation of multiple test performance in the absence of a gold 

reference standard which has some commonalties with the analyses presented here 

(though all studies included in our syntheses are assumed to have a gold standard 

reference test).  

 

In this paper we propose, what we believe to be, the first modelling framework developed 

to estimate meta-analytically the accuracy of combinations of diagnostic tests, 

acknowledging the likely non-independence of the tests. The next section (Section 2) 

describes the motivating example of Ddimer test and Wells score for the diagnosis of 

Deep Vein Thrombosis (DVT). Section 3 describes the meta-analytical modelling 

framework developed to estimate the accuracy of combinations of diagnostic tests. The 

results from applying the framework developed to the motivating example are presented 

in Section 4, and Section 5, the discussion, concludes the paper. 
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Motivating example: Ddimer and Wells score tests for the diagnosis of Deep Vein 

Thrombosis [First-level Header] 

 

Background [Second-level Header] 

 

DVT is a blood clot in a deep vein (lower limb) that is usually treated with anticoagulants. 

Prompt treatment is essential in order to lower the risk of mortality due to Venous 

Thromboembolism related potential adverse events. Also, due to the potentially life-

threatening side effects from anticoagulant treatment, the number of patients wrongly 

diagnosed as having DVT when they do not have the condition (i.e. false positives) needs 

to be kept to a minimum. Therefore, it is important that an accurate diagnosis of DVT is 

obtained quickly.  

 

Reference tests with high diagnostic accuracy exist for DVT such as Ultrasound or 

Venography; however, several other index tests exist that are less accurate but cheaper, 

quicker and less invasive, such as Ddimer and Wells score  [27,28]. Ddimer measures 

the concentration of an enzyme in the blood (i.e. the higher the measurement the more 

likely DVT)  and Wells score is devised from an assessment of the clinical features of 

DVT (i.e. clinical history, symptoms and signs) [28,29]. A simplified and widely used 

version of the Wells score (as used in this paper) categorises patients into low (score <1), 

moderate (score 1 or 2) and high (score >2) risk of having DVT.  

 

In a previous evaluation of the effectiveness and cost-effectiveness of different tests for 

DVT,  Goodacre et al. [27] found that Ddimer and Wells score were not accurate enough 

as stand-alone diagnostic tools but there was evidence that test sequences containing 
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both Wells score and Ddimer were potentially valuable; however, due to the limited 

methodology available at the time the approach taken to account for test dependency 

was limited.  

 

The data [Second-level Header] 

 

We carried out an initial systematic review (details available on request from the 

corresponding author) to identify publications reporting accuracy data of Ddimer stratified 

by Wells score (for the common threefold categorization) either for all Wells categories or 

only specific strata. The data identified from this systematic review is presented in Table 

1. Eleven studies were identified that reported diagnostic performance of Ddimer for each 

of the 3 Wells score strata; these data are subsequently referred to as Type A. A further 3 

studies reported on each on the 3 Wells strata but only had Ddimer results for one of the 

3 strata; these data are subsequently referred to as Type B. Thirdly, for 4 further studies, 

Wells performance data were only available from a single strata but, for each of these 

reported strata, Ddimer data were also available; this data are subsequently referred to 

as Type C data. 

 

In addition to these data, we include in our modelling framework, the considerable body 

of evidence on the diagnostic accuracy of Wells score alone and Ddimer alone. We 

identify this literature through published systematic reviews on the accuracy of Wells 

score [30] (updated with study T33 in Appendix A in Supplemental Materials at: XXX) and 

Ddimer alone [31]); subsequently referred to as Type D data (N=18 studies) and Type E 

data (N=97 studies) respectively (See Appendix A in Supplemental Materials at: XXX for 

inclusion criteria and references for all included and excluded studies. Note, some studies 

of Type D and E reported multiple different tests/patient groups for which data were 
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analysed as separate observations. We subsequently refer to each set of observations 

from each study as an individual assay). 

 

The diagnostic strategies of Wells score and Ddimer [Second-level Header] 

 

In the framework developed, we follow the two possible schemes for combining two 

diagnostic tests outlined by Thompson [32]: 1) believe the negative result (i.e. only 

patients diagnosed as positive by the first test will be further tested), and 2) believe the 

positive result (i.e. only patients diagnosed as negative by the first test will be further 

tested). In this paper we will limit ourselves to evaluating the diagnostic accuracy of the 2 

tests alone and 2 strategies evaluating the use of the 2 tests in combination as described 

below. Note, for simplicity, we have dichotomised Wells score into low versus moderate 

and high (though the approach would generalise to multiple categories and further 

categories are considered in the associated economic evaluation paper [7]). 

 

1. Wells score only dichotomised as low versus moderate and high 

2. Ddimer only at operative threshold as reported by the manufacturer 

3. Wells score followed by Ddimer using the believe the negatives criterion 

4. Wells score followed by Ddimer using the believe the positives criterion  

 

In strategies 3 and 4, we have chosen to evaluate strategies where Wells score is used 

as the first diagnostic test (since it is the quickest and least invasive, although order does 

not affect overall test performance) followed by Ddimer.  
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Analysis framework [First-level Header] 

 

Overview of analysis framework [Second-level Header] 

 

Our overarching approach to analysis, which incorporates shared parameter modelling [2] 

is as follows:  

1) Define the basic intermediate parameters (i.e. the probability of being 

diseased / healthy for each Wells strata, and the sensitivity and specificity of 

Ddimer stratified by Wells strata) that can be estimated using the data 

available;  

2) Specify (different) likelihoods for each of the data types (A to E)  in terms of 

these basic intermediate parameters; and finally;  

3) Estimate the quantities of interest (i.e. the estimates of test accuracy for 

combinations of tests) from the basic intermediate parameters through 

functional transformations.  

 

In Sections 3.3 and 3.4 which follow, a full description of the analysis framework is given.  

 

Algebraic notation of data [Second-level Header] 

 

Table 2 defines the algebraic notation used to describe the study data and presents this 

below the reproduced data for Type A, D and E. Type B and C data conform to the 

notation of Type A but with missing Ddimer values for some of the Wells score strata.   

For Type E studies (Ddimer data only) test accuracy data is only available for all patients 

and hence is notated as aggregated across Wells score strata. 
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In Table 2, dki and hki define the number of diseased and healthy individuals in the kth 

Wells strata (i.e. 1=low, 2=moderate, 3=high) of the ith study. The total diseased and the 

total healthy in study i is defined as NDi and NHi respectively.  

 

For the accuracy of Ddimer, tpki  is the number of diseased patients that are correctly 

classified as positive by Ddimer (true positive (TP)) and tnki is the number of healthy 

patients that are correctly classified as negative by Ddimer (true negative (TN)) for the kth 

Wells score strata for study i. Similarly, the number of healthy patients diagnosed as 

diseased (false positives (FP)) and the number of diseased patients diagnosed as healthy 

(false negatives (FN)) can be defined as stated in Table 2.  

 

Sensitivity (i.e. the proportion of diseased patients which are correctly identified by the 

test) and specificity (i.e. the proportion of healthy patients which are correctly identified by 

the test) of Ddimer for the kth Wells score strata for study i can be derived from the above 

quantities as follows: 

  

𝑠𝑠𝑠𝑠𝑘𝑘 =
𝑡𝑡𝑘𝑘
𝑑𝑘𝑘

 

𝑠𝑡𝑠𝑠𝑘𝑘 =
𝑡𝑠𝑘𝑘
ℎ𝑘𝑘

 

The synthesis model used to combine the data available from each study is described in 

the next section. 

 

Defining and estimating the basic intermediate parameters [Second-level Header] 
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As described in previous section, the relation between the data and the intermediate 

parameters is presented via the description of the likelihoods and using a multi-

component model with shared parameters. In the account which follows, the number of 

studies of Type A, B, C, D and E are denoted as nA, nB, nC, nD and nE respectively. 

 

Wells score strata data (Type A, B, C & D): Multinomial random effect logistic meta-

analysis model [Third-level Header] 

 

Complete Wells score strata data (Type A, B and D) are modelled using a multinomial 

logistic regression model in the form presented by Ntzoufras [33] adapted to fit between-

study random effects to account for heterogeneity. The likelihood for these data are 

specified via multinomial distributions (see Equation 1) with parameters 𝑡𝐷𝑘𝑘 indicating the 

probability of being in the kth Wells strata (k = 1, 2, 3) for a diseased patient in study i and 

similarly, 𝑡𝐻𝑘𝑘 indicating the probability of being in the kth Wells strata for a healthy 

patient.  

 

(𝑑1𝑘  ,𝑑2𝑘  ,𝑑3𝑘)~𝑚𝑚𝑚𝑡𝑚𝑠𝑚𝑚((𝑡𝐷1𝑘 , 𝑡𝐷2𝑘 , 𝑡𝐷3𝑘);𝑁𝐷𝑘) 

(ℎ1𝑘 , ℎ2𝑘, ℎ3𝑘)~𝑚𝑚𝑚𝑡𝑚𝑠𝑚𝑚�(𝑡𝐻1𝑘 , 𝑡𝐻2𝑘 , 𝑡𝐻3𝑘);𝑁𝐻𝑘�                                       Equation 1 

for 𝑚 from 1    to    𝑠𝐴 + 𝑠𝐵  (type A, B) and for 𝑚 from 𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 1    to    𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 +

𝑠𝐷 (type D)  

Where all other notation is as defined in the previous section. 

 

For incomplete Wells score strata data (Type C) the multinomial likelihoods cannot be 

used due to the missing data. Note, Type C data will influence neither the estimate of the 

intermediate parameters nor the estimate of the final parameters for Wells score, but will 

contribute to the estimation of the conditional accuracy of Ddimer. A combination of 
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binomial likelihoods is used instead of the multinomial likelihood. The assumption of 

exchangeability between studies [34] allows for the estimation of the missing strata data 

and the pDki’s and PHki’s when summed over k are constrained to equal 1. Further, to 

allow the estimation of the missing denominator data (as denoted by 𝑁�𝐷𝑘 and 𝑁�𝐻𝑘), 

exchangeability between studies is assumed via the indirect estimation of the parameter 

for which there is no information (see below).  

 

𝑑𝑘𝑘  ~𝑏𝑚𝑠𝑚𝑚𝑚𝑏𝑚(𝑡𝐷𝑘𝑘 ;𝑁�𝐷𝑘) 

ℎ𝑘𝑘  ~𝑏𝑚𝑠𝑚𝑚𝑚𝑏𝑚�𝑡𝐻𝑘𝑘 ,𝑁�𝐻𝑘� 

𝑓𝑚𝑓 𝑚 𝑓𝑓𝑚𝑚  𝑠𝐴 + 𝑠𝐵 + 1    𝑡𝑚    𝑠𝐴 + 𝑠𝐵 + 𝑠𝑐  (𝑡𝑡𝑡𝑠 𝐶) 

𝑓𝑚𝑓 𝑘 = 1, 2 𝑏𝑠𝑑 3 

 

Equation 2 [Second-level Header] 

 

Type A, B, C and D data are then synthesised using a random effects structure with 

common between study variability (on a logit scale). The transformed parameters, 𝜉𝐷𝑘𝑘 

and 𝜉𝐻𝑘𝑘 , are assumed to be exchangeable from distributions with mean parameters 𝜉𝐷𝑘 

and 𝜉𝐻𝑘, for Wells score level (𝑘) 1=low, 2=moderate and 3=high. The degree of 

heterogeneity is assumed the same across the three diseased and healthy Wells score 

strata and the between study variance is represented by 𝜎𝐷2 and 𝜎𝐻2 respectively. Note, 

how the likelihoods in both equations 1 and 2 are linked by means of the parameters 𝜂𝐷𝑘 

and 𝜂𝐻𝑘 in Equation 3. 

𝑡𝐷𝑘𝑘 =
𝜂𝐷𝑘𝑘

∑ 𝜂𝐷𝑘𝑘3
𝑘=1

   ,   𝜉𝐷𝑘𝑘 = ln (𝜂𝐷𝑘𝑘) 

𝑡𝐻𝑘𝑘 =
𝜂𝐻𝑘𝑘

∑ 𝜂𝐻𝑘𝑘3
𝑘=1

   ,   𝜉𝐻𝑘𝑘 = ln (𝜂𝐻𝑘𝑘) 
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                   Equation 3 

 

𝜉𝐷𝑘𝑘~𝑁𝑚𝑓𝑚𝑏𝑚(𝜉𝐷𝑘 ,𝜎𝐷2)  ;  𝜉𝐻𝑘𝑘~ 𝑁𝑚𝑓𝑚𝑏𝑚(𝜉𝐻𝑘  ,𝜎𝐻2) 

𝑓𝑚𝑓 𝑚 𝑓𝑓𝑚𝑚   1    𝑡𝑚    𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 (𝑡𝑡𝑡𝑠 𝐴,𝐵,𝐶 𝑏𝑠𝑑 𝐷) 

𝑓𝑚𝑓 𝑊𝑊 𝑚𝑠𝑙𝑠𝑚 (𝑘)   1 = 𝑚𝑚𝑙,   2 = 𝑚𝑚𝑑𝑠𝑓𝑏𝑡𝑠   𝑏𝑠𝑑   3 = ℎ𝑚𝑖ℎ 

 

The overall meta-analysed proportions of diseased and healthy patients in each of the k 

Wells score strata (𝑡𝐷𝑘
𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑡𝐻𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 respectively) are the basic intermediate 

parameters of interest..  These are obtained by the following back-transformations: 

 

𝑡𝐷𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 = exp (𝜉𝐷𝑘  )

∑ exp (𝜉𝐷𝑘  )3
k=1

�   Equation 4 

𝑡𝐻𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 = exp (𝜉𝐻𝑘  )

∑ exp (𝜉𝐻𝑘  )3
k=1

�  

for k from 1 to 3 strata.  

 

Ddimer data stratified by Wells score (Type A, B, C data): Bivariate random effect logistic 

meta-analysis model  [Third-level Header] 

 

Type A, B and C data which provide Wells score strata specific Ddimer accuracy data is 

modelled as three separate bivariate random effect models [35] – one for each strata. 

The formulation of the model allows for missing strata data, which exists for both Type B 

and C studies. Additionally, for Type C data the total number of diseased (𝑑𝑘𝑘) and 

healthy (ℎ𝑘𝑘) is also missing; however, this is estimated by the model for the meta-

analysis of Wells score data as specified in Section 3.3.1.  Algebraically,  

𝑡𝑡𝑘𝑘~𝑏𝑚𝑠𝑚𝑚𝑚𝑏𝑚(𝑠𝑠𝑠𝑠𝑘𝑘 ,𝑑𝑘𝑘)               𝑡𝑠𝑘𝑘~𝑏𝑚𝑠𝑚𝑚𝑚𝑏𝑚(𝑠𝑡𝑠𝑠𝑘𝑘 ,ℎ𝑘𝑘) 

𝑚𝑚𝑖𝑚𝑡(𝑠𝑠𝑠𝑠𝑘𝑘) = 𝜇𝐷𝑘𝑘                              𝑚𝑚𝑖𝑚𝑡(𝑠𝑡𝑠𝑠𝑘𝑘) = 𝜇𝐻𝑘𝑘                                     Equation 5 
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�
𝜇𝐷𝑘𝑘
𝜇𝐻𝑘𝑘�~𝑀𝑚𝑚𝑡𝑚𝑙𝑏𝑓𝑚𝑏𝑡𝑠𝑁𝑚𝑓𝑚𝑏𝑚 �𝑀 = �

𝜇𝐷𝑘
𝜇𝐻𝑘� , Σ = �

𝜎𝐷𝑘2 𝜎𝐷𝐻𝑘
𝜎𝐻𝐷𝑘 𝜎𝐻𝑘2

�� 

𝑓𝑚𝑓 𝑚 𝑚𝑠 1 𝑡𝑚  𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶   (𝑇𝑡𝑡𝑠 𝐴,𝐵 𝑏𝑠𝑑 𝐶) and   

𝑓𝑚𝑓 𝑊𝑊 𝑚𝑠𝑙𝑠𝑚 (𝑘)   1 = 𝑚𝑚𝑙,   2 = 𝑚𝑚𝑑𝑠𝑓𝑏𝑡𝑠   𝑏𝑠𝑑   3 = ℎ𝑚𝑖ℎ 

 

Where 𝜇𝐷𝑘𝑘 and 𝜇𝐻𝑘𝑘 are the logit sensitivity and specificity respectively in the kth Wells 

score strata of the ith study; M is the vector of mean logit responses containing 𝜇𝐷𝑘 and 

𝜇𝐻𝑘 (i.e. the mean logit sensitivity and specificity in the kth Wells score strata respectively); 

and Ʃ is the between-study covariance matrix containing the between study variances 

(𝜎𝐷𝑘2 ,  𝜎𝐻𝑘2 ) for logit sensitivity and specificity respectively and the covariance (𝜎𝐷𝐻𝑘2 ) in the 

kth Wells score strata.  

 

A back-transformation is required to estimate sensitivity and specificity of Ddimer for each 

of the k = 1 to 3 Wells score strata as presented below: 

          Equation 6 

𝑠𝑡𝑠𝑠𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 =

exp (𝜇𝐷𝑘)
1 + exp (𝜇𝐷𝑘)

 

𝑠𝑡𝑠𝑠𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 =

exp (𝜇𝐻𝑘)
1 + exp (𝜇𝐻𝑘)

 

Ddimer data alone (Type E data) aggregated across Wells strata: Bivariate random effect 

logistic meta-analysis model  [Third-level Header] 

 

In order to include Type E data, which provides information on accuracy of Ddimer 

aggregated across Wells strata, it is assumed that the overall accuracy of Ddimer is a 

function of the proportion of diseased and healthy patients in each Wells score category 

and the Wells score strata specific accuracy performance parameters of Ddimer. The 

model is fitted as follows: A bivariate logit model, of the form outlined in Equation 5, is 



13 

 

used to meta-analyse the overall accuracy of Ddimer aggregated across Wells strata (i.e. 

strata specific indexing dropped from the summary parameters).   

𝑇𝑇. 𝑏𝑖𝑖𝑘~𝑏𝑚𝑠𝑚𝑚𝑚𝑏𝑚(𝑠𝑠𝑠𝑠. 𝑏𝑖𝑖𝑘 ,𝑁𝐷𝑘)  ;  𝑇𝑁. 𝑏𝑖𝑖𝑘~𝑏𝑚𝑠𝑚𝑚𝑚𝑏𝑚(𝑠𝑡𝑠𝑠. 𝑏𝑖𝑖𝑘 ,𝑁𝐻𝑘) 

𝑚𝑚𝑖𝑚𝑡(𝑠𝑠𝑠𝑠. 𝑏𝑖𝑖𝑘) = 𝜇. 𝑏𝑖𝑖𝐷𝑘  ;  𝑚𝑚𝑖𝑚𝑡(𝑠𝑡𝑠𝑠. 𝑏𝑖𝑖𝑘) = 𝜇. 𝑏𝑖𝑖𝐻𝑘                                Equation 7 

�
𝜇. 𝑏𝑖𝑖𝐷𝑘
𝜇. 𝑏𝑖𝑖𝐻𝑘� = 𝑀𝑀𝑁 �𝑀 = �

𝜇. 𝑏𝑖𝑖𝐷
𝜇. 𝑏𝑖𝑖𝐻� , Σ = � 𝜎. 𝑏𝑖𝑖𝐷2 𝜎. 𝑏𝑖𝑖𝐷𝐻

𝜎. 𝑏𝑖𝑖𝐻𝐷 𝜎. 𝑏𝑖𝑖𝐻2
�� 

𝑓𝑚𝑓 𝑚 𝑚𝑠 𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 1   𝑡𝑚   𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 𝑠𝐸   (𝑡𝑡𝑡𝑠 𝐸) 

 

Where parameters are of the form described in Equation 5 but ‘.agg’ is added to 

parameters to indicate aggregation across Wells strata.  

 

The aggregate Ddimer accuracy parameters, estimated in Equation 7, are now expressed 

as functions of the parameters used to define the strata specific accuracy model. 

Explicitly, since we do not know the proportion of diseased and healthy patients in each 

Wells score strata for these studies, we predict these proportions stochastically assuming 

them to be exchangeable with the studies we do know the proportions for (i.e. data types 

A, B, C and D). We then express the aggregate Ddimer accuracies as “weighted” 

averages of the Wells score strata (i.e. weighted by the predicted proportions in each 

Wells strata described above). Algebraically, the (logit) predicted proportions of patients 

in each Wells score category for diseased and healthy are defined as 𝜉𝑛𝑝𝑛𝐷𝑘𝑘 and 𝜉𝑛𝑝𝑛𝐻𝑘𝑘 

respectively, where each is assumed to be exchangeable with the logit proportions 

estimated from the previous studies, vis. 

𝜉𝑛𝑝𝑛𝐷𝑘𝑘~𝑁𝑚𝑓𝑚𝑏𝑚(𝜉𝐷𝑘 ,𝜎𝐷2) 

𝜉𝑛𝑝𝑛𝐻𝑘𝑘~ 𝑁𝑚𝑓𝑚𝑏𝑚(𝜉𝐻𝑘  ,𝜎𝐻2)                                                Equation 8 

𝑓𝑚𝑓 𝑚 𝑚𝑠 𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 1   𝑡𝑚   𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 𝑠𝐸   (𝑡𝑡𝑡𝑠 𝐸) 
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where all other parameters are as defined in Equation 3. Equation 9 below defines the 

proportion of individuals predicted to be diseased or healthy on the natural scale for each 

Wells strata k (𝑡𝑛𝑝𝑛𝐷𝑘𝑘 and 𝑡𝑛𝑝𝑛𝐻𝑘𝑘 respectively).  

 

𝑡𝑛𝑝𝑛𝐷𝑘𝑘 =
exp (𝜉𝑛𝑝𝑛𝐷𝑘𝑘)

∑ exp (𝜉𝑛𝑝𝑛𝐷𝑘𝑘)
3
𝑘=1

                                                    Equation 9 

𝑡𝑛𝑝𝑛𝐻𝑘𝑘 =
exp (𝜉𝑛𝑝𝑛𝐻𝑘𝑘)

∑ exp (𝜉𝑛𝑝𝑛𝐻𝑘𝑘)
3
𝑘=1

   

𝑓𝑚𝑓 𝑚 𝑚𝑠 𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 1   𝑡𝑚   𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 𝑠𝐸   (𝑇𝑡𝑡𝑠 𝐸) 

Next, we express overall sensitivity and specificity as the “weighted” average of the Wells 

strata specific values of interest.   

𝑠𝑠𝑠𝑠. 𝑏𝑖𝑖𝑘 = ∑ 𝑠𝑠𝑠𝑠𝑘𝑘 × 𝑡𝑛𝑝𝑛𝐷𝑘𝑘  
3
𝑘=1                                                     Equation 10 

 

𝑠𝑡𝑠𝑠. 𝑏𝑖𝑖𝑘 = �𝑠𝑡𝑠𝑠𝑘𝑘 × 𝑡𝑛𝑝𝑛𝐻𝑘𝑘  
3

𝑘=1

 

𝑓𝑚𝑓 𝑚 𝑚𝑠 𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 1   𝑡𝑚   𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶 + 𝑠𝐷 + 𝑠𝐸   (𝑇𝑡𝑡𝑠 𝐸) 

By doing this, Type E data will contribute information to the Wells strata specific estimate 

of Ddimer performance. 

 

Estimating the accuracy parameters of interest from the basic intermediate parameters 

 [Third-level Header] 

 

The parameters of ultimate interest are the accuracies of the different diagnostic 

strategies (sensitivities and specificities) as outlined in Section 2.3. How these are 

estimated from the intermediate parameters, as described in the previous section, is 

presented below. 
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Strategy 1 - Wells score only dichotomised as low versus moderate and high [Fourth-

level Header] 

 

The parameters estimated in the previous section can be used to estimate the accuracy 

of Wells score dichotomised as low versus moderate and high.  That is, the sensitivity 

(sensWS) is 𝑡𝐷2 + 𝑡𝐷3 and specificity (specWS) is 𝑡𝐻1. 

 

Strategy 2 - Ddimer only at operative threshold as reported by the manufacturer [Fourth-

level Header] 

 

The accuracy of Ddimer on its own is not obtained from the multi-component model 

described previously since a standard synthesis model for a single test is all that is 

required. Ddimer data from Type A studies are aggregated over Wells score categories. 

This is combined with Type E data and then analysed using a bivariate random effect 

logit model [41].  

 

Strategy 3 - Wells score followed by Ddimer using the believe the negatives criteria

 [Fourth-level Header] 

 

The accuracy of Wells score dichotomised as low versus moderate and high under the 

believe the negatives strategy (i.e. a patient is considered healthy if either or both test 

results are negative) can be derived using the following formulae is: 

  

𝑠𝑠𝑠𝑠(𝑊𝑊 𝑎𝑛𝑝 𝐷𝐷)𝐵𝐵 =  𝑠𝑠𝑠𝑠𝑊𝑊 × 𝑠𝑠𝑠𝑠𝐷𝐷/𝑊𝑊=2,3 

𝑙ℎ𝑠𝑓𝑠 𝑠𝑠𝑠𝑠𝐷𝐷/𝑊𝑊=2,3 = �𝑙𝐷1 × 𝑠𝑠𝑠𝑠2
𝑝𝑝𝑝𝑝𝑝𝑝� + �𝑙𝐷2 × 𝑠𝑠𝑠𝑠3

𝑝𝑝𝑝𝑝𝑝𝑝�      

𝑏𝑠𝑑 𝑙𝐷1 = 𝑝𝐷2
(𝑝𝐷2+𝑝𝐷3)

 ,𝑙𝐷2 = 1 − 𝑙𝐷1                                          Equation 11 
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𝑠𝑡𝑠𝑠(𝑊𝑊 𝑎𝑛𝑝 𝐷𝐷)𝐵𝐵 = 1 − �(1 − 𝑠𝑡𝑠𝑠𝑊𝑊) × �1 − 𝑠𝑡𝑠𝑠𝐷𝐷/𝑊𝑊=2,3�� 

𝑙ℎ𝑠𝑓𝑠 𝑠𝑡𝑠𝑠𝐷𝐷/𝑊𝑊=2,3 = �𝑙𝐻1 × 𝑠𝑡𝑠𝑠2
𝑝𝑝𝑝𝑝𝑝𝑝� + �𝑙𝐻2 × 𝑠𝑡𝑠𝑠3

𝑝𝑝𝑝𝑝𝑝𝑝�  

𝑏𝑠𝑑 𝑙𝐻1 =
𝑡𝐻2

(𝑡𝐻2 + 𝑡𝐻3) ,   𝑙𝐻2 = 1 − 𝑙𝐻1 

where sensDD/WS=2,3 and specDD/WS=2,3 are the sensitivity and specificity of Ddimer for the 

combined Wells score moderate (k=2) and high (k=3) strata.   

 

Strategy 4 Wells score followed by Ddimer using the believe the positives criteria [Fourth-

level Header] 

 

The accuracy of Wells score dichotomised as low versus moderate and high, under the 

believe the positives ((WS and DD)BP) strategy can be derived using the following 

formulae:   

𝑠𝑠𝑠𝑠(𝑊𝑊 𝑎𝑛𝑝 𝐷𝐷)𝐵𝐵 = 1 − [(1 − 𝑠𝑠𝑠𝑠𝑊𝑊 ) × (1 − 𝑠𝑠𝑠𝑠1
𝑝𝑝𝑝𝑝𝑝𝑝 )] 

𝑠𝑡𝑠𝑠(𝑊𝑊 𝑎𝑛𝑝 𝐷𝐷)𝐵𝐵 = 𝑠𝑡𝑠𝑠𝑊𝑊 × 𝑠𝑡𝑠𝑠1
𝑝𝑝𝑝𝑝𝑝𝑝                                                      Equation 12 

 

Analysis plan and approach to model fitting [Second-level Header] 

 

The modelling framework is implemented using Markov chain Monte Carlo (MCMC) 

simulation [36] in WinBUGS software [37] for Bayesian modelling. Non-informative 

(vague) prior distributions are used for all parameters.  An initial run of 5,000 iterations of 

the MCMC sampler were discarded as a ‘burn-in’(37), with inferences based on a further 

20,000 sample iterations. Convergence of the MCMC chains was assessed and 

sensitivity analyses showed no influence of the initial values and prior distributions on the 

posterior distributions obtained. The WinBUGS code (including the specific prior 

distributions used) is provided in Appendix B in Supplemental Materials at: XXX. 
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The model described above was fitted to all data types (A, B, C, D and E) and is 

compared to an analysis in which the performance of both tests is assumed independent 

of one another.  Additionally, in order to assess the impact of the different data types on 

the analysis, a further analysis was conducted in which each data type was sequentially 

added (i.e. A, AB, ABC, ABCD, ABCDE). 

 

Results of the data analysis [First-level Header] 

 

Estimates of basic intermediate parameters [Second-level Header] 

 

Table 3 presents and compares the estimates of the basic intermediate parameters for 

the models assuming independence and dependence between Wells score and Ddimer.  

From Table 3 it can be observed that the proportions of diseased patients per Wells score 

category are similar regardless of the dependency assumption. Reassuringly, in both 

cases the proportion diseased increases and the proportion healthy decreases with Wells 

score category. In Table 3, the performance accuracy of Ddimer for each Wells score 

strata is reported. While sensitivity does vary across Wells score strata, it is specificity for 

which the biggest differences are observed (albeit with considerable uncertainty). That is, 

for the model that assumes dependence between tests, specificity for the low risk Wells 

score strata is estimated to be 0.699 (0.598 to 0.797), for moderate 0.390 (0.212 to 

0.561) and for high 0.433 (0.300 to 0.566). In Table 3, all heterogeneity parameters are 

non-negligible suggesting variability between study results is greater than would be 

expected by chance. Such heterogeneity could be explored by adding covariates to the 
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models presented, although, to keep this paper’s methodological innovations focused, 

this is not investigated further here.  

 

Figure 1 displays the 95% credible regions [38,39] for the overall accuracy of Ddimer 

(across all Wells score strata) compared with the Wells score strata specific accuracy 

estimates. This plot highlights the potentially important differences in the performance of 

the Ddimer test for the different Wells score strata. If the assumption of independence 

between Wells score and Ddimer was true, then we would expect the four different 

credible regions displayed to be overlaid on top of one another but considerable 

divergence is observed.  

 

Estimates of final parameters [Second-level Header] 

 

Table 4 presents the results of the 4 different strategies of Wells score and Ddimer 

described in section 2.3 for the models assuming independence and dependence 

between tests. When comparing these two modelling approaches it can be observed that 

the sensitivities of the different strategies are similar for both the independent and 

dependent models but differences are observed for the specificities although all the 

credible intervals overlap. The implications of the performance of these different 

strategies is considered further in a full economic analysis elsewhere [7]. 

 

Table 5 presents the results of the 4 different strategies sequentially adding the different 

data types (i.e. A, AB, ABC, ABCD, ABCDE). It can be observed that there is relatively 

limited impact, both in terms of the point estimate and uncertainty, of adding data from 

the studies which evaluated only one of the 2 tests of interest (i.e. Types D and E) 

despite the fact that there are relatively higher numbers of these types of studies 

compared to the other data types (Types A, B and C).   
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Discussion [First-level Header] 

 

This paper presents a meta-analytic framework which allows for the fact that the 

performance of multiple diagnostic tests, when used in combination, may not be 

independent from one another. This is in contrast to current practice in HTA where 

independence between tests is commonly assumed [5] (which is potentially misleading 

and can lead to over-estimation of the performance of combinations of tests). We believe 

this is the first published methodological research in this aspect of evidence synthesis 

methodology.  

 

Our overall approach, in which the relationship to disparate data sources is expressed 

using multiple likelihood functions sharing common parameters, has much in common 

with other recent developments in evidence synthesis methodology in other contexts [40-

42]. Such an approach allows the use of data from studies reporting on the accuracy of 

individual tests or multiple tests given to the same patients (completely or incompletely 

reported). In this way the amount of data that can be incorporated from the literature is 

maximised. The approach described could be adapted to the case where both tests are 

dichotomous and extensions to incorporate 3 or more tests, or situations where the gold 

standard is imperfect could be developed. Further, our interest was evaluating the overall 

performance of a sequence of tests; a similar approach may be used to evaluate the 

performance of tests which compete for the same location in a given diagnostic pathway. 

We believe this work has an important message for those funding and conducting new 

studies estimating the diagnostic accuracy of tests. In the DVT example presented here, 

the majority of research had been carried out in studies evaluating only a single test (i.e. 

data types D and E). This, perhaps, is at discord with clinical practice where we believe it 

is commonplace for multiple tests to be used to diagnose patients. In the motivating 
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example, at least, the literature on the individual studies had minimum impact on the 

estimation of the sequences of tests of interest. Although this finding needs further 

investigation (including application in other clinical contexts) the potential implication is 

that studies of individual tests are highly inefficient if test sequences are of ultimate 

interest and therefore our research would suggest that studies evaluating multiple tests 

should replace many of the studies of individual tests currently performed carefully 

ensuring appropriate clinical context. On completion of our work, we were heartened to 

see a new prospective cohort study evaluating the combined performance of the Wells 

score and Ddimer test in a primary care setting(43). Indeed, the findings reported here 

lead us to question, when carrying out such syntheses, whether identification and 

synthesis of studies reporting individual tests is even justifiable - given the resource 

implications - when evaluating test combinations.  

 

As this was a methodological paper, we relied on previous meta-analyses of the 

performance of Ddimer and Wells score and we acknowledge these have limitations 

including 1) studies of different Ddimer test products were combined together; 2) 

considerable heterogeneity in study results was not explored by the incorporation of 

covariates (although the framework presented would allow this extension); and 3) issues 

of variable study quality are largely ignored.  

 

We appreciate the interpretation of the findings of the type of analyses presented here 

need careful consideration. For the motivating example (Table 4), identifying an optimal 

strategy is not straightforward since an explicit trade-off between sensitivity and 

specificity is required for decision making. To do this, among other things, the relative 

impact of a false positive compared to a false negative diagnosis will need consideration. 

Further, economic considerations are increasingly relevant and thus the economic 
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consequences of the alternative clinical pathways will also be necessary and we extend 

our research in a further paper to demonstrate how this can be achieved [7].  
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