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We study the relations between a contract automata and enadtion model. In the former model,
distributed services are abstracted away as automatavialsiof their partners - that coordinate
with each other through an orchestrator. The interactiodehi@lies on channel-based asynchronous
communication and choreography to coordinate distribaézdices.

We define a notion of strong agreement on the contract moxlebhiea natural mapping from
the contract model to the interaction model, and give comutto ensure that strong agreement
corresponds to well-formed choreography.

1 Introduction

We investigate the relations between two models of digkithcoordinationcontract automat43] and
communicating maching4].

The former model has been recently introduced esrdract-basectoordination framework where
contracts specify the expected behaviour of distributedpmments oblivious of their communicating
partners. The underlying coordination mechanism of cohtaatomata is orchestration. In fact, such
model envisages components capable of communicating gessssa some ports according to an au-
tomaton specifying the component’s behavioural contradiese messages have to be thought of as
directed to an orchestrator synthesised out of the compene orchestrator directs the interactions in
such a way that only executions that “are in agreement” hapjpethis way, it is possible to transfer
the approach of]2,/1] to contract automata so to identifybetigviour of components that do not realise
their contract.

We illustrate this with the following simple example. Alicewilling to lend her aeroplane toy, Bob
offers a bike toy in order to play with an aeroplane toy, wi@llarol wants to play with an aeroplane
or a bike toy. Leta andb denote respectively the actions of offering an aeroplana loike toy and,
dually, a andb denote the corresponding request actions. The contraoinaté for Alice, Bob, and
Carol correspond to the following regular expressionsd unse for conciseness:

Alice=a Bob=Dbh.a+ab Carol=a+b

If Alice exchanges her toy with Bob, then all contracts adélfed. Instead, if not coordinated, Alice,
Bob, and Carol may share their toys in a way that does notlfthir contracts. In fact, Alice can
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give her aeroplane to Bob or Carol, while Carol can receiechike from Alice or Bob, therefore if
Alice gives her aeroplane to Carol the contracts of Alice @adol are fulfilled while Bob’s contract is
not. In the model of contract automaton the coordinator astthe mam of the three kids who takes
their desires and suggests how to satisfy them (and repgedblbse who do not act according to their
declared contract).

Communicating machines - the other model we consider herere wmtroduced with the aim of
studying distributed communication protocols and enshee dorrectness of distributed components
again formalised as automata. But - unlike contract autamabmmunicating machines do not require
an orchestrator since they interact directly with each otheugh (FIFO) buffers. In fact, a relation
between communicating and distributed choreographiebéas recently proved in8].

We show that these models - invented to address differebteans and having different coordination
mechanisms - are related. For this purpose, we introducedtien ofstrong agreementvhich requires
the fulfillment of all offersand requests. Strong agreement differs from previous notibag@ements
for contract automata (cf. Sectibh 3) and enables us todotre strongly safe contract automata, that is
those automata accepting only computations that are ingigreement. Strong agreement and safety
are key to establish a correspondence from contract autcimabmmunicating machines.

Indeed if a contract automaton enjoys strong safety (arsdwell-behaved on branching constructs)
then the corresponding communicating machines are a weliefd choreography.

Structure of the paper. We recall contract automata and communicating finite-stetehines in Sec-
tion[2. The new notion of agreement on contract automata &etction 8. The translation of contract
automata into communicating machines is given in Se¢tiorhérevwe also prove our main theorem.
In Section[b we discuss possible extensions of our resultghter notions of agreement for contract
automata and semantics for communicating machines. ficalhcluding remark are in Sectidh 6.

2 Background

This section summarises the automata models we use in tke. pBpth models envisage distributed
computations as enacted by components that interact byaegoiy messages. As we will see, in both
cases components, abstracted away as automata, yielthsyaitso formalised as automata.

2.1 Contract Automata

Before recalling contract automata (introduced_in [3]), fixeour notations and preliminary definitions.

Given a seiX, as usualX* def Un>0X" is the set of finitewordson X (¢ is the empty wordww is the
concatenation of words,w' € X*, w(;, denotes theé-th symbol ofw, and|w] is the length ofw); write
x" for the word obtained by concatenations of € X andx* for a finite and arbitrarily long repetition
of x € X. It will also be useful to consideX" as a set of tuples and I&tto range over it. Sometimes,
overloading notation (and terminology), we confound tegeaX with words onX (e.qg., ifw € X", then
|W| = nis the length ofv andw;, denotes thé-th element ofw).

Transitions of contract automata will be labelled with etes in the set. £ RUOU {o} where
* requestf components will be built out dR while their offerswill be built out of O,

e RNO=0, and

* o0 € RUQ is a distinguished label to represent components that dlay i
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We leta,b,c,... range oveil and fix an involutiort : . — IL such that

R C O, 0 CR, YacRUO: a=a, and ©=o0o

A contract automaton (cf. D€f] 2) represents the behavibar set of participants (possibly made
of a single participant) capable of performing soattions more precisely, as formalised in DEF. 1, the
actions of a contract automaton allow them to “ advertiséérsf “make” requests, or “handshake” on
simultaneous offer/request matches.

Definition 1 (Actions) A tupled onL is
» arequest (action) oh iff & is of the formy*bo* with be R
» anoffer (action) orb iff & is of the formy*bs* with be O
« amatch (action) ot iff & is of the formy*bo*bo* with be RUO.
We define the relatiomC L* x L* as the symmetric closure sfC L* x L* wherea; i & iff
» @; andd, are actions of the same length
* dbe RUQO : & is an offer on b— & is a request on b,
« dbe RUQ : & is arequest on b— &; is a offer on b,
We writed, <, @ when there is ke R U QO such thatd; and &, are actions on b and; < a,.

Fact 1 < is an equivalence relation db*.

Definition 2 (Contract Automata) Let 2 (ranged over by g 0, ...) be a finite set of states. dontract
automaton of rank is a (finite-state) automatow’' = (2", @, L", T,F), where

* (o € 2"is theinitial state

* F C 2"is the set ofacceptingstates

T C 2"xL"x 2"is the set oftransitionssuch that(q,d,qd) € T iff
— if &;) = o thenq;) = q’(i) (i.e., the i-th participant stays idle) and
— dis either a request, or an offer, or else a match action

Aprincipalis a contract automatory of rank 1 such that, for any two transition8}i,a;,d;), (02, a2, o)
in o7, it is not the case thatax ap.

Example 1 The principals of Alice, Bob, and Carol in Sectign 1 are gibefow

start — @ start —> start — @
a a b

Automaton of Alice Automaton of Bob Automaton of Carol

Given a contract automatos’ = (2", qo,L", T, F) of rankn, usual definitions and constructions of
finite-state automata apply. In particular,

« the configurations af7 are pairs in2" x (IL")* of strings ofn-tuples of labels and states .of;
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« o/ moves from(d,w) to (,w), written (q,w)-3(/,w), iff w=aw and(d,a,d) < T; we write
(d,w) — (& ,w) whend is immaterial andi-%d whenw is immaterial;

« thelanguage of is (/) = {w| (Go,w) —* (4,€),d € F } where—* is the reflexive and transi-
tive closure of—. As usuals,L-'ms... 1 shortenss; s, - - - Sy s,.1 (for somes,, . . ., sm) and
s/ iff for no s it is the case thas — <.

We now borrow from[[3] the product operation of contract auéta. Given a finite set of contract
automata, this operation basically yields the contraciraaton that interleaves all their transitions while
forcing synchronisations when two contract automata astdtes ready to “handshake” (i.e. , they can
fire complementary request/offer actions).

Definition 3 (Product) Let.sf = (2" qy;, L™, T;, F) be contract automata of rank,fori € {1,... h}.

.....

n=ny+...+ny where:
* 0o =Go1---Gon
« F={ti...0h|Viel..h: GeFR}
* T is the least subset @@" x L" x 2" such that(q,c,d) € T iff, lettingG =0y ...dh € 2",
either there arel <i < j <h such tha(q,&,d) € T, (dj,d;,d;) € T}, & = &; and
{ ff(,) =a, 6(1) :aj, andém =" forl e {1,,h}\{l,j}
and
d=0a...G-10G G+1... Gj-1 dj dj+2-.-.Gh

or Cj=4a,Cy=o"foreachlzic{1,....h}, andd =0s...Gi-1GG+1... G When(G, &, d) €
Ti and for all j # i and (dj, dj,d;) € T; it does not hold tha > &;.

Example 2 The contract automaton below is the product of the contratbmata in Examplel 1.

a,a, ,0,8
start —( (o (@2.0) @ SLL)

@2

(D7a7|])

. (2,8,0) @

(0,b,0)

Notice that from the state§ and gs (where participants can handshake) only match actions dgpa
offer and request actions are not included in the product.
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Remark 1 Notice that the product in D€fl 3 is not associative; an altgive (but more complex) defini-
tion of associative product can be given by “breaking” exigtmatches when composing automata [3].

Hereafter, we assume that all contract automata of rankl are the product afi principals. Also,
we consider deterministic contract automata only. Suchimpsons could be relaxed at the cost of
adding some technical intricacies.

2.2 Communicating Machines

Communicating machines][4] are a simple automata-modeddoted to specify and analyse systems
made of agents interacting via asynchronous message gasdia adapt the original definitions and
notation from [4] and([7] to our needs; in particular, theyordlevant difference with the original model
is that we have to add the set of final states. #dte a finite set oparticipants(ranged over by, q, r,

s, etc.) andC &' {pq | p,q € Zandp # q} be the set othannels

Remark 2 The set?” can be thought of as the set of integéfs...,n} (and likewise for contract au-
tomata). However, we adopt a different notation to make taestation from contract automata to
communicating machines clearer.

The set ofactionsis Act 2'C x (RUQ) and it is ranged over b§; we abbreviatésr,a) with a@sr
whena € O (representing theendingof a from machines to r) and, similarly, we shortefsr, a) with
a@sr whena € R (representing theeceptionof a by r).

Definition 4 (CFSM) A communicating finite-state machimean automaton M= (Q,qo, RUO,d,F)

where Q is a finite set aftates g € Q is theinitial state,d C Q x Act x Q is a set oftransitions and
F C Q is the set of final states. We say that Mieterministiciff for all states ge Q and all actions
¢ € Act, if (9,4,9),(9,¢,q") € 0 then d=q". Also, we writeZ (M) C Act* for the language orAct

accepted by the automaton corresponding to machine M.

We will consider only deterministic CFSMs. The notion ofatatinistic CFSMs adopted here differs
from the standard one which requires that, for any staié (g, a@sr,q) € d and (q,b@sr,q") € &
thena=b anddq = q’ (see e.g.[]7]). The reason for the definition is to reflectsmantics of contract
automata.

The communication model of CFSMs (cf. Definitidds 5 ahd 6)isddl on (unbounded) FIFO buffers
- the channels i€ - used by participants to exchange messages. To spare aggtiiactic category
and cumbersome definitions, we draw the messages appeating buffers of CFSMs from the set of
requestR. Recall that the set of participantg is finite.

Definition 5 (Communicating systems)Given a CFSM M = (Qp, 0o, RUO, &,,F;) for eachp € 2,
the tuple S= (M;),c» is acommunicating syster(CS). A configurationof S is a pair s= (d; W) where
4= (0p)per With ¢, € Q, and wherew = (Wyq)pgec With wyq € R*; componend is thecontrol stateand
0o € Q; is thelocal stateof machine NJ. Theinitial configurationof S is § = (Go; €) with Go = (dop ) pe-

Hereafter, we fix a machind, = (Q;,dop,, RUQ, &, F;,) for each participans € &2and letS= (M) e
be the corresponding system.

Definition 6 (Reachable state)A configuration §= (¢; W) is reachabldrom another configuration s
(d; W) byfiring ¢, written s%¢, if there is ac R such that
1. either! =a@sr and (), , qf(s)) € 0, q'(p) =) forall p #s, andvT/(sr) = W, -a and, for all

—

Pq 7 ST, Wipg) = Wipq)
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2. or!=a@sr and(Q), ¥, q’(r)) €0, q’(P) =) forall p #r, andW(sr> = a-Wy) andw,

(b = W
for all pq # sr.

pa)

We write s— & for 3¢ : s%< and denote with—* the reflexive and transitive closure of. The set
of reachable configurations & is R$S) = {s\ s —* s}. A sequence of transitions isdoundedf no
channel of any intermediate configuration on the sequenn&aot more than k messages.

Condition (1) in Def[6 puts the conteaton a channetr, while (2) gets the contera from sr.

2.3 Notational Synopsis

To avoid their continuous repetition, through the paper wsume fixed a contract automaten =
(2", @, L", T,F) of rankn.
For readability we summarise the notations introduced simftne following table.

X* set of finite words on a s&; ¢ is the empty word
W(i) thei-th symbol ofw
|w] the length ofw

X1 (resp.x*)  xconcatenated-times (resp. arbitrarily many) with itself
Xor (X)i<i<n indexed tuples

L labels (ranged over b, b, c, etc.)

R request labels

@) offer labels

s € RUO idle label

o contract automata of rark

S set of participants (ranged over pyq, i, j,A, B,C, etc.)

C set of channels (ranged over by)
Mp communicating machine of participapt
S a system of communicating machines

Finally, we assume that the states of any automaton/maelnénleuild out of a univers€ (of states).

3 Enforcing Agreement

This section introduces a new notion of agreement on cdrdtgomata - calledtrong agreementthat
elaborates the notions afreemenandweak agreemenitroduced in[[3]. The three notions differ on the
conditions for the fulfillment of an interaction betweenfeient principals. Briefly, aagreemengexists
if all the requests, but not necessarily all the offers, atestied synchronously. Intuitively, this means
that the orchestrator “simultaneously” guarantees twtigipants that their complementary actions are
matched. Instead,weak agreemergxists when request actions can be performed “on creditbthier
words, a computation yelds weak agreement when the fulfiitraa request action can happen after the
action has been taken. Intuitively, this corresponds tosgnehronous communication admitting actions
taken on credit provided that obligations will be honoreeédan.

Here, we focus ostrong agreementvhich strengthens the previous notion of agreement byiniagu
the fulfillment of all offersand requests in a synchronous way. In Secfibon 4 we will show hasv th
condition corresponds to interactions between commungahachines.
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Definition 7 (Strong Agreement and Safety) A strong agreement dnis a finite (hon-empty) sequence
of match actions. We Iét to denote the set of all strong agreementsilon

A contract automatony is strongly safef .’ (.«7') C 3, otherwise it isstrongly unsafeWe say that
o/ admits strong agreemewhen. (<7 )N 3 # 0.

Note thate does not belong t3; the reason is that would not be an interesting agreement because it
does not require any interaction (neither with the corgratior between principals). For this we require
that the initial states of contract automata are not acogstiates.

We show how to generate a strongly safe composition of ccistraith an approach borrowed by
the supervisory control theory for discrete event systefjs [n this theory, discrete event systems
are basically automata where accepting states represestiticessful termination of a few tasks while
forbidden statesre those that should not be traversed in “good” computatidie purpose is then to
synthesize a controller that enforces this property. Tipesusory control theory distinguishes between
controllable events (those events that the controller can disable)uaedntrollableevents (those that
are always enabled). Moreover, the theory partitions evermbservableandunobservablgthe latter
being a subset of uncontrollable events. It is known thall if@ents are observable then a maximally
permissive controller exists that never blocks a good cdatioun [6].

Since the behaviors that we want to enforcedhare exactly those traces labeled by words in
3NZ (<), we specialise the notions of supervisory control theorgéfning

» observable events to be all offer, request, and matchrestio

» forbidden events to be non-match actions.

Definition 8 (Controller) A (strong) controllerof o/ is a contract automaton Kg such that
Z(KSy) C 3NnZ(«). Themost permissive (strong) controllefMPC) of <7 is the controller KS,
such that? (KS ) € .Z(KS,,) for all KS, controllers of<.

Note that the most permissive controller is unique up-tglege equivalence.

Example 3 The MPC of the contract automaton in Ex_an‘@le 2 consists o$tdesdo, di, ds, andda
with tranSitionS(q07 (av a, D)> q1)1 (q37 (av a, D)> q4)’ (q07 (E’7 b7 b)7 q3)’ and (qlv (E’v b> b)v q4)

Proposition 1 If KS,, is the most permissive controller of then.Z(KS,) = 3N.2().

Proof. By contradiction, assum&’(KS,,) C 3N.Z(</). Since3N.Z (<) is the intersection of two
regular languages and all actions are controllable, thastsea contract automatdfS , accepting it (cf.
[6]). By definition,KS,, is a controller ofes strictly containing#’ (KS,,), contradicting the hypothesis
that.Z(KS,,) is the most permissive controller. <&

A stated of a contract automator/ is calledredundantif, and only if, fromd no accepting state of
&/ can be reached.

Lemma 2 (MPC) A contract automaton is the most permissive controller6fif, and only if, it is
language-equivalent to

KS, £'(2" 6o, L", T\ {(d,a,d) | d or q is redundant in#'},F)

where#z = (2" o, L" {t T \ t is a match transitiof, F) is the sub-automaton @f consisting of the
match transitions ofs only.
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Proof. By construction, the transitions #fS,, are a subset of the transitions .ef, hence?(KS,,) C
3NZL (). ThereforeKS,, is a controller ofe and we have just to prove th& (KS,/) = 3N .2 ().
We proceed by contradiction.

Letwe (3N.Z(«))\ Z(KSy). Since3 does not contain the empty string we haves € and
there must be a transitian= (g, d,d’) not in KS,, in the accepting path of (which is unique since
we consider deterministic contract automata only), othesw < .Z(KS,,). We know thaf is a match
action because € 3, andd,d are not redundant states.ef because the transition belongs to an accept-
ing path. Hence there must be KS,,, since by construction match transitions between nonnealot
states are iKS,, . <O

Example 4 The MPC of Example 3 is obtained from the CA in Exarhple 2 byyappthe construction
of LemmaZR.

The controlled systenof a contract automator? identifies the match transitions e and those
transitions that lead “outside” of the controller; for the use a distinguished state¢ 2" (for anyn)
in the following definition.

Definition 9 (Controlled system) Let KS, = (2", ¢, L", T’ C T,F) be the MPC of«# as computed in
Lemma [2. The controlled system of.e/ under KS, is defined as the automaton
KSy /o = (2"U{L},q,L", T”,F) such that

T" = T U {(@4&d.Ll)]dreachable fronfp in KS, and3q € 2" : (4,4d) e T\T'}

Example 5 The controlled system of the CA in Example 2 is obtained byngdthe transitions
(G, (0,0,a),02), (0o, (8,0,a),0s) to the MPC of Examplel 3.

It is worth remarking that the transitions reachihgn the controlled system of7 identify the start of
the computations ir7 which lead to violations of strong agreement.

In the next definition, we introduce a notion of strong lidiilto single out the principals that are
potentially responsible of the divergence from the expkbihaviour.

Definition 10 (Strong Liability) Given a controlled system K& o7, the set ofliable participants on a
trace we £ (/) is given by:

Liable(KS, /<7, w) = {1 < i <n| (Go,w) —* (d,8W) — (L,w) in KSy /7,8, # o}
def

Thepotentially liable principalsn KS,, /< are LiablgKS, /.«7) = Uye # () Liable(KSy /<7, w).
We let TLiabl¢KS,, /.<7) to denote the set of transitions .of that make principals liable.

Note that the transition labelled lain Definition[10 is the first which diverges from the expectadhp
(since, by Definitiori 9, state. does not have outgoing transitions). Indeed a liable indextifies a
principal that fires an action taking the computation awayflagreements.

Example 6 The liable indexes of the contract automaton in Exarhple 2lamed 3, corresponding to
Alice and Carol respectively; the transitions that makenth@able are respectivel)(qo, (3,0,a), qs)
and (ql, (o,0,a), qz). The former liable transition is a match that leads to a noatch transition.

Note that labels allow us to track participants firing acti@o to find (the indexes of) the liable
principals. Our aim is to restrict the behaviour of prindgpao that they follow only the traces of the
automaton which lead to strong agreement, while avoidiegthers.
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4 From Contract Automata to Communicating Machines

The translation of a principal into a communicating machsnenceptually straightforward. Indeed, the
translation just yields a machine isomorphic to a principahe composed contract automaton; the only
difference are the labels. To account for the “opennessiraaif contract automata - where principals
can fire transitions not matched by other principals - in D&din [11 below we use the-’ symbol
representing a special (“anonymous”) participant distislged by the participants corresponding to the
principals and playing the role of the environment. For tieigson, we will assume from now on that
actions inAct are built onCU {—}.

Definition 11 (Translation) The translation[&], € Act of an actiond onlL." respect to a participanp
(with 1 < p < n) is defined as:

a@ij if dis a match action and i and j are such th@) € O anddj) € Randp =1

a@ij if dis amatch action and i and j are such tteyf) € O anddj) € R andp = j
[d], = { a@i— if dis an offer action and i is such thaf) € O andp = i

a@-—j if dis arequest action and jis such that) € R andp = j

£ otherwise

Thetranslation of<7 to a CFSMis given by the map

[['Q{]]P d:ef <°@7q0(p)7ACt7 {(q(p)a [[a]]paq/(p)) | (q7 é, q/) €T and [[aﬂp 7& 8}7 F>

We denote with§7) = ([ ])pe(1,...ny the communicating system obtained by translating the con-
tract automatones'.

Given¢ € (L")", we define

a@ij a@ij[¢'] if ¢ =d¢’ anddis a match action omwith &;) € O anddj) € R
a@i—[¢’] if ¢ =d¢’ anddis an offer action ora with &;) € O
[61%{ a@-j[¢'] if ¢ —a¢’ anddis a request action omwith &, € R
€ ifg=c¢
undefined otherwise

Example 7 Consider the following principal CAs:

A B C

a
a
s () st
C
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The product is the contract automaton below with initiaftst@ = (o4, o2, do3)
A®RB®C
(a7a75) (a,a,u) (avam)

o,o0,b A a,a,o B,D,b a,a,o
()t () 200 () Bt oy o)

(D,D, D,D,C) (D,C,C) (D7C7C) (D,D,C)

©) (
(a,a,0)

(37 a, D)

By applying Lemm@l2 on the product automaton we obtain the MPC

KSA@B@C
(@ao)
b,o0,b aa,
start — (TO ( - )Gl\( D) (Tz

(a,a,0) (0,C,C) (o,T,0)

o b,o,b a0
@ @a, )@ (b,o,b) @ (3,a,0) @ (@)

The translation of Definitioh 11 yelds the CMs:

[[KSA®B®C]] A [[KSX®B®C]]B [[KSX®B®C]]C

start —

b@Ac A@AB C@W C@BC C@BC
(%) (%) e

o
Q
=
t
4}
L
©
o
=
t
@
o
—
o
Q)
=
a
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We introduce thd.-buffer semantics of communicating machines, recall thad the vector of buffers.
Intuitively, this semantics forbids a machine to send a mgsgt0 one of its partners if there is a non
empty channel in the system.

Definition 12 (1-buffer, deadlock,convergent) A configuration(d; W) of a CS S= (M) is stableif
and only ifW = &, while isfinal if it is stable andd € (F;)pc. Thel-buffer semantics db is given by
the relation

LU N(RS1(S) x Act x RS1(9))

where— is the relation introduced in Definitidn 6 and

RS1(9) d:ef{(q; W) € RYS) | (4; W) is stable or3pq e C : 3a€ R 1 Wq =aAVp'q # pq.Wyy) = £}
We say that the system Sinvergentf and only if for everyreachableonfiguration(d; W) it is possible
to reach a final configuration in the 1-buffer semantics.

Moreover a configuratiorid; w) is adeadlockif and only if is not final andd; W) /4

Note that if a system isonvergenthan it isdeadlock-free The 1-buffer semantics above is instru-
mental to the relation we establish between strong agreeofi@ontract automata and convergence of
CFMSs.

Remark 3 Note that by considering only finite traces, we rule out adl tifair traces. For example,
consider the followingtrongly safeCA:

(H, a, D)

(6‘, 0, b)
start —>3—

If the first and second participants could execute the tt&msido, (a,a,0),0o) infinitely often then
the third participant would be prevented from reading thesgage b. This behaviour is ruled out by
considering only finite traces. Indeed all the possible ésagenerated by the automaton above are
described by the regular expressi¢a a,o)*(b,o,b), where the third participant will eventually reach
its goal.

We definesnd &) %3 whena is a match action or an offer action such tla@gt € O and, similarly,

rcv(d) d:efj whendis a request or a match ands such thag ;) € R.

Property 3 Let SKS,,) be a CS obtained by DefinitionI11, anglt® its initial configuration. Then for
f
all f such that g — there is a strong agreemeptsuch that f= [¢] or f = [¢]Ja@ij for some ai, j.

Proof. The proof follows trivially by observing thekS,, contains only match transitions and that the
1-buffer semantics does not allow other behaviours for tBe C O

Before providing the main results, we introduce a notion eflsilormedness of contract automata.
We require that an output action of a participant in a paldicstate is independent from the states of the
other participants in the system.

Definition 13 (Branching Condition) A contract automator? has thebranching conditioriff for each
01, G reachable ineZ the following holds

va match actions(th-® A snd(@) = i A Gy = Gy;)) impliesdp 2
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Example 8 Consider the CAs of Examflé 7. The product automaton hasrémeting condition while
this is not true for the MPC. Indeed, we hajg,) = d3(1) = Jo; and q@m while there is ndjj such
that (01, (,a,0),Gi) € Tks.

The next theorem characterizes the relations between a @Ahancorresponding CS. It states that
the CS is capable of performing all the moves of the contrafghe CA, while the CA is capable of
performing those traces of the CS that aresfrong agreementMoreover, if a CA has the branching
condition, the runs of the CS leading to a deadlock configamatorrespond in CA to runs traversing
liable transitions, and likewise when the CS reaches a maidck configuration which does not reach
a final configuration.

Theorem 1 Let SKS,,/) be the communicating system obtained by the MPG K&h s, 51, and $ be
the initial configurations of7, KS,, and §KS,,), respectively. The following hold:

1. ifsids then s
2. ifs [@ and ¢ is a strong agreement thep-&

f

3. if  — reaches a deadlock configuration where=f[¢] or f = [¢]a@ij and the branching
condition holds ine then - has traversed a transition in TLiaklKS,, /<7 ) where¢ can be
respectivelyp = ¢ or § = ¢a whered is a match on a with srd) = i,rcv(d) = j.

¢
4. ifs u S, S, is not a deadlock configuration and no final configurations m@&chable from ‘s
then $-%> has traversed a transition in TLiallKS,, /.<7).

Proof. Through the proof assume thet s| ands, are such thag%:5), 5, %5 ands, — vl = 8.

1. By induction onp. Assume thasl—>s’,1 with & match action ora where principal makes the offer
and principalj makes the request @n Let ;) anddpj, be the initial states of participantsand
j in S(KS,,). By Definition[11, we have for som@ andd, that

(Go).@@1j,qQ1)  and  (Gogj),a@ij, Ga;))

a@ij a@i
are transitions of participantsand j, respectively. We have —iJ —53 s, since after the first

transition part|C|pan§ remains in its initial state.

When|¢| > 1, we have for a configuratios{ thats; £:s &5 . Hences, wl s, (by the induction

hypothesis) and, sina® is a match, with the same reasoning we can concﬂﬁael»ﬂ S,

a
2. The proof is again by induction. Assumg[—ﬂ s,, whered is a match ora which involves (the
principalsi and j corresponding to) participantsand j. As before let perform the offer and
the request. By Definitionl 3 (of product), we have that thera fransitiondp, &, ) in </ from its
initial state.

When|¢| > 1, we have52 —» s',z’ éz and there isv' € (L")* such that (by the induction hypothesis)
soﬁ"»s’o q w) is arun ingZ. Reasoning as in the base case, we concludezthiaas a transition
of the form(q/,&,q").

3. Lets, = (d; W) be the deadlock configuration reached frgmvith f.
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We distinguish two cases:

« if W= € (namely some buffer i is not empty) therd is not a strong agreement (in fact, if
it were a strong agreement then the 1-buffer semanti&kig,, ) would yieldw = €). Then
by Property B we havé = [¢]a@ij andd = ¢& Moreover, Theoremll.1 guarantees that a
run So—¢—>S/0 = (@, w) exists ineZ and, by Definitiori Ill and the branching condition, there is a
transition(d’,d,q") in < whered is a match action oa. By contradiction, assume that there

is no liable transition in the rusy 23 (@, w”) in . Then, by construction (cf. Definitidd 8),

a@ij
the MPC of# has the same run, namedy2% (g’ w”). Finally, by Theorenf]Ll1s, —»J.

contradicting the hypothesis theitis a deadlock configuration.

« if W= ¢ (namely, all buffers are empty) then, by definition of deakl@onfiguration of
CFSMs (cf. Definitior_IR), the staof configurations, = (d; W) is not final, there is no
participant ready to fire an output, and there is a partidipaaiting for an input on one of its
buffers. The latter condition is guaranteed by the consbunof CFSMs from controllers.
Sincew = €, we havef = [¢] andd = ¢ where¢ € 3 and there is a rusoi>s’0 = (q1,wW)
in </ (by TheoreniI[]2). Note tha is redundant irKS,, (otherwise by Theorerl[.5,
would not be a deadlock configuration) and, by constructi@m(ma2),5; is removed from
KS,,. This implies that a liable transition has been traversezdih%.

4. Wlog we can assume thatis a strong agreement ( otherwise we hay[gﬂig)” s, for somei, j,a
and sinces, is not a deadlock it is possible to perform the sﬁgs@ij s, and we have thapd is
a strong agreement whegeis a match action witld;) = a,& ) = a). Moreover, froms; is not
possible to reach a final state, and we apply the foIIowmgcrmmg tos], ¢dinstead of,, ¢.

Assume by contradiction thai)i"»s’o has traversed no liable transitions. Then by Definitioh 10
there exist®’ such that, 25} ands)] is a final configuration. By Lemnia 2 We must hayd®ss|

wheres; is a final configuration. Hence by applying Theorefd 1.1 we @ve» s, wheres)' is a
final configuration, obtaining a contradiction. O

Note that the converse of Theorénh]1.3 does not hold. IndeadCiA o7 passes through a liable
transition, it can be th&®KS,/) never reaches a deadlock configuration.

Example 9 Consider the CAs and CMs of Examlple 7. A possible trace bilgng the system(&Sy¢psc)
is generated by the transition$qo,,a@AB,q1,), (o1, 8@AB, 024 ). By using Theoreml[.2 this trace cor-
responds to the liable transitioftp, (a,a,0),f7) of the product automaton.

However after this two steps the syste(iKSzpzc) Will never reach a deadlock configuration.
Indeed, it is always possible to perform the transitiggs;,a@AB, 014), (021, 2@AB,0p,). Note that
S(KSsssc) is deadlock-free but not convergent.

We are now ready to state our main result: the controller oAdn@s the branching condition if and
only if the corresponding CS is convergent.

Theorem 2 Let o7 be a contract automaton, KSbe its MPC, and §S,,) be the communicating
system obtained by K5 The following statements are equivalent :

1 SKSy) is convergent
2 KS, has the branching condition
Proof. Let 5, s1, ands; be the initial configurations of/, KS,,, andS(KS,,), respectively.
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(+) Assume by contradiction th& KS,,) is not convergent aniS,, has the branching condition

holds, namely there exisg = (d,W) such thats, — s, and no final configurations are reachable from
(4, w). We distinguish two cases:

* s, is not a deadlock configuration. Then by applying Theorérwiehavep = ¢18¢” for some
¢1,d,¢” such thatgp2%q; is a run of & and (64,4, q71) € TLiable(KS,//<7). Note thatd is a
match action, otherwise a participant3(KS,,) has fired an action to the environmentfinSince
S(KS,,) is derived fronKS,, and all the transitions d€S,, are match, this is not possible. Assume
dis an action ora with snd &) = i, rcv(a) = j for somei, j € 2.

By hypothesis we know thab [@] S, a%J, hence in the configuratios} the participanti is able
to fire the actiorea@i j. By Definition[11[3 there must be a stafgin KS,, such that(®,, d, qs)
is a transition inKS,, (recall thatS(KS,,) is derived fromKS,,) and %) = iy (otherwise we

@1j . - . .
would not haves, a—»J), and sinc€qy,d, o) € TLiable(KS,,/«7) we conclude that the branching
condition does not hold iKS,,, obtaining a contradiction.

@ij
» all the possible configuratiors, are deadlock. Then it must be tr@t@] s, = s, for some

!

i,j,a and froms] it is possible to reach a final configuration, thaﬁjsu] s) wheres)' is final.

- . a@ij . C
Note that it is not possible to hag = s, otherwise we would have that frog§ , which is not
a deadlock, is not possible to reach a final configuratiorhats, is not a deadlock.

By Theoreni L[ we hawe 225, wheres is final, hence by Lemnia 2 it must be®:s = (., w).
As the previous case, by Definition]11, 3 there must be a gateKS,, such that g, d,g3) is a
transition inKS,, wheredis a match an action cawith sndd) = i, rev(d) = j anddz i) = qu .-
Moreover sinces, is a deadlock, it must be that there is no transitign d,da) in KS,,, otherwise

@i j . . .
by Theoreni L []1 we havg a—»J, obtaining a contradiction. Hence we have that the bragchin
condition does not hold iKS,,, since there is no transitia;, &,dy) in KS,,.

(—) By contradiction assume that the branching condition da¢$old inKS,,. Hence we have two
statesqy, G in KS,, such thatiy£d1 2, go-£30,-% whered is a match ora with snd(&) = 1, rev(d) = j
for somei, j € Zand ;) = G-

By TheorenTI[L we havezjfﬂl»d2 301}, ands, 1?15, By Definition[I1 and B we know that the
participanti is in the same state in the configuratigns,, hence we have, 2@Li.s) and froms)’ is
is not possible to reach a final configuration. Otherwisgyif@til%l,s; wheres; is final, then by
TheorenTI[2 we would havey2¢2.d; whered; is a final state of the CA, hend@-2 is not liable and
belongs tKS,,, obtaining a contradiction.

O
A consequence of Theordm 2 is thagteongly safeCA has the branching condition if and only if the
corresponding CS is convergent.

Corollary 4 Let.o/ be a contract automaton, the# is strongly safe and has branching condition if and
only if §.<7) is convergent.

Proof. The statement follows trivially by notice that4# is strongly safe thery = KS,,, henceKS,,
has the branching condition and we can apply Thediem 2.

&



D. Basile, P. Degano, G.L. Ferrari, and E. Tuosto 81

(3,0,a) /q:l\ <0k,g,a() Kq;\ (d,u,a) &
% % N\

start—>( o

Figure 1:KS,,

Example 10 Consider the followingtrongly safeCA.«/ = AQ BQ C®D:

In this example we have four participants: the first twtoB) perform the same offex, while the others
(c,D) perform the request a. The C& has no branching condition: for example the internal stafte o
the participantB is the same in both statefs, z. From statet; we have the match transitidi, a, 0, a)
which is not available in statgs, and from statej; we have the match transitidm, @, a, o) which is not
available from state;.

The translation yields the CMs:

[KSy]a = a@AC +a@AD [KS]s = a@BC + a@BD
[KSy]c = a@AC + a@BC [KS.]p = a@AD + a@BD
A deadlock configuration is generated by the tra@AC.a@AC.a@BC.
Example 11 Figure[1 depicts the automaton K.Svhere« = A B® C:
A=aokd B=(ac+ca).okok C=aokd+cokd

Participant A sends an offea and then waits on acknowledgement ok and then a messagetidigaat

B acts as an intermediary: it receives the requests a and clagd teplies withok. Finally, participantC
can either behave similarly tbor directly acknowledge the message received on a (and #rahd). The
translation in Definitiod 11 yields the following commurtiog machines, written as regular expressions:
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[KS,]s = a@AC.o0k@CA.d@CA + a@AB.ok@BA.d@CA
[KS,]z = (A@AB.C@QCB + c@CB.a@AB).(OK@BA.OK@BC + OK@BC.OK@BA)
[KS]c = C@CB.ok@BC.d@CA + a@AC.OKQCA.d@CA

Note that KS, has no branching condition, indeef 3, = 73 but there is no(Go, (d, o,d),q) in
KS,, for someq. Moreover there is diable transition with label(dp, (o,0,d), L) in Figure[d which

represents the possible deadlock in the system.
A deadlock configuration in(8S,,) is given by the trac§¢]d@CA where:

o= (a,a,g)(g,c,t)(,&,ok)
[¢]d@ca . A : : , ., .
Indeed § - — s, where § is the initial configuration of §&S,,). In the configuration = (d, W)

the bufferw is not empty, becaus®cn = d. Moreover the machine A is prevented to read the message
on the buffer since its configuration this okK@BA.d@CA.

5 On extending the approach

We discuss possible extensions of our approach to othetirexiypes of agreement on CAs, and on
different semantics of CMs, where there are no constraimt$he number of messages in a buffer. We
start by comparing the other existing types of agreemeitit thhi 1-buffer semantics for CMs.

On agreement The property ofagreementequires that all the requests are matched. It allows string
made by match and offer actions only. In the following we dgsca correspondence similar to Theorém 2
for the property ohgreement

Example 12 Consider the CAs corresponding to the regular expressioa$.d +c.e+d.e andB =d.e.
The controller.#as for the property ofagreemenis given by the CA:

The translation in Definition 11 yields the CMs:

[[‘%@B]]A [[‘%@BHB
e@BA
. _
c@A- ©@BA d@s-— &@BA

d@Ba
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Under the 1-buffer semantics, the systefr#®;g) always reaches a deadlock configuration since in
every execution there are messages in the buffer with navesceorresponding to the offer actions in
the controller.

If we assume that the unmatched offers are consumed insoaly by an artificial participant rep-
resenting the environment, we still have possible deadiodffigurations in §%axs), for example if the
participants execute the sequence of transitifs, b@A—, G4 ), (Gop, d@B—,025), (Gop, E@BA, Gs,).

Note that#azs has no branching condition: id,ds the participantB is the statejy,, but fromds
there is no match transition on action d.

Under the assumptions that the offer actions are consumelebgnvironment, that it is possible
to prove that the controller of the CA7 has a slightly modified version of the branching condition if
and only if the corresponding syste®1%7.,) is convergent. The proof is obtained by noticing that in
the 1-buffer semantic a deadlock configuration is reachdyliba participantA send a messageto a
participantB andB is unable to consume the message. By Definftidn 11 this camemapnly if there are
two different states in the CA wheteis in the same internal state and the match transition idedolai
only in one of the two states, i.e#,, has no branching condition. We also need to consider those
configurations which are not convergent nor deadlocks as dofheoreni 2.

On weak agreement For the property ofveak agreemerthings are more intricate, indeed it is neces-
sary to modify the actual translation. This is due to the jhilgy for a participant to fire a request if in
the future the offer will be available, while in the CMs if thaffer is empty it is not possible to perform
an input action.

To overcome this problem it is possible to synthesize oneanen®Ms which act as brokers. They
receive as input all the actions of the participants, whiehreow translated into outputs, and reply with
messages in a way to drive the participants through the inageak agreement.

On different semantics We now discuss the relations between CAs and other semémti€s.

Example 13 Consider the following CA ® B:

start—>

We haved =a+b, B=b+a. This CA isstrongly safeand has the branching condition. However, by
considering the non 1-buffer semantics for CMs, the traeslaystem is naleadlock free Indeed a
possible deadlock in(S#axg) is generated if the first participant performs the act®@AB and then the
second performs the actid@BA. This is because participaltcan ignore the message received by the
participant A and follow the other branch of the CA. These behaviours igranitted by the 1-buffer
semantics, which forces participants to follow the sudcéssanch.

The previous example shows that if we allow a less consiaseenantics for CMs then Theorérn 2
does not hold any more. Indeed, we need to introduce othetredmts on the behaviour of the CAs to
obtain a correspondence with convergent systems.
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Note that in the previous example, from stgteboth participants contain a branch where they can
execute an input or an output action. This is callediged choicestate. It is possible to prove that if a
CA has the branching condition, it is strongly safe and hamixed choice states then the corresponding
system is convergent with non 1-buffer semantics. Howdwercbnverse does not hold. Indeed there
exists systems with mixed choice states that enjoy conaesge

Example 14 Consider the following CA ® B:

start —- (TO

We havel = a.b+b.a, B =b.a+a.b. This CA isstrongly safehas the branching condition, and contains
a mixed choice state, i.gy. Nevertheless, the corresponding system is convergent.

As showed by the previous example, for obtaining a corredgoce similar to Theoref 2, we need
to consider thosbad mixed choices, where the participants behave differentthe different branches.

6 Concluding Remarks

We have established a formal correspondence between coatr@mmata, an orchestration model, and
communicating machines, a model of choreography. An isterg implication of our results is that
contract automata can be seen as an alternative semantiesofunicating machines. In fact, the prod-
uct of communicating machines could be built as a contraimaaton once match-actions are properly
defined as tuples where output messages appear before thgpoording input ones. However, contract
automata are more general in the sense that they would atsib meétches where a request appears be-
fore its corresponding offer. Exploring those alternateenantics is of interest and it is scope for future
work.

The dichotomy orchestration-choreography has been disdus many papers (see e.@!, [9]). The
only formal results (we are aware of) that link a choreogyaggthan orchestration framework is in [5].
A precise comparison with_[5] is not straightforward as thedels use a bisimulation-like relation to
exhibit a conformance relation between choreographed estekstrated computations. Here, we study
the conditions to “force” orchestrated computations tol\wehave (strong safety), and convergence in a
choreography framework in terms of strong safety in the estiation one.

A practical outcome of our result is that strong safe comtaatomata can execute without controller
(if they are trusted). In fact, one can translate them intormainicating machines that run without central
control.

For the time being, our result only states that strong agee¢orresponds to the 1-buffer semantics
of communicating machines. In other words, the executiothefmachines is basically synchronous.
(We note that this has some advantages since communicasioimes with 1-buffer semantics are more
computationally tractablé [7].) We conjecture that resaimilar to the one presented in this paper can be
achieved for weaker notions of agreement (for example, ties o [3]) when considering asynchronous
behaviours of communicating machines. This is nonethdddisas future work.
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