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Abstract. A temporal graph is a graph in which the edge set can change
from step to step. The temporal graph exploration problem TEXP is the
problem of computing a foremost exploration schedule for a temporal
graph, i.e., a temporal walk that starts at a given start node, visits all
nodes of the graph, and has the smallest arrival time. We consider only
temporal graphs that are connected at each step. For such temporal
graphs with n nodes, we show that it is NP-hard to approximate TEXP
with ratioO(n1−ε) for any ε > 0. We also provide an explicit construction
of temporal graphs that require Θ(n2) steps to be explored. We then
consider TEXP under the assumption that the underlying graph (i.e.
the graph that contains all edges that are present in the temporal graph
in at least one step) belongs to a specific class of graphs. Among other
results, we show that temporal graphs can be explored in O(n1.5k2 logn)
steps if the underlying graph has treewidth k and in O(n log3 n) steps if
the underlying graph is a 2× n grid. We also show that sparse temporal
graphs with regularly present edges can always be explored in O(n) steps.
Keywords: inapproximability, planar graphs, bounded treewidth, regu-
larly present edges, irregularly present edges

1 Introduction

Many networks are not static and change over time. For example, connections
in a transport network may only operate at certain times. Connections in so-
cial networks are created and removed over time. Links in wired or wireless
networks may change dynamically. Dynamic networks have been studied in
the context of faulty networks, scheduled networks, time-varying networks, etc.
For an overview, see [5, 15, 18]. We consider a model of time-varying networks
called temporal graphs. A temporal graph G is given by a sequence of graphs
G0 = (V,E0), G1 = (V,E1), G2 = (V,E2), . . . , GL = (V,EL) that all share
the same vertex set V , but whose edge sets may differ. The number L is called
the lifetime of G. We assume that the whole temporal graph is presented to the
algorithm.

Standard algorithms for well known problems such as connected components,
diameter, reachability, shortest paths, graph exploration, etc. cannot be used
directly in temporal graphs. In particular, Berman [2] observes that the vertex
version of Menger’s theorem does not hold for temporal graphs. Kempe et al. [10]
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characterize the temporal graphs in which Menger’s theorem holds and show that
it is NP-complete to decide whether there are two node-disjoint time-respecting
paths between a given source and sink. Mertzios et al. [14] show that there is a
natural variation of Menger’s theorem that holds for temporal graphs. Moreover,
the standard algorithms usually optimize only one parameter, but problems in
temporal graphs usually have more than one parameter to optimize, e.g., one can
search for a shortest, a foremost, or a fastest s-t-path [3], i.e., a path from s to t
with a minimal number of edges, earliest arrival time, and a shortest duration,
respectively.

We consider the temporal graph exploration problem, introduced in [16] and
denoted TEXP, whose goal is to compute a schedule (or temporal walk) with
the earliest arrival time such that an agent can visit all vertices in V . The agent
is initially located at a start node s ∈ V . In step i (i ≥ 0) the agent can either
remain at its current node or move to an adjacent node via an edge that is present
in Ei. We remark that static undirected graphs can easily be explored in less
than 2|V | steps using depth-first search, while there are static directed graphs
for which exploration requires Θ(|V |2) steps. The problem to explore a graph (as
part of an exploration of a maze) was already formulated by Shannon [19] in 1951.

Flocchini et al. [7] consider the graph exploration problem on temporal graphs
with periodicity defined by the periodic movements of carriers. Much of the re-
search is based on models where edges appear with a certain probability [1, 9, 11]
or with some kind of periodicity [4, 13]. Except in Sect. 5, we do not assume that
edges appear with some periodicity or certain probabilistic properties. Instead,
unless stated otherwise, we only assume that the given temporal graph is always
connected. Michail and Spirakis [16] observe that without the assumption that
the given temporal graph is connected at all times, it is even NP-complete to
decide if the graph can be explored at all. They also show that, under this as-
sumption, any temporal graph can be explored with an arrival time n2. They
also prove that there is no (2−ε)-approximation for TEXP for any ε > 0 unless
P = NP. They define the dynamic diameter of a temporal graph to be the mini-
mum integer d such that for any time i and any vertex v, any other vertex w can
be reached in d steps on a temporal walk that starts at v at time i. They provide
a d-approximation algorithm for TEXP, where d is the dynamic diameter of
the temporal graph. We note that d can be as large as n − 1, and hence the
approximation ratio of their algorithm in terms of n is only n − 1. Thus, there
is a significant gap between the lower bound of 2 − ε and the upper bound of
n− 1 on the best possible approximation ratio, which we address in this paper.

Our contributions. We close the gap between the upper and lower bound on
the approximation ratio of TEXP by proving that it is NP-hard to approx-
imate TEXP with ratio O(n1−ε) for any ε > 0. Furthermore, we provide an
explicit construction of undirected temporal graphs that require Θ(n2) steps to
be explored. We then consider TEXP under the assumption that the underlying
graph (i.e. the graph that contains all edges that are present in the temporal
graph in at least one step) belongs to a specific class of graphs. We show that
temporal graphs can be explored in O(n1.5k2 log n) steps if the underlying graph
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has treewidth k, in O(n log3 n) steps if the underlying graph is a 2×n grid, and
in O(n) steps if the underlying graph is a cycle or a cycle with a chord. Several
of these results use a technique by which we specify an exploration schedule for
multiple agents and then apply a general reduction from the multi-agent case to
the single-agent case. We also show that there exist temporal graphs where the
underlying graph is a bounded-degree planar graph and each Gi is a path such
that the optimal arrival time of the exploration walk is Ω(n log n). Finally, we
consider a setting where the underlying graph is sparse and edges are present
with a certain regularity and show that temporal graphs can always be explored
with an arrival time O(n). A full version of our paper can be found in [6].

The remainder of the paper is structured as follows. In Sect. 2, we give some
definitions and preliminary results. Section 3 presents our inapproximability re-
sult for general temporal graphs. The results for temporal graphs with restricted
underlying graphs are given in Sect. 4. Temporal graphs with regularly present
edges are considered in Sect. 5, and Sect. 6 concludes the paper.

2 Preliminaries

Definitions. A temporal graph G with vertex set V and lifetime L is given by
a sequence of graphs (Gi)0≤i≤L with Gi = (V,Ei). Throughout the paper, we
only consider temporal graphs for which each Gi is connected and undirected.
We refer to i, 0 ≤ i ≤ L, as time i or step i. The graph G = (V,E) with
E =

⋃
0≤i≤LEi is called the underlying graph of G. If the underlying graph is

an X, we call the temporal graph a temporal X or a temporal realization of X.
For example, a temporal cycle is a temporal graph whose underlying graph is
a cycle, and a temporal graph of bounded treewidth is a temporal graph whose
underlying graph has bounded treewidth.

If an edge e is in Ei, we use the edge-time pair (e, i) to denote the existence
of e at time i. A temporal (or time-respecting) walk from v0 ∈ V starting at
time t to vk ∈ V is an alternating sequence of vertices and edge-time pairs
v0, (e0, i0), v1, . . . , (ek−1, ik−1), vk such that ej = {vj , vj+1} ∈ Eij for 0 ≤ j ≤
k − 1 and t ≤ i0 < i1 < · · · < ik−1. The walk reaches vk at time ik−1 + 1. We
often explain the construction of a temporal walk by describing the actions of
an agent that is initially located at v and can in every step i either stay at its
current node or move to a node that is adjacent to v in Ei.

For a given temporal graph G with source node s, an exploration schedule S
is a temporal walk that starts at s at time 0 and visits all vertices. The arrival
time of S is the time step in which the walk reaches the last unvisited vertex. An
exploration schedule with smallest arrival time is called foremost. The temporal
exploration problem TEXP is defined as follows: Given a temporal graph G
with source node s and lifetime at least |V |2, compute a foremost exploration
schedule. To ensure the existence of a feasible solution, we assume that the
lifetime of the given temporal graph G is at least |V |2. We also consider a multi-
agent variant k-TEXP of TEXP in which there are k agents initially located
at s. An exploration schedule S comprises temporal walks for all k agents such
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that each node of G is visited by at least one agent. The arrival time of S is then
the time when the last unvisited node is reached by an agent.

A ρ-approximation algorithm for TEXP or k-TEXP is an algorithm that
runs in polynomial time and outputs an exploration schedule whose arrival time
is at most ρ times the arrival time of the optimal exploration schedule.

Preliminary Results. We establish some preliminary results that will be useful
for the proofs of our main results. The following lemma allows us to bound the
steps of a temporal walk from one vertex to another vertex in a temporal graph.

Lemma 1 (Reachability). Let G be a temporal graph with vertex set V . As-
sume that an agent is at vertex u. Let v be another vertex and H a subset of
the vertices that includes u and v and has size k. If in each of k − 1 steps the
subgraph induced by H contains a path from u to v (which can be a different path
in each step), then the agent can move from u to v in these k − 1 steps.

Proof. For i ≥ 0, let Si be the set of vertices that the agent could have reached
after i steps. We have S0 = {u}. We claim that as long as v /∈ Si, at least one
vertex of H is added to Si to form Si+1. To see this, consider the graph in step
i+ 1. By the assumption, the graph induced by H contains a path from u to v.
The first vertex on this path that is not in Si is added to Si+1. As H contains
only k vertices, there can be at most k − 1 steps until v is reached. ut

We now show that a solution to k-TEXP yields a solution to TEXP.

Lemma 2 (Multi-agent to single-agent). Let G be a graph with n vertices.
If any temporal realization of G can be explored in t steps with k agents, any
temporal realization of G can be explored in O((t+n)k log n) steps with one agent.

Proof. Let G be a temporal realization of G. Consider the exploration schedule
constructed as follows: In the first t steps, the k agents explore G in t steps. Then
all k agents move back to the start vertex in n steps. Refer to these t+n steps as
a phase. Note that the phase can be repeated as often as we like. We construct
a schedule for a single agent x by copying one of the k agents in each phase.
In each phase, the k agents together visit all n vertices, so the agent that visits
the largest number of vertices that have not yet been explored by x must visit
at least a 1/k fraction of these unexplored vertices. We let x copy that agent in
this phase. This is repeated until x has visited all vertices.

The number of unexplored vertices is n initially. Each iteration takes t + n
steps and reduces the number of unexplored vertices by a factor of 1 − 1/k.
Then after dk lnne+ 1 iterations, the number of unexplored vertices is less than
n · (1− 1/k)k lnn ≤ ne− lnn = 1 and therefore all vertices are explored. ut

The next lemma shows that edge contractions do not increase the arrival
time of an exploration in the worst case.

Lemma 3 (Edge contraction). Let G be a graph such that any temporal re-
alization of G can be explored in t steps. Let G′ be a graph that is obtained from
G by contracting edges. Then any temporal realization of G′ can also be explored
in t steps.
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Proof. Consider a temporal realization of G′. Consider the corresponding tem-
poral realization of G in which all the contracted edges are always present. Let
S be a schedule with an arrival time t that explores the temporal realization
of G. S can be executed in t steps in the temporal realization of G′ simply by
ignoring moves along edges that were contracted. ut

Corollary 1. Let c < 1 be a constant and t(n) a function that is monotone
increasing and satisfies t(kn) = O(t(n)) for any constant k > 0, e.g., a polyno-
mial. Let C be a class of graphs such that any temporal realization of a graph G
in the class can be explored in t(n) steps, where n is the number of nodes of G.
Let D be the class of graphs that contains all graphs that can be obtained from a
graph G in C with n vertices by at most cn edge contractions. Then any temporal
realization of a graph in D with n′ vertices can be explored in O(t(n′)) steps.

Proof. Let G be a graph in the class C, and let H be obtained from G by at
most cn edge contractions. Furthermore, let n and n′ be the number of vertices
of G and H, respectively. Thus, n′ ≥ (1− c)n. Since any temporal realization of
G can be explored in t(n) steps, by Lemma 3, any realization of H can also be
explored in t(n) ≤ t(n′/(1− c)) = O(t(n′)) steps. ut

3 Lower Bounds for General Temporal Graphs

While static undirected graphs with n nodes can always be explored in less than
2n steps, the following lemma shows that there are temporal graphs that require
Ω(n2) steps.

Lemma 4. There is an infinite family of temporal graphs that, for every n ≥ 1,
contains a 2n-vertex temporal graph G that requires Ω(n2) steps to be explored.

Proof. Let V = {cj , `j | 0 ≤ j ≤ n − 1} be the vertex set of G. For any step
i ≥ 0, the graph Gi is a star with center ci mod n. The start vertex is c0. If an
agent is at a vertex that is not the current center, the agent can only wait or
travel to the current center. As in the next step the center will have changed,
the agent is again at a vertex that is not the current center. Hence, to get from
one vertex `j to another vertex `k for k 6= j, n steps are needed: The fastest way
is to move from `j to the center of the current star, and then to wait for n − 1
steps until that vertex is again the center of a star, and then to move to `k. The
total number of steps is Ω(n2). ut

Lemmas 2 and 4 also imply the following.

Corollary 2. For any constant number of agents, there is an infinite family of
temporal graphs such that each n-vertex temporal graph in the family cannot be
explored in o(n2/ log n) steps.

The underlying graph of the temporal graph in the proof of Lemma 4 has
maximum degree |V | − 1. For graphs with maximum degree bounded by d, we
can show a lower bound of Ω(dn) in the following lemma.
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Lemma 5. For every even d ≥ 2, there is an infinite family of temporal graphs
with underlying graphs of maximum degree d that require Ω(dn) steps to be ex-
plored, where n is the number of vertices of the graph.

Proof. Without loss of generality, n is a multiple of d. We construct G in two
steps. First, we construct n/d copies of a temporal graph G′, which we connect in
the end. G′ is the graph with d vertices constructed as in the proof of Lemma 4
(by setting the n to d/2). Note that moving from a vertex `j in a copy of G′ to
a vertex `k for k 6= j in the same copy of G′ requires Ω(d) steps.

Let G1, . . . ,Gn/d be the n/d copies of G′. For all i = 1, . . . , n/d−1, connect Gi
and Gi+1 by merging vertex `1 of Gi with `0 of Gi+1. Let G be the graph obtained.
Note that the underlying graph of G has maximum degree d (the vertices that
have been merged have degree d, all other vertices `j have degree d/2, and all
vertices cj have degree d− 1). Note that, by our way of merging, G is connected
at all times as this is true for all copies of G′.

Let us consider an exploration schedule of G. Similar to the arguments used
in the proof of Lemma 4, we can now observe that getting from any `i in one
copy of G′ to a different vertex `j in the same or another copy of G′ takes at
least d/2 steps (in most of these, the agent may not move). As there are at least
n/d · (d/2 − 2) = Ω(n) such pairs in every exploration schedule of G, we need
Ω(dn) steps in total. ut

Theorem 1. Approximating temporal graph exploration with ratio O(n1−ε) is
NP-hard.

Proof. We give a reduction from the Hamiltonian s-t path problem, which is
NP-hard [8]. Assume we are given an instance I ′ of the Hamiltonian s-t path
problem consisting of an undirected n′-vertex graph G′, a start vertex s, and an
end vertex t. We now construct an instance I of the temporal graph exploration
problem as follows: Take the temporal graph as constructed in the proof of
Lemma 4 with n = (n′)c for some constant c. In addition, replace each `i by a
copy of G′. Call it the ith copy of G′. The edges in each copy of G′ are present
in every step. The edge {cj , `i} is replaced by an edge connecting cj and vertex
s in the ith copy. We also call the vertices ci the center vertices. In addition, we
have so-called quick links. Each quick link is an edge that connects the vertex
t of the i-th copy with the vertex s of the (i + 1)-th one only in step i · n′ for
every 1 ≤ i < n− 1. Denote by G the resulting temporal graph. Note that G has
n∗ = n(1 + n′) vertices and that n = Θ((n∗)c/(c+1)).

Clearly, if G′ has a Hamiltonian path from s to t, then G can be explored
in O(n∗) steps: The agent starts at c0 and then explores the first copy of G′

in n′ steps by following the Hamiltonian s-t-path. The agent arrives at t in the
first copy of G′ at step n′, and we can use a quick link in step n′ to move to s
in the second copy of G′, etc. After exploring all copies of G′, we can explore
all remaining center vertices ci in O(n∗) steps, i.e., G can be explored in O(n∗)
steps.

Now assume that G′ does not have a Hamiltonian s-t-path. This means that
a copy of G′ cannot be explored in one visit while using both available quick
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link connections. Hence in the exploration, every copy must either be visited or
left via a center vertex. As moving from one copy to another via a center vertex
takes n steps, exploring the n copies takes at least 1

2n(n − 1) steps. So a total

of at least Ω(n2) = Ω((n∗)2c/(c+1)) = Ω((n∗)2−ε) steps are needed, where ε can
be made arbitrarily small by choosing c large enough.

Distinguishing whether G can be explored in O(n∗) steps or whether it re-
quires Ω((n∗)2−ε) steps therefore solves the Hamiltonian s-t-path problem, and
the theorem follows. ut

4 Restricted Underlying Graphs

In Sect. 3, we showed that arbitrary temporal graphs may require Ω(n2) steps
to be explored and that it is NP-hard to approximate the optimal arrival time
of an exploration schedule within O(n1−ε) for any ε > 0. This motivates us
to consider the case where the underlying graph is from a restricted class of
graphs. In particular, the underlying graph of the construction from Lemma 4
is dense (it contains Ω(n2) edges) and has large maximum degree. For the case
of underlying graphs with degree bound d, we could only show that there are
graphs that require Ω(dn) steps. It is therefore interesting to consider cases of
underlying graphs that are sparse, or have bounded degree, or are planar. We
consider several such cases in this section.

4.1 Lower Bound for Planar Bounded-Degree Graphs

First, we show that even the restriction to underlying graphs that are planar and
have bounded degree is not sufficient to ensure the existence of an exploration
schedule with a linear number of steps.

Theorem 2. Even if the underlying graph G = (V,E) of a temporal graph G is
planar with maximum degree 4 and the graph Gi in every step i ≥ 0 is a simple
path, an optimal exploration can take Ω(n log n) steps, where n = |V |.

Proof (sketch). Without loss of generality, we assume that n = 2k for some
k ≥ 3. Consider the following underlying graph G: It contains vertices V0 =
{ti, bi | 0 ≤ i ≤ n/4 − 1}, the edges {ti, ti+1}, {bi, bi+1}, {ti, bi+1} and {bi, ti+1}
for 0 ≤ i < n/4−1, and a path P of n/2 additional vertices that connects t0 and
b0. It is not hard to see that G is planar: Arrange the vertices as in Figure 1.
For each 0 ≤ i < n/4−1, draw the edge {bi, ti+1} as shown in the figure and the
edge {ti, bi+1} around the outside. We refer to the edges {ti−1, ti} and {bi−1, bi}
as horizontal edges of column i, and the edges {ti−1, bi} and {bi−1, ti} as cross
edges of column i. Consider the following temporal realization of G:

The path P is always present. We divide the time into rounds, the first round
consists of the first n/2 steps, etc. For the first round, the graph additionally
contains the horizontal edges of all columns. For the next round, the horizontal
edges of column n/8 are replaced by the cross edges. For the next round, the
horizontal edges of columns n/16 and 3n/16 are replaced by the cross edges.
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b6

t0t1t2t3t4t5t6t7

b0b1b2b3b4b5b7

Fig. 1. The underlying graph constructed in the proof of Theorem 2 for n = 32. Edges
present at the second round are drawn solid, the remaining edges are drawn dashed.

Following the same pattern of replacements (each time the horizontal edges of
the middle column in each stretch of horizontal edges are replaced by the cross
edges), this is repeated for O(log n) rounds.

Observe that with n/2 steps, any agent can explore either the vertices in V0
connected to t0 or those connected to b0. Furthermore, no matter which of the
two sets of vertices the algorithm visits, in the next n/2 steps half of the unvisited
vertices will be connected to t0 and half to b0. Thus, for all start positions of an
agent, it requires Ω(log n) rounds until all vertices are visited. ut

4.2 Underlying Graphs with Bounded Treewidth

Theorem 3. Any temporal graph whose underlying graph has treewidth at most
k can be explored in O(n1.5k2 log n) steps.

Proof. Consider a nice tree decomposition [12, 17] of the underlying graph, i.e.,
the tree is a binary tree and all nodes are so-called join nodes, introduce nodes,
or forget nodes. Select bags as separators via the following procedure: Visit the
bags in a post-order traversal of the tree. Select a bag B as a separator if the
number of unmarked vertices below the bag exceeds

√
n, or if the number of

selected bags that are below B and are not descendants of another selected bag
is at least 2. If a bag B is selected, mark all vertices in B and below B. Vertices
in B are called separator vertices. The number of bags selected as separators
is O(

√
n). This can be shown as follows. At any point of the procedure, call a

selected bag a topmost bag if it is not a descendant of another selected bag. If
a bag is selected because there are more than

√
n unmarked vertices below, the

number of topmost bags increases by at most one and
√
n unmarked vertices

become marked. This can happen at most
√
n times. If a bag is selected because

there are two topmost bags below it, the number of topmost bags decreases by
one. As the number of topmost bags increases by one at most

√
n times, it can

also decrease at most
√
n times, and hence at most

√
n bags are selected because

there are two topmost selected bags immediately below them.
The selected separators split the graph into O(

√
n) components (that are not

necessarily connected) such that each component contains at most 2
√
n vertices

(not counting separators) and is connected to a constant number of separators,
i.e., to at most ck separator vertices for some constant c. The algorithm now
explores the components one by one. Each component H is explored with ck
agents as follows: First, in n steps, move one virtual agent to each of the ck
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vertices in the separators that separate the component from the rest of the graph.
Then repeat the following operation: Let v be an arbitrary unvisited vertex in H.
In each of the next 4ck

√
n steps, v is connected to at least one of the ck separator

vertices, so there exists one separator vertex s to which v is connected in at least
4
√
n steps. The agent from s can visit v and return to s in these steps. Therefore,

all of the up to 2
√
n vertices in H can be visited in 2

√
n · 4ck

√
n = O(kn) steps

by ck agents. Using the idea in the proof of Lemma 2, this implies that one agent
can explore H in O(k2n log n) steps. As there are O(

√
n) components, the whole

graph can be explored in O(n1.5k2 log n) steps. ut

4.3 Cycles and Cycles with Chords

Theorem 4. Any temporal cycle C of length n can be explored in 3n steps and
the optimal number of steps can be computed in polynomial time.

Proof. Consider two virtual agents, one moving clockwise and one counterclock-
wise. Since C is connected, at most one edge of C is missing at all times. Thus, in
each step, one of the two agents can move, except when the agents are in adja-
cent places and the edge between them is absent. If the edge stays absent for the
next n steps, one of the agents can visit the whole cycle by turning around and
traversing the cycle. If the edge is present in one of the next n steps, the agents
can use the edge to pass each other and continue the traversal of the cycle. One
of the virtual agents will have completed the traversal of the whole cycle in at
most 3n steps. Pick that agent and use it as the solution.

By shortcutting backward and forward moves of the agents such that no ver-
tices are skipped completely, the optimal schedule is of one of a constant number
of types: move clockwise around the cycle; move counter-clockwise around the
cycle; move clockwise to some vertex v, then counter-clockwise until the cycle
is explored; move counter-clockwise to some vertex w, then clockwise until the
cycle is explored. The types can be enumerated in polynomial time, and the
optimal schedule for each can be calculated in a greedy way. ut

Observation 1 There is a temporal cycle graph in which the optimal exploration
requires at least 2n− 3 steps.

Proof (sketch). Assume that u, v, w is a subpath of the cycle and the agent is
initially at u. Let the edge {u, v} be absent for the first n− 2 steps, and let the
edge {v, w} be absent in all steps after that. ut
Theorem 5. A temporal cycle with one chord can be explored in O(n) time.

Proof. Let the left and right cycle be the two cycles that contain the chord.
Check how often the chord is present in the first 10n steps. If the chord is
present in more than 7n steps, use 3n of these to explore the (left or right) cycle
in which the start node is contained, n to move to the other cycle, and 3n to
explore that cycle. Otherwise, there are 3n steps in which the chord is absent
and the remaining graph is a cycle instance. The cycle can be explored in these
steps. ut

We conjecture that Theorem 5 can be extended to O(1) chords.
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4.4 The 2 × n Grid

Theorem 6. Any temporal 2 × n grid can be explored in O(n log n) steps with
4 log n agents.

Proof. We show a slightly more general statement. We show that, if we are given
an underlying graph G′ being a grid of size 2×n′ and a subgrid G′′ of size 2×n′′
of G′ such that each pair of vertices in G′′ is connected in G′, then 4 log n′ agents
initially on some vertices of G′′ can explore G′′ in T (n′) = O(n′(log n′)) time.
The theorem follows by taking G′ = G′′ = G.

We start with exploring the left half H ′ of G′′. The idea is to move 4 agents
to the corners of H ′, one to each corner, and all remaining 4(log n′) − 4 agents
to a suitable middle location of H ′—specified below—using the first 2n′ steps.
This is possible by Lemma 1. For the next T (n′/2) + n′/2 steps, in each step
where it is possible, we move the 2 agents `1 and `2 on the left corners of H ′

in parallel to the right using only horizontal edges. Similarly, we move the 2
agents r1 and r2 on the right corners to the left in parallel. Let i and j be the
number of steps of `1 and r1, respectively. The middle location is any position
between the final position of `1 and `2 on the left and the final position of r1
and r2 on the right. If the agents on the left and on the right meet, they stop
moving and H ′ is explored. In particular, if H ′ is a 2 × 1 grid, `1 and r1 (as
well as `2 and r2) are at the same vertex, i.e., we can stop immediately and
T (1) = O(1). Otherwise, in the same T (n′/2) + n′/2 steps where the 4 agents
move, we explore recursively the subgrid H ′′ of H ′ consisting of the columns
that are not visited by the 4 corner agents. More precisely, whenever neither the
2 agents `1 and `2 nor the 2 agents r1 and r2 move, each pair of vertices of H ′′ is
connected in H ′ and the agents starting in the middle location can explore H ′′

in T (n′/2) steps. Consequently, after the first 2n′ steps to place the agents, the
next T (n′/2) + i+ j ≤ T (n′/2) + n′/2 steps are enough to explore H ′.

We subsequently explore the right half in the same way. The total time to
explore G′′ is T (n′) ≤ 2(2n′ + T (n′/2) + n′/2) = O(n′ log n′). ut

Using Lemma 2, we can reduce the number of agents to one.

Corollary 3. A temporal 2×n grid can be explored in O(n log3 n) steps by one
agent.

5 Temporal Graphs with Regularly Present Edges

We say that a temporal graph has regularly present edges if for every edge e
there is a constant integer Ie such that the number of consecutive steps in which
e is absent from the temporal graph is at most Ie and at least Ie/c for some
constant c > 1.

Theorem 7. A temporal graph G with regularly present edges that has n vertices
and O(n) edges can be explored in O(n) steps.
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Proof (sketch). Round all Ie down to the nearest power of 2; denote the result
by Je. Calculate a minimum spanning tree T with respect to edge weights Je.
Explore the graph by following an Euler tour of T . Moving over an edge e takes
at most Ie ≤ 2Je steps, so the total exploration takes at most 2

∑
e∈T Je steps.

We next show that
∑

e∈T Je = O(n). Consider any k ≥ 0 such that T contains

at least one edge e with Je = 2k. Consider the connected components C1, . . . , Crk

of T \ {e ∈ T | Je = 2k}. Observe that every edge leaving a component Ci (i.e.,
with one endpoint in Ci) must have weight at least 2k. Let Ei be the set of
edges of the underlying graph of G that leave Ci. Since in each step the graph is
connected and hence in each step at least one of the edges of Ei must be present,∑

e∈Ei
1/(Ie/c) ≥ 1. Thus,

∑
e∈Ei

c
Je
≥ 1. Assign a charge of c2k/Je to each e ∈

Ei. The total charge that Ci assigns to Ei is
∑

e∈Ei
c2k/Je = 2k

∑
e∈Ei

c/Je ≥
2k. As an edge receives charge c2k/Je from at most two components Ci, no edge
receives more than 2c2k/Je of charge for every fixed k.

The total weight of edges of weight 2k in T is 2k(rk−1). Each of the rk com-
ponents assigns a charge of 2k to edges, so the total charge of the rk components
is greater than the total cost of edges of weight 2k in T . To bound the total
charge that an edge e of G can receive, let the weight of e be Je = 2j . For k > j,
e does not receive any charge. For each k ≤ j, e receives charge at most 2c2k/2j .

The total charge received by e is then at most
∑

k≤j
2c2k

2j ≤
2c2j+1

2j = 4c.
So we have that all the weight of T is charged to edges of G, and no edge of

G receives more than 8c of charge. As G has O(n) edges, the total charge is at
most O(4cn) = O(n), and hence the weight of T is O(n). ut

6 Conclusion

The study of temporal graphs is still in its infancy, and we do not yet have in-
tuition and a range of techniques comparable to what has been developed over
many years for static graphs. Even seemingly simple tasks such as construct-
ing temporal graphs (possibly with an underlying graph from a given family)
that cannot be explored quickly is surprisingly difficult. We hope that the meth-
ods used in this paper to prove results for temporal graphs, e.g., the general
conversion of multi-agent solutions to single-agent solutions, contribute to the
formation of a growing toolbox for dealing with temporal graphs.

Our results directly suggest a number of questions for future work. In par-
ticular, deriving tight bounds on the largest number of steps required to explore
a temporal graph whose underlying graph is an m × n grid, a bounded de-
gree graph, or a planar graph would be interesting. It would also be interesting
to study the approximability of TEXP for restricted underlying graphs, and
to identify further cases of underlying graphs, where the temporal exploration
problem can be solved optimally in polynomial time.

An interesting variation of TEXP is to allow the agent to make two moves
(instead of one) in every time step. The temporal graph constructed in the proof
of Lemma 4 can be explored with an arrival time O(n) in the modified model.
It would be interesting to determine tight bounds for the modified model.
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