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ABSTRACT
The limited completeness of the Kepler sample for planets with orbital periods �1 yr leaves
open the possibility that exoplanetary systems may host undetected giant planets. Should such
planets exist, their dynamical interactions with the inner planets may prove vital in sculpting
the final orbital configurations of these systems. Using an N-body code with additional forces
to emulate the effects of a protoplanetary disc, we perform simulations of the assembly of
compact systems of super-Earth-mass planets with unseen giant companions. The simulated
systems are analogous to Kepler-11 or Kepler-32 in that they contain four or five inner super-
Earths, but our systems also contain longer-period giant companions which are unlikely to have
been detected by Kepler. We find that giant companions tend to break widely spaced first-order
mean-motion resonances, allowing the inner planets to migrate into tighter resonances. This
leads to more compact architectures and increases the occurrence rate of Laplace resonant
chains.

Key words: methods: numerical – planets and satellites: dynamical evolution and stability –
planets and satellites: formation – planets and satellites: individual: Kepler-11 – planets and
satellites: individual: Kepler-90.

1 IN T RO D U C T I O N

The recent explosion of results in the field of extrasolar planet de-
tection has revealed several new and distinct populations of planets
that are of great interest from a dynamical perspective. In particular,
the Kepler mission has discovered a multitude of compact systems,
each consisting of five or six planets in the super-Earth to Neptune-
mass regime and all orbiting within 1 au of their host star (see e.g.
Lissauer et al. 2011b; Swift et al. 2013; Quintana et al. 2014). This
class of planets appears to be very common. Both radial velocity
(RV) surveys and the data from the Kepler mission agree in suggest-
ing that �50 per cent of stars host at least one close-in super-Earth
(Chiang & Laughlin 2013). Multiplicity is also very common. The
sixth Kepler data release shows that 1640 (39.3 per cent) of a total
of 4175 Kepler objects of interest are in multiple-planet systems,
with 656 (20.6 per cent) of a total of 3191 candidate systems con-
taining multiple planets (Mullally et al. 2015). These figures are an
increase from the 38.4 and 19.9 per cent reported, respectively, for
these statistics in the previous data release (Burke et al. 2014), and
include perhaps the most extreme example of a compact system
yet: Kepler-90. This system contains seven planets, two of which
are gas giants, the outermost of which orbits its host star at 1.01 au
and has a radius roughly equivalent to that of Jupiter (Cabrera et al.
2014; Schmitt et al. 2014).
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RV surveys have revealed a large population of Jupiter-mass
objects orbiting their stellar hosts exterior to 1 au (see e.g. Marmier
et al. 2013). The Keck survey suggests that between 17–20 per cent
of Sun-like stars could host gas giant planets within 20 au (Cumming
et al. 2008), whilst HARPS finds that 14 per cent of such stars host
a gas giant in an orbit of 10 yr or shorter (Mayor et al. 2011). In
spite of the relatively high incidence of both close-in super-Earths
and gas giants, Kepler-90 represents the only known example of a
system which contains both of these types of planets. This is likely
to be a result of the limited sensitivity of each detection method,
with Kepler having limited completeness exterior to 1 au and RV
surveys being both insensitive to lower mass planets and unable to
perform follow up on dim, distant Kepler targets (see Fischer et al.
2014, for a recent review). It is unlikely that the two populations are
mutually exclusive, and future observational campaigns may shed
light on the overlap between them.

In our previous work (Hands, Alexander & Dehnen 2014) we
considered the possibility of assembling compact systems of super-
Earths via disc-driven (Type I) migration. We found that this method
can reliably produce systems analogous to Kepler-11 or Kepler-32,
albeit with a greater occurrence of mean-motion resonances than in
the observed systems. In this paper we explore the possibility that
some compact systems may contain additional, undetected Jupiter-
mass companions orbiting exterior to the known planets. We run
a suite of numerical simulations of the assembly of such systems.
The premise is that these planets form much further out in the disc
and then migrate inwards in the Type I regime as a result of their
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gravitational interaction with the gas disc. In each simulation we
allow one of the outer embryos to undergo runaway growth, rapidly
accreting gas from the disc and growing exponentially in mass
to become a gas giant. We follow the evolution of these systems
numerically, and investigate the effects of outer giant planets on the
orbital architectures of the observable (inner) planets.

2 N U M E R I C A L M E T H O D

We follow the method of Hands et al. (2014), simulating the mi-
gration of multiple super-Earth mass planets using an N-body in-
tegrator with imposed migration forces. This method is based on
that of Rein & Papaloizou (2009), and imposes an exponential de-
cay of both semimajor axis and eccentricity on each planet, while
simultaneously adding a stochastic forcing component in the r and
θ directions to simulate the effect of disc turbulence. These forces
are controlled by three free parameters: τ , which sets the migra-
tion time-scale of a planet; K, which sets the ratio between the
eccentricity-damping time-scale and the migration time-scale; and
β, which sets the rms strength of the stochastic forces relative to
the gravitational force exerted on each planet by the host star. Note
that τ also scales inversely proportional to the mass of each planet,
meaning that higher mass planets migrate faster, as is expected of
the Type I regime. For the purposes of this study we vary τ between
103.5 and 105.5 yr, K between 101.5 and 102.5 and β between 10−6 and
10−8. A discussion of the physical significance of these parameter
values can be found in Hands et al. (2014). Note that the overall
range of the parameter space is reduced in this work, since in our
previous work we showed that relatively high levels of stochastic
forcing and relatively low values of eccentricity damping led to
almost all compact systems being disrupted during their assembly.

2.1 Runaway gas accretion

In addition to parametrized disc forces, we include a simple pre-
scription for the runaway gas accretion, to simulate the rapid growth
of a protoplanet from a large super-Earth up to a Jupiter-mass giant.
This process is an important part of the core accretion theory of
planet formation (see e.g. Helled et al. 2014, for a recent review),
and begins after a protoplanet has been accreting gas slowly on to
its envelope for some time (typically ∼Myr). Once the envelope
mass becomes comparable to the core mass the envelope contracts
rapidly and matter is accreted on to the planet as fast as local disc
conditions permit, until the planet becomes massive enough to open
a gap in the disc (Pollack et al. 1996).

In our model, the planet initially maintains a constant mass M0 as
it migrates inwards. When it reaches some arbitrary distance from
the star, the planet mass grows as

M = M0 exp

(
t

τg

)
, (1)

where M is the mass of the planet at time t after the growth process
begins, and τ g is a characteristic growth time-scale. This time-
scale naturally varies with the disc parameters in the vicinity of the
planet, with D’Angelo & Lubow (2008) finding from two- and three-
dimensional hydrodynamical simulations that this process takes
several hundreds of orbits. We hence set τ g to 103 yr. The migration
and eccentricity damping forces and stochastic forces for the planet
in question are switched off at the point when runaway growth
begins. While in reality such a planet would likely continue to
migrate inwards in the gap-opening Type II regime, the rate of such

migration is sufficiently slow compared to the Type I regime that the
movement would be negligible compared to the other super-Earths
in the system (e.g. Baruteau et al. 2014).

Since the migration force is turned off once runaway growth
begins, the point at which this process is started essentially sets the
radius at which all giant planets in our models will orbit. We select
1 au as this distance, giving the giants a period of about a year.
This radius was selected due to it being the minimum distance at
which we would expect Kepler to not see the majority of planets,
since at this radius even a small inclination will lead to a planet not
transiting. This means that all of the giant planets in our results orbit
in a small annulus around 1 au, with minor deviations being caused
by dynamical interactions with the other planets during the growth
process.

2.2 Linear mass accretion

As an alternative to the model in which one planet grows exponen-
tially, we test a scenario in which the outermost four planets grow
from low initial masses – approximately equivalent to the masses
of the innermost two planets – to their larger super-Earth masses
as they migrate inwards. This ensures that any behaviour seen in
our simulations with exponential gas accretion are truly down to
the dynamical effect of the giant, and not simply an artefact of our
growth prescription. In this case, the mass of each planet increases
linearly at a rate

dM

dt
= Mfinal − Minitial

5τ
, (2)

where τ is the global migration time-scale for that simulation and
is itself unrelated to the mass of the planet.

2.3 Initial conditions

For the purposes of these simulations, we use a model planetary sys-
tem designed to be analogous to compact systems such as Kepler-11
or Kepler-32. This system consists of six planets that are initially
in the super-Earth to Neptune-mass regime. The masses are based
loosely on those of Kepler-11, and assigned such that the planets
are mass-ordered from lowest mass to highest mass with increas-
ing distance from the star, hence emulating the configuration of
other compact systems. From innermost to outermost, the planets
in this system have initial masses of 1.9, 2.9, 7.3, 8.0, 8.7 and
9.3 M⊕, respectively, and we label them a–f in order of increasing
initial mass/semimajor axis. The jump in mass between the second
and third planets is similar to that observed in Kepler-11 (Lissauer
et al. 2013). Radii are then assigned according to the masses of
the planets, using the power-law Mp/M⊕ = (rp/r⊕)2.06 (Lissauer
et al. 2011a), although planetary radii are used only for detecting
collisions.

The initial positions of the planets are picked in a similar way
to Hands et al. (2014), with the innermost planet being placed just
exterior to the expected snow-line (at 1.5 au) and each subsequent
planet being separated from its neighbours by an oligarchic spacing
argument (e.g. Kokubo & Ida 1998). Pairs of adjacent planets are
separated by a random number of mutual Hill radii (rh), picked
from a normal distribution. Here we use a mean of 28rh with a
standard-deviation of 5rh, selected such that adjacent planets are in
general initially situated exterior to the 2:1 resonance. Initial phases
for each planet are selected at random from a uniform distribution,
and all simulations are co-planar.
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Table 1. Probabilities from the K–S test for each case with a giant planet in comparison to the control case. Each
value represents the probability that the distribution of the position of each planet across all successful runs was
picked from the same underlying distribution.

Planet e, 1 Mjup Planet e, 3 Mjup Planet f, 1 Mjup Planet f, 3 Mjup Linear growth

Planet b 2.16 × 10−4 1.21 × 10−4 5.85 × 10−4 1.69 × 10−4 1.80× 10−8

Planet c 3.03 × 10−5 8.60 × 10−8 8.26 × 10−3 3.12× 10−4 1.20× 10−8

Planet d 2.79× 10−8 3.00 × 10−6 3.74 × 10−3 2.27× 10−5 6.53× 10−5

Planet e N/A N/A 4.88 × 10−4 1.96 × 10−6 8.49× 10−9

Planet f N/A N/A N/A N/A 3.66 × 10−32

2.4 Models

We run six distinct sets of models in total. In the first four we vary
which of the outer two planets undergoes exponential growth into a
giant (planet e or f), and the final mass of the giant (1 or 3 Mjup). In the
fifth set of models, we grow the outermost four planets from 2.93,
3.00, 3.06 and 3.12 M⊕, respectively, to their final masses (7.3, 8.0,
8.7 and 9.3 M⊕, respectively) using the linear growth model. The
final set of models is a control, in which none of the planets grow
into a giant. Each set consists of 1000 individual models, with initial
positions and phases of the planets being varied randomly between
each. Values for each of the three forcing parameters are also picked
randomly and uniformly in log space from the prescribed range.

Each model runs until the innermost planet (planet a) in the
system has reached 0.1 au, chosen for its similarity to the semimajor
axis of the innermost planet in Kepler-11. Models in which planets
collide or a planet is ejected from the system are discarded, as are
the small minority of models in which two planets switch positions.

2.5 Analysis

For each of the sets of models in which a giant planet was formed,
we compare the distribution of the final position of each individual
planet to the control case using a Kolmogorov–Smirnov (K–S) test.
For each planet in each set of models this yields the probability that
the presence of the giant significantly affects the final location of
the planet. The results from this analysis are shown in Table 1.

We also apply a resonance detecting algorithm to each simulation
in order to establish the distribution of mean-motion resonances
between the remaining super-Earth mass planets in the final systems.
Two particles a and b are considered to be in the p: p + q mean-
motion resonance if the resonant argument

ϕ = (p + q)λb − pλa − q�b (3)

librates rather than circulates, where λ = M + � is the mean lon-
gitude, M is the mean anomaly and � is the longitude of pericentre
(Murray & Dermott 1999). We look for evidence of resonant be-
haviour in the last 20 000 yr (200 snapshots) of each simulation. At
each of these snapshots we calculate the period ratio between each
pair of adjacent planets, and then find the nearest rational number
to this ratio in the form p/(p + q). We impose the limit that p, p + q
< 9.1 Equation (3) is then used to calculate the resonant argument
across the last 200 snapshots with these values of p and q. The algo-
rithm looks for evidence of circulation in the sequence of resonant
arguments. If the current sequence has (a) a mean between 3π/4
and 5π/4, (b) a range larger than 5.75 and (c) a standard deviation
larger than 1.25, it is considered to be circulating. Once circulation

1 This limit on the magnitude of p and p + q is imposed to prevent spurious
detection of very weak resonances.

is detected, then the algorithm begins building a new sequence from
the point at which the last one ended, again looking for circulation.
If no circulation is detected within at least the final 5000 yr of the
simulation, the resonant argument is considered to be librating at
the end of the simulation and thus the planets are in resonance.
The definition of libration and circulation used by the algorithm is
necessarily arbitrary and values for all the limits have been tweaked
by hand to avoid false positives (due to the low sampling frequency
of our output snapshots). In all cases the sampling frequency of
the resonant argument is much lower than the orbital frequency of
either planet, but examination of the evolution of several hundred
resonant arguments by eye suggests that this algorithm returns very
few false positives.

3 R ESULTS

The results of the K–S tests comparing the distribution of final
planet positions between the control case and the cases with a giant
are shown in Table 1. Fig. 1 shows exactly how these distributions
compare to the control in cases where planet e or f becomes a giant,
while Fig. 2 illustrates how the presence of a giant affects the final
distribution of mean-motion resonances among the super-Earths. It
is clear from the K–S test results that the presence of a giant planet
during the evolution of compact systems can have a significant
effect on their final structure. Fig. 1 suggests that the effect of a
giant planet generally tends to push the interior super-Earths into
more tightly packed orbits. This figure also illustrates how making
the giant planet more massive amplifies this effect, with planets b
and c being found on tighter orbits in the 3 MJup case than the 1 MJup

case. The reason for this effect is evident from Fig. 2. Compared to
the control case, the cases with giant planets show a lower incidence
of widely spaced resonances (such as 2:1) with a correspondingly
higher incidence of tighter resonances (such as 3:4). This suggests
that the dynamical effect of the giant is to break the interior super-
Earths out of wide resonances, allowing convergent migration to
push them into tighter ones, which naturally results in more tightly
packed orbits. The linear growth model on the other hand appears
to cause a dramatic increase in the occupancy of the 2:3 resonance,
at the expense of both more- and less-tightly packed resonances.
The dynamical reasoning for this is clear: having the outer planets
spend most of the simulation time at lower masses means they
perturb the inner planets to a lesser extent, meaning that once the
interior planets are in the 2:3 resonance, they are unlikely to break
out.

It is worth considering how the incidence of resonances in our
simulations compares to observations. With only one potential ex-
ample of an observed system similar to those we form, this is nat-
urally a difficult prospect. Nevertheless, Cabrera et al. (2014) note
that the three super-Earths in Kepler-90 appear to be close to a 2:3:4
Laplace resonance. A cursory examination of our results shows that
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Figure 1. Comparison between distributions of final semimajor axes of interior super-Earth mass planets in the control case with no giant (blue/solid), the
case with planet e (top row) or f (bottom row) planet becoming a 1 Mjup giant at 1 au (green/dotted) and the case with planet e/f becoming a 3 Mjup giant at 1 au
(red/dashed). The linear growth case is not plotted. The interaction with the giant generally allows the lower mass planets to occupy tighter orbits by breaking
widely spaced resonances between them.

the incidence of this particular resonance chain more than doubles
between the control case and the case with planet f becoming a
1 Mjup planet, being present in 3.5 per cent of the successful runs in
the former case and 8.2 per cent of runs in the latter case. A similar
increase in the occurrence of this resonance chain is seen in the case
where planet e becomes a 1 Mjup planet, with 5.9 per cent of runs
exhibiting this behaviour. This suggests that outer giant compan-
ions preferentially lead to the formation of resonant chains between
super-Earths.

The distribution of the planet neighbouring the giant is always
significantly different than in the control case, but interior planets
are affected to differing extents. For instance, it is clear from Fig. 1
that the orbit of planet c is significantly altered by planet e becoming
a giant, but in the case where planet f becomes a 1 MJup or 3 MJup

giant, the distribution of planet c is altered to a lesser extent, with
the difference to the control distribution being more exaggerated
in the former case. The giants are the same mass and at the same
location in all of these cases, the only difference being the addition
of an extra super-Earth (planet e) when planet f becomes a giant.
This suggests that having an extra super-Earth between a planet and
the giant can act to shield the planet from the dynamical effect of
the giant. The size of this effect depends upon the final mass of the
giant and the position of the perturbed planet relative to the giant,
with larger giants having a more significant effect.

The breakdown of simulation outcomes in Table 2 reveals more
about the effect the presence of a giant has on the evolution of
the super-Earths. Larger giants naturally result in more collisions
and ejections, suggesting that there may be a lower incidence of
compact systems with very high mass outer planets, or at the very
least a trend for fewer super-Earth mass planets in such systems. We
note that the four ejections in the ‘no-giant’ scenario are all caused
by the innermost planet being scattered by its nearest neighbour into

the path of planet c, which is almost four times larger than planet a.
The encounter between planet a and planet c is then sufficient to
push planet a on to a marginally hyperbolic orbit (e ≈ 1.01). We
also note that in a very small minority of cases, the giant planet
does not complete its growth before the simulation ends. However,
this is only a tiny fraction of our runs (≈2 per cent) and the planet
is still generally many times larger than the super-Earths, so we do
not count this as a separate outcome.

4 D I SCUSSI ON

4.1 Implications

Our results suggest that giant companions could affect compact
systems in a similar way to disc turbulence; causing the break-
down of widely spaced mean-motion resonances, and allowing the
formation of tighter ones. This effect was explored in the context
of disc turbulence by Rein (2012). We thus suggest that compact
systems with tighter mean-motion resonances provide better candi-
dates in searches for giant companions, since the tighter resonances
may indicate that a giant has allowed the super-Earths to migrate
through more widely spaced ones. This mechanism may help to ex-
plain the formation of systems such as Kepler-36, the two (known)
planets of which are near to the 7:6 resonance (Carter et al. 2012).
Paardekooper, Rein & Kley (2013) suggested that this may be the
result of turbulence in the disc breaking wide resonances and thus
allowing convergent migration to push the two planets into closer
orbits. We propose that an exterior giant companion could provide
an alternate formation channel for such systems.

Similarly, it seems that the formation of the 2:3:4 Laplace res-
onance is amplified by the presence of a giant planet. This leads
us to believe that systems of known super-Earths exhibiting such a
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Figure 2. Fractions of adjacent pairs of planets that are in each mean-motion resonance at the end of our successful runs. Planets are labelled a–f in order of
increasing semimajor axis. The ‘Other’ bar is a sum over all resonances that contain less than 3 per cent of the total number of pairs. The numbers in the key
show which two adjacent planets are represented by each colour. The simulations represented in each plot are (clockwise from top-left) the control, planet e
becoming a 1 Mjup giant, planet e becoming a 3 Mjup giant, the linear growth model, planet f becoming a 3 Mjup giant and planet f becoming a 1 Mjup giant.
In comparison to the control case, the cases with a giant companion exhibit fewer widely spaced mean-motion resonances, and more tight ones. For instance,
note the relative increase in the occurrence of the 3:4 resonance compared to the 2:3 resonance between planets a and b between the control case and the other
cases. Note also that the scale on the y-axis of the bottom-right plot is different to the others.

Table 2. Outcome types for each set of 1000 runs. S: runs that finished
without a collision or ejection event. S/O: subset of S that finished with no
planets having swapped positions. S/U: subset of S in which some plan-
ets swapped positions. T: number of runs from S that were stopped once
simulation time exceeded 15τ . C: number of runs that ended in a collision
between two planets. E: number of runs that ended in a planetary ejection.

System S S/O S/U T C E

No giant (control) 801 774 27 1 195 4
Planet e, 1 Mjup 760 726 34 0 234 6
Planet e, 3 Mjup 599 568 31 0 360 41
Planet f, 1 Mjup 772 731 41 0 223 5
Planet f, 3 Mjup 705 660 45 1 279 16
Linear growth 912 912 0 1 87 1

resonant configuration would also be good candidates in follow-up
searches for giant companions.

We also note that a more realistic approach may be some combi-
nation of our linear and runaway growth models, allowing all of the
super-Earths to grow linearly to their final masses before allowing
one of them to undergo runaway growth. Whilst the linear growth
scenario cannot explain the formation of extremely tightly packed
systems such as Kepler-36, it does allow push a significant number
of planetary pairs interior to the 2:1 resonance relative to the con-
trol case. The combination of this effect with the later perturbation
caused by a giant could lead to even higher occupation of very tight
resonances.

4.2 Observability

As we hypothesize that the giant planets in our simulations would
not be seen by Kepler, we now estimate what fraction of these
planets would actually be detectable. Since our simulations are
all co-planar (by construction), we have to make some assumption
regarding the inclination of the giant relative to the rest of the system
in order to say whether or not the giant will transit. Fabrycky et al.
(2014) found by comparing transit impact parameters of adjacent
planets in compact systems that the mutual inclinations were in the
range 1◦–2.◦2. We assume that this distribution extends to our giants
also, and therefore assign random inclinations to our giants from a
Gaussian distribution with a mean of 1.◦6 and a standard deviation of
0.◦6, such that the entire range suggested by Fabrycky et al. (2014)
is included within 1σ of the mean. The distribution is truncated at
0◦ and 3.◦2. We assume that the giant in each simulation transits if

sin i ≤ Rp + R∗
a

, (4)

where i is the randomly assigned inclination, Rp is the planetary
radius, R∗ is the stellar radius (set to R	) and a is the semimajor
axis of the planetary orbit. This condition ensures that the giant
will be transiting regardless of the longitude of periapsis. Note that
since we halt migration once the runaway growth phase begins,
all of the giants in our models are at almost exactly 1 au, apart
from small deviations caused by dynamical interactions with the
other planets. Nevertheless, for the sake of self-consistency, we
take the semimajor axes of the giants straight from our models,
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Table 3. Percentage of giants found to be detectable by transit using our
simplified transit model.

Planet e, 1 Mjup Planet e, 3 Mjup Planet f, 1 Mjup Planet f, 3 Mjup

0.96 per cent 0.88 per cent 1.23 per cent 0.91 per cent

assign a random inclination, and then determine if they will transit
using the above criterion. The results of this test are contained in
Table 3. It is clear that the vast majority (≈99 per cent) of these
giant companions would be undetectable via transit even with this
rather modest inclination distribution. Note however that two factors
could change the frequency of transits predicted by this model. First,
some of the planets excluded by this simple model as non-transiting
would in fact be visible as transits assuming that their longitude
of periapsis was such that they passed between the star and the
line of sight. Secondly, the radius Rp assigned to our 1 Mjup giants
using the power law from section 2.3 is approximately 1.5 times
larger than the actual radius of Jupiter. Hence a small minority of
planets that would nominally appear as grazing transits would not
in fact be visible. In spite of these factors, we feel that these figures
represent a good estimate of what percentage of giant companions
would be visible to transit studies, and suggest that there could be
a not-insignificant number of Kepler systems harbouring unseen
giants.

Using the same inclination distribution, we can also establish if
such giants would be detectable by RV surveys. We use equation
(1) from Fischer et al. (2014) to calculate radial velocities for a
planets. An example distribution can be seen in Fig. 3: the low
range of inclinations gives only a small spread in reflex velocities,
and typical signals are �25 m s−1. For bright stars such a signal is
easily detectable via RV observations (see e.g. Mayor et al. 2011).
However, the majority of Kepler host stars are much too faint for RV
follow-up, and detection would be further hindered by the relatively
long time-scales (�1 yr) on which the RV signal oscillates. With
a dedicated campaign it may be possible to detect ‘hidden giants’
around the brightest Kepler host stars, but otherwise they are likely
to remain undetected by the current generation of planet-hunting
facilities.

Figure 3. Example RV distribution for our models where planet e becomes
a 1 Mjup giant.

4.3 Limitations

There are a number of necessary limitations imposed upon these
models in order to reduce the vast parameter space to something
computationally viable. The majority of these, such as the arbitrary
stopping criterion and an overprediction of the abundance of MMRs,
are discussed by Hands et al. (2014). However, the introduction of
the runaway growth prescription brings about several more param-
eters worth consideration. The growth time-scale τ g and final mass
of a planet undergoing runaway growth depend sensitively upon the
structure and composition of the disc and will naturally vary from
case-to-case in reality. A full exploration of the effect that changing
these parameters has is beyond the scope of this study, and we be-
lieve 103 yr to be a reasonable estimate of the time-scale at the small
orbital radii considered in this proof-of-concept study. The choice
of radius at which runaway growth begins (1 au) is also arbitrary,
and in this case was chosen to be the minimum radius at which a
giant planet might be expected to exist without being detected by
Kepler as a transiting planet. Thus the perturbations caused by the
giants in our models are the maximum effect that one might expect
to see in a tightly packed Kepler system, and any real giants might
have a less significant impact. Future work could concentrate on
how the degree of perturbation changes as the spacing between the
giant and the star is changed.

5 SU M M A RY

In this paper we have investigated the dynamical impact of a gi-
ant companion on the formation of tightly packed planetary sys-
tems. A giant planet can break widely spaced mean-motion res-
onances and push compact systems into tighter ones, leading to
more tightly packed orbits and to the formation of tight Laplace-
resonant chains. The magnitude of this effect is dependent upon
which of the planets becomes a giant, with planets that are nearer
to the giant being more strongly perturbed, and also increases
for more massive giant planets. We suggest that this could pro-
vide an alternate channel for the assembly of Kepler systems that
are close to tight resonances, and that in turn these systems may
prove to be promising candidates in searches for far-out giant
companions.
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