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Abstract 

 

This research investigates the effect of surface roughness on Thermo-
Elastohydrodynamic Lubrication (TEHL) by Computational Fluid Dynamics 
(CFD). Traditionally, the Reynolds equation has been used to describe the flow 
of a lubricant for the TEHL problem, but this approach has some limitations. To 
overcome these, CFD is used in this research, as an alternative to solving the 
Reynolds equation. 
 
The commercial software packages ANSYS ICEM CFD 13.0 and ANSYS 
FLUENT 13.0 are employed to solve the Navier-Stokes equations. User-defined 
functions (UDFs) for the heat generated in the lubricant film, the density and the 
viscosity of lubricant, and the elastic deformation of the cylindrical roller bearing 
are created for this particular research. For viscosity, the lubricant is modelled 
as a non-Newtonian fluid based on the Ree-Eyring model. A number of CFD 
models are created under different conditions to predict the flow characteristics 
in the TEHL line contact problem, including the pressure distribution, the 
temperature distribution, the film thickness, and the friction coefficient. The 
effect of surface roughness is considered in the CFD models.  
 
The predicted results from the CFD models and the Reynolds equation are 
compared. The pressure distribution and the film thickness of both models are 
found to be in agreement. The simulation results show that the surface 
roughness affects significantly for the behaviour of fluid film lubrication 
problems, especially in the thin film case. It is found that the pressure profile at 
the centre of the contact area directly relates to the roughness amplitude. 
Furthermore, the CFD models can model the elastic deformation of cylinders of 
different materials, which is another advantage of the CFD approach over the 
Reynolds equation.  
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Chapter 1 Introduction 

 

Introduction 
 

 

1.1 Context 

 

Lubrication systems have received much interest over the years as they are the 

lifeblood of all mechanical machines. Lubrication techniques can help reduce 

friction force, as well as prevent and reduce the wear that can occur on all 

contacting and moving parts.  

 

In order to improve the efficiency of a lubrication system, the behaviours and 

mechanics of fluid film lubrication must be explored and understood. Typically, 

fluid film lubrication can be divided into four categories according to load and 

friction coefficient, as shown by a typical Stribeck curve in Figure 1-1.     

 

The first type of lubrication in the Stribeck curve is thick full fluid lubrication or 

hydrodynamic lubrication (HD), that can generate the necessary pressure to 

carry a load when two surfaces are in sliding motion. The film thickness of the 

HD lubrication is usually between 20-100 µm and the maximum pressure 

between 2 MPa - 5 MPa. The friction occurring in the fluid film is high as the oil 

film for a HD lubrication is very thick. The torque initially required to rotate the 

shaft for the HD lubrication is also high. In addition, a HD lubrication system is 

also complex and needs routine maintenance. In spite of these disadvantages, 

hydrodynamic lubrication can carry heavy loads and has a long service life. This 

lubrication type is only applied in large machinery, such as the plain bearing in 

generators or turbine machines.   
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Figure 1-1: A typical Stribeck curve [1]. 

 

The second lubrication type is elastohydrodynamic lubrication (EHL). This 

lubrication is also full film, similar to the first type, but thinner, and pressure can 

be generated in pure rolling conditions without sliding. The generated pressure 

of EHL is extremely high and can cause the elastic deformation of solids. EHL 

also attracts more attention from researchers and has been continuously 

developed. In general, this viscous fluid film lubrication is commonly used in 

small and medium machines as it has less friction, smaller than hydrodynamic 

lubrication, and requires less maintenance. A common application of this fluid 

film lubrication is shown in Figure 1-2. 

 

 

Figure 1-2: A typical cylindrical roller bearing [2]. 
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The third type is mixed lubrication. Although similar to EHL, it involves the 

partial contact of asperities between both surfaces as the lubricant film is lower 

than the surface roughness. Direct contact can cause more wear and higher 

friction force, which is also the main cause of machinery breakdown. This 

lubrication can occur during lubricant starvation or overload conditions.   

 

The fourth and final type is boundary lubrication. This type of lubrication occurs 

when a machine is starting or stopping, as the speed of the moving parts is very 

slow causing a discontinuous fluid film over their surface. This lubrication is 

likely to be a dry contact that has a higher friction and rate of wear than other 

types of lubrication. 

 

The characteristics of lubrication, as described above, depend on fluid film 

thickness and the pressure generated in the thin fluid film. As a result, the 

influence of surface roughness on fluid film lubrication should be considered, as 

surface roughness has significant effects on friction force [3]. If the film 

thickness of the lubricant is lower than the peaks of surface roughness, a direct 

contact of both surfaces will occur, leading to a high friction coefficient as well 

as high wear rate. The influence of surface roughness on fluid film lubrication 

problems, however, is quite complex and is very difficult to investigate by using 

an experimental method. Therefore, a numerical approach is often sought to 

address such a problem. Understanding the effects of surface roughness on 

thin fluid lubrication is necessary for improving and analysing fluid film 

lubrication problems.   

 

EHL is defined as a thin film lubrication, which takes into consideration the 

elastic deformation of materials under high pressure. An EHL model is 

developed from hydrodynamic lubrication by accounting for the elastic 

deflection in the film thickness equation. Conventionally, the viscous fluid flow in 

EHL problems has been represented by the Reynolds equation [4], developed 

by integrating the Navier-Stokes equations across the film thickness. In the past 

decade, the Reynolds equation has been improved by combining film thickness 

with the viscosity equation, the density equation, the energy equation, and the 

load balance for investigating EHL problems [5-7]. 
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Figure 1-3: Dimensionless pressure (P) and film thickness (H) distributions of a 

typical EHL problem.  

 

1.2 Literature review 

 

Fluid film lubrication has gained widespread attention since 1886, when 

Osborne Reynolds [4] published his famous equation that is now known as the 

‘Reynolds equation’ which governs the generation of pressure in a thin viscous 

fluid film. The Reynolds equation can be used to predict the characteristics of a 

laminar flow for the Newtonian fluid in a hydrodynamics lubrication problem, 

such as the pressure distribution and film thickness upon the contact area, as 

shown in Figure 1-3.  

 

In 1916, Martin [8] presented an application of the Reynolds equation on the 

gears contact problem. To simplify the problem, the lubricant used was 

assumed to be incompressible, isoviscous, and the gears were considered to 

be smooth rigid bodies. Under these assumptions, Martin [8] predicted the 

minimum film thickness of the lubricant at the contact centre (X=0)  . However, 

the minimum film thickness was found to be smaller than the asperity of surface 

roughness. This result cannot be used to explain the real physics of gear 

contact, as the gears can still work for a long time with very little wear.  
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The contact surface becomes deformed under a heavy load and the properties 

of the bulk material should be considered in the evaluation of contact 

mechanics. Hertz [9, 10] studied the elastic deformation of solids in dry contact 

and proposed the elasticity theory which determines the resultant stresses 

between two spherical bodies. Hertz theory of elastic contact is widely accepted 

and considered to be the foundation of the study of deformation for non-

conformal contacts.  

 

Since 1939, the elastic deformation of solids [11] and the viscosity-pressure 

effects [12] have been applied to the Reynolds equation by Ertel [13] and 

Grubin [14]. By employing an analytical solution, they found that the minimum 

oil film thickness obtained is larger than the average surface roughness of the 

gear surfaces. It can be seen that the deformation of the solid surface and the 

viscosity-pressure effect are significant for fluid film lubrication behaviour. These 

applications on fluid film lubrication problems are widely known as 

‘elastohydrodynamic lubrication’ (EHL).  

 

In 1951, Petrusevich [15] was the first to solve the EHL line contact problem 

under steady state conditions by a numerical method. The numerical solution 

predicted the previous of a second maximum pressure peak. According to the 

pressure profile obtained, the pressure increases gradually at the lubricant inlet 

region of contact, reaches a pressure maximum, and then slightly drops after 

passing the contact centre. It then rapidly spikes, as illustrated in Figure 1-3. It 

can be observed that the pressure spike occurs at the minimum film thickness 

position. This feature is known as the ‘Petrusevich Pressure Spike’.    

 

Many numerical techniques have been proposed to calculate the Reynolds 

equation, which is a non-linear differential equation. In 1959, Dowson and 

Higginson [16] used a numerical method (inverse method) to solve EHL 

problems with the Newtonian fluid and isothermal conditions. This method is 

mainly suitable for highly loaded cases. By observing the experiment of Dyson 

et al. [17], measuring oil film thickness, it was found that isothermal EHL 

analysis could not be used to predict film thickness when this is significantly 

decreased at high rolling speeds. 
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In 1962, Dowson [18] presented an analytical method derived from the 

combination of lubricant properties (density and viscosity) and the classic 

Reynolds equation. The modified Reynolds equation is known as the 

‘generalized Reynolds equation’ and can be used to predict viscous fluid film 

lubrication problems in a more realistic way than the previous deterministic 

models, which assumed isothermal conditions. By including thermal effects, the 

model deriving from the generalized Reynolds equation can describe the 

thermal effects on hydrodynamic lubrication problems [19].  In addition, in 1967, 

Cheng [7]  investigated the influence of viscous shear heating at the inlet region 

and found that it was significant to the reduction of the oil film thickness.  

 

In 1976, Hamrock and Dowson [20] showed how Gauss-Seidel relaxation can 

be applied to the iterative method for solving the EHL point contact problem. 

The Gauss-Seidel technique is successful when applied to the EHL line contact 

problem, but takes a long time to converge in a point contact problem. Later, in 

1983, Okamura [21] suggested the use of the Newton-Raphson method for 

solving the Reynolds equation. It was found that the Newton-Raphson method 

is a powerful numerical technique for solving the Reynolds equation and is 

much faster than previous techniques.  

 

In 1987, Lubrecht [22, 23] suggested the use of the multilevel technique, a 

multi-scale approach designed to speed up significantly the numerical 

procedure for solving EHL problems. This method was developed and designed 

to solve differential equations and reduce the simulation time. Following 

Lubrecht’s work, a number of faster numerical evaluation techniques were 

proposed to reduce the simulation time, such as adaptive meshing, multigrid-

multilevel and multilevel multi-integration [24, 25].  

 

The surface roughness effect on the thin fluid film problem has been 

continuously studied since the first rough surface model based on stochastic 

theory was presented by Christensen in 1969 [26]. It was found that the 

influence of surface roughness on the hydrodynamic problem depends on the 

type of roughness. Subsequently, many mathematical models were proposed to 

predict the influence of surface roughness on the fluid film lubrication problem. 
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For example, in 1978, Patir and Cheng [27] studied the effect of surface 

roughness on hydrodynamic lubrication problems by creating a general 

roughness pattern model. This model is useful but cannot deal with real 

roughness that is non-isotropic.  

 

In 1992, Venner and Napel [28] studied the effects of surface roughness on the 

EHL problem. They determined the roughness profile by measuring the actual 

surface of the material, as surface texture significantly influences both pressure 

profile and film thickness. Later, in 2001, Zhu and Hu [29] studied the effects of 

surface roughness on the EHL and mixed lubrication problems with circular 

contact. The simulation results indicated that the average film thickness in the 

case of rough surfaces was slightly thicker than in the case of smooth surfaces.    

 

In 2002, a commercial computational fluid dynamic (CFD) code, based on the 

momentum equation, the continuity equation and the energy equation, was 

used by Almqvist et al. [30] to simulate an EHL line contact problem. They 

compared the solutions to an EHL problem solved both by the Reynolds 

equation and by the contemporary CFD techniques used in commercial CFD 

software. The results from both methods were in good agreement.  A small 

deviation, however, was found in the case of thin film thickness [31]. In 2008, 

Almqvist and Larsson [32] developed  an EHL model with CFX4, commercial 

CFD package, which considered the effects of temperature, surface roughness 

and time dependence. In this model, the fluid is considered to be non-

Newtonian and the upper surface is assigned a sinusoidal roughness, while the 

lower plate is defined as a smooth surface. The results showed that 

temperature and surface roughness bear an influence on pressure and film 

thickness. However, the pattern from real surface roughness was not 

represented by the sinusoidal model.  

 

In 2008, Hartinger et al. [33] presented a CFD model of the thermo-

elastohydrodynamic lubrication (TEHL) line contact problem. The shear in thin 

film was studied in the CFD model and compared with the Reynolds equation 

approach. The free package OPENFOAM was employed to solve the TEHL 

problem. The cavitation effect, which is not modelled by the Reynolds equation, 
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was considered by modifying the momentum computation as a function of 

pressure to include the effect of lubricant density. The results from the Reynolds 

equation and the CFD model are similar, with the exception of a small 

difference between the pressure predictions of the two methods observed in the 

case of high viscosity.  

 

Recently, Bruyere et al. (2011) [34] presented a CFD model and a full elastic 

model for an EHL sliding line contact problem. They proposed an approach for 

solving the Navier-Stokes equations, in which a finite-element method was used 

to solve the discretized equation of the Navier-Stokes equations. The results 

obtained indicated that the friction in the contact region has the dominant effect 

on the heat generated in the lubricant at the inlet region.  

 

It can be seen from the above literature review that the study of the thin film 

lubrication problems has been continually developed. There are many 

assumptions in the generalised Reynolds equation. For example, the 

deformation term in the film thickness equation is calculated by using the 

effective elastic modulus instead of the Young’s modulus of solids. In addition, 

the effective radius or the average radius of curvature of rollers is employed to 

represent the radii of both geometries for a two rollers configuration. These 

parameters will affect the results obtained, as the thin fluid film problem is very 

complex. These observations have led to the use in this project of a CFD 

model, instead of the Reynolds equation, to simulate and analyse EHL 

problems.  

 

1.3 Aims and objectives 

 

The aim of this study is to develop further CFD techniques for predicting and 

analysing the characteristics of the TEHL line contact problem. Three CFD 

models are designed to study the viscous fluid flow in a small gap for the 

contact between a cylinder and a flat plate, cylinders of equal radii (R1=R2), and 

cylinders of unequal radii (R1<R2).  
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The first model will be designed for the contact between a cylinder and a plate. 

This model will be used to investigate the influence of some key parameters on 

the characteristics of the TEHL line contact problem. A combination of viscosity, 

load, velocity, and material properties will be simulated under smooth and rough 

surfaces conditions. The effect of modelling viscosity either as a Newtonian fluid 

and a non-Newtonian fluid will be investigated. Furthermore, the influence of 

thermal effects on the viscosity and density of the selected lubricant will be 

considered, in the place of isothermal conditions. 

 

The second and third models will be designed for predicting the contact 

conditions between infinite-length (two dimensional) cylinders. Cylinders with 

the same radius of contact will be investigated in the second CFD model and 

the contact between subsequently the cylinders of different radius will be 

studied in the third CFD model. Both CFD models will be employed to study the 

distorted film thickness shape when the material elastic deformation and radius 

of each cylinder are applied directly to them. The deformation on each cylinder 

from the second and third CFD models will be compared with that from the first 

CFD model (roller and plate contact). More importantly, the influence of surface 

roughness on the thin fluid film will be studied in all three CFD models. The 

measured real surface profile will be used in the first and second CFD models, 

while stochastically generated surface profiles will be employed in the third CFD 

model. The aim is for behaviour predicted by the TEHL problem through the 

CFD simulation using more accurate models to be more like the reality.  

 

The objectives of this research are: 

1. To create and develop predictive models for the TEHL line contact 

problem by using CFD techniques. 

2. To study the effects of real surface roughness on the TEHL line 

contact problem by using the developed CFD models. 

3. To compare the effects of surface roughness on the TEHL line 

contact problem between predictions from CFD models. 
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Chapter 2  Elastohydrodynamic Lubrication 

 

Elastohydrodynamic Lubrication 
 

 

2.1 Introduction 

 

In this chapter, a brief introduction to the theory of the Reynolds equation for 

elastohydrodynamic lubrication (EHL) is presented. Other equations employed, 

such as the film thickness equation, the density equation, the viscosity equation 

and the load balance equation are also described. Viscosity models for both 

Newtonian fluid and non-Newtonian fluid are defined. After that, the elastic 

deformation in the film thickness equation, which depends upon pressure 

generation and Young’s modulus of elasticity, is explained. Finally, the energy 

equation used to compute the temperature rise in the oil film at the contact area 

is described. 

 

2.2 The Reynolds equation 

 

Typically, the macroscopic behaviour of fluid in motion can be modelled by the 

Navier-Stokes equations, which describe the motion of the fluid and the 

relationship between velocity and fluid stress in the element of fluid. In 1886, 

Reynolds [4] derived a simplified form of the Navier-Stokes equations to model 

the pressure distribution in a thin fluid film by integrating the Navier-Stokes 

equations across the film thickness. The Reynolds equation, based on the 

conservation of mass, has a partial differential equation form. In this equation, 

the lubricant is assumed to be a Newtonian and incompressible fluid. In 1962, 

Dowson [18] developed the theory for a general Reynolds equation further by 
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considering the effects of viscosity changes across the film thickness. The 

following assumptions were made:  

‐ The weight of the fluid is negligible. 

‐ The viscous fluid flow is considered to be laminar. 

‐ The lubricant is considered to be a Newtonian fluid. 

‐ There is no-slip surface between the solid and the fluid. 

‐ Surface tension and the inertia of the fluid are negligible when 

compared with viscous forces. 

‐ The pressure is constant across the film thickness ( 0


z

p
). 

For simplicity, Dawson [16] specified further assumptions in the derivation of the 

generalised Reynolds equation - i.e. shear stress and velocity gradients are 

applied only perpendicularly to the direction of the fluid flow. An element of fluid 

with applied forces is depicted in Figure 2-1.  

 

 

Figure 2-1: The acting forces on a fluid element [35]. 
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If the shear stresses and velocity gradients in the x  and y directions are 

considered negligible, the relation between pressure and stress can be written 

as [5]: 

 0x

zx

F

p

z x





 


 



 

(2.1)

Similarly,  

 0y

zy

F

p

z y





 


 



 

(2.2)

According to Newton’s law of viscosity: 

 
zx

zy

u

z
v

z

 

 










 

(2.3)

Substituting equation (2.3) into equations (2.1) and (2.2) gives: 

 u p

z z x
        

 
(2.4)

and    

 v p

z z y
        

 
(2.5)

Equations (2.4) and (2.5) are integrated with respect to z  twice to obtain: 

 
d

czz

x

p
u 














 2

1 2

 
(2.6)

 

 
1

1
2

2

1
d

zcz

y

p
v 















(2.7)

In order to determine the integration constants in equations (2.6) and (2.7), the 

boundary conditions are required to be defined. The boundary conditions for u  

at the plate and cylindrical surface are 1uu   at hz   and 2uu   at 0z , from 

which the stream wise velocity distribution of the fluid is obtained: 

    2
1 2 2

1

2

p z
u z zh u u u

x h
  

       
 

(2.8)
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The boundary conditions for v  at the plate and cylindrical surface are 1vv   at 

hz   and 2vv   at 0z , respectively from which the flow-normal velocity 

distribution of the fluid is obtained: 

    2
1 2 2

1

2

p z
v z zh v v v

y h
  

       
 

(2.9)

The continuity equation or conservation of mass in two dimensions can be 

written as: 

       0x ym m h
x y t

  
  

  
 

(2.10)

where   
0 0

,
h h

x x y ym q udz m q vdz        
 
 

By substituting equations (2.8) and (2.9) into (2.10) gives: 

      
0 0

0
h h
udz vdz h

x z t
    

  
   

(2.11)

where: 

 
 

3

1 20 12 2

h h p h
udz u u

x

 


                 
  

(2.12)

 
 

3

1 20 12 2

h h p h
vdz v v

y

 


               
  

(2.13)

 

Thus, substituting equations (2.12) and (2.13) into (2.11), the Reynolds 

equation for the Newtonian fluid can be derived as [36]: 

 

3 3

1 2 1 2

12 12

2 2

h p h p

x x y y

u u v v
h h h

x y t

 
 

  

      
          

                         
 

(2.14)

The first and second terms describe the net flow rate and are known as the 

‘Poiseuille terms’. The Poiseuille terms are a result of pressure gradients in the 

thin fluid film. The third and fourth terms, which are the ‘Couette terms’, 

represent the net entrainment flow rates due to the wall motion. The last term, 

which is the local expansion, describes the density change of the fluid over 

time. The physical changes in a thin fluid film can be explained by these terms 

[37]. It can be observed that the flow speed, density, and viscosity are all part of 

the mechanism of pressure generation in a viscous thin fluid film.   
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The Reynolds equation for a line contact problem stated in terms of 

dimensionless values can be derived by introducing the following non-

dimensional parameters [38]:   
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Thus, the applied Reynolds equation in dimensionless form for an EHL line 

contact problem is:   

    *

P
H H

X X X t
               

(2.15)

where   










2

33

12 Ru

pbH

mo

H


  

It can be noticed that the above Reynolds equation is a partial differential 

equation (PDE). Usually, a mathematical model for a non-linear problem is 

commonly solved by using a numerical method, where it is necessary to change 

the form of the Reynolds equation from the differential equation into the 

discretized equation by applying the finite difference method [39, 40]. The 

discretized equation can then be solved by using algebraic methods, such as 

the Newton-Raphson method and the multigrid method. The numerical method 

used in this problem and the flow chart of calculations are explained further in 

the appendix three and appendix four, respectively. 

 

2.3 The film thickness equation 

 

The contact between the cylinder and the plate is considered to be a non-

conforming contact and referred to as a Hertzian contact. Hertz made the 

following assumptions [9, 35, 41]. 

‐ The strains are small. 
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‐ Each solid can be considered as an elastic half-space in the proximity 

of the contact region. 

‐ The surfaces are frictionless. 

‐ The surfaces are continuous, smooth and non-conforming. 

‐ The geometry of the initially undistorted surfaces touching at a point or 

along a line is described by quadratic terms only, as the region of 

interest is very close to a point or line.  

 

Figure 2-2: EHL film shape [35, 42]. 

 

Consider a cylinder rolling over a lubricated plate. The oil film thickness, 

separating the surface of solids, can be represented by the film thickness 

equation for the EHL problems, which consists of three parts as described in 

Figure 2-2. The first component ( oh ) is the undeformed gap between the 

cylinder and the plate or known as the ‘minimum film thickness’. The second 

component ( uh ) is the parabolic approximation for the undeformed geometry 

which is assumed to be a parabola following Hertz’s theory. The last term ( dh ) 

is the elastic deformation of a surface due to a pressure field,  xp . It is 

obtained by integrating the pressure distribution over the x  coordinate, as 

suggested by Timoshenko and Goodier [10, 43, 44]. At any point, the film shape 

can be expressed as: 

      xhxhhxh duo   (2.16)
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Therefore, the film thickness equation can be computed by the following: 
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(2.17)

where E  is an effective elastic modulus, and ox  is the distance at which the 

elastic deformation is zero. E  can be calculated from the Young’s modulus and 

the Poisson ratios of the contacting bodies as:   
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(2.18)

where subscript 1 refers to the cylinder and subscript 2 refers to the plate. 

 

2.4 The force balance equation 

 

After the Reynolds equation is solved, it is necessary to ensure that the applied 

load on a cylinder is balanced by integrating the pressure generated over the 

contact region. The moving direction of the top cylinder can be moved up or 

down depending on the balance of the generated pressure and the applied 

load. The proportion of the unbalanced force (defect) is used to calculate the 

vertical displacement of the cylinder. This can be done by integrating the 

pressure distribution over the contact area so that: 

 
w pdx





   
(2.19)

where w  is an applied load (N/m). Thus, correcting the undeformed gap term in 

equation (2.17) is given by: 

 defectchh old
o

new
o  (2.20)

and 
defect w pdx





 
  
 

  
(2.21)

where c  is a constant affecting the stability of the solution. The solution will 

generally converge faster with larger c , but may not be stable or converge in 

some cases. The c  parameter can be considered an under-relaxation factor 

that is determined in the numerical implementation, c  by using trial and error 

which typically takes a number of attempts. 
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2.5 Rheology 

 

Rheology is the study of fluid properties such as viscosity, velocity, and shear 

stress [45]. The main variables that influence viscosity in a flow are the shear 

stress and the strain rate. The viscosity index can be measured by a rotational 

viscometer as shown in Figure 2-3. Additionally, Figure 2-4 shows the bob that 

is rotated while the cup is a stationary part [43, 46, 47]. 

 

 

 

 

  

 

 

 

 
 

Figure 2-3: The rotational viscometer [48]. 

 

 
 

Figure 2-4: The standard cup to measure the viscosity of fluids using a 

rotational viscometer [48]. 

 

In order to specify the type of fluid according to its traction behaviour, it is 

necessary to consider the relationship between shear stress and strain rate. 

From this, a fluid can be classed either as a Newtonian fluid or non-Newtonian 

fluid [46]. 

Lubricant 

 

Cup 
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Figure 2-5: Schematic of Newton's postulate [49]. 

 

2.5.1 Newtonian fluid 

If the relationship between the shear stress and the shear strain rate in each 

layer of fluid is constant, the fluid behaviour is considered to be Newtonian. The 

relationship between dynamic viscosity and shear stress was found by Newton 

[35] and it can be written as: 

  
  





hu

AF

/

/
 

(2.22)

where   is the shear strain rate  and   is the shear stress. 

 

By the Newton’s law of viscosity, a laminar flow assumes a layer of fluid which 

consists of oil molecules as shown in Figure 2-5. Each cylinder represents a 

small molecule of oil that rotates on the oil layer beneath it. The translational 

velocity of each layer has a different magnitude and each layer has a friction 

coefficient called dynamic viscosity. This principle can be written as: 

 du

dy
   

(2.23)

Therefore, the relationship between shear stress and shear strain rate of the 

Newtonian fluid has to be linear, as shown in Figure 2-6. It is well understood 

that the dynamic viscosity (absolute viscosity)   of a lubricant increases with 

pressure, especially in the case of a thin film. Models for the relation between 

pressure and viscosity in lubricants are proposed by Barus [50], Chu and 

Cameron [51]  and Roelands [6]. The Roelands model is a popular model for 

the EHL problem. The model relates the pressure and the dynamic viscosity as: 

     9
0 0exp ln 9.61 1 1 5.1 10

n

Roeland p              
 (2.24)
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where 0 is the viscosity at atmospheric pressure, p  is the pressure and n  is 

the pressure viscosity index that can be calculated from:  

 

 9
05.1 10 ln( ) 9.67

n



 
 

(2.25)

However, the viscosity equation as shown in equation (2.24) can only be used 

in the case of an isothermal analysis. The influence of thermal gradients is 

significant on the viscosity of a fluid, in particular for the case of a high rolling 

speed and heavy load [52]. Then, the Roeland model was further developed to 

obtain accurately the viscosity as a function of pressure and temperature by 

Houpert [53]. Therefore, the complete viscosity relationship is given by:  
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Figure 2-6: The relation of shear stress and shear strain rate for different types 

of fluids [54]. 

 

2.5.2 Non-Newtonian fluids 

Referring to Figure 2-6, it can be observed that the relationship between shear 

stress and shear strain rate is non-linear for pseudoplastic fluids (shear thinning 
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fluids), viscoplastic fluids (yield stress fluids), or dilatant fluids (shear-thickening 

fluids). In general, the viscosity of non-Newtonian fluids is dependent on the 

shear strain rate. Several models have been proposed to explain the behaviour 

of non-Newtonian fluid flow, for example, the Power law model [36], the Carreau 

model [55] and the Ree-Eyring model [56]. The viscosity of a non-Newtonian 

fluid can be described in term of the strain rate (rate of deformation) tensor, 

which is given by: 

   Tuu   (2.27)

where u  is the velocity vector,   is the gradient operator, and T  indicates the 

matrix transpose. The equivalent shear strain rate, which is related to the 

second invariant of the rate of deformation tensor ( ), can be defined as: 
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(2.28)

where the : is the double scalar product. Substituting equation (2.27) into 

equation (2.28) gives: 
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In tensor form, the equivalent shear strain rate is written as: 
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i) The Power law model 

The Power law model [36] is often used to represent the behaviour of fluid flow 

because it is a simple model and can represent both non-Newtonian and 

Newtonian fluids, especially pseudoplastic fluids. This model was developed by 

using curve fitting experimental data and the type of fluid flow can be defined by 

a viscosity index (n). The viscosity of fluid which follows the power law model 

can be expressed as [46]:   

   1 n
eqpower m    (2.32)

where  1n  for a Newtonian fluid, 
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 1n  for a non-Newtonian fluid of the dilatant type, 

 1n  for a non-Newtonian fluid of the pseudoplastic type, and 

eq  is the equivalent shear strain rate.  

The m  and n  are the consistency coefficient of the fluid and the Power law 

index, respectively. It should be noted that the Power law model has a weak 

point as both parameters are dependent on a shear strain rate. Therefore, using 

the power law model may not be accurate in the case of high and low shear 

strain rates. 

 

ii) The Carreau model 

The Carreau viscosity model [55] can be used to predict the flow behaviour of 

the fluid flow for the same type as the Power law model. For the pseudoplastic 

fluid, finite values of shear stress occur as the shear strain rate is zero or tends 

to infinity and these conditions cannot be calculated by the Power law model. 

On the contrary, the Carreau viscosity model, which includes zero shear strain 

rate and the infinite shear strain rate terms, is given by: 

  
 1 / 22

( ) 1
n

carreau c eq



 
       

       
(2.33)

where 

c  is the zero-shear strain rate viscosity, 

  is the infinite-shear strain rate viscosity,  

  is a time constant , which can be expressed as 0 /G  , 

G  is a shear modulus, 

n  is the power index, and 

eq
 

is the equivalent shear strain rate. 

 

iii) The Ree-Eyring model 

The Ree-Eyring model is widely used for modelling non-Newtonian fluids in the 

EHL problem. This model was proposed by Eyring [57] in 1936 to explain the 

increase of viscosity with the shear stress. Johnson and Tevaarwerk [56] later 

experimentally curve fitted the model with five different fluids and found that the 
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sinh law can be used to predict the shear thinning behaviour very well. In order 

to produce the non-linear viscous function, the zero shear strain rate viscosity, a 

reference shear stress and a reference shear rate modulus are used to define 

eq  in the Ree-Eyring model: 
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 
 

 
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(2.34)

 

Bair et al. [58, 59] suggested that the elastic term 1G   in equation (2.34) can be 

ignored as the time-dependency of viscosity is not significant when this model is 

applied to the EHL problem. Thus, the shear strain rate can be approximated 

by:  
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(2.35)

According to the Newton’s law of viscosity, the relation among shear stress, 

equivalent shear strain rate and the Ree-Eyring viscosity can be defined as: 

 -Ree Eyring eq     (2.36)

Therefore, the shear-thinning of EHL lubricants can be calculated from the 

following formula: 
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(2.37)

where eq  is the equivalent shear strain rate,  

0  is the viscosity at atmospheric pressure, and  

0  is the reference shear stress. 

 

The viscosity of fluid in the EHL problem is a function of pressure and the 

temperature, thus the 0  term in equations (2.37) is estimated by Houpert  as 

presented in equation (2.26).    

 

2.6 The density equation 

 

In the EHL problem, the density of lubricants is affected when the pressure or 

temperature of the lubricant changes. The relationship between pressure and 

density in the thin film problems developed by Dawson and Higginson in 1962 
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[38, 60] is widely used in EHL problems. In addition, the experimental study by 

Hirano et al. [61] presented a relationship for the density of mineral oil and 

pressure which can be written as: 

 9
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 
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

 
    

 (2.38)

where 0  is the density at atmospheric pressure. However, a realistic 

rheological model for the compressibility of the film thickness in the EHL 

problem should also account for thermal effect. The pressure-density and 

temperature relationship for a lubricant is given by [62, 63]:  
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 (2.39)

where 0T  is the ambient temperature and   is the thermal expansivity of the 

lubricant (1/K). 

 

2.7 Energy equation 

 

Among a number of factors, the main influence of heat on the film thickness in 

the EHL problem is due to viscous shear [64]. In addition, compression in the 

fluid film is also important for the heat generated [35] in an oil film. An increase 

in temperature can affect lubricant properties, such as viscosity and density. 

Particularly for the heavy load and high sliding rate case, the temperature within 

the lubricant film will rise significantly, thereby reducing the viscosity and the 

density of the lubricant. As a result, the thermal effect should be accounted for 

in a well formulated EHL model. Therefore, both the Reynolds equation and an 

energy equation will be simultaneously solved for predicting the characteristics 

of the TEHL problem.   

 

In order to determine the energy equation governed by the law of conservation 

of energy, some assumptions are made. The variation of pressure across the 

fluid thickness is negligibly small because the film thickness in the TEHL 

problem is very thin and thus thermal gradients across the film thickness are not 

taken into consideration. In addition, the heat convection across the fluid film 

and the heat conduction along the film thickness are also very small and, thus, 
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equally ignored. The appropriate boundary conditions, including the pressure 

and temperature at the inlet, are kept at ambient conditions, while the outlet 

temperature is extrapolated from the interior domain. The energy equation, 

which is a compound of convection, conduction and heat source terms for the 

EHL line contact problem, can be expressed as follows [7, 65-67]: 
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(2.40)

where k  is thermal conductivity and   the thermal expansivity of the lubricant. 

  

In the Reynolds equation model of section (2.2), the calculation of the 

temperature increase over a moving surface is obtained by Carslaw and Jaeger 

[68, 69]. They derived the conductive heat transfer from fluid film to solid 

surfaces (temperatures at the top cylinder: cT  and the bottom plate: pT ) as 

expressed by the following equations:  
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According to the work of Cheng and Sternlicht [70], the singularity at xx  can 

be removed by assuming a linear function for a heat flux term. In order to 

predict the characteristic of the TEHL problem, the Reynolds equation and the 

energy equation will be simultaneously solved. Then, the pressure and the 

temperature obtained will be used to update the lubricant properties in each 

iteration, until convergence is achieved.  

 

In the CFD models of section (5.5) , the Cheng and Sternlicht [70] model is not 

used and the temperature is imposed as constant and equal to the ambient 

temperature. 
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Chapter 3 Surface Roughness 

 

Surface Roughness 
 

 

3.1 Introduction 

 

It is important to understand the surface roughness of a workpiece as it plays an 

important role in the contact with other components. This chapter briefly 

describes the definition and characteristics of surface roughness, including the 

measurement of surface roughness. The parameters used to characterise a 

surface roughness profile, which are the average surface roughness (Ra), the 

root mean square (Rq), the skewness value (Rsk) and the kurtosis (Rku), are 

explained. Then, the Abbott-Firestone curve that is commonly used to illustrate 

the properties of bearing surfaces is presented.  Furthermore, examples of the 

surface roughness of a cylindrical roller bearing measured using the Surtronic 

3+ are presented and analysed. Finally, a number of techniques used to filter 

the wave form of the profile of the measured surface roughness are explained, 

in addition to the theory of probability distribution used to generate a synthetic 

surface roughness, such as the Gaussian distribution and the Pearson 

distribution.  

 

3.2 Surface texture characterization 

 

3.2.1 The nature of surfaces 

The surface roughness plays an important role in a number of applications, for 

example, vehicular brake systems require a high roughness to increase the 

friction coefficient on the lining surface. In contrast, the aim of lubrication is to 
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alleviate the negative effect of rough surfaces on workpieces, or control and 

minimize them as much as possible. Infact, it is difficult and expensive to control 

the surface roughness in the manufacturing process and the effect of rough 

surface finishes is often managed through lubrication. This field has gained 

more attention from researchers including, but not limited to, the effects of 

rough surfaces on friction, lubrication and wear [3].   

 

Generally speaking, all surfaces of solids are rough. The shape and the 

magnitude of the roughness depends upon the production process [71] and the 

material type. Figure 3-1 illustrates how an actual surface profile of a workpiece 

can be separated into three components as follows: 

‐ An error of form or a slope of long wavelength that can occur in the 

manufacturing process, depending on the condition of the machine 

used.    
‐ A profile of waviness in the transverse direction is similar to a 

roughness profile, but a magnitude of the waviness is higher than the 

rough profile. Waves on a surface profile can be caused by vibration of 

the fabrication machine. 

‐ A roughness describing fluctuations of short wavelength on the surface. 

It is typically a random deviation from the centreline as magnitude and 

direction are varied. 

 

 

Figure 3-1: The actual surface profile of a solid component [47]. 

 

3.2.2 Surface texture parameters 

Several parameters in statistical analysis are proposed to explain the 

characteristics of surface roughness. However, there are two commonly used 

forms to represent the amplitude of a rough surface: 
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1. Arithmetical average roughness ( aR ) [72]  is the average distance of the 

peaks and valleys of a material surface profile from the centreline 

average (CLA) as sketched in Figure 3-2. The Ra parameter is defined 

as:  
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where L is the sampling length and y is the distance of the surface from 

the mean line. 

 

Figure 3-2: A schematic of the roughness parameter, aR . 

2. qR  is the root mean square (RMS) roughness. In general, the value of 

qR   is higher than aR  by around 11% for the same surface roughness 

[73]. The qR  value is expressed in terms of the sample standard 

deviation and it can be written as [72]: 

 
2

1

1 n

q i
i

R y
n 

 
 

(3.3)

The values of aR  and qR  represent similar quantities in that they both describe 

the magnitude of the roughness but do not give any indication of the sharpness 

of the surface geometry.  
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Figure 3-3: Different profiles of surface roughness with the same Ra value [74].   

 

Figure 3-3 presents four different roughness profiles, sharing the value of aR . It 

can be inferred that the aR  parameter alone is inadequate for representing the 

physicality of the surface roughness profile because it cannot describe the 

shape or the character of these surfaces. In order to represent a profile of a 

rough surface, the probability distribution of the asperities should be considered, 

as it given a statistical representation of the roughness over the entire surface. 

Figure 3-4 shows the relationship between the Probability Density Function 

(PDF) of height on a rough surface and the cumulative PDF. The cumulative 

PDF of surface roughness has been widely used for describing the percentage 

of material within the surface roughness profile, and is also known as the 

‘Abbott- Firestone curve’.   

 

 
 

Figure 3-4: Relationship between the height profile and the cumulative PDF of 

surface roughness [75]. 
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Figure 3-5: Schematic of variance skewness [75]. 

 

It can be seen that the asymmetry of the probability density function with 

respect to 0z  can be explained by the skewness value ( skR ) as shown in 

Figure 3-5. The different surface textures displayed in Figure 3-3 affect the sign 

of the skewness value. If the skewness value is negative, the surface 

roughness profile will have lots of peaks. In contrast, if the skewness value is 

positive, many valleys will occur in the profile as shown in the third and fourth 

profiles of Figure 3-3, respectively. The skR  value is expressed in the terms of 

the qR value and the standard deviation as:  
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In addition, the sharpness of each asperity peak can be described by the 

Kurtosis ( kuR ) value:  
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If kuR  is higher than 3.0, the distribution curve is less likely to produce a large 

roughness peak when compared to a normal distribution. In contrast, the 

distribution curve of a uniformly rough profile, with no large peaks has kuR  < 3, 

as depicted in Figure 3-6. It can be observed that for kuR  > 3, there is more 

diversity of peaks and valleys in a roughness profile than that of kuR  < 3. If skR

=0 and kuR =3.0, the PDF is a normal distribution, also known as the ‘Gaussian 

distribution’. The nature of surfaces is random and surface height distributions 
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do not fall into an ideal Gaussian distribution [76]. However, it is nevertheless a 

good approximation and it is commonly used to characterize surface roughness 

or to generate a synthetic, computer generated, surface roughness [77]. 

 

 
 

 

Figure 3-6: Representing distribution curve with variance kurtosis [75]. 

 

3.2.3 Abbott-Firestone curve  

The evaluation of the surface texture can help better understand the property of 

surface roughness. The most popular method used is known as the ‘Abbott-

Firestone curve’ or the ‘Bearing Area Curve’. The Abbott-Firestone curve is an 

important tool for representing the percentage ratio of material within the 

surface roughness profile and was introduced by Abbott and Firestone in 1993 

[78]. It is often used to evaluate the surface of workpieces in the automotive part 

industry. 

 

Figure 3-7 presents the relationship between the cumulative probability density 

function of surface roughness height and the percentage material ratio within 

the evaluation length. By the DIN 4776 standard [79], the Abbott-Firestone 

curve is obtained by integrating the PDF obtained from the rough surface trace 

along the evaluation length [80]. With this standard, the Abbott-Firestone curve 

is divided into three zones. The first zone ( pkR ), from 0% to 1rM , is where the 

slope dramatically changes, and represents the peaks in the roughness profile. 

Usually this zone of the surface texture will disappear in the running-in 

operation [81]. The second zone ( kR ) is between 1rM  to 2rM  where the slope 



31 

is constant. This represents the average roughness of the surface, and is the 

‘core’ of the roughness profile.  The last zone ( vkR ) is from 2rM  to 100%, and 

represents the valleys of surface roughness. This zone is useful in lubrication as 

it serves to retain the lubricating film. 

 

The properties of surfaces can be evaluated by observing these zones. For 

example, if the pkR  zone is wider than others, there may be many peaks in the 

surface roughness. This shape is similar to the case of a positive skewness. In 

contrast, if the vkR  zone is wider than other zones, there may be many valleys 

in the surface roughness [82].  

 

 
 

Figure 3-7: Abbott-Firestone curve [83]. 

 

 

Figure 3-8Figure 3-8 demonstrates an example of the histogram and Abbott-

Firestone curve of a surface roughness. The histogram represents the depth 

distribution of the roughness profile from 0 to 340 nm. Meanwhile the red line 

indicates the percentage material ratio, which is calculated from the 

accumulation of the histogram, for each depth level in the evaluation length. For 

example, the histogram shows that 14.5% of the points along the surface have 

a depth that lies between 34 and 51 nm. 92 % of the points along the surface 

have a depth that lies between 0 and 170 nm.   
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Figure 3-8: Representing the depth distribution histogram and the Abbott-

Firestone curve. 

 

3.3 Filters  

 

Traditionally, there have been many ways to separate a waviness profile from 

the primary profile such as fitting, filtering, and skidded measurement. The 

filtering technique is most often used to separate the components of a surface 

profile, which numerically is based on a weighting function. This technique is 

also preferred in the electronic engineering field to separate noise from the 

signal. Currently, there are a number of weighting functions that can be used to 

filter out the waviness profile such as 2RC filter [84], Gaussian filter [85], Spline 

filter [86, 87], and Robust spline filter [88].  

 

The 2RC filter is a high pass filter where the mean of the primary roughness 

profile is calculated by convolving the primary roughness profile with the 

weighting function of the 2RC as given by [84]:  
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where C =3.64 (75 % of transmission) and c  is the cut-off wavelength of the 

filter. The filtered roughness profile is obtained by subtracting the primary 

roughness profile from the calculated mean. Generally speaking, the 

transmission ratio of the 2RC filter at the cut-off is defined as 75%. The 2RC 

filter is included in the ASME B46.1 standard [89]. However, the 2RC filter is not 

as widely used as the Gaussian filter because of distortion in the obtained 

roughness profile, especially in the case of a high cut-off value [90].      

 

The Gaussian filter [85] has been widely used to separate short and long waves 

from the primary surface. This filtering method is also accepted by the ASME 

B46.1 [89] and the ISO 11562 standard [91]. The transmission ratio of the 

Gaussian filter at the cut-off is defined as 50%. The weighting function of the 

Gaussian filter for a roughness profile in one dimension can be written as [85]: 

                 





















2

exp
1

cc

x
xg





 

(3.7)

where c  is cut-off wavelength of the filter and  =0.4697.  In order to exclude a 

long wavelength waviness profile,  xw , from a primary surface roughness 

profile,  xs , by the Gaussian filter, the weighting function in equation (3.7) and 

the primary surface roughness profile are convolved:    

 

                     xgxsxw *  (3.8)

The filtered roughness profile,  xr , can be obtained by subtracting the primary 

surface from the waviness profile as follows: 
 

                     xwxsxr   (3.9)

Figure 3-9 shows the application of the Gaussian filter on the primary surface 

with three different cut-off values. It is evident that the cut-off value plays an 

important role in the evaluation of roughness and waviness profiles. The 

recommended cut-off values by Taylor [92] are 0.25 mm, 0.80 mm, and 2.5 mm.  
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Figure 3-9: The influence of the cut-off values on waviness and roughness 

profiles using the Gaussian filter. Measured primary surface roughness (blue 

line), long wavelength waviness profile (red line), filtered roughness profile 

(green line)  
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If the selected cut-off value is shorter than the wavelength of the roughness, the 

amplitudes of the roughness profile will be significantly changed as shown in  

Figure 3-9b. Thus the appropriate cut-off value must be between the 

wavelengths of roughness and waviness, because shorter wavelengths will be 

filtered out by the high pass filter.  

 

Figure 3-9d depicts the obtained roughness and waviness profiles when the cut-

off value is 0.25 mm. It can be clearly seen that the roughness profile is 

adequately filtered out from the waviness profile. Thus, the cut-off value at 0.25 

mm is appropriate for separating the waviness from the original roughness 

profile in this study. Not only the cut-off value is significant to the filter profile, 

but the evaluation length also significantly affects the waviness and roughness 

profiles. In fact, the evaluation length should be at least 5 times that of the 

selected cut-off value. 

 

Using the Gaussian filter gives an error of the separated waviness at the edge 

of the roughness profile. This can be ignored by excluding the edge of the 

obtained result. The roughness and waviness profiles span the length from 0.1 

mm to 0.9 mm. It can be observed that the length of the errors at both edges is 

directly proportional to the chosen cut-off wavelength value. Krystek [85] 

suggested to use a fast convolution algorithm to calculate a waviness profile of 

a surface profile by using the Gaussian filter. Krystek reduced the edge error 

problem by starting the calculation after the cn  point as shown below: 
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(3.10)

 

where    co dxc / ,  =0.4697186, 001.01 c  and c is the cut-off value. The 

waviness profile is chosen to start after the cn  point and finish at the cnN   

point, where N is the total number of data points on the primary roughness 

profile.  
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3.4 Measurement of Surface Roughness 

 

It is essential to consistently measure the surface roughness of work pieces as 

broad definitions of ‘smooth surface’ or ‘rough surface’ are inadequate. The 

ideal method by which to characterise surface roughness is through direct 

measurement with an appropriate tool. In this context surface roughness is 

usually quantified by the vertical deviations of a surface from its mean profile.  

 

Historically, the stylus instrument was the most widely accepted method to 

measure surface roughness as it gave more accurate results compared to other 

methods. Presently, many surface measuring instruments are used in 

manufacturing. For example, stylus instruments are widely used in the 

automotive industry, while optical instruments are often used in manufacturing 

where a non-contact method is required. Optical instruments do not make 

contact with surfaces and thus do not leave any trace or damage. Surface 

measuring instruments currently used in manufacturing can be sorted into two 

groups as follows:   
 

 

Figure 3-10: Representative scheme for reflecting of light with smooth and 

rough surfaces  [93]. 

 

A. Non-Contact approach  

Optical profilometry measures surface roughness by using the laws of reflection 

as shown in Figure 3-10. Instruments that use this technique make use of focus 

detection, interferometry, and projected light. The optical interference method is 

suitable for measuring roughness of soft materials which are easily damaged. It 

is widely used in manufacturing of lenses and hard disk equipment. Figure 3-11 
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shows the schematic of the optical surface profile. The main idea of the optical 

interference instrument is to identify the wavelengths of the light beams that are 

reflected from the test material and the reference mirror. Both wavelengths of 

the light beam will be used to calculate the height differences over a surface 

profile [94]. The performance of the optical interference instrument is continually 

improving and is currently able to measure surfaces with roughness amplitude 

from 50 nm to 1.5 μm [94].  
 

 
 

Figure 3-11: Schematic of the optical surface profile [94]. 

 

B. Contact approach 

Surface profilometry, also known as the ‘Stylus method’, is operated by moving 

a stylus along a surface. The stylus moves up and down following the peaks or 

valleys in the surface, and records this in terms of Cartesian coordinates as 

shown in Figure 3-13. At the same time, a waviness profile can be measured 

and filtered from the primary surface roughness profile by the motion of the skid. 

In general, the radius of the skid is larger than the spacing between roughness 

elements. However, these coordinates are not an exact replica of the measured 

surface texture, as they represent the movement of the centre of the stylus. 

Figure 3-14 shows the effect of using different sizes of stylus, resulting in 

different profiles of the measured surface. The instrument will produce a 

distortion of the real profile if the stylus is bigger than the minimum curvature of 
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the peaks or valleys [95]. Figure 3-15 shows the relationship between the ratio 

of stylus tip radius to actual aR  of surface roughness and the percent of the 

reduction of aR . It can be noticed that the error on the aR  increases, when the 

ratio the ratio of stylus tip radius to actual aR  of surface roughness is increased. 

However, with the improvement of  manufacturing techniques, the head of the 

stylus can now be produced to a size of 0.001 µm [96]. As a result, they can 

capture surface roughness profiles in extremely fine detail and are thus widely 

accepted in industry. 

 

 
 

Figure 3-12: Surtronic 3+ [92]. 

 

 

 

Figure 3-13: Schematic of the working principle of a stylus profilometer [97] 

 

 

 
 

Figure 3-14: Comparison of the surface measurements between stylus A and B. 
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Figure 3-15: Error due to stylus tip radius [98] 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-16: The sample of a cylindrical roller bearing for measuring the surface 

texture. 
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To understand the characteristics of real surface roughness on bearings, a new 

‘as-manufactured’ sample of a cylindrical roller bearing (NJ 306E), illustrated in  

Figure 3-16, was employed to measure the surface of the roller cylinder and the 

surface of the bearing case by using the Surtronic 3+ stylus profilometer [92] as 

shown in Figure 3-12. The radius of the stylus tip in SUR 3+ is 5 µm. The 

bearing dimensions are d30xD72xB19 mm, where d is the inside diameter of 

the bearing, D is the outside diameter of the bearing, and B is the thickness of 

the bearing. The rollers and bearing case are made of chrome steel (GCr15), 

surface-finished by grinding and buffing after heat-treatment  [99].  

 

3.4.1 Surface roughness of the bearing case in the azimuthal direction 

The objective of this measurement is to study the real surface roughness of the 

bearing case. The measured surface roughness of this component will be used 

to study the effect of surface roughness on the EHL problem by applying it to 

the surface of the bottom plate in the CFD model. 

      
 

 

 

 

Figure 3-17: The stylus is moved tangentially over the surface of the bearing 

case. 

 

Figure 3-17 shows the stylus moving on the surface of the bearing case. Figure 

3-18a shows the surface roughness profile obtained. In this project, only the 

roughness profile is of interest, thus it is necessary to separate the waviness 

from the primary surface roughness profile. Figure 3-18a reports by the blue line 

the measured primary surface roughness profile which is comprised of two 

components that can be separated by the Gaussian filter. The first part of the 

primary surface roughness is the roughness profile presented by the green 

fluctuating line in Figure 3-18b, while the red line in Figure 3-18b shows the 

waviness profile.  
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Figure 3-18: The surface texture of the bearing case in the azimuthal direction. 

 

 

3.4.2 Surface roughness of the bearing case in the axial direction 

The surface roughness of the bearing case is also measured in the axial 

direction as shown in Figure 3-19.  

 

 

   

 

Figure 3-19: The stylus is moved axially along the surface of the bearing case. 
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Figure 3-20: The surface texture of the bearing case in the axial direction. 

 

The EHL in this project is considered to be a line contact problem. The 

azimuthal surface roughness is only applied to the CFD model for studying the 

effect of surface roughness. However, the surface roughness in the axial 

direction should be studied as it will give more detail about the characteristics of 

the surface roughness of the bearing case. In addition, it will be useful to further 

develop the CFD scheme to model an EHL point contact. Figure 3-19 shows the 

stylus measuring the surface roughness of the bearing case in the axial 

direction. The primary surface roughness profile obtained by this measurement, 

and the filtered roughness profile (green line) and the waviness profile (red line), 

are presented in Figure 3-20a and Figure 3-20b respectively.   

 

3.4.3 Surface roughness of the roller in the azimuthal direction 

This section studies the surface roughness of the roller in the azimuthal 

direction. This will be applied to the surface of the top cylinder of the CFD 

model. Figure 3-21 shows the stylus moving on the bearing roller in the 

tangential direction. As before, Figure 3-22a shows the measured primary 

surface roughness profile and Figure 3-22b shows the profiles of azimuthal 
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roughness (green line) and waviness (red line), respectively. The azimuthal 

roughness profile coincided with the tangential roughness profile by the 

subtraction of the waviness from the measured primary surface roughness 

profile. 

 
 

 

 

Figure 3-21: The stylus is moved across the surface of the cylindrical roller. 

 

 

 

 

Figure 3-22: The surface texture of the cylindrical roller in the tangential 

direction. 
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obtained (blue line) is presented in Figure 3-24a. The roughness profile (green 

line) and waviness profile (red line), are presented in Figure 3-24b.    

 
 

 

 

Figure 3-23: The stylus is moved axially on the surface of the cylindrical roller. 

 

 

 

Figure 3-24: The surface texture of the cylindrical roller in the axial direction. 
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straight line horizontal. Therefore, the trace of the profilometer was constrained 

by the vertical displacement of the stylus due to the shape curvature of the 

bearing case and of the roller in the azimuthal direction.  

 

Table 3-1 presents the surface roughness parameters calculated from the 

measurements in sections 3.4.1 to 3.4.4. It can be noticed that the average 

surface roughness of the cylindrical roller bearing ( aR ) is very small, ranging 

from 0.01 µm to 0.03 µm. The surface profiles of all cases have kurtosis values 

higher than 3 and negative skewness values, because there are many deep 

valleys on the surface roughness profile. From these measurements, it can be 

inferred that the depth density distribution of the real surface roughness on used 

bearings is a non-Gaussian distribution.  

 

Table 3-1: Calculated surface roughness parameters  
 

Measured case  aR μm  qR μm
 Rsk Rku 

3.4.1 Bearing case (azimuthal direction) 0.0320 0.0455 -1.46 6.30 

3.4.2 Bearing case (axial direction) 0.0198 0.0333 -2.94 19.1 

3.4.3 Roller (azimuthal direction) 0.0175 0.0280 -2.52 17.3 

3.4.4 Roller (axial direction) 0.0287 0.0493 -7.26 78.6 
 

 

According to the Abbott-Firestone curve of the roller and the bearing casing as 

shown in Figure 3-25, it was found that the highest peak of the roller surface is 

lower than that of the bearing case. The peak zone of the surface roughness of 

the roller is narrower than that of the bearing case as presented in Figure 3-25 c 

and d. Furthermore, the middle zone of the Abbott-Firestone curve of the roller 

is wider than that of the bearing case. It can be evaluated that the material ratio 

of the roller at the depth level 0.15 µm is almost 85%, while the material ratio of 

the bearing case is only 70% at the same level.   
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Figure 3-25: The depth distribution histogram and Abbott-Firestone curve 

measured in sections 3.4.1(a), 3.4.2 (b), 3.4.3(c) and 3.4.4 (d), respectively.  

 

3.5 Generation of surface roughness 

 

Previous investigations of real surface roughness found that the roughness 
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the surface roughness is identical. In order to study the effects of surface 

roughness shapes, it is thus necessary to generate the surface roughness with 

the influence of parameters such as the average roughness ( aR ), root mean 

square roughness ( qR ), skewness ( skR ) and kurtosis ( kuR ).  
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Many mathematical models for sample distribution generators have been 

proposed to model a general surface roughness, such as the Gaussian or 

normal distribution [100, 101], the binomial distribution [102], the Poisson 

distribution [103], the exponential distribution [104], and the Pearson distribution 

[77], etc. The Pearson distribution can be used to predict the surface roughness 

using skewness and kurtosis parameter, and thus is the most appropriate 

distribution among the above listed ones to model the surface roughness 

profiles in this study.   

 

A computer number generator implement in Matlab, also known as the ‘pseudo-

random number generator’, is used to create random numbers which are 

uniformly distributed in the interval [0, 1]. For example, a linear congruential 

method is a simple algorithm, and widely used to generate random numbers. It 

can be defined as follows [105]: 
 

   mcaxx in mod1   (3.11)

 

where x  is the sequence of pseudorandom values, a  is the multiplier (constant 

value), c  is the increment, and m  is the modulus. The obtained random 

numbers depend on the input seed value and the applied algorithm. Presently, 

the computer generator utilizes more complex seeds and fewer predictable 

sequences, whereby date and time are used as the seed. 

 

In order to generate a surface roughness with the influence of the chosen 

distribution, it is necessary to modify the result of the computer generator by a 

transformation of probabilities [106]. There are many transform methods 

available such as the inverse transform method, the acceptant and rejection 

method, the convolution method, and the composition method [105, 107-109].  

 

The Pearson model, which can be used to represent many continuous 

probability distributions characterized by four quantities ( aR , qR , skR  and skuR ) , 

was proposed in 1895 [106]. It was developed from a generalisation of a 

differential equation with respect to x  as given below:  
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(3.13)

The possible distribution of the Pearson model depends on the value of the 

parameters: a, b and c in equation (3.13)  which can be sorted into 8 types [106, 

110] :   

1. Pearson type 0 (Normal) distribution when 0 cb  and 0a . 

2. Pearson type I (Beta) distribution when the 04/2 acb  and 10  x . 

3. Pearson type II (Symmetric Beta) distribution when 04/2 acb  and 

 xcc 1,0  where acc /1  . 

4. Pearson type III (Gamma) distribution when acb 4/2  and 0c ,

 xc1 where bac /1  . 

5. Pearson type IV distribution when 14/0 2  acb  and  x . 

6. Pearson type V (Inverse Gamma) distribution when 14/2 acb  and 

 xc1 , where abc 2/1  . 

7. Pearson type VI (F distribution) distribution when 14/2 acb  and 

 xc1 , where 1c  is the larger root. 

8. Pearson type VII (Student’s T) distribution when 04/2 acb  and

 x , where 0c .  

The Pearson model has been used for generating the topography of a rough 

surface where the distribution is non-Gaussian [111-113].  Therefore, this model 

will be used to generate the depth distribution of a rough surface with the 

influence of aR , qR , skR  and kuR  in this study. The constant values in equation 

(3.13) are calculated from the roughness parameters as given by:   
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(3.15)

The parameters aR  and qR  will be used to normalize the input data X . This 

relation can be expressed as below: 

 


)( 


X

x  
(3.16)

where   and   are equal to aR  and qR , respectively.  

 

In order to control the extremities of the generated surface roughness, it is 

necessary to limit the maximum and the minimum values of the profile within 

realistic bounds. Thus, the random number is bounded between the minimum 

valley depth ( vR ) and the maximum peak height ( pR ) by imposing vR  < radius 

of roller and pR  < the minimum film thickness.      

 

3.6 Roughness and the EHL problem 

 

The influence of surface roughness on the EHL line contact problem can be 

simulated by including the surface roughness profile in the film thickness 

equation, thus equation (2.17) becomes the following [114-116]:   
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where  txR i ,1  and  txR i ,2  denote the roughness profiles of the surfaces 1 (top 

cylinder) and 2 (bottom plate) respectively. Since the top cylinder and the 

bottom plate are moving, the surfaces 1 and 2 are moved with the same velocity 

of the respective surface where 1u  is the velocity of the top cylinder and 2u is the 

velocity of  the moving bottom plate in x  direction. Thus, the displacements of 

both surfaces are time dependent and can be computed as follows [117]:   
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Chapter 4 The Computation Fluid Dynamics 

 

The Computation Fluid Dynamics platform  
 

4.1 Introduction 

 

Numerical methods have become important tools for researchers and 

engineers. In particular, the CFD approach, which is mainly based on the finite 

volume method, has been widely used for predicting the behaviour of fluid 

flows. In this research, the CFD approach will be used to solve and analyse the 

EHL line contact problem. 

 

The first part of this chapter deals with the Navier-Stokes equations. The 

mathematical models based on conservation laws for the governing equations 

of computational fluid dynamics, such as the mass equation, the momentum 

equation and the energy equation, are presented. Then, the finite volume 

method and the discretized equations are briefly described. Following that, the 

appropriate boundary conditions defined in the CFD model for the EHL problem 

are explained. Then, the mixture model applied to the CFD model is illustrated 

and the full cavitation model used in this study is discussed in this chapter. 

Finally, the numerical schemes employed to solve the discretized governing 

equations, for example the SIMPLE and PISO schemes, are described. 

  

4.2 The governing equations 

 

In general, the characteristics of a fluid flow can be described by applying the 

conservation form of the flow governing equations. The modelling of fluid flow 

was developed by Claude-Louis Navier (1785-1836) and George Gabriel 

Stokes (1819-1903) by applying Newton's second law to fluid motion. The 

conservation of momentum has been widely used and is known as the ‘Navier-
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Stokes equation’ [118, 119]. Although it is based on the momentum equation, 

both continuity and momentum equations are generally referred to as ‘Navier-

Stokes equations’ [120]. 

  

4.2.1 The continuity equation 

 

The continuity equation, also known as the conservation of mass, is used to 

analyse mass flow in a control volume. The continuity equation is composed of 

two terms: the first represents the accumulation of mass in the control volume, 

while the second describes the mass balance between the mass flows in and 

out of the control volume.  

 

Let the velocity vector be 321 eeeu 321 uuu   

and gradient operator be 1 2 3
1 2 3x x x

  
   

  
e e e   , defined in a fixed 

orthogonal Cartesian reference system ( 1 2 3, ,x x x ) with coordinate unit vectors 

1 2 3, ,e e e . 

The continuity equation for compressible flows can be expressed as:  
 

                
  0

t

 
  


u

 

(4.1)

 

Since the density of fluid is time invariant t  in incompressible flows, the 

continuity equation for incompressible flows becomes:      
 

  0 u  (4.2)

 

The density of the lubricant in the EHL problem is a function of pressure and 

temperature, as presented in equation (2.39). Therefore, the continuity 

equation, as presented in equation (4.1), is chosen to describe the mass flow in 

the CFD model for the EHL problem. 

 

In this research, the mixture model is employed to model the liquid and vapour 

phases in the EHL flow. The liquid phase is assumed to be a continuous flow 

and a secondary phase is applied as a dispersion that comprises bubbles. 
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Therefore, continuity equation (4.1) needs to be rewritten for the mixture of the 

continuous and dispersed phases as [121]:  

     0
11
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(4.3)

where i  is the volume fraction of phase i  and n  is the number of phases. The 

velocity and density of the mixture are defined as:
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where um  is the mass-averaged velocity. 

 

4.2.2 The momentum equation 

 

Neglecting gravitational effects, the momentum equation, which is used to 

conserve the momentum of fluid flow in a control volume, is composed of four 

terms. These terms are: unsteady acceleration, convection (motion of fluid), 

pressure gradient (the force due to pressure), and diffusivity of momentum 

(viscous force). The gravitational effects are negligible in this study due to the 

motion of the oil film being predominantly horizontal. The momentum equation 

of fluid motion can be expressed as follows [122]:  
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(4.6)

 

where   is a function representing the shear stress tensor, which is given by 

[121]: 

    



  uIuu

3

2T  
(4.7)

 

where T  denotes the transpose of matrix u  and I  is the unit tensor. 

 

The momentum equation (4.6) as modified for the mixture phase [121] can be 

written as:   
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where ,udr i is the drift velocity for the second phase ( ,u u udr i i m  ). The mixture 

density ( m ), mixture velocity vector ( um ) and mixture diffusivity equations (4.4) 

and (4.5) are substituted into equation (4.8), giving: 
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4.2.3 The energy equation 

 

According to the concept of energy conservation, the rate of change of energy 

is equal to the amount of heat supplied and work done to a control volume. The 

energy equation that is governed by the first law of thermodynamics, consisting 

of the rate of change of energy, convection, diffusion, and heat source terms, as 

given overleaf:  
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Not only do the mass and momentum equations have to be modified, but the 

energy equation (4.10) is also adapted for the mixture model by summing 

specific energy equations for all phases. Thus, the conservation of energy 

equation can be rewritten for the mixture phase as:  
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         k  is defined as the effective conductivity, 

        iTS ,  is the total heat source term for each phase. 
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In order to apply the energy equation of the CFD model to simulate the thermal 

effect on the EHL problem in a manner similar to the Reynolds equation, it is 

necessary to add heat source terms. According to equation (2.40), which is 

employed to predict the temperature rise in the EHL problem with the Reynolds 

equation, there are two heat source terms. The first is the heat generated in the 

fluid film due to the viscous effect ( shearQ ), also known as the ‘dissipation of 

energy’, and the second is the heat generated by the compression work ( W ). 

Both heat source terms are included in equation (4.10) in the total heat source 

term ( WQS shearT  ). 

Expanding the heat source terms:  
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From ,a b=a bT T   then: 
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In tensor form:  
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and  

 
2

2 31 2

1 2 3

2 2

3 3

uu u

x x x

  
       

u
 

(4.15)

Equations (4.14) and (4.15) are inserted into equation (4.12), which gives: 
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The heat generated by the shear and compression forces in the fluid film will be 

transferred toward the adjacent walls (top cylinder and bottom plate). Thus, the 

thermal boundary condition at the walls can be expressed as: 
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(4.18)

where fk and sk  are the thermal conductivity of fluid and solid respectively. 

 

The governing equations can be written in a general transport form, where each 

equation consists of rate of change, convection, diffusion, and other effects.  

The rate of change term represents the net rate of change of an intensive 

property   in the fluid element.  The second term represents the net rate of flow 

of   across the fluid element boundaries due to the flow velocity, u . The 

diffusive term, which is the third term in equation (4.10), represents the diffusion 

of   through the fluid element. The general transport equation of all fluid flow 

equations for the variable   can be written in the general form as [123]: 
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(4.19)

It can be noted that the Navier-Stokes equations are non-linear partial 

differential equations that must be solved simultaneously. There are many 

numerical methods that can be used to solve discretized equations, for 

example, the finite difference method (FDM) [124], the finite element method 

(FEM) [125] and the finite volume method (FVM) [126]. The FVM, FDM and 

FEM are similar but the FDM is widely used to solve simpler elastic problems. 

The FEM was developed for complex stress problems and is a common 

approach used in solid mechanic problems. Conversely, the FVM is more 

commonly used to evaluate and analyse fluid flow problems. The FVM, that is 

based on the conservation of physical properties at a local element, such as 

energy, mass and momentum, is evaluated by integrating  the transport 



56 

equations over an arbitrary control volume [127, 128]. Furthermore, the FVM is 

also easily adapted when the grids used are non-uniform. For those reasons, 

the FVM was chosen to solve the Navier-Stokes equations in this study. The 

FVM uses the integral form of the generalized transport equations over a control 

volume, CV as its starting point [129]. Thus, equation (4.19) becomes: 
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where   is a diffusion coefficient, S   a general source term and   an intensive 

property of the flow. The first term in equation (4.20) is equal to zero in a steady 

state problem. This simplifies equation (4.20) in: 
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In an unsteady flow problem, it is also necessary to integrate equation (4.20) 

with respect to time t over a small interval t from t  until tt  . Thus, the 

general form of the transport equations becomes: 
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4.3 Cavitation model 

 

Cavitation phenomena can occur when the pressure of the liquid flow suddenly 

drops below the saturated vapour pressure of the liquid. In the EHL problem, 

the pressure of the lubricant at the contact centre is very high and rapidly drops 

below the operating pressure at the outlet region. Gasani [130] studied the film 

thickness at the contact centre of a nitride rubber sphere and a flat Perspex disk 

by using ultrasonic reflection techniques. The study shows that film thickness 

varies according to the slide to roll ratio (SRR) between the sphere and the disk. 

Furthermore, Gasani also observed the cavitation phenomenon at high speeds, 

as shown in Figure 4-1. The experiment indicated that fluid velocity and the 

amount of vapour phase are directly correlated. 
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Figure 4-1: The cavitation phenomenon at the outlet region of point contact 

[130]. 

 

Typically, all negative pressures calculated in a solving an EHL problem are set 

to zero, as the Reynolds equation does not model the cavitation effect [23]. 

However, using a cavitation model in conjunction with the CFD model for the 

EHL problem can prevent the occurrence of negative pressure. Some of the 

liquid phase is changed to the vapour phase when the calculated pressure is 

lower than vapour pressure, and some of the vapour phase will be collapsed 

back to the liquid phase when the pressure is higher than the saturated vapour 

pressure.  The full cavitation model, which is based on Rayleigh-Plesset 

equation, used in this research is given by [131, 132]: 
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where vR  and cR  are the vapour generation and collapse rates terms 

respectively, as given by: 
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if ppsat  , 
  fppV

CR
l

sat
vl

ch
cc 


 3

2 
  

(4.25)

where satp  is the liquid saturation vapour pressure at the given temperature, 

     f   is the mass fraction, 

                is the surface tension of the liquid, 



58 

              chV  is the characteristic velocity that is defined the same as the velocity     

of mixture phase , 

                 is effective exchange coefficient, 

and vC , cC are empirical constants, usually defined as 0.2 and 0.1 respectively 

[121]. 

 

The fluid density, m  can be calculated from the relationship between the liquid 

phase and the vapour phase of the fluid, as stated in equation (4.18). For a two 

phase flow, equation (4.18) becomes: 
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and the volume fraction is given by:  
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(4.27)

where subscript i  represents the vapour ( v ) and liquid ( l ) phases. The density 

of the lubricant for the liquid phase is a function of pressure as shown in 

equation (2.38). The density of the vapour phase is considered to be a constant. 

Therefore, the density of the mixture can be written as: 
 

   lvvvm   1  (4.28)

 

The viscosity of the mixture can be expressed in a similar way as equation 

(4.28): 

   lvvvm   1  (4.29)

 

4.4 The discretized equations 

 

A partial differential equation can be solved by two methods, an analytical and a 

numerical solution. The analytical method gives the exact solution but cannot be 

used with complex problems, while the numerical method is widely used but the 

solution it yields is an approximation. It should be noted that the residual of the 

numerical methods is very small when a solution converges. In order to 
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approach an exact solution, it is necessary to choose the right scheme to solve 

the discretized equations.       

 

In order to solve the transport equations with a high degree of accuracy, it is 

necessary to divide the continuous domain into a finite number of sub-domains, 

which are known as ‘cells’ or ‘control volumes’. The node points are located at 

the centre of each cell. Then the integral form of the transport equation (4.22) is 

discretized. There are many numerical schemes to reconstruct the distribution 

of the transported quantity   at the boundaries of each control value from the 

value average of the control value and of its neighbouring control values. These 

numerical schemes are recommended for use in different situations and are 

defined according to ANSYS FLUENT [121]  as follows: 

‐ “The first-order upwind scheme is the simplest numerical scheme 

providing the most accurate spatially stable calculations. It is also, 

however, very diffusive. On the whole, it forms the starting point of the 

calculation procedure.  

‐ The central differencing scheme yields more accurate results than the 

first-order upwind scheme, but also leads to oscillations in the solution, 

where the Peclet number (Pe) is higher than 2.  

‐ The power-law scheme stems from the analytical solution of the one-

dimensional convection-diffusion equation. The face value is the result 

of an exponential profile through the cell-averaged values. Overall, this 

scheme is more accurate than the first-order upwind scheme when the 

local Reynolds number is lower than 5. 

‐ The second-order upwind scheme is more accurate and stable than the 

first order-upwind scheme. The downside is that, in regions with strong 

gradients, the resulting face values can fall outside the cell-averaged 

values. In this case, it is necessary to apply limiters to the predicted 

face values.  

‐ The quadratic upwind interpolation for convective kinetics (QUICK) 

scheme is accurate but not in regions with high gradients, where it can 

result in unstable calculations”. 
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By applying the gauss divergence theorem to the advection and diffusion terms, 

equation (4.22) becomes:  
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(4.31)

 

There are three methods to compute the gradient of the scalar field available in 

Fluent: the Green-Gauss cell-based method, the Green-Gauss node-based 

method, and the Least squares cell-based method [121]. Green-Gauss node-

based is chosen in this study because the calculated gradient from this method 

is more accurate than the ones from the other two schemes. The computation 

of the gradient of the scalar   at the cell centre P  using the Green-Gauss 

method can be expressed as: 
 

  f
f

fP V
A  1  (4.32)

where the face value, f  can be calculated by the arithmetic average between 

the cell centre and the neighbouring cells. In order to compute the convection 

and diffusion terms in the equation (4.31), the data at the finite-volume faces 

can be provided by using the interpolation schemes in Ansys Fluent [121]. In 

addition, the first order implicit method is employed to predict the value of 

variable   for the next time step. Based on Figure 4-2, the discretized equation 

for the generalized transport equation (4.22) is: 
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 (4.33)

The discretized form of the general transport equation (4.33) can be rearranged 

into a simple form as: 
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Figure 4-2: Schematic of a discretized computational domain. 

 

The discretized equation (4.33) contains the unknown variable   at the cell 

centre, as well as in the surrounding neighbour cells. Therefore, the general 

form for the linearized transport equation can be written as: 
 

 
P P nb nb

nb

a a b   (4.35)

 

where subscript nb  in the notation denotes the neighbour cells of cell P , the a  

parameter is the coefficient of variable   and b  is the net flow rate into cell P . 

In order to compute the unknown variables in the domain by using approximate 

methods, the initial state and the appropriate boundary conditions are required. 

Then, the transport equation (4.35) can be solved iteratively for all the cells in 

the domain by the Gauss-Seidel iterative method [108] and the algebraic 

multigrid scheme (AMG) [133].   

 

4.5 Shear stress at wall  

 

A wall is a boundary in a confined fluid flow problem. In general, fluid flow near 

the wall can be considered as laminar. In the EHL line contact problem, the 

surfaces of the cylinder and the bottom plate are defined as solid walls. The 
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cylinder is rotated around the z axis while the bottom plate is travelling in the x– 

direction. Typically, the shear condition between the fluid and the wall is 

considered to be no-slip in the EHL problem. This is due to the fact that the 

viscosity of the fluid is very high (viscous flow). For the wall moving at the 

maximum speed of 2.5 m/s, the calculated Reynolds number of the viscous fluid 

flow in the narrow gap between the top cylinder and the bottom plate is between 

0.01 and 20. It can be seen that the Reynolds number is very low as viscous 

forces dominate the flow. Therefore, the flow pattern of the thin fluid film is 

considered as laminar in this study. Accordingly, wall shear stress is expressed 

by a normal velocity gradient at the wall [127, 129, 134]: 
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Thus, the shear force SF  per unit length of roller is given by: 
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and the friction coefficient can be calculated from the formula: 
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(4.38)

where w  is the applied load. 

 

4.6 Numerical scheme 

 

There are two solvers available in ANSYS FLUENT (pressure-based and 

density-based solvers). Traditionally, the pressure-based solution is employed 

to solve the Navier-Stokes equations for incompressible flows, while the 

density-based solver is commonly used in compressible flows. However, the 

pressure-based solver has been continually developed and has been extended 

to solve compressible flow problems. In the CFD model for the EHL problem, 

the flow is treated as compressible as the density of the lubricant is a function of 

pressure. The mixture model, which is applied to the CFD model, is only 

available in the pressure-based solver. Therefore, the pressure-based solver 

has been chosen to calculate the transport equations in this study.  
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In order to initiate the iteration solution process, the velocity and the pressure 

fields are approximated for the first iteration. These variables are subsequently 

used to solve the momentum equation and the pressure correction equation. 

These values will be corrected in each iteration until an acceptable convergence 

of pressure and velocity is achieved. In order to avoid the divergence of the 

solution, it is common to apply a relaxation factor to reduce numerical changes 

from one iteration to the next one in the iterative solution procedure when 

updating the unknown variables. A relaxed update is obtained by: 
 

 , (1 )new relaxed old new      (4.39)

 

where   is the relaxation factor, 1  is under-relaxation, 1  corresponds to 

no relaxation and 1  is over-relaxation. Relaxation will help improve the 

stability of the calculation but may slow down convergence in the case of under-

relaxation. There is no general rule for choosing the best value of  ; a suitable 

  can be found by trial and error. The optimum value depends upon a number 

of factors, such as the nature of the problem, the number of grid points, grid 

spacing and the iterative procedure used.  

 

There are two pressure-based algorithms available for solving the system of 

algebraic equations; first, is the segregated algorithm and second the coupled 

algorithm. The segregated pressure-based algorithm is suitable for 

compressible and incompressible flows at a low Mach number, whereas the 

coupled pressure-based algorithm is appropriate at a high Mach number [121]. 

If the segregated method is applied, the momentum, continuity and energy 

equations are separately solved for all cells in each iteration. By contrast, in the 

case of the coupled method, all conservation equations are solved 

simultaneously. The Mach number of the lubricant flows in the CFD model is 

only 2.06x10-3. Thus, so the segregated method is employed in this study. In 

order to provide more detail about the numerical schemes that are based on the 

segregated method (such as SIMPLE and PISO), the algorithms will be 

discussed in the next section.  
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Figure 4-3: Schematic of a staggered grid arrangement. 

 

4.6.1 SIMPLE algorithm 

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm of 

Patankar and Spalding [135] is essentially a guess and correction procedure for 

the calculation of pressure on the staggered grid arrangement shown in  

Figure 4-3. Typically, density is considered to be a constant in incompressible 

flows and is not linked to pressure. The SIMPLE algorithm is employed to 

account for fixing the lack of results obtained from the continuity and momentum 

equations. The scalar variables (for example pressure, density and viscosity) 

are located at the centre of cells (P) whereas the vector variables such as 

velocity in the x  and y  directions are stored at the centres of the cell faces of 

each control volume. The pressure and velocity fields are approximated and the 

discretized momentum equations (4.35) are solved so that: 

 * * * *
, , 1, , , ,i J i J nb nb I J I J i J i J

nb

a u a u p p A b     (4.40)

 * * * *
, , , 1 , , ,I j I j nb nb I J I J I j I j

nb

a v a v p p A b   
 

(4.41)

The values of *
,Jiu and *

,I jv  are calculated, then the pressure correction equation 

is solved to obtain the new value of pressure: 

, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,I J I J I J I J I J I J I J I J I J I J I Ja p a p a p a p a p b               
 

(4.42)

The pressure needs to be updated and can be obtained from: 

*
, , ,I J I J I Jp p p 

 
(4.43)

Similarly, the approximated velocity *
,i ju  and *

,i jv  are corrected:  

p - cell 

u - cell 

v - cell 
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 ,*
, , , , 1, ,

,

, i J
i J i J i J i J I J I J

i J

A
u u u u p p

a       
 

(4.44)

 ,*
, , , , 1, ,

,

, I j
I j I j i j I j I J I J

I j

A
v v v v p p

a       
 

(4.45)

Subsequently, all other discretized transport equations are solved as:   

,, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 I JI J I J I J I J I J I J I J I J I J I Ja a a a a b               
 

(4.46)

The new value of each unknown variable is compared to the old one to evaluate 

the residual in each iteration. If the residual is greater than the pre-defined 

value, pressure and velocity have to be corrected by calculating the momentum 

equation again and the whole procedure is repeated until a converged solution 

is obtained.  

 

4.6.2 PISO algorithm 

While the SIMPLE algorithm is only used in a steady flow, this research models 

time-dependent flow. As such, the pressure-implicit with splitting operators 

(PISO) algorithm, proposed by Issa [136], is more suitable for this study. The 

PISO algorithm is a pressure-velocity calculation procedure developed originally 

for non-iterative computations in unsteady compressible flows. This method is 

similar to the SIMPLE algorithm, but computes flow using an additional 

corrector step work respect to the SIMPLE method. In general, PISO is 

employed to solve time-dependent flows as it can improve convergence speeds 

faster than the SIMPLE scheme.  

 

The PISO algorithm has the same starting calculation process as SIMPLE 

whereby the pressure and velocity fields are approximated by equations (4.40) 

and (4.41). Following that, the pressure correction equation (4.42) is calculated 

to obtain the pressure and velocity corrections. The pressure correction 

equation is resolved to obtain ,i jp  that can be written as: 

, , 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,I J I J I J I J I J I J I J I J I J I J I Ja p a p a p a p a p b               
 

(4.47)

The second corrected pressure and velocity are obtained from: 

*** * *** * *** *
, , , , , , , , , , , ,, ,I J I J I J I J i J i J i J i J I j I j I j I jp p p p u u u u v v v v             

 
(4.48)
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     
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** *

*** *
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i J i J i J I J I J i J I J I J

a u u
u u d p p d p p
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
        


 

(4.49)

     
,

** *

*** *
, , , , 1 , , , 1 ,

I j

nb nb nb

I j I j I j I J I J I j I J I J

a v v
v v d p p d p p

a 


        


 

(4.50)

,
,

,

;i J
i J

i J nb

A
d

a a


  

,
,

,

I j
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I j nb

A
d

a a


  

 

where ,i JA and ,I jA  denote the cell face area of the uand v  control volumes.  
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Chapter 5 The CFD Models for the EHL Problem 

 

The CFD Models for the EHL Problem 
 

 

5.1 Introduction 

 

On the basis of the CFD theory, the EHL theory, and the surface roughness 

measurements presented in the previous chapters, the basic method for 

designing the CFD model to predict the characteristics of the EHL line contact 

problem will be briefly described in first part of this chapter. The appropriate 

boundary conditions and the initial conditions employed in the CFD model will 

also be presented along with some assumptions for the model. The mesh 

dependence test of the resolution for the CFD model will then be discussed and 

comparison between the results of the CFD model and the Reynolds equation 

will also be presented. Finally, the CFD models designed for predicting the 

behaviour of EHL in the cylinderplate contact and the cylindercylinder 

contact will be discussed.  

 

5.2 The application of the CFD to the EHL problem 

 

5.2.1 The modelling geometry 

The aim of this study is to design and develop the CFD model for predicting the 

characteristics of the EHL problem in the cylindrical roller bearing as presented 

in Figure 3-16. The focus is only on the contact area between the roller and the 

bearing case where the ratio of the contact length to the radius of the cylindrical 

roller bearing is small.  
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Figure 5-1: The analytical model for EHL line contact problem. 

 

To simplify the EHL problem, the bearing case is assumed to be a line (plate), 

as presented in Figure 5-1. Although there is the curve on the casing of bearing, 

the effect of the curvature of the casing is considered via the effective curvature 

in the film thickness equation. A normal load is applied to the roller which is 

rotated on the plate  the plate is assumed to be a rigid body while the roller is a 

solid; however, the material properties of the plate are accounted for by the 

effective elastic modulus in the film thickness equation (2.17). The roller and the 

plate are modelled as infinitely long in the transverse direction, thus there is no 

oil leak at the side of the roller. The pressure distribution in the axial direction of 

the roller is thus uniform. As such, the CFD model for the fluid film lubricant of 

the cylindrical roller bearing can be considered to be a 2D problem. 

 

5.2.2 Boundary conditions and initial condition 

In order to solve the discretized transport equations, it is essential to identify the 

appropriate boundary conditions for the CFD model. Poorly defined boundaries 

may lead to an error in the results or divergence where the solution is not stable 

[129]. In order to solve the EHL line contact problem using the CFD model as 

shown in Figure 5-2, the boundary conditions are defined as follows: 

‐ The gauge pressures at the inlet and outlet regions are 0 Pa, and the 

operating pressure is 1.01325 ×105 Pa.  

‐ The initial temperatures of roller and the plate are 298.15 K. 
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‐ The inlet temperature of fluid is constant at 298.15 K, while the outlet 

temperature is extrapolated from the interior domain.  

‐ The average velocity of plate and roller are presented in Table 5-1.  

‐ The no-slip condition is enforced on the CFD model at all walls. 

 

 

Figure 5-2: Creating geometry and meshing. 

The properties of the fluid and solid used in the CFD model are listed in Table 

5-1. According to the ANSYS FLUENT manual, the gauge total pressure (static 

pressure + dynamic pressure, Pa) is required for the inflow boundary. In 

addition, the ANSYS FLUENT also requires the operating pressure (reference 

pressure) that is defined as equal to the atmospheric pressure [121]. The 

absolute pressure is calculated by adding the gauge pressure and the operating 

pressure together.  

 

5.2.3 Model meshing and solver 

In order to solve the discretized equations, the CFD geometry has to be divided 

into a number of small elements; a process known as ‘meshing’. To achieve an 

accurate solution using the numerical method, a quantity termed the ‘mesh 

quality’ is a very important factor. The mesh quality also plays an important role 

in the stability of the numerical calculation. The mesh quality relates to the 

skewness, smoothness and node point distribution. It can be evaluated by many 

criteria such as aspect ratio, cell skewness and orthogonal quality, and depends 

on the type of mesh employed.       
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Table 5-1: The common parameters [137]. 

Parameters Value Unit 

Input data 

An applied load, w   50,000.0 N/m 

Average velocity, mu  2.5 m/s 

Roller radius, cR  10 mm 

Surface roughness, aR  0.0216 μm 

Solid properties (roller and plate) 

Elastic modulus, E  210 GPa 

Poisson's ratio,   0.3 - 

Specific heat, pC  460 J/(kg·K)

Density,   7,850 kg/m3 

Lubricant properties 

Inlet viscosity of lubricant, 0  0.01 Pa·s 

Vapour dynamic viscosity, v  8.97x10-6 Pa·s 

Liquid density, l  850.0 kg/m3 

Vapour density, v  0.0288 kg/m3 

Pressure-viscosity index, z  0.689 - 

 

 

In this study, the geometry of the CFD model for predicting the behaviour of an 

EHL problem is created by using the ICEM CFD version 13.0 [138]. Figure 5-2 

shows the geometry and the grid of the CFD model. The surfaces of roller and 

plate are assumed to be smooth. The minimum gap between the roller and the 

plate is 0.1 mm. The triangular-mesh type is applied to generate meshes for the 

CFD model. There are 208,759 nodes in total. The minimum and maximum face 

areas are 6.4825x10-9 m2 and 3. 3022x10-4 m2 respectively.     
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In order to ensure that the CFD geometry, as shown in Figure 5-2, can be used 

to investigate the fluid flow of the EHL problem, it is essential to check the mesh 

quality first for fixing the worst cells. It found that the minimum orthogonal 

quality is 0.9061   this value is acceptable, as the mesh quality is defined 

between 0 and 1, where 0 is a worst mesh and 1 is the best quality mesh. The 

maximum aspect ratio is 3.0064. According to the FLUENT recommendation 

[121], the accepted maximum aspect ratio should not over 5. Therefore, the 

mesh quality of the CFD model depicted in Figure 5-2 is good and is 

appropriate for the calculation.     

 

In this research, the ANSYS FLUENT 13.0 is implemented to solve the 

discretized momentum equation and the continuity equation [121], where the 

fluid flow is considered to be laminar. The surface roughness effect on EHL 

problems is simulated an unsteady flow condition. It is necessary to ensure that 

the computation results are physically realistic. The residuals of the 

conservation equations are monitored as [121]: 


  



P
PP

P
PP

a

aba

R

cells

cells nb
nbnb




  

(5.1)

The converged solution is verified by ensuring the residuals of all parameters 

monitored are less than 0.001.  

 

 

Figure 5-3: The static pressure in the fluid film at the contact zone. 
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Figure 5-3 shows the pressure distribution in the fluid film between the roller 

and the plate. It can be seen that the pressure is rapidly increased from 0 Pa at 

x≈ -3 mm to around 28 MPa at x ≈ -0.3 mm, then it is reduced to the lowest 

pressure at -28 MPa within a short distance, and then returned to 0 Pa. The 

pressure distribution fluctuates by a large amplitude of 56 MPa in the contact 

zone between -3 mm and 3 mm, reaching the highest value in a very short 

length. This implies that the total length of the CFD model geometry can be 

reduced from 30 mm to 20 mm to save simulation time as the inlet and outlet 

are still located far from the pressure distribution zone. In addition, the pressure 

drop is lower than the operating pressure when the fluid flows through the 

narrow conduit; this is known as the ‘cavitation phenomenon’. This negative 

absolute pressure is unphysical and it can be corrected by applying the 

cavitation model as presented in the previous chapter.   

 

a) Triangular-mesh         b) Quadrilateral-mesh 

 

Figure 5-4: Two types of CFD model meshes for the EHL problem. 

 

Typically, triangular (tri) and quadrilateral (quad) cell shapes are available for 

discretising the computational domain of a 2D problem. The trimesh 

(Unstructured mesh) is often used in a complex geometry while the quadmesh 

(Structured mesh) is commonly used with a simple geometry. Both types of 

meshing are applied to the CFD models in this study. Figure 5-4 shows the 

improved CFD models by using the trimesh and the quadmesh respectively 

to discretise the 20 mm long computational domain. After the reduction in total 

length from 30 to 20 mm, the new mesh has half the number of cells of the 

original mesh.     

 

The quality of the spatial discretization in the CFD model must be verified to 

check whether the CFD mesh is sufficiently fine to calculate the pressure and 

velocity at the contact region within an acceptable engineering accuracy. The 

predicted pressure distribution from the CFD model, Figure 5-3, shows that the 
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fluid pressure is expected to change significantly along the contact zone. The 

mesh resolution in the contact zone must be sufficiently fine to resolve this 

localised pressure change, while a coarse mesh can be applied outside of the 

contact zone to reduce the simulation time.  

 

The triangular-mesh is found to be unsuitable for modelling the flow in the EHL 

problem of table 5-1, due to issues with the mesh quality. The geometry of the 

meshes in the CFD model must alter as the roller moves. This can be achieved 

by implementing dynamic meshing that accounts for the elastic deformation of 

the roller. The elastic deformation is estimated by a user-defined function (UDF) 

is applied to the CFD model. It is found that the quality of the triangular-mesh 

reduced after the roller is moved up or down. Some cells that are smaller than 

the specific minimum size of the remeshing will be combined when the roller 

surface deforms downwards. In contrast, some cells are split if the cell size is 

distorted or extended over the specific maximum size when the roller surface 

deforms upwards. In ANSYS FLUENT, the maximum cell skewness parameter 

is employed to drive the re-meshing process. The maximum cell skewness limit 

is required when the triangular type mesh is applied to the CFD model to avoid 

the violation of skewness or size criteria. However, it is difficult to control the 

size and quality of the cells after they are re-meshed as the cells at the contact 

area and outside are of different size. For those reasons, the approach using a 

triangular type mesh for generating meshes in the CFD model is not considered 

further.     

 

Fortunately, such an issue does not arise with the quadrilateral-mesh, where 

the smoothing mesh method is employed instead of the re-meshing method. 

The layers of the quadrilateral-mesh are increased or decreased in thickness 

similarly to the displacement of a spring when the roller is moved down or up, 

respectively.  Thus, only the quadrilateral type mesh is used in the CFD model 

for the current EHL line contact problem, as presented in Figure 5-4b 
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5.2.4 Dynamic mesh 

According to the film thickness equation, the surface of the cylinder is deformed 

due to high pressure. The mesh motion in the deforming zone is controlled by 

the dynamic mesh function. There are three dynamic mesh methods in ANSYS 

FLUENT that are available to control the position of mesh nodes in the interior 

of the computational domain when the compute on domain boundary is moving 

or deforming; these are smoothing, dynamic layering, and local re-meshing. The 

spring-based smoothing method is the only method that can be employed in this 

study, because the deformation at the surface of the cylinder is small compared 

with the cell size at the contact area. In addition, the mesh size applied to the 

CFD model is totally different between the contact area and the outside of the 

contact area, so that the dynamic layering and the local remeshing techniques 

are not suitable for generating a dynamic mesh in this case.  

 

According to the concept of the spring-based smoothing method, the links 

between the cell vertices are modelled as a network of interconnected springs. 

The net force of all springs in the interior nodes tends to equilibrium.  Thus, the 

displacement of nodes after the boundary has moved can be calculated as 

[121]:  
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where ix  and jx  are the displacements of the node i  and of its neighbour 

node j , respectively.  in  is a number of neighbouring nodes that are linked to 

node i . The superscript m  refers to a number of iterations. The stiffness, ijk  is 

defined as:    
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(5.3)

The displacement of the node i  as depicted in equation (5.2) is calculated by 

solving the nn   sparse matrix for all interior nodes at time m  to obtain the 

nodal displacements 1 mx . Then the new position of node i  is updated for the 

next time step ( 1t ) by:  
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5.2.5 User-Defined Functions 

In general, the pressure distribution in the EHL problems is higher than 0.4 

GPa, but the maximum pressure in Figure 5-3 is only 30 MPa. To improve the 

prediction, User-Defined Functions (UDFs) are developed for modelling the 

viscosity and the density as presented in equations (2.24) and (2.38).  

Furthermore, a UDF code for estimating the elastic deformation of the walls due 

to the pressure is also required  by the CFD model [139]. The UDF code 

language accepted by the FLUENT software is C [140, 141]. Therefore, UDFs 

were written in C to estimate the density and viscosity of lubricant. These UDFs 

were implemented so that these properties are updated at every iteration after 

the continuity and the momentum equations are solved. The UDF for elastic 

deformation of the solids are implemented so that the position of the solid walls 

is updated at every time step [142]. Moreover, the UDF for the heat source in 

the fluid film as explained by equation (4.10)  was used where the thermal effect 

is expected to be significant [143]. More detailed information about the UDFs 

operation are explained in appendixes 2 (UDF codes) and 4 (the flow chart for 

simulating the EHL problem using the CFD model). 

 

5.3 Mesh dependence test 

 

The previous section presented the computational meshes to be used by the 

CFD model of an EHL line contact problem. It is necessary to test the sensitivity 

of the CFD model on the spatial discretization by testing the mesh dependence 

of the predictions. The quality and the resolution of the mesh play an important 

role in the simulation results as different spatial discretizations will lead to 

different solutions. If a mesh resolution is not sufficiently fine, the results are 

expected to display a greater difference from the real physical phenomena. 

Thus, it is important to ensure that the generated mesh size of the CFD model 

is fine enough to capture all the relevant flow features that the accuracy of the 

results. 
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 A) Measured surface roughness profile 

 

B) Meshing a smooth surface, ∆x =0.5 µm  

 

C) Meshing a surface with roughness (Original profile), ∆x =0.5 µm 

 

D) Meshing a surface with roughness (Interpolated profile), ∆x =0.25 µm 

 

E) Meshing the surface roughness (Interpolated profile), ∆x =0.167 µm 

 
 

Figure 5-5: Schematic representation of the mesh refinement process. 

 

Figure 5-5 shows the basic concept for defining the characteristic length scale 

of the unit cells and for refining mesh. Figure 5-5A shows the surface roughness 

profile measured on bearing surfaces by the Surtronic 3+. This shows in ),( yx  

coordinates the bearing surface texture. The vertical position of the stylus is 

recorded over the surface of roller every 0.5 µm as shown in Figure 5-5A. Thus 

the minimum size of the mesh in x  is set as 0.5 µm, to match the sampling 

length of the surface roughness profile, as shown in Figure 5-5B. Although the 
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x - spacing of the mesh at 0.5 µm is very small, it still may not be sufficiently 

fine to get an accurate result. Thus, the spacing of the mesh is reduced from 0.5 

µm to 0.25 µm and 0.167 µm as presented in Figure 5-5C and Figure 5-5D, 

respectively. Even though the spacing of the mesh is refined, the roughness 

profile applied to the finer mesh still maintains the same profile as the original 

mesh by using a linear interpolation technique. It can be seen that the mesh is 

only refined in x - direction because the spacing (layer) of mesh in y - direction 

(∆y=0.0186 µm) is very small when compared with spacing of the mesh in x - 

direction.   

 

It can be clearly seen that the pressure outside of the Hertzian contact zone is 

very low and only changes slightly as presented in Figure 5-3. The grid spacing 

at the Hertzian contact zone is uniform, while the grid spacing outside of the 

Hertzian contact zone is increased by a constant ratio. The CFD model for 

different EHL problems will be accommodated for by different Hertzian contact 

zone sizes to retain the same length for all CFD models. Thus, the size of the 

fine mesh is kept constant for the investigated length from -0.3 mm to 0.3 mm, 

while the mesh size outside this length is increased by a 1.01 ratio between the 

neighbour meshes to reduce the simulation time. In addition, the spacing of the 

mesh in the centre of the contact area is also used to calculate the 

displacement of the surface roughness (time dependent) where the movement 

of the surface depends upon time and on the velocity of the solid.  

 

All simulations use the same material properties of the solid and of the lubricant 

listed in Table 5-1. The real rough surface, shown in Figure 3-22, will be applied 

to the CFD model. Figure 5-6 shows the geometry and the mesh of this CFD 

model for the EHL line contact problem. The rotating roller can be moved up or 

down to balance between the generated pressure and the normal load, while 

the plate is assumed to be a rigid body and fixed at z=0. Although the plate is 

undeformed, the material properties of the plate are included in the elastic 

deformation term of the film thickness equation.  
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The calculation of the elastic deformation in this study is the same as the film 

thickness equation in the Reynolds equation. The speed of the plate is 

maintained as the same as that of the roller surface at 2.5 m/s (pure rolling 

condition). The lubricant viscosity is modelled as a Newtonian fluid. The density 

and viscosity depend only on the pressure, as the flow is assumed as 

isothermal in this simulation.  The time step is calculated from the relationship 

between the mesh size and the fluid velocity. The maximum Courant number (

xtuC  / ) for each CFD model is defined as equal to 1.  The corresponding 

time steps for the CFD models, x = 0.5 µm, 0.25 µm, and 0.167 µm, are 

0.2x10-6, 0.1x10-6 and 0.6x10-7 seconds, respectively. Thus, the time step of 

0.6x10-7 second is chosen for simulating all CFD models in this task.   

 

Figure 5-6: A CFD model for an EHL problem. 

 

Table 5-2: The mesh independence test 

 

 

Parameters 
Minimum mesh size (µm) 

0.500 0.250 0.167 

Total number of cells 13,874 23,474 33,074

Maximum pressure - Smooth (GPa) 0.4740 0.4729 0.4724

Minimum film thickness - Smooth (µm) 0.1869 0.1870 0.1870

Maximum  pressure - Rough (GPa) 0.9015 1.4483 1.4864

Minimum  film thickness - Rough  (µm) 0.1662 0.1619 0.1610

Simulation time  - Smooth (hr.) 8.14 20.21 38.34
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Figure 5-7: Pressure distribution using different mesh sizes (smooth surface). 

 

 

Figure 5-8: Film thickness using different mesh sizes (smooth surface). 
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Figure 5-9: Pressure distribution using different mesh sizes (rough surface). 

 

 

Figure 5-10: Film thickness using different mesh sizes (rough surface). 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

P
re
ss
u
re
 [
G
P
a]

x [mm]

0.5 Micrometer

0.25 Micrometer

0.167 Micrometer

µm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

z 
[µ
m
]

x [mm]

0.5 Micrometer

0.25 Micrometer

0.167 Micrometer

µm

µm

 µm

µm

µm



81 

Figure 5-7 to Figure 5-10 show the pressure distributions and the film 

thicknesses for grid spacings of 0.50 µm, 0.25 µm, and 0.167 µm, in the cases 

of smooth surface and rough surface, respectively. It can be seen that the 

pressure distributions and the film thicknesses for grid spacings of 0.50 µm, 

0.25 µm, and 0.167 µm are the same for the smooth surface case. However, it 

is found that the grid spacing is a significant parameter that influences the 

pressure distribution and the film thickness when the surface roughness is 

applied to the CFD model. The maximum difference in the predicted pressure 

distributions with the grid spacing of 0.50 µm and 0.25 µm in the rough surface 

case are 15.3% and 2.3% respectively, in comparison to the result obtained 

with the finest mesh size at 0.167 µm. 

 

The difference of 0.7% is regarded as acceptable, therefore, the minimum mesh 

size of 0.25 µm will be used to generate the meshes at the contact area of the 

CFD model for the EHL line contact problem. Although the obtained results with 

the minimum mesh size between 0.25 µm and 0.167 µm are very close, the 

minimum mesh size with 0.25 µm reduces the simulation time by 47% in 

comparison to the finest mesh size of 0.167 µm.  

 

5.4 Validation of the CFD approach 

 

 

Figure 5-11: The CFD model used to compare with the Reynolds equation. 
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Table 5-3: Common parameters [144]  

Parameters Value Unit 

Input data 

An applied load, w  79,920.88 N/m 

Average velocity, mu  2.5 m/s 

Roller radius, cR  20 mm 

Surface roughness, aR  0.0275 μm 

Ambient temperature, 0T  313.0 K 

Solid properties (roller and plate) 

Elastic modulus, E  200 GPa 

Poisson's ratio,   0.3 - 

Specific heat, pC  460 J/kg·K 

Density,   7,850 kg/m3 

Thermal conductivity, k  47 W/m·K 

Lubricant properties 

Inlet viscosity, o  0.01 Pa·s 

Vapour dynamic viscosity, v  8.97x10-6 Pa·s 

Liquid density, l  846.0 kg/m3 

Vapour density, v  0.0288 kg/m3 

Inlet temperature, T  313.0 K 

Thermal conductivity, k  0.14 W/m·K 

Temperature-viscosity,   6.4x10-4 1/K 

Specific heat, pC  2,000 J/ kg·K 

Thermal expansivity,   4.5x10-4 1/K 

Pressure -viscosity index, z  0.689 - 
 

 

The comparison between the simulated results from the CFD model and the 

Reynolds equation will be presented in this section. In order to establish a fair 

comparison, the same geometry and flow parameters are used in the CFD 
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model and the Reynolds equation wherever possible. The parameters and 

some assumptions defined in the CFD model are listed as follow: 

‐ The lubricant in this case is modelled as a Newtonian fluid.  

‐ There is no slip between the walls and the fluid.  

‐ The thermal effect is taken into consideration in the calculation of 

viscosity and density.  

‐ The input data, the lubricant properties and the properties of the solids 

in Table 5-3 are used in this comparative analysis.  

‐ The geometry of the CFD model as shown in Figure 5-11 is employed 

to simulate the EHL problem in this section. 

The CFD model result is compared with that from the Reynolds equation 

presented by Chu et al. [144] as reported in Figure 5-12. The pressure 

distribution and the film thickness of the CFD model and the Reynolds equation 

are in good agreement. The maximum difference between the pressure 

distributions P(X)  from the Reynolds equation and from the CFD model is 

0.78%, while the maximum difference of the film thickness H(X)   is 1.73%. 

 

 

 

Figure 5-12: Comparison of dimensionless pressure (P) and film thickness (H) 

distributions between the CFD model and the Reynolds equation. 

(W=1.8182×10-5, U=7.2727×10-12 and G=3500). 
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Figure 5-13: The relationship between dimensionless pressure distribution (P) 

and the volume fraction along the non-dimensional Hertzian contact zone length 

x/b, where b is the half-width of Hertzian contact (0.14263 mm). 

 

The results of both methods are in good agreement, even though the CFD 

model includes the cavitation effect. It is found that cavitation occurs at the 

outlet region as shown in Figure 5-13 and, as such, it is remote from the contact 

area. Figure 5-13 shows that part of the lubricant is changed from the liquid 

phase to the vapour phase over the range X=1.2 to 9.2, while the gauge 

pressure distribution drops to zero at X=1. This is due to the fact that the 

generated pressure within the oil film at the Hertzian contact zone that is very 

high ( maxp =0.36 GPa), suddenly drops to the atmospheric pressure at the outlet 

region. This may explain why the pressure distributions of both models are 

similar even when cavitation is applied to the CFD model. 

 

Although the cavitation phenomenon in the EHL problem does not have any 

effect on the pressure distribution at the contact region, it has a significant effect 

on the density of the lubricant at the outlet region.  

 

5.5 The simulation models  

 

The CFD models developed in this study are divided into three models. The first 

model was used in section 5.4 to represent the calculation of the EHL problem 
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predict the behaviour of the EHL problem in the case of two cylinders. The third 

model is similar to the second, but the radius of the two cylinders are different. 

The effective radius and the effective elastic modulus for all models are kept the 

same. The details of these models are described in Table 5-4. The models are 

designed to be compatible with the CFD approach which will be used to study 

the effects of surface roughness on the EHL line contact problem. 

 

Table 5-4: The CFD models for each contact 
 

Model 
Radius of roller (mm) 

Geometry CFD model 
Top ( 1R ) Bottom ( 2R )

1 10 - 
 

2 20 20 

 

3 15 30 

 

 

 

 

5.5.1 Roller and plate contact 

The first CFD model is designed to study the effects of surface roughness on 

the fluid film in the case of the roller and the plate EHL line contact. This model, 

presented previously in Figure 5-6, will be used to predict the fluid film 

properties fluid film in the Hertzian contact zone. The roughness profile will be 

applied to the surface of the roller, while the plate is assumed to be a smooth 

surface. The case study of the roughness effect on this model can be divided 

into 6 cases as follows: 

‐ Influence of non-Newtonian fluid. 

‐ Influence of the viscosity parameter. 
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‐ Influence of the normal load parameter. 

‐ Influence of the velocity parameter.  

‐ Influence of the thermal field. 

‐ Influence of the material parameter. 

The details of these cases and the simulation results will be presented in 

chapter 6.    

 

5.5.2 Two rollers contact 

The second case for the CFD model studies the EHL problem for two cylinders 

in contact. Figure 5-14 presents a schematic for the evaluation of the fluid film 

problem for this configuration. Within the figure, model 1 represents the 

equivalent model based on the calculation of the Reynolds equation. On the 

other hand, the geometries of the models 2 and 3 are used to create the CFD 

models as shown in Figure 5-15 and Figure 5-16, respectively. The solid 

cylinders in the CFD model 2 and 3 are assumed to be infinitely long. 

 

The effective elastic modulus ( E  ) and the effective curvature ( R ) are used to 

calculate the elastic deformation term in the film thickness equation for CFD 

model 1. The Young’s modulus ( 1E ) and radius ( 1R ) of the top cylinder are 

directly used to compute the elastic deformation of the top roller in model 2. In 

the same way, 2E  and 2R  parameters are employed to evaluate the elastic 

deformation of the bottom roller. Furthermore, the surface roughness profiles 

will be applied to the top and bottom cylinders directly. This is the advantage of 

the CFD model for assessing pressure build up and deformation in the fluid film 

at the contact area.  
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Figure 5-14: The comparison schematic of the EHL problem for cylinders 

contact between the Reynolds equation (Model 1) and the CFD models (Models 

2 and 3). 

 

Subsequently, the CFD model 3 for predicting the contact between two different 

radius cylinders, as shown in Figure 5-16, will be used to simulate and analyse 

the EHL line contact problem. In this case, the radius of the top roller is smaller 

than that of the bottom roller. The CFD model for the EHL problem will be used 

first to investigate the contact with a smooth surface, and then the effects of the 

profiles of surface roughness for the top and bottom rollers will be studied. The 

surface roughness profiles for the top and bottom rollers are the same as in the 
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previous study of section 5.3.  The investigation of the influence of different 

solid material properties on the EHL problem is divided into three cases. The 

first case is the contact between iron rollers; the second, contact between brass 

roller of radius ( 1R ) and ceramic roller of radius ( 2R ); and the third, contact 

between a ceramic roller ( 1R ) and a brass roller ( 2R ). All simulation results 

obtained will be reported in chapter 7.    

 

 

Figure 5-15: The CFD model 2 for predicting two cylinders contact ( 1R = 2R ). 

 

 

 

Figure 5-16: The CFD model 3 for predicting two cylinders contact ( 1R ≠ 2R ). 
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Chapter 6 CFD Model for Roller and Plate Contact 

 

CFD Model for Roller and Plate Contact  
 

 

 

6.1 Introduction 

 

In this chapter, the simulated results of the CFD model for the EHL problem in 

the case of the roller and plate contact are presented. The boundary conditions 

and the geometry of the CFD model are kept the same for all cases. For the 

purpose of simplification, the EHL problem with the Newtonian fluid and 

isothermal conditions will be studied first. Then, the rheological effects (non-

Newtonian fluid) will be investigated. The Roelands and the Ree-Eyring models 

are used to study the behaviour of Newtonian and non-Newtonian fluids 

respectively. The common parameters and the geometry model are identical to 

those previously used. Additionally, the effects of various parameters on the 

behaviour of the EHL line contact problem are studied, including the applied 

load, the velocity, the slide to roll ratio ( SRR ), the viscosity of the lubricant and 

the material properties. All cases are assumed to be in isothermal conditions 

with the same boundary conditions as previously discussed. Finally, the thermal 

condition is applied to non-Newtonian fluids in the CFD model. This will affect 

the viscosity and the density of the lubricant. The effect of temperature on the 

elastic properties of the solid walls of the CFD model will also be investigated. 
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6.2 Influence of non-Newtonian fluid 

 

The aim of this section is to investigate the influence of non-Newtonian fluid 

behaviour on the EHL problem with surface roughness using the CFD model. 

The geometry of the CFD model, as shown in Figure 5-6, and the common 

data, as listed in Table 5-1, are used in this task. Additionally, the Ree-Eyring 

and Roelands models are used to study the behaviour of the non-Newtonian 

and Newtonian fluids, respectively. The velocity of the roller and plate are varied 

to explore the non-Newtonian effects in the sliding condition. It should be noted 

that thermal effects are not considered in this section.    

 

 
 

Figure 6-1: The relationship between the undeformed gap ( oh ) and the pressure 

generated (time dependent).  

  

The undeformed gap ( oh ) between roller and plate in the film thickness equation 

plays an important role in balancing an applied load on the roller and the 

generated pressure in the lubricant film. The aim of this section is to investigate 

the time required for balancing the load for different test cases. Three different 

cases are used to simulate the point of balance as follows: 

‐ The first case is the simulation with a Newtonian fluid under pure rolling 

conditions. 
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‐ The second case is the simulation with a non-Newtonian fluid and a 

slide to roll ratio ( SRR ) of 1. 

‐ The third case is the simulation with a non-Newtonian fluid under a pure 

rolling condition. 

It was observed that generated pressure increased when the value of ho 

decreased as illustrated in Figure 6-1. The relationship between the 

undeformed gap and the generated pressure shows that the balanced point in 

all cases is very similar at about 0.6 seconds. The roller is slightly moved in the 

vertical direction after it reaches the balanced point. It is very difficult to observe 

and analyse the trend of the surface roughness effect, if the results obtained are 

presented at different times. Thus, all study cases are presented at 0.8 seconds 

to align the positions of surface roughness.     

 

   
 

Figure 6-2: Comparison of pressure distributions between Newtonian and non-

Newtonian fluids when SRR =0 and 1.   

 

The pressure and film thickness distributions obtained using the CFD model are 

presented in Figure 6-2, where Newtonian and non-Newtonian fluids over 

smooth surfaces are compared. There are slight differences in the pressure 

distributions between the Newtonian and non-Newtonian fluids at SRR = 0. This 

is due to the fact that the shear rate effect is very low under pure rolling 

0

0.1

0.2

0.3

0.4

0.5

0.6

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

P
re
ss
u
re
 [
G
P
a]

x x10‐3 [m]

Newtonian fluid, SRR=0

non‐Newtonian fluid, SRR=0

Newtonian fluid, SRR=1

non‐Newtonian fluid, SRR=1



92 

conditions. As a result, the shear strain rate term in the Ree-Eyring model does 

not change the value of the viscosity of the lubricant to a significant extent. 

 

Furthermore, the friction coefficients of the Newtonian fluid simulations are 

higher than that of the non-Newtonian fluid simulations, specifically the friction 

coefficients of Newtonian and non-Newtonian fluid simulations at SRR = 0 and 1 

are (0.0028, 0.0027) and (0.0766, 0.0275), respectively. At SRR =1, the friction 

coefficient increases with respect to the SRR = 0 case due to the increase 

velocity gradient.    

 

The results show that the shear strain rate in the lubricant film is increased 

when the SRR  ratio increases. It can be observed that the pressure spike at the 

outlet of the Hertzian contact zone with the non-Newtonian fluid reduces as the 

SRR  value increases. The pressure spike is therefore inversely correlated to the 

SRR  value. It can be noticed that the influence of the viscosity model in the oil 

film thickness takes place on molecular scale as shown in Figure 6-3. What is 

more, the deformation at the minimum film thickness only slightly changes in the 

case of the non-Newtonian fluid while it changed rapidly in the case of the 

Newtonian fluid. This may explain why the pressure spike of the non-Newtonian 

fluid simulation is lower than that of the Newtonian fluid simulation. In addition, it 

is found that the non-Newtonian fluid model can be used to predict the EHL 

problem at high SRR values, where it gives a more numerically stable simulation 

than the Newtonian fluid.       
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Figure 6-3: Comparison of film thicknesses between Newtonian and non-

Newtonian fluids when SRR =0 and 1.  

 

 

Figure 6-4: Effect of surface roughness on pressure distribution at SRR =0 and 1 

for non-Newtonian fluid. 
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Figure 6-4 shows the influence of using a non-Newtonian fluid on the pressure 

distribution with surface roughness when SRR  is varied from 0 to 1. It can be 

clearly seen that surface roughness is a significant factor affecting the pressure 

distribution. The shape of the pressure distribution tends to fluctuate according 

to the profile of the surface roughness with an amplitude that decreases when 

the SRR  is increased from 0 to 1. This is due to the roller surface velocity 

reduction from 2.50 m/s to 1.25 m/s, as the influence of the rough surface, with 

respect to the lubricant flow pattern, is increased at high velocity. 

 

 

 

 

 

  

Figure 6-5: Effect of non-Newtonian fluid on viscosity (Pa·s) at SRR =0, 1 and 2 

for smooth (a, c and e) and rough (b, d and f) surfaces.  
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Figure 6-5a, Figure 6-5c, and Figure 6-5e show by colour iso-levels the 

viscosity of the lubricant at SRR = 0, 1 and 2 respectively. The Ree-Eyring 

model is used to estimate the value of the lubricant viscosity. The shear strain 

rate in the lubricant film is very significant in determining the viscosity value of 

the lubricant as the viscosity is decreased from 7.2 to 0.7 Pa·s when the SRR  

value is increased from 0 to 2. In addition to the SRR  value, the surface 

roughness is also a significant factor affecting the value of viscosity. The 

viscosity of the lubricant under a rough surface, as shown in Figure 6-5b, is 

higher than that in Figure 6-5a by approximately 6 times. This is due to the 

pressure distribution that is more affected by the surface roughness under pure 

rolling conditions. In addition, the viscosity of the lubricant under a rough and 

smooth surfaces are decreased when the SRR value increases, as indicated in 

Figure 6-5e and Figure 6-5f. This is due to the effect of a surface roughness 

decreased when the angular velocity of the roller is reduced as shown in Figure 

6-4.    

 

The results of the simulation of the EHL line contact problem using the CFD 

model with the non-Newtonian fluid show that surface roughness significantly 

affects the pressure distribution and the lubricant viscosity. The results also 

show the effect of surface roughness is highest in the case of pure rolling 

conditions and that this effect decreases when the SRR  value is increased. 

Therefore, it can be concluded that surface roughness and the shear strain rate 

in the lubricant film have a significant influence over the characteristics of the 

EHL problem.  

 

However, it is not clear why the influence of the surface roughness will reduce 

when the SRR  value is increased, as there are two transformed parameters 

when the SRR  value is changed. These parameters are viscosity and velocity. 

Thus, the viscosity and velocity effects on the EHL line contact problem will be 

studied separately in the next sections. Additionally, the thermal effect caused 

by the shear strain rate term should be considered in the EHL problem as well. 
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6.3 Influence of lubricant viscosity 

 

The behaviour of the EHL problem depends on the viscositypressure 

correlation, as the previous section showed that the non-Newtonian fluid 

viscosity is affected by the pressure distribution and by the film thickness. In 

addition, viscosity also influences the friction coefficient, as stated in equations 

(4.36) and (4.38). Therefore, the effect of different lubricant viscosities on the 

film thickness and pressure distribution in smooth and rough surface cases will 

be studied using the CFD model.  

 

The roughness profile and the CFD model used in this section are the ones 

shown in Figure 3-22 and Figure 5-6 respectively, while the fluid and solid 

properties are listed in Table 5-1. The boundary conditions and the initial 

condition are identical to those in section 6.2 (Influence of non-Newtonian fluid). 

Three different lubricants are considered that differ only their values of viscosity 

at ambient condition ( 0 ). Specifically, the viscosity of the lubricants at 

atmospheric conditions are 0.01 Pa·s, 0.05 Pa·s and 0.1 Pa·s. The pure rolling 

and isothermal conditions are applied to the CFD model.   

 

 

 

Figure 6-6: Effect of viscosity on pressure distribution (smooth surface). 
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Figure 6-7: Effect of viscosity on film thickness (smooth surface). 

 

 

 

Figure 6-8: Effect of viscosity on pressure distribution (rough surface). 
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Figure 6-9: Effect of viscosity on pressure distribution (rough surface). 
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Figure 6-8 presents the influence of viscosity on the pressure distribution for the 

rough roller surface test case. The pressure fluctuation in the low viscosity case 

is higher than in the high viscosity case. This is due to the influence of the rough 

surface being reduced as the film thickness increases by using a more viscosity 

lubricant. In addition, it is found that the friction coefficient of the rough surface 

in the fluid film is higher than the one of a smooth surface, specially f =0.0152, 

0.0278 and 0.0373 for 0 = 0.01, 0.05 and 0.1 Pa·s respectively. The influence 

of the surface roughness on the film thickness is similar to that of the smooth 

surface when viscosity is increased, as shown in Figure 6-9. It is found that the 

average oil film thickness of the surface roughness is slightly higher than that of 

smooth surfaces.  

 

It can be concluded that the lubricant viscosity has a significant effect on the 

film thickness and pressure distribution. Film thickness will be increased when a 

more viscous lubricant is used at the same speed and applied load. The surface 

roughness effect on the pressure distribution is reduced when a more viscous 

lubricant is used. 

 

6.4 Influence of surface speed 

 

The prediction of the EHL problem in section 6.2 for a non-Newtonian fluid 

shows the effect of the SRR  in combination with surface roughness. The 

influence of the surface roughness on the lubricant viscosity under pure rolling 

conditions ( SRR =0) is higher than in pure sliding conditions ( SRR =2). 

Therefore, the influence of the velocity of the moving surfaces on the EHL 

problem will be investigated using the CFD model. All parameters and boundary 

conditions are kept identical to the one used in section 6.2, except for the 

angular velocity of the roller and the plate velocities. The roller rotation velocity 

is set at 200 rad/s, 300 rad/s, and 400 rad/s, while the plate is stationary.     
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Figure 6-10: Effect of velocity on pressure distribution (smooth surface). 

 

 

 

Figure 6-11: Effect of velocity on film thickness (smooth surface). 
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Figure 6-12: Effect of velocity on pressure distribution (rough surface). 

 

 

 

Figure 6-13: Effect of velocity on film thickness (rough surface). 
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Figure 6-10 and Figure 6-11 illustrate the effect of velocity on the pressure 

distribution and on the oil film thickness respectively, using the CFD model with 

smooth roller and plate surfaces. Figure 6-11 shows that the oil film thickness is 

increased as the velocity increases. The increment of the minimum oil film 

thickness is about 21.04% and 91.11% when the angular velocity of the roller is 

increased from 200 rpm to 300 rpm and 400 rpm respectively. This increasing 

trend was also present in the experimental results of Krupka et al. [145].  

 

Once surface roughness is applied to the surface of the roller, the trends of the 

pressure distribution and oil film thickness, when the angular velocity of the 

roller increases, are predicted to be similar to the ones for a smooth surface. 

Figure 6-13 shows that the average oil film thickness is increased by 0.28% and 
0.47% when the angular velocity of the roller is increased from 200 rpm to 300 

rpm and 400 rpm, respectively. Figure 6-12 shows the surface roughness effect 

on pressure distribution. The influence of the surface roughness on the 

pressure fluctuation is reduced when the angular velocity of the roller is 

increased. This effect relates to the increment in the oil film thickness with 

increased angular velocity, which is shown in Figure 6-13. Furthermore, it is 

found that the oil film thickness of the surface roughness case is slightly higher 

than that of the smooth surface case.       
 

The results from this study clearly show that the velocity of the solid parts plays 

an important role in determining the oil film thickness, and that increasing the 

velocity of the solid parts reduces roughness effect. The latter is explained by 

the change in the oil film thickness. Thus, it can be confirmed that the influence 

of surface roughness on the EHL problem depends primarily on the oil film 

thickness.   

 

 

 

 

 

 

 



103 

6.5 Influence of the normal load  

 

Typically, bearing damage can be due to several factors. One of them is 

overload, which will be investigated using the CFD model in this section. A CFD 

model geometry and lubricant parameters identical to the ones in section 4 will 

be used in this section. However, the applied load per unit span will be changed 

from 50 kN/m to 200 kN/m. In addition, the lubricant is considered to be a non-

Newtonian fluid. The properties of the lubricant (viscosity and density) depend 

on pressure only by equation (2.37) and (2.38). In order to avoid the effect of 

the shear forces that occur in a sliding contact configuration, the pure rolling 

contact condition only is implemented in this section.      

 

Figure 6-14  and Figure 6-15 present the influence of applied loads on the 

pressure distribution and the oil film thickness build-up for the smooth surface 

contact configuration. From the simulation, the average pressure in the Hertzian 

zone is predicted to increase by 93.50%, 181.35% and 264.60% as the applied 

load per unit span is increased from 50 kN/m to 100 kN/m, 150 kN/m and 200 

kN/m, respectively. At the same time, the average oil film thickness is reduced 

by 1.86%, 3.30%, and 4.47%, respectively. The trends of the applied load effect 

on the behaviour of the EHL line contact using the CFD model are in good 

agreement with the experimental results of Fu and Guo [146] and Ivan [147]. 

The influence of the applied load on the oil film thickness is very low, but the 

effect on the deformation of the roller in the range μm0.1μm0.1  x  is 

greater, as indicated in Figure 6-15 that shows a noticeable growth of the roller 

flattened area in x  with increasing load. 
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Figure 6-14: Effect of loads (N/m) on pressure distribution (smooth surface). 

 

 
 

Figure 6-15: Effect of loads (N/m) on oil film thickness (smooth surface). 
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Figure 6-16: Effect of loads (N/m) on pressure distribution (rough surface). 

 

 

 

Figure 6-17: Effect of loads (N/m) on oil film thickness (rough surface). 
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Figure 6-16 and Figure 6-17 show the influence of the surface roughness on 

the EHL line contact problem when the applied load is increased. The pressure 

distribution fluctuation amplitude increases as the applied load increases. The 

average oil film thickness is reduced by 1.88%, 3.29% and 4.47% when the 

applied load is increased from 50 kN/m to 100 kN/m, 150 kN/m and 200 kN/m 

respectively. In addition, it is found that the film thickness of the surface 

roughness cases is slightly higher than those of the smooth surface cases.   

 

It can be concluded that the applied load per unite span significantly affects the 

pressure distribution and the deformation of the roller. The influence of the 

surface roughness on the pressure distribution at a high applied load is higher 

than in the corresponding low load cases.   

 

6.6 Influence of material properties 

 

Thin film bearings can be produced from many material types. The bearings are 

designed to work in various conditions; for example, a ceramic bearing can be 

used at both high speeds and high operating temperatures [148]. As such, the 

effect of the materials type on the characteristics of the EHL line contact 

problem with respect to surface roughness will be examined in this section 

using the CFD model.  

 

Traditionally, the effective elastic modulus parameter has been used to 

represent the modulus of elasticity of the roller and the plate when the EHL 

problem is solved by the Reynolds equation. The aim of this section is to 

investigate the characteristics of the EHL line contact problem using the 

effective elastic modulus to calculate the deformation in the solid parts from the 

film thickness equation. Model 1 in Table 5-4 will be used in this section. The 

deformations of the cylinder and the plate are considered in the deformation 

term of the film thickness equation. In addition, the surface roughness profiles 

from Figure 3-22b and from Figure 3-18b, which are imposed on the surface of 

the cylinder and the plate respectively, are also included in the film thickness 
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equation. The material properties of the cylinder and the plate used in this study 

are listed in Table 6-1. 

 
 

Table 6-1: Properties of materials [149, 150] 
 

Material E (GPa)   Cp  

(J/ (kg·K)) 
  (kg/m3) k (W/(m·K)) 

Steel 210 0.30 460 7850 47 

Brass 130 0.33 380 8450 125 

Ceramic 450 0.15 1050 3800 29 

 

In this study, the isothermal condition is applied to the CFD model. The lubricant 

viscosity is considered to be a non-Newtonian fluid behaviour according to the 

Ree-Eyring model. The contact between the roller and the plate is defined as a 

pure rolling ( SRR =0). Four different material combinations for the roller and the 

plate are investigated, as described in Table 6-2.  

 

Table 6-2: The materials of the top and bottom rollers 
 

 

 

 

 

Cases 
Materials 

Top roller Bottom plate 

1 Brass Iron 

2 Iron Iron 

3 Iron Ceramic 

4 Brass Ceramic 
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Figure 6-18: Effect of material properties on the pressure distribution (smooth 

surfaces). 

 

 

Figure 6-19: Effect of material properties on the film thickness (smooth 

surfaces). 
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Figure 6-18 shows the effect of different materials on the EHL line contact 

problem for smooth surfaces according to model 1. It is found that the influence 

of different materials on the pressure distribution trend from the CFD model is 

similar to the one in the experimental results of Sperrfechter and Haller [151]. It 

can be noticed that the pressure values from the contact between materials of 

low hardness (brass-iron) in Figure 6-18 are lower than the corresponding 

values from the contact of materials of high hardness (iron-ceramic), but the 

width of the pressure distribution in the case of the brass-iron contact is larger 

as shown in Figure 6-19. This can be confirmed by the film shapes of the 

contact between brass and iron and the contact between iron and ceramic, as 

shown in Figure 6-19. The average oil film thicknesses for brass–iron, iron–iron, 

iron–ceramic, and brass–ceramic contacts are 16.00 μm , 16.09 μm ,16.16 μm  

and 16.07 μm , respectively.  

 

 

Figure 6-20: Effect of material properties on the pressure distribution (rough 

surfaces). 
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Figure 6-21: Effect of material properties on the film thickness (rough surfaces). 
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contact between brass and iron (maximum deformation).   

 

6.7 Thermal effects 

 

The aim of this section is to investigate the influence of temperature on the 

characteristics of the EHL problem by using the CFD model with surface 

roughness. The Ree-Eyring model, which is the viscosity model for the non-

Newtonian fluid, is used to represent the effect of pressure and temperature rise 

on the lubricant viscosity. The temperature rise effect is also included in the 

density equation as presented in equation (2.39). The conservation equations 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

z 
[µ
m
]

x [mm]

Brass‐Iron

Iron‐Iron

Iron‐Ceramic

Brass‐Ceramic



111 

(momentum, continuity and energy equations) are implemented to compute the 

velocity field, pressure, density, and temperature rise in the fluid film in this 

study.  

 

The CFD model of Figure 5-6 will be employed to investigate the influence of 

surface roughness on the TEHL problem. The input data and the properties of 

the lubricant and the solids used are listed in Table 6-3. In order to study the 

thermal effect on the TEHL problem, the slide to roll ratio will be varied, as the 

velocity gradient affects the heat generated in the fluid film. In the sliding 

contact case, the velocity difference between roller and plate will produce a 

shear force in the lubricant film and generate heat via the viscous shear stress. 

In addition, the heat generated by the compression force in the lubricant is also 

considered in the CFD model. From the previous section, it can be seen that 

film thickness at the contact region is very thin (<0.5 µm). Therefore, the heat 

convection across the film thickness and the heat conduction alongside the film 

thickness can be neglected in this study. 

 

   
 

Figure 6-22: Maximum temperature when wall thickness is increased. 
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walls. The temperatures at the wall boundaries are imposed as equal to an 

ambient temperature of 298.15 K. Thus, the thermal capacitance of the walls is 

assumed to be sufficiently high to absorb the heat transferred from the fluid 

without significantly changing the wall surface temperature. This assumption is 

appropriate for modelling the flow during the start-up of a cold-started bearing. 

 

Table 6-3: Common parameters 

Parameters Value Unit 

Input data 

An applied load, w  50,000 N/m 

Average velocity, mu  2.50 m/s 

Roller’s radius, cR  10 mm 

Surface roughness, aR  0.0275 μm 

Ambient temperature, 0T  298.15 K 

Solid properties (roller and plate) 

Elastic modulus, E  210 GPa 

Poisson's ratio,   0.30 - 

Specific heat, pC  460 J/kg·K 

Density,   7,850 kg/m3 

Thermal conductivity, k  47 W/(m·K) 

Lubricant properties 

Inlet viscosity, 0  0.01 Pa·s 

Vapour dynamic viscosity, v  8.97x10-6 Pa·s 

Liquid density, l  850.0 kg/m3 

Vapour density, v  0.0288 kg/m3 

Inlet temperature, 0T  313.0 K 

Thermal conductivity, fk   0.15 W/(m·K) 

Temperature-viscosity coefficient,   6.45x10-4 1/K 

Specific heat capacity, pC  2,300 J/ (kg·K) 

Thermal expansivity,   4.50x10-4 1/K 

Pressure-viscosity index, z  0.689 - 
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Figure 6-22 shows the correlation between wall thickness and maximum 

temperature rise at the lubricant. It can be seen that the temperature rises 

rapidly when the wall thickness is over 0.01 mm for SRR  = 1 and 2. The 

temperature of the lubricant rises because the shear strain rate increases with 

higher SRR . Therefore, a wall thickness of 0.001 mm is chosen as the default 

value in order to study the effect of surface roughness on the thermo-

elastohydrodynamic lubrication (TEHL) line contact problem in the present 

study. 

 

 

Figure 6-23: Comparison of pressure distributions at SRR =0, 1 and 2 between 

the isothermal and thermal cases (smooth surfaces).  
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the thermal cases is thinner than that of the isothermal ones. This is due to the 

fact that the lubricant viscosity of the thermal case is lower than in the 

isothermal case, especially under pure sliding contact conditions.  

 

 
 

Figure 6-24: Comparison of film thicknesses at SRR =0, 1 and 2 between the 

isothermal and thermal cases (smooth surfaces). 
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surface case. The effects of surface roughness on the pressure distribution and 

the oil film thickness are shown in Figure 6-26 and Figure 6-27 to be similar to 

the results shown in section 5.4. However, the influence of the surface 

roughness on the pressure distribution in the thermal case is higher than in the 

isothermal case, as the maximum pressure in Figure 6-26 is higher than that in 

Figure 6-4 by about 0.1 GPa.    

 

Figure 6-27 shows the thermal effect on the oil film thickness predicted by the 

CFD model with the rough surface roller. It is found that the average film 

thickness slightly decreases when SRR  is increased. This is due to the effect of 

temperature on the decreasing of the viscosity and density of lubricant.   

 

 

 

 

 

 

 

  

 

Figure 6-25: Effect of surface roughness on iso-levels of temperature (K) at 

SRR =0, 1 and 2 (Left: smooth surface; Right: rough surface).  
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Figure 6-26: Effect of surface roughness on pressure distribution at SRR = 0, 1 

and 2. 

 

 

 

Figure 6-27: Effect of surface roughness on film thickness at SRR = 0, 1 and 2. 
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Figure 6-28: Effect of surface roughness on velocity magnitude iso-levels (m/s) 

at SRR =0, 1 and 2 (Left: smooth surface; Right: rough surface).  

 

Figure 6-28 presents the iso-levels of the velocity magnitude of the lubricant 
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why the pressure distribution fluctuates as shown in Figure 6-26. It can be seen 
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along the roller surface as the rough profile on the roller surface is moving at 2.5 

m/s faster than under pure sliding contact conditions (Figure 6-28f) where the 

roller is stationary. The transported flow mass in the crevices of the roller rough 

surface is therefore expected to be higher in the pure rolling case than when the 

roller is stationary. This creates an effect similar to a general pump by which the 

addition of fluid mass by the rotating teeth generates pressure pulses at the 

tooth passing frequency. In this case, the positive displacement of lubricant fluid 
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by the surface roughness crevices causes localised pressure fluctuations. This 

phenomenon is easily explained with reference to the conservation of 

momentum in the frame of reference of the roller surface. Ignoring viscous 

effects 0 p
Dt

D
U . Therefore, the combination of surface motion in the 

material operator and of the non-uniform velocity U cause the observed 

fluctuations in pressure. In the model where the roller is stationary Figure 6-28f 

shows that the predicted velocity magnitude is higher than in the model with a 

pure rolling contact. The velocity peaks close to the smooth surface flat plate. 

This reduces the occurrence of pressure fluctuations due to the smooth of the 

surface over which the lubricant flows faster. 

 

  

 
 

 
 

 

Figure 6-29: Effect of surface roughness on the iso-levels of viscosity ( sPa ) at 

SRR =0, 1 and 2 (Left: smooth surface; Right: rough surface). 
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In the TEHL model, the viscosity of the lubricant is affected by the lubricant 

temperature. Figure 6-29 shows the effect of surface roughness on the lubricant 

viscosity under thermal conditions. It can be noticed that the viscosity at the 

surface of solids is higher than at the centre of the oil film thickness because it 

is there that the fluid temperature reaches its peak. This is due to the highest 

amount of frictional heat being retained at the centre of oil film in the sliding 

contact case.  

 

According to the Reynolds approach, the pressure across the oil film thickness 

is considered to be a constant. This assumption can be accepted when the 

surfaces of solids are smooth, but it is inapplicable when the surface roughness 

effect is considered. Figure 6-30 shows the significance of the surface 

roughness on the velocity gradients close to the surface roughness at SRR =0. It 

can be seen that the velocity gradients parallel and perpendicular to the 

lubricant flows vary when the surface is rough. The peaks of surface roughness 

affect the velocity gradient along the fluid flow direction, as shown in Figure 

6-30b. These velocity gradients have an effect on the pressure gradient. 

According to the momentum equation, the pressure gradients streamwise and 

normal can be obtained from:  
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(6.2)

where x  and z  represent the spatial coordinates along (parallel to) and across 

(perpendicular to) the flow directions respectively.  
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Figure 6-30: Effect of surface roughness on velocity gradients ( 1s ). 
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Figure 6-31: Effect of surface roughness on pressure gradients ( 1maP  ). 

 

 

 

Figure 6-32: Effect of surface roughness on viscosity of lubricant ( sPa ). 
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Figure 6-33: Effect of surface roughness on temperature field ( K ). 

 

The velocity gradient term is very high because the x and z  at the contact 

zone are very small ( x 0.25 µm and z 0.01 µm). Thus, the diffusion term, 

which is the function of viscosity and the second order of velocity gradient, is 

higher than the other terms. For example the maximum values of the 

acceleration and convection terms are only about 3.54x109 N/m3 and 7.01x109 

N/m3 respectively while the maximum diffusivity of momentum term is around 

9.16x1015 N/m3. The analysis has shown that the term which includes the 

viscosity variation (Figure 6-32) along the fluid flow direction has the dominant 

effect on the pressure gradient, as presented in Figure 6-31b, when compared 

with the others, such as the convection and rate of change terms.  

 

In addition, the velocity gradient across the film thickness also influences the 

pressure gradient as shown in Figure 6-31a. The pressure gradient in both flow 

directions shows the significance of surface roughness on the behaviour of the 

EHL problem. Specifically, the pressure obtained by the CFD model varies 

across the entire film thickness. 

 

Figure 6-33 shows the surface roughness effect on the temperature close to the 

roller wall as predicted by the TEHL model at a SRR =0. It can be clearly seen 

that the surface roughness has a significant effect on the temperature field. The 

temperature is increased when the lubricant flows through the narrow gap 



123 

between the peaks of surface roughness as the pressure gradient (Figure 6-31) 

and the viscosity of lubricant (Figure 6-32) are both high in that region.  
 

From the results of the CFD simulation of the TEHL line contact problem with 

modelled surface roughness, the following conclusions are drawn: 

‐ Frictional heating is a greater cause of temperature rise than 

compression forces in the oil film.  

‐ Viscosity is inversely proportional to temperature. 

‐ The influence of surface roughness on pressure distribution can be 

greater in the case of thinner films. 

‐ The pressure spike in the TEHL case is lower than in the EHL case. 

‐ The oil film thickness of the TEHL case is slightly thinner than that in the 

EHL problem with isothermal case. 
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Chapter 7 The CFD Model for Two Rollers Contact 

 

The CFD Model for Two Rollers Contact 
 

 

7.1  Introduction 

 

The results of the CFD model for the contact between the two rollers under full 

film lubrication are reported in this chapter. The effects of surface roughness in 

the two rollers contact case will be presented and compared with the previous 

chapter. In the first part of this chapter, the material effect on the contact 

between two rollers of equal radius will be presented. Then, the contact 

between different radius rollers will be investigated to predict the influence of 

the surface roughness and of material on the EHL line contact problem. The 

influence of surface roughness parameters on the EHL line contact problem will 

be explored by generating different shapes of surface texture and applying 

these shapes to the CFD model for the two rollers contact. The study of the 

generated rough surfaces will be sorted into three groups. The first group will be 

studied to determine the influence of the average roughness parameter. The 

second group will be focused on the influence of the kurtosis parameter (Rku) for 

Rku < 3, Rku = 3, and Rku > 3. The last group will examine the influence of the 

skewness parameter (Rsk) for negative, positive, and zero Rsk. The thermal 

effects on the fluid flow between the contact of two different radius rollers will 

also be discussed.   

 

7.2 Influence of material properties 

 

The aim of this section is to investigate the material effect on the EHL problem 

using the CFD model. The first case has cylinders of identical radius and the 

other case has cylinders of different radii. Both CFD models are used to predict 
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the elastic deformation of the rollers that are modelled as made of different 

materials. The combinations brass - iron, iron - iron, iron - ceramic and brass - 

ceramic are considered for the top and bottom rollers, respectively.   

 

7.2.1 Two rollers contact (R1=R2) 

The CFD model for the two same sized rollers TEHL line contact problem, as 

sketched in Figure 5-14 (Model 2), is used to solve the EHL problem in this 

section. The quadrilateral mesh generated by the CFD model 2 is shown in 

Figure 5-15. The mesh size used in this model is identical to the previous model 

in chapter 5 but the bottom side has a cylindrical curve. The boundary 

conditions and the initial condition used in this section are identical to the ones 

in section 6.6. The surface roughness models 1 and 2 from Figure 3-22b and 

Figure 3-18b are applied to the surfaces of the top and bottom cylinder 

respectively. The pressure distribution and the deformed cylinder surfaces of 

the top and bottom cylinders will be compared with the ones from previous 

model.  

 

 

Figure 7-1: Material effects on the pressure distributions and the deformed 

cylinder surfaces (smooth surface).  
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Figure 7-2: Material effects on the pressure distributions and the deformed 

cylinder surfaces (smooth surface).  

 

 

Figure 7-3: Material effects on the pressure distributions and the deformed 

cylinder surfaces (smooth surface).  
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Figure 7-4: Material effects on the pressure distributions and the deformed 

cylinder surfaces (smooth surface).  

 

 

 

Figure 7-5: Comparison of the pressure distribution (top cylinder) among 

different material contacts. 
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Figure 7-1 to 7-4 show the elastic deformation of the top and bottom cylinders 

caused by the high pressure along the central line of the contact zone. It can be 

noticed that the pressure distributions on the top and bottom cylindrical surfaces 

are the same, while the elastic deformations on both surfaces are different, 

especially for the brassceramic roller combination and their contact, as shown 

in Figure 7-4. This is due to the Young’s modulus (elastic modulus) of the top 

cylinder being lower than that of the bottom cylinder. The elastic deformations of 

the solid surfaces are symmetry when the same material are applied on the top 

and bottom cylinders as shown in Figure 7-2. Figure 7-3 shows the contact 

between iron cylinder and ceramic cylinder. It can be clearly seen that the 

pressure distribution at the Hertzian contact zone is very high and the surfaces 

of both cylinders are smaller deformed than other cases.   

 

In Figure 7-5, the pressure distribution between the surfaces of the top and 

bottom cylinders with the brass iron, iron iron, ironceramic, and brass

ceramic contacts are compared. It is found that the highest pressure occurs for 

the iron and ceramic contact, while the minimum pressure occurs for the brass 

and iron contact. The pressure distribution from the iron and the ceramic EHL 

line contact is higher than for all other combinations at material considered 

here, but it has also the narrowest Hertzian contact area. This is due to the iron

ceramic contact having the highest effective elastic modulus (E =307.43 

GPa) whereas the brassceramic contact has the lowest effective elastic 

modulus (E =221.56 GPa).     
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Figure 7-6: Comparison of the material effects on the pressure distributions 

between CFD model 1 and CFD model 2 from Table 5-4. 

 

The pressure distributions of different types of material from CFD model 1 (roller 

and plate geometry) and CFD model 2 (roller of equal radii) are compared in 

Figure 7-16. It is found that, although both models are very similar, their 

pressure profiles are slightly different at the outlet region. The maximum error of 

pressure between model 1 and model 2 by about 0.0555 GPa, 0.0889 GPa, 

0.2042 GPa, 0.0823 GPa for the brass–iron, iron–iron, iron–ceramic, and 

brass–ceramic contacts, respectively. Furthermore, the pressure spike in model 

1 is shifted further to the outlet region in comparison to model 2, which is due to 

the fact that the elastic deformation terms of models 1 and 2 are different. In the 

CFD model 1, the elastic deformation is computed from the effective elastic 

modulus, while elastic deformation in CFD model 2 is directly calculated from 

the modulus of elasticity of each cylinder. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

P
re
ss
u
re
 [
G
P
a]

x [mm]

Model 1 (Brass‐Iron)

Model 1 (Iron‐Iron)

Model 1 (Iron‐Ceramic)

Model 1 (Brass‐Ceramic)

Model 2 (Brass‐Iron)

Model 2 (Iron‐Iron)

Model 2 (Iron‐Ceramic)

Model 2 (Brass‐Ceramic)



130 

 

Figure 7-7: Material effects on the pressure distributions and on the deformed 

cylinder surface (rough surface). 

 

 

Figure 7-8: Material effects on the pressure distributions and on the deformed 

cylinder surface (rough surface). 
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Figure 7-9: Material effects on the pressure distributions and on the deformed 

cylinder surface (rough surface). 

 

 

Figure 7-10: Material effects on the pressure distributions and on the deformed 

cylinder surface (rough surface). 
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Table 7-1: Comparison of the maximum pressure and film thickness of the CFD 

models 1 and 2  
 

Match of contacts 
Brass-

Iron 
Iron-Iron 

Iron-
Ceramic 

Brass-
Ceramic

Smooth 
surface  

Cylinder & 
Plate 

p(GPa) 0.3733 0.4675 0.6088 0.4500

h(µm) 16.0053 16.087 16.1644 16.0749

2 cylinders 
p(GPa) 0.3731 0.4657 0.6027 0.4498

h(µm) 15.7825 15.8652 15.9762 15.9761

Rough 
surface  

Cylinder & 
Plate 

p(GPa) 1.00212 1.23844 1.53837 1.19477  

h(µm) 16.0076 16.0911 16.1725 16.0786

2 cylinders 
p(GPa) 0.6315 0.7750 0.9700 0.9673

h(µm) 15.8143 15.8984 15.9768 15.9765

 

Figure 7-7 to Figure 7-10 show the effects of surface roughness on the EHL 

problem through the CFD model when using different material contacts. The 

results show the effect of surface roughness on the pressure distribution. It can 

be seen that pressure fluctuation is highest in the case of the ironceramic 

contact and lowest in the case of the brass iron contact. This is due to the 

material effect as presented in the previous section. Therefore smooth and 

rough roller surfaces exhibit the same of dependence on the material 

properties.  

 

Table 7-1  shows the maximum pressure and the average oil film thickness of 

model 1 and model 2 for contacts in both smooth and rough surfaces. It is found 

that the maximum pressures from model 1 (cylinderplate) is the Hertzian 

contact zone are higher than the corresponding ones from model 2 (two 

cylinders contact, 1R = 2R ) for both surface types by around 0.43% and 32.77% 

for the smooth and rough surface cases, respectively. The average oil film 

thickness of rough surface cases (Model 1) is about 0.03% higher than that of 

the smooth surface cases. According to the results obtained, the effect of 

surface roughness on the EHL problem by model 2 is similar to model 1, but the 

average film thickness is higher than that of the smooth surface case by about 

0.10%.       
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7.2.2 Two cylinders contact (R1 ≠ R2) 

The CFD model 3 for the two rollers contact, as depicted in Figure 5-14, is used 

to solve the EHL problem in this section. The quadrilateral-mesh generated for 

this model is depicted in Figure 5-16. The mesh size used here is identical to 

the model in the previous section, but the top and bottom sides have a different 

cylindrical curve (R1=15 mm and R2=30 mm). The boundary conditions and the 

initial condition used are identical to the ones reported in section 6.6. The 

surface roughness profiles 1 and 2 from Figure 3-22b and Figure 3-18b are 

applied to the surfaces of the top and bottom cylinder, respectively. The 

predicted pressure distribution and the oil film thickness between the top and 

bottom cylinders will be compared with the corresponding predictions from the 

previous model.  

 

Table 7-2: Effect of material on two cylinders contact (R1 ≠ R2)  

Materials 

At the contact centre, x=0 mm 

1z   
(µm) 

2z   
(µm) 

Average 
pressure 

(GPa) 

Film 
thickness 

(µm) 

Iron iron (E1=E2) 0.0890 0.1369 0.41063 0.2238 

Brassceramic (E1<E2) 0.1867 0.0435 0.40254 0.2245 

Ceramicbrass (E1>E2) 0.0194 0.2625 0.40258 0.2243 
 

Note: 1z  and 2z  refer to the elastic deformation at the top and bottom 

cylinders, respectively. 

 

Figure 7-11, Figure 7-12 and Figure 7-13 present the film thicknesses and the 

pressure distributions when the materials used for the top and bottom cylinders 

are iron iron, brassceramic and ceramicbrass, respectively. It is found that 

the elastic deformation of the bottom cylinder is higher than that of the top 

cylinder, as depicted in Figure 7-11. Although the materials of both cylinders are 

the same, the indentation of the bottom cylinder is deeper than that of the top 

cylinder around 0.0479 µm as described in Table 7-2. It is interesting to notice 

that the results deviate from those in the previous section in that the 

deformations are no larger equal between the two cylinders.  
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Figure 7-11: The pressure distributions and profiles of cylinders (E1=E2). 

 

 

 

Figure 7-12: The pressure distributions and profiles of cylinders (E1<E2). 
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Figure 7-13: The pressure distributions and profiles of cylinders (E1>E2).  
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Figure 7-14: The pressure distributions when E1<E2 and E1>E2 with the CFD 

model 3. 

 

 

Figure 7-15: Comparison of the deformations when top and bottom cylinders 

are brassceramic and ceramicbrass. 
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Figure 7-14 reports the predicted pressure distributions generated in the 

lubricant film in the case of different materials and radii of the cylinders. The 

pressure profiles of brassceramic and ceramicbrass contact are the same, 

while the elastic deformations of both cases are entirely different, as presented 

in Figure 7-15.  It can be inferred that the film thickness in the Hertzian contact 

region of both cases are similar although the elastic deformations of the top and 

bottom cylinder surface are different.    

 

Figure 7-16 presents the pressure distributions of the CFD models 1, 2, and 3, 

respectively. The pressure profiles of all CFD models are the same when the 

materials defined on the top and bottom cylinders of three models are the same 

- i.e. the top cylinder is defined to be ceramic and the bottom is defined to be 

brass. The elastic deformations of the top and bottom cylinders for each CFD 

model are significantly different, but the film thickness at the contact area 

remains the same for all cases.  

 

According to the results, radii and material parameters significantly affect the 

elastic deformations of both cylinders. As shown in Figure 7-17, the gaps 

between the top and the bottom cylinders at the contact areas of models 1 

(black colour), 2 (green colour) and 3 (red colour) are similar. Thus, it can be 

concluded that the elastic deformation of each contact depends on the radius 

and the material properties while the pressure building up in the fluid film 

depends only on the film thickness at the contact zone. 



138 

  

Figure 7-16: Comparison of the pressure profiles among models 1, 2 and 3. 
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Figure 7-17: Comparison of the film thickness among models 1, 2 and 3. 

 

 

Figure 7-18: Pressure distribution and film thickness (iron iron). 
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Figure 7-19: Pressure distribution and film thickness (brassceramic). 

 

 

Figure 7-20: Pressure distribution and film thickness (ceramic-brass). 
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The surface roughness effect on the EHL line contact problem for two cylinders 

with different radii (R1≠R2) is predicted by using the CFD model geometry 

shown in Figure 5-16. The CFD results of Figure 7-18, Figure 7-19 and Figure 

7-20 present the effects of different combination of cylinder materials on the 

pressure distribution and the film thickness, taking into account surface 

roughness. Figure 7-18 shows the influence of the surface roughness on the 

axial pressure distribution in the fluid when the top and bottom cylinders are of 

the same material (iron iron). The second and third cases present the effects 

of using different materials. It can be seen that the elastic deformations of the 

surface of the cylinders with roughness display a similar trend towards top and 

bottom cylinder deformation in rough surfaces is similar in smooth surfaces, 

shown in Figure 7-15. The highest deformation of the bottom cylinder occurs in 

the case where the small cylinder (top cylinder) is of a hard material (ceramic) 

and the big cylinder is of a soft metal (brass). Figures 7-18 to 7-20 show that the 

pressure distributions over the top and bottom cylinder surfaces are the same, 

because the film thickness is very thin.  

 

7.3 Influence of the roughness parameters  

 

The CFD models in the previous sections showed that surface roughness has 

significant effects on the EHL line contact problem. It must be pointed out that 

all simulations used the same surface roughness profile ( aR =0.0216 µm). Thus, 

it is important to study the effects of surface roughness on the EHL problem 

when aR , skR  and kuR  are varied. Such line contact problems will be 

investigated in this section as follows: 

‐ Surface roughness profiles (1, 2 and 3), as shown in Figure 7-21, will be 

used to study the influence of the average roughness value ( aR ). 

‐ Surface roughness profiles (1, 4 and 5), as depicted in Figure 7-22, will 

be used to study the influence of the peaks of the surface texture for 

kuR  < 3, kuR  = 3, and kuR  > 3.  

‐ Surface roughness profiles (1, 6 and 7), as presented in Figure 7-23 

where the skewness values ( skR ) are negative ( skR =-0.70), zero ( skR
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=0), and positive ( skR =0.72), will be used to study the influence of the 

distribution shape of surface roughness.  

All surface roughness profiles are generated using the Pearson function 

provided by MATLAB (R2013b) [152, 153]. The surface roughness parameters 

of the surface roughness profiles 1 to 7 are listed in Table 7-3. This table 

reports the input parameter in brackets and the computed parameter of the 

generated surface roughness profile in plain text. It can be seen that there are 

some differences between the input and output data. It is very difficult to keep 

the output of the generated profile the same as the input parameters but it can 

be accepted, but it can be accepted. This is due to a computer number 

generator can produce a different data in each time, as explained in section 3.5. 

Whereas the output roughness parameters and different the input values, the 

variation in output parameter in Table 7-2 enables to study the effects of aR , 

skR  and kuR  as intended.   

 

Table 7-3: The roughness parameters for profiles 1 to 7 ( 5.0x µm) 

Roughness profile aR  (µm) qR  (µm) skR  kuR  

1 
0.0234 

(0.0200) 

0.0299 

(0.0300) 

0.0038 

(0.0000) 

3.01 

(3.00) 

2 
0.0363 

(0.0300) 

0.0454 

(0.0450) 

0.0051 

(0.0000) 

3.01 

(3.00) 

3 
0.0484 

(0.0400) 

0.0604 

(0.0600) 

0.0085 

(0.0000) 

2.99 

(3.00) 

4 
0.0254 

(0.0200) 

0.0300 

(0.0300) 

0.0052 

(0.0000) 

2.00 

(2.00) 

5 
0.0223 

(0.0200) 

0.0302 

(0.0300) 

0.0068 

(0.0000) 

5.60 

(6.00) 

6 
0.0247 

(0.0200) 

0.0302 

(0.0300) 

-0.7024 

(-0.7000) 

3.01 

(3.00) 

7 
0.0249 

(0.0200) 

0.0301 

(0.0300) 

0.7031 

(0.7000) 

3.00 

(3.00) 
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The aim of this simulation is only the study the trend of the effect of the 

skewness parameter ( skR ) on the behaviour of the EHL line contact problem. It 

should be noted that the generated surface roughness from Pearson distribution 

with the effects of skewness is limited between -1.2 and 1.2 when the kurtosis (

kuR ) is equal to be 3.0.  In order to investigate the effect of a high skewness 

parameter, it is necessary to increase the kurtosis parameter. 

 

The surface of the top cylinder is defined as a rough surface with a roughness 

profile from Figure 7-21 to 7-23 while the bottom cylinder is assumed to be a 

smooth surface. In this section the CFD model geometry, shown in Figure 5-15 

is used to simulate the characteristics of the EHL problem with different 

roughness profiles. Viscosity is considered to be a non-Newtonian fluid. The 

isothermal condition is considered for the viscosity and density of the fluid.  

 
 

 

 

 

 

Figure 7-21: Surface roughness profiles when Ra is increased. 
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Figure 7-22: Influence of kurtosis on the surface roughness profiles. 

 

 

 

 

 

Figure 7-23: Influence of skewness on the surface roughness profiles. 
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Figure 7-24: Effect of surface roughness when the top cylinder is rough (Profile 

1). 

 

 

Figure 7-25: Effect of surface roughness when the top cylinder is rough (Profile 

2). 
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Figure 7-26: Effect of surface roughness when the top cylinder is rough (Profile 

3). 

 

 

Figure 7-27: Effect of surface roughness when the top cylinder is rough (Profile 

4). 
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Figure 7-28: Effect of surface roughness when the top cylinder is rough (Profile 

5). 

 

 

Figure 7-29: Effect of surface roughness when the top cylinder is rough (Profile 

6). 

 

‐0.8

‐0.6

‐0.4

‐0.2

0.0

0.2

0.4

0.6

0.8

‐2.5

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

1.0

1.5

2.0

2.5

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

P
re
ss
u
re
 [
G
P
a]

z 
[µ
m
]

x [mm]

Top cylinder+profile 5

Bottom cylinder

P‐Top cylinder

P‐Bottom cylinder

‐0.8

‐0.6

‐0.4

‐0.2

0.0

0.2

0.4

0.6

0.8

‐2.5

‐2.0

‐1.5

‐1.0

‐0.5

0.0

0.5

1.0

1.5

2.0

2.5

‐0.3 ‐0.2 ‐0.1 0 0.1 0.2

P
re
ss
u
re
 [
G
P
a]

z 
[µ
m
]

x [mm]

Top cylinder+profile 6

Bottom cylinder

P‐Top cylinder

P‐Bottom cylinder



148 

 

Figure 7-30: Effect of surface roughness when the top cylinder is rough (Profile 

7). 

 

 

Figure 7-31: Effect of surface roughness on pressure distributions when the 

average roughness (Ra) is increased. 
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Figure 7-32: Effect of surface roughness on pressure distributions when the 

kurtosis (Rku) value is varied (Rku=3, Rku>3 and Rku<3). 

 

 

Figure 7-33: The effects of surface roughness on pressure distribution when the 

value of skewness is 0, -0.70 and 0.72, respectively. 
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Table 7-4: The average oil film thickness and friction coefficient  
 

Cases 

Oil film 

thickness 

(µm) 

Friction 

Coefficient 
Details 

Smooth surface 15.8955 0.00274 aR =0.0 

Roughness profile 1 15.8978 0.01519 aR =0.02, kuR =3, skR =0 

Roughness profile 2 15.9062 0.01922 aR =0.04 

Roughness profile 3 15.9130 0.02019 aR =0.05 

Roughness profile 4 15.8998 0.01551 kuR <3.0 

Roughness profile 5 15.8991 0.01466 kuR >3.0 

Roughness profile 6 15.8987 0.01511 skR <0 

Roughness profile 7 15.8994 0.01583 skR >0 

 

 

The results of the effect of the average surface roughness ( aR ) parameter on 

the EHL problem (Figure 7-24, Figure 7-25, and Figure 7-26) show that the 

pressure fluctuates according to the surface roughness profile. It seems that the 

amplitude of the pressures fluctuations increases when aR  increases, as shown 

in Figure 7-31. The average oil film thickness in the Hertzian contact zone for 

aR  = 0.2 µm, 0.4 µm, and 0.5 µm, are 15.9067 µm, 15.9032 µm, and 15.9130 

µm respectively, i.e. the average oil film thickness and the magnitude of 

pressure fluctuation are directly correlated to the aR  value. In addition, the 

generated pressure in the fluid film also affects the elastic deformation of the 

bottom cylinder, especially in the high aR  case, as presented in Figure 7-26. 

The aR  values affect not only the oil film thickness and the fluctuated pressure 

but also influence the friction coefficient of the top cylinder. Table 7-4 shows 

that the friction coefficient is directly correlated to the aR  value.  
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Figure 7-24, Figure 7-27 and Figure 7-28 show the influence of the kurtosis 

parameter ( kuR ) on the pressure distribution and on the surface profile of the 

cylinders. The kurtosis parameter evidently plays an important role in 

determining the pressure distribution and the cylinder surface deformation. If the 

kurtosis is lower than 3, the surface roughness profile will not have several deep 

valleys or high peaks, as shown in Figure 7-22. When considering the influence 

of the rough profile with a kurtosis less than 3 on the pressure distribution, it 

was observed in Figure 7-27 that the generated pressures fluctuate according 

to the rough profile and that the average oil film thickness is more close to that 

in a smooth surface contact. For kuR  > 3, Figure 7-28 shows that the pressure 

fluctuation amplitude is higher than in the previous case, as shown in Figure 

7-32, but the average oil film thickness is lower than the case where kuR  < 3. It 

is found that the friction coefficient is inversely correlated to the kurtosis values. 

This may be due to the fact that the peaks of the rough profile can help reduce 

the area of contact. The results of this study are consistent with the simulation 

results of Tayebi and experiment results of Polycarpou [154] and experiments 

of Sedlaček [155]. 

 

Figure 7-24, Figure 7-29, and Figure 7-30 depict the influence of the skewness 

parameter on the pressure distribution and on the surface profiles of the 

cylinders. It was found that the skewness values significantly affect the pressure 

distribution. Negative skewness has less influence on the pressure distribution 

in the Hertzian contact zone than positive skewness. These effects are more 

clearly seen by comparing the pressure distributions on the same graph, as 

shown in Figure 7-33. The skewness parameter also affects the friction 

coefficient, which increases when the skewness is positive, as shown in Table 

7-4. 

 

From the effects of the surface roughness parameters on the EHL problem, it 

can be concluded that average roughness, kurtosis, and skewness parameters 

play important roles in the behaviour of the EHL problem. The effects of the 

surface roughness parameters on pressure distribution and the friction 

coefficient can be summarised as follows: 
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‐ The average surface roughness parameter ( aR ) is positively correlated 

to the magnitude of the pressure fluctuation, the average oil film 

thickness, and the friction coefficient.   

‐ If kurtosis kuR  < 3, the average oil film thickness is similar to the one from 

the smooth contact case. However, if kuR  > 3, the average oil film 

thickness and the friction coefficient are reduced.    

‐ A positive skewness value ( skR ) will have greater influence on pressure 

distribution and the friction coefficient than that in the negative skrewness 

case.  

Thus, when designing the bearing parts it is necessary to control and minimize 

the average surface roughness. At the same time, the kurtosis value should be 

lower than three. In addition, the skewness value of the surface texture should 

be negative in order to minimize the probability of machinery breakdown caused 

by surface roughness. 

 

7.4 Thermal effects 

 

The previous chapter showed that the thermal effect plays an important role in 

the EHL problem. At the same time, the material effect on the elastic 

deformation of solid parts is also significant. It is evident that the heat transfer 

rate depends on the fluid and solid properties used in the CFD models, as 

described in section 6.7. As the materials of the cylinder and plate used in the 

previous study were the same (mild steel), the influence of the type of material 

and of the heat generated on the EHL problem will be studied together in this 

section. In addition, the CFD model for the two cylinders contact (Model 3) will 

be used in this study instead of the plate and cylinder contact (Model 1).  

 

The aim of this section is to understand the complex characteristics of the 

thermal effect on the EHL problem when the material of the top and bottom 

cylinders is different and the surfaces of both cylinders are considered to be 

rough. The materials used for the top and bottom cylinders are ceramic and 

brass respectively, as a significant elastic deformation was observed in such 

contacts. The material properties of ceramic and brass applied to the CFD 



153 

model are listed in Table 6-1. The viscosity model used is the non-Newtonian 

fluid and the lubricant properties presented in Table 6-3 will be used in this 

study. The pure sliding contact condition ( SRR  = 2) is chosen to simulate the 

CFD model because the heat generated within the fluid film at the contact zone 

can be clearly seen in this condition. Furthermore, the surface roughness 

profiles that were used in section 6.7 are also used in this section.   

 

 

Figure 7-34: Comparison of pressure distributions between models 1 and 3. 

 

Figure 7-34 shows the pressure distributions in the fluid film at the contact area 

between the CFD models 1 and 3.  It can be observed that the profiles of these 

pressure distributions differ from Figure 7-16 as both results are simulated in 

different condition; the predicted results in Figure 7-16 are simulated under SRR

=0 and isothermal condition, while the results obtained in Figure 7-34 are 

simulated under SRR =2 with thermal effect. Both pressure profiles in Figure 

7-34  are quite similar, but the maximum pressure in the Hertzian contact zone 

predicted by the CFD model 1 is slightly lower than that the one from predicted 

by model 3. The pressures generated in the thin fluid film of both models are 

slightly different, as the elastic deformation of model 3 is different from that of 

model 1.     

 

The influence of the type of material and of the temperature distribution on the 

characteristics of the EHL problem is shown in Figure 7-35. Figure 7-35a shows 

that the maximum temperature at the surface of the top cylinder is 299.5 K, 

X [mm]
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while the maximum temperature at the surface of the bottom cylinder is 301 K. It 

can be seen that the temperature at the bottom cylinder surface is higher than 

that of the top cylinder surface since the bottom cylinder is being rotated and 

this motion does work on the fluid. This affects viscosity at both surfaces - the 

viscosity at the surface of the bottom cylinder is lower than that of the top 

cylinder, as shown in Figure 7-35c. Furthermore, surface roughness has a 

significant effect on the velocity distribution at the contact area. The maximum 

velocity of the lubricant increases from 4.4 m/s to 5.3 m/s when surface 

roughness is considered. The viscosity and the temperature in the fluid film are 

increased due to the shear stress increase with a rough surface compared to a 

smooth surface.   

 

 
 

  

 
 

 

Figure 7-35: Comparison of (a-b) temperature distribution (K), (c-d) viscosity (

sPa ), and (e-f) velocity (m/s) between smooth (left) and rough surfaces (right). 

    

 

a) b) 

c) d) 

e) f) 
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Chapter 8 Conclusion and Future Work 

 

Conclusion and Future Work 
 

 

8.1 Conclusion 

 

The developed CFD model can be used to predict the influence of the surface 

roughness on the EHL line contact problem. Many conditions and parameters 

are studied using the CFD model, which leads to the following conclusions: 

 

1. The study of the influence of non-Newtonian viscous effects has found 

that the non-Newtonian fluid model can solve the EHL problem in the 

case of high shear strain rate with better numerical stability than the 

Newtonian model, especially in the case of a pure sliding contact. While 

the pressure spike in the case of the non-Newtonian fluid is lower than in 

the Newtonian fluid case, the deformation of the cylinder in the case of 

the non-Newtonian fluid is less than in the Newtonian fluid case.  
2. The viscosity of the lubricant plays an important role in the oil film 

thickness build up. If the viscosity of lubricant increases, the oil film 

thickness is also increased. On the contrary, the influence of the surface 

roughness is inversely correlated to the oil film thickness as the pressure 

fluctuation induced by the surface roughness in the thick film is lower 

than in the thin film case. 

3. The applied load significantly affects the pressure distribution and the 

deformation of the solids. The pressure distribution and the deformation 

of the cylinder are directly correlated to the applied load. The effect of 

surface roughness on the pressure distribution fluctuation amplitude is 

increased when the applied load increases. 
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4. Thermal effects on the EHL problem are more significant when the SRR  

value increases, as the shear strain rate in the oil film increases with a 

higher SRR  value. Thermal effects play an important role on the viscosity 

of the lubricant, as the viscosity decreases when the temperature 

increases. Furthermore, the influence of surface roughness is increased 

when the temperature increases, due to the reduction in viscosity that 

reduces the film thickness as at this condition. It was also found that the 

surface roughness is inversely correlated to the change of the SRR  

values. 

5. The velocity significantly influences the film thickness. This relationship is 

similar to the influence of viscosity, in that the oil film thickness increases 

with the angular velocity of the cylinder. The influence of surface 

roughness is reduced when the velocity increases. 

6. The influence of the material properties on the deformation of the solids 

is also significant. The results of the cylinder-plate contact shows that the 

minimum deformation occurs in the contact between hard materials such 

as iron and ceramic. This contact also produces the highest pressure. In 

contrast, the contact with materials of low hardness, for example brass 

and iron, leads to the higher deformation of the softer material. The CFD 

model for the contact of two cylinders is also created to predict the EHL 

problem. The obtained results are similar to the cylinder and plate 

contact, but the pressure distribution of the cylinder and plate contact is 

slightly different from the two cylinders contact. The pressure 

distributions of all CFD models are similar, but the cylinder surface 

profiles are entirely different. Particularly in the contact between ceramic 

and brass cylinders, the deformation of both cylinders (CFD model 3) are 

totally different from the deformation of the plate and the cylinder (CFD 

model 1).  

7.  Seven profiles of surface roughness are generated with different 

combination of aR , skR , and kuR  parameters using the Pearson 

distribution function. The surface roughness profiles are applied to the 

CFD models to predict the influence of surface roughness on the EHL 

problem and the results are sorted into three groups: 
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‐ The average roughness parameter, aR , influences the maximum 

pressure and the friction coefficient. The magnitude of fluctuated 

pressure, average oil film thickness and friction coefficient are directly 

correlated to aR  value.  

‐ When the kurtosis kuR  is above 3, the pressure fluctuation is increased 

by the frequent occurrence high peaks in the roughness profile. In 

contrast, when the kurtosis is lower than 3, the average oil film 

thickness is similar to that of the smooth surface contact case.  

‐ The skewness parameter skR  is very important to the design of a 

bearing and machine parts, as rough surfaces will have greater 

influence on the pressure distribution in the Hertzian contact zone if the 

skewness value is positive. 

The above information demonstrates that the developed CFD models can 

successfully predict the characteristics of the EHL line contact problem. It can 

be concluded that the surface roughness most affects the EHL in the case of 

thin fluid film contact, high load, high velocity, low viscosity, high temperature, 

and high elastic modulus. In addition, the influence of surface roughness is high 

in the case of a high average surface roughness, the kurtosis being higher than 

3, and the skewness value being positive. 

 

8.2 Further research recommendations 

 

This thesis focuses on the development of CFD models for the EHL line contact 

problem with rough surfaces. The CFD models can be used to predict the 

characteristics of the fluid flow under smooth and rough surfaces.  

 

However, the developed CFD model becomes numerically unstable and 

develops negative cell volumes when the film thickness is either very small and 

or zero, as the CFD model cannot account for dry contact. The pressure 

distribution will be close to that of the maximum contact pressure (Hertz’s 

contact pressure) when the applied load is greater than what the lubricant film 

can carry. This will lead to direct contact between solid parts. This generates, a 



158 

mixed EHL lubrication case instead of an EHL problem. Therefore, further 

research on the mixed lubrication case with consideration of surface roughness 

using CFD techniques should be developed. In order to improve the CFD model 

for mixed lubrication, some UDF codes are required as follows: 

‐ Some peaks of the roughness profiles will be deformed or eroded after 

contacting with other surfaces [156-162]. Thus the UDF code for the 

contact and wear mechanism is needed for the CFD model.  

‐ The UDF code for the pressure balance equation must be modified in 

the starved lubrication case. The contact load ratio must be taken into 

consideration when calculating the total force [163, 164].   

‐ The UDF code for the particulate transport of wear debris after the 

direct contact and wear has occurred [165-167] is also required.  

‐ The UDF code for solving the dynamic mesh has to be modified to 

remove the negative volume problem when both surfaces are in contact 

by introducing a non-penetration condition between the solid 

boundaries.    

Furthermore, the results obtained in chapter 7 show significant deformations for 

the two cylinders contact configuration. It would be interesting if the contact 

mechanics between solid parts and the fluid are compounded and solved for the 

whole system, for example, the contact between gears or rollers with 

lubrication. This idea can be designed by combining the solid mechanics and 

the fluid mechanics problems together [168]. Figure 8-1demonstrates the 

concept of combining the fluid film problem and the solid mechanic problem 

together.   

 

According to the results of this study, the surface roughness significantly affects 

the pressure distribution, so the surface of the rollers, as shown in Figure 8-1, 

should be modelled as rough. The model for solid and fluid interaction may take 

a long time to compute as the parameters, such as the pressure distribution and 

temperature rise, will be transferred between the fluid film and the solid parts at 

every iteration of the calculation.  
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Figure 8-1: Schematic simulation between fluid and solid mechanics 

 

Typically, the finite element method (FEM) is employed to solve solid mechanic 

problems. This should be linked to the CFD model for solving the complex, 

stress, strain, and fatigue equations in the solid parts [169-171] . There are 

many commercial softwares that can be employed to solve this problem, such 

as ANSYS, Abaqus, and NASTRAN. It is expected that more realistic results 

could be achieved by using the proposed combination of the solid mechanics 

and fluid mechanics simulations.  

 

Fluid mechanics 

Solid mechanics 
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Paper I Srirattayawong, S. and Gao, S.,  A CFD Study of the EHL Line 

Contact Problem with Consideration of the Surface Roughness 

under Varied Loads, International Conference on Heat Transfer, 

Fluid Mechanics and Thermodynamics, pp. 723-729, 2012. 

 

Paper II Gao, S., and Srirattayawong, S., CFD Prediction of the Effects of 

Surface Roughness on Elastohydrodynamic Lubrication under 

Rolling/Sliding Conditions, Applied Mechanics and Materials, vol. 

184-185, pp. 86-89, 2012. 

 

Paper III Srirattayawong, S. and Gao, S.,  A Computational Fluid Dynamics 

Study of Elastohydrodynamic Lubrication Line Contact Problem 

with Consideration of Surface Roughness, Computational Thermal 

Sciences, 5(3): pp. 195–213, 2013 
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Appendix 2: UDF codes for CFD model parameters  

 
/********************************************************************/ 
/*     The UDFs for calculating the film thickness, Eq. (2.17)      */ 
/********************************************************************/ 
 
#include "udf.h" 
#include "dynamesh_tools.h"  
#include "stdlib.h"    
#define pi 3.1415926535897932384626433832795  
        
DEFINE_GRID_MOTION(top_cylinder, domain, dt, time, dtime) 
{ 
  Thread *tf = DT_THREAD (dt) ; 
  face_t f    ; 
  Node *node_p   ;  
  FILE *fr,*fw,*fk,*fs,*fd,*fx,*rg,*ft  ; 
  double ho=0.0000001   ;  /*    minumum gap, meters   */ 
  double  R=0.02   ; 
  double  W=0.00002, ratio=0.7   ; 
  double  
xxx,yyy,Ph,Ho,xx,yy,b,force1,by,cj,pmax,fraction,Er,hmin,Coe_f,sumshear,E  ; 
 
/***** Steel    E= 210,v= 0.30 *******/    
/***** Brass    E= 130,v= 0.33 *******/    
/***** Ceramic   E= 450,v= 0.15 *******/    
 
  double  v1=0.15,E1=4.5E11,load=50000.0  ; 
  double *p_array,*deformation,*X,*Y,*deform,v,*deg   ; 
  double (*x_array)[ND_ND]        ; 
  float hon,iter,iter1,rei,time1=CURRENT_TIME,*rx,*rx1,*rx2,xold     ; 
  real NV_VEC (A)        ; 
  double aa,bb,sump,dxj,def,force,defect,hs,hom,cont,defectabs,a,a1  ; 
  int n_faces,j,i,n,ic,k,kn,nu,dr,e,num,ii,Nt,Dt,kk   ; 
  double dx=0.00000025,u1=2.5        ;  
   
n_faces=THREAD_N_ELEMENTS_INT(tf)      ; 
Nt=n_faces+1         ; 
kn=2*n_faces         ; 
deformation=(real * )malloc(Nt*sizeof(double))    ; 
deform=(real * )malloc(Nt*sizeof(double))    ; 
p_array=(real * )malloc(Nt*sizeof(double))    ; 
x_array=(real (*)[ND_ND])malloc(ND_ND*Nt*sizeof(double))  ; 
X=(real * )malloc(Nt*sizeof(double))     ; 
Y=(real * )malloc(Nt*sizeof(double))     ; 
rx=(real * )malloc(Nt*sizeof(float))     ; 
rx1=(real * )malloc(Nt*sizeof(float))     ; 
rx2=(real * )malloc(Nt*sizeof(float))     ; 
deg=(real *)malloc(n_faces*sizeof(double))    ; 
 
Er=pi/((1.0-v1*v1)/E1)      ; 
E=2.0/((1.0-v1*v1)/E1)      ; 
 
W=load/(E*R)      ; 
b=4.0*R*sqrt(W*7.0/(2.0*22.0))     ; 
 
Ph=E*sqrt(W/(2.0*pi))      ; 
Ho=ho/(b*b/R)       ; 
by=b        ; 
 
fr=fopen("data.txt","r+")    ;  
fscanf(fr,"%E",&hon)     ;  
fclose(fr)      ; 
 
fx=fopen("iterate.txt","r+")   ;  
fscanf(fx,"%E",&iter1)      ;  
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iter=iter1      ; 
fclose(fx)        ; 
 
force=0.      ;  
pmax = 0.      ;  
sumshear=0.      ; 
force=0.      ;  
fs=fopen("rough_top.txt","r")    ; 
ft=fopen("X_top.txt","r+")    ;  
       
begin_f_loop(f, tf)       
{         
      p_array[f] = F_P(f, tf)   ;            
      f_node_loop (f, tf, n) 
        {  
               node_p = F_NODE(f, tf, n)  ; 
  X[f]=(NODE_X(node_p))     ; 
              Y[f]=(NODE_Y(node_p))    ; 
   
  if (Y[f]<Y[f-1])  
                     { 
                       hmin=Y[f]    ; 
     ic=f     ; 
   }       
        } 
 
 F_AREA(A,f,tf)    ; 
 force += F_P(f,tf)*NV_MAG(A)   ; 
 sumshear += NV_MAG(F_STORAGE_R_N3V(f,tf, SV_WALL_SHEAR))  ; 
 fscanf(ft,"%E",&xold)     ;    
 X[f]=xold     ;    
} 
end_f_loop(f, tf)  
fclose(ft)      ; 
Coe_f = sumshear/force       ; 
 
for (i=0;i<n_faces+1;i++)  
{ 
       fscanf(fs,"%E\n",&rei)   ; 
       rx[i]=rei     ; 
} 
 
fclose(fs)      ; 
 
if (time<3*dtime){ 
                    sump=0.0; 
                    for(j=1;j<n_faces;j++) 
                       {  
                           aa=X[ic]-X[j]  ; 
                           cj=(X[j]-X[j-1])/2 ; 
                           sump=sump+(p_array[j]/Er)*(4*cj*log(2*by)+(aa-
cj)*log((aa-cj)*(aa-cj))-(aa+cj)*log((aa+cj)*(aa+cj))) ;                                   
                       }                                                                    
                       ho=Y[ic]-X[ic]*X[ic]/(2*R)-sump*0.5 ; } 
                      else  
     { 
    W=force/(E*R)       ; 
    by=4.0*R*sqrt(W*7.0/(2.0*22.0))    ;  
    ho=hon      ;  
     } 
 
/*************************************************************************/                 
 
dr=u1*time1/dx    ; 
       
for (i=0;i<n_faces+1;i++)  
{ 
  ii=i+dr   ; 
 if (ii>n_faces) 
  {  
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   ii=ii%n_faces   ; 
   rx1[i]=rx[ii]        ; 
  } 
 else 
  {  rx1[i]=rx[ii]    ; } 
  
 ii=ii+1     ; 
 
} 
kk=n_faces+1        ; 
for (i=0;i<n_faces+1;i++)  
{ 
 rx2[i]=rx1[kk]   ; 
 kk=kk-1          ;  
} 
 
 
fs=fopen("rough_top.txt","w+")     ; 
 for (i=0;i<n_faces+1;i++)  
  { 
   v=rx2[i]   ; 
   fprintf(fs,"%E\n",v)  ;  
  } 
fclose(fs)       ; 
 
defect=force-load      ; 
defectabs=abs(force-load)    ; 
 
if (iter<1)  
{ 
 cont=0    ; 
 iter=iter+1 ; 
} 
else 
{ 
  cont=1E-13    ; 
  iter=0  ; 
} 
 
if(defect>0)  
 {defect=cont*defect   ;} 
else  
 {defect=-(cont)*defect  ;} 
 
ho=ho+defect    ;   
Message ("hon = %E, ho= %E\n",hon,ho)  ;  
fw=fopen("data.txt","w+")  ;  
fprintf(fw,"%E",ho)   ;  
fclose(fw)    ; 
fx=fopen("iterate.txt","w+") ;  
fprintf(fx,"%E",iter)   ;  
fclose(fx)      ; 
  
/*************************************************************************/ 
 
SET_DEFORMING_THREAD_FLAG (THREAD_T0 (tf)) ;  
if (! Data_Valid_P()) 
return       ;    
fk=fopen("data2.txt","a+")    ;  
fprintf 
(fk,"Time=%f,P=%E,force=%f,Load=%f,defect=%E,ho=%E,Y=%E,Hmin=%E,Friction_coef.
=%f\n",time,p_array[ic],force,load,defect,ho,Y[ic],hmin,Coe_f);   
fclose(fk)      ;     
           
for(i=0;i<n_faces;i++) 
       {    
     deg[i]=atan(abs((R-Y[i])/X[i]))       ; 
     if (X[i]<0&&(Y[i]-R)<0) {deg[i]=deg[i]+180 ;} 
           if (X[i]>0&&(Y[i]-R)<0) {deg[i]=deg[i]+270 ;} 
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           if (i==0)  
                 {deformation[i]=Y[i]  ;} 
           if ((i>0)&&(i<n_faces)) 
                 {  sump=0.0   ; 
                    for(j=1;j<n_faces;j++) 
                       {  
                           aa=X[i]-X[j]  ; 
                           cj=(X[j]-X[j-1])/2 ; 
                           sump=sump+(p_array[j]/Er)*(4*cj*log(2*by)+(aa-
cj)*log((aa-cj)*(aa-cj))-(aa+cj)*log((aa+cj)*(aa+cj))) ;                                     
                       }    
                           
deformation[i]=ho+X[i]*X[i]/(2*R)+sump+ratio*sin(deg[i])*rx[i]   ;  
                 }    
            if (i==n_faces)  
                 {deformation[i]=Y[i]  ;}                                       
       }   
                                                              
begin_f_loop (f, tf) 
    {                                                                                
    f_node_loop (f, tf, n) 
        {    
           node_p = F_NODE (f, tf, n)  ; 
     yyy= NODE_Y (node_p) ; 
     xxx= NODE_X (node_p) ; 
                        if (Y[f]==yyy)                 
                        { 
    if (NODE_POS_NEED_UPDATE (node_p))                        
                         NODE_POS_UPDATED (node_p)  ;  
                         NODE_Y (node_p)=deformation[f]  ; 
            NODE_X (node_p)=X[f]+ratio*rx[f]*cos(deg[f])  ;      
                        }  
        }                                      
    } 
end_f_loop (f, tf) 
 
free(p_array)  ;  
free(x_array)  ; 
free(deformation) ; 
free(X)  ; 
free(Y)  ;  
free(rx)  ; 
free(rx1)  ; 
free(rx2)  ; 
 
} 
---------------------------------------------------------------------- 
 
/********************************************************************/ 
/* The UDFs for calculating the viscosity of lubricant, Eq. (2.21)  */ 
/********************************************************************/ 
#include "udf.h" 
#include "mem.h" 
DEFINE_PROPERTY (cell_viscosity, cell, thread) 
{ 
double viscosity,viscosityn,alfa,no,bb,z,pv,aa ; 
double pressure=C_P(cell,thread) ;   /*   pressure, Pa    */ 
no=0.01   ;    /*   Absolute viscosity, p=0, Pa-s   */ 
pv=13.4010e-9  ;    /*   pressure-viscosity coef., 1/Pa  */ 
alfa=log(no)+9.67  ; 
z=pv/((5.1e-9)*(alfa)) ;       
aa=1.0+pressure*5.1e-9  ; 
bb=-1.0+pow(aa,z)   ; 
viscosity=no*exp(alfa*bb)   ; 
viscosityn=0.5*viscosity+0.5*C_MU_L(cell,thread)   ;    
return viscosityn   ; 
}  
---------------------------------------------------------------------- 
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/********************************************************************/ 
/* The UDFs for calculating the viscosity of lubricant, Eq. (2.23)  */ 
/********************************************************************/ 
 
#include "udf.h" 
DEFINE_PROPERTY(cell_viscosity, cell, thread) 
{ 
float viscosity,const1,no,z,pv,To,gram ; 
float P = C_P(cell,thread); /* pressure, Pa  */ 
float T = C_T(cell,thread); 
no = 0.01       ; /* Absolute viscosity, p=0, Pa-s  */ 
pv = 13.4010E-9  ; /* Pressure-viscosity coef., 1/Pa */ 
const1 = log(no)+9.67  ; 
To = 298.15        ; /*   Inlet temperature, K   */ 
Gram = 0.0476           ; /*Temperature-viscosity coefficient,1/K */ 
Z = pv/((5.1E-9)*(const1))  ; 
Viscosity = no*exp(const1*(-1.0+pow(1.0+P*5.1E-9,z))-gram*(T-To)); 
Viscosity = 0.5*viscosity+0.5*C_MU_L(cell,thread) ;    
return viscosity        ; 
}  
---------------------------------------------------------------------- 
 
/********************************************************************/ 
/* The UDFs for calculating the viscosity of lubricant, Eq. (2.35)  */ 
/********************************************************************/ 
#include "udf.h" 
#include "mem.h" 
DEFINE_PROPERTY(cell_viscosity, c, t) 
{ 
Double  
viscosity,viscoroe,viscarreau,const1,n,bb,z,pv,To,shear,gram,shear0,va
lue,asinh,S0,shearmin,const2,viscohoup,no ; 
double P=C_P(c,t)  ;  /*   Pressure, */ 
double T = C_T(c,t) ;  /*   Temperature, */ 
no=0.01   ;  /* viscosity at low shear strain rate,p=0, Pa-s   */ 
pv=13.4010E-9 ;  /* pressure-viscosity coef., 1/     */ 
To=298.15     ;  /* Inlet temperature, K                   */ 
gram=0.0476   ;  /* thermo viscos constant., 1/K          */    
shear0=5.0E6  ;  /* temperature-viscosity coefficient of lubricant, 
1/K */ 
const1=log(no)+9.67     ;    
z=pv/((5.1e-9)*(const1));     /* Roelands' P-viscosity index      */ 
S0=gram*(To-138.0)/  ;  
const2=const1*pow((1+(P*5.1E-9)),z)*(S0/(To-138.0))    ; 
viscohoup=no*exp(const1*((pow(1.0+P*5.1E-9,z)-1)*(T-138.0)/(To-
138.0))-const2*(T-To))      ;                             
shearmin=1.0e-8            ; 
shear=sqrt(2*(pow(C_DUDX(c,t),2)+pow(C_DVDY(c,t),2))+pow(C_DUDY(c,t)+C
_DVDX(c,t),2)+pow(C_DUDZ(c,t),2)+pow(C_DVDZ(c,t),2))  ; 
if (shear>=shearmin) 
    { 
     value=viscohoup*shear/shear0                  ; 
 if (value>0) 
  {asinh= log(value+sqrt(value*value+1.0))    ;} 
 else 
         {asinh= -log(-value+sqrt(value*value+1.0)) ;} 
     viscosity=(shear0/shear)*asinh                  ; 
    } 
else 
    { 
viscosity=viscohoup   ;  
} 
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viscosityn=0.5*viscosity+0.5*C_MU_L(cell,thread)    ;    
return viscosity    ; 
} 
  
---------------------------------------------------------------------- 
/********************************************************************/ 
/*  The UDFs for calculating the density of lubricant, Eq. (2.36)   */ 
/********************************************************************/ 
#include "udf.h" 
#include "mem.h" 
 DEFINE_PROPERTY(cell_density,c,t) 
{ 
double density,den,densityn   ;  
double P = C_P(c,t)     ; 
/* To define the density of lubricant at atmospheric pressure    */ 
den=850.0          ;          
density=den*(1.0+(P*0.59e-9)/(1.0+P*1.7e-9))   ;   
densityn=0.5*density+0.5*C_R(c,t))    ;    
return densityn     ; 
} 
 
---------------------------------------------------------------------- 
/********************************************************************/ 
/*  The UDFs for calculating the density of lubricant, Eq. (2.37)   */ 
/********************************************************************/ 
#include "udf.h"  
DEFINE_PROPERTY(cell_density,c,t) 
{ 
double density,den,densityn,beta,To ; 
double P = C_P(c,t) ; 
double T = C_T(c,t) ;  
To=298.15  ;  /*  Inlet temperature of lubricant, K            */   
den=850.0   ;  /*  Inlet density of lubricant, kg/m^3           */ 
beta=4.5e-4   ;  /*  Coefficient of thermal expansion, 1/K    */ 
density = den*(1.0+(P*0.59E-9)/(1.0+P*1.68348E-9))*(1.0-beta*(T-To));  
density=0.5*density+0.5*C_R(c,t)   ; 
return density    ; 
} 
 
---------------------------------------------------------------------- 
/********************************************************************/ 
/* The UDFs for calculating the heat source, Eq. (4.8) and Eq. (4.9)*/ 
/********************************************************************/ 
#include "udf.h" 
#include "mem.h"  
DEFINE_SOURCE(heat_source, c, t, dS, eqn) 
{ 
double Qshear,Qcomp,source  ; 
double viscosity,den,beta,C1,Dden  ; 
den=846.0   ; /*  Inlet density of lubricant, kg/m^3          */ 
beta=4.5e-4 ;     /*  Coefficient of thermal expansion, 1/K  */ 
C1=2.0*(pow(C_DUDX(c,t),2)+pow(C_DVDY(c,t),2))+pow(C_DUDY(c,t)+C_DVDX(
c,t),2)+pow(C_DUDZ(c,t),2)+pow(C_DVDZ(c,t),2)-
(2.0/3.0)*pow(C_DUDX(c,t)+C_DVDY(c,t),2)  ;     
viscosity=C_MU_L(c,t)  ;                                          
Qshear=viscosity*C1  ; 
Dden=den*beta    ; 
comp=(C_T(c,t)/C_R(c,t))*Dden*(C_U(c,t)*C_P_G(c,t)[0]+C_V(c,t)*C_P_G(c
,t)[1])   ;     
source=Qshear+Qcomp    ; 
return source  ; 
} 
---------------------------------------------------------------------- 
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%**************************************************************** % 
%    The MATLAB code for generating a surface roughness           %  
%    by using the Pearson function with mean, standard deviation, %                
%    skewness and kurtosis.                                       %               
%**************************************************************** % 
clear           ; 
% Input the surface roughness parameters % 
Rq=0.0315       ; 
Rsk= -0.7       ;  
Rku= 3.000      ; 
n=978           ; 
dx=0.0005       ; 
L= 0.0          ; 
MINB=-0.1       ;  
MAXT=0.03       ; 
%   [r,type]= pearsrnd(Mean,Standard deviation,Skewness,Kurtosis)  % 
%       Type 0: Normal distribution (Gaussian,Rku=3, Rsk=0 )       % 
%       Type 1: Four-parameter beta                                % 
%       Type 2: Symmetric four-parameter beta                      % 
%       Type 3: Three-parameter gamma                              %  
%       Type 4: Not related to any standard distribution.  Density %    
%               proportional                                       % 
%               to (1+((x-a)/b)^2)^(-c) * exp(-d*arctan((x-a)/b)). % 
%       Type 5: Inverse gamma location-scale                       %  
%       Type 6: F location-scale                                   % 
%       Type 7: Student's t location-scale                         % 
Ra=0.02          ; 
fName = 'output.txt'                        ; 
fid=fopen('output.txt','w' )                ; 
[r,type]= pearsrnd(Ra,Rq,Rsk,Rku,n,1)       ; 
sprintf('Pearson type= %2.0f',type) 
for j=1:n  
    T(j)=r(j)                               ; 
    Y5(j)=L                                 ; 
    L=L+dx                                  ; 
end 
fprintf(fid,'%5.8f\r\n', r)                 ; 
fclose=(fid)                                ; 
  
      Ra1=sum(abs(T(:)))/n          ;           % Average roughness 
      Rq1=sqrt(sum(T(:).^2)/n)      ;           % RMS roughness 
      Rsk1=sum(T(:).^3)/(n*Rq1^3)   ;           % Skewness 
      Rku1=sum(T(:).^4)/(n*Rq1^4)   ;           % Kurtosis  
       
      Ra2=mean(T)                   ;           % Average roughness 
      Rq2=std(T)                    ;           % RMS roughness 
      Rsk2=skewness(T)              ;           % Skewness 
      Rku2=kurtosis(T)              ;           % Kurtosis        
     
      ErRa=abs(Ra-Ra1)*100/Ra       ; 
      ErRq=abs(Rq-Rq1)*100/Rq       ;  
      ErRsk=abs(Rsk-Rsk1*100/Rsk)   ; 
      ErRku=abs(Rku-Rku1)*100/Rku   ;  
      Error=(ErRa+ErRq+ErRsk+ErRku)/4.0 ; 
sprintf('Input parameters') 
sprintf('Ra= %7.4f, Rq= %7.4f, Rsk= %7.4f, Rku= %7.4f',Ra,Rq,Rsk,Rku) 
sprintf('The parameters of generated roughness') 
sprintf('Ra1= %7.4f, Rq1= %7.4f, Rsk1= %7.4f, Rku1= 
%7.4f',Ra1,Rq1,Rsk1,Rku1) 
sprintf('The statistical parameters of generated roughness') 
sprintf('Ra2= %7.4f, Rq2= %7.4f, Rsk2= %7.4f, Rku2= 
%7.4f',Ra2,Rq2,Rsk2,Rku2) 
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%********** Expanding the rough profile by 2 space****************% 
for j=1:n 
        R1(2*j-1)=T(j)              ; 
    if (j==n)  
        R1(2*j)=T(j)                ; 
    else  
        R1(2*j)=(T(j)+T(j+1))/2.0   ; 
    end 
end 
  
m=2*n ; 
fid=fopen('new_2rough.txt','w' )    ; 
L=0  ; 
dx=0.0005/2.0                       ; 
for k=1:m 
fprintf(fid,'%f \r\n',R1(k))        ; 
H0(k)=R1(k)                         ; 
Y1(k)=L                             ; 
L=L+dx                              ; 
end 
fclose=(fid)                        ; 
  
      Ra3=sum(abs(R1(:)))/m          ;           % Average roughness 
      Rq3=sqrt(sum(R1(:).^2)/m)      ;           % RMS roughness 
      Rsk3=sum(R1(:).^3)/(m*Rq3^3)   ;           % Skewness 
      Rku3=sum(R1(:).^4)/(m*Rq3^4)   ;           % Kurtosis  
       
      sprintf('Ra3= %7.4f, Rq3= %7.4f, Rsk3= %7.4f, Rku3= 
%7.4f',Ra3,Rq3,Rsk3,Rku3) 
%************* Expanding the rough profile by 3 space**************% 
  
for j=1:n 
    if (j==n)  
        Lx=T(j-1)-T(j)          ; 
        dx3=Lx/3.0              ; 
         
        RN(3*j-2)=T(j)-2.0*dx3  ; 
        RN(3*j-1)=T(j)-dx3      ; 
        RN(3*j)=T(j)            ; 
    else 
        Lx=T(j+1)-T(j)          ; 
        dx3=Lx/3.0              ; 
        
        RN(3*j-2)=T(j)          ; 
        RN(3*j-1)=T(j)+dx3      ; 
        RN(3*j)=T(j)+2.0*dx3    ; 
        RN(4*j)=T(j+1)          ; 
    end  
end 
v=3*n                           ; 
fid3=fopen('new_3rough.txt','w' )    ; 
L=0                 ; 
dx=0.0005/3.0       ; 
for k=1:v 
fprintf(fid3,'%d \r\n',RN(k))        ; 
H1(k)=RN(k)         ; 
Y2(k)=L             ; 
L=L+dx              ; 
end 
fclose=(fid3)       ; 
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%************ Expanding the rough profile by 4 space****************% 
  
for j=1:m 
        R2(2*j-1)=R1(j)                 ; 
    if (j==m)  
        R2(2*j)=R1(j)                   ; 
    else  
        R2(2*j)=(R1(j)+R1(j+1))/2.0     ; 
    end 
end 
  
t=2*m ; 
fid4=fopen('new_4rough.txt','w' )       ; 
L=0             ; 
dx=0.0005/4.0   ; 
for k=1:t 
fprintf(fid4,'%f \r\n',R2(k))           ; 
H2(k)=R2(k)     ; 
Y3(k)=L         ; 
L=L+dx          ; 
end 
fclose=(fid4)   ; 
  
subplot(3,1,3)  ; 
plot(Y3,H2,'LineWidth',0.4,'Color',[.6 0 0]) 
title('Surface roughness profile, space=dx/4') ; 
xlabel('X (mm)')            ; 
ylabel('Y (micrometre)')    ; 
  
node =50            ; 
for k=1:node 
    G(k)=T(k)       ;     
    G0(k)=H0(k)     ; 
    G1(k)=H1(k)     ; 
    G2(k)=H2(k)     ; 
end 
figure(1)           ; 
subplot(4,1,1)      ; 
plot(G,'-bx','LineWidth',0.4,'Color',[.6 0 
0],'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5); 
title('Space=Dx')           ; 
ylabel('Y (micrometre)')    ; 
  
subplot(4,1,2)              ; 
plot(G0,'-bx','LineWidth',0.4,'Color',[.6 0 
0],'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5); 
title('Space=Dx/2')         ; 
ylabel('Y (micrometre)')    ; 
  
subplot(4,1,3)              ; 
plot(G1,'-rx','LineWidth',0.4,'Color',[.6 0 
0],'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5); 
title('Space=Dx/3')         ; 
ylabel('Y (micrometre)')    ; 
  
subplot(4,1,4)              ; 
plot(G2,'-gx','LineWidth',0.4,'Color',[.6 0 
0],'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5); 
title('Space=Dx/4')         ; 
ylabel('Y (micrometre)')    ; 
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figure(2)                   ; 
subplot(3,1,1)              ; 
plot(Y5,T,'LineWidth',0.4,'Color',[.6 0 0]) 
title('A generated surface roughness') ; 
ylim([-0.2 0.2])            ; 
xlabel('X (mm)')            ; 
ylabel('Y (micrometre)')    ; 
  
subplot(3,2,3)              ; 
histfit(T,20) 
title('Histogram and a Normal distribution') ; 
xlim([-0.2 0.2])            ; 
subplot(3,2,4)              ; 
ksdensity(r,'width',0.01)                ; 
title('A probabitlity density estimate') ; 
xlim([-0.2 0.2])            ; 
  
  
%******* Bounded the maximum and the minimum data ********% 
  
for k=1:m 
    if (R1(k)>MAXT)  
        Rc(k)=MAXT                ; 
    end 
     
    if (R1(k)<MINB) 
        Rc(k)=MINB                ; 
    end 
        if ((R1(k)>=MINB)&(R1(k)<=MAXT)) 
        Rc(k)=R1(k)               ; 
    end 
end  
figure(3)                   ; 
subplot(3,1,1)              ; 
plot(Rc,'LineWidth',0.4,'Color',[.6 0 0]) 
ylim([-0.2 0.2])            ; 
title('A generated surface roughness') ; 
xlabel('X (mm)')            ; 
ylabel('Y (micrometre)')    ; 
  
      Ra6=sum(abs(Rc(:)))/m          ;           % Average roughness 
      Rq6=sqrt(sum(Rc(:).^2)/m)      ;           % RMS roughness 
      Rsk6=sum(T(:).^3)/(m*Rq6^3)    ;           % Skewness 
      Rku6=sum(T(:).^4)/(m*Rq6^4)    ;           % Kurtosis 
  
subplot(3,2,3)              ; 
histfit(Rc,40) 
title('Histogram and a Normal distribution')  ; 
xlim([-0.2 0.2])            ; 
subplot(3,2,4)              ; 
ksdensity(Rc,'width',0.01)                    ; 
title('A probabitlity density estimate')      ; 
xlim([-0.2 0.2])  ; 
 
---------------------------------------------------------------------- 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  The code for filtering a surface roughness (Gaussian filter).     % 
%  The equations used are the algorithm for evaluation that was      %  
%  derived by Krytek [85].                                           %      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear               ; 
eps=1^-3            ; 
alpha=0.46971863934982566688 ; 
lc=0.25             ;       % cut-off value (mm)                     %             
dx=0.0005           ;       % spacing of data point (mm)             % 
y = xlsread('rough1.xls');  % Primary roughness profile (micrometre) % 
n=1600                      % Number of data points                  % 
s=dx/(lc*alpha)      ;       
s0=dx/(lc*alpha)     ; 
g=sqrt(log(s/(dx*eps))/pi)/s+1    ; 
m=int16(g) 
d=exp(-pi*s*s)       ; 
b=d*d              ; 
for i=m:n-m 
  z(i)= s*y(i)       ;          
end 
for k=1:m-1 
sum=0                ; 
s=s*d                ; 
d=d*b              ;    
   for i=m:n-m 
       z(i)=z(i)+s*(y(i-k)+y(i+k)) ; 
   end 
end  
for p=m:n-m 
    r(p)=y(p)-z(p)  ; 
end 
figure(1)           ; 
subplot(2,1,1)      ; 
plot(z,'red')       ; 
title('Primary roughness and waviness') ; 
xlabel('points')            ; 
ylabel('Y (micrometre)')    ; 
hold on 
plot(y)             ;   
subplot(2,1,2)      ; 
plot(r)             ; 
title('Roughness profile after filtering') ; 
xlabel('points')            ; 
ylabel('Y (micrometre)')    ; 
 
---------------------------------------------------------------------- 
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Appendix 3: Numerical solver for the Reynolds equation 

 

The discretized equation of the equation (2.15) is  
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Appendix 4: Temperature at the solid surfaces 
 

 

 

 

 

 

Figure A-1: Schematic picture of roller bearing (left) and section of temperature 

capture (right). 

 

Usually, the temperature at the fluid film between the roller and the outer ring or 

roller and inner ring is only investigated as presented in Figure A-1. To simplify 

the EHL problem, the behaviour of fluid flow between the contact of inner ring 

and roller is assumed to be the same as the contact between roller and the 

outer ring. Thus, the contact between roller and the outer ring is only presented 

in this study.  

 

 

 

 

Figure A-2: Thermal boundary conditions for CFD model. 
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Figure A-2 shows the boundary conditions for calculating the temperature effect 

on EHL line contact problem using the CFD model. The temperature at the 

surface of the roller and plate can be directly calculated from the heat fluxes 

that transfer from fluid to solid parts [34]. Thus, the thermal boundary condition 

at the walls can be expressed as: 
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where the subscript 1, 2 and f  refer to bottom plate, top roller, and fluid, 

respectively.  

 

To simplify the problem, the solid part is assumed to have the same 

temperature as the ambient temperature in this study. According to the Figure 

A-2, if the wall is assumed to be very thin, then the temperatures at the solid 

surfaces (T1 and T2) are nearly uniform and equal to the ambient temperature 

T  of 298.15 K. 
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Appendix 5: Flow charts for the Reynolds equation and the CFD model 

 

1. Flow chart for calculating the Reynolds equation (Dimensionless) 
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2.  Flow chart to simulate the EHL problem using the CFD model 
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