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Abstract. Patterns of individual animal movement have been a focus of considerable attention
recently. Of particular interest is a question how different macroscopic properties of animal dispersal
result from the stochastic processes occurring on the microscale of the individual behavior. In
this paper, we perform a comprehensive analytical study of a model where the animal changes
the movement velocity as a result of its behavioral response to environmental stochasticity. The
stochasticity is assumed to manifest itself through certain signals, and the animal modifies its
velocity as a response to the signals. We consider two different cases, i.e. where the change in the
velocity is or is not correlated to its current value. We show that in both cases the early, transient
stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior
appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also
calculate analytically the dispersal kernel of the movement and show that, whilst it converge to
a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage,
i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology,
our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in
the movement data may be a feature of the transitional dynamics rather than an inherent property
of the animal movement.
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1 Introduction

Understanding of dispersal rates, i.e. how far away individuals can move from their initial position
over a given time, has been attracting considerable attention over the last three decades [1, 2,
3, 4, 5, 6, 7, 8, 9]. Indeed, dispersal rates are known to be a controlling factor for many spatial
phenomena such as the spread of invading species [7, 10], spread of infectious diseases [11], species
persistence on a fragmented habitat [12, 13], etc. In particular, the frequency of the long distance
dispersal, e.g. as described by the tail of the dispersal kernel, is known to affect the rate of spread
crucially [7].

Populations consist of individuals and hence the properties of the dispersal kernel to a large
extent depend on the peculiarities of individual movement. Since in this paper we are particularly
interested in the effect of behavior, we focus on animals. Movement is a crucial property of any
animal species. Through their movement, animals make efficient use of the environment by ex-
ploiting resources (e.g. by searching better feeding grounds), by searching for the mating partners
and/or better nesting places, by searching for a shelter from predators, etc. Animal movement
is a complicated phenomenon arising as a result of the interplay between the properties of the
environment and the internal states of the animal where the latter can include a broad variety
of physiological and behavioral responses. Correspondingly, animal movement has a few charac-
teristic spatial scales; see Fig. 1. Movement on different scales takes place for different biological
reasons and under different physical/environmental constraints, and may therefore follow different
patterns. For instance, during their feeding inside a spatially uniform patch of a high food density,
animals often follow a short-range random movement well approximated by the Brownian motion,
i.e. standard diffusion [1]. Indeed, there is no reason for a long-distance move as the next portion
of food is always just nearby. On the contrary, in their movement between feeding patches in a
well-known environment, animals usually exhibit a directed nearly ballistic movement following the
shortest possible path, presumably basing on their memory or familiar environmental clues [14].
However, the same animal searching for food in an unfamiliar environment on the spatial scale less
than the typical inter-patch distance may follow a different “scale-free” movement pattern [15].
The resulting movement path can have a complicated fractal-like structure [16] and is sometimes
well-approximated by the Levy walks or Levy flights [9, 17, 18, 19].

Whatever are the spatial scale of movement and the corresponding movement pattern, behavior
and decision-making are at the core of them. For instance, the relocation between feeding patches
is apparently preceded by a decision of relocation made when the resources of the current patch
becomes exhausted. However, any long distance relocation (or, similarly, any uninterrupted move-
ment occurring over a sufficiently long time) hardly happens as one big move following just one
“big decision”. More likely, regardless the properties of the movement path, e.g. whether it is of a
complicated tangled shape or close to a straight line, it consists of many small steps, each of them
resulting from a decision made under the effect of the local factors, clues and conditions2. The
smallest scale or “microscale” of animal movement along the path is therefore the scale where the
decision is made about the velocity or acceleration for the next step along the path.

Due to the the high complexity of the phenomenon and the multiplicity of the factors and mech-
anisms involved, it is impossible to consider all aspects of animal movement at all relevant spatial
and temporal scales in one paper (or even in one book, cf. [2, 19, 20, 21]). In this paper, we focus on
the small scale of the movement in order to understand how the instantaneous decisions made on

2The exact meaning of “local” depends on the animal’s perception radius which gives another relevant spatial

scale.
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Figure 1: Different scales of animal movement. Black curve shows a movement path that a hy-
pothetical animal may follow in its environment. Dotted circles mark preferable areas, e.g. food
patches or a shelter from predators.

the microscale can affect the dispersal rates. Correspondingly, for the sake of simplicity we assume
that the environment is homogeneous and isotropic. We therefore consider the movement to be
random3 and unbiased; in particular, we assume that the movement does not have a unidirectional
component, i.e. there is no wind or environmental gradient.

For the individual movement, the role of the dispersal kernel is played by the probability density
function (pdf) of the next position x of the animal after a given time t or, equivalently, by the
probability density distribution of the displacement. Earlier experimental studies performed on a
few different species have shown that the mean squared displacement, which we denote as 〈x2〉
(assuming without any loss of generality that the initial position is x = 0), is consistent with the
Brownian motion (i.e., effectively, the standard diffusion) where 〈x2〉 ∼ t [4, 5]. By virtue of the
Central Limit Theorem [22], this diffusive spread corresponds to the dispersal kernel with the rate
of decay at its tail (i.e. at large distances) as exponential or faster. Over the last two decades,
however, considerable evidence have been collected that the rate of decay at the tail is, at least in
some cases, slower than exponential, e.g. as given by a power law [19]. A slower rate of decay can
result in a superdiffusive spread called Levy walk with 〈x2〉 ∼ tH where H > 1. The pioneering
paper by Viswanathan et al. [9] was followed by a large number of other studies revealing the “fat
tails” and superdiffusion in many different species and in different environments [3, 6, 17, 18, 23, 24].
It was also shown that the fat tail of the dispersal kernel of a population (i.e. when the data from
many different individuals are pooled together) can be observed for a variety of reasons and, as
such, should not necessarily be regarded as a fingerprint of a superdiffusion [25, 26, 27].

In spite of the obvious progress in the understanding of the individual animal movement over
3For a discussion of the “randomness” of animal movement, see [21], p.47-48.
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the last two decades, there are also some growing concerns about the relevance of the current
approaches to this phenomenon. In particular, the existing theoretical studies tend to be far too
mechanistic. The focus has mostly been on the hunt for a ‘universal’ low-parametric description
of the bouts distribution (also known as the step-length distribution), e.g. as a power law [23, 28],
with much less attention being paid to the processes defining this distribution. A low-parametric
distribution kernel can indeed be a convenient way to describe animal movement. However, it
cannot explain it as it leaves most of the relevant factors and mechanisms obscure and unidentified
(for instance, the existence of different movement modes, cf. [25]) as this is the core idea of the
low-parametric description.

Here we identify two issues that have been largely overlooked in the bulk of studies on individual
animal movement. Firstly, the movement data are usually collected on an artificial timescale, i.e. the
timescale that is chosen by the researcher but may have very little to do with the animal or with
the environment where it moves. As a result, the obtained step-length distribution appears to be
sampling-dependent and may miss important features that define the process [29, 30]. For instance,
the location of a given animal is usually recorded with a certain constant time step ∆t which is
chosen arbitrarily, with the only idea to make it sufficiently small to provide a good resolution of
the movement path. However, the animal moves as a result of certain decision-making, and the
time required to make these decisions may be very different from ∆t, and probably not constant.

Secondly, little attention is paid to the processes happening on the microscale of a single individ-
ual. In particular, what are the processes or factors behind its choice of the next movement step? In
its movement, an animal receives cues or ‘signals’ from the environment that are likely to affect the
movement velocity. Signals can be of visual, auditory or olfactory origin. They bring information
that is likely to affect the animal’s movement behavior because the animal becomes aware of the
presence of predators nearby, or perceives smell of food, or smells female pheromones, etc. With
regard to the animal’s response, different signals can have different effect. Some ‘negative’ signals
would inform the animal about potentially life-threatening objects or situations, e.g. the presence
predators. The animal is likely to react by moving in the direction opposite to the signal and by
increasing its speed. On the contrary, ‘positive’ signals would inform the animal about the presence
and/or location of objects that are beneficial for them such as food, water, mating partner(s) etc.
The animal is likely to react to this signals by moving in the direction of the signal and proba-
bly (but not necessarily) by increasing its speed. Finally, there may also be neutral signals that
either do not bring any useful information or bring information that cannot be readily assessed;
correspondingly, the animal either does not react at all or may slow down to investigate.

Thus, not every signal affects the animal movement but many of them do. Exact timing of
the signals is difficult or even impossible to determine as it is affected by many different factors,
some of them being either unknown of having a large uncertainty. For instance, animal move-
ment can be affected by the smell brought by air flow [15, 31] which is often turbulent; however,
turbulence is known to be a stochastic process [32]. Correspondingly, the timing of the signals’
perception can be regarded as random, being distributed in time according to a certain probability
density. Altogether, the signals may be regarded as a manifestation of the small-scale environmental
stochasticity.

In the next section, we translate the above hypotheses into a mathematical model. A com-
prehensive study of the properties of the corresponding movement patterns will be undertaken in
Sections 3 and 4.

4



2 Model: composite random walk

We consider an uninterrupted movement that does not include long periods of rest (but may
include occasional brief stops), hence restricting our attention to a relatively short timescale. For
the uninterrupted movement, we assume that the animal only changes its velocity when it has a
reason for it, and we consider this reason to be a signal received from the environment.

The animal movement as a response to the external signals may be formally described as a
sequence of bouts, i.e. a bout ends (and the next bout starts) when the animal receives a signal.
Upon receiving a signal, the animal changes its movement by choosing a new value of the velocity.
Each bout is therefore completely determined by its duration and the (constant) velocity through
each bout. We consider these two variables to be statistically independent. We will call the
corresponding movement the composite random walk.

We are considering the situation when the signals are distributed in time homogeneously (in
the statistical sense) so that the mean number of signals received during a time interval depends
only on the interval duration, say τ , but not on its starting moment. With the further assumption
that the signals are not very frequent, so that for a small τ the probability of receiving more than
one signal during this interval is o (τ), we end up with the Poisson distribution [22]. If we denote
by ω the mean number of signals per unit time, then the probability that an animal receives at
least one signal during the time τ is

Pτ (ω) = 1− exp (−ωτ) . (1)

Equation (1) gives the probability that the movement will be altered during the time interval (0, τ),
i.e., that the duration of the given bout (i.e. the movement with a given constant velocity) will
not exceed τ . In order to obtain the probability density of bout duration, we need to differentiate
Eq. (1) with respect to τ , which results in the following exponential distribution:

ψ (τ) = ωe−ωτ . (2)

In this paper, we restrict our attention to the 1D case so that velocity is a scalar, say v. Since
the environmental signals are considered to be stochastic, v is a random variable described by a
certain probability distribution function φ(v). Our goal is to construct the dispersal function ρ (x, t)
describing the probability density of finding the animal between the spatial positions x and x+dx,
at a given time t measured from the moment when the animal started moving. As a result of the
composite bout structure, the dispersal function may be determined as a sum involving all possible
bout sequences,

ρ (x, t) =
∞∑

k=1

ρk (x, t) , (3)

where ρk (x, t) is the contribution of a sequence of k bouts. If we denote by tk the duration of the
kth bout, vk the velocity along the period and yk the animal’s position at the precise instant the
bout has stopped, then we may write a kinematics relation connecting these variables,

yk = yk−1 + vktk, (4)

where k = 1, 2, . . . , so that yk is a linear combination of the velocities:

yk =
k∑

n=1

vntn (5)
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(under the initial condition y0 = 0).
Equation (5) is only valid for specific discrete moments t1, . . . , tk. However, our goal is to

describe the animal position at any given continuous movement time t. Therefore, Eq. (5) needs
to be adapted accordingly. To do that, we first realize that the value of t can fall into any of the
infinitely many bouts that compose the movement. Let us consider the specific realization of the
(stochastic) movement path where by the time t exactly (k−1) bouts have taken place but the kth
bout is still lasting, i.e.

k−1∑
n=1

tn < t <
k∑

n=1

tn. (6)

Correspondingly, the time spent for the movement during the (unfinished) kth bout is

t̃k = t−
k−1∑
n=1

tn. (7)

Let xk(t) is the corresponding position of the animal, i.e. its position at time t during the kth bout
(note the difference from yk which is the position at the end of the kth bout). Then, for xk we
obtain:

xk(t) = yk−1 + vk t̃k =
k−1∑
n=1

vntn + vk

(
t−

k−1∑
n=1

tn

)
≡

k∗∑
n=1

vntn. (8)

Note that, since the structure described by Eq. (8) will often appear in our calculations below, for
convenience we have introduced a special notation

∑k∗

n=1 for this kind of summation, i.e. over the
first (k − 1) completed bouts and the last (incomplete) kth one.

We also menton here that, whilst time and velocity variables are assumed to be independent,
time and spatial positions ones are not. However, once the probability densities for the bout
duration and for the velocity are defined, equation (8) gives us a straightforward procedure to
generate the movement path. Under specific assumptions about the statistical properties of the
random velocities vn, equation (8) can be used to determine the spatial probability distribution at
time t, conditioned on the duration of the preceding bouts.

To put Eq. (8) to a practical use, one has to define the probability density for the movement
velocity. A question arises here as to whether the new value of velocity vk (i.e. appearing as a
response to the signal received by the animal at time tk) may or may not depend on the velocity
vk−1 in the previous bout. In the literature, these two situations are broadly referred to as the
correlated and uncorrelated random walk, respectively. The properties of the corresponding move-
ment patterns are known to be different, i.e. the case of the correlated velocities usually results in a
faster dispersal, at least on a short time-scale [5]. The uncorrelated movement is a model adopted
from physics where it was originally developed to describe the Brownian motion [33]. Having
been extremely useful for physical applications, it is somewhat less relevant as a model of animal
movement. Unlike a hypothetical physical particle, animal’s body is not isotropic but has clearly
defined front and rare ends resulting in an ‘axis’, so that the movement is more likely to occur in a
particular direction along this axis [34]. Turning requires energy; the larger is the velocity before
turning and/or the larger is the turning angle, the larger is going to be the corresponding energy
expense. It seems plausible to expect that the animal should try to optimize its energy expense;
therefore, on a short time-scale, any two subsequent ‘steps’ along the path should occur almost in
the same direction. This movement pattern is known as the Correlated Random Walk (CRW) [5].

The concept of the CRW originally took into account only the correlation in the turning angle
[5]. However, optimization of energy expenses, of which the CRW is a manifestation, is a much
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more general strategy. We therefore hypothesize that the animal is likely to apply a similar strategy
not only to the choice of the direction of the next step but also to the choice of speed. The animal
should try to avoid large changes in its speed in order to avoid large energy expense. Altogether,
it suggests that the situation where vk is correlated to vk−1 is more realistic.

In the next section, we consider the composite random walk (8) with uncorrelated velocities.
As we have argued above, the uncorrelated case is perhaps less realistic than the correlated one;
however, we begin with the uncorrelated walk using it as a benchmark in order to verify our
approach against similar models available from literature [35, 36]. The composite random walk (8)
with correlated velocities will then be considered in Section 4.

3 Uncorrelated velocity distributions

In this section we are going to assume the velocities are statistically independent (uncorrelated)
between any two subsequent bouts. We assume that the environment is isotropic, hence φ(v) is
symmetric, φ(−v) = φ(v). Since movement requires energy, it seems reasonable to assume that,
whatever is the signal, the animal tries to minimize its energy expense, so that the most probable
value is v = 0. It is also reasonable to assume that the average energy expense is finite, so that
φ(v) decays sufficiently fast at large |v|.

It is not possible to do the analysis in a general case of unspecified φ. We therefore consider
two particular cases of φ(v) satisfying the above requirements, namely, the Gaussian and Laplace
probability distributions. The first case considered will be the normally distributed one, defined by
the probability distribution function

φG (v) =
e−

v2

2σ2

√
2πσ2

. (9)

Given t1, . . . , tk−1, Eq. (8) is a linear combination of normally distributed random variables; there-
fore the conditioned probability distribution4 describing the spatial position is also normally dis-
tributed:

ρk (x, t|tk−1) =
exp

[
− x2

2σ2∆2
k(t,tk−1)

]
√

2πσ2∆2
k (t, tk−1)

, (10)

where tk = (t1, ..., tk), and the function ∆2
k (t, tk−1), associated to the variance, is obtained directly

from (8) as

∆2
k (t, tk−1) =

k−1∑
n=1

t2n +

(
t−

k−1∑
n=1

tn

)2

(11)

(note that we have dropped the k index from the variable xk to put it on the probability function
ρk). In order to obtain the unconditioned contribution ρk (x, t), we need to sum Eq. (10) over all
possible bout durations. The sum of all periods up to tk−1 is constrained on the interval (0, t), and
the summation over all possible configurations is obtained from the multidimensional integral∫

Dtk−1 ≡
∫ t

0
dt1

∫ t−t1

0
dt2 . . .

∫ t−
Pk−2

n=1 tn

0
dtk−1. (12)

4Since the time durations tn in equation (8) are also random variables, generally speaking it cannot be regarded as

a linear combination of the velocities. However, as our main concern is the average behavior, they may be considered

to be constants because the expected behavior is obtained through integration, as shown in equation (14). This is

the reason why equation (10) only defines the conditioned probability.
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For the last bout period tk we should set the integration limits in order to make it superiorly
unbounded and to assure that the observational time t lies inside the domain. Since the conditional
probability (10) does not depend on the last bout duration tk, we may compute its contribution
(integrate) directly, and when we consider the probabilities from all duration we may write

k−1∏
j=1

ψ (tj)
∫ ∞

t−
Pk−1

n=1 tn

dtkψ (tk) = ωk−1e−ωt, (13)

which leads to the unconditioned probability density

ρk (x, t) = ωk−1e−ωt

∫
Dtk−1ρk (x, t|tk−1) . (14)

Equation (14) is not analytically solvable, but we may extract all statistical information from this
system through the moments of the distribution, which are obtained via

〈x2n (t)〉 =
∞∑

k=1

∫ ∞

−∞
x2nρk (x, t) dx =

(2n)!
2nn!

σ2ne−ωt
∞∑

k=1

ωk−1Hn,k (t) , (15)

where we use the following notation:

Hn,k (t) =
∫
Dtk−1∆2n

k (t, tk−1) =
∫
Dtk−1

 k−1∑
m=1

t2m +

(
t−

k−1∑
m=1

tm

)2
n

. (16)

To compute the contributions in Eq. (16) we just need to set a value of n and compute the first
few integrals in order to infer the general dependence on k, due to the fact that the resulting series
is a well behaved function of k. For n = 1 the solution of equation (16) is simply

H1,k (t) =
2k

(k + 1)!
tk+1, (17)

which, after being inserted back into Eq. (15), gives the temporal behavior of the mean squared
displacement,

〈x2 (t)〉 =
2σ2

ω2

(
ωt− 1 + e−ωt

)
. (18)

In particular, in the small-time limit Eq. (18) obviously turns into the following:

〈x2 (t)〉 = σ2t2. (19)

It is worth to noting that expression (18) for 〈x2〉 is precisely the same as the one obtained pre-
viously in two different contexts: the Goldstein-Kac telegraph process [37, 38] and the ‘integrated’
Ornstein-Uhlenbeck process [35, 39]. The Goldstein-Kac model describes the one-dimensional mo-
tion of a particle with constant speed v, with a Poisson process of rate λ > 0 determining the rate
at which the direction of motion may be altered in time (a change in the direction happens with
probability 1/2). The equivalence, in terms of the mean squared displacement 〈x2〉, between our
model and the telegraph process is obtained under the following relations:

v = σ and λ = ω/2. (20)
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The Ornstein-Uhlenbeck process (which we use here in the velocities form rather than in the
standard position form) describes the motion of a Brownian particle in terms of a Langevin equation
with relaxation time γ−1 and diffusion constant β, and the equivalence is obtained for

γ = ω and β = 2ωσ2. (21)

Interestingly, this equivalence between the three models is reached in spite of the fact that they
use rather different assumptions on the microscopic level. We therefore need to understand what
can be the difference, if any, in the corresponding movement patterns. For this purpose, we are
going to compute higher moments of the probability distribution function ρ (x, t), i.e. 〈x2n〉 with
n > 1, see (15). Fortunately, this appears to be analytically tractable. Indeed, we first notice that
the auxiliary function Hn,k may be expressed in the following compact form:

Hn,k (t) =
2nk

(2n+ k − 1)!
t2n+k−1Pn (k) , (22)

where Pn (k) are polynomials of order n − 1. A general expression for these polynomials is not
available, but the first few ones can be readily calculated:

P1 (k) = 1, (23a)

P2 (k) = 5 + k, (23b)

P3 (k) = 74 + 15k + k2, (23c)

P4 (k) = 2118 + 371k + 30k2 + k3, (23d)

P5 (k) = 97944 + 14290k + 1115k2 + 50k3 + k4. (23e)

Now the summations in Eq. (15) are easily doable, and the exact expressions for the moments of
the system may be written as

〈x2n (t)〉 =
(2n)!
2nn!

(σ
ω

)2n [
Q1,n (ωt) + e−ωtQ2,n (ωt)

]
, (24)

where Q1,n (ωt) and Q2,n (ωt) are polynomials in ωt, defined by

Q1,1 (y) = 2 (y − 1) , (25a)

Q1,2 (y) = 4
(
y2 − 6

)
, (25b)

Q1,3 (y) = 8
[
y3 + 3

(
y2 − 40

)]
, (25c)

Q1,4 (y) = 16
[
y4 + 8

(
y3 + 6y2 − 567

)]
, (25d)

Q1,5 (y) = 32
[
y5 + 15

(
y4 + 12y3 + 108y2 − 17856

)]
, (25e)

and

Q2,1 (y) = 2, (26a)

Q2,2 (y) = 8
(
y2 + 3y + 3

)
, (26b)

Q2,3 (y) = 4
(
5y4 + 32y3 + 114y2 + 240y + 240

)
, (26c)

Q2,4 (y) =
16
15
[
37y6 + 12

(
31y5 + 195y4 + 875y3 + 2775y2 + 5670y + 5670

)]
, (26d)

Q2,5 (y) =
4
21
{
353y8 + 24

[
204y7 + 7

(
266y6 + 1856y5 + 10155y4 + 42840y3

+132300y2 + 267840y + 267840
)]}

. (26e)
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Figure 2: (Color online) Rescaled moments of the system X2n (t) = 2nn!
(2n)!〈x

2n (t)〉, for σ = ω = 1;
dots are the results obtained from 108 samples of Monte Carlo simulations, and curves are the
analytical results defined by Eq. (24). On the left side, from top to bottom, the moments are X2

(blue), X4 (red), X6 (green), X8 (cyan) and X10 (brown).

Figure 2 shows the perfect match between these analytical expressions and the results obtained
from Monte Carlo simulations of the original system. To compare these results with the ones
obtained from the Goldstein-Kac (GK) telegraph process, we use the following general expression
for the moments [40, 41]:

〈x2n (t)〉GK ≡ µ2n (t) = e−
ωt
2 (σt)2n

(
4
ωt

)n−1/2

Γ (n+ 1/2)
[
In+1/2

(
ωt

2

)
+ In−1/2

(
ωt

2

)]
, (27)

where Γ (•) is the Gamma function, and Ik±1/2 (•) are modified Bessel functions of the first kind.
In Fig. 3 (left) we show the time evolution of the ratio µ2n/〈x2n〉 between the moments of the two
processes, and even though they share the same time evolution for mean squared displacement, a
smaller than 1 ratio for all higher moments (at a finite time t) shows that the telegraph process
indeed presents a slower rate of dispersal. If we take a look at its dispersal function

ρGK (x, t) =
e−

ωt
2

2
[δ (σt− x) + δ (σt+ x)] (28)

+
e−

ωt
2

2σ

[ω
2
I0

( ω
2σ

√
σ2t2 − x2

)
+ ∂tI0

( ω
2σ

√
σ2t2 − x2

)]
Θ(σt− |x|) , (29)

where Θ (•) is the Heaviside step function, it becomes clear that this slower pace is a result of
the finite ranged dispersal function. For any finite time t, the telegraph process always presents
thinner tail and, consequently, a slower dispersal rate, but for larger times all moments tend to
catch up and asymptotically we end up with the diffusive behavior [42] with diffusion coefficient
DGK (σ, ω) = 2σ2/ω. Correspondingly, the asymptotic values of the ratios shown in Fig. 3 (left)
prove that the diffusive behavior emerges from the uncorrelated velocity composed movement in
the large time limit.

The comparison to the OU process requires somewhat more elaborated arguments and a further
discussion. Let us first recall that the OU process is defined in terms of the Langevin equation:

d

dt
v (t) + γv (t) = β1/2Γ (t) , (30)
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Figure 3: Comparison among the three microscopic random walk models in terms of the higher
moments. The left-hand side shows the ratio of the moments µ2n obtained from the GK process and
the composite random walk moments 〈x2n〉. The right-hand side shows the ratio of the moments
η2n obtained from the OU process and the composite random walk moments 〈x2n〉. On both sides,
from top to bottom, n = 1, 2, 3, 4, 5.

where Γ (t) is the Gaussian white noise satisfying 〈Γ (t) Γ (t′)〉 = δ (t− t′). It can be shown [35, 43]
that the corresponding mean squared displacement may be written as

〈[x (t)− x0]
2〉OU =

(
v2
0 −

β

2γ

) (
1− e−γt

)2
γ2

+
β

γ2
t− β

γ3

(
1− e−γt

)
. (31)

As well as above, we can set x0 = 0 without any loss of generality. However, the effect of the initial
value of the velocity v0 appears to be subtle.

We first notice that, if we look at the velocity correlation function,

〈v (t)2〉OU = v2
0e
−2γt +

β

2γ
(
1− e−2γt

)
, (32)

regardless the initial velocity v0, in the large-time limit it approaches the following value:

〈v (t)2〉 ' β

2γ
. (33)

The value in the right-hand side of (33) has a special meaning. By virtue of the equipartition
theorem [44, 45], for a particle of mass m performing stationary random motion in a stochastic
environment described by the Langevin equation (30), the large-time limit (i.e. when the effect
of the initial conditions is forgotten) of its movement (kinetic) energy is given by the following
expression:

〈E〉 =
m

2
〈v (t)2〉 ' m

2
β

2γ
(34)

(e.g. see [44, 45] for details).
We now notice that Eq. (31) coincides with (18) if v2

0 is chosen as prescribed by (34), i.e. v2
0 =

β/(2γ) (recalling also the equivalence condition (21)), i.e. the squared initial velocity coincides with
the average value of the squared velocity reached in the large-time limit. We therefore conclude
that our model is equivalent (in terms of the mean squared displacement 〈x2〉) to the OU process
in case the browsing animal is at an equilibrium with its environment, i.e. in case the environment
is stationary (in the statistical sense) and the animal has had time to adapt to it.
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Having thus established the equivalence of the initial conditions, we now proceed to comparing
the higher moments. The OU process is well known to be a Gaussian process, so in the symmetric
case the moments are given by the following expression:

〈x2n (t)〉OU ≡ η2n (t) =
(2n)!
2nn!

[
2σ2

ω2

(
ωt− 1 + e−ωt

)]n

. (35)

Figure 3 (right) shows the time evolution of the ratio η2n/〈x2n〉 between the moments of the two
processes, where the macroscopic (statistical) difference may be observed on intermediate times, as
the faster spreading of higher moments in the composite random walk is responsible for its fatter
tail.

Now that the properties of all the moments of the probability distribution function have been
revealed, we are going to have a closer look at the properties of the pdf itself. For this purpose, we
first need to understand the asymptotic behavior of the moments defined by Eq. (24). For small
times we have a ballistic type of spreading, characterized by 〈x2n〉 ∼ t2n, but for large times the
exponential damping e−ωt slows down the rate of spread, effectively reducing it to a asymptotically
diffusive dispersal characterized by 〈x2n〉 ' tn. The only problem with this conclusion is that
the full asymptotic expression contain lower order terms, as it is indeed a polynomial of the type
〈x2n〉 ∼

∑n
k=0 ckt

k, where ck are constant coefficients. In principle, the presence of these terms
could contribute to a faster than diffusion type of spread, but a more rigorous analysis involving
the cumulants will show that their contribution is indeed asymptotically negligible.

The cumulants of the system are obtained from the moments via the recursive relation

κn = 〈xn〉 −
n−1∑
m=1

(n− 1)!
(m− 1)! (n−m)!

κm〈xn−m〉. (36)

Since we are interested in determining only the long time behavior of the system, we should discard
the decaying terms associated to the exponential in Eq. (24) and consider only the surviving
polynomials Q1,n. Under this condition, a direct computation will show that asymptotic values of
all cumulants are linear functions of time, as for instance

κ2 (t) ' 2σ2

ω2
(ωt− 1) , κ4 (t) ' 12σ4

ω4
(2ωt− 7) , κ6 (t) ' 480σ6

ω6
(6ωt− 35) . (37)

With the cumulants we may write the characteristic function as the exponential of the cumulant
generating function (with imaginary argument),

Φ (z, t) = exp

{ ∞∑
n=1

κn (t) (iz)n

n!

}
, (38)

and obtain the dispersal function (probability distribution function) as a inverse Fourier transform:

ρ (x, t) =
1
2π

∫ ∞

−∞
e−izxΦ (z, t) dz. (39)

Even though each cumulant with n > 2 diverges linearly from the ones derived from the Gaussian
distribution (if n > 2, then κn = 0 for a normally distributed random variable), a simple change of
variable z′ = z/

√
t shows that for large t the contributions from all cumulants with n > 2 tend to

zero, and the resulting behavior is determined by the second cumulant alone. If we’re interested in
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Figure 4: Comparison between data and model’s result for the rescaled probability distribution
function ρ̃G (x, t) = ρG (x, t) /ρG (0, t), with σ = ω = 1. Dots are data values obtained from Monte
Carlo simulations; continuous curve is the function obtained from the numerical integration of the
pdf defined in Eq. (41); dashed curve is the asymptotic diffusion described in Eq. (42). From left
to right, t = 32, 64, 128, 256 and 512.

a approximated expression for the probability distribution function, valid for intermediate times,
then we should consider only the first three non-zero cumulants to write the characteristic function,

ΦG (z, t) ≈ exp
[
−
(σz
ω

)2
(ωt− 1) +

(σz
ω

)4
(2ωt− 7)−

(σz
ω

)6 2 (6ωt− 35)
3

]
, (40)

and obtain the pdf as a numerical integration:

ρG (x, t) ≈ 1
2π

∫ ∞

−∞
ΦG (z, t) cos (xz)dz. (41)

Asymptotically the inverse Fourier transform is easily computable, leading to the well known Gaus-
sian diffusive process

ρG (x, t) '
√

ω

4πσ2t
e−

ωx2

4σ2t . (42)

Our analytical results appear to be in a very good agreement with the numerical results from
Monte Carlo simulations; see Fig. 4. The approximate expression (41) fits very well with the actual
probability function (obtained numerically). Convergence to the Gaussian distribution is observed,
for the given range x ≤ 160, already for relatively small times ωt ∼ 500.

Therefore, basing on the above analysis, we conclude that the composite random walk defined
by Eqs. (2–4) and (9) shows three different time scales: (i) a short transient for small values of ωt,
defined through the complete expressions of the moments in Eq. (24), where the initial ballistic be-
havior starts to slow down to a diffusion type of spreading; (ii) a long transient behavior, where the
exponential contributions are neglected and the system may be approximated by the characteristic
function (40), under which the pdf shows fatter than normal tails (almost exponential); (iii) large
time asymptotics, defined by ωt� 1, where the system converges to a diffusive type of spreading,
with the diffusion coefficient given by

DG (σ, ω) =
2σ2

ω
. (43)

We notice that this is the same diffusion coefficient as obtained from the telegraph process, thus
confirming our earlier result that asymptotically both models converge to the same diffusion process.
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A question arises with regard to the generality of the above dynamics, in particular, whether
a different choice of the velocity distribution can affect the asymptotic behavior. Unfortunately
we cannot answer this question for a general case but we can consider another special case of
the Laplace distribution, which is done in the next section. Should the properties of the random
movement with the Laplace distribution appear to be similar to those obtained for the normal
distribution, that could be regarded as a certain evidence of the generality of our results, at least
for all thin-tailed probability distributions.

3.1 Laplace distribution

We now consider consider the case where the velocities are distributed according to the Laplace
distribution:

φL (v) =
e−

|v|
2α

2α
. (44)

It is not possible to write the conditional probability in an explicit form, as we did for the normally
distributed case in Eq. (10). Instead, we use a different approach based on the characteristic
function. Since the dispersal function may be expand into contributions of different number of
bouts, as in Eq. (3), we can write the characteristic function of each of these contributions as the
product of the characteristic functions from each variable vntn present in Eq. (8). This approach will
work as long as the original velocity distribution admits a characteristic function representation, and
as for the Laplace distribution we have 1/

(
1 + α2z2

)
, the characteristic function for this Laplace

composed case may be written as

ΦL (z, t) = e−ωt
∞∑

k=1

ωk−1

∫
Dtk−1

k∗∏
n=1

1
1 + α2z2t2n

= e−ωt
∞∑

m=0

(−1)m (αz)2m
∞∑

k=1

ωk−1

∫
Dtk−1Θm,k (t, tk−1) . (45)

On the first part, the upper bound index k∗ is just a short notation to remind that the summations
should go up to the value k and followed by imposing the constraint tk → t−

∑k−1
n=1 tn, as previously

discussed. Once we expand this expression around z = 0, we obtain the functions Θm,k (t, tk−1)
shown on the second part, which are just polynomials in the bout durations tn. Just as in the
Gaussian case, we’re not going to compute all the terms, but just focus on the first three ones:

Θ1,k (t, tk−1) =
k∗∑
i=1

t2i , (46a)

Θ2,k (t, tk−1) =
k∗∑
i=1

t4i +
k∗∑
i=1

k∗∑
j=i+1

t2i t
2
j , (46b)

Θ3,k (t, tk−1) =
k∗∑
i=1

t6i +
k∗∑
i=1

k∗∑
j=i+1

t2i t
2
j

(
t2i + t2j

)
+

k∗∑
i=1

k∗∑
j=i+1

k∗∑
l=j+1

t2i t
2
j t

2
l . (46c)

To compute the bout durations integrals in Eq. (45) we may resort to the same approach used
before, in which for a given m we use the result from the first integrals to infer the general behavior
as a function of k. As the first multidimensional integral of Θ1,k is exactly the same as H1,k shown
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in Eq. (16), we only need to compute the next two:∫
Dtk−1Θ2,k (t, tk−1) =

2k (k + 11)
(k + 3)!

tk+3, (47)∫
Dtk−1Θ3,k (t, tk−1) =

4k
(
k2 + 33k + 506

)
3 (k + 5)!

tk+5. (48)

Now it is just a matter of rewriting the summation into known functions to obtain the series
expansion of the characteristic function, and when we compare it to the general relation

ΦL (z, t) =
∞∑

m=0

(−1)m 〈x2m (t)〉L
(2m)!

z2m, (49)

it becomes easy to determine the statistical moments of the system as

〈x2 (t)〉L = 4
(α
ω

)2 (
ωt− 1 + e−ωt

)
, (50a)

〈x4 (t)〉L = 48
(α
ω

)4 [
ω2t2 + 6ωt− 24 + e−ωt

(
5ω2t2 + 18ωt+ 24

)]
, (50b)

〈x6 (t)〉L = 240
(α
ω

)6 [
4
(
ω3t3 + 21ω2t2 + 270ωt− 1830

)
+e−ωt

(
79ω4t4 + 592ω3t3 + 2496ω2t2 + 6240ωt+ 7320

)]
. (50c)

If, in order to make the Laplace and Gaussian distributions comparable, we consider the relation
between the distribution parameters as α = σ/

√
2 (to ensure that both distribution have the same

variance), then 〈x2〉L obviously shows the dependence on time exactly the same as in the previous
case of the normal distribution; see Eq. (18). However, it is readily seen that all the higher moments
are different from the previous case given by Eqs. (24–26).

As Fig. 5 (left) shows the perfect agreement of these equations to the MC results, we may
proceed to compute the asymptotic values of the cumulants,

κL,2 (t) ' 4
(α
ω

)2
(ωt− 1) ,

κL,4 (t) ' 48
(α
ω

)4
(8ωt− 25) ,

κL,6 (t) ' 1920
(α
ω

)6
(183ωt− 952) , (51)

which allows us to obtain an approximate expression for the dispersal function simply as the inverse
Fourier transform,

ρL (x, t) ≈ 1
2π

∫ ∞

−∞
cos (xz) exp

[
−
κL,2 (t)

2!
z2 +

κL,4 (t)
4!

z4 −
κL,6 (t)

6!
z6

]
dz. (52)

Also in this case the cumulants are linear functions of time t, so we already know that the probability
distribution may be asymptotically approximated by a Gaussian diffusion

ρL (x, t) '
√

ω

8πα2t
e−

ωx2

8α2t , (53)

where the diffusion coefficient is connected to the model parameters via the relation

DL (α, ω) =
4α2

ω
. (54)
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Figure 5: (Colour online) Left: moments of the Laplace system for α = ω = 1; dots are the
results obtained from 108 samples of Monte Carlo simulations, and curves are the analytical results
defined in equations (43); from top to bottom, the moments are 〈x6〉 (green), 〈x4〉 (red) and 〈x2〉
(blue). Right: comparison between data and model’s result for the rescaled probability distribution
function ρ̃L (x, t) = ρL (x, t) /ρL (0, t), with α = ω = 1; dots are data values obtained from Monte
Carlo simulations, continuous curve is the function obtained from the numerical integration of
Eq. (52), and dashed curve is the asymptotic diffusion described in Eq. (53); from left to right, t =
128, 256, 512 and 1024.

It is readily seen in Fig. 5 (right) that our results agree very well with the Monte Carlo simulations.
We therefore observe the dynamics qualitatively similar to the case of the normal distribution.
The large time convergence of the probability distribution function to Eq. (53) is preceded by long
transient where the rate of decay is close to exponential and the MSD corresponds to the ballistic
movement.

4 Correlated velocity distributions

In the previous section, we considered a model where the velocity at the next bout is not related
in any way to the velocity at the previous bout. However, this may be not entirely realistic. As
we discussed it in Section 2, if we neglect the drag, it seems probable that the animal would try
to choose the new velocity value close to the previous velocity in order to minimize the energy
expense. Correspondingly, now we are going to consider a somewhat more realistic case where the
movement is composed by a sequence of correlated bouts. As well as above, we assume that the
bout durations are independent, so that the correlation only affects the velocity distribution. More
specifically, in order to relate it to our analysis in the previous section, we now consider that the
probability density function φ (see Section 2 and the beginning of Section 3) applies at each bout
but now describes not the new velocity itself but the velocity increment, i.e. the difference between
the two subsequent velocities, so that

vk = vk−1 + ξk, (55)

where ξk is therefore a random value with the probability density φ. Note that, since the environ-
ment is assumed to be isotropic, φ(ξk) is a symmetric distribution so that 〈ξk〉 = 0 and hence the
expected value of the velocity at the next bout coincides by the velocity at the previous bout. We
also mention that, in case of a symmetric unimodal distribution, the expected value coincides with
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the most likely value (the position of the distribution’s maximum); therefore, once vk−1 has been
drawn, it is the most likely value for next velocity vk.

Note that the velocities present in the kinematics Eq. (8) are not independent anymore, so we
do not know a priori what are their probability distributions. Therefore, the case of correlated
velocities may seem to be analytically untractable. However, due to the linearity of the recurrence
relation (55), it is readily seen that

v1 = v0 + ξ1, v2 = v1 + ξ2, v3 = v2 + ξ3, . . . vk = vk−1 + ξk, (56)

so that

vk =
k∑

n=1

ξn (57)

(assuming the initial condition ξ0 = 0) where the set {ξn} is composed of independent identically
distributed random variables. Now, using the notation k∗ introduced in Section 2, we can rewrite
Eq. (8) as follows:

xk =
k∗∑

n=1

ξn

k∗∑
m=n

tm. (58)

For a given velocity distribution, this kinematic equation is a suitable starting point for computing
the statistical properties of the process using the same approach as in Section 3.

To start with a simpler case, we consider the normally distributed case ξn ∼ N
(
0, σ2

)
. As

we already know that the conditional probability for the spatial variable xk will be a Gaussian
distribution, as in Eq. (10), we just need to specify its variance:

∆2
Gc,k = σ2

k∗∑
n=1

(
k∗∑

m=n

t2m

)2

= σ2

(
k∗∑

n=1

nt2n + 2
k∗∑

n=1

k∗∑
m=n+1

ntntm

)
. (59)

As in this part the procedure is exactly the same as before, we omit the technicalities and write
the defining equations of the moments

〈x2n (t)〉Gc =
∫ ∞

−∞
x2nρGc (x, t) dx =

(2n)!
2nn!

σ2ne−ωt
∞∑

k=1

ωk−1H̄n,k (t) , (60a)

H̄n,k (t) =
∫
Dtk−1∆2n

Gc,k (t, tk−1) , (60b)

and the solutions that we obtained for the first few of these functions:

H̄1,k (t) =
k (2 + k)

k!
tk+1

3
, (61a)

H̄2,k (t) =
k
(
16 + 24k + 5k2

)
k!

tk+3

45
, (61b)

H̄3,k (t) =
k
(
96 + 520k + 294k2 + 35k3

)
k!

tk+5

945
, (61c)

H̄4,k (t) =
k
(
−768 + 5152k + 7376k2 + 2240k3 + 175k4

)
k!

tk+7

14175
. (61d)

With these results, we can make the summations in Eq. (60a) to obtain the following explicit
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expressions for the moments:

〈x2 (t)〉Gc =
σ2t2

3
(3 + ωt) , (62a)

〈x4 (t)〉Gc =
σ4t4

15
(
45 + 39ωt+ 5ω2t2

)
, (62b)

〈x6 (t)〉Gc =
σ6t6

63
(
945 + 1647ωt+ 504ω2t2 + 35ω3t3

)
, (62c)

〈x8 (t)〉Gc =
σ8t8

135
(
14175 + 45585ωt+ 25191ω2t2 + 3990ω3t3 + 175ω4t4

)
. (62d)

It is readily seen that, although the moments have the ballistic behavior 〈x2n〉 ∼ t2n at small time,
the system eventually speeds up resulting in a super-ballistic large-time asymptotics, 〈x2n〉 ∼ t3n.
In particular, the super-ballistic movement is evident in the time-dependence of the mean squared
displacement as 〈x2〉 ∼ t3.

Note that the absence of exponential damping terms in these relation lead to very simple
expressions for the cumulants (remember that κ̄2 = 〈x2〉Gc)

κ̄4 (t) =
3ωσ4

5
t5, κ̄6 (t) =

15ωσ6

7
t7, κ̄8 (t) =

35ωσ8

3
t9, (63)

As a matter of fact, these expressions are so simple that it is even possible to infer their general
behavior for any value of k, as in

κ̄2n (t) =
(2n)!

2nn! (2n+ 1)
ωt (σt)2n + (σt)2δn,1, (64)

which is in a very good agreement with the simulation data, as Fig. 6 (left) shows. With this
general expression, it is possible to explicitly perform the summations involved in the definition of
the cumulant generating function KGc , which leads to its exact expression

KGc (iz, t) ≡
∞∑

n=1

(−1)n z2n

(2n)!
κ̄2n (t) = −ωt− (σtz)2

2
+
√
π

2
ω

σz
Erf
(
σtz√

2

)
, (65)

where Erf (•) is the Error function, defined by the series expansion

Erf (x) =
2√
π

∞∑
n=0

(−1)n x2n+1

n! (2n+ 1)
. (66)

As the characteristic function is connected to its cumulant counterpart via the relation Φ (z) =
exp [K (iz)], we have obtained an exact integral representation of the probability distribution as
the Fourier transform

ρGc (x, t) =
e−ωt

2π

∫ ∞

−∞
cos (xz) exp

[
−(σtz)2

2
+
√
π

2
ω

σz
Erf
(
σtz√

2

)]
dz, (67)

valid for all times. To obtain the asymptotic behavior, if we go back to the cumlant power series
expansion and make the change of variables to z′ = t−3/2z, then we have a situation very similar
to the other cases, in which only the first nonzero cumulant κ̄2 is relevant for large times. Hence,
in the large-time limit the probability density is described by the Gaussian distribution:

ρGc (x, t) '
√

3
2πσ2ωt3

e−
3x2

2σ2ωt3 , (68)

but in this case we have a time dependent diffusion coefficient:

DGc (t) =
σ2ω

3
t2. (69)
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Figure 6: (Colour online) Left: moments of the correlated Gaussian system for σ = ω = 1; dots
are the results obtained from 108 samples of Monte Carlo simulations, and curves are analytical
results; from bottom to top, the analytical expressions for the moments 〈x2〉Gc (blue), 〈x4〉Gc (red),
〈x6〉Gc (green) and 〈x8〉Gc (cyan) were obtained from Eq. (62); the expressions for the last two
moments, 〈x10〉Gc (brown) and 〈x12〉Gc (violet), were obtained from the cumulants determined by
the inferred general expression (64). Right: comparison between data and model’s result for the
rescaled probability distribution function ρ̃Gc (x, t) = ρGc (x, t) /ρGc (0, t), with σ = ω = 1; dots are
data values obtained from Monte Carlo simulations, continuous curve is the function obtained from
the numerical integration of the inverse Fourier transform (67), and dashed curve is the asymptotic
diffusion described in Eq. (68); from left to right, t = 32, 64, 128 and 256.

4.1 Laplace distribution

Now, we are going to consider the case where the velocity increments are described by the Laplace
distribution. Similarly to what we did in Section 3.1, we can use the approach based on the
characteristic function, cf. Eq. (45). However, now we need to take into account that the coefficients
multiplying each random variable v̄n are given by equation (58), so the characteristic function is
written as

ΦLc (z, t) = e−ωt
∞∑

k=1

ωk−1

∫
Dtk−1

k∗∏
n=1

1 + α2z2

 k∗∑
j=n

tj

2−1

= e−ωt
∞∑

m=0

(−1)m (αz)2m
∞∑

k=1

ωk−1

∫
Dtk−1Θ̄m,k (t, tk−1) , (70)

where we have already made the power series expansion in z on the second line of (70). The
approach isn’t different, so we may skip a few intermediary steps and go directly to the inferred
expressions for the integrals, as in∫

Dtk−1Θ1,k (t, tk−1) =
2
3

2 + k

(k − 1)!
tk+1, (71a)∫

Dtk−1Θ2,k (t, tk−1) =
4
15

(4 + k) (13 + 5k)
(k − 1)!

tk+3, (71b)∫
Dtk−1Θ3,k (t, tk−1) =

8
63

(6 + k)
(
502 + 273k + 35k2

)
(k − 1)!

tk+5, (71c)∫
Dtk−1Θ4,k (t, tk−1) =

16
135

(8 + k)
(
21306 + 13589k + 2730k2 + 175k3

)
(k − 1)!

tk+7, (71d)
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which enable us to determine the first few moments of the system:

〈x2 (t)〉Lc =
2α2t2

3
(3 + ωt) , (72a)

〈x4 (t)〉Lc =
4α4t4

15
(
90 + 48ωt+ 5ω2t2

)
, (72b)

〈x6 (t)〉Lc =
8α6t6

63
(
5670 + 3834ωt+ 693ω2t2 + 35ω3t3

)
, (72c)

〈x8 (t)〉Lc =
16α8t8

135
(
340200 + 267840ωt+ 64584ω2t2 + 5880ω3t3 + 175ω4t4

)
. (72d)

Figure 7 (left) shows a perfect match between these expressions and the simulation results. Just
as in the correlated Gaussian case, when we determine the first few cumulants from Eq. (72),

κLc,4 (t) =
12α2t2

5
(5 + 2ωt) , (73)

κLc,6 (t) =
240α6t6

7
(7 + 3ωt) , (74)

κLc,8 (t) = 1120α8t8 (9 + 4ωt) , (75)

we’re able to infer the general behavior for every cumulant as a function of n, as in

κLc,2n (t) = α2nt2n (2n)!
(

1
n

+
ωt

2n+ 1

)
. (76)

As a result, we may completely determine the cumulant generating function for this process,

KLc (iz, t) ≡
∞∑

n=1

(−1)n z2n

(2n)!
κLc,2n (t) = −ωt+

ω

αz
arctan (αtz)− log

[
1 + (αtz)2

]
, (77)

where we have used the power series expansion for the functions

arctan (x) =
∞∑

n=0

(−1)n x2n+1

2n+ 1
, log

(
1 + x2

)
= −

∞∑
n=0

(−1)n x2n

n
. (78)

From Eq. (77) we’re able to obtain an exact integral expression for the probability distribution
function

ρLc (x, t) =
e−ωt

2π

∫ ∞

−∞
cos (xz) exp

{ ω

αz
arctan (αtz)− log

[
1 + (αtz)2

]}
dz, (79)

which agrees very well with simulation results, see Fig. 7 (right). Asymptotically (i.e. in the large-
time limit), the system is described by the following Gaussian distribution:

ρLc (x, t) '
√

3
4πα2ωt3

e−
3x2

4σ2ωt3 , (80)

which obviously corresponds to diffusion with a time dependent diffusion coefficient:

DLc (t) =
2α2ω

3
t2. (81)
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Figure 7: (Colour online) Left: moments of the correlated Laplacian system for α = ω = 1; dots
are the results obtained from 108 samples of Monte Carlo simulations, and curves are analytical
results; from bottom to top, the analytical expressions for the moments 〈x2〉Gc (blue), 〈x4〉Gc (red),
〈x6〉Gc (green) and 〈x8〉Gc (cyan) were obtained from Eq. (72); the expressions for the last two
moments, 〈x10〉Gc (brown) and 〈x12〉Gc (violet), were obtained from the cumulants determined by
the inferred general expression (64). Right: comparison between data and model’s result for the
rescaled probability distribution function ρ̃Lc (x, t) = ρLc (x, t) /ρLc (0, t), with α = ω = 1; dots are
data values obtained from Monte Carlo simulations, continuous curve is the function obtained from
the numerical integration of the inverse Fourier transform (67), and dashed curve is the asymptotic
diffusion described in Eq. (68); from left to right, t = 32, 64, 128 and 256.

5 Discussion and concluding remarks

Individual animal movement is a complicated multiscale phenomenon that arises from the interplay
between the animal’s internal states and its environment. Such interplay occurs through a variety
of scale-specific animal’s behavioral responses. In this paper, we considered a model relating the
individual movement pattern to the small-scale environmental stochasticity that affects the ani-
mal at the microscale of a single step (bout) along the movement path. The presumption behind
our model is that, in its movement, the animal perceives the stochasticity through random signals.
The animal is assumed to respond to the signals by modifying its velocity accordingly. Correspond-
ingly, the velocity is considered to be a continuous random variable described by its probability
density function (pdf). This pdf therefore quantifies the interplay between the environment and
the animal’s behavioral response.

Since little biological information is available with regard to how the animals actually react to
the small-scale stochasticity, we considered two hypothetical, qualitatively different cases. In the
first case, the velocity v at each bout (i.e. the part of the movement path between two subsequent
signals) is drawn from the same probability distribution φ(v), hence being uncorrelated to the
previous bouts. The animal is thus assumed to make no reference to its movement prior to the
moment when the signal is received. This may be not entirely realistic and may also result in large
energy expense due to possible sudden large changes in the animals’s velocity. Correspondingly, we
then considered the second case where the animal tries to optimize its energy expense by correlating
its velocity in the next bout to the velocity in the previous bout. We assume that it happens in
such a way that the most likely value of the next velocity coincides with the previous velocity,
in agreement with the generic idea behind the correlated random walk [5]. The process is then
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described the pdf φ of the velocity increment. We provided a comprehensive analytical study of
these two cases, in particular, by calculating the first several moment of the dispersal kernel for two
different choice of φ, i.e. where the pdf φ is the normal distribution and the Laplace distribution.

In the case of uncorrelated velocities, we obtain that the small-time and large-time limits are
given, respectively as

(a) 〈x2(t)〉 ' σ2t2 and (b) 〈x2(t)〉 ' 2σ2

ω
t, (82)

that is, the spread is ballistic at the beginning but eventually converges to the standard diffusion.
However, in the case of correlated velocities we obtain that the small-time and large-time limits
are given, respectively as

(a) 〈x2(t)〉 ' σ2t2 and (b) 〈x2(t)〉 ' 1
3
σ2ωt3, (83)

that is the ballistic spread occurring at the beginning will eventually accelerate to a super-ballistic
spread. Eqs. (82) and (83) are obtained using the Gaussian distribution for the velocity (respec-
tively, for the velocity increment). However, exactly the same results are obtained using the Laplace
distribution (up to the rescaling σ =

√
2α to ensure that both distribution have the same variance),

which suggests that these dynamical behaviors of the mean squared displacement may be a general
property, at least for thin-tailed (i.e. exponentially bounded) probability distributions. However,
we also want to mention here that the Gaussian and the Laplace distributions produce different
higher moments, so the shape of the pdf does affect minor details of the movement pattern.

A question may arise as to whether the case of correlated velocities is fully realistic. The appar-
ent problem is that the model given by Eqs. (55–57) is a Brownian velocity process, which results
in 〈v2(t)〉 = 2Dt where D is the diffusion coefficient, so that in the course of time the velocity
can become unrealistically large. However, here we emphasize that our model is restricted to a
certain time scale. Our approach implicitly assumes that the animal is involved into a continuous
movement. In reality, the animals are not of course moving all the time. Periods of continuous
movement alternate with periods of rest [21, 46]. There is growing empirical evidence that the
duration of uninterrupted continuous movement, say T , can be regarded as an exponentially dis-
tributed random variable [27]. Correspondingly, the mean squared velocity gained by the end of the
period of uninterrupted movement, 〈v2〉 = 2DT , is an exponentially distributed random variable
too. Therefore, the probability of gaining a very large speed is exponentially small.

Interestingly, both in the uncorrelated and correlated cases, the dispersal kernel ρ(x, t) con-
verges, in the large-time limit, to a normal distribution. Whilst it is perhaps not surprising in the
uncorrelated case, this result seems to be rather counter-intuitive in the case of correlated veloci-
ties. Indeed, in our model the super-ballistic spread (83b) occurs with the thin tailed, diffusive-like
dispersal kernel. However, the anomalous spread 〈x2(t)〉 ∼ tH where H > 1 is usually associated
with the fat-tailed kernel decaying asymptotically as a power law, in the 1D case as ρ ∼ x−ν where
ν = (1 + 2/H) < 3, cf. [11, 19, 47].

We have also shown that the rate of convergence of the dispersal kernel to the normal distribu-
tion is rather slow. In the ecological context, where the environment is never stationary and hence
the transients are thought to be highly relevant [48], it may imply that the large-time asymptotics
is never observed. Note that, even in a stationary environment, the large-time asymptotics will not
be reached if the characteristic time between the signals altering the velocity is on the same order
that the average duration of uninterrupted continuous movement, i.e. if 1/ω ∼ T . Our results
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therefore suggest that a typical observed movement pattern is more likely to be ballistic rather
than diffusive, even where the stochastic process behind the movement is inherently diffusive. We
emphasize that, although a faster dispersal at short time is a well known property of the correlated
random walk [5], here we showed that this can happen for an uncorrelated walk as well. With
regard to the rate of decay at large distance, at any small or intermediate time, the dispersal kernel
appears to have a somewhat fatter tail than that of the normal distribution (although decaying
faster than a power law). This, another important inference of our analysis is that a fat-tailed
probability distribution sometimes observed in the movement data can in fact be a feature of the
transient dynamics, whilst in the large time limit it would converge to the normal distribution.

Finally, we mention that our approach may also provide some suggestions with regard to how the
collection of movement data can be optimized, in particular, what should be the optimum frequency
of sampling along the path. The right choice of frequency is important for several reasons. A too-
low frequency (under-sampling) can result in a loss of information about the movement on a small
spatiotemporal scale [29] and possibly in wrong conclusions about the movement pattern. A too-
high frequency (over-sampling) may decrease the total observation time (e.g. through decreasing
the batteries life for radio-tagged animals) and hence may result in a loss of information about the
movement on a large spatiotemporal scale. By now, the arguments behind the optimum choice of
the sampling frequency have mostly been heuristic, e.g. to ensure the maximum variance of the
velocity increments between any two subsequent steps along the path [21]. Our model suggests that
the factor shaping the movement path on the small spatiotemporal scale is the animal’s movement
behavior in response to environmental stochasticity, and the quantity that determines the optimum
frequency is the average frequency ω of the signals received by the animal. The optimum sampling
would then be achieved by choosing the sampling time-step as ∆t ≈ 1/ω. Although the ways to
measure ω in the field or derived it from the movement data are yet to be specified, we believe that
the focus on animal reactions and behavior may provide a unifying framework for understanding
individual animal movement on small spatiotemporal scales.
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