
 

 

IMPROVING POPULATION ESTIMATION MODELS USING 
REMOTELY SENSED AND ORDNANCE SURVEY DATASETS 

 

 

 

 

Thesis submitted for the degree of  

Doctor of Philosophy  

At the University of Leicester  

 

 

 

by 

 

Mustafa Kose 

Department of Geography  

University of Leicester  

 

 

May 2015 

 

 

 



   ii 
 

 

Improving Population Estimates Using Remotely Sensed and 
Ordnance Survey Datasets 

Mustafa Kose 

ABSTRACT 
 

The accuracy of population data is of critical importance in supporting the design of 
public and private-sector facilities. Demographic data are usually supplied by national 
census organisations at pre-defined census output levels. However, demographic 
datasets may be required at user-defined spatial units that can be different from the 
initial census output levels. A number of population estimation techniques have been 
developed to address these problems. This thesis is one of those attempts aimed at 
improving small-area population estimates by using spatial disaggregation models of: 1) 
binary mapping, 2) address-weighted dasymetric and 3) volumetric estimation models. 
These interpolation approaches employs high-resolution aerial imagery, LiDAR-derived 
building volumes and the integration of building address points and occupancy 
information sourced from the Ordnance Survey © and Airbus Defence and Space. 
Census wards and output areas were used as source zones and target zones respectively, 
to estimate population counts in Leicester City and the Borough of Kensington and 
Chelsea, London where the population is distributed both horizontally and vertically. 
The predicted population values were compared with 2011 census of actual population 
datasets. Each method employed in the study generated different population estimates 
depending on their assumptions and required datasets. The accuracy appears to be 
mainly influenced by the type and quality of the ancillary datasets and also the 
interpolation method adopted. Based on the disaggregation models adopted in this 
study, the address-weighted model produced the best population estimates with Root 
Mean Square Error (RMSE) value of 0.64 and R2 score of 0.998 for the City of 
Leicester and RMSE value of 0.236 and R2 score of 0.997 for the Borough of 
Kensington and Chelsea. This estimation is an indication that building address point 
datasets that contain information on occupancy can be used within Dasymetric mapping 
approaches to improve population estimates over a range of urban areas.  
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CHAPTER 1 

1 Introduction 

Since the 18th century Industrial Revolution, global population has been growing at a 

higher rate than the previous years (Li and Weng, 2005, Chen, 2002). The United 

Nations population statistics estimate shows that the world’s population living in towns, 

cities and urban areas will continue to grow: it was 50% of total population in 2008 and 

has increased to over 54% (3.9 billion) in 2014 (World Health Organization - WHO). 

Population distribution changes rapidly because of population movements. Population 

totals have very strong interactions between the natural and social environment due to 

its movement and dynamism. According to Gerland et al. (2014) and Lu et al. (2006), 

increasing population in urban areas and rapid urban growth is not only potentially 

damaging to natural resources and environmentally sensitive areas, but can also create 

several environmental, social, economic and governance issues. Li and Weng (2005) 

observed that as population growth continues, it can cause severe environment 

pressures. For example, as urban areas are expanding, agricultural lands and forest areas 

have been decreasing at the same rate. Also, Lu et al. (2006) points out that population 

increase is closely associated with urban extension, the decrease of forest area, damaged 

agricultural land and the deformation of environmental conditions in the neighbourhood 

of urban area. As a way of reducing the severity of these problems, population 

estimation and its distribution are important for providing applicable land use planning 

and for analysing the relationship between human beings and the natural environment in 

a timely and accurate manner (Deng et al., 2010, Dong et al., 2010, Lu et al., 2010, 

Silván-Cárdenas et al., 2010, Lu et al., 2006).  

In order to allocate resources, an understanding of the size and distribution of the 

population is generally essential for state and local governments (Deng et al., 2010, 

Smith et al., 2002). Consequently, accurate population data have a primary importance 

in supporting planning processes, including the design of public facilities and private 

sector facilities, such as site-location identification, sewage treatment plants, public 

transit route design, resource allocation, urban infrastructure planning, customer-profile 

analysis, health planning, social service allocation, social securities, industrial planning 

and water resource management (Deng et al., 2010, Silván-Cárdenas et al., 2010, 
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Hardin et al., 2008, Wu and Murray, 2007, Wu et al., 2005). All these suggest that the 

wealth of population totals and their distribution are required in order to address those 

aforementioned and other challenging problems. 

1.1 Counting the Population 

The main purpose of a population census is to accurately and authoritatively gain 

information on the number of people and to determine where they usually live (Valente, 

2010, Wu et al., 2008, Smith and Mandell, 1984). Population information is usually 

derived from census data. On one hand, the census gives the fullest and most reliable 

characteristics of the population; on the other hand, census data collection is labour 

intensive, time-consuming and substantially expensive (Dong et al., 2010, Lu et al., 

2010, Li and Weng, 2005). Moreover, census data becomes outdated a few years after 

the census enumeration because of the long intervals between censuses (Erener and 

Düzgün, 2009). As stated by Li and Weng (2005), if the gap between the conduct of two 

censuses is too long (5 or 10 years), population related planning is difficult to perform 

due to the lack of knowledge about the population counts in non-census years. 

Additionally, the census values are reported in pre-defined spatial output units due to 

confidentiality, privacy issues and nondisclosure requirements (Langford, 2013, 

Sridharan and Qiu, 2013, Su et al., 2010, Gregory, 2002). These census dissemination 

units may change from census to census and often the user defined study areas can be 

different from census report zones (Sridharan and Qiu, 2013). For instance, UK census 

output units have changed in the last three censuses and different administrative units 

have also been used. Therefore, the long-term (census to census) comparison of 

population counts may be crucially problematic because of the census geography 

alteration (Gregory et al., 2010, Gregory, 2002). For these reasons, researchers have 

started searching for new estimation methods to obtain an efficient means of population 

prediction. 

In inter-censal years, traditional estimation methods use demographic records to 

estimate population totals at different scales (nation, region and city) in terms of the 

proposed target zones. For relatively small areas (e.g., census tracts at USA and census 

ward level, or local authorities in the UK), the method of counting housing units has 

been gradually applied for estimating population counts. Various population estimation 

methods have been described and implemented in the GIS and remote sensing literature 
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(Deng et al., 2010, Dong et al., 2010, Silván-Cárdenas et al., 2010, Wu et al., 2005). Li 

and Weng (2005) reported that the geographic study of population distribution and 

population estimation started in the 1930s. For example, Wright (1936) generated a 

population distribution map in Cape Cod, Massachusetts, US. Similarly, remotely 

sensed datasets have been used since the 1950s in order to provide population estimates 

(Silván-Cárdenas et al., 2010). Before the 1950s, aerial photographs were employed for 

counting individual housing units (Silván-Cárdenas et al., 2010, Lu et al., 2006). Later 

on, satellite images have become significant resources for obtaining spatially distributed 

population surfaces. Recently, both remote sensing images and GIS-based datasets have 

been combined and used as a source of ancillary data for generating small-area 

population estimates (Deng et al., 2010, Dong et al., 2010, Silván-Cárdenas et al., 

2010). Remote sensing and GIS technology have been proven to provide accurate and 

inexpensive data and have shown promising results (Lu et al., 2011a, Li and Weng, 

2005). However, Wu et al. (2005) emphasise that in the content of population 

estimation, various techniques are being improved based on remotely sensed image 

datasets. The effect of these approaches, as Li and Weng (2005) admitted, is changing 

the potential for the integration of satellite image data with census data for estimating 

population density. From the literature, explored in Chapter 2, it becomes clear that 

there is a need to resolve the new and improved ancillary datasets that can be used 

within interpolation and statistical modelling techniques. These methods include areal 

interpolation, dasymetric and spatial disaggregation. Traditionally, in the housing unit 

based population estimation, the numbers of houses were counted from aerial 

photographs for generating population estimates in non-census years (Dong et al., 2010, 

Silván-Cárdenas et al., 2010). This method was mainly based on visual detection and 

counting the individual housing units for estimating population totals (Smith and Cody, 

1994). Qiu et al. (2010) claim that remotely sensed data involves extensive analysis of 

information on the dispersion of human settlements, which can be utilised as a possible 

indicator of population.  

1.2 Study Aim 

Given the projected future increase in human population, the importance of cities and 

the pressure on governments to provide adequate housing for populations to occupy it is 

absolutely critical that there are ways to estimate population over well characterised 
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areas in inter-census periods. The knowledge of accurate population counts and inter-

censal population estimates are also important for planners, policy makers and 

researchers for the purpose of successful planning processes in inter-census years. Due 

to the lack of accurate census data and the non-coterminous census output units, the 

population estimation approaches and projections becomes more of an issue to generate 

population estimates in an intended scale. Therefore, the aim of the study is to use novel 

ancillary datasets for the disaggregation of population totals in order to estimate 

population more accurately. The proposed interpolation models require different 

sources of ancillary datasets for producing population estimates. The research also 

examines the performance of the variety of novel geographical datasets obtained from 

remote sensing, Ordnance Survey, Airbus Defence and Space, and local councils as 

control variables in dasymetric population modelling, by comparing the predicted 

results with census derived population figures. The methods are applied over two 

diverse and complex urban areas, namely Leicester City and the London Borough of 

Kensington and Chelsea. Results obtained are compared with census data for the two 

regions. 

1.3 Thesis Structure  

This thesis consists of seven chapters.  The current chapter introduces the thesis and 

deals with the main research issues. It introduces the problems being investigated and 

the aim of the study, including how the thesis is organised. Chapter 2 provides a review 

of literature relevant to this study including population estimation methods, GIS and 

remote sensing based estimation methods, and a review regarding areal interpolation 

techniques that have been used to disaggregate population counts was also presented. 

The research questions that emerged from the literature are also contained in this 

chapter. Chapter 3 describes population disaggregation approaches, the study areas, the 

datasets used in the study, and it provides the results of remotely sensed data analysis to 

derive land use. In addition to this, the process of building volume calculation and the 

extraction of residential housing units are detailed in Chapter 3. The results from the 

application of these estimation methods to the region of Leicester City and the Borough 

of Kensington and Chelsea are presented in Chapter 4 and Chapter 5 respectively. The 

results of interpolation based population estimates presented in the previous chapters are 

discussed in Chapter 6. General conclusions drawn from the research questions are 

considered in Chapter 7 along with recommendations for future research.  
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CHAPTER 2 

2 Population Estimation Methods: A Review 

2.1 Introduction 

In this chapter, the processes of population estimation and areal interpolation techniques 

are reviewed. These interpolation approaches have been used in order to spatially 

disaggregate the aggregated population totals from one spatial unit to other areal units. 

The disaggregation frameworks may vary based on the model functioning and the 

available ancillary input datasets. In this chapter, the process of population interpolation 

and the key issues of population estimation are highlighted. Furthermore, the chapter 

focuses on previous studies where interpolation techniques were implemented for 

providing small-area population estimates. This chapter is structured as follows: the first 

section (Section 2.2) emphasises why population distribution modelling and population 

estimation is important. The importance of disaggregation of population totals from 

larger areal units to smaller spatial units is provided in Section 2.3.  The UK census is 

investigated and the census based population distribution approaches are explained in 

Section 2.4. In Section 2.5, areal interpolation techniques that have been used in 

previous studies are reviewed. The questions developed from the review of previous 

sections (2.2, 2.3, 2.4 and 2.5), used in meeting the aims of the study are outlined in 

Section 2.6. In the final section (Section 2.7), a summary of spatially population 

disaggregation models is provided. 

2.2 Population Estimation and Population Distribution Mapping 

Accurate population information is important for a variety of socio-economic 

applications involving urban planning, management of natural resources and 

environmental risk assessment (Lu et al., 2010). The information of characteristics of 

population can be a primary base for accurate resource allocation in areas such as 

community infrastructure development, the provision of recreational opportunities, 

transportation and environmental facilities (Maantay et al., 2007). Additionally, precise 

urban population distribution is one of the main components of a wide variety of 
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planning processes to locate private and public facilities (Lu et al., 2010). Moreover, 

population distribution at a finer scale is extremely important for the analysis of human 

beings’ interaction with their regional socioeconomic and physical environments (Ural 

et al., 2011). Traditionally, population information is mostly procured throughout a 

census (Dong et al., 2010). These census-derived datasets store various types of 

demographic information and population-related information (Lu et al., 2010). In most 

countries, such as the United States and United Kingdom, census data is collected every 

decade. In Japan, Canada and Australia, for instance, censuses are conducted once every 

five years. Regardless of the differences between countries’ frequency of census, Lu et 

al., (2010) noted that accurate population information does not exist within the inter-

censal times (Maantay et al., 2007). Therefore, new population estimation models are 

needed that provide complete, informative and accurate inter-censal data to achieve the 

above objectives. To this effect, many methods have been introduced for population 

estimation using remote sensing and geographical information systems (GIS) (Wu et al, 

2005). These approaches are explained further in the following section (2.5).  

2.3 Small-area Population Estimates 

Small-area population estimates and other demographic variables are necessary for the 

analysis of different datasets and efficient integration of geographic information system 

(GIS) models (Leyk et al., 2013b, Langford, 2013, Schmid and Münnich, 2013, Deng et 

al., 2010, Leyk et al., 2010). The national census data represent the “gold standard”, 

portraying the characteristics and spatial distribution of a country’s population 

(Langford, 2013, page 324). Population counts are collected for non-modifiable entities 

(housing units) (Openshaw, 1984), and counted population values are released for a 

predefined set of geographic units instead of individual census records  due to the 

statutory obligations, administrative convenience and privacy issues (Langford, 2013, 

Sridharan and Qiu, 2013). These areal zones are arbitrary and modifiable. As a result, 

census derived population dissemination units may be different from the user’s desired 

geographic units. For instance, environmental researchers may require population 

datasets for watersheds, land cover parcels and vegetation zones. Socioeconomic 

research may need demographic data for tax zones, postal delivery zones, and facility 

service areas. In nature, boundaries of natural phenomena may seldom overlap with 

census dissemination geographies (Sridharan and Qiu, 2013). Therefore, obtaining 
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population data for the user-defined areal units may be highly problematic. Also, the 

process of population disaggregation is most likely subject to the modifiable areal unit 

problem (MAUP). This is because the results of statistical analysis usually depends on 

the scale and the pattern of areal zones used (Flowerdew, 2011, Openshaw, 1984). 

When geographical data is integrated to another zone, different results may be obtained 

depending on the difference in interpolation methods. Consequently, population 

estimation and redistribution techniques have been used to acquire population values in 

desired areal zones.  

2.4 Census and Definitive Estimation Methods 

Census population data are one of the fundamental datasets for most population related 

studies (Martin, 2004, Robinson, 2004). The census is based on the counting of total 

population and involves gathering information on household statistics (Office for 

National Statistics- ONS in the UK). The main purpose of the census is to accurately 

and authoritatively count the number of people and to determine where they usually live 

(Martin et al., 2013, Martin, 2011, Valente, 2010, Wu et al., 2008, Smith and Mandell, 

1984). Planning and conducting a census is a large-scale operation aimed at providing 

an accurate population count on Census Night (Martin, 1996). In order to make 

population counting as easy as possible in the UK, the country is divided into 

hierarchical census geographies (Martin, 2004). The largest geographical level is a 

county as a whole, whilst the output area is the lowest geographical level at which 

population is counted and census results are released. The remaining four levels which 

are the most useful include those of census wards, Middle Layer Super Output Area 

(MSOA), Lower Layer Super Output Area (LSOA) and Output area (Martin, 1996). 

Since 1801 a census has been collected in Britain, and the detailed population attribute 

data are reported at district-level since 1851 (Gregory, 2002). It can be critically 

difficult to compare national censuses with each other due to the changes in the 

boundary of census collection geographies (Langford, 2007, Gregory 2002, Flowerdew 

and Green, 1992) (see, Figure 2.1). Censuses can be published using different 

administrative units over the long term. For instance, although national census data have 

been collected in every decade since 1801 in Britain, in some cases (i.e., after 1911 and 

1974) a completely different system was used (Gregory and Ell, 2005, Gregory, 2002). 

As Gregory (2002) states, the hierarchical census geography generally remains the 
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same, however, there have been multiple boundary alterations in the intervening 

decades. The 2001 United Kingdom census used a completely different collection and 

dissemination of geographic units based on enumeration districts and output areas 

respectively (Langford, 2007).  

 

Figure 2.1: The comparison of UK census Dissemination Units by showing 1991 

Enumeration Districts (ED), 2001 Output areas, and 2011 Output areas by showing a 

sample from the City of Leicester. © Crown Copyright / database right 2013, An 

Ordnance Survey/EDINA supplied service. 

2.5 Areal Interpolation Methods 

The areal interpolation is a geographical data transformation from source zones to target 

zones (Mennis, 2003). The process of areal interpolation can provide population 

estimates for target zones based on the known population of source zones (Langford, 

2007, Mennis and Hultgren, 2006b, Goodchild et al., 1993). Studies of interpolation 

methods have shown that population distribution methods have been generally 

classified into three categories (Langford, 2013, Kim and Yao, 2010, Mennis, 2009, 

Maantay et al., 2007, Hawley and Moellering, 2005, Wu et al., 2005, Eicher and 

Brewer, 2001): basic areal interpolation methods (do not require ancillary data), 

dasymetric mapping techniques (do make use of external data inputs) and statistical 



   9 
 

modelling. How these methods work is presented in Sections 2.5.1, 2.5.2 and 2.5.3 

respectively. There are, however, other interpolation techniques aimed at improving the 

accuracy of population estimation (Mennis, 2009, Goodchild et al., 1993, Flowerdew, 

1991, Flowerdew and Green, 1989).  

2.5.1 Basic areal interpolation methods 

This section presents two interpolation methods that do not make use of ancillary data: 

the areal weighting and the pycnophylactic interpolation frameworks. The previous 

articles using these approaches are reviewed in Table 2.1. The method of areal 

interpolation is a common technique for quantifying disaggregated population values 

(Maantay et al., 2007). Initially, the technique has been defined as the process of 

transferring the spatial data of interest from one set of areal units (source areas) to a 

different set of areal units (target areas) (Gregory, 2002, Eicher and Brewer, 2001, 

Bloom et al., 1996, Langford and Unwin, 1994). In essence, this approach was 

improved as a statistical method (e.g. the re-distribution population in a geographical 

unit) rather than for map production (Eicher and Brewer, 2001). All interpolation 

methods proposed to interpolate statistical variables, such as population counts, from a 

fixed output geography to the other finer areal geographies are based on specific 

assumptions (Sridharan and Qiu, 2013). The interpolation process is required when 

user-defined spatial units are incompatible with the set of census output geographies (Su 

et al., 2010, Flowerdew and Green, 1992). Theoretically, areal interpolation can 

compare multiple geographical datasets that are derived from distinct enumeration 

zones (Mennis, 2003, Eicher and Brewer, 2001). The approach enables the transfer of 

an individual dataset to a common set of enumeration units (e.g. census tract) that 

allows effective analysis and comparison (Eicher and Brewer, 2001). 

Both areal weighting and pycnophylactic frameworks are volume preserving methods 

(Kim and Yao, 2010, Lam, 1983) which means that the original variables of interested 

source zones and the total estimated values of target zones are equal. This framework is 

closely related to dasymetric mapping of population densities (Maantay et al., 2007, 

Holt et al., 2004). The major difference between dasymetric mapping techniques and 

basic areal interpolation methods is that dasymetric mapping excludes the final step in 

areal interpolation of re-aggregating to a desired enumeration unit type (Eicher and 

Brewer, 2001). The areal interpolation method re-aggregates population data into a 
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preferred enumeration unit; however, the dasymetric mapping approach re-distributes 

population data into defined land use/cover groups (Maantay et al., 2007). Areal 

weighting methods and pycnophylactic interpolation methods are reviewed in the 

following sub-sections. 

Table 2.1: Selection of previously implemented basic areal interpolation methods 

Method 
  

Ancillary 
Variable 

Distribution 
of Variables 

Discussed and applied by:  

1. Areal 
Weighting  

None Homogenous Briggs, Gulliver, Fecht & Vinneau, 2007  
Brinegar & Popick, 2010 
Eicher & Brewer, 2001  
Fisher & Langford, 1996  
Gregory, 2002 
Hawley & Moellering, 2005    
Langford, 2013 
Maantay, Maroko & Hermann, 2007 
Reibel & Bufalino, 2005  

2. Pycno-
phylactic 

None  Heterogeneous Comber, Proctor & Anthony, 2008 
Hawley & Moellering, 2005  
Kim & Yao, 2010 

2.5.1.1 The areal weighting method 

The areal weighting approach is one of the most common types of interpolation 

technique to have been used for population distribution (Sridharan and Qiu, 2013, Su et 

al., 2010, Eicher and Brewer, 2001, Cockings et al., 1997, Fisher and Langford, 1996, 

Goodchild et al., 1993, Goodchild and Lam, 1980). This method is referred to as the 

‘area-weighted interpolation technique’ by Sridharan and Qiu (2013). The technique is 

the most basic form of interpolation methodology to quantify the values of interested an 

variable by a ratio obtained from the relative areal measurements of the source and 

target zones (Maantay et al., 2007, Mennis and Hultgren, 2006b, Fisher and Langford, 

1996, Goodchild and Lam, 1980). This methodology is simply based on the geometric 

intersection of the source and target zones and the method does not need ancillary data 

for interpolation process (Langford, 2006, Goodchild et al., 1993). The areal 

interpolation method is mainly based on the presumption that variables (i.e. population) 

are distributed evenly through the source zone (the original geographical unit of data 

aggregation) (Maantay et al., 2007). Therefore the total values of target zones which fall 

into one or more source zones can be estimated by the ratio of a predefined target zone 

to source zone. This approach has been commonly applied to map the distribution of 
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population in target zones (Liao et al., 2010). The amounts of population are assigned to 

the target zones according to the proportion of targets zones which fall into source 

zones (Langford, 2007, Maantay et al., 2007, Langford, 2006).  

Goodchild et al. (1993) used areal interpolation to determine the socioeconomic 

variables (such as population, employment and income) of predefined target areas in 58 

counties of California assuming that variables were distributed homogenously in the 

source areas (the counties). When the authors compared the result of the areal weighting 

technique with other techniques applying statistical methods, they found that the areal 

weighting method had a higher mean percentage error than the other statistical 

techniques (residential units and cadastral-based expert dasymetric methods). Similarly 

Hawley and Moellering (2005) used the areal weighting interpolation method in order 

to distribute population totals from Census Tract level to Census Block Group level in 

the counties of Franklin, Hamilton and Jefferson, USA. The authors compared the 

implemented disaggregation methods and they found that the areal weighting method 

consistently produced the least accurate estimation results in terms of accuracy 

measurements. Very recently, Langford (2013) used the areal weighting method to 

disaggregate the aggregated population counts from lower super output areas (LSOAs) 

to output areas, and from output areas to UK unit postcodes (UPCs), in order to evaluate 

the performance of interpolation methods in Cardiff City, Wales. Considering the 

distribution of population totals from LSOAs to output areas, the areal weighting 

method provides the worst population estimates with the applied approaches. Regarding 

the distribution of population values from outputs to UPCs, it shows that the area-

weighted method performed better than the street weighted and surface model (used 

primary schools and bus stops) interpolation approaches.  

Maantay et al. (2007) conducted research on areal weighting applications and revealed 

that one of the main limitations of the areal weighting technique is that, naturally, 

population is not distributed homogeneously through a geographical unit. In the source 

zones, large areas could be unpopulated either because of the existence of water bodies, 

green spaces and industrial areas or due to the different housing types in the zone - one 

part of the zone may have high-rise building units and the other may contain low-rise 

single family houses (Maantay et al., 2007). Thus, separating the uninhabited areas from 

inhabited areas - rather than assuming homogeneity - and adding housing volume 

information may help to estimate population counts of the target areas. Eicher and 
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Brewer (2001) suggest that the areal weighting method may not be employed to 

generate spatially distributed population surfaces because it does not use ancillary data 

inputs that aid to separate built-up areas from non-residential uses. 

The areal weighting interpolation technique is a long-held and straightforward 

algorithm for areal interpolation (Tapp, 2010, Goodchild and Lam, 1980) and it may 

remain an acceptable interpolation technique, especially when additional data is not 

available for the distribution of population totals (Zhou et al., 2012, Qiu et al., 2010, 

Fisher and Langford, 1996, Xie, 1995, Flowerdew and Green, 1992). Residential 

buildings are rarely homogenously distributed across the landscape, but generally they 

are clustered in residential areas and are surrounded by non-residential land use and 

cover types (Fisher and Langford, 1996). The areal weighting interpolation method 

based population estimates may contain important errors due to these geographical 

differences (Langford, 2013, Hawley and Moellering, 2005, Flowerdew and Green, 

1992). Commonly, the area based population estimates may be inaccurate. Owing to the 

homogenous distribution, this interpolation approach is the least demanding 

interpolation technique in estimating population (Langford, 2007). 

2.5.1.2 The pycnophylactic interpolation method 

This interpolation method was proposed by Tobler (1979) in order to obtain smooth 

population density data from spatially aggregated population datasets. The approach 

depends on the assumption of a smooth density function to provide heterogeneous 

distribution within the target zones by considering the effect of an adjacent source zone 

(the weighted nearest neighbours) (Kim and Yao, 2010, Hay et al., 2005, Tobler, 1979) 

while preserving the volume of interested variable in each zone (Kim and Choi, 2011, 

Kim and Yao, 2010, Tobler, 1979). This approach allocates the interested values to each 

grid cell by dividing the total values of the source area with the number of grid cells 

within the source areas (Hawley and Moellering, 2005). A value of the interested 

variable (Z value) is calculated for individual grid cells by the average value of each of 

the cell’s four neighbours. The following equation is described by Hawley and 

Moellering (2005) for computing the Z value.  

𝒁𝒊,𝒋 =
𝟏
𝟒 𝒛𝒊,𝒋!𝟏 + 𝒛𝒊,𝒋!𝟏 + 𝒛𝒊!𝟏,𝒋 + 𝒛𝒊!𝟏,𝒋  (2.1) 
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Where 𝒁 is the value of the interested variable in each grid and cell and𝒛𝒊𝒋 is the density 

in cell𝒊𝒋. 

In order to provide the pycnophylactic condition, the estimated value of each source 

unit is compared with the true values of source units (Hawley and Moellering, 2005). 

The simplified description of implementation of this method is defined by Hawley 

(2005) as follows: 

𝒁 𝒙,𝒚 𝒅𝒙  𝒅𝒚 = 𝑯𝒊

𝑹𝒊

 (2.2) 

where𝑹𝒊 denotes the 𝒊  th region, 𝒁   𝒙,𝒚  represents the density function and 𝑯𝒊 

represents the value of the interested variable in region 𝒊. 

The pycnophylactic method, which does not require any ancillary data inputs, has been 

used by several studies due to its ability to generate heterogeneous distribution of the 

interested variable (Kim and Yao, 2010, Hawley and Moellering, 2005). Hawley and 

Moellering (2005) applied the pycnophylactic interpolation technique in order to 

distribute population totals from Census Tract level to Census Block Group level in the 

counties of Franklin, Hamilton and Jefferson, USA. When the authors compared the 

results of population distribution obtained from the interpolation methods, they found 

that pycnophylactic interpolation obtained the second least accurate population 

estimates in terms of accuracy. Hay et al. (2005) used this approach in order to create 

human population distribution maps for epidemiological studies in Kenya. The risk of 

malaria to the human population was determined using census figures. Earlier studies 

suggest that the main superiority of the pycnophylactic method over areal weighting 

methods is the ability to generate heterogeneous distribution of spatial variables within 

the target zones (Kim and Yao, 2010). In reality, the assumption of homogeneity is 

extremely unrealistic because of uninhabited zones in the study areas where population 

density is zero. In order to improve the accuracy of interpolation obtained population 

estimates the use of external data inputs is needed. A variety of differing, more precise 

interpolation techniques have been developed to disaggregate the aggregated population 

counts within the source zones (Gregory, 2002).  
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Some studies have used a combination of methods to improve the accuracy of their 

population estimate method. For example, Kim and Yao (2010) combined 

pycnophylactic interpolation with the dasymetric mapping method to develop a hybrid 

approach. In order to evaluate the performance of the developed hybrid technique it was 

applied to the Atlanta metropolitan statistical area (MSA), which consists of 28 

counties, by distributing population totals from census tracts to census block groups. 

The hybrid method obtained better population estimates from all used areal weighting, 

pycnophylactic and binary mapping methods. Earlier than the Kim and Yao (2010) 

study, Comber et al. (2008) combined dasymetric and volume preserving methods in 

order to provide a national agricultural land use data of 1 km2 resolution. The authors 

used aggregated June Agricultural Census (JAC) as source zones and 1 km2 grids as 

target zones. The study shows that the coarse levels of geographical variables can be 

reliably disaggregated into finer target areas. 

2.5.2 Dasymetric mapping methods 

In this section, existing dasymetric mapping techniques have been reviewed. In order to 

distribute population, numerous techniques have been used in the field of geographic 

information systems (GIS) and remote sensing. By applying geographical information 

science theory, many distribution techniques have been improved to map smaller 

geographical areas of population distribution according to aggregated values and 

ancillary datasets, usually known as ‘Dasymetric Mapping’ (Lwin and Murayama, 

2010). The choropleth map and the dasymetric map are widespread cartographic forms 

of population distribution mapping (Lwin and Murayama, 2010). Furthermore, 

choropleth maps cannot represent statistical differences within the administrative areal 

units (choropleth map zones) such as population density differences (Lwin and 

Murayama, 2010, Mennis, 2009, Mennis and Hultgren, 2006a). In order to avoid this 

limitation, the dasymetric mapping technique can be used to transfer the administrative 

units into smaller, relevant map zones (Lwin and Murayama, 2010, Bielecka, 2005). 

The dasymetric mapping approach (one of the cartographic techniques) is the process of 

disaggregating an aggregated spatial dataset into smaller units (Eicher and Brewer, 

2001) by using ancillary data inputs to refine location of the interested geographical 

variables (Zandbergen, 2011, Mennis, 2009, Maantay et al., 2007, Mennis, 2003). 

Petrov (2012) describes dasymetric mapping methodology, as an interpolation 

framework that produces a population density map using external datasets. Reibel and 
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Bufalino (2005) call the dasymetric mapping method as an ‘ancillary weighting method’ 

due to the obligatory requirement of external inputs. This technique basically separates 

a geographical unit into more meaningful homogenous geographical zones (Mennis, 

2009, Bielecka, 2005, Eicher and Brewer, 2001). The process of the subdivision of 

source areas into finer spatial units, which possess a superior internal consistency of 

variable being mapped, is the fundamental principle of dasymetric mapping (Bajat et al., 

2013, Petrov, 2012). For this reason, previous articles (Petrov, 2012, Mennis, 2009, 

Langford, 2007) show that the quality and reliability of ancillary datasets are significant 

for obtaining more accurate estimations in dasymetric mapping methodology. 

Dasymetric maps are usually considered to be more accurate than choropleth maps in 

visualising population distribution and population densities (Petrov, 2012, Mennis and 

Hultgren, 2006b, Wu et al., 2005). 

The concept of dasymetric mapping, and the term itself, were first explored about a 

century ago and improved upon by developing innovative forms of mapping models 

(Petrov, 2012, Petrov, 2008). Even though Mennis (2009) claims that there are many 

uncertainties concerning the source of dasymetric mapping methodology in the 

literature, Petrov (2012) indicates that the term ‘dasymetric mapping’ was first seen in 

Semenov-Tian-Shansky’s publication in 1911. Before this publication, a dasymetric 

map of the population density of Ireland for the Second Report of the Railway 

Commissioners was created by Henry Drury Harnessin in 1837 (Robinson, 1955). 

These two maps employed shading to indicate the extent of population density where 

the constant boundaries of shaded regions do not match constantly with the boundaries 

of administrative areas (Mennis, 2009). Therefore, both of these maps would be 

conceived as dasymetric maps, even though the dasymetric mapping approach had not 

yet been discovered (Petrov, 2012). 

The Russian geographer, Benjamin Semenov-Tian-Shansky, proposed to use the term 

‘dasymetric’ to mean ‘density measurement’ (Petrov, 2008) in a 1911 report to the 

Russian Geographic Society (Mennis, 2009). After Semenov-Tian-Shansky’s 1923 

work  titled ‘The Population Density Mapping Project of European Russia’, the 

dasymetric mapping method became extensively recognised in Russia (Mennis, 2009, 

Petrov, 2008). It is generally considered that the American geographer, John Kirtland 

Wright (1891-1969), was the first to publish a paper on dasymetric mapping in the 
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English-language (Petrov, 2012, Maantay et al., 2007). Several scholars who used 

dasymetric mapping techniques have cited John K. Wright’s publication titled ‘A 

Method of Mapping Densities of Population‘, as the basis in the improvement of 

dasymetric mapping methods (Mennis, 2009). Subsequently, researchers in spatial 

analysis (Wu et al., 2005, Goodchild et al., 1993) have made substantial contributions to 

dasymetric mapping with the help of developments in environmental remote sensing 

and GIS (Mennis and Hultgren, 2006b). Since the rise of computational geography in 

the 1960s, coupled with improvements in analytical and geo-processing capacities, the 

interest in dasymetric mapping and areal interpolation techniques have led to the 

formulation of complex interpolation processes (Petrov, 2012, Mennis, 2009, Tobler, 

1979). The recent popularisation of dasymetric methodology is caused by a 

considerable growth in the application of dasymetric mapping techniques to generate 

high resolution\quality population distribution map and estimate products for many 

purposes (Petrov, 2012). Petrov (2012) stresses that dasymetric mapping was 

traditionally used for visualising population distribution, and this approach has been 

employed for population estimation (Mennis, 2009) and spatial population forecast 

(Deng et al., 2010). 

Remote sensing imagery has been widely used as a source of ancillary data in 

dasymetric mapping applications (Alahmadi et al., 2013, Bajat et al., 2013, Petrov, 

2012). New techniques and approaches of dasymetric mapping utilise a variety of 

different ancillary data and processing approaches (Lu et al., 2011b, Mennis, 2003, 

Eicher and Brewer, 2001), and 3D dasymetric mapping (Lwin and Murayama, 2010, 

Qiu et al., 2010). Recently GIS and remote sensing image based datasets such as land 

use and land cover datasets (Mennis, 2009, Eicher and Brewer, 2001, Gallego and 

Peedell, 2001), light emission data (Briggs et al., 2007), road network data (Zandbergen 

and Ignizio, 2010, Holt et al., 2004), address point dataset (Zandbergen, 2011), building 

footprint dataset and building volume information (Lwin and Murayama, 2009) have 

been widely used as ancillary data in dasymetric population distribution studies. The 

selection of articles, which have used the different forms of dasymetric mapping 

approaches in population distribution, are shown in Table 2.2. 
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Table 2.2: Selection of previously used traditional dasymetric mapping methods 

Method 
  

Ancillary 
Variable 

Distribution 
of Variables 

Discussed and applied by: 

1. Binary 
Method  

 

Land use 
Land Cover 
data, 
OS Vector 
Map District 
buildings 

Heterogeneous Bielecka, 2005 
de Geer, 1926 
Eicher & Brewer, 2001  
Hawley & Moellering, 2005 
Holt, Lo, & Hodler, 2004 
Langford, 2013  
Leyk, Buttenfield, Nagle & Stum, 
2012 
Mennis, 2009   

2. Three 
Class 
Method  

 

Land use 
zoning, 
topography, 
Public use 
micro data 
sample of US 
Census 
Bureau 

Heterogeneous Bajat , Krubnic & Kilibarda, 2011 
Eicher & Brewer, 2001  
Langford, 2007 
Leyk, Nagle & Buttenfield, 2013 
Maantay, Maroko & Hermann, 2007 
Mennis, 2009 
Su, Lin, Hsieh, Tsai & Lin, 2010 
 

3. Limiting 
Variable 
Method  
 

Land Use and 
Land Cover, 
Satellite 
Imagery 

Heterogeneous Eicher & Brewer, 2001  
Gregory, 2002  
Maantay, Maroko & Hermann, 2007  
McCleary, 1969  

4. Image 
Texture 
Method 

Satellite 
imagery data, 
Geospatial 
data 

Heterogeneous Azar, Engstrom, Graesser & 
Comenetz, 2013,  
Langford, 2007 
Langford, Higgs, Radcliffe & White, 
2008  
Maantay, Maroko & Hermann, 2007  

As Lwin and Murayama (2010) and Maantay et al. (2007) state, data transformation 

from one set of geographic zones to other set of zones, which are not coincident, is 

often required in spatial analysis. For example, the analyst may have human population 

data on an administrative unit level but needs to estimate the population of a smaller 

area within the given administrative units or the estimation area that includes only part 

of an administrative unit and some part of the other administrative units (Maantay et al., 

2007). Mennis (2009) claims that GIS and satellite remote sensing are the two 

associated technologies advanced enough to change  dasymetric mapping from a 

cartographic technique to a more well-known and well-defined topic of current 

investigation. The superiorities of the dasymetric mapping method over the choropleth 

map approach have been well documented in a variety of earlier studies (Lwin and 
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Murayama, 2010). The smaller geographical unit of population data is important for 

effective and efficient micro-scale spatial analyses such as disaster management, 

emergency preparedness, retail market competition and other population related 

analysis (Lwin and Murayama, 2010). The following approaches are some of the 

improved techniques and methods in the dasymetric mapping concept: the binary 

dasymetric mapping (Eicher and Brewer, 2001, Gallego and Peedell, 2001), the three-

class (Langford, 2006), the limiting variable (Maantay et al., 2007) and the image 

texture based dasymetric model (Azar et al., 2013). These methods are discussed as 

follows. 

2.5.2.1 The binary dasymetric method  

The binary method was originally developed to be used as a mapping technique 

(Langford and Unwin, 1994) but was eventually applied in areal interpolation problems 

(Cockings et al., 1997, Fisher and Langford, 1995). The method uses ancillary data 

within the process of dasymetric mapping to provide the spatial distribution of 

population variables in target zones (Langford, 2007, Eicher and Brewer, 2001). 

Standard areal weighting method assumes that the values of the variable of interest are 

uniformly distributed within the source area (Flowerdew and Green, 1992). However, 

dasymetric mapping employs external data inputs of study regions to distinguish 

residential areas from non-residential areas for achieving more accurate and efficient 

target unit estimates (Mennis, 2009, Langford, 2007, Eicher and Brewer, 2001). Figure 

2.2 presents an illustration of the binary dasymetric mapping approach. The figure 

shows that population totals are distributed using external datasets to refined target 

areas. The method is one of the most widely applied dasymetric mapping methods in the 

study of population estimates (Mennis, 2009, Bielecka, 2005). Commonly, remote 

sensing provided land use and land cover datasets that have been used as control 

variables to date (Mennis, 2009, Bielecka, 2005). The land use/cover datasets are 

mainly grouped into several classes such as water bodies, tree cover, and urban area and 

so on. Later on, the classified imagery is reclassified into two binary masking zones, or 

classes, which are inhabited and uninhabited classes.  

The binary masking zones approach has been theoretically investigated to redistribute 

statistical population data exclusively to areas classified as residential areas (Mennis, 

2009). In the binary method, an area-class map defining populated and unpopulated 
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areas is employed to redistribute data from choropleth map areas, where the data are 

concentrated homogenously in the inhabited areas of each single zone (Mennis, 2009). 

In the generated dasymetric map, the unpopulated parts of the map are dedicated zero 

data, and in populated areas the density is raised as compared to the data density in the 

choropleth zone (Mennis, 2009, Mennis and Hultgren, 2006b). For instance, people 

would be eliminated from uninhabited areas such as wetlands, bare grounds, forest or 

water and accumulated into the other land cover.  

The main advantage of the binary method is its theoretical simplicity and easy 

implementation (Mennis, 2009, Bielecka, 2005, Eicher and Brewer, 2001, Langford and 

Harvey, 2001). This technique also performs well compared to other forms of areal 

interpolation methods that do not make use of ancillary data (Langford, 2013, Eicher 

and Brewer, 2001). For example, Kim and Yao (2010), Mennis and Hultgren (2006b), 

and Hawley and Moellering (2005) used the areal weighting, the pycnophylactic and the 

binary dasymetric mapping methods to distribute population totals. All the above 

research used remotely sensed products as control variables in the process of binary 

mapping. Furthermore, the authors compared the results to test the performance of 

applied approaches. They found that the binary mapping method provides better 

estimation results consistently. Additionally, Langford (2013) applied the areal 

weighting, the street weighting and the binary mapping methods in the City of Cardiff 

in South Wales. The author used Landsat ETM+ obtained land cover and OS 

VectorMap District buildings datasets in both raster and vector format as external inputs 

in the dasymetric model. The article shows that the binary mapping process 

substantially improved the accuracy of population estimates over other used 

interpolation methods. However, the method has several shortcomings. The main 

limitation of this technique is the subjectivity of reclassification when populated and 

unpopulated regions are determined (Bielecka, 2005). The other disadvantage is that 

this approach cannot differentiate areas according to population density within 

populated areas due to the complexities in population density (Maantay et al., 2007, 

Langford, 2006).   
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Figure 2.2: An illustration of population distribution models: a) in a source area 

population distributed uniformly, b) a source zone classified as populated (grey) and 

unpopulated (white) areas, c) population distributed within populated areas of a source 

zone (the binary dasymetric population mapping model (modified from Langford, 

2007). 
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2.5.2.2 Three-class method  

While the binary dasymetric method quantifies the functional relationship between the 

external data and the statistical surface, the three-class technique quantifies the 

functional correlation between ancillary classes and the statistical surface on a 

percentage basis (Mennis, 2009, Maantay et al., 2007, Langford, 2006, Eicher and 

Brewer, 2001). At first, land use/cover data are divided into three or more classes in 

order to distribute population. The next step is to consider variations in population 

density within different classes. Percentages are applied to all the three (or more) main 

land use classes for that area, representing the proportion of population that is probably 

included within that land use per district (Maantay et al., 2007). Figure 2.3 shows the 

process of this interpolation model. Eicher and Brewer (2001) adopted the following 

weighting scheme to assign population to three different land uses classes: 

Table 2.3: The sample ancillary classes of three-class interpolation method 

Urban area 

Agriculture/woodland/exurban area 

Forested area  

60% 

25% 

15% 

Single categories in the area-class map are apportioned a percentage, thereby the 

percentage of all categories sum to 100% (Mennis, 2009). Based on the percentage of 

each area classes, population is redistributed from choropleth zones to different 

dasymetric zones assuming population is distributed evenly within every zone (Mennis, 

2009). For instance, suppose a 50km2 source area which consists of 20km2 of inhabited 

and 30km2 of uninhabited area includes 1,000 people. Further, the method separates 

populated area into class such as high density urban or low density urban area, 

agricultural area and forested area, for re-distributing total population. Using the scheme 

given above, 60% of people reside in urban areas, 25% of people reside in agricultural 

area and 15% of people reside in forested area. Su et al. (2010) used this interpolation 

method to better capture population distribution by using remote sensing imagery, land 

value and transportation networks as ancillary datasets, separately in the Taipei 

metropolitan area in Taiwan. The study region was grouped into four categories: non-

populated, rural, suburban and urban areas in order to distribute population totals 

according to the weighting factor of each class. The authors conclude that the 
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performance of population redistribution improved by more spatial discrimination into 

the method using further external data. 

 

Figure 2.3: An illustration of three class population distribution model: a) an 

administrative area assuming population totals show uniform pattern and a) the 

distribution of population according to the weighting factor of each urban, suburban and 

rural area. 
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Although this technique is called the three area-class technique, it can be employed to 

any number of categories (Mennis, 2009). The following formula is algebraically 

described by Langford (2006).  

 

𝑷𝒕 =
𝑨𝒕𝒔𝒄𝑷𝒔
𝑨𝒔𝒄

𝑪

𝒄!𝟏

= 𝑨𝒕𝒔𝒄𝒅𝒔𝒄

𝑪

𝒄!𝟏

𝑺

𝒔!𝟏

𝑺

𝒔!𝟏

 

(2.3) 

where 𝑷𝒕 is the predicted population of target unit 𝒕, 𝑨𝒕𝒔𝒄 is the area of overlap between 

target unit 𝒕  and source unit 𝒔, and having land cover determined as inhabited class 𝒄, 

𝑷𝒔 is the total population of source unit 𝒔, 𝑨𝒔𝒄 is the area of source unit 𝒔 having land 

cover determined as inhabited class 𝒄, 𝑺 is the total number of source units, 𝑪 is the 

number of populated land cover classes, and 𝒅𝒔𝒄 is the dasymetric density of inhabited 

class 𝒄 in source unit 𝒔. 

The main limitation of the three-class method is that population density may differ 

within the same classes (Langford, 2006, Eicher and Brewer, 2001). However, the 

method assumes that the same land use polygons have a characteristic population 

density. Although this method recognises the differences between land use categories, 

Maantay et al. (2007) argue that it does not address those intra-land use class 

differences. Because of the “presence of different building densities and different 

physical housing types” (Langford, 2006, page 167), all residential areas have different 

population densities (Maantay et al., 2007, Liu et al., 2006). With the advent of 

available datasets, the number of classes may be extended to improve population 

estimates. 

2.5.2.3 Limiting variable method 

Although the “limiting variable” method was described by McCleary (1969) (Mennis, 

2009, Eicher and Brewer, 2001), Wright (1936) and Robinson (1955) applied the 

original form of this method in order to redistribute population to urbanised regions by 

limiting population density in rural regions (Mennis, 2009). This method “expands upon 

the three-class method by setting threshold density limits for population assigned to the 

various categories of land use polygons" (Maantay et al., 2007, page 82). The process 

begins with the classification of a source area into populated (urban, agricultural/ 

woodland and forested areas) and unpopulated (water or empty land cover) zones. 
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Thereafter, total population is re-distributed throughout each dasymetric zone of the 

study area by using the simple areal weighting method, and later the limiting thresholds 

are applied to each land use classes (Maantay et al., 2007, Eicher and Brewer, 2001). 

For instance, agricultural/woodland areas are limited to 40 people per km2 and forested 

areas limited to 10 people per km2. After these thresholds, the remaining population 

from agricultural/woodland and forested areas are assigned to urban areas. Basically, 

this approach defines a maximum population density of the determined area-class 

categories and it allocates maximum population density limits to the land use map 

classes (Mennis, 2009). 

As a final step, these threshold values are used to arrange to the statistical data within 

each study area (Eicher and Brewer, 2001). If an area-class polygon density exceeded 

its threshold, the exceeded population is removed and reassigned to the other remaining 

zones within that geographic unit (Maantay et al., 2007, Eicher and Brewer, 2001). The 

main weakness of the limiting variable method, like the three-class method, is that the 

method significantly recognises the differences between land use classes but ignores the 

difference within a land use class (Maantay et al., 2007). 

2.5.2.4 Image texture method  

The image texture method is another population estimation method that mainly uses 

very high spatial resolution satellite imagery such as QuickBird and GeoEye products to 

distribute population totals (Maantay et al., 2007). In order to quantify population 

density, this approach examines the relationship between population density and image 

texture using satellite images instead of land use classes (Maantay et al., 2007). 

Population is located to pixels which are determined as residential uses within the given 

jurisdiction. In dasymetric mapping, the significant source of errors are classification 

mistakes in the ancillary dataset of remote sensing images (Langford, 2007). Therefore, 

raster pixel maps can be used instead of classified satellite images to drive the 

dasymetric mapping methodology (Langford, 2007). Based on the spectral signature of 

pixels and RGB bands, populated pixels can be discriminated from unpopulated pixels. 

However, pixel maps (raster scan maps) and aerial images use only RGB bands to 

separate built-up and non-built-up pixels with the help of colour code information 

(Langford, 2007). Figure 2.4 presents the process of image texture based dasymetric 

mapping method. Population can be easily redistributed to the target zones, based on 
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determined populated pixels. The image texture technique reaches better results 

compared to other dasymetric interpolation techniques, which employ land use/cover 

datasets, especially in rural areas (Langford, 2007, Maantay et al., 2007). 

 

Figure 2.4: The concept of image texture dasymetric method: a) Source zone and b) 

Raster dasymetric model (Red pixels represent populated area and green pixels 

represent unpopulated areas). 

This method has several weaknesses. One of the main limitations of the image texture 

method is that it does not distinguish industrial and commercial areas from residential 

urban zones. Thus, in order to produce even better estimation results, Langford (2007) 

suggests using the combination of the remote sensing images with other geographical 

datasets to mark residential uses and non-residential uses (commercial, industrial and 

institutional areas). Additionally, while the relationship between image texture and 

census population density can be examined, it may not be enough to produce reliable 

estimates of population distribution (Maantay et al., 2007). Pixel-based results show 

that remote sensing images can improve the accuracy of a population distribution map 

(Liu et al., 2006 as cited in Maantay et al., 2007). As an example, Azar et al. (2013) 

produced a gridded population data for Pakistan by developing a population distribution 

mapping model which uses high and medium-resolution satellite imagery as external 

data inputs to disaggregate population counts. They claim that the population 

distribution results are limited by the quality of used external data inputs. 
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2.5.3 Statistical dasymetric models 

The statistical  methods intend to quantify the functional relationship between control 

variables and areal units by extracting patterns embedded in external datasets (Mennis, 

2009). These models appear to be more robust and reliable compared to the traditional 

cartographic approach because it does not require any background knowledge by the 

researcher (Mennis, 2009). It is also capable of revealing the inherent relationships 

between variables that are otherwise concealed within the datasets. In order to compute 

the functional relationship between the external data inputs and the population 

distribution map in a more advanced way compared to traditional cartographic methods, 

scholars in areal interpolation have developed a statistical perspective  (point of view) in 

dasymetric mapping methodology (Mennis, 2009, Mennis and Hultgren, 2006b). 

Statistical methods desire to determine the correlation from patterns concealed in the 

dataset rather than utilising a priori knowledge to measure this correlation (Murakami 

and Tsutsumi, 2011). As Mennis (2009) states, the main process of this method has 

been explained in the content of areal interpolation, where the data transformation from 

the choropleth map areas to the other target zones is facilitated by utilising a third set of 

‘control’ zones, which play an equal role with the area-class map in traditional 

dasymetric mapping methodology. In contrast to traditional dasymetric mapping, the 

boundaries of target zones do not essentially overlap with the boundaries of the 

choropleth map and area-class map, however, these target zones are an independent 

zonal scheme (Mennis, 2009).  

A variety of statistical dasymetric mapping models have been developed and includes 

regression based approach, expectation and maximisation algorithm, street weighting 

method (Bentley et al., 2013, Reibel and Bufalino, 2005), Cadastral-based expert 

dasymetric system (CEDS) (Maantay et al., 2007), Intelligent Dasymetric Method 

(IDM) (Mennis, 2009, Mennis and Hultgren, 2006b), address-weighted (AW) 

(Zandbergen, 2011) and parcel distribution (PD) methods (Tapp, 2010). A sample of 

studies that used these statistical models are summarised in Table 2.4. 
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Table 2.4: Selection of previously developed Statistical Modelling Techniques 

Method   Ancillary 
Variable 

Distribution 
of Variables 

Discussed and applied by: 

1. Street 
Weighting 
Method,  
 

OS VectorMap 
District roads, 
Road network 
data 

Heterogeneous Bentley, Cromley & Atkinson-
Palombo, 2013 
Brinegar & Popick, 2010.  
Hawley & Moellering, 2005 
Langford, 2013  
Maantay, Maroko & Hermann, 
2007  
Mennis & Hultgren, 2006  
Reibel & Bufalino, 2005  

2. Intelligent 
Dasymetric 
Mapping 

Nigh-time 
Lights, 
Imperviousness  
Road network  

Heterogeneous Mennis & Hultgren, 2006 
Mennis, 2009  
Zandbergen & Ignizio, 2010  
 

3. Expectation 
Maximization 
Algorithm, 
 

The GIRAS-
based land use, 
Land cover 
classes 

Heterogeneous Schroeder & Riper, 2013 
Mennis, 2009  
Langford, 2007  
Mennis & Hultgren, 2006  
Gregory, 2002  

4. Inverse 
Distance  
Weighting,  

Genetic 
Programming  
and Genetic 
Algorithms, 
Land cover 
data 

Heterogeneous Liao, Wang, Meng & Li, 2008  
Mennis, 2003  

5. CEDS Cadastral data Heterogeneous Maantay, Maroko & Hermann, 
2007  
Maantay & Maroko, 2009  

6. The 
address-
weighted 

Building 
address point 
data 

Heterogeneous Lwin & Murayama, 2009 
Tapp, 2010 
Zandbergen, 2011 

7. The 
volumetric 
estimation 

Building 
height, 
Building 
volume data  

Heterogeneous  Lwin & Murayama, 2010 
Qiu, Sridharan & Chun, 2010 
Sridharan & Qui, 2013 

2.5.3.1 Street weighting method 

Despite various dasymetric techniques that are widely used in land use and land cover 

data, the street weighting method is an interpolation approach that uses a street network 

data as ancillary data to derive population estimation (Maantay et al., 2007, Reibel and 

Bufalino, 2005). The method assumes that population counts are distributed equally 

along the streets in each areal unit (Xie, 1995). Basically, the complexity and density of 

the street network is used as a population indicator. On the one hand, it assumes that 
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denser and more complex street networks present a higher population density, but on 

the other hand less complex and scattered street networks show a low population 

density(Reibel and Bufalino, 2005). In this method, all vector layers that are source 

areas, target areas and street network layers are required to allocate population totals to 

street segments (Bentley et al., 2013,Reibel and Bufalino, 2005,Xie, 1995). The method 

firstly overlays the layers of source units and the street networks to define the length of 

road segments within the individual source unit and then assigns the population totals in 

source units based on the length of street segments (Xie, 1995). Later, the weights of 

street segments within each source zone are computed. The results obtained are finally 

summed to get population values of each target area (Reibel and Bufalino, 2005, Xie, 

1995). The description of implementation of this approach is described by Langford 

(2013) as follows: 

𝑷𝒕 =
𝑳𝒕𝒔
𝑳𝒔
.𝑷𝒔 

(2.4) 

Where 𝑷𝒔  is the actual population of source unit s, 𝑷𝒕 is the predicted population of 

target unit 𝒕,𝑳𝒕𝒔  is the length of each street vector in that intersection area between 

source unit 𝒔  and target units  𝒕 and  𝑳𝒔 is the total length of street vectors in the source 

unit𝒔. 

Despite the boundary changes of the enumeration districts during the trend interval, the 

street weighted method can be applied to provide relatively reliable estimates of 

population trends for complete sets of local areas across a region (Reibel and Bufalino, 

2005). Xie (1995) used the street weighting method to distribute population totals in the 

City of Buffalo and its nearby suburbs. Reibel and Bufalino (2005) statistically tested 

the street weighted interpolation method in order to obtain varying density weights for 

small areas within the original areal units, employing a digital map layer that represents 

streets and roads. They claim that this method is much easier to apply compared to other 

interpolation methods and can also reduce errors in estimation when compared to the 

area-based weighting methods (Maantay et al., 2007, Reibel and Bufalino, 2005). 

However, similar to the image texture technique, the street weighting technique has 

difficulties in distinguishing urbanised areas from industrial areas (Maantay et al., 

2007). 
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2.5.3.2 Intelligent dasymetric method (IDM) 

Intelligent Dasymetric Mapping (IDM) was improved by Mennis and Hultgren (2006a) 

as an automated technique to create a dasymetric map of the interested variables 

(Slocum, 2009). IDM combines the area-weighted interpolation with the population 

density of ancillary classes in order to disaggregate the aggregated population totals 

from choropleth map zones to dasymetrically divided zones (Mennis and Hultgren, 

2005, Mennis, 2003). This model was called “Intelligent” dasymetric mapping by 

Mennis and Hultgren (2006) because of its ability to explore the correlation between 

ancillary dataset and statistical surface in three ways: 1) using the researchers’ domain 

knowledge; 2) using an innovative empirical sampling model and 3) integrating the 

empirical and subjective models. The model was used by Mennis and Hultgren (2006a) 

to dasymetrically interpolate population totals from the census tract level to sub-tract 

areas in the Front Range of Colorado, USA. They state that with the help of appropriate 

parameter settings in the process of population disaggregation, the IDM model reaches 

better results than areal weighting and binary dasymetric mapping techniques. IDM has 

several superiorities over traditional interpolation models. At first, previous methods 

establish a straight relationship between external data input and the interested statistical 

variable. IDM further enables the analyst to integrate domain knowledge with statistical 

surface to specify functional correlation (Mennis and Hultgren, 2006a). Lastly, the IDM 

provides relatively better disaggregation of the statistical variable because of its 

sampling and parameterisation flexibility compared to previous dasymetric mapping 

models (Mennis and Hultgren, 2006a).   

2.5.3.3 Expectation Maximization (EM) algorithm 

The Expectation-Maximization (EM) algorithm was originally developed to deal with 

incomplete and missing data problems (Dempster et al., 1977). When population data 

are assigned to new target units it may be assumed a missing data problem in 

dasymetric mapping process (Flowerdew and Green, 1991). Therefore, the Expectation-

Maximization (EM) algorithm has been used to deal with missing data in the dasymetric 

mapping process (Mennis, 2009, Gregory, 2002, Flowerdew and Green, 1992). This 

method generally begins by employing basic areal weighting to distribute geographical 

datasets from the zones of choropleth maps to dasymetric intersection areas (Sridharan 

and Qiu, 2013, Mennis, 2009). In order to predict the density of a particular area-class 
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map category, the maximum likelihood method is the next step (Mennis, 2009). 

Furthermore, a particular dasymetric zone’s population is re-predicted utilising the new 

information about the estimated density of a particular area-class category. Maximum 

likelihood is used next to predict the density of data for a particular area-class map 

category and so on until the algorithm converges (Mennis, 2009). 

2.5.3.4 Inverse distance weighting  

One of the simple interpolation approaches is the Inverse Distance Weighting (IDW) 

method. It was first described and used by Bracken and Martin (1989) as a sophisticated 

technique to develop surface representation of population information for census 

enumeration districts (EDs) in the United Kingdom (Liao et al., 2010, Mennis, 2003). It 

is important to note that knowing how to assign population data to grid cells is a key 

point to building demographic data surface models in this method (Liao et al., 2010). In 

the interpolation process, the centroid points of the original areal units are defined and 

population counts are assigned to a set of summary points (Liao et al., 2010, Mennis, 

2003). Basically, the process of creating population surface models in IDW 

methodology contains three stages. First of all, a grid is generated using the centroid 

points of original areal units (Liao et al, 2010, Mennis, 2003). In the second stage, 

population counts are estimated at the grid points based on the distance of centroids by 

assuming that population density decreases away from the centroid of a given 

administrative area according to some distance decay function (Mennis, 2003). Finally, 

the predicted population of a grid is disaggregated to new areas moving from centroids 

(Liao et al., 2010, Mennis, 2003). Therefore, some raster surfaces which are closer to 

centroids have greater density and vice versa (Liao et al., 2010). However, Liao et al. 

(2010, page 49) argue that “this approach is over-simplified, and its accuracy needs to 

be improved” in order to generate dasymetric maps. The following algorithm is used by 

Martin (1989, page 96) to distribute the centroid datasets. 

𝑷 = 𝑷𝒋
𝑪

𝒋=𝟏
.𝑾𝒊𝒋 

(2.5) 

Where 𝑷 is the predicted population to fall within grid cell 𝒊 of the matrix, 𝑷𝒋 is the 

empirical population associated with centroid 𝒋, 𝑪 is the total number of centroids 

within the area to be mapped and 𝑾𝒊𝒋 is the unique weighting based on the distance 

from 𝒊 to 𝒋 and the clustering of other local centroids. 
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Earlier studies have used the IDW method to distribute population totals to target zones. 

For instance, Mennis (2003) generated a 100 metres resolution regular raster grid 

system from the urbanisation data in the southeast of Pennsylvania to derive population 

surfaces. The actual population counts of block groups are disaggregated to pre-defined 

grid cells based on the difference of population densities within the urbanisation classes 

and the total intersection area of urbanisation classes and block groups. Liao et al (2010) 

produced one kilometre square grid cells to estimate population distribution for Heshun, 

north of China. The study indicates that the usage of ancillary variables (slope, land 

use/cover data, the influence of neighbouring villages) helps to generate a more precise 

distribution of human population. Geographical reasons do impact on the nature of 

population distribution in specific areal units. 

2.5.3.5 Cadastral-based expert dasymetric system  

Maantay et al. (2007) introduced a new dasymetric method that uses census population 

data together with cadastral-based data in order to more accurately calculate population 

distribution/location. This method uses specific cadastral data as the ancillary dataset in 

order to distribute the census population information (Maantay and Maroko, 2009). 

“Cadastral data is property tax lot data, and is used in recording property boundaries, 

property ownership, property valuation and for property tax collection” (Maantay and 

Maroko, 2009, page 4). Cadastral-based datasets mostly consist of population-related 

information such as zoning designation, land use, residential area, residential units and 

lot size (Maantay and Maroko, 2009). These types of data are mostly available for 

urbanised areas in the US, Western Europe and other developed countries (Maantay et 

al., 2007). A recently-developed Cadastral-based Expert Dasymetric System (CEDS) 

leads to better estimation of population counts in hyper-heterogeneous urban areas 

compared to traditional dasymetric mapping methods (Maantay and Maroko, 2009, 

Maantay et al., 2007). This technique is mainly suitable for urban areas where detailed 

parcel data are available (Maantay et al., 2007). This CEDS method uses the number of 

residential units and residential areas as control variables in order to disaggregate the 

aggregated population totals. Basically, the method assumes that higher populations are 

concentrated in areas where there are more potential living accommodations (Maantay 

et al., 2007). First, the CEDS redistributes the population among the cadastres (tax lots) 

using the residential area and the number of residential units (Maantay et al., 2007). The 

following equation is described by Maantay et al. (2007).  
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𝑷𝑶𝑷𝟏 = 𝑷𝑶𝑷𝒄 ∗ 𝑼𝟏/𝑼𝒄 

(2.6) 

Where 𝑷𝑶𝑷𝟏  is dasymetrically derived tax lot-level population, 𝑷𝑶𝑷𝒄    is census 

population, 𝑼𝟏  is the number of proxy units at the tax lot level, and 𝑼𝒄    is the number of 

proxy units at the census level. 

The second stage is applying the expert system that is designed to define a variable – 

the number of residential units, residential area - that more accurately predicts the 

population distribution (Maantay et al., 2007). Two administrative areas are employed 

and compared to assess the variables. Tract population data are redistributed to the tax 

lots and subsequently re-aggregated to the block groups (Maantay et al., 2007). The 

following formula was used by Maantay et al. (2007) to define the absolute value of the 

difference between known population and estimated population. 

 

𝑷𝑶𝑷𝒅𝒊𝒇𝒇 = 𝑷𝑶𝑷𝑩𝑮 − 𝑷𝑶𝑷𝒆𝒔𝒕  

(2.7) 

where  𝑷𝑶𝑷𝒅𝒊𝒇𝒇 is the difference between census and predicted population per block 

group, 𝑷𝑶𝑷𝑩𝑮  is census block group population, and 𝑷𝑶𝑷𝒆𝒔𝒕  is estimated population 

derived from the census tract. 

 

Figure 2.5: Methodological differences and the potential improvement of population 

estimation of the CEDS method (c), over both filtered areal weighting (b), simple areal 

weighting (a) (modified from Maantay et al., 2007). 
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2.5.3.6 The address-weighted method 

The address-weighted dasymetric model is one of the population distribution methods 

which use point data inputs. The approach uses individual building address points 

instead of land use/cover data, pixel maps, road networks or cadastral-based data. This 

model explores the functional relationship between address point data and a statistical 

surface (Zandbergen, 2011, Tapp, 2010). The individual residential housing units are 

the finest scale that represent where people are actually residing (Sridharan and Qiu, 

2013, Zandbergen, 2011, Qiu et al., 2010). Address point data inputs have been recently 

used as ancillary data in dasymetric population distribution (Zandbergen, 2011, Tapp, 

2010). Theoretically, the address points of housing units supply accurate datasets on the 

location of individual housing units and every non-residential unit (Zandbergen, 2011, 

Tapp, 2010, Maantay et al., 2007). Therefore, it can be considered that the density of 

housing unit address points is closely related to population density (Zandbergen, 2011). 

As Zandbergen (2011) states, this method theoretically presumes a linear correlation 

between residential address point density (the numbers of address points) and 

population density. For instance, for a ward with 4,000 people and 2,000 address points, 

each address point is assigned 2 people. The performance of dasymetric mapping 

method uses address points data as a source of ancillary data (Tapp, 2010). Figure 2.6 

presents an illustration of the address-weighted dasymetric model. As shown in the 

figure, the number of housing units are falling into target zones that aid to estimate the 

population of each target unit. 

The housing unit based estimation method is established by counting dwelling units at 

the proposed geographical level (town, city or county). Two fundamental components 

of the housing unit method are housing unit counts and persons per household (PPH) 

(Deng et al., 2010). On the one hand, the number of residential buildings can be 

estimated from “building permit and electrical-costumer information” (Deng et al., 

2010, page 5676). On the other hand, residential buildings can be counted from 

remotely sensed images to generate population estimation. Manually, housing units are 

counted from finer resolution remotely sensed data, and subsequently the number of 

houses are multiplied by household size to achieve population estimates (Smith and 

Mandell, 1984). As stated by Deng et al. (2010), this manual method is not commonly 

preferred by state and local agencies because a large amount of time and labour is 

involved. For addressing this problem, national building address point datasets have 
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been integrated into the dasymetric mapping model (Tapp, 2010). Zandbergen (2011) 

used the address-weighted method with several other approaches including areal 

weighting, road network based method and land cover based models in order to 

determine the performance of address points in the process of dasymetric population 

distribution. The census tracts were used as source zones and the population totals were 

estimates at census block groups in 16 counties in Ohio, USA. The author found that 

building address points performed significantly better when compared with other data 

inputs. 

 

Figure 2.6: Schematic example of the address-weighted interpolation method. © Crown 

Copyright/ database right 2013, An Ordnance Survey/EDINA supplied service. 
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One of the main advantages of address point data is the simplicity of the algorithm 

employed in dasymetric mapping methodology (Zandbergen, 2011). As referred to 

earlier, each point is weighted equally and population is spatially allocated using the 

point density in a given location. As Zandbergen (2011) remarks, a calibration and 

statistical model fitting is not needed, but land use and land cover data are required 

when employing them as ancillary sources in dasymetric mapping. Therefore, this 

approach can easily be employed to other study areas which have a national address 

point data, and can also be compared and combined with different methods in order to 

generate dasymetric population mapping. Additionally, the individual residential 

address points substantially show where people actually reside. The address-weighted 

dasymetric method assumes a uniform population distribution through each address 

point in source zones.  

Previous studies show that address point datasets perform substantially better as 

ancillary data in dasymetric population mapping when compared with other types of 

ancillary dataset (e.g. land use/cover dataset, street network dataset, night-time lights, 

road density maps, and satellite images) (Zandbergen, 2011, Tapp, 2010, Lwin and 

Murayama, 2009). However, some underlying issues should be addressed in using the 

address-weighted method in population mapping. At first, the method can perform 

better in rural areas because single-family housing units are mostly dominant, but may 

not perform in urban areas due to the complexities of residential buildings (Zandbergen, 

2011). For example, low-rise buildings such as single-family housing units and high-

rise buildings such as multi-family housing units and apartments co-exist together. Each 

of the address points may represent more than one single housing unit in complex urban 

areas and, as such, the average population size may vary considerably between rural and 

urban areas (Zandbergen, 2011, Lwin and Murayama, 2010). Therefore, as Zandbergen 

(2011) concludes, the address point data performs well in single-family housing unit 

dominant areas and performs relatively poorly in complex urban areas. Secondly, an 

equal population distribution is not possible due to the different type of residential 

housing units, the diversity of occupied households and the vacant homes (Zandbergen, 

2011). Therefore, further information on the type and size of residential units can be 

used to develop population estimates using address point data (Lwin and Murayama, 

2009). The limitations may be addressed by incorporating building use type (i.e. 

residential buildings mixed with commercial buildings) and building status (i.e. newly 
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constructed or abandoned buildings) (Lwin and Murayama, 2009). The importance of 

occupancy rate has been discussed but not used in the small-area dasymetric population 

distribution. The third issue is the detection of vacant homes in address point datasets 

for small-area population estimation. As Tapp (2010) argued, local ancillary data 

(address point and parcel data) are unable to define the information of vacancy rates, 

making empty residences one of the main error sources in the address-weighted and 

parcel distribution techniques. These methods can be improved with the inclusion of 

occupancy rate into the method and incorporating metrics for the type of unit (e.g. 

single family or multi-family).  

2.5.3.7 The volumetric estimation method  

Dasymetric interpolation techniques have been improved to create smaller geographical 

areas of population distribution based on aggregated demographic variables with the aid 

of external data inputs (Langford, 2013, Sridharan and Qiu, 2013, Lwin and Murayama, 

2010). Recently, the use of GIS and remote sensing data has seen the growth in small-

area population studies due to the availability of higher spatial resolution images and the 

availability of fine-scale GIS data with detailed attribute information (Lu et al., 2010, 

Lwin and Murayama, 2010, Tapp, 2010). In the midst of advancement in the above 

fields, the volumetric estimation technique has been designed to disaggregate the 

population of the source zones into smaller geographical units (target zones), based on 

the building volumes (Sridharan and Qiu, 2013, Qiu et al., 2010). LiDAR (Light 

detection and ranging) derived residential building volume is presently employed as 

ancillary data to provide spatially distributed population surfaces (Sridharan and Qiu, 

2013, Lwin and Murayama 2010). Using LiDAR remote sensing products as ancillary 

data in dasymetric mapping has provided possibilities to generate population estimates 

at the building level using the 3D volume information (Sridharan and Qiu, 2013, Lwin 

and Murayama, 2010, Qiu et al., 2010, Lwin and Murayama, 2009). LiDAR data 

provides three-dimensional (3D) information of buildings, which increases the accuracy 

of population estimates (Lu et al., 2010). The volumetric dasymetric model measures 

both vertical and horizontal distribution of population, where one-dimensional and two-

dimensional data may not quantify vertical distribution (Sridharan and Qiu, 2013). The 

building footprint datasets and building height information are used to differentiate 

high-rise and low-rise buildings. Figure 2.7 shows a graphical illustration of the 

building volumes based on population estimation model. 
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Figure 2.7: Graphical illustration of the building volume based population estimation 

model; a) represents all building footprints and b) represents all high-rise and low-rise 

building blocks for creating building volume. 

The building volume-based dasymetric model may have several shortcomings. First of 

all, the building footprint datasets and building height information used to differentiate 

high-rise and low-rise buildings may not be enough to determine occupied housing 

units, making non-residential buildings a main source of error in the volumetric 

estimation technique. Estimations can improve by incorporating building use type (i.e. 

residential buildings mixed with commercial buildings) and building status information 

(i.e. newly constructed or abandoned buildings) into the volumetric method (Lwin and 

Murayama, 2009). Moreover, the volumetric dataset has only been used in the process 

of population distribution very recently (Sridharan and Qiu, 2013, Lwin and Murayama, 

2009) and, as such, the application of LiDAR technology in extracting the 

characteristics of building units and using them as indicator variables to generate 

population estimates, has not yet been established for modelling population at a fine 

spatial scale (Qiu et al., 2010). 
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2.6 Research Questions 

The literature reviewed above shows that building volumes and building address 

datasets have only very recently been considered in spatial mapping and their 

robustness in population estimates are yet to be investigated. As stated in Chapter 1, the 

aim of this research is to make better population estimates by using novel geographical 

datasets in dasymetric models. The work undertaken involves three stages: (1) the 

analyses of remote sensing products and Ordnance Survey based external datasets used 

as control variables in the process of population disaggregation, (2) the implementation 

of differing areal interpolation methods to provide spatially distributed population 

surfaces and to estimate population totals at output level, and (3) the comparison of the 

results of the deployed interpolation techniques to identify the best method and ancillary 

datasets within the proposed models in both study regions. To demonstrate accuracy 

improvements made to the population estimation, it is necessary to test the power of the 

new methods of estimate population against existing approaches in a number of 

complex and diverse urban and semi-urban regions inhabited by humans. In addressing 

the aim of the study, a number of research questions that are raised by the authors of 

underpinning research are forwarded in this study. They can be stated as follows: 

1. Do high resolution aerial photography-derived land use/cover datasets and 

LiDAR-derived building volumes used as external datasets in binary dasymetric 

mapping and volumetric estimation methods increase the accuracy of population 

estimates? 

2. How well do the datasets of residential housing units perform as control 

variables in the process of existing dasymetric mapping models in order to 

obtain small area population estimates?  

3. In the address-weighted dasymetric model, how much does the availability of an 

occupied housing unit’s datasets improve the estimate of population? 

4. How well do the models of areal interpolation with innovative ancillary datasets 

perform in high density and low density areas of population, and what are the 

limiting factors in the approaches developed?  
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2.7 Summary 

The review of areal interpolation methods has shown that basic areal interpolation 

approaches and many complex population disaggregation models (based on the 

availability of external data inputs) can be used to estimate population totals in intended 

geography. In addition, the techniques that use external data inputs as control variables 

significantly improve population estimation results. This is because some places may be 

non-residential areas and therefore the population density is zero because they are 

uninhabited areas. Ancillary datasets help to distribute population totals to inhabitable 

zones. The chapter has also shown that area-weighted and binary dasymetric mapping 

techniques are the most commonly employed frameworks in previous research (Petrov, 

2012, Mennis, 2009, Eicher and Brewer, 2001, Flowerdew and Green, 1992). Among 

them, address-weighted and volumetric estimation methods are the most recently 

developed methods. These interpolation models are different due to their assumptions 

and the requirement of distinct ancillary datasets.  

The literature indicates that dasymetric mapping methods and statistical population 

disaggregation models generate more accurate small-area population estimates than 

other areal interpolation techniques that do not utilise ancillary datasets. These models 

may also provide more accurate population distributions within the spatial units when 

the relation between population totals and ancillary datasets is utilised. Traditional and 

statistical dasymetric mapping methods have been introduced, examined, evaluated and 

applied for the estimation of population distribution mapping to date. The dasymetric 

approach is preferable to the choropleth mapping approach in depicting the distribution 

of irregular phenomena in space. In the dasymetric concept, ancillary data plays an 

important role to generate precise population distribution maps. However, various 

elements can affect estimation accuracy, but the main driver is the quality of ancillary 

dataset (Kim and Yao, 2010). Thus, accurate ancillary datasets are required to 

differentiate the inhabited areas from uninhabited areas. The classified remote-sensing 

images of land cover and land use data are the most commonly used ancillary data 

source for dasymetric mapping. Also, land cover, imperviousness, road networks, night-

time lights, and residential address points have been used as ancillary datasets in 

dasymetric maps. Residential address points datasets have been used as ancillary data in 

dasymetric mapping in very recent studies (Zandbergen, 2011, Owens et al., 2010, 

Tapp, 2010). For example, Zandbergen (2011) stressed that the simple algorithm 
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utilised in dasymetric mapping is one of the advantages of address points. It is 

considered that all residential points are weighted equally and population is spatially 

distributed, employing the spatial density of points. When a land cover dataset is used 

as ancillary data, statistical model fitting or calibration is necessary, but when point 

dataset is employed as additional data, it does not require any statistical output. That is 

why this method can be replicated in other areas and can be compared with different 

study areas. Based on the extensive literature reviewed in this chapter, the interpolation 

models and ancillary datasets adopted and used in this research are presented in the next 

chapter. 
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CHAPTER 3 

3 Research Methodology and Datasets 

3.1 Introduction 

This research aims to generate spatially distributed population surfaces by integrating 

the interpolation processes of building address point data obtained from Ordnance 

Survey, occupancy information, LiDAR-derived building volume information, and 

aerial photography obtained binary masks of land cover classes as ancillary datasets. 

Although, a range of remote sensing imagery has been used as ancillary data in 

dasymetric mapping models to date (Langford, 2006, Mennis and Hultgren, 2006b, 

Bielecka, 2005), building address and height information are only very recently used in 

the US (Sridharan and Qiu, 2013, Zandbergen, 2011, Qiu et al., 2010). The existing 

interpolation methods were refined using these external data inputs. The proposed 

disaggregation models are mathematically formulated in the following sections. This 

methodology chapter describes the use of five different forms of areal interpolation 

methods. Figure 3.1 describes the implementation of areal interpolation techniques in 

the thesis. Additionally, this chapter presents the processing of aerial photography and 

LiDAR-derived building height data in raster format, building address and building 

footprints in vector file format in order to generate small-area population estimates.  

The pre-defined external data inputs have been utilised as control variables in order to 

generate population estimates for both the City of Leicester and the Borough of 

Kensington and Chelsea. The City of Leicester is a more sparsely densely populated 

urban area compared to the Borough of Kensington and Chelsea. The other aim of this 

research is to evaluate the performance of chosen interpolation techniques in different 

densely populated regions.  

The study intends to estimate population totals in small-areas and to achieve this aim, 

population counts have been transferred from larger geographies to smaller areal units. 

Census wards have been used as source zones and output areas have been used as target 

zones. The designed hierarchy of UK census dissemination units have been used to 

report 2001 and 2011 census results (The Neighbourhood Statistics - NeSS). The main 
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level of census output geographies is explained in Section 2.4 These levels of 

geographies consist of similar sized population and so can be used to compare 

population changes over time (ONS). Census Area Statistics (CAS) wards were created 

for reporting census results at a smaller scale than local authorities. The local 

administrative authority areas have been divided into census wards, all of which nest 

within local authority boundaries (ONS). MSOAs and LSOAs could be chosen as 

source zones to distribute population totals to smaller areal units. Census wards were 

chosen as source units because local authorities use census wards to report census data 

and inter-censal estimation results. The output areas are the finest geographical units of 

UK census hierarchy and the variation of population in output areas is far less than 

variation in ward population (NeSS). The latest census figures are available for all 

census dissemination units to validate the predicted population values. Due to these 

reasons, census wards are used as source zones and output areas are used as target 

zones. 

The chapter is organised into 10 sections. Section 3.2 covers population disaggregation 

algorithms. Section 3.3 presents the study areas of Leicester City and the Borough of 

Kensington and Chelsea, respectively. Section 3.4 provides ancillary datasets that were 

used as control variables in dasymetric mapping. The processes of image classification 

are illustrated in Section 3.5. A subset of aerial image was first created for both study 

areas from one square km aerial photography tiles, followed by aerial images classified 

to obtain land cover classes. Finally, the created land cover classes were reclassified 

into binary classes as populated and non-populated areas. Section 3.6 describes the 

generation of building volumes that are used as external control variables in the 

volumetric estimation model. Digital elevation models and building footprints were 

used to obtain the volume of individual building units within the target zones. Section 

3.7 explains the preparation of building address points for the address-weighted 

dasymetric method including the extractions of residential address points from non-

residential structures. The extracted residential housing units were used as a main 

indicator to distribute population totals through only residential buildings. Section 3.9 is 

a brief description of the software packages used to perform the analysis mentioned in 

the previous sections. Finally, a summary of research methodology and ancillary 

datasets is presented in Section 3.10. 
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Figure 3.1: The graphical representation of methodological sequences of the 

interpolation techniques. 
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3.2 Population Estimation Algorithms 

The literature review in Chapter 2 shows that many forms of areal interpolation 

approaches have been used to disaggregate the aggregated population totals to smaller 

areas (Bentley et al., 2013, Langford, 2013, Leyk et al., 2013a, Leyk et al., 2012, Zhang 

and Qiu, 2011, Mennis, 2009, Maantay et al., 2007, Hawley and Moellering, 2005, 

Eicher and Brewer, 2001). These disaggregation frameworks have been developed 

according to the availability of ancillary data inputs, spatial characteristics of study 

areas and the intended resolution of population distribution. As highlighted in the 

review, the areal weighting method is the simplest form of interpolation processes by 

allocating the variable of interest (population totals) without using ancillary data except 

the boundaries of source and target zones. However, in order to estimate the distribution 

of population, the other forms of dasymetric and statistical interpolation models require 

specific external inputs based on their mathematical functioning. 

This study generated spatially distributed population surfaces by employing selected 

disaggregation models. Three existing (the areal weighting, the binary and the address-

weighted techniques) and two novel interpolation algorithms (such as, in volumetric 

estimation and address-weighted approaches) were developed and compared based on 

available ancillary data on case study regions. These particular interpolation models 

have been chosen for several reasons. First of all, earlier research indicates that the 

selected dasymetric methods have the potential to redistribute population totals to 

smaller areal units precisely with the advent of external geographical datasets. 

Secondly, the proposed approaches are data driven techniques and the datasets used 

have the potential to differentiate residential areas to generate dasymetric population 

surfaces. The selected external datasets help to differentiate residential uses from non-

residential areas. Very high-resolution aerial images aid to classify study areas as built-

up and non-build up areas. LiDAR-derived building height information differentiates 

low-rise and high-rise housing units. The data of address points helps to define each 

housing unit within the areal units. Additionally, these interpolation approaches 

basically redistribute population counts based on external control variables and they 

preserve the original volume of each census ward in the process of population 

distribution. The UK national mapping agency (Ordnance Survey) and academic centre 

(Edina) holds several products that provide a very good opportunity to use them as 
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control variables in population disaggregation process (Langford, 2013, Gregory, 2002) 

in the chosen study regions (explained in section 3.3). Secondly, the usability of 

building height data was tested by using building volumes as control variables in 

innovative disaggregation processes. 

3.2.1 Area-weighted technique 

Areal weighting method is a simple interpolation technique which assumes that 

population totals are distributed homogeneously within a given areal unit (Goodchild 

and Lam, 1980, Flowerdew and Green, 1992). The method is classified as a basic 

interpolation technique because it does not require any ancillary datasets besides the 

geography of source and target zones, and the variable to be interpolated (Langford, 

2006, Hawley and Moellering, 2005, Fisher and Langford, 1996, Flowerdew and Green, 

1992, Lam, 1983). The population totals are assigned to the target zones according to 

the proportion of targets zones that fall into source zones (Langford, 2006, Maantay et 

al., 2007). This process is based on the assumption that variables of interest (population 

totals) are uniformly distributed within source zones (original data collected area) 

(Langford, 2013, Maantay et al., 2007, Hawley and Moellering, 2005, Flowerdew and 

Green, 1992).  

The implementation stages of the areal weighting technique to redistribute population 

totals to target zones were described here. First of all, a 90-m sized grid map of local 

authorities was created to redistribute population totals to each grid cell within the study 

areas. In the second stage the layers of source units, target units and grid cells were 

overlaid to intersect source and target areas with grid cells. The source units consist of a 

polygon layer, which divides both study areas into a number of census wards and target 

units include a layer that separates each study area into a number of output areas. This 

process aims to define the target units of each source unit. The third stage was the 

estimation of population totals for each grid cell by using Equation 3.2. The final stage 

was the calculation of the sum of the estimated population totals for each output area. 

The approach measures a constant population density for each source unit and divides 

the size of total area by total population counts (Weng, 2012, Zhou et al., 2012). The 

assumption of uniform population distribution, according to Langford (2013) and 

Gregory (2002), is extremely seldom in reality. For example, population distribution 

can be affected by many factors such as, slope, elevation, and land use types (Higgs et 
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al., 2012, Flowerdew and Green, 1992). The areal weighting method was chosen 

because of ease of use and the wider applicability in comparing the results of population 

distribution with any other dasymetrically generated population surface (Langford, 

2013, Zandbergen and Ignizio, 2010, Hawley and Moellering, 2005). The intended 

approach utilised the equation below from Fisher and Langford (1996) and Langford 

(2006): 

 

𝑷𝒕 =
𝑨𝒕𝒔𝑷𝒔
𝑨𝒔

𝑺

𝒔!𝟏

 

 

(3.1) 

Where 𝑷𝒕 is the predicted population of target unit  𝒕  (the estimated population of output 

areas), 𝑨𝒕𝒔 is the total area of overlap between target zone 𝒕  (output area) and source 

zone𝒔 (census ward) 𝑷𝒔 is the total population of source unit 𝒔 (the total population of 

census wards), 𝑨𝒔 is the total area of source zone  𝒔 (the area of census wards), 𝑺 is the 

total number of source zones. 

3.2.2 Binary dasymetric mapping technique 

The binary mapping method is a simplistic and widely used technique of dasymetric 

mapping methodology (Mennis, 2009, Maantay et al., 2007, Bielecka, 2005, Mennis, 

2003, Eicher and Brewer, 2001). Functionally, this method evaluates the relationship 

between statistical surface and land use/cover classes subjectively utilising a priori 

knowledge (Mennis, 2009, Eicher and Brewer, 2001, Fisher and Langford, 1996). This 

current approach uses the aerial photography obtained land cover information to 

distribute population totals to only built-up areas over the target areas.  

The implementation stages of the binary mapping model to redistribute population totals 

to target zones were described here. The first stage was to classify the aerial image to 

define populated areas. Aerial images of both study areas were classified using a 

supervised classification technique in ENVI image processing software by selecting 

four land use/cover categories (vegetation, tree cover, water bodies and urban area). In 

the second stage, land use/land cover classes were regrouped into two classes 

(populated and unpopulated areas) in order to distinguish populated zones from 

unpopulated zones such as, vegetation, water bodies, tree cover. In the third stage, the 
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layers of source zones, target zones and the binary dasymetric zones were overlaid in 

ArcMap to create intersections of dasymetric zones. In the fourth stage, total population 

is allocated to the urban dasymetric zones and then population counts of each output 

area were calculated by using Equation 3.2. The method assumes that population is 

evenly distributed within all dasymetric zones. The binary dasymetric technique is 

applied to the study area using different levels of census dissemination geographies and 

the binary masking of inhabited and uninhabited zones. Figure 3.2 shows the 

implementation steps of the binary dasymetric mapping process.  

The intended binary method employed the equation described by Fisher and Langford 

(1995) and Langford (2006) is below: 

 

𝑷𝒕 =
𝑨𝒕𝒔𝒑𝑷𝒔
𝑨𝒔𝒑

𝑺

𝒔!𝟏

= 𝑨𝒕𝒔𝒑𝒅𝒔𝒑

𝑺

𝒔!𝟏

 

(3.2) 

Where 𝑷𝒕 is the estimated population of target unit 𝒕 (the predicted population of output 

area), 𝑨𝒕𝒔𝒑  is the total area of overlap between target zone 𝒕 (output area) and source 

zone 𝒔  (census ward) and having land cover identified as populated, 𝑷𝒔 is the population 

of source unit𝒔, 𝑨𝒔𝒑 is the area of source unit𝒔having land cover identified as populated 

(the total built-up area of census ward), 𝑺 is the total number of source zones (the 

number of census wards), and 𝒅𝒔𝒑 =
𝑷𝒔
𝑨𝒔𝒑
    is the dasymetric density of the populated 

class in source zone 𝒔. 
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Figure 3.2: The steps of the binary dasymetric interpolation technique. 

3.2.3 The volumetric estimation technique 

The volumetric estimation is one of the dasymetric areal interpolations that the variable 

of interest is distributed from one spatial unit to another with the aid of ancillary 

information (Langford, 2013, Sridharan and Qiu, 2013, Lwin and Murayama, 2010). 

The approach is one of the very recent dasymetric interpolation methods (Qiu et al., 

2010). This method uses the data of building volume as control variables in order to 

disaggregate population totals in population mapping process. LiDAR data provides 

three-dimensional information of buildings, and this information may increase the 

accuracy of population estimates (Lu et al., 2010). The building footprint and LiDAR-

derived building volume information can be used as the source of ancillary data in 

dasymetric mapping. LiDAR-derived residential building volume has been presently 

employed as ancillary data to spatial disaggregate population information by Sridharan 

and Qiu (2013), Lwin and Murayama (2010) and Qiu et al. (2010).  
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The building volume based dasymetric interpolation technique has been proposed to 

disaggregate the population of the source zones into smaller geographical units (target 

zones). Figure 3.3 presents the implementation steps of the volumetric estimation 

method. When the volume of residential building is accessible, the volumetric 

dasymetric interpolation technique may be used to disaggregate population counts. The 

LiDAR-obtained digital elevation models have been processed to generate building 

volumes. The building footprint datasets and building height information are used to 

differentiate high-rise and low-rise buildings. These datasets may not be enough to 

determine residential or non-residential housing units, making non-residential buildings 

a main source of error in the volumetric estimation technique (Sridharan and Qiu, 

2013). The volumetric estimation method can be improved to incorporate building use 

type (i.e. residential buildings mixed with commercial buildings) and building status 

information (i.e. newly constructed or abandoned buildings) (Lwin and Murayama, 

2010) into the volumetric method. The Landmap obtained building block data has been 

used to define residential building blocks.  

The implementation stages to create building volumes for target areas were described 

here. At first, normalised digital surface models were converted to point features to 

calculate the height of each building structure. Secondly, the layers of height data of 

points and building footprints are overlaid to determine the average height of each 

building structure within each source zone. Then the average height of each housing 

unit is calculated and the total volume of building units was calculated by multiplying 

the average height and area of each single housing unit. Furthermore, the layer of target 

zones is overlaid with building footprints to sum building volume of each target zone. 

The summed volume of each target unit has been further used as control variables to 

distribute population totals within target zones. The following equation introduced by 

Lwin and Murayama (2010) to estimate population totals by using building volume 

information. This equation was used to assign population counts to each building block 

and then total population of each output area was calculated. 

𝑩𝑷𝒊 =
𝑪𝑷
𝑩𝑽𝒏

𝒌!𝟏
𝑩𝑽𝒊 

(3.3) 
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Where 𝑩𝑷𝒊 is the population of building𝒊, 𝑪𝑷 is census ward population, 𝑩𝑽𝒊  is total 

volume of building  𝒊, 𝒏  is number of building blocks that meet user defined criteria and 

fall inside the  𝑪𝑷  polygon and  𝒊,𝒌  is summation indices. 

 

Figure 3.3: Implementation steps for the volumetric areal interpolation technique. 

3.2.4 Address-weighted disaggregation technique 

The address-weighted method is one of the spatial disaggregation processes. This 

interpolation technique refines the spatial distribution of population characteristics 

within source units using the ancillary data of building address points as spatial control 
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variables (Zandbergen, 2011). The data of address points are a better determiner of 

population distribution when compared to land use/cover data, pixel maps, street 

centrelines or cadastral-based data, and other external data points such as schools and 

bus stops. The method explores the functional relationship between address point data 

and a statistical surface. Theoretically, housing unit address points datasets supply 

accurately the location of individual housing units and every non-residential unit within 

an authority (Tapp, 2010). Therefore, it can be argued that the density of housing unit 

address points is closely related to population density (Zandbergen, 2011). The 

popularity of this interpolation technique has recently increased with the availability of 

address point data (Zandbergen, 2011, Tapp, 2010 and Zandbergen and Ignizio, 2010). 

The address-weighted method was chosen for this research because it has been used 

very recently as control variables, but the usability of this method has not been widely 

evaluated. The approach was applied two times for each study area by using different 

external inputs. First of all, only building address points were used as control variables 

and furthermore the building occupancy information and building address points were 

used as external data inputs in disaggregation process. As Zandbergen (2011) states, this 

method theoretically presumes a linear correlation between residential address point 

density (the numbers of address points) and population density. The implementation 

steps of address-weighted techniques are shown in Figure 3.4. The method was applied 

using the following equation from Zandbergen (2011). 

𝑾𝒄 = 𝟏
𝑵𝒂

 

𝑷𝒂 =𝑾𝒄 ∗ 𝑷𝒕 

𝑷𝒃 = 𝑵𝒂𝒃 ∗ 𝑷𝒂 

(3.4) 

Where  𝑾𝒄    is the weight of addresses in a census ward,  𝑵𝒂𝒃 is the total number of 

addressesin the output areas, 𝑷𝒂 is the average population of each address points, 𝑷𝒕 is 

the total population of the census ward, and 𝑷𝒃    is the estimated population of an output 

area. 

The weight of individual addresses in a census ward are equal to one the other. The 

average population of individual addresses (𝑷𝒂) is the product of the address-weight 

and the total population of the census ward (𝑷𝒕). Finally, the total population of a target 
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zone is calculated by multiplying the total building points with the average population at 

each address. 

One of the main advantages of address point data is that a very simple algorithm is 

employed in dasymetric mapping methodology (Zandbergen, 2011). Each building 

point is weighted equally and population is spatially allocated using point density in the 

given location. As Zandbergen (2011) remarks, a calibration and statistical model fitting 

is not needed, but land use and land cover data are required when employing them as 

ancillary sources in dasymetric mapping. Therefore, this approach can be easily 

employed in other study regions where the data of address points are available. The 

method can also be compared with other population disaggregation methods, even 

though it assumes an even population distribution in each address point. Additionally, 

individual residential address points are substantially related to population count.  

The importance of occupancy rate has been discussed but not used in the process of 

dasymetric population mapping (Qiu et al, 2010). In the second implementation, the 

address-weighted method has been performed by using both the data of building address 

points and occupancy information as control variables. The occupancy data was 

obtained from local city councils for each study area and were cross-checked with 

population figures from the Neighbourhood Statistics. The datasets represent how many 

households are resided at the time they were reported at output area level. The equation 

adopted for this approach has changed slightly by adding the information of occupancy 

rate as shown below. 

𝑷𝒃 = 𝑵𝒂𝒃 ∗ 𝑷𝒂 ∗ 𝑶𝒃 (3.5) 

Where  𝑾𝒄  is the weight of addresses in a source zones, 𝑵𝒂𝒃 is the total number of 

addresses in the target zones (output areas),    𝑷𝒂 is the average population of each 

building address, 𝑷𝒕 is the total population of the study region, 𝑷𝒃  is the population of a 

target zones, and 𝑶𝒃  is occupancy rate of the target areas. 
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Figure 3.4: Implementation steps for the address-weighted dasymetric interpolation 
technique. 

3.3 Study Area 

This research has selected two study areas in order to obtain spatially disaggregated 

population totals at small-area level. These study regions are the local authorities of 

Leicester in Leicestershire County and the royal Borough of Kensington and Chelsea in 

Greater London. Due to the overlapping boundary of these spatial units with each other, 

the boundary of census wards were used as source zones and the boundary of output 
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areas were used as target zones to generate population estimates. According to the 2011 

UK census reports, the population density of Leicester is 45 persons per hectare; 

however, the population density of the Borough of Kensington and Chelsea is 130.8 

persons per hectare. The intended areal interpolation frameworks were applied where 

population density is different in these study regions. The Borough of Kensington and 

Chelsea has one of the most dense building blocks in the UK. Additionally, housing 

units are more dispersed horizontally in Leicester than in Kensington and Chelsea 

where high-rise buildings are the dominant buildings. One the one hand, Kensington 

and Chelsea has a mixture of housing units and it can be a very expensive place to live, 

but on the other hand, both lower and higher income groups are mixed in Leicester City. 

While the Borough of Kensington and Chelsea has fewer residents from other 

ethnicities (such as Mixed, and Asian), Leicester is a multi-cultural city (ONS). These 

differences indicate that the characteristics of population distribution vary considerably 

in these areas. For example, ethnic differences may impact on average household size. 

The methodologies of interpolation models were initially developed for Leicester City 

and subsequently employed to the Borough of Kensington and Chelsea. The availability 

of validation data at the scale of output area provides a good opportunity to evaluate the 

performance of each interpolation models. In this way, the effect of different 

disaggregation models and a range of external data inputs on the estimation results will 

be observed in different environments. As Gregory (2002) states, the performance of 

interpolation techniques depends on the variables used, its relationship with population 

totals and the choice of target geographies.  

3.3.1 Case study area 1: the City of Leicester 

The City of Leicester, consisting of the unitary authority area, has been chosen as the 

first study area. The 2011 UK census shows that Leicester is predominantly an urban 

region, consisting of a total population of 329,839 and total resident households of 

127,383 (ONS, http://www.neighbourhood.statistics.gov.uk/). Leicester covers an area 

of 73.32 square kilometres containing 22 census wards and 969 output areas 

(http://census.ukdataservice.ac.uk/get-data/boundary-data.aspx). Figure 3.5 shows the 

location of Leicester City in Leicestershire County. The output area is the lowest 

geographical level at which a census data is released. The UK 2011 Census is published 

with a variety of geographical resolutions, from the finest spatial units (output areas) to 
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the larger geographical area (country). Output areas contain approximately 300 persons 

and 125 households. In order to report demographic figures, the 2011 UK Census used 

the census output geographies of 2001 with some alterations on areal units in England 

and Wales (Cockings et al., 2011). Therefore, the 2001 output geographies were 

maintained by splitting and merging the existing output geographies to make them 

appropriate for the publication of 2011 UK Census data (Cockings et al., 2011). For 

instance, the number of wards does not change, but the number of output areas has 

increased from 890 to 969 in Leicester authority area. There are two main factors that 

account for the selection of the City of Leicester as the main case area to apply 

population distribution models. Leicester City was chosen as the initial case study 

because of logistics and familiarity reasons: there is ease of access to the city and 

researcher’s familiarity with the location. The other main reason has to do with the 

availability of data. The planned external data types (areal imagery, the models of 

digital elevations, address point, building footprints) and the updated validation data of 

population information are available for the smallest census dissemination unit.  

3.3.2 Case study area 2: the Borough of Kensington and Chelsea, London 

The Royal Borough of Kensington and Chelsea has been chosen as the second study 

region. The Royal Borough covers an area of 12.13 square kilometres consisting of 18 

census wards and 631 output areas (http://census.ukdataservice.ac.uk/getdata/boundary-

data.aspx). This study region is one of the local authority areas of Greater London, 

containing a total population of 158,649 and total households of 87,705 (ONS 

http://www.neighbourhood.statistics.gov.uk/). This local authority is one of the most 

densely populated areas in the United Kingdom (ONS, 2011 UK census reports). The 

population is distributed densely compared with the City of Leicester as explained in 

Section 3.3. However, both case areas are located in England and ONS use the same 

census hierarchy to release census results. Furthermore, both areas have the same 

required ancillary datasets. One of the objectives of this work is to test the applicability 

of interpolation models in different locations in order to determine their accuracy for 

small-area population estimation. The intended interpolation techniques were applied to 

the Borough of Kensington and Chelsea in order to provide precise population estimates 

in different regions where population is more or less densely distributed. Figure 3.6 

shows the location of the London Borough of Kensington and Chelsea. 
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Figure 3.5: Study area showing: (a) the location map of Leicestershire County within 

the UK, (b) local authority of Leicester City and (c) the source zones (census wards) in 

Leicester. © Crown Copyright/ database right 2013, An Ordnance Survey/EDINA 

supplied service. 
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Figure 3.6: Study area showing: (a) the location map of Greater London Administrative 

area within the UK, (b) the Borough of Kensington and Chelsea, and (c) the source 

zones (census wards) in the Borough of Kensington and Chelsea. © Crown Copyright/ 

database right 2013, An Ordnance Survey/EDINA supplied service. 
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3.4 Datasets 

The selection of the ancillary datasets and the quality of datasets are significantly 

important because the total population of an administrative area is redistributed to 

dasymetric zones, and ancillary data and results directly affects estimation results of 

dasymetric mapping models. Spatial disaggregation processes have been used as control 

variables in different forms of ancillary input data. Remotely sensed land cover data are 

mostly used as control variables to distribute population totals. This study aimed to use 

high resolution imagery data and a range of other external data to provide population 

estimates. These datasets, obtained in digital formats (vector and raster), are convenient 

to open and analyse in GIS spatial analysis tools and remote sensing image processing 

software (see Table 3.1). Table 3.2 below summarises the data requirements for 

interpolation modelling and are briefly discussed in the following sections. 

Table 3.1: Additional datasets showing sources and characteristics 

Ancillary Datasets Sources  Year  Spatial Resolution 
DEMs Airbus Defence and 

Space 
2012-
2002 

Raster 1 m2 

Aerial Photography  Ordnance Survey – 
MasterMap® 

2010-
2008 

Raster 0.25 m2 

Building Layer 2 Ordnance Survey – 
MasterMap® 

2012 Vector - points 

Building Footprints Ordnance Survey – 
Edina 

2012 Vector - polygons 

Census Wards Ordnance Survey – 
InFuse 

2012 Vector - polygons 

Output Areas Ordnance Survey – 
InFuse 

2012 Vector - polygons 

StreetView Data Ordnance Survey – 
Edina  

2013 Vector - polygons 

Landmap Data Mimas – UKMap 2013 Vector - polygons 
Average Household 
Size 

Local City Councils – 
ONS  

2013 N/A 
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Table 3.2: Datasets used in implemented areal interpolation models 

Data (raster/ 
vector) 

Spatial unit Data source and processing  

Census 
geographies 
(vector) 

Census wards (source 
zones) 
and output areas (OAs) 
(target units) 

National census 2011 datasets 
registered to the census dissemination 
geographies 

Aerial 
photography 
(raster) 

0.25m pixel 
Image classification 
The binary 
classification 

Aerial image tiles mosaicked in order 
to create aerial photography of both 
study regions 

Land cover/use 
map (raster) 

The mosaicked areal 
image classified  (such 
as, urban areas, green 
areas and water bodies) 

Classified Aerial photography with 4 
classes: urban space, grass and tree 
cover, bare surface and water surface. 
Generated by Isodata supervised 
classification using ENVI 4.7  

The binary class 
map (raster) 

Land cover/use map is 
reclassified into two 
classes (build-up area 
and non-build-up area). 

Land cover/use map reclassified into 
two classes: urban space and non-
urban space and overlaid with the 
boundaries of census geographies 

Intersection 
map (vector) 

Census-intersected- 
binary class zone 
(target unit) 

The binary class map intersect by 
census geographies  

Building volume 
data (raster)  

LiDAR-derived Digital 
Elevation Models 

The DSMs and DTMs were used to 
generate building volume information 

Building 
address points 
data (vector) 

Coded address points in 
vector format 

The address points were grouped into 
two classes as residential and non-
residential housing units 

3.4.1 Source and target zones, 2011 census of population data 

The boundaries of whole local authorities, source and target zones were downloaded 

from Ordnance Survey Edina Supplier (http://borders.edina.ac.uk/ukborders/). The data 

provides the hierarchy of 2011 UK census dissemination units including the boundaries 

of the local authority of Leicester City and the local authority of Kensington and 

Chelsea, census wards, and output areas. A grid map of local authority districts was 

created with a cell size measuring 60 metres to allocate population totals to each cell. 

This is because the output areas are the lowest level of geography of UK census 

hierarchy that are target units of current research, and the size of output areas are 

varying based on the residential household and population density. These census report 

geographies were created based on the average number of population and households. 

In order to determine non-residential uses of target zones a grid map was created. The 
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cell size was agreed as 60 metres in order to create target cells of local authority 

districts for representing housing unit density. 

In addition to this, the census reported actual population counts of each unit were 

obtained from the UK national statistics data centre, Mimas was the supplier for both 

study regions (ONS, http://infuse2011.mimas.ac.uk/). These census datasets were 

provided in excel format by supplying a unique code of each spatial unit. The 

population information in excel was joined with a vector layer to transfer census values 

to vector data of source units and target units. These datasets were used in all proposed 

areal interpolation methods. 

3.4.2 Aerial imagery data 

The aerial imagery data used with the binary dasymetric mapping model were obtained 

from the UK national mapping agency (Ordnance Survey). Ninety four tiles of 0.25m 

resolution ortho-rectified aerial photography for Leicester City, dated 22nd May 2010, 

were provided. Twenty seven tiles of imagery for the Borough of Kensington and 

Chelsea, dated 6th May 2008, were obtained. These imagery tiles cover 1 square 

kilometre and the coordinate system of image tiles is British national grids. They were 

mosaicked to create aerial imagery of whole study regions and, furthermore, the binary 

map of built-up and non-built-up area classes was created for operation as ancillary data 

in the binary mapping process. 

3.4.3 Digital elevation models 

LiDAR-derived digital terrain models (DTMs) and digital surface models (DSMs) of 

the study regions were obtained from Airbus Defence and Space (Astrium Ltd. 2014). A 

Digital Elevation Model is a terrain model based on grid or raster cells. Any cells in the 

DEM have an elevation value defining the height of the area. Each cell in remotely 

sensed images has an x and y value representing length and width of the area. In 

addition to these, the DEM has z value, which represents the height of the area. These 

elevation models have generated building volume information that was employed as 

control variables in the volumetric disaggregation model. 
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3.4.4 OS MasterMap® VectorMap district data 

The Ordnance Survey (National Mapping Agency of Great Britain) MasterMap is a 

constant and maintained Digital National Framework (Holland, 2002). In the OS 

MasterMap, each single geographical feature is assigned a unique identifier, which is a 

Topographic Identifier (TOID), offering to analysts making a determined reference to 

each particular building, land parcel, road segment or other topographic feature in the 

datasets (Holland, 2002). The framework consists of four discrete layers, which are 

Address Layer 2, Imagery Layer, Integrated Transport NetworkTM (ITN) Layer and 

Topography Layer. The topography layer, for example, provides topographic, 

cartographic, and road network features (OS MasterMap User Guide). The building 

polygon features have been obtained from MasterMap® Topography Layer in vector file 

format from Edina Supplier (http://digimap.edina.ac.uk/digimap/home), which is one of 

the main datasets of the process of population disaggregation. One of the primary 

properties of OS MasterMap is that each single layer can be integrated with each other 

layer (OS MasterMap User Guide, 2007). For that reason, various ranges of selections, 

visualisations and queries can be performed within a GIS by means of OS MasterMap 

provided attribution information is available. Secondly, building blocks were 

downloaded from Landmap Supplier (http://www.landmap.ac.uk/Datasets/Building-

Blocks/classification) in vector file format in order to classify building footprints as 

residential and non-residential uses. Landmap is a Mimas (a nationally designed 

academic data centre) service based at the University of Manchester. Landmap-derived 

datasets consist of building usage information used to determine residential uses. 

3.4.5 OS MasterMap® Address Layer 2 data 

OS MasterMap® Address Layer 2 (ADDRESS-POINT) is one of the four layers of the 

Ordnance Survey Digital National Framework. The datasets of ADDRESS-POINT are 

provided with a National Grid coordinate and a unique reference for all postal addresses 

in the United Kingdom (ADDRESS-POINT User Guide, 2010). The address point is the 

first address based dataset in digital format launched in the early 1990s and the current 

spatial address dataset in Great Britain is the Ordnance Survey MasterMap Address 

layer 2 (OS User Guide, 2010). When constructing the national address dataset, each 

different type of structure comprising residential units (e.g. house, apartment, trailer, 

and duplex) and non-residential structures (e.g. secondary structure, utility, commercial, 
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institutional and industrial) is recorded for every address point (Zandbergen, 2011). 

Address points represent the location of all residential buildings and non-residential 

structures within a particular jurisdiction. Zandbergen (2011) states that several 

developed countries have national address point datasets, including the United 

Kingdom. The development of a national address point database is very challenging; 

however, it is a crucial element in implementing a population census (Zandbergen, 

2011). This product was obtained in vector format (each housing unit coded as point) to 

cover both study regions. The point features are supplied with a unique identifier 

(TOID), the same as building footprints on the National Grids (MasterMap User Guide, 

2008). According to the feature unique identifier, the address layer table interface 

includes various ranges of tabular information, such as a series of cross-reference 

identifiers, one or more addresses, features usage information, features structure 

information, feature post code information, and the classification of features whether 

they have been changed or not. Therefore, this data allows users to select, visualise and 

make wide ranging queries in terms of the specified details of geographical features. For 

instance, geographical features can be categorised according to their residential and 

commercial postal address in the intended scale. On that sense, the data of OS 

MasterMap® Address Layer 2 has been used as control variables in the address-

weighted dasymetric mapping process. 

3.4.6 Occupancy information 

The knowledge of occupied houses is important in generating housing unit level 

population estimates. In the data of ‘Address Layer 2’, all occupied and unoccupied 

housing units are recorded. The address-weighted method assumes a uniform population 

distribution per address point. Thus defining the total number of unpopulated housing 

units is the main issue in the address-weighted dasymetric mapping method. This 

information can be obtained from local city councils or national statistical databases. 

The Office for National Statistics (ONS) provides Housing Stock information from the 

smallest geographical scale to the biggest geographical scale in Britain. In the Housing 

Stock dataset of Neighbourhood Statistics, all household spaces are grouped in terms of 

whether they are occupied or unoccupied units, and that dataset is continuously 

updating in non-census years. According to the ONS Neighbourhood Statistics, the total 

housing units of 123,125 (96.7%) are occupied and 4,258 (3.3%) are non-occupied in 
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the City of Leicester local authority. Additionally, total housing units of 78,536 (89.5%) 

are occupied and of 9,169 (10.5%) are non-occupied in the Borough of Kensington and 

Chelsea (NeSS, 2014). These numbers of non-occupied housing units may play an 

important role in decreasing the accuracy of population estimation results if they are 

considered as occupied. Non-occupied houses could also be a main error source where 

the data of building occupancy are not available. 

3.5 The Binary Dasymetric Mapping Data Implementation 

The binary dasymetric mapping model requires land cover datasets to create binary 

masking zones as populated and non-populated areas. The inhabited areas are used as 

control variables in order to distribute the aggregated population totals through only 

residential areas in the binary dasymetric mapping. High resolution aerial photography 

was used to create land cover classification. This classification was reclassified to 

obtain binary masking of land cover classes. The following subsection presents remote 

sensing analyses to process aerial photography for the creation of binary map zones.  

3.5.1 Remote sensing image pre-processing 

According to Langford (2006) and Eicher and Brewer (2001), remotely sensed imagery 

is the commonest ancillary data set the in binary dasymetric mapping method. In order 

to estimate small-area population totals, aerial photography was used as ancillary data in 

the binary dasymetric mapping. Remote sensing data were acquired as 1 square km 

image tiles from Ordnance Survey (see Figure 3.7 a, b). The image tiles were mosaicked 

to define residential uses within the study area, and a subset for the City of Leicester 

and the Borough of Kensington and Chelsea was generated (see Figure 3.8 and Figure 

3.9 respectively). The subsets of aerial photographs were used to select region of 

interests (ROIs) that were used as training areas in maximum likelihood supervised 

classifiers. The aerial photography has a 25cm spatial resolution which is suitable to 

classify different land cover/use of the intended scale. Aerial photography derived land 

cover information was used to generate a binary map for the population estimates of 

residential areas. The classification stages will be detailed in the following section.  
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Figure 3.7: Ancillary datasets of aerial photography that used to undertake binary 

dasymetric mapping methods. (a) is one of the 94 tiles of 0.25 meter resolution aerial 

photograph of Leicester City cover 1 km2 area and (b) is one of the 27 tiles of 0.25 

meter resolution aerial photograph of the Borough Kensington and Chelsea. © Crown 

Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. 
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Figure 3.8: The subset imagery of 25cm spatial resolution aerial photography of study 

area, Leicester City with image band combination of Red, Green and Blue. The 

enhanced imagery used to employ the binary dasymetric mapping method. © Crown 

Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. 
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Figure 3.9: The subset imagery of 25 cm spatial resolution aerial photography of study 

area; the Borough of Kensington and Chelsea with image band combination of Red, 

Green, Blue. The enhanced imagery used to employ the binary dasymetric mapping 

method. © Crown Copyright/database right 2012. An Ordnance Survey/EDINA 

supplied service. 



   67 
 

3.5.2 Land cover classification –Supervised classification 

This subsection details the steps involved in the creation of a land cover map from the 

subset imagery under supervised classification technique. The mosaicked images of 

both case sites were classified to identify different land cover/uses within the study area 

by using supervised maximum likelihood classifier. A supervised classification process 

(algorithm) classifies the imagery based on the predefined training samples of similar 

land cover. The first stage was to define the main land cover classes for the enhanced 

imagery. Green space, tree cover, water bodies and urban areas are the four land cover 

classes identified (see Table 3.3). Urban land uses were classified as one class due to the 

similarities of building blocks. An aerial image can differentiate between different land 

use structures but may not between residential, institutional and commercial. It might be 

difficult to separate residential buildings from aerial images than other structures 

because of changes property uses.  

Table 3.3: The land cover classes of study area with four different groups 

Land cover class Description 

Vegetation  Parks, golf courses, agricultural land uses and open grasses   

Tree cover Garden trees, park trees, and other vegetation  

Water bodies Streams and lakes 

Urban areas Predominantly residential areas and built-up area 

In the second stage, various training sites were selected for each of the defined land 

cover classes based on the researcher’s knowledge of the study areas. A large number of 

samples for each class were chosen to minimise classification error. These training 

samples helped to group pixels based on the training selections. Images were classified 

based on these training selections and the classified images were saved for both case 

sites in raster format. In the third and last stage, a maximum likelihood supervised 

classification technique was conducted to obtain land cover map. The classified aerial 

photography is a raster map with each pixel labelled by one of the four defined classes. 

Figure 3.10 and 3.11 show the created land cover maps. The pixels of the same land 

cover type are aggregated to form predefined different land cover types. The classified 

image was reclassified into two classes that are populated areas and non-populated areas 

(see section 3.5.5). The accuracy assessment was carried out in the following section.   
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Figure 3.10: Results of classification. The classified image of aerial photography by 

using maximum likelihood supervised classification. The case site: Leicester City. © 

Crown Copyright/database right 2012. An Ordnance Survey/EDINA supplied service. 
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Figure 3.11: Results of classification. The classified image of aerial photography by 

using maximum likelihood supervised classification. The case site: the Borough of 

Kensington and Chelsea. © Crown Copyright/database right 2012. An Ordnance 

Survey/EDINA supplied service. 
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3.5.3 Accuracy assesmment of land cover classifcation 

The accuracy assessment is an important stage that defines the reliability of classified 

imagery. The accuracy of classification results were assessed using the ‘Confusion 

matrix’ tool in ENVI by comparing a classification result with ground trout of region of 

interests (ROIs). The producers and user accuracy are shown in Table 3.3 and 3.4. 

According to ENVI User’s Guide (2004, page 639): “Producers accuracy is the 

probability that a pixel in the classification image is put into class X given the ground 

truth class is X and user accuracy is the probability that the ground truth class is X given 

a pixel is put into class X in the classification image”. Photographs were taken to 

validate land cover classes from randomly selected areas in the study region of Leicester 

City (Appendix 3). All ground truth ROIs were used as a reference data for accuracy 

assessment of land cover classification by conducting confusion matrix. An overall 

accuracy of 89% was gathered for the image of the Borough of Kensington and Chelsea, 

and 89 % was also obtained for the image of Leicester City. The following tables show 

that there are some confusion between tree cover and green spaces owing to their spatial 

similarities (Appendices 1 and 2). This problem may not affect the accuracy of the 

binary division map because the green space and tree cover were reclassified as non-

populated areas and urban classes were reclassified as populated areas. 

Table 3.4: Accuracy measurement of land cover classification of aerial photography 

(Case study area: Leicester City). 

Class Producer’s Accuracy %  User Accuracy % 
Green Areas 90.04 97.12                 
Tree Cover  72.36 45.77                 
Water Bodies  9456 94.37                
Urban Area 92.91 40.41                 

Overall Accuracy = (900679/1007593) 89.3 % Kappa Coefficient = 0.7797   

Table 3.5: Accuracy measurement of land cover classification of aerial photography 

(Case study area: The Borough of Kensington and Chelsea). 

Class Producer’s Accuracy % User Accuracy% 
Green Areas 90.24      69.86                
Tree Cover  68.63         88.53          
Water Bodies  99.50         97.02        
Urban Area 94.55         99.80          

Overall Accuracy = (318443/355172) 89.6 %Kappa Coefficient = 0.8548   
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3.5.4 The creation of binary zones -Reclassify land cover map- 

This subsection presents the creation of the binary division of land cover map as built-

up and non-built-up areas. The binary dasymetric model assumes that total population is 

concentrated in residential areas (Mennis, 2009, Eicher and Brewer, 2001, Langford and 

Harvey, 2001). Due to this reason, residential uses of the land cover map were extracted 

from non-populated land cover. As explained in the previous section, residential uses 

were classified as urban area, and non-residential areas were classified as green space, 

tree cover and water bodies. The classified land cover image was reclassified into two 

classes: (1) built-up areas consist of urban classes and (2) non-built-up areas include 

water bodies, green areas, tree cover and other vegetation. Figure 3.10 and Figure 3.11 

present residential land cover obtained from aerial photography that is used to obtain 

population density of residential areas. Figure 3.12 and Figure 3.13 show the binary 

division of the classified images of both study areas. As a first stage, built-up areas were 

assigned “1” showing inhabited areas, and the non-built-up areas were assigned “0” 

showing uninhabited areas in the binary map. The population counts were 

homogenously distributed into residential land cover classes.  

In the second stage, the binary land cover map was converted into a vector file from a 

raster file and then, residential land use types were extracted to create a layer of built-up 

areas in the source and target areas. The source areas (census wards) were overlaid with 

target areas (output areas) using ArcGIS 10.1 analysis tools in order to create 

intersection layer of target areas. The sum of the built-up areas of source areas and 

target areas was calculated, respectively. This operation allows the identification of total 

built-up areas within each source areas. Also, the intersected built-up polygons were 

overlaid with target areas. In the third stage, the population density of source areas is 

measured by dividing population totals of each census ward by its total built-up area. 

This process distributes population counts to all areas of intersection within the study 

area. The population total of target areas was estimated by multiplying population 

density of intersection area by target areas. Chapter 4 and 5 presents the binary 

dasymetric representation of population estimates.   



   72 
 

 

Figure 3.12: The binary dasymetric zones created from classified aerial imagery, case 

site: Leicester City. © Crown Copyright/database right 2012. An Ordnance 

Survey/EDINA supplied service. 
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Figure 3.13: The binary dasymetric zones created from classified aerial imagery, case 

site: The Borough of Kensington and Chelsea. © Crown Copyright/database right 2012. 

An Ordnance Survey/EDINA supplied service. 
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3.6 The Generation of Building Volumes 

The volumetric estimation method uses ancillary datasets of building volumes as control 

variables in order to distribute population totals over built-up areas. As criticised by 

Sridharan and Qiu (2013), building volumes have been recently used to predict 

population but have not been utilised for interpolation methods. Basically, the 

volumetric estimation method does require building height, footprint and usage type 

information to identify the volume of residential buildings. Building structures may be 

commercial, institutional and industrial uses. The additional datasets do need several 

processes (GIS analyses) to identify the volume of residential building blocks within the 

study areas. These operations, to create residential building volume of each source and 

target zone, are presented in the following subsections.  

3.6.1 Building height information 

A digital elevation model (DEM) is one of the main inputs to obtain the height of each 

building unit. The external inputs of LiDAR data were obtained as digital surface 

models (DSMs) and digital terrain models (DTMs). Figure 3.14 and 3.15 represent 

samples of digital elevation models from each study region. LiDAR-derived building 

heights were used to obtain building volumes that were utilised as control variables in 

the process of dasymetric population estimation. The DSMs were obtained as 1 square 

km image tiles. First of all, these tiles were mosaicked to provide the coverage of DSM 

and DTM for both study regions. There are 98 of 1 square km image tiles of DSMs and 

DTMs for the City of Leicester and 26 of 1 square km image tiles of DSMs and DTMs 

for the Borough of the Kensington and Chelsea combined. The DSM represents the 

surface of earth including all manmade and natural objects on the ground; however, the 

DTM presents the surface of earth without any determined objects on the ground. The 

mosaicked DSMs were subtracted from DTMs in order to identify the height of any 

objects, like buildings and trees on the ground surface. Finally, normalised digital 

surface models (nDSM) were generated. Figure 3.16 and Figure 3.17 show nDSMs for 

the Borough of Kensington and the City of Leicester, respectively. The nDSMs were 

converted from raster pixels to vector points preserving height information of each pixel 

for the purpose of the creation of building heights. The layer of vector points and the OS 

layer of building footprints of both study regions were loaded into ArcGIS 10.1 to 

determine the points which fall within each building footprint. The average height of 
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points was then calculated and assigned to each building footprints by using spatial 

analysis tools in ArcGIS 10.1. Later on, the heights of each building block within the 

source and target zones were determined separately. In the completion step, the heights 

of each building were multiplied by the area of each polygon to calculate the volume of 

buildings in source and target zones.  

 

Figure 3.14: 1 meter resolution of digital surface model and digital terrain model of 

Leicester City, 1km2 sample area, All LiDAR data ©Airbus Defence and Space 

(Astrium Ltd. 2014). 
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Figure 3.15: 1 meter resolution of digital surface model and digital terrain model of the 

Borough of Kensington and Chelsea, 1km2 sample area, All LiDAR data ©Airbus 

Defence and Space (Astrium Ltd. 2014). 
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Figure 3.16: Normalised Digital Surface Model (nDSM) for the Borough of Kensington 

and Chelsea (DSM was subtracted from DTM by using spatial analyst tools in ArcGIS). 

All LiDAR data ©Airbus Defence and Space (Astrium Ltd. 2014) 
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Figure 3.17: Normalised Digital Surface Model (nDSM) for Leicester City (the DSM 

covers 952 output areas of 969, digital elevation models are not available for 27 output 

areas on the northern part of the city. All LiDAR data © Airbus Defence and Space 

(Astrium Ltd. 2014) 
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3.6.2 The creation of residential building volumes 

Building footprints and usage datasets covering the study areas were obtained from the 

Ordnance Survey © as vector maps (polygons) and building heights were obtained from 

Airbus Defence and Space as DEMs. In order to create residential building volumes, 

several analyses were carried out as explained below. The first stage was to identify the 

height of individual polygons. The polygons of building footprints were overlaid with 

the points of height information. The height of individual building units was assigned 

by using the spatial join tool in ArcGIS 10.1 toolbox. After the operation of join, each 

polygon does have z value representing the height of building footprints. Figure 3.18 

shows individual building footprints and their heights. In the second stage, residential 

buildings were identified using the intersection tool. Building footprint layer was 

overlaid with building usage type data. These datasets contain detailed information of 

each building structure such as building usage type (residential, general commercial, 

institutional, industrial etc.) (Ordnance Survey MasterMap® User Guide, 2012). The 

accuracy of building usage datasets were validated by comparing OS Street View 

derived building usage data with OS MasterMap ©. The labelled residential polygons 

were extracted from non-residential structures within the study areas and saved as new 

residential building polygons. In the third stage, some filter operations were carried out 

to purify residential building blocks. The layers were filtered by footprint height and 

footprint size. Very small polygons lower than 2 metres high were extracted from the 

layer. These polygons may be building parts where people do not reside. In the last 

stage, the volume of the individual residential polygon was measured by multiplying the 

area of each polygon with its height. The obtained building volumes were used as 

control variables for the generation of estimate population totals as output area level. 

The resultant building volumes were used as ancillary data in order to improve the 

accuracy of population estimates.   
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Figure 3.18: The residential building footprints with height information. © Crown 

Copyright/database right 2012. An Ordnance Survey/EDINA supplied service and All 

LiDAR data © Airbus Defence and Space (Astrium Ltd. 2014). 

3.6.3 The generation of population weighting factor of residential building 

volumes 

This subsection presents the identification of individual residential building volumes of 

source zones and target zones. Instead of imagery derived residential areas, residential 

building volumes were used as control variables in order to predict population totals in a 

volume based estimation model. First of all, the boundary of source zones and 

residential buildings footprints layer were overlaid using analysis tools in ArcGIS 10.1. 

The residential buildings were divided through individual sources units (census wards). 

Secondly, population totals were distributed from source zones to residential buildings 

(i.e. dividing total population of source zones by their total residential volume) as 

proposed by Sridharan and Qiu (2013). Thirdly, the boundaries of target and source 

zones were overlaid with the populated residential building units in order to define 

intersection between source and target zones respectively. In the final stage, the total 

residential buildings volumes were used as weighting factors to predict the population 

of individual target areas. The final residential building volumes were extracted in Excel 

format to apply volumetric areal interpolation equations.  
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3.7 Building Address Point Datasets 

This section provides a description of the building address point datasets and GIS 

analyses to make address point data ready to use as ancillary data in the address-

weighted dasymetric mapping method. Previously, address point data has been used in 

dasymetric mapping by Zandbergen (2011) and Tapp (2010). The United Kingdom has 

a robust national address point database (this dataset is detailed in the section of 

datasets). Ordnance Survey datasets of building address layer (called as Address Layer 

2 or ADDRESS-POINT datasets) contain building features as point map. The data of 

address points provide comprehensive information of each building unit such as 

address, usage type, age etc. (Ordnance Survey MasterMap® User Guide, 2012). Point 

datasets are available from the largest census geographical extent to the finest census 

outputs. Owing to the availability of residential buildings, the address point data was 

intended to be made as the main ancillary data inputs for estimating population of study 

areas in output area level. The following subsections explain how GIS analysis 

identifies residential address points used as a control variable in dasymetric population 

mapping. 

3.7.1 Separation of residential buildings and non-residential structures 

OS MasterMap® Address point data was obtained as a vector map (points) from the 

Ordnance Survey© that cover both study areas. Address Layer 2 provides the location 

of each addressable property with a unique reference number in UK (OS User Guide). 

The frameworks of OS layers have been updated to create a consistent and standard 

geographical database. These points contain residential and non-residential building 

usage type information (such as commercial, industrial, institutional etc.). Because of 

this, building usage data is critical in deriving the total numbers of housing units within 

the given study area. The separation of residential building from non-residential 

structure is the main step in the residential building points based population estimation. 

The data require several analyses to obtain residential address points for source zones 

and target zones within the study areas.  

The implementation stages to derive building usage information were provided here. In 

the first stage, the address point layer was loaded into ArcMap. The address points 

which are labelled as dwellings (that means residential housing units) were chosen by 
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using the selection tool in ArcGIS Analysis toolboxes. The selected features were then 

extracted as a new layer that contains only residential address points. The second stage 

was to count the number of address points that intersect within the source and target 

zones. The extracted residential point map was overlaid with both the boundaries of 

source zones and the target zones in ArcMap. The sums of the residential units within 

each source and target area were counted, by utilising intersection and spatial join 

analysis tools in ArcGIS 10.1. Finally, the source and target layer maps (polygon) 

output consist of the total number of residential points within each polygon (source and 

target units). For validation, residential housing units were cross-checked with the 

category of land use data from the building database in OS StreetView and household 

data from the NeSS. 

 

Figure 3.19: The extracted residential building points © Crown Copyright/database 

right 2012. An Ordnance Survey/EDINA supplied service. 

3.7.2 The population weighting factor of residential address points 

The average household size from ONS and the occupancy information derived from city 

councils were used with address layer data to generate population estimates. Residential 

address point data was obtained in vector format, while average household size and 

occupancy information were acquired in Excel file based on the census wards and 
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output areas. To identify the weight of each housing unit within the output areas, several 

implementations are required. 

First of all, the census wards and output areas were exported from vector files into an 

Excel file. The Excel software was used to calculate the weighting factor of the 

residential units in different output areas. The data contains the name of individual 

output and the number of residential points which fall in each polygon. Secondly, the 

occupancy information of each census ward and output areas were combined. The 

numbers of unoccupied housing units of output areas were subtracted from the total 

number of residential housing units. Thirdly, the average household size of each source 

unit and target unit was multiplied by the numbers of total occupied housing units in 

order to find the population weighting factor. Fourthly, population totals of output areas 

were estimated based on the address point data, average household size and occupancy 

information. Lastly, the obtained population estimates in the Excel tables were 

combined with vector file layers to visualise the estimated population counts of output 

areas.  

3.8 Software Used for the Research 

A variety of software packages are required to perform the various analyses involved in 

this research. ENVI 5.0 image analysis software, ArcGIS Desktop 10.1, Minitab 16 

statistical software and R statistical programming software comprise the major packages 

used. 

1. The ENVI image processing package was utilised for the image processing of 

aerial photography. Mosaicking the tiles of aerial photographs and sub-setting 

the study areas and the classification of the mosaicked final image into 1 and 0 

maps. 

2. ArcGIS analysis tools were used to convert the classified image from raster to 

vector in order to calculate the extent of built-up areas within the source and 

target areas. The analytical tools in the software were also used to measure 

dasymetric population estimates. 

3. The R statistic package was used to create scatterplots of estimated population 

versus actual population totals. Also, statistical analyses, including coefficients 
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of the results, root mean square error and R squared were calculated using this 

software.  

4. Minitab 16 Statistical Software was utilised to generate scatterplots for the 

comparison of interpolation estimated population totals with census reported 

actual population values. Additionally, the standard error of regression was 

calculated in Minitab.  

3.9 Accuracy Measurements for Estimation Results 

In previous research, a variety of error measurements have been popularly used to 

measure the magnitude of estimation error for areal interpolation models population 

estimates (Su et al., 2010, Hawley and Moellering, 2005, Gregory, 2002, Cockings et 

al., 1997, Fisher and Langford, 1995). In order to assess the overall accuracy of the 

deployed population disaggregation model, a range of measurements including R 

squared (R2), root mean square error (RMSE), absolute relative error (RE), percentage 

error (PE) and standard error of regression have been measured in this study. The 

regression coefficient and the standard error of estimated values calculate precision 

showing the extent to which predicted population of an area is close to true population 

of target areas. The description of RMSE given by Fisher and Langford (1995) is 

defined in Equation 3.5. The RMSE employs absolute values of the difference between 

known census population and the estimated population within every target area 

(Gregory, 2002).  

𝐑𝐌𝐒𝐄 =
𝟏
𝐦 𝐱𝐢−𝐲𝐢 𝟐

𝐦

𝐢!𝟏

 

(3.5) 

Where; 

𝐱𝐢  is the know census population of target zone, 

𝐲𝐢  is the estimated population of target zone, 

𝐦  is the number of target zones.  

Additionally, Relative Error (RE) compares the estimated results of disaggregation 

models with census reported actual values to examine the goodness of the interpolation 

methods.  RE is formulated as shown in equation 3.6; 
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𝐑𝐄 =
𝐏𝐞 − 𝐏𝐠
𝐏𝐠

∗ 𝟏𝟎𝟎 
(3.6) 

Where; 

RE is Relative Error,  

Pe and Pg are the estimated and actual population values, respectively.  

It helps to evaluate error distribution in relation to population density (Lu et al., 2006). 

The results of relative error were multiplied by 100 to calculate percentage error.  

3.10 Summary 

This chapter has presented the external data inputs that were utilised as control variables 

in the dasymetric process. These ancillary datasets are in both vector and raster format 

and they were processed in spatial image processing software and GIS programs for use 

in interpolation methods. Additionally, spatial analysis of remote sensing and GIS 

datasets have been used as control variables in dasymetric mapping process. Ancillary 

data used as control variables to predict population totals were processed in the previous 

sections (3.5, 3.6 and 3.7). In the first section, a land cover map was created from the 

aerial photography. The classified imagery was reclassified to define the extent of 

residential area uses for handling as auxiliary data in the binary dasymetric mapping 

method. In the second section, the LiDAR-derived building height data and building 

footprints were processed to obtain building volumes as ancillary data in the volumetric 

estimation method. In the third section, Ordnance Survey acquired address point data 

were processed in ArcGIS 10.1in order to separate residential building units and non-

residential structures to use as control variables in the address-weighted dasymetric 

interpolation model.  

Furthermore, the proposed spatial population disaggregation algorithms deployed to 

estimate population totals at output area level for the City of Leicester and the Royal 

Borough of Kensington and Chelsea were presented. Each areal interpolation model 

used census wards as source zones and output areas as target zones to general spatial 

population distribution surfaces. Population counts were simply redistributed to smaller 

areal units depending on external datasets. The applied population estimation models 

are volume preserving approaches. The total population of each census ward is the same 

with the disaggregated total population of output areas which fall within the same 
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census ward. The actual population values of target zones were utilised to assess the 

goodness of the interpolation algorithms. These interpolation techniques and available 

data sources were selected to compare performances of interpolation methods for 

obtaining precise estimation results in both different densely populated areas. These 

areal interpolation techniques were chosen to explore whether a relation exists between 

the selected ancillary variables and residential population density. In order to test 

correlation, the estimated population values were compared with the actual population 

figures reported by the census. This also shows the reliability of ancillary data. Finally, 

the performance of each of the proposed dasymetric mapping models was observed by 

looking at the results. The results obtained from areal interpolation models of each of 

the case sites are represented in Chapter 4 and Chapter 5. 
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CHAPTER 4 

4 Areal interpolation Results for Leicester City 

4.1 Introduction 

A number of areal interpolation techniques have been previously improved and used in 

many studies in different environments (explained in Chapter 2). Three existing and two 

novel spatial disaggregation methods were used to predict population totals in the study 

region. These five models are areal weighting, the binary, the volumetric estimation and 

the address-weighted dasymetric mapping and occupancy information based 

interpolation approach. These distinct disaggregation techniques have their own 

assumptions to predict population totals in target areas. The UK 2011 census population 

counts were distributed from larger spatial units to smaller units. In each method, census 

wards were used as source zones, the output areas used as target zones and additional 

information was utilised as control variables in order to estimate population totals for 

unitary authority of Leicester City. Therefore, the aim of this chapter is to present the 

results of population estimation for the City of Leicester. In this research, the address-

weighted method disaggregated population totals based on the number of residential 

housing units (derived from OS, 2012) within the target areas. The binary dasymetric 

technique makes use of additional information derived from supervised classification 

for aerial images (obtained from OS, 2012) in order to spatially disaggregate population 

counts. Whereas the volumetric estimation method used residential building volumes 

(produced from datasets from OS, 2012 and Airbus Defence and Space, 2014) as 

external input to obtain population estimates at intended level, areal weighting approach 

used only source zones and target zones to distribute population totals. 

In order to assess the accuracy of estimated population totals, several error 

measurements were used, including root mean square error (RMSE), the standard error 

of regression (S), and R squared (R2) in a manner similar to Gregory (2002), Cockings 

et al. (1997) and Fisher and Langford (1995). These tests present the errors between 

estimated variables and actual population totals. Additionally, these accuracy 

measurements display the relationship between true and predicted population values.  
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The presentation of the results of areal interpolation methods applied to predict the 

population totals of small areas is organised as follows. The results of the areal 

interpolation approaches are presented in Section 4.2. Section 4.3 compares the areal 

interpolation processes deployed to predict population totals. This section also includes 

the comparison of the area-weighted and binary mapping interpolation techniques; in 

addition to the comparison of the volume based estimation model and address-weighted 

dasymetric method. Finally, Section 4.4 provides a summary of population estimation 

results for the City of Leicester.   

4.2 The Results of the Areal Interpolation Approaches 

Five areal interpolation methods were employed for obtaining population estimates and 

comparing their results: the area-weighted, binary dasymetric mapping, building volume 

based estimation models, the address-weighted and occupancy information used 

address-weighted interpolation techniques. The estimation results from each of these 

methods is detailed in the sections that follow. 

4.2.1 Areal weighting interpolation method 

Areal weighting interpolation was the first technique utilised to disaggregate census 

population totals from one areal unit (source zone) to other, different areal units (target 

zones). This interpolation approach was applied in order to estimate the population 

totals for Leicester City at the target units (output areas). Figure 4.1 demonstrates the 

results of the areal weighting technique with regards to the all census wards in Leicester 

City. The method assumes that residential buildings and population totals are distributed 

homogenously through census geographies. The areal weighting method does not 

consider different land uses within the source zones. The distribution of population 

counts appears mostly dissimilar in different land use types. For instance, the population 

density in urban areas is expected to be higher than that of rural areas. Therefore, the 

size of output areas and the population densities are the main factors that affect the 

weight of the population estimates within individual target units.  
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Figure 4.1: The population estimation results of areal weighting interpolation method in 

the City of Leicester. © Crown Copyright/ database right 2013, An Ordnance 

Survey/EDINA supplied service. 
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The 2011 census counts were disaggregated from census wards to output areas using 

areal weighting interpolation approach. The population density of each source zone was 

calculated by dividing the area size of census wards with their total population. The 

population density of the individual census ward was used to as a control variable to 

reassign the population counts to each target zone. The area-based population estimates 

were mapped at output area level. Figure 4.1 above shows a map of estimated 

population totals for the City of Leicester. The legend of the map demonstrates the 

range of estimated population values in five classes with colour changing from yellow 

to dark brown as the population totals increases. In the figure, output areas with low 

population were labelled with a yellow colour and output areas of those with high 

population are in a dark brown colour.  

The visualisation of the results of the area-weighted interpolation explicitly shows that 

more people are located in the large-sized output areas (brown-coloured spatial units) 

and there are less people located in small-sized output areas (yellow-coloured spatial 

units). As can be clearly seen from the aerial photography (Figure 3.8 in Chapter 3, 

page 65), those larger-sized output areas overlap with non-residential uses such as green 

spaces, parks, golf courses and agricultural uses. Non-residential areas such as the 

pattern of commercial, industrial and shopping centre areas cover the most part of the 

study region. These zones are mostly close to the boundary of local authority of 

Leicester City. Also, the small-sized spatial units overlap with predominantly residential 

areas, which are scattered within the study area, and they are largely concentrated 

around the city centre and towards the southern and eastern parts of the city. The area-

weighted interpolation technique assumes uniform population distribution within the 

source zone without considering these non-residential zones (Zandbergen and Ignizio, 

2010, Maantay et al., 2007, Flowerdew and Green, 1992). Thus, population totals assign 

the areas where people do not live in reality as displayed in aerial photography of the 

city. Therefore, the area-weighted method overestimates large-sized output areas and 

underestimates in small-sized output areas.  

A regression model was produced to establish the relationship between predicted and 

actual values (see Figure 4.2). When the estimated population totals were plotted 

against the known population counts, patterns of the points were widely scattered 

randomly around the regression line. This is an indication to the not strong relationship 
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in the regression model, and there are various numbers of outliers. This observation 

shows that the performance of the areal weighting model fully depends on the size of 

the source and target zones and the assumption of the homogenous population 

distribution within the study region. It is clearly noticeable from the experiments that 

the larger output areas are subject to overestimation on the one hand, and relatively 

smaller output areas are subject to underestimation on the other hand.  

 

Figure 4.2: Regression model for the areal weighting interpolation method. The 

estimated population totals of the City of Leicester at output area level versus the actual 

population of output areas released by census. 

The estimated population of the output areas were compared with known census 

population information to calculate the degree of error introduced. Accuracy is 

measured using the root mean square error (RMSE), and the square root of the mean 

square error (S). The way Fisher and Langford (1995) define and describe RMSE metric 

was already presented in Chapter 3 (page 84). The RMSE employs absolute values of 

the difference between known census population and the estimated population within 

every target area (Gregory, 2002). The area-weighted model has the correlation R2 is 

0.11, which suggests a very low relationship between the predicted population values 

and census reported actual population counts. Table 4.1 demonstrates the accuracy 
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measurements of regression coefficients, R squared and RMSEs for each applied 

disaggregation model. The Areal weighting method was also compared with actual 

population totals in the following section (4.3) to compare the result of areal weighting 

based population estimates. 

Table 4.1: Accuracy measurements for the areal weighting interpolation method 

obtained population estimates for the City of Leicester. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 0.851 

R Squared 0.116 

Standard Error 201.976 

RMSE 9.123 

Relative Error (RE) 0.4101 

Percentage Error (PE) 41.01% 

Overall, all these findings suggest that the area-weighted model can be employed in 

environments where population density is homogenous; however, the model may not be 

used in areas where population totals are distributed heterogeneously. Under normal 

situations, population totals are distributed heterogeneously but the areal weighting 

method obtained very poor results, similar to Hawley and Moellering (2005) and 

Zandbergen and Ignizio (2010). The population results are mostly overestimated in the 

edge of city where non-residential areas cover large places and the estimation results are 

commonly underestimated in the densely populated output areas which are close to the 

centre of the city. This method was used as a benchmark, and further population 

estimates are improved using ancillary data to population counts as heterogeneously 

within the source zones, as in the following dasymetric mapping model.  

4.2.2 Binary dasymetric mapping method 

Binary dasymetric mapping was the second interpolation method considered to generate 

population estimates at output area level. This dasymetric method is relatively simple, 

using ancillary information to define the extent of built-up areas in order to disaggregate 

population counts through spatial units (Eicher and Brewer, 2001). While the approach 

assumes that population totals are heterogeneously distributed considering non-
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residential uses within the urban areas, the assumption of the area-weighted method is 

that of a uniform distribution. Land use and land cover maps have been commonly used 

to estimate population (Liao et al., 2010, Mennis and Hultgren, 2006a, Tian et al., 

2005). The implemented binary dasymetric mapping technique used census wards as 

source zones and the classified land cover data as ancillary input data to redistribute 

population totals to small areas (output areas) in the City of Leicester.  

The 2011 census of population counts were disaggregated from census wards to output 

areas based on the classified built-up areas. The population density of each intersection 

built-up area was measured by dividing the intersection area of census wards with their 

population counts. This calculated population density was used as a control variable to 

generate population estimates in each target unit. The land cover based population 

estimates were mapped at output area scale. First of all, Figure 4.3 demonstrates the 

binary dasymetric surface that population totals distributed to only built-up areas. 

Population counts were allocated to grid cells. The binary dasymetric zones and the 60 

metre cell-sized grid maps were overlaid to measure the weight of cells to allocate 

population totals to each cell. In the dasymetric surface, grid cells, which mostly 

overlap with unpopulated land cover, are labelled with a white colour and populated 

land uses are labelled with yellow and brown colours. Secondly, the total population of 

output areas were measured by summing population of cells which falls within the 

output areas. Figure 4.4 shows the estimated total population of output areas by using 

the binary dasymetric mapping. The legend of the estimation map shows the range of 

predicted population totals in five classes with colour changing from yellow to dark 

brown as the population totals increase. In the estimation map, output areas with low 

population are labelled with a yellow colour and output areas with high population are 

in a dark brown colour.  
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Figure 4.3: Dasymetric surface of Leicester City obtained by using the binary 

dasymetric mapping method. © Crown Copyright/ database right 2013, An Ordnance 

Survey/EDINA supplied service. 
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Figure 4.4: Population estimation results of the binary dasymetric mapping model in the 

City of Leicester. © Crown Copyright/ database right 2013, An Ordnance 

Survey/EDINA supplied service. 
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Figure 4.4 shows high population values located in output areas where commercial and 

industrial areas cover considerably bigger areas and it is subject to over estimation. The 

main reason is that residential and non-residential uses in urban areas are not 

differentiated. The dasymetric map shows that population allocation is proportional to 

the size of built-up areas of target zones. This is because the binary mapping technique 

allocates population homogenously within the built-up area of target areas. As a result, 

more people are located to the large-sized built-up areas (dark brown-coloured zones) 

and less population totals distributed the small-sized built-up areas (yellow-coloured 

zones). It can be seen from aerial photography of the study area (see the aerial 

photography of Leicester City in Figure 3.8, page 68). The mostly populated areas 

overlap with predominantly residential uses and the zero populated and less populated 

areas coincide with non-residential uses. The binary interpolation resulted in 

heterogeneous population distribution within the study area. Similar results were 

obtained by Langford and Unwin (1994). The less populated areas are close to the 

boundary of the administrative area (see Figure 4.3. and Figure 4.4). The parks, 

agricultural areas, golf courses and water surfaces are mostly zero-populated areas. This 

makes the classified images relatively accurate to use as control variables. In addition to 

this, population totals are mostly cumulated in the central area of Leicester City, in 

particular, the eastern part of the city is more populated than the northern and southern 

parts (see Figure 4.3). This observation shows that dasymetric model performance 

depends on the quality and precise classification of ancillary input data as residential 

and non-residential areas. This is because the binary model assigns the population totals 

to only built-up areas. If the classification of external imagery data were not relatively 

accurate, population totals may be located in uninhabited zones, which affect the 

accuracy of the predicted population counts.  

The regression model was created to evaluate the relationship between estimated 

population by the binary model and census released actual population counts (see 

Figure 4.5). The predicted values were plotted against the known population totals. The 

pattern of the points were scattered close to the regression line and there are a few 

numbers of outliers. Thus, the scatterplot suggests that the relationship is much stronger 

than the results of the area-weighted interpolation. This test demonstrates that the 

performance of the binary dasymetric mapping method mostly depends on the accuracy 

of the external imagery data. It is notable from the experiments that the built-up areas 
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mostly covered by non-residential building structures are subject to overestimation and 

the misclassified residential uses are subject to underestimation.  

 

Figure 4.5: Regression model for the binary dasymetric mapping interpolation method. 

The estimated population totals of the City of Leicester at output area level versus the 

actual population of output areas released by census. 

The estimated population totals of each output area were compared with known census 

population information in order to assess the accuracy of interpolation model and to 

calculate the degree of error introduced. The accuracy is assessed by using the same 

measurements used in the estimation results of the area-weighted interpolation. The 

binary model has the correlation R2 is 0.78, which suggests that the correlation is 

substantially strong between the estimated population and the census released 

population totals. Table 4.2 demonstrates the regression coefficients, R squared and 

RMSEs for each applied disaggregation models. It can be seen that there are significant 

differences between the result of areal weighting technique and the binary dasymetric 

technique.    
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Table 4.2: The accuracy measurements for the binary dasymetric mapping method 

obtained population estimates for the City of Leicester. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 0.922 

R Squared 0.780 

Standard Error 42.203 

RMSE 0.642 

Relative Error (RE) 0.0825 

Percentage Error (PE) 8.25% 

In summary, the overestimated population totals were substantially concentrated in the 

industrial and commercial areas of Leicester City. These regions are mostly classified as 

built-up areas and considered as residential uses. These uninhabited built-up areas are 

primary error sources in the binary dasymetric process. On the other hand, the 

underestimated population counts were cumulated in areas where the population density 

is higher and the sizes of output areas are smaller than the other target zones; this can be 

clearly noted in Figure 4.4. These findings suggest that the binary dasymetric mapping 

technique can be utilised with the availability of ancillary imagery data in order to 

generate relatively accurate population estimates.  

4.2.3 Volumetric estimation method 

The volumetric dasymetric mapping method was the third technique employed to 

disaggregate population counts from census wards to output areas in the same manner 

previously used in interpolation model. In this approach, building volume data were 

used to identify residential buildings in order to estimate the population of target units 

for Leicester City. The volume of each building was used as the main external dataset to 

distribute population totals. The total building volumes of output areas were calculated 

by summing the volumes of high-rise and low-rise buildings which fall to each output 

area. The total volumes of output areas are mostly higher in areas where high-rise 

buildings are dominant; in contrary, the total volumes of output areas are smaller in 

areas where low-rise buildings are dominant. Population totals were then spatially 

disaggregated based on the total building volume of each output area. LiDAR-derived 

DEMs cover 942 out of 969 output areas in the study areas. Population totals were 
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estimated for output areas which consist of LiDAR-derived building height information. 

Figure 4.6 shows the map of building volumes by output areas that are used as control 

variables to estimate population totals. The volume based estimation method assumes 

that population totals reside within the residential housing units. The extraction of 

residential buildings from non-residential structures is substantially important in the 

population estimation process because the accuracy of estimation results depends on the 

building usage, such as residential, commercial, industrial or institutional (Sridharan 

and Qiu, 2013, Lwin and Murayama, 2010). Residential building volumes were used as 

ancillary input data to disaggregate census population totals to small areal units within 

the study region. 

The 2011 census counts were disaggregated from census wards to output areas, 

employing building volume based interpolation process. The volume of each source 

zone was provided by intersecting residential buildings which fall in each source zones. 

Additionally the population of individual housing units was determined by dividing the 

total population with the volume of each housing unit. The population of housing units 

within each intersection area was summed to obtain the population of output areas. The 

volume based population estimates were mapped at output level. Figure 4.7 displays a 

map of predicted population values for the City of Leicester. In the legend of the 

estimation map, the same range of colours was used in the five classes as with previous 

estimation maps. The results in the figures show the estimated population counts for all 

output areas. High-populated output areas were shown by a dark brown colour and the 

low-populated output areas were shown by a yellow colour. The volumetric estimation 

model considers the presence of both low and high-rise buildings within each target 

unit. The map of volumetric model shows that population totals are distributed 

heterogeneously in the output areas of each census ward. Population counts are 

concentrated in central part of the city. It is obvious from the estimation that the 

northern and the southern part of the city is the less populated (see Figure 4.7). The 

performance of the volumetric model depends on the determination of building volume 

from the external building height and footprint datasets. This is because the volumetric 

estimation model locates the population counts of residential building units based on 

their volumes. Building volume information is important to define residential 

information in the study area. If the residential building units were not differentiated 
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accurately, population counts can be assigned non-residential structures. This shows the 

accuracy of the obtained population by volumetric method.  

 

Figure 4.6: Map of building volumes by output areas for the City of Leicester. © Crown 

Copyright/ database right 2013, An Ordnance Survey/EDINA supplied service and All 

LiDAR data © Airbus Defence and Space (Astrium Ltd. 2014). 
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Figure 4.7: Population estimation results of building volume based dasymetric mapping 

method in the City of Leicester. © Crown Copyright/ database right 2013, An Ordnance 

Survey/EDINA supplied service. 
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As done in the previous methodologies, a regression model was generated to detect the 

relationship between the volumetric model obtained population and the census reported 

actual population values (see Figure 4.8). The estimated population totals versus the 

actual population counts were plotted on a scatterplot. The point patterns were scattered 

around the regression line, suggesting that the correlation between the estimated and the 

actual population values is relatively good with an R2 of 0.73 in the volumetric model. 

There are, however, a number of outliers in the scatterplot. This experiment illustrates 

that the performance of the volumetric estimation model largely depends on the 

determined building volumes from ancillary inputs. It is obvious that the high-volume 

buildings are subject to overestimation in output areas.   

 

Figure 4.8: Regression model for the building volume based dasymetric mapping 

interpolation method. The estimated population totals of the City of Leicester at output 

area level versus the actual population of output areas released by census. 
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Table 4.3: The accuracy measurements for the volumetric estimation method obtained 

population estimates for the City of Leicester. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 0.901 

R Squared 0.734 

Standard Error 46.812 

RMSE 0.773 

Relative Error (RE) 0.0719 

Percentage Error (PE) 07.19% 

The predicted population of target units were compared with census true population 

values to measure the accuracy of the volumetric estimation model. The accuracy is 

calculated by utilising the same tests used in the previous interpolation models. This 

volume based dasymetric interpolation has an R2 of 0.73 which suggests the correlation 

is reasonably high between the estimated population totals and the census released 

population counts. Table 4.3 demonstrates the regression coefficients, R squared and 

RMSEs for each proposed interpolation model. It can be seen that there are significant 

differences between the result of each applied interpolation model based on their 

assumption and the external input data. The implementation of the volumetric 

estimation approach using building volume information helped to improve accurate 

population estimate in target areas.  

4.2.4 Address-weighted dasymetric method 

The address-weighted dasymetric process was the fourth interpolation technique applied 

to produce population estimates at small spatial units. This approach assumes that 

people reside in residential building units within the residential uses. Thus, the model 

predicts population totals by multiplying the number of residential housing units with 

average household size in target areas. In order to obtain the number of residential units, 

OS Address Layer 2 datasets were used in the dasymetric population disaggregation 

process in a similar manner to Zandbergen (2011) and Tapp (2010). The employed 

address-weighted model used census wards as source zones, the output areas as target 

zones, and the numbers of residential housing units as control variables to estimate the 

population of each output area in Leicester City. The residential building data are much 
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more detailed than residential land use and road networks to identify housing units 

where people actually reside (Sridharan and Qiu, 2013, Zandbergen, 2011).  

 

Figure 4.9: Population estimation results of address-weighted model in the City of 

Leicester. © Crown Copyright/ database right 2013, An Ordnance Survey/EDINA 

supplied service. 
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The 2011 census population totals were assigned to output areas based on the number of 

residential housing units and the population per household. The estimated population 

totals of each housing unit was aggregated to individual output areas. Figure 4.9 shows 

the obtained population totals by the address-weighted dasymetric mapping model. On 

the map, the estimated population totals were grouped into five classes. The legend on 

the estimation map shows the range of predicted population totals, with colours 

changing from yellow to dark brown as the population totals increase. In the estimation 

map, output areas with low populations are labelled in a yellow colour and output areas 

with high population are in a dark brown colour. The estimation map shows that more 

people are located in the output areas which consist of more residential housing units. 

Also, less population was obtained in areas where less housing units exist in output 

areas.   

The estimated population of building units were aggregated to the output areas and 

shown in Figure 4.9. The number of people may be allocated incorrectly due to the 

assumption that all building units are residential within the geographical units. Because 

of this reason, this model overestimated the population totals in output areas where 

there are non-occupied housing units. The address-weighted method shows substantial 

improvement over the areal interpolation and the volume based dasymetric mapping 

method. The results from this interpolation may be improved by utilising building 

occupancy rate datasets, which provides the information of occupied housing units 

within the source areas.  

Similar to the previously used methods, the regression model was produced for the 

address-weighted estimation results to test the relationship between the estimated and 

the known population values (see Figure 4.10). The predicted population values were 

plotted against the census reported values. Most of the point patterns were scattered 

along the regression line. This plotting result suggests that there is a very strong 

relationship between those estimated and true population values. There are a few 

numbers of outliers in the scatterplot. This measurement demonstrates that the 

performance of the address-weighted dasymetric model directly depends on 

differentiating the number of residential housing units from the ancillary input of 

Address Layer 2. The non-occupied housing units within the target units are primary 

error sources and they are subject to overestimating in study regions.   
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Figure 4.10: Regression model for the address-weighted dasymetric mapping 

interpolation method. The estimated population totals of the City of Leicester at output 

area level versus the actual population of output areas released by census. 

Table 4.4: Accuracy measurements for the address-weighted dasymetric method 

obtained population estimates for the City of Leicester. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 0.981 

R Squared 0.937 

Standard Error 21.820 

RMSE 0.160 

Relative Error (RE) 0.0407 

Percentage Error (PE) 4.07% 

The estimated population counts were compared with actual census population totals in 

order to assess the accuracy of the dasymetric method and to calculate the degree of 

error introduced. The accuracy of estimated results was measured using the same tests 

used in the areal weighting and the binary dasymetric mapping approach. Table 4.4 

demonstrates the regression coefficients, R squared and RMSEs for each applied 
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dasymetric mapping models. The modelling strategies performed very well with R2 of 

0.93. It can be seen that there are significant differences between the results of the 

address-weighted method and other interpolation techniques. This result suggests that 

the relationship between estimated and true values is very strong. This affirms that 

building point datasets can be used as the control variables to disaggregate population 

totals from source zones to target areas. 

4.2.5 Occupancy-adjusted address-weighted dasymetric method 

In this section, the address-weighted model was used to generate the estimation of 

population totals at output area level, utilising the external datasets of building address 

points, building occupancy data and the average household size of target zones. In the 

address layer, all building units are labelled (coded) as residential or non-residential 

housing units. These high resolution building attribute information are superior to 

define residential housing units in source and target areas, respectively. The second 

external data are building occupancy information that provides the number of occupied 

housing units within each output area. In this model, building occupancy rate 

information was first integrated to building address point data to determine the number 

of occupied housing units within each target zone. Census wards were used as source 

zones and output areas were used as target zones, the same as in earlier approaches. 

However, the combination of address points and occupancy information was employed 

as control variables to predict population totals of each output areas. This dasymetric 

model was performed in the City of Leicester, similar to the procedure explained in 

Section 4.2.4. The address of individual residential housing units provides more precise 

information of population distribution than generalised (generated) land cover data and 

other datasets. The estimated population totals are fully based on the total number of 

occupied residential housing units and average household sizes in each target unit.  As a 

result, the address-weighted dasymetric mapping model, using building address points 

and building occupancy information, obtains the highest dasymetric interpolation 

accuracy over the other tested methods. 
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Figure 4.11: Population estimation results of refined address-weighted dasymetric 

mapping method in the City of Leicester. © Crown Copyright/ database right 2013, An 

Ordnance Survey/EDINA supplied service. 
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The area weighting and the binary method need the most current census population to 

create a population distribution map, whereas the address-weighted dasymetric mapping 

method does not use the census population. The population estimation maps reveals that 

this dasymetric estimation model generates the closest population totals to the known 

accurate population figures, due to extraction of empty housing units from building 

address datasets.  Figure 4.11 shows the distribution of estimated population based on 

the occupancy data and building address points in the process of the address-weighted 

model. 

A regression model was generated for the residential building address points and 

occupancy information based population estimates in order to evaluate the correlation 

between predicted and the census reported population totals (see Figure 4.12). The 

estimated population totals versus the actual population counts were plotted. The point 

patterns were scattered along with the regression line. Most of the points were scattered 

from lower left to upper right suggesting a very strong correlation between predicted 

and true population values. There are no significant outliers in the scatterplot. This 

measurement demonstrates that the performance of the address-weighted dasymetric 

model generally depends on the accurate number of residential housing units from the 

ancillary input of Address Layer 2 and the realistic occupancy information. The 

inclusion of occupancy information has addressed overestimation in target areas where 

there is a significant number of non-occupied housing units. This can be clearly seen 

from comparing the scatterplots of the address-weighted (Section 4.2.4) and the refined 

address-weighted (Section 4.2.5) dasymetric mapping models. 

The predicted population of target areas was compared with the known population in 

order to measure the accuracy of the dasymetric method and to calculate the degree of 

error introduced. The accuracy was assessed by calculating the same measurements 

utilised in the other applied areal interpolation techniques. Table 4.5 shows the 

measured accuracy metrics. The best results were obtained by using the address-

weighting dasymetric approach with the ancillary variable of building occupancy 

information. A correlation coefficient of 0.99 was obtained when all 969 output areas in 

the study area were used in the analysis. When occupancy information was added to the 

address-weighted model, the dasymetric method generated the highest R2 of 0.998. This 

estimation result suggests that the relationship between predicted population counts and 
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actual population values is very high. It confirms that control variables of residential 

address points and occupancy information can be use in the dasymetric mapping 

method to estimate population totals. 

 

Figure 4.12: Regression model for the refined address-weighted dasymetric mapping 

method. The estimated population totals Leicester City at output areas level were 

plotted against the census released population of output areas. 

Table 4.5: Accuracy measurements for the improved address-weighted dasymetric 

method obtained population estimates for the City of Leicester. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 0.999 

R Squared 0.998 

Standard Error 3.778 

RMSE 0.064 

Relative Error (RE) 0.0108 

Percentage Error (PE) 1.08% 

Overall, there are less overestimated and underestimated population values in target 

zones compared to earlier interpolation results. This is because people are mostly placed 
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correctly to where population resides. So, the performance of the address-weighted 

method is better than the previously evaluated interpolation model. The results suggest 

that the availability of high resolution building attribute information and the occupancy 

information help to generate the most accurate population estimates in the intended 

scale. The dasymetric model obtained the most accurate estimation results and was 

substantially improved by using occupancy information.  

4.3 Comparison of Areal Interpolation Approaches 

In this section, the results of population disaggregation approaches were compared in 

order to evaluate the performance of interpolation models. First of all, the differences 

between the areal weighting and the binary dasymetric model were presented.  

Secondly, the volumetric estimation and the address-weighted dasymetric process were 

compared for measuring the accuracy of models. Lastly, the comparison of the 

volumetric estimation and the address-weighted dasymetric method were presented. 

Comparison results show how well the proposed interpolation approaches and the 

selected ancillary input datasets perform in order to distribute population totals in the 

study region. These comparison results are detailed in the following sub-sections.  

4.3.1 Comparison of the areal weighting and the binary dasymetric method 

These two areal information processes were used in order to distribute population totals 

through the study region. These methods generated notably different estimation results 

due to their functioning differences. The areal weighting method places people 

everywhere and the binary mapping method places people to predefined residential 

zones. The results of these models were compared in order to evaluate the performance 

of these approaches in this section. The residual maps were generated by subtracting the 

interpolation obtained predicted population from the census reported actual population 

totals. Figure 4.13 shows the residual map of the areal weighting based population 

estimates, and Figure 4.14 illustrates the residual map of the binary mapping model at 

output areal level. These residual maps show to what extent the people were placed 

inaccurately. The legend demonstrates the range of population residual values in five 

classes with the colour changing from blue to red as the population residuals increase. 

The yellow colour presents the output areas where estimation residuals are between -25 

and +25. The results of mapping the differences between these methods in the case of 
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Leicester City shows that population totals disaggregated according to model 

assumption.  

The main difference between these methods is that the area–weighted method does not 

require any external data and the binary method requires a land cover map to separate 

residential uses from non-residential areas. The usage of additional datasets in the 

binary dasymetric mapping process provides more realistic built-up areas to 

disaggregate population totals through residential uses. As a result of this, there were 

considerable differences between the results, particularly in the northern and western 

parts of the city. The differences were, however, less in the central regions and eastern 

parts of Leicester (see Figure 4.13and Figure 4.14). The large area sized target units are 

subject to positive estimation error and the small area sized target zones are subject to 

the negative estimation error in the area-weighed results. Misclassified land cover types 

are also subject to estimation error in the binary dasymetric mapping. Therefore, the 

binary model generates different population estimates for output areas.  

In the area-weighted based estimation, bigger positive errors occurred in the large-sized 

output areas. The size of output areas may be larger due to the transition from urban to 

rural land uses (Mennis and Hultgren, 2006a). They are mostly located close to the 

boundary of the study region. However, bigger negative errors occurred in the small-

sized output areas and they are sparsely distributed within the administrative area. These 

small census units are subject to underestimation (see Figure 4.13). In contrast to the 

areal weighting, more people were incorrectly placed on the non-residential built-up 

areas by using the binary mapping method (see Figure 3.8, in page 65). The estimation 

errors mostly arise from the misclassification of ancillary imagery data and the 

heterogeneous population distribution within the residential uses. This is because of the 

assumption of uniform distribution within residential areas. It can be clearly seen from 

the residual map of the binary method that residual errors arise in the city centre where 

non-residential buildings, such as shopping centres, are mostly dominant and in the 

northern, western and north-eastern parts of the study area where commercial centres 

and factories are dominant. The binary dasymetric map overestimated the large 

agricultural areas in the northern part of the Leicester. This is because areal images were 

taken in a season when there was no agricultural production, and so agricultural areas 

show similar reflectance to built-up areas. Therefore, these land uses were most 

probably misclassified as urban areas and subjected the classification to overestimation. 
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Figure 4.13: Residual map of areal weighting method obtained population estimates in 

the City of Leicester. © Crown Copyright/ database right 2013, An Ordnance 

Survey/EDINA supplied service 
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Figure 4.14: Residual map of the binary dasymetric mapping method obtained 

population estimates in the City of Leicester. © Crown Copyright/ database right 2013, 

An Ordnance Survey/EDINA supplied service 
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In order to test the relationship between population estimation residuals and spatial 

units, the spatial autocorrelation function was applied. The analysis of spatial 

autocorrelation examines the similarity of the observed value of interested variables 

over space and test neighbouring effects (Goodchild, 1986). One of the common spatial 

autocorrelation indices is Moran’s I (Anselin et al., 2010). The Moran’s I index could be 

between -1 and +1: negative results show correlation and positive values suggest 

positive correlation between the interested objects and local neighbourhood. If the value 

is close to zero it shows there is no considerable spatial relation. The residuals of 

population totals were spatially autocorrelated by using Moran’s I to observe whether 

residuals are clustered or dispersed randomly. Figure 4.15 and Figure 4.16 show the 

spatial autocorrelation results of the areal weighting and the binary dasymetric mapping 

methods, respectively. The tested interpolation methods yielded different spatial 

autocorrelation results. The residuals of the areal interpolation based population 

estimates has a Moran’s I value of -0.005069 and the residuals of binary mapping 

method has a value of 0.176294. The results of the autocorrelation analysis display the 

residual of areal weighted method based estimations were randomly distributed over 

target zones in Leicester City. In contrast, the results of autocorrelation analysis 

indicated a clustered distribution of the binary mapping yielded population residuals. 

The results of spatial analysis may be affected by the accuracy of land cover 

classification.   

To conclude, the binary dasymetric method with ancillary data of land use/cover has 

generated a better population distribution in areas where residential building structures 

are dominant and a less accurate estimate in areas where non-residential building blocks 

are mixed with residential blocks. The results of each estimation model indicate that the 

assumption of different interpolation models based on the size of source areas and 

utilised ancillary datasets played a substantial role. The areal weighting model produces 

the least accurate estimation results, with a lower coefficient and much larger RMSE 

values in the case of Leicester (see Table 4.1). In contrast, a binary model generates 

better results with the help of auxiliary datasets (see Table 4.2). The proposed binary 

dasymetric interpolation method performs better than the applied areal interpolation 

approach. This implies that results from binary dasymetric interpolation can improve 

when the land parcel data, which provide the information of residential and non-

residential areas, are used.  
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Figure 4.15: Spatial autocorrelation of the areal weighting method provided population 

residuals in Leicester City. 

 

Figure 4.16: Spatial autocorrelation of the binary dasymetric mapping provided 

population residuals in Leicester City. 
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4.3.2 Comparison of volumetric estimation and the address-weighted methods 

In this section, the results of building volume based population estimates were 

compared with the address-weighted dasymetric obtained population estimates. To 

achieve this, estimated population results were subtracted from the actual census values 

in the first stage. Residual results of these interpolation models indicate that there were 

notable differences between both models when estimating population totals in the City 

of Leicester (see Figure 4.17 and 4.18 and 4.19). The residuals were grouped into five 

classes to define the overestimated and underestimated output areas. The negative 

residuals were shown by a blue colour and the positive residuals were presented by a 

red colour in the legend of the maps. The yellow colour shows smaller differences 

between actual and estimated population values. These residuals were compared to test 

the performance of the volume and address based dasymetric mapping processes. Due 

to the assumption in population distribution, the methods generated remarkably 

different interpolation results. These differences can be seen from the residual maps. 

The legend of the residual map of the occupancy data based address weighted method 

was re-structured into three classes to show negative and positive residuals (see Figure 

4.19). 

The estimated population totals were compared with the true population totals in order 

to evaluate the performance of each model. Residual maps present that there are 

significant differences between the building volume and building address based 

population estimates. In most parts of the city, both address-weighted methods obtained 

population estimates that are the most close to actual values. This was due to the 

integration of residential buildings, average household size and occupany data. 

Ancillary input data assigns people much more accuraclty to where they live in reality. 

The mixed-use building blocks have a considerable impact in both estimation results. In 

vertically stacked building blocks, each floor is coded based on its usage. Therefore, 

differentiating the flats which are used for residential purpose is paramount as it directly 

affects estimation results. The volumetric estimation method uses LiDAR-derived 

building height information and land parcel data to disaggregate population totals to 

target areas. However, building usage information does not determine mixed-use 

building structures, and this directly causes poor population estimation compared to the 

building address point based population estimates. 
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Figure 4.17: Residual map of volume based dasymetric mapping method obtained 

population estimates in the City of Leicester. © Crown Copyright/ database right 2013, 

An Ordnance Survey/EDINA supplied service 
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Figure 4.18: Residual map of the address-weighted dasymetric mapping method 

obtained population estimates in the City of Leicester. © Crown Copyright/ database 

right 2013, An Ordnance Survey/EDINA supplied service 
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Figure 4.19: Residual map of the occupancy information used address-weighted 

dasymetric mapping method obtained population estimates in the City of Leicester. © 

Crown Copyright/ database right 2013, An Ordnance Survey/EDINA supplied service 
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It can be clearly seen from the residual maps that the results of the existing model are 

mostly overestimated due to a missing count on unoccupied buildings within the target 

areas. Conversely, the building occupancy based estimation model does not count the 

non-occupied housing units. For this reason, the refined dasymetric model based 

population estimates become more close to the actual population of target areas. The 

other result is that there are substantial differences when mapping the estimation 

residual in Leicester City.  This was due to the high probability of having more empty 

housing units in areas close to the city centre and central areas and less empty homes in 

the settlement of suburban areas. With the lack of occupancy information, the address 

based model counts all housing units within the source areas. Therefore, population 

estimates are likely to be overestimated in bigger urban areas. Finally, the estimation 

results show that the occupancy information is useful to generate small-area population 

totals. The address-weighted dasymetric mapping model using building address points 

and building occupancy information obtains the highest dasymetric interpolation 

accuracy over the other tested methods. These datasets may have a potential to define 

residential buildings and determine different housing heights and characteristics. The 

comparison of dasymetric areal interpolation techniques shows that building address 

point data serves better than building volume data as ancillary input data. 

Spatial autocorrelation analysis of Moran’s I was also applied for the results of 

volumetric estimation and the address-weighted models. While Figure 4.20 and 4.21 

shows spatial autocorrelation of the results of volumetric estimation and the address-

weighted dasymetric model, Figure 4.22 displays spatial autocorrelation of the results of 

occupancy data based interpolation method. The residuals of building volumes based 

population estimates has a Moran’s I value of -0.003600, the building addresses based 

estimations have a value of 0.066480, the occupancy datasets based estimation has a 

value of -0.015153. On the one hand, the results of autocorrelation analysis display that 

the residual of the volumetric method and occupancy datasets based estimations were 

randomly distributed over target zones in the local authority of Leicester City. On the 

other hand, the results of autocorrelation analysis indicated a clustered distribution of 

the address-weighted method obtained population residuals. The application result 

indicates a random distribution of population residuals in the building volumes and 

building address points used to estimate population totals. Therefore, there is not any 

negative and positive correlation between the observed value and neighbouring 
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locations. However, the residuals of the address-weighted model are spatially clustered 

when the combination of building addresses and occupancy information are used as 

control variables to disaggregate population values. 

 

Figure 4.20: Spatial autocorrelation of the volumetric estimation model obtained 

population residuals in Leicester City. 

 

Figure 4.21: Spatial autocorrelation of the address-weighted dasymetric model provided 

population residuals in Leicester City. 
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Figure 4.22: Spatial autocorrelation of the address-weighted method using occupancy 

data obtained population residuals in Leicester City. 

In conclusion, the estimation results reveal that all interpolation models usually generate 

different population totals due to the different functioning of areal interpolation 

processes. The address-weighted dasymetric method yields better estimation results 

with higher coefficients and the smaller RMSE values than other used areal weighting, 

binary dasymetric and volume based interpolation approaches (see Table 4.5). In 

contrast, the volumetric estimation model was obtained with less precise results than the 

address-weighted dasymetric method in the City of Leicester. The volumetric estimation 

uses LiDAR-derived building and LandMap-derived building data to estimate 

population totals. Building datasets do allow differentiating building structures but not 

mixed-use building blocks and they directly cause poor estimation compared to building 

address points. The maps of estimation residuals indicate that the differences in 

estimation will be reduced using the realistic information of residential building units 

and occupancy rate information of source and target zones. The address-weighted 

approach provided reliable population estimates in different urban environments. 

Finally, realistic infromation of residential uses  as external input data help to obtain 

precise population totals by using areal interpolation frameworks.  
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4.4 Summary 

Five different areal interpolation approaches – areal weighting and the binary, the 

volumetric estimation, the address-weighted and the refined address-weighted based on 

the ancillary occupancy data interpolation techniques – were applied to the case site of 

Leicester City. These techniques predict small-area population based on the actual 

census population values of source zones. The interpolation is conducted from the larger 

geographical units (UK, census wards level) to target areas (output areas) of lower 

spatial units in the whole case sites. The interpolation results show that each model 

produced different population distribution for the target areas due to the different 

assumption of applied areal interpolation models. 

The estimated population totals were compared with the actual census population counts 

of the target units for model validation and for accuracy assessment of population 

estimates. It is possible to validate these interpolation results owing to the availability of 

actual population counts of output areas. First of all, the areal weighting method was 

applied. This model is the least accurate within interpolated population results. This 

may have occurred due to the extent of small residential areas within the larger output 

areas. The areal weighting method distributes population counts to all areas without 

considering non-residential areas within the target areas. Secondly, the binary 

dasymetric method was applied. Binary dasymetric interpolation methods utilised 

additional datasets to distribute spatial variables, albeit, the areal weighting method does 

not employ auxiliary datasets. The use of a land cover map as additional information 

achieved good results in the study region. The volumetric estimation model used 

building volume information and obtained relatively acceptable population totals. 

Finally, the address-weighted interpolation approach performs most consistently across 

study regions within the conducted areal interpolation frameworks.  

The relationship between the result of population estimates and the additional datasets is 

statistically evaluated by comparing their accuracies. Also, correlation coefficients (R2) 

and root mean square errors (RMSEs) were measured. Interpolation results shows that 

residential building address point data provided the lowest RMSE values and the 

highest R2 values in Leicester City. The binary dasymetric mapping method provided 

the second lowest RMSE values and acceptable R2 values. In addition to this, the 

highest RMSE and the highest R2 values were provided by the areal weighting method. 
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The best estimated population values were obtained by making use of the address-

weighted dasymetric approach where R2 values are greater than 0.93. All the results of 

the error measurements strongly suggested that the accurate residential area and 

residential building delineation is required for reliable spatial variable interpolation. 

Scatterplots of areal interpolation results were created to visualise the difference 

between actual population reported by census and predicted population values. This 

study indicates that the address-weighted dasymetric model produced the most accurate 

population estimates, followed by the binary dasymetric mapping method and the 

volumetric estimation technique. Conversely, the simple areal weighting technique 

achieves the least accurate population estimation results in terms of regression 

coefficient.  

Overall, the proposed dasymetric mapping model indicates considerable improvement 

over the areal weighting interpolation technique in the instance of Leicester City. 

Differences in population estimates show that the predicted results fully rely on the 

applied interpolation approach and the used control variables. The study shows that the 

address-weighted dasymetric model performs relatively better than both areal weighting 

and the binary dasymetric method in the City of Leicester. Consequently, if building 

address point datasets are available, they can be used to generate precise population 

estimates at any defined spatial level. These population disaggregation models were 

applied to the Borough of Kensington and Chelsea, London, in order to measure the 

performance of the proposed method in different environments. The Borough of 

Kensington and Chelsea has more complex building structures, more dense residential 

areas and more high-rise building blocks than Leicester City. As presented in the 

Leicester case, dasymetric methods have produced precise population estimates in 

sparely dense urban areas. The performance of the dasymetric methods and selected 

ancillary datasets has been examined in more densely urban areas. The results of the 

population estimates are detailed in the following chapter. 
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CHAPTER 5 

5 Areal interpolation results for the Borough of Kensington 
and Chelsea 

5.1 Introduction 

This chapter contains the results of areal interpolation approaches for the Borough of 

Kensington and Chelsea, London. The study area is characterised by more high-rise 

buildings compared to the City of Leicester and the authority contains a wide range of 

buildings and structures. Three existing and two novel areal interpolation processes 

were used to estimate population at small-area level in more dense residential areas. The 

UK 2011 census counts were disaggregated using the same areal interpolation 

approaches used for the City of Leicester. This is to allow the performance of each 

interpolation method to be compared by applying these methods in densely and sparsely 

populated environments. The census wards were used as source zones, output areas as 

target zones and external input data as control variables, as indicated in case site one. A 

25cm spatial resolution aerial photography was used as ancillary input for the binary 

dasymetric approach. The building height derived building volumes and residential 

address point datasets were used as ancillary inputs to estimate population at the finest 

output level. The address-weighted dasymetric model was refined using building 

occupancy information as ancillary control variables. The main objective is to apply 

these interpolation methods with several external inputs in order to measure the 

performance of alternative interpolation techniques to obtain precise population 

estimates at intended geographical scale. All the dasymetric mapping methods obtain 

relatively precise estimation results in the implemented areas.  

The accuracy measurements explained in Chapter 3 were utilised in order to assess the 

accuracy of the results of dasymetrically provided population estimates. They are 

RMSE, S and R squared measurements. Due to the availability of actual output area 

population, it is possible to compare the performance of each population estimation 

model for the accuracy of results and the validation of areal interpolation techniques. 

The estimation maps, regression models and residual maps were observed for each areal 
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interpolation based result in order to detect the relationship between the estimated 

population values and the census released true population counts. Estimation results 

were plotted against actual population in order to observe how well the points are 

spread around the regression line.  

The results of the areal interpolation processes are represented in Section 5.2. Section 

5.3 presents the comparisons of the areal interpolation processes used to generate 

population estimates. This comparison includes that of the areal weighting method and 

the binary dasymetric mapping, the volumetric estimation model and the address-

weighted dasymetric method. As a consequence, Section 5.4 is a summary of population 

estimation results for the study region.   

5.2 The Results of the Areal Interpolation Approaches 

The same interpolation methods where employed in the Borough of Kensington and 

Chelsea. The proposed dasymetric mapping frameworks were performed in the case of 

Leicester City (see Chapter 4) and the interpolation results were compared. In the 

second study case, these interpolation processes were applied in a different environment 

to examine the performance of the disaggregation process and the chosen external input 

data. In the following sections, the results of each method are presented.  

5.2.1 The areal weighting interpolation method 

The areal-weighted process was used to estimate population totals at the output area 

level in the Borough of Kensington and Chelsea as it was done to Leicester City. The 

population totals were distributed from census wards to output areas. Figure 5.1 shows 

the results of the area-weighted technique obtained population estimates of output area 

for the Borough of Kensington and Chelsea. This approach estimates population totals 

concerning uniform distribution within the given administrative area. The population 

density of source zones and the size of target zones are the main parameters used to 

estimate population counts of each target. The assumption of homogenous distribution 

can be seen from the created estimation of the study region (see Figure 5.1). Population 

is mostly concentrated in areas of residential use. Non-residential area uses are the main 

error sources in the area-weighted interpolation technique.  Interpolation results show 

population totals are located everywhere without considering non-residential uses.  
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The true population of census wards reported by the census were disaggregated to 

output areas using the area-weighted method. The population density of the source units 

was measured by dividing the total area of census wards with their population. The 

measured population densities of the census ward were employed as control variables in 

order to estimate the total population total of each target zone. The area-based 

population estimates were mapped at output area level. The predicted population values 

were grouped into five classes in order to visualise overestimated and underestimated 

target zones. The legend of the estimation map shows that high-populated output areas 

are coloured dark brown and low-populated output areas are shown in a yellow colour. 

The map of the area-weighted population estimates shows that a large number of people 

are assigned to the large-sized target units (output areas with a brown colour) and a 

small number of people are placed to the small-sized target units (output areas with 

yellow colour). The population was overestimated in the areas where non-residential 

uses cover most of the study region. These high population estimates of target zones 

comprise large-sized output areas such as cover parks, trees and shopping centres. This 

can be seen clearly by comparing aerial imagery of the study area (see Figure 3.9) with 

the map of area-weighted obtained population estimates (Figure 5.1). However, 

population totals were underestimated in small-sized output areas. These outputs are 

widely cumulated in the central part of the study region. In reality, their actual 

population is higher and residential buildings are concentrated, but due to the nature of 

their area, less people are located incorrectly and they become subject to 

underestimation. 
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Figure 5.1: The population estimation results of the areal weighting interpolation 

method in the Borough of Kensington and Chelsea. © Crown Copyright/ database right 

2013, An Ordnance Survey/EDINA supplied service. 
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In order to test the relationship between estimated and actual population of each output 

area, a regression model was created by plotting estimated population against the census 

reported population values (see Figure 5.2). The point patterns were scattered randomly 

and do not show any consistency along regression line. The scatterplot suggests that the 

correlation is not strong between plotted values, and numerous outliers are obvious. 

This process demonstrates that the performance of the area-weighted interpolation 

approach completely depends on the uniform distribution of population within the given 

spatial units. It can be seen from the result of areal interpolation that the large-sized 

target zones are subject to overestimation, while the small-sized target zones are subject 

to underestimation. Similar estimation results were obtained for the City of Leicester. 

 

Figure 5.2: The regression model for the areal weighting interpolation method. The 

estimated population totals of the Borough of Kensington and Chelsea at output area 

level versus the actual population of output areas released by census. 
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In order to measure the accuracy of the predicted population values, the areal weighting 

obtained population totals were compared with the census derived population totals. 

Accuracy was assessed using the same measurements utilised for the results of areal 

interpolation in Leicester City; these are regression coefficient, the root mean square 

error (RMSE), and the square root of the mean square error (S). The area-weighted 

model obtained the correlation R2 is 0.17, which suggests that the relationship is very 

low and insignificant between the estimated population totals and the actual population 

counts. Table 5.1 shows the results of accuracy measurements of regression 

coefficients, R squared and RMSEs for the implemented interpolation techniques. These 

poor results can be expected in areal weighting due to its uniform assumption. The area-

weighted interpolation technique assumes uniform population distribution within the 

source zone. Therefore, the method overestimates in large output areas and 

underestimates in smaller output areas. RMSE allows the researcher to compare the 

magnitude of population estimation errors of alternative interpolation models that used 

common sets of spatial units within the study region (Langford, 2013, Reibel and 

Bufalino, 2005).  

Table 5.1: The accuracy measurements for the areal weighting interpolation obtained 

population estimates for the Borough of Kensington and Chelsea. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 1.041 

R Squared 0.175 

Standard Error 151.5 

RMSE 4.510 

Relative Error (RE) 0.4054 

Percentage Error (PE) 40.54% 

 

As a conclusion, the results indicate enormous differences between predicted values and 

actual population figures. In a normal situation, population totals are distributed 

heterogeneously and the homogenous distribution is generally not possible. Therefore 

the results of the area-based population estimates suggest that areal weighting process 

may not be a good choice to estimate population totals if the ancillary input data is 

available to distribute population. 
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5.2.2 The binary dasymetric mapping method 

This interpolation method estimates the population of target zones using the external 

input data to locate population totals to only residential area uses. An aerial 

photography derived land cover map was used to predict population counts at output 

areal level in the Borough of Kensington and Chelsea as it was processed for the City of 

Leicester. Figure 5.3 shows that binary mapping technique provided a dasymetrically 

population distribution surface. Census wards were used as source zones and land cover 

classification was used as a control variable to disaggregate population counts to target 

zones. The legend of the map demonstrates a range of population residual values in five 

classes with the colour changing from yellow to dark brown as the predicted population 

totals increase. As can be seen in the map of dasymetric surface (Figure 5.3), population 

totals were distributed to pre-defined residential areas within the source zones. A large 

number of people were placed in residential built-up areas (labelled by a brown colour) 

and the small numbers were placed to non-residential uses (labelled by white and 

yellow colours). It can be clearly seen from the classified imagery of the study area that 

highly populated areas overlap with predominantly residential areas and the zero and 

less populated areas coincide with non-residential areas (see Figure 3.9 in page 66 and 

Figure 3.11 in page 69). The land cover based interpolation process resulted in 

heterogeneous population distribution - similar estimation results were obtained in the 

case of Leicester City. While parks, tree cover areas and open areas are mostly zero-

populated areas, population is concentrated in areas where building structures are 

dominant (see Figure 5.3). These results indicate that when the binary masking of land 

cover data is used as control variables in the process of dasymetric mapping, population 

totals are disaggregated to built-up areas.  As a second stage, the disaggregated 

population totals were aggregated to outputs to estimated population totals at output 

area level. Figure 5.4 demonstrates the binary dasymetric approach obtained from total 

population estimates of output areas. This map of output areas with population totals 

shows output areas with low population counts in a yellow colour and those with high 

population in brown.   
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Figure 5.3: Dasymetric surface of the Borough of Kensington and Chelsea obtained by 

using the binary dasymetric mapping method. © Crown Copyright/ database right 2013, 

An Ordnance Survey/EDINA supplied service. 



   134 
 

 

Figure 5.4: Population estimation results of the binary dasymetric mapping method in 

the Borough of Kensington and Chelsea. © Crown Copyright/ database right 2013, An 

Ordnance Survey/EDINA supplied service. 



   135 
 

In order to measure the accuracy of the binary mapping model, the predicted and census 

reported population totals were compared. Accuracy is measured by using the same 

accuracy analysis used for the areal weighting obtained population estimates. The 

binary dasymetric technique has the correlation R2 is 0.68, which suggests the 

correlation is stronger than the area-weighted method between the estimated population 

and the census released population totals. Table 5.2 presents the regression coefficients, 

R squared and RMSEs for each applied disaggregation model. The use of ancillary 

imagery data in binary the dasymetric method obtained more accurate population 

estimation results than the areal weighting interpolation technique which does not use 

ancillary inputs. This is because inhabited areas are not taken into consideration in the 

areal weighting model and, as such, are subject to estimation errors in areas where non-

populated areas largely cover the given study area. Estimation results reveal that the 

performance of the binary interpolation process widely depends on the realistic 

classification of a land cover map. This is because the land cover based interpolation 

process disaggregates population counts through only built-up areas. If the classification 

of the imagery data were not relatively accurate, people may be incorrectly placed to 

non-residential uses. This misclassification may affect accuracy of the estimated 

population totals.  

Regression analysis was conducted for the land cover based population estimates in 

order to analyse the relationship between predicted and actual population values as 

created in the previous chapter. Figure 5.5 shows a scatterplot of the binary mapping 

method obtained estimation results. The y axis represents estimated values and x axis 

represents actual values. Most of the point patterns were spread around the regression 

line moving from the lower left to upper right, yet, there is large number of outliers. 

This scatterplot suggests that the correlation is stronger between the binary dasymetric 

method derived population values than the areal weighting obtained estimation results. 

These estimation results and the accuracy measurements show that the performance of 

the binary dasymetric mapping process directly depends on the accuracy of the 

classified imagery product. In land cover based population estimates, misclassified non-

residential areas and non-residential building structures within the built-up areas are the 

main error sources. The binary model mostly begins to fail in areas residential builds 

area mixed with non-residential manmade structures. People do not actually reside on 
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the non-residential structures. It is notable from the experiments that these areas are 

subject to overestimation and underestimation in the study region.  

 

Figure 5.5: Regression model for the binary dasymetric mapping interpolation method. 

The estimated population totals of the Borough of Kensington and Chelsea at output 

area level versus the actual population of output areas released by census. 

Table 5.2: Accuracy measurements for the binary dasymetric mapping method obtained 

population estimates for the Borough of Kensington and Chelsea. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 1.048 

R Squared 0.682 

Standard Error 47.94 

RMSE 0.899 

Relative Error (RE) 0.1260 

Percentage Error (PE) 12.60% 

Overall, these results suggest that external input data have substantial importance to 

distributed population totals throughout the study areas. When compared with the area-

weighted interpolation method, population values were located heterogeneously through 
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built-up areas within the target zones. However, non-residential building structures are 

the main error sources in the binary dasymetric process. Lastly, the accuracy assessment 

of the binary method reveals that external imagery data has improved the accuracy of 

population estimates. Remote sensing data can be used as control variables to 

disaggregate population totals from source zones to target zones. The result of binary 

dasymetric disaggregation for Kensington and Chelsea is slightly less accurate than for 

Leicester City. The reason can be that Kensington and Chelsea has more mixed-use 

building blocks. Also, classified images show that Leicester City has a more segregated 

land use compared to the Borough of Kensington and Chelsea (see, figures 3.10 and 

3.11). The segregation of land use may affect population estimation results. 

5.2.3 Building volume based dasymetric method 

The building volume based dasymetric approach is the third process utilised to 

disaggregate population counts from source zones to target zones. This approach used 

building volume data (see, Figure 5.6) as control variables in order to identify 

residential buildings for obtaining a dasymetric population estimation of the Borough of 

Kensington and Chelsea. Census wards were used as the source zones, and the output 

areas were used as target zones in order to obtain an estimation of population totals for 

each output area within the study region. Results of the population estimate obtained by 

the volumetric estimation method is illustrated in Figure 5.7. The volumetric method 

assumes that people reside only in residential housing units and population was 

assigned through the buildings according to their volumes. Therefore, realistic 

information of residential buildings is significant to distribute population counts.   

First of all, the population counts of source zones were disaggregated to individual 

residential buildings based on their volumes. Secondly, the population of buildings, 

which are intersecting target units, were summed to estimate the population at output 

area level. The estimated population totals were mapped showing the population of each 

output area in the Borough of Kensington and Chelsea. The predicted population totals 

were grouped into five classes to present lower estimated and higher estimated output 

areas. The legend of the estimation maps shows low-populated target units in a yellow 

colour and high-populated target units in a dark brown colour. Volume based technique 

considers the presence of both low and high-rise buildings within the study region. 

Building volume information is important to define residential information in the study 



   138 
 

area. The map of estimation results demonstrates that population counts are distributed 

heterogeneously through the target units based on their volumes (see Figure 5.7).  

 

Figure 5.6: Map of building volumes by output areas for the Borough of Kensington and 

Chelsea. © Crown Copyright/ database right 2013, An Ordnance Survey/EDINA 

supplied service and All LiDAR data © Airbus Defence and Space (Astrium Ltd. 2014). 
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Figure 5.7: Population estimation results of building volume based dasymetric mapping 

method in the Borough of Kensington and Chelsea. © Crown Copyright/ database right 

2013, An Ordnance Survey/EDINA supplied service. 
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In order to evaluate the correlation between building volumes based population totals 

and actual population counts, regression analysis was carried out similar to previously 

used interpolation models (see Figure 5.8). The predicted values were plotted in the y 

axis and census reported actual values were plotted in the x axis. The point patterns 

showed linear distribution around the regression line. There are several outliers of point 

patterns in the scatterplot. This regression analysis suggests that there is a very strong 

relation between volume based estimations with correlation value R2 of 0.81. Accuracy 

analyses suggest that there is a strong relation between volume based estimates and 

census reported actual population totals. This analysis demonstrates that a volumetric 

estimation method can achieve population estimates with higher accuracy that is close 

to actual population values by using realistic information of residential building 

volumes. The results also show that high-volume buildings are subject to overestimation 

and low-volume buildings are subject to underestimation. 

 

Figure 5.8: Regression model for the building volume based dasymetric mapping 

interpolation method. The estimated population totals of the Borough of Kensington and 

Chelsea at output area level versus the actual population of output areas released by 

census. 
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Table 5.3: Accuracy measurements for the volumetric estimation technique obtained 

population estimates for the Borough of Kensington and Chelsea. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 0.928 

R Squared 0.818 

Standard Error 29.32 

RMSE 0.746 

Relative Error (RE) 0.0773 

Percentage Error (PE) 7.73% 

Estimated and actual population values were compared to assess the accuracy of the 

volumetric dasymetric method. Accuracy was measured by using the same 

methodologies utilised in the previously implemented interpolation frameworks. Table 

5.3 presents the measurements of the regression coefficients, R squared and RMSEs for 

each of the implemented interpolation techniques. A comparison of the volumetric 

results with land cover based results reveals that residential building volume 

information is superior to estimate population totals in the case of the Borough of 

Kensington and Chelsea. The residential building data are much more detailed than 

residential land use and road networks to identify housing units where people actually 

reside (Sridharan and Qiu, 2013, Zandbergen, 2011). Therefore, population totals are 

placed to building footprint based on their volumes rather than residential uses. 

However, the social status of residents may affect building volume and resident 

relationship. Residential building volumes are likely to be higher in areas where people 

with higher incomes reside than areas where people with lower incomes live (Sridharan 

and Qiu, 2013). The volumetric estimation model has achieved a comparable estimation 

accuracy with a land cover based model deploying residential building volumes as 

control variables in the study region. As a result, population estimates may be more 

accurate using the volume of individual housing units. That makes the volume based 

model the method of choice when volumetric ancillary input data is available.  

5.2.4 The address points based dasymetric mapping method 

The address-weighted dasymetric methodology uses building point data in order to 

estimate population totals of target areas. The residential population totals were 
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disaggregated from source zones to target zones by using residential address points as 

ancillary inputs. Due to this reason, the number of residential housing units are primary 

control variables for the estimation process. This point based interpolation method was 

performed to estimate population totals at output area level in the Borough of 

Kensington and Chelsea. This study region is located in Greater London where high-rise 

buildings are mostly dominant and it is a densely populated urban area compared to 

Leicester City. The UK 2011 census of population values were disaggregated from 

census wards to output areas by using the building address points and the average 

household size as control variables. Figure 5.9 shows the population totals obtained by 

the address-weighted dasymetric model. Estimated population totals were grouped into 

five classes. The legend of the map demonstrates these classes in different colours: the 

yellow colour presents the lower estimated population totals and the dark brown colour 

presents the higher estimated population totals. It can be seen from the estimation map 

that more people were placed in target zones which consist of more housing units and 

less people were located to target zones which consist of less housing units. This can be 

clearly seen by comparing Figure 3.19 (on page 82), that shows the total numbers of 

residential housing units, with Figure 5.9 that presents address based population 

estimates for output areas. The predicted population totals were compared with the 

known census population figures to assess the performance of the building address 

based on estimation model and the measure the errors introduced. Estimation accuracy 

results in Table 5.4 illustrate the regression coefficients, RMSEs and R2 for dasymetric 

interpolation techniques. These calibration tests revealed that the address-weighted 

approach in densely populated areas produce less accurate population estimates than 

sparsely populated areas. These findings reveal that the address-weighted model 

produces a relatively precise estimation of population totals in areas where building 

address point datasets area is available. However, the chances of empty residential 

housing units are the main errors in this approach. The larger errors occurred in densely 

populated urban areas. These results illustrate that an address-weighted model 

performance fully depends on accurate address point information. 
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Figure 5.9: Population estimation results of the address-weighted dasymetric mapping 

method in the Borough of Kensington and Chelsea. © Crown Copyright/ database right 

2013, An Ordnance Survey/EDINA supplied service. 
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Regression analysis was carried out to observe if there is any variation of points from 

the regression line in the scatterplot. This scatterplot demonstrates the relationship 

between areal weighting interpolations obtained population totals and the actual 

population figures. The estimated population totals were plotted in the y axis and the 

true population counts was plotted in the x axis (see Figure 5.10). All point patterns are 

mostly fitted along a regression line by showing linear distribution, but few outliers can 

be seen in the scatterplot of address-weighted based estimates. This was done in order to 

underlay the relationship between single housing units and population totals to obtain 

accurate population totals for each area. This analysis shows that the performance of 

building an address based dasymetric process immediately depends on the number of 

residential housing units. The non-occupied housing units within the target zones are 

potential sources of error and they are subject to overestimation in the study region. The 

analyses provide evidence that population totals can successfully be estimated with the 

availability of high resolution building attribute information at intended scale. 

 

Figure 5.10: Regression model for the address-weighted dasymetric mapping 

interpolation method. The estimated population totals of the Borough of Kensington and 

Chelsea at output area level versus the actual population of output areas released by 

census. 
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Table 5.4: Accuracy measurements for the address-weighted dasymetric method 

obtained population estimates for the Borough of Kensington and Chelsea. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 1.056 

R Squared 0.847 

Standard Error 29.99 

RMSE 0.796 

Relative Error (RE) 0.1105 

Percentage Error (PE) 11.05% 

Overall, the address-weighted dasymetric methods obtained much more precise 

population estimates than the other interpolation methods used in the study region. It 

shows that an address based interpolation method can be a strong alternative dasymetric 

method when ancillary inputs are available for both source and target areas. The results 

of these studies attest that building point datasets can be used as control variables to 

disaggregate population totals from source zones to target areas.  

5.2.5 The address-weighted method with occupancy information 

This section combines the residential building address point data with building 

occupancy information in order to disaggregate population totals from source zones to 

target zones in the study region.  The main objective was to evaluate the performance of 

address point data with building occupancy information as external inputs in the 

dasymetric interpolation methodology. The address layer data shows the location of 

residential housing units within the source zones. Additionally, average population 

count per housing unit and building occupancy information are combined to an 

interpolation framework to distribute population totals to individual housing units 

within the given target zones. The address-weighted dasymetric model was used for the 

Borough of Kensington and Chelsea in order to disaggregate population values from 

census wards to output areas.  

The 2011 UK census values were located to output areas based on the control variables 

of building address and occupancy information. The estimated population values of 

output areas were mapped (see Figure 5.11). As can be seen from the legend in figure 

5.11, predicted values were grouped into five classes. The yellow colour represents 
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lower estimated values and the dark brown colour represents a higher estimated 

population value of output areas. The population estimation map demonstrates that 

population totals were distributed based on the number of residential housing units and 

occupancy information. As a result, more people were located to output areas, which 

consist of a large number of occupied residential units, and less people were located to 

output areas which consist of less numbers of occupied residential units.  

The estimated population values were compared with the true population counts to 

assess the accuracy of the occupancy based estimation model. The accuracy is 

calculated by using several measurements that were used in previous estimation 

methods. Table 5.5 shows the results of the accuracy measurements. The improved 

address-weighted dasymetric model significantly improved the accuracy of areal 

interpolation with the availably of residential building points and occupancy 

information. The best results of the population estimates were obtained for the study 

region by using building occupancy information as control variables. A correlation 

coefficient of 0.998 was provided and the lowest RMSE value was obtained for all the 

output areas. All accuracy analyses suggest that the relationship is very strong between 

predicted and actual population counts. The results show that a very low number of 

people are placed incorrectly. It determines that the estimated values are very close to 

the actual population counts. These results reveal that the areal interpolation methods 

with ancillary data produced similar estimation results as reported in previous studies 

(Zandbergen and Ignizio, 2010, Hawley and Moellering, 2005). 
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Figure 5.11: Population estimation results of the refined address-weighted dasymetric 

mapping method in the Borough of Kensington and Chelsea. © Crown Copyright/ 

database right 2013, An Ordnance Survey/EDINA supplied service. 
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In order to evaluate the relationship between actual population counts and the estimated 

population totals, a regression analysis was carried out for the building address point 

and the occupancy based interpolation approach. The predicted population values were 

plotted in the y axis and the true values were plotted in the x axis in the scatterplot (see 

Figure 5.12). The point patterns were moving from lower left to upper right along the 

regression line. There are not any important outliers in the point patterns. The figure 

suggests that the relationship is very strong between building occupancy based 

population estimates and the actual value. This analysis represents the performance of 

the building address based dasymetric process depends on the accurate number of 

residential buildings and the occupancy information for the study region. In addition to 

this, the usage of realistic occupancy information mostly decreased the overestimated 

population totals in target areas where there is a significant number of non-occupied 

housing units. This can be clearly seen comparing the scatterplots of the address-

weighted (Section 5.2.4) and the refined address-weighted (Section 5.2.5) dasymetric 

frameworks. 

 

Figure 5.12: Regression model for the refined address-weighted dasymetric mapping 

interpolation method. The estimated population totals of the Borough of Kensington and 

Chelsea at output area level versus the actual population of output areas released by 

census. 
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Table 5.5: Accuracy measurements for the improved address-weighted dasymetric 

method obtained population estimates for the Borough of Kensington and Chelsea. 

Accuracy Measurements Accuracy Results 

Regression Coefficients 1.002 

R Squared 0.997 

Standard Error 3.67 

RMSE 0.238 

Relative Error (RE) 0.0121 

Percentage Error (PE) 1.21% 

With the help of occupancy information, occupied housing units were used to estimate 

population totals, and there are not any significant overestimated and underestimated 

population totals in the occupancy information based population estimates. This is 

because non-occupied housing units are not considered and the population totals are 

disaggregated to the occupied housing units correctly. The address-weighted dasymetric 

model with residential address points and occupancy information provides consistently 

precise interpolation results in small-area population estimates. These outcomes show 

that the choice of ancillary input data is important to determine the location of 

residential housing units. The address points based dasymetric with occupancy data 

provide the best estimates among the tested areal interpolation. The tested dasymetric 

interpolation models show a marginal improvement over area-weighted interpolation. 

Similar results were obtained by Langford, 2013. The availability of address point data 

provides an opportunity to perform interpolation models in the studies of population 

estimates, at least in the UK context.  

5.3 Comparison of Areal Interpolation Approaches 

This present the comparison of the estimation results of areal interpolation approaches 

for the Borough of Kensington and Chelsea. In this section, the results of areal 

interpolation techniques were compared in order to observe the performance of each 

population disaggregation method. Firstly, the differences between the area-weighted 

method and the binary dasymetric mapping technique were provided. Secondly, the 

building volume based estimation method and the address-weighted dasymetric 

approach were compared for measuring the accuracy of population estimation models. 
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The estimation maps show that there are inevitable differences between all implemented 

interpolation techniques. This is because each method requires different ancillary input 

data and their assumption is different in the distribution of population totals. 

Comparison results demonstrate that the conducted interpolation approaches and the 

chosen external input data perform well in distributing population counts in the study 

area. In the following sub-sections, the results of comparisons are described in detail.   

5.3.1 Comparison of areal weighting and the binary dasymetric methods 

In this section, the results of the area-weighted and binary methods were compared. 

Estimation differences show the superiority and weakness of applied interpolation 

methods in the same environments. The areal weighting and the binary methods 

obtained estimation results were provided in previous sections (Section 5.2.1 and 5.2.2). 

Residual maps were created by subtracting actual population totals reported by census 

from the estimated population. Figure 5.13 demonstrates the residual map of the area-

weighted method obtained population totals, and Figure 5.14 shows the residual map of 

the binary dasymetric method provided population estimates at output areal level. The 

residual maps demonstrate how well interpolation methods estimate population totals of 

target units. In the residual maps, the estimation errors were grouped into five classes 

with the labelled colour changing from blue to red as the population residuals increase. 

Blue tones represent negative estimation errors and red tones represent positive 

estimation errors. The middle class of the distribution is coloured yellow and represents 

output areas with less than 25 people incorrectly placed. The spatial error distribution 

helps to visualise higher negative, moderate and higher positive estimation errors. The 

results of mapping the differences between these interpolation approaches in the case of 

the Borough of Kensington and Chelsea show that population totals disaggregated 

according to the assumption of each interpolation. 

The spatial distribution of population estimate errors obtained from the areal weighting 

interpolation model shows that the population was overestimated in areas where no-

residential areas cover large parts of the study region. Looking at the areal imagery of 

the study region, it can be easily seen that the overestimated areas mostly overlap with 

these non-populated zones (see, Figure 3.9 in Chapter 3). These green areas are located 

in the northern and western part of the Borough of Kensington and Chelsea. The other 

apparent feature is the non-built-up areas close to the boundary of study regions (see 
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Figure 3.11 in page 69). The method indicates that large negative residuals were 

obtained in areas where actual population totals are high, and the area of output areas 

are smaller compare to the output areas close to the boundary of the study region. As 

mentioned in the preceding chapter, the area-weighted method assumes that populations 

are distributed homogeneously within the source zones.  Because of this reason the areal 

weighting method assigns population totals everywhere in target zones and 

underestimate population totals in small-sized target areas. The only superiority of the 

areal weighting method is that it does not require any external input data. In order to 

obtain relatively precise population estimates, population totals must be distributed 

uniformly, but this is not in reality.  

The binary dasymetric method assumes heterogonous population distribution within the 

source zones, unlike the area-weighted interpolation. This method places the people to 

only built-up areas. This study notes that the differences between areal weighting and 

binary population mapping are smaller in the target units that are predominantly 

inhabited areas. The differences were larger in the larger-sized target units that cover 

both inhabited and uninhabited zones. The spatial distribution of population estimation 

errors obtained from the area-weighted (Figure 5.13) and the binary dasymetric 

mapping method (Figure 5.14) reveal that populations were overestimated in the large-

sized output areas and underestimated in the small-sized output areas. From the figures, 

orange coloured output areas appear much more in the residual map of binary method 

obtained estimates. This proves that the binary method generates better population 

estimation results with the relatively accurate imagery classification as control 

variables. The area-based interpolation method obtained the worst estimation results 

within the applied interpolation models. Similar results can be found in Chapter 4. All 

interpolation results suggest that the areal interpolation models show substantial 

difficulty in predicting population count in areas where population is distributed 

heterogeneously because of the variations in topography and regional development 

within source zones (Brinegar and Popick, 2010, Wu et al., 2008, Mennis and Hultgren, 

2006b, Harvey, 2002).  

 

 



   152 
 

 

Figure 5.13: Residual map of areal weighting method obtained population estimates in 

the Borough of Kensington and Chelsea. © Crown Copyright/ database right 2013, An 

Ordnance Survey/EDINA supplied service 
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Figure 5.14: Residual map of the binary dasymetric mapping method obtained 

population estimates in the Borough of Kensington and Chelsea. © Crown Copyright/ 

database right 2013, An Ordnance Survey/EDINA supplied service 
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In order to test the relationship between population estimation residuals and target units, 

spatial autocorrelation analysis of Moran’s I was applied. Figure 5.15 and Figure 5.16 

show the spatial autocorrelation results of the areal weighting and the binary dasymetric 

mapping methods. The residuals of the areal interpolation based population estimates 

has a Moran’s I value of 0.020894 and the residuals of binary mapping method has a 

value of 0.033158. The analysis results show that the residual of areal weighted method 

based estimations are randomly distributed over target zones in the Borough of 

Kensington and Chelsea. Autocorrelation analysis also indicates a clustered distribution 

of the binary mapping yielded population residuals. It means that the correlation 

between population totals and the space depends on ancillary data of the binary masking 

image used as control variables to disaggregate population totals.   

 

Figure 5.15: Spatial autocorrelation of the areal weighting method provided population 

residuals in the Borough of Kensington and Chelsea 
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Figure 5.16: Spatial autocorrelation of the binary dasymetric mapping provided 

population residuals in the Borough of Kensington and Chelsea 

5.3.2 Comparison of the volumetric and the address-weighted methods 

This section compares volumetric estimation and address-weighted dasymetric 

techniques. First of all, the census reported true population was subtracted from the 

estimates population values to observe overestimated and underestimated target units. 

These residual maps help to demonstrate the difference between both dasymetric 

mapping methods. Additionally, they allow measuring of the performance of 

implemented interpolation methods in the study region.  Figure 5.17 shows the spatial 

pattern of errors captured using volumetric estimation and Figure 5.18 shows the spatial 

pattern of errors produced using the address-weighted dasymetric method. The legend 

of the estimated error maps display residuals grouped into five classes to show 

overestimated and underestimated target units. Figure 5.19 shows the spatial pattern of 

errors captured using the occupancy based address weighted method. The legend of this 

residual map was re-structured into three classes to show negative and positive 

residuals. Negative residuals were shown by blue colours and positive residuals were 

shown by red colours. Yellow colours show the output areas where residuals of 

population predictions lie between -25 and +25. The spatial distribution of estimation 
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errors reveals that these approaches yielded different residuals in output areas. This is 

because assumptions of interpolation models already described in Chapter 3 were used 

to obtain different population estimates based on the weighing factor of ancillary input 

data.  

The volumetric estimation method places people by using building volumes as control 

variables. Therefore, larger building volumes are subject to positive estimation residuals 

and smaller building volumes are subject to a negative estimation error. While spatial 

distribution of errors reveals that there are considerable negative estimation errors and 

positive estimation errors over the study region (see Figure 5.17), the address-weighted 

dasymetric mapping model using address point data produced the lowest error patterns 

compared to other tested models (see Figure 5.18). This was due to the use of address 

data as external input data that provides the location of building units by showing where 

people actually reside. The volumetric estimation method obtained less accurate 

estimation results than the two address-weighted models that use residential address 

points as ancillary variables. In Figure 5.17, the spatial distributions of error patterns 

reveal that a few of the output areas were coloured yellow and most of the output areas 

were labelled in an orange colour all over the study region. In the central and north 

easterly parts of the study region, the most output areas were labelled in a brown and 

dark brown colour. This residual map shows that estimated population totals are close to 

census reported actual counts, and there are not significant negative estimation errors. 

However, there are various positive estimation errors due to the assumption that all 

residential houses are occupied. This interpolation estimation result is understandable 

because residential building address points theoretically indicate where people actually 

live. Similar results were obtained when the address based method was applied for the 

City of Leicester.  
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Figure 5.17: Residual map of volume based dasymetric mapping method obtained 

population estimates in the Borough of Kensington and Chelsea. © Crown Copyright/ 

database right 2013, An Ordnance Survey/EDINA supplied service 
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Figure 5.18: Residual map of the address-weighted dasymetric mapping method 

obtained population estimates in the Borough of Kensington and Chelsea. © Crown 

Copyright/ database right 2013, An Ordnance Survey/EDINA supplied service 
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Figure 5.19: Residual map of the address-weighted dasymetric mapping method 

obtained population estimates using occupancy datasets in the Borough of Kensington 

and Chelsea. © Crown Copyright/ database right 2013, An Ordnance Survey/EDINA 

supplied service 
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In order to measure the relation between estimation residuals and local areas, spatial 

autocorrelation analysis of Moran’s I was also applied for the results of the volumetric 

estimation and the address-weighted dasymetric models. The spatial autocorrelation of 

the results of volumetric estimation, and the address-weighted and the occupancy data 

based disaggregation model are shown in figures 5.20, 5.21 and 5.22.The residuals of 

building volume based population estimates has a Moran’s I value of 0.000495, 

building addresses based estimations has a value of 0.298596 and occupancy datasets 

based estimations has a value of -0.025765. The results of autocorrelation analysis 

display that the residual of volumetric method based estimations were randomly 

distributed over target zones in the Borough of Kensington and Chelsea. Therefore, 

there is no negative and positive correlation between the observed value and 

neighbouring locations. However, the result of autocorrelation analysis shows a 

clustered distribution of the address-weighted method obtained population residuals. 

The application result indicates a random distribution of population residuals in the 

building volumes and building address points used to estimate population totals. 

Therefore, there is not any negative and positive correlation between the observed value 

and neighbouring locations. However, the residuals of the address-weighted model are 

spatially clustered when building addresses and occupancy information were combined 

and used as ancillary datasets to disaggregate population values. 

 
Figure 5.20: Spatial autocorrelation of the volumetric estimation model provided 

population residuals in the Borough of Kensington and Chelsea. 
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Figure 5.21: Spatial autocorrelation of the address-weighted dasymetric method 

provided population residuals in the Borough of Kensington and Chelsea. 

 

Figure 5.22: Spatial autocorrelation of the address-weighted method using occupancy 

data obtained population residuals in the Borough of Kensington and Chelsea. 
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5.4 Summary 

The same areal interpolation techniques – the area-weighted, land cover based, building 

volume based, the address-weighted method, occupancy information, and address point 

data based interpolation methods – were conducted in the Borough of Kensington and 

Chelsea to estimate population totals at output areas level. This was done to find the 

most appropriate estimation method based on data availability. The estimation results 

show that the assumption of the population estimation model makes different population 

estimates in target areas. The estimations confirm that the external data resources help 

to estimate population totals when they contain information to determine the location of 

residential uses. Thus, the performance of the areal interpolation methods was tested by 

applying these interpolation methods in the Borough of Kensington and Chelsea.  

The refined address-weighted and volumetric dasymetric interpolation methods perform 

better than the binary dasymetric and areal weighting interpolation approaches. 

Theoretically, national housing unit address points datasets supply accurate locations of 

individual housing units and every non-residential unit within an authority.  It can be 

considered that the density of housing unit address points is closely related to 

population density (Zandbergen, 2011).  Building address point datasets have potential 

to define residential housing units, and building volume information may determine 

different housing height and characteristics. However, the binary dasymetric mapping 

model using land use data as control variables results in less accurate dasymetric 

methods than the building volume based estimation and the address-weighted 

estimation techniques. When these techniques are employed to any other areas, different 

estimation results may likely emerge. However, this dasymetric mapping method can be 

applied to other intended areas where ancillary inputs area available. The address-

weighted method was employed by using the ancillary data of residential address points, 

occupancy information and average housing unit in order to select the most convenient 

dasymetric method in small-area population estimates. Dasymetrically estimated 

population totals generated with different ancillary information were compared. The 

estimated population totals by the address-weighted were most close to the actual 

population figures than the population estimates obtained from the other areal 

interpolation model.  
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To perform a statistical relationship between estimated and actual population totals, 

regression analysis was applied to define the correlation coefficients. For a validation 

and accuracy assessment, the estimation results are required to be compared with known 

census population counts for the target areas (output areas). Due to data availability of 

the actual population of output areas it was possible to validate results. Higher accuracy 

resulted when building address points and occupancy information was integrated into 

the address-weighted dasymetric model based on the RMSE. Although dasymetric 

interpolation techniques produce better estimation results, the accuracy of population 

distribution varies with the used additional variables. In this case, the occupancy of 

building information produced the least error at output area level population estimates. 

However, the best estimated population values were obtained by making use of the 

address-weighted dasymetric approach, where R2 values are greater than 0.97.  

The different assumptions for the dasymetric mapping models generate different 

population estimate surfaces. Differences in estimation models show that the prediction 

results fully rely on the applied interpolation approach and the used control variables. 

This can be seen from the residual maps of estimated population. The address-weighted 

and volumetric dasymetric interpolation methods perform better than other used areal 

interpolation approaches. Theoretically, national housing unit address point datasets 

supply the accurate location of individual housing units and every non-residential unit 

within an authority.  It can be recognised that the density of housing unit address points 

is closely related to population density (Zandbergen, 2011). The building address point 

datasets also have potential to define residential housing units and building volume 

information to determine different housing height and characteristics. The comparison 

of dasymetric areal interpolation techniques shows that volume and the number of 

housing units is a more stable population indicator. On the contrary, a simple areal 

weighting interpolation method gives the worst population interpolation results. This 

technique does not use any ancillary data besides source and target units. Therefore, 

population may distribute to non-residential land use area by applying this approach. 

When additional datasets do not exist, a simple areal interpolation method may be used 

to disaggregate population counts to smaller geographies.   
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CHAPTER 6 

6 Discussion 

6.1 Introduction 

As discussed in the literature review, various forms of areal interpolation approaches 

have been attempted in recent times to disaggregate population totals from source zones 

to an intended spatial level of target zones (Alahmadi et al., 2013, Azar et al., 2013, 

Bentley et al., 2013, Langford, 2013, Upegui and Viel, 2012, Kim and Yao, 2010, Su et 

al., 2010, Briggs et al., 2007, Langford, 2007, Harvey, 2002, Fisher and Langford, 1996, 

Xie, 1995, Wright, 1936). Each interpolation technique makes use of different external 

input data in order to disaggregate population counts. To date, land cover map, aerial 

photograph and cadastral datasets have been used as ancillary inputs in interpolation 

methodology. Hitherto, researchers have very recently used residential building address 

points and residential building volume information for generating population estimates 

with the availability of building address points (Sridharan and Qiu, 2013, Zandbergen, 

2011, Tapp, 2010). The study has focused on using novel ancillary datasets in spatial 

population distribution models to improve small-area population estimates. In 

addressing the aim of the study, a number of research questions that were raised by the 

authors of underpinning research are advanced in this study, they were: 

1. Do high resolution aerial photography-derived land use/cover datasets and 

LiDAR-derived building volumes used as external datasets in binary dasymetric 

mapping and volumetric estimation methods increase the accuracy of population 

estimates? 

2. How well do the datasets of residential housing units perform as control 

variables in the process of dasymetric mapping in order to obtain small area 

population estimates?  

3. In the address-weighted dasymetric model, how much does the availability of 

occupied housing unit’s datasets improve the estimate of population? 
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4. How well do the models of areal interpolation with innovative ancillary datasets 

perform in high density and low density areas of population and what are the 

limiting factors in the approaches developed?  

The research questions were addressed by applying spatial disaggregation models and 

the results of population estimates obtained by using areal interpolation approaches 

were provided in Chapter 4. The generated population estimates were compared with 

census reported actual population values at output area level and finest geographical 

output in census hierarchy, in order to determine the closeness of estimated population 

totals to the known population values. These interpolation methodologies were applied 

to London in order to observe the performance of these used methods in different urban 

environments and the results of the estimation were presented in Chapter 5. This study 

also attempted to determine the effect of ancillary data inputs in order to obtain 

population estimates in areas where population density and the structure of settlements 

are different. 

This chapter provides an evaluation of the population estimation results. These results 

are discussed in the following sections. Section 6.2 discusses the disaggregation results 

of existing areal interpolation techniques and compared the estimation results for both 

case areas. Section 6.3 provides the estimation results of the novel dasymetric mapping 

method and compared their results in the study regions. Finally, Section 6.4 provides a 

summary of the areal interpolation methods adopted and summarises the findings in this 

chapter. 

6.2 Discussion of the Results of Existing Approaches 

The results reported here make use of the 2011 United Kingdom Census demographic 

data to spatially disaggregate population information from census wards to output areas.  

This research found that the aggregated population totals of source zones can be 

distributed to smaller target zones by using population disaggregation models. The 

process of dasymetric mapping models demonstrates that the external input data of 

disaggregation frameworks aid in disaggregating population totals to smaller spatial 

units. The proposed dasymetric approaches perform mostly better than the areal 

weighting interpolation method. This is because dasymetric mapping processes use 

ancillary data, while the area-weighted method distributes population totals everywhere 

in source zones within the study region. In reality there are residential and non-
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residential uses and the area-weighted method does not achieve accurate population 

distribution by disaggregating population counts to every location. The review of 

literature in Section 2.5 has indicated that previous researchers discussed the importance 

of dasymetric mapping methodology for obtaining population estimates in intended 

spatial units (Bajat et al., 2013, Petrov, 2012, Brinegar and Popick, 2010, Briggs et al., 

2007, Bielecka, 2005, Chen, 2002). The interpolation methods applied in this thesis 

obtained population estimates similar to those previously used disaggregation models 

(Mennis, 2009, Langford, 2007, Eicher and Brewer, 2001). Furthermore, using high 

resolution remotely sensed products, this research achieved much better estimation 

results compared to the area-weighted predicted population totals. 

The effect of external input data for the spatial disaggregation process was examined in 

both study regions. The impact of aerial photographs as ancillary data in the dasymetric 

mapping process was evaluated. Classified remotely sensed data were used as control 

variables to distribute population totals in the binary dasymetric mapping process used 

in past research (see chapter 2 and 3). The image classification results demonstrate that 

high resolution imagery data are relatively accurate in discriminating built-up areas 

from non-built-up land cover. The disadvantages of high resolution imagery data are 

that they require more computer storage and may be time consuming in the process of 

image classification compared to low resolution multispectral imagery produces based 

on the size of research area.  

The accuracy measurement of the disaggregation models used are summarised in Table 

6.1 for the City of Leicester and Table 6.2 for the Borough of Kensington and Chelsea 

by disaggregating from census wards to output areas. The accuracy is measured using 

root mean squared error (RMSE), relative error (RE) and percentage error (PE). These 

accuracy measurements allow the comparison of population estimation results. The 

area-weighted method yielded the least accurate population estimates with a RMSE 

value of 9.123 and with an RE score of 0.41 for the City of Leicester and with an RMSE 

of 4.510 and an RE of 0.40 for the Borough of Kensington and Chelsea. These 

measurements indicate that the correlation is relatively low between the predicted and 

the actual population counts in both study regions. The interpolation method showed 

substantial improvement in using the binary dasymetric method compared to the method 

using only zonal boundaries in both study regions. With the binary masks of land cover 

data as control variables, an RMSE score of 0.769 and an RE value of 0.08 are obtained 
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for Leicester City and an RMSE of 0.899 and an RE of 0.12 are achieved for the 

Borough of Kensington and Chelsea. Furthermore, the mean estimation error of output 

areas were quantified for each deployed interpolation technique (see Figure 6.1). This 

figure shows that the estimation error of population was largely reduced by using the 

control variables of aerial imagery in the binary mapping. In various succeeding studies, 

similar results on spatially distributed population estimates were obtained by showing a 

strong relationship between the binary mask of land cover data and the population 

distribution (Mennis, 2009, Eicher and Brewer, 2001, Fisher and Langford, 1996). The 

performance tests show that the estimated values are relatively close to actual 

population counts using the external data inputs of remote sensing imagery. 

Table 6.1: The measurements of accuracy for population disaggregation results from 

census wards to output areas for the City of Leicester 

Interpolation Techniques  Regression 
Coefficients 

R 
squared 

RMSE  RE PE 

Area-weighted using 
boundaries of source and 
target zones  

0.851 0.116 9.123 0.4101 41.01% 

Binary dasymetric using 
classified land cover form 
aerial photography  

0.922 0.780 0.642 0.0825 8.25% 

Volumetric estimation 
using residential building 
volumes obtained from 
LiDAR data 

0.901 0.735 0.769 0.0841 8.41% 

The address-weighted 
using building address 
point data from OS 
address layer 2 datasets 
only 

0.981 0.937 0.160 0.0407 4.07% 

The address-weighted 
using building address 
point data from OS 
address layer 2 datasets 
and occupancy 
information from ONS 

0.999 0.998 0.064 0.0108 1.08% 

Note: Mean population of target zones is 340 for Leicester. 
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Table 6.2: The measurements of accuracy for population disaggregation results from 

census wards to output areas for the Borough of Kensington and Chelsea 

Interpolation Techniques  Regression 
Coefficients 

R 
squared 

RMSE RE PE 

Area-weighted using 
boundaries of source and 
target zones  

1.041 0.175 4.510 0.4054 40.54
% 

Binary dasymetric using 
classified land cover form 
aerial photography  

1.048 0.682 0.899 0.1260 12.60
% 

Volumetric estimation 
using residential building 
volumes obtained from 
LiDAR data 

0.928 0.818 0.746 0.0773 7.73% 

The address-weighted using 
building address point data 
from OS address layer 2 
datasets only 

1.056 0.847 0.796 0.1105 11.05
% 

The address-weighted using 
building address point data 
from OS address layer 2 
datasets and occupancy 
information from ONS 

1.002 0.997 0.238 0.0121 1.21% 

Note: Mean population of target zones is 252 for Kensington and Chelsea. 

 

Figure 6.1: The histogram of errors of estimated population for both study areas. a) 

Areal weighting, b) the binary mapping, c) the volumetric estimation, d) the address-

weighted, and e) the address-weighted interpolation method with occupancy data inputs. 
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The date of the ancillary imagery data may be the main error source that has affected 

the results of the population estimates of the study. Aerial images were taken by OS a 

year before the conduct of the UK 2011 census. However, even as the year of the 

imagery data is in 2010, it may not affect the estimation results. The binary method also 

has some limitations. The first inevitable shortcoming of the land cover based mapping 

method is misclassified pixels of land cover classes based on the decision of analysts in 

the classification process. The second limitation is the difficulty of differentiation of 

high-rise and low-rise building units. The Borough of Kensington and Chelsea has 

relatively high-rise buildings, on the other hand Leicester has a few high-rise building 

blocks. This limitation has been reduced by using the LiDAR-derived building height 

information as ancillary data for the volumetric estimation model. The third challenging 

issue is that built-up areas may consist of institutional, commercial and industrial 

building structures. The land cover classification based on the population disaggregation 

method distributes population counts by considering built-up areas as residential units. 

For both case studies, built-up areas were used as control variables in the binary method 

to spatially distribute population totals at output areas. The results were validated 

comparing the predicted values with census reported population values. In conclusion, 

the different assumptions of population disaggregation models generated different 

population estimates in the study regions. With the ancillary input data of imagery 

products, estimation results have considerably improved compared to the interpolation 

method that uses zonal boundaries only. It has been clearly seen in the comparison of 

the estimation results that areal weighting distributes population totals to output areas 

based on the size of target units; while the results of binary mapping uses binary 

dasymetric zones to distribute population totals. 

6.3 Discussion of the Results of Novel Approaches 

This section discusses the results of novel dasymetric mapping approaches on spatially 

disaggregated population totals. The results of these novel approaches have been 

compared in terms of estimation differences. The main finding is that population totals 

can be disaggregated from larger source zones to smaller target units using high 

resolution external data inputs that constitute spatial location of population. The spatial 

disaggregation models were used in order to evaluate the performance of ancillary data 

inputs for distributing aggregated population totals. The benefit and superiority of using 

control variables was explained in the preceding successful studies (Bentley et al., 2013, 
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Langford, 2013, Leyk et al., 2013b, Sridharan and Qiu, 2013, Zandbergen, 2011, Lwin 

and Murayama, 2010). The dasymetric mapping techniques performed much better than 

the areal weighting interpolation by using additional information. The availability of 

actual population totals makes it easier to validate the accuracy of estimation results for 

each proposed areal interpolation method, and it helps in comparing the result of 

estimations with each other.  

The literature has shown that the data of building address points have been used very 

recently in dasymetric methodology (Zandbergen, 2011, Tapp, 2010). Furthermore, 

LiDAR-derived building height information has been utilised several times in the 

methodology of population estimation (Lu et al., 2011b, Dong et al., 2010, Lu et al., 

2010, Silván-Cárdenas et al., 2010). Similarly and more recently, Sridharan and Qiu 

(2013) and Lwin and Murayama (2010) used the building volume data as ancillary data 

in order to disaggregate population totals to smaller spatial units. This volumetric 

estimation and the address-weighted dasymetric process obtained highly good 

estimation results similar to the studies of Sridharan and Qiu (2013) and Zandbergen 

(2011). At this resolution of interpolation process, the address-weighted interpolation 

technique shows an improvement over the current areal interpolation approaches with 

sufficient accuracy. The dasymetric methodologies obtained very close estimation 

results to census reported actual population totals, by using high resolution building 

attributes and occupancy information. 

The work reported in this thesis discussed the impact of the used ancillary input datasets 

to estimate population counts using different interpolation methods. First of all, the 

effect of building height information on spatial disaggregation models has been 

evaluated. The literature review of volumetric estimation demonstrates that LiDAR-

derived height information allows the differentiation of high-rise and low-rise buildings 

to distribute population counts based on the weighting factor of each building. 

Compared to remote sensing imagery, the weakness of LiDAR data is that height data 

are expensive, require large computer storage and require more time to make the data 

useable as control variables in the dasymetric process. Secondly, the effect of building 

address point data on the estimated population totals has been tested. The results 

illustrate that address point performed well, giving detailed information of residential 

housing units when used as ancillary data in the dasymetric process. This accuracy has 

not been achieved using remote sensing imagery data. This is because it is difficult to 
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differentiate low-rise buildings from high-rise buildings. Although the use of building 

address point data as control variables for the dasymetric mapping process may require 

additional occupancy information for more accuracy on spatially distributed population 

estimates. 

The performance of the areal interpolation processes was measured by comparing the 

spatially distributed population estimates with census reported actual value of output 

areas. Table 6.1 and Table 6.2 above have shown the results of the accuracy assessment 

of interpolation methods for the City of Leicester and the Borough of Kensington and 

Chelsea, respectively. These measurements aim to observe the performance of each 

method. Considering the disaggregation of population totals from census wards to 

output areas, estimation results show that the address-weighted process with occupancy 

information performs most well with an RMSE value of 0.064 and an RE score of 0.010 

for the City of Leicester and an RMSE of 0.238 and an RE of 0.012 for the Borough of 

Kensington and Chelsea, by yielding the closest estimation values to actual values. With 

the availability of occupancy information, the used disaggregation method showed a 

considerable improvement over the other interpolation processes used in the current 

study. The results show the most accurate population estimates were obtained when the 

occupancy information was used in the areal interpolation process. Secondly, the 

address-weighted process with only building address points yielded good estimation 

results with an RMSE value of 0.160 and an RE score of 0.04 for the City of Leicester 

and an RMSE of 0.796 with an RE of 0.11 for the Borough of Kensington and Chelsea. 

These results are similar to the estimation results of Zandbergen (2011) who used high 

resolution address points in the dasymetric mapping method. The success of the 

address-weighted method can be attributed to the ability of the address layer data to 

differentiate residential building address points from non-residential building structures.  

The second most important reason is that the residential address point’s data have 

defined the location of residential houses where people reside. The residential building 

data are much more detailed than residential land use and road networks in identifying 

housing units where people actually reside (Qiu et al., 2010). Zandbergen (2011) used 

residential address points as ancillary data without considering occupied housing 

structures, however, the current study used residential housing units and the integration 

of occupancy information and address points considering non-occupied houses. Thirdly, 

with residential building volumes used as external data input in the dasymetric method, 
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an RMSE score of 0.769 with an RE value of 0.08 for the City of Leicester and an 

RMSE of 0.746 with an RE value of 0.07 for the Borough of Kensington and Chelsea 

are obtained, performing relatively well in population estimates. This result is similar to 

what Sridharan and Qiu (2013) obtained by using the volumetric estimation process in 

the case of the Borough of Kensington and Chelsea. When integrated with LiDAR 

derived building height information and building footprint information, the dasymetric 

model achieved a more accurate estimation of population totals. These results suggest 

that if the height data are available for the intended study area, it may have been used as 

external input on the spatially population disaggregation process. Additionally, the 

mean estimation error of output areas was detailed for each used interpolation technique 

in Figure 6.1. This table shows that the smallest estimation error was yielded by the 

address-weighted disaggregation model. Finally, as stated by Langford (2013), the 

selection of external inputs in dasymetric mapping provides a considerable difference in 

the results of population disaggregation process.   

The main concern is that LiDAR derived digital elevation models for the City of 

Leicester were compiled in 2002 and the ones for the Borough of Kensington and 

Chelsea were archived in 2012. This means that the old dated external data inputs may 

account for potential error and consequently affect population estimation results. When 

using only the building height information, it is difficult to differentiate residential 

building units from non-residential manmade structures. This is another major error 

source in the dasymetric mapping process. OS VectorMap District data were used to 

identify residential buildings. The 2012 dated ‘OS Address layer 2’ data were obtained 

for both case areas. The address point data has building usage information and identifies 

the residential housing units. However, non-occupied housing units are the potential 

error sources. This has been reduced by using building occupancy information. The 

address-weighted method was used twice. At first, building address points were used 

alone as a control variable, followed by the integration of address points and occupancy 

information used in the disaggregation process. With these two processes, substantial 

improvement was brought to the estimation result. 

Many published papers showed that different forms of dasymetric mapping methods 

have been used in population disaggregation and population estimations with the 

availability of external data inputs (see Section 2.5). The choice of an interpolation 

algorithm for population estimation largely depends on the availability of different types 
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of ancillary information of the intended study area. If the address point data are 

available, the address-weighted data can be preferable method because of the simplicity 

of the methodology. The other reason is that the dasymetric methods consider that 

people live in build-up areas, while the address-weighted method considers that people 

live in residential units within the build-up areas. This is the main superiority of the 

address-weighted method over dasymetric mapping techniques. In this study, the 

address-weighted dasymetric mapping model integrated with residential building 

address point, and occupancy information indicated significant development over 

existing interpolation techniques in both case sites. The superiority of this approach 

depends heavily on accurate average household sizes and the number of residential 

housing units. The complementary findings of the current study showed that the core 

contribution of using building attribute information as an ancillary data in dasymetric 

population mapping model improves dasymetric estimation accuracy with very 

reasonable estimation results, at least in the UK context, due to the availability of 

national address point data of each addressable unit. This is because, ‘the address layer 

2’ of OS data has the ability to discriminate residential and non-residential building 

structures at UK output area level, which is the finest spatial unit. Based on these 

findings, this research suggests that precise population estimates may be obtained in 

different geographical scales, particularly in areas where building attributes and 

occupancy data are available. 

6.4 Summary 

Five interpolation approaches were used in each study region to disaggregate population 

totals from census wards to output areas based on the UK census hierarchy. Owing to 

the different measurement functions of interpolation methods, they obtained different 

estimation results for output areas. The 2011 census reported population counts for 

these target zones allows validating the accuracy of estimated population values for 

both study regions. Furthermore, the actual values permit comparison with the spatial 

distribution of estimated error patterns of each disaggregation model. By taking the 

advantage of the actual population, the differences of estimation results based on areal 

interpolation models were discussed in this thesis. Additionally, the effects of utilised 

ancillary input data as control variables in the disaggregation process were discussed 

and stressed. The discussion chapter clearly shows that the results of areal interpolation 

techniques may have advantages and disadvantages based on the differences in 
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population density and the spatial characteristics of environments. As stated by 

Langford (2013), their performance may alter with specific conditions. 

Important outcomes have been obtained when creating dasymetric population surfaces 

and they were pointed out in the results chapters (Chapters 4 and 5) and discussed in 

this chapter. The most challenging issue of the dasymetric mapping method is to 

determine the residential uses in source areas. For the purpose of estimation population 

totals, the address-weighted dasymetric method has proved to be the most accurate of 

all interpolation approaches used. Additionally, neither the volumetric estimation 

method nor the existing binary methods have obtained more accurate results than the 

area-weighted interpolation techniques. The superior performance of the address-

weighted model mostly results from using address points datasets to define residential 

housing units and the additional information of occupancy rate assists to spatially 

distribute population totals to occupied housing units. This may be understood by 

comparing the accuracy assessment of all spatially disaggregating models. The 

dasymetric model using the point data of residential buildings shows significant 

improvement over existing interpolation approaches in both case sites. The superiority 

of this process needs to be further examined by applying the same technique to the areas 

where address point data is available. The advantages and disadvantages of these 

interpolation models and recommendations for future work will be concluded in the 

next chapter (Chapter 7). 
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CHAPTER 7 

7                                       Conclusion 

This chapter brings together results about improving population estimation models. The 

aim of this research was to develop novel ancillary datasets for the disaggregation of 

population totals to better estimate population. The research has used volumetric 

estimation and the address-weighted dasymetric models to obtain spatially distributed 

population surfaces to generate small-area population totals. LiDAR-derived building 

volumes and OS obtained building address point datasets and occupancy information 

has been used as sources of control variables in the process of interpolations. These 

estimation models and the data of ancillary inputs have been explained in the research 

methodology. The research has presented and evaluated the viability of using building 

volumes and building address points products in the dasymetric population distribution 

model.  The proposed interpolation methods were implemented in two local authority 

areas in the UK (the City of Leicester and the Royal Borough of Kensington and 

Chelsea). For validation of spatially distributed population surfaces, the areal 

interpolation provided estimation results were compared with census reported actual 

population counts of output areas. The address-weighted dasymetric mapping model 

using residential building information indicates significant improvement over existing 

interpolation techniques in the case sites. However, the superiority of this approach is 

completely based on accurate average household sizes and the number of occupied 

residential housing units.  

As indicated in previous studies and supported by the current work, a dasymetric 

framework can be used in population estimation and in creating the distribution of 

population maps on the intended scale. The results of tested interpolation techniques 

show that disaggregation methodology provides the most accurate estimation results 

with the help of Ordnance Survey based data of building address points and occupancy 

information, as control variables. The two improved methods have shown a higher 

performance in dasymetric mapping. The address-weighted model performs consistently 

better than other applied interpolation methods in both case areas. The tests have also 
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demonstrated that the application of occupancy information rate value can be used as 

ancillary data to substantially improve the accuracy of population estimation results. 

This work has refined and presented the Ordnance Survey data based population 

estimation model within the dasymetric mapping techniques. The study has shown that 

ancillary data inputs and the assumptions of different areal interpolation methods have 

impacts on spatially distributed population surfaces. With the integration of LiDAR 

derived building height information and building footprint information, the dasymetric 

model achieved a more accurate estimation of population totals. As indicated in the 

results and discussion chapters (4, 5, and 6), intelligent dasymetric mapping models 

have produced promising results with better accuracy than those previously adopted 

interpolation techniques. These refined estimation models have been tested for several 

densely and sparsely populated settlements; thus, an address-weighted framework based 

on OS data and ONS product has great potential to estimate population. The results also 

show that an address-weighed dasymetric method performs best when occupancy 

information is utilised. The accuracy of population estimates appears to be mainly 

influenced by the type and quality of the ancillary datasets, and the interpolation method 

adopted. Ordnance Survey acquired building address point datasets have the potential to 

be used with the proposed method to provide larger scale population estimates.   

7.1 Key Findings of the Disaggregation Process 

This thesis uses selected areal interpolation methods in the City of Leicester and the 

Borough of Kensington and Chelsea in order to address the research questions raised in 

Chapter 2. This section provides important, key findings based on the research 

objectives and aims that have emerged in the process of interpolations. The main 

objective of the study is to find the most appropriate population disaggregation model 

for obtaining population estimates. The different assumption of each model and the 

distribution of population densities in different urban environments are significantly 

important for estimation population totals in small-area level. This is because the used 

control variables may not work as a good predictor at the same spatial scale. The 

residential housing units are the finest geographical units where people reside. The 

complementary findings of the current study demonstrates the core contribution of using 

building attribute information, as an ancillary data in the dasymetric population 

mapping model improves dasymetric estimation accuracy. Additionally, inaccuracies in 
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additional datasets should be investigated. The accuracy of datasets plays key roles for 

successful population estimates in intended spatial scale.  

The actual census population totals for the City of Leicester and the Borough of 

Kensington and Chelsea released at census ward level were successfully distributed to 

output areas, which is the finest spatial unit using external data inputs. There is no 

benefit to using areal weighting interpolation when external inputs data are available to 

extract non-residential uses and redistribute population totals only to defined residential 

zones. In both densely populated and sparsely populated areas, the technique generates 

the least accurate results. This is because the process of area-weighted technique 

distributes population counts only based on the size of target areas. The binary mapping 

technique obtains better population estimates of target areas in the City of Leicester 

compared to the Borough of Kensington and Chelsea. Aerial image classification 

indicates that Leicester City has more segregated land use than the Borough of 

Kensington and Chelsea. Digital elevation models show low-rise buildings are dominant 

in the City of Leicester (see Chapter 3). For this reason, population is most likely 

distributed more homogeneously compared to London.  

Population density may change in residential areas due to the different spatial 

characteristics of building units. Therefore, aerial photography derived built-up areas 

may work as a good predictor to generate spatial distributed population surfaces in areas 

where the patterns of population distribution is uniform. This uniformity is because two-

dimensional products consider only the horizontal extent of building structures when 

disaggregating interested variables over the surface. However, the volumetric estimation 

model shows clear improvement over the binary mapping method in the Borough of 

Kensington and Chelsea. The LiDAR-derived building height data were used to 

calculate building volumes to distribute population counts. The datasets consider the 

horizontal and vertically stacked structures that have been used as indicator variables to 

estimate population totals. The study region of the Borough of Kensington and Chelsea, 

cover both high and low-rise buildings. With the availability of LiDAR data, building 

volumes can be used to estimate population estimates in areas, such as Kensington and 

Chelsea. 

The other important outcome is that interpolation frameworks provided different 

predicted population values in different urban areas. In both study regions, the address-
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weighted dasymetric method provided different estimation results when only building 

address points were used as control variables. This is most probably as a result of 

varying the numbers of non-occupied housing units. Accuracy measurements and 

scatterplots have shown that the method generates more accurate results in the City of 

Leicester. The address-weighted approach obtained very similar population estimates by 

integrating occupancy information into the dasymetric mapping process. Population 

counts can be located to occupied housing units within the target zones with the 

availability of accurate occupancy information by extracting non-occupied housing 

units.  

Overall, demographic datasets of national censuses are mostly published based on the 

census dissemination geographies. Population estimation models are usually needed 

when the user defined areas are dissimilar to census output units. In the current study, 

the application of the different dasymetric mapping models are based on remotely 

sensed products and Ordnance Survey based datasets. The generated results were 

evaluated using statistical and visual approaches. With the availability of actual census 

population figures, the results were validated and compared with each single 

interpolation technique. The models achieved reasonable results; the study demonstrates 

the use of dasymetric models to create the representation of population totals. The two 

improved interpolation techniques presented have proven to show better performance in 

dasymetric mapping. Through integration with LiDAR derived building height 

information and building footprint information, a dasymetric model achieved a more 

accurate estimation of population totals. Also, by applying dasymetric population 

mapping techniques to the City of Leicester, this research demonstrates that address 

point datasets and building volume information are able to improve the quality of 

population estimation significantly. OS-derived address point datasets have the potential 

to identify the smallest residential units. Therefore, dasymetric methods can be used to 

assign population to each residential housing unit.  

By using dasymetric methods (the address-weighted and volumetric estimation 

techniques), realistic population estimation can be calculated and distribution maps 

produced due to the strength of the dasymetric process in the differentiation of 

residential units and non-residential structures. It is understood that the quality of 

chosen datasets is important to show unpopulated areas. This study shows that the 

quality of chosen ancillary datasets and applied methodology influence the performance 
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of dasymetric areal interpolation to distribute population counts. Thus, this research 

contributes to the literature on dasymetric areal interpolation methods for population 

estimation. The estimate of population results indicates that the address-weighted 

dasymetric interpolation method is the most appropriate approach for spatially 

disaggregating the known population information in both study areas. The increasing 

availability of ancillary datasets provides significant potential enlargement to the 

adaptation of dasymetric population interpolation tools (Langford, 2013, Langford, 

2005, Martin et al., 2000).  

7.2 Research Question Revisited 

The main aim of this research, highlighted in Chapter 1, is to use novel ancillary 

datasets as control variables in dasymetric modelling to derive population estimates 

within the UK. The key findings have been summarised in the preceding section.  Now, 

the research questions are revisited to assess whether the issues raised have been 

successfully addressed. 

1. Do high resolution aerial photography-derived land cover/use datasets and 

LiDAR-derived building volumes used as external dataset in binary dasymetric 

mapping and volumetric estimation methods increase the accuracy of population 

estimates? 

The study has presented binary and volumetric models to spatially disaggregate 

population totals from census ward to output areas within the UK. Two study areas have 

been chosen for the purpose of examining these disaggregation approaches due to their 

differences in the density of building block and population. The classified aerial images 

derived binary dasymetric zones and the building volumes have been used to spatially 

disaggregate population totals in the given study areas. The classification of aerial 

images and total volumes of building blocks directly affected estimation results. 

Population totals have been spatially distributed, assuming a simple linear relationship 

between population counts, building volumes, and the total area of populated binary 

zones. On the one hand, the binary dasymetric mapping method generated slightly 

better estimation results in Leicester, and on the other hand, the volumetric estimation 

method generated better population estimations in the Borough of Kensington and 

Chelsea. However, population density may change over an administrative area based on 
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the density of residential building blocks, and mixed use of building blocks may affect 

estimation outcomes. In Kensington and Chelsea, this factor would most likely affect 

the results of the dasymetric mapping model. This question has been addressed by 

obtaining reasonable population estimated in both study areas. 

2. How well do the datasets of residential housing units perform as control 

variables in the process of dasymetric mapping in order to obtain small area 

population estimates?  

The research has presented an address based estimation model in order to estimate 

small-area population totals within the UK context. Residential housing units have been 

used as external variables in the process of dasymetric population mapping. The 

residential housing units are the finest geographical phenomena that indicate where 

people actually reside. The estimation models, using the ancillary datasets of accurate 

residential housing blocks, have generated more precise population estimates than the 

binary and volumetric approaches. However, the datasets of address points as a control 

variable are more sophisticated in population estimates, but unoccupied households are 

the main source of error in housing unit based population estimates. Again, this research 

question was successfully examined in the two study areas. 

3. In the address-weighted dasymetric model, how much does the availability of 

occupied housing unit’s datasets improve the estimate of population? 

The study has investigated the potential of OS datasets and local city council derived 

occupancy data (the combination of building address points and occupancy information) 

as control variables in the address-weighted interpolation method. These datasets 

consist of attribute information to refine the occupied residential housing units within 

each output area. Hence, the total number of occupied households have been multiplied 

by the average household size for the purpose of estimation population totals. Binary 

and volumetric estimation models have produced price estimation results, but with the 

advent of occupancy datasets, the address weighted approach provided the best 

estimation results with great accuracy for both study areas. 

4. How well do the models of areal interpolation with innovative ancillary datasets 

perform in high density and low density areas of population and what are the 

limiting factors of the approaches developed?  
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The developed dasymetric models were applied in both study areas for the purpose of 

comparison of interpolation models. As can be seen from the interpolation results in 

Chapter 4 and Chapter 5, the areal interpolation method generates similar results. On the 

one hand, the binary dasymetric method generates slightly better estimation results for 

the City of Leicester than Kensington and Chelsea. This could be due to the mixed use 

of building units which are more dominant in Kensington and Chelsea. On the other 

hand, the volumetric estimation model produced considerably more precise estimation 

results for Kensington and Chelsea than Leicester City due to the following reasons. 

First of all, the volumetric method establishes a linear relationship between population 

counts and building volumes: low-rise and high-rise housing units are mixed in 

Leicester City and high-rise building units are dominant in Kensington and Chelsea. 

Secondly, in bigger housing units, fewer populations can reside in the suburban areas of 

Leicester City. This is mostly related with the income of people, since higher income 

people live in bigger building complexes. Thirdly, white Britons are a majority in 

Kensington and Chelsea, while they are a minority in the City of Leicester (NeSS). The 

differences (variations) in ethnic origin probably account for population density changes 

in target areas in Leicester. All these differences directly affect the performance of 

volumetric estimation. When occupancy information is used as an additional dataset, the 

address-weighted method generated very close population counts to actual population 

figures in both study areas. Thus, this research has met the objectives of the study 

successfully.  

7.3 Contributions of this Research 

This research has added to the literature on improving the accuracy of population 

estimation models, shedding light on improvements made in dasymetric areal 

interpolation methods for population estimation. Two major contributions can be 

identified. The first main contribution of this study is that high resolution ancillary 

datasets assist in obtaining precise population estimates at small-area spatial resolution. 

The data of building address points and building volumes have advantages over other 

remote sensing datasets for use as a source of ancillary data in the dasymetric mapping 

process. With the help of these datasets, residential housing units can be defined within 

target zones. LiDAR-derived building volumes have been applied as control variables in 

the population disaggregation process. Secondly, the research evaluates the benefit of 
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building usage and building occupancy information as control variables in the 

dasymetric mapping process. In this implementation, a dasymetric mapping model 

provides significantly better estimation results by integrating occupancy information 

with building address points. Results obtained from this integration have proven that 

census estimation results can be very close to actual population figures with high 

accuracy. 

7.4 Limitations of the Study 

The implemented interpolation methodologies do have several limitations. The major 

shortcoming of the research is that areal interpolation methods with various ancillary 

datasets do not provide standard accuracy over the case areas. The spatial characteristics 

and different population density of study areas may have an impact on spatially 

distributed population surfaces. Secondly, there is the generalisation problem inherent 

in using limited case studies. That means, based on the conclusions drawn from two 

case areas, it may be hard to accept that the dasymetric mapping techniques performed 

are a good model to estimate population totals. The volumetric estimation and the 

address-weighted dasymetric models may yield less accurate estimation results in other 

urban environments. The third drawback of the interpolation method is that spatial 

disaggregation methods have been implemented in both case areas where validation 

data is available. The performances of these models need to be examined in different 

regions where validation data is not available. A fourth limitation of the dasymetric 

techniques reported here is that population estimates depend heavily on the number of 

residential housing units within the target areas which can be highly problematic where 

the national datasets of building address points do not exist. A fifth and final 

shortcoming is that the author has used census population counts. The censuses record 

population counts based on where people live at night. Census population counts are 

associated with only residential address locations (Martin, 2011, Martin et al., 2009), 

the methods estimate night time population and do not consider daytime population. 

These drawbacks are the starting point of future work.  

7.5 Recommendations for Future Work 

The following are suggested areas for extension of this research in the future. First, the 

method developed in this study used several datasets including aerial photography, the 
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boundaries of census output areas, building volumes and building address data in order 

to disaggregate the aggregated population figures. These ancillary variables may be 

inaccurate or errors can be introduced during the process of determining the residential 

building locations. These errors may affect the performance of the proposed dasymetric 

interpolation technique. For example, mislabelling of land cover and building usage 

types is an area that requires evaluation in future research. The performance of 

innovative dasymetric mapping methods will be further evaluated using a different 

resolution of ancillary datasets in different regions (more complex and larger areas) 

including the superiority of disaggregation methods.  

Secondly, population density is spatio-temporal variable. Therefore, daytime and night-

time population information may be a requirement for some applications, such as 

emergency management and market delineation and transportation construction and so 

on. With an expanded availability of high resolution residential building information, 

school point data, bus stop information and detailed land use information, areal 

interpolation models can be employed to estimate both night-time and daytime 

population distribution. Ordnance Survey acquired building address point datasets have 

the potential to be used with the proposed method to provide larger scale population 

estimates within the UK. The applicability of these building address points, as control 

variables in the process of population disaggregation, will be examined in areas where 

building usage information is available. Lastly, the feasibility of these implemented 

disaggregation models will be tested for defining optimal facility locations for public 

and government facilities where population information is not available at the intended 

spatial scale. 
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Appendices 

Appendix 1: Classification accuracy assessment report for the Leicester 

City. 

Confusion Matrix: Z:\PhD_Data\THESIS 
CHAPTERS\Dasymetric_binary_method\leicester_classification.tiff   
 
Overall Accuracy = (900679/1007593) 89.3892%   
Kappa Coefficient = 0.7797   
 
Ground Truth (Pixels)   
 
Class Green Space Tree Cover Urban Area Water  Total   

Unclassified 0 0 0 0 0   
Green Space 644043 15333 3752 0 663128   
Tree Cover 58867 53104 3548 501 116020   
Urban Area 10981 594 194499 19 206093   
Water  1412 4359 7548 9033 22352   
Total 715303 73390 209347 9553 1007593   

 
 Ground Truth (Percent)   
 
Class Green  Space Tree Cover Urban Area Water Total   
Unclassified 0.00 0.00 0.00 0.00 0.00   
Green Space 90.04 20.89 1.79 0.00 65.81   
Tree Cover 8.23 72.36 1.69 5.24 11.51   
Urban Area 1.54 0.81 92.91 0.20 20.45   
Water 0.20 5.94 3.61 94.56 2.22   
Total 100.00 100.00 100.00 100.00 100.00   

 
 
        Class Commission Omission Commission Omission   
 (Percent) (Percent) (Pixels) (Pixels)   
Green Space 2.88 9.96 19085/663128 71260/715303   
Tree Cover 54.23 27.64 62916/116020 20286/73390   
Urban Area 5.63 7.09 11594/206093 14848/209347   
Water  59.59 5.44 13319/22352 520/9553   

 
 
        Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
 (Percent) (Percent) (Pixels) (Pixels)   
Green Space 90.04 97.12 644043/715303 644043/663128   
Tree Cover 72.36 45.77 53104/73390 53104/116020   
Urban Area 92.91 94.37 194499/209347 194499/206093   
Water 94.56 40.41 9033/9553 9033/22352   
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Appendix 2: Classification accuracy assessment report for the Borough of 

Kensington and Chelsea 

Confusion Matrix: Z:\PhD_Data\THESIS 
CHAPTERS\Dasymetric_binary_method\Kensington_classification.tiff   
 
Overall Accuracy = (318443/355172) 89.6588%   
Kappa Coefficient = 0.8548   
 
 Ground Truth (Pixels)   
 
Class Green Space Tree Cover 

 
Water Urban 

Area 
Total   

Unclassified 0 0 0 0 0   
Green Space 57020 24272 0 330 81622   
Tree Cover 6125 58058 730 667 65580   
Water Bodies 12 2180 146161 2301 150654   
Urban Area 27 85 0 57204 57316   
Total 63184 84595 146891 60502 355172   

 
Ground Truth (Percent)   
 
Class Green Space Tree 

Cover 
Water Urban 

Area 
Total   

Unclassified 0.00 0.00 0.00 0.00 0.00   
Green Space 90.24 28.69 0.00 0.55 22.98   
Tree Cover 9.69 68.63 0.50 1.10 18.46   
Water  0.02 2.58 99.50 3.80 42.42   
Urban Area 0.04 0.10 0.00 94.55 16.14   
Total 100.00 100.00 100.00 100.00 100.00   

 
 
        Class Commission Omission Commission Omission   
 (Percent) (Percent) (Pixels) (Pixels)   
Green Space 30.14 9.76 24602/81622 6164/63184   
Tree Cover 11.47 31.37 7522/65580 26537/84595   
Water  2.98 0.50 4493/150654 730/146891   
Urban Area 0.20 5.45 112/57316 3298/60502   

 
 
        Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
 (Percent) (Percent) (Pixels) (Pixels)   
Green Space 90.24 69.86 57020/63184 57020/81622   
Tree Cover 68.63 88.53 58058/84595 58058/65580   
Water  99.50 97.02 146161/146891 146161/150654   
Urban Area 94.55 99.80 57204/60502 57204/57316   
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Appendix 3: The validation of image classification for Leicester City 

1. City map of Leicester. 

 

2. The classified image and pictures from the selected areas. 
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Appendix 4: Codes for Accuracy Measurements 

R programming codes were used to provide values of RMSE. 

data<- read.csv ("the_City_of_Leicester.csv", as.is=T) 

data<- read.csv ("the_Borough_of_Kensington_and_Chelsea.csv", as.is=T) 

data 

RMSE <- function(x,y){ 

for(i in 1:length(x)){ 

for(j in 1:length(y)){ 

r<- sqrt(sum((x[i] - y[j]))^2/length(x)) 

} 

} 

return(r) 

} 

x <- data$x 

y <- data$y 

RMSE(x,y) 
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Appendix 5: Spatial Autocorrelation Reports for the residuals of areal 

interpolation methods for the City of Leicester 

1. The areal weighting method 

Moran's Index:  -0.005069  
z-score:  -0.347717  
p-value:  0.728053  

Given the z-score of -0.35, the pattern does not appear to be significantly different than 
random. 

Global Moran's I Summary 
Moran's Index:  -0.005069 
Expected Index:  -0.001033 
Variance:  0.000135 
z-score:  -0.347717 
p-value:  0.728053 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS THE AREAL WEIGHTING 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  614.767609 Meters 
Weights Matrix File:  None 
Selection Set:  False 

2. The binary mapping method 

Moran's Index:  0.176294  
z-score:  15.291245  
p-value:  0.000000  

Given the z-score of 15.29, there is a less than 1% likelihood that this clustered pattern 
could be the result of random chance. 

Global Moran's I Summary 
Moran's Index:  0.176294 
Expected Index:  -0.001033 
Variance:  0.000134 
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z-score:  15.291245 
p-value:  0.000000 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS THE BINARY 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  614.767609 Meters 
Weights Matrix File:  None 
Selection Set:  False 

3. The volumetric estimation method 

Moran's Index:  -0.003600  
z-score:  -0.221306  
p-value:  0.824854  

Given the z-score of -0.22, the pattern does not appear to be significantly different than 
random. 

Global Moran's I Summary 
Moran's Index:  -0.003600 
Expected Index:  -0.001033 
Variance:  0.000135 
z-score:  -0.221306 
p-value:  0.824854 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS THE VOLUMETRIC 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  614.767609 Meters 
Weights Matrix File:  None 
Selection Set:  False 
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4. The address-weighted method using building address points only 

Moran's Index:  0.066480  
z-score:  5.877464 

 
p-value:  0.000000  

Given the z-score of 5.88, there is a less than 1% likelihood that this clustered pattern 
could be the result of random chance. 

Global Moran's I Summary 
Moran's Index:  0.066480 
Expected Index:  -0.001033 
Variance:  0.000132 
z-score:  5.877464 
p-value:  0.000000 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS_THE ADDRESS WEIGHTED 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  614.767609 Meters 
Weights Matrix File:  None 
Selection Set:  False 

5. The address-weighted method using the integration of building address 

points and occupancy information 

Moran's Index:  -0.015153  
z-score:  -1.212512 

 
p-value:  0.225316  

Given the z-score of -1.21, the pattern does not appear to be significantly different than 
random. 

Global Moran's I Summary 
Moran's Index:  -0.015153 
Expected Index:  -0.001033 
Variance:  0.000136 
z-score:  -1.212512 
p-value:  0.225316 
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Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS _THE ADDRESS WEIGHTED 2 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  614.767609 Meters 
Weights Matrix File:  None 
Selection Set:  False 
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Appendix 6: Spatial Autocorrelation Reports for the residuals of areal 

interpolation methods for the Borough of Kensington and Chelsea 

1. The areal weighting method 

Moran's Index:  0.020894  
z-score:  1.346419  
p-value:  0.178167  

Given the z-score of 1.35, the pattern does not appear to be significantly different than 
random. 

Global Moran's I Summary 
Moran's Index:  0.020894 
Expected Index:  -0.001587 
Variance:  0.000279 
z-score:  1.346419 
p-value:  0.178167 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS THE AREAL WEIGHTING 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  281.692214 Meters 
Weights Matrix File:  None 
Selection Set:  False 

2. The binary mapping method 

Moran's Index:  0.033158  
z-score:  2.071850  
p-value:  0.038279  

Given the z-score of 2.07, there is less than 5% likelihood that this clustered pattern 
could be the result of random chance. 

Global Moran's I Summary 
Moran's Index:  0.033158 
Expected Index:  -0.001587 
Variance:  0.000281 
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z-score:  2.071850 
p-value:  0.038279 

 

 

3. The volumetric estimation method 

Moran's Index:  0.000495  
z-score:  0.124224 

 
p-value:  0.901138  

Given the z-score of 0.12, the pattern does not appear to be significantly different than 
random. 

Global Moran's I Summary 
Moran's Index:  0.000495 
Expected Index:  -0.001587 
Variance:  0.000281 
z-score:  0.124224 
p-value:  0.901138 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS THE VOLUMETRIC 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  281.692214 Meters 
Weights Matrix File:  None 
Selection Set:  False 
 
 
 
 

 
 
 

Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS THE BINARY 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  281.692214 Meters 
Weights Matrix File:  None 
Selection Set:  False 
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4. The address-weighted method using building address points only 

Moran's Index: 0.298596  
z-score: 18.437767 

 
p-value: 0.000000  

Given the z-score of 18.44, there is less than 1% likelihood that this clustered pattern 
could be the result of random chance. 

Global Moran's I Summary 
Moran's 
Index:  

0.298596 

Expected 
Index:  

-0.001587 

Variance:  0.000265 
z-score:  18.437767 
p-value:  0.000000 
Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS_THE ADDRESS WEIGHTED  
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row 
Standardization:  

False 

Distance Threshold:  281.692214 Meters 
Weights Matrix File:  None 
Selection Set:  False 

5. The address weighted method using the integration of building address points 

and occupancy information 

Moran's Index:  -0.025765  
z-score:  -1.437615 

 
p-value:  0.150543  

Given the z-score of -1.44, the pattern does not appear to be significantly different than 
random. 

Global Moran's I Summary 
Moran's Index:  -0.025765 
Expected Index:  -0.001587 
Variance:  0.000283 
z-score:  -1.437615 
p-value:  0.150543 
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Dataset Information 
Input Feature Class:  Target Units (OAs) 
Input Field:  RESIDUALS _THE ADDRESS WEIGHTED 2 
Conceptualization:  INVERSE_DISTANCE 
Distance Method:  EUCLIDEAN 
Row Standardization:  False 
Distance Threshold:  281.692214 Meters 
Weights Matrix File:  None 
Selection Set:  False 
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