New Methods for Carbohydrate Annulation

Thesis submitted for the degree of
Doctor of Philosophy
at the University of Leicester
by

Andrew Joseph Wood
Department of Chemistry
University of Leicester

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U529364
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

STATEMENT

The accompanying thesis submitted for the degree of Ph.D. entitled "New Methods for Carbohydrate Annulation" is based on work conducted by the author in the Department of Chemistry at the University of Leicester between the period October 1993 to September 1996.

All the work recorded in this thesis is original unless otherwise acknowledged in the text or by references. None of the work has been submitted for another degree in this or any other university

Signed:
 Date: .. .22nd October 1996

Parts of this work have been published as a communication.
The Synthesis and X-Ray Crystal Structure of a Cyclopentaannulated Sugar; The First Example of an Intramolecular Aldol Cyclopentaannulation in Carbohydrate Chemistry, A. J.

Wood, P. R. Jenkins, J. Fawcett, D. R. Russell, J. Chem. Soc., Chem. Commun., 1995, 1567.

New Methods for Carbohydrate Annulation

by Andrew Joseph Wood

ABSTRACT
Chapter 1 describes the synthesis of a 1,4-dicarbonyl compound 1 which was constructed by a sequence involving opening of a protected glucose epoxide with allyl magnesium chloride, alkylation and Wacker oxidation; the 1,4 -dicarbonyl compound 1 readily underwent cyclisation under basic conditions to produce the cyclopentaannulated sugar derivative 2. Treatment of the cyclopentaannulated sugar derivative with N bromosuccinimide and subsequent treatment with activated zinc completed the fragmentation of 2 to furnish the cyclopentanes 3.

1

2

3

Chapter 2 describes the reduction of 2 which furnished a mixture of allylic alcohols 4 in a ratio of 8:1 in favour of either isomer depending on the conditions and reagents employed. The application of a Stork silyl methylene radical cyclisation of the α-cyclopentaannulated derivative led to a $2: 1$ mixture of trans and cis fused tricyclic ring systems. Treatment of the β-allylic cyclopentaannulated derivative, however, led to a single cis-fused product 5. This is in contrast to previous examples which show a mixture of cis and trans-fused 6,5-ring systems.

Chapter 3 describes the continuation of work in the Jenkins group directed towards the synthesis of taxanes from glucose. A model study was undertaken to show the viability of a stepwise diene synthesis utilising selenium chemistry. This succesful model study showed that an enone to diene conversion was possible. The application of this methodology to the C-ring synthon 6 produced 7 , the most advanced intermediate to date, as a single isomer.

6

7

ACKNOWLEDGEMENTS

My gratitude firstly goes to my supervisor, Paul Jenkins, for his advice, encouragement and guidance over the past three years. I am also grateful to Pharmachemie BV Holland for their support.

My fellow students and the staff of the department have all helped to make Leicester an enjoyable and memorable place to be in. My thanks in particular go to the postdoctoral workers Andrew, Claire and Gary, and group members Sam, Lucy and Michelle. I also wish to thank Oliver Howarth for the n.O.e. work, J. Fawcett for the X-Ray Crystallographic work and Mick Lee for his technical knowledge and prowess. Special thanks are also due to Jason Grech and Gary Corlett with whom I shared a house and numerous hours of nonsensical conversation.

My parents and family have been tireless in their optimism and support throughout the period of my study, and to them I am most grateful.

Lastly, I would like to thank my wife, Sally, for all her love, help and encouragement, especially over the final three months; to her I dedicate this thesis.

CONTENTS

CHAPTER 1 THE CONVERSION OF CARBOHYDRATE DERIVATIVES INTO FUNCTIONALISED CYCLOPENTANES

Carbocyles from Carbohydrates 1
The Conversion of Carbohydrate Derivatives into
Functionalised Cyclopentanes
Carbanion Cyclisations 3
Enolate Carbanions: S-type Conversions 4
Acylanion Equivalent: F-type Conversion 5
Aldol and Aldol-like Reactions: F-type Conversions 6
Aldol and Aldol-like Reactions: S-type Conversions 10
Phosphonate Stabilised Species: F-type Conversion 10
Nitrogen Stabilised Species: S-type Conversion 11
New S-type Sugar Annulations 11
Work Carried Out at Leicester 13
Synthesis of Sugar Epoxides 13
The Reaction of Grignard Reagents with Epoxy Sugars 14
Carbohydrate to Chiral Cyclopentane 22

CHAPTER 2 RADICAL REACTIONS OF CARBOHYDRATE DERIVATIVES

Radical Reactions of Carbohydrate Derivatives 26
F-type Cyclisations 26
S-type Cyclisations 28
Stork Silyl Methylene Radical Cyclisation 30
Applications of the Stork Silyl Methylene Radical Cyclisation in
Carbohydrate Chemistry 31
Previous Work at Leicester 32
Radical Cyclisations of a Cyclopentaannulated Derivative 34
Future Work 39
CHAPTER 3 PROGRESS TOWARDS THE SYNTHESIS OF TAXOL FROMAN ANNULATED CARBOHYDRATE
Taxol - Introduction 4.1
Anti-Cancer Activity of Taxol 41
The Semi-Synthesis of Taxol 45
The Total Synthesis of Taxol - Nicolaou 50
Construction of the ABC Ring Skeleton of Taxol 52
The Total Synthesis of Taxol - Holton 56
The Total Synthesis of Taxol - Danishefsky 62
Previous Work at Leicester 67
Chiral Taxoids from Glucose 69
Construction of the Diene 72
Recent Approaches Towards the Diene Construction 75
Future Work 81
CHAPTER 4 EXPERIMENTAL
General Experimental 84
Experimental - Chapter 1 85
Experimental-Chapter 2 108
Experimental - Chapter 3 130
APPENDIX X-RAY CRYSTALLOGRAPHY DATA 160
REFERENCES 169

ABBREVIATIONS

10-DAB III
Ac
AIBN
BOM
CI
DBN
DBU
DMAP
DMF
DMPU

EI

ESR
FAB
KHMDS
LDA
LTMP
mCPBA
NBS
nBuLi
NMR
n.O.e.

PCC
PPTS
${ }^{\mathrm{s} B u L i}$
$\mathrm{SitBuMe}_{2}$
TASF
TBPS

10-deacetyl baccatin III
acetate
α, α^{\prime}-azoisobutyronitrile
benzyloxymethyl
chemical ionisation
1,5-diazabicyclo[4.3.0]non-5-ene
1,8-diazabicylo(5.4.0.)undec-7-ene
4-dimethylaminopyridine
N, N-dimethylformide
1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone
electrical ionisation
electron spin resonance
fast atom bombardment
potassium hexamthyldisilazide
lithium diisopropylamide
lithium 2,2,6,6-tetramethylpiperidide
meta-chloroperbenzoic acid
N -bromosuccinimide
normal-butyllithium
nuclear magnetic resonance
nuclear Overhauser effect
pyridinium chlorochromate
pyridinium para-toluene-sulphonate
secondary-butyllithium
tertiary butyldimethylsilyl
tris(diethylamino)sulphonium difluorotrimethyl silicate
tertiary butyldiphenylsilyl

${ }^{\text {tBuLi }}$	tertiary buyllithium
TES	triethylsilyl
TF	trifluoromethane sulphonyl
THF	tetrahydrofuran
TMSCl	trimethylsilyl chloride
TPAP	tetrapropylammonium peruthenate

Chapter 1

THE CONVERSION OF CARBOHYDRATE DERIVATIVES INTO FUNCTIONALISED CYCLOPENTANES

CARBOCYCLES FROM CARBOHYDRATES

Carbocyclic molecules are widespread in nature and as a consequence methods for the preparation of rings are the cornerstones of the organic synthesis of natural products. In recent years the specific synthesis of single enantiomers of target molecules has become the standard by which all syntheses are judged. The synthesis of chiral molecules can be achieved in principle by modifying a chiral starting material or using a chiral reagent. Carbohydrates seem an obvious choice as they are a cheap and readily available replenishable source of chiral carbon compounds. They are also available in a variety of forms: cyclic, acyclic, varying chain lengths and oxidation states; they contain a plethora of functional, stereochemical and conformational features which render themselves susceptible to chemical exploitation. The synthesis of natural products from carbohydrates has become much more prevalent in recent years including their use in the synthesis of taxane natural products ${ }^{1}$ (See Chapter 3).

The key to the use of carbohydrates in synthesis is to discover a fragment of the target molecule which can be prepared from a carbohydrate. This fragment has been termed a chiron by Hanessian. ${ }^{2}$ Scheme 1 illustrates the concept, the target molecule 1 may be broken down into chirons \mathbf{S}, \mathbf{R} and \mathbf{Q}. The chiron \mathbf{S} has 6 carbon atoms with substituents A, B and C, these 6 carbon atoms could be derived from a sugar 2 where A, B and C are usually oxygen substituents. The sugar 2 is termed a chiral template and much of the chirality of the target molecule is gained from this compound.

Scheme 1

The first rational conversion of a carbohydrate to carbocycle was carried out by Fischer in 1948. ${ }^{3}$ The carbohydrate derivative 3 was converted into the cyclohexane analogue 4 via a base catalysed intramolecular aldol-like cyclisation (Scheme 2).

Scheme 2

Ferrier was also instrumental in the conversion of carbohydrates to carbocycles when in 1979 he published a convenient procedure for converting carbohydrate derivatives into cyclohexanone analogues. ${ }^{4}$ The key step was an hydroxymercuration of the alkene 5 by treatment with mercury(II) chloride in refluxing aqueous acetone. The unstable hemiacetal 6 loses methanol to afford the dicarbonyl compound 7 which then undergoes an aldol-like cyclisation to give the cyclohexanone 8 (Scheme 3).

Scheme 3

A landmark in the use of carbohydrates in the synthesis of non-carbohydrate natural products was shown by Stork in his synthesis of prostaglandin $F_{2 \alpha} 11$ by chiral transfer from Dglucose (Scheme 4). ${ }^{5}$ The key step in the synthesis is an $\mathrm{S}_{\mathrm{N}} 2$-like displacement of the tosylate by the nitrile stabilised anion of $\mathbf{9}$ to give the chiral cyclopentane $\mathbf{1 0}$.

In the example by Ferrier, Scheme 3, all 6 carbon atoms of the sugar are incorporated into the cyclohexanone ring whereas in the example by Stork, Scheme 4, all 6 carbon atoms from D-glucose are incorporated into the molecule but only 3 are contained in the carbocycle. This emphasises the two discrete methods of carbohydrate to carbocycle conversion. In the following literature review those reactions in which all the sugar atoms of the carbocycle are derived from the sugar will be classified as F-type reactions. Those reactions in which some of the carbons making up the carbocycle are derived from a sugar will be classified as S-type reactions.

THE CONVERSION OF CARBOHYDRATE DERIVATIVES

 INTO FUNCTIONALISED CYCLOPENTANES
Carbanion Cyclisations

In the conversion of carbohydrates to carbocycles the use of intramolecular nucleophilic displacement by carbanions or carbanion equivalents is the most popular pathway taken by synthetic chemists. The carbanions are generated most commonly by proton abstraction α
to a number of different groups e.g. carbonyl groups (enolate formation), phosphonate groups and nitro groups.

Enolate Carbanions: S-type Conversions

Early attempts to obtain cyclopentane derivatives from carbohydrate derived precursors using an enolate and intramolecular $\mathrm{S}_{\mathrm{N}} 2$ displacement met with limited success. The Dglucofuranose derivative $\mathbf{1 2}$ afforded the bicyclic ketone $\mathbf{1 3}$ (or its isomer) on treatment with DBU in only 34% yield, the major product was the furan 14 in 65% yield ${ }^{6}$ (Scheme 5).

Ohrui and Kuzuhara, ${ }^{7}$ as part of their synthesis of $(+)$-brefeldin A 18, the biologically active macrocyclic lactone, treated tosylate 15 with lithium hexamethyldisilazide to give the bicyclic product 16 which was then hydrolysed to the cyclopentane 17 , the functionality and stereochemistry of which is congruous with that of $(+)$-brefeldin A 18 (Scheme 6).

In the stereocontrolled synthesis of polycyclic ring systems developed by Fraser-Reid, ${ }^{8}$ the cis-fused oxadecalin derivative 19 was treated with potassium hexamethyldisilazide to effect the conversion to the tricyclic trichothecene derivative $\mathbf{2 0}$ which was isolated as a single diastereoisomer (Scheme 7). The cis-fused system is conformationally mobile and thus facilitates the cyclopentane ring formation by an intramolecular nucleophilic displacement of the tosylate anion.

Scheme 7

Acylanion Equivalent: F-type Conversion

Carbanions derived from dithianes can also be used in the synthesis of cyclopentane rings. ${ }^{9}$
On treatment with n-butyllithium compound 21 was converted into the cyclopentane 22 (Scheme 8).

Scheme 8

Aldol and Aldol-like Reactions: F-type Conversions

This class of reactions concerns the formation of cyclopentane derivatives from intramolecular nucleophilic attack by enolate, or their equivalents, at aldehyde, ketone, or ester carbonyl groups. The required enolates are most commonly generated by deprotonation of the appropriate dicarbonyl compound. The ring forming step is a 5 -exo-trig type process ${ }^{10}$ and in most cases the resulting β-hydroxy ketones undergo dehydration to the more thermodynamically favoured enones. Moffatt published the first synthesis of a cyclopentane from a carbohydrate derivative some 30 years after the first cyclohexane counterpart. ${ }^{11} \mathrm{He}$ successfully converted the α-D-ribo-hexofuranos-3-ulose derivative 23 into the unsaturated glycoside 24 which was then hydrolysed into the 1,4 -dicarbonyl derivative 25 . The enone 26 was obtained on treatment of 25 with neutral alumina at 100 $120^{\circ} \mathrm{C}$. This was then transformed into the antibiotic pentomycin I27 (Scheme 9).

Scheme 9

Achab and Das ${ }^{12 a-c}$ obtained the potential prostaglandin E_{2} precursor 29 by cyclisation of the keto-aldehyde 28 (Scheme 10).

28

29

Scheme 10

Umani-Ronchi experienced difficulty in effecting aldol cyclisation of his keto-aldehyde $\mathbf{3 0}$ derived from diacetone glucose, but found that barium hydroxide in methanol effected cyclisation to give the enone 31 together with appreciable amounts of the corresponding methoxy enone 32 and its enantiomer ${ }^{13}$ (Scheme 11).

The only known example of a 1,6 -dicarbonyl cyclisation from a carbohydrate derived compound came from Ferrier. ${ }^{14}$ A cyclohexanone derivative 33 obtained from α-Dglucopyranoside was the source of the cyclohexene 34 and hence the dicarbonyl compound
35. Aldol cyclisation of this dialdehyde using pyrrolidinium acetate in benzene then gave the unsaturated aldehyde 36 (Scheme 12).

Scheme 12

Klemer and Kohla ${ }^{15}$ treated 1,5 -anhydro-2,3- O-benzylidene- β-D-ribofuranose with LDA presumably forming the carbanion 37 enolate 38 and eventually β-hydroxyketone 39 (Scheme 13).

Scheme 13

A novel kind of cyclisation occurred when the α-iodolactone 40 was treated with lithium iodide, the resulting enolate attacking the aldehyde to give the cyclopentane 41 , reduction of which produced the triol 42 (Scheme 14). ${ }^{16}$ This cyclisation is thought to occur via the proposed conformation 43.

Scheme 14

Aldol and Aldol-like Reactions: S-type Conversions

There are few examples of the S-type conversions of carbohydrates into functionalised cyclopentanes. Mann, however, successfully completed the Dieckmann cyclisation of the diester 44 into the keto-esters 45 (Scheme 15). ${ }^{17}$ This method was later used in the synthesis of prostacyclin and carbocyclin analogues. ${ }^{18}$

Scheme 15

Phosphonate Stabilised Species: F-Type Conversions

Reactions involving aldol-like cyclisation of carbanions which are stabilised both by neighbouring phosphonate and carbonyl groups have been used in the enantioselective synthesis of cyclopentane derivatives from carbohydrates. Lim and Marquez ${ }^{19}$ used the lactone $\mathbf{4 6}$ which was treated with lithium dimethylphosphonate and then sodium methoxide in methanol to give the ring opened alcohol which was then oxidised using the Collins' reagent to the dicarbonyl 47. Cyclisation was effected by heating with potassium carbonate and 18 -crown-6 in toluene to give the cyclopentanone 48 (Scheme 16).

Scheme 16

Similar syntheses have been undertaken by other groups where the intermediate compounds to be cyclised have all been of the same structural type. ${ }^{20}$

Nitrogen Stabilised Species: S-type Conversion

Torii started with nitrofuranose 49 which was treated with sodium periodate. The resultant open chain aldehyde $\mathbf{5 0}$ cyclised upon treatment with triethylamine to give a mixture of nitrocyclopentanols 51 , which were then converted into the enone prostaglandin synthon 52 (Scheme 17). ${ }^{21}$

Scheme 17

NEW S-TYPE SUGAR ANNULATIONS

The iridoid natural products are a huge class of structures consisting mostly of cyclopentaannulated sugars. ${ }^{22}$ Concise, simple methods for the cyclopentaannulation of sugar derivatives would consequently have great potential in the synthesis of iridoids and
other targets. Scheme 18 shows a general structure for a cyclopentaannulated sugar in the highlighted box and its relationship to 4 iridoidal structures. Two of the sugar carbons are contained in the five-membered ring and the five-six-ring junction is almost always cis. Clearly an S-type synthesis is required where only two of the sugar carbons end up in the five-membered ring and both the sugar and the cyclopentane are in the iridoid target. In fact a definite class of S -type reactions is required here in which the sugar is cyclopentaannulated.

To date the synthesis of cyclopentaannulated sugars has been achieved most commonly by using radical reactions which will be covered in Chapter 2. Our aim was to develop a simple method for the cyclopentaannulation of a glucose derivative and to fragment the sugar to leave a chiral cyclopentane.

Loganin

Gyrinidone

Iridodial

Nepetalactone

Scheme 18

Work Carried Out at Leicester

The starting point for our work was the protection of methyl- α-D-glucopyranoside $\mathbf{5 3}$ by reaction with benzaldehyde dimethylacetal to afford the diol $54{ }^{23}$ (Scheme 19).

Scheme 19

Synthesis of Sugar Epoxides

The next step was the preparation of the glucose-2,3 epoxides. Treatment of the diol 54 with p-toluenesulphonyl chloride and triethylamine gave the selectively tosylated product 55. ${ }^{24}$ This was then treated with sodium hydride to yield the epoxide $56{ }^{25}$ (Scheme 20).

Scheme 20

The intramolecular epoxidation involves an $\mathrm{S}_{\mathrm{N}} 2$-like reaction where the tosylate group and the alkoxide anion must be anti-periplanar leading to inversion of configuration at $\mathbf{C}-2$. In structure 55 the tosylate and alkoxide anion are diequatorial and the trans-ring junction prevents ring flipping to the alternative chair conformation. The trans-diaxial arrangement of the tosylate and alkoxide anion is achieved through the adoption of a twist boat conformation 55a (Scheme 21).

Scheme 21

The isomeric epoxide 58 was prepared by converting the diol 54 into the dimesylate 57 , by reaction with methanesulphonyl chloride (Scheme 22). ${ }^{26}$

Treatment of the dimesylate 57 with sodium methoxide selectively deprotected the $\mathrm{C}-2$ position leaving the mesylate and alkoxide anion diequatorially arranged. The twist boat confirmation 57a was adopted to give the transdiaxial arrangement required for the $\mathrm{S}_{\mathrm{N}} 2$-like displacement, yielding the epoxide $58{ }^{26}$ (Scheme 23).

Scheme 23

The Reaction of Grignard Reagents with Epoxy Sugars

The next step in the synthesis required the selective opening of the epoxide with Grignard reagents. In order to understand the reaction of a Grignard reagent with an epoxide we first
need to consider the Schlenk equilibrium ${ }^{27}$ (Scheme 24). The Grignard reagent, allylmagnesium chloride, is in equilibrium with diallylmagnesium and magnesium chloride.

$\mathbf{2} \mathrm{CH}_{2} \mathbf{C H C H}_{2} \mathbf{M g C l} \Longrightarrow\left(\mathrm{CH}_{2} \mathbf{C H C H}_{2}\right)_{2} \mathbf{M g}+\mathbf{M g C l}_{2}$

Scheme 24

Co-ordination of the Lewis acid MgCl_{2} to the epoxide 58a followed by an $\mathrm{S}_{\mathrm{N}} 2$ displacement at C-2 by allylmagnesium chloride or diallylmagnesium gives the trans-diaxial opened alcohol 59a. ${ }^{28}$ The analogous alcohol $\mathbf{5 9 b}^{28}$ was obtained using 2-methyl-2propenylmagnesium chloride; the chloride ion is not a strong enough nucleophile to cleave the epoxide (Scheme 25).

Scheme 25

The use of bromo-Grignard reagents results in a different product. ${ }^{29}$ The MgBr_{2} again coordinates to the epoxide $\mathbf{5 8 b}$ but the bromide ion is a strong enough nucleophile to open the epoxide ring resulting in the bromohydrin 60 . This is attacked further by the allylmagnesium bromide resulting in the elimination product 61 (Scheme 26).

The alcohols 59a and 59b were then oxidised using the Swern procedure ${ }^{30}$ to the ketones 62 a and 62 b . The next step was the epimerisation of the allylic group at C-2. Ferrier had previously reported that epimerisation of 62 a could not be effected. ${ }^{31}$ However, treatment of ketone 62a with triethylamine in DMF for 36 hours was found to epimerise the C-2 centre to give the ketone $\mathbf{6 3 a}$, ketone $\mathbf{6 2 b}$ required a stir period of 3 days to completely epimerise the C-2 centre (Scheme 27).

Scheme 27

Comparison of the ${ }^{1} \mathrm{H}$ NMR data for the epimerised ketone 63a and the parent ketone 62a shows that $\mathrm{H}-2 \mathbf{6 2 a}$ shows a triplet $J 8.2 \mathrm{~Hz}$, and the methylene hydrogens show a multiplet, where $\mathrm{H}-2$ 63a shows a multiplet and the methylene protons are now two discrete signals. Ferrier reported that J_{1-2} was 0 Hz for the ketone 62a, where the epimerised ketone 63a shows $J_{1-2} 4.1 \mathrm{~Hz}$ (Scheme 28). ${ }^{31}$ Similar changes in the NMR data are seen for the ketone 63b.

62a

63a
Scheme 28

After epimerisation, oxidation of the olefin 63a to the 1,4-dicarbonyl compound 64 was achieved by reaction with palladium chloride, water and copper(II) chloride in a Wacker oxidation. ${ }^{32}$ The ketone 63b was also converted to the diketone $\mathbf{6 4}$ by ozonolysis but the reaction proved to be very problematic and low yielding with the acetal 64a being isolated from the reaction mixture as the major product (Scheme 29).

Scheme 29

We were now in a position to attempt cyclisation of the dicarbonyl compound 64 via an intramolecular aldol reaction. Treatment of the diketone 64 with sodium hydroxide in refluxing methanol failed to give any of the cyclised product. Decomposition was observed when the diketone 64 was treated with lithium hexamethyldisilazide (Scheme 30). ${ }^{33}$

64

Scheme 30

The problem was thought to be due to deprotonation at $\mathrm{C}-2$ rather than the end of the sidechain required for cyclisation. To overcome this problem treatment of the diketone $63 \mathbf{a}$ with LTMP, to generate the enolate 65 , and reaction with methyl iodide, to form a quaternary centre at $\mathrm{C}-2$, produced compound 66 , albeit in a poor yield. The observed product results from alkylation on the less hindered β-face of the enolate 65 as previously observed by Chapleur. ${ }^{34}$ Clearly an altemative site for deprotonation exists at C-4 and alkylation has been observed at this site as the minor product when attempting alkylation at C-2. ${ }^{34}$ The ketone 66 was converted to a diketone 67 via a Wacker oxidation. Cyclisation of this diketone 67 was attempted with potassium tert-butoxide in toluene, sodium carbonate in methanol and sodium methoxide in methanol, in all cases starting material was obtained with trace amounts of benzaldehyde (Scheme 31). Clearly the conformation of the enolate 67 a in which the enolate carbon and the carbonyl group are close enough to form a bond is sterically unfavoured.

Scheme 31

Attention was then switched to the alternative epoxide 56 . In the same way as the epoxide 58 the epoxide 56 was opened with allymagnesium chloride ${ }^{28}$ to furnish the alcohol 68 , which was subsequently oxidised to the ketone 69 using the Swern procedure.

Epimerisation at C-3 occurred during the Swern oxidation and treatment with triethylamine in DMF was unnecessary. Oxidation of 69 to the diketone 70 was effected by Wacker oxidation. Treatment of this diketone 70 with potassium hydroxide in refluxing ethanol gave decomposition as did reaction with p-toluenesulfonic acid in methanol; starting material was obtained on reaction of 70 with sodium hydride and potassium tert-butoxide in toluene, with some trace amounts of benzaldehyde (Scheme 32).

Scheme32

The problem again appeared to be deprotonation α to the ketone at $\mathbf{C - 2}$ of $\mathbf{7 0}$ rather than at the end of the sidechain. The ketone 69 was treated with sodium hexamethyldisilazide and methyl iodide to give the ketone 71 which now contains a quaternary centre at $\mathrm{C}-3$. This was then oxidised to the diketone $\mathbf{7 2}$ by a Wacker oxidation (Scheme 33).

Scheme 33

Cyclisation of the diketone $\mathbf{7 2}$ was achieved at the first attempt with potassium tert-butoxide in toluene to produce the alcohol 73 and enone 74 in excellent yield. ${ }^{33}$ The alcohol 73 was difficult to isolate as elimination of water occurred during purification to give the thermodynamically more stable enone 74 (Scheme 34).

The absolute configuration of the enone 74 was proven by X-ray crystallography (Scheme 35).

Scheme 35

A recent publication by Ermolenko ${ }^{35}$ demonstrated the use of phosphonate stabilised anions in S-type conversions of carbohydrate derivatives into annulated derivatives. The key step in the conversions is an intramolecular Horner-Wadsworth-Emmons olefination of vicinal β -
ketophosphonates of pyranosulosides (Scheme 36). The starting material was the epoxide 56 which was converted into the compounds 75 and 76 in 7 and 9 steps respectively. Cyclisation was affected by treatment with potassium carbonate and 18 -crown- 6 to afford the cyclopentanone $\mathbf{7 7}$ and cyclohexanone $\mathbf{7 8}$.

Scheme 36

Using the same methodology the epoxide 58 was converted to the cyclopentanone 81 and cyclohexanone 82 in 8 and 9 steps respectively via the corresponding β-ketophosphonates 79 and 80 (Scheme 37). ${ }^{35}$

Carbohydrate to Chiral Cyclopentane

The fragmentation of the benzylidene group of the enone $\mathbf{7 4}$ was achieved upon treatment with NBS following the method of Hanessian. ${ }^{36}$ The resulting bromo-ester 83 was treated
with activated zinc according to the method of Vasella ${ }^{37}$ to produce a mixture of the alcohols 84 in good yield. The fragmentation reactions were carried out by Erasmus student, Maria Dominguez. The diastereoisomers were then separated by conversion to the p-nitrobenzoate derivatives 85a and 85b (Scheme 38).

Scheme 38

The initial product from the treatment of the bromo-ester $\mathbf{8 3}$ is the keto-aldehyde A which contains the enedione functionality. There are several examples of the reduction of the olefin in this grouping using zinc. ${ }^{38}$ A proposed mechanism for the reduction of this compound is shown in Scheme 39. The first step is sequential electron transfer on to \mathbf{A} giving radical anion \mathbf{B} and then dianion \mathbf{C}. Protonation produces the enolate \mathbf{D} which is protonated to give the dicarbonyl E. Electron transfer again gives the dianion \mathbf{F} which is then protonated to give the observed product \mathbf{G}.

The overall conversion is illustrated in Scheme 40, which shows the conversion of $\alpha-\mathrm{D}$ glucopyranoside 53 into functionalised cyclopentanes 84 which were esterified and separated by column chromatography.

Summary

In conclusion we have developed a route for the cyclopentaannulation of a glucose derivative which may prove useful in the synthesis of iridoids, and produces chiral cyclopentanes containing a quaternary centre upon fragmentation of the sugar rings.

(2)

Chapter 2

RADICAL REACTIONS OF CARBOHYDRATE DERIVATIVES

RADICAL REACTIONS OF CARBOHYDRATE DERIVATIVES

Annulation of carbohydrate derivatives using radical reactions has been studied extensively over the last 10 years. ${ }^{39}$ There are many examples of radical reactions of sidechains appended to carbohydrates which may be classed as S-type reactions as only two of the carbohydrate carbons usually end up in the carbocycle. The sugar ring can be removed at a later stage to yield highly functionalised carbocycles. There are also examples of the F-type reactions involving radical cyclisation.

F-type Cyclisations

Wilcox used D-ribono- γ-lactone 86 as starting material and converted it into the acyclic bromoester 87. Treatment of the bromoester 87 with tributyltin hydride gave the functionalised cyclopentanes 88 and 89 in a ratio of 10:1 (Scheme 41). ${ }^{40}$ The predominant cyclopentane derivative obtained was 88 which has the sidechain with the ester group in an exo orientation that is expected if the 5-exo-trig radical cyclisation proceeds through the chair-like transition state suggested by Beckwith. 41

In similar work the D-arabinose derivative was converted into the acyclic ketone 91 via a Wittig reaction and Swern oxidation of the resultant alcohol. ${ }^{42}$ Nucleophilic addition of (dibromomethyl)lithium gave the radical precursor 92. Cyclisation was achieved on treatment with tributyltin hydride which furnished the functionalised cyclopentane 93 via a
chair transition state 92a. This was later converted into the carbocyclic analogue of an enzyme regulator ${ }^{43}$ (Scheme 42).

Recently a procedure for converting carbohydrate derivatives into cyclopentanols was reported. ${ }^{44}$ The conversion involved a Grob-fragmentation of the iodoglycoside 94 upon treatment with activated zinc which afforded the aldehyde 95 which then cyclised to give the cyclopentanol 96 upon treatment with samarium iodide (Scheme 43).

Scheme 43

A one-pot synthesis using samarium iodide to initiate the Grob-fragmentation instead of activated zinc met with limited success using methyl glycosides; the major reaction was
reductive de-iodination. A better leaving group at the anomeric centre as in $\mathbf{9 7}$ was found to enhance the fragmentation (Scheme 44). ${ }^{45}$ The reaction presumably proceeds through the aldehyde 97a which cyclises to the cyclopentanol 98.

Scheme 44

S-type Cyclisations

A great deal of the work in this area has been championed by Fraser-Reid. ${ }^{46}$ The unsaturated iodide 99 was converted to the cyclopentane derivative 100 on treatment with tributyltin hydride. The intermediate radical 99a is presumably quenched by tributyltin hydride faster than intramolecular trapping by the amide group which would have yielded 99b (Scheme 45). ${ }^{47}$

The dithiocarbonate 101 was treated with tributyltin hydride to give the cis-fused cyclopentanopyranoside 102 . The cyclopentaannulated sugar 102 was then converted to the iridoid 1- α-O-methylloganin 103 (Scheme 46). 48

Scheme 46

Giese has developed a route to 2-oxabicyclo [3.2.1] octanes such as $\mathbf{1 0 5}$ by treatment of 3-C-allyl- α-D-glucopyranosyl iodide $\mathbf{1 0 4}$ with tributyltin hydride to give the products $\mathbf{1 0 5}$. ESR studies suggest that the intermediate radical 104a is in a boat conformation where the allylic group at C-3 is pseudo-axially disposed. ${ }^{49}$

Scheme 47

Stork Silyl Methylene Radical Cyclisation

This attractive protocol involves the intramolecular reaction of an alkene with a radical species temporarily tethered to the molecule and was investigated independently by Stork 50 and Nishiyama. ${ }^{51}$ The allylic alcohol 106 was reacted with (bromomethyl)chlorodimethyl silane to produce the silyl ether 107 . Reaction of 107 with tributyltin hydride gave a 5-exo type cyclisation to furnish the five-membered siloxane 108, subsequent Tamao-Kumada ${ }^{52}$ oxidation yielded the diol 109 (Scheme 48).

Scheme 48

The importance of this process is that it can lead to the introduction of a functionalised carbon chain regiospecifically and cis to the allylic hydroxyl. Stork has also shown that this method can be used to introduce angular methyl groups ${ }^{53}$ and that different radical precursor tethers can be used to achieve similar results. ${ }^{54}$

APPLICATIONS OF THE STORK SILYL METHYLENE RADICAL CYCLISATION IN CARBOHYDRATE CHEMISTRY

Sinaÿ has studied the silyl methylene radical cyclisation in carbohydrate chemistry in seeking to functionalise a sugar ring. ${ }^{55}$ The alcohol 110 was converted to the (bromomethyl) dimethyl silane 111 and treated with tributyltin hydride to give the cyclised product 112 which in turn furnished the diol 113 after Tamao-Kumada oxidation (Scheme 49).

Fraser-Reid has also studied the application of the silymethylene radical cyclisations of carbohydrate derivatives and found the conversion of the alcohol 114 into the diacetate 116 proceeded in good yield. ${ }^{46 f}$ The alcohol 114 was first converted into the silyl ether 115 which was then treated under the catalytic tributyltin hydride conditions recommended by Stork $\left(\mathrm{Bu}_{3} \mathrm{SnCl}, \mathrm{NaCNBH}_{3}, \mathrm{tBuOH}\right)^{56}$ to furnish a tricyclic radical intermediate 115a which abstracts a hydrogen from tributyltin hydride and furnishes the diacetate 116 after oxidation and acetylation. He also found that he could alkylate at the anomeric position by including a large excess of a radical trap in the reaction mixture such as acrylonitrile to produce the now more functionalised diacetate analogue 117 (Scheme 50).

Scheme 50

Previous Work at Leicester

Previous work at Leicester by R. Bonnert has shown that an S-type process of a carbohydrate derivative using a Robinson annulation is possible (Scheme 51). ${ }^{\text {la,b }}$

The sugar derivative 118^{25} was treated with lithium tetramethylpiperidide and the resulting enolate reacted with 2-trimethylsilyl-1-buten-3-one to furnish the cyclohexaannulated enone 119. Reduction of 119 yielded the allylic alcohol 120 which was subjected to the Stork radical cyclisation conditions by J. Howarth (Scheme 52). ${ }^{57}$

120
121

123

Scheme 52

Silylation of the alcohol 120 proceeded smoothly to furnish the silyl ether 121 which was subsequently treated with tributyltin hydride to give the tetracyclic siloxane $\mathbf{1 2 2}$. TamaoKumada oxidation of $\mathbf{1 2 2}$ produced the diol $\mathbf{1 2 3}$ which is an intermediate in our taxane synthesis (see Chapter 3). The trans C-1, C-6 ring junction of compound $\mathbf{1 2 3}$ would be expected from steric arguments, since approach of a hydrogen species to the intermediate radical 121 a will be blocked by the C-7 methoxy, C-1 methyl, and C-5 alcohol groups on the α face of the molecule.

In similar fashion the epimeric alcohol 124 was silylated to give the silyl ether 125 and subjected to the radical cyclisation conditions yielding a single product 126 (Scheme 53). 57

124

125

126

125a
Scheme 53

Approach of the hydrogen species to the radical 125a this time involves a play off between the steric effects of the methoxy and methyl groups and the silylmethyl groups. As the single product 126 has the C-1, C-6 ring junction cis, the steric effect of the silylmethyl groups appears to exceed that of the methoxy and methyl groups and the least crowded face of the molecule is the lower α face.

Radical Cyclisations of a Cyclopentaannulated Derivative

In seeking to further functionalise our cyclopentaannulated derivative 74 we decided to carry out the reductive hydroxymethylation as previously seen in the cyclohexannulated derivatives 120 and 124. The enone $\mathbf{7 4}$ was reduced to the allylic alcohols 127 and 128 using various reagents with a ratio up to 8:1 in favour of either epimer possible (Scheme 54).

REDUCING AGENT	RATIO $127: 128$
LS-Selectride $®$	$8.0: 1.0$
Thexyliminoyl Borohydride	$2.9: 1.0$
DIBAL-H®	$1.0: 1.6$
RED-AL®	$1.0: 2.5$
$\mathrm{NaBH}_{4} \cdot \mathrm{CeCl}_{3}$	$1.0: 8.0$

Scheme 54

The explanation of these results may be that in the case of LS-Selectride ${ }^{\circledR}$ approach of the bulky reducing agent is more favourable from the β-face of the molecule leading to the allylic alcohol 127, whereas the less hindered sodium borohydride cerium chloride ${ }^{58}$ favours the delivery of the hydride from the α-face of the molecule leading to the allylic alcohol 128 as the major product. This can be explained by the cerium chloride co-ordinating to the carbonyl group and steric hindrance to the β-face of the molecule leading to reduction from the apparently more hindered α face of the carbonyl group.

The epimeric allylic alcohols $\mathbf{1 2 7}$ and $\mathbf{1 2 8}$ were converted to their benzoate esters $\mathbf{1 2 9}$ and 130 and separated by flash column chromatography; hydrolysis of the esters furnished the desired pure allylic alcohol. We were now in a position to prepare the substrates for the Stork-Nishiyama radical cyclisation reaction. The α-allylic alcohol 127 was treated with (bromomethyl) chlorodimethyl silane to furnish the silane 131. Reduction with tributyltin hydride of $\mathbf{1 3 1}$ gave the radical 132. The next step was the abstraction of an hydrogen atom from tributyltin hydride on either face of the molecule. It would appear that the easiest
approach of the tributyltin hydride to the radical $\mathbf{1 3 3}$ is from the β-face of the molecule leading to the siloxane 134. Approach from the α-face of the molecule is hindered by the methyl and methoxy groups and the siloxane ring. The siloxane 135 is, however, a product of the reaction where the ratio of $\mathbf{1 3 4}$ to $\mathbf{1 3 5}$ is 2:1 (Scheme 55).

134

135
Scheme 55

The most likely explanation for the formation of 135 is that the $s p^{2}$-radical 133 rehybridises to an $s p^{3}$ radical 133a on the α-face of the molecule reducing the unfavourable interaction between the methyl and methoxy groups with an incoming hydrogen donor,
delivery from the (lower) α-face then results in the siloxane $\mathbf{1 3 5}$ which has a cis-ring fusion of the 5,6 -ring system. The fact that we see any of this product may be explained by the propensity for a 5,6 -ring system to be cis-fused. The siloxanes were not separable and under the Tamao-Kumada oxidation, conditions were converted to the diols 136 and 137, which were separated by flash column chromatography of their dibenzoate esters 138 and 139. The structures were confirmed by n.O.e study on the dibenzoates 138 and 139
(Scheme 56).

Scheme 56

In contrast to these results the allylic alcohol 128 was converted to the silane 140 which was treated with tributyltin hydride to give the radical 141 , which adds across the olefin to furnish the radical 142. In this case the siloxane ring hinders the β-face of the molecule such that the hydrogen is delivered on the α-face of the molecule to produce the 5,6 -cisfused ring system 143. Attack from the least hindered face of the molecule and the formation of the more thermodynamically favoured 5,6-cis-fused ring system combine to give the single product 143 , which was subjected to the Tamao-Kumada oxidation to give
the diol 144 which in turn afforded the protected compound 145 on treatment with t butyldiphenylsilyl chloride (Scheme 57).

142

$$
\begin{aligned}
& 144 \mathrm{R}=\mathrm{H} \\
& 145 \mathrm{R}={ }^{\mathrm{t}} \mathbf{B u}(\mathbf{P h})_{2} \mathbf{S i}
\end{aligned}
$$

Scheme 57

The nearest literature example of this type of cyclisation is the Stork radical cyclisation of 5,6 -fused ring systems. ${ }^{53}$ The tricyclic allylic alcohol 146 was converted to the silyl ether 147 and treated with tributyltin hydride to give the siloxanes 148 and 149. TamaoKumada oxidation gave the diols $\mathbf{1 5 0}$ and $\mathbf{1 5 1}$ in a ratio of $3.7: 1$ in favour of the cis-fused ring system (Scheme 58).

Scheme 58

We found that the preference for trans addition across the olefin is counterbalanced by a contrary preference for the formation of the cis fused 6,5 -ring system.

Future Work

Fragmentation of the functionalised carbohydrate derivatives such as $\mathbf{1 5 2}$ should produce highly functionalised chiral cyclopentanes. Treatment of the carbohydrate derivative 152 with NBS may produce the bromide $\mathbf{1 5 3}$ which could be further treated with activated zinc in a Grob-type fragmentation to give the chiral cyclopentane 154. This highly functionalised cyclopentane 154 could represent a C-ring synthon for the novel taxol-like structure 155 (Scheme 59).

155

Scheme 59

A recent publication reported a similar structure to that of $\mathbf{1 5 5}$ resulting from the contraction of the C-ring of Taxol. ${ }^{59}$ The reported compound showed less activity than Taxol itself but also lacked the oxetane ring which is known to be essential for activity. 60 The oxetane ring could be constructed from the protected diol part of the molecule.

Summary

In conclusion it has been shown that the silyl methylene radical cyclisation of the allylic alcohol 128 leads to a single cis product 143 where delivery of the hydride from the least hindered face of the intermediate radical 142 leads to the preferred cis-fused 5,6-ring system, whereas the corresponding cyclisation on the allylic alcohol 127 leads to a mixture of products as previously observed, ${ }^{53}$ but with the predominant isomer being the trans-fused 5,6-ring system.

Chapter 3

PROGRESS TOWARDS THE SYNTHESIS OF TAXOL
FROM AN ANNULATED CARBOHYDRATE

TAXOL - INTRODUCTION

The leaves of the yew tree were known to be poisonous to animals and man for centuries. Yew wood was used to make long bows and so a substantial supply of the material was required. To avoid poisoning cattle yew trees were planted in churchyards. The religious connotation of the yew tree arises from the fact that the tree is very slow growing and has a sombre appearance. The Pacific Yew tree, Taxus brevifolia, is native to western North America; an NCI initiative to screen plants and trees for anti-cancer activity led Wani and Wall ${ }^{61}$ to discover Taxol, a compound found in the bark of this tree. They were able to isolate Taxol 154 (Scheme 60) by a number of purification steps, each time collecting the fractions which showed cytotoxic activity. The structure of Taxol was determined in 1971 some nine years after the collection of Taxus brevifolia in the Gifford Pinchot National Forest in the state of Washington by a USDA botanist. Interest in Taxol increased considerably when Susan Horwitz ${ }^{62}$ showed that the cellular target for Taxol was tubulin and that the mode of action was unique.

Scheme 60

Anti-Cancer Activity of Taxol

Tubulin is a protein in eucaryotic cells and consists of two forms, α and β. These combine to form a wall sub-unit which then polymerises further to produce a microtubule (Scheme 61).

Scheme 61

Microtubules normally provide a skeleton for the cell or for organs of movement. However, before cell division takes place depolymerisation of microtubules occurs to give tubulin monomer and re-polymerisation occurs to form the spindle of cell division. The purpose of the microtubules that make up the spindle is to lengthen by the process of tubulin polymerisation and push the daughter cells apart, also the microtubules move the chromosomes from the original nucleus into the daughter nuclei. It is thought that a long microtubule originating from the daughter nucleus attaches itself to a chromosome in the original nucleus and then depolymerises and shortens, thereby dragging the chromosome to the nucleus of the daughter cell. Consequently the process of polymerisation and depolymerisation of tubulin is a crucial factor in the process of cell division. Any interference with this process stops normal cell division taking place.

There is a group of compounds known as spindle poisons, vincristine, vinblastine, podophilotoxin and colchicine (Scheme 62). These prevent the formation of the spindle stopping normal cell division taking place. In contrast to the spindle poisons, Taxol stimulates the formation of microtubules and prevents their breakdown. The action of Taxol is therefore an interference in the free polymerisation of tubulin which prevents normal cell division from taking place. Because of this unique mode of action and encouraging results from clinical trials Taxol has received enormous media attention. The discovery and progress of Taxol over the last 34 years is detailed in Scheme 63.

Spindle Poisons

1) Vincristine and Vinblastine

2) Podophilotoxin

Prevents the formation of microtubules and is used in chemotherapy.

3) Colchicine

Binds specifically to tubulin and prevents the formation of microtubules

Scheme 62

Collection of Taxus brevifolia. as part of an NCI programme of natural products screening for cytotoxicity and anti-leukaemic activity Pure Taxol is isolated. Wani and Wall report anti-leukaemic properties of Taxol in the Journal of the American Chemical Society.

Susan Horwitz reports that Taxol stimulates microtubule assembly.
10-Deacetyl baccatin III is isolated from Taxus baccata (European Yew tree) and identified as a suitable starting material for the semi-synthesis of Taxol by the group of Potier.

Phase I and Phase II clinical trials for all types of cancer. Most favourable results obtained for breast and ovarian cancer.

Semi-synthesis of Taxol - Potier and Greene (1986), later improved (1988).
Semi-synthesis of Taxol - Holton.
Further extensive hospital trials and application for Federal Drug
Administration approval; approved for ovarian cancer treatment 1992,
Taxol ${ }^{\circledR}$ marketed by Bristol-Myers Squibb Co. 1993, approved for breast cancer treatment 1994.

The first total syntheses of Taxol - Nicolaou, Holton.
Taxol total synthesis - Danishefsky.

The Semi-Synthesis of Taxol

Taxol is extracted from the stem bark of several species of yew, namely the Pacific Yew tree, Taxus brevifolia, which results in the destruction of the tree. Typically, the bark from two one century old trees is needed to treat one patient; this has obvious ecological consequences. The demand for yew tree bark in the U.S. was so high that the Yew Act was drafted in 1992 which provided for the efficient collection and utilisation of the pacific yew and also ensured its long term conservation. Such an act was needed as the supply of yew bark had escalated from $60,000 \mathrm{lbs}$ of dry bark in 1989 to $850,000 \mathrm{lbs}$ in 1991 . With a projected demand of $750,000 \mathrm{lbs}$ of bark until other sources of Taxol could be found, the issue of semi-synthesis became extremely important. Scheme 64 shows which parts of Taxol give rise to activity and what changes can be made to the structure without reducing its potency.

Scheme 64

The semi-synthesis to date has been the most successful way of making Taxol and biologically active analogues. Potential starting materials for semi-synthesis must be easy to obtain, renewable and require as little elaboration as possible. 10-Deacetylbaccatin III 155 (10-DAB III) was described as a degradation product of Taxol, ${ }^{61}$ and can also be isolated
from the needles of the European Yew, Taxus baccata. Because the leaves are renewable and 1 g of 10-DAB III can be extracted from 1 kg of dry leaves, a semi-synthetic route to Taxol from 155 is attractive. Synthetic routes from 155 have been developed which make use of the differing reactivity of the free hydroxyl groups; $7-\mathrm{OH}>10-\mathrm{OH} \gg 13-\mathrm{OH}$. Potier 63 utilised 10-DAB III and selectively protected the C-7 position followed by acetylation at $\mathbf{C - 1 0}$ to give $\mathbf{1 5 6}$. Finally, forced acylation of the secondary hydroxyl at $\mathbf{C - 1 3}$ by the suitably protected N -benzoyl-phenyl-isoserine side chain and deprotection of $\mathrm{C}-7$ and C-2' positions gave Taxol 154 in 36\% yield (Scheme 65).

157

Scheme 65

Other methods of attaching the sidechain have been used in attempts to overcome the problems of low reactivity at $\mathrm{C}-13 \mathrm{OH}$. Ojima ${ }^{64}$ and Holton ${ }^{65}$ have independently used the β-lactam derivative 158 to directly couple with 7-TES-10-DAB III 159 to give 160 which affords Taxol 154 after removal of the TES group (Scheme 66). Ojima has further reported
an improvement to this method achieving a near quantitative coupling of the β-lactam using sodium hexamethyldisilazide. ${ }^{66}$

159

1. AcCl
2. 158

158

Scheme 66

In another approach, Poitier ${ }^{67}$ used the Sharpless oxyamination of 161 - obtained by sequential protection of $10-\mathrm{DAB}$ III and formation of the $\mathrm{C}-13$ cinnamate - to give a mixture of regio- and stereoisomers. Although this route was later improved ${ }^{68}$ by the use of chiral reagents during the oxyamination reaction, regiocontrol was still poor, but the major product was 162 . This isomer was then converted to Taxol by removal of the BOC (t-butyl amido) group, followed by benzoylation and removal of the trichloroethoxycarbonyl group. The approach is impractical due to the poor control of the oxyamination reaction but has led to numerous analogues, ${ }^{69}$ one of which is Taxotere ${ }^{\circledR}, 70$ which has similar pharmacological activity to Taxol (Scheme 67).

162

Taxotere

Scheme 67

Holton ${ }^{65}$ used the β-lactam 166 to make Taxol from 7-TES-10-DAB III 159. The lactam was made using the Staudinger reaction ${ }^{71}$ between α-acyloxy acetyl chloride and the imine 163 as the key step to give the lactam 164 which was subsequently converted into 166 by deprotection and benzoylation of the nitrogen, and protection of the hydroxyl. Resolution of the alcohol 165 was needed to gain the required enantiomer (Scheme 68).

Scheme 68

Ojima ${ }^{72}$ also used the β-lactam 169 which he synthesised using a highly selective ester enolate-imine condensation. Deprotection of the protected ester 167 with LDA followed by condensation with the imine 168 gave the cis β-lactam 169 (Scheme 69).

Scheme 69

THE TOTAL SYNTHESIS OF TAXOL - NICOLAOU

The first published total syntheses of Taxol came from the groups of Nicolaou ${ }^{73}$ and Holton. ${ }^{81}$ The synthesis is convergent where the A -ring and C -ring are synthesised separately and subsequently coupled together. The Diels-Alder reaction was used to construct both the A and C-rings of Taxol. Scheme 70 shows the reaction of the diene $\mathbf{1 7 0}$ and dienophile 171 to produce the A-ring intermediate 172 as a single regioisomer.

Scheme 70

Intermediate 172 was converted to the hydroxyketone 173 by reaction with potassium hydroxide in t-butanol at reflux. Attempts to react 174 with nucleophilic species failed so the hydrazone 174 was prepared and provided a method of turning the A-ring into the nucleophile via a Shapiro reaction and thus couple with a C-ring synthon (Scheme 71).

Scheme 71

The C-ring synthon was constructed using the Diels-Alder reaction of 175 and 176 in the presence of phenyl boronic acid following the method of Narasaka. ${ }^{74}$ It is envisaged that the two components are temporarily tethered together in an intermediate 176a before cyclisation to furnish the cycloadduct 178 (Scheme 72).

Scheme 72

It would appear that the initially formed product 177 re-arranges under the reaction conditions such that acyl transfer from the secondary to the primary hydroxyl group has occurred, further elaboration of this C-ring intermediate $\mathbf{1 7 8}$ led to the more advanced C ring synthon $179 .{ }^{75}$

Construction of the ABC Ring Skeleton of Taxol

The next stage in the synthesis required the coupling of the A and C-rings. A Shapiro reaction was employed to form the $\mathrm{C}-1, \mathrm{C}-2$ bond to give the alcohol $\mathbf{1 8 0}$ as a single diastereoisomer on reaction of 174 with 179 . The stereoselectivity of this reaction was explained by the lithium chelate 179a where the aldehyde is fixed by the lithium coordination to the acetonide facilitating nucleophilic attack from only one face of the molecule (Scheme 73).

Scheme 73

To complete the formation of the B-ring, a McMurry pinacol reaction was used to join C-9 and $\mathrm{C}-10$ and therefore this required a dialdehyde at these centres. The $\mathrm{C}-1, \mathrm{C}-14$ olefin of 180 was first selectively epoxidised and reduced to put in place the C-1 hydroxyl group, deprotection of $\mathrm{C}-9$ and $\mathrm{C}-10$ followed by oxidation furnished the desired di-aldehyde 181^{76} (Scheme 74).

Scheme 74

Although the McMurry pinacol reaction did give the desired product 182 the optimised yield was only 28% with several other products being obtained. At this point in the synthesis a resolution of the racemic diol was needed to obtain an enantiomerically pure intermediate for the final stages of the synthesis. The tricyclic ring system now required the formation of the D-ring and the introduction of some oxygen functionality at C-13 (Scheme 75). The key step in the synthesis of the oxetane ring was the introduction of an hydroxyl group at C-5. This was achieved by hydroboration of 183 and oxidation of the resulting organoborane to yield a $3: 1$ mixture of $\mathrm{C}-5: \mathrm{C}-6$ isomers with alcohol 184 being the major product. The acetonide was then removed by treatment with acid and after some further protecting group interconversions furnished the diol 185. The construction of the oxetane ring was achieved using the methods of Danishefsky ${ }^{77}$, and Potier ${ }^{78}$; the approach modelled on Danishefsky's work is shown. The primary alcohol of $\mathbf{1 8 5}$ was selectively silylated with TMSCl in the presence of base and exposed to triflic anhydride and base to afford the triflate silyl ether 187 via 186. The oxetane ring was formed on treatment with silica gel in dichloromethane through sequential desilylation of the C-20 hydroxyl group followed by intramolecular displacement of the triflate to give $\mathbf{1 8 8}$ which was then acetylated to give 189 .

Scheme 75

The remaining steps required the oxidation and reduction sequence at $\mathrm{C}-13$ followed by attachment of the side chain which had already been performed from degradation and reconstitution studies. ${ }^{79}$ The tetracyclic compound 189 was treated with phenyllithium to open the cyclic carbonate to give $\mathbf{1 9 0}$ which has the same southern hemisphere make-up as Taxol. The introduction of the $\mathrm{C}-13$ hydroxyl was achieved by an allylic oxidation and then stereoselective reduction of the enone, as described by Potier, ${ }^{80}$ with NaBH_{4} to furnish the
alcohol 191. The sidechain was introduced to 191 using the Ojima ${ }^{64}$-Holton ${ }^{65} \beta$-lactam 158 and $\mathrm{NaN}(\mathrm{TMS})_{2}$ to produce Taxol 154 after de-silylation (Scheme 76).

Scheme 76

Due to the large number of steps, some very low yielding, this synthesis can not constitute a plausible alternative to the semi-synthesis of Taxol from baccatin III; also the need to rely on resolutions and synthetic relays make it less attractive than later published total syntheses.

THE TOTAL SYNTHESIS OF TAXOL - HOLTON

The Holton synthesis of Taxol involves an elegant route from camphor; he was also able to synthesise the enantiomer of Taxol using the same methodology. ${ }^{81}$ The approach was a linear synthesis which would result in a C-7, C-13-protected baccatin III species, the synthesis of Taxol from such compounds being well documented. ${ }^{63-65}$ The commercially available epoxide 192 (derived from camphor) was converted to the hydroxy epoxide 193 which then rearranged to the diol 194. Protection of the C-19 hydroxyl followed by epoxy alcohol fragmentation ${ }^{82}$ and protection of $\mathrm{C}-13$ gave the ketone 195 representing the A, B ring system of Taxol (Scheme 77).

Scheme 77

Holton then set about the construction of the C-ring by alkylation of the B -ring; thus the magnesium enolate of the ketone 195 underwent aldol condensation with 4-pentenal and after protection with phosgene gave the ethyl carbonate 196. Further elaboration of this functionalised A, B-ring system put in place an hydroxyl group at C-2 to give the α-hydroxy ketone 197. Reduction of 197 gave a triol which was directly reacted with phosgene to
give the carbonate 198. Oxidation of 198 and subsequent treatment with base gave the hydroxy lactone 199 (Scheme 78).

199
Scheme 78

The lactone 199 was then treated with samarium(II) iodide to produce the enol 200 which gave a 6:1 mixture of cis and trans-fused lactones when treated with silica gel. The required lactone 201 was crystallised out of solution and the undesired lactone recycled by treatment with $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ and then acetic acid to give the enol 200. Hydroxylation of 201 at $\mathrm{C}-2$ was achieved in a similar fashion to the hydroxylation at $\mathrm{C}-5$ to afford $\mathbf{2 0 2}$. Reduction of $\mathbf{2 0 2}$
followed by a basic work-up gave the lactone carbonate $\mathbf{2 0 3}$ in fifteen steps and $\mathbf{3 6 \%}$ overall yield (Scheme 79).

Scheme 79

Oxidative cleavage of the terminal olefin of $\mathbf{2 0 3}$ by ozonolysis and oxidation to the acid and esterification gave the ester 204. Dieckmann cyclisation of 204 furnished the enol ester 205 and after temporary protection of C-7 and decarbomethoxylation, gave the hydroxy ketone 206 which was then protected to give the BOM ether 206a (Scheme 80).

Scheme 80

Now that the C -ring was in place Holton needed to construct the oxetane ring. This proved to be the most problematic part of the synthesis. The C-7 protected compound 206a was converted to the TMS enol ether and underwent oxidation to stereoselectively provide the C 5 hydroxy ketone and then addition of methyl magnesium bromide furnished the tertiary alcohol 207; elimination using the Burgess reagent and acidic work-up provided the allylic alcohol 208 which was then converted to the mesylate 208a. Osmylation of 208a gave 209 which was converted to the tosylate 209a through temporary protection of the C-20 hydroxyl as a TMS ether. Treatment of 209a with DBU furnished the much sought after oxetane ring; acetylation of the C-4 hydroxyl gave 210 (Scheme 81).

Scheme 81

The final stages of the synthesis concerned chemistry already known to the group from studies on baccatin III analogues. Desilylation removed the TES group from the C-10 position of $\mathbf{2 1 0}$ and treatment with phenyllithium provided the $\mathrm{C}-2$ benzoate followed by
oxidation which yielded the ketone 211 . The enolate of 211 was treated with benzeneseleninic anhydride and the product treated directly with KOtBu ; acetylation of this product provided 7-BOM-13-TBS baccatin III 212 . Desilylation at $\mathrm{C}-13$ and attachment of the side chain via the β-lactam 213 and deprotection at C-7 afforded Taxol (Scheme 82).

Holton not only describes the total synthesis of Taxol but also of its enantiomer and reportedly risked the glory of publishing first by waiting to complete both syntheses.

THE TOTAL SYNTHESIS OF TAXOL - DANISHEFSKY

The Danishefsky synthesis of Taxol is the most recent route to be published. ${ }^{83}$ The synthesis is similar in many respects to that of Nicolaou, but has the advantage of not relying on resolutions or synthetic relays. The strategy of joining suitably functionalised A and C fragments to build 1,2 constrained seco-B structures en route to closure of the B-ring was, however, evident in earlier publications. ${ }^{84}$ The synthesis of the A-ring started with the diketone 214 (Scheme 83). Reaction of the hydrazone 215 with DBN and iodine gave 216 , which furnished the TMS-ether 217 . Treatment of 217 with tBuLi gave the lithiated A-ring 218 which would eventually couple to the C -ring. 85

Scheme 83

The synthesis of the C -ring started with the (S)-Wieland Miescher ketone 219, from which all asymmetric induction ultimately accrues (Scheme 84). The protected C-7 alcohol 220 was prepared by the method of Heathcock ${ }^{86}$ in high yielding steps. The conversion of $\mathbf{2 2 0}$ to the alcohol 221 was an improved transformation to that previously published by the group. 87 Dihydroxylation of 221 using osmium tetroxide furnished the triol 222 which was converted in one pot to oxetane 223 by selective silylation of the primary alcohol, conversion of the secondary alcohol to the triflate followed by alcohol induced desilylation The acetal of $\mathbf{2 2 3}$ was cleaved under mildly acidic conditions to give the ketone 224. The

B-ring of $\mathbf{2 2 4}$ was cleaved in an easily conducted and high yielding sequence to produce the aldehyde $225 .{ }^{88}$

After some initial problems with the lability of the oxetane ring the A and C -Rings were coupled together to give 226 (Scheme 85). Epoxidation across the C-1, C-14 bond and subsequent reduction put in the required C -1 hydroxyl which was joined together with the C -

2 hydroxyl as the carbonate to give 227 . The $\mathrm{C}-12, \mathrm{C}-13$ double bond was reduced and treatment with base and trapping of the enol as the triflate furnished the vinyl triflate 228. Cleavage of the dimethyl acetal of $\mathbf{2 2 8}$ and chain elongation afforded $\mathbf{2 2 9}$, which was ring closed via a Heck reaction to give the tetracyclic intermediate 230.

1. PPTS $\mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$

As in previous syntheses, protecting group interconversion was necessary, and the TBS group of 230 was changed to a TES group reducing the need for the vigorous conditions required for its removal. Epoxidation of 230 afforded the epoxide 231 a which was subsequently converted to the acetate 231 lb . Opening of the carbonate with phenyllithium gave the C-1 hydroxyl and C-2 benzoate, and treatment with osmium tetroxide and lead tetracetate afforded the ketone 232. Deoxygenation of the epoxide with samarium(II) iodide, oxidation at C-9 followed by an α-ketol interchange and acetylation provided 233. Allylic oxidation and reduction furnished 7-triethylsilyl baccatin III 234 which after deprotection and introduction of the side-chain by the method Ojima ${ }^{66}$ gave Taxol (Scheme 86).

Scheme 86

PREVIOUS WORK AT LEICESTER

The syntheses of two model systems have been published by the Jenkins group, ${ }^{89}$ and involved the use of a non-aromatic C -ring and an intramolecular Diels-Alder reaction (Scheme 87).

The first model study produced a crystalline taxoid ring system 236, the X-ray crystal structure of which showed the eight-membered B-ring to be in a boat-chair conformation; this suggests that the Diels-Alder reaction proceeds via the transition state 236a (Scheme 88). The boat-chair conformation is the conformation of the eight-membered ring in all the X-ray crystal structures of yew tree natural products. ${ }^{90}$

Scheme 88

The second model study required the intoduction of three methyl groups in the A-ring of the taxoid structure. Robinson annulation of 2-methyl cyclohexanone and methyl vinyl ketone gave the known decalin 239.91 Lithium in ammonia reduction and trapping of the enolate
gave the trimethyl silyl ether 240 following the method of Stork. ${ }^{92}$ Ozonolysis and methylation produced the ester aldehyde 241 which was further treated with vinyl magnesium bromide and protected as the dimethyl tertiary butyl silyl ether 242 (Scheme 89).

The intermediate 242 was reduced to an aldehyde which was further reacted with propenyl magnesium chloride and the resulting allylic alcohol oxidised to the enone 243 . The synthesis of the diene was achieved by the introduction of the anion $\mathrm{Me}_{2} \mathrm{CLiSePh}$, developed by the work of Krief ${ }^{93}$ and Reich ${ }^{94}$, and subsequent elimination to give the triene 244. Deprotection and oxidation furnished the trienone 237 (Scheme 90).

Scheme 90

The trienone 237 was again thought to adopt a boat-chair conformation 237a in an intramolecular Diels-Alder reaction to give the alkylated taxane model 238 (Scheme 91). Unfortunately the product was not a solid but NMR analysis showed that the B-ring in 238 was indeed in a boat-chair conformation.

Scheme 91

Chiral Taxoids from Glucose

The next stage in the project was to devise a route that would incorporate as much of the functionality found in natural taxanes as possible. The retrosynthetic plan for taxoid structure 245 is shown in Scheme 92. It is assumed at this stage that oxidation at C-13 and introduction of the side chain will be carried out using known procedures. The hydroxyl groups at C-7 and C-1 are also missing but it is envisaged that modification of the route may be possible once its viability has been proven.

Scheme 92

The C-7 hydroxyl has in fact been shown not to be needed for biological activity. 95 Working backwards from the tricyclic compound 245 we obtain the triene 246, which in turn arises from the aldehyde 247. Then Robinson annulation of a protected form of the sugar methyl ketone 248 should give the C -ring synthon 247 . The starting point was glucose for which there was a literature preparation of a protected methyl ketone 118 from the work of Sinaÿ ${ }^{25}$ (Scheme 93).

Scheme 93

The conversion of 53 into the epoxide 56 has already been described in Chapter 1. The epoxide 56 was then selectively opened with methyl magnesium chloride to give the alcohol 249 which furnished the ketone 250 after Swern oxidation. Epimerisation of the ketone $\mathbf{2 5 0}$ to $\mathbf{1 1 8 2 5}$ was achieved by treatment with triethylamine in DMF for 36 hours at room temperature. The first reaction of the methyl ketone 118 is the formation of the enolate with $\mathrm{Li}(\mathrm{TMS})_{2}$ followed by the first known example of a Robinson annulation on a sugar derivative. ${ }^{1 \text { a }}$ Reduction of the enone 119 with L-Selectride ${ }^{\circledR}$ furnished the allylic alcohol 120. The conversion of allylic alcohol 120 to the diol $\mathbf{1 2 3}$ has been described in Chapter $2 .{ }^{57}$ Protection of the diol 123 led to the bis silyl ether 251 (Scheme 94).

Scheme 94

Having used the protected carbohydrate ring as a chiral template it was then necessary to fragment the sugar ring leaving a chiral functionalised cyclohexane C -ring synthon. The first step was reaction with NBS following the work of Hanessian ${ }^{36}$ to produce the bromo ester 252. Treatment of $\mathbf{2 5 2}$ with activated zinc then produced aldehyde 253 in a Vasella elimination reaction. ${ }^{37}$ Reduction and protection of the aldehyde gave the required chiral C ring synthon $\mathbf{2 5 4}^{\text {lb }}$ (Scheme 95).

254

Scheme 95

Construction of the Diene

The first attempt at constructing the diene focused on adding all the required carbons as a single unit. Ozonolysis of the C-ring synthon 254 gave the aldehyde $\mathbf{2 5 5},{ }^{1 \mathrm{~b}}$ addition of the known tetramethylcyclopropyl reagent ${ }^{96}$ and catalysis with CeCl_{3} furnished the cyclopropane 256. Rearrangement of 256 was achieved on a small scale to give the diene 257^{97} but the reaction was,very difficult to repeat (Scheme 96).

255

eCl_{3}

256

257

Scheme 96

The reasons for the low reactivity were thought to be due to two types of steric hindrance. The first is local steric hindrance by the benzoate ester and the second is remote steric hindrance from the three bulky silyl protecting groups, this is shown by 258 (Scheme 97).

Local Steric Hindrance

Remote Steric Hindrance
258
Scheme 97

In order to probe this hypothesis systematic changes to the local and remote steric hindrance were needed. It was also decided that the size of the incoming nucleophile should be as small as possible and that rearrangement of the cyclopropane $\mathbf{2 5 9}$ to the diene $\mathbf{2 6 0}$ prior to the reaction may increase the chances of addition to the hindered aldehyde. Shea published ${ }^{98}$ the formation of the lithiated diene 261 and the addition of this anion to aldehydes catalysed by CeCl_{3} to furnish the diene $\mathbf{2 6 2}$ in good yields (Scheme 98).

Scheme 98

To test the importance of the local steric hindrance the benzoate group of $\mathbf{2 5 4}$ was removed by DIBAL-H reduction and the corresponding alcohol converted into the methyl ether, subsequent ozonolysis produced the aldehyde 263. No reaction took place when the lithiated diene 261 was added to the aldehyde 263 in the presence of $\mathrm{CeCl}_{3},{ }^{99}$ which indicated that the local steric hindrance of the benzoate ester was not important to the reactivity of the aldehyde group in 255 (Scheme 99).

The importance of the remote steric hindrance was probed by changing the silyl ethers of 251 for several different groups. ${ }^{100}$ It was found however that the only group to survive the NBS reaction was the methyl ether. Methylation of the diol 123 (Scheme 94) gave the dimethyl ether corresponding to $\mathbf{2 5 1}$. The same reaction sequence as for $\mathbf{2 5 1}$ then produced
the aldehyde 264 where the large t-butyl diphenyl silyl protecting groups have been replaced by methyl groups. Addition of the diene to 264 (Scheme 100) produced the alcohol 265 as a mixture of diastereoismers in a ratio of $2: 1$. This indicates that the remote steric hindrance of the silyl protecting groups was an important factor determining the reactivity of the aldehyde 255.

Clearly the methyl groups in 265 are not ideal protecting groups and their removal to construct the oxetane ring would be very difficult.

RECENT APPROACHES TOWARDS THE DIENE

CONSTRUCTION

On starting the taxane project two things became very clear, firstly that any progress through the route relied upon a constant supply of starting materials and secondly that team work would be essential as the route from glucose comprised 21 steps, not including the synthesis of any additional reagents. We decided that a stock pile of starting material should be synthesised before embarking on any new chemistry. The previous end game strategy of adding the diene as a single unit was contrary to the diene synthesis in the alkylated model (Scheme 90) where the use of selenium chemistry helped to build the diene in a stepwise fashion. Previous attempts to use selenium chemistry in the chiral route have proved fruitless due to the failure of the reagent $\mathrm{Me}_{2} \mathrm{CLiSePh}$ to add effectively and then eliminate to form a diene. During the initial synthesis of starting materials a publication by Professor R.
M. Williams appeared. ${ }^{101}$ This used an adaptation of the synthesis described in Scheme 90 to give the first synthesis of taxadiene, 266, the proposed first fully cyclised intermediate in the biosynthesis of Taxol (Scheme 101).

266
Scheme 101

The authors had also found difficulties with the stepwise diene synthesis, but had overcome these problems by carrying out the reaction with $\mathrm{Me}_{2} \mathrm{CLiSeMe}$. We were progressing well with the synthesis of the starting material and decided to carry out a model study and construct a diene using the new reagent $\mathrm{Me}_{2} \mathrm{CLiSeMe}$. The starting point was cyclohexane carboxaldehyde 267 which was reacted with vinyl magnesium chloride to furnish the alcohol 268. This was subsequently treated with triethylamine and benzyl bromide to give 269. Treatment of the olefin 269 with 9'BBN and oxidation of the resulting organoborane with hydrogen peroxide furnished the alcohol 270 which was oxidised using the Swern procedure to the aldehyde 271. The aldehyde 271 was then treated with propenyl magnesium chloride to furnish a 2:1 mixture of diastereoismers which were then oxidised to the enone via the Swern procedure (Scheme 102).

Scheme 102

Having achieved the synthesis of the enone 273 in good yield we needed to add the lithiated seleno-acetal $\mathrm{Me}_{2} \mathrm{CLiSeMe}$ following the work of Professor Krief. ${ }^{93}$ Numerous attempts to follow the literature procedure for cleavage of the selenium acetal (n-butyllithium in THF) failed we therefore decided to contact Professor Krief for help. After visiting Namur, Belgium, with the model compound and a similar model synthesised by the postdoctoral worker Gary Tustin, the correct conditions for the acetal cleavage were set and successful addition to the enone 274 was achieved (Scheme 103).

273

Scheme 103

On returning to Leicester filled with confidence from our trip we treated the compound 273a with PI_{3} to furnish the diene 274 completing the much sought after enone to diene conversion. Unfortunately all attempts to repeat the acetal lithiation and addition to the enone 273 failed at Leicester. Having taken great lengths to ensure the purity of the reagents that we were using and following exactly the procedure set out on our visit we were at a loss as to the nature of our failures. We again decided to contact Professor Krief who made several suggestions during a telephone conversation and just before ringing off said "by the way don't use your NMR sample in the reaction." Armed with this information we duly repeated the reaction on our model compounds and found them to proceed smoothly! Once the model study was working well we set about the conversion of the chiral C-ring synthon 254 (Scheme 104). The first step was reduction of the benzoyl group by reaction with DIBAL-H to furnish the alcohol 275 followed by reaction with sodium hydride and benzyl bromide to give 276. This conversion from a benzoyl to benzyl group was shown to be necessary in the model study where hydroboration of an allylic benzoate led to destruction of the starting material. Hydroboration of the olefin 276 and oxidation led to the primary alcohol 277, which afforded the aldehyde 278 after Swern oxidation (Scheme 104).

Scheme 104

In a similar fashion to the model study propenyl magnesium bromide was added to the aldehyde 278 to furnish the allylic alcohol 279 as a 2:1 mixture of diastereoisomers, again Swern oxidation of both isomers yielded the enone 280 (Scheme 105).

On one occasion, however, the temperature of the reaction mixture was accidentally allowed to rise to $-40^{\circ} \mathrm{C}$ during the Swern oxidation of 279 to $\mathbf{2 8 0}$, this resulted in a second product being isolated which was thought to be the enone aldehyde 280a. The higher temperature had enabled the removal of the triethyl silyl group, and subsequent oxidation furnished the aldehyde. This interesting observation proved very useful later in the route. Initial attempts to add the lithiated acetal to the enone 280 again met with failure. After several attempts it became obvious that the lithiation of the acetal was still causing problems. The eventual conditions for success are shown in Scheme 106. The condition of the s-BuLi seems to be a crucial factor and reaction times approaching 3 hours are needed to ensure complete lithiation of the acetal as opposed to the 20 minutes quoted in the literature. ${ }^{93}$ The fickleness of the reaction is greatly exaggerated by the small scale, typically 0.1 mmol , where reactions in the model study often had starting material remaining but were carried out on a 1 mmol scale. The diene synthesis has, however, been achieved since the start of this thesis. Scheme 106 shows that the lithiation of the acetal took 2 hours and the addition of the lithiated acetal to the enone 280 took a further 2 hours, subsequent elimination of the intermediate 281 to the diene was achieved with PI_{3}. Conversion of 281 to the aldehyde was completed in a one pot procedure utilising the earlier observation that a temperature of $-40^{\circ} \mathrm{C}$ during a Swern oxidation was sufficient to cleave the triethylsilyl ether and allow oxidation to the aldehyde 283 to take place (Scheme 106).

Scheme 106

Future Work

The advanced intermediate $\mathbf{2 8 3}$ is now only 2 steps from the final Diels-Alder reaction which will test whether or not a highly functionalised chiral intermediate such as $\mathbf{2 8 4}$ can undergo the required intermolecular Diels-Alder reaction to furnish a chiral taxoid structure such as 285 (Scheme 107).

If the viability of the route can be proven, the next stages in the synthesis require the construction of the oxetane ring and oxidation at $\mathrm{C}-7, \mathrm{C}-10$ and $\mathrm{C}-13$. It may be possible to modify the route to introduce the $\mathrm{C}-10$ hydroxyl at an earlier stage (Scheme 108). Instead of hydroboration of the olefin 254 with 9^{\prime} BBN treatment with OsO_{4} would furnish the diol 286. Elaboration of the diol 286 would require some protecting group interconversion but the opportunity to introduce the $\mathrm{C}-10$ hydroxyl at this stage should be possible.

Summary

The advanced C-ring synthon 254 had resisted all previous attempts at conversion to a diene. ${ }^{97,99,100}$ A return to the application of selenium chemistry eventually yielded the desired result and also holds with it the opportunity for further elaboration and construction of more advanced taxoid structures such as 287.

Chapter 4

EXPERIMENTAL

$\mathbb{G} \mathbb{E} \mathbb{E} \mathbb{R} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{R} M E N T A L$

The synthesis of some compounds on a large scale proved to be not trivial and therefore experimental procedures for compounds prepared previously have been included where modifications to the published procedure have been employed, or little or no data for compounds was available. All reactions were pe Rformed under an atmosphere of nitrogen $^{\text {and }}$ (unless otherwise stated in the text) and solvent extractions dried with MgSO_{4}. Tetrahydrofuran was freshly distilled from sodium benzophenone ketyl. Carbon tetrachloride was distilled from phosphorus pentoxide and stored under nitrogen. Diethyl ether was distilled from lithium aluminium hydride or in the case of the diene synthesis diethyl ether was distilled from sodium benzophenone ketyl. Dichloromethane was distilled from calcium hydride. Petroleum ether refers to the $40-60^{\circ} \mathrm{C}$ boiling fraction. The concentrations of $\mathrm{n}-\mathrm{BuLi}$ and $\mathrm{s}-\mathrm{BuLi}$ were determined by titration against diphenylacetic acid. 102 Flash column chromatography was pe ${ }_{\text {Rformed }}$ on Sorbsil C-60 silica gel (Crosfield Chemicals) $40-60 \mathrm{M} . \mathrm{Mps}$ were obtained on a Kofler hotstage and are uncorrected. Elemental analyses were performed by Butterworth Laboratories, Teddington, Middlesex. IR spectra were obtained on a Perkin Elmer PE 298 spectrophotometer. NMR spectra were recorded in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard at room temperature on a Varian EM$390\left(90 \mathrm{MHz}{ }^{1} \mathrm{H}\right)$, Bruker ARX $250\left(250 \mathrm{MHz}{ }^{1} \mathrm{H}, 62.9 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ and Bruker AM 300 ($300 \mathrm{MHz}{ }^{1} \mathrm{H}, 75 \mathrm{MHz}{ }^{13} \mathrm{C}$) spectrometers at Leicester University, n.O.e experiments were recorded on a Bruker WH $400\left(400 \mathrm{MHz}{ }^{1} \mathrm{H}\right)$ spectrometer at Warwick University. All chemical shifts were taken directly from the spectra and J values are given in Hz . Optical rotations were recorded on a Perkin Elmer 341 Polarimeter. Mass spectra were recorded on a Kratos Concept at Leicester University.

Methyl 4,6-O-benzylidene- α-D-glucopyranoside

Methyl α-D-glucopyranoside 53 ($50.0 \mathrm{~g}, 0.26 \mathrm{~mol}$), benzaldehyde dimethyl acetal (38.65 $\mathrm{cm}^{3}, 0.26 \mathrm{~mol}$), dry DMF ($300 \mathrm{~cm}^{3}$), and para-toluenesulphonic acid monohydrate (147 $\mathrm{mg}, 0.77 \mathrm{mmol}$), were placed in a flask fitted with a water condenser attached to a water pump. The solution was then heated to reflux $\left(65^{\circ} \mathrm{C}\right)$, for 3 h . The DMF was then removed under reduced pressure and the resulting white solid dispersed in sodium hydrogen carbonate ($560 \mathrm{~cm}^{3}$ water, 11 g carbonate), on a water bath. After cooling the product was filtered, washed with water ($400 \mathrm{~cm}^{3}$), and dried in vacuo overnight over phosphorus pentoxide. The white solid was then recrystallised from isopropanol ($180 \mathrm{~cm}^{3}$) and pyridine $\left(3.0 \mathrm{~cm}^{3}\right)$ to give $54(24.03 \mathrm{~g}, 58 \%)$, mp $166-167{ }^{\circ} \mathrm{C}$, (lit., ${ }^{23} 166-167{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44(1 \mathrm{H}$, obscured $\mathrm{t}, J 9.2,4-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{dd}, J 8.9$, $3.9,2-\mathrm{H}), 3.73(2 \mathrm{H}, \mathrm{dt}, \mathrm{t}, J 8.5,4.3, J 10.3,5-\mathrm{H}, 6 \mathrm{ax}-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{t}, J 9.1,3-\mathrm{H}), 4.26$ $(1 \mathrm{H}, \mathrm{dd}, J 9.1,3.9,6 \mathrm{eq}-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, J 3.8,1-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.35(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 7.48(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 55.8\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 62.8(\mathrm{CH}, \mathrm{C} 5), 69.3$ $\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 71.5(\mathrm{CH}, \mathrm{C} 3), 73.1(\mathrm{CH}, \mathrm{C} 2), 81.4(\mathrm{CH}, \mathrm{C} 4), 100.4(\mathrm{CH}, \mathrm{C} 1), 102.3(\mathrm{CH}$, C7), $126.8(\mathrm{CH}, \mathrm{Ph}), 128.8(\mathrm{CH}, \mathrm{Ph}), 129.0(\mathrm{CH}, \mathrm{Ph}), 137.6(\mathrm{C}, \mathrm{Ph})$.
This is a literature compound and method. ${ }^{23}$

Methyl 4,6-O-benzylidene-2-O-p-toluenesulphonyl- α-D-glucopyranoside

Methyl 4, 6-O -benzylidene- α-D-glucopyranoside 54 ($55.54 \mathrm{~g}, 0.20 \mathrm{~mol}$), was dissolved in dry dichloromethane ($780 \mathrm{~cm}^{3}$). To this solution was added N, N-dimethyl-4-aminopyridene $(4.33 \mathrm{~g}, 0.03 \mathrm{~mol})$, and triethylamine $\left(82.26 \mathrm{~cm}^{3}, 0.59 \mathrm{~mol}\right)$. This solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ and para-toluenesulphonyl chloride ($41.26 \mathrm{~g}, 0.22 \mathrm{~mol}$), added in portions. The reaction was left to stir for 0.15 h at this temperature and then at room temperature for 2 h . The reaction was quenched by the addition of water $\left(470 \mathrm{~cm}^{3}\right)$, extracted into dichloromethane ($2 \times 400 \mathrm{~cm}^{3}$), dried and evaporated to dryness. The resultant yellow syrup was dissolved in isopropanol ($75 \mathrm{~cm}^{3}$), and concentrated. This addition and concentration was repeated until a white foam was obtained. The product was then precipitated by the addition of hot isopropanol, the white solid was then filtered, washed with isopropanol and dried in vacuo to give a white crystalline solid $55(64.18 \mathrm{~g}, 75 \%)$, mp $150-152{ }^{\circ} \mathrm{C}$ (lit.,,$^{24} 153-155{ }^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}} .0 .65$, diethyl ether; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.43(3 \mathrm{H}, \mathrm{s}, \mathrm{Ts}-\mathrm{Me}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.46 ($1 \mathrm{H}, \mathrm{t}, J 9.3,4-\mathrm{H}$), 3.70 ($1 \mathrm{H}, \mathrm{t}, J 10.2,6 \mathrm{ax}-\mathrm{H}), 3.89$ ($1 \mathrm{H}, \mathrm{dt}, J 10.0,4.4,5-\mathrm{H}$), 4.26 (1H, t, $J 9.3,3-\mathrm{H}), 4.3$ ($1 \mathrm{H}, \mathrm{dd}, J 9.8,4.5,6 \mathrm{eq}-\mathrm{H}$), 4.42 ($1 \mathrm{H}, \mathrm{dd}, J 9.3,3.8,2-\mathrm{H}$), 4.87 ($1 \mathrm{H}, \mathrm{d}, J 3.7,1-\mathrm{H}$), $5.53(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.48(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}), 7.84$ $(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ts}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.1\left(\mathrm{CH}_{3}, \mathrm{Ts}\right), 56.3\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 62.8(\mathrm{CH}, \mathrm{C} 5)$, 68.8 ($\mathrm{CH}, \mathrm{C} 3$), $69.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 80.1(\mathrm{CH}, \mathrm{C} 2), 81.3(\mathrm{CH}, \mathrm{C} 4), 98.8(\mathrm{CH}, \mathrm{C} 1), 102.2$ (CH, C7), 126.7 (CH, Ph), 128.4 (CH, Ts), 128.9 (CH, Ph), 129.6 (CH, Ph), 130.2 (CH, Ts), 133.6 (C, Ts), 137.4 (C, Ph).

This is a literature compound and method. ${ }^{24}$

Methyl 2,3-anhydro-4,6-O-benzylidene- α-D-mannopyranoside

The tosylate 55 ($64.18 \mathrm{~g}, 0.15 \mathrm{~mol}$), was dissolved in dry DMF ($500 \mathrm{~cm}^{3}$), and cooled to 0 ${ }^{\circ} \mathrm{C}$ in an ice bath. Portions of sodium hydride ($4.86 \mathrm{~g}, 0.16 \mathrm{~mol}$) were added and the reaction allowed to stir at room temperature for 2 h . Ethanol $\left(50.0 \mathrm{~cm}^{3}\right)$ was then added with cooling and the resulting solution poured into ice/water $\left(250 \mathrm{~cm}^{3}\right)$. The resulting white precipitate was filtered and dried under suction for 1 h . The solid was recrystallised from isopropanol $\left(200 \mathrm{~cm}^{3}\right)$ to give a white crystalline solid $56(26.2 \mathrm{~g}, 67 \%) \mathrm{mp} 144-145{ }^{\circ} \mathrm{C}$, (lit., ${ }^{25} 145-147{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.00(1 \mathrm{H}, \mathrm{d}, J 3.78,2-\mathrm{H}), 3.30(3 \mathrm{H}, \mathrm{s}$, OMe), 3.37 (1 H , obscured, $4-\mathrm{H}$), $3.54(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 5-\mathrm{H}, 6 \mathrm{ax}-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{m}, 6 \mathrm{eq}-\mathrm{H})$, $4.74(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.21(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.34(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 51.0(\mathrm{CH}, \mathrm{C} 3), 54.2(\mathrm{CH}, \mathrm{C} 2), 56.2\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 62.1(\mathrm{CH}, \mathrm{C} 5), 69.8$ ($\left.\mathrm{CH}_{2}, \mathrm{C} 6\right), 75.3$ (CH, C4), 97.3 (CH, C1), 102.8 (CH, C7), 126.6 (CH, Ph), 128.9 (CH, Ph), 129.7 (CH, Ph), 137.5 (C, Ph).

This is a literature compound and method. ${ }^{25}$

Methyl 4,6-O-benzylidene-3-deoxy-3-C-propenyl- α-D-glucopyranoside

To a suspension of the epoxide $56(17.62 \mathrm{~g}, 66.60 \mathrm{mmol})$ in dry THF ($100 \mathrm{~cm}^{3}$) was added allylmagnesium chloride ($100 \mathrm{~cm}^{3}, 2 \mathrm{M}$ solution in THF, 0.20 mol) dropwise whilst cooling the flask in an ice bath. The reaction was then heated to reflux for 2 h . The reaction was then quenched by the dropwise addition of water $\left(50 \mathrm{~cm}^{3}\right)$. The product was extracted into diethyl ether ($2 \times 200 \mathrm{~cm}^{3}$) and the combined organic layers washed with brine ($2 \times 75 \mathrm{~cm}^{3}$) and the solution dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($\mathbf{3}: 1$ to 1:1) as the eluent yielded 68 as a clear sticky oil (18.95 g, 86\%); $\mathrm{R}_{\mathrm{f}} .0 .22,1: 1$ petroleum ether : diethyl ether; (Found : C, $65.5 ; \mathrm{H}, 7.2 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}, 7.4 \%$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.25(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.53(3 \mathrm{H}, \mathrm{m}, 7-\mathrm{H})$, $3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.78(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.0,6 \mathrm{ax}-\mathrm{H}), 3.9(1 \mathrm{H}, \mathrm{bs}, \mathrm{OH}), 3.97(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 4.11 ($1 \mathrm{H}, \mathrm{dd}, J 9.7,5.3,4-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{dd}, J 10.1,4.8,6 \mathrm{eq}-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$, $5.08(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 7.4(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.5(2 \mathrm{H}, \mathrm{m}$, $o-\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 29.2\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 42.7(\mathrm{CH}, \mathrm{C} 3), 55.7\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 55.9$ ($\mathrm{CH}, \mathrm{C} 5$), $69.6(\mathrm{CH}, \mathrm{C} 2), 70.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 76.4(\mathrm{CH}, \mathrm{C} 4), 102.5(\mathrm{CH}, \mathrm{C} 1), 102.8(\mathrm{CH}$, $\mathrm{C} 10), 117.2\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.7(\mathrm{CH}, \mathrm{Ph}), 128.8(\mathrm{CH}, \mathrm{Ph}), 129.6(\mathrm{CH}, \mathrm{Ph}), 137.6(\mathrm{CH}$, C8), 138.1 (C, Ph); m / z (EI) 306 (M ${ }^{+}, 1.9 \%$) $305[\mathrm{M}-\mathrm{H}]^{+}$(3.6), 274 (2.9), 256 (3.3), 105 $\left(\mathrm{PhCO}^{+}\right)(100)$ (Found: $\mathrm{M}^{+}, 306.14665, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 306.1467).

Methyl 4,6-O-benzylidene-3-deoxy-3-C-propenyl- α-D-arabino-hexopyrano-

side-2-ulose

Trifluoroacetic anhydride ($12.67 \mathrm{~cm}^{3}, 89.73 \mathrm{mmol}$) in dry dichloromethane ($40 \mathrm{~cm}^{3}$) was added dropwise to a cooled solution $\left(-65^{\circ} \mathrm{C}\right)$ of dimethyl sulphoxide $(8.36 \mathrm{ml}, 0.12 \mathrm{~mol})$ in dry dichloromethane $\left(130 \mathrm{~cm}^{3}\right)$, under an atmosphere of nitrogen. Once addition was complete the mixture was stirred for 0.3 h at $-65^{\circ} \mathrm{C}$, then a solution of $68(18.95 \mathrm{~g}, 61.90$ mmol) in dry dichloromethane ($20 \mathrm{~cm}^{3}$), was added slowly dropwise keeping the internal temperature at $-65^{\circ} \mathrm{C}$. Once addition was complete the reaction was stirred for a further 1.5 h at this temperature. Triethylamine $\left(48.64 \mathrm{~cm}^{3}, 0.35 \mathrm{~mol}\right)$ was then added dropwise and the solution allowed to warm to room temperature. The reaction was diluted with dichloromethane ($200 \mathrm{~cm}^{3}$) and this solution washed with 1 M hydrochloric acid, until the aqueous layer remained and then washed with enough sodium hydrogen carbonate to neutralise the acid, followed by saturated sodium chloride solution ($200 \mathrm{~cm}^{3}$). The dichloromethane layer was then dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (3:1) as the eluent yielded 69 as a white solid (16.18 $\mathrm{g}, 86 \%$), mp 99-101 ${ }^{\circ} \mathrm{C}$ (from petroleum ether) (lit. ${ }^{31} 100-102^{\circ} \mathrm{C}$); (Found : $\mathrm{C}, 66.83$; $\mathrm{H}, 6.58 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 67.14 ; \mathrm{H}, 6.62 \%\right) ; \mathrm{R}_{\mathrm{f}} .0 .72,1: 1$ petroleum ether : diethyl ether; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2920 \mathrm{~s}, 1740 \mathrm{~s}(\mathrm{CO}), 1640 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.45(2 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,9.4,4-\mathrm{H}), 3.67$ $(1 \mathrm{H}, \mathrm{t}, J 10.3,6 \mathrm{ax}-\mathrm{H}), 4.14(1 \mathrm{H}$, ddd, $J 4.9,9.7,10.3,5-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 4.9,10.3$, $6 \mathrm{eq}-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.01(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.77(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, 7.33-7.44 (5H, m, Ph); ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 28.0\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 51.1(\mathrm{CH}, \mathrm{C} 3), 56.1$ $\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 64.6(\mathrm{CH}, \mathrm{C} 5), 69.5\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 80.4(\mathrm{CH}, \mathrm{C} 4), 101.3(\mathrm{CH}, \mathrm{C} 1), 101.6$
(CH, C10), 117.8 ($\left.\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.5$ (CH, Ph), 128.7 (CH, Ph), 129.6 (CH, Ph), 135.2 (CH, C8), 137.5 (C, Ph), 200.1 (C, CO); m / z (EI) $304\left(\mathrm{M}^{+}, 2.4 \%\right.$), $276\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (5.2), $105\left(\mathrm{PhCO}^{+}\right)(100)$; (Found $\mathrm{M}^{+}, 304.1311 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{M}^{+}, 304.1311$).

This is a literature compound ${ }^{31}$ but not a literature method.

Methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl-3-C-propenyl, methyl- α-D-

 erythro-hexopyranoside

Lithium hexamethydisilazide ($18.08 \mathrm{~cm}^{3}, 18.08 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) was cooled to $0^{\circ} \mathrm{C}$ and a solution of $69(5.0 \mathrm{~g}, 16.44 \mathrm{mmol})$ was added dropwise in THF ($15 \mathrm{~cm}^{3}$) maintaining the temperature at $0^{\circ} \mathrm{C}$. The solution was allowed to stir for 1 h at $0^{\circ} \mathrm{C}$, then methyl iodide ($7.8 \mathrm{~cm}^{3}, 98.64 \mathrm{mmol}$) was added followed by DMPU $\left(1.0 \mathrm{~cm}^{3}, 8.22\right.$ mmol). The solution was allowed to warm to room temperature and left to stir overnight. The product was extracted into diethyl ether ($2 \times 200 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether $(10: 1)$ as the eluent yielded 71 as a clear oil $(4.19 \mathrm{~g}$, 80\%); (Found : C, 67.83; H, 7.21. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.96 ; \mathrm{H} 6.97 \%$); $\mathrm{R}_{\mathrm{f}} .0 .75,1: 1$ petroleum ether : diethyl ether (1:1); $[\alpha]_{D^{20}}-3.3^{\circ}\left(c 2.07, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.26 (3H, s, C3-Me), 2.21 ($1 \mathrm{H}, \mathrm{dd}, J 13.8,9.15,7 \mathrm{a}-\mathrm{H}), 2.59(1 \mathrm{H}, \mathrm{dd}, J 13.8,5.5,7 \mathrm{~b}-$ H), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.64(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}$), $3.73(1 \mathrm{H}, \mathrm{d}, J 10.0,4-\mathrm{H}), 4.23(1 \mathrm{H}$, $\mathrm{dt}, J 10.0,5.16,5-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{dd}, J 10.1,5.2,6 \mathrm{eq}-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.0(2 \mathrm{H}, \mathrm{m}$, $9-\mathrm{H}), 5.4(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.65(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 7.3(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.42(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; \delta_{\mathrm{C}}$ ($\left.62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.3\left(\mathrm{CH}_{3}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 38.5\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 51.8(\mathrm{C}, \mathrm{C} 3), 55.6\left(\mathrm{CH}_{3}\right.$, $\mathrm{OMe}), 60.0(\mathrm{CH}, \mathrm{C} 5), 69.8\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 77.5(\mathrm{CH}, \mathrm{C} 4), 101.5(\mathrm{CH}, \mathrm{Cl}), 101.7(\mathrm{CH}$, $\mathrm{C} 10), 119.21\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.5(\mathrm{CH}, \mathrm{Ph}), 128.7(\mathrm{CH}, \mathrm{Ph}), 129.5(\mathrm{CH}, \mathrm{Ph}), 134.5(\mathrm{CH}$,

C8), 137.9 (C, Ph), 203.7 (C, C2); m / z (El) $318\left(\mathrm{M}^{+}, 0.9 \%\right) 290\left(\mathrm{M}^{+},-\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ (1.3), 174 (100) (Found $\mathrm{M}^{+}, 318.1467 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1467).

Methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl-3-C-propenone- α-D-erythro-hexopyranosid-2-ulose

To a stirred solution of $71(4.17 \mathrm{~g}, 13.16 \mathrm{mmol})$ in DMF and water $\left(80 \mathrm{~cm}^{3}, 1: 1\right)$ was added palladium(II) chloride ($233 \mathrm{mg}, 1.32 \mathrm{mmol}$) and copper(II) chloride ($2.24 \mathrm{~g}, 13.16$ mmol). The reaction was allowed to stir at room temperature whilst oxygen was bubbled into the solution for 5 h . The product was extracted into dichloromethane ($2 \times 75 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (10:1) as the eluent yielded 72 as a white solid ($2.48 \mathrm{~g}, 56 \%$); m.p $112-114{ }^{\circ} \mathrm{C}$ (Found : C, 64.83; H, 6.59. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $\mathrm{C}, 64.70 ; \mathrm{H}, 6.63 \%$); $\mathrm{R}_{\mathrm{f}} .0 .75$, petroleum ether : diethyl ether ($1: 1$); $[\alpha]^{20}-78^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3940 \mathrm{w}, 1760 \mathrm{~m}, 1730 \mathrm{~m} ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.19(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me}), 2.01(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 2.77(1 \mathrm{H}, \mathrm{d}, J 18.6,7 \mathrm{a}-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{d}$, $J 18.6,7 \mathrm{~b}-\mathrm{H}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.70(1 \mathrm{H}, \mathrm{t}, J 10.0,6 \mathrm{ax}-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{d}, J 10.1,4-\mathrm{H})$, 4.18 ($1 \mathrm{H}, \mathrm{dt}, J 10.1,4.97,5-\mathrm{H}$), 4.31 ($1 \mathrm{H}, \mathrm{dd}, J 10.1,4.97,6 \mathrm{eq}-\mathrm{H}$), 4.63 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.40 ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$), 7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 19.2\left(\mathrm{CH}_{3}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 30.4$ $\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 48.1\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 49.0(\mathrm{C}, \mathrm{C} 3), 56.6\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 60.1(\mathrm{CH}, \mathrm{C} 5), 69.7\left(\mathrm{CH}_{2}\right.$, C6), 79.5 ($\mathrm{CH}, \mathrm{C} 4$), 100.7 ($\mathrm{CH}, \mathrm{C} 1$), 101.7 ($\mathrm{CH}, \mathrm{C} 10$), 126.7 (CH, Ph), 128.7 (CH , $\mathrm{Ph}), 129.6$ (CH, Ph), 137.9 (C, Ph), 204.4 (C, C2), 206.8 (C, C8); m / z (EI) 334 (M^{+}, 4.8%) $228\left(\mathrm{M}^{+},-\mathrm{PhCHO}\right)(5.8) 188$ (88.7) 159 (100) (Found M ${ }^{+}$, 334.1416. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}$ requires 334.1416).

Methyl 4,6-O-benzylidene-3-deoxy-3-C-propenone- α-D-arabino-

hexopyranosid-2-ulose

To a stirred solution of 69 ($657 \mathrm{mg}, 2.10 \mathrm{mmol}$) in DMF and water ($25 \mathrm{~cm}^{3}, 1: 1$) was added palladium(II) chloride ($40 \mathrm{mg}, 0.21 \mathrm{mmol}$) and copper(II) chloride ($106 \mathrm{mg}, 2.1$ $\mathrm{mmol})$. The reaction was allowed to stir at room temperature whilst oxygen was bubbled into the solution for 0.5 h . The product was extracted into dichloromethane ($2 \times 25 \mathrm{~cm}^{3}$) and the combined organic layers washed with brine $\left(2 \times 15 \mathrm{~cm}^{3}\right)$ and the solution dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($2: 1$) as the eluent yielded 70 as a clear oil ($429 \mathrm{mg}, 62 \%$); $\mathrm{R}_{\mathrm{f}} .0 .50$, petroleum ether : diethyl ether (2:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3940 \mathrm{w}, 1760 \mathrm{~m}, 1730 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.20(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 3.9,17.7,7 \mathrm{a}-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{dd}, J 6.9,17.6,7 \mathrm{~b}-\mathrm{H})$, $3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$, and obscured, $1 \mathrm{H}, \mathrm{m}, J 3.9,6.9,3-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{dd}, J 9.4,11.6,4-$ H), $3.78\left(1 \mathrm{H}, \mathrm{t}, J 10.0,6_{\mathrm{ax}-\mathrm{H})}, 4.23(1 \mathrm{H}, \mathrm{ddd}, J 5.0,9.4,10.0,5-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{dd}, J\right.$ $5.0,10.0,6 \mathrm{eq}-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.37-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ ($\left.62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 30.2\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 37.3\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 47.6(\mathrm{CH}, \mathrm{C} 3), 55.7\left(\mathrm{CH}_{3}, \mathrm{OMe}\right)$, $64.4(\mathrm{CH}, \mathrm{C} 5), 69.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 79.9(\mathrm{CH}, \mathrm{C} 4), 100.6(\mathrm{CH}, \mathrm{C} 1), 101.5(\mathrm{CH}, \mathrm{C} 10)$, 126.2 (CH, Ph), 128.4 (CH, Ph), 129.3 (CH, Ph), 136.9 (C, Ph), 199.2 (C, C2), 205.8 (C, C8); m / z (EI) 320 ($\mathrm{M}^{+}, 2.1 \%$), 292 (15.5) 174 (30.8) 145 (100) (Found M ${ }^{+}, 320.1260$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6}$ requires 320.1260).

Methyl 4,6-O-benzylidene-2,3-dideoxy-3-C-methyl-3,2-C-(2'-oxapropan-1'-yl-3'-ylidene)- α-D-arabino-hexopyranoside

To a solution of $72(239 \mathrm{mg}, 0.79 \mathrm{mmol})$ in dry toluene $\left(5.0 \mathrm{~cm}^{3}\right)$ was added potassium tertiary butoxide ($91 \mathrm{mg}, 0.86 \mathrm{mmol}$). The solution was allowed to stir at room temperature, under an atmosphere of nitrogen for 0.5 h . The product was extracted into dichloromethane $\left(2 \times 200 \mathrm{~cm}^{3}\right)$, the combined organic layers washed with brine $\left(2 \times 25 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (2: 1) as the eluent yielded 74 as a white solid ($2.48 \mathrm{~g}, 56 \%$); m.p $134-136{ }^{\circ} \mathrm{C}$ (petroleum ether) (Found : $\mathrm{C}, 68.14 ; \mathrm{H}, 6.24 . \quad \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{C}, 68.39 ; \mathrm{H}, 6.37 \%$); $\mathrm{R}_{\mathrm{f}} \mathbf{0 . 7 5}$, petroleum ether : diethyl ether (1:2); $[\alpha]_{\mathrm{D}^{23}}+25.5^{\circ}\left(c 1.73, \mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3000 \mathrm{w}, 1720 \mathrm{~s}, 1090 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me}), 2.28(1 \mathrm{H}, \mathrm{d}, J 18.8$, $9 \mathrm{a}-\mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{d}, J 18.8,9 \mathrm{~b}-\mathrm{H}), 3.41(1 \mathrm{H}, \mathrm{d}, J 9.4,4-\mathrm{H}), 3.42(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.65$ $(1 \mathrm{H}, \mathrm{t}, J 10.2,6 \mathrm{ax}-\mathrm{H}), 4.12(1 \mathrm{H}$, ddd, $J 10.0,9.37,5.08,5-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dd}, J 10.1$, $5.06,6 \mathrm{eq}-\mathrm{H}), 5.29(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.48(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.33(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.5\left(\mathrm{CH}_{3}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 46.2(\mathrm{C}, \mathrm{C} 3), 50.5\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 55.9$ $\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 61.2(\mathrm{CH}, \mathrm{C} 5), 69.6\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 86.3(\mathrm{CH}, \mathrm{C} 4), 98.1(\mathrm{CH}, \mathrm{C} 1), 102.3(\mathrm{CH}$, C10), 126.6 (CH, Ph), 128.7 (CH, Ph), 129.7 (CH, Ph), 130.2 (CH, C7), 137.7 (C, Ph), 174.0 (C, C2), 207.4 (C, C8); $m / z(\mathrm{EI}) 316\left(\mathrm{M}^{+}, 6.5 \%\right) 273$ (9.2) 167 (73.8) 138 (100) (Found $\mathrm{M}^{+}, 334.1416 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$ requires 334.1416).

4-Benzoyloxy-5-bromomethyl-2,3-C-(2-propen-2'one)-3-deoxy-3-C-methyl-

 α-D-arabino-hexopyranosid-2-ulose

To a solution of $\mathbf{7 4}(\mathbf{7 0 8} \mathbf{~ m g}, 2.31 \mathrm{mmol})$ in dry carbon tetrachloride $\left(73.0 \mathrm{~cm}^{3}\right)$ was added barium carbonate ($2.6 \mathrm{~g}, 13.0 \mathrm{mmol}$) followed by N -bromosuccinimide ($507 \mathrm{mg}, 1.28$ $\mathrm{mmol})$. This solution was stirred under an atmosphere of nitrogen at reflux for 3 h . The barium carbonate was removed by filtration, washed with diethyl ether ($75 \mathrm{~cm}^{3}$), the combined organic layers washed with water ($2 \times 75 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($3: 1$) as the eluent yielded 83 as a white solid ($654 \mathrm{mg}, 72 \%$); m.p 131-132 ${ }^{\circ} \mathrm{C}$ (petroleum ether $40-60$); $\mathrm{R}_{\mathrm{f}} .0 .50$, petroleum ether : ethyl acetate (1:1); $[\alpha] \mathrm{D}^{22}+128.2^{\circ}\left(c 2.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $2960 \mathrm{~m}, 1730 \mathrm{~s}, 1710 \mathrm{~s}, 1640 \mathrm{w}, 1600 \mathrm{w}, 1450 \mathrm{~m}, 1260 \mathrm{~s}, 1180 \mathrm{~m}, 1110 \mathrm{~s} ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.47(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{Me}), 2.18(1 \mathrm{H}, \mathrm{d}, J 18.7,9 \mathrm{a}-\mathrm{H}), 2.66(1 \mathrm{H}, \mathrm{d}, J 18.6,9 \mathrm{~b}-\mathrm{H})$, $3.37(1 \mathrm{H}, \mathrm{dd}, J 11.0,7.6,6 \mathrm{a}-\mathrm{H}), 3.46(1 \mathrm{H}$, obscured dd, $J 11.0,2.5,6 \mathrm{~b}-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.36(1 \mathrm{H}, \mathrm{dt}, J 9.8,7.4,2.5,5-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{d}, J 9.8,4-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$, $6.00(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{m}, m-\mathrm{Ph}), 7.57(2 \mathrm{H}, \mathrm{m}, p-\mathrm{Ph}), 7.99(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; \delta_{\mathrm{C}}$ ($62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $20.1\left(\mathrm{CH}_{3}, \mathrm{C} 3-\mathrm{CH}_{3}\right), 31.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 45.7(\mathrm{C}, \mathrm{C} 3), 49.6\left(\mathrm{CH}_{2}, \mathrm{C} 9\right)$, $54.6\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 66.8(\mathrm{CH}, \mathrm{C})$), $76.1(\mathrm{CH}, \mathrm{C} 4), 96.1(\mathrm{CH}, \mathrm{C} 1), 127.7(2 \mathrm{CH}, m-\mathrm{Ph})$, 127.0 (CH, C7), 128.5 (CH, $p-\mathrm{Ph}), 128.8$ ($\mathrm{CH}, o-\mathrm{Ph}$), 132.9 (C, Ph), 164.2 (CO, OBz), 205.0 (C, C8); $m / z(E I) 394 / 396\left(\mathrm{M}^{+}, 3 \%\right) 365,353,315\left(\mathrm{M}^{+}-\mathrm{Br}\right), 105\left(\mathrm{PhCO}^{+}\right)(100)$ (Found M^{+}, 394.0518. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{Br}$ requires 394.0518).
($3 R, 1^{\prime}$ ' $R, 2$ ' R)-2'-Hydroxymethyl-1'-methyl-3-cyclopentan-4'-one-2-propenyl-3-benzoate and ($3 R, 1$ ' $R, 2$ 'S)-2'-Hydroxymethyl-1'-methyl-3-
cyclopentan-4'-one-2-propenyl-3-benzoate

Zinc was activated by washing with 2 M hydrochloric acid ($2 \times 50 \mathrm{~cm}^{3}$), water $\left(50 \mathrm{~cm}^{3}\right.$), isopropanol $\left(75 \mathrm{~cm}^{3}\right)$ and ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. This was left to stand open to the air for up to 1 month. The bromo compound $83(200 \mathrm{mg}, 0.51 \mathrm{mmol})$ was heated to reflux with the activated zinc in isopropanol $\left(28.0 \mathrm{~cm}^{3}\right)$ for 3 h . The zinc was removed by filtration, washed with diethyl ether ($3 \times 25 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (4:6) as the eluent yielded 84 as a mixture of diastereoisomers ($105 \mathrm{mg}, 72 \%$); $\mathrm{R}_{\mathrm{f}} .0 .26$, diethyl ether : petroleum ether (7:3); $v_{\max }\left(\mathrm{Et}_{2} \mathrm{O}\right) / \mathrm{cm}^{-1} 3440 \mathrm{~s}, 2920 \mathrm{w}, 2890 \mathrm{w}$, $1745 \mathrm{~s}, 1720 \mathrm{~s}, 1605 \mathrm{w}, 1270 \mathrm{~s}, 1100 \mathrm{w}, 1110 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}{ }^{\prime}-\right.$ Me minor), 1.21 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}$ '-Me major), 1.72 (1 H , br s, OH minor), 1.86 (1 H , br s, OH major), 1.97-2.72 ($10 \mathrm{H}, \mathrm{m}$, minor and major), $3.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right.$ major and minor), $5.6(2 \mathrm{H}, \mathrm{d}, J 6.3,3-\mathrm{H}$ major, minor obscured), $5.81(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ major and minor), $7.36-$ 7.48 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ major and minor), 7.90 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ major and minor); major compound only $\delta_{\mathrm{C}}\left(\mathbf{6 2 . 9} \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.0\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime} \mathrm{Me}\right), 40.8\left(\mathrm{CH}_{2}, \mathrm{C} 3\right.$ '), $43.3\left(\mathrm{C}, \mathrm{C} 1{ }^{\prime}\right), 47.1$ ($\mathrm{CH}, \mathrm{C} 2$ '), $47.8\left(\mathrm{CH}_{2}, \mathrm{C} 5\right.$ '), $61.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right), 77.2(\mathrm{CH}, \mathrm{C} 3), 118.2\left(\mathrm{CH}_{2}, \mathrm{C} 1\right)$, 127.6 (2CH, Ph), 128.6 (CH, C2), 128.6 (CH, Ph), 131.6 (CH, Ph), 132.4 (C, Ph), 164.2 ($\mathrm{CO}, \mathrm{OBz}$), 217.0 ($\mathrm{C}, \mathrm{C4}$); m / z (EI) $288.1365\left(\mathrm{M}^{+}, 12 \%\right) 257\left(\mathrm{M}^{+},-\mathrm{CH}_{2} \mathrm{OH}\right)(4)$ $183\left(\mathrm{M}^{+},-\mathrm{PhCO}+\right)(18) 166\left(\mathrm{M}^{+},-\mathrm{PhCO}_{2} \mathrm{H}\right)(65) 105\left(\mathrm{PhCO}^{+}\right)$(100) (Found M^{+}, 288.1365. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$ requires 288.1365).
($3 R, 1^{\prime} \boldsymbol{R}, 2$ ' \boldsymbol{R})-1'-Methyl-2'-p-nitrobenzoyloxymethyl-cyclopentan-4'-one-2-propenyl-3-benzoate and ($3 R, 1$ ' $R, 2$ 'S)-3-1'-Methyl-2'-p-nitrobenzoate-
methyl-cyclopentan-4'-one-2-propenyl-3-benzoate

The mixture of alcohols 84 ($57 \mathrm{mg}, 0.20 \mathrm{mmol}$) in dry toluene ($2.0 \mathrm{~cm}^{3}$) was stirred magnetically at $0^{\circ} \mathrm{C}$ with trietylamine ($0.07 \mathrm{~cm}, 0.49 \mathrm{mmol}$) para-nitro-benzyl chloride was added and the solution left to stir until no starting material remained. The product was extracted into diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$), washed with brine ($2 \times 5 \mathrm{~cm}^{3}$) and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether $(2: 1)$ as the eluent yielded $\mathbf{8 5 a}$, 85b ($5: 1$) ($72 \mathrm{mg}, 96 \%$); 85a R_{f}. 0.75 , petroleum ether : ethyl acetate (4:1); $[\alpha]]^{22}+20.4^{\circ}\left(c 3.3, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2960 \mathrm{~m}, 1730 \mathrm{~s}, 1710 \mathrm{~s}, 1640$ $\mathrm{w}, 1600 \mathrm{w}, 1450 \mathrm{~m}, 1260 \mathrm{~s}, 1180 \mathrm{~m}, 1110 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}^{\prime}-\mathrm{Me}\right)$, 2.15 ($1 \mathrm{H}, \mathrm{d}, J 18.3,5$ 'a-H), 2.22 (1 H , ddd, $J 1.6,9.8,18.9,3$ 'a-H), 2.54 (1 H , dd, J $9.44,18.9,3^{\prime} \mathrm{b}-\mathrm{H}$), $2.65(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 2.78$ ($\left.1 \mathrm{H}, \mathrm{d}, J 18.3,5{ }^{\prime} \mathrm{b}-\mathrm{H}\right), 4.42(1 \mathrm{H}, \mathrm{dd}, J$ 11.3, 7.2, CHHO), 4.52 ($1 \mathrm{H}, \mathrm{dd}, J 11.3,6.3, \mathrm{CHHO}$), 5.28 ($1 \mathrm{H}, \mathrm{d}, J 4.4,1 \mathrm{a}-\mathrm{H}$), 5.33 ($1 \mathrm{H}, \mathrm{d}, J 11.3,1 \mathrm{~b}-\mathrm{H}$), $5.62(1 \mathrm{H}, \mathrm{d}, J 6.3,3-\mathrm{H}), 5.85(1 \mathrm{H}$, ddd overlapping, $J 4.4,6.0$, 10.7, 2-H), 7.35-7.55 (3H, m, Ph), 7.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 8.06 ($1 \mathrm{H}, \mathrm{dd}, J 6.9,1.9, \mathrm{Ph}$), 8.18 ($1 \mathrm{H}, \mathrm{dd}, J 6.92,1.89, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 25.5\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right), 42.1\left(\mathrm{CH}_{2}, \mathrm{C} 3\right.$ '), 44.9 (C, C1'), 45.9 ($\mathrm{CH}, \mathrm{C} 2$ '), $48.9\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right)$), $65.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{O}\right), 78.4(\mathrm{CH}, \mathrm{C} 3)$, $120.4\left(\mathrm{CH}_{2}, \mathrm{C} 1\right), 124.0(\mathrm{CH}, \mathrm{Ph}), 129.1(\mathrm{CH}, \mathrm{Ph}), 129.8(\mathrm{C}, \mathrm{Ph}), 130.1(\mathrm{CH}, \mathrm{Ph})$, $131.1(\mathrm{CH}, \mathrm{Ph}), 132.6(\mathrm{CH}, \mathrm{Ph}), 134.0(\mathrm{CH}, \mathrm{Ph}), 135.5(\mathrm{C}, \mathrm{Ph}), 151.0\left(\mathrm{C}, p-\mathrm{NO}_{2} \mathrm{Ph}\right)$, 164.8 (C, OBz), 165.3 (C, OBz), 214.4 (C, C4').
$85 b \mathrm{R}_{\mathrm{f}}: 0.35$ petroleum ether : ethyl acetate $(4: 1) ;[\alpha] \mathrm{D}^{22}-31.3^{\circ}\left(c 0.8, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.48 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C1}{ }^{\prime}-\mathrm{Me}$), 2.17 ($2 \mathrm{H}, \mathrm{m}, 5$ 'a-H, 3 'a-H), 2.54 (1 H , dd, J 8.8, 18.9, $\left.3^{\prime} \mathrm{b}-\mathrm{H}\right), 2.74(1 \mathrm{H}, \mathrm{d}, J 18.3,5 ’ \mathrm{~b}-\mathrm{H}), 2.86\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.38(1 \mathrm{H}, \mathrm{dd}, J 11.3$, 6.92, CHHO), $4.52(1 \mathrm{H}, \mathrm{dd}, J 11.3,6.6, \mathrm{CH} H O), 5.33(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{d}, J 7.2$, $3-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.36-7.57(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.94-8.25(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Methyl 4,6-O-benzylidene-2,3-di- O-methylsulphonyl- α-D-glucopyranoside

Methyl 4, 6-O -benzylidene- α-D-glucopyranoside 54 ($20.0 \mathrm{~g}, 71.00 \mathrm{~mol}$), was dissolved in dry dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ and triethylamine $\left(25.0 \mathrm{~cm}^{3}, 177.00 \mathrm{mmol}\right)$ and cooled in an ice bath. To this solution was added methanesulphonyl chloride ($11.5 \mathrm{~cm}^{3}, 148.00 \mathrm{mmol}$) dropwise. This solution was then allowed to warm to room temperature and left to stir for 18h. The reaction was quenched by the addition of water ($400 \mathrm{~cm}^{3}$), extracted into dichloromethane $\left(2 \times 400 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. The resultant yellow solid $57(29.0 \mathrm{~g}, 93 \%)$ was used without any further purification. A small sample was purified by re-crystallisation from $\mathrm{CHCl}_{3} \mathrm{mp} 156-160{ }^{\circ} \mathrm{C}$ (lit., ${ }^{26} 163-165{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.97(3 \mathrm{H}, \mathrm{s}, \mathrm{Ms}-\mathrm{Me}), 3.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Ms}-\mathrm{Me}), 3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.77(1 \mathrm{H}, \mathrm{m}$, $6 \mathrm{ax}-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{dt}, J 4.7,10.0,5-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{dd}, J 4.7,4.8,6 \mathrm{eq}-\mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{dd}$, $J 9.6,3.7,2-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{d}, J 3.7,1-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{t}, J 9.6,3-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$, 7.36-7.53 (5H, m, Ph).

This is a literature compound and method. ${ }^{26}$

2,3-Anhydro-4,6-O-benzylidene- α-methyl- D-alloside

Sodium metal ($7.6 \mathrm{~g}, 9.90 \mathrm{mmol}$) was added cautiously to methanol with cooling. This was added to a cooled solution of the dimesylate $57(28.8 \mathrm{~g}, 0.66 \mathrm{~mol})$ and allowed to stand in the refrigerator with occasional stirring for 3 days. The resulting solution was poured into water $\left(100 \mathrm{~cm}^{3}\right)$ to which saturated potassium carbonate $\left(150 \mathrm{~cm}^{3}\right)$ was added. The product was extracted into dichloromethane ($2 \times 125 \mathrm{~cm}^{3}$), dried and evaporated to dryness. The solid was re-dissolved in dichloromethane and isopropanol added to give a white crystalline solid 58 ($10.4 \mathrm{~g}, 60 \%$) mp $199-200^{\circ} \mathrm{C}$, (lit., ${ }^{26}, 199-200{ }^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 3.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.45-3.51 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 2-\mathrm{H}$ obscured), $3.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.2,3-\mathrm{H}$), 3.94 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5,9.1,6 \mathrm{ax}-\mathrm{H}$), 4.10 ($1 \mathrm{H}, \mathrm{dt}, J 5.0,9.3,5-\mathrm{H}$), 4.20 ($1 \mathrm{H}, \mathrm{dd}, J 5.6,9.1$, $6 \mathrm{eq}-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{d}, J 2.6,1-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 7.30-7.53$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).
This is a literature compound and method. ${ }^{26}$

Methyl 4,6-O-benzylidene-2-deoxy-2-C-propenyl- α - D-altropyranoside and Methyl 4,6-O-benzylidene-2-deoxy-2-C-(2-methyl-2-propenyl)- α - D -

altropyranoside

To a suspension of the epoxide $58(4.75 \mathrm{~g}, 18.00 \mathrm{mmol})$ in dry THF $\left(65.0 \mathrm{~cm}^{3}\right)$ was added allylmagnesium chloride ($27.0 \mathrm{~cm}^{3}, 2 \mathrm{M}$ solution in THF) dropwise whilst cooling the flask in an ice bath. The reaction was then heated to reflux for 2 h . The reaction was quenched by the dropwise addition of water $\left(30 \mathrm{~cm}^{3}\right)$. The product was extracted into diethyl ether (2×75 cm^{3}), the combined organic layers washed with brine ($2 \times 50 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($5: 1$ to $1: 1$) as the eluent yielded 59a as a white solid ($4.98 \mathrm{~g}, 86 \%$); $[\alpha]_{\mathrm{D}}{ }^{20} 590$ (c $1.0, \mathrm{CHCl}_{3}$); $\mathrm{R}_{\mathrm{f}} .0 .45,2: 1$ petroleum ether : ethyl acetate; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3575$ brs, $1650 \mathrm{~s}, 1380 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.17(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.13$ ($1 \mathrm{H}, \mathrm{d}, J 6.9,2-\mathrm{H}$), $3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.42(1 \mathrm{H}, \mathrm{t}$, obscured, $4-\mathrm{H}), 3.67(1 \mathrm{H}, \mathrm{dd}, J 2.9,9.8,3-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{t}, J 10.0,6 \mathrm{ax}-\mathrm{H}), 4.2(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 5.0,9.9,6 \mathrm{eq}-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.12(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.61(1 \mathrm{H}$, $\mathrm{s}, 10-\mathrm{H}), 5.78(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.1\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 44.6$ $(\mathrm{CH}, \mathrm{C} 2), 55.4\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 58.3(\mathrm{CH}, \mathrm{C} 5), 68.3(\mathrm{CH}, \mathrm{C} 3), 69.2\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 76.7(\mathrm{CH}$, C4), 101.2 (CH, C1), 102.1 ($\mathrm{CH}, \mathrm{C} 10$), 117.3 (($\left.\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.5$ (CH, Ph), 128.1 (CH , $\mathrm{Ph}), 128.9$ (CH, Ph), 135.3 (CH, C8), 137.2 (C, Ph); m / z (EI) 306 ($\mathrm{M}^{+}, 1.9 \%$) 306 (M^{+}, 2.9%) 274 (15.8), 179 (25.9), 105 (PhCO^{+}) (100) (Found: $\mathrm{M}^{+}, 306.14665, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 306.1467).

This is a literature compound and method. ${ }^{28}$

In the same way the epoxide $58(497 \mathrm{mg}, 1.88 \mathrm{mmol})$ was treated with 2-methyl-2propenylmagnesium chloride to yield 59b as a white solid ($576 \mathrm{mg}, 92 \%$); mp $97-99{ }^{\circ} \mathrm{C}$ (lit., ${ }^{28} 98-100^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}} .0 .45,2: 1$ petroleum ether : ethyl acetate; $\mathrm{Rf}^{\prime} 0.45,2: 1$ petroleum ether : ethyl acetate; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3510 \mathrm{brw}, 2940 \mathrm{~s}, 1690 \mathrm{w} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.7$ $(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 2.2(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.43(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.72(1 \mathrm{H}, \mathrm{dd}, J$ $3.0,9.7,3-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{t}, J 9.9,6 \mathrm{ax}-\mathrm{H}), 3.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.35$ $(1 \mathrm{H}, \mathrm{dd}, J 4.9,9.9,6 \mathrm{eq}-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.81(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.65$ $(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.37-7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.8\left(\mathrm{CH}_{3}, \mathrm{C} 11\right), 38.1\left(\mathrm{CH}_{2}\right.$, C7), $42.5(\mathrm{CH}, \mathrm{C} 3), 55.4\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 58.3(\mathrm{CH}, \mathrm{C} 2), 68.7(\mathrm{CH}, \mathrm{C} 5), 69.3\left(\mathrm{CH}_{2}, \mathrm{C} 6\right)$, $76.7(\mathrm{CH}, \mathrm{C} 4), 101.5(\mathrm{CH}, \mathrm{C} 1), 102.1(\mathrm{CH}, \mathrm{Cl}), 113.0\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.1(\mathrm{CH}, \mathrm{Ph})$, 128.1 (CH, Ph), 128.9 (CH,Ph), 137.2 (C, Ph), $142.0(\mathrm{CH}, \mathrm{C} 8) ; \mathrm{m} / z(\mathrm{EI}) 306\left(\mathrm{M}^{+}\right.$, 1.9%) $320\left(\mathrm{M}^{+}, 29.6 \%\right) 288$ (110.5) 264 (14.5) 179 (29.4) $105\left(\mathrm{PhCO}^{+}\right)$(100) (Found: $\mathrm{M}^{+}, 320.1625, \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5}$ requires 320.1625).

This is a literature compound and method. 28

Methyl 4,6-O-benzylidene-2-deoxy-2-C-propenyl- α-D-arabino-hexo-pyranoside-3-ulose and Methyl 4,6-O-benzylidene-2-deoxy-2-C-(2-methyl-2-propenyl)- α-D-arabino-hexo-pyranoside-3-ulose

Trifluoroacetic anhydride $\left(0.96 \mathrm{~cm}^{3}, 6.80 \mathrm{mmol}\right)$ in dry dichloromethane $\left(1.0 \mathrm{~cm}^{3}\right)$ was added dropwise to a cooled solution $\left(-65^{\circ} \mathrm{C}\right)$ of dimethyl sulphoxide $\left(0.63 \mathrm{~cm}^{3}, 6.78 \mathrm{mmol}\right)$ in dry dichloromethane $\left(4.0 \mathrm{~cm}^{3}\right)$, under an atmosphere of nitrogen. Once addition was
complete the mixture was stirred for 0.3 h at $-65^{\circ} \mathrm{C}$, then a solution of $59 \mathrm{a}(1.5 \mathrm{~g}, 4.90$ mmol) in dry dichloromethane $\left(6.0 \mathrm{~cm}^{3}\right)$, was added slowly dropwise keeping the temperature at $-65^{\circ} \mathrm{C}$. Once addition was complete the reaction was stirred for a further 1.5 h at this temperature. Triethylamine $\left(3.67 \mathrm{~cm}^{3}, 26.30 \mathrm{mmol}\right)$ was then added dropwise and the solution allowed to warm to room temperature. The reaction was diluted with dichloromethane ($30 \mathrm{~cm}^{3}$), washed with 1 M hydrochloric acid until the aqueous layer was just acidic and then washed with sodium hydrogen carbonate followed by saturated sodium chloride solution $\left(20 \mathrm{~cm}^{3}\right)$. The dichloromethane layer was then dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (5:1) as the eluent yielded 62 a as white solid $(1.27 \mathrm{~g}, 85 \%), \mathrm{R}_{\mathrm{f}}: 0.8,2: 1$ petroleum ether : ethyl acetate; $[\alpha] D^{23}+23.9^{\circ}\left(c 1.89, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.40(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.69(1 \mathrm{H}, \mathrm{t}, J$ $7.9,2-H), 3.31(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{ddd}, J 4.4,10.1,5-$ $\mathrm{H}), 4.30(2 \mathrm{H}$, overlapping d and dd, $J 9.8,4-\mathrm{H}, J 4.4,10.1,6 \mathrm{eq}-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$, $5.05(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.51(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.63(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 7.36-7.55(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 34.0\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 54.0\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 55.3(\mathrm{CH}, \mathrm{C} 2), 65.0(\mathrm{CH}, \mathrm{C} 5)$, $68.5\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 79.9(\mathrm{CH}, \mathrm{C} 4), 101.3(\mathrm{CH}, \mathrm{C} 1), 102.1(\mathrm{CH}, \mathrm{C} 10), 117.4\left(\mathrm{CH}_{2}, \mathrm{C} 9\right)$, $127.3(\mathrm{CH}, \mathrm{Ph}), 128.3(\mathrm{CH}, \mathrm{Ph}), 129.2(\mathrm{CH}, \mathrm{Ph}), 133.9(\mathrm{CH}, \mathrm{C} 8), 135.6(\mathrm{C}, \mathrm{Ph}), 199.5$ (C, C3); m / z (EI) $304\left(\mathrm{M}^{+}, 4.7 \%\right), 273$ (8.9) 263 (6.1) 149 (40.2) $105\left(\mathrm{COPh}^{+}\right)(100)$ (Found $\mathrm{M}^{+}, 304.1311 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$ requires 304.1311);

This is a literature compound ${ }^{31}$ but not a literature method.

In the same way the alcohol $596(1.5 \mathrm{~g}, 4.68 \mathrm{mmol})$ was oxidised to the the ketone and the crude material purified by chromatography on silica gel with petroleum ether : ethyl acetate ($5: 1$) as the eluent to yield 62 b as a white solid ($1.05 \mathrm{~g}, 71 \%$), $\mathrm{mp} 115-117^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.8,2: 1$ petroleum ether : ethyl acetate; $[\alpha] \mathrm{D}^{23}+12.2^{\circ}\left(c 1.26, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2915$ $\mathrm{s}, 1735 \mathrm{~s}(\mathrm{CO}), 1650 \mathrm{~m} 1400 \mathrm{~s} ; \delta \mathrm{H}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.77(3 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{dd}, J$ $7.2,14,1,7 \mathrm{a}-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{dd}, J 9.2,14.0,7 \mathrm{~b}-\mathrm{H}), 2.93(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.38(3 \mathrm{H}, \mathrm{s}$, OMe), $3.96(1 \mathrm{H}, \mathrm{t}, J 10.2,6 \mathrm{ax}-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{dt}, J 4.8,10.0,5-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{dd}, J 4.8$, $10.1,6 \mathrm{eq}-\mathrm{H}), 4.45(1 \mathrm{H}$, obscured d, J 9.9, $4-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.87(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$, $5.61(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.33-7.55(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 21.6\left(\mathrm{CH}_{3}, \mathrm{C} 11\right), 39.0$
$\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 54.6\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 54.9(\mathrm{CH}, \mathrm{C} 2), 65.1(\mathrm{CH}, \mathrm{C} 5), 69.4\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 80.6(\mathrm{CH}$, C4), 102.2 ($\mathrm{CH}, \mathrm{C} 1$), $103.4(\mathrm{CH}, \mathrm{C} 10), 113.9\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.3$ ($\left.\mathrm{CH}, \mathrm{Ph}\right), 128.1$ (CH , Ph), 129.2 (CH, Ph), 136.5 (C, Ph), 140.8 (CH, C8), 200.5 (C, C3); m/z (EI) $318\left(\mathrm{M}^{+}\right.$, 46.6%), 287 (15.5) 183(17.4) 149 (57.3) $105\left(\mathrm{COPh}^{+}\right)$(100); (Found M ${ }^{+}$, 318.1467. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{M}^{+}, 318.1467$).

Methyl 4,6-O-benzylidene-2-deoxy-2-C-propenyl- α-D-erythro-hexo-

 pyranoside-3-ulose and Methyl 4,6-O-benzylidene-2-deoxy-2-C-(2-methyl-2-propenyl)- α-D-erythro-hexopyranoside-3-ulose

Ketone 62 a ($131 \mathrm{mg}, 4.30 \mathrm{mmol}$) was dissolved in DMF : triethylamine $\left(50.0 \mathrm{~cm}^{3}, 1: 1\right)$ left to stir for 48 h . The reaction was diluted with dichloromethane ($75 \mathrm{~cm}^{3}$) and this solution washed with sodium chloride solution ($3 \times 25 \mathrm{~cm}^{3}$). The dichloromethane layer was then dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (5:1) as the eluent yielded 63 a as a white solid $(0.73 \mathrm{~g}, 56 \%) ; \mathrm{mp} 148-152{ }^{\circ} \mathrm{C}$; R_{f}. $0.6,2: 1$ petroleum ether : ethyl acetate; $[\alpha] \mathrm{D}^{21}+75.3^{\circ}\left(c 0.96, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-}$ ${ }^{1} 2920 \mathrm{~s}, 1745 \mathrm{~s}, 1595 \mathrm{~m} 1400 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.21(1 \mathrm{H}, \mathrm{m}, 7 \mathrm{a}-\mathrm{H}), 2.60(1 \mathrm{H}$, $\mathrm{m}, 7 \mathrm{~b}-\mathrm{H}), 2.78(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.08(1 \mathrm{H}$, ddd, $J 4.4,9.8,10.1,5-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{dd}, J 1.3,9.8,4-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{dd}, J 4.4,10.1$, $6 \mathrm{eq}-\mathrm{H}), 4.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.1,1-\mathrm{H}), 5.13(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.54(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.73(1 \mathrm{H}, \mathrm{m}, 8-$ $\mathrm{H}), 7.35-7.52(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ;\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 27.6\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 53.5(\mathrm{CH}, \mathrm{C} 2), 55.3$ $\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 66.0(\mathrm{CH}, \mathrm{C} 5), 69.6\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 83.1(\mathrm{CH}, \mathrm{C} 4), 102.0(\mathrm{CH}, \mathrm{C} 1), 103.2$
(CH, C10), 117.3 ($\left.\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.1$ (CH, Ph), 128.3 (CH, Ph), 129.3 (CH, Ph), 134.9 (CH, C8), 136.7 (C, Ph), 198.4 (C, C3); m / z (EI) 304 ($\mathrm{M}^{+}, 26.2 \%$), 263 (11.6) 169 (19.7) 149 (64.7) 98 (100) (Found $\mathrm{M}^{+}, 304.1310 . \mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5}$ requires 304.1310);

In the same way the ketone $62 \mathrm{~b}(1.27 \mathrm{~g}, 4.00 \mathrm{mmol})$ was dissolved in DMF : triethylamine ($100 \mathrm{~cm}^{3}, 1: 1$) and left to stir for 7 days. The reulting solution was reduced in vacuo and then diluted with dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ and this solution washed with saturated sodium chloride solution ($2 \times 20 \mathrm{~cm}^{3}$). The dichloromethane layer was then dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (5:1) as the eluent yielded $\mathbf{\sigma 3} \mathrm{b}$ as a white solid ($1.1 \mathrm{~g}, 84 \%$); $\mathrm{mp} 135-137{ }^{\circ} \mathrm{C}$ (from petroleum ether); (Found : $\mathrm{C}, 67.83, \mathrm{H}, 6.77 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 67.91, \mathrm{H}, 6.96 \%$; Rf: $0.8,2: 1$ petroleum ether : ethyl acetate; $[\alpha]_{\mathrm{D}}{ }^{17}+103.1^{\circ}\left(c 0.99, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2940 \mathrm{~s}, 1780 \mathrm{~s}, 1650$ $\mathrm{m}, 1450 \mathrm{~m}, 1410 \mathrm{~m}, 1280 \mathrm{~m}, 1210 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.74(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-\mathrm{Me}), 2.26$ ($1 \mathrm{H}, \mathrm{dd}, J 9.4,14.8,7 \mathrm{a}-\mathrm{H}), 2.50(1 \mathrm{H}, \mathrm{dd}, J 5.0,14.8,7 \mathrm{~b}-\mathrm{H}), 2.96(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.35$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.93 ($1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}$), 4.11 (1 H, ddd, $J 4.4,9.8,10.1,5-\mathrm{H}$), 4.31 (1 H , overlapping dd, $J 1.3,9.8,4-\mathrm{H}$), 4.37 (1 H , overlapping dd, $J 4.4,9.8,6 \mathrm{eq}-\mathrm{H}$), 4.75 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 9 \mathrm{a}-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 9 \mathrm{~b}-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{d}, J 4.1,1-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$, 7.33-7.54 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.9\left(\mathrm{CH}_{3}, \mathrm{C} 11\right), 31.9\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 52.2$ ($\mathrm{CH}, \mathrm{C} 2$), $55.7\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 66.5(\mathrm{CH}, \mathrm{C} 5), 70.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 83.6(\mathrm{CH}, \mathrm{C} 4), 102.4$ ($\mathrm{CH}, \mathrm{C} 1$), 103.6 ($\mathrm{CH}, \mathrm{C} 10$), 112.9 ($\left.\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.8(\mathrm{CH}, \mathrm{Ph}), 128.7(\mathrm{CH}, \mathrm{Ph}), 129.6$ (CH, Ph), 137.1 (C, Ph), 142.3 (C, C8), 198.9 (C, C3); m / z (EI) 318 ($\mathrm{M}^{+}, 9.8 \%$), 256 (6.1) 167 (5.4) 149 (52.8) 145 (20.2) 105 (100) (Found : $318.1467 \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1467).

Methyl 4,6-O-benzylidene-2-deoxy-2-C-(propen-2-one)- α-D-ribo-

hexopyranosid-3-ulose

To a solution of 63a ($398 \mathrm{mg}, 1.31 \mathrm{mmol}$) in DMF and water ($42.0 \mathrm{~cm}^{3}, 1: 1$) was added palladium(II) chloride ($23.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) and copper(II) chloride ($130 \mathrm{mg}, 1.31 \mathrm{mmol}$). The reaction was allowed to stir at room temperature whilst oxygen was bubbled into the solution for 5 h . The product was extracted into dichloromethane ($2 \times 20 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (5:1) as the eluent yielded 64 as a white solid ($388 \mathrm{mg}, 92 \%$); m.p $180-182{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}} .0 .75$, petroleum ether : ethyl acetate $(2: 1) ;[\alpha]_{D^{19}}+136.8^{\circ}\left(c 2.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3000 \mathrm{w}, 1745 \mathrm{~s}, 1710$ $\mathrm{w}, 1410 \mathrm{w}, 1145 \mathrm{~m}, 1050 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.24(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 2.45(1 \mathrm{H}, \mathrm{dd}, J$ $5.8,18.5,7 \mathrm{a}-\mathrm{H}$), 3.13 ($1 \mathrm{H}, \mathrm{dd}, J 7.1,18.4,7 \mathrm{~b}-\mathrm{H}$), 3.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.44 ($1 \mathrm{H}, \mathrm{m}, 2-$ H), $3.96(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dt}, J 4.5,10.0,5-\mathrm{H}), 4.39(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6 \mathrm{eq}-$ H), $5.09(1 \mathrm{H}, \mathrm{d}, J 4.3,1-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.35-7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 30.1\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 37.4\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 49.3(\mathrm{C}, \mathrm{C} 2), 55.1\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 65.6(\mathrm{CH}$, C5), $69.3\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 82.6(\mathrm{CH}, \mathrm{C} 4), 101.8(\mathrm{CH}, \mathrm{C} 1), 102.9(\mathrm{CH}, \mathrm{Cl} 0), 126.2(\mathrm{CH}$, Ph), 128.1 (CH, Ph), 129.1 (CH, Ph), 136.4 (C, Ph), 197.8 (C, C3), 206.1 (C, C8); m/z (EI) $319\left(\mathrm{M}^{+}, 3.0 \%\right) 279$ (18.1) 263 (12) 171 (12.6) 149 (100) (Found [M-H] ${ }^{+}$, 319.1182. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6}$ requires $[\mathrm{M}-\mathrm{H}]+319.1182$.

Ozonolysis of Methyl 4, 6-O-benzylidene-2-deoxy-2-C-(2-methyl-2-

 propenyl)- α-D-ribo-hexopyranosid-3-ulose

Olefin $63 \mathrm{~b}(0.20 \mathrm{~g}, 0.63 \mathrm{mmol})$ was dissolved in dichloromethane $\left(25 \mathrm{~cm}^{3}\right)$ and ozone was bubbled through the solution for 0.5 h . The flask was then flushed with nitrogen for 0.3 h and thiourea added ($48.0 \mathrm{mg}, 0.63 \mathrm{mmol}$) and the solution stirred for 3 h . The product was extracted into dichloromethane ($2 \times 30 \mathrm{~cm}^{3}$), washed with brine ($2 \times 30 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (5:1) as the eluent yielded 64a as a white solid ($77 \mathrm{mg}, \mathbf{3 6 \%}$); $\delta_{\mathrm{H}}\left(\mathbf{3 0 0} \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.76$ ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}$), $2.10(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.95(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.48$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.89(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $10.0,6_{\mathrm{ax}}-\mathrm{H}$), $3.92(1 \mathrm{H}, \mathrm{d}, J 9.4,4-\mathrm{H}), 4.14$ (1 H, ddd, $J 4.4,9.63,5-\mathrm{H}$), 4.42 (1 H , dd, J 4.4, 10.1, 6eq-H), 5.00 ($1 \mathrm{H}, \mathrm{d}, J 8.3,1-\mathrm{H}$), 5.64 ($1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}$), $7.35-7.54$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.1\left(\mathrm{CH}_{3}, \mathrm{C} 9\right), 34.5\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 47.5(\mathrm{CH}, \mathrm{C} 2), 55.6\left(\mathrm{CH}_{3}\right.$, OMe), 65.4 ($\mathrm{CH}, \mathrm{C} 5$), $70.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 76.2(\mathrm{CH}, \mathrm{C} 4), 102.2(\mathrm{CH}, \mathrm{Cl}), 103.4(\mathrm{CH}$, C10), 106.94 (C, C8), 1153 (C, C3), 126.3 (CH, Ph), 128.2 (CH, Ph), 129.2 (CH, Ph), 136.4 (C, Ph); m/z 338 ($\mathrm{M}^{+}, 7.2 \%$), 289 (56.8) 52 (100).

Methyl 4,6-O-benzylidene-2-deoxy-2-C-methyl-2-C-propenyl- α-D-erythro-

hexopyranosid-3-ulose

Sodium hexamethyl-trisilazane ($0.4 \mathrm{~cm}^{3}, 0.40 \mathrm{mmol}, 1 \mathrm{M}$ solution in THF) was cooled to 0 ${ }^{\circ} \mathrm{C}$ and a solution of 63 a ($136 \mathrm{mg}, 0.40 \mathrm{mmol}$) was added dropwise in THF ($15.0 \mathrm{~cm}^{3}$) maintaining the temperature at $0^{\circ} \mathrm{C}$. The solution was allowed to stir for 1 h at $0^{\circ} \mathrm{C}$, then methyl iodide ($0.2 \mathrm{~cm}^{3}, 3.20 \mathrm{mmol}$) was added followed by DMPU $\left(0.04 \mathrm{~cm}^{3}, 0.04\right.$ mmol). The solution was allowed to warm to room temperature and left to stir overnight. The product was extracted into diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acatate (5:1) as the eluent yielded 66 as a clear oil (but also containing an unidentified compound) ($59 \mathrm{mg}, 42 \%$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38(3 \mathrm{H}, \mathrm{s}$, C2-Me), 2.33 (1H, dd, J 7.9, 13.5, 7a-H), 2.46 ($1 \mathrm{H}, \mathrm{dd}, J, 7.5,13.8,7 \mathrm{~b}-\mathrm{H}$), $3.35(3 \mathrm{H}, \mathrm{s}$, OMe), 3.94 ($1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.12$ (1 H , ddd, J 4.4, 9.8, $10.1,5-\mathrm{H}$), 4.36 (1 H , dd, J $4.4,10.1,6 \mathrm{eq}-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.59(1 \mathrm{H}, \mathrm{d}, J 9.8,4-\mathrm{H}), 5.10(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 5.57$ $(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 7.33-7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5$ $\left(\mathrm{CH}_{3}, \mathrm{C} 2-\mathrm{Me}\right), 36.4\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 53.5(\mathrm{C}, \mathrm{C} 2), 55.2\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 65.8(\mathrm{CH}, \mathrm{C} 5), 69.6$ $\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 80.0(\mathrm{CH}, \mathrm{C} 4), 102.2(\mathrm{CH}, \mathrm{C} 1), 107.0(\mathrm{CH}, \mathrm{C} 10), 119.3\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 126.5$ (CH, Ph), 128.3 (CH, Ph), 129.3 (CH, Ph), 133.0 (CH, C8), 136.7 (C, Ph), 202.6 (C, C3); m / z (EI) 318 (${ }^{+}$, 2.8%) 277 (6.1) 191 (8.9) 149 (26.6) 121 (16.4) 113 (10.6) 112 (100) (Found: M^{+}318.1467. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1467).

Methyl 4,6-O-benzylidene-2-deoxy-2-C-methyl-2-C-propenone- α-D-erythro-

 hexopyranosid-3-ulose

To a solution of $66(173 \mathrm{mg}, 0.54 \mathrm{mmol})$ in DMF and water $\left(20.0 \mathrm{~cm}^{3}, 1: 1\right)$ was added palladium (II) chloride ($10.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and copper (II) chloride ($73 \mathrm{mg}, 0.54 \mathrm{mmol}$). The reaction was allowed to stir at room temperature whilst oxygen was bubbled into the solution for 5 h . The product was extracted into dichloromethane ($2 \times 20 \mathrm{~cm}^{3}$), the combined organic layers washed with brine $\left(2 \times 25 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether $(10: 1)$ as the eluent yielded 66 as a white solid $(90 \mathrm{~g}, 45 \%) ; \mathrm{R}_{\mathrm{f}} .0 .5$, petroleum ether : diethyl ether $(1: 2) ;[\alpha]_{\mathrm{D}}{ }^{20}+50.9$ (c $\left.0.95, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3045 \mathrm{~m}, 1765 \mathrm{~s}, 1755 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.53$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-\mathrm{Me}), 2.14(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{d}, J 18.3,7 \mathrm{a}-\mathrm{H}), 2.99(1 \mathrm{H}, \mathrm{d}, J 18.2,7 \mathrm{~b}-$ H), 3.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.93(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{dt}, J 4.4,10.1,5-\mathrm{H}), 4.36$ $(1 \mathrm{H}, \mathrm{dd}, J 4.4,10.1,6 \mathrm{eq}-\mathrm{H}), 4.56(1 \mathrm{H}, \mathrm{d}, J 10.1,4-\mathrm{H}), 5.19(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H}), 7.34-7.52(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 22.4\left(\mathrm{CH}_{3}, \mathrm{C} 2\right), 31.7\left(\mathrm{CH}_{3}, \mathrm{C} 9\right)$, $44.8\left(\mathrm{CH}_{2}, \mathrm{C} 7\right), 53.6(\mathrm{C}, \mathrm{C} 2), 55.8\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 65.6(\mathrm{CH}, \mathrm{C} 5), 69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 79.9$ (CH, C4), 102.6 (CH, C1), 106.3 (CH, C10), $126.8(\mathrm{CH}, \mathrm{Ph}), 128.7(\mathrm{CH}, \mathrm{Ph}), 129.7$ (CH, Ph), 137.0 (C, Ph), 202.7 (C, C3), 207.4 (C, C8); m/z (EI) 334 (M ${ }^{+}, 0.9 \%$) 276 (10.6) 149 (45.9) 129 (10.5) 128 (66.5) 121 (15.2) 105 (36.2) 97 (15.4) 91 (34.1) 85 (100) (Found : $\mathrm{M}^{+}, 334.1416 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{6}$ requires 334.1416).
(1R, 2S, 4R, 7R, 9S, 12R)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene and ($1 R, 2 S, 4 R, 7 R, 9 S, 12 S$)-12-

hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-

trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene

DIBAL-H $\left(0.2 \mathrm{~cm}^{3}, 0.32 \mathrm{mmol}\right)$ was added to a cooled solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of the enone 74 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) in toluene $\left(5.0 \mathrm{~cm}^{3}\right.$). After 15 h the reaction was quenched by the addition of saturated aqueous ammonium chloride $\left(2 \mathrm{~cm}^{3}\right)$, the product was extracted into diethyl ether $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, the combined organic layers washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil ($1.0: 1.6$) ($88 \mathrm{mg}, 80 \%$); $\mathrm{R}_{\mathrm{f}} .0 .3$, petroleum ether : diethyl ether (1:1); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}, 128), 1.49$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}, 127$), 1.64 (1 H , dd, $J 13.2,6.8,13 \mathrm{a}-\mathrm{H}, 128$), 1.88 ($1 \mathrm{H}, \mathrm{d}, J 14.5,13 \mathrm{a}-$ $\mathrm{H}, 127$), $2.21(1 \mathrm{H}, \mathrm{dd}, J 7.6,14.5,13 \mathrm{~b}-\mathrm{H}, 127), 2.33(1 \mathrm{H}, \mathrm{dd}, J 7.1,13.2,13 \mathrm{~b}-\mathrm{H}$, 128), 3.26 (1H, d, J 9.4, 2-H, 127), 3.32 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}, 128$), 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}, 127$), $3.43(1 \mathrm{H}, \mathrm{d}, J 9.4,2-\mathrm{H}, 128), 3.62(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{ax}-\mathrm{H}, 127$ and 128$), 4.00(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}$, 127 and 128$), 4.22(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{eq}-\mathrm{H}, 127$ and 128$), 4.71(1 \mathrm{H}, \mathrm{dd}, J 6.6,2.5,12-\mathrm{H}$, 127), 4.96 ($1 \mathrm{H}, \mathrm{dt}, J 7.1,6.9,1.31,12-\mathrm{H}, 128), 5.05(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}, 128), 5.16(1 \mathrm{H}, \mathrm{s}, 9-$ $\mathrm{H}, 127), 5.54(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}, 127), 5.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}, 128), 5.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,11-\mathrm{H}$, $128), 5.85$ ($1 \mathrm{H}, \mathrm{d}, J 2.8,11-\mathrm{H}, 127$), $7.35-7.54$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, 127$ and 128).
(1R, 2S, 4R, 7R, 9S, 12R)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo [8.3.0.0 ${ }^{2}, 7$]tridec-10-ene and ($1 R, 2 S, 4 R, 7 R, 9 S, 12 S$)-12-
hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-
trioxatricyclo[8.3.0.0 ${ }^{2,7}$]tridec-10-ene

The enone 74 ($54 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in ethanol ($5.0 \mathrm{~cm}^{3}$) and sodium borohydride ($29 \mathrm{mg}, 0.73 \mathrm{mmol}$) was added with stirring for 3 h . The reaction was quenched by the addition of ammonium chloride $\left(5 \mathrm{~cm}^{3}\right)$, the product was extracted into diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil ($1.0: 2.1$) ($\mathbf{4 6} \mathrm{mg}, 75 \%$); $\mathrm{R}_{\mathrm{f}:} 0.3$, petroleum ether : diethyl ether (1:1);
The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the previous reaction using DIBAL-H with only the ratio $127: 128$ varying.
(1R, 2S, 4R, 7R, 9S, 12R)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo $\left[8.3 .0 .0^{2}, 7\right.$ tridec-10-ene and ($1 R, 2 S, 4 R, 7 R, 9 S, 12 S$)-12-
hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-
trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene

The enone $74(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $\left(1.0 \mathrm{~cm}^{3}\right)$ was stirred at room temperature with lithium borohydride ($14 \mathrm{mg}, 0.63 \mathrm{mmol}$) for 1 h . The reaction was quenched by the addition of ammonium chloride $\left(5 \mathrm{~cm}^{3}\right)$, the product extracted into diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil ($1.0: 2.5$) ($49 \mathrm{mg}, 95 \%$); Rf. 0.3 , petroleum ether : diethyl ether (1:1).
The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the reaction using DIBAL-H with only the ratio $127: 128$ varying.
(1R, 2S, 4R, 7R, 9S, 12R)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo [8.3.0.0 ${ }^{2}, 7$]tridec-10-ene and (1R, 2S, 4R, 7R, 9S, 12S)-12-

hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-

trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene

The enone $74(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $\left(1.0 \mathrm{~cm}^{3}\right)$ was added to a solution of lithium aluminium hydride ($12 \mathrm{mg}, 0.32 \mathrm{mmol}, 2.0 \mathrm{~cm}^{3} \mathrm{THF}$). The reaction was quenched by the addition of water $\left(0.36 \mathrm{~cm}^{3}\right)$. The precipitate was filtered and the product extracted into diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($1: 1$) as the eluent yielded 127 and 128 as an oil ($1.0: 2.0$) ($35 \mathrm{mg}, 65 \%$); Rf: 0.3 , petroleum ether: diethyl ether (1:1).
The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the reaction using DIBAL-H with only the ratio $\mathbf{1 2 7}: \mathbf{1 2 8}$ varying.
(1R, 2S, 4R, 7R, 9S, $12 R$)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.3.0.0 0^{2}] tridec-10-ene and (1R, $2 S, 4 R, 7 R, 9 S, 12 S$)-12-
hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-

trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene

The enone $74(500 \mathrm{mg}, 1.58 \mathrm{mmol})$ in THF ($20.0 \mathrm{~cm}^{3}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ with stirring. To this stirred solution was added LS-Selectride ${ }^{\circledR}\left(1.58 \mathrm{~cm}^{3}, 1.58 \mathrm{mmol}\right)$ dropwise. The reaction was allowed to stir for 1.5 h and then quenched by the addition of water ($5 \mathrm{~cm}^{3}$). The product was extracted into diethyl ether ($2 \times 25 \mathrm{~cm}^{3}$), the combined organic layers washed with brine $\left(2 \times 20 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil (7.2:1.0) ($497 \mathrm{mg}, 91 \%$); $\mathrm{R}_{\mathrm{f}} .0 .3$, petroleum ether : diethyl ether ($1: 1$). The reaction was repeated using L-Selectride ${ }^{\circledR}$ under the same conditions with only the ratio $127: \mathbf{1 2 8}$ (5.2:1) differing.

The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the reaction using DIBAL-H with only the ratio 127 : 128 varying.
(1R, 2S, 4R, 7R, 9S, $12 R$)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene and ($1 R, 2 S, 4 R, 7 R, 9 S, 12 S$)-12-
hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-
trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene

The enone 74 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF ($1.0 \mathrm{~cm}^{3}$) was cooled to $-78^{\circ} \mathrm{C}$ with stirring. To this stirred solution was added lithium thexyliminoyl borohydride $\left(0.30 \mathrm{~cm}^{3}, 0.30 \mathrm{mmol}\right)$ dropwise. The reaction was quenched by the addition of water $\left(0.5 \mathrm{~cm}^{3}\right)$. The product extracted into diethyl ether ($2 \times 5 \mathrm{~cm}^{3}$), the combined organic layers washed with brine (2×5 cm^{3}), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil (2.9:1.0) ($30 \mathrm{mg}, 60 \%$); Rf: 0.3 , petroleum ether : diethyl ether (1:1).

The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the reaction using DIBAL-H with only the ratio $\mathbf{1 2 7}: \mathbf{1 2 8}$ varying.
(1R, 2S, 4R, 7R, 9S, 12R)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene and ($1 R, 2 S, 4 R, 7 R, 9 S, 12 S$)-12-
hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-
trioxatricyclo[8.3.0.0 ${ }^{2,7}$]tridec-10-ene

The enone $74(100 \mathrm{mg}, 0.32 \mathrm{mmol})$ in toluene $\left(2.0 \mathrm{~cm}^{3}\right)$ was cooled to $-78^{\circ} \mathrm{C}$ with stirring. To this stirred solution was added RED-AL ${ }^{\circledR}\left(0.30 \mathrm{~cm}^{3}, 0.96 \mathrm{mmol}\right)$ dropwise. The reaction was quenched by the addition of water $\left(1.5 \mathrm{~cm}^{3}\right)$ with cooling and the fitrate removed by filtration The product was extracted into diethyl ether ($2 \times 5 \mathrm{~cm}^{3}$), the combined organic layers washed with brine $\left(2 \times 5 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil ($1.0: 2.5$) ($60 \mathrm{mg}, 60 \%$); Rf: 0.3 , petroleum ether : diethyl ether (1:1).
The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the reaction using DIBAL-H with only the ratio $127: 128$ varying.
(1R, 2S, 4R, 7R, 9S, 12R)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene and ($1 R, 2 S, 4 R, 7 R, 9 S, 12 S$)-12-

hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-

trioxatricyclo[8.3.0.0 ${ }^{2,7}$]tridec-10-ene

The enone $74(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $\left(1.0 \mathrm{~cm}^{3}\right)$ was cooled to $0^{\circ} \mathrm{C}$ with stirring. To this stirred solution was added 9^{\prime} BBN $\left(0.35 \mathrm{~cm}^{3}, 0.18 \mathrm{mmol}\right)$ dropwise. The reaction was quenched by the addition of methanol $\left(0.5 \mathrm{~cm}^{3}\right)$ and allowed to stir for 1 h . The product was extracted into diethyl ether ($2 \times 5 \mathrm{~cm}^{3}$), the combined organic layers washed with brine (2×5 cm^{3}), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (1:1) as the eluent yielded 127 and 128 as an oil (1.0:1.3) ($26 \mathrm{mg}, 52 \%$); Rf: 0.3 , petroleum ether : diethyl ether ($1: 1$).

The data from the highfield ${ }^{1} \mathrm{H}$ NMR was identical to that obtained in the reaction using DIBAL-H with only the ratio $127: 128$ varying.
(1R, 2S, 4R, $7 R, 9 S, 12 R$)-12-Benzoyloxy-9-methoxy-1-methyl-4-phenyl-
3,5,8-trioxatricyclo [8.3.0.0 $0^{2,7}$]tridec-10-ene and (1R, $2 S, 4 R, 7 R, 9 S, 12 S$)-

12-Benzoyloxy-9-methoxy-1-methyl-4-phenyl-3,5,8-

trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene

To a mixture of alcohols 127 and 128 ($581 \mathrm{mg}, 1.83 \mathrm{mmol}$) in dichloromethane ($5.0 \mathrm{~cm}^{3}$) was added DMAP $(2.6 \mathrm{~g}, 21.00 \mathrm{mmol})$ and benzoic anhydride $(2.1 \mathrm{~g}, 9.13 \mathrm{mmol})$ and the reaction left to stir for 5 minutes. Triethylamine ($1.02 \mathrm{~cm}^{3}, 7.30 \mathrm{mmol}$) was then added and the reaction allowed to stir for 2 h . The reaction was quenched by the addition of aqueous ammonium chloride solution ($5 \mathrm{~cm}^{3}$), the product extracted into diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (10:1) as the eluent yielded 129 and 130 ($513 \mathrm{mg}, 66 \%$); $\mathrm{R}_{\mathrm{f}:} \mathbf{0 . 7 5}, 0.85$, petroleum ether : diethyl ether ($1: 1$);
$129[\alpha] \mathrm{D}^{20}+108.3^{\circ}\left(c 1.9, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3005 \mathrm{w}, 1690 \mathrm{~s}, 1450 \mathrm{w}, 1150$ $\mathrm{m}, 1105 \mathrm{w} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 2.13(1 \mathrm{H}, \mathrm{d}, J 14.8,13 \mathrm{a}-\mathrm{H}), 2.34$ ($1 \mathrm{H}, \mathrm{dd}, J 7.3,14.8,13 \mathrm{~b}-\mathrm{H}$), $3.35(1 \mathrm{H}, \mathrm{d}, J 9.5,2-\mathrm{H}), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.70(1 \mathrm{H}, \mathrm{t}, J$ 10.1, $6 \mathrm{ax}-\mathrm{H}$), $4.07(1 \mathrm{H}, \mathrm{dt}, J 9.8,5.0,7-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{dd}, J 10.1,5.0,6 \mathrm{eq}-\mathrm{H}), 5.19$ $(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{dd}, J 7.2,2.8,12-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{d}, J 2.5,11-$ H), $7.36-7.57(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.01(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.4\left(\mathrm{CH}_{3}, \mathrm{Cl}-\right.$ $\mathrm{Me}), 46.1\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right), 48.7(\mathrm{C}, \mathrm{C} 1), 55.5\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 60.5(\mathrm{CH}, \mathrm{C} 7), 69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right)$, 78.2 (CH, C12), 87.8 ($\mathrm{CH}, \mathrm{C} 2$), $98.5(\mathrm{CH}, \mathrm{C} 9), 102.1(\mathrm{CH}, \mathrm{C} 4), 126.4-130.7$ (6 xCH , Ph), 130.7 (C, Ph), 133.4 (C, C11), 138.1 (C, Ph), 150.7 (C, C10), 166.6 (C, OCOPh); $m / z(\mathrm{EI}) 422\left(\mathrm{M}^{+}\right) 422,273,149,122(100)$ (Found : M^{+}, 422.1729. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}$ requires 422.1729).
$130[\alpha]_{\mathrm{D}}{ }^{22}-169.3^{\circ}\left(c \quad 1.54, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2920 \mathrm{~m}, 1720 \mathrm{~s}, 1450 \mathrm{w}$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 2.06(1 \mathrm{H}, \mathrm{dd}, J 13.5,7.5,13 \mathrm{a}-\mathrm{H}), 2.58(1 \mathrm{H}$, dd, J 13.8, 7.2, 13b-H), 3.42 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.56 ($1 \mathrm{H}, \mathrm{d}, J 9.4,2-\mathrm{H}$), $3.72(1 \mathrm{H}, \mathrm{t}, J 10.1$, $6 \mathrm{ax}-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dt}, J 9.8,5.0,7-\mathrm{H}), 4.32$ ($1 \mathrm{H}, \mathrm{dd}, J 10.1,5.0,6 \mathrm{eq}-\mathrm{H}$), $5.17(1 \mathrm{H}, \mathrm{s}, 9-$ H), $5.56(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.86(1 \mathrm{H}, \mathrm{d}, J 1.3,11-\mathrm{H}), 6.09(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6.3,12-\mathrm{H}), 7.35-7.56$ $(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.03(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 46.8\left(\mathrm{CH}_{2}\right.$, $\mathrm{C} 13), 48.8(\mathrm{C}, \mathrm{C} 1), 55.5\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 60.8(\mathrm{CH}, \mathrm{C} 7), 69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 79.5(\mathrm{CH}, \mathrm{C} 12)$, 87.3 (CH, C2), 98.4 (CH, C9), 102.1 (CH, C4), 126.7-130.0 ($6 x C H, ~ P h), ~ 130.6(C, ~ P h), ~$ 133.4 (C, C11), 138.1 (C, Ph), 148.0 (C, C10), 166.8 (C, OCOPh); m / z (EI$) 422$ (M^{+}, 0.9%) 273 (7.8) 166 (8.4) 149 (7.0) 127 (9.0) 123 (15.5) 122 (38.2) 105 (100) (Found : M^{+}, 422.1730. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{6}$ requires 422.1730).
(1R, 2S, 4R, 7R, 9S, $12 R$)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene

The allylic benzoate 129 ($447 \mathrm{mg}, 1.06 \mathrm{mmol}$) was dissolved in methanol $\left(5.0 \mathrm{~cm}^{3}\right)$ and potassium carbonate added ($161 \mathrm{mg}, 1.16 \mathrm{mmol}$) and the solution stirred for 8 h . The methanol was removed, the solid dissolved in diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($1: 1$) as the eluent yielded 127 as an oil ($314 \mathrm{mg}, 86 \%$); $\mathrm{R}_{\mathrm{f}} .0 .3$, petroleum ether : diethyl ether (1:1); $[\alpha]^{21}+64.3^{\circ}\left(c 0.7, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3420 \mathrm{~s}, 2940 \mathrm{~s}, 1450 \mathrm{~m}, 1400 \mathrm{~m}, 1350 \mathrm{~m}, 1100 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.49(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-$ $\mathrm{Me}), 1.88(1 \mathrm{H}, \mathrm{d}, J 14.5,13 \mathrm{a}-\mathrm{H}), 2.21(1 \mathrm{H}, \mathrm{dd}, J 7.6,14.5,13 \mathrm{~b}-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{d}, J 9.4$, $2-\mathrm{H}), 3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.68(1 \mathrm{H}, \mathrm{t}, J 10.4,6 \mathrm{ax}-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{dt}, J 9.8,5.0,7-\mathrm{H}), 4.33$ ($1 \mathrm{H}, \mathrm{dd}, J 10.4,5.0,6 \mathrm{eq}-\mathrm{H}), 4.71(1 \mathrm{H}, \mathrm{dd}, J 6.6,2.5,12-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.54$
$(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{d}, J 2.8,11-\mathrm{H}), 7.37-7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $22.3\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 48.4(\mathrm{C}, \mathrm{C} 1), 48.9\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right), 55.4\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 60.6(\mathrm{CH}, \mathrm{C} 7)$, $69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 75.1(\mathrm{CH}, \mathrm{C} 12), 88.0(\mathrm{CH}, \mathrm{C} 2), 98.8(\mathrm{CH}, \mathrm{C} 9), 102.1(\mathrm{CH}, \mathrm{C} 4), 126.7$ (CH, Ph), 128.7 (CH, Ph), 129.5 (CH, Ph), 129.9 (CH, C11), 138.1 (C, Ph), 147.9 (C, $\mathrm{C} 10) ; m / z$ (EI) $318\left(\mathrm{M}^{+}, 1.2 \%\right) 287$ (5.5) 169 (54.7) 149 (27) 141 (11) 140 (100) (Found : M^{+}, 318.1467. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1467).

(1R, 2S, 4R, 7R, 9S, 12S)-12-Hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8-

 trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridec-10-ene

The allylic benzoate $130(599 \mathrm{mg}, 1.42 \mathrm{mmol})$ was dissolved in methanol ($5.0 \mathrm{~cm}^{3}$) and potassium carbonate added ($216 \mathrm{mg}, 1.56 \mathrm{mmol}$) and the solution stirred for 8 h . The methanol was removed, the solid extracted with diethyl ether $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, the organic layers washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (4:1) as the eluent yielded 128 as an oil (328 mg , 67%); Rf: 0.35 , petroleum ether : diethyl ether (1:1); $[\alpha]_{D^{21}-19.90}\left(c 0.94, \mathrm{CHCl}_{3}\right)$; $v_{\max }$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440 \mathrm{brs}, 2940 \mathrm{~s}, 1450 \mathrm{~s}, 1100 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-$ $\mathrm{Me}), 1.64(1 \mathrm{H}, \mathrm{dd}, J 13.2,6.8,13 \mathrm{a}-\mathrm{H}), 1.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.33(1 \mathrm{H}, \mathrm{dd}, J 13.2,7.1$, $13 \mathrm{~b}-\mathrm{H}), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.43(1 \mathrm{H}, \mathrm{d}, J 9.4,2-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{t}, J 10.2,6 \mathrm{ax}-\mathrm{H}), 3.98$ $(1 \mathrm{H}, \mathrm{dt}, J 9.8,9.74,5.0,7-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{dd}, J 10.3,5.1,6 \mathrm{eq}-\mathrm{H}), 4.96(1 \mathrm{H}, \mathrm{dt}, J 7.1$, $6.9,1.3,12-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.47(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.65(1 \mathrm{H}, \mathrm{d}, J 1.5,11-\mathrm{H}), 7.35-$ $7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.3\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 48.8(\mathrm{C}, \mathrm{C} 1), 50.5\left(\mathrm{CH}_{2}\right.$, $\mathrm{C} 13), 55.5\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 60.7(\mathrm{CH}, \mathrm{C} 7), 69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 76.2(\mathrm{CH}, \mathrm{C} 12), 87.4(\mathrm{CH}$, C2), $98.5(\mathrm{CH}, \mathrm{C} 9), 102.1(\mathrm{CH}, \mathrm{C} 4), 126.7(\mathrm{CH}, \mathrm{Ph}), 128.7(\mathrm{CH}, \mathrm{Ph}), 129.5(\mathrm{CH}, \mathrm{Ph})$,
129.9 (CH, C11), 138.1 (C, Ph), 145.9 (C, C10); m/z (EI) 318 ($\mathrm{M}^{+}, 1.1 \%$) 287 (8.6) 169 (45) 167 (26)149 (19) $140(100)$ (Found: $\mathrm{M}^{+}, 318.1467 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ requires 318.1467).

(1R, 2S, 4R, 7R, 9S, 12R)-12[(Bromomethyl)dimethylsiloxy]9-methoxy-1-

 methyl-4-phenyl-3,5,8-trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene

To the alcohol $127(314 \mathrm{mg}, 0.99 \mathrm{mmol})$ in dichloromethane ($1.0 \mathrm{~cm}^{3}$) and triethylamine ($0.25 \mathrm{~cm}^{3}, 1.78 \mathrm{mmol}$) was added bromomethyl chlorodimethylsilane ($204 \mathrm{mg}, 1.10 \mathrm{mmol}$) dropwise. This solution was allowed to stir overnight, when it became a yellow viscous liquid. The reaction was quenched by the addition of water $\left(2 \mathrm{~cm}^{3}\right)$, the product was extracted into diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with diethyl ether (and 0.1% triethylamine) as the eluent yielded 131 as a pale yellow oil ($412 \mathrm{mg}, 89 \%$); $\mathrm{R}_{\mathrm{f}} .0 .75$, petroleum ether : diethyl ether (1:1); $[\alpha]_{\mathrm{D}}{ }^{20} 64.06^{\circ}$ (c $1.92, \mathrm{CHCl}_{3}$); $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930 \mathrm{~m}, 1725 \mathrm{~s}, 1450 \mathrm{~m}, 1280 \mathrm{~s}, 1110 \mathrm{~s}, 950 \mathrm{~s}, 825 \mathrm{~m} ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 1.50(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.89(1 \mathrm{H}, \mathrm{d}, J 14.2,13 \mathrm{a}-\mathrm{H}), 2.18$ ($1 \mathrm{H}, \mathrm{dd}, J 6.9,14.2,13 \mathrm{~b}-\mathrm{H}$), $2.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.26(1 \mathrm{H}, \mathrm{d}, J 9.4,2-\mathrm{H}), 3.44(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.69(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{dt}, J 9.8,5.1,7-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{dd}, J$ $10.1,5.0,6 \mathrm{eq}-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{dd}, J 6.9,3.1,12-\mathrm{H}), 5.16(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H})$, $5.81(1 \mathrm{H}, \mathrm{d}, J 2.5,11-\mathrm{H}), 7.38-7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.1\left(2 \mathrm{xCH}_{3}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{Si}\right), 0.1\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{Si}\right), 18.8\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Br}\right), 23.6\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 50.5(\mathrm{C}$, $\mathrm{C} 1), 51.1\left(\mathrm{CH}_{2}, \mathrm{C} 13\right), 57.4\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 62.5(\mathrm{CH}, \mathrm{C} 7), 71.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 77.7(\mathrm{CH}$, C2), 90.0 ($\mathrm{CH}, \mathrm{C} 12$), 100.8 ($\mathrm{CH}, \mathrm{C} 9$), $104.0(\mathrm{CH}, \mathrm{C} 4), 128.7$ ($\mathrm{CH}, \mathrm{Ph}), 130.7$ (CH, Ph), 131.4 (CH, Ph), 131.6 (CH, C11), 140.2 (C, Ph), 149.4 (C, C10); m/z (EI) 468 (M^{+},

$2.2 \%) 470\left(\mathrm{M}^{+}, 2.3 \%\right) 437(7.4) 322$ (10.2) 321 (56.2) 320 (11.0) 319 (55.5) 293 (17.8)

 292 (99.4) 290 (100) (Found: $\mathrm{M}^{+}, 468.0968$. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{BrSi}$ requires 468.0968).($1 R, 2 S, 4 R, 7 R, 9 S, 10 R, 11 S, 15 R$)-9-Methoxy-1,13,13-trimethyl-4-phenyl-
3,5,8,14-tetraoxa-13-silatetracyclo[8.6.0.0 $\left.{ }^{2}, 70^{11}, 15\right]$ hexadecane and
($1 R, 2 S, 4 R, 7 R, 9 S, 10 S, 11 S, 15 R$)-9-Methoxy-1,13,13-trimethyl-4-phenyl-
3,5,8,14-tetraoxa-13-silatetracyclo [8.6.0.0 $\left.{ }^{2}, 70^{11}, 15\right]$ hexadecane

To the silane $131(412 \mathrm{mg}, 0.88 \mathrm{mmol})$ in t -butanol $\left(10.0 \mathrm{~cm}^{3}\right)$ was added sodium cyanoborohydride ($138 \mathrm{mg}, 22 \mathrm{mmol}$), tributyltin hydride ($29 \mathrm{mg}, 0.09 \mathrm{mmol}$) and finally AIBN ($14 \mathrm{mg}, 0.09 \mathrm{mmol}$). The solution was refluxed for 16 h , the t -butanol was removed in vacuo, the solid dissolved in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. The products 133 and 135 were not stable to column chromatography and were therefore used crude in the next step.
(1R, 2S, 4R, $7 R, 9 S, 10 S, 11 R, 12 R$)-11-Hydroxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8-trioxatricyclo [8.3.0.0 $0^{2}, 7$ tridecan-12-ol and (1R, $2 S, 4 R, 7 R, 9 S, 10 R, 11 R, 12 R$)-11-Hydroxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8-trioxatricyclo [8.3.0.0 ${ }^{2}, 7$ tridecan-12-ol

The crude cyclic silyl ethers 134 and $135(447 \mathrm{mg}, 1.14 \mathrm{mmol})$ were dissolved in THF and methanol ($10.0 \mathrm{~cm}^{3}, 1: 1$) and sodium carbonate $(145 \mathrm{mg}, 1.37 \mathrm{mmol})$ was added. Hydrogen peroxide $\left(0.65 \mathrm{~cm}^{3}, 5.71 \mathrm{mmol}\right)$ as a $30 \% \mathrm{w} / \mathrm{v}$ solution in water was added dropwise. The solution was then refluxed for 20 h . The product was extracted into ethyl acetate ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with diethyl ether increasing in 50% steps to ethyl acetate as the eluent yielded 136 and 137 as an oil (1.0:1.6) ($234 \mathrm{mg}, 83 \%$). The yield is based on recovered starting material and is over two steps; $\mathrm{R}_{\mathrm{f}} .0 .3$, diethyl ether; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-\mathrm{Me}, 136), 1.37(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 136$ or 137), 1.50 (3H, s, C1-Me, 137), 1.59 (1H, dd, J 7.6, 13.5, 13a-H, 137), 1.80 ($1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}, 136$ or 137), 1.89 ($1 \mathrm{~h}, \mathrm{br} \mathrm{d}, J 13.5,13 \mathrm{~b}-\mathrm{H}, 137$), 2.13 (1 H, br d, $J 12.0,13 \mathrm{a}-\mathrm{H}, 136$), 2.28 (1H, m, 11-H, 136), 2.5 (1H, dd, J 6.9, 13.8, 13b-H, 136), 2.68 ($1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}, 137$), 3.25-3.34 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 136$ and 137), $3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}, 136), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$, 137), $3.64(1 \mathrm{H}$, overlapping $\mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}, 136), 3.65(1 \mathrm{H}$, obscured $\mathrm{t}, 6 \mathrm{ax}-\mathrm{H}, 137)$, $3.72-4.00\left(6 \mathrm{H}, \mathrm{m}, 2 \times 5-\mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{OH}, 136\right.$ and 137$), 4.25(2 \mathrm{H}$, overlapping dd, $J 5.1$, $10.1,6 \mathrm{eq}-\mathrm{H}, 136, J 10.1,5.4,6 \mathrm{eq}-\mathrm{H}, 137), 4.54(2 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}, 136), 4.55(1 \mathrm{H}, \mathrm{s}, 9-$ $\mathrm{H}, 136), 4.62(1 \mathrm{H}, \mathrm{t}, J 7.9,12-\mathrm{H}, 137), 4.80(1 \mathrm{H}, \mathrm{d}, J 2.8,9-\mathrm{H}, 137), 5.51(1 \mathrm{H}, \mathrm{s}, 4-$ $\mathrm{H}, 136), 5.54(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}, 137), 7.36(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, 136$ and 137$) ; \mathrm{m} / \mathrm{z}$ (EI) $350\left(\mathrm{M}^{+}\right.$,
$5.3 \%) 335(10.8) 201(75.2) 183$ (23.0) 169 (54.6) 149 (41.8) 123 (38.5) 107 (47.2) 105 (100).
(1R, 2S, 4R, 7R, $9 S, 10 S, 11 R, 12 R$)-12-Benzoyloxy-11-benzoyloxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8-trioxatricyclo $\left[8.3 .0 .0^{2}, 7\right]$ tridecane and ($1 R, 2 S, 4 R, 7 R, 9 S, 10 R, 11 R, 12 R$)-12-Benzoyloxy-11-benzoyloxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8-trioxatricyclo $\left[8.3 .0 .0^{2,7}\right]$ tridecane

The mixture of diols 136 and 137 ($203 \mathrm{mg}, 0.58 \mathrm{mmol}$) were dissolved in dichloromethane $\left(11.0 \mathrm{~cm}^{3}\right)$ and DMAP ($814 \mathrm{mg}, 6.67 \mathrm{mmol}$), and benzoic anhydride $(1.31 \mathrm{~g}, 5.80 \mathrm{mmol})$ were added. Triethylamine $\left(0.65 \mathrm{~cm}^{3}, 4.64 \mathrm{mmol}\right)$ was added to the stirred solution dropwise and allowed to stir overnight. The reaction was quenched by the addition of saturated sodium chloride solution $\left(10 \mathrm{~cm}^{3}\right)$, the product extracted into diethyl ether (2×30 cm^{3}), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($2: 1$) as the eluent yielded 138 and 139 as an oil (1.0:1.6) ($152 \mathrm{mg}, 47 \%$); $\mathrm{R}_{\mathrm{f}} .0 .78,0.75$, petroleum ether : diethyl ether (1:1); $138[\alpha]^{20} 26.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2920 \mathrm{w}$, $1740 \mathrm{~s}, 1450 \mathrm{~m}, 1280 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.85(1 \mathrm{H}, \mathrm{dd}, J 7.6$, $14.2,13 \mathrm{a}-\mathrm{H}), 2.05(1 \mathrm{H}, \mathrm{dd}, J 9.8,2.9,10-\mathrm{H}), 2.13(2 \mathrm{H}, \mathrm{d}, J 14.2,13 \mathrm{~b}-\mathrm{H}), 3.20(1 \mathrm{H}, \mathrm{br}$ $\mathrm{q}, J 9.1,11-\mathrm{H}), 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.41(1 \mathrm{H}, \mathrm{d}, J 9.1,2-\mathrm{H}), 3.77(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H})$, $4.02(1 \mathrm{H}, \mathrm{dt}, J 4.7,10.0,7-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{dd}, J 4.7,10.1,6 \mathrm{eq}-\mathrm{H}), 4.53(1 \mathrm{H}, \mathrm{dd}, J 7.9$, 11.3, CHHBz), $4.82(1 \mathrm{H}, \mathrm{dd}, J 7.6,11.3, \mathrm{CHHBz}), 4.99(1 \mathrm{H}, \mathrm{d}, J 2.5,9-\mathrm{H}), 5.60(1 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{H}), 5.96(1 \mathrm{H}, \mathrm{t}, J 8.2,12-\mathrm{H}), 7.35-7.58(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.85-8.13(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}$ (62.9 MHz; $\left.\mathrm{CDCl}_{3}\right) 17.4\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 43.5(\mathrm{C}, \mathrm{Cl}), 48.1\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right), 51.5(\mathrm{CH}, \mathrm{C} 11)$,
$55.8\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 61.4(\mathrm{CH}, \mathrm{C} 7), 64.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OBz}\right), 70.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 74.5(\mathrm{CH}, \mathrm{C} 2)$, $88.4(\mathrm{CH}, \mathrm{C} 12), 100.9(\mathrm{CH}, \mathrm{C} 9), 101.9(\mathrm{CH}, \mathrm{C} 4), 126.6-133.5(9 \mathrm{xCH}, 3 \mathrm{C}, \mathrm{Ph}), 138.1$ (C, Ph), $167.8(\mathrm{C}, \mathrm{CO}), 168.5(\mathrm{C}, \mathrm{CO}) ; m / z(\mathrm{FAB}) 559\left(\mathrm{MH}^{+}, 24 \%\right) 527$ (100) 405 (52) 299 (18.6) 206 (98) (Found: MH^{+}559.2332. $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{O}_{8}$ requires 559.2332).
$139[\alpha]^{20}-47.2^{\circ}\left(c 2.81, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930 \mathrm{w}, 1740 \mathrm{~s}, 1450 \mathrm{~m} ; 1280$ $\mathrm{m}, 1110 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.72(1 \mathrm{H}, \mathrm{dd}, J 5.4,14.8$, $13 \mathrm{a}-$ H), $2.28(1 \mathrm{H}, \mathrm{d}, J 12.0,10-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 6.9,14.8,13 \mathrm{~b}-\mathrm{H}), 2.94(1 \mathrm{H}, \mathrm{dt}, J 6.6$, $12.0,11-\mathrm{H}), 3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.55(1 \mathrm{H}, \mathrm{d}, J 9.9,2-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H})$, $4.03(1 \mathrm{H}, \mathrm{dt}, J 5.0,9.9,7-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{dd}, J 5.0,10.0,6 \mathrm{eq}-\mathrm{H}), 4.55(2 \mathrm{H}$, apparent d,$J$ $\left.6.9, \mathrm{CH}_{2} \mathrm{OBz}\right), 5.55(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.86(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J 6.9,12-\mathrm{H}), 7.35-$ $7.55(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) 7.96-8.12(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.9\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right)$, $42.1(\mathrm{C}, \mathrm{C} 1), 43.9(\mathrm{CH}, \mathrm{C} 10), 45.3\left(\mathrm{CH}_{2}, \mathrm{C} 13\right), 53.1(\mathrm{CH}, \mathrm{C} 11), 55.6\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 59.5$ $(\mathrm{CH}, \mathrm{C} 7), 63.9\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OBz}\right), 69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 74.5(\mathrm{CH}, \mathrm{C} 2), 81.8(\mathrm{CH}, \mathrm{C} 12), 100.1$ (CH, C9), 102.5 (CH, C4), 126.6-134.1 (9xCH, 2C, Ph), 138.2 (C, Ph), 166.3 (C, CO ester), 166.8 (C, CO ester); m / z (FAB) $559\left(\mathrm{MH}^{+}, 10 \%\right) 557$ (12) 405 (36) 307 (12) 154 (100) (Found: MH^{+}559.2331. $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{O}_{8}$ requires 559.2331).

(1R, 2S, 4R, 7R, 9S, $10 S, 11 R, 12 R$)-11-Hydroxymethyl-9-methoxy-1-methyl-

 4-phenyl-3,5,8-trioxatricyclo[8.3.0.0 ${ }^{2,7}$]tridecan-12-ol

The dibenzoate 138 ($66 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in dichloromethane ($2.0 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$ before DIBAL-H $\left(2.2 \mathrm{~cm}^{3}, 1.10 \mathrm{mmol}\right)$ was added dropwise. After stirring for 1 h the reaction was quenched by the addition of isopropanol ($3 \mathrm{~cm}^{3}$) and a saturated aqueous solution of sodium sulphate $\left(3 \mathrm{~cm}^{3}\right)$ and left to warm to room temperature. The solid was removed by filtration through celite, the product was extracted into diethyl ether
($2 \times 10 \mathrm{~cm}^{3}$), the organic layers washed with brine ($2 \times 5 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with diethyl ether increasing to ethyl acetate as the eluent yielded 136 as an oil ($22 \mathrm{mg}, 52 \%$); $\mathrm{R}_{\mathrm{f}} .0 .75$, diethyl ether; $[\alpha]_{\mathrm{D}}{ }^{19} 25.5^{\circ}$ (c 1.24 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3620 \mathrm{w}, 3500 \mathrm{brw}, 2920 \mathrm{~s}, 1460 \mathrm{~m}, 1360 \mathrm{~m} ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.51(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.62(1 \mathrm{H}, \mathrm{dd}, J 7.6,13.9,13 \mathrm{a}-\mathrm{H}), 1.87$ (1 H , overlapping dd, $J 9.4,3.2,10-\mathrm{H})$ overlapping $1.92(1 \mathrm{H}, \mathrm{d}, J 13.5,13 \mathrm{~b}-\mathrm{H}), 2.70(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 3.29$ ($1 \mathrm{H}, \mathrm{d}, J 9.2,2-\mathrm{H}$), $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.72(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{m}$, CHHOBz), $3.94(1 \mathrm{H}$, ddd, $J 5.0,9.8,10.1,7-\mathrm{H}$) overlapping 4.08 (1 H , apparent t, J 10.7, CHHOBz-H), 4.28 ($1 \mathrm{H}, \mathrm{dd}, J 5 ., 10.0,6 \mathrm{eq}-\mathrm{H}$), 4.67 ($1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.6,12-\mathrm{H}$), 4.84 ($1 \mathrm{H}, \mathrm{d}, J 2.8,9-\mathrm{H}$), 5.56 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), $7.36-7.53(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $17.7\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 43.3(\mathrm{C}, \mathrm{C} 1), 45.6(\mathrm{CH}, \mathrm{C} 10), 50.3\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right), 51.9(\mathrm{CH}, \mathrm{C} 11)$, $55.7\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 61.5(\mathrm{CH}, \mathrm{C} 7), 62.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OBz}\right), 70.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 74.2(\mathrm{CH}, \mathrm{C} 2)$, 88.8 (CH, C12), 101.1 (CH, C9), 101.9 (CH, C4), 126.7 (CH, Ph), 128.6 (CH, Ph), 129.4 (CH, Ph), 138.3 (C, Ph).

($1 R, 2 S, 4 R, 7 R, 9 S, 10 R, 11 R, 12 R$)-11-Hydroxymethyl-9-methoxy-1-methyl-

4-phenyl-3,5,8-trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridecan-12-ol

The dibenzoate 139 ($141 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in dichloromethane ($2.0 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$ before DIBAL-H $\left(3.0 \mathrm{~cm}^{3}, 1.51 \mathrm{mmol}\right)$ was added dropwise. After stirring for 1 h the reaction was quenched by the addition of isopropanol ($3.0 \mathrm{~cm}^{3}$) and a saturated aqueous solution of sodium sulphate $\left(3.0 \mathrm{~cm}^{3}\right)$ and left to warm to room temperature. The solid was removed by filtration through celite, the product was extracted with diethyl ether
($2 \times 10 \mathrm{~cm}^{3}$), the organic layers washed with brine $\left(2 \times 5 \mathrm{~cm}^{3}\right.$), dried and evaporated to dryness. Chromatography on silica gel with diethyl ether increasing to ethyl acetate as the eluent yielded 137 as an oil ($44 \mathrm{mg}, 50 \%$); $\mathrm{R}_{\mathrm{f}} .0 .75$, diethyl ether; $[\alpha]_{\mathrm{D}}{ }^{19}-14.7^{\circ}$ (c 0.88 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420 \mathrm{~s}, 2930 \mathrm{~m}, 1450 \mathrm{w}, 1370 \mathrm{~m}, 1230 \mathrm{~m}, 1090 \mathrm{~s} ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.50(1 \mathrm{H}, \mathrm{dd}, J 5.7,13.83,13 \mathrm{a}-\mathrm{H}), 2.28$ ($1 \mathrm{H}, \mathrm{d}, J$ $12.0,10-\mathrm{H}), 2.44(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{dd}, J 6.9,14.16,13 \mathrm{~b}-\mathrm{H}), 3.14(2 \mathrm{H}$, brs, $2 \mathrm{xOH}), 3.47(1 \mathrm{H}, \mathrm{d}, J 9.4,2-\mathrm{H}), 3.52(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.80(1 \mathrm{H}, \mathrm{t}, J 10.4,6 \mathrm{ax}-\mathrm{H}), 3.90$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HOH}), 3.99(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{OH})$ overlapping $4.07(1 \mathrm{H}$, overlapping dt, J5.0, $10.4,7-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{dd}, J 5.0,10.4,6 \mathrm{eq}-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{t}, J 6.6,12-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{s}, 9-$ H), $5.66(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.35-7.51(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.6\left(\mathrm{CH}_{3}, \mathrm{Cl}-\right.$ $\mathrm{Me}), 41.9(\mathrm{C}, \mathrm{C} 1), 46.8(\mathrm{CH}, \mathrm{C} 10), 48.2\left(\mathrm{CH}_{2}, \mathrm{C} 13\right), 50.2(\mathrm{CH}, \mathrm{C} 11), 55.5\left(\mathrm{CH}_{3}\right.$, $\mathrm{OMe}), 59.5(\mathrm{CH}, \mathrm{C} 7), 61.9\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right), 69.9\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 73.5(\mathrm{CH}, \mathrm{C} 2), 81.8(\mathrm{CH}$, C12), 100.4 (CH, C9), 102.5 (CH, C4), 126.6 (CH, Ph), 128.7 (CH, Ph), 129.4 (CH, Ph), 138.2 (C, Ph); m / z (EI) $350\left(\mathrm{M}^{+}, 6.5 \%\right) 318$ (12.9) 270 (15.9) 201 (100) (Found : $\mathrm{M}^{+}, 350.1729 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{6}$ requires 350.1729).

(1R, 2S, 4R, 7R, 9S, $12 S$)-12[(Bromomethyl)dimethylsiloxy]9-methoxy-1-

 methyl-4-phenyl-3,5,8-trioxatricyclo[8.3.0.0 ${ }^{2}, 7$]tridec-10-ene

128
 140

To the alcohol 128 ($314 \mathrm{mg}, 0.99 \mathrm{mmol}$) in dichloromethane ($1.0 \mathrm{~cm}^{3}$) and triethylamine ($0.25 \mathrm{~cm}^{3}, 1.78 \mathrm{mmol}$) was added bromomethyl chlorodimethylsilane ($204 \mathrm{mg}, 1.10 \mathrm{mmol}$) dropwise. This solution was allowed to stir overnight, when it became a yellow viscous liquid. The reaction was quenched by the addition of water ($2 \mathrm{~cm}^{3}$), the product was
extracted into diethyl ether $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, the combined organic layers washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with diethyl ether (and 0.1% triethylamine) as the eluent yielded 140 as a pale yellow oil ($412 \mathrm{mg}, 89 \%$); $\mathrm{R}_{\mathrm{f}} .0 .75$, petroleum ether : diethyl ether (1:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2930 \mathrm{w}, 1450 \mathrm{w}, 1315$ $\mathrm{m}, 1260 \mathrm{~m}, 1110 \mathrm{~s}, 1080 \mathrm{~s} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 1.35(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.80(1 \mathrm{H}, \mathrm{dd}, J 6.9,12.6,13 \mathrm{a}-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{dd}, J 6.9$, $12.9,13 \mathrm{~b}-\mathrm{H}), 2.47\left(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{CH}_{2} \mathrm{Br}\right), 3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.56(1 \mathrm{H}, \mathrm{d}, J 9.8,2-\mathrm{H})$, $3.71(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.06(1 \mathrm{H}$, ddd, $J 5.0,9.8,10.0,7-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 10.1$, $5.03,6 \mathrm{eq}-\mathrm{H}), 5.13(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 12-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.71(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 7.37-7.52$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-1.7\left(\mathrm{CH}_{3}, \mathrm{MeSi}\right), 0.0\left(\mathrm{CH}_{3}, \mathrm{MeSi}\right), 16.8\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 49.0(\mathrm{C}, \mathrm{C} 1), 51.2\left(\mathrm{CH}_{2}, \mathrm{C} 13\right), 55.9\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 61.1$ $(\mathrm{CH}, \mathrm{C} 7), 70.4\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 77.5(\mathrm{CH}, \mathrm{C} 2), 87.7(\mathrm{CH}, \mathrm{C} 12), 98.9(\mathrm{CH}, \mathrm{C} 9), 102.5(\mathrm{CH}$, C4), 127.2 (CH, Ph), 129.2 (CH, Ph), 129.9 (CH, Ph), 132.2 (CH, C11), 138.7 (C, Ph), $145.9(\mathrm{C}, \mathrm{C} 10) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 468\left(\mathrm{M}^{+}, 1.3 \%\right) 470\left(\mathrm{M}^{+}, 1.3 \%\right) 439$ (10.4) 321 (47.8) 319 (47.0) 293 (19.8) 292 (98.7) 290 (100) (Found : M^{+}, 468.0968. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{BrSi}$ requires 4.68.0968).
($1 R, 2 S, 4 R, 7 R, 9 S, 10 R, 11 S, 15 R$)-9-Methoxy-1,13,13-trimethyl-4-phenyl-

3,5,8,14-tetraoxa-13-silatetracyclo[8.6.0.0 $\left.{ }^{2}, 70^{11,15}\right]$ hexadecane

To the silane $140(412 \mathrm{mg}, 0.88 \mathrm{mmol})$ in t-butanol ($10.0 \mathrm{~cm}^{3}$) was added sodium cyanoborohydride ($138 \mathrm{mg}, 2_{2} \mathrm{mmol}$), tributyltin hydride ($29 \mathrm{mg}, 0.09 \mathrm{mmol}$) and finally AIBN ($14 \mathrm{mg}, 0.09 \mathrm{mmol}$). The solution was refluxed for 16 h , the t -butanol was removed in vacuo, the solid dissolved in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with diethyl ether ($2 \times 15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. The product 143 was not stable to column chromatography and was therefore used crude in the next step.
(1R, 2S, 4R, 7R, 9S, $10 S, 11 S, 12 S$)-11-Hydroxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8-trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridecan-12-ol

The crude cyclic silyl ether $143(447 \mathrm{mg}, 1.14 \mathrm{mmol})$ was dissolved in THF and methanol ($10.0 \mathrm{~cm}^{3}, 1: 1$) and sodium carbonate ($145 \mathrm{mg}, 1.37 \mathrm{mmol}$) was added. Hydrogen peroxide $\left(0.65 \mathrm{~cm}^{3}, 5.71 \mathrm{mmol}\right)$ as a $30 \% \mathrm{w} / \mathrm{v}$ solution in water was added dropwise. The
solution was then refluxed for 20 h . The product was extracted into ethyl acetate $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with diethyl ether increasing in 50% steps to ethyl acetate as the eluent yielded 144 as an oil ($234 \mathrm{mg}, 83 \%$). The yield is based on recovered starting material and is over two steps; $\mathrm{R}_{\mathrm{f}} .0 .3$, diethyl ether; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}$), 1.71 ($1 \mathrm{H}, \mathrm{dd}, J 7.2,14.15,13 \mathrm{a}-\mathrm{H}$), 2.03 (2 H , obscured dd, d, J 4.7, $14.15,13 \mathrm{~b}-\mathrm{H}, J 8.8,10-\mathrm{H}), 2.52(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 3.33(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.34(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CHHOH}, 7-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{t}, J 8.2,6 \mathrm{ax}-\mathrm{H})$ overlapping $3.87(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{t}, J 10.7, \mathrm{CH} H O H), 4.26(1 \mathrm{H}, \mathrm{m}, J 4.06,8.2,6 \mathrm{eq}-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{m}, 12-$ $\mathrm{H}), 4.76(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.36-7.52(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $22.9\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 42.2(\mathrm{C}, \mathrm{Cl}), 46.8\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right), 47.8(\mathrm{CH}, \mathrm{C} 11), 52.0(\mathrm{CH}, \mathrm{C} 10)$, $55.4\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 59.7(\mathrm{CH}, \mathrm{C} 7), 62.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right), 70.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 74.7(\mathrm{CH}$, C12), 83.1 (CH, C2), 99.4 (CH, C9), 102.3 (CH, C4), 126.6 (CH, Ph), 128.6 (CH, Ph), 129.4 (CH, Ph), 138.3 (C, Ph).

(1R, 2S, 4R, 7R, 9S, $10 S, 11 S, 12 S$)-12-tert-Butyldiphenylsiloxy-11-tert-

butyldiphenylsiloxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8-

 trioxatricyclo[8.3.0.0 ${ }^{2}, 7$ tridecane

The diol 144 ($120 \mathrm{mg}, 0.34 \mathrm{mmol}$) was dissolved in dichloromethane ($2.0 \mathrm{~cm}^{3}$) tand cooled to $0^{\circ} \mathrm{C}$. To this was added imidazole ($93 \mathrm{mg}, 1.37 \mathrm{mmol}$) and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) and the solution allowed to stir for $10 \mathrm{~min} . \mathrm{t}$-Butyldiphenylsilylchloride ($283 \mathrm{mg}, 1.00$ $\mathrm{mmol})$ was then added dropwise and the solution left to stir for 3 days. The reaction was quenched by the addition of methanol ($2 \mathrm{~cm}^{3}$) and water $\left(2 \mathrm{~cm}^{3}\right)$, the product extracted into
dichloromethane $\left(2 \times 4 \mathrm{~cm}^{3}\right)$, washed with brine $\left(2 \times 4 \mathrm{~cm}^{3}\right)$ dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (2:1) as the eluent yielded 145 as an oil (188 mg, 94\%); R_{f} : 0.75 , petroleum ether : diethyl ether (1:1); $\alpha \alpha_{\mathrm{D}}{ }^{20} 19.0^{\circ}$ (c $\left.1.4, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3070 \mathrm{w}, 2930 \mathrm{~s}, 1595 \mathrm{~s}, 1110 \mathrm{~s}, 840 \mathrm{~m} ; \delta_{\mathrm{H}}(250 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 0.89\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.06\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.18(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{Me}), 1.35(1 \mathrm{H}, \mathrm{dd}, J 7.3$, $14.15,13 \mathrm{a}-\mathrm{H}), 1.40(1 \mathrm{H}, \mathrm{dd}, J 4.1,14.15,13 \mathrm{~b}-\mathrm{H}), 1.99(1 \mathrm{H}, \mathrm{d}, J 9.8,10-\mathrm{H}), 2.49(1 \mathrm{H}$, $\mathrm{m}, 11-\mathrm{H}), 3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.70(1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 3.94(1 \mathrm{H}$, ddd, $J 5.1,9.8$, $10.1,7-\mathrm{H}), 4.18\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, \mathrm{CH}_{2} \mathrm{OSi}\right), 4.29(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{dd}, J 5.0,10.1$, $6 \mathrm{eq}-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.34-7.92(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(62.9 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 19.6\left(2 \mathrm{xC}, \mathrm{t}^{\mathrm{Bu}}\right), 22.8\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 27.4\left(\mathrm{CH}_{3}, \mathrm{tBu}\right), 27.5\left(\mathrm{CH}_{3}, \mathrm{t}^{\mathrm{Bu}}\right), 41.8(\mathrm{C}$, $\mathrm{C} 1), 46.9\left(\mathrm{CH}_{2}, \mathrm{C} 13\right), 49.5(\mathrm{CH}, \mathrm{C} 11), 52.8(\mathrm{CH}, \mathrm{C} 10), 55.2\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 59.0(\mathrm{CH}$, C7), $63.6\left(\mathrm{CH}_{2}, \mathrm{CCH}_{2} \mathrm{OSi}\right), 70.5\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 75.3(\mathrm{CH}, \mathrm{C} 2), 82.8(\mathrm{CH}, \mathrm{C} 12), 98.9(\mathrm{CH}$, C9), 102.3 (CH, C4), 126.8-130.0 (8xCH, Ph), 133.6 (C, Ph), 134.1 (C, Ph), 134.1 (C, $\mathrm{Ph}), 134.2(\mathrm{C}, \mathrm{Ph}), 136.0(\mathrm{CH}, \mathrm{Ph}), 136.1(\mathrm{CH}, \mathrm{Ph}), 136.3(\mathrm{CH}, \mathrm{Ph}), 138.6(\mathrm{C}, \mathrm{Ph})$;
$m / z(\mathrm{FAB}) 825\left(\mathrm{M}^{+}-\mathrm{H}, 0.1 \%\right) 319$ (7.4) 257 (9.3) 197 (68.5) 135 (100) (Found : $[\mathrm{M}-\mathrm{H}]^{+}$, 825.4005. $\mathrm{C}_{51} \mathrm{H}_{61} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires 825.4007).

1-Benzoyloxy-1-cyclohexyl-1-hydroxy-prop-2-ene

Cyclohexane carboxaldehyde $267(5.0 \mathrm{~g}, 45.00 \mathrm{~mol})$ was dissolved in THF ($20.0 \mathrm{~cm}^{3}$) and stirred at $0^{\circ} \mathrm{C}$. Vinyl magnesium chloride ($3.91 \mathrm{~g}, 45.00 \mathrm{~mol}$) was added dropwise as a $25 \% \mathrm{w} / \mathrm{v}$ solution in THF and the solution allowed to warm to room temperature. The reaction was diluted with diethyl ether ($100 \mathrm{~cm}^{3}$) and quenched by the addition of water (25 cm^{3}). The organic layer was separated, washed with dilute $\mathrm{HCl}\left(25 \mathrm{~cm}^{3}\right)$ and brine (25 cm^{3}), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate ($9: 1$) as the eluent yielded the alcohol 268 ($5.59 \mathrm{~g}, 89 \%$) as a colourless oil; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3360 \mathrm{br} \mathrm{m}(\mathrm{OH}), 2920 \mathrm{~s}, 2850 \mathrm{~s}, 1450 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.98$ $\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6^{\prime} \mathrm{ax}-\mathrm{H}\right), 1.37\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.68\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6^{\prime} \mathrm{eq}-\mathrm{H}\right), 2.05(1 \mathrm{H}, \mathrm{d}, J 3.5$, OH), $3.8(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 1-\mathrm{H}), 5.12\left(2 \mathrm{H}, 2 \mathrm{dd}\right.$ overlapping, $J 10.4,1.3,3_{c i s}-\mathrm{H}, J 17.3,1.3$, $3_{\text {trans }}-\mathrm{H}$), 5.82 (1 H , ddd overlapping, $J 6.6,10.4,17.3,2-\mathrm{H}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$, 26.2- $30.0\left(5 \mathrm{CH}_{2}, \mathrm{C}^{\prime}-6{ }^{\prime}\right)$, $43.8\left(\mathrm{CH}, \mathrm{Cl}^{\prime}\right), 78.1(\mathrm{CH}, \mathrm{C} 1), 115.7\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 140.2$ (CH, C2).

1-Benzyloxy-1-cyclohexyl-prop-2-ene

A solution of the alcohol $268(635 \mathrm{mg}, 4.53 \mathrm{mmol})$ in THF ($20.0 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$ with stirring. Sodium hydride ($149 \mathrm{mg}, 80 \%$ dispersion in mineral oil, 4.98 mmol) was
added in portions, and the solution allowed to stir for 1 h . Benzyl bromide $(1.16 \mathrm{~g}, 6.80$ mmol) was then added dropwise and the solution allowed to stir for a further 2 h at room temperature. The solution was then cooled in ice and ethanol ($5 \mathrm{~cm}^{3}$) added, to destroy the excess sodium hydride, and then poured into iced water. The aqueous layer was extracted with diethyl ether ($2 \times 50 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (9.5:1) as the eluent yielded 269 as a colourless oil ($853 \mathrm{mg}, 81 \%$); $\mathbf{R}_{\mathrm{f}} .0 .7$ (Petroleum ether : ethyl acetate 9.5:1); $v_{\max }(f i l m) / \mathrm{cm}^{-1} 2920 \mathrm{~s}, 1500 \mathrm{w}, 1450 \mathrm{~m} ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.83-0.26 (5H, m, 2'-6' $\left.\mathrm{ax}^{\prime}-\mathrm{H}\right), 1.37-1.48\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 1.51-1.69(5 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-6^{\prime} \mathrm{eq}-\mathrm{H}\right), 3.37(1 \mathrm{H}, \mathrm{t}, J 7.6,1-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{OCHHPh}), 4.53(1 \mathrm{H}, \mathrm{d}, J 12.0$, OCHHPh $), 5.10(2 \mathrm{H}$, dd overlapping, J $1.9,17.2,2 \mathrm{a}-\mathrm{H}), 5.21(1 \mathrm{H}, \mathrm{dd}, J 1.9,10.4,2 \mathrm{~b}-$ H), 7.22-7.28 (5H, m, Ph); $\delta_{C}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 26.5-29.7\left(5 \mathrm{CH}_{2}, \mathrm{C}^{\prime}-6\right.$ '), $42.8(\mathrm{CH}$, Cl '), $70.5\left(\mathrm{CH}_{2}, \mathrm{COCH}_{2}\right), 85.8(\mathrm{CH}, \mathrm{C} 1), 118.4\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 127.7-128.1(3 \mathrm{CH}, \mathrm{Ph})$, $138.2(\mathrm{CH}, \mathrm{C} 8), 139.4(\mathrm{C}, \mathrm{Ph}) ; m / z(\mathrm{EI}) 230\left(\mathrm{M}^{+}, 0.9 \%\right), 147\left(\mathrm{M}^{+},-\mathrm{C}_{6} \mathrm{H}_{11}\right)(13.6), 139$ $\left(\mathrm{M}^{+},-\mathrm{OBn}\right)(3.3), 91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)(100)\left(\right.$ Found : $\mathrm{M}^{+}, 230.1671 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}$ requires 230.1671).

1-Benzyloxy-1-cyclohexyl-propan-3-ol

To a solution of $269(70 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF ($1.0 \mathrm{~cm}^{3}$) was added ${ }^{\prime}$ 'BBN $\left(1.5 \mathrm{~cm}^{3}\right.$, 1.50 mmol) dropwise with cooling. The resulting solution was warmed to $40^{\circ} \mathrm{C}$ and held at this temperature for 2 h with stirring. The reaction was quenched by the addition of sodium acetate ($2 \mathrm{~cm}^{3}, 1 \mathrm{M}$ solution) and oxidised by the addition of sodium hydroxide ($3 \mathrm{~cm}^{3}, 6 \mathrm{~N}$ solution) and hydrogen peroxide ($3 \mathrm{~cm}^{3}, 20 \% \mathrm{w} / \mathrm{v}$ solution in water) and allowed to stir overnight. The resulting solution was diluted with diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$, washed with brine ($2 \times 20 \mathrm{~cm}^{3}$), the combined organic layers were dried and evaporated to dryness.

Chromatography on silica gel with petroleum ether : ethyl acetate ($9: 1$) as eluent yielded the primary alcohol $270(56 \mathrm{mg}, 75 \%)$ as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3320 \mathrm{br} \mathrm{m}(\mathrm{OH})$, $2920 \mathrm{~s}, 1500 \mathrm{w}, 1450 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80-1.20\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6{ }^{\prime} \mathrm{ax}^{\prime}-\mathrm{H}\right), 1.30-1.70$ $\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 2^{\prime}-6{ }^{\prime} \mathrm{eq}^{-H}\right.$), 3.28 ($1 \mathrm{H}, \mathrm{br}$ dd, $J 12.0,5.35,1-\mathrm{H}$), $3.62(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.36$ $(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{OC} H \mathrm{HPh}), 4.46(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{OCH} H \mathrm{Ph}), 7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(69.2$ MHz ; $\left.\mathrm{CDCl}_{3}\right) 23.1\left(\mathrm{CH}_{2}, \mathrm{C} 2\right), 26.1-35.1\left(\mathrm{CH}_{2}, \mathrm{C} 2^{\prime}-6\right.$ ' $), 41.0\left(\mathrm{CH}, \mathrm{Cl}^{\prime}\right), 61.3\left(\mathrm{CH}_{2}\right.$, $\mathrm{C} 3), 72.2\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 83.3(\mathrm{CH}, \mathrm{C} 1), 128.1(\mathrm{CH}, \mathrm{Ph}), 128.3(\mathrm{CH}, \mathrm{Ph}), 128.9(\mathrm{CH}$, $\mathrm{Ph}), 138.9$ (C, Ph); m / z (EI) $248\left(\mathrm{M}^{+}, 1.1 \%\right), 230\left(\mathrm{M}^{+},-\mathrm{H}_{2} \mathrm{O}\right)(5), 203\left(\mathrm{M}^{+}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)(1)$, $165\left(\mathrm{M}^{+},-\mathrm{C}_{6} \mathrm{H}_{11}\right)(6.1), 91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)(100)$ (Found : $\mathrm{M}^{+}, 248.1776 . \quad \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ requires 248.1776).

1-Benzyloxy-1-cyclohexyl-propan-3-al

To a stirred solution of oxalyl chloride ($3.62 \mathrm{~cm}^{3}, 28.50 \mathrm{mmol}$) in dichloromethane (10.0 cm^{3}) at $-78{ }^{\circ} \mathrm{C}$ was added dimethyl sulphoxide ($4.46 \mathrm{~cm}^{3}, 28.50 \mathrm{mmol}$) in dichloromethane ($10.0 \mathrm{~cm}^{3}$) dropwise under an atmosphere of nitrogen. After allowing the solution to stir for 0.25 h a solution of the alcohol $270(2.36 \mathrm{~g}, 9.50 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise and the solution allowed to stir for 1 h . Triethylamine ($15.9 \mathrm{~cm}^{3}, 0.11 \mathrm{~mol}$) was then added and the solution allowed to warm to room temperature. The reaction was diluted with diethyl ether ($50 \mathrm{~cm}^{3}$), the combined organic layers washed with brine (2×75 cm^{3}) and water ($75 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (95:5) as eluent yielded the aldehyde 271 as a colourless oil ($1.06 \mathrm{~g}, 67 \%$); Rf:0.65 (petrol-ethyl acetate 9:1); $v_{\max }$ (film)/ $/ \mathrm{cm}^{-1} 2920 \mathrm{~s}, 1750 \mathrm{~m}$ (CO), $1500 \mathrm{w}, 1450 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.70-1.30 ($5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6^{\prime} \mathrm{ax}-\mathrm{H}$), 1.10-1.70 ($5 \mathrm{H}, \mathrm{m}$, $2^{\prime}-6$ 'eq-H), 2.35 (1 H , ddd, J 16.4, 4.4, 1.9, 2a-H), 2.48 (1 H , ddd, J16.4, 7.55, 2.36, 2b-
$\mathrm{H}), 3.58(1 \mathrm{H}$, overlapping dt, $J 7.6,4.7,1-\mathrm{H}), 4.32(1 \mathrm{H}$, apparent d, $J 11.6, \mathrm{OCHHPh})$, $4.39(1 \mathrm{H}$, apparent d, $J 11.3, \mathrm{OCH} H \mathrm{Ph}), 7.1-7.15(5 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{Ph}), 9.62(1 \mathrm{H}, \mathrm{brt}, J 2.2,3-$
 $\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 79.1(\mathrm{CH}, \mathrm{Cl}), 128.1$ (2CH, CHPh), 138.8 (C, Ph), $202.5(\mathrm{CH}, \mathrm{C} 3)$; $m / z(E I) 246\left(\mathrm{M}^{+}, 0.2 \%\right), 217\left(\mathrm{M}^{+},-\mathrm{CHO}\right)(0.2), 91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)(100)$, (Found : M^{+}, 246.1620. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$ requires 246.1620).

1-Benzyloxy-1-cyclohexyl-3-hydroxy-4-methyl-pent-4-ene

2-bromopropene ($450 \mathrm{mg}, 3.72 \mathrm{mmol}$) in dry THF ($1.0 \mathrm{~cm}^{3}$) was added dropwise to magnesium turnings ($95 \mathrm{mg}, 3.91 \mathrm{mmol}$) in dry THF ($1.0 \mathrm{~cm}^{3}$). When the initiation of the reaction was complete a gentle reflux was maintained by the addition of the bromide. The solution was then heated to reflux for 1 h . The freshly prepared Grignard reagent was then added dropwise at $0^{\circ} \mathrm{C}$ to the aldehyde 271 ($643 \mathrm{mg}, 2.23 \mathrm{mmol}$). The reaction was quenched by the addition of water ($5.0 \mathrm{~cm}^{3}$), diluted with diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$, the combined organic layers washed with brine ($2 \times 15 \mathrm{~cm}^{3}$) and water ($25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate ($80: 20$) as eluent yielded the allylic alcohol 272 as a colourless oil ($643 \mathrm{mg}, 60 \%$) as a ratio of $2: 1 ;$ Rf: $0.65,0.70$ (petroleum : ethyl acetate 4:1); 272 (minor isomer) $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $3460 \mathrm{br} \mathrm{m}(\mathrm{OH}), 2920 \mathrm{~s}, 1500 \mathrm{w}, 1450 \mathrm{~m}, 1140 \mathrm{br} \mathrm{m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.60-1.20$ ($5 \mathrm{H}, \mathrm{m}, 2^{\prime} \mathrm{ax}-\mathrm{H}, 6^{\prime} \mathrm{ax}-\mathrm{H}$), 1.30-1.70 (11H, m, $1^{\prime}-\mathrm{H}, 2^{\prime}-6$ 'eq-H, $2 \mathrm{a}-\mathrm{H}, 8 \mathrm{~b}-\mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{H}$), $2.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.31(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{d}, J 11.0$, OCHHPh), $4.40(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{OCH} H \mathrm{Ph}), 4.67(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{a}-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{~b}-\mathrm{H}), 7.1-$ $7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 19.1\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}\right), 26.7-29.9\left(5 \mathrm{CH}_{2}, \mathrm{C} 2\right.$ C6'), $35.3\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 41.0\left(\mathrm{CH}, \mathrm{Cl}\right.$ '), $72.4\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 73.0(\mathrm{CH}, \mathrm{C} 6), 81.9(\mathrm{CH}$,
$\mathrm{C} 1), 110.4\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 128.1(\mathrm{CH}, \mathrm{Ph}), 128.3(\mathrm{CH}, \mathrm{Ph}), 128.8(\mathrm{CH}, \mathrm{Ph}), 138.9(\mathrm{C}, \mathrm{Ph})$, 148.1 (C, C4); $m / z(\mathrm{EI}) 288\left(\mathrm{M}^{+}, 0.1 \%\right), 270\left(\mathrm{M}^{+},-\mathrm{H}_{2} \mathrm{O}\right)(0.3), 108(\mathrm{BnOH})(0.5), 91$ $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)(100)$, (Found : $\mathrm{M}^{+}, 288.2089 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires 288.2089);

272 (major isomer) $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 3460 \mathrm{br} \mathrm{m}(\mathrm{OH}), 2920 \mathrm{~s}, 1500 \mathrm{w}, 1450 \mathrm{~m}, 1140 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.80-1.35 (5H, m, 2'-6'ax-H), 1.5-1.83 (11H, m, 1'-H, $2^{\prime}-6^{\prime} \mathrm{eq}-\mathrm{H}$, $\left.2 \mathrm{a}-\mathrm{H}, 2 \mathrm{~b}-\mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.48(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, \mathrm{OH}), 4.18(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{d}, J 11.00$, OCHHPh), $4.61(1 \mathrm{H}, \mathrm{d}, J 11.00, \mathrm{OCH} H \mathrm{Ph}), 4.76(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{a}-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{~b}-\mathrm{H})$, 7.28-7.3 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 18.2\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}\right), 26.8-29.6\left(5 \mathrm{CH}_{2}\right.$, C2'-C6'), $36.3\left(\mathrm{CH}_{2}, \mathrm{C} 2\right), 40.8\left(\mathrm{CH}, \mathrm{Cl}^{\prime}\right), 71.8\left(\mathrm{CH}_{2}, \mathbf{O C H} 2 \mathrm{Ph}\right), 76.1(\mathrm{CH}, \mathrm{C} 1), 84.7$ ($\mathrm{CH}, \mathrm{C} 3$), 111.2 ($\left.\mathrm{CH}_{2}, \mathrm{C} 5\right), 128.2(\mathrm{CH}, \mathrm{Ph}), 128.3(\mathrm{CH}, \mathrm{Ph}), 128.9(\mathrm{CH}, \mathrm{Ph}), 138.6(\mathrm{C}$, $\mathrm{Ph}), 147.7$ (C, C10); $m / z(\mathrm{EI}) 288\left(\mathrm{M}^{+}, 0.1 \%\right), 270\left(\mathrm{M}^{+},-\mathrm{H}_{2} \mathrm{O}\right)(0.3), 108(\mathrm{BnOH})(2.8)$, $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)(100)$, (Found : $\mathrm{M}^{+}, 288.2089 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires 288.2089).

1-Benzyloxy-1-cyclohexyl-4-methyl-pent-4-en-3-one

To a stirred solution of oxalyl chloride ($0.9 \mathrm{~cm}^{3}, 1.04 \mathrm{mmol}$) in dichloromethane $\left(3.0 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added dimethyl sulphoxide $\left(0.15 \mathrm{~cm}^{3}, 2.08 \mathrm{mmol}\right.$) in dichloromethane (3.0 cm^{3}) dropwise under an atmosphere of nitrogen. After allowing the solution to stir for 0.25 h a solution of the alcohol $272(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dichloromethane $\left(2.0 \mathrm{~cm}^{3}\right)$ was added dropwise and the solution allowed to stir for 1 h . Triethylamine ($0.6 \mathrm{~cm}^{3}, 4.20 \mathrm{mmol}$) was then added and the solution allowed to warm to room temperature. The reaction was diluted with diethyl ether ($15 \mathrm{~cm}^{3}$), the combined organic layers washed with brine (2×15 cm^{3}) and water ($15 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (98:2) as eluent yielded the enone 273 as a colourless oil ($63 \mathrm{mg}, 63 \%$); $\mathrm{R}_{\mathrm{f}} 0.65$ (petroleum : ethyl acetate $9.5: 1$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2920 \mathrm{~s}, 1750 \mathrm{~s}$
(CO), $1500 \mathrm{w}, 1450 \mathrm{~m}, 1140 \mathrm{br} \mathrm{m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80-1.20\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6\right.$ 'ax-H), 1.35-1.70 (5H, m, 1'-H, 2'-6'eq-H), $1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J 16.1,4.1$, $2 \mathrm{a}-\mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{dd}, J 16.0,7.9,2 \mathrm{~b}-\mathrm{H}), 3.72$ (1H,overlapping dt, J 7.9, 4.1, 1-H), 4.36 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.64(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{a}-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{~b}-\mathrm{H}), 7.12(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 18.1\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}\right), 26.8-29.2\left(4 \mathrm{CH}_{2}, \mathrm{C} 2\right.$ '- ${ }^{\prime} 6$ '), $40.4\left(\mathrm{CH}_{2}, \mathrm{C} 2\right), 42.7$ $(\mathrm{CH}, \mathrm{Cl}), 73.0\left(\mathrm{CH}_{2}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 80.8(\mathrm{CH}, \mathrm{Cl}), 125.4\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 127.8(\mathrm{CH}, \mathrm{Ph})$, $128.1(\mathrm{CH}, \mathrm{Ph}), 128.6(\mathrm{CH}, \mathrm{Ph}), 139.3(\mathrm{C}, \mathrm{Ph}), 145.4(\mathrm{C}, \mathrm{C} 4), 201.5(\mathrm{CO}, \mathrm{C} 3) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $287\left(\mathrm{MH}^{+}\right), 180\left(\mathrm{MH}^{+},-\mathrm{OBn}\right) 91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)(100)$, (Found :: M^{+}, 286.1933. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}$ requires 286.1933).

1-Benzyloxy-1-cyclohexyl-3-hydroxy-4-methyl-3-(1'-methyl-1'-methylselenoethyl)-pent-4-ene

A solution of the acetal 2 -(bis-methyl seleno) propane ($230 \mathrm{mg}, 1.00 \mathrm{mmol}$) in ether (1.0 cm^{3}) was stirred at $-78^{\circ} \mathrm{C}$ under an atmosphere of argon. $\mathrm{s}-\mathrm{BuLi}\left(0.77 \mathrm{~cm}^{3}, 1.00 \mathrm{mmol}\right)$ in ether $\left(1.0 \mathrm{~cm}^{3}\right)$ was added dropwise and allowed to stir for 1 h . The enone 273 (288 mg, $1.00 \mathrm{mmol})$ in ether $\left(1.0 \mathrm{~cm}^{3}\right)$ was then added and the solution allowed to stir for 0.5 h . The reaction was quenched by the addition of water $\left(5.0 \mathrm{~cm}^{3}\right)$, diluted with diethyl ether (15 cm^{3}) and the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$) and water ($15 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate ($80: 20$) as eluent yielded the alcohols 273a as a colourless oil ($382 \mathrm{mg}, 90 \%$) in a ratio of $2: 1$; Rf:0.65, (petroleum : ethyl acetate $4: 1$); (mixture of isomers) $v_{\max }$ (film)/ $/ \mathrm{cm}^{-1}$ 3450 br m (OH), $2920 \mathrm{~s}, 1450 \mathrm{~m}, 1140 \mathrm{br} \mathrm{m}, 900 \mathrm{w} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90-1.30$ $\left(10 \mathrm{H}, \mathrm{m}, 2^{\prime}-6 \prime \mathrm{ax}-\mathrm{H}\right)$, 1.39-1.5 $\left(12 \mathrm{H}, 4 \mathrm{~s}, \mathrm{MeSeC}\left(\mathrm{CH}_{3}\right)_{2}\right.$, major and minor), $1.60-1.90$
($12 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2^{\prime}-6$ 'eq- H , major and minor), $1.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CH}\right.$, major), 1.85 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{CH}$, minor), 1.94 ($3 \mathrm{H}, \mathrm{s}$, Se-Me major), 1.99 ($3 \mathrm{H}, \mathrm{s}$, Se-Me minor), 2.06 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{a}$ and $2 \mathrm{~b}-\mathrm{H}$, major and minor), $2.95(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.5\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right.$ minor), $3.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l}^{\prime}-\right.$ H major), $4.30\left(1 \mathrm{H}, \mathrm{d}, J 10.7, \mathrm{OCHHPh}\right.$ major) $4.41\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right.$ minor), 4.56 ($1 \mathrm{H}, \mathrm{d}, J 10.7$, OCHHPh major), 4.80 ($1 \mathrm{H}, \mathrm{s}, 5 \mathrm{a}-\mathrm{H}$ major), 5.01 ($1 \mathrm{H}, \mathrm{brs}, 5 \mathrm{~b}-\mathrm{H}$ minor), 5.12 ($2 \mathrm{H}, \mathrm{brs}, 5 \mathrm{~b}-\mathrm{H}$ minor and major), 7.3 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$, major and minor); $\delta_{\mathrm{C}}(62.9 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right), 3.7\left(\mathrm{CH}_{3}, \mathrm{CHCH}_{3}\right.$ major), $4.5\left(\mathrm{CH}_{3}, \mathrm{CHCH}_{3}\right.$ minor), $23.3\left(\mathrm{CH}_{3}, \mathrm{C}(\mathrm{Me}) \mathrm{SeMe}\right.$, minor), $23.5\left(\mathrm{CH}_{3}, \mathrm{C}(\mathrm{Me}) \mathrm{SeMe}\right.$, major), $26.0\left(\mathrm{CH}_{3}, \mathrm{C}(\mathrm{Me}) \mathrm{Me}\right.$, minor), $26.2\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}(\mathrm{Me}) \mathrm{Me}$, major), 26.4-30.0 ($10 \mathrm{CH}_{2}, \mathrm{C} 2{ }^{\prime}-\mathrm{C}^{\prime}$, major and minor), $37.8\left(\mathrm{CH}_{2}, \mathrm{C} 2\right), 40.7$ (CH, Cl ', major), 42.3 ($\mathrm{CH}_{3}, \mathrm{Cl}^{\prime}$, minor), $51.6\left(\mathrm{C}, \mathrm{C}(\mathrm{Me})_{2}\right.$, minor), $55.9\left(\mathrm{C}, \mathrm{C}(\mathrm{Me})_{2}\right.$, major), $71.3\left(\mathrm{CH}_{2}, \mathrm{OCH} 2 \mathrm{Ph}\right.$, major), $72.1\left(\mathrm{CH}_{2}, \mathrm{OCH} 2 \mathrm{Ph}\right.$, minor), 81.0 (C, C 3 , major), 81.4 (C, C3, minor), 83.2 ($\mathrm{CH}, \mathrm{C} 1$, major), $82.6\left(\mathrm{CH}, \mathrm{C} 1\right.$, minor), $114.6\left(\mathrm{CH}_{2}, \mathrm{C} 5\right.$, major), $115.3\left(\mathrm{CH}_{2}, \mathrm{C} 5\right.$, minor), 127.6-128.9 ($6 \mathrm{CH}, \mathrm{Ph}$, major and minor), 138.1(C, Ph , major), 139.6 (C, CPh, minor), 146.5 (C, C4, major), 147.9 (C, C4, minor); m/z (EI) 424 $\left(\mathrm{M}^{+}, 1.3 \%\right), 287\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Se}\right)(40.3)$, $91\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)$ (100), (Found :: $\mathrm{M}^{+}, 424.1881$. $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Se}$ requires 424.1881).

1-Cyclohexyl-4-methyl-1-3-(2-propylidene)-pent-3-ene

To a stirred solution of phosphorus (III) iodide ($430 \mathrm{mg}, 1.04 \mathrm{mmol}$) in dichloromethane $\left(3.0 \mathrm{~cm}^{3}\right.$) at $0{ }^{\circ} \mathrm{C}$ was added a solution of the alcohol 273a ($380 \mathrm{mg}, 0.90 \mathrm{mmol}$) in dichloromethane ($3 \mathrm{~cm}^{3}$) and triethylamine ($0.25 \mathrm{~cm}^{3}, 2.47 \mathrm{mmol}$) dropwise under an atmosphere of nitrogen. The reaction was diluted with diethyl ether ($15 \mathrm{~cm}^{3}$) and the combined organic layers washed with brine ($2 \times 15 \mathrm{~cm}^{3}$) and water ($15 . \mathrm{cm}^{3}$), dried and
evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate ($98: 2$) as eluent yielded the diene 274 as a colourless oil ($341 \mathrm{mg}, \mathbf{9 0 \%}$); $\mathrm{R}_{\mathrm{f}} \mathbf{0 . 6 5}$ (petroleum : ethyl acetate 4:1); $v_{\max }$ (film)/cm ${ }^{-1} 2920 \mathrm{~m}, 1450 \mathrm{w}, 1100 \mathrm{w} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.10-1.30 (5H, m, 2'-6'ax-H), 1.40-1.55 ($1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}$), $1.60-1.80\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-6\right.$ 'eq-H), $1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3} \mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3} \mathrm{CH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}-\mathrm{H}\right), 2.24(1 \mathrm{H}, \mathrm{dd}$, $J 5.0,14.16,2 \mathrm{a}-\mathrm{H}), 2.44$ (1 H , dd, J 7.6, 14.2, 2b-H), 3.27 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 4.7,7.6,1-\mathrm{H}$), $4.43(2 \mathrm{H}$, apparent d, $J 11.3, \mathrm{OCHHPh}), 4.51(1 \mathrm{H}$, apparent d, $J 11.7, \mathrm{OCH} H \mathrm{Ph}), 4.55$ $(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{a}-\mathrm{H}$ with some fine splitting), $4.97(1 \mathrm{H}, \mathrm{s}, 5 \mathrm{~b}-\mathrm{H}$ with some fine splitting), 7.32 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 21.3\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{C}\right), 23.1\left(\mathrm{CH}_{3}, \mathrm{CCH}_{3} \mathrm{CH}_{3}\right), 23.8$ $\left(\mathrm{CH}_{3}, \mathrm{CCH}_{3} \mathrm{CH}_{3}\right), 27.6-30.7\left(5 \mathrm{CH}_{2}, \mathrm{C}^{\prime}, \mathrm{C}^{\prime}\right), 33.9\left(\mathrm{CH}_{2}, \mathrm{C} 2\right), 42.7\left(\mathrm{CH}, \mathrm{Cl}^{\prime}\right), 73.4$ $\left(\mathrm{CH}_{2}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Ph}\right), 83.7(\mathrm{CH}, \mathrm{C} 1), 115.0\left(\mathrm{CH}_{2}, \mathrm{C} 5\right), 128.1-129.1(3 \mathrm{CH}, \mathrm{Ph}), 135.2(\mathrm{C}$, C4), 140.6 (C, C3), 147.3 (C, Ph); m/z (EI) 312 (M ${ }^{+}, 0.1 \%$) 205 (20.0) 123 (7.0) 108 (22.0) 91 (100) (Found :: $\mathbf{M}^{+}, 312.2453$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}$ requires 312.2453).

Methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl- α-D-altropyranoside

To a suspension of the epoxide $56(50.0 \mathrm{~g}, 0.19 \mathrm{~mol})$ in dry THF ($200 \mathrm{~cm}^{3}$) was added methylmagnesium chloride (3 M solution in THF, $315.3 \mathrm{~cm}^{3}, 0.95 \mathrm{~mol}$) dropwise while cooling the reaction flask in ice. The reaction mixture was then heated under gentle reflux, under an atmosphere of nitrogen for 5 h , then stirred at room temperature overnight. The reaction was quenched by the addition of water ($150 \mathrm{~cm}^{3}$) dropwise, cautiously, while cooling the flask in ice. The reaction was diluted with diethyl ether ($350 \mathrm{~cm}^{3}$), the combined organic layers washed with brine ($2 \times 150 \mathrm{~cm}^{3}$) and water $\left(150 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness to give a thick oil. The oil was then redissolved in ether and petroleum ether added until the solution became cloudy and this solution was concentrated under reduced pressure to give a white solid. This solid was dissolved in diethyl ether and petroleum ether again
added until the solution became cloudy, the solution was concentrated under reduced pressure to approximately half volume and the product precipitated out of solution to give 249 as a white crystalline solid ($38.13 \mathrm{~g}, 72 \%$) m.p. $114-116^{\circ} \mathrm{C}$ (lit., ${ }^{25} 115^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23(3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{C} 3-\mathrm{Me}), 2.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H})$, 3.38 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.65-4.40 ($5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6 \mathrm{ax}-\mathrm{H}, 6 \mathrm{eq}-\mathrm{H}$), 4.57 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), $5.60(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.27-7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

This is a literature compound and method. ${ }^{25}$

Methyl 4,6-O-benzylidne-3-deoxy-3-C-methyl- α-D-ribo-hexopyranosid-2ulose

Trifluoroactetic anhydride ($15.1 \mathrm{~cm}^{3}, 0.11 \mathrm{~mol}$) in dry dichloromethane $\left(40.0 \mathrm{~cm}^{3}\right)$ was added dropwise to a cooled solution of dimethylsulphoxide ($10.1 \mathrm{~cm}^{3}, 0.43 \mathrm{~mol}$) in dry dichloromethane ($144 \mathrm{~cm}^{3}$), under an atmosphere of nitrogen. Once addition was complete this mixture was stirred for 20 minutes at $-65^{\circ} \mathrm{C}$, then a solution of 249 ($20.0 \mathrm{~g}, 71.35$ $\mathrm{mmol})$ in dry dichloromethane ($20.0 \mathrm{~cm}^{3}$) was added slowly dropwise, keeping the mixture at $-65^{\circ} \mathrm{C}$. Once the addition was complete the reaction was stirred for a further 1.5 h at -65 ${ }^{\circ} \mathrm{C}$ under nitrogen. Triethylamine ($28.8 \mathrm{~cm}^{3}, 0.21 \mathrm{~mol}$) was then added dropwise and the solution allowed to warm to room temperature. The reaction was diluted with dichloromethane ($400 \mathrm{~cm}^{3}$) and this solution washed with 1 M aqueous hydrochloric acid ($2 \times 200 \mathrm{~cm}^{3}$) followed by saturated aqueous sodium hydrogen carbonate ($2 \times 200 \mathrm{~cm}^{3}$) and the saturated aqueous sodium chloride $\left(200 \mathrm{~cm}^{3}\right)$. The dichloromethane layer was dried and evaporated to dryness to give a yellow oil ($20.2 \mathrm{~g},>100 \%$) which was used without any further purification in the next step.

This is a literature compound and method. ${ }^{25}$

Methyl 4,6-O-benzylidne-3-deoxy-3-C-methyl- α-D-arabinohexopyranosid-2ulose

To a solution 249 ($19.86 \mathrm{~g}, 71.35 \mathrm{mmol}$) in dry N, N-dimehtylformamide ($62.0 \mathrm{~cm}^{3}$) was added triethylamine ($31.0 \mathrm{~cm}^{3}, 0.22 \mathrm{~mol}$) and the reaction was stirred at room temperature for 3 days. The reaction was diluted with dichloromethane $\left(200 \mathrm{~cm}^{3}\right)$ and this solution washed with 1 M aqueous hydrochloric acid $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, saturated aqueous sodium hydrogen carbonate ($2 \times 200 \mathrm{~cm}^{3}$) and finally saturated aqueous sodium chloride ($200 \mathrm{~cm}^{3}$). The dichloromehtane layer was dried and evaporated to dryness to give a brown solid. Chromatography on silica gel with petroleum : ethyl acetate (80:20) as eluent yielded 118 as a white crystalline solid ($12.22 \mathrm{~g}, 61 \%$); m.p. $124-125^{\circ} \mathrm{C}$ (lit., ${ }^{25} 125.5-126^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25$ (3H, d, J 6.4, C3-Me), 3.09 ($1 \mathrm{H}, \mathrm{t}, J 12.8,3-\mathrm{H}$), 3.46 ($1 \mathrm{H}, \mathrm{dd}, J$ 9.2, $11.4,4-\mathrm{H}$), 3.52 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.79 ($1 \mathrm{H}, \mathrm{t}, J 10.3,6 \mathrm{ax}-\mathrm{H}$), 4.25 ($1 \mathrm{H}, \mathrm{dt}, J 5.0,9.7,5-$ H), $4.41(1 \mathrm{H}, \mathrm{dd}, J 5.0,10.4,6 \mathrm{eq}-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}), 7.41-7.54$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.79\left(\mathrm{CH}_{3}, \mathrm{C} 3-\mathrm{Me}\right), 46.2(\mathrm{CH}, \mathrm{C} 3), 55.6\left(\mathrm{CH}_{3}, \mathrm{OMe}\right)$, 64.2 (CH, C5), $69.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 82.53(\mathrm{CH}, \mathrm{C} 4), 100.7(\mathrm{CH}, \mathrm{C} 1), 101.3(\mathrm{CH}, \mathrm{C} 10)$, 126.1 (CH, Ph), 128.3 (CH, Ph), 129.1 (CH, Ph), 138.0 (C, Ph), 200.8 (C, C2).

This is a literature compound and method. ${ }^{25}$

1-(Bromovinyl)trimethylsilane

Trimethylsilane ($50.0 \mathrm{~g}, 0.50 \mathrm{~mol}$) was cooled to $-70^{\circ} \mathrm{C}$ (dry ice acetone bath) and bromine ($28.4 \mathrm{~cm}^{3}, 0.55 \mathrm{~mol}$) added dropwise over 1.5 h . The mixture was then allowed to slowly warm to room temperature and the pale yellow solution cooled in ice. To this solution was added diethylamine ($300 \mathrm{~cm}^{3}, 2.90 \mathrm{~mol}$) dropwise. Once the addition was complete the pale yellow suspension was heated under gentle reflux $\left(60^{\circ} \mathrm{C}\right)$ overnight. The thick suspension was cooled to room temperature and the precipitate of diethylamine hydrobromide removed by filtration and the solid washed with diethyl ether ($3 \times 100 \mathrm{~cm}^{3}$). The ether filtrate was washed with $100 \mathrm{~cm}^{3}$ portions of 10% aqueous hydrochloric acid until the aqueous layer remained acidic. When the wash was complete and the aqueous layer remained acidic, the yellow/orange colour of the organic phase transferred to the aqueous phase. The ether layer was then washed with water ($100 \mathrm{~cm}^{3}$) followed by saturated aqueous sodium chloride (200 cm^{3}). The ether layer was dried and the ether then removed from the solution by distillation at atmospheric pressure. The remaining pale yellow solution containing the product was distilled under reduced pressure. The bromide was obtained as a clear colourless liquid which was light sensitive ($68.37 \mathrm{~g}, 77 \%$), bp.: $48-50{ }^{\circ} \mathrm{C}$ at $50 \mathrm{mbar} ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.6(1 \mathrm{H}, \mathrm{d}, J, 1.5-2.0$, vinyl H) $6.70(1 \mathrm{H}, \mathrm{d}, J 1.5-2.0$, vinyl H). This is a literature compound and method. ${ }^{103}$

2-Trimethylsilyl-3-buten-2-ol

To a suspension of magnesium turnings ($6.48 \mathrm{~g}, 0.28 \mathrm{~mol}$) in dry THF ($35.0 \mathrm{~cm}^{3}$) under an atmosphere of nitrogen, was added a few drops of iodomethane and approximately $2.0-3.0$ cm^{3} of a solution of the bromide ($36.0 \mathrm{~g}, 0.20 \mathrm{~mol}$) in dry THF ($51.5 \mathrm{~cm}^{3}$). Once the reaction was initiated, the remainder of the bromide solution was added dropwise while maintaining a gentle reflux. When addition was complete the reaction was heated under reflux for a further hour. The reaction was then cooled in an ice bath and a solution of acetaldehyde ($23.1 \mathrm{~cm}^{3}, 0.41 \mathrm{~mol}$) in dry THF $\left(18.0 \mathrm{~cm}^{3}\right)$ added dropwise with stirring. The reaction was then heated under reflux at $70^{\circ} \mathrm{C}$ for 1 h then the THF removed by distillation at atmospheric pressure. The reaction was cooled in ice and diluted with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$. This mixture was quenched by adding saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) dropwise while cooling the flask in ice. The ethereal solution was decanted from the resulting white solid, then the solid washed with ether ($100 \mathrm{~cm}^{3}$). The ether solution and wash were combined, washed with saturated aqueous sodium chloride ($100 \mathrm{~cm}^{3}$), dried and the ether (and some THF) removed by distillation at atmospheric pressure, leaving the crude product as a yellow liquid (Yield: >100\%).

This is a literature compound and method. ${ }^{103}$

3-Trimetylsilyl-3-buten-2-one

To a cooled ($0{ }^{\circ} \mathrm{C}$, ice bath) solution of the allylic alcohol in acetone ($345 \mathrm{~cm}^{3}$) was added Jones' reagent ($45.0 \mathrm{~cm}^{3}$). The solution changed from yellow to green and finaly red/brown at the end point. After addition was complete the reaction was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h then saturated aqueous sodium metabisulphite ($50.0 \mathrm{~cm}^{3}$) added to destroy any excess chromic acid. Water $\left(150 \mathrm{~cm}^{3}\right)$ and diethyl ether ($300 \mathrm{~cm}^{3}$) were added and the reaction stirred until the Cr^{3+} salts dissolved. The aqueous and ether layers were separated and the aqueous layer washed with ether ($2 \times 150 \mathrm{~cm}^{3}$). The ether layer and washes were combined, washed with water ($3 \times 150 \mathrm{~cm}^{3}$), then 10% aqueous potassium carbonate ($4 \times 150 \mathrm{~cm}^{3}$) and finally saturated aqueous sodium chloride $\left(2 \times 150 \mathrm{~cm}^{3}\right)$. The ether layer was dried and the ether removed on a rotary evaporator at atmospheric pressure, water bath temperature $40^{\circ} \mathrm{C}$. The last traces of ether were removed by distillation under reduced pressure. The remaining yellow liquid was distilled using Kugelrohr apparatus to give a pale yellow liquid.
$\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.03$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}-$ $\left.\mathrm{C}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 6.37\left(1 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}-\mathrm{C}=\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right)$.

This is a literature compound. ${ }^{103}$
(1R, 2S, 4R, 7R, 9S,)-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.4.0.0 ${ }^{2}, 7$]tetradec-10-en-12-one

To a cooled solution of the ketone $118\left(2.9 \mathrm{~cm}^{3}, 17.27 \mathrm{mmol}\right)$ in dry THF ($20.0 \mathrm{~cm}^{3}$) was added sodium hexamethyl disilazide ($17.27 \mathrm{~cm}^{3}, 17.27 \mathrm{mmol}$) dropwise and the reaction stirred at $0^{\circ} \mathrm{C}$ under nitrogen for 1 h . 3-trimethylsilyl-3-buten-2-one ($\mathbf{3 . 4 4} \mathrm{g}, 24.18 \mathrm{mmol}$) was then added dropwise and the solution allowed to warm to room temperature and stirred for a further 1 h under nitrogen. The mixture was poured into water $\left(250 \mathrm{~cm}^{3}\right)$ and extracted into ether $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. Each ether extract was washed with saturated aqueous sodium chloride ($75.0 \mathrm{~cm}^{3}$), then the ether extracts combined, dried and evaporated to dryness to give a deep yellow oil (5.8 g), which was used without any further purification in the next step.
A solution of the intermediate in methanol ($96 \mathrm{~cm}^{3}$) containing 4% solution potassium hydroxide ($11.5 \mathrm{~cm}^{3}, 8.12 \mathrm{mmol}$) was heated at $80^{\circ} \mathrm{C}$ for 2 h . The methanol was removed under reduced pressure, the residue dissolved in ether $\left(200 \mathrm{~cm}^{3}\right)$,washed with saturated aqueous sodium chloride ($2 \times 100 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (4:1) as eluent yielded the enone 119 as an off-white foam ($3.86 \mathrm{~g}, 68 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-\mathrm{CH}_{3}\right), 1.88(1 \mathrm{H}, \mathrm{br}$ dt, J 5.0, 14.1, 14a-H), 2.26 (1 H , ddd, J, 2.6, 5.0, 13.5, 14b-H), 2.45 (1 H , dddd, J 0.7 , $2.5,5.0,17.6,13 \mathrm{a}-\mathrm{H}), 2.56(1 \mathrm{H}$, ddd, J 5.0, 14.6, 17.6, 13b-H), 3.38-3.41 (1 H , obscured d, $2-\mathrm{H}, 3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.72(1 \mathrm{H}, \mathrm{t}, J 10.2,6 \mathrm{a}-\mathrm{H}), 4.20(1 \mathrm{H}, \mathrm{dt}, J 5.2,9.7,7-$ H), $4.35(1 \mathrm{H}, \mathrm{dd}, J 5.2,10.2,6 \mathrm{~b}-\mathrm{H}), 4.89(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.87(1 \mathrm{H}, \mathrm{s}$, 11-H), $7.33-7.49(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.6\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 33.5\left(\mathrm{CH}_{2}\right.$, $\mathrm{C} 14), 34.6\left(\mathrm{CH}_{2}, 13\right), 37.8(\mathrm{C}, \mathrm{C}-1), 55.2\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 59.7(\mathrm{CH}, \mathrm{C} 7), 69.1\left(\mathrm{CH}_{2}\right.$,

C6), 85.3 (CH, C2), 10.4 (CH, C4 and C9), $126.0(\mathrm{CH}, \mathrm{Ph}), 127.2(\mathrm{CH}, \mathrm{Ph}), 128.0$ (CH, Ph), 128.9 (CH, C11), 137.3 (C, Ph), 158.0 (C, C10), 198.6 (C, C12).

This is a literature compound. ${ }^{1 a}$
(1R, 2S, 4R, 7R, 9S, $12 R$)-12-hydroxy-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo [8.4.0.0 ${ }^{2}, 7$]tetradec-10-ene

A solution of $119(3.94 \mathrm{~g}, 11.92 \mathrm{mmol})$ in dry THF $\left(58.0 \mathrm{~cm}^{3}\right)$ was cooled to $-78{ }^{\circ} \mathrm{C}$ under nitrogen. To this solution was added L-Selectride ${ }^{(8)}$ (1 M in THF, $11.92 \mathrm{~cm}^{3}, 11.92 \mathrm{mmol}$) and the reaction was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction was allowed to warm to room temperature, then water $\left(70.0 \mathrm{~cm}^{3}\right)$ was added and the reaction stirred at room temperature for 1 h . The reaction was extracted with diethyl ether ($2 \times 200 \mathrm{~cm}^{3}$) and each extract washed with saturated aqueous soldium chloride $\left(100 \mathrm{~cm}^{3}\right)$. The combined ether extracts were dried and concentrated under reduced pressure to give a yellow oil. Chromatography on silica gel with petroleum ether : ethyl acetate ($60: 40$) as eluent yielded the diene 120 as a white foam ($2.96 \mathrm{~g}, 75 \%$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-\mathrm{CH}_{3}\right)$ overlapping with $1.43-1.52(1 \mathrm{H}, \mathrm{m})$ overlapping with $1.56(1 \mathrm{H}, \mathrm{tdd}, J 14.3,9.5,2.5)$, $1.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.89-1.97(1 \mathrm{H}, \mathrm{m}), 2.01-2.09(1 \mathrm{H}, \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{d}, J 9.5,2-\mathrm{H})$, $3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.68(1 \mathrm{H}, \mathrm{t}, J 10.2,6 \mathrm{ax}-\mathrm{H}), 4.12(1 \mathrm{H}, \mathrm{dt}, J 5.0,9.7,7-\mathrm{H}), 4.23$ $(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 5.0,12-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 5.0,10.2,6 \mathrm{eq}-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.51(1 \mathrm{H}$, $\mathrm{s}, 4-\mathrm{H}), 5.72(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 7.31-7.49(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 18.9\left(\mathrm{CH}_{3}, \mathrm{C} 1-\right.$ $\mathrm{Me}), 28.2\left(\mathrm{CH}_{2}, \mathrm{C} 14\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right), 37.3(\mathrm{C}, \mathrm{C} 1), 54.9\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 60.4(\mathrm{CH}$, C7), 67.4 ($\mathrm{CH}, \mathrm{C} 2$), $69.6\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 86.7(\mathrm{CH}, \mathrm{C} 12), 101.5(\mathrm{CH}, \mathrm{C} 9), 103.3(\mathrm{CH}, \mathrm{C} 4)$, 126.1 (CH, Ph), 128.1 (CH, Ph), 128.9 (CH, Ph), 131.7 (CH), 137.8 (C), 139.3 (C).

This is a literature compound and method. ${ }^{\text {la }}$
(1R, $2 S, 4 R, 7 R, 9 S, 12 R$)-12[(Bromomethyl)dimethylsiloxy]9-methoxy-1-methyl-4-phenyl-3,5,8-trioxatricyclo [8.4.0.0 ${ }^{2}, 7$]tetradec-10-ene

To a solution of $120(5.37 \mathrm{~g}, 16.14 \mathrm{mmol})$ in dry dichloromethane $\left(67.0 \mathrm{~cm}^{3}\right)$ and triethylamine ($4.1 \mathrm{~cm}^{3}, 29.04 \mathrm{mmol}$) was added (bromomethyl)chlorodimethylsilane (2.4 $\mathrm{cm}^{3}, 17.76 \mathrm{mmol}$) over 5 minutes dropwise. The reaction was stirred under nitrogen at room temperature for 2.5 h . The reaction was poured into water ($150 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(2 \times 75.0 \mathrm{~cm}^{3}\right.$) the combined organic layers were washed with saturated aqueous sodium chloride solution, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (60:40) as eluent yielded the silyl bromide 121 as a pale yellow oil $(7.91 \mathrm{~g}, 100 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.35\left(6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 1.46(3 \mathrm{H}, \mathrm{s}$, C1-CH3) overlapping with $1.48(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 13 \mathrm{a}-\mathrm{H}), 1.74(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 13 \mathrm{~b}-\mathrm{H}), 1.97(2 \mathrm{H}, \mathrm{br}$ $\mathrm{m}, 14-\mathrm{H}), 2.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.30(1 \mathrm{H}, \mathrm{d}, J 10.00,2-\mathrm{H}), 3.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72$ ($1 \mathrm{H}, \mathrm{t}, J 10.1,6 \mathrm{ax}-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{dt}, J 5.1,10.1,7-\mathrm{H}), 4.35$ ($1 \mathrm{H}, \mathrm{dd}, J 5.1,10.1,6 \mathrm{eq}-\mathrm{H})$ overlapping with $4.45(1 \mathrm{H}$, ddd, $J 3.5,8.1,9.3,12-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{s}, 9-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{s}, 4-$ $\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 11-\mathrm{H}), 7.40-7.60(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-2.42(\mathrm{CH} 3$, $\left.\mathrm{SiMe}_{2}\right), 16.2\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 18.9\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Br}\right), 28.13\left(\mathrm{CH}_{2}, \mathrm{Cl} 4\right), 34.4\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right)$, $37.2(\mathrm{C}, \mathrm{C} 1), 54.9\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 60.3(\mathrm{CH}, \mathrm{C} 7), 68.6(\mathrm{CH}, \mathrm{C} 2), 69.6\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 86.3$ (CH, C12), 101.5 (CH, C9), 103.3 (CH, C4), 126.1 (CH, Ph), 128.1 (CH, Ph), 128.8 (CH, Ph), 131.9 (CH), 137.8 (C), 138.8 (C).

This is a literature compound and method. ${ }^{57}$
(1R, 2S, 4R, 7 R, 9S, 10 , $11 R, 12 R$)-11-Hydroxymethyl-9-methoxy-1-methyi-4-phenyl-3,5,8-trioxatricyclo [8.4.0.0 $\mathbf{0}^{2,7}$]tetradecan-12-ol

To a solution of 121 ($4.33 \mathrm{~g}, 8.95 \mathrm{mmol}$) in dry tbutanol ($120 \mathrm{~cm}^{3}$) was added sodium cyanoborohydride ($1.41 \mathrm{~g}, 22.37 \mathrm{mmol}$) then tribuyltin chloride ($0.24 \mathrm{~cm}^{3}, 009 \mathrm{mmol}$) and finally AIBN ($0.15 \mathrm{~g}, 0.90 \mathrm{mmol}$). The reaction mixture was then heated under reflux (90 ${ }^{\circ} \mathrm{C}$) for 4 h . The reaction was cooled to room temperature and poured into water ($200 \mathrm{~cm}^{3}$), the product extracted into diethyl ether ($2 \times 300 \mathrm{~cm}^{3}$), the combined ether layers were washed with water ($2 \times 100 \mathrm{~cm}^{3}$), dried and evaporated to dryness. The resulting white solid was used directly in the next step without further purification.

To a solution of the intermediate white solid ($3.45 \mathrm{~g}, 8.53 \mathrm{mmol}$) in THF/methanol was added sodium carbonate ($1.08 \mathrm{~g}, 10.23 \mathrm{mmol}$) followed by the dropwise addition of hydrogen peroxide ($30 \%, \mathrm{w} / \mathrm{v} .4 .8 \mathrm{~cm}^{3}, 42.64 \mathrm{mmol}$). The reaction was heated under reflux for 4 h then cooled to room temperature and concentrated under reducted pressure. The resulting residue was poured into saturated aqueous sodium chloride $\left(250 \mathrm{~cm}^{3}\right)$ and the product extracted with ethyl acetate ($3 \times 75.0 \mathrm{~cm}^{3}$). The ethyl acetate layer was dried and evaporated to dryness to give a white solid. Chromatography on silica gel with ethyl acetate as the eluent yielded the diol 123 as a waxy solid $\left(2.26 \mathrm{~g}, 69 \%\right.$ over two steps); $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.50(1 \mathrm{H}$, br $\mathrm{t}, J 10.1,5.1,14 \mathrm{a}-\mathrm{H})$ overlapping with $1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{CH}_{3}\right)$, $1.69(3 \mathrm{H}, \mathrm{br} \mathrm{m}, 13 \mathrm{a}, \mathrm{b}-\mathrm{H}$ and $10-\mathrm{H}), 1.87(1 \mathrm{H}, \mathrm{dt}, J 6.7,13.3,14 \mathrm{~b}-\mathrm{H}), 2.31(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, $11-\mathrm{H}), 3.15(1 \mathrm{H}, \mathrm{d}, J 9.5,2-\mathrm{H}), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.65(1 \mathrm{H}, \mathrm{t}, J$ $10.0,6 \mathrm{ax}-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 12-\mathrm{H}), 3.95(1 \mathrm{H}, \mathrm{dt}, J 5.2,10.0,7-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ 9.8, CHHOH), $4.20(1 \mathrm{H}, \mathrm{dd}, J 5.2,10.0,6 \mathrm{eq}-\mathrm{H})$ overlapping with $4.19(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\mathrm{CH} H \mathrm{OH}), 4.60(1 \mathrm{H}, \mathrm{d}, J 4.5,9-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 7.30-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}(75$

MHz ; $\left.\mathrm{CDCl}_{3}\right) 15.6\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 26.7\left(\mathrm{CH}_{2}, \mathrm{Cl} 4\right), 35.7(\mathrm{C}, \mathrm{C} 1), 36.8\left(\mathrm{CH}_{2}, \mathrm{Cl} 3\right)$, $44.9(\mathrm{CH}, \mathrm{C} 11), 47.75(\mathrm{CH}, 10), 55.1\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 60.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OH}\right), 60.3,(\mathrm{CH}$, C7), 69.5 ($\left.\mathrm{CH}_{2}, \mathrm{C} 6\right), 74.57(\mathrm{CH}, \mathrm{C} 2), 87.7$ (CH, C12), 101.3 (CH, C9), 102.6 (CH , C4), 126.1 (CH, Ph), 128.1 (CH, Ph), 128.8 (CH, Ph), 137.8 (C), 138.8 (C).
This is a literature compound and method. ${ }^{57}$
(1R, 2S, 4R, 7R, 9S, $10 R, 11 R, 12 R$)-12-tert-Butyldiphenylsiloxy-11-tert-butyldiphenylsiloxymethyl-9-methoxy-1-methyl-4-phenyl-3,5,8trioxatricyclo[8.4.0.0 ${ }^{2}, 7$]tetradecane

Diol 123 ($2.02 \mathrm{~g}, 5.54 \mathrm{mmol}$), imidazole ($1.51 \mathrm{~g}, 22.15 \mathrm{mmol}$) and 4-(dimethylamino) pyridine ($33.80 \mathrm{mg}, 0.28 \mathrm{mmol}$) were dissolved in dry dichloromethane $\left(13.0 \mathrm{~cm}^{3}\right.$). This solution was cooled in an icebath and ter-butylchlorodiphenylsilane ($4.3 \mathrm{~cm}^{3}, 16.62 \mathrm{mmol}$) added dropwise. The reaction was then stirred at room temperature under nitrogen for 3 days. A small amount of imidazole was added to ensure the reaction was basic then the reaction was quenched by the addition of methanol $\left(10.0 \mathrm{~cm}^{3}\right)$, diluted with dichloromethane ($400 \mathrm{~cm}^{3}$) and this solution washed with water ($200 \mathrm{~cm}^{3}$), dried and concentrated under reduced pressure to give a yellow oil. Chromatography on silica gel with petroleum ether : ethyl acetate (95:5) as eluent yielded the protected diol 251 as a white foam ($1.06 \mathrm{~g}, 67 \%$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97(1 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}), 1.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-\mathrm{CH}_{3}\right), 1.21(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.23$ $(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.39-1.44(1 \mathrm{H}, \mathrm{m}), 1.58-1.69(3 \mathrm{H}, \mathrm{m}), 2.59(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 11-\mathrm{H}), 2.89(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.09(1 \mathrm{H}, \mathrm{d}, J 9.4,2-\mathrm{H}), 3.66(1 \mathrm{H}, \mathrm{t}, J 10.0,6 \mathrm{ax}-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 3.88$ ($1 \mathrm{H}, \mathrm{dt}, J 5.0,9.8,12-\mathrm{H}$), 4.25 ($1 \mathrm{H}, \mathrm{dd}, J 5.0,10.1, \mathrm{CHHOSi}$), 4.34 ($1 \mathrm{H}, \mathrm{dd}, J 3.8,9.8$, CHHOSi), 4.58 ($2 \mathrm{H}, \mathrm{m}, 6 \mathrm{eqH}$ overlapping $9-\mathrm{H}$), 5.49 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 7.38-7.52 ($17 \mathrm{H}, \mathrm{m}$,
$\mathrm{Ph}), 7.84-7.93(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.8\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 19.7\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $19.8\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.8\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 28.2\left(\mathrm{CH}_{2}, \mathrm{Cl} 4\right), 36.4(\mathrm{C}$, $\mathrm{C} 1), 37.4\left(\mathrm{CH}_{2}, \mathrm{C} 13\right), 48.0-48.3(2 \mathrm{xCH}, \mathrm{Cl} 0$ and $\mathrm{Cl1}), 54.9\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 60.5,(\mathrm{CH}$, C7), $61.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 70.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right), 75.6(\mathrm{CH}, \mathrm{C} 2), 88.3(\mathrm{CH}, \mathrm{C} 12), 101.8(\mathrm{CH}$, C9), 103.0 ($\mathrm{CH}, \mathrm{C} 4$), $126.6-136.6$ ($14 \mathrm{xCH}, \mathrm{Ph}$), 138.5 (C).
This is a literature compound. ${ }^{16}$
(1R, 2S, 3R, 5S, 6S)-2-Benzoyloxy-3-bromomethyl-8-tertbutyldiphenylsiloxy-
7-tert-butyldiphenylsiloxymethyl-5-methoxy-1-methyl-4
oxabicyclo[4.4.0]decane

To a solution of $251(1.02 \mathrm{~g}, 1.21 \mathrm{mmol})$ in dry carbon tetrachloride ($35.0 \mathrm{~cm}^{3}$) was added barium carbonate $(1.32 \mathrm{~g}, 6.67 \mathrm{mmol})$ followed by n-bromosuccinimide $(0.26 \mathrm{~g}, 1.45$ mmol). The reaction was then heated at $80^{\circ} \mathrm{C}$ for 3 h . The reaction was cooled to room temperature and the barium carbonate removed by filtration, the residue was washed with dichloromethane $\left(200 \mathrm{~cm}^{3}\right)$, then the organic filtrate washed with water $\left(2 \times 100 \mathrm{~cm}^{3}\right)$, dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (20:1) as eluent yielded the bromo ester 252 as a white foam $(0.85 \mathrm{~g}, 76 \%) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.72-0.91(2 \mathrm{H}, \mathrm{m}), 0.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 1-\mathrm{CH}_{3}\right), 0.96(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 0.97(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu})$, $1.21-1.33(1 \mathrm{H}, \mathrm{m}), 1.33-1.42(1 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.37(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.70(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.53(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{dd}, J 2.5,7.6,10.1,3-\mathrm{H})$, $4.08(1 \mathrm{H}, \mathrm{dd}, J 3.8,9.4, \mathrm{CHHOSi}), 4.34(1 \mathrm{H}, \mathrm{dd}, J 1.9,9.5, \mathrm{CHHOSi}), 4.42(1 \mathrm{H}, \mathrm{d}, J$ $2.8,5-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{d}, J 10.1,2-\mathrm{H}), 7.17-7.49(15 \mathrm{H}, \mathrm{m}), 7.57-7.66(8 \mathrm{H}, \mathrm{m}), 7.81-7.84$ $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.1\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 19.6\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 19.8\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.5$
$\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{tBu}\right), 27.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{tBu}\right), 28.0\left(\mathrm{CH}_{2}, \mathrm{Cl} 0\right), 33.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Br}\right), 37.9$ $\left(\mathrm{CH}_{2}, \mathrm{C} 9\right), 38.0(\mathrm{C}, \mathrm{C} 1), 47.4-47.7(2 \mathrm{CH}, \mathrm{C} 6$ and C 7$), 55.0\left(\mathrm{CH}_{3}, \mathrm{OCH}_{3}\right), 60.9\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 67.8(\mathrm{CH}, \mathrm{C} 3), 74.9(\mathrm{CH}, \mathrm{C} 8), 79.5(\mathrm{CH}, \mathrm{C} 2), 102.4(\mathrm{CH}, \mathrm{C} 5), 127.8-133.9$ ($7 \mathrm{xCH}, \mathrm{Ph}$), 134.7-135.1 ($4 \mathrm{xC}, \mathrm{Ph}$), 136.4 ($3 \mathrm{xCH}, \mathrm{Ph}$), 166.0 (C, CO).
This is a literature compound. ${ }^{1 \mathrm{~b}}$
($1 R, 1$ ' $R, 2$ ' $R, 3^{\prime}$ 'R, $4^{\prime} R$)-1'-Methyl-2'-formyl-3'-tert-butyldiphenylsiloxy-methyl-4'-tert-butyldiphenylsiloxy-1-cyclohexyl-2-propenyl-1-benzoate

Zinc ($14.44 \mathrm{~g}, 0.22 \mathrm{mmol}$) was activated by washing with 2 M aqueous hydrochloric acid ($2 \times 50 \mathrm{~cm}^{3}$), water ($150 \mathrm{~cm}^{3}$), isopropanol $\left(75.0 \mathrm{~cm}^{3}\right.$) and finally ether ($2 \times 100 \mathrm{~cm}^{3}$). To a solution of $252(1.56 \mathrm{~g}, 1.70 \mathrm{mmol})$ in isopropanol water ($78: 8.5 \mathrm{~cm}^{3}$) was added the activated zinc. The reaction was heated under reflux for 3 h then cooled to room temperature, the zinc removed by flitration and washed with ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The ether filtrate was concentrated under reduced pressure, the resulting residue dissolved in ether ($250 \mathrm{~cm}^{3}$), washed with water ($2 \times 75 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : dichloromethane (1:1) as eluent yielded the aldehyde 253 as a white foam ($0.866 \mathrm{~g}, 63 \%$); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.87(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu})$, $1.42-1.53(3 \mathrm{H}, \mathrm{m}), 1.89(2 \mathrm{H}, \mathrm{m}), 2.34\left(1 \mathrm{H}, \mathrm{t}, J 4.4,2^{\prime}-\mathrm{H}\right), 3.46(2 \mathrm{H}$, apparent d, J 6.9, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 4.02\left(1 \mathrm{H}, \mathrm{brs}, 4{ }^{-}-\mathrm{H}\right), 5.08$ ($2 \mathrm{H}, \mathrm{m}, 3_{\text {cis }}, 3_{\text {trans }}-\mathrm{H}$), $5.42-5.67(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, 2-$ H), $7.05-7.51(23 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.89(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 10.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.03, \mathrm{CHO})$; $\delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.6\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 19.7\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 21.0\left(\mathrm{CH}_{3}, \mathrm{Cl}-\mathrm{Me}\right), 26.4\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 27.3$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 27.5\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}-{ }^{-} \mathrm{Bu}\right), 28.7\left(\mathrm{CH}_{2}, \mathrm{C5}\right), 38.5\left(\mathrm{C}, \mathrm{Cl}{ }^{\prime}\right), 44.6\left(\mathrm{CH}, \mathrm{C} 3^{\prime}\right)$, 53.2 ($\mathrm{CH}, \mathrm{C} 2$) $), 64.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 68.5(\mathrm{CH}, \mathrm{C} 4)$), $75.2(\mathrm{CH}, \mathrm{C} 1), 120.9(\mathrm{CH}, \mathrm{C} 3)$,
127.9-130.1 (7xCH, Ph), $130.5(\mathrm{C}, \mathrm{Ph}), 132.4(\mathrm{CH}, \mathrm{Ph}), 133.2(\mathrm{CH}, \mathrm{Ph}), 133.6-134.3$ $(4 \mathrm{xC}, \mathrm{Ph}), 136.0-136.5(4 \times \mathrm{CH}, \mathrm{Ph}), 165.9(\mathrm{C}, \mathrm{CO}), 205.0(\mathrm{CH}, \mathrm{CHO})$.

This is a literature compound. ${ }^{1 b}$
($1 R, 1^{\prime} \cdot R, 2$ ' $R, 3^{\prime}$ ', $4^{\prime} R$)-1'-Methyl-2'-triethylsiloxy-3'-tert-butyldiphenyl-siloxymethyl-4'-tert-butyldiphenylsiloxy-1-cyclohexyl-2-propenyl-1benzoate

To a solution of aldehyde 253 ($310 \mathrm{mg}, 0.38 \mathrm{mmol}$) in isopropanol/methanol ($5.5: 2.2 \mathrm{~cm}^{3}$) was added sodium borohydride ($58 \mathrm{mg}, 1.53 \mathrm{mmol}$). The reaction was then stirred at room temperature overnight. The solvent was removed under reduced pressure, the residue dissolved in dichloromethane ($100 \mathrm{~cm}^{3}$), washed with water $\left(50 \mathrm{~cm}^{3}\right)$, dried and concentrated under reduced pressure to give a white solid which was used directly in the next reaction.

To a solution of the crude alcohol ($91 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry dichloromethane ($1.1 \mathrm{~cm}^{3}$) was added imidazole ($1.91 \mathrm{mg}, 0.28 \mathrm{mmol}$) followed by chlorotriethylsilane $\left(0.04 \mathrm{~cm}^{3} 0.23\right.$ $\mathrm{mmol})$. The reaction was then stirred overnight at room temperature under nitrogen. A small amount of imidazole was added to make sure the reaction was basic, then diluted with dichloromethane ($100 \mathrm{~cm}^{3}$). This solution was washed with water ($50 \mathrm{~cm}^{3}$), dried and concentrated under reduced pressure to give an oil. Chromatography on silica gel with petroleum ether : diethyl ether ($30: 1$) as eluent yielded 254 as a foam ($85 \mathrm{mg}, 82 \%$); $\delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.45\left(6 \mathrm{H}, \mathrm{q}, J 8.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.83\left(9 \mathrm{H}, \mathrm{t}, J 8.1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.92(9 \mathrm{H}$, $\left.\mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.96\left(10 \mathrm{H}, \mathrm{s}, \mathrm{tBu}\right.$ and 6 ' -H), $1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}{ }^{\prime}-\mathrm{CH}_{3}\right), 1.31-1.36(1 \mathrm{H}$, br.m), 1.42$1.51(1 \mathrm{H}, \mathrm{br} . \mathrm{m}), 1.69-1.71(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.84(1 \mathrm{H}$, br s $), 1.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.60(1 \mathrm{H}, \mathrm{dd}, J$
5.5, 10.0), 3.68-3.90 ($3 \mathrm{H}, \mathrm{br} \mathrm{m}$), $4.04\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 5.15(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $3-\mathrm{H})$, 5.77-5.93 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}$), 7.25-7.50 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.58-7.67 ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.94 (2 H , d with fine splitting, $J 7.1, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Si}\right), 7.0\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 19.1\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 19.3\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 20.7\left(\mathrm{CH}_{3}, \mathrm{C} 1-\mathrm{Me}\right), 25.0\left(\mathrm{CH}_{2}, \mathrm{C} 6\right.$) $), 26.8$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 27.0\left(\mathrm{CH}_{3}, \mathrm{CH}_{3}{ }^{-} \mathrm{Bu}\right), 28.3\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right), 39.1\left(\mathrm{C}, \mathrm{Cl}^{\prime}\right), 42.4\left(\mathrm{CH}, \mathrm{C} 3{ }^{\prime}\right.$ or C^{\prime}), $43.8\left(\mathrm{CH}, \mathrm{C} 2\right.$ ' or $\left.\mathrm{C}^{\prime}\right)$, $61.0\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}{ }^{\prime}-\mathrm{CH}_{2} \mathrm{OSi}\right), 64.3\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}-\mathrm{CH}_{2} \mathrm{OSi}\right)$, 67.7 (CH, C4'), 76.1 ($\mathrm{CH}, \mathrm{C} 1$), 119.7 ($\mathrm{CH}_{2}, \mathrm{C} 3$), 127.3-129.5 ($6 \mathrm{xCH}, \mathrm{Ph}$), 130.1 (C, $\mathrm{Ph}), 132.7$ (CH, Ph or C2), 133.0 (CH, Ph or C2), 133.2-134.1 (3xC, Ph), 135.4-135.9 ($3 \mathrm{xCH}, \mathrm{Ph}$), 165.6 (C, CO).

This is a literature compound. ${ }^{1 \mathrm{~b}}$
($3 R, 1$ ' $R, 2$ ' $R, 3$ ' $R, 4$ ' R)-4'-tert-Butyldiphenylsiloxy-3'-tert-butyldiphenyl-siloxymethyl-3-hydroxy-1'-methyl-2'-triethylsiloxymethyl-3-cyclohexylpropene

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right.$, dry ice/acetone) solution of 254 ($260 \mathrm{mg}, 0.28 \mathrm{mmol}$) in dry dichloromethane ($15.0 \mathrm{~cm}^{3}$) was added DIBAL-H (1.5 M solution in toluene, $0.56 \mathrm{~cm}^{3}$, $0.84 \mathrm{mmol})$. This reaction was stirred under nitrogen at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with isopropanol ($5.0 \mathrm{~cm}^{3}$) and a saturated sodium sulphate solution ($5 \mathrm{~cm}^{3}$) and the reaction solution allowed to warm to room temperature. The gelatinous solid was filtered through celite, washed with dichloromethane ($2 \times 25 \mathrm{~cm}^{3}$), the combined organic layers washed with water ($2 \times 25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether (97.5:2.5) as eluent yielded the alcohol 275 as a
foam (141 mg, 61\%); $\mathrm{R}_{\mathrm{f}} .0 .33$, petroleum ether : diethyl ether (4:1); $[\alpha] \mathrm{D}^{30} 8.8^{\circ}$ (c 2.82, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3430 \mathrm{br} \mathrm{m}, 2940 \mathrm{~s}, 1470 \mathrm{~m}, 1430 \mathrm{~s}, 1100 \mathrm{~s}, 840 \mathrm{~m} ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.45\left(6 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}^{\prime}-\mathrm{CH}_{3}\right), 0.81(9 \mathrm{H}, \mathrm{t}$ overlapping, $\left.J 7.9, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.86\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.00\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.15-1.40(4 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 1.72\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 2.09(1 \mathrm{H}$, br s, OH$), 3.67(1 \mathrm{H}$, apparent d, $J 11.3,3-\mathrm{H}), 3.83$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH} \mathrm{CHSi}_{2}\right), 4.06\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}, \mathrm{d}, J 10.1,1-\mathrm{H})$ overlapping 5.05 ($\left.1 \mathrm{H}, \mathrm{d}, J 17.4,1_{\text {trans }}-\mathrm{H}\right), 5.71(1 \mathrm{H}$, ddd, $J 6.8,10.3,17.3,2-\mathrm{H}), 7.18-7.56(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 5.7\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 17.2\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\right.$ $\mathrm{Me}), 18.1\left(2 \mathrm{xC},{ }^{\mathrm{t}} \mathrm{Bu}\right), 26.0\left(\mathrm{CH}_{2}\right.$ and $2 \mathrm{xCH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}$ and C^{\prime} or $\left.\mathrm{C} 5^{\prime}\right), 28.7\left(\mathrm{CH}_{2}, \mathrm{C} 6^{\prime}\right.$ or C^{\prime}), $38.9\left(\mathrm{C}, \mathrm{Cl}^{\prime}\right), 44.3\left(\mathrm{CH}, \mathrm{C} 3\right.$ ' or C 2 '), $62.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 64.1\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right)$, $76.2(\mathrm{CH}, \mathrm{C} 4$ ', or C 3$), 115.6\left(\mathrm{CH}_{2}, \mathrm{Cl}\right), 126.4(\mathrm{CH}, \mathrm{Ph}), 126.5(\mathrm{CH}, \mathrm{Ph}), 126.5(\mathrm{CH}$, Ph), 128.5 (CH, Ph), 128.6 (CH, Ph), 132.6 (C, Ph), 133.0 (C, Ph), 133.3 (C, Ph), 134.6 (CH, Ph), 134.7 (CH, Ph), 135.9 (C, Ph); m/z (EI) $763\left(\mathrm{M}^{+}{ }^{+} \mathrm{t} \mathrm{Bu}, 1.1 \%\right) 319$ (3) 199 (100) (Found: $\mathrm{M}^{+}-\mathrm{tBu}, 763.4028 \mathrm{C}_{47} \mathrm{H}_{67} \mathrm{O}_{3} \mathrm{Si}_{3}$ requires 763.4399).
(3R, $1^{\prime} R, 2^{\prime} R, 3^{\prime} R, 4^{\prime} R$)-4'-tert-Butyldiphenylsiloxy-3'-tert-butyldiphenyl-siloxymethyl-1'-methyl-3-benzyloxy-2'-triethylsiloxymethyl-3-cyclohexylpropene

A solution of the alcohol 275 ($141 \mathrm{mg}, 0.17 \mathrm{mmol}$) in THF ($5.0 \mathrm{~cm}^{3}$) was cooled to $0^{\circ} \mathrm{C}$ with stirring. Sodium hydride ($5.0 \mathrm{mg}, 80 \%$ dispersion in mineral oil, 0.12 mmol) was added in portions, and the solution allowed to stir for 1 h . Benzyl bromide ($44 \mathrm{mg}, 0.30$ mmol) was then added dropwise and the solution allowed to stir at $40^{\circ} \mathrm{C}$ overnight. The solution was then cooled in ice and ethanol ($5 \mathrm{~cm}^{3}$) added, to destroy the excess sodium hydride, and then poured into iced water. The aqueous layer was extracted with diethyl ether ($2 \times 10 \mathrm{~cm}^{3}$) and the combined organic layers washed with brine ($2 \times 10 \mathrm{~cm}^{3}$) dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : diethyl ether ($98: 2$) as the eluent yielded 276 as a colourless oil ($131 \mathrm{mg}, 85 \%$); $\mathrm{R}_{\mathrm{f} .} 0.25$, petroleum ether : diethyl ether (98:2); $[\alpha]^{20}-20.6^{\circ}$ (c 2.0, CHCl_{3}); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2920 \mathrm{~s}, 1590 \mathrm{w}, 1450$ $\mathrm{w}, 1425 \mathrm{~m}, 1100 \mathrm{~s}, 840 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.42\left(6 \mathrm{H}, \mathrm{q}, J 8.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.80$ ($\left.9 \mathrm{H}, \mathrm{t}, J 8.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}{ }^{-}-\mathrm{CH}_{3}\right), 0.96\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $1.05-1.30(4 \mathrm{H}, \mathrm{m}), 1.40-1.70(2 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 4.1,9.43$, CHHOSi), $3.72(1 \mathrm{H}$, dd obscured, J 4.1, CHHOSi) overlaping 3.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}$), $3.88(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7.6,4$ '$\mathrm{H}), 4.00(1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{C} H \mathrm{HPh}), 4.43(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{CH} H \mathrm{Ph})$, 4.88 ($1 \mathrm{H}, \mathrm{dd}, J 1.6,17.3,1-\mathrm{H}_{\text {trans }}$), 5.13 (1 H, dd, $J 1.6,10.1,1_{\text {cis }}-\mathrm{H}$), 5.62 (1 H, ddd, J $1.3,10.1,17.3,2-\mathrm{H}), 7.14-7.99(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.0\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 7.4\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 19.7\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 19.8\left(\mathrm{C},{ }^{\mathrm{t} B u}\right), 20.8\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right)$, $25.5\left(\mathbf{C H}_{2}, \mathrm{C}^{\prime}\right.$ ' or C 5 '), $27.4\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.6\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 29.0\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right.$ ' or C 5 '), 40.6 (C, C1'), 43.4 ($\mathrm{CH}, \mathrm{C} 2$ '), 44.9 ($\mathrm{CH}, \mathrm{C} 3$ '), $61.9\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 65.3\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right)$,
$68.9(\mathrm{CH}, \mathrm{C} 4)$), $82.3(\mathrm{CH}, \mathrm{C} 3), 119.6\left(\mathrm{CH}_{2}, \mathrm{C} 1\right), 127.6-128.6(7 \mathrm{xCH}, \mathrm{Ph}), 129.9(\mathrm{CH}$, Ph or C 2$), 129.9(\mathrm{CH}, \mathrm{Ph}$ or C 2$), 134.2-135.0(4 \mathrm{xC}, \mathrm{Ph}), 135.9-136.6(5 \mathrm{xCH}, \mathrm{Ph})$, 139.7 (C, Ph).
($3 R, 1$ ' $R, 2$ ' $R, 3^{\prime}$ ', 4^{\prime} ' R)-4'-tert-Butyldiphenylsiloxy- $\mathbf{3 '}^{\prime}$-tert-butyldiphenyl-siloxymethyl-1'-methyl-3-benzyloxy-2'-triethylsiloxymethyl-3-cyclohexyl-propan-1-ol

276

277

To a solution of $276(131 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF $\left(1.0 \mathrm{~cm}^{3}\right)$ was added 9^{\prime} BBN $\left(1.44 \mathrm{~cm}^{3}\right.$, 0.72 mmol) dropwise with cooling. The resulting solution was warmed to $40^{\circ} \mathrm{C}$ and held at this temperature for 2 h with stirring. The reaction was quenched (care) by the addition of sodium hydroxide ($3.0 \mathrm{~cm}^{3}, 6 \mathrm{~N}$ solution) followed by hydrogen peroxide $\left(3.0 \mathrm{~cm}^{3}, 20 \%\right.$ w / v solution in water) and allowed to stir overnight. The resulting solution was diluted with diethyl ether ($15 \mathrm{~cm}^{3}$), washed with brine ($2 \times 10 \mathrm{~cm}^{3}$), the combined organic layers were dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate ($95: 5$) as the eluent yielded 277 as a colourless oil ($80 \mathrm{mg}, 60 \%$); Rf: 0.30 , petroleum ether : ethyl acetate (95:5); $[\alpha]^{20}-15.5^{\circ}$ (c 2.08, CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2940$ $\mathrm{m}, 1460 \mathrm{w}, 1425 \mathrm{~m}, 1110 \mathrm{~m}, 850 \mathrm{w} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.43(6 \mathrm{H}, \mathrm{q}, J 8.1$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.79\left(9 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.89(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu})$ overlapping $0.89(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Cl}^{\prime}-\mathrm{CH}_{3}\right), 0.94(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.22-1.35(2 \mathrm{H}, \mathrm{m}), 1.40-1.62(6 \mathrm{H}, \mathrm{m}), 3.59(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2} \mathrm{OSi}\right), 3.78\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime} \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.97(1 \mathrm{H}$, br s, $3-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{d}, J 11.3$, $\mathrm{C} H \mathrm{HPh}$), 4.46 ($1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CH} H \mathrm{Ph}$), $7.10-7.54(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $5.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 7.4\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 19.7\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 19.8(\mathrm{C}, \mathrm{Bu}), 20.6\left(\mathrm{CH}_{3}\right.$,
$\left.\mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right), 26.1\left(\mathrm{CH}_{2}, \mathrm{C} 6\right.$ ' or C 5 '), $27.4\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.6\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 29.5\left(\mathrm{CH}_{2}, \mathrm{C} 6\right.$ ' or C5'), 33.3 ($\mathrm{CH}_{2}, \mathrm{C}-2$), 41.7 (C, C1'), 43.5 ($\mathrm{CH}, \mathrm{C} 2$ ' or C 3 '), $45.0(\mathrm{CH}, \mathrm{C} 2$ ' or C 3 '), $61.5\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 61.8\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 65.3(\mathrm{CH}, \mathrm{C} 1), 69.4(\mathrm{CH}, \mathrm{C} 4), 75.0\left(\mathrm{CH}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Ph}$), 78.8 ($\mathrm{CH}, \mathrm{C} 3$), $127.6-130.0(8 \mathrm{xCH}, \mathrm{Ph}), 134.0-134.8$ ($4 \mathrm{xC}, \mathrm{Ph}$), 136.0-136.6 ($4 \mathrm{xCH}, \mathrm{Ph}$), 139.3 (C, Ph).
($3 R, 1$ ' $R, 2$ ' $R, 3^{\prime}$ ' $R, 4$ ' R)-4'-tert-Butyldiphenylsiloxy-3'-tert-butyldiphenyl-siloxymethyl-1'-methyl-3-benzyloxy-2'-triethylsiloxymethyl-3-cyclohexylpropanal

To a stirred solution of oxalyl chloride ($0.26 \mathrm{~cm}^{3}, 3.00 \mathrm{mmol}$) in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added dimethyl sulphoxide $\left(0.43 \mathrm{~cm}^{3}, 6.00 \mathrm{mmol}\right)$ in dichloromethane (1.0 cm^{3}) dropwise under an atmosphere of nitrogen. After allowing the solution to stir for 0.25 h a solution of the alcohol $277(2.48 \mathrm{~g}, 2.00 \mathrm{mmol})$ in dichloromethane ($5.0 \mathrm{~cm}^{3}$) was added dropwise and the solution allowed to stir for 1 h . Triethylamine $\left(0.84 \mathrm{~cm}^{3}, 6.00\right.$ mmol) was then added and the solution allowed to warm to room temperature. The reaction was diluted with diethyl ether ($50 \mathrm{~cm}^{3}$) and the combined organic layers washed with brine ($2 \times 50 \mathrm{~cm}^{3}$) and water ($50 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (97.5:2.5) as the eluent yielded 278 as a colourless oil ($1.85 \mathrm{~g}, 75 \%$); Rf. 0.30 , petroleum ether : ethyl acetate ($97.5: 2.5$); $[\alpha] D^{25}-17.6^{\circ}$ (c $1.12, \mathrm{CHCl}_{3}$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3075 \mathrm{~m}, 2940 \mathrm{~ms}, 1725 \mathrm{~s}, 1590 \mathrm{w}, 1470 \mathrm{~s}, 1100 \mathrm{~s}, 820 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.56\left(6 \mathrm{H}, \mathrm{q}, J 8.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.93\left(9 \mathrm{H}, \mathrm{t}, J 8.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right)$, $1.01(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}^{\prime}-\mathrm{CH}_{3}\right), 1.06\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.30-1.45(2 \mathrm{H}, \mathrm{m}), 1.55-$
$1.80(4 \mathrm{H}, \mathrm{m}), 2.62(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 2-\mathrm{HH}), 3.71(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{H}), 3.81-4.01\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2} \mathrm{OSi}\right)$, $4.20(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, J 11.33, \mathrm{CHHPh}), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.33, \mathrm{CH} H \mathrm{Ph}), 7.21-$ $7.66(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.80(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 7.5$ $\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 15.8\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right), 19.7\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 19.8\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 26.0\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right.$ or C 5 '), $27.4\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 27.7\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 29.4\left(\mathrm{CH}_{2}, \mathrm{C} 6\right.$ ' or C 5 '), $41.5\left(\mathrm{C}, \mathrm{Cl}{ }^{\prime}\right), 43.5$ ($\mathrm{CH}, \mathrm{C} 2$ ' or C 3 '), $45.1(\mathrm{CH}, \mathrm{C} 2$ ' or $\mathrm{C} 3 '), 46.3(\mathrm{CH}, \mathrm{C} 2), 65.1\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 66.3$ $\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 69.1(\mathrm{CH}, \mathrm{C} 4)$, $73.9\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 75.2(\mathrm{CH}, \mathrm{C} 3), 127.7-130.1$ ($9 \mathrm{xCH}, \mathrm{Ph}$), 134.0-134.8 (4xC, Ph), 136.0-136.6 (4xCH, Ph), 139.2 (C, Ph), $201.9(\mathrm{CH}$, C1).
($3 R, 5 R, 1^{\prime} R, 2^{\prime} R, 3^{\prime} R, 4^{\prime} R$)-4'-tert-Butyldiphenylsiloxy-3'-tert-butyldiphenylsiloxymethyl-3-hydroxy-2,1'-dimethyl-5-benzyloxy-2'-triethylsiloxymethyl-5-cyclohexyl-pent-1-ene and (3S, 5R, 1 'R, 2^{\prime} 'R, 3^{\prime} 'R, 4^{\prime} 'R)-4'-tert-Butyldiphenylsiloxy-3'-tert-butyldiphenylsiloxymethyl-3-hydroxy-2,1'-dimethyl-5-benzyloxy-2'-triethylsiloxymethyl-5-cyclohexyl-pent-1-ene

2-bromopropene ($242 \mathrm{mg}, 2.00 \mathrm{mmol}$) in dry THF ($5.0 \mathrm{~cm}^{3}$) was added dropwise to magnesium turnings ($53 \mathrm{mg}, 2.20 \mathrm{mmol}$) in dry THF ($1.0 \mathrm{~cm}^{3}$). When the initiation of the reaction was complete a gentle reflux was maintained by the addition of the bromide. The solution was then heated to reflux for 1 h . The freshly prepared Grignard reagent was then added dropwise at $0^{\circ} \mathrm{C}$ to the aldehyde $278(1.94 \mathrm{~g}, 2.00 \mathrm{mmol})$. The reaction was quenched by the addition of water $\left(5 \mathrm{~cm}^{3}\right)$, diluted with diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$, the combined
organic layers washed with brine ($2 \times 15 \mathrm{~cm}^{3}$), water ($25 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate $(90: 10)$ as the eluent yielded 279 as a colourless oil ($1.26 \mathrm{~g}, 65 \%$); $\mathrm{R}_{\mathrm{f}}: 0.40$, petroleum ether : ethyl acetate (90:10); $[\alpha]_{\mathrm{D}}{ }^{21}-10.63^{\circ}\left(c 3.87, \mathrm{CHCl}_{3}\right.$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3430 \mathrm{br} \mathrm{w}, 2940 \mathrm{~s}, 1520 \mathrm{w}$, $1430 \mathrm{~s}, 1110 \mathrm{~s}, 840 \mathrm{~m} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.69\left(6 \mathrm{H}, \mathrm{q}, J 8.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 1.06(9 \mathrm{H}, \mathrm{t}$, $\left.J 8.2, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 1.15(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 1.17\left(12 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ and s, $\left.\mathrm{Cl}^{\prime}-\mathrm{CH}_{3}\right), 1.60-2.00(8 \mathrm{H}$, m) overlapping $1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2}-\mathrm{CH}_{3}\right), 3.92-4.20(6 \mathrm{H}, \mathrm{m}), 4.20-4.37(1 \mathrm{H}, \mathrm{m}), 4.69(1 \mathrm{H}$, $\mathrm{d}, J 11.3, \mathrm{C} H \mathrm{HPh}), 4.84(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CH} H \mathrm{Ph}), 4.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{a}-\mathrm{H}), 5.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 1b-H), 7.32-7.78 ($25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 9.5\left(\mathrm{CH}_{3}\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 21.1\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right), 21.7\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 21.8\left(\mathrm{C}, \mathrm{t}^{\mathrm{Bu}}\right), 22.9\left(\mathrm{CH}_{3}, \mathrm{C} 2-\mathrm{Me}\right), 28.4$ $\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right.$ or $\left.\mathrm{C}^{\prime}\right), 29.5\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 29.6\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 31.7\left(\mathrm{CH}_{2}, \mathrm{C} 6\right.$ ' or C 5 ' $), 38.7$ $\left(\mathrm{CH}_{2}, \mathrm{C} 4\right), 43.7\left(\mathrm{CH}, \mathrm{C} 2\right.$ ' or $\left.\mathrm{C} 3^{\prime}\right), 45.3\left(\mathrm{CH}, \mathrm{C} 2{ }^{\prime}\right.$ or $\left.\mathrm{C} 3^{\prime}\right), 46.8\left(\mathrm{C}, \mathrm{C}^{\prime}\right), 63.8\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 67.4\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 71.4(\mathrm{CH}, \mathrm{C} 4$ ' or C 3$), 75.3(\mathrm{CH}, \mathrm{C} 4$ ' or C 3$), 77.1\left(\mathrm{CH}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 79.7(\mathrm{CH}, \mathrm{C} 5)$, $112.2\left(\mathrm{CH}_{2}, \mathrm{C} 1\right)$, 129.5-132.0 ($9 \mathrm{xCH}, \mathrm{Ph}$), 136.1-136.9 (3 xC , $\mathrm{Ph}), 138.1-138.6$ ($4 \mathrm{xCH}, \mathrm{Ph}$), 141.9 (C, Ph), 151.1 (C, C2),

Minor isomer, R_{f} 0.35, petroleum ether : ethyl acetate ($90: 10$); $[\alpha]_{\mathrm{D}}{ }^{19}-23.53^{\circ}$ (c 3.45, CHCl_{3}); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3460 \mathrm{br} \mathrm{s}, 2910 \mathrm{~m}, 1425 \mathrm{~m}, 1110 \mathrm{w}, 840 \mathrm{w} ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.66\left(6 \mathrm{H}, \mathrm{q}, J 7.9, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 1.04\left(9 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 1.10(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.14\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t} B u}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}^{\prime}-\mathrm{CH}_{3}\right), 1.50-2.00(8 \mathrm{H}, \mathrm{m})$ overlapping $1.74 .(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 3.80-4.28(7 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{CHHPh}), 4.75(1 \mathrm{H}, \mathrm{d}, J 11.0$, CHHPh , 4.86 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{a}-\mathrm{H}$), 5.02 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{~b}-\mathrm{H}$), $7.38-7.69$ ($25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{C}}(62.9$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.7\left(\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right)$, $9.1\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 19.9\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right), 21.4$ $\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 21.5\left(\mathrm{C}, \mathrm{t}^{\mathrm{tBu}}\right), 22.3\left(\mathrm{CH}_{3}, \mathrm{C} 2-\mathrm{Me}\right), 27.8\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right.$ or C 5 '), $29.2\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $29.3\left(\mathrm{CH}_{3},{ }^{\mathrm{t}} \mathrm{Bu}\right), 31.3\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right.$ ' or C 5 '), $38.3\left(\mathrm{CH}_{2}, \mathrm{C} 4\right), 44.0(\mathrm{CH}, \mathrm{C} 2$ ' or C 3 '), 45.3 (CH, C2' or C^{\prime}), 46.4 (C, Cl^{\prime}), $63.4\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 67.0\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 71.0(\mathrm{CH}$, C 4 ' or C 3$), 76.5(\mathrm{CH}, \mathrm{C} 4$ ' or C 3$), 77.1\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 82.2(\mathrm{CH}, \mathrm{C} 5), 113.1\left(\mathrm{CH}_{2}, \mathrm{C} 1\right)$, 129.1-131.7 ($7 \mathrm{xCH}, \mathrm{Ph}$), 135.6-136.5 ($4 \mathrm{xC}, \mathrm{Ph}$), 137.7-138.2 ($4 \mathrm{xCH}, \mathrm{Ph}$), 140.6 (C, Ph), 149.5 (C, C2),
($5 R, 1^{\prime} R, 2$ ' $R, 3$ ' $R, 4^{\prime}$ 'R)-4'-tert-Butyldiphenylsiloxy-3'-tert-butyldiphenyl-siloxymethyl-3-hydroxy-2,1'-dimethyl-5-benzyloxy-2'-triethylsiloxymethyl-5-cyclohexyl-pent-1-en-2-one

To a stirred solution of oxalyl chloride ($0.08 \mathrm{~cm}^{3}, 0.90 \mathrm{mmol}$) in dichloromethane $\left(5.0 \mathrm{~cm}^{3}\right.$) at $-78{ }^{\circ} \mathrm{C}$ was added dimethyl sulphoxide $\left(0.13 \mathrm{~cm}^{3}, 1.79 \mathrm{mmol}\right)$ in dichloromethane (5.0 cm^{3}) dropwise under an atmosphere of nitrogen. After allowing the solution to stir for 0.25 h a solution of the alcohol $279(577 \mathrm{mg}, 0.60 \mathrm{mmol})$ in dichloromethane ($2.0 \mathrm{~cm}^{3}$) was added dropwise and the solution allowed to stir for 1 h . Triethylamine $\left(0.50 \mathrm{~cm}^{3}, 3.58\right.$ mmol) was then added and the solution allowed to warm to room temperature. The reaction was diluted with diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$, the combined organic layers washed with brine ($2 \times 15 \mathrm{~cm}^{3}$), water ($15 \mathrm{~cm}^{3}$), dried and evaporated to dryness. Chromatography on silica gel with petroleum ether : ethyl acetate (95:5) as the eluent yielded 280 as a colourless oil (520 $\mathrm{mg}, 90 \%$); Rf. 0.75 , petroleum ether : ethyl acetate ($90: 10$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2920 \mathrm{~s}, 1680$ $\mathrm{m}, 1470 \mathrm{w}, 1430 \mathrm{~s}, 1110 \mathrm{~s}, 825 \mathrm{w} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.47\left(6 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.9, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right)$, $0.81\left(9 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 0.90(9 \mathrm{H}, \mathrm{s}, \mathrm{tBu}), 0.95\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}{ }^{\prime}-\right.$ CH_{3}), 1.17-1.90($6 \mathrm{H}, \mathrm{m}$) overlapping $1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-\mathrm{CH}_{3}\right), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16.8,4 \mathrm{a}-$ $\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{dd}, J 8.5,16.8,4 \mathrm{~b}-\mathrm{H}), 3.65(2 \mathrm{H}, \mathrm{m}), 3.84-3.91(5 \mathrm{H}, \mathrm{m}), 4.29(1 \mathrm{H}, \mathrm{d}, J$ 11.3, CHHPh), 4.34 ($1 \mathrm{H}, \mathrm{m}$), 4.39 ($1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{CH} H \mathrm{Ph}$), $5.62(1 \mathrm{H}, \mathrm{br}$ s, $1 \mathrm{a}-\mathrm{H}), 5.87$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{~b}-\mathrm{H}), 7.10-7.58(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.5\left(\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right)$, $5.9\left(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Si}\right), 17.7\left(\mathrm{CH}_{3}, \mathrm{Cl}{ }^{\prime}-\mathrm{Me}\right.$ or $\left.\mathrm{C} 2-\mathrm{CH}_{3}\right), 18.1\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right), 18.3\left(\mathrm{C},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $19.4\left(\mathrm{CH}_{3}, \mathrm{C} 2-\mathrm{CH}_{3}\right.$ or $\left.\mathrm{Cl}{ }^{\prime}-\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{2}, \mathrm{C6}{ }^{\prime}\right.$ or C 5 '), $27.9\left(\mathrm{CH}_{3},{ }^{\mathrm{t} B u}\right), 28.0\left(\mathrm{CH}_{3}\right.$, ${ }^{\text {t }} \mathrm{Bu}$), 28.7 ($\mathrm{C}, \mathrm{C1}$ '), $31.0\left(\mathrm{CH}_{2}, \mathrm{C}^{\prime}\right.$ ' or C 5 '), $38.1\left(\mathrm{CH}_{2}, \mathrm{C} 4\right), 41.8(\mathrm{CH}, \mathrm{C} 2$ ' or C 3 '), $43.4\left(\mathrm{CH}, \mathrm{C}^{\prime}\right.$ ' or C 3 '), $60.2\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 63.6\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{OSi}\right), 67.9(\mathrm{CH}, \mathrm{C} 4)$), 72.5
$\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 75.2(\mathrm{CH}, \mathrm{C} 5), 123.9\left(\mathrm{CH}_{2}, \mathrm{C} 1\right), 126.0-128.5(9 \mathrm{xCH}, \mathrm{Ph}), 132.5-133.3$ ($4 \times \mathrm{xC}, \mathrm{Ph}$), 134.5-135.0 ($4 \mathrm{xCH}, \mathrm{Ph}$), 138.3 (C, Ph), 143.8 (C, C2), 200.0 (C, C3).

Appendix

Table 1. Crystal data and structure refinement for C18H2005

Identification code	1
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{5}$
Formula weight	316.34
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	$\mathrm{P}_{2} \mathrm{Z}_{1}{ }^{2} 1$
Unit cell dimensions	$a=8.3430(10) \dot{A} \quad \alpha=90^{\circ}$
	$b=8.9150(10) \dot{A} \quad \beta=90^{\circ}$
	$c=22.506(3) \dot{A} \quad \gamma=90^{\circ}$
Volume	1673.9(4) A^{3}
Z	4
Density (calculated)	$1.255 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.091 \mathrm{~mm}^{-1}$
F(000)	672
Crystal size	$0.53 \times 0.24 \times 0.12 \mathrm{~mm}$
θ range for data collection	2.60 to 21.98°
Index ranges	$-1 \leq h \leq 8,-1 \leq k \leq 9,-1 \leq \ell \leq 23$
Reflections collected	1695
Independent reflections	$1535\left(R_{\text {int }}=0.0337\right)$
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1535 / 0 / 171
Goodness-of-fit on F^{2}	1.072
Final R indices [$I>2 \sigma(I)]$	$R 1=0.0596, w R 2=0.1240$
R indices (all data)	$\mathrm{R} 1=0.0986, \mathrm{wR2}=0.1469$
Absolute structure parameter	4(4)
Largest diff. peak and hole	0.173 and $-0.262 \mathrm{ef}^{-3}$

Table 2. Atomic coordinates $\left[x 10^{4}\right]$ and equivalent isotropic displacement parameters $\left[A^{2} \times 10^{3}\right]$ for C18H2005 $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y	z	U (eq)
O(1)	2587 (5)	12032 (5)	9257(2)	49 (1)
$0(2)$	-317(5)	9289(5)	8736 (2)	48 (1)
O(3)	2204 (5)	8172 (5)	8728(2)	44(1)
O(4)	4475 (5)	12960(5)	8579(2)	58(1)
O(5)	7767 (6)	8591 (6)	9970(2)	68 (2)
$C(1)$	4233 (9)	12370 (9)	9146(3)	53 (2)
$C(2)$	5188 (8)	10971 (8)	9219(3)	43(2)
C(3)	4699 (8)	9554 (8)	8904 (3)	40(2)
C (4)	2894 (8)	9398(7)	9040(3)	39 (2)
$C(5)$	2010(8)	$10832(7)$	8891(3)	42 (2)
C (6)	241 (8)	10607 (8)	9037(3)	52 (2)
C(7)	6324 (8)	10747 (8)	9621(3)	49 (2)
C(8)	6769 (8)	9150 (10)	9639 (3)	49 (2)
C (9)	5703 (8)	8335 (8)	9206 (3)	53 (2)
C(10)	568 (8)	8036 (7)	8912 (3)	41 (2)
C(11)	5033 (9)	9583 (9)	8231 (3)	59 (2)
C(12)	3741 (11)	14402 (8)	8500 (4)	90 (3)
C(13)	-151(5)	6663 (5)	8647 (2)	43 (2)
C(14)	-29(7)	6359 (6)	8040 (2)	67(2)
C (15)	-792(8)	5104 (7)	$7801(2)$	78 (3)
C(16)	-1678(7)	4154 (5)	8169 (3)	78 (3)
C (17)	-1800(6)	4458 (5)	8775 (3)	72 (3)
C(18)	-1036 (6)	5712 (6)	9014 (2)	55 (2)

Table 3. Bond lengths [A] and angles [${ }^{\circ}$] for C 18 H 2005

$O(1)-C(1)$	1.428 (8)	$O(1)-C(5)$	1.435 (7)
$O(2)-C(10)$	$1.396(7)$	$0(2)-C(6)$	1.433 (8)
$O(3)-C(4)$	1.421 (7)	$0(3)-C(10)$	$1.432(7)$
$0(4)-C(1)$	1.394 (8)	$\bigcirc(4)-C(12)$	1.436 (8)
O(5)-C(8)	1. 222 (8)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.490 (9)
$C(2)-C(7)$	1.326 (9)	$C(2)-C(3)$	1.505 (9)
$C(3)-C(9)$	1.531 (9)	$C(3)-C(11)$	1.541 (8)
$C(3)-C(4)$	1.543 (9)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.513 (8)
C(5)-C(6)	1.526 (9)	$C(7)-C(8)$	1.472 (10)
C(8)-C(9)	1.507 (9)	$\mathrm{C}(10)-\mathrm{C}(13)$	$1.489(7)$
$\mathrm{C}(13)-\mathrm{C}(18)$	1.39	$\mathrm{C}(13)-\mathrm{C}(14)$	1.40
$C(14)-C(15)$	1.40	$C(15)-C(16)$	1.39
$C(16)-C(17)$	1.39	$\mathrm{C}(17)-\mathrm{C}(18)$	1.39
$C(1)-O(1)-C(5)$	$112.2(5)$	$\mathrm{C}(10)-0(2)-C(6)$	110.5(5)
$\mathrm{C}(4)-0(3)-C(10)$	108.0 (5)	$C(1)-O(4)-C(12)$	112.9 (6)
$O(4)-C(1)-O(1)$	112.3 (6)	$\bigcirc(4)-C(1)-C(2)$	109.8 (6)
$\bigcirc(1)-C(1)-C(2)$	108.6 (6)	$C(7)-C(2)-C(1)$	$125.8(7)$
$C(7)-C(2)-C(3)$	112.9 (6)	$C(1)-C(2)-C(3)$	120.4 (6)
$C(2)-C(3)-C(9)$	103.8 (5)	$C(2)-C(3)-C(11)$	113.6 (6)
$C(9)-C(3)-C(11)$	110.4 (6)	$C(2)-C(3)-C(4)$	104.3 (5)
$C(9)-C(3)-C(4)$	112.4 (6)	$C(11)-C(3)-C(4)$	111.9(6)
$O(3)-C(4)-C(5)$	$110.0(5)$	$O(3)-C(4)-C(3)$	111.5(5)
$C(5)-C(4)-C(3)$	$110.8(5)$	$O(1)-C(5)-C(4)$	109.8(5)
$0(1)-C(5)-C(6)$	107.3 (6)	$C(4)-C(5)-C(6)$	108.2(6)
$\bigcirc(2)-C(6)-C(5)$	$108.7(6)$	$C(2)-C(7)-C(8)$	$110.2(7)$
$\bigcirc(5)-C(8)-C(7)$	125.6 (7)	$\bigcirc(5)-C(8)-C(9)$	$126.9(7)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	107.4 (6)	$C(8)-C(9)-C(3)$	105.6(6)
$\bigcirc(2)-C(10)-O(3)$	110.8 (5)	$\bigcirc(2)-C(10)-C(13)$	109.3 (5)
$\bigcirc(3)-C(10)-C(13)$	109.7(5)	$C(18)-C(13)-C(14)$	120.0
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(10)$	118.4(4)	C(14)-C(13)-C(10)	121.5 (4)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.0	$C(16)-C(15)-C(14)$	120.0
C(17)-C(16)-C(15)	120.0	C(16)-C(17)-C(18)	120.0
$C(17)-C(18)-C(13)$	120.0		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left[\mathrm{A}^{2} \times 10^{3}\right.$] for C18H2005 The anisotropic displacement factor exponent takes tise form: $-2 \pi^{2}\left[\left(h a^{*}\right)^{2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	U11	U22	U33	U2 3	U13	U12
$O(1)$	33(3)	46(3)	67 (3)	-16(3)	6 (3)	O(3)
O(2)	27(3)	46 (3)	71 (3)	-4(3)	-8(2)	4(3)
O(3)	31 (3)	47 (3)	$54(3)$	-11(3)	1(2)	-5(3)
O(4)	47(3)	53 (3)	73 (3)	14 (3)	3 (3)	-3(3)
$0(5)$	40(3)	$97(4)$	65 (3)	17(3)	-9(3)	6 (3)
$C(6)$	27(4)	45(5)	84 (5)	-6(5)	2 (4)	-2(4)
$C(7)$	33 (4)	55(5)	59 (5)	-5 (4)	-2(4)	-5 (5)
C(8)	19 (4)	77 (6)	51 (5)	5 (5)	14 (4)	-5 (5)
C(9)	31 (4)	63 (5)	67 (5)	-5 (5)	-4(4)	-4 (4)
$C(10)$	32 (4)	$39(4)$	54 (4)	7 (4)	1(4)	-11(4)
C(11)	33 (4)	77 (6)	65 (5)	-16(5)	7 (4)	-5 (5)
C(12)	91 (7)	60 (6)	120(7)	30 (6)	12 (7)	$9(6)$
C(13)	35 (4)	$39(4)$	56 (5)	-1(4)	-10(4)	$2(4)$
C(14)	86 (6)	$60(5)$	56 (5)	-5 (4)	-12(5)	-5 (6)
C(15)	99 (8)	$71(6)$	65 (6)	-19(5)	-20(6)	-7(6)
C(16)	64 (6)	$60(6)$	111 (8)	-15 (6)	-18(6)	-14(6)
C(17)	57 (6)	54(6)	106 (7)	$2(6)$	19 (6)	$-12(5)$
C(18)	48(5)	45(4)	72 (5)	-5 (5)	10 (4)	-4(5)

Table 5. Hydrogen coordinates ($\quad 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for C18H2005

	\times	y	z	U (eq)
H(1)	4599(9)	13092(9)	9432 (3)	80
H(4)	2752 (8)	9237(7)	9458(3)	80
H(5)	2139 (8)	11076 (7)	8478(3)	80
H(6A)	143 (8)	10476 (8)	9459(3)	80
H(6B)	-374(8)	11467 (8)	8919(3)	80
H(7)	6773 (8)	11515 (8)	9870(3)	80
H(9A)	6331 (8)	7779 (8)	8924 (3)	80
H (9B)	5018 (8)	7657 (8)	9418 (3)	80
H(10)	526 (8)	7956 (7)	9337(3)	80
H(11A)	6160 (9)	9683(9)	8154 (3)	80
H(11B)	4643 (9)	8679 (9)	8050(3)	80
H(11C)	4475 (9)	10430 (9)	8067(3)	80
H(12A)	3915 (11)	14760 (8)	8102 (4)	80
H (12B)	2610(11)	14322 (8)	8573 (4)	80
$\mathrm{H}(12 \mathrm{C})$	4206 (11)	15093 (8)	8778(4)	80
H(14)	580(9)	7012 (8)	7788 (3)	80
H(15)	-708(11)	4894 (10)	7384 (2)	80
H(16)	-2203 (9)	3290 (6)	8004 (4)	80
H(17)	-2409 (8)	3804 (7)	9027(4)	80
H(18)	-1120(9)	5922 (9)	9431(2)	80

[^0]

 OOOR

 n的

: $:$,

 .o.

 नै।

References

12 a) S. Achab, B. C. Das, J. Chem. Soc., Chem. Commun., 1983, 391; b) S. Achab, B. C. Das, J. Chem. Soc., Perkin Trans., 1, 1990, 2863; c) S. Achab, J.-P. Cosson, B. C. Das, J. Chem. Soc., Chem. Commun., 1984, 1040.

13 E. Mezzina, D. Savoia, E. Tagliavini, C. Trombini, A. Umani-Ronchi, J. Chem.
Soc., Perkin Trans., 1, 1989, 683.
a) R. V. Bonnert, P. R. Jenkins, J. Chem. Soc. Chem. Commun., 1987, 6; R. V. Bonnert, M. J. Davies, J. Howarth, P. R. Jenkins, N. J. Lawrence, J. Chem. Soc. Perkin Trans. 1, 1991, 1225. b) A. N. Boa, J. Clark, N. J. Lawrence, P. R. Jenkins, J. Chem. Soc., Chem. Commun., 1993, 151.
S. Hanessian, Total Synthesis of Natural Products: The 'Chiron' Approach, Pergamon Press, New York, 1983.
J. M. Grosheintz, H. O. L. Fischer, J. Am. Chem. Soc., 1948, 7(1, 1476.
R. J. Ferrier, J. Chem. Soc., Perkin Trans. 1., 1979, 1455.
G. Stork, T. Takahashi, L. Kawamoto, T. Suzuki, J. Am. Chem. Soc., 1978, 100 , 8272.
R. J. Ferrier, V. K. Srivastava, Carbohydr. Res., 1977, 99, 1275.
H. Ohrui, H. Kuzuhara, Agric. Biol. Chem., 1980, 44, 907.
R. Tsang, B. Fraser-Reid, J. Chem. Soc., 1985, 50, 4659.
K. Krohn, G. Borner, J. Chem. Soc., 1991, 5©, 6038.
J. E. Baldwin, M. J. Lusch, Tetrahedron, 1982, 38, 2939.
J. P. H. Verheyden, A. C. Richardson, R. S. Bhatt, B. D. Grant, W. Fitch, J. G. Moffatt, Pure Appl. Chem., 1978, 51, 1363.
R. J. Ferrier, S. R. Haines., Carbohydr. Res., 1984, 130, 135.
A. Klemer, M. Kohla, Liebigs Ann. Chem., 1987, 683.
R. P. Elliott, G. W. J. Fleet, L. Pearce, C. Smith, D. J. Watkin, Tetrahedron Lett., 1991, 32, 6227.
a) J. Mann, A. Thomas, J. Chem. Soc., Chem. Commun., 1985, 737; b) M. G. B. Drew, J. Mann, J. Chem. Soc., Perkin Trans. I, 1986, 2279.
J. Mann, A. Thomas, J. Chem. Soc., Perkin Trans., 1, 1986, 2287.
a) M.-I. Lim, V. E. Marquez, Tetrahedron Lett., 1983, 24 4, 4051; b) V. E. Marquez, M.-I. Lim, C. K.-H. Tseng, A. Markovac, M. A. Priest, M. S. Khan, B. Kaskar, J. Org. Chem., 1988, 53, 5709.
a) H.-J. Altenbach, W. Holzapfel, G. Smerat, S. H. Finkler, Tetrahedron Lett., 1985, 2ஏ, 6329; b) R. Huber, A. Vasella, Tetrahedron, 1990, 46, 33.
S. Torii, T. Inokuchi, R. Oi, K. Kondo, T. Kobayashi, J. Org. Chem., 1986, 51, 254.
L. J. El-Naggar, J. L. Beal, J. Nat. Prod., 1980, 43, 649.
M. E. Evans, Carbohydr. Res., 1972, $211,473$.
D. R. Hicks, B. Fraser-Reid, Synthesis, 1974, 203.
J. R. Pougny, P. Sinay, J. Chem. Res. (M), 1982, 186.
N. K. Richtmyer, C. S. Hudson, J. Am. Chem. Soc., 1941, 63, 1727; D. R. Hicks, B. Fraser-Reid, Can. J. Chem., 1975, 53, 2017.
a) I. D. Inch, G. J. Lewis, Carbohydr. Res., 1970, 1 5, 1; b) M. S. Kharash, O. Reinmuth, Grignard Reactions of Nonmetallic Substances, Constable, London, 1954; c) N. G. Gaylord, E. I. Becker, Chem. Rev., 1951, AD, 413.
T. Asano, S. Yokota, O. Mitsonobu, Chem. Lett., 1983, 343.
O. Mitsonobu, Organic Synthesis in Japan Past, Present and Future, Kagaku Dozin Co., Tokyo, 1992, pp 215-226.

A J. Mancuso, S L. Huang, D. Swern, J. Org. Chem., 1978, 43, 2480.
R. J. Ferrier, C.-K. Lee, T. A. Wood, J. Chem. Soc., Chem. Commun., 1991, 690.
D. Pauly, F. Anderson, T. Hudlicky, Org. Synth., 1989, 67, 121-123.
A. J. Wood, P. R. Jenkins, J. Fawcett, D.R. Russell, J. Chem. Soc., Chem. Comтип., 1995, 1567.
Y. Chapleur, J. Chem. Soc., Chem. Commun., 1983, 141.
M. Piplier, M. S. Ermolenko, A. Zampella, A. Olesker, G. Lukacs, Synlett., 1995, 24.
S. Hanessian, N. R. Plessas, J. Org. Chem., 1969, 34, 1035.
A. Vasella, B. Bernet, Helv. Chim. Acta., 1979, © 2, 1990.
A. Windhaus, Ber., 1906, 3 (6, 3752; b) J. Elks, J. Chem. Soc., 1954, 451; c) K. Tsuda, M. Hayashi, Y. Hirata, S. Yamamura, Bull. Chem. Soc. Japan., 1972, 45 , 264.
R. Ferrier, S. Middleton, Chem. Rev., 1983, 2779.
C. S. Wilcox, L. M. Thomasco, J. Org. Chem., 1985, $50,546$.
a) A. L. Beckwith, Tetrahedron, 1981, 37, 3073; b) A. L. Beckwith, J. C. Easton, T. Lawrence, A. K. Serelis, Aust. J. Chem., 1983, 36, 545.
C. S. Wilcox, J. J. Gaudino, J. Am. Chem. Soc., 1986, 1 198, 3102.
J. J. Gaudino, C. S. Wilcox, Carbohydr. Res., 1990, 20 ©, 233.
J. J. C. Grové, C. W. Holzapfel, D. B. G. Williams, Tetrahedron Lett., 1996, 37, 1305.
J. J. C. Grové, C. W. Holzapfel, D. B. G. Williams, TetrahedronLett., 1996, 37, 5817.
a) G. D. Vite, R. Alonso, B. Fraser-Reid, J. Org. Chem., 1989, 5: A, 254. R. Alonso, G. D. Vite, R. E. McDevitt, B. Fraser-Reid, J. Org. Chem., 1992, 57,

573; b) H. Puk, J. K Dickson, B. Fraser-Reid, J. Org. Chem., 1989, 54, 5357; c) R. A. Alonso, C. S. Burgey, B. V. Rao, G. D. Vite, R. Vollerthun, M. A. Zottola, B. Fraser-Reid, J. Am. Chem. Soc., 1993, 115,6666 ; d) A. M. Gomez, J. C. Lopez, B. Fraser-Reid, J. Org. Chem., 1994, 59, 4048; e) A. M. Gomez, J. C Lopez, B. Fraser-Reid, J. Org. Chem., 1995, 60, 3859; f) J. C. Lopez, A. M. Gomez, B. Fraser-Reid, J. Org. Chem., 1995, 60, 3871.
R. Tsang, B. Fraser-Reid, J. Am. Chem. Soc., 1986, 108, 2116. J. K. Dickson, R. Tsang, J. M. Llera, B. Fraser-Reid, J. Org. Chem., 1989, 54, 5350.
H. Hashimoto, K. Furuichi, T. Miwa, J. Chem. Soc., Chem. Commun., 1987, 1002.
K. S. Gröninger, K. F. Jäger, B. Giese, Liebigs Am. Chem., 1987, 731.
G. Stork, M. J. Kahn, J. Am. Chem. Soc., 1985, 107, 500; G. Stork, M. J. Sofia, J. Am. Chem. Soc., 1986, 108, 6826.
H. Nishiyama, T. Kitajima, M. Matsumoto, K. Itoh, J. Org. Chem., 1984, 49, 2298.
K. Tamao, N. Ishida, M. Kumada, J. Org. Chem., 1983, 48, 2120.
G. Stork, R. Mah, Tetrahedron Lett., 1989, 30, 3609.
G. Stork, Bull. Soc. Chem. Fr., 1990, 127, 675.
V. Pedretti, J. M. Mallett, P. Sinaÿ, Carbohydr. Res., 1993, 244, 247.
G. Stork, P. M. Sher, J. Am. Chem. Soc., 1986, 108, 203.
R. V. Bonnert, M. J. Davies, J. Howarth, P. R. Jenkins, J. Chem. Soc., Chem. Commun., 1987, 148; R. V. Bonnert, M. J. Davies, J. Howarth, P. R. Jenkins, N. J Lawrence, Perkin Trans 1., 1992, 27.
J.-L. Luche, J. Am. Chem. Soc., 1978, 100 , 2226; J.-L. Luche, L.-R. Hahn, P. Crabbe, J. Chem. Soc., Chem. Commun., 1978, 601.
S.-H. Chen, S. Huang, G. P. Roth, Tetrahedron Lett., 1995, 3 б, 8933.

60 G. Samaranayake, N. F. Magri, C. Jitrangsri, D. G. I. Kingston, J. Org. Chem., 1991, 56, 5114.

61 M. C. Wani, H. L. Taylor, M. E. Wall, P. E. Coggan, A. T. McPhail, J. Am. Chem. Soc., 1971, 93, 2325.

62 P. B. Schiff, J. Fant, S. B. Horwitz, Nature, 1979, 227, 665; S. B. Horwitz, Trends Pharm. Sci., 1992, 13, 134.

63 J. N. Denis, A. E. Green, D, Guénard, F. Guéritte-Voegelein, L. Mangatal, P. Potier, J. Am. Chem. Soc., 1988, 110, 5917; M. Colin, D. Guénard, F. GuéritteVoegelein, P. Potier, Eur. Pat. Appl. EP 253738A1, 20 Jan., 1988; J.-N. Denis, A. Greene, D. Guénard, and F. Guéritte-Voegelein, Eur. Pat. Appl. EP 336840A1, 5 April, 1989.

64 I. Ojima, I. Habus, M. Zhao, G. I. Georg, L. R. Jayasinghe, J. Org. Chem., 1991, 5 б, 1681.

65 R. A. Holton, Eur. Pat. Appl. EP 400971A1, 30 May, 1990, Chem. Abstr., 114 , P164568q.

66 I. Ojima, C. M. Sun, M. Zucco, Y. H. Park, O. Ducios, S. Kuduk, Tetrahedron. Lett., 1993, 3\&, 4149.

67 F. Guéritte-Voegelein, B. David, D. Guénard, V. Sénilh, P. Potier, Tetrahedron, 1986, 42, 4451; M. Colin, D. Guénard, F. Guéritte-Voegelein, P. Potier, Eur. Pat. Appl. EP 253739A1, 20 Jan., 1988; V. Sénilh, F. Guéritte, D. Guénard, M. Colin, P. Potier, C. R. Acad. Sci. Ser. 2, 1984, 290, 1039.

68 L. Magnatal, M. T. Adeline, D. Guénard, F. Guéritte-Voegelein, P. Potier, Tetrahedron, 1989, 45, 4177.

69 F. Guéritte-Voegelein, D. Guénard, F. Lavelle, M.-T. Le Goff, L. Mangatal, P. Potier, J. Med. Chem., 1991, 3 A, 992.

72 I. Ojima, I. Habus, M. Zucco, Y. H. Park, C. M. Sun, T. Brigaud, Tetrahedron, 1992, 48, 6985; Analogues: G. I. Georg, Z. S. Cheruvaillath, R. H. Himes, M. R. Mejillano, Biorg. Med. Chem. Lett., 1992, 2, 295.

73 K. C. Nicolaou, Z. Yang, J-J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Raulvannon, E. J. Sorensen, Nature, 367, 630.

74 K. Narasaka, S. Shimada, K. Osada, N. Iwasawa, Synthesis, 1991, 1171.

75 K. C. Nicolaou, J.-J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K. Hwang, M. Nakada, P. G. Nantermet, J. Am. Chem, Soc., 1995, 117, 634 .

76 K. C. Nicolaou, J.-J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R, K. Guy, C.-K. Hwang, M. Nakada, P. G. Nantermet, J. Am. Chem, Soc., 1995, 117, 645.
L. Ettouati, A. Ahond, C. Poupat, P. Potier, Tetrahedron, 1991, 47, 9823.
T. V. Magee, W. G. Bommann, R. C. A. Isaacs, S. J. Danishefsky, J. Org. Chem., 1992, 57, 3274.

79 K.C. Nicolaou, P. G. Nantermet, H. Ueno, R. K. Guy, E. A. Couladouros, E. J. Sorensen, J. Am. Chem. Soc., 1995, 117, 624.
N. F. Magri, D. G. I. Jitrangsri, T. Piccariello, J. Org. Chem., 1986, 5 1, 3239; V. Senilh, F. Guéritte, D. Guénard, M. Colin, P. Potier, R. Acad. Sci. Paris, 1984, 299, 1039.
a) R. A. Holton, C. Somoza, H.-B. Kim, F. F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentle, J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1597; b) R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zgang, K. K. Murthi, L. N. Gentle, J. H. Liu, J. Am. Chem. Soc., 1994, 11 (6, 1599.
J. J. Masters, J. T. Link, L. B. Snyder, W. B. Young, S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1995, 3 4, 1723.
a) Y. Queneau, W. J. Krol, W. G. Bornmann, S. J. Danishefsky, J. Org. Chem., 1992, 57, 4043; b) M. J. Di Grandi, D. K. Jung, W. J. Krol, S. J. Danishefsky, ibid, 1993, 58, 4989. c) For an earlier example of this strategy see: A. S. Kende, S. Johnson, P. Sanfilippo, J. C. Hodges, L. N. Jungheim, J. Am Chem. Soc., 1986, 108, 3513.
J. J. Masters, D. Jung, S. J. Danishefsky, L. B. Snyder, T. K. Park, R. C. A. Isaacs, C. A. Alaimo, W. B. Young, Angew. Chem., 1995, 107495.
C. H. Heathcock, R. Ratcliffe, J. Am. Chem. Soc., 1971, 93, 1746.
a) E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1353; b) T. G. Waddell, P. A. Ross, J. Org. Chem, 1987, 524802.
T. V. Magee, W. G. Bornmann, R. C. A. Isaacs, S. J. Danishefsky, J. Org. Chem., 1992, 57, 327.
P. A. Brown, P. R. Jenkins, J. Fawcett, D. R. Russell, J. Chem. Soc., Chem. Commun., 1984, 253; Perkin 1, 1986, 1303.
J. A. Marshall, W. I. Fanta, J. Org. Chem., 1964, 29, 2501.
J. D. Dunitz in 'Perspectives in Structural Chemistry', eds. J. D. Dunitz and J. A. Ibers, Wiley, New York, 1968, Vol. 2, p. 35.
G. Stork, J. Singh, J. Am. Chem. Soc., 1974, 9б, 6181.
D. Van Ende, W. Dumont, A. Krief, Angew. Chem., Int. Ed. Engl., 1975, 1A, 700; A. Krief, Tetrahedron, 1980, 36, 2632.
R. V. Bonnert, P. R. Jenkins, J. Chem. Soc., Chem. Commun., 1987; Perkin 1, 1989, 413.
A. G. Chaudary, J. M. Rimoldi, D. G. I. Kingston, J. Org. Chem., 1993, 58\&, 3798; S.-H. Chen, S. Huang, J. Kant, C. Fairchild, J. Wei, V. Farina, J. Org. Chem., 1993, 58, 5028.
J. Clark, PhD Thesis, 1993, Leicester University.
R. W. Jackson, K. J. Shea, Tetrahedron Lett., 1994, 35, 1317.
C. Simons, Postdoctoral Report, 1995, Leicester University.

100 S. Hulme, PhD Thesis, Leicester University.
101 S. M. Rubenstein, R. M. Williams, J. Org. Chem., 1995, 60, 7215.

102 W. G. Kofron, L. M. Baclawski, J. Org. Chem., 1976, \&, 1879.

103
W. A. Sheppard (ed.), Organic Synthesis, Wiley, New York, 1978, 58, 152.

[^0]:

 Men

 2.ge

