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ABSTRACT  22 

Background. Neisseria meningitidis is a frequent colonizer of the human nasopharynx with 23 

asymptomatic carriage providing the reservoir for invasive, disease-causing strains. Serogroup Y 24 

(MenY) strains are a major cause of meningococcal disease. High resolution genetic analyses of 25 

carriage and disease isolates can establish epidemiological relationships and identify potential 26 

virulence factors.  27 

Methods. Whole genome sequence data were obtained from UK MenY carriage isolates from 28 

1997-2010 (n=99). Sequences were compared to those from MenY invasive isolates from 2010 29 

and 2011 (n=73) using a gene-by-gene approach.  30 

Results. Comparisons across 1,605 core genes resolved 91% of isolates into one of eight clusters 31 

containing closely related disease and carriage isolates. Six clusters contained carried 32 

meningococci isolated in 1997-2001 suggesting temporal stability. One cluster of isolates, 33 

predominately sharing the designation Y: P1.5-1,10-1: F4-1: ST-1655 (cc23), was resolved into a 34 

sub-cluster with 86% carriage isolates and a second with 90% invasive isolates. These sub-35 

clusters were defined by specific allelic differences in five core genes. Extraction of sequences 36 

encoding Bexsero vaccine antigens predicts coverage of 15% of MenY isolates. 37 

Conclusions. High resolution genetic analyses detected long-term temporal stability and 38 

temporally-overlapping carriage and disease populations for MenY clones but also evidence of a 39 

disease-associated clone. 40 

 41 

Keywords: Neisseria meningitidis; whole genome sequencing; carriage; serogroup Y; 42 

epidemiology  43 



3 
 

BACKGROUND 44 

Neisseria meningitidis, an obligate nasopharyngeal commensal, is carried asymptomatically by 45 

10 to 30% of the adult human population, although these carriage rates are setting dependent and 46 

generally higher in young adults and amongst close-contact populations [1, 2]. Occasionally 47 

meningococci become invasive and enter the bloodstream potentially leading to the development 48 

of septicemia and meningitis. Invasive meningococcal disease (IMD) results in substantial 49 

mortality and morbidity despite effective antibiotic treatment [3].  50 

A key virulence factor is the polysaccharide capsule, which allows the bacterium to resist 51 

complement-mediated lysis and opsonophagocytosis [4]. Twelve serogroups are recognized 52 

based on the biochemical structure of the capsular polysaccharide and genetic analyses [5], with 53 

serogroups A, B, C, W, X and Y being responsible for the majority of disease worldwide [6]. 54 

DNA sequence-based approaches have been extensively applied to the analysis of the population 55 

structure of meningococci [7]. Multilocus sequence typing (MLST), using sequences of seven 56 

representative housekeeping genes, has detected a highly structured population with most strains 57 

belonging to groups of closely related genotypes referred to as clonal complexes (ccs) [8]. Some 58 

of these clonal complexes correspond to ‘hyper-virulent lineages’, which are responsible for 59 

most cases of disease worldwide [9, 10]. In addition, clonal complexes are often associated with 60 

specific combinations of antigenic proteins, such as Porin A (PorA) and Ferric enterobactin 61 

transport protein A (FetA), as well as a limited number of serogroups [11, 12].  62 

Much of the IMD in Europe and North America is caused by a limited range of 63 

serogroup/genotype combinations, for example serogroup B (MenB) ST-41/44, ST-32 and ST-64 

269 isolates and serogroup C (MenC) isolates from ST-11 and ST-8 complexes [6, 13]; however, 65 

in recent decades the incidence of IMD due to MenY organisms, often belonging to cc23, has 66 
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increased in several countries, notably including the USA, Sweden and the United Kingdom [14-67 

18]. In the UK, several carriage studies performed between 2008 and 2012 detected evidence of 68 

recent alterations in MenY carriage epidemiology in young adults [19-22]. For example, MenY 69 

meningococci were found in only 1-2% of participants and constituted only ca. 10% of 70 

recovered isolates when carriage was assessed in 1997-8 in first-year university students at the 71 

University of Nottingham, UK and during 1999-2001 in >48,000 15-17 year-old school students 72 

throughout the UK [23, 24]. In contrast, in 2008-9 and 2009-10, significantly higher rates of 73 

overall carriage, principally resulting from the high prevalence of MenY strains, were detected in 74 

university students in Nottingham [19, 20]. These observations were supported by subsequent 75 

multisite studies undertaken to investigate carriage in UK school and university students [21, 76 

22]. Identification of isolates in the 2008-9 and 2009-10 Nottingham carriage studies relied on 77 

PCR amplification of capsule genes and, while some further typing information was generated 78 

for a subset of the 2008-9 isolates [19], only limited information was available on the numbers 79 

and genetic background of the different MenY-associated clonal complexes carried in 2009-10.  80 

High resolution analyses of the genome-wide genetic relationships among large numbers 81 

of representative carriage and invasive isolates have the potential to determine the prevalence of 82 

disease-causing isolates among collections of carriage isolates and to detect specific disease-83 

associated loci. The PubMLST.org/neisseria database, which employs the Bacterial Isolate 84 

Genome Sequence database (BIGSdb) platform, is a scalable, open-source web-accessible 85 

database, to identify, index and extract genetic variation data from whole genome sequence 86 

(WGS) data [25]. This approach was utilized to resolve an outbreak of ST-11 disease [26] and to 87 

investigate the evolution and global spread of the ET-5/ST-32 lineage [27], with a recent 88 

publication describing MenY disease isolates in Sweden [28]. Additionally, a genealogical 89 
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analysis of 108 representative meningococcal genomes led to the proposal of a new ‘lineage’ 90 

nomenclature reflecting the increased resolution of WGS typing compared to MLST [29]. 91 

Here we investigated the population structure of MenY invasive and carriage isolates in 92 

the UK using WGS data generated from 99 carriage isolates obtained from school or university 93 

students (typically 16 to 20 years old) between 1997 and 2010 and compared this genomic data 94 

with 73 publically available genomes from invasive MenY strains isolated in 2010-11. Extensive 95 

genetic similarities were revealed between invasive and carriage isolates, with isolates forming 96 

distinct clusters, with evidence of temporal stability of these clusters. Notably, discrete invasive- 97 

and carriage-associated sub-clusters were identified within one cluster consistent with distinct 98 

genomic variation occurring within these isolates. WGS data were also analyzed to determine the 99 

potential for coverage of MenY isolates by the newly licensed 4CMenB/Bexsero and 100 

rLP2086/Trumenba vaccines using a gene-by-gene analysis of all relevant loci. 101 

 102 

METHODS 103 

Isolate Selection and Genomic DNA Extraction 104 

A total of 99 MenY isolates, all obtained from nasopharyngeal carriers in Nottingham (East 105 

Midlands), UK, were included in the WGS analysis (Supplementary Table 1). Of these, 77 were 106 

isolated from students attending the University of Nottingham in 2009 [20] and were chosen as 107 

follows: (i) 20 obtained in September 2009 from first-year students; (ii) 18 obtained in 108 

September 2009 from second-year students; (iii) 19 obtained in December 2009 from first-year 109 

students; (iv) 20 obtained in December 2009 from second-year students [20]. To provide context, 110 

10 isolates were chosen randomly from a collection of MenY meningococci isolated from sixth-111 

form school students in Nottingham in 1999-2001 [24] and six isolates were chosen from MenY 112 
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carried isolates obtained from first-year students at the University of Nottingham during 1997-8 113 

[23]. All of these isolates were chosen as known MenY organisms based on PCR or serological 114 

typing methods, without prior knowledge of their clonal complex. Six additional MenY carriage 115 

isolates were chosen as representative examples of the predominant MenY lineages circulating in 116 

a 2008-9 cohort of first-year students at the University of Nottingham [19]. 117 

Meningococci were grown overnight on heated horse-blood (‘chocolate’) agar (Oxoid) at 118 

37°C in an atmosphere of air plus 5% CO2 and genomic DNA extracted using the Wizard 119 

Genomic DNA Purification Kit (Promega).  120 

 121 

Illumina Sequencing, Assembly and Accession Numbers 122 

Genomic DNA was sequenced as described previously [29]. Short-read sequences were 123 

assembled using the VelvetOptimiser de novo short-read assembly program optimization script 124 

after which resultant contiguous sequences (contigs) were uploaded to the 125 

PubMLST.org/neisseria database. Sequence reads were deposited in the European Nucleotide 126 

Archive (Supplementary Table 1). Genome sequences of the 73 MenY disease isolates for the 127 

epidemiological year 2010-11 in England, Wales and Northern Ireland (Supplementary Table 2) 128 

were accessed via the Meningitis Research Foundation Meningococcus Genome Library 129 

database (http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_neisseria_mrfgenomes; last 130 

analyzed September 2015).  131 

 132 

Genomic Analyses 133 

The genome assemblies deposited in the database are automatically curated and annotated for all 134 

loci currently defined in the database thus identifying alleles with ≥98% sequence identity. Over 135 

http://pubmlst.org/perl/bigsdb/bigsdb.pl?db=pubmlst_neisseria_mrfgenomes
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2,600 loci were defined at the time of analysis. These have a ‘NEIS’ prefix and are organized 136 

into schemes which enables, for example, the rapid identification of isolate genogroup, clonal 137 

complex, and PorA and FetA antigen types. Further analysis was undertaken using the BIGSdb 138 

Genome Comparator tool implemented within the database using the N. meningitidis cgMLST 139 

v1.0 core genome scheme (1,605 loci) [29]. Output distance matrices (Nexus format) were used 140 

to generate NeighborNet graphs with SplitsTree4 (v4.13.1). 141 

 142 

RESULTS 143 

General Features of Sequenced MenY Carriage Genomes 144 

WGS data were obtained from 99 MenY carriage isolates. After de novo assembly, the 100-bp 145 

paired Illumina reads produced contiguous sequences between 2,018,731 bp to 2,214,168 bp in 146 

size, consistent with expectations for meningococcal genomes (Supplementary Table 1). Genome 147 

assemblies were automatically annotated in a ‘gene-by-gene’ approach using the BIGSdb 148 

platform and strain designation data extracted (Supplementary Table 1). Isolates from cc23 149 

predominated (57 of 99), followed by cc174 (18 of 99), cc167 (11 of 99) and cc22 (7 of 99). The 150 

most prevalent strain designations were Y: P1.5-1,10-1: F4-1: ST-1655 (cc23), Y: P1.5-1,2-2: 151 

F5-8: ST-23 (cc23) and Y: P1.21,16: F3-7: ST-1466 (cc174), which collectively accounted for 152 

48 of these 99 carriage isolates (Table 1). Of the 16 carriage strains isolated in 1997-2001, 11 153 

shared identical strain designations with 2008-10 carriage isolates suggesting persistence of these 154 

strain designations over this 7-13 year time period (Table 1).  155 

To investigate the occurrence of these carriage strain designations amongst invasive 156 

MenY isolates, identical typing information was extracted from the WGS data of 73 invasive UK 157 

MenY meningococci isolated during 2010-11 available via the MRF Meningococcus Genome 158 
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Library database (Supplementary Table 2). Isolates from cc23 predominated (58 [79%] of 73), 159 

followed by cc174 (7 [10%] of 73), cc167 (4 [5%] of 73) and cc22 (2 [3%] of 73). The most 160 

prevalent strain designations among the invasive isolates matched those found in the carriage 161 

collection (Table 1). Ten designations were present in both carriage and invasive isolates: these 162 

designations accounted for 74% of carriage and 73% of invasive isolates, respectively (Table 1).  163 

 164 

WGS Analysis of MenY Isolates Identifies Clusters of Highly Related Isolates 165 

To allow higher resolution genealogical analyses, comparison of all 172 MenY genomes was 166 

undertaken using the BIGSdb Genome Comparator tool, the principal output of which is a 167 

distance matrix based on the number of variable loci within those loci selected for analysis; these 168 

differences were then resolved into a network using standard algorithms [30]. Comparison of the 169 

genomes using the core N. meningitidis cgMLST v1.0 scheme [29] identified 1,157 loci which 170 

varied in at least one isolate and resolved isolates into two distinct groups comprising 56 and 116 171 

isolates, respectively (Figure 1). Only thirteen loci were found to be identical between these two 172 

groups: these included loci encoding ribosomal and hypothetical proteins. Within the two groups, 173 

distinct clusters of isolates containing multiple examples of both carriage and invasive isolates 174 

were evident. Group 1 comprised three clusters, containing isolates belonging to cc167, cc22 and 175 

cc174. Group 2 contained only cc23 meningococci, which formed five distinct clusters of 176 

carriage and invasive organisms (Figure 1). Overall 91% (157/172) of isolates localized to one of 177 

these eight clusters.  178 

 179 

Relationships Between Invasive and Carriage MenY Isolates in Identified Clusters  180 
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To visualize the relationships between closely related individual isolates, NeighborNet graphs 181 

were generated for each cluster with color-coding of isolate names detailing provenance (Figures 182 

2, 3 and 4). Amongst the 25 isolates in the cc174 cluster (Figure 2A), evidence of extensive 183 

genetic similarities between carriage isolates was apparent with, for example, only 6 allelic 184 

differences distinguishing isolates 22014 and 23214. Highly-related 2009-10 carriage isolates 185 

were often isolated from students in the same year group suggestive of intra-year group 186 

transmission. This was also apparent in other clusters of isolates, such as cc22 (e.g. isolates 187 

22667 and 21258; 8 allelic differences) (Figure 2C). Conversely, the cc22 cluster revealed highly 188 

related meningococci isolated from individuals in different year groups suggestive of inter-year 189 

group transmission (e.g. isolates 23009 and 21513; 3 allelic differences) (Figure 2C). 190 

 The cc167 cluster (Figure 2B) and cc23 cluster 4 (Figure 3D) each resolved into distinct 191 

sub-clusters. Interestingly, the ST-767 cc167 sub-cluster (Figure 2B) contained carriage isolates 192 

from 2001, 2008 and 2009 and a 2011 invasive isolate (M11 240071), suggestive of a long-lived 193 

clone capable of causing disease. Only 27 allelic differences distinguished M11 240071 from 194 

N117.1; 62 differences distinguished the former from NO01020675 – a carriage isolate obtained 195 

in 2001 (Figure 2B).  196 

In some cases, clusters containing isolates with identical designations could also be 197 

resolved into distinct sub-clusters on the basis of WGS analysis. Notably, cc23 cluster 1 could be 198 

resolved into two sub-clusters (Figure 3A). The first contained a carriage isolate from 2000 199 

(NO0010442), five 2008-10 carriage isolates and two 2010-11 invasive isolates. Since 200 

NO0010442 is only 34 allelic differences apart from 21251 (a 2009 carriage isolate) and 42 from 201 

the invasive isolate M10 240732, this sub-cluster represents another persistent clone, capable of 202 

causing disease.  203 
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 204 

WGS Analysis Resolves cc23 Cluster 5 into Invasive- and Carriage-Associated Sub-clusters 205 

The cc23 cluster 5 contained the largest number of MenY isolates analyzed. Despite 206 

predominantly sharing a common strain designation, WGS-based analysis resolved 207 

meningococci in this cluster into two sub-clusters (Figure 4): sub-cluster 1 with 18 carriage 208 

isolates and three invasive isolates; and sub-cluster 2 with three carriage and 27 invasive 209 

meningococci. A total of 997 loci were identical between all cc23 cluster 5 isolates. Loci 210 

differing between the two sub-clusters of cc23 cluster 5 are shown in Table 2.  211 

 212 

Vaccine Antigen Diversity  213 

Two recombinant-protein based vaccines have been developed with the intention of protecting 214 

against MenB disease; widespread use of these vaccines could in principle impact on MenY 215 

populations if they protect against carriage. The distribution and variation of the MenB vaccine 216 

antigens was surveyed in all 172 isolates (Figure 5, Supplementary Tables 2 and 3). All isolates 217 

harbored alleles encoding Neisseria heparin binding antigen (nhbA). Meningococci in the cc174 218 

and cc167 clusters predominantly encoded sub-variants 6 (23 of 25) and 9 (14 of 15), 219 

respectively. All cc22 isolates encoded sub-variant 20. Isolates in cc23 cluster 1 typically 220 

encoded sub-variant 6 (sub-cluster 1) or 8 (sub-cluster 2), whilst meningococci in the remaining 221 

cc23 clusters almost exclusively encoded sub-variant 7. NHBA sub-variant 2, which is present in 222 

Bexsero, was found in one isolate (isolate 20588). 223 

All three main factor H binding protein variants (fHbp-1, fHbp-2 and fHbp-3, and further 224 

divided into sub-variants) were identified, but most isolates (163 [95%] of 172) harbored fHbp-2 225 

variants. Meningococci in the cc23 clusters encoded fHbp-2.25 alleles almost exclusively. 226 
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Notably, the cc174 cluster contained some meningococci expressing fHbp-1 alleles (mainly 227 

fHbp-1.13; 5 [20%] of 25 isolates); fHbp-1.1 (present in Bexsero), fHbp-1.55 and fHbp-3.45 228 

(present in Trumenba) were not found in any isolates in this study. No isolates encoded the 229 

PorA P1.4 allele present in Bexsero. The Neisserial adhesin A gene (nadA) was found 230 

exclusively in the cc174 isolates; all harbored alleles encoding variant NadA-3 sub-variant 8 231 

(NadA-3.8), matching that present in Bexsero.  232 

 233 

DISCUSSION 234 

Nucleotide sequence-based methods involving small numbers of genes have been invaluable in 235 

characterizing the population structure and antigenic repertoires of meningococci [31]. The 236 

advent of WGS has greatly enhanced resolution and has begun to provide improved insights into 237 

the genetic relationships among bacterial isolates [32]. Since carriage is directly relevant to the 238 

epidemiology of IMD, we undertook to resolve the genealogical relationships between carriage 239 

and invasive isolates. We focused on MenY lineages due to recent observations of fluctuations in 240 

MenY disease and carriage levels in the UK. Although meningococci of this serogroup have 241 

been less prevalent globally as causes of disease compared to serogroups A, B and C [33], the 242 

proportion of IMD attributable to MenY organisms, predominately those belonging to cc23, 243 

increased markedly, a trend first recognized in the mid-1990s in the USA [14, 34], and more 244 

recently in other countries including the UK [17, 18] and Sweden [15, 35]. The higher MenY 245 

IMD case load in the UK was concomitant with a significant increase in MenY carriage, as first 246 

detected in studies of nasopharyngeal carriage in students at the University of Nottingham 247 

undertaken from 2008 to 2010 [19, 20].  248 
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The automated extraction of strain designation information from WGS data demonstrated 249 

the similarity of MenY isolates from carriage and invasive disease. This similarity was 250 

confirmed by the enhanced discrimination afforded by core genome analysis of the WGS data 251 

which resolved most of the isolates into one of eight defined clusters. While most isolates in a 252 

particular cluster shared the same strain designation (i.e. ST, PorA and FetA types), each cluster 253 

contained variants, demonstrating the enhanced discrimination afforded by WGS. A key finding 254 

was that every cluster contained both invasive and disease isolates, indicating that all MenY 255 

lineages have the ability to cause disease.  256 

Bacterial populations are often viewed as unstable collections of rapidly evolving clones 257 

with frequent extinctions or replacement of older clones. Temporal shifts are potentially 258 

important components of IMD epidemiology. Thus, analysis of IMD cases indicated replacement 259 

of an ‘early’ cc23 MenY lineage in the USA by an antigenically and genetically distinct ‘late’ 260 

strain type [36, 37]. A parallel shift in carriage of these clones was assumed but not confirmed. A 261 

significant finding from the present study was that six out of the eight MenY clusters contained 262 

historic carriage isolates (i.e. from 1997-2001). The stability of this association appears to be 263 

strong as it was detected with only sixteen historic genome sequences. Thus, these six MenY 264 

clusters are long-lived and have been present within the UK for a 7-13 year time period. The 265 

uneven distribution (e.g. cc167 and cc23 cluster 1) and apparent outlier position (e.g. cc174 and 266 

cc22) of historic isolates in some clusters is suggestive of within-cluster evolution over time. The 267 

exception to this generalization was cc23 cluster 5, which was the largest cluster and yet 268 

contained no historic strain types, potentially suggesting the arrival of a non-UK associated 269 

epidemic lineage or major alterations in the genetic structure of a long-lasting UK MenY clone. 270 

The presence of long-lasting clones indicates that the genetic structure of meningococcal clones 271 
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is stable and that extinctions of clones are rare events. The presence of a long-lived host-adapted 272 

commensal population has importance as introduction of the MenACWY vaccine into the main 273 

carrier population has the potential to radically-perturb a long-lasting association with unknown 274 

consequences. 275 

Evidence for antigenic shifts comes from consideration of the cc23 isolates. These were 276 

distributed into five clusters separated by PorA type but not ST type. Four of the clusters differed 277 

in sequence for VR2 of PorA, the major target of bactericidal antibodies while the two clusters 278 

with identical PorA VR2 sequences had different PorA VR1 sequences, a variable target of 279 

bactericidal antibodies. The differences in the VR2 amino acid sequence are amplification of 280 

three amino acids (NKQ) from one copy in P1.10-1, to two in P1.10-4 and three in P1.10-10: a 281 

rapid and minor change in protein structure. Notably, this is not a feature of all surface antigens 282 

as there was limited variation in FetA with four cc23 clusters having the same FetA variant. 283 

Further analysis of WGS data may indicate other antigenic variants or allelic variants of other 284 

genes that correlate with this segregation of cc23 isolates; nevertheless the PorA distribution 285 

suggests that minor differences in antigenicity may be driving changes in population structure.  286 

Geographic distribution of clones and potential sources of new clones was apparent from 287 

comparisons between WGS studies in different countries. Comparison of invasive cc23 isolates 288 

from Sweden, UK and USA identified three principal cc23 sub-lineages (designated 23.1, 23.2 289 

and 23.3) with overlapping, but differentially prevalent repertoires in each country [28]. For 290 

example, the Swedish ‘strain-type YI’ which was largely responsible for the increase in Swedish 291 

MenY disease [16, 35], formed a cluster within the 23.1 sub-lineage, but very rarely caused 292 

disease in the UK [28]. Using the overlap in MenY WGS data analyzed, i.e. UK invasive cc23 293 

strains isolated in 2010-11 examined previously [28], we further resolved the 23.1 sub-lineage 294 
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into four sub-clusters (cc23 clusters 2-5, herein) and found that cc23 cluster 1 corresponds to 295 

lineage 23.2. Cluster 5 responsible for most cases of UK IMD was rarely observed in Sweden. 296 

The resolution of cc23 cluster 5 into distinct carriage- and disease-associated sub-clusters, (1 and 297 

2, respectively) was surprising as this cluster contained the highest number of MenY disease and 298 

carriage isolates. A confounding factor is that the sub-cluster 1 carriage isolates were all isolated 299 

in one geographical location, and hence may have a high level of one specific (highly 300 

transmissible) clone. However, two of these isolates (20601 and 21619) were isolated in 301 

September (first week of term) from first-year students who are presumed to have been colonized 302 

prior to arrival at the University. An alternative hypothesis is that the ability of sub-cluster 1 303 

strains to cause disease is associated with rapid within host evolution into a sub-cluster 2 304 

phenotype; however sub-clusters were defined by differences in loci encoding proteins with 305 

hypothetical or core enzymic functions not loci more explicitly linked to adaptation to a systemic 306 

niche (e.g. survival in blood). A further possibility is that sub-cluster 1 has recently evolved from 307 

sub-cluster 2 into a highly transmissible carriage strain with a consequent reduction in virulence. 308 

A high-quality assembled cc23 genome is required to detect the effects on virulence mediated by 309 

genes outside the core alleles utilized in this study and in order to determine how the transition 310 

between these sub-clusters has occurred. 311 

The two recently licensed recombinant protein-based anti-MenB vaccines, 312 

4CMenB/Bexsero (Novartis now GlaxoSmithKline) [38, 39] and rLP2086/Trumenba 313 

(Pfizer) [40-42], are predicted to cover the majority of currently circulating invasive MenB 314 

strains in Europe and North America [43-47]. Our data predict that Bexsero will cover one of 315 

the major MenY lineages (cc174), whereas Trumenba will have a wider coverage assuming 316 

there is cross-reactivity between fHbp main variants 2 and 3. These predictions are consistent 317 
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with previous studies [17, 21, 28, 48], but are likely to underestimate coverage due to cross-318 

reactivities between vaccine antigens and those present in MenY isolates [43, 49, 50]. 319 

Nevertheless, the introduction of Bexsero into the UK infant immunization schedule may only 320 

protect against a limited number of currently-circulating MenY strains. 321 

In summary, high resolution genealogical relationships between MenY isolates 322 

highlighted the high degree of genetic similarity between carriage and invasive isolates and 323 

evidenced long-term stability of MenY clones. The detection and resolution of a highly prevalent 324 

UK clone (Y: P1.5-1,10-1: F4-1: ST-1655 cc23) into invasive- and carriage-associated sub-clusters 325 

exemplifies the improved precision of whole genome analysis for separating apparently identical 326 

isolates. 327 
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FIGURE LEGENDS 471 

Figure 1. NeighborNet graph comparison of 172 UK MenY genome sequences analyzed using 472 

the BIGSdb Genome Comparator utilizing the N. meningitidis cgMLST v1.0 scheme. 91% of 473 

isolates analyzed localized to one of eight clusters. Strain designation(s) represent the most 474 

frequently occurring designation(s) in each cluster. Unlabeled nodes represent unassigned 475 

invasive (n=9) and carriage (n=6) isolates. Scale bar = number of allelic differences.  476 

 477 

Figure 2. NeighborNet graphs comparing isolates in the (A) cc174, (B) cc167 and (C) cc22 478 

clusters as defined in Figure 1. Sequences were analyzed using BIGSdb Genome Comparator 479 

tool utilizing the N. meningitidis cgMLST v1.0 scheme. Isolate names are color-coded as 480 

follows: 1997-2001 carriage isolates in fuchsia; 2008-9 carriage isolates in black; 2009-10 481 

carriage isolates from first year students in green; 2009-10 carriage isolates from second year 482 

students in blue and invasive isolates from 2010-11 in red. Scale bar = number of allelic 483 

differences. 484 

 485 

Figure 3. NeighborNet graphs comparing isolates in the cc23 cluster nos. 1, 2, 3 and 4 (panels A-486 

D, respectively) as defined in Figure 1. Sequences were analyzed using BIGSdb Genome 487 

Comparator tool utilizing the N. meningitidis cgMLST v1.0 scheme. Isolate names are color-488 

coded according to the scheme described in the Figure 2 legend. Scale bar = number of allelic 489 

differences. 490 

 491 

Figure 4. NeighborNet graph comparison of isolates in the cc23 cluster 5 defined in Figure 1. 492 

Sequences were analyzed using BIGSdb Genome Comparator tool utilizing the N. meningitidis 493 
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cgMLST v1.0 scheme. Isolate names are color-coded according to the scheme described in 494 

Figure 2 legend. Scale bar = number of allelic differences. 495 

 496 

Figure 5. Genetic characterization of MenB vaccine antigens in the 172 MenY isolates. (A) 497 

Prevalence of NHBA peptides; (B) Prevalence of fHbp alleles; (C) Prevalence of PorA VR2; (D) 498 

pie graph of NadA presence and variant/sub-variant. Alternative naming schemes can be cross-499 

referenced at http://pubmlst.org/neisseria/.   500 

http://pubmlst.org/neisseria/
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Table 1. Frequency of Strain Designations in the MenY Carriage and Invasive Collections  501 

Strain designation 

Carriage group Total 

carriage 

(n=99) 

Invasive 

2010-11 

(n=73) 

Total carriage 

and invasive 

(n=172) 

1997-2001 

(n=16) 

2008-10 

(n=83) 

Y: P1.5-1,10-1: F4-1: ST-1655 (cc23) 1 20 21 26 47 

Y: P1.5-1,2-2: F5-8: ST-23 (cc23) 5 10 15 5 20 

Y: P1.21,16: F3-7: ST-1466 (cc174) 0 12 12 5 17 

Y: P1.5-2,10-1: F4-1: ST-23 (cc23) 1 4 5 4 9 

Y: P1.5-1,10-4: F4-1: ST-1655 (cc23) 2 4 6 2 8 

Y: P1.5-1,10-4: F4-1: ST-6463 (cc23) 0 6 6 2 8 

Y: P1.5-1,2-2: F5-1: ST-3651 (cc22) 0 4 4 2 6 

Y: P1.5-1,10-10: F4-1: ST-1655 (cc23) 0 2 2 4 6 

Y: P1.5-1,10-1: F1-3: ST-767 (cc167) 2 3 5 0 5 

Y: P1.5-1,10-4: F4-1: ST-23 (cc23) 0 0 0 4 4 

Y: P1.5-8,10-4: F5-2: ST-168 (cc167) 0 1 1 2 3 

Y: P1.5-1,10-22: F5-1: ST-114 (cc22) 0 2 2 0 2 

Y: P1.5-1,10-46: F3-9: ST-103 (cc103) 0 2 2 0 2 

Y: P1.5-1,10-62: F1-3: ST-767 (cc167) 2 0 2 0 2 

Y: P1.22,9: F3-7: ST-1466 (cc174) 0 1 1 1 2 

Othera 3 12 15 16 31 

  502 

a Includes all strain designations occurring only once.503 

  504 
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Table 2. Loci with Allelic Differences between the Two Sub-clusters of cc23 Cluster 5  505 

BIGSdb 

Neisseria 

locus 

identifier 

Predicted 

protein/function 

(gene) 

Allele number (%) 

% nucleotide 

identify 

Amino acid 

differences Sub-cluster 1 Sub-cluster 2 

NEIS0395 
Valine-pyruvate 

transaminase (avtA) 
112 (100) 113 (96.7) 99.9 1 

NEIS0825 
Superoxide 

dismutase (sodB) 
155 (100) 22 (96.7) 99.8 1 

NEIS0929 Hypothetical protein 42 (100) 3 (100) 99.6 0 

NEIS1199 
Glycerate kinase 

(glxK) 
47 (100) 24 (100) 99.9 1 

NEIS1568 Hypothetical protein 67 (100) 68 (96.7) 99.9 1 

 506 


