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CHAPTER 1

INTRODUCTION

1.1 Background

Often, engineering components are required to operate
safely, reliably and economically under severe conditions.
An important example of such conditions is the combination
of high temperatures and fluctuating 1loads. These
conditions are to be found, for example, in the power
generation industry, where plant is required to operate
at high temperatures in order to increase efficiency,
and where fluctuating 1loads occur due to ©periodic
shutdowns for maintenance and inspection, as well as
to variations in | the operating conditions, These
conditions also exist in turbines and aircraft engines.
Components which are to be <exposed to these service
conditions must be designed and tested before they are
put 1into service, since failure is both dangerous and
costly - especially in the case of nuclear power or
aviation.

Unfortunately, the methods available to the designer
often leave a large margin of uncertainty. The search
for better methods has resulted in much research and,
although many have been proposed, there is still no
general agreement as to which is the best. The combination
of high temperatures and fluctuating 1loads produces a
mixture of creep and fatigue types of behaviour and this
has become known as creep-fatigue behaviour. The reason
for the uncertainty is that these two phenomena interact

and the nature of this is not completely understood.



Another problem in design is that the precise
operating conditions of a component are often not known
beforehand, and thus large safety margins are needed
to take this into account. The increasing cheapness and
availability of microprocessors could help to overcome
this drawback: wusing such devices, it is ©possible to
monitor continuously the actual —operating conditions
of a component and, given a sufficiently accurate model
of the component and its constituent material, to assess
the effect that these conditions have on the component's
expected life. Thus, if the actual conditions prove to
be less severe than those assumed in the original design,
the component could be allowed to remain in service for
longer than the design life. Safety would also be improved
because any wunusual conditions would be detected and
if these lead to a significant shortening of the 1life
of a component then this would be reported and the
appropriate action taken before the component fails in

service.

1.2 Approach

The previous section outlined the nature of the
problems that this thesis aims to help to solve. The
solution adopted here is to improve the material models
and to incorporate them into a finite element solver.
The finite element method is able to cope with most
structural ©problems and, although currently expensive
to wuse, the ever decreasing cost of computer hardware
will enable it to be wused for the cheap and routine

solution of the nonlinear problems associated with creep



and fatigue in structures.

The material models wused here will be based on
continuum damage mechanics. This 1is used because it is
easy to incorporate into a finite element formulation
and it is general enough to be applied to many problems,
including creep and fatigue. This generality will enable
the solution of a wide range of problems using a single
method. Another advantage of continuum methods is that
the theory for creep-fatigue may be derived from those
for pure creep and pure fatigue, and so it is only
necessary to gather experimental data for «creep and
fatigue separately, thus avoiding the need for complex
and expensive experiments over the whole range of creep-
fatigue conditions.

The behaviour of metals wunder cyclic 1loading is
very complex and all aspects will not be modelled here.
In particular, although most metals display a certain
amount of cyclic hardening (or softening) during the
first 50 cycles or so, the constitutive models will not
take this into account and the material will be assumed
to take up the stable cyclic state from the first cycle.
This assumption is made to simplify the calculations.
It is assumed that omitting this initial hardening does
not have a significant effect on the predicted total
life of a component. On the other hand, the final stages
of 1life of a material will be modelled as closely as
possible. Thus, any weakening of a material that occurs
before failure will be included in the constitutive model.
Also, once failed, the material continues to play a part

in compression and this too will be modelled. Nonlinear



work hardening will be assumed for cyclic plasticity,
so that stress-strain hysteresis loops over a wide stress
range may be accurately modelled. The mathematical laws
which describe materials will be taken from the
literature, although some modifications will be made
to describe the weakening of the material.

An important part of the work presented here will
be the application of the material models to the study
of the behaviour and failure of structures. The extension
from the behaviour of materials to that of structures
is rarely straightforward, since the interaction between
different parts of a structure or component <can be
relatively complex. In particular, it was found that,
in structures involving multiaxial models, the effect
of the underlying models can be obscured by the complexity
of the structural response. Hence, most of the investiga-
tion was carried out for uniaxial structures, which also

simplified the required calculations.

1.3 Summary of Remaining Chapters

Chapter 2 1is a brief review of damage theories.
The chapter contains a short review of the 1literature
and a discussion as to how damage and failure will be
employed in this thesis. An example of the use of damage
in a simple structure 1is presented in Chapter 3. A
different set of constitutive laws with better properties
than those wused in Chapter 3 1is then introduced and
studied in Chapter 4. These are used in Chapter 5 in
a -further study of the simple structure. Up to that point

only fatigue phenomena will have been considered. Chapter



6 introduces creep and a study is made of the interaction
between creep and fatigue and the results of this are
compared with some published experimental results. Also
in that chapter, there 1is a description of how the
constitutive model was fitted to experimental data so
that it could ©be used for comparison with actual
experiments.

Finite elements are used in Chapter 7 to solve a
simple plasticity problem and the results are compared
with accurate solutions. The techniques for solving
nonlinear multiaxial problems are reviewed in that chapter
and some of these are chosen for the example solutions.
Chapter 8 looks in more detail at multiaxial constitutive
laws and at how fissuring and failure can be modelled
for use in the finite element method. The final chapter
discusses what conclusions may be drawn from the results
of the investigations and looks at what future work will
be necessary to improve the accuracy of the models and

to include them in a full finite element solver.



CHAPTER 2

DAMAGE AND FAILURE: SOME BACKGROUND INFORMATION

2.1 Introduction

Materials which are subjected to 1load and harsh
environments often degrade and become weaker. Damage
theories attempt to quantify this degradation in terms
of the conditions to which the material is subjected.
In this thesis, the materials of 4interest are metals
and the damaging processes to be studied are those of
fluctuating loads and high temperatures.

When materials are subject to fluctuating 1loads,
then fatigue occurs; the material becomes weaker, or
less stiff, and finally fails. In metals, at temperatures
greater than about one-third the melting point, creep
is significant. It consists in non-recoverable strain
that accumulates over time, even though the load remains
constant during that time. The strain rate initially
decreases, but eventually begins to increase, as the
material becomes weaker, and finally, the material fails,

A degradation process: can be said to increase a
property of a material called damage or cumulative damage.
A theory of cumulative damage is basically a description
of the endurance of a material as a function of the
conditions that the material is subjected to. Measurement
of remaining 1lives of specimens 1is wused to ascertain
this function (see sub-section 2.3.1). Often, a relation-
ship can be found between damage and some physical effect
of the loading, such as cavitation or fissuring. If such

a relationship exists or 1is assumed, then the damage



is often regarded as continuum damage, which means that
the weakening of the material is assumed to be due to
the physical damage, and that the 1local effect of
individual defects in the material is neglected. Thus,
an element of material is supposed to be uniform, with
the effect of defects averaged over that element and
only their global effect being considered. The theory
of material behaviour which is based on these assumptions
is called continuum damage mechanics.

This chapter ©presents a brief review of the way
damage theories have been used in the past and some of
the definitions of damage that have been used. The concept
of failure 1is also examined and its wuse described.
Finally, there is a discussion on the way damage and

failure are to be used in the rest of this thesis.

2.2 Review of Damage Theories

2.2.1 Creep

The introduction of the concept of continuum damage
in the case of creep is usually attributed to Kachanov
(1958). He used an extra variable, which he called damage,
to account for the increase in strain rate during tertiary
creep. Kachanov originally assumed that the damage was
directly related to the 1loss of effective area due to
the growth of cavities and fissures. However, Kachanov's
original creep 1laws have been developed as a purely
phenomenological theory of <creep behaviour, since it
soon became apparent that loss of area was not a
sufficient explanation . for the increase in strain rate.

The original equations were uniaxial and have been



extended to multiaxial equations by others (see Leckie
and Hayhurst, 1974). These multiaxial equations and the
corresponding failure criteria have been developed
(Hayhurst et al., 1984a) for the study of the progress
of creep damage in components, such as notched bars,
and from this it is possible to predict the failure of
such components due to creep. These studies use the finite
element method and provide, not only the lifetime, but
also the complete stress and deformation history of a
component subject to creep. These methods have become
generally accepted due to their success and to the fact
that creep damage 1is not localized, so that a continuum
damage mechanics approach is appropriate,

Although the formulation and growth of intergranular
cavities was recognised as being the cause of weakening
due to creep, these developments assumed only a
phenomenological damage theory. However, recently, through
the examination of the macroscopic and microscopic
behaviour of an alloy, Dyson and McLean (1977) proposed
a constitutive relation based on continuum damage and
showed the connexion ©between physical damage, in the
form of voids, and the deformation and failure of the
material.

It may be noted here that there are other constitu-
tive laws for creep which also account for tertiary creep
but do not include damage. One such 1law has been
investigated by the author with others (Hayhurst et al.,
1985). This 1law can be used to extrapolate short term
creep rupture data to provide long term predictions of

time to rupture.



2,2.2 Fatigue

There is no widely accepted foundation in physical
processes for the application of cumulative damage
theories to fatigue 1like there 1is for creep. This is
because damage theories ignore the 1local processes at
the tip of a fatigue crack, and assume that a bulk
description is possible and adequate for life prediction,
Initially, cumulative damage was used as a purely
phenomenological method. The use of this theory is based
on the assumption that each <cycle of 1loading does a
certain amount of damage to the material and that failure
occurs when the amount of damage equals some failure
level. The advantage of this approach is that failure
can 1in principle be predicted for complicated 1loading
sequences simply by summing the damage contributions
from each cycle of the sequence.

Miner (1945), in a rule named after him, proposed
that the damage accumulated at a particular loading level
is proportional to ni/Ni’ where nj is the number of cycles
at the ith loading level and Ni is the number of cycles
to failure at that 1level. Failure occurs when the sum

of these life fractions becomes unity:

Z(ni/Ni) =1 (2.1)

The rule is also known as the linear accumulation rule
since it does not matter in what order the 1loads are
applied. Experimental work has shown, however, that this
linear rule is not obeyed and that departures from it

may be considerable and non-conservative., This has 1lead



to attempts to improve upon it, one of which is the double
linear cumulative damage rule proposed by Manson et al.
(1965). Other damage rules were proposed, but in the
main, fatigue failure is now studied using parametric
failure <criteria (see, for example, Brown and Miller,
1973) or derived from fatigue <crack growth rates as
studied in fracture mechanics (see Fuchs and Stephens,
1980).

However, the concept of cumulative damage is still
being studied for wuse in prediction, especially in the
area of creep-fatigue. Among those wusing damage are
Chaboche (1978), who has proposed a nonlinear continuum
damage growth law; Hashin and Rotem (1978), who derive
damage accumulation laws from theoretical considerations;g
and Majumdar and Maiya (1980), who have derived empirical
equations based on cavity sizes and crack lengths to
link creep and fatigue damage and call their approach

the damage rate method.

2.3 The Definition of Damage

Although damage is an intuitive concept, before it
can be used it must be defined properly. Unfortunately,
different authors use different definitions and there
can be quite a lot of variation between them. In this
section, some of these definitions will be quoted and
discussed.

Generally, damage is normalized so that it is
initially zero and so that failure occurs at some critical

value Dc, which is often assumed to be equal to 1.
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2.3.1 Reméining Life

This is perhaps the most important use for cumulative
damage; i.e. to predict the remaining life of a component.
In phenomenological theories, this remaining 1life is
used to quantify the damage. It is not assumed by these
theories that there 1is any connexion between the 1life
of a specimen and its physical properties or condition.
All that is required for a life prediction is a knowledge
of the damage growth laws for the material and a knowledge
of the 1loading sequence. The growth laws are obtained
experimentally by studying the results of tests carried
out with two or more 1levels of loading applied during
the life of a specimen. For example, this is the basis
of the theory of fatigue damage due to Hashin and Rotem
(1978).

It is dimportant to note there that the:  exact form
of the damage growth law is not significant, but it is
the difference between the curves for different loadings
which matters. For example, Fig. 2.1 shows how a fatigue
life prediction could be made, wusing the remaining life
concept, for a test with two loading levels. The loading
sequence consists initially of n,; cycles at the first
level, after which the loading is changed to the second
level. The change from one curve to the other 1is
accomplished by assuming that the damage is constant.
The remaining 1life can then be read from the curve as
shown. The 1lower graph demonstrates why the remaining
life prediction is unaffected by a one to one transforma-
tion of the damage variable from D to D*: both graphs

in the figure predict that the total number of cycles

11



to failure is n; + n,.

2.3.2 Physical Measures

It has been observed experimentally that the physical
properties of materials change as damage changes. The
obvious examples of this are the initiation and growth
of cracks in fatigue and the nucleation and growth of
cavities in creep. Hence, crack length is sometimes used
as the damage variable in fatigue studies (e.g. Miller
and Zachariah, 1977) and cavity volume in creep studies
(e.g. Dyson and McLean, 1977).

Other properties of a material are also affected
by damage. These include the speed of sound and the
electrical resistivity of the material (Lemaitre and
Chaboche, 1985), and variations in these quantities can
be used to measure changes in damage. In fatigue, the
area of the fatigue crack can also be related to damage
(Raynor and Skelton, 1983).

Damage also affects the relationship between stress
and strain. For example, the Young's modulus of a material
changes as damage accumulates. Note that this must be
understood within the context of continuum damage
mechanics since it implicitly assumes that any
imperfections in the material are being averaged over
a representative volume; it does not mean that the
relationship between atoms in the material has changed
in some way. Damage is observed to have an effect‘on
most aspects of the stress-strain behaviour of the
material and, in general, the -exact effect of damage

on the <constitutive equations must be determined by

12



experiment. However, it is often sufficient to use the
effective stress hypothesis used by Lemaitre and Chaboche
(1985). This states that the deformation of a damaged
material is given by replacing the stress, 0, 1in the
constitutive equations by the effective stress, 0/(1-D).
This assumption seems to be accurate enough to be adopted
as a general principle in damage mechanics, but it remains
a hypothesis since it 1is mnot necessarily true that
remaining life and deformation can be connected in this

manner.

2.3.3 Relationship between Damage According to Remaining
Life and to the Effective Stress Hypothesis

If it is assumed that a formula describing the growth
of damage according to the remaining 1life definition
has been found, then this may be transformed to satisfy
the effective stress hypothesis. That such a transforma-
tion is possible was demonstrated in sub-section 2.3.1.
At present the exact form of the Ilink must be determined
empirically, but it is possible that a more exact 1link
could be determined through a theory connecting physical

damage and both remaining life and deformation.

2.4 Failure
2.4.1 The Definition of Failure

When damage in a specimen reaches some critical
value, DC (usually DC =1), then it 1is deemed to have
failed, or come to the end of its life. What should this
mean physically? The simplest answer is that the material

has broken 1into two separate pieces. This definition

13



is not always regarded as convenient or meaningful and
various other definitions have been adopted. Two examples
are given here,

Hayhurst et al. (1984a), in finite element analyses
of creep in notched bars, assumed that D=0.,99 constituted
failure rand that material attaining this point took no
further part in the analysis. This definition does not
quite correspond to separation since the failed material
remains as part of the structure, but with changed
properties.

Chaboche (1981), in analysis of fatigue in
components, assumes that D=1 corresponds to the initiation
of a detectable crack. This corresponds to the appearance
of a crack about 1mm long which dominates any other
shorter cracks. Further analysis may then be carried
out wusing standard fracture mechanics techniques. Using
this definition, damage mechanics possibly provides an
answer to the short crack problem as enunciated by Miller

(1982).

2.4.2 Crack Propagation

The progress, in a structure, of areas of material
which has failed can be thought of as representing the
progress of a crack. In a recent review paper, Lemaitre
(1986) 1lists many references to researchers who have
used continuum damage mechanics to study the propagation
of fissuring and cracking in components. This type of
approach has been <criticized, but Lemaitre 1lists many
situations where other methods such as fracture mechanics

do not succeed in providing satisfactory answers.

14



Hayhurst et al. (1984a and 1984b) use this approach
to study the progress of creep cracking through a finite
element mesh. Comparison of the computed crack directions
and crack discernable in micrographs of experimental
specimens shows excellent agreement and justifies the

use of this approach for creep cracking.

2.5 The Usage of Damage and Failure in this Thesis

This section is a summary of the way in which damage
is used and what is meant by failure in the rest of this
thesis.

One of the aims of this thesis is to examine the
possibility of obtaining complete stress and strain
histories for components under creep-fatigue conditions
and to predict the progress of <cracking through the
component and 1its consequent failure. Some connexion
between continuum damage and deformation is therefore
required. Here, it is provided by the effective stress
hypothesis, and so, for any constitutive law that is
used, the law for damage material is obtained from the
original by replacing O by 0/(1-D). It 1is assumed
that the growth of continuum damage 1is consistent with
the remaining 1life defintion: i.e. that lifetimes can
be predicted for any loading scheme wusing the damage
growth laws.

An example of these assumptions in use 1is given
by Fig. 2.2. The graphs in this figure represent the
(idealized) stress-strain response of uniaxial specimens
under cyclic 1loading. Figure 2.2.(a) is the response

for a strain controlled test. The strain amplitude remains

15



constant but the stress amplitude decays. In this case
it 1is assumed that Omax , the maximum stress, becomes

(1-D) Opax ° Hence, O ax decays to zero at failure at
Nf where D=1. In Fig. 2.2(b), which is for stress or
load control, the strain grows according to omax /(1-D),
Figure 2.2.(a) may be compared with an experimental
envelope such as the one in Raynor and Skelton (1983).
Notice that it 1is assumed in Fig. 2.2 that no cyclic
hardening or softening occurs.

Failure will occur when damage -equals 1. Here,
failure means that the material becomes a 'no-tension'
material and will be unable to support a tensile stress,
but it 1is assumed that the material is still able to
support compressive stresses and this will be important
when a component is subject to cyclic loads. The behaviour
of the failed material is based on that of «cracked
concrete given by Phillips and Zienkiewicz (1976), and
will be supposed to be as follows. In compression the
material will be assumed to behave as if it were
undamaged, having the same relationship between stress
and strain as the original undamaged material., If the
stress reaches =zero and _the strain rate 1is positive;
then the stress will remain =zero but the material will
be allowed to strain as dictated by the rest of the
structure or surrounding material. When the strain returns
to the same value at which the stress had first become
zero, then any further negative strain will cause the
material to go into compression and the properties will
again be those of the original material. Notice that

this is essentially a continuum damage mechanics

16



definition since the material is assumed to remain intact,
but its properties are changed. This fact will be more
important in the multiaxial case than in the wuniaxial

case.

17



Figure 2.1:

n/N

n1/N1 n2/N2

An 1illustration of the method of life
prediction for a test with two load levels and
the correspondence between D and D* obtained

by a one to one transformation.
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CHAPTER 3

A PRELIMINARY INVESTIGATION INTO THE SIGNIFICANCE OF

STRESS REDISTRIBUTION IN STRUCTURES DUE TO CUMULATIVE

FATIGUE DAMAGE

3.1 Introduction

In this chapter a wuniaxial model structure will
be used to determine how stress redistribution due to
fatigue damage growth affects lifetime. Hayhurst et al.
(1984b) have shown that stress redistribution due to
creep damage growth has a significant effect on the life
of a structure at high temperature and that it is
important to take this into account if accurate or
economical predictions are to be made. Similarly in
fatigue, if stress redistribution has a significant effect
on the 1life of a component, then it will be important
to take it into account when assessing its reliability
under fluctuating loads. The investigation in this chapter
sets out to esﬁablish whether stress redistribution is
an important factor in fatigue life by wusing a simple
structure and simplified constitutive and damage

evolution laws.

3.2 Material Behaviour

3.2.1 Uniaxial Models for Damage Growth due to Cyclic
Plasticity
In this chapter the rate of change of fatigue damage

is postulated to be given by

5_¢=<?A__EY_>r . (3.1)
SN B(1-v) (1-9)P
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where ¢ is the fatigue damage, 0, is the stress
amplitude, OY the yield stress and B, r and p are material

constants. The angle brackets indicate

< x> = (3.2)
0 if x < 0

This equation is based on an equation used by Lemaitre
and Plumﬁree (1979), but has been modified slightly so
that it is consistent with the constitutive equations. The
connection between plastic strain amplitude and the stfess

amplitude is assumed to be given by

c,- 0O q
A Y
"a T <—K<1—.u‘)> (3-3)

where Ny is the ©plastic strain amplitude, and K and
q are constants. Equation (3.1) can now be expressed
in terms of plastic strain:

Substitution of (3.3)into (3.1) gives

T r/q 1

Sy K
= =[%1 n (3.4)
N BT A (1-9)P

This equation now allows the standard strain-controlled
cycling tests to be wused to evaluate the material

constants B, r and p. Integration of (3.4) over the

lifetime of a specimen from ¥ = 0 to 1 and N = 0 to
Nf gives the number of cycles to failure as
Ne = s t7q (3.5)
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Substitution of this back into (3.4) gives.

Sv 1
5N (p+1) (1-0) PN

(3.6)

This can be integrated to give the damage after N cycles

N
1-b = [1-

f

]1/(p+l)

(3.7)

By the effective stress hypothesis, the term (1-7V)
can be found from the decrease in stress observed during
a strain controlled fatigue test. If 1log (l-¢) 1is

plotted against log (1-N/N then the slope of the

)
line gives p+l. Equation (3.5) is basically the Manson-
Coffin relation between plastic strain amplitude and
number of cycles to failure. Hence a series of fatigue
tests 1is necessary to determine the remaining two
constants B and r, if the Manson-Coffin equation is
assumed. A similar procedure can also be carried out
for stress controlled tests. This formulation of damage
growth has been wused in predicting 1lifetimes for
specimens under mixed <creep and fatigue conditions

by Lemaitre and Plumtree (1979) and Blackmon et al.

(1983).

3.3 A Numerical Study of a Multibar Model

3.3.1 Multibar Model Structures

The model structure that will be used in the studies
in this and other chapters is the multibar structure.
It will be used because its components can be described

by uniaxial laws, and hence it is a relatively simple
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structure to analyse and. calculations for it are
comparatively easy to perform. On the other hand, the
interactions within a non-trivial multibar structure
are relatively complex and reflect the type of behaviour
that 1is exhibited by more complex structures and
components. Thus, by using multibar models, structural
behaviour may be studied without the necessity of using
techniques such as the finite element method which
would require complicated computer software and extended
computations.

A multibar model consists of a number of parallel
bars of uniform cross—séctional area. Each bar is fixed
at one end while the other end is aﬁtached to a block
to which all of the bars are fixed. This block 1is
allowed to move in a single direction parallel to the
axes of the bars. An example of such a structure is
illustrated in Fig. 3.1. Details of how non-linear
problems involving ©plasticity are solved for this

structure are given in Appendix A. ~

3.3.2 Constitutive Equations and the Incorporation
of Damage
The manner in which the <constitutive laws are
employed in the solution of the model structure will
now be discussed. It is assumed that the loading history
is regular and has constant maximum and minimum values,
Pmax and Pmin respectively, as shown in Fig. 3.2.

The relationship between stress and strain in the

uniaxial case is based on the equation,
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o :
T if o ¢ Oy

€= (3.8)
g o~ Oy :
E.+{ X } if o > Oy

where € and ¢ are respectively wuniaxial values for
strain and stress. K and q are material constants and
E is Young's modulus. This equation 1is vonly used as
it is shown here during the initial loading.
Subsequently, in order to model the hysteresis 1loop
in stress-strain co-ordinates which results from cyclic

loading, the relationship becomes

p
9]
=+ n_. . ]
E min if ¢ éomin+20Y’
€ =<
q
c-o0 . -20
o min Y .
F * 2 5% + Noin if ¢ >°min+2°Y’
L
(3.9)
when going from Pmin to Pmax , and
f
a .
E + nmax if 020 -2043
max =~ Y
€=< q
g —o+omax—20Y
2 - i < -
E 2 2K * Tnax if o max 20Y’
\
(3.10)
when going from Pmax to Pmin-' In these equations the

subscript max indicates the value of a quantity when

P=Pma-x and the subscript min indicates its value at

P=Pmin' The factor of 2 in (3.9) and (3.10) 1is due

24



to the application of Masing's rule (Masing, 1926)
which allows a closed hystersis loop to be constructed
by doubling the monotonic curve given in (3.8). A
typical hysteresis loop is illustrated in Fig. 3.3.

When damage is non-zero it 1is incorporated into
the constitutive equations by assuming that it only
affects the wupward part of the stress-strain cycle.
Thus, for the uﬁward part of the cycle, (3;9) is

replaced by:

m|Q
+
=3

. if o<0o_. +20,
min min Y
g= (3.11)

0-20y- i, |4

Mnint E*2 | 728(10)

if ¢0>0 ., 420
, min Y

For the part of the cycle from P to P . , (3.10)
max min

is used.
Damage is assumed to be constant during a cycle
of load from P_, to P . . The damage is changed when
min min

the load 1is Pm' . The new value of damage is calcula-

in
ted by assuming that the plastic-strain range or stress

range remains constant during the cycle, which allows

(3.6) to be integrated over one cycle to give

1
RS » L (3.12)

where Nf is calculated from (3.5) using the plastic
strain amplitude of the previous 1load <cycle. (The
plastic-strain amplitude is calculated as half of the

plastic strain range incurred by the bar on 1loading

from P . to P .)
min max
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A bar fails when damage reaches a value of 1. This
is indicated, during the calculation for wnew in (3.12),

when

(1-0)P*H - & <o (3.13)
The fraction of the next cycle at which the bar falls,
AN, can be calculated approximately by setting the
l.h.s. of (3.13) to zero:

AN = N, (1-p)Ptl (3.14)

This is added to the number of cycles so far to give

the point of failure of the bar. The value of V is

set to one and the structure is loaded from Pmax to
min during which the failed bar follows (3.10). During
loading from P to P a failed bar is assumed to

min max

be completely elastic: while the stress is 1less than
zero, the bar has its initial ‘elastic modulus, but
when the stré;s reaches =zero the modulus is changed
to a very small fraction of the initial value. On
loading from gnax to. Pmin the bar continues to obey

(3.10) once in compression. A possible path of stress

and strain is shown in Fig. 3.4.

3.3.3 Normalization
In what follows normalized quantities have been
used; stress 1is normalized by dividing by the yield

stress:

o = (3.15)

a’
Sy
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where "a prime denotes the actual value. Normalized

strain is defined by

Id

€

E
e= =2 (3.16)
Iy

and lengths and areas are normalized with respect to

the length and area of bar 1:

l'i

L, = T (3.17)
i

Ay 5T (3.18)

where Ei is the 1length of the ith bar and A, its

cross-sectional area. Equation (3.8) becomes:

(3.19)

in which case T is the normalized value of K which

is defined by

KoYl/q
r = .

3.3.4 Numerical Results

The actual multibar model used is described by the
data of Table 3.1 and is illustrated in Fig. 3.1. The
loading cycle was given by Fh;%-Pmin=6'8' In the initial

state the load required for first yield is 4.0. The
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stresses in the bars at this 1load iﬁ the initial state
is also given'in Table 3.1. These stressés show that
the stress concentration factor between the 6th énd
lst bars is 6. The behaviour of- the multibar model
wés calculated up‘ to failure of all 6 bars for two
values of p. In one case p = 25, wﬁich is a typical
value for this parameter (see for éxamples some values’
given by BlackmonA et al. (1983)). In the other case
a large value of p = 2500 has been séletted so that
the value of the damage ¢ in a bar will remain small
until immediately before the bar falls. This gives
a close approximation to the model without damage
growth, where each of the bars is failed at the number
of cycles given by the Manson-Coffin law. A typical
value of ¢ was chosen in the Manson-Coffin equation
and the value of €¢ was then chosen to give.a total
lifetime of the whole structure of the order of 100
cycles. The number of cycles at which each bar was
calculated ‘to have failed is given in Table 3.2, for
each value.'of p. .As can be seen in tﬁis table, the
structure with hégligible damage growth (p = 2500)
has a significantly shorter lifetime than fhe structure
with aﬁ appreciable growfh of .damage' (p‘ = 25), the
differenée being of the order of 25%Z of the p = 2500
value. E#cept for the first bar, eachv bar of the »p
= 2500 structure fails before ‘the corresponding bar
of the p = 25 structure, and the percenﬁagé difference
between these failure times increases from bar 2 to
bar 6. The first bar has a shorter 1ife when p = 25

because damage growth slightly increases the plastic
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strain amplitude of the bar which tends to decrease
the 1life of the bar, whereas only negligible: dahage
growth occurs when p = 2500 and the plastic strain
amplitude remains the same throughout the 1life of the
bar. After the .first bar has failed other effects come
into play ahd, although the same arguments apply and
the plastic strain amplitude increases in the presence
of damage, the sﬁbsequenf failure of bars is later
when p = 25 than when p = 2500.

Selected results of the computations are presented
in Figs. 3.5-3.8." The graphs in Figs; 3.5-3.8 display
the common feature that they consist of a serieé of
steps. The sudden jumps in the curves correspond to
the failure of one of the bars. Thus, the first jump
in the graphs at about 11 cycles corresponds to the
failure of the first bar (see Table 3.2). The main
difference between the results for the two values of
p is the difference in the growth of damage. For the
curves of stress and strain, etc. in bars 3 and 6 for
p = 25 (Figs. 3.5, -3.6) the growth of damage is
indicated <clearly by the curvature of the graphs
apparent between bar failures. On the other hand for
p = 2500, eéch of the sections between bar failures
are flat or nearly so (see Figs. 3.7, 3.8). The upper
curve in Fig. 3.5(a) shows that between 27 and 40 cycles
the stress décreases due to the increase in damage
in bar. 3. Figure 3.6(a) shows that the stress in bar
6 is increasing between 27 and 40 cycles to compensate
for the decrease in bar 3. This is an example of stress

redistribution where the stress 1is transferred (in
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accordance with equilibrium) from weaker, or more
damaged bars of the structu?e, to stronger or less
damaged bars.

The increase of plastic strain range with the
increase in damage is illustrated in Fig. 3.5(b) where

the plastic strain at Pm is growing faster than that

ax

at Pmin . These graphs also show that each bar ratchets -
(see Fig. 3.5(b) and Fig. 3.6(b)). This is due to the
fact that damage is only used to calculate the stress-
strain response on loading from Pmin to Pmax (see
equations 3.10 and 3.11).

Figure 3.5(c) illustrates the growth in damage in
bar 3. This curve is typical of all the bars. The damage
stays very small wuntil just before failure when it
grows very rapidly. This growth in damage is extremely
rapid when p is 2500, so that the damagé stays almost
zero wuntil the bar fails, when it suddenly becomes
unity.

Figure 3.9 shows the displacements of the moving
block of the multibar model with p = 25 at the top
and bottom of the 1load cycles. This figure too has
steps showing where each bar has failed and ratchetting
is displayed as has already been noted for the strain
response of each bar.

By careful comparison of Fig. 3.5(b) with Fig. 3.8,
it can be seen why the structure has a longer lifetime
for the 1larger value of p. The plastic strain range
in bar 3 1is greater after the failure of bar 1 in the

case p = 2500 than in the case p = 25. The plastic

strain amplitude (which dis half the range) 1is used
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in (3.4) to calculate the damage growth rate, and it
can be seen from (3.4) that an increase in the amplitude
leads to an increase in the damage growth rate. kThe
greater plastic straiﬁ amplitude in the case p = 2500
is due to a greater stress amplitude. This appears
to be due to the fact that there are larger compressive
stresses in failed bars when p = 25 than when p = 2500.
This means that stress redistribution to the failed
bars in compression is greater when p = 25 compared
with when p = 2500, and this has the effect of reducing

the stress amplitude experienced by the remaining bars.

3.4 Conclusions

The example given in this chapter has been used
to compare the predicted lifetimes of a simple structure
given by two related laws of damage growth. In one
the damage was allowed to grow and to affect the
deformation of each individual component before its
failure. In the other, damage was used as a failure
criterion and did not affect deformation befdre failure.
The results of the study show that, for the structure
considered here, the predicted 1lifetime is increased
by 257 when the effects of damage are taken into
account. However, the constitutive models may Dbe
criticized on several grounds. The damage growth laws
implicitly assume that the fatigue limit of the material
is the same as the yield stress and also do not take
into account the <effect of any mean stresses. The
proposed method of including the damage in the

constitutive 1laws for «cyclic ©plasticity has inherent

31



undesirable properties. Under stress controlled cycling
the model predicts an increasing ratchetting rate with
increasing damage. This behaviour is observed
experimentally, but the theoretical ratchetting rate
tends to be excessive. In addition, the same properties
of the model 1lead to a continually decreasing mean
stress under strain control with the rate of decrease
increasing with damage.

Improved constitutive and damage growth laws will
be presented in the next chapter which overcome some
of these problems. These laws will then be used 1in
a subsequent chapter to repeat the study made in this

one.,
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Length Area Stress on first yield |
Bar (normalized) (normalized) (normalized)
1 1 1 1
2 1.2 1 5/6
1.5 1 2/3
2.0 1 1/2
3.0 1 1/3
6.0 4 1/6

Other parameters:
in equation (3.19) q=2and I' = 0.5.
€ = 1.5, and ¢ = -0.3, where Ny = Ef(Nf)C is the Manson-Coffin
equation.

Young's Modulus of failed bar in tension is 10_-8xE, where E

is the modulus of undamaged material.

Table 3.1 Details of multibar structure.

Bar Number

1 2 3 4 5 6
p =25 11.11 | 23.01 | 39.68 | 64.00 | 96.39 | 97.44
Value
of p
p =2500| 11.71 | 21.88 | 33.98 | 51.54 | 77.55 | 78.34
Table 3.2 Calculated numbers of cycles to failure

for each bar in multibar model of Table 3.1.

33



A
A
N

N\
AN
A
N\
AN
A
A
N
N

AN

(@)

M vy
. . -
Yelaln " L0t Lt ‘.-.-‘
. . * . .. e ® e
. L . -
. »* . . -
. - . . .
.* . - o o - .
. o -
. . - - i - -
- - A - .
. -
. ‘e & - -
. e v e
-
Set . *. eyt o e e e o
. - . LS g - -
' - .~ - e ete T d
‘ - . v e e e
e b _* o e o o =
v s e e -
e v e e s e o
- . o
- . «te o d
- )
.. - ® &
. « N _ .
. a'w o
- a8 _
- ®» _* 9
.o
ete o o
- o
o o o
«le’e
e e’ 4
.
o e 4
-
oo o
- .
- o 4
.- o
o'

Figure 3.1:

SONN NSNN N NN NN N
\D\%

A NN NN

%

‘Load, P

An illustration of the 6 bar structure used in
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Figure 3.3: Cyclic stress-strain hysteresis loop
illustrating the terminology used in
equations (3.9) and (3.10).
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CHAPTER 4

A NON-LINEAR KINEMATfC HARDENING RULE

AND DAMAGE EVOLUTION LAW AND THEIR PROPERTIES

4,1 Introduction

The study in Chapter 3 showed that stress redistri-
bution due to the growth of damage can be an important
factor in the endurance of structural components subject
to fatigue. However, the constitutive model had several
undesirable properties. These were discussed in the
Conclusions to Chapter 3. The constitutive model studied
in this chapter is based on the non-linear kinematic
hardening rule, due originally to Armstrong and Frederick
(1966), and possesses better properties than the power
law model wused in Chapter 3. Some of these properties
are demonstrated in this <chapter, and a method of
modelling the effect of damage on the cyclic plastic
behaviour of metals is proposed.

The law of damage evolution used in Chapter 3 also
had wundesirable ©properties. A more sophisticated law
which has been proposed by Chaboche (1978) is introduced
and discussed in this chapter. This law 1is capable of
taking into account many of the important factors which
affect fatigue 1life such as mean stress and fatigue
limit., However, unlike the law in Chapter 3 it 1is not
easy to convert the law, which is expressed in terms
of stress, to one expressed in terms of strain and thus
to employ data gathered under strain control to provide
the material constants required to make it relevant

to real metals.
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4.2 The Non-linear Kinematic Hardening Rule and its

Properties

4.2.1 Introductidn

This model is attributed first of all to Armstrong
and Frederick (1966), but has been developed and used
extensively by Lemaitre and Chaboche (1985). A pictorial
description of the model can be given, Fig. 4.1, in
terms of surfaces in deviatoric stress space; the model
in its most basic form consists of two surfaces; a yield
surface and a limit surface.

The outer 1limit surface remains fixed and the same
size. The inner yield surface moves with changes 1in

plastic strain according to
2
da=§Cdn—Ygdp, (4.1)

where C and Y are material constants and p 1is the
effective plastic strain. It is not obvious that (4.1)
leads to the two surface model} but by using the
postulates of consistency and the associated flow rule
it can be shown that

da = 'Y(g&; - ¢’) dp, (4.2)

Where ° denotes deviator and is the point on the

OI
=L
limit surface at which the normal is parallel to the
normal to the yield surface at ¢” . Thus, the motion

of the yield surface is along the 1line joining 9 and

0. It can also be shown that the limit surface is given

by
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Jz2 (g) = 0_ +

y , (4.3)

=<0

where J, is the 2nd tensor invariant. In the case of

the Von Mises yield surface, the hardening modulus 1is
, (4.4)

which gives the model its non-linear characteristics.
Some of the properties of the model «can now be

illustrated for the uni-axial case.

4,2,2 Uni-axial Form of Model

The yield surface has the form
f = (0 -a)’ —o; =0 . (4.5)
In one dimension, the hardening rule (4.1) becomes

doe = Cdn - ya| dn | : : (4.6)
When yielding occurs, let

U = sign (o -a) . (4.7)
From this it can be seen that

sign (dn) = sign (o Ta) =y (4.8)
and hence,

|dn| = updn (4.9)
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The consistency condition gives

QU
Hh

df =

&l
Q

(do - da) = 0 , (4.10)

which implies do = da. Equation (4.6) can be integrated
explicitly for one ,half cycle beginning at n = nNo and
0 = 0ag to give the following expression for 1N and

o during that half cycle:

- C - YUy
n N e vmae | = YH( -na), (4.11)

and hence
1 C - Yuay
n ="nNo + — 4n C—_W (4.12)

From (4.11) it can be shown that
@ =— [ 1 - A] + aol (4.13)

where A = exp[-YH (n-Nng)]. Given the location of the

centre of the yield surface to be

a = 0 - U0 _,
"y
‘then
0 = S [1-A] + aoh + uo (4.14)
i y

Thus, as 0 > then G'+7%- , which defines the 1limit

ssurface. It should also be noted that the hardening

modulus

o-'o.
3
|

=C -vyau , (4.15)
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which from (4.13) becomes:

2% _[Cc+ yuao] A (4.16)

3

is finite when n ="no (i.e. when first yield occurs
during a half cycle), so that the first derivative of
the stress-strain curve is not continuous at this point.
An example of a stress-strain loop is shown in
Fig. 4.2, which is calculated from data for 316 stainless

steel.

4,2.3 Relationship ©between Plastic Strain Range and
Stress Range for Stabilized Stress-strain Cycles
'The relationship between plastic strain range

An and stress range 1is best derived in terms of Q.

Let ¢ ax be the value of «a at the top of a cycle

and Qo in be the value at the bottom, and similarly

for n and n_. . The following expression is obtained
max min

from (4.13) with u = 1:

[
1
S le)

(1-4) + e . A

max in (4.17)

where A = exp[—Y(nmax-nmin)]. Similarly

[*]

- - % (1-0) + o A (4.18)

min
Subtraction of (4.18) from (4.17) gives
2C 1-A

®nax %min = Y { 1+A } (4.19)
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Since « -0 ., =0 -0 . -0 -0 = A0 - 20 , it can
max min max min y y y

be shown, after some manipulation, that

o ¢ an |
> =y tanh [Y > ] + Oy (4.20)

4,2.4 Plastic Strain Increment due to Ratchetting Caused
by Mean Stress

Suppose that there is a non-zero mean stress

a = (o + 0 /2 = O,

max min

Under 1load controlled cycling this leads to ratchetting
or unbounded straining because the distance between

@ ., @and its upper limiting value CH 1is different to

the distance between ®oin and its lower limiting value

-C/Y . The ratchet strain can be calculated as follows.

Equation (4.12) with u = 1 gives:

SR R 51,9 (4.21)
max Y C—Yamax min :
and, with u = -1,
C+va
-1 max
“min =y 17 E:?&;;;j}* "nax (4-22)

Substitution for Nin in (4.21) using (4.22) gives,

over one cycle,

NES T S 7T S U il FEN I D
max =y C-va ., Y Ceya o max
So that
(¢/ )" -,
1 :
N IO PR fr St PR
(C/Y) -y
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or in terms of O,

(C/. ) = (o . + 0 )?
§n = % 1n[ Y min Y (4.24)
2 2
(C/ )7 = (0.0 = 9
It can be seen that if @ = O which implies @ in =
-a then (4.23) reduces to 6n = 0.
max.
4,2.5 Mean Stress Relaxation under Constant Strain
Cycling

Now consider a general mean plastic strain n ,

imposed by plastic strain controlled cycling between

Nnax and Noin ° Using (4.13) gives, for the upward half
cycle,
a - C [1_e“Y(nmax“nmin)] +o . e Y(Mpmax—Nmin)
max Y min

or, in terms of A ,

Q =
max

<O

[1-A] + o . A : (4.25)

Similarly, for the other half cycle,

-C . :
min = Y [1-A] + A ax A (4.26)
Substitution of ¢ i from (4.26) into (4.25) yields,
over a whole cycle,
(2) _ C 2 (1) 42
®rax = Y [1-A]° + ooy A (4.27)

and similarly,
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-aézi = ﬁg [1-A]° +<x;;i A? : (4.28)

Addition of (4.27) and (4.28) gives the following

relationships between mean stresses:

ol 4 al® o), o)
max min max min
AR CI G , (4.29)

T 51 _ g 5D

4,2.6 Some Examples of Ratchetting and Relaxation

The results obtained above in sub-sections 4.2.2-
4.2.5 are in terms of a (or g ) and n. If load
cycling is stress or plastic strain controlled then
(4.12) and (4.14) can be used to calculate the predicted
response of the material, and the results of sub-sections
4.2.3-4.2.5 will be valid. However, if (4.14) is
rewritten in terms of total strain €, and ¢ , then

the following expression is obtained:

C .
= —= [1- 4,30
o m([ A]+a0/\+uoy ( )

where N=exp { —uy(e -0 /E -ng)}

It is not possible to solve this explicitly for
0 and so the results of sub-sections 4.2.3-4.2.5 cannot
be derived in terms of 0 and €. However, (4.30) may
be solved numerically and thus the reéults for total

strain controlled 1load <cycling may be obtained by
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numerical calculation. A <computer ©program was written
which used (4.12), (4.14) and (4.30) to study the stress-
strain response of the model wunder various types of
loading. The wvalues wused for various constants were
for 316 stainless steel and they are 1listed in Table
4,1, Figure 4.3 shows an example of ratchetting under
stress controlled cyclic loading, and Table 4.2 gives
the values of stress and strain at the top of each cycle.
The numeriéally predicted ratchetting rate is given
in the 1last column of the table. The rate calculated
from (4.24) is §e = 2.22552 x 10 3 absolute strain/cycle.
Figure 4.4 and Table 4.3 give the results of strain
controlled cycling with 1limits of 0,001 and -0.0002.
The 4th column of the table shows that any mean stress
does decay and the ratios in the last column show that
the decay 1is exponential. However, the theoretical rates
of decay given for plastic strain control by (4.29),
and shown in column 3 of the table, do not compare well
with the numerically derived values for total strain
control given in the 1last column., However, it may be
shown that if the calculations are «carried out with
the common assumption of plastic strain controlled
cycling, then the theoretical and numerically derived
results are identical.

Figure 4.5 shows the hysteresis loop obtained for
strain controlled cycling with symmetric 1limits (i.e.
%un=—€ma9.lt can be seen from the loops shown that mean
stress relaxation takes place. This illustrates the
fact that, for the non-linear kinematic hardening model,

symmetric limits in the <control variable do not imply
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that other variables will have symmetric 1limits., This
can also be seen in Fig. 4.2 where the resulting limits
in strain are not symmetric., This asymmetry in limits
depends on the initial wvalues of oy and ng . For
instaﬁce, under stress éontrol with zero mean, symmetric

limits in plastic strain are obtained when

2 (1)
1 L- - (amax)
ﬂo='2—‘1n )
v (L - ag)?’
1
where a(ai is the first maximum value of <« Qﬂd L=C/Y.

4.3 Modelling of Cyclic Plastic Deformation and Damage

in Metals Using the Non-linear Kinematic Hardening Rule

4.3.1 Material Behaviour Under Cyclic Loading

In a strain controlled cyclic 1loading test on a
uniaxial specimen, it is observed that the 1load in
tension decreases during the test and eventually becomes
zero when the specimen fails. Figure 4.6 shows an
idealized stress profile for a uniaxial specimen wunder
strain control. In the figure, the behaviour is simpli-
fied by assuming that the stabilized» cyclic state is
achieved immediately and that there is no initial c&clid
hardening or softening. In addition, the stress response
in compression 1is assumed to Dbe .constant throughout
the lifetime of the specimen. In tension, the decreasing
values of stress can be written as 0 (l-V) where
0] .is the maximum stress of the stabilized cycle and
Y is the damage. The evolution of the damage gives

the shape of the upper curve in Fig. 4.6.

This idealized behaviour is the idea which inspired
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the model described below. However, the model does not
match this ideal exactly, but this 1is not a serious
deficiency since a real metal specimen does not behave
in this way and the model reproduces some of the
essential features of real material ©behaviour quite

well.

4,3.2 Incorporation of Damage 1into the Constitutive
Laws

In order to follow the evolution of a structural
component -unde; cyclic loading, it is necessary to
incorporate damage into the <constitutive -equations to
model material weakening, and, in addition, lead
naturally to the situation where failure takes place,
that is, a state 1in which the material 1is incapable
of transmitting tensile stress, but is capable of
sustaining compressive stress. Damage is usually included
into a model by making the hypothesis that the strain
is computed from the constitutive equations by replacing

0 by o/(1-V¥). Thus, suppose that for undamaged material

€ = F(o) , (4.31)

then for damaged material
. ‘ :
€ = F [I—-w] (4.32)

For instance, in a damaged 1linear elastic material,

the strain is given by

o

= TT0E (4.33)
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However, wemploying this hypothesis directly into the
equations for the <cyclic state of the material does
not reproduce the stress envelope in Fig. 4.6 since
the stress in compression would also decay to =zero as
damage increased to unity. Hence, damage must be included
in such a way that only the maximum stress is affected
by it. Such a model would provide a consistent 1link
between the damaged and failed states.

In the failed state the material may be thought
of as being fissured. A uniaxial model of fissured
material can be constructed in the following manner.
In compression the material behaves as 1if it were
undamaged. In tension it behaves completely elastically
but with a very small value of Young's modulus. This
is an approximate model of the behaviour of a no-tension
material: the residual strength of the material in
tension allows the point at which the stress becomes
compressive to be readily determined.

The model of damaged material given in Chapter
3 was relatively crude and 1led to certain‘ undésirable
predictions, but was very simple to use. In that case,
damage did not affect elastic behaviour, and only
affected the non-linear part of the stress-strain curve.
Also, the damage was non-zero 1in the equations only
for the wupward portion of the 1loop (from compression
to tension). Since the non-zero damage flattened the
non-linear curve, the strain range on the upward part
was greater than that on the downward portion (assuming
stress-cycling). This leads to ratchetting under stress

control when damage is non-zero, and the ratchetting
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rate increases with damage.

Further attempts at modelling the effects of damage
were made bj assuming that damage only acts in tension
(similar to the model for fissured material). That 1is:
any non-zero damage is present 1in the constitutive
equation when the stress is greater than zero, but
otherwise damage 1is <effectively =zero. Under certain’
conditions, this is in fact equivalent to the previous
model under stress-control. With certain types of damage
evolution this model ©predicted unrealistically large
ratchetting rates. These difficulties are not overcome
by allowing damage to act on Young's modulus or by
replacing the ofiginal constitutive law by the non-linear
kinematic hardening rule. Under strain control these
models predict that the mean stress becomes increasingly
compressive, and that the minimum stress decreases in

an unbounded fashion.

4.3.3 A Model of the Effects of ﬁamage on the Stress-
strain Loop

The stress-strain hysteresis 1loop can be dividéd
into two parts, the upward part beginning at minimum
stress and strain and ending at the maximum (ABC in
Fig. 4.7), and the downward part beginning at the maximum
and finishing back at the minimum (CDA in Fig. 4.7).
In the following, the value of the damage in the
constitutive equations at any given point will be called
the acting damage at that point.

Suppose the damage has a value VYo, which remains

constant during a cyle of load from minimum to minimum.
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In the constitutive equations at the minimum stress-
strain point of the cycle, the acting damage 1is assumed
to be zero., This remains so until the stress reaches
zero where the acting damage 1is set to Yg. Since
increasing the damage makes the material softer, this
will have the effect of putting a corner in the stress-
strain curve as shown in Fig. 4.8 at point B. The acting
damage remains equal to Yo until point D on the downward
part is reached at which the tdtal strain of the material
is equal to the strain at point B. At D the acting damage
is set to zero and this has the opposite effect to the
process at B and produces a downturn in the curve which
gives the tail around the minimum. This model will form

the basis of the treatment presented in later sections.

4.3.4 Implementation for the Non-linear Kinematic
Hardening Model

The model proposed above can be represented using
the equations discussed earlier for the non-linear
kinematié hardening rule. When damage 1is included in
this model, it is assumed that the stress ¢ is replaced
by the efffective stress 0/(1-Vv) in the constitutive
equations. It is further assumed that @ is {eplaced

by its effective value, a/(1-V). Thus (4.12) is rewritten:

1 uL - (oo/(1-¥))
YH ML - (a/(1-¥))

(4.34)

where L = C/y.

The points at which acting damage changes from-

one value to another must be treated carefully. There
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are four cases and each will now be treated separately,
although they are related. Suppose in -each of the
following that the acting damage 1is changing from

v to Y’ at a stress of 0 and a total strain of €.

CASE (i) Elastic-Elastic

Suppose that IO - ao| < (1- y) oy and also that
| o- ao|<(1— W’)Oy, i.e. that before the damage change
the material is elastic and that afterwards the material
remains in that state assuming the value of o 1is

constant., Afterwards the total strain is

g

& 1=

gt N , (4.35)

and so the plastic strain must be redefined as

n = g o (4.36)
(1-v")E

and ne, = n’. (4.37)

CASE (ii) Elastic-Plastic

Before the damage change the material has not
yielded but. afterwards it yields. This can only occur
if the acting damage increases during the change, thus

decreasing the size of the yield surface:

Before | o - ag] <(1-v) o,

After |o - ao | >(1-9") Oy~

Again, plastic strain must be redefined as in

(4.36). The equation of the curve is now defined using
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(4.34). In (4.34) it is assumed that oo remains constant,
but this entails a change in no. Using (4.34) and (4.36)

the following is obtained

[ UL - (ao/(1-V))
9 1 4 L - (4.38)

HL - (a” /(1-97))

where @¢° is the new value of o required to ensure

consistency is satisfied:
e’ =0 - u(l-v") oy (4.39)

CASE (iii) Plastic-Elastic

This can only occur when the damage decreases thus

increasing the size of the yield surface:

Before | 0 - ao | z(l-w)oy

After | 0 - ap | S(l—-W')Oy

In this case o remains unchanged at (O- u(l—w)cy),
n becomes N’ according to (4.36) and no is set to. the

value given in (4.38).

CASE (iv) Plastic-Plastic

In this final case we have that:

Before | 0 - oo | >(1—w)0y

After | ¢ - a |>(1—w’)cy

n’ is now defined by (4.36), ng by (4.38) in which

o is defined by (4.39).
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4.3.5 Predicted Stress-strain Curves

A series of these curves for different values of
damage is shown in Figs. 4.9 to 4.13. These curves are
for strain control between 2%0.02 strain and the values
of the constants are given in Table 4.1. It can be seen
from the curves that the éxpected fall in the maximum
stress as damage increases 1is reproduced by the model.
The minimum stress remains in compression but rises
slightly as damage increases. This does not follow the
ideal ©behaviour as was proposed earlier and shown in
Fig. 4.6. However, experimentally it is observed that
the minimum stress does not remain constant and does
in fact rise towards the end of a test (see for example,
Raynor and Skelton, 1983); Comparison of the curves,
for large damage, with curves taken from the last few
cycles of an actual test (see Fig. 4.14) show that the

qualitative material behaviour is reproduced very well,

4.3.6 An Incremental Formulation

In the multiaxial case it is not possible to
integrate (4.1) to obtain an equation such as (4.13)
which describes the stress strain state exactly. Normally
(4.1) would be solved incrementally. ‘This approach is
also possible for the uniaxial equation (4.6) and this
section compares the incremental approach with the one
in sub-section 4.3.4.

If damage is Y, then (4.6) becomes

da a

= Cdn - v |dﬂ| (4.40)
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Suppose the acting damage has just changed to $”, then

(4.40) gives the increments in @ and n by:

o+ Ao n+ An

fa da - I 4n (4.41)

C(1-¢") - wya n

where @ and n are the values of O and n after the

change in acting damage. This gives:

an = L o1p | ML= o/(1-97 | (4.42)
TH UL - (a+ Aa)/(1-V")

Using the previous formulation the following expression
is obtained:
1 uL - ao/(1-97)

An = no + ﬁ—' 1n R - =N (4-43)
Y UL - (ot 80)/(1-v")

If it 1is assumed that n is defined by (4.36) and
@ , 1if  necessary by (4.39) then substitution for
ne from (4.38), gives (4.42). Thus, the two approaches
are . equivalent provided lthe definitions of a and

n at the damage change are the same.

4.4 Damage Evolution

The expression for damage evolution used here has
been proposed by Chaboche (1978). The rate of growth
of damage with respect to the number of cycles can be

written (see Lemaitre and Chaboche, 1985).

- lo -
8o r1-(1-u)B+1%(Omax,0) | _max (4.44)
M(o)(1-¥)
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* _
o] - 0,(0)
a(g ., 0) = 1l-a <0—?‘3"—_—01— | (4.45)
u max
o:‘(E) =0, + (1-bo ) G (4.46)
M(G) = Mo(1-b0) (4.47)

a, Mo,B are coefficients dependent on temperature,
b is a temperature independent coefficient,

Gu is the ultimate tensile strength,

01 is the fatigqe limit for zero mean stress,

Gmax is the maximum stress of a cycle, and

0 is the mean stress of a cycle.
The angle brackets are defined by < x > = H(x) x, where

H is the Heaviside function.

Equation (4.44) has been arrived at empirically
to describe the effects of mean stress oﬁ the raté of
damage growth. The <coefficients ‘can be obtained by
finding a from experimental data. The fall in stress
during a strain controlled load cycling test gives the
rate of increase of damage, and this can be fitted to
the expression (4.44). to givé the value of a in a.
If (4.44) 1is then integrated over the 1lifetime then

it can be shown that:

) o g | B
o1 | max _
Ne = BT D (-0 T (4.48)

From this the <coefficients B and M can be found by

fitting this relationship to graphs of Log O against

61



Log Nf-

The first factor on the right hand side of (4.44)
is to ensure that the hypothesis that the effective
stress, o/(1- ¢), should be wused in <calculating the
deformation from the constitutive equations is as
accurate as possible, In other words, if the damage
is measured from the load drop during a strain controlled
test, then the form of that load drop is given By (4.44),
The form of the function a given by (4.45) serves
several purposes. The inclusion of the ultimate temnsile
strength is so that the failure of the specimen occurs

on the first load up if this stress is attained, since

a becomes unbounded if o© approaches g . If
max u
*
(jmax > 94 then 2@ <1 and damage grows from zero, and

the lifetime is given by (4.48). 1If qnax £ Oi then
a=1 and ¢ only increases if Y >0 initially. That is,
if ¢Y=0 and @=1 then no damage cumulation occurs and
life is unbounded. However, if Y >0 and o =1, then
Y] increases and 1life dis finite.  Thus, for example,
an dinitial overload nullifies the effect of a fatigue
limit. These facts will be demonstrated in more detail
in Chapter 5. Finally, since o is a function of
nax ° the damage <cumulation is non-linear. The
consequence of this is that Miner's Law (Miner, 1945)
is not obeyed if this damage evolution law 1is used.
This will be demonstrated in the case of creep/fatigue
interaction in Chapter 6. The expression for a fatigue
limit at different mean stresses (4.46) 1is Dbased on

the standard Goodman 1law. If-b in (4.46) is replaced

by 1/(% then the Goodman relationship results. (For
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the Goodman law see, for example, Fuchs and Stephens,

1980).

4.5 Discussion

A constitutive model has been presented in this
chapter which models the behaviour of metals better
than the power law model used in Chapter 3. The model
is based on the non-linear kinematic hardening rule
which has a natural expression 1in ﬁhe multiaxial case
and which the constitutive model _of Chapter 3 does not
have. The uniaxial version of the model displays
ratchetting and mean stress relaxation as demonstrated
in this chapter, both of which are displayed by real
materials but not by the model of Chapter 3.

A model of the effect of damage on.cyclic plastic
deformation has been proposed in this chapter. When
damage is close to one, the model reproduces the shape
of hysteresis loops of a specimen close to failure very
well. Iﬁ addition, it does not possess the undesirable
properties of.unbounded ratchetting rates and unboundedly
decreasing mean stress which the method of Chapter 3
possessed.

The damage evolution law introduced in this chapter
models some of the .essential features of the fatigue
behaviour of metals. These include the effect of a
fatigue 1imit, mean stress and the wultimate tensile
strength. The accumulation of damage is non-linear in
a way that 1leads to a non-linear interaction between
damage growth rates in tests where the-loading is varied

during the test. This is different to Miner's Law.
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In the next chapter, Chapter 5, these models will
be wused to study again the behaviour of the multibar

model used in Chapter 3.
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C 30 000 MPa

Y 60

o] 300 MPa
y

E 196 000 MPa

Table 4.1 The values of the constants in the constitu-
tive equations used for the examples 1in
sub-sections 4.2.6 and 5.3.4. They are taken
from the book by Lemaitre and Chaboche (1985)
and are for 316 stainless steel at 20°C.

Cycle
0(MPa) Number € (absolute) de
500 1 1.1065 x 1077
(e - €1 =)
0.2225 x 1072
500 2 1.3290 x 107~
(€3 - €2 =)
0.2226 x 107"
-2
500 3 1.5516 x 10
Table 4.2 Values of stress and strain at the top of

successive cycles, and the value of the strain

difference for stress cycling between +500 MPa

-400 MPa. See Fig. 4.3.
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i Column 1 Column 2 Column 3 Column 4 Column 5
Stress at| Plastic Value of A in (4.29) Mean stress, O, jActual relaxa-
top and strain at - - 0 1is the average|tion rate. This
bottom of | top and A = exp[y(n,-nj)] of the values on |is equal to the
successive bottom of where 7Ni is the the lines above |value in column
cycles successive value in column 2 on | and below it in |4 on the line

cycles the line above and column 1 above divided
N2 1is the value in by the value in
column 2 on the line column 4 on the
below. This is the line below. It
theoretical mean is the rate of
stress relaxation relaxation over
rate in terms of one half cycle
plastic strain and should be
compared with
the values on
the line above
in column 3
ag +0,
= i-1""i+1
9, n ﬁiuexp[tY(ﬂi_l—ni+1)] g,.= 7 Rate of
relaxation
sign chosen so that = Pt
exponent is Ai=oi-l/oi+l
negative

1| 481.969 | 7.5410x107

2 1.582 56.365

3 | -369.237 (~1.161x107" 1.4970

4 1.6014 37.651

5 | 464.560 | 7.7319x107° 1.5020

6 1.5891 25.068

7 | -394.404 | 1.23x10"° 1.4986

8 1.5973 16.727

9 | 427.859 | 7.8170x107° 1.5008

10 1.5918 11.145

11| -405.568 | 6.9226x10"° 1.4993

12 1.5954 7.4334

13| 420.435 | 7.8549x107° 1.5003  °

14 1,5930 4,9545

15| -410.526 | 9.4521x10"° 1.4997

16 1.5946 3.3038

17| 417.13 | 7.8718x10°°

Table 4.3 Numerical results corresponding to Fig. 4.4, Shows stress and plastic

strains at the top and bottom of each cycle along with A in (4.29),

mean stress and the ratio of consecutive mean stresses. Cycling was

total strain controlled with limits 0.001, and -0.0002.
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Yield surtace

01

Limit surface

Figure 4.1: ©Non-linear kinematic hardening model -~ plastic

yield and limit surfaces in the mw-plane.
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400+

-0-015 o015
Total strain
Absolute

Figure 4.2: Example of predicted stress-strain response
of 316 stainless steel at 20°C under stress
controlled load cycling between the limits
+550 MPa.
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Figure 4.4: Total strain controlled cycling of 316
stainless steel exhibiting mean stress

relaxation.
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Figure 4.6: Stress response of uniaxial specimen under

strain controlled cycling.
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upward

D downward

Figure 4.7: Typical stress-strain hysteresis loop.
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Figure 4.8:

o ~ —p-

Typical stress-strain hysteresis loop when

damage is non-zero.
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Stress
MPa

400
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J

015 0020
Total strain
Absolute

-800 +

Figure 4.9: Predicted stress-strain hysteresis loop for
stainless steel at 20°C with ¢y = 0.05 .
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Figure 4.10:
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-8Q0 -

Predicted stress-strain hysteresis loop for

316 stainless steel at 20°C with ¢
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Figure 4.11: Predicted stress-strain hysteresis loop for
316 stainless steel at 20°C with ¢ = 0.65 .
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Figure 4.12:
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Predicted stress-strain hysteresis loop for
316 stainless steel at 20°C with ¢ = 0.85 .
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Figure 4.13:

Predicted stress-strain hysteresis loop for
316 stainless steel at 20°C with ¢ = 0.95 .
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CHAPTER 5
"A STUDY OF STRESS REDISTRIBUTION IN A STRUCTURE

DUE TO CUMULATIVE FATIGUE DAMAGE

5.1 Introduction

This chapter consists of a study of a multibar
structure similar to that of Chapter 3. The multibar
structure itself is the same as before. The constitutive
model and damage evolufion law are those introduced
and described in Chapter 4. The material properties
are also different: in this chapter the material is
supposed to be 316 stainless steel and not an arbitrary
material as used in Chapter 3.

The procedure followed will be similar to that
in Chapter 3. Two solutions will be compared: one 1in
which stress redistribution occurs and another in which
the bars fail abruptly with negligible damage growth
and stress redistribution before failure. In addition,
two asymmetrical loadings will ©be examined: 1in one
there will be a positive meén load in the other a

negative mean load.

5.2 The Solution Method

5.2.1 Integration of the Damage Evolution Equations
Damage evolution will be according to equations
(4.44) and (4.47) of Chapter 4. For constant Onax and
, (4.44) may be integrated to obtain a relation-
mean
ship between ¢ and N. There are two cases for the
integration: they are a= 1 and a<1l. Suppose the lower

and upper 1limits of Y and N are ¢, N; and VY,, N,

respectively, then for o = 1 the result is
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V4
(N, - N,)Z = 2&n [;ﬁ} (5.1)
where

_ B+1 .
z; = 1—(1—wi) for 1 = 1,2,

and where

M J ’

and for @ <] the result is

1 -Q -
(N, -N) 3 = 0= (2,7%2,7% (5.2)
On making the assignments Nl = 0, N2 = Nf,w L= 0O and
Y, = 1 in (5.2), an expression for the total number

of cycles to failure for any values of the stress limits

for which <1 4is obtained:

1

£ T (1-a)2 (5.3)

A similar assignment of values in (5.1) is not possible
since z,; is zero- if wl. is zero. However, setting
VY, to zero in (5.1) does give the result that the
fatigue 1life is wunbounded if the magimum stress 1is
below the fatigue limit.

Equations (5.1) and (5.2) make it possible to
calculate approximately the 1lifetime for a specimen
under varying stresses such as would, for instance,
be encountered during a strain-controlled load cycling
test or 1in the presence of stress redistribution in

a structure. If it is assumed that the stresses imposed
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on the specimen remain constant over R cycles then (5.1)
or (5.2) may be wused to <calculate the approximate
increase in damage incurred during those R cycles. From

(5.2) the new value of the damage if a <1l is

1/ (1-a) 1/(B+1)

Y, = 1-(1-6 (5.4)
where
N IS ERL A Ak
f
In the case a= 1, damage becomes
b2 = 1-(1-gzy) M/ (BHY) (5.5)

where
¢ = exp(RZ)

The new value of damage obtained can now be used to
calculate new stress limits from which a new value of
.damage may be calculated as above. Notice that there
is a finite. increase in damage in the <case ¢ = 1 if
Vi is non-zero, otherwise the damage remains zero.
Thus, once damage has been accumulated there is
effectively no fatigue limit. The accumulation of damage
may be continued until damage reaches a value of 1.
In general this occurs during the step of R cycles and
is signélled by certain terms in (5.4) or (5.5) becoming
negative or zero at the end of a step. In the case

0 < 1 then the condition is

1 —p M=) g

82



By setting to zero the 1left hand side of this, an
expression can be derived for the number of cycles into
the step at which the speéimen fails:

1-a

R = (1—2'1

£ ) N, (5.6)

Similarly, for the case of a= 1 the failure of the

specimen is signalled by

1 -z, 6<0,

and failure is given'by

Rf=-zlzn (z,) (5.7)

The procedure outlined here is the one which has
been used to calculate the damage growth and lifetimes
of bars in the multibar model subjected to 1load
controlled cycling. Since the integration is based on
the exact integration given in (5.15 and (5.2), the
only source of error in this procedure is the assumption
that the stress 1limits remain constant over several
cycles. The accuracy of the method may be increased
by decreasing the value of R. Values of R less than
1 may even be used but the validity of doing this would
be dubious. This highlights the difficulties associated
with the fact that a continuous mathematical approach
has been used to describe a problem expressed in discrete

form.
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5.2.2 Solution Without Stress Redistribution

It was seen in Chapter 3 that the presence of
damage in one bar of a multibar structure allows stress
redistribuiion to take place. If the damage in a bar
is constrained to be as close to zero as possible until
the bar fails, then stress redistribution will not have
a significant effect "on the behaviour ~of the whole
component. A solution in whichvthe damage is kept near
to zero fof most of the 1life of a bar can then be
compared with the solution in which stress redistribution
is allowed to occur and the effect of redistribution
on the behaviour and lifetime of a structure can then
be examined. A damage evolution law in which the damage
is constrained in this way can ' be obtained by
substituting 'wr for ¢ in (4.44), where the power
r must be less than one for it to have the desired
effect. As an example of the effect that this
substitution has on the expressions above, it can be

seen that (5.4) becomes

Ve = [1-(1-0Y (7% (Brn g/ (5.8)

where

P LI-(1-yD)BHYy 1o

£ .
The application of these models to the multibar

structure is described in the following section. Several

tests are described and the results obtained are

discussed in full.
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5.3 Analysis of Multibar Structure and Results
5.3.1 Descfiption of Multibar Model Structure

A computer program was written to apply the solution
method described in Section 5.2. This was then used to
study the theoretical behaviour of a multibar structure for
three different cyclic 1loadings. The multibar structure
used was the same as that described in Chapter 3. The
lengths and areas of the bars for this structure are given‘
in Table 5.1. Lengths have been normalized by dividing by
the length of bar 1 and the areas have been normalized by
dividing by the area of bar 1. It should be noted here
that, since areas have been normalized but stresses have
not, then 1loads will have ﬁnits of MPa., Also shown 1in
Table 5.1 are the stresses in the bars when the stress in
bar 1 is 300 MPa. The bars were assumed to be made of
316 stainless steel and the temperature of the system was
assumed to be constant at 20°C. The properties of the
material were the same as those employed in Chapter 4
and were all taken from the book by Lemaitre and Chaboche
(1985) and are reproduced here in Table 5.2 which shows
the values for the constants in the constitutive laws,
eq. (4.6), and the damage evolution laws, eq. (4.44).
The cyclic 1loading cases were chosen to be in the 1low
cycle fatigue region and to show the effect of changing the
mean loading. One 1loading cycle had zero mean and was
between the 1limits -2200 MPa and +2200 MPa. The other
loadings had the same range of 4400 MPa but one had a
positive mean load of 200 MPa and the other had a negative
mean load of -200 MPa.

The value of R, the number of cycles during which
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the state of the structure is assumed to remain constant,
was taken as 20 in all the tests. Thus, the structure
is allowed to perform one cycle and the stress ranges
recorded during this cycle are used in (5.4) or (5.5)
with R set to 20 to calculate a new value for damage.
This value of damage is used for the next cycle of the
structure and the total number of cycles for the
structure is increased by 20.

As shown in Chapter 4, the properties of the non-
linear kinematic hardening rule are such that, as damage
increases, the 1limit and yield surfaces shrink. This
means that the 1limit stresg' decreases and that, since
the constitutive law does not allow stresses to be
outside the limit surface, under stress controlled cyclic
loading the material is at some point no longer able
to support the imposed 1load.  In fact, the constitutive
model predicts infinite plastic strain at a stress equal
to £he limit stress. In order to detect bars in the
model for which the 1load imposed "is beyond the 1limit
stress, a limit in total strain of 0.1 absolute (102)
is imposed, and if a bar exceeds this 1limit then it
is failed. Thus, if the stress in a bar increases towards
its 1limit then it would strain unboundedly, but the
limit in strain means this would be detected and the
bar would fail before the limit surface is attained.

The computer progfam was used to test the model
described above. The results collected for the various

loadings described above are now described.
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5.3.2 Failure of the Bars

The number of cycles at which each of the bars
failed for each of the cyclic loadings is given in Table
5.3. It can be seen from this table that a positive
mean loading decreases the 1life of each of the bars
and of the whole multibar structure, and that a negative
mean load has the opposite effect of increasing the
life of each of the bars‘ and of the whole structure.
This 1is in accordance with -what would be éxpected in
practice, where it is well known that a tensile mean
stress in a material decreases its fatigue 1life when
compared to a cycle with zero or negative mean stress,
but with the same stréss.range. The differences in the
total life of the structures are about 17% of the zero
mean life for the positive mean test and about 11%Z for
the negative mean test. These proportions of increase
or decrease are greater than the corresponding change
in the lifetime of the first bar.

Note that, in one test, bar 6 failed due to the
strain exceeding O0.1. This is possibly due to the fact
that the structure underwent ratchetting as damage
increased in all the bars. It may also be due to the
stress in the bar becoming greater than the limit stress,
but this is 1less 1likely since the damage precipitoﬁsly
becomes unity at the end of the 1life of the bar and
it would be wunusual if a 1large value of damage were
to be calculated for the end of a group .of R cycles
and thus cause the stress limit to be 1low enough to
cause unbounded straining.

A variety of tests were carried out to find out
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what effect decreasing the step 1eﬁgth, R, has on the
failure times of the bars. These fests were carried
out for =zero mean loading with R = 1, S,A and 10. It
was found that decreasing the step length had a varying
effect on the different bars. Thus, the 1life of bar
1 was increased slightly by decreasing R, but the 1life
of bar 6 was decreased. In between these two 1limits
the 1life of bar 3 changed hardly at all with changes
in R. The difference between the 1life of bar 6 for
R = 20 and R = 1 was about 4.3%7 This can be explained
by the fact that decreasing the step length allows more
stress redistribution to occur. This effect is important
early in the 1ife of the structure since stress 1is
redistributed away from bar 1 to the other bars in the
structure. Thus, the stress range in bar 1 decreases
and this prolongs its 1life. On the other hand, the
increase in stress 1in the other bars would decrease
their total life and this effect is seen in the decrease
in the total life of the structure. Another test was
carried out in which the number of cycles performed
by the structure after each 1increase 1in damage was
actually 2 rather tham 1. Thus, in this case 2 cycles
were actually performed for each 20 cycles of the approx-
imation, This did not have much effect on bars 1, 2
and 3, but tended to reduce the life of the remaining
bars of the structure. The magnitude of the decrease
in life for the whole structure was about 47 in this
case.

In order to remove the effects = of stress

redistribution, damage was integrated using (5.8) instead

88



of (5.4) with r = 0.2. The failure times of the bars
are shown in Table 5.4 for each of the three cyclic
loadings. Comparison of Table 5.4 with Table 5.3 shows
that if stress redistribution is negligible, then the
number of cycles to failure of each of the bars and
of the whole structure is significantly 1less than if
stress redistribution 1is accounted for. The reduction
in life for bar 1 is about 287 of the 1life given in
Table 5.4 in each 1loading case. The reduction in 1life
for the whole component is about 157 of the life without
stress redistribution 1in the =zero mean loading case,
about 217 for positive mean loading and about 137 for
negative mean loading. This agrees with the result
obtained in Chapter 3 where a similar reduction in 1life
was observed if the effects of stress redistribution
were ignored. The reason for the increase in 1life when
stress redistribution 1is taken into account is due to
the fact that the maximum stress in a bar decreases
as damage increases and this leads to a decrease in
the stress range and the mean stress in the bar, which

in turn tends to prolong the life of the bar.

5.3.3 Behaviour During Tests

During the running of the program a record was
kept of the maximum and minimum values of stress and
strain and of the growth of damage in each bar, and
of the maximum and minimum values of displacement of
the ﬁhole structuré. These values were subsequently
plotted to give a graphical record of the behaviour

of the structure during a cyclic loading test.
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Two graphs of the maximum and minimum stress values
for zero mean loadings are shown in Figs. 5.1 and 5.2.
Figure ‘5.1 shows the stress in bar 3 and Fig. 5.2 shows
that in bar 6. In both graphs, the sudden jumps or steps
in the maximum stress correspond to the failure of other
bars in the structure. Thus, these jumps occur at about
1290, 1720, 2220, 2470 and 2570 cycles. The tensile
stress in bar 3 becomes 2zero at about 2220 cycles which
corresponds to its failure. Once all of the bars have
failed, the progfam stops so the failure of bar 6 is
not shown explicitly in Fig. 5.2. Less pronounced jumps
can be seen in the compression part of Fig. 5.1, which
also correspond to the failure of bars 1 and 2. The
changes in slope visible on the lower curve of Fig.
5.2 correspond to the points at which the stress in
compression of other bars becomes zero. For instance,
there is a change in the slope of the curve at about
2460 cycles which is the point at which the lower curve
in Fig. 5.1 goes to =zero. The change in slope at about
2200 cycles is the place at which the compressive stress
in bars 1 and 2 becomes zero and the changes at about
2440 and 2580 cycles correspond -to similar events in
bars 4 and 5, respectively. Examination of Figs. 5.1
and 5.2 shows that when a bar fails, equilibrium is
satisfied by distributing the stress to the other bars.
This is the reason for the jumps in the upper curves.
"However, comparison of the two figures shows that bar
6 supports this‘extra load, whereas bar 3 only supports
a little extra and even this soon decays. In fact, it

is bars 5 and 6 which take most of the extra load when
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any of the other bars fail. The compressive stress 1in
failed bars becomes =zero after a few cycles because
of the ratchetting which is taking plaﬁe. This ratchet-
ting causes the tensile strain to become so large that
the fissures in the material stay open and thus it does
not support any compressive load.

In the presence of a non-zero mean loading there
is an extra effect in addition to those already noted
for zero mean 1loading. The following discussion will
be for the case of positive mean loading. The case of
negative mean loading is the same in all respects except
that decreasing mean stresses are replaced by increasing
mean stresses and vice versa, and positive mean values
are interchanged with negative mean values. When the
loading has a positive mean the stress in bar 1 also
has positive mean. After about 100 cycles this has all
but decayed to a zero mean stress, as can be seen in
Fig. 5.3. A similar effect was observed in bars 2 and
3. In bar 6, however, the initial value of the mean
stress 1increased during these cycles as the stress was
redistributed from the bars in which the mean stress
was decreasing to zero.

The graphs of plastic strain show similar features
to those of stress. Representative examples are shown
in Figs. 5.4. and 5.5. Figure 5.4 shows the plastic
strain in bar 4 for zero mean loading. Again the jumps
in the two curves, especially those in the upper curve,
correspond to the failure of the other bars in the
structure, as can be seen by comparing their positions

with the similar jumps in Fig. 5.2. Figure 5.4 clearly
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displays ratchetting with both curves ultimately
increasing. In all of the loading cases, bars 4, 5 and
6 exhibited ratchetting similar to this to some degree.
Figure 5.5. shows the ©plastic strain in bar 2 for
negative mean loading. This shows how the minimum plastic
strain in bars 1 and 2 remains roughly constant
throughout the 1life of the bars, and how the maximum
plastic strain increases up to the failure of the baré.
This behaviour is exhibited by bars 1 and 2 for all
loading cases. Once a bar has failed then no further
plastic straining occurs as 1is displayed in these two
figures. Figure 5.5 demonstrates the effect of a non-
zero mean loading. In a similar manner as for stress
the effects of a non-zero mean loading can be described
for both positive and negative means by interchanging
increasing and decreasing mean ©plastic strain. For
negative mean loading, all the yielded bars began with
negative mean plastic strains and these means decreased
as exemplified in Fig. 5.5. Finally, the peak plastic
strains attained by each bar just before failure also
reflect the mean loading. Thus, the peak strains reached
by bar 2 are about 0.008, 0.0047 and 0.0035 for positive,
zero and negative means respectively, and this pattern
is the same for all of the bars.,

An example of the displacement of the structure
is given in Fig. 5.6 for 2zero mean loading. Again, the
jumps in the curves correspond to the failure of the
bars. Also, ratchetting is clearly displayed. Ratchetting
in a positive direction occurs in all the loading cases,

but its magnitude depends wupon the value of the mean
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loading. Thus, ratchetting of the structure is more
severe for a positive mean loading than for a negative
mean loading. The initial mean displacement is of the
same sign as the mean of the loading, but there is no
transient period during which this mean changes, as

there was with the stresses and plastic strains.

5.4 Conclusions

A relatively complex material model has been used to
solve a fatigue problem for a simple structure. The
demonstration showed that the model successfully
reproduces the -experimentally observed 1load drop in
specimens subjected to cyclic 1loading. The expected
effect of non-zero mean loading on lifetimes of
conponents has also been shown to be exhibited by the
model. In addition, the importance of taking into account
the effects of stress redistribution on 1life has been
denonstrated. The numerical method used has been shown
to be accurate even when large step lengths are used.
This property will be important when the techniques
are combined with the finite element method -where gach
step would require large amounts of computer processing
tine. It is evident from this chapter that continuum
danage mechanics offers a convenient method of modelling
thz2 complete ©behaviour of a component subjected to
fatigue loading, although the accurécy of the predictions
of this particular model have not ©been tested by
reference to experimental results. It is now intended
to extend this approach to the study of creep-fatigue
beiaviour of structures by including a creep model with

th: fatigue model.
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Bar Length Area Elastic stress
Number (normalized) (normalized) (MPa)
1 1.0 1 300
2 1.2 1 250
3 1.5 1 200
4 2.0 1 150
5 3.0 1 100
6 6.0 4 50
Table 5.1 Description of multibar model used in tests.

The elastic

stresses

bar 1 first yields.
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(a)

(b)

Table

Oy (MPa)

C (MPa)

300

30000

60

Constants used in constitutive law,

equation (4.6),

Chapter 4.
9 222
Oy 760
B 5
b 0
a 0.9
Mo 1700
Constants used in damage evolution law, equation
(4.44), Chapter 4 (units in MPa).
5.2 Material constants for 316 stainless steel
at 20°C.
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Bar number

Loading (MPa) 1 2 3 4 5 6
-2200 + +2200 1293 1719 2219 2471 2572 2635
~2000 > +2400 1258 1679 2046 2234 2306 2354
- —2400 + +2000 1310 1739 2279 2775 2976 3080"

%

A star indicates that the failure was due to the bar exceeding

the limit of 10% total strain.

Table 5.3 Cycle number at which each bar fails for three loading

cases.

Bar number
Loading (MPa) 1 2 3 4 5 6
—-2200 -+ +2200 1007 1396 1868 2117 2204 2282
-2000 + +2400 972 1353 1681 1836 1893 1940
—-2400 -+ +2000 1023 1420 1900 2413 2612 2735

Table 5.4 Cycle number at which each bar fails for three loading

cases for the no damage solution.
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CHAPTER 6

A UNTAXTAL MODEL OF DEFORMATION AND RUPTURE UNDER

CREEP-FATIGUE CONDITIONS AND ITS APPLICATIONS TO

MATERIAL MODELLING AND STRUCTURAL PROBLEMS

6.1 Introduction

In previous <chapters a model has been developed
for uniaxial plasticity and fatigue failure. This
includes the effect of damage on cyclic plastic
deformation and a law for damage evolution. These have
been used to study the behaviour of multibar structures
under cyclic loading. The concept of damage is not
usually used for predicting fatigue failure, but is more
normally applied to creep rupture. In this chapter a model
for creep deformation will be added to that of plastic
deformation and a rule will be gi?en for the interaction
of creep and fatigue damage. In this way, the foundations
are laid for the study of creep-fatigue deformation
and rupture. Also in this chapter -experimental data
which are available in the 1literature will be wused to
construct a model of copper. This material was chosen
because of the availability of information on its
behaviour and because it is used in the specimens
in a series of tests on a simulated two bar structure.
The predictions of the model <can then be compared
with the results of the tests. Since the 1loading
in these tests is thermal, the solution methods
can be extended to study the effect of fluctuating
thermal gradients on components; with and without

mechanical loads.
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This chapter is organised as follows. Firstly, the.
creep laws are described. Then the model of the deformation
and rupture behaviour of copper is cohstructed. Following
a discussion of creep-fatigue interaction, the predictions
obtained using this model are compafed with the experi-
mental reéults on the'behaviour of a two bar structure.
The final section consists of studies of other multibar

structures under fluctuating thermo-mechanical loading.

6.2 A Uniaxial Model for Deformation under Creep-fatigue

Conditions

Cyclic plasticity is described by the non-linear
kinematic hardening rule which was introduced in Chapter
4, The damage evolution law is given by the Chaboche law,
also given in Chapter 4. The laws relating to creep are

described in this section.

6.2.1 Creep
The creep behaviour is assumed to‘obey a simple Norton

power law

dv _ a7, (6.1)

where O is the stress, v is the creep strain and A and
n are constants, This 1law only describes the secondary
portion of the total creep curve. A description of the
tertiary portion and of failure may be achieved by the
introduction of <creep damage, w (Kachanov, 1958). The
.evolution of <creep strain can then be described by the

following equation:
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dv o n
at = A [ TTB] (6.2)

6.2.2 Creep Damage Evolution
A simple form of damage evolution relationship will

be used here:

AV
E=B[1—:u;} (6.3)

where B and Vv are constants. This equation <can be
integrated for constant stress to give the time to rupture
at that stress:

£ o= — (6.4)

T B(1+v)o”
The constants B and v can be found directly from uniaxial
rupture data. Equation (6.3) is a relatively simple form
of the damage evolution law and may be improved. It is
the shape of the tertiary portion of a creep curve that
is governed by damage growth and hence by (6.3). However,
the actual shape obtained by simultaneous integration
of (6.2) and (6.3)vdoés not necessarily match very well
the shape of experimentally obtained tertiary creep curves.
The description of tertiary creep may be improved by the
inclusion in (6.3) of an. additional material constant.
However, the experimental data that will be wused in a
later section ~oniy providesA enough information for the
calculation of the constants B and v and does nbt allow
~the calculation of the additional material constant. Thus
(6.3) will be used here for the description. of creep damage

growth. The effect of the extra constant on the behaviour
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of structures will be demonstrated in a later section.

6.3 Fitting the Model to Experimental Data

The above sections give the basic description of
a material model which includes the effects of both creep
and fatigue. In principle it can be used to predict the
life and deformation of uniaxial componenfs such as single
specimens or multibar model structures. However, in order
to be able to applf it to real specimens, it is necessary
to obtain the values of the various coefficients for the
material in question. A description of how this has been

done for copper is contained in the next section.

6.3.1 Availability of Data

The authors are not 1in possession of sufficient
experimental data, which has been collected from a single
batch of material in a consistent manner, to calculate
the coefficients accurately. Much data does indeed exist,
but most of it was originally obﬁainedl for a specific
purpose and does not contain gnough information to enable
the calculation of all the coefficients that are required
by the model proposed here. For example, since fatigue
damage is a measure of the weakening of the material during
a fatigue test, it 1is necessary to observe the load drop
that occurs during a strain controlled cyclic test, or
some other effect of damage such as changes in electrical
resistanée or the speed of sound in a specimen (Lemaitre
and Chaboche, 1985), in order to obtain some of the
constants required for the damage evolution law. ' However,

fatigue tests have generally been carried out to construct

106



graphs of. strain or stress amplitudes against number
of cycles to failure and so information on parameter
variation during a test 1is not available. Also, it 1is
often the <case that extensive experiments have been
performed to study, say, the <creep ©properties of a
material, but similar tests have not been performed to
determine the fatigue propefties of the same matérial
at the same temperature.

One of the most complete sets of experimental data
that the author 1is aware of is for OFHC copper. In
addition to this, some experiments have been carried out
which simulated multibar structural models with two copper
bars under creep-fatigue conditions. This provides results
against which the predictions of the theoretical model
may be compared. The experimental data used here is not
ideal since it represents a large range of temperatures
and of batches of material., The effect of differing batches
of material would be impossible to quantify and so, for
the purposes of this investigation, it 1is éssumed that
the properties of the copper are insensitive to changes
in preparation and composition. For most of the data it
is not possible to estimate the effect of temperature
because tests were carried out for only one temperaturé.
Since data on copper was collected by the different
experimenters at different temperatures, it 1is necessary
to assume that the material properties of copper are
independent of temperature. Since the behaviour of metals
actually varies significantly witﬁ temperature, it 1is
evident that agreement between theory and experiment will

be qualitative rather than quantitative. This difficulty
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is most accute for cyclic plasticity testé; but, as will
be shown in a later section, creep data is available for
different temperatures. Wherever possible, cyclic
plasticity data has been used for a temperature which
is compatible with the dominant creep temperature under
consideration. The data sources are now listed and
discussed.

A modest independent program of testing for fatigue
properties was carried out in-house and a few of these
results were . employed. The cyélic stress-strain curve,
and the elastic properties, for copper at 150°C was found
in these tests and these were used here to obtain the
plasticity properties of copper. Megahed and Ponter (1979)
have published the results of some creep tests on copper
at 250°C and 300°C and this prbvided the information for
the creep part of the model. Finally, a paper by Lemaitre
and Plumtree (1979) contains a graph of strain range
against cycles to failure and a graph of damage against
nunber of cycles for OFHC copper at 540°C. This was used
to find the fatigue constants.

The spread of temperatures at which experimental
results have been collected is. large, and the variation
in preparation and in composition of the material may
also be large. In addition to these difficulties the data
is not necessarily in a form 'which can easily be used
to fit it to the model. This is especially true in the
case of fatigue. The methods by which the constants were
obtgined are now described for each aspect of the model.

The values determined are listed in Table 6.1.
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6.3.2 Elasticity Constant
The cyclic plasticity properties -of OFHC copper were
studied in tests carried out in house; from these the

values of Young's modulus was found to be 90 GPa.

6.3.3 Plasticity Constants

The yield stress was obtained from a cyclic stress
strain curve and is 15 MPa. This value of the yield stress
is a little 1low when compared with the monotonic value
or with a value that is observed in an individual stress-
strain hysteresis 1loop at a particular strain amplitude.
Copper has been shown to be a non-Masing material (Fenn,
1979) which implies that cyclic stress strain hysteresis
loops at particular stress amplitudes cannot be constructed
from the general cyclic stress-strain curve. In particular,
the yield stress for a hysteresis loop will be different
for different stress amplitudes (Fenn, 1979). However,
fitting the model to a cyclic stress-strain curve in this
way enables it to represent the behaviour of the material
over a wide range of levels of stress.

In order to model the complete stress-strain curve
it is necessary tovfind the values of two more constants:
These are C and Y in equation (4.6). C/y was shown in
Chapter 4 to be the limiting value of the absolute value
of o which can be found from the limiting value of stress
and a knowledge of the yield stress. The 1limit stress
was obtained frbm a monotonic stress-strain curve for
copper at 300°C, which is found in Pascoe (1961). This
provided a convenient method  of fi%ing the value of the

stress limit for a temperature of 300°C, in the absence
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of any cyclic data at this temperature. A temperature
of 300°C was chosen because it is the temperature at which
the creep tesfs by Megahed and Ponter (1979) were performed.

The remaining parameter, Y, was obtained as follows.
The CYCliC stress-strain curve was represented as a series
of points which could be plotted, by computer, on the
same graph as a theoretical curve for a given value of
Yy and a fixed value of C/Y, previously determined. The
value of <y was varied until an acceptable fit was
achieved. Two graphs of the final fit are shown in Fig.
6.1; one is for 1low strain values (<1.57) showing the
difference between the actual and fitted curve in detail
and the other is for large strains (<10%), showing how

the curve lies in comparison with the limit stress.

6.3.4 Ratchetting Data

The cyclic creep or ratchetting behaviour of copper
has been studied by two groups of authors (Feltner and
Sinclair, 1963, and Megahed et al., 1980) who give
experimental data. Since the non-linear kinematic hardening
rule predicts ratchetting under a non-zero mean cyclic
stress (Chapter 4), then this data should offer an
additional check bn the validity of the model fitted to
the experimental data discussed above. Also, in the absence
of direct information of the shape of the hardening curve
it could also provide another method of calculating the
plasticity constants. However, both of these suggestions
turns out to be impractical. If the values of the plasticity
constants, which were: found by the method above, are used

to calculate the ratchet rates for the tests reported
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in Feltner and Sinclair (1963) and Megahed et al.,
(1980), then the theoretical rates are found to be about
two orders of magnitude too large. The experimental and
theoretical rates are compared in Table 6.2. The table

shows experimental ratchet rates published in Megahed

et al., (1980) and theoretical rates calculated from
L?-a’
de _ 1 nax
N -yt e (6.5)
min
where L = C/Y anq S and amin are the maximum and

minimum values of O during a cycle. The values of the
constants required in (6.5) were taken from Table 6.1.
The three negative theoretical values that occur in Table
6.2 are due to the fact that the stress range is less
than 30 MPa which is twice the yield stress. This means
that the method of <calculation ©produces a value of
amin greater than o ax and hence a negative rate
according to (6.5). The fact that (6.5) predicts ratchet-
ting rates which are much larger than those observed
experimentally has been noted by Chaboche and Rousselier
(1983). They suggest that the problem can be overcome
by dintroducing an extra kinematic variable into the
description of non-linear kinematic hardening. This has
been investigated by the present author and a considerable
reduction of theoretical ratchetting rates can indeed
be achieved in this way. However, this makes the
calculation of stress and plastic strain very difficult,
even for the wuniaxial case, since the equations cannot

be solved directly, as they can be for.a single variable.

Also, since it is envisaged that this rule can be used
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to solve multiaxial ©problems, the considerable extra
computation required in order to use more than one
kinematic variable in the multiaxial case is considered
to be prohibitive. Another difficulty with this approach
is that it does not overcome restrictions imposed by the
model on the variation of ratchet rate with stress
amplitude or mean stress; This difficulty will be discussed
in the next paragraph.

As discussed earlier, it should be possible to
calculate the plasticity constants by fitting the model
to the éxperimental ratchetting rates. However, when this
is done, it 1is found that the predicted stress-strain
curve becomes unrealistic and tends towards a shape
characteristic of perfect plasticity. Also, even though
the predicted ratchet rates are of the correct order of
magnitude, the variation of the ratchet rate with stress
amplitudes or mean stress was much smaller than the
experimentally observed variations and this remains
insensitive to both the number of kinematic variables
and to changes in the parameters used to describe each
variable. In other words, if ratchet rate 1is plotted
against stress amplitude on logarithmic axes then the
slope of the theoretical 1line 1is muchv smaller than the
slope of the expefimental line found in Mégahed et al.,
(1980), and the slope of the theoretical line cannot be
changed without affecting the magnitude of the ratchetting
rates.

However, these factors are not considered sufficient
. reason for rejecting the kinematic hardening - rule for

use in modelling plasticity. The plasticity model
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considered in Chapter 3 does not predict ratchetting
behaviour in the absence of damage and Ithe non-linear
kinematic hardening model is considered to be more
realistic. Also, it 1is possible that the model can be
extended to make the ©prediction of ratchetting more
accurate.

The ratchetting behaviour of lthe model has been
illustrated in Chapter 4. The variation of the magnitude
of the theoretical ratchetting rates with respect to stress
amplitude is shown in Fig. 6.2 for a range of values of
mean stress. The available experimental data (Megahed
et al.,ﬁ 1980) plotted on the same axes, produces a
set of linear characteristics, each line having the same
slope and being displaced by an amoﬁnt dependent wupon
the mean stress. It can be seen in Fig. 6.2 that the
theoretical rates follow this pattern for intermediate
values of stress amplitude for each value of the mean
stress. However, as already noted, the quantitative

agreement between theory and experiment is poor.

6.3.5 Isothermal Cfeep and Creep Damage Constants

These are the four constants required in equations
(6.2) and (6.3), namely A, B, n and v . Their values were
taken directly from those calculated in Megahed and Ponter
(1979). The constants A and n can be obtained from minimum
creep rate data. The original data is displayed in Fig.
6.3 which is from Megahed and Ponter (1979). Failure data
affords the <constants B and VvV and again the original
data .as presented in Megahed and Ponter (1979) is~shown

in Fig. .6.4. The only differences between the values of
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the parameters as given by Megahed and Ponter and in this
report reside in the units - all the constants here have
been expressed in S.I. units - and in the temperature
dependence, which has been neglected here for the reasons
stated in an earlier sub-section. However, unlike the
other sources of data, information on the temperature
dependence of the creep properties is available and, in
a later section, wiil be added to the basic model which
is being constructed here. The values of the constants
are presented in Table 6.1. In addition, when the stress
in (6.3) is negative, dw/dt is taken to be zeroj; this
is in line with observations made in compression creep

tests.

6.3.6 Fatigue Damage Constants

These constants were the most difficult to calculate
and hence are probably the most in error. Some estimates
and assumptions were made because of the lagk of informa-
tion, and so the model may not represent tﬁe true
behaviour. The constants to be determined.are those - in
equations (4.44) to (4.47). The value of the ultimate
tensile strength was taken as the limiting value of stress
given by the plasticity equation. Thus it 1is eﬁual to
c/y + Oy. The fatigue limit was taken tb be 2/3 times
the yield stress; this choice is essentially arbitrary,
and is based on the value found in several other metals.
However, it is often difficult to demonstrate the existence

of a fatigue 1limit at all in some cases, so the choice

of this -value was retained because it is™comparatively -

low. Thus, the effect of a fatigue limit can be examined
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but at the same time it does not have a signifiéant effect
on thé growth of damage at large stress amplitudes.

There is no information on the effect of mean stress
on the fatigue 1limit or on the ~parameter M for this
material. However, (4.46) 1is basically the Goodman 1law
for the variation of the endurance limit with mean stress.
The actual form of the Goodman law is obtained from
(4.46) by replacing b by 1/0u . Hence this is thé vglue
that the parameter b is set to in this model.

The number of cycles to failure for a constant stress

amplitude cyclic load test is given by

N (6.6)

N 1 [ “max %mean ]
£ = (1-a)(B+1)

which is obtained by integration of (4.44). A graph of
the logarithm of total strain amplitude against the
logarithm of the number of cycles to failure is given
by Lemaitre and Plgmtree (1979). However, the relationship
in (6.6) requires a knowledge of the stress amplitude.
This problem was overcome by using the elasticity and
plasticity relations previously found. From these laws
a value of Onax vas éalculated for a value of total strain
amplitude taken from the graph in Lemaitre and Plumtreé
(1979) by assuming that Cnean is zero. Two points were
taken from the straight 1line that appears on the graph
in Lemaitre and Plumtree (1979) and these provided a linear
relationship between the logarithms of stress and number
of cycles to failure. This procedure assumes that the

relationship between stress and strain was the ®msame for

the two very different tests.
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The coefficient B is constant but a varies according
to (4.45). Since the value of a and thus the variation
of o with stress was ﬁnknown_at this point, it was assumed
that o remained constant. Hence the slope of the straight
line obtained above affords a value for B . This method
of finding B 'is not accurate for at least two reasons.
Firstly, the assumption that & remains <constant. The
size of the -inaccuracy due to this will depend on the
size of the constant a. When a value for a has been
calculated, it will be shown how the variation of a affects
the prediction of fatigue 1lifetimes by the model. The
second reason for a discrepancy results from the 1load
drop associated with a strain controlled cyclic 1loading
test, The results for 1lifetime in Leméitre and Plumtree
(1979) were obtained by keeping the total strain range
constant but the stress range varies during each test.
However, the conversion from total strain range to stress
range using the plasticity laws, and then using this to
construct a stress—life‘ curve, imﬁlicitly assumes that
stress remains constant throughout 1life. This difficulty
can best be overcome by using the results of experiments
with stress éontrol, but, since such results afé not
available to the author, it was necessary ﬁo use the
method described above. It is possible to convert between
a strain-life curve and a streés—life curve by using an
accurate numerical .simulation, but this would require
knowledge of the very material constants which are being
sought. |

Lemaitre and Plumtree also publish in . ‘their paper

(1979) a graph of 1log(l-y) against log(l-N/Nf). Each of

116



the fatigue daté points on this 'graph was transferred
to a graph with log(l-(1-14v¢) B+1) as the ordinate and
log(N/Nf) as the abscissa. A straight 1line was drawn
to follow the points corresponding to the last stages
of life of the specimen as shown in Fig. 6.5. The slope
of this curve should be eqﬁal to 1/(l-a). The value of
total strain amplitude for - which the results in the
original graph in Lemaitre and Plumtree (1979) were
obtained was converted to a stress amplitude by wusing
the stress-strain curve. The value of the stress amplitude
gives a value for the maximum stress which can then be
substituted into (4.45) to obtain a value for a.

Finally, it can be seen from (6.6) that the intercept
of the straight 1line log(stress)-log(iife) curve, which

was found earlier, with the 1life axis is equal to

log [ MB ]
(1-a)(B+1)

Since & and B had already been found, it was possible
to calculate a value for M. Notice, however, that this
again assumes that o remains constant. The value of
a used to find M was that at which the value of a was
previously calculated.

The original straight line stress-life curve
calculated from the straight 1line strain-life curve in
Lemaitre and Plumtree (1979) can now be compared with
the actual -curve obtained using the expreséions in
(4.44)-4.47 ). Figure 6.6 shows the straight line and the
calculated curves for three different values of mean

stress. The point at which the =zero mean stress curve
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meets the straight 1line for constant o corresponds to
the value of stress at which the value of a was calculated:
i.e. to the falue of stress for which the experimental
results for Fig. 6.5 were obtained. Figure 6.6 shows that
the assumptions made lead to a large overestimation of
life by the model at low stress levels compared with the
experimental results. It is conceivably possible to improve
the correspondence of theory and experiment by removing
the assumption that @ remains constant and by finding
a and B simulﬁaneously. However, this would be an
extremely complicated and time consuming procedure since,
for each trial value of B, it would be necessary to refer

to a graph of log (1-(1- ¢)8'+1

) against log(N/Nf), such
as the one in Fig. 6.5, and to fit a straight 1line to
the experimental points in order to find a value of
a . It would perhaés be possible to automate this process
in order to make it practical, but the effort required
would not be justified since it would not constitute a
general method. A better theoretical model could be
obtained if better .experimental data were available. In
particular, if the 1load drop data frdm several . fatigue
tests were available; then it would be possible to "use
a more general curve fitting method to obtain both

@ and B without the necessity of assuming that o is

constant.

6.4 Creep-fatigue Interaction

In previous sections a constitutive model for metals
has been described and the coefficients of this model

have been calculated for copper. It is implicit in the
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model describéd that the effects of creep and fatigue
are independent of each other. However, it is known from
experiments that when they are both significant there
is some interaction between them. The next sub-section
describes the interaction between creep and fatigue in
terms of a relationship between creep and fatigue damage.
Some of the consequences of this relationship are then

examined.

6.4.1 Damage Interaction

Creep and fatigue damage occur simultaneously when
a component is subjected to cyclic loads at high
temperatures. The predictipn of the 1life of a specimen
or component under these conditions is complicated by
the fact that the two processes interact with each other
in some way. For example, the creep life of a component
is reduced if some fatigue aamage is allowed to occur.
Continuum damage mechanics provides a convenient method
of modelling this ihtefaction. In generél, the evolution

of damage in a material is described by rate equations

such as
dw= f(o, t, w, wj de,
dv=g(o N, ¥, w) dN, | (6.7)

where ®w 1is the creep damage, U is the fatigue damage,
N is the number of cycles and f and g are functions which
describe the evolution of <creep and fatigue damage
respectively. It is. convenient to make the assumption

that w and Y are the same 1internal variable. If this
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is denoted by D then this can be expressed by
D=uw+1vy (6.8)

Equation (6.7) can now be rewritten as

dw = f(o , t, D) dt,

dvy = g(O ’ N’ D) dN9 ' (6-9)
and so

dD = £f( o, t, D) dt + g(oc, N, D) dN (6.10)

Using these equations predictions can be made of the
lifetimes of specimens under given loadings.

This hypotheéis has been used by several authors
in the prediction of 1lifetimes for specimens subjected
to combined creep and fatigue conditions. The predictions
have compared favourably with expérimental results. The
paper by Lemaitre and Plumtree (1979) contains such a
study, as does a paper by Blackmon et al (1983). Chaboche
(1981) has also published some results. These studies
clearly show that the reduction in fatigue lifetime due
to the occurrence of creep during the cyclic loading is
predicted very well .by' the concepts of damage mechanics
in conjunction with the interaction hypothesis described
above.

In these studies the emphasis has been upon varying
the frequency of cyclic loads. A very high frequeﬁcy leads

to pure fatigue 1loading, but if the frequency is 1lower
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then timescales aré extended and hence creep becomes more
important. This 1is one of the many ways in which creep
can be introduced into a cyclic 1loading test and this
and other examples are illustreated 1in Fig._6.7. One of
the more common ways is to introduce dwell periods during
which the 1load ié held constant, as shown in Fig. 6.7(c).
For the present report it will be supposed that the loading
can be divided up into blocks and this is shown in Fig.
6.7(d). Each ©block has a fatigue component which is
essentially time independent, during which the 1load 1is
cycled at high frequency, and a creep component, during
which the load is held constant for a certain period'of
time. This type of loading is used because it is repreéent—
ative of that which occurs in the nucleér power generation
industry where plant operates under load for long periods
of time with cyclic loads being imposed when it is shut
down periodically for maintenance or inspection.

The model described above for OFHC copper, and the
values of the coefficients found werée used in a theoretical
study of the effect of block creep and fatigue loading
on the total lifetime of a specimen. The results of this

are now presented.

6.4.2 Sequence Effects

The model was used in a study of the effect of the
sequence 1in which the different types of 1loading are
applied. Thus, there are two types of loading: (i) a load
dwell followed by cyclié loading, and (ii) a period of
..cycling followed by a load dwell. These will be referred

to- as creep first and fatigue first loading respectively.
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In each case a set amount of the first type of loading
is applied and then the second type of loading is applied
until failure occurs. For example, creep first 1loading
involves applying a 1load dwell for a certain time t,
followed by <cycling to failure. The nﬁmber of cycles
required for failure is denoted N and it is assumed that
the period of cycling does not take any time. These loading
cases may be thought of as block loading with a single
block being applied over the whole lifetime. The effects
of these loadings may be summarized by plotting a graph
of t/tf against N/N; where t is the time to failure if
the load dwell is held fixed throughout the 1life of the
specimen, and Nf is the number of cycles to failure under
the pure cyclic loading. The symbols t aﬁd N are the actual
time and number of <cycles respectively at which the
specimen fails. Examples of these graphs are shown in
Fig. 6.8. The first graph is for a creep first loading.
Note that t/tf is plotted along the horizontal axis. This
is because for creep first loading the time t is the
independent variable. Graphs such as these may be
interpreted by noting <the following points. The point
(0, 1) corresponds to an initial dwell period of zero
time and therefore to a pure cyclic loading with failure
occurring at N¢. The point (1, O0) corresponds to an initial
dwell period equal to ty and therefore to failure wholly
due to creep. For values of t in between O and 1, the
graph shows the effect on the number of cycles required
for failure after different periods of initial load dwells.
For example, .the graph shows that if-even a relatively

small amount of creep is allowed to take place before

122



applying a cyclic load, then the remaining 1life of a
specimen under pure fatigue loading is substantially
reduced. For instance, a dwell time of 107 of the total
creep 1life results in the remaining 1life wunder cyclic
loading being reduced by almost 807 of ﬁhe total fatigue
life. This reduction in remaining life can be explained
by examining the damage evolution for creep and fatigue.
Creep damage grows much more quickly in the early stages
of the 1life of a component under pure creep loading than
does the fatigue damage under pure fatigue loading. In
the latter case it 1is not pntil late in the 1life that
the damage becomes appreciable. Thus, the relatively quick
growth.of creep damage in the early stages of creep 1life
means thét the material degradation is és bad in the early
stages of creep life as it is in the late stages of fatigue
life and so, according to the damage interaction rule
described above, the remaining 1life under fatigue 1is
greatly reduced. The second graph in Fig. 6.8 shows the
results obtained for fatigue first loading. Note that
N/N¢ is now plotted as the horizontal axis since it is
noQ the amount of initial cycling that is specified for
each test. The graphs shows that the initial period of
~cyclic loading does not have the same effect on the
remaining creep life as creep does on the remaining fatigue
life. For example, the remaining creep life is only reduced
by 10Z of the total 1life even after an initial period
of cyclic loading for 807 of the fatigue 1life. This is
again due to the shapes of the damage evolution curves
for creep and fatigue damage. Thus, it is~mot until quite

late in the fatigue 1life that enough damage has been
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accumulated to cause the creep life to be significantly
affected. This is simply the reversal of the argument
given for creep first loading. In fact, the curve in Fig.
6.8(b) is the same shape as that in Fig. 6.8(a), but with
the one being obtained from the other by reflection in

the line from (0, 1) to (1, 0).

6.4.3 Block Loadings

The situation with regard to block loading programs
is a 1little more complicated but similar effects can be
demonstrated. The terms wused to describe a block are
schematically illustrated in Fig. 6.7(d). The interaction
of creep and fatigue loading may be studied by varying
the amounts of the two types of loadingslwithin each block.
The amounts of each loading type are not allowed to vary
freely within a block, but the amount of creep or fatigue
loading is fixed for each block and the other type of
loading is varied. When failure occurs, the total time
and number of <cycles which have been accumulated are
recorded. In this way graphs like those in Fig. 6.8 may
be constructed for block ‘loadings. For example, Table
6.3 gives the results obtained for 10 hours of load dwell
per block. These results are plotted in Fig. 6.9 Qhere
they are also compared with the graph obtained for creep
before fatigue (Fig. 6.8(a)). This shows that, in general,
the presence of creep damage reduces fatigue life with
respect to the pure fatigue 1life, but that, since the
loading is in blocks, more cycles are required for failure

than in the two level test.
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6.5 An Example - The Two Bar Structure with Mechanical

Loading and Superimposed Thermal Cycling

In their paper (1979), Megahed and Ponter report
the results of several tests carried out on a two bar
structure, shown in Fig. 6.10(a), at .high temperature.
Each of the bars was made from copper and the 1load
consisted of a fixed mechanical load with cyclic thérmal
strain occurring in one of the bars. The model which has
been developed above for copper may be assessed by
comparing its predictions with the results of these tests.
The previously written computer program, for solving
problems in multibar structures, may be used for modelling
this two bar structure and the predictive ability of the
model may be examined. The computer >pfogram could only
solve multibar problems involving cyclic plasticity, hence
it had to be adapted so that it would be capable of solving
creep problems as well., In addition, further modifications
were made to the program so that it could solve a problem
in which the applied strains are thermal and afe not
applied uniformly to all of the bars in a structure. The
methods by which these additional requirements for the
program are satisfied are diécussed below., Also discussed
are several other aspects .of the model and solution
procedure such as temperature dependence, primary strains

and creep ductility.

6.5.1 The Method of Calculating Creep Strain and Creep
Damage
- The evolution of creep strain and damage are‘'described

by the rate equations (6.2) and (6.3). These must be
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numerically integrated simultaneously with respect to
time to give the actual strains and damage values. The
method employed here is an Euler method with time step
control which is described in a paper by Hayhurst and
Krzeczkowski (1979). Details of how it was employed in
the present case are given in Appendix C. This appendix
also contains details of how the equilibrium of a multibar
structure is satisfied in the presence of creep strains.

The effect on a structure of any change in creep
strain is calculated before the change in damage 1is
calculated. The damage change is calculated by the Euler
method from (6.3), using the same time step that was used
in calculating the change in creep strain. Once the new
value 1is found, a check is made to éee if the bar has
failed due to damage becoming greater than or equal to
unity. If a bar does fail then the time at which it fails
is ascertained by liner interpolation and the stress and
plastic strain are recalculated to reflect the new state
of the bar.

A change in damage causes a change in the effective
value of béth Young's modulus and the hardening modulus
and hence also a change in the elastic and plastic strains.
The changes in these strains are computed from the
constitutive equations and the effect of this is treated

in the same manner as creep or thermal strainms.

6.5.2 Thermal Straining
A change in thermal strain is treated in the same
way :as a change in creep strain and details arei:given

in Appendix C. In order to simplify the computation
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required to solve the temperature cyclihg problem, it
was assumed that the change in temperature is instantaneous
so that no creep straining occurs during the heating and
cooling phases. This is not a realistic assumption to
make since Megahed and Ponter (1979) report that the
cooling of one of the bars by 50°C took about 1 hour to
complete in their tests. However, the time-variation of
temperature in a bar during heating or cooling was not
reported by Megahed and Ponter, and so it was necessary
to make an assumption about the time-variation used in
the theoretical model.

The introduction of .thermal strains into the model
introduces a problem with the numerical solution of
multibar problems. The equilibrium éolution procedure
operates using the assumption that the residual forces
decrease monotonically to =zero, and that the strain
increments in all the bars are of the same sign during
each iteration. If the plastic strain in onevbar‘is of
the opposite sign to that in another bar, then' the
procedure overestimates the amount of plastic strain in
one of the bars. In a two bar structure the result is
that both bars wunload and the stress in each bar does
not lie on the yield surface. The effect of this problem
is' small because the overestimation of plastic strain
is not very great when compared with the total amount
of plastic straining and it Qas observed that this
situation occurred infrequently. Also, the effect of this
‘can be minimized by restricting the amount by which the
thermal -strain in each bar is allowed to change. It was

found that a satisfactory value for the restricted strain
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change is given by the elastic strain that corresponds

to a change of stress equal to the yield stress.

6.5.3 Temperature Dependence of Model

As already noted, the coefficients for a model of
copper 1listed in Table 6.1 were <calculated on the
assumption that they were independent of temperature.
The data published by Megahed and Ponter (1979) aﬁd shown
in Figs. 6.3 and 6.4 demonstrates that for creep this
is not the case, and that the difference in creep rates
and creep lifetimes 1is quite significant even for a
difference of only 50°C. The tests on two bar structures
performed by Megahed and Ponter were creep dominated and
so it was deemed necessary to inclﬁde the effects of
temperature on the creep properties of the model so that
the predictions of 1lifetime would be as accurate as
possible. The temperature dependence follows the Arhenius
law for both creep and damage rates and so (6.2) and (6.3)

are now written as

_Q n
%% = A, exp [ ﬁ?; ] [Tga ] (6.11)
and
_.Q \Y)
.5, 0 [ ] [15] .12

where Ao, Bo, QC and Qr‘ are material constants, R is
the universal gas constant and © is the absolute
temperature. The values of the additional constants are

listed in Table 6.1.
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6.5.4 Primary Creep

The numerical model does not take into account the
creep strains that are accumulated at the beginning of
a creep test. These strains are known as primary strains
and occur during a relatively short period after a load
is first applied to a material at high temperature. It
was found during trials that the numerical model predicted
a transient excursion in the stress envelope which occurred
during the first few cycles. This stress excursion does
not appear in the experimental results and so the reason
for this difference was sought. It was found that the
excursion could be altered by the inclusion of an initial
plastic strain in one of . the bars. This led to the
conclusion that dinitial primary strains could be such
that the -excursion in stress was not observed in the
experimental tests. Thus, it was discovered that by
including a rapid accumulation of creep strain at the
beginning of a computation, the stress excursion could
be eliminated. The results obtained showed the success
of this procedure to be strpngly insensitive to the form

of model used for primary creep.

6.5.5 Creep Ductility
Equation (6.3) may be written with an extra parameter

as follows:

\%
dw _ g -
-CE_ B (l_w)¢ (6.13)

The extra parameter, ¢, controls the shape of the tertiary

portion of the creep curve and allows it to be changed
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without affecting the theoretical rupture time of a
uniaxial specimen. The shape of the tertiary creep curve
governs the rate and amount of stress redistribution that
takes place in a structure during the last stages of life
and so has an effect on the total 1lifetime of the
structure. Hence, the value o0of a ¢ will influence the
lifetime of a structure. Goodall and Ainsworth (1977)
have proposed a parameter A called creep ductility which
depends on ¢ and which is a measure of the amount of
tertiary creep straining that a material is capable of.

A is defined by

¢—-n+l °’

A= —Fb (6.14)

where n is the same as in (6.2). High creep ductility
(X >7) implies that stress redistribution readily occurs
whereas low creep ductility (A <3) results in a relatively
small amount of stress redistribution. Therefore, a greater
value of X leads to a 1longer stigctural lifetime than
a smaller value.

The effect of creep ductility on stress redistribution
in the two bar structure and the consequent effect on
life is shown in Fig. 6.11. The figure shows. the stréss
envelope of the shorter bar for two values of ¢, namely
¢ = 6.1 and 10. These correspond to the values 16.9, and
2.5 of X respectively. Also shown in Fig. 6.11 are the
calculated lifetimes of the shorter bar in hours. It can
be seen that.greater creep ductility leads to the maximum
stress becoming lower quite early -in the lifetime of the

structure. This difference in maximum stress increases
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with time at first but eventually, because damage growth
is retarded by the.rélative decrease in maximum stress,
the material with the higher maximum stress (¢ = 10) fails
before that with the lower (¢ = 6.1).

From these results it can be seen that creep ductility
can have an important effect on the lifetime of a thermo-
mechanically loaded structure, although it was found that
it was not as important as the effect due to temperature
change on creep strain rates. Thus, the extra parameter
¢ was incorpor2ted into the constitutive model but, since
no data on its exact value 1is available, its value was

set equal to that of Vv for the subsequent studies.

6.5.6 | Comparison of Model Predictions with the Experi-
mental Results

Two of the tests that Megahed and Ponter carried
out were chosen for comparison with the numerical model.
The specifications of thgse tests are given in Table 6.4
and the structure is illustrated in Fig. 6.10. The
structure consisted of two bars, both with the same cross-
sectional area and with bar- 2 twice the 1length of bar
1. The thermal loading was applied by <changing the
temperature of bar 1 periodically. In both tests the
ﬁemperature in bar 1 was held constant for 3 hours at
a time. The base temperature for the experiment was 300°C
and the temperature change was ~50°C. The difference
between the two tests was the vélue of the steady
mechanical 1load: In test 1 it was about 52 MPa and in
test 2 about 62 MPa (the loads have -been divided by the

area of the bar 1). The results published by Megahed and
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Ponter (1979) consist of a trace of the stress in bar
2 and a trace of the total strain in bar 1. The eﬁvelopes
of these original plots are sh@wn ‘in Figs. 6.12-6.15
alongside the predictions of the numerical model.

Figure 6.12 shows the stress in bar 2 during the
first test. The .upper stress variation din this bar 1is
very well reproduced by the model. The theoretical envelope
displays a flat wupper curve which fémains at an alm&st
constant level. The lower curve disp}aysbthe rapid increase
in level just before the'failure of ﬁhe other bar at the
end of the test. In the theoretical curve this increase
towards the end is due to the rapid growth of damage in
the other bar just before it fails. It can be seen that
the behaviour of the experimental specimen, which is due
to the weakening effect of grain boundary cavities, is
well modelled by continuum damage mechanics. The time
to rupture 1is predicted with an error of less than 25%.
This is not very accurate but is not surprising since
it can be seen that- the actual levels of stress in the
bar are not predicted very accuratel& either. This 1is
because in the theoretical calculations it was assumed
that the temperature change took place inétantanéously.
Howvever, Megahed and Ponter (1979) report that the
temperature changes took place over relatively 1long
periods. For instance, they report that the drop ‘in
tenperature of 50°C took about an hour to complete which
is a third of the time during which the temperature
was supposed to be constant. However, they do not give
details of how the temperature in the bar varies with

tize, and so it would be difficult to overcome this problem
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by modelling the actual temperature variation. An
exploratory study showed that trying to take thé'elapse
of time into accoﬁnt during the temperature change did
reduce the predicted stress range in 1line with what 1is
observed in the experiments. Figure 6.13 shows the total
strains for this test. The theoretical caiculations
reproduce the behaviour of the bar very well.

Figures 6.14 and 6.15 show the equivalent results
for the second ﬁest which is the same as the first except’
that the applied constant mechanical load is higher than
in the first. Again, the théoretical stress range (Fig.
6.14) 1is 1larger than the experimentally observed range.
However, in this case the lifetime of the first bar 1is
underestimated. In Figure 6.15 it can be seen that the
total strain variation is reproduced quite well but that
the level of strain at any time is consistently

underestimated.

6.5.7 Discussion

The model described im previous sections has been
used here to provide theoretical predictions for a series
of tests carried out on two bar structures by Megahed
and Ponter. The model has reproduced the qualitative
features of the experimental results very well. The
theoretical model has been shown to reproduce the effects
of stress redistribution due to the growth of damage
towards the end of the 1life of the structure. However,

the predictions of the lifetime of the structure have

. not been as good. This is presumably because some of the

details of the tests have not been copied by the model.
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In particular, the most important difference is the exacf
time-variation of theé temperature in the bars when the
temperature is changed from one levei to another. This
would have a significant effect on the stress envelope
and hence on the creep strain and damage rates. A less
significant inaccuracy in the model is that the stress-
strain curve was found for a different batch of copper
under different conditions. Thus, the cyclic stress-strain
curve of the material used in the experiments is possibly
quite different from that assumed by the model. This should
make a difference, but it was found that the predictions
of the model were relatively insensitive to variations
in the shape of the stress-strain curve.

It was found that, for these types of tests where
the temperalure varies and the failure is creep dominated,
it is dimportant to take into account the dependence of
creep properties on temperature. It was found that
estimates of 1lifetime can be significantly altered by
assuming that these properties = do not vary with
temperature. In addition, it has been demonstrated that
creep ductility influences lifetime and hence should be
taken into account. Although this has been demonstrated
for the two bar structure it should be taken 1into
consideration when making 1lifetime predic@%@ns for any
structure.

In this section, the capabilities of the model have
been demonstrated by comparing its predictions with some
tests carried out on a two bar structure. The multibar
model structure may be wused to model more ~‘complex

components where the stresses in the region of interest
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are essentially wuniaxial in character. Thus, it 1is of
interest to study the behaviour of other structures under
other loading conditions using this model. These further

studies are carried out in the next section.

6.6 Predicted Behaviour of Other Structures

In this section, the behaviour of various multibar
structures under various 1loading histories are studied.
The loading history used in the previous section, where
the mechanical load is relatively large, is studied here,
but there are also components which operate under creep-
fatigue conditions for whi;h' the mechanical load is 1low
and it 1is of interest to study fhe predictions of the
model for this case; These components are associated with
heat transfer problems where a high temperature gradient
through the component thickness 1is encountered. Under
on-load conditions there is a 1large temperature change
through the surface layer of the component with the bulk
of the section remaining at an -approximately uniform
temperature. Under off-load conditions an approximately
uniform temperature distrigution is found throughout the
cross-section of the component. Cycling between these
two states 1is frequently encountered and this situation
may be modelled wusing the constitutive model described
above and the multibar model.

This situation is simulated by a purely thermal
loading. This was firstly applied to a two bar model and
the results of this test are presented below. After this

it was applied to a six bar model structure. This enabled

the study of the effect of a thermal gradient in the
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component in more detail by introducing a temperature
gradient from bar to bar. The effect of a stress conéentra—
tion in a component may be studied using a multibar model
and this can be done in better detail using a structure
with more than the two bars used in the previous section.
A six bar structure has already been used in Chapters
3 and 5 to study the effect of stress redistribution due
to fatigue damage. This is used again here to study the
effects of a stress concentration on the creep-fatigue
behaviour of a structure and the results of this are also
presented in the next sub-sections. Each of the structures
used in these studies 1is described in detail in the

relevant sections.

6.6.1 Two Bar Model Structure with Zero Mechanical Load

The ©previous section has dealt with the response
of a two bar structure subjected to a fixed mechanical
load and a cycled temperature. Here the load is removed
and the behaviour of a two bar étructure under a pure
thermal load is examined. Under these conditions the simple
structure 1is representative of a component whose surface
is subjected to a temperature cycle.

Initially, numerical experiments were carried out
on the same structure that was used in the last section.
However, it was found that it was impractical, "simply
by imposing a large temperature jump, to induce in the
structure stresses which were large enough to result in
reversed plasticity. Since the stresses induced were not
very large it took a large number of temperature cycles

to accumulate enough damage to cause rupture of any of
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the bars, and this in turn lead to the use of a large
amount of computer time. The low stresses induced.in the
thermally loaded bar were due to the 1low stiffness of
the rest of the structure., When the thermél strain in
bar 1 changed, the other bar tended to yield and the
strains were allbwed to become quite large without
significant changes in the stresses. The low rate of damage
growth was due in part to the low stresses, but another
factor was the dependence of the <c¢reep properties Aon
temperature. Large temperature changes resulted in extremes
of creep behaviour. At the lowgr temperature, bar 1 was
in tension and creep damage accumulated, However, if the
temperatufe change was a large one then the lower
temperature would be such that the rate of damage growth
was very slow. At the higher temperature, bar 1 is in
compression and the damage in this bar did not
increase. One way to increase the stiffness of the
structure 1is to 1increase the area of bar 2 so that it
remains elastic under most conditions and another is to
decrease its length. This causes the stress in the first
bar to become relatively 1argé, even for small temperature
changes. Thus, changing thé structure also means that
the temperature can be higher when bar 1 is in tension
and this results in increased damage growth rates. The
results obtained from one particular structure are now
described.

In the structure that was used, both bars have the
same length and the area of the bar 2 was ten timés that
of the bar 1, as is illustrated in the insét to Fig. 6.16.

This meant that for moderate temperature excursions bar
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2 did not yield and that it was possible to raise the
stresses in bar 1 to relatively high levels. This structure
is a simple model of a <component without a stress
concentration and with a surface layer which is subjected
to a cyclic temperature variation. This surface layer
yields due to the stresses induced by the thermal strains,
but the body of the component, which is protected by its
surface remains at the base temperature, does not
yield.

A temperature cycle between the 1limits 300°C and
400°C was applied to bar 1 of this structure. The timing
of this temperature cycle ~was the same as that wused in
the experiments reported abbve and consisted of a holdtime
of 3 hours at each temperature, as shown in Fig. 6.10.
The response of bar is illustrated by Figs. 6.17-6.18.
One of the surprising features of these graphs is that
the evolution of the plotted quantities is, in each case,
almost linear with respect to time. Another feature 1is
the magnitude of the plastic strains in bar 1, which reach
values of almost 6% at failure.

The almost linear evolution of the response of the
bars is due to the rate of damage growth and to how the
level of stress changes it. This interaction betweeﬁ stress
and damage is governed by equation (6.13). The graphs
in Figs. 6.17-6.18 were obtained wusing a set of
coefficients for which ¢ = v = 6.1 and so the effect of
stress on damage growth rate and that of damage on stress
exactly balance each other. The damage in bar 1 is shown
in Fig.n6.16. The two curves in this figure are the total

damage and the fatigue damage and hence the difference
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between the curves 1is the creep damage. It can be seen
that the. damage growth is almost linear. Fatigue damage
is not apparent until about 1100 cycles. There is a bend
in the curves at around 1900 cycles but its cause is not
cleary; it is ©possibly due to the increase in fatigue
damage. The growth of fatigue damage is very small in
the early stages of life and it is not until quite late
in the total 1life of a specimen that it becomes
significant. Since fatigue damage is governed by a separate
equation from (6.13) it will result in a different rate
of damage growth and it may be this that causes the change
in the slope of the curves. However, the growth in fatigue
damage depends upon the stress amplitude and this 1is
decaying as the test proceeds, as can be seen in Fig.
6.17 and this may mean that the fatigue damage does not
continue to grow faster.

The linear evolution of the stress envelopes is shown
in Fig. 6.17. The two curves are the minimum and maximum
values of the stresé that are attained in bar 1 during
the temperature <cycles. The upper curve 1is the stress
which occurs when the temperature of the bar is 300°C,
and the lower curve when the temperature is 400°C. The
slope of the stress envelopes is directly related
to the slope of the damage curve in Fig. 6.16. Hence,
there is a change in the slope of the curves at around
1900 cycles which corresponds to that in the damage curve
at the same place. If the value of ¢ 1is different to
that of VvV in (6.13) then the damage growth curve becomes
non-linear with a sudden increase in damage as the time

approaches that for rupture. This means that the stress
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envelopes also become non-linear, as 1is illustrated in
Fig. 6.19 which shows the stress -envelopes that are
obtained 1if & = 10. Figure 6.19 also shows that the
lifetime of the bar is decreased at this value of ¢ .
o) = 10 corresponds to a creep ductility of A = 2.5
according to (6.14), whereas ¢ = 6.1 corresponds XA =
16.9. These results are thus in accord with the statements
which were made about the effect of creep ductility on
lifetime.

Figure 6.18 shows the plastic strains in bar 1 for
this test. Here again the curves are the envelopes of
the maximum and minimum values and the lower curve 1is
the higher temperature. wa changes of slope occur, one
at 1000 cycles and the other at 1700 cycles. It can be
seen that the plastic strains become quite large at
failure. This is due to equally large creep strains in
the opposite sense, which is in turn due to the temperature
dependence of the <creep rate. When the temperature 1is
at a maximum the stress in bar 1 is negative, due to a
positive thermal strain and the creep strain is accumulated
in the negative sense. Conversely, when the. temperature
is at a minimum the stress is positive and the creep étraih
rate 1is positive. Hoyever, the creep rate is greater at
the greater temperature than it is at the lower temperature
and so the overall creep strain is negative. In order
to satisfy the compatibility requirement of the structure,
large positive plastic strains accumulate t§ compensate
for the negative creep strains, while the total strain

remains very small,

It is clear from Fig. 6.16 that the fatigue component
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of the total damage is actually quite small compared with
the creep damage component and in the examples studied
so far, creep damage has been the dominant factor in any
failure. This is because the stresses that are produced
by pure thermal strain changes are not great enough to
cause fatigue damage to accumulate significantly enough
to cause failure due to low cycle fatigue. In addition,
the temperature dependence of creep means that if 1large
temperature variations are used to cause a large stress
change, then the creep 1life at the higher temperature
is extremely short and again the creep damage accumulation
greatly predominates over fatigue damage. The effect of
increasing the fatigue component can be investigated by
altering the <constants describing the fatigue damage
evolution so as to reduce the fatigue life at the stress
levels which are of interest. This was done for the two
bar structure used here and it was found that the stress
behaved in a similar manner to that shown in Eig. 6.19,
even though the parameters ¢ and V were equal.

The structure under pure thermal loading will never
fail completely due to rupture of the second bar. This
is simply because all of the stresses in the structure
are due to those induced thermally in bar 1 and once this
has failed, then the stresses in the structure become

zero and no further damage is caused in bar 2.

6.6.2 Six Bar Model Structures
A component with a region of stress concentration
can be modelled by a 'multibar structure with the 1lengths

and areas of the bars chosen so that the variation of
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stress from bar to bar simulates the variation of stress
at the stress concentration. This was the idea behind
the six bar example model which has been used in Chapters
3 and 5, to investigate stfess redistribution in structures
where fatigue damage>occurs._The same six bar model 1is
employed here to examine the combined effects of a cyclic
thermal gradient and a steady mechanical load on a simple
component with a stress concentration. A further six bar
structure will be used after that to study the effects
of a temperature gradient alone.

In each of the cases described below the temperature
of the structure is initially uniform throughout and equal
to the base temperature of 8o . A thermal gradient is
applied by assuming that the temperature excursion varies
in magnitudes linearly between bars 1 to 5 from the maximum
to zero. Thus, if a temperature excursion of A6 is applied
tto the structure, then the temperature in the ith bar
is

Gi = 0o + (5-1) A6 , i=1,2,3,4,5 (6.15)
The temperature in bar 6 remains at 8o . This temperature
distribution is illustrated in Fig. 6.20(a).

The first case consisted of the six bar structure
used in Chapters 3 and 5 with an applied positive
mechanical load and a cyclic temperature applied according
to (6.15). The size of the mechanical load in this case
was 220 MPa (divided by the area of bar 1) and A6 = 50°C.
The lengths and areas of the bars in the structure are

sunmarized in Table 6.5 and the structure is illustrated
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in Fig. 6.20(b). The temperatures in each of the bars
when the temperature excﬁrsion AD has been applied are
also listed in Table 6.5, as are the failure times that
were calculated for each bar (due to a difficulty with
the computer program the failure time of bar 6 was not
calculated). The temperature cycle was 6 hours long with
3 hours at each temperature, as in Fig. 6.10. The behaviour
of this model had similarities to that of the two bar
structure under similar conditions. However, due to the
larger number of bars, extra details of the behaviour
became apparent. Bars 1 and 2 behaved in a similar manner
to the bar 1 of the two bar.structure. The stress in bar
1 is shown in Fig. 6.21. As this figure shows, the upper
envelope curved down towards the end of the life of the
bar and meets the lower envelope which has remained at
an approximately constant level. As in the two bar
structure, the upper envelope corresponds to the 1lower
temperature (300°C) and the lower envelope to the higher
temperature (350°C). Bars 5 and 6 of 'this structure behaved
in a similarvmanner to bar 2 of the two bar structure.
This 1is illustrated by the results shown in Figs. 6.12
and 6.14. However, baré 3 and 4 display differemnt stress
histories. Figure 6.22 Asﬁows the stresses in bar 3. It
can be seen from this that stress redistribution causes
both ihe maximum and minimﬁm stresses to decay throughout
the life of the bar with a sudden drop in stress, which
completes the decay, taking place during the final few
cycles. Bar 4 seems to have a. behaviour which is
intermediate between that of bars: 1 and 6 (see Fig. 6.23).

The lower envelope increases at about the same rate as
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the upper envelope decreases and so the envelopes actually
cross each other at about 125 cycles.

The sequence of failure of the bars was generally
from 1 to 6, although wunder certain <conditions other
sequences were observed. Also, as can be seen in‘ Table
6.5, it was observed that the ©bars failed in quick
succession after the first failure. There are two possible
reasons for this. bne is that the 1load on each of the
remaining bars is increased by the failure of any of
the bars because equilibrium must be satisfied. The second
is that the positive mechanical load causes the structure
to creep throughout its 1life and to accumulate «creep
damage. Thus, onﬁe the first failure has occurred, the
bars have all suffered vappreciable damage and it does
not take much more to complete the accumulation of damage
and for failure to occur.

The second case is that in which the applied
mechanical 1load is zero. A different structure was used
to studytthis loading history as was the case with the
two bar structure. This new structure consisted of six
bars all of equal length and the areas of the bars were
equal apart from bar 6 which had an area 6 times that
of the rest (see Fig. 6.20(c)). This was "so that the
total area of the bars was the same as fhat of the two
bar structure studied under zero load. The teméerature
cycle was applied to each of the bars according to (6.15)
with A6 = 100°C. Again the hold time Qas 3 hours at each
temperature. The damage in bar 1 increased linearly from
0 to 1 in a similar manner to bar: 1 of the two bar

structure and so the stress envelopes were similar to
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those shown in Fig. 6.17. The stress envelopes of the
other bars also varied approximately 1linearly, although
bar 4 had a lengthy period at the beginning of the‘test
during which the stresses slowly rose, before settling
down to a more linear evolution, as can be seen in Fig.
6.24. In fact, the evolution of damage in bar 4 did not
become completely linear until after the failure of bar
3 at about 13,500 cycles.  The stress envelope
corresponding to the lower temperature in bars 2-6 had
a short period of decay just before the failure of bar
1 and a sudden increase when bar 1 actually failed.
Figure 6.24 also shows the jumps in the stress envelopes
at the points at which bars 1-3 failed. After the failure
of a bar, the stress envelopes in the remaining bars
changed slope slightly and then <continued to evolve
linearly. This is illﬁstrated best in Fig. 6.25 which
is a plot of stress envelopes for baf 3. The stress in
most of the bars decayed gradually to zero, but in bars.
3 and 4 it remained quite high for a relatively fiﬁng
time, as can be seen in Figs. 6.24 and 6.25. This meant
that fatigue damage began to grow in these bars. This
is shown in Fig. 6.26 where the total and fatigue damage
in bar 4 is plotted. The figure shows that the fatigue
damage grew continually from when it became significant
at about 1,500 cycles. The point at which bars 1-3 failed
are picked out by changes in slope of the curves at around
2,600, 4,500 and 13,500 cycles.

Unlike the previous case thefe is a 1large number
of cycles between the failure of each bar. There are-

twe reasons for this., The first is because the load 1is
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zero, the maximum stresses in the bars on average decay
due to the increase 1in damage in the bars. Secondly,
since the load is generated by thermal strains, on failure
of a bar the 1loads in the remaining bars decrease; and
since the magnitude of the temperature cycle decreases
from bar 1 to bar 4, the thermal load decreases as. these
bars successively fail. As in the case of the twd bar
structure with bars of equal length, failure of the whole
structure never occurs because bars 5 and 6 are held
at the base temperature 8.

The results obtained here for the 2zero 1load case.
illustrate how the surface of a component, which 1is
exposed to <changes in temperature, can become damaged
and cracked. In the material used for these tests the
process appears to be comparatively slow and is creep
dominated. The model employed here can clearly be used
for predicting the time over which this surface cracking
takes place, especially if the actual temperature

variation is known.

6.7 Summary and Discussion

A model of the high temperature behaviour of a metal
has been presented which includes both the time
independent and time dependent properties of a material:
i.e. those of creep and plasticity. The plasticity model
is a kinematic hardening law with non-linear hardening
curve which displays ratchetting and stress relaxation.
The constitutive law for creep is relatively simple but
:can easily be extended to include the effects of primary

creep and variable creep ductility. The growth of damage
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due to both creep and cyclic plasticity is also included
so that predictions of the deformation of a component
close to failure and of the time of failure can be made.

Published data has been used to construct a model
of the behaviour of copper at high temperatures. It was
discovered that the available data is incomplete and could
only be wused to make qualitative assessments. In order
that it should be possible to model méterials in the
manner proposed here, it is therefore necessary that
a consistent program of material testing should be carried
out beforehand. The testing should be done with this
end in view so that sufficient information is retained
from the experiments to be able to calculate all of the
coefficients required by the model.

Published experimental results on a simulated two
bar structure were then used to test the ability of this
model to predict real material behaviour and the failure
of a structure. The qualitative agreement between the
model and the experimental results was very good. The
model correctly predicted the effect of the growth of
damage ‘in one of the bars on the strain and stress
envelopes towards the end of the life of the structure.
The quantitative predictions were not very accurate.
However, this was duebmainly to the lack of information
on the way in which the temperature changed during the
thermal cycling.

Finally, the model was used to study the behaviour
of a range of multibar structures under various
conditions. A two 5ar and a six bar model were used to

investigate the behaviour of a component subjected to
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cyclic thermal loads on its surface, 'but ‘with no
mechanical 1load. Each structure behaved similarly; in
each case it was predicted that the surface bars would
damage and fail after about 2,500 <cycles wunder the
conditions which were imposed. The damage evolution when
& = Vv in (6.13) in both cases was essentially 1linear.
In the six bar structure, rstress redistribution between
the bars meant that damage evolution was not linear .in
all of the bars all the time. However; once >bars 1-3
had failed, then the damage evolution in bar became
linear. When the creep ductili;y in the two bar structure
waé changed by using a different value for ¢, then the
damage evolution became. non-linear and the life of bar
1 was substantially reduced. In each structure, plastic
and creep strains accumulated steadily throughout 1life,
but the total strains and the overall displacement of
the structure remained small because there was.no overall
load. For the six bar structure, the number of cycles
between the failure of each bar increased as the bars
failed. This 1is because the stresses induced in the
structure became less severe, since the thermal strains
were not as great in the remaining bars. The zero
mechanical load conditions correspond to models of
practical situations whgre a component 1is subjected to
a cyclic temperature gradient at its surface. The failure
of the bars is analogous to the surface cracking of these
components known as craze-cracking.

A six bar model which has been used before was used
and was . subjected to. combined mechanical and thermal-.

loading. This structure demonstrated the effects of a
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stress concentration. Its behaviour was similar. to the
two bar structure that Megahed and Ponter used since
the loading conditions are similar. The feature of the
behaviour of this structure that cannot be seen in the
two bar case is that the ©bars fail in very quick
succession. This is because tﬁére is a positive mechanical
load, and hénce when one bar fails the remaining bars
suffer a sudden increase in 1load. Also, the mechanical
load means that all of the bars are undergoing creep
damage throughout the initial period before the first
failure and are consequently already relatively «close
to failure. This also means'that the overall displacement
of the structure steadily increases throughout the 1life
of the structure.

The model has been shown to be capable of modelling
very complex 1loading situations. However, it has been
found that it is important to specify the precise loading
conditions in as much detail as possible, especially
for thermal 1loading, in order that the predictions of
lifetime are accurate. In spite of this, it is expected
that it will provide a véry powerful design tool when

used within a finite element package.
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Name Value

Elastic: E 90 000 MPa

Plastic: o 15 MPa

24520.8 MPa
102

<

1.827 x 107 %

6.68
2.355 x 10~

6.10
1.025 x 107°
3.363 x 107°
15062 J mol™*

Creep:

13

o

26604 J mol !

1 -1

8.314 J K "mol

o0 O Woe» < W8
o

Fatigue: o 10 MPa
254.5 MPa
B T 2,671

b 0.00393
a 0.0438
My 1526

Table 6.1 Coefficients for the model of OFHC copper.
The Nominal temperature is 300°C where {Omg)@ra{um,
dependence is nat explicit,
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Stress limits de/dN (absolute units)
Omin omax Experiment Theory
(MPa) (MPa) (x 10”°%) (x 10°%)

0.0 193.0 1.81 77.56

0.0 206.8 8.32 98.88

0.0 220.6 46.0 128.53

0.0 234.4 166.00 175.02

22.1 220.6 29.60 126.55
55.2 220.6 8.05 120.18
110.3 220.6 1.09 97.83
165.5 220.6 0.40 47.64
84,2 105.3 1.23 -3.41
63.2 105.3 2.28 3.95
42.1 105.3 3.25 9.21
107.6 129.1 4.13 -4.50
64.6 129.1 8.62 13.67
43.0 129.1 9.70 19.16
21.5 129.1 13.12 22.76
132.1 154.1 6.98 -6.01
88.0 154.1 18.98 20.04
44,0 154.1 24,72 33.85
22.0 154.1 32.7 37.59
22.0 154.1 33.80 37.59
Table 6.2 Comparison of theoretical and experimental
ratchetting rates. The experimental data

come from Megahed et al., (1980).
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Failure
Yumber of cycles
per block Cycles Time (hours)

0 0 585

1 46 460

2 78 390

3 104 340

5 140 280

7 168 240

8 177 220

10 198 190

20 260 130

30 297 90

40 322 80

50 348 60

60 364 60

80 400 50

100 426 40
130 465 30
160 499 30
200 545 20
300 647 20
500 850 10

Table 6.3 Failure in terms of number of cycles and time

for block
at 10 hours per block.

loading

with creep 1loading fixed

Mechanical
Load, Time at Time at
P/A (MPa) Bo(°C) | AB (°C) | B¢ (hours) | B¢ + AB (hours)
Test 1 51.73 300 -50 3 3
Test 2 62.34 300 -50 3 3
Table 6.4 Loading of the two bar structure for experi-

mental tests shown in Fig.

152
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High Failure
Bar Temperature time
Number Length Area (°C) (hours)
1 1.0 : 1 350.0 886.5
2 1.2 1 337.5 902.9
3 1.5 1 325.0 .909.3
4 2.0 1 312.5 920.0
5 3.0 1 300.0 923.3
6 6.0 4 300.0 -
Table 6.5 Dimensions of the six. bar structure shown

in Fig. 6.20(b) and the temperatures and

failure times of the bars.
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Stress (MPa)

260:'_'__ -

260+

2201

200+

180+

160+

o
(=]
1
L]

* Points from expermental
cycic stress -strain curve
—— Theorehical stress-strain curve

L 1 1 L 1 L N L L -3
o0 0@ 03 0404 005 006 007 008 009 0
Total Strain (absolute unrs)

a) Total strain up to 10%.

Figure 6.1:

Comparison between points taken from an
experimental cyclic stress=-strain curve and the
theoretical curve fitted to them.
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Stress (MPa)
260:'

260+
201

200+

B80T

160+

160+

80+

60+
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20+
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* Poinfs from experimental
cyclic stress -stran curve

—Theoretical stress-strain curve

- 4 4 5 o 3 | I—— |
T T -

4
0 At t } -

0-000 0-002

b) Total strain up to 1.5%.

Figqure 6.1: continued

08 000 0012 00
Total Strain (absolute unds)
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Figure 6.3: Experimental steady state creep rates for
copper at 300°C and 250°C.
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Prax /A =170MPa
Poin | A =170 MPg

PhOld / A = 30 MPa

T | N¢ =153 cycles
N, T te = 584 hours
Nf —
o8t LoAD

i S g"t:gé j A A-r---A /\z( Duration
1 e

et
N
1
]

T s 08 10
f/ff

a) Load dwell for time t before cycling until failure occurs
(creep first 1loading).

Figure 6.8: Effect of the sequence of creep and fatigue

loading on time and cycles to failure.
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b) N cycles before tensile dwell until failure occurs
(fatigue first loading).

Figure 6.8: Continued.
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101

81 + Ponfs for 4, =10hrs

o 02 04 06 08 10

Figure 6.9: Comparison between curve in Fig. 6.8 (a) and

failure points for block loading with tB=10hrs.
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a) Two bar structure.
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Oo
1 cycle
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b) Applied temperature history.
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c) Temperature histories for each bar of 2 bar structure.

Figure 6.10: Two bar structure and its loading.

166



JUOISIITP OM3] I0F 2IN3ONI3S Ieq 7 ur | aeq I0J sadolaAus sSsaI3§

(s4y9 = 33h3) s313ky Jo Jaqunp
0zz o0oc 08l 09l

L
v

*A3T1T3onp deaxo JO saniea

ool 08

0%

tL1°9 @anbTa

N i
v A L

S
-

e

-

-

/

907 =N
S-T=\'0L=9

omn.%z
6912\ 19=¢

4.

el

0%

X

(OdiW)
SEINS

167



‘L 3893 uT g Ieq 103
sodoTaAus SsSoI3s [eOT39I08Y] puer Tejusutiadxs oYz ussmizoq uosTaeduwo)

( SIy9 = 3]2ka}) s3hy Jo Jaquiny
02z 0z 08l 09L O 0@ 000 08 09 09 0

'y
L] T

1219 2anbta

‘adojaAus
|pjuswnladxy

N suolpipady
[D314adoay |

DdW EL-1G PoO]
| s3]

(OdW)
SSal4S

L

T
un
-—

105

168



*L 3s93 ut | Ieq 103 sadoTaaud

UuTeI3ls Te303 TeOT31ISI09Yyl pue Tejuswtxadxs aylz uasmizaq uostaedwo) :¢l°9 aanbtg

‘(sdy9 =3pha|) s3]aha Jo Jaquiny

0c¢ 00 08l oSt 04l ozl oot 08 09 0% 0z 0
— . 000

-+
-+
-’
-+
-+

1

00
sjnsaJ  |pjusurdadxa 1200
{€00

700

4

1900

L

-L0-0
OdiW €415 ppOY |

| 4sel
suoljaipald [oaijasoay) 1600

'

-01-0

L

(spun ajnjosqy) [+
UDYS  [Djop 240

169



*Z 3IS93 UT 7 aeq Io3J

sodoTaAud SS8I3S TeOT3IDIOLY] pue Tejuswiiadxe ay3z usemiaq uostredwo)d L9 2anbtg

(sdnoy 9= 3aha|) seph jo Jaquny
o oo 06 08 O 09 0 o7 0 0z O 0

1 1 1 [l i i 1
L] 1)

I i
v L T

¥ L) T ¥

o

— JlON
adopAua  |pjuaWNIBdX] R
_ :

SE

10

SuoljaIpald _d/uu:m._omc 1 17
- DdWHEZ9 PoO]  Jos

¢ 8L |

T (DdIW)

170



*Z 3S931 UuTr | wmn I03

sedoTsAus uteI3s T[e303 [eOTI9I09Y3 pue Tejuswuriadxe ayj ussmisq uostieduor :1GlL°9 aInbtg

(sdyg= apkay) 'sajaky Jo Jaquny
oM o0L 06 08 O 09 05 Oy 0 0 o 0
t { 00-0

3 I 3 [
v L} L] L

H00
suoijdipald 200
_

[p3BI03Y |

1€00

™~ 1100
sjnsaJ

|Djuauisadxy Leoo

-90-0
D €29 POOT
Z 453l

+L0-0

4800

s

600

(syun ajnjosqo)
UDNS  [040]

171



*PROT TedTueRYdaW OXdZ pue (D,00€ = %9 ‘0,00l = §v) burToio
Tewxaya o3 pojzoslgns axnjzonilzs Ieq gz © JO | Ieq utr abewep snbriey pue Telzol :9[°9 2anbrg
(SJyg=8jpha}) saphy Jo Jaquny

007Z 00ZZ 000 0OBL 0O9L 0O%L  00ZL OO0  00OB 009  0O%  0QOZ 0
f f + “ » et . + + ——d 00

abowog anbiyo4

i

0=d * (50

N\hWWAw A

- TL0
<OPH N< Tﬂ <nuw< L.m.o

7777 777

abownQ |ojo)

AN

OEERX
-

.
.

T o1 abowog

172



‘PROT TEOTURYDDW OX3Z pur buriodo Tewisylz
03 peo3joeldgns aanjoniays aeq g © Jo | Ieq IoJ sodo[sAus SS3I3S

0042 009l 009l

002l

ooot

008

009

00%

00z

T T

i
v

'}
T

-0l

1L1°9 @2InbTg

(DdW) Ss34iS

173



*peOT TEOTURYOSW OXdzZ pur DBUTTDAD Tewisyl o3

po3oolgns oa1n3onils Ieq g e Jo | aeq 103 sado[oAus uteIls oT3seld :gl°'9 2aInbrg

( Sdy9 =3J3hy|) s81ahka Jo Jaquiny

000 00Q 009t 009l 0ozt 000L 008 009 00% 1,074

'l ' ]
L L] T

] 'l
¥ L]

L

-500-0
10100
15100
10200
1500
-0€0-0

-GEO-0
10700
-5700

\ . a m,—_CD 40500
) 0E=06 3IMOSqY ) 15500

UIDYS
JSD)d 10900

174



‘0l = ¢ usym peoT ox9z pue DHUTTOAD TeWIaY

03 po3zoalgns aanjonays Ieq g © JO | Ieq I0JF SadO[dAUS SS9I3S :6l°9 2Inbrd

....m Nl
L|ON -
)007=6 TSt-
: 401 -
(sdy9=28pAa|) sapha jo Jaqunp Le.
008 00L 009 005 00% 00€ 00z ool
} Uy t } f t t t 0

(D) SS3US

175



Temperature
|

A6

1 2 3 L 5 6

Bar number

a) The temperature distribution through the structures

according to equation (6.15).

Figure 6.20: Two 6 bar structures and the temperature
distribution through them when a thermal

gradient is applied.
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Lood, P=220MftL

b) A 6 bar structure with a stress concentration. Its

dimensions are given in Table 6.5.

locd, P=0

c) A 6 bar structure without a stress concentration.

Figure 6.20: Continued.
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CHAPTER 7

MULTIAXTAL PLASTICITY AND FINITE ELEMENT TECHNIQUES

FOR NON-LINEAR PROBLEMS

7.1 Introduction

In previous chapters the constitutive laws have been
restricted to uniaxial laws. This was so that structural
calculations would be relatively weasy to <carry out.
However, most applications are multidimensional and
require structural and material models that reflect this
fact. The step from wuniaxial to multiaxial solution
techniques 1is substantial and separated into two parts:
(i) the constitutive laws must be expressed in a multi-
axial form and methods must be developed for dealing
with them numericaliy, and (ii) techniques for solving
structural problems in many dimensions must be developed.
In this chapter, a review of multiaxial plasticity models
will be given and the constitutive law of Chapter 3 will
be extended to a multiaxial law within this framework.

The solution of multidimensional structural problems
is often effected using the finite element method. Within
this context there is a 1large <choice of techniques
available for solving problems involving non-linear
material behaviour, such as plasticity. A review of some
of these techniques is presented in this chapter. Several
methods have also been proposed for the integration of
the multiaxial plasticity 1laws; a review of these 1is
also presented.

Two techniques finding structural equilibrium are

chosen from those available and, along with a method
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for integrating the constitutivé equations devised by
the author, are used to solve a two bar plésticity problem
by the finite element method. The results are compared
with the more reliable solutions obtained wusing the
methods of Appendix A. The chapter ends with some

discussion and conclusions.

7.2 Multiaxial Plasticity Models

7.2.1 General Review

Many models for describing plastic behaviour in metals
have been proposed. These are usually based on the idea
of a yield surface which'is a surface bounding a region
in stress space. If the material is in a stress state
which is in the interior of this region, then it behaves
elastically. States of stress outside the yield surface
are not permitted by the model. When the stress point
describing the state of stress in the material touches
the yield surface and tries to move outside it, then
plastic straining occurs. For perfect plasticity the
yield surface remains fixed and does not change size
or shape, thus the stress cannot take a value which is
outside the surface. If the material hardens, then the
stress 1is allowed to go beyond the region defined by
the current yield surface but the surface must change,
either its shape, =size or position, in order to keep
the stress point on or inside the new yield surface.
Computationally, it is easier to assume that the yield
surface changes its size or position rather than its
shape. If the yield surface only changes its size as

the material hardens during plastic straining, it is
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called isotropic hardening. If the yield surface only
moves without change of shape, then this is <called
kinematic hardening.

Isotropic hardening 1is simpler to implement in a
computer program than kinematic hardening which, amongst
other things, requires an additional parameter giving
the current position of the yield surface in stress
space. However, 1isotropic hardening does not predict
the Bauschinger effect which is important for describing
cyclic plasticity where the stress 1is cycled between
upper and lower values. The isotropic model predicts
that the yield stress in compression is minus the yield
stress in tension. Also, since the yield surface changes
size to accommodate the stress point, it predicts that,
if the «cycling is ©between fixed stress values, the
material will ©behave completely -elastically after the
first cycle. The kinematic model, however, predicts that
the yield stress 1in compression depends on the amount
of plastic straining in tension, &dnd also can reproduce
the experimentally observed hysteresis loop in the stress-
strain plane and which is characteristic of ©cyclic
plasticity. For these reasons a kinematic hardening model
will be used. (The previous wuniaxial models have all
been kinematic hardening models.)

For kinematic hardening, it is necessary to specify
the direction of motion of the yield surface. Prager
proposed that the yield surface should move in the
direction of the normal to the yield surface at the point
at which the stress point touches the surface.: Shield

and Ziegler (1958) studied this rule and found that its

186



application in subspaces of full stress space can cause
the yield surface to change its size or shape and also
that the direction of motion is not necessarily along
the normal to the surface. Subsequently, Ziegler (1959)
proposed an alternative hardening rule which did not
suffer from these drawbacks of Prager's rule and which
was equivalent to Prager's rule in subspaces including
those commonly used, such as plane stress. For these
reasons, the Ziegler hardening rule is wused in this
chapter; The mathematical formulation of these concepts
will now be listed and briefly described.

The yield surface used is that named after Von Mises.

The equation for this surface in stress space can be

written
F(o,.) = (3/2)S..S.. -0 =0 7.1
(o) = (3/2)8; 8, - o (7.1)
where Sij is the deviatoric stress tensor and Oy is

the uniaxial yield stress. The assumption of a kinematic
hardening model <can be represented by including the
position tensor, s of the centre of the yield surface
in equation (7.1). Thus, the equation for the yield

surface becomes

F(o,.-a .) = (3/2)(0. .-a. .) (0, .-, .) -0> =0 (7.2
(05 -0 ) = (3/2)(0; -0y ) (0, -0y ) =07 (7.2)
where the prime (°) indicates that the deviator of the
tensor is to be used.

‘The direction  of plastic straining (the flow rule)

is given by the associated flow rule,
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oF
dnij —.k 331j : (7.3)

The factor XA 1is obtained by comparing the plastic strain
nij with an equivalent uniaxial value of plastic strain

Ng - The value of Ne corresponding to any value of

nij is given here by the work equivalent plastic strain
which is defined by

n, = i) dne , where
dn = = (0.. - a,.)dn (7.4)
e " 9, ij 13797 5

Using (7.3) and (7.4) it can be seen that

d
y o 3 le — (7.5)
(055 - @35) 56'ij

The direction of movement of the yield surface
(hardening rule) is given by the- rule due to Ziegler

(1959) and can be written

daij = u(cij - “ij) (7.6)

The factor u in this equation 1is calculated by relating

the multiaxial stress—-strain state to the uniaxial

hardening curve via ng - The relationship is assumed
to be
dne
daij =C Oy (Oij‘— aij) (7.7)
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where C = E%iis the slope of the uniaxial hardening curve.
7.2.2 Constitutive Laws

The value of C in (7.7) is given by the slope of
some uniaxial hardening curve. The position on the
uniaxial curve is given by the accumulated equivalent
plastic strain, Ne The particular wuniaxial curve used
in this <chapter is based on the constitutive laws in
Chapter 3 (equations (3.9) and (3.10)). This law provides
a better approximation to the observed c¢yclic stress-
strain behaviour of metals than the more usual bilinear
stress-strain curve (which is obtained from (3.9) and
(3.10) by setting q = 1).

However, for general loading paths in many dimensions,
there 1is no consistent method for using these uniaxial
laws other than for the bilinear curve. This is overcome
here by assuming that the 1loading is proportional and
regular, meaning that the 1loads change monotonically
between two extreme values. Initially, Ng is assumed
to be zero and is reset to zero at first yield each time
yielding occurs after a reversal of the load. This enables

hysteresis 1loops to be modelled and allows for elastic

unloading to be realistically treated.

7.3 Finite Element Techniques

7.3.1 Introduction

The finite element method has been successfully
applied to solving problems in many areas, including
solid mechanics. A standard introduction to the method

is the book by Zienkiewicz (1977). The usual displacement
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method approximates the displacements in a solid body
by expressing them in terms of the displacements at a
certain set of points, called nodes. The relationship
between the forces and displacements at the nodes 1is
given in terms of the stiffness matrix K, and may be
written f = Ka, where f and a are vectors of the forces
and displacements, respectively, at the nodes.

The pérticular type of element used here 1is the
constant strain triangle. The author has carried out
an investigation into other element types (Lavender and
Hayhurst, 1986) and has found that higher order elements
give better results when solving an elastic problem.
However, constant strain triangles are a 1lot simpler
to use because stress and strain are constant within
each element.

Two types of non-linear finite element solution
methods were investigated, namely elasto-plastic methods
and visco-plastic methods. When a non-linear structural
problem is formulated in terms of a finite element
approximation, a system of non-linear equations is
obtained. There are many methods in existence for the
solution of such systems of equations and these have
been applied to solving structural problems: they are
usually called elasto-plastic methods. However, since
plasticity in metals is dependent on 1loading history,
the traditional methods need to be adapted to take this
into account. The -elasto-plastic methods also neglect
the fact that plastic strains may change with time, i.e.
plastic strains are+* assumed to "develop instantaneously

within a material. For this reason they are often called
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time independent solution methods. An alternative approach
is given by the visco-plastic methods which are based
on the fact that plastic strains can be modelled as visco-
plastic strains which change with time at a finite strain
rate upon the application of stress. This formulation
of the finite element problem 1leads to a system of
ordinary differential equations which are solved using
a method designed for the solution of initial value
problems. These two categories of method will now be

described and some remarks on their use will be presented.

7.3.2 Visco-plastic Methods

These methods have been studied and developed by
Zienkiewicz and Cormeau (1974). An outline of the method
is presented here, for more details see Owen and Hinton
(1980) or Zienkiewicz and Cormeau (1974). The method
assumes that the inelastic strains are visco-plastic
strains. The total strain rate is accordingly decomposed

thus
£ =g + ¢ (7.8)

The yield condition states that visco-plastic straining
only occurs when F(O0 - &) > 0. The strain rate is given

by

Eyp = Y <O(F)> % (7.9)

where the angle brackets < > denote,
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{¢(F) F>0
0 F <O

< ¢ (F) > = (7.10)
In these equations Y is known as the fluidity parameter
and scales the strain rate, but when time independent
plasticity is being modelled it is essentially arbitrary.
(o) is a positive monotonic increasing function which
governs the change in strain rate and is also arbitrary
when wused for modelling time independent plasticity.
The last term gives the direction of the inelastic strain
rate and, in this case, 1is the normal to the yield
surface., The method of solution involves solving the
system of differential> equations that results from this
formulation. The inelastic strain rate decays and the
process 1is halted when it is less than a given toierance.
As can be seen from these equations, a strain rate of
zero corresponds to the satisfaction of consistenéy.7

The differential equations are normally solved by
an Euler method. The simplest is the wusual explicit
method. This only requires the inversion of the glastic
stiffness matrix and is equivalent to an initial strain
type of procedure (Zienkiewiéz and Cormeau, 1974). More
sophisticated methods, such as implicit Euler, require
the inversion of a stiffness matrix for each time step
of the solution process. The advantage of implicit methods
is that larger time steps than those for the explicit
methods can be used without the solution Dbecoming
unstable. Fuller discussions of these methods can be
found in publications by Zienkiewicz (1977) and by Owen
and Hinton (1980).

One advantage of the visco-plastic method is that
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the consistency condition is satisfied automaticaly by
the method of solution, which is not the case with the
elasto-plastic methods. Also, it is not explicitly
necessary to find the point where the stress point first
touches the yield surface as is the case with most other
methods.

The visco-plastic method was promising because the
formulation is simple and 1is similar to that wused 1in
an existing program for solving creep problems (Hayhurst
et al., 1984a). This is the reason why researchers in
France have used a visco-plastic formulation for numerical
work (see for example Chaboche and Rousselier, 1983).
However, the ©principal disadvantage compared to the
elasto-plastic methods 1is that it can be very slow to
converge when a non-linear hardening curve is required.
It was found that a very stiff system of differential
equations resulted when differing parts of a structure
were on different parts of the hardening curve with widely
differing slopes. In particular, the slope of the
hardening curve varies from infinity at the yield point
to very small at large strains. It was found that the
stiffness of the equations made it impossible to use
conventional methods, such as Euler, for economically
solving the differential equations; it was concluded
that the special techniques required could not be
developed within the timescale of the project. The elasto-
plastic methods are not affected by this stiffness of
the differential formulation and the solution technique
was much more accurate and economical than the visco-

plastic method.
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7.3.3 Elasto-plastic Methods

An elasto-plastic procedure can be divided into two
main parts. One part consists in the solution method
for the system of non-linear equations and, since the
satisfaction of equilibrium of stresses and forces in
the structure is a central part of this process, this
part 1is often referred to as an equilibrium solver. It
is usually based on the Newton-Raphson method for solving
systems of non-linear equations. The other part consists
in the use of an appropriate constitutive law which allows
the stresses to be <calculated from the strains. The
discussion will now continue by looking at the equilibrium
solvers, after which the methods for solving the

constitutive equations will be described and discussed.

7.3.4 Equilibrium Solvers

Equilibrium solvers usually involve iterative methods,
often based on the Newton-Raphson method. The Newton-
Raphson method itself can require a lot of computer time
because it involves the inversion of large matrices for
every iteration. Other methods based on this one employ
ways of reducing the work required to obtain a solution,
such as by wusing approximations +to the true tangent
matrix used by the Newton-Raphson method or by changing
the calculated displacement increments in order to
accelerate convergence. A general procedure for Newton
methods can be written down. The differences between
particular methods occur in the way the tangent matrix
is evaluated.

In order to illustrate these methods, suppose a
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structure to be modelled by a finite element mesh with
a vector of displacements at the nodes, a, and a vector
of the nodal forces, f, equivalent to the external forces
acting on the structure.

Let

V(a)= P(a) + £ = /BT 0 dV + £ = O (7.11)

where ¢ is the vector of stress components in each
element, B is the matrix «connecting displacements at
the nodes with strains in the elements and Yy can be
thought of as the vector of residual forces acting on
the mesh at the nodes. If we have an approximate solution
a,, then in general V¥(a,) # 0. Let ao be the solution
at a load f. If another load increment is applied, Af,

then from (7.11)
Y(aoe) = Af (7.12)

The iteration scheme can be written

-1

a1 = K (2 8 (ay)

> k =0,1,2,... (7.13)

e = 2 thag

(In ¥ the value of 0 is found from a using the constitu-
tive equations.) The way K, is defined determines the
nature of the scheme and some specific methods are now

discussed.
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Initial Stress

Here K, is the elastic stiffness matrix
T
K.(a) = K = /B°D B 4V (7.14)
where D is the elasticity matrix.

Modified Newton-Raphson

K, is set to be tangent matrix at the start of the

load increment.

Ky(a) = Kp(ao) = IBTDep(go) B dv (7.15)
do
where Dep = Hg calculated from the constitutive

equations.

Newton-Raphson

K* is calculated for each iteration from

Ke(a) = Kp(a) = IBTDep(g) B dV (7.16)

7.3.5 Acceleration and Other Methods

One of the first acceleration methods fof the solution
of finite element equations was proposed by Nayak and
Zienkiewicz (1972). The method can be used to improve
the convergence of the initial stress method by multiply-
ing the initial stress displacement increment by a matrix
which is calculated to improve the speed of convergence
of the method. The author has not used this method

since, more recently, other methods have been proposed
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and studied which are claimed to perform better; they
are simpler to use and less expensive since they require
less storage. In particular, the author has used a method
proposed by Crisfield (1979) which has been shown to
be a member of a group of acceleration techniques called
Secant Newton methods (Crisfield, 1984). This method
improves the convergence of the modified Newton method
by scaling the displacement increment by an appropriate
factor. The method was found go be reliable and its use
resulted in some savings on processor time as compared
with the full ©Newton-Raphson method, but, as will be
shown, there 1is not always a satisfactory saving and,
in some cases, the method fails even to converge.
Generally, accelerated methods are not as robust as the
full Newton procedure and it is necessary to use them
circumspectly if convergence is to be obtained for all
required solutions.

Another group of methods, which are now receiving
more attention in the literature for the solution of
finite element equations, are the quasi-Newton methods
(Matthies and Strong, 1979). In these methods the inverse
tangent stiffness matrix is wupdated more simply and
cheaply than by inverting an updated stiffness matrix.
These methods have been used successfully in optimization
work but have not been used extensively in finite element
work because they can suffer from slow, or difficult,
convergence just 1like the accelerated methods discussed
above. They do, however, belong to the Newton family

of techniques described above.
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7.3.6 Choice of Method

Two methods were selected from those described above
for evaluation., The Newton-Raphson method was selected
because of its reliability and because it is the basic
method from which all the rest are derived. Thus, it
can be used as a standard method against which others
can be compared. The other method chosen was ohe of the
secant Newton methods due to Crisfield (1979). This method
is simple to use and is simple to implement in an existing
finite element solver based on a Newton type equilibrium
solver. In addition, it does not require large amounts
of computer storage and so does not make the computer
code appreciably larger. Details of the version of this

method used by the author are given in Appendix D.

7.3.7 The Integration of Constitutive Equations
The constitutive equations are wusually based on a

relationship of the form
dog = D de (7.17)

Since this is a relationship Dbetween infinitesimal
quantities, it must be integrated to be applicable to
the finite strain dincrements -encountered in a finite
element solution. There are many methods which have been
proposed for the calculation of AJ using equation (7.17),
but in most cases the expression for Dep is basically
the same and the difference between methods occurs in

the procedure for integrating equation (7.17). The exact

form of the expression for Dep is governed by the type
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of constitutive laws from which it is derived. In the
present case, kinematic hardening is assumed and the
hardening rule is that due to Ziegler (1959). Thus, a
standard derivation (see for example Owen and Hinton,

1980) produces

Da a’D
=D - —= (7.18)
ePp Q?Dg + C/u’
]
where U = ___—1——T— and a = %%
(¢ -2)a -

Most of the methods for evaluating equation (7.17)
are based on the Euler algorithm for integrating ordinary
differential equations. However, there is the added
complication that there are additional plasticity 1laws
that are required to be satisfied. In particular, the
consistency condition has to be satisfied by the solution.
Usually this condition is not ~satisfied if A0 is
calculated directly from equation (7.17), and its value
must be adjusted in some way in order to satisfy
consistency. Some of the methods described din the
literature will now be described and discussed.

For each of the following descriptions let 91 be
the initial stress point, 0§

and 0, be intermediate points

T A

and QE‘ be the final calculated stress point. Also, let

Ae be the given total strain increment.

Tangent Stiffness - Radial Return

This method is described in detail by Schreyer et

199



al (1979) and is wused by Owen and Hinton (1980). 1If
g is not on the yield surface then a purely elastic
increment is applied which brings the stress to a point

gc which does lie on the surface. gc can be written

g. =97 + pDA g (7.19)
where p 1is a scaling factor 0<p<&<1l. For the remainder
of the stress increment, (1l-p)DAc, plastic straining
occurs., D is evaluated at 0 _ and used to give

ep —C

9p = 9. + D, (1-p)Ag (7.20)

In general, J, does not lie on the yield surface so it

is scaled radially to give gF which does satisfy

consistency:

EF =r gT (7.21)
where r is a scalar such thatAF(rgT,g) = 0.
Secant Stiffness - Radial Return

A particular version of this for perfect plasticity
is described by Krieg and Krieg (1977) and a version
was used in a past version of the ABAQUS (1983) code.
It is given its full gemnerality by Zienkiewicz (1977).
Suppose that gc lies on the yield surface as in the
tangent stiffness method and thatv QT is an elastic

trial stress where
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9p = 9. + (1-p) DAEe (7.22)

Dep can be evaluated at any stress point (3 between
g and QT :
gy, = rg. + (1-r) gq (7.23)

where r is a scalar 0 <rg1l. (Hence the tangent stiffness
method is a special case of the secant stiffness method
r = 1l.) A new value of stress can now be calculated in
the same manner as in equation (7.20), but again, in
general, will not lie on the yield surface and consistency
can again be satisfied by a radial return procedure.
The particular methods used by Krieg and Krieg (1977)
and ABAQUS (1983) use a value of r of 1/2 in equation

(7.23).

Implicit Euler Method

This method is used by a more recent version of ABAQUS
(1984). The technique requires that Dep be evaluated
at the final stress point QF and so some iterative method
is required to solve a system of non-linear equations
in order to find 95 The Newton-Raphson procedure is
the method used in ABAQUS since it is the most robust

available (ABAQUS, 1984).

Elastic Predictor - Radial Corrector

This method is described by Schreyer et al (1979),
who ascribe it to Mendelson, and the special "case of

perfect plasticity is discussed by Krieg and Krieg (1977)
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where it is <called the radial return method. It does
not fit dinto the same class as the methods described
so far, since it is not based upon equation (7.18). The

elastic trial stress is found by
O =07 + D& (7.24)

For this method, it 1is not necessary to find g-c where
the stress point meets the yield surface. Various
assumptions are made (Schreyer et al., 1979) which 1lead
to the result that the final stress deviator is a scalar
multiple of the trial elastic stress deviator. The scalar
factor is adjusted to allow the final stress value to

satisfy consistency.

Subincrementation

The accuracy of these methods can be improved by
using smaller step lengths, i.e. by splitting A€ up into
smaller subincrements. Each of the methods described
above can be applied to each of the subincrements of
strain and the total stress increment is obtained by
addition of the resulting subincrements of stress. There
are several different formulae that- have been suggested
for the number of subincrements that are required for
any particular value of A€. Examples are given in Schreyer

et al. (1979), Krieg and Krieg (1977), and the ABAQUS

(1983) manual.

7.3.8 Choice of Method

The method used by the author is basically a tangent
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stiffness method. The satisfaction of the consistency
condition is a little more complicated than radial return.
The predicted increment in stress is scaled by a scalar
factor r, but at the same time, the elastic strain is
ad justed to take this into account, which in turn changes
the amount of plastic strain contained in the total strain
increment. The constitutive equations are used to relate
the stress and strain increments and this 1is combined
with the equation of the yield surface to give a scalar
function of the factor r which is zero when the scaled
stress increment satisfies the <consistency condition.
A root finding algorithm is then used to find a value
of stress which gives a zero of this function.
Subincrementation has not been used in the present
program. The details of this method and its implementation
are set out more fully in Appendix E.

This method has been selected and developed in order
that a non-linear hardening <curve may be modelled
accurately., In fact, the method "reproduces exactly a
non-linear wuniaxial hardening curve when it is used in
solving problems where a wuniform wuniaxial stress 1is
present. It also provides a way of satisfying plasticity
laws in conjunction with the consistency condition.

This method and the equilibrium solvers selected
above will now be used to solve a finite element problem.
A particular structure will ©be wused for which it 1is
possible to obtain accurate solutions to plasticity
problems which <can then be compared with +the finite

element results.
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7.4 An Example - The Two Bar Structure

The two-bar model is shown in Fig. 7.1. The bars
are assumed to obey the uniaxial constitutive laws as
discussed in sub-section 7.2.2. Solutions for this model
were obtained very accurately by using the computer
program described in Chapter 3. These numerical solutions
were used as a benchmark to test the accuracy and
efficiency of other numerical techniques. The model will
be referred to as the 'ideal model'. In order to test
the finite element solution procedure that has ©been
proposed, the two-bar model was itself modelled by a
finite element mesh. This mesh effectively consisted
of two meshes representing the bars with common nodes
at one end in order to simulate the attachment to the
common block, as shown in Fig. 7.2. The element used
was the 3-noded constant strain triangle., In the example
studied, one bar was selected to be twice the 1length
of the other and the cross-sectional areas of the bars
are equal. This model does not %exactly reproduce the
ideal two-bar model. This is due to the fact that the
axial (y-direction) stresses in the two bars are different
and so the Poisson strains in the perpendicular or x-
direction are different. This induces stresses in the
x-direction in each bar due to the interaction at the
common nodes. The stresses in the x-direction in turn
have corresponding Poisson strains in the y-direction
which changes the y-stress by a small amount. Thus, at
equilibrium, the y-stresses in the finite element model
will be slightly different from those predicted by the

ideal two-bar model.
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A series of tests was used to evaluate the
effectiveness of the methods chosen to solve plasticity
problems. These tests will now be described and the

results presented and discussed.

7.4.1 Results of Numerical Studies

A series of trials was performed using the mesh shown
in Fig. 7.2. Different material properties, numerical
methods, and loading sequences were used in the trials
to test the various methods. Only one material property
was varied between tests. This was the parameter q in
the constitutive equations (3.9) and (3.10) and it was
given values of 2, 7 and 10. This was done because it
was observed that, in general, it is the slope of the
hardening «curve that affects the convergence of the
numerical methods tried. The constitutive laws were
assumed to be normalized according to -equation (3.19)
and the parameter I was set to 0.5. Poisson's Ratio is
required in order to calculate the elastic D-matrix and
its value was set to 0.5. Two equilibrium solvers were
tried: the full Newton-Raphson and the secant Newton
method described by Crisfield (1979). The maximum applied
load was either at a level at which only one bar yields
or at one which caused both bars to yield - the values
selected were, in terms of normalized load, respectively
1.5 and 2.4. (Normalized 1loads are defined such that
a load of unity causes the shorter bar to have a stress
equal to the yield stress.) The loads were either applied
in one step or several equal steps (called, respectively, -

one-shot and incremental 1loading). The average values
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of the y-stress and y-plastic strain in a group of
elements close to the fixed ends of the bars were
calculated and compared with the results from the ideal
two-bar model. The values of stress and strain were taken
from near the fixed ends of the bars so that any effects
due to the interaction of the common nodes at the other
end would be negligible. Values were not taken from the
very end of the meshes so that there were no effects
due to the boundary conditions in the results. The
location of the elements from which the stress and strain
values were taken 1is shown on the meshes in Fig. 7.2.

The results of the tests are presented in Table 7.1-7.3.

7.4.2 Discussion of Results

The results presented in Table 7.1 show that the
errors in y-stress in all of the tests were less than
about 0.37%. The y-stress errors in the elastic finite
element (FE) solution, which are solely due to the Poisson
effects discussed earlier, are about 0.4%. Thus, the
errors in y-stress in the FE solution are mainly due
to Poisson effects. As further evidence of this, it can
be seen from Table 7.1 that the FE values of stress
derived using FE techniques are greater than the
corresponding expected values in the 1long bar, and that
the opposite is true for the shorter bar. This effect
can also be accounted for by Poisson effects. It should
be noted that, if the absolute error in one bar is added
to that in the other, the result is very close to zero,
thus demonstrating that equilibrium.is closely satisfied

by the solutions obtained. The error in y-stress is not
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significantly affected by the method used to obtain the
FE solution. This can be seen by the fact that it did
not make much difference to the results whether Newton
or secant Newton methods were used or whether the loading
sequence was a one-shot or an incremental one.

The CPU times shown in Table 7.2 also indicate that
there 1is no significant difference between results
obtained by the Newton or the secant Newton methods in
terms of total CPU time required to obtain a solution.
Thus, although the secant method took 1less time per
iteration than the Newton method, it took more iterations
to converge to a solution. The one-shot loading sequence
uses less CPU time than the corresponding incremental
sequence. There are, however, exceptions to these general
remarks in the case of q = 10. Here, the one-shot 1loading
sequence using the secant Newton method failed to converge
at all, and, with the same problem, the £full Newton-
Raphson method wused significantly more CPU time than
the incremental sequence. Also, there was a more
significant saving by wusing the secant method over the
Newton method. These differences can, in part, be
explained by the fact that there are relatively large
strains in the bars when q = 10 compared with those at
q = 2 and 7. The program incorporates a 1limit on the
total strain increment that is allowed during any
iteration of the equilibrium solver. This was included
into the ©program in order to ensure that divergence,
which was observed when 1large strain increments were
allowved, does not occur. ' Thus, if the -strains are large

compared with this limit, then this becomes a determining
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factor upon the number of iterations required to reach
the necessary strains. Hence, it can be seen that the
number of iterations for the two numerical methods 1is
about the same and, since the secant method requires
less time per iteration than the Newton method, the former
uses less computer time to obtain a solution than the
latter.

The errors in plastic strain (Table 7.3) are on the
whole 1larger than those in stress. As with stress, the
finite element value 1is less than the theoretical value
in the longer bar and the opposite is true in the shorter
bar., The pattern of error is not as uniform as for stress,
with the errors being greater for larger values of ¢
than for smaller values. However, the errors <can be
explained mostly in terms of Poisson effects - if the
errors 1in stress are substituted into the <constitutive
equations, then the calculated error in plastic strain

is of the same order as that recorded in the table.

7.5 Discussion and Conclusions

In this chapter, methods for solving many dimensional
structural ©problems with nonlinear material behaviour
have been reviewed. A selection of these techniques were
developed and used to solve a simple finite element
problem. The results showed that the chosen techniques
gave accurate results. However, fhe number of 1loading
cycles that may be performed is limited because the method
requires a lot of computational effort.

The particular . equilibrium solvers - "chosen were

Newton-Raphson and Crisfield's accelerated modified
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Newton method. On the whole, the Newton-Raphson method
was more robust, always converging to a solution, whereas
Crisfield's method occasionally failed to converge. It
has been seen that Crisfield's method converges more
slowly than the Newton-Raphson method and this meant
that its use did not afford a significant saving on the
amount of computer time required. However, Crisfield's
method was found to be easy to use and could well provide
savings when used in the solution of problems requiring
larger meshes where the inversion of the stiffness matrix
is much more costly.

These methods are two elasto-plastic methods. They
were used in preference to visco-plastic methods because
these latter were found to be impractical in the present
case. However, visco-plastic methods <could still be
efficient in other situations. The difficulties that
were encountered were due to the nature of the hardening
curve and not to the methods themselves. Their advantage
is that they could provide a uniform solution method
for both plasticity and creep problems and, in addition,
deal with time dependent plasticity or visco-plasticity.
These ©possibilities have been exploited by researchers
at ONERA in France where a computer program has been
developed to use visco-plastic methods in modelling many
aspects of material behaviour, including creep and
plasticity (see for example, Chaboche and Cailletaud,
1986).

The constitutive 1law used in this chapter suffers
from the same problems as its uniaxial precursor; for

example, a lack of ratchetting or relaxation. Also, the
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extension to a multiaxial law in this chapter does not
cater for general 1loading paths and would give an
unrealistic response for many ©paths. The non-linear
kinematic hardening rule of Chapter 4 has a natural
multiaxial extension and will be used in the next chapter.

The method of integrating the constitutive law was
developed by the author to deal with a non-linear
hardening curve in many dimensions. It is an extension
of the wuniaxial method used in Chapter 3 for solving
multibar problems. However, the multiaxial method proved
to be very cumbersome to run. As outlined in Appendix
E, there are many situations that must be dealt with
and it was found that situations can occasionally arise
that are not <covered by these ©procedures and new
procedures must then be found. Notice, however, that
the problem of spurious unloading is a problem for other
methods too.

In the next chapter, the multiaxial non-linear
kinematic hardening rule will be used to look at ways
of incorporating damage and failure into _multiaxial

models.
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Value of Parameter gq in Constitutive Equatlons‘
2 T 10
Bar 1 Bar 2 Bar 1 Bar 2 Bar 1 Bar 2
Procedure
1]
280 -3.335x10 ~3 3.334x1073 -1.410x1072 1.413x1073 -1,213x1073 1.350x1073
(-2.089x10 ~") (1.664x10"") (-8.023x1072) {7.668x1072) {-6.848x1072) (7.382x10"2)
-3 -3 -3 A -3
281 -3.053x10 3.052x10 -1.384x10 1.386x10 Failed to
(-1.913x10 ~") (1.523x10"") {-7.874x1072) 17.521x102) converge
2ND -3.334x10 3 3.33331673 -1.384x10"3 1.391x1073 -1.200%1077 1.309x1073
{-2.089x10 ~) {1.663x10™ ") 1-7.871x10"%) 17.549x1072) (-6.770x10™2) 17.159x1072)
N1 -3.309x10 =3 3.308x1073 -1.426%1073 1.432x1073 -1.027x10™3 1.152x1077
(-2.073x10 ~") (1.651x10™") (-8.111x1072) (7.772x1072) {-5.794%1072) {6.300x10"2)
14D -2.739x10 "3 2.738x1073 -2.038x1073 2.037x1073 -1.790x1073 1.789x10"3
(-3.020x10 ") (2.039x10™") (-2.434x10" ") (1.482x107") {-2.179x10™") t1.252x107")
1AL ~2.713x10 3 2.712x1073 -2.025x2073 2.025x1072 -1.786x1073 1.786x1073
(-2.991x10 ~ ") {2.019x10™") {-2.419x10"") (1.433x107") (-2.175x10" 1) {1,250x10" ")
1ND -2.739x10 3 2.738x103 -2.038x1073 2.037x1073 -1.789x1073 1.789x1073
(-3.020x10 ~") 12.039x10™ ") (-2.438x107") (1.582x10"") (-2.179x10"") (1.252x10"")
NI -2.718x10 73 2.717x1077 -2.012x1073 2.012x1073 -1.763x1073 1.763x1073
(-2.997x10 ~ ) (2.023x107 ') (-2.403x107 ) (1.426x107 ) (-2.147x107 ) (1.234x107 )
KEY TO TABLE
The terminology in the procedure columm of each table is defined as follows: .
First Character 2 - Two bars yielded at maximum load
1 - One bar only yielded at maximum load
Middle Character N - Newton-Raphson method
A - Secant Newton method
Last Character D - Load applied in equal steps
(6 steps for 2 bars ylelded, 3 steps for 1)
I - Load applied in 1 step
Table 7.1 Errors in normalized stress calculated at

maximum load after 1 full load cycle. ValueS'areb

the absolute error (oc—oT) and, in parentheses,

the percentage error 100(GC—0T)/OT, where Uc is

the finite element value and ¢

value.
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Value of parameter g in constitutive equations
Procedure 2 T 10
2AD 31 (0.140) 96 (0.166) 222 (0.159)
2AI 21 (0.161) 180 (0.198) Failed to
converge

2ND 35 (0.248) 106 (0.268) 310 (0.262)
NI 12 (0.267) 7 (0.267) 343 (0.263)
1AD 11 50.096) 11 (0.697) 11 (0.096)
1AT 6 (0.093) 6.5 (0.085) 7 (0.085)
1ND 16 (0.210) 14 (0.220) 14 (0.219)
INI 5 (0.199) 5 (0.195) 5.5 (0.198)

KEYS TO TABLE

The terminology in the.proceduré column of each table
is defined as follows: o '

First Character: 2 - Two bars yielded at maximum locad

1 - One bar only yielded at maximum load
Middle Character: N .- Newton-Raphson method
A - Secant Newton method
D

Last Character: - Load applied in equal steps

(6 steps for 2 bars yielded,
3 steps for 1)

—
\

Load applied in one step

Table 7.2 C.P.U. times (in seconds) required for finite
element calculations over one load cycle.
Numbers in brackets are the C.P.U. times

(in seconds) per iteration.
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Value of Parameter q in Constitutive Equations
Procedure 2 10
Bar 1 Bar 2 Bar 1 Bar 2 Bar 1 Bar 2
_2 -2 -1 -1 -1
2AD -1.586x10 2.682x10 -2.382x10 4,536x10 -3.597x10 2.736
(-1.116) (0.6653) (-1.295) 11.180) (-4.682x10"") (1.761)
-2 -2 -1 -1
2A1 -1.452x10 2.455x10 -2.338x10 - 4.449x10 Failed to
(-1.022) (0.6090) (-1.272) (1.157) converge
-2 -2 -1 ) -1 -1
2ND -1.586x10 2.682x10 . -2.337x10 4.466x10 -9,.13x10 2.50
(-1.116) (0.6652) (-1.271) (1.162) (-1.19) (1.61)
-2 -2 -1 -1 .
NI -1.573x10 2.661x10 -2.407x10 4.598x10 -1.016 2.300
(-1.107) (0.6600) (-1.309) {(1.196) (-1.322) (1.480)
14D - 7.564x1073 - 9.169x107> - 9.11x1073
{1.603) (3.506) (4.25)
11 - 7.473x1073 - 9.113x1073 - 9.09x107>
(1.587) (3.484) (4.25)
1D - 7.545x1073 - 9.170x1073 - 9.11x1073
(1.603) (3.506) (4.25)
NI - 7.487x107> - 9.053x1073 - ' 8.98x107>
(1.590) (3.461) (4,19)
KEY TO TABLE .
The terminology in the procedure column of each table is defined as follows:
First Character: 2 - Two bars yielded at maximum load
1 - One bar only yielded at maximum load
Middle Character: N - Newton-Raphson method
A. - Secant Newton method
Last Character: D - Load applied in equal steps
(6 steps for 2 bars yielded, 3 steps for 1)
I -~ Load applied in 1 step
Table 7.3 Errors in normalized plastic strain calculated at

maximum load after 1 full load cycle. Values are

the absolute error (nc

) and, in parentheses,

percentage error 100(nc-nT)/nT, where ng is the

finite element value and N the accurate value.
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Figure 7.2: Finite element mesh for 2 bar structure.
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CHAPTER 8

THE USE OF DAMAGE AND FAILURE

IN MULTIAXIAL PROBLEMS

8.1 Introduction

Solution methods for non-linear finite element
problems were examined in Chapter 7. Also, the constitu-
tive law of Chapter 3 was extended to a multiaxial law.
In this chapter, the non-linear kinematic hardening rule
will ©be used in its multiaxial form. Methods for
incorporating the effects of damage on deformation into
the multiaxial laws are suggested and tested on two simple

examples.

8.2 A Model of Multiaxial Behaviour

In Chapter 4, a model was proposed for the behaviour
of damaged material. In this model the value of damage
being used in the constitutive equations varied according
to the position of the stress-strain state of the material
on the hysteresis loop. In this section, a proposal is
made as to how the original model may be extended to
multiaxial cases. Sub-sections 8.2.1 and 8.2.2 give the
details of the proposed multiaxial model and 8.2.3 gives

the multiaxial damage evolution law that will be used.

8.2.1 Damage in More Than One Dimension

Damage is often directional in nature; for example
when it represents fissuring or cracking due to fatigue.
A full representation of this directionality would involve

the use of some form of damage tensor (Chaboche, 1981).
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However, there is no accepted form for a damage tensor
and the matter is still the subject of research. Also,
the use of a damége tensor leads to complications when
the effect on constitutive laws 1is considered and this
is not only computationally difficult and expensive,
but is also still a matter for research. In the case
of creep, Leckie and Hayhurst (1974) have found that
a single scalar damage variable which acts isotropically
is adequate for a description of creep rates in many
multiaxial situations. In view of this, it will be assumed
here that fatigue damage is a single scalar variable,
Y , which acts isotropically. Hence the effective stress
hypothesis becomes this: for a damaged material,
oij is replaced by oij /(1-Yv) in the —constitutive
equations.

A further problem is the definition of the points
at which the acting damage is changed. The model 1in
Chapter 4 relied on the change of stress from compression
to tension. Clearly, similar rules based on tension and
compression are not immediately applicable in many
dimensions.

The method proposed is that, for each load ‘cycle,
a fixed direction 1is <chosen. The components of stress
and strain in this direction are then treated as if they
were uniaxial stress and strain in the wuniaxial model
proposed in Chapter 4. Thus, when the stress component
along this direction becomes zero, then the acting damage
is set to the current value of damage. ‘When the strain
component in this direction subsequently returns to the

value it had when the acting damage was changed, then

217



the acting damage is reset to zero. The choice of this
fixed direction is based on the orientation of the plane

in which fissuring is expected to occur.

8.2.2 Damage and the Multiaxial Non-linear Kinematic
Hardening Rule
The multiaxial non-linear kinematic hardening rule

is represented by
2
da, . = §(Zdn..—Ya.. dp , (8.1)
where all the terms are the same as they were defined

in Chapter 4.

When damage is included isotropically in (8.1), it becomes:

da, . 2 Q.
ijl =3¢C dnij—Y T?% dp (8.2)

During a change in the value of the acting damage, the
values of nij and uij must be redefined in order to
maintain constant stress and total strain. Before the

damage change,

-1
€35 " Dijue %k * Mig oo : (8.3)

and afterwards,

’ ~—1 ’ ’,
€55 " Pijie Tk t N4y (8.4)

Continuity of stress and strain over the change is

maintained by setting:

218



€ = & (8.5)

ij ij
7 i3 7 %y
and thus
’ _ ’, _"‘_1 ’,
"5 7815 P55k 9 ke (8.6)
The change in the value of a,. is found as follows.

1]
The effect of the change in damage is to change the size

of the yield and 1imit surfaces in stress space since
they are effectively magnified by a factor of (l-¥) in
the presence of damage, V. Thus, if the material is

yielding after the change then the new value of aij must

satisfy
G. .- a’ .
¢ [_lfwﬂ}*" (8.7)

where f is the yield function. It is assumed that

uij is on the line joining aij to Oij’ hence
a ij = <%j + k(cij—aij) (8.8)

where the scalar A is chosen so that (8.7) is satisfied.
In summary, there are two possibilities that occur when

the acting damage is to be changed:

o, .-q, .
either f [—il—il] > 0 in which case a'ij is set
1-v

according to (8.7) and (8.8),

or
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g, .—0a. .
f {-il——il } £ 0 in which case alij = aij

8.2.3 Multiaxial Damage Evolution

The form proposed here is a generalization of the
uniaxial equation given in Chapter 4 and is taken from
Lemaitre and Chaboche (1985). It does not have widespread
experimental support, but it does wuse some standard
empirical results such as Sines' Criterion for the fatigue
limit in the multiaxial case.

In the case where the damage is isotropic, the damage
evolution rate 1is given by the following series of
equations:

Let

Arp = 3 Hax Max J, (o (£) = 0 ;(£7) (8.9)

where t and t° are parameters describing points within

a stress cycle. Then

,g% _ [1-(1-vyB+ly® (A1, O, oeqM)[ M(Oi§%l—w) }s
(8.10)
where L=
“(Arps Oy Tgq) = 1-a < Alﬁ;Ailoizz) :) (8.11)
AfI(EH) = 0% (1-b6H), (Sines' Criterion) (8.12)
M(EH) = Mo (1-b6H) (8.13)

EH is the average hydrostatic stress over a cycle, and
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OeqM is the maximum value of J2 (Oij ) during cycle.

The coefficients 0*2, dl , b, a, 0, B are the same
as those used in the uniaxial case. It can be seen that
this damage rate law depends exclusively on the maximum

effective stress range.

8.3 An Example - The Multiaxial Behaviour of a Material

Element in Plane Stress

The behaviour of the wuniaxial version of the non-
linear kinematic hardening model has been studied in
detail in Chapter 4. In this section, the behaviour of
the multiaxial version is studied for two selected loading
cases under plane stress conditions. Plane stress is
of interest because much multiaxial fatigue testing is
done under various types of biaxial loading. This includes
tests under tension-torsion conditions, where a
thin-walled tube 1is subjected to combined axial and
torsional strains and where a material element in the
gauge length of the specimen is essentially under plane
stress conditions. Tension-torsion tests are the
motivation for the two linear, fully reversed cyclic
straining paths which have been chosen to test the model.
These straining paths are illustrated in Fig. 8.1. Paths
similar to these have been used by Socie et al. (1985)
in conducting experiments into the tension-torsion
fatigue behaviour of Inconel 718. The first path in Fig.
8.1 consists of cycling the shear strain whilst keeping
the axial ' strain constant and positive. The second

reverses the roles of shear and axial strain: the shear

221



is constant whilst the axial strain is cycled.

However, although many tests‘ have been carried out
on tension-torsion specimens in order to study the
multiaxial fatigue properties of materials, the author
is not aware of any experimental data on the complete
deformation and load histories for these tests. Hence,
there 1is 1little experimental evidence with which to
compare the theoretical predictions of this model.
However, the model also predicts 1lifetime and, since
there is plenty of experimental data on failure wunder
multiaxial conditions, this' provides one way in which
the model may be compared with experiment.

The multiaxial version of the non-linear kinematic
hardening rule cannot be solved explicitly, and numerical
methods have to be employed. One suggested method 1is
described in detail in Appendix B. This is based on the
implicit Euler methods mentioned in Chapter 7 and 1is
used here to study the response of the model to the cyclic
strain paths shown in Fig. 8.1. )

The evolution of fatigue damage was included in the
numerical model and was <calculated according to (8.9-
8.13). The <coefficients required for these equations
were for 316 stainless steel at 20°C and were taken from
the book by Lemaitre and Chaboche (1985). These values
are listed in Table 8.1. The method of using equations
(8.9-8.13) was as follows: during each cycle the daﬁage
was assumed to remain constant. For each cycle its was
assumed that there are two points during the cycle at
which the stress took on an extreme value in terms of

the Von Mises equivalent stress. At one of the extreme
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points of the cycle the value of the stress was stored
and at the other the increase in damage was calculated,
based on the stress values at these two points. The
increase in damage over one <cycle was calculated by

integrating (8.10) for one cycle.

8.3.1 The Orientation of Fissures and its Action on
Deformation

The plane along which fissures would be supposed
to form was determined in advance. In general there are
two possible planes: (i) the plane of maximum shear
strainy; and (ii) the plane perpendicular to the maximum
principal tensile stress. Often cracks or fissures grow
in the plane perpendicular to the direction of maximum
principal tensile stress. However, in the case of 1low
cycle fatigue 1in pure torsion, cracks often propagate
along the maximum shear planes (Brown and Miller, 1979).
It is in general not easy to predict the directions 1in
which cracks will grow and this ™ matter 1is still the
subject of much research. Thus, the fissure planes used
in this investigation 'wefe determined on the basis of
what is observed in 1low cycle tension-torsion fatigue
experiments.

For the strain paths used here it was found that
there was a transient period, lasting a few cycles (less
than 10), during which any mean stresses relaxed to zero.
It was found to be desirable to allow the fissured plane
to affect the deformation only once the stress had relaxed

and the stable cyclic:state had been attained.
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8.3.2 "Example 1 - Cyclic Axial Strain with Constant
Shear Strain

The cyclic strain path for this test is the one shown
in Fig. 8.1(a). In obtaining values of stress for the
damage evolution equations it was assumed that the points
A and B were the extreme points of each cycle. The initial
loading was from the origin to Yy = 0.01, and this produced
a shear stress in the element. A graph of the shear stress
over the first few cycles with respect to the imposed
axial strain is shown in Fig. 8.2. As can be seen, the
shear stress relaxes to zero very quickly. This is 1in
accordance with experimental observations not reported
in the 1literature, although the author 1is not aware
of any experimental data with which the theoretical
results can be directly compared. The fact that the shear
stress relaxes to =zero in this case is a property of
the non-linear kinematic hardening model. The more wusual
bilinear kinematic hardening model shows some relaxation
over the first quarter cycle, but thereafter the shear
stress remains constant at a non-zero level,

This relaxation means that after a few initial cycles
the stresses induced are the same as in a uniaxial push-
pull test. One of the stress-strain hysteresis 1loops
obtained for moderate value of damage is shown in Fig.
8.3. This is similar to those obtained earlier for the
uniaxial version by solving the equations exactly. The
direction of cracking was taken to be perpendicular to
the axial strain since, after the first few cycles, this
is the direction perpendicular to the 'maximum principal

tensile stress and hence is the plane in which cracks

224



grow in uniaxial push-pull tests.

The envelopes of maximum and minimum axial stress
are shown in Fig. 8.4. This illustrates the load drop
in tension due to the increase in damage. The stress
in compression remains relatively stable right up until
failure at about 260 cycles. The differences between
the results obtained in this test and a uniaxial test
for the same axial strain range are very small indeed;

the difference in lifetime amounts to less than 0.17%.

8.3.3 Example 2 - Cyclic Shear Strain with Constant
Axial Strain

The strain path for this test is illustrated in Fig.
8.1(b). As with the previous test, the stress component
not directly affected by the component of strain being
cycled - in this case the axial stress - relaxes to zero
very quickly. The plot of axial stress against shear
strain over the first few cycles is very similar in shape
to the plot in Fig. 8.2. )

The fissure plane in this case is again perpendicular
to the axial direction. This represents crack growth
along planes of maximum shear which is the main type
of crack growth in pure torsion specimens under low cycle
fatigue conditions. Under these conditions cracks also
grow in a plane parallel to the axis. However, the model
of cracking being used here only caters for one fissure
plane to be present in the material at once.

The envelopes of maximum and minimum shear stress
- are shown in Fig. 8.5. In thiss case both the positive

and negative stresses remain constant for most of the
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lifetime of the test. The only variation of the levels
of the envelopes occurs during the first few cycles and
this is due to mean stress relaxation. Thus, in this
case the model predicts that there is no load drop during
the test and that failure occurs suddenly when damage
reaches unity. This behaviour is not what would be
expected since, as damage increases, the stresses would
be expected to decrease. The reason for this is that,
according to the proposed model, the material is assumed
to be wuninfluenced by damage during the stable cyclic
part of the test. The material is assumed only to be
influenced by damage when the stress component across
the assumed fissure plane becomes positive. Examination
of the stress path after the initial period of cycling
shows that the stress across either of the ©planes
perpendicular and parallel to the axis 1is always =zero
and never becomes positive. Hence, according to the rule
for incorporating damage into the <constitutive laws,
the damage does not affect any of the stress-strain

hysteresis loop.

8.3.4 Discussion

This last result is not completely satisfactory since
a load drop would be expected towards the end of the
test, just before failure. The behaviour of the model
is due to the fact that damage is assumed not to influence
deformation because the stress does not become positive
across the fissure plane. A possible way to overcome
this> would be to use a different fissure plane, say at

45° to the axis. The stresses and strains across this
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plane cycle between positive and negative values and
this would give similar results to the first example
which is shown in Fig. 8.4. However, the stress envelopes
in this case are not symmetric about the horizontal axis
and, since the stress states at each end of the cycle
are symmetric, then symmetric shear stress envelopes
would be expected. This symmetry would be preéerved if
two orthogonal <cracking planes, beach inclined at 45°
to the axis, were used. In this <case damage would
influence deformation throughout the test and a
symmetrical 1load drop would be expected. However, there
is a fundamental problem with a symmetrical load drop.
This would imply that the stress range would decay to
zero as the damage increased. According to the damage
evolution equations this 1leads to wunlimited 1life for
the specimen, which is not the case.

It is possible that the assumption that scalar damage
affects all components of stress to the same degree is
a cause of these difficulties. However, the symmetry
of the stress states induced by shear strain cycling
suggests that the stress range will tend towards zero
as damage increases, whatever the configuratibn of
fissures or whatever the nature of the effect of damage
on the stress. These considerations call into question
the validity of using this method to calculate the damage
growth in a specimen under strain controlled tests, since
the damage evolution equations considered here have been
derived from stress controlled tests. This approach
assumes that any stress state encountered during strain

controlled tests 1is -equivalent to the same situation
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in a stress controlled test.

For these reasons, it might be better to use a law
for damage growth that depends on the strain range rather
than the stress range. However, there has apparently
been no work carried out into finding such a growth law
for damage. Chaboche and Lesne (1986) have suggested
one possible formulation, but do not give details on
the exact form the equations would take. Most work in
multiaxial fatigue has been directed towards obtaining
failure criterion (for example, one review is presented
by Brown and Miller, 1973). It is relatively simple to
take a failure criterion and adapt it to a damage based
approach. However, this would say nothing about the actual
deformation or stress drop during the 1life of the
specimen. There is scope, then, for further work in this
area in order to develop a damage growth law which depends
on strain, gives the correct failure criterion, and in
addition predicts the deformation history of a specimen
given the loading history. A possible approach to this
is outlined below (a similar approach is given by Lemaitre
and Chaboche (1985) for the Manson-Coffin criterion).

A multiaxial failure criterion usually depends on
reducing the multiaxial stress or strain state to an
equivalent uniaxial value of stress or strain. Suppose
that the failure criterion is Q, where Q is a function
of either the stress or strain state., The simplest
assumption about damage evolution is that it is 1linear,
and this may be written

(8.14)

v _ 1
)
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When this is integrated between the limits

then (8.14) becomes the original failure criterion
Ne = Q (8.15)

This gives a 1linear damage growth rate whenever Q 1is
constant. Thus, if Q is a function of strain, the maximum
stress would decay linearly to =zero during a strain
controlled cyclic loading test. This particular
formulation is sufficient for predicting lifetimes under
constant stress or strain cycling <conditions, but, as
pointed out by Lemaitre and Chaboche (1985), it is not
sufficient to predict 1lifetimes of tests in which the
controlling quantity is varied during the test. It has
also been pointed out by Chaboche‘(198l) that the damage
growth rate must be a function of both the failure
criterion and of the stress or strain level. He terms
this non-separability. The new damage growth law that

results from this may be written

(8.16)

where & 1is also a function of stress or strain state.
This type of equation 1is sufficient to predict the
remaining 1life of a specimen under a given load, given

its previous history. However, it may not accurately
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model the deformation of the specimen using the concept
of effective stress. However, the predicted remaining
life is wunaffected by any 6ne-to—one transformation of
the damage variable. If it 1is required that the rate
of growth of damage governs the deformation history then
this 1last fact may be used to reproduce the deformation
history without affecting the predictive capabilities
of the damage growth law. The transformation that Lemaitre
and Chaboche (1985) recommend is that ¢ +1 —-(l—w)( B+ 1)

where B is a constant. This leads to a damage growth

law

s _ [~ (1-pbtie
N (-w B (1-a)(148) ©

(8.17)

This 1is basically the law that has been used earlier.
Using this it is possible to give a damage formulation
to any failure criterion expressed in the form Nf = Q.
However, the full power of this formulation may only
be realised if the function o is also specified. It
may be set to a constant, but this leads to a linear
damage cumulation law or Miner's law which has been shown
to be inadequate. Several forms of o have been suggested,
but most of these are based ﬁpon stress. Chaboche and
Lesne (1986) have alsovsuggested a strain based expression
for o which is of the same form as (8.11), but they
do not validate it with experimental evidence.
Nevertheless, there is a multitude of possibilities for

Q. One example would be the Manson-Coffin criterion for

low cycle uniaxial fatigue. This may be written as
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Q = (an/c)”Y (8.18)

where An is the plastic strain range and C and Y are
constants. For multiaxial conditions the uniaxial strain
may be replaced by an equivalent strain. For example,
a particularly simple criterion that is a combination
of two criteria that are used in the ASME design codes
has been proposed recently by Brown and Buckthorpe (1985).
In the case of 1low cycle fatigue, their criterion may

be written
_ -Y
Q = (Eeq/C) (8.19)

where again C and Y are constants (not necessarily the

same as in (8.18)) and Eeq is an equivalent strain

amplitude which is defined as

eeq = A eeq(R) + (1-4) eeq(T) (8.20)
where
1 (e1+€2+4€3)V } '
feq(R) = Twv |5t Y T(I-Tw) (8.21)
€1—-€3
€eq(T) = W (8.22)

where €12€22€3 are the principal strain amplitudes. The
subscripts R and T in these equations refer to the Rankine
and.. Tresca failure criteria respectively. The parameter

A in (8.20) is material dependent and can be written
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[

A =1 - (Eo/Eeq(T)) (8.23)

where €3 is a material constant which can be expressed

€0 = (1/q-1)" 2q ¢ (8.24)

L

where €y is the wuniaxial fatigue 1limit, and q = t/b,
where t is the torsional fatigue strength and b is the
bending fatigue strength,

This last formulation is suitable for strain
controlled tests but is not necessarily valid for stress
controlled tests. For example, it is observed
experimentally that any mean stress has an affect on

life and it is not clear that this formulation adequately

accounts for this.

8.4 Conclusions

A few of the properties of the non-linear kinematic
hardening rule and of a proposed method for incorporating
damage have beeﬁ investigated in this chapter. However,
the models of fissured material and the damage evolution
laws have been shown to be inadequate. Some improvements
have been suggested, but these can only be assessed by
reference to experimental information about how damage
affects deformation. This 1is apparently not available
and so a programme of multiaxial testing is necessary
to provide the information which is required for

improvements to be made to the models.
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Name Value

o] 760.0 MPa

u

a 0.9

B 5.0

= 222 MPa

b 0.00132

M, 1700.0

Table 8.1 Values of constants in damage evolution 1laws,

equations (8.9) - (8.13) for 316 stainless

steel at 20°C.
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a) Shear strain held constant.
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Figure 8.1: Two multiaxial cyclic loading paths used to test
- the model of multiaxial cyclic plastic
behaviour.
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Figure 8.2: Relaxation of shear stress to zero under

axial strain cycling.
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CHAPTER 9

CONCLUSION

9.1 Discussion and Conclusions

The purpose of the work reported here has been to
introduce a continuum damage mechanics model of fatigue
behaviour into a solver for structural problems and to
combine it with a creep model which is already available.
Experience was, therefore, necessary .in carrying out
structural calculations that involved cyclic plasticity
and damage growth. The basis of this is represented by
the work involving multibar model structures. The final
chapters showed how the damage and plasticity concepts
may be introduced into finite element solvers. In parallel
with this has been the study of constitutive models and
their ability to reproduce actual material behaviour.
These too have been developed from uniaxial models into
multiaxial ones.

In a structure, the stress redistributes whenever
a part of it becomes weaker than the remainder. The effect
of this is to decrease the stress acting on the weakened
area and this wusually decreases the rate of further
weakening, allowing the structure to last 1longer than
would be expected if this were not taken into account.
For instance, a stress concentration will tend to be
diminished and this will prolong 1life, as has been
observed for creep (Leckie and Hayhurst, 1974). In the
case of fatigue, it was demonstrated in Chapters 3 and
5 that the magnitude of this effect can be up to 257

of life.
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The cyclic thermal loading used in Chapter 6 was
not originally envisaged for this work, but was introduced
so that the model could be compared with a particular
set of experimental results., It was shown that the model
reproduced the qualitative behaviour observed in the
experiments but did not predict 1life very well. 1In
addition, it was possible to examine the behaviour of
structures under conditions that have not been extensively
studied previously, namely under thermomechanical and
pure thermal 1loading. The results obtained showed that
the presence of a mechanical load can have a significant
effect on the life and mode of failure of the structure
and that creep ductility also plays an important role.

It appears that, for thermal 1loading, the exact
profile of the time-variation of the temperature is
important in determining the stresses that occur in the
structure. This is ©because the slower the variation,
the more stress redistribution that occurs due to creep,
and hence the lower the peak stresses.

The definition of inelastic strain when the magnitude
of the damage changes was not straightforward. The
solution used here was to change the value of the ﬁlastic
strain so as to preserve continuity in stress and total
strain., The author considers this to be an arbitrary
procedure, and that, by wusing a better crack closure
model or by examining the role of cavities and
dislocations, a better solution to this may be found.

Another of the aims of this work has been to examine
the need for carrying out cycle by cycle calculations

in predicting the 1life of components subjected to 1low
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cycle fatigue. The results of Chapter 7 indicate that
this would in general require very powerful computers,
but the multibar calculations show that accuracy may
be maintained even if 'step lengths' of several cycles
are used. This has not been demonstrated for creep-
fatigue, but there is no reason to suppose that similar
methods are not feasible in this case too.

The testing of nonlinear finite element methods
has shown that the full ©Newton-Raphson method is
competitive when compared with an accelerated modified
Newton method. However, the accelerated method was found
to be easy to implement and the amount of computer time
required for one itefation was much less than that for
the Newton-Raphson method. Hence, an accelerated method
could be more economical for solving large, well-behaved
problems.

The integration of the <constitutive 1laws is an
important part of a finite element plasticity solver,
The method developed by the author turned out to be
difficult to use because it was necessary to deal with
many special cases. The implicit method, which was used
in Chapter 8, gave accurate results as long as step
lengths were small enough and it also proved to be
relatively robust.

Of the two constitutive laws that were tried, the
nonlinear kinematic hardening rule was shown to be very
versatile. The other law, a power law hardening curve,
lacked ratchetting and relaxation behaviour and, above
all, did not possess a natural extension to a multiaxial

law. However, nonlinear kinematic hardening possessed
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all these properties and can also be modified to display
other features of material behaviour such as cyclic
hardening. The multiaxial version provides a description
of hardening which does not require special 1loading
conditions or arbitrary rules for linking it with uniaxial

behaviour.

9.2 Future Work

The models which have been developed in this thesis
are at a point at which they may be incorporated, without
much difficulty, into a finite element solver. However,
improvements are needed in the way in which damage 1is
incorporated into the multiaxial constitutive laws. Some
experimental data on how a material behaves before failure
takes place would be required as a guide to how this
‘could be accomplished. Also, a suitable multiaxial failure
criterion and damage growth law must be chosen. However,
it is important that the models constructed in this way
are not so complicated that the calculations required
would be too difficult or expensive.

Although the .ratchetting and relaxation behaviour
of the nonlinear kinematic hardenin9 model is a 'stroﬁg
point in its favour, the magnitude of the effect is much
greater than is observed in experiments. It may be
possible to improve this aspect of the model by allowing
the limit surface to move. This proposal would also enable
the modelling of the initial ratchetting rates as well
as the steady state rates. Another aspect of this 1is
the ratchetting behaviour of- the model when damage 1is

present. This was not studied, but may be important since
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the life of a multibar structure was found to be sensitive
to the magnitude of the compressive stresses that were
generated in damaged and failed bars. The improvement
of the constitutive model may be continued by
incorporating the initial cyclic hardening into the model,
especially if it has a significant effect on 1life as
Chaboche and Cailletaud (1986) claim.

Finally, as remarked in Chapter 7, the combining
of creep and plasticity as different aspects of
viscoplasticity, and thus unifying the solution methods,

should lead to a streamlined solution procedure.
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APPENDIX A

A NUMERICAL METHOD FOR SOLVING PROBLEMS INVOLVING

NON-LINEAR MATERIAL BEHAVIQUR IN MULTIBAR STRUCTURES

A multibar model <consists o0f n parallel uniform
bars. The bars are each fixed at one end and are loaded
at the opposite end so that the axial displaéement, S,
is the same in all the bars. Thé problem to be solved
is that of finding, given s and the constitutive laws
for the bar material, the stresses and strains which
satisfy equilibrium and compatability.

Let the 1length of the bar i be li and its cross-
sectional area be Aj- The solution procedure entails
evaluating the tangent stiffness of the structure and

using this in a Newton-Raphson scheme +to find the

equilibrium state.

A.1 Elastic Solution

Suppose that the total strain in bar i is €, and

the stress 1is gy - The condition of compatability of

displacements gives

s =¢, 1., , fori=1,2,...,n (A.1)

n
P = L A, O, (A.2)

where P is the applied load. If the bars are linear-=-

elastic then
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where E is Young's modulus, and so, by (A.1l),

o; = Es/li

(A.3)

Thus, given s, the stress in each bar may be calculated.

Substitution of (A.3) into (A.2) allows

into the form P = Ks where

K=E Z A,/1,
PR

is the stiffness.

A.2 Elasto-plastic Solution

The solution of the equilibrium

written as the solution of

¥ (s) =0

(A.2) to be put

(A.4)

problem can

(A.5)

An iterative solution to this may be written:

(0)

S = S0

s(ktl) _ (k) oy (KD, K,El k=1,2,..., (A.6)

where sg¢ is the dinitial value of the

where
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displacement and



is the tangent stiffness.
In the <case of a multibar structure, Y may be

written

Yy

P -2 A, O,
A A
i

(A.8)

The stresses may be evaluated using the usual assumption

that

€. = e. +1n. , (A.9)

where e is the elastic and ni the inelastic strain

in bar i. Use of this and (A.l1) allows (A.8) to be written

¥(s) = P - E i Ai(s/li—ni) (A.10)

The tangent stiffness, K is evaluated as follows:

T’

ds . i ds

do. de,

i i

i de. ds
i

I B (A.11)

The derivative required in (A.11) for the constitutive

law of Chapter 3 is

do KE (A.12)
K+qu(o-2ucy..o°)/2K|q‘1
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The derivative for the non-linear kinematic hardening

rule is
do _ A (A.13)
d€ (A/E+1/[C- aoyl])

where

A= exp[-Yu(e-0/E-ny)]
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APPENDIX B

THE NUMERICAL SOLUTION OF THE NON-LINEAR KINEMATIC

HARDENING RULE IN 3-DIMENSIONS

As is usual, the constitutive equations can be

expressed in the form
do = D de (B.1)
where D has the form
ep

D, =D - (Da al D)/(h+a’ D a) (B.2)

D is the elasticity matrix, a is the normal to the yield
surface, and h depends on the hardening rule and can
be derived in the manner now described.

The flow rule for plasticity is
dn = Aa - (B.3)

where the factor A has the form

A = al do/h (B.4)

(By definition if the derivation of Dep is carried out
using A obtained from (B.4), then (B.2) will be

obtained.)

The consistency condition is expressed by

d

Hh

df

df = do + _3-(2 da = O (B.5)

&l
la
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Sincef:f(g—g_) then 3_0-=_-3_0L-=+a and

df = a - (do - da) = O , (B.6)

The hardening law is

a
Q
]

Wit

Cdn - v a dp (B.7)

Substitution from (B.3) and pre-multiplication by a

results in

|
Q.
Q
1]
>
N\
O
o
~
\
<
=
[+V]
o)
N

(B.8)

1
where A = (2a - a/3)?. Using consistency (B.6) and (B.4)

it can be seen that
h =CA” - YA a -2 (B.9)

The numerical solution itself may be performed as
follows. Suppose 0, €, o, and Hﬁ have initial values

ag. , Ei’ Ei’ and li and that an increment of total strain

Ae is given, then at the end of the increment their values

o = 0, Ao ¢4 i i ’ i ‘
become e ( a; + g, Ee’ Q. and De’ and it 1is required

that the following be satisfied:

£(2,) = 0 (B.10)
where I =0 - a ,
g9, =D(g, -0, (B.11)
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b =%2Can-ve, b, (B.12)
and

An. Agi (B.13)

Using (B.13), (B.1l) can be written

g, =D, - n; - ra,) (B.14)

and (B.12) can be rewritten

Chra, + (1- AyA) o, (B.15)

|
o
wiro

1
where A = (23e . 36/3)2 (B.16)

Combining (B.15) and (B.14) it can be shown that

2
L_=0 -3 =D(g_-n,-Aa_)-3Cra_-(1-AyA)a, (B.17)

which may be written as:

2

F = D(g N -ra,)-L -3

nge—(l-kyA)gi =0 (B.18)

In order to solve (B.18), a Newton-Raphson procedure
is employed. F is a function of I and A, i.e. F=F(Z,A).
Suppose that F(Z, XA )#0 and that the solution is
F(Z+AZ, X+AX) = 0, then the following first order

expansion may be obtained:

3F F .
E(Z,A) + 355 X + 33 AL =0 (B.19)

250



or A§=—(g—'2£) [5_42—% AA] (B.20)

£(Z) + 2% « AZ =0 (B.21)

af [3F | '3F _ 9f [9E][™"
AX 3% [gz ] Ey £(Z) - 3% gz F (B.22)
F
Writing n = -%% and H = %? and substituting for

AX in (B.19) from (B.22) gives:

- F f - n (H F)
pp = -HTH|E 4 2 = = (B.23)
I gt oF
z X
The derivatives required in (B.19) are:
3F _ ‘ 2 :
= YA e - (D + 3 C) a, (B.24)
oF 2 da dA
and 3L = -A(D+ 3 C) 5'? -I +>‘Y8—Z_g-i (B.25)
where A _ 2 a - 22 (B.26)
9 3A — P *

and I is the unit matrix.

The above procedure is wvalid for solving the non-
linear kinematic hardening rule in all situations.
However, 1in certain subspaces of general stress space,
such as plane stress, it may be more convenient' to use

a modification of (B.12). The natural way to do this
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is to use a similar modification to the one proposed
by Ziegler (1959) for Prager's hardening rule. In this

case (B.12) becomes

Ao = CAp -ve; Ap (B.27)

Co
The equations (B.19) to (B.23) do not depend on (B.12)

and are not changed by adopting (B.27). Thus it is only
o F oF

necessary to alter the derivatives EON and 33 . They
become:

ok C C B.28

53 = - Da - A(Cg; + (C+y) o) (B.28)
and

oF da A

3T = —-AD sz - I - (C_gi + (C+Y)gi)>\ a—z (B.29)
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APPENDIX C

CREEP AND THERMAL STRAINS IN A MULTIBAR STRUCTURE

C.1 Integration of Creep Strain and Creep Damage

Suppose that the value of creep strain in a parti-

cular bar is R then new value of creep strain is given

by

= Vv. + Ati v (CO]-)

where v is given by (6.2) evaluated at the current value

of stress and At i is given by

g ,
At, = —HaxX (C.2)
1 L]
v E c :
max
where o and v are the maximum absolute values of
max max

stress and creep rate respectively in all the bars, and
c is a constant. It was found tﬁat in general a value
for ¢ of 1 was sufficient to ensure that the time to
fupture did not vary substantially with the size of ¢
although larger values were used since this did not impose
an unacceptable overhead on computer processor time and
made sure that the solutions were reasonably accurate.
The damage was integrated by the same method using the
same value of the time step that was used to integrate

strains.

C.2 The Effect of a Change in Creep Strain on a Structure

In general,- the change in creep strain in a parti-

cular bar is not compatible with the changes taking place
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in the rest of the bars. This incompatibility must be
accommodated by changing the stresses in the bars and
this is done by using the following method. Suppose that
the change in creep strain in bar j is Avj, and that
the change in the external mechanical 1load is AP, then

equilibrium and compatibility require that
AP =Z A, AoO, (C.3)
] J
where Aj is the area of the jth bar, and

Ad

Asj L. , for all j, _ (C.4)

where A§ is the change in displacement common to all
of the bars, and Ej and Qj are the total strain and length
respectively of the jth bar. Since the total strain change
may be broken down into an elastic and a non-elastic
strain change, then, using (C.4), (C.3) can be rewritten

as
AP = T A, (AS/R, - Av,)E (C.5)
J ] J
where it is assumed that the change in non-elastic strain
is all due to the change in creep strain. Equation (C.5)
can be solved for A¢:

AS = (AP + EZAJ.AVJ.)/K (C.6)

where K = E ZAj/Qj. The change in -total strain can then

be found from this change in displacement, from which
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the change in elastic strain, and hence in stress, can
be calculated.

In general, however, since the stresses have changed,
the constitutive 1laws with respect to plasticity will
not now be satisifed. Hence, at this point the change
in plastic strain is calculated and equilibrium satisfied

in the normal way.

C.3 Thermal Strains

Suppose that the <change in temperature in bar j
is A ej, then, assuming that the only change in non-
elastic strain is the change in thermal strain, the change

in stress is given by
Ao, = (AS/%, -aAB.) E C.7
b (/J J) ( )

where a 1is the coefficient of linear thermal expansion.
As in the case of creep strains the effect of the change
in stress on the plastic strains is calculated and

equilibrium satisfied again.
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APPENDIX D

THE ACCELARATED MODIFTED NEWTON-RAPHSON METHOD

The acceleration method used in the finite element
program 1is a two-parameter secant Newton method described
by Crisfield (1979, 1984). In this scheme the displacement
for each iteration is modified in order to increase the
rate of convergence of the modified Newton-Raphson method.
The notation is the same as that used in equations (7.11),
(7.12) and (7.13). The residual force vector after the
addition of the kth displacement increment 1is l{’_(ak )
which will be shortened to E—k' In the modified Newton-

Raphson scheme, the next displacement increment 1is
b3

2 ki1 which is given by

a = K'Y (D.1)

where K is the tangential stiffness matrix calculated
at the ©beginning of the current load step as defined

in equation (7.15). Now define

y (D.2)

The modified displacement increment for the accelerated
scheme is now given by

%
Aa

& ge1 * Bry1fy (D.3)

k+1

where Ak+l and Bk+1 are scalars defined by
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A = -C

k+1 ka1’ Pkl

B = A (1-E

K+1 k+1 41/ Pp1?) — 1

where C D and E are defined by

k+1° “k+1 k+1
T
Cry1 =22 %,
T
Dy = Ba Yy

E Aa" T
k+1 = | 22 k+1 Yy
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APPENDIX E

NUMERICAL SOLUTION OF CONSTITUTIVE EQUATIONS

The numerical solution of the constitutive equations
is ©based on equations (3.9)-(3.10), (7.1)-(7.7) and
(7.17)-(7.18) with the infinitesimal quantities replaced
by finite increments and tensors replaced by vectors
representing the arrays by which they are stored in a
computer for use by a finite element program. For each
iteration during the solution process to find equilibrium
between the internal and the applied forces of a mesh,
a displacement increment is calculated according to
equation (7.13). From this, an increment in total strain

for each element can be found:

Ae =B Aa (E.1)

Using the <constitutive 1laws, a corresponding stress

increment can be calculated by

Ag =D__Ac (E.2)

The value of Dep is the same as that given in equation
(7.18). For an element in which the material has not
yielded Dep is the elastic matrix and the resulting
stress increment 1is the one required. If the material
has yielded and the increments of plastic strain and
of the hardening parameter, a, are calculated from the

stress increment: then, in general, it will be <found

that the consistency condition is not satisfied - 1i.e.
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the stress point ¢ 4+ A0 is not touching the yield
surface. The method used to overcome this in the present
program 1s to scale the stress increment by a scalar
factor r, and to calculate the value of r, call it
L such that ¢ + rCAg satisfies the consistency
condition once o and n have been calculated. Finding
r. is done by expressing the yield function in terms
of the factor r and then by finding the root of this
function which is To:

The construction of the function for which the root
is to be found will now be described. The elastic strain

is assumed to be dependent on the stress and so the

plastic part of the total strain can be written as
An = de - D" AQ (E.3)

The corresponding relationship to equation (7.4) which
gives the increment in the work equivalent plastic strain

is

An, =An: (g—g_)/cy : (E.4)

The change in the position parameter, o, is given by

Ziegler's hardening rule:
A9_=CAﬂe(9_-2)/0y (E.5)
(Compare this with equation (7.6).) In this expression

C is normally the slope of the hardening curve as it

is in equation (7.6). However, this would approximate
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the hardening curve that is given by the constitutive
equations by a tangent. In order to overcome this, C
is calculated to be the slope of the secant which connects
the initial and final points on the hardening curve.
The expression of C must be given in terms of R since
these two points are usually specified in terms of ne.

Thus, C is

n_ + A4n 1/q n 1/
C=A“;]K {[_9_711___3] - [f] q} (E.6)

In this expression, m is derived from Masing's rule and

is equal to 1 on the initial loading of the element but
becomes 2 for the rest of the loading sequence. Using

equation (E.6), equation (E.5) can be written:

n An 1/ n 1/
ba - 5 [{—e—%——e] q'[‘f} q]@‘—”
y

The new values for stress, O + A0 , and position of the
centre of the yield surface, Q’+ Aa , can now be
substituted into equation (7.2) to give the new value
of the yield function. In order to find the value of
r at which consistency 1is satisfied, a Newton—Raphsdn
method is used to find a zero in the yield function which
is expressed as a function of r. The derivative of F

with respect to r is given by the following expressions:

dF  JF da
-d—1'_=§1‘- . [A_O’_-a‘] (E'B)
n, - An ((1-q)/q)
%% = - Eﬁ%— [ —E—;r——s ] [(Q-Q)TD—IAQ](E'E)

(E.9)
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This 1is the background to the method adopted to find
a stress increment in an element given the total strain
increment. There are —certain details of the actual
procedure wused that overcome the problems encountered
when trying to find the zero of the yield function which
will now be discussed.

It is possible that the trial stress increﬁent given
by equation (E.2) produces a stress point O + A0 that
lies inside the yield surface when yielding should be
occurring., In this case, which will be called unloading,
it has been found necessary to move the yield surface
'backwards' to maintain consistency. This situation and
the one in which 0 +A0 1lies outside the yield surface
('loading') are handled by the program in much the same
way. However, there are differences.

In the 1loading case the value of F usually varies
monotonically from negative at r=0 to positive r=1,
Thus, there is a single =zero between r=0 and r=1. The
initial value of r for then Newfon-Raphson scheme 1is
taken as 1 in this  case. If it is the first time the
element has yielded after a reversal of the loads applied
to the structure, then this value for r is inapprdpriate
since the derivative in (E.9) is wundefined in this
situation. In order to find a starting value of r on
first yield, a sequence of values of r is generated and
tried, one at a time, until one gives a positive value
of F. The sequence is produced according to the following

scheme.
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= (r; +7)/8 (E.10)

The program checks before embarking on the Newton-
Raphson algorithm that the <conditions described above
are obtained in each case. Other possible exceptions
occur 1in practice and the program deals with these as
far as possible. The most important of these exceptions
is that where F remains negative for all values of r
less than 1. Here a search is performed to find a value
of r for which F is positive. Once such a value for r
is found, an interval halving algorithm is used to get
close to the root and the Newton-Raphson procedure 1is
then used to complete the process. If the increment of
work equivalent plastic strain is positive, then there
will always be a value of r greater than 1 such that
F >0. If it is not positive, then r 1is taken to be 1
and the increment of & is calculated so that consistency
is satisfied. It is also possible that F at r=0 1is
positive., If the stress point still satisfies consistency
then the <change in o 1is not 1large enough to make a
difference to the numbers stored by the computer and
the program continues with r=0, i.e. no stress increment.

The wunloading case 1is basically the same as the
loading case described above with positive and negative
exchanged. However, there are some differences. In order
to check that a zero of the yield function exists for
r >0, an upper value of r needs to be .tried. In the
loading case this value of r was 1. In the ‘unloading

case, however, r 1is wusually greater than 1. An upper
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value of r is taken to be the value at which the increment
in work equivalent plastic strain is zero. Also, it is
possible there is no value of r >0 for which F<O0., Again,
in this case, r 1is taken to be 1, and an increment in

a found to satisfy consistency.
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DEFORMATION AND RUPTURE OF STRUCTURES
DUE TO COMBINED CYCLIC PLASTICITY AND CREEP

by David A. Lavender
ABSTRACT

The effect of creep-fatigue conditions on structural
components is not completely wunderstood, and so the
prediction of the behaviour and lifetime of such
components 1s often unreliable and inaccurate. One of
the methods proposed to improve the predictions 1is
continuum damage mechanics, which provides a general
description of material behaviour under degrading
conditions. '

An estimate of life is usually based on the initial
behaviour of a component. However, the work of previous
researchers has shown that accurate predictions of the
creep life of structures require that the stress
redistribution due to the growth of damage is taken into
account. In this thesis, this work is extended to fatigue
and the effect of fatigue damage on life and deformation
is studied for multibar model structures.

The non-linear kinematic hardening rule is introduced
‘as a constitutive law for cyclic plasticity that models
many aspects of the cyclic behaviour of metals. Its
properties are studied and it 1is extended to include
the effects of damage on cyclic deformation.

Creep-fatigue 1is studied by combining the models
for fatigue and creep. Using published material data,
the creep-fatigue behaviour of a two bar structure is
studied and the results are compared with some
experimental results.

A study is made of finite element methods for solving
problems involving plasticity and an example problem
is solved. A model for the multiaxial behaviour of damaged
material is proposed and examined for simple cases.

The studies show that stress redistribution has
a significant effect on fatigue life and the qualitative
properties of the wuniaxial models are very close to
experimental observations. However, a lack of suitable
and consistent experimental data on material behaviour
means that the 1lifetime predictions and the multiaxial
models are of uncertain accuracy.



