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ABSTRACT

Cohomology of Tiling Spaces:
Beyond Primitive Substitutions

Daniel G. Rust

This thesis explores the combinatorial and topological properties of tiling spaces
associated to 1-dimensional symbolic systems of aperiodic type and their associated
algebraic invariants. We develop a framework for studying systems which are more
general than primitive substitutions, naturally partitioned into two instances: in the
first instance we allow systems associated to sequences of substitutions of primitive
type from a finite family of substitutions (called mixed substitutions); in the second
instance we concentrate on systems associated to a single substitution, but where
we entirely remove the condition of primitivity.

We generalise the notion of a Barge-Diamond complex, in the one-dimensional case,
to any mixed system of symbolic substitutions. This gives a way of describing
the associated tiling space as an inverse limit of complexes. We give an effective
method for calculating the Čech cohomology of the tiling space via an exact sequence
relating the associated sequence of substitution matrices and certain subcomplexes
appearing in the approximants. As an application, we show that there exists a
system of substitutions on two letters which exhibit an uncountable collection of
minimal tiling spaces with distinct isomorphism classes of Čech cohomology.

In considering non-primitive substitutions, we naturally divide this set of substitu-
tions into two cases: the minimal substitutions and the non-minimal substitutions.
We provide a detailed method for replacing any non-primitive but minimal sub-
stitution with a topologically conjugate primitive substitution, and a more simple
method for replacing the substitution with a primitive substitution whose tiling
space is orbit equivalent. We show that an Anderson-Putnam complex with a col-
laring of some appropriately large radius suffices to provide a model of the tiling
space as an inverse limit with a single map. We apply these methods to effectively
calculate the Čech cohomology of any substitution which does not admit a periodic
point in its subshift. Using its set of closed invariant subspaces, we provide a pair
of invariants which are each strictly finer than the usual Čech cohomology for a
substitution tiling space.
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INTRODUCTION

The study of aperiodic tilings of the plane has a rich history which emerged from

the worlds of computer science and mathematical logic when Berger proved the

undecidability of the domino problem in the 1960s [13]. It is now also a topic of

general interest to the study of dynamical systems, topology, Diophantine approxi-

mation, ergodic theory, computer graphics, mathematical physics and even virology

[19, 56, 14, 4, 44, 12, 59]. Once it was discovered that sets of tiles exist which can

only tile the plane aperiodically, a flurry of new discoveries quickly followed, cul-

minating in the celebrated discovery of the famous Penrose tilings [51] and in the

discovery of quasicrystals [57] for which Shechtman was awarded the Nobel Prize

in Chemistry in 2011. Various methods for constructing aperiodic tilings have been

developed including the substitution, cut-and-project, and matching rule methods.

In this work we consider only the substitution method and other closely related

methods.

The idea of a substitution is a natural one; whether on an alphabet comprising a

finite set of symbols (in which case we call it a symbolic substitution), or on a finite

set of translation-classes of tiles in Rn (in which case we call it a tiling substitution).

We take a collection of objects and impose a rule which replaces each member of

that collection with some non-empty configuration of copies of elements from the

same collection. Under mild assumptions, given such a rule, we may iterate the

process and so in the limit consider a substitution of an infinite union of elements

of the collection which ‘cover’ the space in which they live (whether that be the

integers Z in the symbolic case, or the real space Rn in the tiling case). For our

purposes, we principally consider the symbolic setting, but keep the tiling setting in

mind also, as the interplay between the two narratives is useful.

In the symbolic case in one dimension, there is then a notion of a bi-infinite ‘limit’

sequence of this iterated process. Such a limiting process is in general not unique,

and so we are led to consider the entire collection of all bi-infinite sequences which

are admitted by such a process of repeated substitution. Such a collection is referred

to as the subshift of the substitution. The fundamental theme of symbolic dynam-

ics is to study properties of the individual elements of the subshift by identifying

corresponding dynamical properties of the subshift under the natural shift action
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and vice versa. There is then an associated tiling space to the substitution given by

suspending the subshift and again, properties of this space reveal properties of the

individual elements of the space (which may be viewed as tilings of the real line).

The advantage to taking such a suspension and forming the tiling space is that the

topology of the tiling space retains much of the dynamical information of the sub-

shift, and so we can apply techniques from topology to study dynamical properties

of the subshift. In particular, we can calculate invariants from algebraic topology of

these spaces.

Mixed Substitutions

In some specialised settings, we understand the topology and dynamics of the asso-

ciated tiling space and subshift very well. Given this, an observation which allows

us to generalise this framework is that different substitutions acting on the same

alphabet can be composed—this allows us to form an infinite sequence of prescribed

compositions of different substitutions. The dynamical, topological and combinato-

rial properties of sequences defined by such S-adic systems have been well studied

for many years (see [28] and the references within). They have been classically de-

fined as those sequences which appear as a limit word of a sequence of substitutions

w = limn→∞((φ1 ◦ · · · ◦ φn)(a)) for some letter in a finite alphabet a, and the sub-

stitutions φi belonging to some finite family of substitutions S. In [36], Gähler and

Maloney extended this class of sequences to an analogous class of tilings of Rn which

generalise the now well-studied substitution tilings—these are referred to as mixed

substitution or multisubstitution tiling systems. It is of general interest to be able

to calculate the Čech cohomology and other invariants of tiling spaces associated to

such aperiodic tilings (see [7, 9, 19, 32, 33, 35, 55, 60]) and so it seems a worthy goal

to build machinery to do that in the mixed substitution setting.

Using techniques developed by authors such as Kellendonk [43], Anderson & Put-

nam [2], Gähler [34], and Barge & Sadun [10], a general method for calculating

the Čech cohomology of tiling spaces associated to mixed substitution systems was

developed by Gähler and Maloney. In particular, they showed with an example that

the topology of the associated tiling spaces of mixed substitution systems can be

dependent on the order in which the substitutions are applied, and not just on the

family of substitutions being considered.

This example provided a set of 1-dimensional mixed substitution tiling spaces over

a fixed collection of two substitutions, some of whose first Čech cohomology groups

differ, and in fact have ranks varying depending on the choice of the sequence in

which the substitutions are applied. This certainly hints that the family of mixed

2



substitution tiling spaces has a richer structure than the classical case of tiling spaces

associated to singular substitutions.

One naturally asks how much more wildly this class of spaces can behave. We

already have some partial results. For instance it is well known that the Sturmian

sequences can all be generated as limits of a system of two substitutions on two

letters. It is also known that the tiling spaces associated to the Sturmian sequences

wα and wβ are homeomorphic if and only if the generating slopes α and β have

continued fraction representations whose tails agree after some finite number of shifts

[31, 11]. In particular, this tells us that there are an uncountable number of distinct

homeomorphism-types of mixed substitution tiling spaces—in contrast with the case

of singular substitutions. Unfortunately, these spaces cannot be distinguished by

their Čech cohomology which are all isomorphic to the direct sum of two copies of

the integers Z2.

The main theorem of Chapter 2 is an improvement on this result. We show, using a

theorem of Goodearl and Rushing [38], that an uncountable family exists which can

be distinguished by their cohomology. This has the (perhaps surprising) consequence

that there exist tiling spaces Ω for which the first Čech cohomology group Ȟ1(Ω)

cannot be written in the form

A⊕ (Z [1/n1]⊕ · · · ⊕ Z [1/nk])

for some finitely generated abelian group A and natural numbers ni, 1 ≤ i ≤ k,

because there are only countably many distinct isomorphism classes of such groups.

Moreover, it appears that these pathological cohomology groups are in some sense

typical. Nevertheless, almost every currently determined cohomology group of a

tiling space is of the above form.

In order to prove this result, we leverage a construction by Barge and Diamond [7] of

the so-called BD (Barge-Diamond) complex of a substitution. The BD-complex is a

CW complex associated to a single substitution, built from combinatorial data and

with the property that a suitably chosen continuous map on this complex, induced

by the substitution, has an inverse limit which is homeomorphic to the tiling space.

A cellular map can then be defined which is homotopic to this induced map, and

which also acts simplicially on a particular subcomplex of the BD-complex and

maps this subcomplex into itself. A relative cohomology approach can then be used

to produce an exact sequence which allows for the straightforward computation of

the Čech cohomology of the tiling space in terms of the cohomology of a simplicial

complex, and the direct limit of the transpose of the transition matrix associated to

the substitution. These constructions and results were later generalised to tilings of
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Rn for all positive dimensions by Barge, Diamond, Hunton and Sadun in [9].

The original construction of these complexes, and the induced substitution maps

between them, was only developed for single substitutions and so it is necessary

to generalise their work to the case of mixed substitution systems. We essentially

mirror the theory developed by Gähler and Maloney [36] for the Anderson-Putnam

complex, but instead for the BD-complex, and only in one dimension—though it

should be noted that an extension to higher dimensions would not be difficult, given

[9].

Non-primitive Substitutions

Even in considering stationary systems of substitutions, where the sequence of sub-

stitutions is constant, our understanding of the topology of the associated tiling

spaces is incomplete. In the literature, the view is often taken that the class of

all possible substitutions, with all their various behaviours, is too large to con-

sider as a whole. Instead it is almost always the case that one imposes a condition

of primitivity (or less commonly of irreducibility) on the substitutions being stud-

ied. There does exist a sparse set of results that relaxes this standard assumption

[15, 16, 17, 20, 48], however most concentrate on the measure theoretic and ergodic

properties of the associated subshifts and tiling spaces, and very few results exist

which probe the topology and dynamics of these spaces in the non-primitive setting.

In Chapter 3 the substitutions which we study fall into two distinct classes—those

whose subshifts are minimal, in the sense that the orbit of every element of the

subshift is dense under the shift action, and those whose subshifts are non-minimal,

in which case there exists more than a single non-empty, closed, shift-invariant

subspace of the subshift.

The method of using return words to recode a substitution was introduced by Durand

in his Ph.D. Thesis and published in [23]. We provide a detailed method for replacing

any non-primitive but minimal substitution with a primitive substitution whose

subshift is topologically conjugate using the method of return words. Such a result

has historically been considered a part of the folklore in substitutional dynamics

since the work of Durand. However, there exist subtleties in the method which only

become apparent with the full details, and the proof that the method provides a

substitution with the necessary properties is surprisingly involved.

An intermediary step in the construction of the topologically conjugate primitive

substitution is a primitive substitution whose tiling space is orbit equivalent to the

original. Such a substitution is sufficient to study the topology of the associated

tiling space, and is afforded the advantage of being much more simple to calculate
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than the conjugate substitution (and often acts on a much smaller alphabet). We

apply these methods to provide examples which show that the topology of the tiling

space of a minimal substitution is not necessarily as restricted by the size of its

alphabet as in the case that a substitution is primitive.

In the second half of the chapter, we probe the topological structure of the tiling

space associated to a substitution which does not admit a minimal subshift. We

show that an Anderson-Putnam complex with a collaring of some appropriately large

radius suffices to provide a simple inverse limit model of the tiling space in terms

of a single bonding map induced by the substitution. We apply these methods to

effectively calculate the Čech cohomology of any substitution which does not admit

a periodic point in its subshift—no further condition on the substitution is assumed.

A structure theorem is proved for the tiling space in terms of its closed shift invari-

ant subspaces. We show that for an aperiodic substitution, there exist only finitely

many such closed invariant subspaces and provide a method for identifying each via

a one-to-one correspondence with certain subcomplexes of the collared Anderson-

Putnam complex. We use this result to then describe each such subspace as an

inverse limit of the corresponding subcomplex under a map induced by the substi-

tution, and so describe a method for calculating the Čech cohomology of each closed

invariant subspace. We further apply these methods to allow for a calculation of

the cohomology of the quotient of the tiling space by any of these subspaces. These

cohomology groups of the quotient are identified algebraically with a direct limit of

induced substitution maps acting on the cohomology of a corresponding quotient

complex of the collared Anderson-Putnam complex.

Using its set of closed invariant subspaces, we provide a pair of invariants which

are strictly finer than the usual Čech cohomology groups for a substitution tiling

space. We show that these diagrams of cohomology groups are functorial in nature.

We provide examples where these invariants can distinguish between substitutional

tiling spaces whose Čech cohomology groups are isomorphic.

Grout

One difficulty in performing Čech cohomology calculations for substitutions beyond

the most simple examples is that the complexes and matrices involved can become

rather large, even in the case of one-dimension. General purpose software exists

to lighten this burden somewhat, but the tools are incomplete, fragmented, user-

unfriendly or else publicly unavailable. To this end, we describe in the final chapter

of this thesis the implementation of a program developed by the author and a collab-

orator in an attempt to provide the community with an easy-to-use, freely available
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program for performing many of the calculations one is interested in for symbolic

substitutions.

The program, Grout, is a GUI fronted program that can compute combinatorial

properties and topological invariants of recognisable and primitive symbolic sub-

stitutions on finite alphabets and their associated tiling spaces. We review the

necessary theory from the study of aperiodic 1-dimensional tilings and provide pseu-

docode highlighting the algorithms that we have implemented into the GUI. Grout

is written using C++ and its standard library.

Grout is able to check some simple properties such as if a substitution is constant

or primitive. We describe how Grout is able to determine the first n values of

the word-complexity function of the subshift of a primitive substitution, as well

as the implementation of an algorithm for estimating the natural scaling factor,

tile lengths and tile frequencies of the geometric realisation of a primitive symbolic

substitution. Grout is also able to check the recognisability of primitive substitutions

in a deterministic manner. Our recognisability check appears to be the first complete

implementation of such a check in the literature, and we describe in detail the

methods used by Grout to perform such a task.

The primary function of Grout is a collection of methods for calculating the Čech

cohomology Ȟ1 of the tiling space associated to a primitive recognisable substitution.

Grout implements three different methods for calculating the cohomology of tiling

spaces associated to symbolic substitutions on finite alphabets.

1. The method of Barge-Diamond complexes as introduced in [7]

2. The method of Anderson-Putnam complexes as introduced in [2]

3. The method of forming an equivalent left proper substitution as outlined in

[26]

All three outputs are algebraically equivalent—that is, they represent isomorphic

groups—but it is not always obvious that this is the case given the presentations.

This disparity between presentations of results for the equivalent methods was one

of the major motivating factors for developing Grout. These cohomology groups are

extremely laborious to calculate by hand unless special criteria are met.

It is hoped that the use of this program will make testing conjectures in tiling the-

ory and symbolic substitutional dynamics more efficient, as well as allowing for the

confirmation of hand calculations and comparison of different methods of calcula-

tion (especially methods of calculating cohomology). Analysis of large data sets
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which can be potentially generated by the Grout source code, and the recognition

of underlying patterns in the data may also aid to further the theory.

The GUI front end for Grout is powered by Qt [1]. Grout has been designed with

user experience in mind and includes many ease-of-use properties such as the ability

to save and load examples, and convenient methods of sharing examples with other

users via short strings that encode a substitution. There is also an option to export

all of the data that has been calculated to a pre formatted LATEX file including all the

TikZ code for the considered complexes. This should be useful for those needing to

typeset such diagrams in the future by fully automating the generation of diagrams

in TikZ. Most of the drawn complexes presented in this document were generated

by Grout, with only slight modifications.
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1. PRELIMINARIES

Here we introduce the basic definitions and results which will be used throughout this

work. For an introduction to the topological theory of aperiodic tilings, substitutions

and their cohomology, we refer the reader to the books [56] and [4] where most of

these definitions and conventions appear.

1.1 Substitutions and Subshifts

Let A be a finite alphabet and for natural numbers n, let An be the set of words of

length n using symbols from A. We denote the length of the word u = u1 . . . ul by

|u| = l. By convention, A0 = {ε} where ε is the empty word and |ε| = 0. Denote

the union of the positive-length words by A+ =
⋃
n≥1An. If the empty word ε is

also included, then we denote the union A+ ∪ {ε} by A∗. This set A∗ forms a free

monoid under concatenation of words.

Definition 1.1.1. A substitution φ on A is a function φ : A → A+. We can extend

the substitution φ in a natural way to a morphism φ : A∗ → A∗ given, for a word

u = u1 . . . un ∈ An, by setting φ(u) = φ(u1) . . . φ(un).

Example 1.1.2. Let A = {a, b} and let φ : A → A+ be the substitution defined by

φ : a 7→ b, b 7→ ba. By iterating the substitution, we get an infinite sequence of words

a 7→ b 7→ ba 7→ bab 7→ babba 7→ babbabab 7→ babbababbabba 7→ · · ·

This substitution is called the Fibonacci substitution.

The symbol wi denotes the label assigned to the ith component of the bi-infinite

sequence w ∈ AZ. We may further extend the above definition of a substitution

to bi-infinite sequences φ : AZ → AZ. For a bi-infinite sequence w ∈ AZ, with

w = . . . w−2w−1 · w0w1w2 . . . we set

φ(w) = . . . φ(w−2)φ(w−1) · φ(w0)φ(w1)φ(w2) . . .

with the dot · representing the separator of the (−1)st and 0th component of the

respective sequences.
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For a substitution φ : A → A+ on an alphabet A = {a1, a2, . . . , al}, there is an

associated substitution matrix Mφ of dimension l × l given by setting mij, the i, j

entry of Mφ, to be the number of times that the letter ai appears in the word φ(aj).

Definition 1.1.3. A substitution φ is called primitive if there exists a positive

natural number p such that the matrix Mp
φ has strictly positive entries. Equivalently,

if there exists a positive natural number p such that for all a, a′ ∈ A the letter a′

appears in the word φp(a).

Example 1.1.4. The Fibonacci substitution φ has substitution matrix Mφ = ( 0 1
1 1 ).

We see that M2
φ = ( 1 1

1 2 ) and so φ is primitive.

For words u, v ∈ A∗, we write u ⊂ v to mean u is a subword of v, and u ( v to

mean u is a proper subword of v. For a bi-infinite word w ∈ AZ, we similarly write

u ⊂ w to mean u is a subword of w.

Definition 1.1.5. Let φ : A → A+ be a substitution. We say a word u ∈ A∗ is

admitted by the substitution φ if there exists a letter a ∈ A and a natural number

k ≥ 0 such that u ⊂ φk(a) and denote by Ln ⊂ An the set of all words of length n

which are admitted by φ. Our convention is that the empty word ε is admitted by

all substitutions. We form the language of φ by taking the set of all admitted words

L =
⋃
n≥0 Ln.

We say a bi-infinite sequence w ∈ AZ is admitted by φ if every subword of w is

admitted by φ and denote by Xφ the set of all bi-infinite sequences admitted by φ.

The set Xφ has a natural (metric) topology inherited from the product topology on

AZ and a natural shift map σ : Xφ → Xφ given by σ(w)i = wi+1. We call the pair

(Xφ, σ) the subshift associated to φ and we will often abbreviate the pair to just Xφ

when the context is clear.

Example 1.1.6. For the Fibonacci substitution φ, we have the length-2 admitted

words being L2 = {ab, ba, bb} as all three words appear as subwords of φ3(b) and it

is not hard to see that, as no new two letter words appear as subwords of φ4(b) and

φ is primitive, then the two-letter word aa will never appear as a subword of any

word of the form φn(ai) for ai ∈ A.

We note that the pointed word b.b appears as a subword of the pointed word

φ2(b).φ2(b) and so we get a nested sequence of inclusions

b.b ⊂ φ2(b).φ2(b) ⊂ φ4(b).φ4(b) ⊂ φ6(b).φ6(b) ⊂ . . .

which has a bi-infinite limit word w that by construction is admitted by φ. It can

be shown that Xφ is equal to the closure of {σn(w) | n ∈ Z} as a subspace of AZ.
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We say φ is a periodic substitution if Xφ is finite, and φ is aperiodic otherwise.

We say φ is strongly aperiodic if Xφ contains no σ-periodic points (equivalently, Xφ

contains no periodic closed invariant subspaces). If φ is aperiodic and primitive,

then Xφ is strongly aperiodic and topologically a Cantor set (in particular Xφ is

non-empty) and σ is a minimal action on Xφ - that is, the only closed shift-invariant

subspaces of Xφ are the empty set ∅ and the subshift itself Xφ. Equivalently, the

orbit of every point under σ is dense in Xφ. As every primitive substitution admits

a sequence w such that under some power p we have φp(w) = w, this means that an

alternative definition of Xφ in the primitive case is Xφ = {σn(w) | n ∈ Z} for some

w fixed under a power of φ.

1.2 Tiling Spaces

Definition 1.2.1. Let φ be a substitution on the alphabet A with associated sub-

shift Xφ. The tiling space associated to φ is the quotient space

Ωφ = (Xφ × [0, 1])/∼

where ∼ is generated by the relation (w, 0) ∼ (σ(w), 1).

For a bi-infinite sequence w = . . . w−2w−1 · w0w1w2 . . . ∈ Xφ and real number t ∈
[0, 1), one should think of a point in Ωφ as being a partition or tiling of R with unit-

length intervals (called tiles) coloured by the symbols of A. A point T = (w, t) ∈ Ωφ

denotes the tiling with a unit w0-tile at the origin, and where t describes the point in

the w0-tile over which the origin lies. There is then a unit w−1-tile and a unit w1-tile

to the left and right respectively of the w0-tile, and so on. Two tilings T, T ′ ∈ Ωφ

are considered ε-close in this topology if, after a translate by a distance at most ε,

the tiles around the origin in T ′ − ε within a ball of radius 1/ε lie exactly on top of

the tiles around the origin in T within a ball of the same radius and share the same

labels.

If φ is primitive and aperiodic, then Ωφ is a compact connected metric space which

fibers over the circle with Cantor set fibers. The natural translation action T 7→ T+t

for t ∈ R equips Ωφ with a continuous R action which is minimal whenever φ is

primitive. In this respect, tiling spaces are closely related to the more well-known

spaces, the solenoids. To some degree, tiling spaces may be thought of informally as

non-homogeneous solenoids. We note that there exist non-primitive substitutions

with associated tiling spaces whose translation action is minimal, so primitivity is

only a sufficient condition for minimality. This will be explored in Chapter 3.

Definition 1.2.2. Let w = . . . w−2w−1 · w0w1w2 . . . be a bi-infinite sequence in Xφ
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and let t ∈ [0, 1), so that (w, t) is an element of the tiling space Ωφ. We define a

map on the tiling spaces which we call φ : Ωφ → Ωφ, given by

φ(w, t) = (σbt̃c(φ(w)), t̃− bt̃c)

where t̃ = |φ(w0)| · t and b−c is the floor function.

This map is continuous. Intuitively, we take a unit tiling in Ωφ with a prescribed

origin and partition each tile of type a uniformly with respect to the substituted

word φ(a) into tiles of length 1
|φ(a)| . We then expand each tile away from the origin

so that each new tile is again of unit length, and with the origin lying proportionally

above the tile it appears in after partitioning the original tiling.

Definition 1.2.3. A substitution φ is said to be recognisable if the map φ : Ωφ → Ωφ

is injective.

It is a result of Mossé [49] that a primitive substitution is aperiodic if and only if it

is recognisable.

Definition 1.2.4. A substitution φ has the unique composition property if for any

w ∈ Xφ, there is a unique w′ ∈ Xφ and 0 ≤ n < |φ(w′0)| such that σn(φ(w′)) = w.

Equivalently, there is a unique way of partitioning the symbols in w = . . . w−1w0w1 . . .

into words which are substituted letters (up to a small translation)

. . . φ(w′−1)φ(w′0)φ(w′1) . . . = w

We note that recognisability of a substitution is equivalent to it having the unique

composition property.

If φ is recognisable, then as the substitution map on the tiling space is always

surjective, and Ωφ is both compact and Hausdorff, the map φ : Ωφ → Ωφ is a home-

omorphism of the tiling space.

We note that Ωφ is not a cell complex in the aperiodic case. For various reasons

then, one wishes to model the tiling space in a more familiar way. For our purposes,

that means writing Ωφ as an inverse limit of cell complexes. A good reference text

for the topology of inverse limits is Hatcher [41].

Definition 1.2.5. For i ≥ 0, let fi : Xi+1 → Xi be a sequence of continuous maps

between topological spaces Xi. The inverse limit lim←−(Xi, fi) is defined by

lim←−(Xi, fi) = {(x0, x1, . . .) | fi(xi+1) = xi}

equipped with the subspace topology inherited from the product topology on
∏∞

i=0Xi.
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Let πi : lim←−(Xi, fi)→ Xi be the projection map onto the ith coordinate. The inverse

limit together with the sequence of maps πi satisfies the universal property of a limit

in the category of topological spaces Top. That is, if there exist maps pi : Y → Xi

with the property that fi ◦ pi+1 = pi, then there exists a unique π : lim←−(Xi, fi)→ Y

such that pi ◦ π = πi.

There are several methods for constructing inverse limit models of Ωφ in the liter-

ature. In this work we consider two methods. The first is attributed to Barge and

Diamond [7], and the second is attributed to Anderson and Putnam [2].

1.2.1 The Barge-Diamond Complex

The first inverse limit model for a substitution tiling space which we will consider is

built from the Barge-Diamond complex which was introduced by Barge and Diamond

[7].

Definition 1.2.6. Let A be a finite alphabet with primitive substitution φ. Let

ε = min
a∈A

{
1

2|φ(a)|

}
be a small positive real number. For a ∈ A, let

ea = [ε, 1− ε]× {a}

and for ab ∈ L2, let

eab = [−ε, ε]× {ab}.

The Barge-Diamond complex for the substitution φ is denoted by Kφ and is defined

to be

Kφ =

(⋃
a∈A

ea ∪
⋃
ab∈L2

eab

)/
∼

where for all a, b ∈ A,

(1− ε, a) ∼ (−ε, ab) and (ε, a) ∼ (ε, ba).

We also define the subcomplex of vertex edges Sφ of Kφ by

Sφ =
⋃
ab∈L2

eab

/
∼

where for all a, b, c ∈ A,

(−ε, ab) ∼ (−ε, ac) and (ε, ba) ∼ (ε, ca).

The other edges ea in Kφ are called tile edges.
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Remark 1.2.7. This is a slight modification (in terms of geometry, not topology) of

the usual Barge-Diamond complex for a unit-length substitution tiling, rather than

for tilings with natural tile lengths which are not necessarily of unit-length, mainly

in the choice of ε and lengths of edges. For our purposes, this definition is more

convenient, especially later when substitutions may not be primitive, and when we

consider systems of substitutions.

We also remark that the subcomplex Sφ need not be connected. Such an example

was given by Barge and Diamond in [7] where A = {a, b, c, d} is an alphabet on four

letters and φ is a single substitution given by

φ :

{
a 7→ abcda

b 7→ ab

c 7→ cdbc

d 7→ db

which admits pairs L2
φ = {aa, ab, ba, bc, da, db} ∪ {cd} where the vertex edge ecd is

disjoint from the rest of the vertex edges appearing in Sφ.

Example 1.2.8. As a simple example, we present the BD-complex for the Fibonacci

substitution φ on the alphabet A = {a, b} given by

φ :

{
a 7→ b

b 7→ ba

As mentioned previously, we have L2 = {ab, ba, bb}. So Sφ has all but one of the

possible edges that can appear as a subcomplex of vertex edges for a substitution

on two letters. See Figure 1.1 for the associated BD-complex. We have labelled the

tile edges ex and the vertex edges exy by their indices for better readability.

Sφ

bb

ab

ba

a b

Fig. 1.1: The Barge-Diamond complex Kφ with the subcomplex of vertex cells Sφ circled

accordingly.

Definition 1.2.9. Let φ be a substitution system and let (w, t) be a tiling in the
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tiling space Ωφ with t ∈ [0, 1). Suppose w = . . . w−1 ·w0w1 . . .. We define a surjective

continuous map p : Ωφ → Kφ by

p(w, t) =


(t, w−1w0) if t ∈ [0, ε]

(t, w0) if t ∈ [ε, 1− ε]

(t− 1, w0w1) if t ∈ [1− ε, 1)

There is a unique continuous map f : Kφ → Kφ such that f ◦ p = p ◦ φ. This map

is induced in the obvious way by the substitution on edges.

Remark 1.2.10. The map f is not cellular with respect to the tile and vertex edges of

the BD-complex because the edges are, in general, expanded as they are substituted;

for instance vertex edges eab are not just mapped onto some other vertex edge ecd,

but also overlap into the adjacent tile edges ec and ed. In [7], Barge and Diamond

accounted for this by introducing a cellular map g which is homotopic to f . We do

something similar in Chapter 2.

Theorem 1.2.11 (Barge-Diamond [7]). For a primitive, recognisable substitution

φ, there is a homeomorphism

Ωφ
∼= lim←−(Kφ, f)

between the mixed substitution tiling space and the inverse limit of the associated

inverse system of induced substitution maps on the Barge-Diamond complexes.

1.2.2 The Anderson-Putnam Complex

The second inverse limit model which we consider for a substitution tiling space is

built from the Anderson-Putnam complex which was introduced in Anderson and

Putnam’s seminal paper [2].

Definition 1.2.12. Let φ be a substitution on the alphabet A. Let u be a word

admitted by φ. We say that u uniquely extends in Xφ if there is a unique pair of

letter l, r ∈ A such that the word lur is admitted by φ.

If, for every a such that φk(a) appears as a subword of Xφ, we have that φk(a)

uniquely extends in Xφ, then we say φ forces the border at level k.

Example 1.2.13. The Fibonacci substitution does not force the border because φk(b)

always begins with the letter b, and both of the words aφk(b) and bφk(b) are admitted

by φ.
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The substitution φ on the alphabet A = {0, 1} given by φ : 0 7→ 001, 1 7→ 01 does

force the border. This can be seen by noting that the words 000 and 11 are not

admitted by φ. Hence, as φ2(0) = 00100101 and φ2(1) = 00101, these words can

both only extend to the left by the letter 1 and to the right by the letter 0. It follows

that φ forces the border at level 2.

By l(u) and r(u) we denote the leftmost and rightmost letters of the word u respec-

tively.

Definition 1.2.14. Let φ be a substitution on the alphabet A and define a new

alphabet A1 whose letters are letters a ∈ A but indexed by the possible three letter

words admitted by φ whose central letter is a. SoA1 = {au | a ∈ A, u = alaar ∈ L3}.

We define the collared substitution φ1 on A1 which is induced by φ in the following

way. Suppose that φ(a) = b1 . . . bk and that r(φ(al)) = c and l(φ(ar)) = d. We

define

φ1(aalaar) = (b1)cb1b2(b2)b1b2b3 . . . (bk)bk−1bkd.

Example 1.2.15. Let φ be the Fibonacci substitution. ThenA1 = {baba, babb, abab, bbba}
and the collared substitution φ1 is given on A1 by

baba 7→ bbbaabab

babb 7→ bbbaabab

abab 7→ babb

bbba 7→ babaabab

or can be more neatly re-written as φ : 0 7→ 32, 1 7→ 32, 2 7→ 1, 3 7→ 02.

For primitive substitutions φ, the collared substitution φ1 always forces the border

[2]. The forgetful map Xφ1 → Xφ on subshifts given by mapping au 7→ a is a

topological conjugacy, and so the tiling space for φ1 is also conjugate to the tiling

space for φ.

Definition 1.2.16. Let φ be a substitution on the alphabetA and let Ωφ be the asso-

ciated tiling space. Use the convention that a point T ∈ Ωsub is written coordinate-

wise as (w, t), w ∈ Xφ and t ∈ [0, 1). We define the Anderson-Putnam complex Γ

of φ to be Ω/∼ where ∼ is the equivalence relation given by taking the transitive

closure of the relation (w, t) ∼ (w′, t′) if t = t′ ∈ (0, 1) and w0 = w′0 or t = t′ = 0

and w−1 = w′−1 or w0 = w′0.

We define the collared Anderson-Putnam complex Γ1 to be the Anderson-Putnam

complex associated to the collared substitution φ1.

Let p : Ωφ → Γ be the natural quotient map. We define a map f : Γ→ Γ to be the
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unique map which makes the following square commute

Γ

Ωφ

Γ

Ωφ

p p

f

φ

Let p1 : Ωφ1 → Γ1 be the natural quotient map. We similarly define a map f1 : Γ1 →
Γ1 to be the unique map such that p1 ◦ φ1 = f1 ◦ p1.

The space Γ has the homeomorphism type of a graph, where edges have a natural

orientation and are labelled by letters of the alphabet. The end of an a edge meets

the beginning of a b edge if the word ab is admitted by the substitution. The collared

AP-complex Γ1 can be thought of similarly as an oriented graph with edges labelled

by collared letters in the alphabet A1. The maps f and f1 are the obvious ones

induced by substitution and collared substitution on the edges.

Theorem 1.2.17 ([2]). Let φ be a primitive, recognisable substitution which forces

the border. The natural map h : Ωφ → lim←−(Γ, f) given by

h(x) = (p(x), p(φ−1(x)), p(φ−2(x)), . . .)

is a homeomorphism.

If we remove the condition that φ forces the border, then we need to use the collared

complex Γ1, as the collared substitution φ1 always forces the border. As there exists

a topological conjugacy t : Ωφ → Ωφ1 we get

Theorem 1.2.18. Let φ be a primitive, recognisable substitution. The natural map

h : Ωφ1 → lim←−(Γ1, f1) given by

h(x) = (p1(x), p1(φ−1
1 (x)), p1(φ−2

1 (x)), . . .)

is a homeomorphism. Hence h ◦ t : Ωφ → lim←−(Γ1, f1) is a homeomorphism.

1.2.3 Čech Cohomology

In order to talk about the Čech cohomology of a tiling space, we first need to

introduce the important notion of a direct limit of groups [46].

Definition 1.2.19. For i ≥ 0, let hi : Gi → Gi+1 be a sequence of homomorphisms
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between groups Gi and for j ≥ i let1 hij = hj ◦ hj−1 ◦ . . . ◦ hi. The direct limit

lim−→(Gi, hi) is defined by

lim−→(Gi, hi) =
⊔
i≥0

Gi

/
∼

where gi ∈ Gi and gj ∈ Gj are related by ∼ if and only if there exists k ≥ i, j such

that hik(gi) = hjk(gj). The group operation on lim−→(Gi, hi) is defined by [gi][gj] =

[hik(gi)hjk(gj)] where k = max{i, j}.

It is an exercise to show that ∼ is an equivalence relation and that the group

operation on lim−→(Gi, hi) is well-defined and satisfies the axioms of a group.

Let πi : Gi → lim−→(Gi, hi) be the map gi 7→ [gi] which is a homomorphism. The

direct limit together with the sequence of maps πi satisfies the universal property

of a colimit in the category of groups Grp. That is, if there exist maps pi : Gi → G

with the property that pi+1 ◦ hi = pi, then there exists a unique π : lim−→(Gi, hi)→ G

such that π ◦ πi = pi.

Important invariants of tiling spaces are the associated Čech cohomology groups.

We refer the reader to [18] for an introduction to Čech cohomology. Although

the definition of the Čech cohomology Ȟ•(X) of a topological space X is rather

involved, for our purposes we can make use of properties of the Čech cohomology

which are suitable to perform calculations and develop the majority of the theory

for tiling spaces. With this in mind, we mention the necessary results related to

Čech cohomology which will be used throughout this work. We will always assume

that singular and Čech cohomology is taken with integer coefficients.

Theorem 1.2.20. Let X be a topological space. The Čech cohomology with integer

coefficients Ȟn in degree n ≥ 0 is a contravariant functor Top→ Ab from the cate-

gory of topological spaces to the category of abelian groups satisfying the Eilenberg-

Steenrod axioms[30, 58] and such that if (Xi, fi) is a sequence of continuous maps

fi : Xi+1 → Xi on compact Hausdorff topological spaces Xi, then

Ȟn lim←−(Xi, fi) ∼= lim−→(Ȟn(Xi), f
∗
i ).

The isomorphism in the above theorem will be referred to as the continuity of Čech

cohomology.

Let Hn be the singular cohomology with integer coefficients in degree n. We remark

that as a consequence of the Eilenberg-Steenrod axioms, if X is a CW-complex, then

Ȟn(X) is naturally isomorphic to Hn(X). So for CW-complexes, the Čech theory

1 In the case i = j then hii = IdGi
.
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and the singular theory coincide. Coupled together with the continuity of Čech

cohomology, we deduce a proposition [18] which will be used continually throughout

this work.

Proposition 1.2.21. Let X be a topological space and suppose that there exists

a sequence fi of continuous maps fi : Xi+1 → Xi on CW-complexes Xi such that

X ∼= lim←−(Xi, fi), then

Ȟn(X) ∼= lim−→(Hn(Xi), f
∗
i ).

Example 1.2.22. For each i ≥ 0, let Xi = S1 and fi : Xi+1 → Xi be the doubling

map ×2: eix 7→ e2ix on the circle. The inverse limit X = lim←−(S1,×2) is well-known

to be homeomorphic to the dyadic solenoid. We find that the induced map ×2∗ on

first degree cohomology of the circle acts as the doubling map on the integers. So

by the above proposition we have Ȟ1(X) ∼= lim−→(Z,×2) ∼= Z[1/2] where Z[1/2] is the

group of dyadic integers Z[1/2] = {a2n | a, n ∈ Z} under addition.

Example 1.2.23. From our previous example, we know that the BD-complex Kφ of

the Fibonacci substitution φ is homotopy equivalent to the wedge of two circles, and

it is not hard to check that the induced map in first degree cohomology of the map

f : Kφ → Kφ acts like the matrix M = ( 0 1
1 1 ) on the generators (1, 0) and (0, 1) of the

group Z2 = H1(Kφ). As M is unimodular, its action on Z2 is an isomorphism, and

we know that the tiling space associated to φ is homeomorphic to the inverse limit

lim←−(Kφ, f), then by the above proposition, we have Ȟ1(Ωφ) ∼= lim−→(Z2,M) ∼= Z2.

18



2. MIXED SUBSTITUTIONS

The material of this chapter appears in [54], largely unchanged from how it is pre-

sented here.

This chapter is primarily concerned with 1-dimensional tiling systems of mixed sub-

stitution type. A mixed substitution system is a finite family of substitutions on a

shared finite alphabet, together with an infinite sequence prescribing the order in

which to apply substitutions from this family. We will explore the combinatorial

and topological properties of such systems via their tiling spaces.

In Section 2.1, we introduce notation and basic definitions relating to the 3-adic

numbers. We provide an overview of the Goodearl-Rushing result [38] and, to keep

the work as self-contained as possible, a reproduction of the proof of this result.

Briefly, the result shows that the set of direct limits over Z2 of arbitrary sequences

of matrices of the form ( 1 i
0 3 ), i ∈ {0, 1, 2} satisfies the property that only countably

many sequences correspond to any particular isomorphism class of groups. Notation

is also introduced which will be used in the eventual proof of Theorem 2.4.7.

In Section 2.2, we introduce the definitions and main results relating to mixed sub-

stitution systems and prove key properties of their associated tiling spaces.

In Section 2.3, we construct, for a mixed substitution system, a sequence of BD-

complexes and induced maps between them. We show that the inverse limit of this

sequence of maps is homeomorphic to the associated tiling space. We construct a

sequence of homotopic cellular maps which can be used to effectively compute the

first Čech cohomology of the tiling space via an exact sequence. It was remarked

in [36] that it might be possible to construct a ‘universal’ BD-complex for a family

of mixed substitutions which satisfy some suitable property termed self-correction.

The universal BD-complex associated to a self-correcting mixed substitution system

should satisfy the property that at each stage of the inverse limit representation of

the tiling space, the approximant is the same, without affecting the cohomology of

the limit. We provide one possible candidate for this property and show that such

a universal BD-complex can be constructed which behaves well in this sense if the

mixed substitution system is self-correcting according to this definition.

In Section 2.4, we use the Goodearl-Rushing result to define a family of mixed
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substitution systems we call the mixed Chacon tilings, with the properties necessary

to prove the main result of this chapter.

Theorem 2.4.7. There exists a family of minimal mixed substitution tiling spaces

exhibiting an uncountable collection of distinct isomorphism classes of first Čech

cohomology groups.

2.1 Background Algebra and Analysis

2.1.1 The 3-adic Numbers

We briefly review the notation surrounding the 3-adic numbers and 3-adic integers,

which will be used throughout the statement and proof of the Goodearl-Rushing

result. We refer the reader to [39] for a gentle introduction to the theory of p-adic

numbers. Let Q be the set of rational numbers on which we place the 3-adic metric.

The metric is given by first defining the 3-adic valuation v3 : Q → Q ∪ {∞} and

using this to define a 3-adic absolute value | · |3 : Q→ R.

Definition 2.1.1. For a rational number x, if x is non-zero write it in the form

x = 3n a
b

where n, a, b are integers, with a, b not divisible by 3. The 3-adic valuation

v3 : Q→ Q ∪ {∞} is given on x by

v3(x) =

∞, if x = 0

n, if x 6= 0
.

The 3-adic absolute value | · |3 : Q→ R on x is then given by

|x|3 = 3−v3(x)

where 3−∞ is defined to be 0.

Given a pair of rational numbers x and y, the 3-adic metric d3 : Q×Q→ R is given

by

d3(x, y) = |x− y|3

which is quickly verified to be a metric.

We can consider the completion of Q under the 3-adic metric, known as the field of

3-adic numbers and denoted Q3. The addition and multiplication operations on Q3

are inherited from Q using the property that these operations on Q are uniformly

continuous with respect to the 3-adic metric, and so extend to the completion.
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Let Z3 be the set of 3-adic integers, seen as a subset of Q3, given by the completion

of the integers Z under the 3-adic metric. The set Z3 forms a subring of Q3. The

elements of Z3 are represented by sequences of digits εk ∈ {0, 1, 2} where εk is the

kth digit of the 3-adic integer α with unique standard expansion α =
∑∞

k=0 εk3
k.

We denote the n-partial expansion of α by αn =
∑n

k=0 εk3
k.

2.1.2 Uncountability of Isomorphism Classes of Direct Limits

For the benefit of the reader, this section is a self-contained proof of the result

that will be needed in Section 2.4. The proof was originally given in [38]. It is

fairly technical, and the material may be safely skipped, with the exception of the

statement of Theorem 2.1.3, and the definitions of the groups Gα and the equivalence

relation ∼ on Z3.

The Goodearl-Rushing Method

Let Bi =

(
1 i

0 3

)
for i ∈ {0, 1, 2}. We will be considering direct systems consisting

of sequences of these matrices. Let us fix a 3-adic integer α ∈ Z3 which has digits

εn for n ≥ 0 and let Gα = lim
−→

(Bεn), the direct limit of the matrices Bεn acting on

the group Z2.

Let V be a 2-dimensional vector space over Q. As the matrices Bi are invertible over

Q, we can rewrite the above direct limit as a sequence of inclusions of rank-2 free

abelian subgroups of V such that the direct limit is then a union of these subgroups.

We wish to do this in such a way that we keep track of the generating elements of

the subgroups.

Let {w0, z0} be a Q-basis of V and define Aα,0 = 〈w0, z0〉 to be the free abelian

subgroup of V generated by these elements. Set

wn = w0

zn = 3−n(z0 − αn−1w0)
(2.1)

and similarly define Aα,n = 〈wn, zn〉. It can be shown using the fact that αn−αn−1 =

3nεn that

zn = 3zn+1 + εnwn+1 (2.2)

and so in particular Aα,n ⊂ Aα,n+1. Let in : Aα,n → Aα,n+1 be the inclusion map.

For fixed generators a, b ∈ Z2 define the group isomorphism gn : Z2 → Aα,n by

gn(ka+ lb) = kwn+ lzn. It is easy to see using the relation in (2.2) that gn+1 ◦Bεn =
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in ◦ gn, meaning the diagram

Aα,0

Z2

Aα,1

Z2

Aα,2

Z2

· · ·

· · ·

g0 g1 g2

i0 i1 i2

Bε0 Bε1 Bε2

commutes, and so we may conclude that

Gα = lim
−→

(Bεn) ∼= lim
−→

(Aα,n, in) ∼=
⋃
n∈N

Aα,n.

We will write Aα to denote
⋃
Aα,n.

Proposition 2.1.2. For any α ∈ Z3, the group Aα is not finitely generated.

Proof. Consider the projection homomorphism V → Q : w0 7→ 0, z0 7→ 1. This

projection restricted to the subgroup
⋃
Aα,n has image equal to the additive group

of triadic integers Z[1
3
] = {a3−n | a ∈ Z, n ∈ N} which is not finitely generated. It

follows that Aα is infinitely generated.

Determining Isomorphisms

We now ask the question, given α = . . . ε2ε1ε0 and α′ = . . . ε′2ε
′
1ε
′
0, when precisely is

Aα isomorphic to Aα′?

Theorem 2.1.3 (Goodearl-Rushing). Let ∼ be the equivalence relation on Z3 given

by α ∼ α′ if and only if Gα
∼= Gα′. The equivalence classes of ∼ are all countable.

Proof. Let us suppose that Gα
∼= Gα′ for a particular pair α, α′ ∈ Z3, then Aα ∼= Aα′ ,

and let ϕ : Aα → Aα′ be a group isomorphism. We note that Aα⊗ZQ ∼= Aα′⊗ZQ ∼= V

and so in particular ϕ extends uniquely to an automorphism ϕ̃ : V → V of vector

spaces. Let us represent ϕ̃ by its associated (Q-invertible) matrix
1

t

(
rw rz

sw sz

)
with

respect to the basis {w0, z0} of V , for integers rw, rz, sw, sz, t.

We see that

ϕ̃(w0) =
rw
t
w0 +

sw
t
z0 (2.3)

ϕ̃(z0) =
rz
t
w0 +

sz
t
z0 (2.4)
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and using (2.1) we get for all n ≥ 0 that

ϕ̃(zn) = 3−n
(rz
t
− αn−1

rw
t

)
w0 + 3−n

(sz
t
− αn−1

sw
t

)
z0. (2.5)

Given that ϕ̃(Aα) = Aα′ , there must exist a natural number p ≥ 0 such that

ϕ̃(w0) ∈ Aα′,p and ϕ̃(z0) ∈ Aα′,p. Let k(n) be the minimal natural number such that

ϕ̃(wn) and ϕ̃(zn) are elements of Aα′,k(n). Recalling (2.2) we can also see that ϕ̃(wn)

and ϕ̃(zn) are in Aα′,k(n+1) and so in particular k(n) ≤ k(n + 1) and so (k(i))i≥0 is

a non-decreasing sequence.

Supposing (k(i))i≥0 was bounded by some natural number k, we would have that

ϕ̃(wn) and ϕ̃(zn) are in Aα′,k for all n ≥ 0 and so ϕ̃(Aα) is a subgroup of Aα′,k.

But note, Aα′,k is finitely generated, and as ϕ̃ is a bijection, this would mean a

finitely generated abelian group contained an infinitely generated subgroup. This

can clearly not be the case and so we conclude that (k(i))i≥0 must be unbounded.

As we know ϕ̃(zn) ∈ Aα′,k(n), we then have integers an, bn such that

ϕ̃(zn) = anw
′
k(n) + bnz

′
k(n). (2.6)

Suppose bn is divisible by 3 and so bn = 3cn for some integer cn, then we find by

substituting for w′n and z′n using (2.2) that

ϕ̃(zn) = anw
′
k(n)−1 + cn(z′k(n)−1 − ε′k(n)−1w

′
k(n)−1)

which would imply that ϕ̃(zn) ∈ Aα′,k(n)−1, contradicting the minimality of k(n). It

follows that bn is not divisible by 3.

Comparing (2.5) and (2.6) we find that

3−n
(rz
t
− αn−1

rw
t

)
w0 + 3−n

(sz
t
− αn−1

sw
t

)
z0 = anw

′
k(n) + bnz

′
k(n)

which, after substituting for w′k(n) and z′k(n) using (2.1), becomes

3−n
(rz
t
− αn−1

rw
t

)
w0 + 3−n

(sz
t
− αn−1

sw
t

)
z0 = anw0 + bn3−k(n)(z0 − α′k(n)−1w0).

Picking out w0 and z0 components gives us

3−n(rz − αn−1rw)/t = 3−k(n)(3k(n)an − α′k(n)−1bn)

3−n(sz − αn−1sw)/t = 3−k(n)bn.
(2.7)
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Cross-multiplying the equations in (2.7) gives

(rz − αn−1rw)bn = (sz − αn−1sw)(3k(n)an − α′k(n)−1bn).

As it is not a multiple of 3 we can divide through by bn to give

rz − αn−1rw = (sz − αn−1sw)(3k(n)(an/bn)− α′k(n)−1). (2.8)

We can now take the limit of the sequence of equations given in (2.8) as n → ∞
in the 3-adic metric on Q3. Without loss of generality suppose an 6= 0 and write

an = 3q(n)dn for an integer dn not divisible by 3 and q(n) ≥ 0 some natural number.

Then it is clear that

|3k(n)an/bn|3 = |3k(n)+q(n)dn/bn|3 = 3−(k(n)+q(n))

and so, because k(n) is an unbounded, non-decreasing sequence of natural numbers,

as n tends to ∞, this valuation must tend to 0. So

lim
n→∞

d3(3k(n)an/bn, 0) = 0.

It follows that lim
n→∞

3k(n)an/bn = 0.

Taking the limit of (2.8) then tells us that

rz − αrw = (αsw − sz)α′

=⇒ α′ =
rz − αrw
αsw − sz

and so we may finally conclude that for any given α ∈ Z3, there are at most a

countable number of distinct 3-adic integers α′ ∈ Z3 such that Gα
∼= Gα′ , given

by varying rw, rz, sw, sz over the integers in the above equation. It follows that the

∼-equivalence classes on Z3 are all countable.

Remark 2.1.4. One should note that the above numerical relationship between α

and α′ is only a necessary condition. One should also note that it is a more general

relation than just α and α′ being ‘tail equivalent’ in their 3-adic expansions - tail

equivalence corresponds to the case sw = 0, sz = −1, rw = 3k for some non-negative

k (possibly with the roles of α and α′ switched depending on where their tails

coincide).
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2.2 Mixed Substitutions

2.2.1 Definitions

We now shift our attention to one-dimensional mixed substitution tilings. We would

like to be able to compute the Čech cohomology of the inverse limits of certain 1-

dimensional CW complexes in the style of Barge-Diamond [7], under maps induced

by sequences of symbolic substitutions. In order to do this, we need to develop the

theory of mixed substitution tiling spaces in this setting. Much of this theory, with

regard to the Anderson-Putnam complexes [2], was originally formulated by Gähler

and Maloney [36], and our notation will be closely based on theirs.

Let F = {φ0, φ1, . . . , φk} be a finite set of substitutions on A. Consider an in-

finite sequence s = (s0, s1, s2, . . .) ∈ {0, 1, . . . , k}N. For a fixed alphabet A, we

call a pair (F, s) a mixed substitution system. For natural numbers k ≤ l, let

Ms[k,l] = MskMsk+1
· · ·Msl−1

Msl be the associated substitution matrix of the substi-

tution φs[k,l] = φskφsk+1
· · ·φsl−1

φsl .

Definition 2.2.1. The mixed substitution system (F, s) is called weakly primitive

if for all natural numbers n, there exists a positive natural number k such that the

matrix Ms[n,n+k] has strictly positive entries.

The mixed substitution system (F, s) is called strongly primitive if there exists a

positive natural number k such that for all natural numbers n, the matrix Ms[n,n+k]

has strictly positive entries.

Remark 2.2.2. Strongly primitive substitution systems are referred to simply as

primitive in [36] and bounded primitive in [50]. There are still other conventions

for this notation [28]. We take the convention that whenever we say a system is

primitive, we will mean weakly primitive in the sense defined above.

To a mixed substitution system (F, s) we will associate a topological space ΩF,s

called the continuous hull or tiling space of the mixed substitution system (F, s).

Definition 2.2.3. We say that a word u ∈ A∗ is admitted by the mixed substitution

system (F, s) if there exists a letter a ∈ A and a natural number k ≥ 0 such that

u ⊂ φs[0,k](a) and denote by LnF,s ⊂ An the set of all words of length n which are

admitted by (F, s). We form the language of (F, s) by taking the set of all admitted

words LF,s =
⋃
n≥0 LnF,s.

We say a bi-infinite sequence w ∈ AZ is admitted by (F, s) if every subword of w is

admitted by (F, s) and denote by XF,s the set of all bi-infinite sequences admitted

by (F, s). The set XF,s has a natural (metric) topology inherited from the product
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topology on AZ and a natural shift map σ : XF,s → XF,s given by σ(w)i = wi+1. We

call the pair (XF,s, σ) the subshift associated to (F, s) and we will often abbreviate

the pair to just XF,s when the context is clear.

Remark 2.2.4. It is worth remarking that a pair of theorems of Durand provides a

close link between the strength of primitivity of a mixed substitution system and

the growth rate of its repetitivity function. We do not explain the terms in these

statements but instead refer the reader to [24, 25].

Theorem 2.2.5 (Durand). A sequence is repetitive (equivalently its shift is uni-

formly recurrent) if and only if it is admitted by a weakly primitive mixed substitution

system (with |F | possibly infinite).

Theorem 2.2.6 (Durand). A sequence is linearly repetitive (equivalently its shift

is linearly recurrent) if and only if it is admitted by a strongly primitive and proper

mixed substitution system.

Definition 2.2.7. Let (F, s) be a substitution on the alphabet A with associated

subshift XF,s. The tiling space associated to (F, s) is the quotient space

ΩF,s = (XF,s × [0, 1])/∼

where (w, 0) ∼ (σ(w), 1).

Remark 2.2.8. We note that the Gähler-Maloney approach [36] retains geomet-

ric data associated to tilings in the form of tile lengths and expanding factors of

substitutions—this is especially important if one wishes to generalise to tilings in

arbitrary dimensions, or study the natural dynamical and ergodic properties of the

tiling space. However, this means that it is more difficult to handle systems with

substitutions whose expanding factors do not exist, as in the case when the indi-

vidual substitutions are not primitive, or whose length vectors (given by the left

Perron-Frobenius eigenvector) do not coincide. By only considering the combina-

torial data in dimension-one, we are able to handle these cases rather easily and,

as will be seen, only require primitivity of the mixed substitution system, and not

the individual substitutions—many of our examples fall into these cases, including

the example used to prove Theorem 2.4.7 and the well-known pair of substitutions

which generate the Sturmian sequences. We will look at a generalised example of

the Sturmian substitutions in Example 2.3.13.

2.2.2 Properties of the Tiling Space

Proposition 2.2.9. If (F, s) is weakly primitive, then ΩF,s is non-empty.
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Proof. Without loss of generality, assume |A| > 1. As (F, s) is weakly primitive,

suppose k(n) is such that Ms[n,n+k(n)] has strictly positive entries for n ≥ 0. Let

n0 = n, and ni+1 = ni + k(ni) + 1. This means that the matrix

Ms[n0,n3−1] = Ms[n0,n0+k(n0)]Ms[n1,n1+k(n1)]Ms[n2,n2+k(n2)]

will have all entries at least as large as 3. From this we see that for some letter

a ∈ A there must be a copy of the letter a appearing in the interior1 of the word

φs[n0,n3−1](a), since the leftmost and rightmost letters account for at most two as.

Let n = 0. By considering the sequence of words

φs[0,n3−1](a), φs[0,n6−1](a), . . . , φs[0,n3i−1](a), . . .

we see that the ith word appears as a subword of the (i + 1)st word. As a appears

in the interior of φs[0,n3−1](a), this sequence of words expands in both directions,

where here we assign an ‘origin’ to the interior element a. In the limit of this (not

necessarily unique) sequence of increasing containments of words, we are left with

a bi-infinite sequence which by construction is admitted by (F, s). It follows that

XF,s is non-empty, and then so is ΩF,s.

The next result is a consequence of the right to left implication of Theorem 2.2.5

but we provide an elementary proof for completeness.

Proposition 2.2.10. If (F, s) is weakly primitive, then the translation action on

the tiling space ΩF,s is minimal.

Proof. Let u be a word which is admitted by (F, s) and let n ≥ 0 and a ∈ A be

such that u appears as a substring of the word φs[0,n](a). Let w ∈ XF,s be a limit of

applying the sequence of substitutions (φs[0,i])i≥0 to the letter a ∈ A. We will show

that there are bounded gaps between subsequent occurrences of the word u in the

bi-infinite sequence w.

As the letter a appears in φs[0,k(0)](b) for all b ∈ A, the word u must then appear

as a subword of the words φs[0,n+k(0)](b) for all b ∈ A. Let L be the maximum

of the lengths of the words φs[0,n+k(0)](b) over all b ∈ A. The bi-infinite sequence

w ∈ XF,s can be decomposed into a concatenation of these words φs[0,n+k(0)](b) and

so it follows that the word u appears in w with gap at most 2L.

It follows that for all bi-infinite sequences w′ ∈ XF,s, and for all ε > 0, there exists

a k ≥ 0 such that d(σk(w), w′) < ε and so w′ belongs to the closure of the shift

1 The interior of the word a1a2 . . . ai−1ai is the word a2 . . . ai−1.
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orbit of w. So (XF,s, σ) is a minimal dynamical system. This readily implies that

the translation action inherited by XF,s is minimal.

In particular, for a weakly primitive system (F, s) and for any bi-infinite sequence

w ∈ XF,s, we have XF,s = {σk(w) | k ∈ Z} and ΩF,s = {(σbtc(w), t− btc) | t ∈ R}.

Definition 2.2.11. Let w = . . . w−2w−1 · w0w1w2 . . . be a bi-infinite sequence in

XF,σi+1(s) and let t ∈ [0, 1), so that (w, t) is an element of the tiling space ΩF,σi+1(s).

We define a map between tiling spaces which we call φsi : ΩF,σi+1(s) → ΩF,σi(s), given

by

φsi(w, t) = (σbt̃c(φsi(w)), t̃− bt̃c)

where t̃ = |φsi(w0)|·t, and where |φsi(a)| is the length of the substituted word φsi(a).

This map is continuous. Intuitively, we take a unit tiling in ΩF,σi+1(s) with a pre-

scribed origin and partition each tile of type a uniformly with respect to the substi-

tuted word φsi(a) into tiles of length 1
|φsi (a)| . We then expand each tile away from

the origin so that each new tile is again of unit length, and with the origin lying

proportionally above the tile it appears in after partitioning the original tiling.

Definition 2.2.12. A mixed substitution tiling system (F, s) is said to be recognis-

able if for every i ≥ 0 the map φsi : ΩF,σi+1(s) → ΩF,σi(s) is injective.

Definition 2.2.13. A mixed substitution tiling system (F, s) has the unique compo-

sition property if for any i ≥ 0 and w ∈ XF,σi(s), there is a unique w′ ∈ XF,σi+1(s) and

0 ≤ n < |φsi((w′)0)| such that σn(φsi(w
′)) = w. Equivalently, there is a unique way

of partitioning the symbols in w = . . . w−1w0w1 . . . into words which are substituted

letters (up to a small translation) . . . φsi(w
′
−1)φsi(w

′
0)φsi(w

′
1) . . . = w.

We note that recognisability of a substitution is equivalent to it having the unique

composition property.

2.3 Inverse Limits and Cohomology

2.3.1 The Barge-Diamond Complex for Mixed Substitutions

Recall from Chapter 1 that in [7] Barge and Diamond introduced a cell complex for

1-dimensional substitution tilings which we refer to as the BD-complex. This was

later extended by Barge, Diamond, Hunton and Sadun in [9] to arbitrary dimen-

sions and allowed for symmetry groups beyond translations. Intuitively, we think of

their complex as being the Anderson-Putnam complex of a collared version of the
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tiling, but where we collar points instead of tiles. These collared points then retain

transition information between tiles and so induce border forcing—a term originally

coined by Kellendonk [43] and utilised by Anderson and Putnam [2] in their seminal

paper. Under a suitable choice of map on the BD-complex induced by the substitu-

tion, they produced an inverse system whose limit is homeomorphic to the relevant

tiling space. The complex has the advantage of being more manageable than the

Anderson-Putnam collared complex for the computation of cohomology groups, as

well as giving conceptually insightful information about where the generators of

cohomology are coming from with regard to the tiling.

The appearance of an exact sequence coming from considering the relative coho-

mology groups of their complex, and a certain subcomplex of ‘vertex edges’, allows

for the cohomology of a substitution tiling space to be built from relatively easy to

compute pieces—most notably for us, one of these pieces is the direct limit of the

transpose of the original substitution matrix.

In order to apply their technique to our setting, we need to extend their method to

more general sequences of substitutions, much like Gähler and Maloney did in [36]

for the Anderson-Putnam complex in their treatment of mixed substitution systems.

Definition 2.3.1. Let A be a finite alphabet and let (F, s) be a primitive substi-

tution system over A. Let ε = min
a∈A,φ∈F

{
1

2|φ(a)|

}
be a small positive real number.

For a ∈ A, let

ea = [ε, 1− ε]× {a}

and for ab ∈ L2
F,s, let

eab = [−ε, ε]× {ab}.

The Barge-Diamond complex for the mixed substitution system (F, s) is denoted by

KF,s and is defined to be

KF,s =

⋃
a∈A

ea ∪
⋃

ab∈L2
F,s

eab

/∼
where for all a, b ∈ A,

(1− ε, a) ∼ (−ε, ab) and (ε, a) ∼ (ε, ba).

We also define the subcomplex of vertex edges SF,s of KF,s by

SF,s =
⋃

ab∈L2
F,s

eab

/
∼
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where for all a, b, c ∈ A,

(−ε, ab) ∼ (−ε, ac) and (ε, ba) ∼ (ε, ca).

The other edges ea in KF,s are called tile edges.

Remark 2.3.2. This is only a slight modification of the usual Barge-Diamond com-

plex for a unit-length substitution tiling, mainly in the choice of ε and lengths of

edges—we necessarily lose geometric information about tile lengths because we do

not necessarily have a compatible Perron-Frobenius eigenvalue, as our transition

matrices may not necessarily be individually primitive or have coinciding spectra.

From the construction, a vertex edge eab is only included in KF,s if the two-letter

word ab is admitted by (F, s). This means that the BD-complex for a system (F, s)

will be dependent on s. In particular, the sequence of complexes (KF,σi(s))i≥0 may

not be constant, as would be the case in the classical setting of a single substitution

where F = {φ}.

Example 2.3.3. As an example for where the BD-complexes for (F, σi(s)) and (F, σj(s))

can differ, consider the set of substitutions F = {φ0, φ1} on the alphabet A = {a, b}
given by

φ0 :

{
a 7→ b

b 7→ ba
, φ1 :

{
a 7→ ab

b 7→ ba
.

Here, φ0 is the Fibonacci substitution and φ1 is the Thue-Morse substitution. Let s

be the sequence s = (1, 0, 0, 0 . . .), so s0 = 1 and si = 0 for all i ≥ 1.

It can be easily checked that L2
F,s = {aa, ab, ba, bb} and L2

F,σ(s) = {ab, ba, bb}. So

KF,s and KF,σ(s) have a different number of vertex edges. After that, KFσi(s) will be

equal to KF,σ(s) for all positive i. See Figure 2.1 for the associated BD-complexes.

We have labelled the tile edges ex and the vertex edges exy by their indices for better

readability.

Definition 2.3.4. Let (F, s) be a mixed substitution system and let (w, t) be a

tiling in the tiling space ΩF,σi(s) with t ∈ [0, 1). Suppose w = . . . w−1 · w0w1 . . .. We

define a surjective continuous map pi : ΩF,σi(s) → KF,σi(s) by

pi(w, t) =


(t, w−1w0) if t ∈ [0, ε]

(t, w0) if t ∈ [ε, 1− ε]

(t− 1, w0w1) if t ∈ [1− ε, 1)

There is a unique continuous map fi : KF,σi+1(s) → KF,σi(s) such that fi ◦ pi+1 =

pi ◦ φsi . This map is induced in the obvious way by the substitution on edges.
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SF,s

aa bb

ab

ba

a b

SF,σ(s)

bb

ab

ba

a b

Fig. 2.1: The Barge-Diamond complexes KF,s and KF,σ(s) with their subcomplexes of ver-
tex cells SF,s and SF,σ(s) circled accordingly.

Remark 2.3.5. The maps fi are not cellular with respect to the tile and vertex

edges of the BD-complexes because the edges are, in general, expanded as they are

substituted; for instance vertex edges eab are not just mapped onto some other vertex

edge ecd, but also overlap into the adjacent tile edges ec and ed. We account for this

later by introducing a cellular map gi which is homotopic to fi.

To reduce notation, we assume primitivity and recognisability always hold from this

point. Also for notational convenience, let Ki = KF,σi(s), Si = SF,σi(s), Ωi = ΩF,σi(s),

and set Ω = Ω0 = ΩF,s.

Theorem 2.3.6. For a primitive, recognisable mixed substitution system (F, s),

there is a homeomorphism

Ω ∼= lim←−(Ki, fi)

between the mixed substitution tiling space and the inverse limit of the associated

inverse system of induced substitution maps on the Barge-Diamond complexes.

The proof is essentially identical to the one given by Barge and Diamond in [7] for

the case of a single substitution.
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Proof. From the definition of the maps fi, we have commuting diagrams

Ki

Ωi

Ki+1

Ωi+1

pi pi+1

fi

φsi

for each i ≥ 0. We note that the maps φsi are homeomorphisms by recognisability

and compactness. These commutative diagrams induce a map p : Ω → lim←−(Ki, fi)

given by

p(x) = (p0(x), p1(φ−1
s0

(x)), p2(φ−1
s1

(φ−1
s0

(x))), . . . , pi+1(φ−1
s[0,i](x)), . . .).

As each pi is surjective, so then is p.

Let V = {(ε, a)}a∈A ∪ {(1 − ε, a)}a∈A and choose a point y = (y0, y1, . . .) ∈ lim←− fi.
If there exists an n ≥ 0 such that yn ∈ V , then since ε was chosen small enough,

yn−1 will be in ea \ V for some symbol a ∈ A. So, if (w, t) is in p−1(y), then the

0th tile of φ−1
s[0,n−1](w, t) is determined, and also the placement of the origin in the

interior of this tile. So a patch of length |φs[0,n](a)| around the origin in (w, t) is

also determined, and by primitivity if yn ∈ V for arbitrarily large n, then the length

of this determined patch increases without bound. It follows that the entire tiling

(w, t) is determined.

If yn is not in V for arbitrarily large n then there is some N ≥ 0 such that for all

n ≥ N , either yn ∈ eab for a pair a, b ∈ A or yn ∈ ea \ V for some a ∈ A. In the

first case, the 0th and (−1)st tiles of φ−1
s[0,n−1](w, t) are determined, and the position

of the origin within one of these tiles. In the second case, the 0th tile is determined

and the position of the origin in this tile. Following the above argument this allows

us to conclude that arbitrarily large patches around the origin are determined and

these patches eventually cover the entire real line, hence (w, t) is fully determined.

So, the map p is injective and so also bijective. By usual compactness arguments,

we conclude that p is a homeomorphism.

Recall that l(u) and r(u) are the leftmost and rightmost letters of the word u re-

spectively.

Definition 2.3.7. If φsi(a) = a1a2 . . . ak, we define a cellular map gi : Ki+1 → Ki

between consecutive BD-complexes on tile edges by

gi(ea) := ea1 ∪ ea1a2 ∪ ea2 ∪ · · · ∪ eak−1ak ∪ eak
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in an orientation preserving, and uniformly expanding way, and on vertex edges by

gi(eab) := eakb1

where r(φsi(a)) = ak and l(φsi(b)) = b1.

The maps fi and gi are homotopic. The maps gi also satisfy the property that

gi(Si+1) ⊂ Si and gi|Si+1
is simplicial.

Theorem 2.3.8. There is an isomorphism of groups

Ȟ1(Ω) ∼= lim−→(H1(Ki), g
∗
i )

between the first Čech cohomology of the mixed substitution tiling space and the direct

limit of induced maps g∗i acting on the first cohomology groups of the Barge-Diamond

complexes.

Proof. Since fi and gi are homotopic, Čech cohomology is isomorphic to singular

cohomology on CW-complexes, Čech cohomology is a continuous functor, and Ω is

homeomorphic to lim←−(Ki, fi), we get

lim−→(H1(Ki), g
∗
i ) = lim−→(H1(Ki), f

∗
i ) ∼= Ȟ1(lim←−(Ki, fi)) ∼= Ȟ1(Ω).

Theorem 2.3.9. Let |A| = l and Ξ = lim←−(Si, gi). There is an exact sequence

0→ H̃0(Ξ)→ lim−→(Zl,MT
si

)→ Ȟ1(Ω)→ Ȟ1(Ξ)→ 0.

Proof. Consider the sequence of pairs (Ki, Si)i≥0. To each pair there is associated a

long exact sequence in reduced singular cohomology

· · · → H̃n−1(Si)→ H̃n(Ki, Si)→ H̃n(Ki)→ H̃n(Si)→ H̃n+1(Ki, Si)→ · · ·

which is trivial outside of degree 0 and 1. Moreover the spaces Ki and Ki/Si are

connected, so H̃0(Ki) = 0 and H̃0(Ki, Si) = 0. There is a commutative diagram

H̃0(Si)

H̃0(Si+1)

H1(Ki, Si)

H1(Ki+1, Si+1)

H1(Ki)

H1(Ki+1)

H1(Si)

H1(Si+1)

0

0

0

0

g∗i g∗i g∗i g∗i
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whose rows are the exact sequences of the pairs (Ki, Si), and with vertical homo-

morphisms induced by the maps gi. Taking the direct limit along each column of

this diagram produces an exact sequence

0→ lim−→(H̃0(Si), g
∗
i )→ lim−→(H1(Ki, Si), g

∗
i )→ lim−→(H1(Ki), g

∗
i )→ lim−→(H1(Si), g

∗
i )→ 0.

Note that Si is a closed subcomplex of the CW complex Ki, so (Ki, Si) is a good pair,

and we can identify the relative cohomology group Hn(Ki, Si) with the cohomology

of the quotient Hn(Ki/Si). For n = 1 this is the first cohomology of a wedge

of l circles giving H1(Ki, Si) ∼= Zl. Moreover the induced map g∗i on the relative

cohomology acts as the transpose of the substitution matrix MT
si

on the direct sum

of l copies of the integers.

Putting this together with the fact that Čech cohomology is isomorphic to singular

cohomology for CW complexes, Čech cohomology is continuous, and Theorem 2.3.8

completes the proof.

Remark 2.3.10. We can say more than this if there is an appropriate notion of an

eventual range, as there is in the classical case of a single substitution when F = {φ}.
In this case, gk+1

i (Si) ⊂ gki (Si) for all k ≥ 0 and as gi|Si is simplicial, and Si is a

finite simplicial complex, this intersection must stabilise to some eventual range

SER =
⋂
k g

k
i (Si). Since gi restricts to a simplicial map on SER, the inverse limit of

the maps gi|Si+1
is just the inverse limit of a map which permutes simplices in the

eventual range. The inverse limit of a sequence of homeomorphisms is homeomorphic

to any space appearing in that limit, so lim
←−

(Si, gi) is homeomorphic to the eventual

range SER, and then the cohomology of this inverse limit is readily determined as

the simplicial cohomology of the eventual range.

In our case where (F, s) may not be a trivial system with s constant, we can still

determine the inverse limit of Si under the maps gi using a similar simplicial analysis,

but an eventual range does not always exist.

Lemma 2.3.11. Let C be a finite simplicial complex of dimension n and let

fi : Ci+1 → Ci

be a sequence of simplicial maps between a family {Ci}i≥0 of subcomplexes of C.

The inverse limit space lim←−(Ci, fi) has the homeomorphism type of a finite simplicial

complex of dimension at most n.

Corollary 2.3.12. Let m be the rank of the first singular cohomology of Ξ. If Ξ is

connected, then

Ȟ1(Ω) ∼= lim−→(Zl,MT
si

)⊕ Zm.
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Proof. Each of the Si is a subcomplex of the complex SF =
(⋃

ab∈A2 eab
)
/∼ which

is the complex built from all possible vertex edges eab with ab ∈ A2. The map

gi restricted to Si+1 is a simplicial map for each i, and so the inverse limit Ξ is a

one-dimensional simplicial complex by Lemma 2.3.11. The Čech cohomology of a

simplicial complex is isomorphic to the singular cohomology, giving Ȟ1(Ξ) ∼= Zm.

If Ξ is connected, then H̃0(Ξ) = 0, and since Zm is free abelian, the short exact

sequence of Theorem 2.3.9 splits to give the result.

If Ξ is not connected then the direct limit of transpose matrices must be quotiented

by k − 1 copies of the integers Z where k is the number of connected components

in Ξ. The exact sequence of Theorem 2.3.9 tells you how this group sits inside the

direct limit.

Example 2.3.13. As a basic example, we can use this result to provide a short proof

that Ȟ1(Ω) ∼= Zd for a tiling space Ω associated to an Arnoux-Rauzy sequence on

d-letters. The Arnoux-Rauzy sequences are a special class of sequences, introduced

by Arnoux and Rauzy in [3], belonging to the family of episturmian sequences2,

which generalise Sturmian sequences (the case where d = 2). For an alphabet

A = {a1, . . . , ad} on d letters, the Arnoux-Rauzy substitutions are given by the d

substitutions

µi :

{
ai 7→ ai

aj 7→ ajai, j 6= i

for each i ∈ {1, . . . , d}. The Arnoux-Rauzy sequences are then the sequences that

are admitted by the mixed substitution systems (F, s) where F = {µ1, . . . , µd} and s

contains an infinite number of terms of each type (to enforce primitivity). So (F, s)

is primitive, even though the individual substitutions are not, and is well known to

have the unique composition property.

If we consider the map gµi , for fixed i, acting on the subcomplex of vertex edges

(at any level in the inverse limit), the image will always be a subset of the union

of the edges
⋃
j∈{1,...,d} eij. We can see this by noting that gµi(ekj) = eij for any k.

This subcomplex is contractible, hence the image of g∗µi |H1(Si) is trivial, and so we

can conclude that H1(Ξ) is the limit of a sequence of zero maps, which is trivial.

By Corollary 2.3.12, it follows that Ȟ1(ΩF,s) is isomorphic to lim−→(Zd,MT
µi

), but note

that each of the transition matrices is invertible over the integers Z and so actually

the direct limit of matrices is just isomorphic to Zd. This completes the proof.

In [36], it was shown that the maximum rank of Ȟ1 for a mixed substitution on d

letters is d2 − d + 1. We show that the same result can be reached with a basic

2 The set of d-episturmian sequences is the unique set of sequences on d letters which are closed
under reversal and have at most one right special factor of length k for each k ≥ 1.
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combinatorial argument using BD-complexes. Let rk(G) be the rank of the group

G.

Proposition 2.3.14 (Gähler-Maloney). For a primitive, recognisable mixed substi-

tution system (F, s) on an alphabet |A| = d, the rank of the Čech cohomology group,

rk(Ȟ1(ΩF,s)) is bounded above by d2 − d+ 1.

Proof. The BD-complexes Ki of (F, s) have 2d vertices (given by each end of the

tile edges ea for a ∈ A), and at most d2 + d edges (d2 vertex edges of the form eab

for a, b ∈ A and d tile edges ea). So the Euler characteristic is bounded below by

V − E = 2d − (d2 + d) = d − d2, giving χ ≥ d − d2. By definition of the Euler

characteristic, we have χ = rk(H0(Ki)) − rk(H1(Ki)), and so as Ki is necessarily

connected, rk(H1(Ki)) ≤ d2− d+ 1. Taking the direct limit of g∗i acting on H1(Ki)

then tells us that rk(Ȟ1(Ω)) ≤ d2 − d + 1, because the rank of the limit cannot

exceed the bound of the ranks of the approximants.

Gähler and Maloney also showed in [36], with a family of examples, that this bound

is tight.

Definition 2.3.15. Let (F, s) be a mixed substitution system. If, for infinitely

many i ≥ 0 there exists a letter a ∈ A such that for all b ∈ A there exists a word ub

such that φsi(b) = aub (resp. φsi(b) = uba), then we say (F, s) is left proper (resp.

right proper).

Proposition 2.3.16. Let |A| = l. Let (F, s) be a left or right proper primitive

recognisable substitution system. Ȟ1(ΩF,s) ∼= lim−→(Zl,MT
si

).

Proof. Without loss of generality, suppose (F, s) is left proper, and let (i1, i2, . . .) be

a sequence of natural numbers with the property that there is a sequence of letters

a1, a2, . . . ∈ A such that for all b ∈ A we have φsi(b) = aiu for some word u.

The image of the vertex edge exy under the substitution map gij is then a vertex

edge of the form ezaj for every xy ∈ L2. The complex given by taking the union of

any collection of such edges ezaj is contractible, and so on the level of cohomology,

the induced homomorphism g∗ij : Hn(Sij)→ Hn(Sij+1) is the zero morphism. As the

sequence (ij)j≥0 is infinite, the sequence of homomorphisms g∗k : Hn(Sk)→ Hn(Sk+1)

contains an infinite subsequence of zero morphisms and so lim−→(Hn(Si), g
∗
n) is trivial

for n = 0, 1. By Theorem 2.3.9, there is then an isomorphism lim−→(Zl,MT
si

) →
Ȟ1(ΩF,s).
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2.3.2 The Universal Barge-Diamond Complex

A problem to contend with in the construction of the BD-complex for a mixed

substitution system (F, s) is that there are a potentially large set of complexes

and maps which can appear in the inverse limit. It may be helpful to instead

build an inverse system whose approximants are all the same, and where the family

of maps appearing in the system are only as large as the family of substitutions

F . This was achieved, dependant on a combinatorial condition, for the Anderson-

Putnam complexes which appear in [36] where the so-called universal Anderson-

Putnam complex was introduced. We are also able to achieve this depending on

a compatibility condition of the sequence s of substitutions in the system. This

‘self-correcting’ condition is similar to the one introduced in [36].

First, let us define the complex that will be our candidate universal BD-complex.

Definition 2.3.17. Let A be a finite alphabet and let F = {φ0, φ1, . . . , φk} be a set

of substitutions on A. Let ε = min
a∈A,φ∈F

{
1

2|φ(a)|

}
be a small positive real number.

For a ∈ A, let

ea = [ε, 1− ε]× {a}

and for ab ∈ A2, let

eab = [−ε, ε]× {ab}.

The universal Barge-Diamond complex for F is denoted by KF and is defined to be

KF =

(⋃
a∈A

ea ∪
⋃

ab∈A2

eab

)/
∼

where for all a, b ∈ A,

(1− ε, a) ∼ (−ε, ab) and (ε, a) ∼ (ε, ba).

We also define the subcomplex of vertex edges SF of KF by

SF =
⋃

ab∈A2

eab

/
∼

where for all a, b, c ∈ A,

(−ε, ab) ∼ (−ε, ac) and (ε, ba) ∼ (ε, ca).

See Figure 2.2 for the universal BD-complex for a set of substitutions F on an

alphabet on three letters, A = {a, b, c}.
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ca

aa

ab

bb

bc

cc

a

b c

baac

cb

SF

Fig. 2.2: The universal Barge-Diamond complex KF for A = {a, b, c}.

Definition 2.3.18. For each φ ∈ F , if φ(a) = a1a2 . . . ak, we define a map gφ : KF →
KF on the universal BD-complex for F by

gφ(ea) := ea1 ∪ ea1a2 ∪ · · · ∪ eak−1ak ∪ eak

in an orientation preserving and uniformly expanding way, and on vertex edges by

gφ(eab) := eakb1

where r(φ(a)) = ak and l(φ(b)) = b1.

Definition 2.3.19. Let (F, s) be a mixed substitution system on the alphabet A.

Let A2 be the set of two-letter words in symbols from A. If for every i ≥ 0, there

exists an N ≥ 1 such that for all ab ∈ A2 there is cd ∈ L2
F,σi(s) such that

r(φs[i,i+N ](a))l(φs[i,i+N ](b)) = cd,

then we say (F, s) is self-correcting.

Remark 2.3.20. The self-correcting property has been introduced for similar reasons

as to why the property was introduced in [36]. Note that the definitions are not

the same, and our definition is tailored to work specifically in the Barge-Diamond

setting. Self-correcting substitution systems are sufficient to allow us to add cells

to the complexes appearing in the inverse limit representation of the tiling space of

the system, and not change the cohomology of the inverse limit. In particular, we
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can use the same universal BD-complex at each level of the inverse system if (F, s)

is self-correcting.

Example 2.3.21. Let A = {a, b} be an alphabet on two letters and let F = {φ0} be

the single substitution given by

φ0 :

{
a 7→ b

b 7→ ba
,

the Fibonacci substitution. There is only one possible sequence of substitutions to

consider which is the constant sequence s = (0, 0, . . .). We see that

r(φ0(a))l(φ0(a)) = bb

r(φ0(a))l(φ0(b)) = bb

r(φ0(b))l(φ0(a)) = ab

r(φ0(b))l(φ0(b)) = ab

which are all admitted two-letter strings in L2
φ0

= L2
F,σi(s) = {ab, ba, bb} for all i ≥ 0,

and so (F, s) is self-correcting.

Example 2.3.22. The non-degenerate mixed Chacon substitution systems which ap-

pear in Section 2.4 are all automatically self-correcting because their set of admitted

two-letter words is complete. That is, L2
F,σi(s) = A2 for all i ≥ 0.

Example 2.3.23. The mixed substitution system associated to an Arnoux-Rauzy

sequence on an alphabet with d letters, as introduced in Example 2.3.13, can be

seen to be self-correcting. Let m ≥ 0 be fixed and suppose sm = i. We have

that r(µi(ajak))l(µi(ajak)) = aiaj which is clearly admitted by (F, σm(s)) because

by primitivity, aj appears somewhere in the sequences appearing in XF,σm+1(s), and

preceded by some letter aj′ . The substituted word µi(aj′aj) is aiajai if j′ = i, or

aj′aiajai if j′ 6= i, both of which contain aiaj. So all two-letter words are corrected

by (F, σm(s)) after one substitution for all m ≥ 0, hence (F, s) is self-correcting.

Example 2.3.24. Let F = {φ0} be the single substitution given by

φ0 :

{
a 7→ aaba

b 7→ bab
.

Again, there is only one possible sequence of substitutions to consider which is the

constant sequence s = (0, 0, . . .). This time, we see that

r(φ0(a))l(φ0(a)) = aa

r(φ0(a))l(φ0(b)) = ab

r(φ0(b))l(φ0(a)) = ba

r(φ0(b))l(φ0(b)) = bb

but the only admitted two-letter strings for φ0 are L2
φ0

= L2
F,σi(s) = {aa, ab, ba} for

all i ≥ 0. Since the transition of bb is fixed under substitution, this pair will never

be corrected to an admitted pair, and so (F, s) is not self-correcting because bb is
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not admitted by {φ0}.

Theorem 2.3.25. For a self-correcting mixed substitution system (F, s), there is an

equality

lim←−(Ki, gsi) = lim←−(KF , gφsi )

of the inverse limits of induced cellular substitution maps on the usual Barge-Diamond

complexes Ki and on the universal Barge-Diamond complex KF , seen as subsets of∏
i≥0KF .

Proof. It is clear that lim←−(Ki, gφsi ) is a subset of lim←−(KF , gφsi ) because for every i,

Ki ⊂ KF . In order to show the other inclusion, we make use of the self-correcting

property of (F, s).

Pick a point x = (x0, x1, x2, . . .) ∈ lim←−(KF , gφsi ). If xi is a point in Ki for every

i ≥ 0, then x ∈ lim←−(Ki, gφsi ) and we are done. If there is some i ≥ 0 such that

xi /∈ Ki then xi must be in the interior of a vertex edge eab of SF which is not a

vertex edge appearing in Si. Let N ≥ 1 be such that for all ab ∈ A2, there are

c, d ∈ A such that

r(φs[i,i+N ](a))l(φs[i,i+N ](b)) = cd

and with cd ∈ LF,σi+N (s). The integer N exists because (F, s) is self-correcting. Note

that for all z ∈ SF , we have gφs[i,i+N ]
(z) ∈ Si and so there exists no xi+N such that

gφs[i,i+N ]
(xi+N) = xi. From the definition of the inverse limit then, such an x =

(x0, x1, x2, . . .) with some xi in KF \Ki cannot exist. It follows that for all i ≥ 0, we

must have xi ∈ Ki and so x ∈ lim←−(Ki, gφsi ). Hence lim←−(Ki, gφsi ) = lim←−(KF , gφsi ).

Remark 2.3.26. If (F, s) is not self-correcting, then it is interesting to ask what the

inverse limit on the universal BD-complex actually is. In general, the inverse limit

will still be a mixed substitution tiling space, but it may be a non-minimal space

if (F, s) is not self-correcting, ie the system of substitutions will not necessarily be

weakly primitive (by the above, this non-minimal space will contain ΩF,s as a closed

minimal subspace). Non-minimal substitutions will be studied in Chapter 3.

If one takes as an example the single substitution φ : a 7→ aaba, b 7→ bab from above,

then the non-admitted two-letter word bb does not get corrected under substitution,

so φ is not self-correcting. For the system F = {φ}, the inverse limit lim←−(KF , gφ) is

really the tiling space of the non-minimal substitution φ : a 7→ aaba, b 7→ bab, c 7→ bb.

For a general stationary system F = {φ}, if the substitution system does not self-

correct, then for ever pair xy which is not corrected, one needs to include a dummy

letter Xxy into the alphabet which is mapped Xxy 7→ xy in order to describe a

substitution whose tiling space is the inverse limit of the universal BD-complex. For

non-stationary systems, a similar but more complicated operation can be done.
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Corollary 2.3.27. For a primitive recognisable self-correcting mixed substitution

system (F, s), there is an isomorphism

Ȟ1(Ω) ∼= lim−→(H1(KF ), g∗φsi )

between the Čech cohomology of the mixed substitution tiling space and the direct

limit of the induced homomorphisms on the cohomology of the universal Barge-

Diamond complex for F .

Proof. Making use of Theorem 2.3.8 it suffices to show that there is an isomorphism

of direct limits

lim−→(H1(KF ), (gφsi )
∗) ∼= lim−→(H1(Ki), (gφsi )

∗)

which follows from Theorem 2.3.25 and the continuity and functoriality of Čech

cohomology.

2.4 Uncountability of Set of Cohomology Groups

The machinery is now in place to be able to introduce our new example and prove

the main result of this chapter, Theorem 2.4.7.

2.4.1 The Mixed Chacon Substitution System

Let A = {a, b} and let F = {ψ0, ψ1, ψ2} be the set of substitutions ψi : A → A+

given by

ψ0 :

{
a 7→ aabba

b 7→ b
, ψ1 :

{
a 7→ aab

b 7→ bba
, ψ2 :

{
a 7→ a

b 7→ bbaab
.

We call (F, s) a mixed Chacon substitution system because ψ0 and ψ2 are each

mutually locally derivable to the classical Chacon substitution. The substitution ψ1

is not strictly necessary to achieve the final result3, but it seems natural to include

ψ1 in the system for aesthetic reasons.

There are associated substitution matrices

M0 =

(
3 0

2 1

)
, M1 =

(
2 1

1 2

)
, M2 =

(
1 2

0 3

)
.

3 In fact we only need any two of the three in order to still be able to use the uncountability
result of Goodearl and Rushing.
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Let L =

(
0 1

1 1

)
which has inverse given by L−1 =

(
−1 1

1 0

)
and note the identities

LMT
0 L
−1 =

(
1 0

0 3

)
= B0 (2.9)

LMT
1 L
−1 =

(
1 1

0 3

)
= B1 (2.10)

LMT
2 L
−1 =

(
1 2

0 3

)
= B2 (2.11)

Let α ∈ Z3 be a 3-adic integer with digits . . . ε2ε1ε0. We only wish to consider a

specific family of such 3-adic integers. Let sα = (s0, s1, s2, . . .) be the associated

sequence of digits appearing in α, so sn = εn.

Definition 2.4.1. A sequence s = (s0, s1, s2, . . .) ∈ {0, 1, 2}N is degenerate if there

exists a natural number N such that either sn = 0 for all n ≥ N or sn = 2 for all

n ≥ N . That is, the sequence s is eventually constant 0s or constant 2s. We say a

3-adic integer α is degenerate if its associated sequence of digits sα is degenerate.

Remark 2.4.2. Non-degeneracy is only a technical condition which forces weak prim-

itivity of the relevant mixed substitution sequences, allowing us to use the previous

results on primitive sequences of substitutions. A similar condition can also be de-

fined to enforce strong primitivity, but in this case it is not necessary. Removing

these spurious cases helps to simplify the proof4.

Proposition 2.4.3. Let F = {ψ0, ψ1, ψ2}. For a 3-adic integer α ∈ Z3, the asso-

ciated system of mixed substitutions (F, sα) is weakly primitive if and only if α is

non-degenerate.

Proof. The necessity of non-degeneracy of α for primitivity of (F, sα) is clear, as all

positive powers of M0 and M2 contain a zero-entry.

For sufficiency, let n ≥ 0 be given. It is easy to verify that for i, j ∈ {0, 1, 2},
all products MiMj have strictly positive entries except for M0M0 and M2M2. If

Msn = M1 then we are done. If Msn = M0 then by the non-degeneracy of α,

there exists a least k ≥ 1 such that Msn+k
= M1 or M2. In both cases the matrix

Ms[n+k−1,n+k] has strictly positive entries and so, since the matrix Ms[n,n+k−2] has

strictly positive diagonal, we conclude that Ms[n,n+k] has strictly positive entries.

This similarly holds if Msn = M2. So (F, sα) is weakly primitive.

4 In fact this only removes, up to homeomorphism, a single tiling space from the family of spaces
we are studying—the one associated to a constant sequence of substitutions s = (0, 0, 0, . . .), which
is the usual Chacon tiling space and is well studied.
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Proposition 2.4.4. There are an uncountable number of non-degenerate 3-adic

integers.

Proof. There are only a countable number of degenerate 3-adic integers given by

those sequences with some finite initial string followed by a constant tail of 0s or

2s, since the set of finite initial strings is countable and the union of two countable

sets is countable. The complement of a countable subset of an uncountable set is

uncountable and so the non-degenerate 3-adic integers form an uncountable set.

2.4.2 Calculating Cohomology for the Mixed Chacon Tilings

Lemma 2.4.5. If α is a non-degenerate 3-adic integer then (F, sα) is recognisable.

Proof. We use the equivalence between recognisability and the unique composition

property. Suppose si = 1, then for any w ∈ XF,σi(sα) we note that the symbol a can

only appear in a string of length 1, 2 or 3. We can partition the symbols appearing

in the sequence w according to the rule that:

• If a symbol a appears in the string bab then we know the patch extends to

b(bab)ba and a belongs to a substituted word ψsi(b)ψsi(b).

• If a symbol a appears in the string baab then we know the patch extends to

aa(baab) and a belongs to the substituted word ψsi(a)ψsi(a).

• If a symbol a appears in the string baaab then we know the patch extends to

b(baaab) and a belongs to a substituted word ψsi(b)ψsi(a).

As the symbol a appears in any substituted word, this is enough to see that unique

composition holds in this case.

If si = 0 then we note that the symbol b either appears5 in a string of length 1, 2 or

3. We can partition the symbols appearing in the sequence w according to the rule

that:

• If a symbol b appears in a string aba then we know the patch extends to

aabb(aba)abba and b belongs to the substituted word ψsi(a)ψsi(b)ψsi(a).

• If a symbol b appears in a string aabba then we know the patch extends to

aabba and b belongs to the substituted word ψsi(a).

5 It is not obvious that length 4 cannot occur. This is true because, of the three substitutions
ψi, only ψ0 can produce a string of 4 bs, but only when a similar string has been produced in an
earlier substituted word. By induction this never happens.
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• If a symbol b appears in a string babba then we know the patch extends to

aab(babba)abba and b belongs to the substituted word ψsi(a)ψsi(b)ψsi(b)ψsi(a).

• If a symbol b appears in a string abbba then we know the patch extends to

aabb(abbba)abba and b belongs to the substituted word

ψsi(a)ψsi(b)ψsi(b)ψsi(b)ψsi(b)ψsi(a).

As the symbol b appears in any substituted word, this is enough to see that unique

composition holds in this case. Without loss of generality, if si = 2 unique com-

position also holds, based on the above case si = 0 but with the roles of a and b

reversed.

We are now in a position to prove our main result. Recall from Section 2.1.2, and

the proof of the Goodearl-Rushing result, that for α = . . . ε2ε1ε0 a 3-adic integer,

Gα := lim−→(Bεn).

Theorem 2.4.6. If α is a non-degenerate 3-adic integer then

Ȟ1(ΩF,sα) ∼= Gα ⊕ Z.

Proof. Let (F, sα) be a mixed substitution system for non-degenerate α ∈ Z3. By

Proposition 2.4.3 and Lemma 2.4.5, (F, sα) is a primitive, recognisable mixed sub-

stitution system and so Theorem 2.3.6 applies. This means we can calculate the

first Čech cohomology of the space ΩF,sα using Theorem 2.3.9. It is easy to show

that for every i,

L2
F,σi(sα) = {aa, ab, ba, bb}

and so the BD-complex for (F, σi(sα)) is given by the two tile edges for the tiles a

and b and all four possible vertex edges as shown in Figure 2.3.

We see that the subcomplex SF,σi(sα) is homeomorphic to a circle for all i and the

induced maps gi either fix SF,σi(sα) (if si = 0, 2) or reflect SF,σi(sα) (if si = 1). So Ξ

is topologically a circle and then H̃0(Ξ) = 0 and Ȟ1(Ξ) = Z. The exact sequence

from 2.3.9 then becomes a split short exact sequence

0→ lim−→(Z2,MT
εn)→ Ȟ1(ΩF,sα)→ Z→ 0.

So the first Čech cohomology Ȟ1(ΩF,sα) of the tiling space is given by

Ȟ1(ΩF,sα) ∼= lim−→(MT
εn)⊕ Z.
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SF,σi(s)

aa bb

ab

ba

a b

Fig. 2.3: The Barge-Diamond complex for (F, σi(sα)).

Using equations (2.9)–(2.11) we see that the diagram

Z2

Z2

Z2

Z2

Z2

Z2

· · ·

· · ·

L∼=
L∼=

L∼=

Bε0 Bε1 Bε2

MT
ε0

MT
ε1

MT
ε2

commutes, giving lim−→(MT
εn) ∼= lim−→(Bεn), which by definition is Gα. We conclude that

Ȟ1(ΩF,sα) ∼= lim−→(MT
εn)⊕ Z ∼= Gα ⊕ Z.

Theorem 2.4.7. There exists a family of minimal mixed substitution tiling spaces

exhibiting an uncountable collection of distinct isomorphism classes of first Čech

cohomology groups.

Proof. By setting up the usual diagram of split exact sequences and performing a

diagram chase, it is easy to show that two abelian groups A and B are isomorphic

if and only if A ⊕ Z and B ⊕ Z are isomorphic. So if Gα ⊕ Z ∼= Gα′ ⊕ Z then

Gα
∼= Gα′ . Then, by the definition of ∼-equivalent 3-adic integers, we see that for

α, α′ ∈ Z3, the groups Ȟ1(ΩF,sα) and Ȟ1(ΩF,sα′
) are isomorphic if and only if Gα⊕Z

and Gα′ ⊕ Z are isomorphic, which is if and only if α ∼ α′.

By Theorem 2.1.3 these equivalence classes are all countable. Recall that (assuming

a countable version of the axiom of choice) a countable disjoint union of countable

sets is countable. As there are an uncountable number of non-degenerate 3-adic

integers by Proposition 2.4.4, and the ∼-equivalence classes partition this set into
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countable subsets, it follows that there are an uncountable number of distinct iso-

morphism classes of first Čech cohomology groups Ȟ1(ΩF,sα) for non-degenerate

3-adic integers α.

2.4.3 Discussion

We think it is important to highlight that cohomology almost certainly does not

fully distinguish the mixed Chacon tiling spaces up to homeomorphism—consider

all those periodic (primitive) sequences sα. The respective groups Gα fit into the

extension problem 0→ Z→ Gα → Z[1/3]→ 0. This extension problem admits only

finitely many solutions up to isomorphism, but it is unlikely that these substitutive

mixed Chacon tiling spaces only comprise finitely many homeomorphism classes.

What seems more likely is that the natural order structure on these groups could

be a strong enough invariant to distinguish these spaces up to homeomorphism.

One should note that there is nothing particularly special about the set of sub-

stitutions chosen to exhibit Theorem 2.4.7. The important step, in order to take

advantage of the Goodearl-Rushing result, was to find a set of non-negative matrices

which conjugate to the matrices Bi (or the p-adic generalisation of these matrices)

via a mutual conjugating matrix L and to then show that there are enough primitive

and recognisable sequences of substitutions exhibiting these as substitution matrices.

Many other such examples exist (with varying levels of tame or wild behaviours).

The mixed Chacon systems happened to be one of the earliest and also simplest

found. We encourage the study of other examples in order to begin to understand

the full range of behaviours that can be adopted by the Čech cohomology groups of

tiling spaces.

Even in cases where the Goodearl-Rushing method cannot be applied, we expect

that the uncountability of isomorphism classes of cohomology is the generic case

for families of mixed substitution systems whenever the substitutions appearing in

F have substitution matrices which are not too closely related (that is, they do

not share some power). Qualifying and proving this statement in the general case

appears to be a difficult problem.

We remark that as a consequence of Theorem 2.4.7, for most 3-adic integers α, the

cohomology groups Ȟ1(ΩF,sα) of the mixed Chacon tiling spaces cannot be written

in the form

A⊕ (Z [1/n1]⊕ · · · ⊕ Z [1/nk]) (2.12)

for some finitely generated abelian group A and natural numbers ni, 1 ≤ i ≤ k. Of

interest is that these cohomology groups all appear as embedded subgroups of Q2⊕Z,
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with Gα embedded as a full rank subgroup of the first summand. In particular they

all have rank 3 as abelian groups, so the number of different isomorphism classes of

cohomology is being governed by the complexity of the subgroup structure of the

group Q2, rather than a rank phenomenon.

If we call groups which cannot be written in the above form (2.12) pathological,

it is interesting to ask how typical these pathological cohomology groups appear

for general tilings. Thanks are given to Greg Maloney for pointing out to the

author that there indeed exist explicit examples of single primitive (even Pisot)

symbolic substitutions for which the cohomology is provably pathological. Finding

pathological cohomology groups for tiling spaces was one of the original motivating

problems for this work, and so it is encouraging that it appears to be a generic

behaviour.
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3. NON-PRIMITIVE SUBSTITUTIONS

The material presented in this chapter is based on joint work with Greg Maloney.

These results appear in [47].

The goal of this chapter is to study one-dimensional tiling spaces arising from non-

primitive substitution rules, in terms of the topology, dynamics, and cohomology.

This study naturally divides into two cases: the case where the tiling space is mini-

mal, and the case where it is non-minimal. The minimal case is treated in Section

3.1, the main result of which is the following theorem.

Theorem 3.1.1. Let φ be a minimal substitution with non-empty minimal subshift

Xφ. There exists an alphabet Z and a primitive substitution θ on Z such that Xθ is

topologically conjugate to Xφ.

This is similar to, but slightly stronger than, a result from the section on Open

problems and perspectives (Section 6.2) of [23].

The non-minimal case is treated in Section 3.3. The main result of this section is

the following theorem.

Theorem 3.3.9. Let φ be a strongly aperiodic substitution. There exists a complex

Γ and a map f : Γ→ Γ such that there is a homeomorphism h : Ωφ → lim←−(Γ, f).

The rest of the chapter is devoted to building a structure theorem of non-minimal

tiling spaces in terms of their closed shift-invariant subspaces. In particular, we

identify a correspondence between such subspaces and subcomplexes of the complex

Γ above. The subspaces are found to be homeomorphic to an inverse limit of self-

maps acting on the corresponding subcomplex of Γ.

Examples are given throughout the chapter to justify the level of care that needs to

be taken in building the machinery, and to give an exposition of how the machinery

is put into practice when performing calculations.

3.0.1 Subshifts and Tiling Spaces

Let φ be a substitution on the alphabet A with associated subshift Xφ.
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Recall from Chapter 1 that a word u ∈ A∗ is admitted by φ if there exists a letter

a ∈ A and a natural number k ≥ 0 such that u ⊂ φk(a). The language Lφ is the set

of all admitted words for the substitution φ. We remark that it is not necessarily

the case that every word in the language of a substitution appears as the subword

of a sequence in the subshift - for example ab is in the language of the substitution

φ : a 7→ ab, b 7→ b, but the subshift for this substitution is the single periodic sequence

. . . bbb . . . which does not contain ab as a subword.

We say a word u is legal if it appears as a subword of a sequence of the subshift for

the substitution φ. Then the set L̂φ of legal words for φ is a subset of the language

Lφ. If L̂φ = Lφ then we say that φ is an admissible substitution. Every primitive

substitution is admissible. Some of the results of this chapter would be simplified

if we chose to focus only on admissible substitutions, however this will not be an

assumption that we make.

Let L be a non-empty subset of the subshift Xφ. If, for every point s in L, it is true

that L = {σi(s)}i∈Z, the orbit closure of s, then L is called a minimal component of

Xφ. If the subshift Xφ is a minimal component of itself, then φ is called a minimal

substitution and Xφ is called a minimal subshift, otherwise φ and Xφ are called

non-minimal.

For a primitive substitution, any admitted word is also legal. If u and v are words,

let us use the notation |v|u to denote the number of occurrences of u as a subword

of v. A subshift is called linearly recurrent if there exists a natural number C ∈ N
such that, for all legal words u and v, if |v| > C|u|, then |v|u ≥ 1.

One fact that will play an important role in this section is the following, which was

proved in [22].

Theorem 3.0.1. Let φ be a substitution on A. The subshift Xφ is minimal if and

only if it is linearly recurrent.

Recall that we say φ is recognisable if the induced substitution map on the tiling

space φ : Ωφ → Ωφ is injective. As with subshifts, there is a notion of minimality

and minimal components for tiling spaces. We call Λ ⊂ Ωφ a minimal component

of Ωφ if Λ = (L× I)/ ∼ for some minimal component L of the subshift Xφ, and we

say that Ωφ is a minimal tiling space if it is a minimal component of itself. In the

section on non-minimal substitutions this notion of minimality will be extended to

any compact dynamical system, but for now this definition is more convenient.

There are many properties of primitive substitutions which one is likely to take

for granted, and so we take this opportunity to explicitly spell out some of these

properties and how such properties can fail in the general case (giving both minimal
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and non-minimal examples where appropriate).

The following results can be found in various places in the literature. We refer the

reader to [56] for a concise resource of proofs for most of these results.

Proposition 3.0.2. Let A be an alphabet on d letters. If φ : A → A+ is primitive,

then:

1. Xφ is non-empty

2. Xφk = Xφ for all k ≥ 1

3. |φk(a)| → ∞ as k →∞ for all a ∈ A

4. σ : Xφ → Xφ is minimal. In particular Ωφ is connected

5. φ is aperiodic if and only if φ is strongly aperiodic

6. rk Ȟ1(Ω) ≤ d2 − d+ 1 (see [36] and Theorem 2.3.14)

7. Ωφ has at most d2 asymptotic orbits (see [8])

8. If φ is recognisable then φ is aperiodic

Proposition 3.0.3. Counterexamples to the above listed properties in the absence

of primitivity are given by:

1. Let A = {a, b}. If φ : a 7→ b, b 7→ a then Xφ is empty

2. Let A = {0, 0, 1, X}. If φ : 0 7→ 0010, 0 7→ 0010, 1 7→ 1, X 7→ 00 then 00 ∈ L̂φ
but 00 /∈ L̂φ2 and so Xφ2 ( Xφ

3. Let A = {a, b, c}. If φ : a 7→ aaca, b 7→ b, c 7→ bb then |φk(b)| → 1 and

|φk(c)| → 2 as k → ∞. For a non-minimal case, see the above example for

point 2 and the letter 1

4. See the counterexample for point 2 for a connected example. The substitution

a 7→ ab, b 7→ a, c 7→ cd, d 7→ c has a tiling space Ω with two connected

components

5. Let A = {a, b, c, d}. If φ : a 7→ ab, b 7→ a, c 7→ cc, d 7→ ca then

Xφ = XFib t
⋃
n∈Z

{σn(. . . ccc.abaab . . .)} t {. . . cc.cc . . .}

where Fib is the Fibonacci substitution given by restricting φ to the subalphabet

{a, b}. The substitution φ is not strongly aperiodic because it contains the point

. . . cc.cc . . . which is fixed under σ. The substitution φ is aperiodic because XFib

is infinite
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6. A minimal counterexample will be given in Section 3.2

7. A minimal counterexample will be given in Section 3.2

8. Let A = {a, b}. If a 7→ ab, b 7→ b then Xφ = {. . . bb.bb . . .} and Ωφ is home-

omorphic to a circle, with the induced substitution map φ : Ωφ → Ωφ acting

as the identity, hence is injective. It follows that φ is recognisable, but not

aperiodic

3.1 The Minimal Case

Suppose that φ : A → A+ is a minimal substitution, which means the subshift Xφ

is then linearly recurrent by Theorem 3.0.1. The main result of this section is the

following.

Theorem 3.1.1. Let φ be a minimal substitution with non-empty minimal subshift

Xφ. There exists an alphabet Z and a primitive substitution θ on Z such that Xθ is

topologically conjugate to Xφ.

The idea of the theorem is that non-primitive substitutions are ‘pathological’ and

primitive ones are ‘well behaved’, and the theorem makes it possible to replace a

non-primitive substitution with a primitive one if the substitution is minimal. This

is similar to, but slightly stronger than, a result from the section on Open problems

and perspectives (Section 6.2) of [23]. There are three reasons for presenting this

result here. Firstly, the result of [23] does not appear to be well known, but is

basic enough that it seems worthwhile to draw attention to it. Secondly, the proof

appearing in [23] is only a sketch, using the Chacon substitution1 as an illustrative

example, whereas a complete proof appears here. Thirdly, the result presented here

is slightly broader than that of [23]. Specifically, the result in [23] deals with a

minimal sequence that is a fixed point of a substitution and is generated from some

one-letter seed; the result here deals with minimal substitution subshifts consisting

of an entire family of bi-infinite sequences, none of which need be generated from

any finite seed. Example 3.1.2 is an example of such a substitution subshift that

contains no sequence generated by a finite seed.

Example 3.1.2. Let

φ :

{
a 7→ ab

b 7→ b
.

1 This incarnation of the Chacon substitution is not to be confused with the mixed Chacon
substitutions of Chapter 2, which are loosely related but more general.
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Then Xφ is periodic—it contains only the constant sequence . . . bbb . . .. This se-

quence does not contain any instance of the letter a, which is the only letter of

which the images under φn grow without bound.

3.1.1 Periodicity and Aperiodicity

The lemmas below divide the class of substitutions with minimal subshifts into two

subclasses, depending upon whether or not there is any legal letter, the length of

which grows without bound under φ. In particular, Lemma 3.1.4 shows that, in the

absence of such a legal letter, the subshift must be periodic, as in Example 3.1.2.

These lemmas involve a partition of the alphabet into two subsets. For a substitution

φ : A → A+, define

A∞ := {b ∈ A : |φn(b)| → ∞}

A1 := {a ∈ A : ∃M such that |φn(a)| ≤M for all n ∈ N}.

Then A is the disjoint union of A1 and A∞, and if Xφ is non-empty then A∞ is

non-empty. Note also that, for every b ∈ A∞, φ(b) must contain at least one letter

in A∞, whereas for every a ∈ A1, φ(a) contains only letters in A1.

Lemma 3.1.3. Let φ be a minimal substitution on A. If there exists b ∈ A∞ such

that at least two subletters of φ(b) are elements of A∞, then there exists a bi-infinite

sequence w ∈ Xφ that contains a legal letter from A∞, and that is fixed under some

power N of φ—i.e., φN(w) = w.

Proof. Let us denote by S the set of all pointed words u in the language of φ that

have the form

u = b−k−1a−ka−k+1 . . . a−1.a0 . . . ambm+1, (3.1)

where k ≥ 0, m ≥ −1, ai ∈ A1 for −k ≤ i ≤ m, and b−k−1, bm+1 ∈ A∞. By pointed

words, we mean that the words a.bc and ab.c are considered as different elements

of S, as the first has k = 0,m = 1 and the second has k = 1,m = 0. Note that

these words all have finite length, and there are only finitely many of them because

Xφ is linearly recurrent. Moreover the hypothesis that φ(b) contains at least two

subletters from A∞ implies that S is non-empty.

Define a map f : S → S as follows. For a sequence u of the form in 3.1, the

subsequences φ(b−k−1) and φ(bm+1) are words of v = φ(u), occurring at the beginning

and the end respectively. Each of these words contains at least one letter from A∞.
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Let b− be the last such letter occurring in φ(b−k−1), and let b+ be the first such letter

occurring in φ(bm+1). Then v contains a subsequence of the form vm1 . . . vm2 , where

m1 < 0 ≤ m2, vm1 = b−, vm2 = b+, and vi ∈ A1 for all m1 < i < m2. Moreover,

vm1 . . . vm2 ∈ S. Therefore let us define f(u) = vm1 . . . vm2 .

As the set S is finite, it contains some sequence u that is sent to itself under fN for

some N ∈ N. But this means that u is a subsequence of φN(u), which in turn must

be a subsequence of φ2N(u), and so on. Because u begins with a letter of A∞ at a

negative index and ends with a letter of A∞ at a non-negative index, these sequences

grow to cover all indices; that is, given n ∈ Z, there exists i ∈ N such that φiN(u)

has an entry at index n. Let wn denote this entry, and let w denote the sequence,

the nth entry of which is the letter wn obtained in this way. The fact that φiN(u) is

a subsequence of φ(i+1)N(u) means that this is well defined, and the construction of

w means in particular that φN(w) = w. The result follows from the fact that u is a

word of w, and u contains letters from A∞ in at least two positions.

Lemma 3.1.4. Let φ be a minimal substitution on A. If, for all b ∈ A∞, φ(b) has

a letter of A∞ at only one index, then Xφ is periodic.

Proof. It will suffice to show that Xφ contains a single periodic sequence w, because

minimality will then imply that all elements of Xφ are translates of w.

Let us pick out two special subsets of A1. Define

A0 := {a ∈ A : |φ(a)| = 1}

and, noting that φ sends A0 to itself,

A00 :=
∞⋂
n=0

φn(A0).

Of these two alphabets, A00 is the one of interest here; it will turn out that all

sequences in Xφ are made from it. Indeed, given any a ∈ A1, there exists N ∈ N
such that φN(a) consists entirely of letters from A0. Then by the definition of A00,

we can apply φ a few more times to arrive in A00; that is, there exists M ≥ N such

that φM(a) consists entirely of letters from A00. Taking the maximum of all such

M over all elements of A1 yields N0 ∈ N such that, for all a ∈ A1, φN0(a) consists

entirely of letters from A00.

Now let us construct a periodic sequence x in Xφ. Define a function g : A∞ → A∞
by letting g(b) be the unique letter from A∞ that is contained in φ(b). Then, as

A∞ is finite, there exists some b ∈ A∞ and some N ∈ N such that gN(b) = b. By
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replacing N with a multiple if necessary, we may suppose that N > N0. Because φ

permutes A00, we may suppose, after possibly replacing N with another multiple,

that φN(a) = a for all a ∈ A00.

Note that b appears exactly once in φN(b), and no other letter in A∞ appears in

it at all, so the first and the last letters of φN(b) cannot both be from A∞. Let us

suppose without much loss of generality that the first letter of φN(b) is not from

A∞.

Write φN(b) = a1 . . . ar, and say ai = b for some i > 1. Then

φ2N(b) = φN(a1) . . . φN(ai−1)φN(b) . . . φN(ar)

= φN(a1) . . . φN(ai−1)a1 . . . ai−1b . . . ar . . . φ
N(ar).

Note that, for j < i, φN(aj) ∈ A∗00, so φkN(aj) = φN(aj) for any k ∈ N. Thus

φ3N(b) = φ2N(a1) . . . φ2N(ai−1)φN(a1) . . . φN(ai−1)φN(b) . . .

= φN(a1) . . . φN(ai−1)φN(a1) . . . φN(ai−1)a1 . . . ai−1b . . . ar . . .

Continuing in this fashion, we see that φ(k+1)N(b) begins with the word

φN(a1) . . . φN(ai−1)

repeated k times. Therefore Xφ contains the periodic sequence w constructed by

concatenating infinitely many copies of this word, as required.

In the absence of the hypothesis that Xφ be minimal, the proof of Lemma 3.1.4 can

be repeated with minor modifications to prove the following.

Lemma 3.1.5. Suppose that A∞ contains a letter b with the property that, for all

n ≥ 0, there is exactly one subletter of φn(b) which is a member of A∞. Then Xφ

contains a periodic sequence, the entries of which all lie in A1.

3.1.2 A New Substitution

Any periodic minimal subshift is equal to a primitive substitution subshift of con-

stant length (say, the substitution that sends each legal letter to the same sequence

u with the property that . . . u.uu . . . is in the subshift), so in the periodic case the

conclusion of Theorem 3.1.1 is immediately true. Therefore we may suppose hence-

forth that Xφ is aperiodic, and hence, by Lemmas 3.1.3 and 3.1.4, that Xφ contains

a bi-infinite sequence w that is invariant under φN and that contains a legal letter
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b ∈ A∞. Moreover, the proof of Lemma 3.1.3 shows that φN(b) contains b, and any

legal word u appears in φkwN(b) for some kw ∈ N. By passing to a multiple of N if

necessary and observing that Xφ is linearly recurrent, we may suppose further that

φN(b) contains at least two copies of the letter b.

Let us introduce some notation that will be useful in the proof of Theorem 3.1.1.

Given a ∈ A, let a denote any letter of A except a. Given a word u and some

m ≥ 0, let um denote the sequence obtained by concatenating m copies of u (so if

m = 0 this is the empty word ε). Let u∗ denote any word obtained by concatenating

0 or more copies of u, and let um+∗ denote any sequence obtained by concatenating

at least m copies of u. Words of the form bb
∗

will play an important role in the

argument that follows, where b is the legal letter in A∞; these are words consisting

of a b, followed by any number of letters different from b.

Define B := {v of the form bb
∗

: vb is legal}, the set of all words v beginning with

b followed by letters which are distinct from b and such that vb is a legal word. In

the language of [23], these are the return words to b.

Enumerate the elements of B \ {b}: B \ {b} = {v1, . . . , vk}. If b ∈ B, then write

v0 = b.

We can break φN(b) into block form:

φN(b) = uv01 . . . v0r0 ,

where u has the form b
∗

and, for 1 ≤ j ≤ r0, v0j has the form bb
∗
. Moreover, as

φN(b) contains b in at least two distinct places, we know that r0 > 1. And, as b is

legal, so is φN(b), so if j < r0 then the sequence v0jb is legal, and so v0j ∈ B. v0r0

need not be in B.

For each i ≥ 1, we can write

φN(vi) = φN(b)wivi1 . . . viri ,

where ri ≥ 0, wi has the form b
∗
, and, for 1 ≤ j ≤ ri, vij has the form bb

∗
. If ri > 0,

then for all j < ri, the sequence vijb appears in φN(vi), and hence is legal, so vij ∈ B.

viri need not be in B, but vib is legal, and hence φN(vib) is legal, and this sequence

contains viriub. Therefore, if ri > 0, then viriu ∈ B; let us denote this sequence by

v′iri .

Further, although the sequence v0r0 from above need not be in B, for all i with ri > 0

it is true that v0r0wi ∈ B, and for all i with ri = 0 it is true that v0r0wiu ∈ B. Let

us denote by w′i the sequence v0r0wi if ri > 0 or v0r0wiu if ri = 0. Also v0r0u ∈ B;

let us denote this sequence by v′0r0 .
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Let C be a new alphabet, disjoint from A and B, but with the same number of

elements as B, and let α : B → C be a set bijection. α extends naturally to a map

B+ → C+. For v ∈ B, let ṽ denote α(v). Define a substitution ψ : C → C+ by

ψ(ṽ0) = ṽ01 . . . ṽ0r0−1ṽ
′
0r0

if v0 = b ∈ B, and

ψ(ṽi) =

{
ṽ01 . . . ṽ0r0−1w̃

′
iṽi1 . . . ṽiri−1ṽ

′
iri

if ri > 0

ṽ01 . . . ṽ0r0−1w̃
′
i if ri = 0

for all i > 0.

Lemma 3.1.6. The substitution ψ : C → C+ defined above is primitive.

Proof. For all v ∈ B there exists nv ∈ N such that vb is a word of φnvN(b). But

the hypothesis that b is a word of φN(b) means that, for all k ≤ l, φkN(b) is a word

of φlN(b). Thus, picking l = maxv∈B nv means that, for all v ∈ B, vb is a word of

φlN(b). Because all of the words {vb : v ∈ B} can be found in φlN(b), and because

any two of these can have overlap in at most their first or last letters, it is possible to

find all of the elements of B as words of φlN(b), no two of which share any common

indices.

Moreover, for all w ∈ B, φN(w) starts with uv01 and b is a word of v01, so φ(l+1)N(w)

contains every v ∈ B within the block φlN(v01) that begins at index |φlN(u)|.

Then for all w ∈ B, ψ(w̃) starts with ṽ01, so ψl+1(w̃) contains ṽ for all v ∈ B.

Therefore ψ is primitive.

3.1.3 Topological Conjugacy

The new substitution ψ is related to φ (specifically, they give rise to homeomorphic

tiling spaces—see Section 3.0.1), but it does not necessarily give rise to a topolog-

ically conjugate subshift. For this the following result, proved in [23, Proposition

3.1] and paraphrased here, will be useful.

Proposition 3.1.7. Let ψ : C → C+ be a primitive substitution and let g be a map

from C to A+. Let Xg ⊂ AZ denote the subshift generated by g(Xψ)—that is,

Xg := {σnA(g(x)) : x ∈ Xψ, n ∈ Z}. Then there exists an alphabet Z, a primitive

substitution θ : Z → Z+, and a map h : Z → A such that h(Xθ) = Xg.

We can apply this result to the current setting by using the substitution ψ : C → C+

defined above, which was shown to be primitive in Lemma 3.1.6, and the map g : C →
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A+ defined by g(ṽi) = vi, where vi ∈ A+ is viewed as a sequence possibly consisting

of more than one letter. Then the subshift Xg from the statement of Proposition

3.1.7 is exactly the original substitution subshift Xφ. Therefore Proposition 3.1.7

guarantees the existence of a factor map—in fact, a one-block code [45]—from a

primitive substitution subshift Xθ to the given minimal substitution subshift Xφ.

If we look at how Z and θ are defined in the proof of Proposition 3.1.7 in [23], then

it becomes clear that the factor map h is in fact a topological conjugacy—i.e., it has

an inverse that is also a factor map. Indeed, Z is the set of all pairs (ṽ, k), where

v ∈ B and 1 ≤ k ≤ |v|. Every sequence w ∈ Xφ can be represented uniquely as

a concatenation of return words v ∈ B (with the origin possibly contained in the

interior of such a word). Then there is a map p : Xφ → ZZ defined in the following

way on a sequence w ∈ Xφ: If wj falls at position k in the return word vi, then

p(w)j = (ṽi, k). This is a sliding block code with block size equal to maxv∈B |v|, and

the one-block code h is its inverse. The usefulness of Proposition 3.1.7 is in showing

that p(Xφ) is in fact a primitive substitution subshift, which completes the proof of

Theorem 3.1.1.

3.2 Examples and Applications

The primitive substitution subshift Xθ is topologically conjugate to the original

minimal subshift Xφ, which is a very strong condition, but this comes at a price:

if we follow the recipe from [23, Proposition 3.1] strictly, then the new alphabet Z
may be quite large—see Proposition 3.2.1, below, for an example in which |A| = 2,

|C| = 3 and |Z| = 9. For some computational purposes, particularly purposes

involving tiling spaces, the substitution ψ : C → C+ can be just as good as θ, and

typically uses a smaller alphabet.

Consider the substitutions φ : A → A+ and ψ : C → C+ from Theorem 3.1.1, and

the map α : C → B+ ⊂ A+. Then the tiling spaces Ωφ and Ωψ are homeomorphic

via the map

f : Ωψ → Ωφ

(w, t) 7→ (σbt̃c(α(w)), t̃− bt̃c),

where t̃ = |α(w0)| · t.

This means that, for practical purposes, we can use Ωψ to compute the topological

invariants of Ωφ. This is the approach in the following examples and applications,

which illustrate the construction outlined in Section 3.1. The first example illus-
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trates some of the greater ‘freedom’ in behaviour exhibited by minimal non-primitive

substitutions on small alphabets.

Recall from [36] (and also proved using our Barge-Diamond techniques in Proposi-

tion 2.3.14) that, if Ωφ is the tiling space associated to a primitive substitution φ

on an alphabet A with k letters, the rank of the first Čech cohomology Ȟ1 of Ωφ is

bounded above by k2 − k + 1 and this bound is tight. Recall from [8] that Xφ has

at most k2 asymptotic orbits (equivalently, Ωφ has at most k2 asymptotic arc com-

ponents) and this bound is tight. These results both fail spectacularly if we allow

for non-primitive minimal substitutions—this result suggests that the alphabet size

is not as much of a limiting factor with respect to the topological and dynamical

properties of a substitution.

Proposition 3.2.1. Let A = {a, b} be an alphabet on only two letters. For all n ≥ 2

there exists a minimal substitution φn : A → A+ such that Ȟ1(Ωφn) has rank n and

Xφn has at least n asmyptotic orbits.

We construct φn explicitly and use the methods from Section 3.1 to prove the claim.

Proof. We define our family of substitutions φn by

φn :

{
a 7→ ab ab2 . . . abn−1 abn a

b 7→ b

We leave confirmation of minimality of the substitution φn to the reader. The

decomposition A = A∞ t A1 = {a} t {b} is quickly found and, as φn satisfies the

hypotheses of Lemma 3.1.3 we know that a can be used as the seed letter for our

return words. As per the proof of Lemma 3.1.3, the set S = {abi.bja | i+ j ≤ n, 0 ≤
i, j} has a fixed point under f 1(= IdS), and φn(a) contains at least two distinct

copies of a so we can choose N = 1.

The return words to a are Bn = {abi | 1 ≤ i ≤ n}. Let vi = abi. The word φ(a)

can be written as uv01 . . . v0r0 with u = ε the empty word, r0 = n+ 1, v0i = abi = vi

for 1 ≤ i ≤ n and v0r0 = a. For each 1 ≤ i ≤ n we can write φ(vi) = φ(a)wi with

wi = bi and we note that ri = 0 for each i ≥ 1. So, w′i = v0r0wiu = abi = vi.

We form Cn = {ṽ | v ∈ Bn} = {ṽi | 1 ≤ i ≤ n} and define, for each 1 ≤ i ≤ n the

substitution ψn : Cn → C+
n by

ψn(ṽi) = ṽ01ṽ02 . . . ṽ0nw̃
′
i

= ṽ1ṽ2 . . . ṽnṽi.
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This can more succinctly be written on the alphabet {1, . . . , n} as

ψn : i 7→ 12 . . . ni.

The reader is invited to verify, following the proof of [23, Proposition 3.1], that the

substitution θ defined by

θ(A) = AB θ(L) = AB θ(W ) = AB

θ(B) = LMNWXY ZAB θ(M) = LMN θ(X) = LMN

θ(N) = WXY ZLMN θ(Y ) = WXY Z

θ(Z) = WXY Z

produces a subshift that is topologically conjugate to φ3, where the conjugacy

h : {A,B,L,M,N,W,X, Y, Z} → {a, b} is given by h(A) = h(L) = h(W ) = a

and h(B) = h(M) = h(N) = h(X) = h(Y ) = h(Z) = b. (Of course, it is clear that

a smaller alphabet can be used; this is what is obtained when the recipe is followed

without modification.)

By Lemma 3.1.6 and the discussion in Section 3.0.1, ψn is a primitive substitution

whose tiling space Ωψn is homeomorphic to Ωφn . By the aperiodicity of φn and

a result of Mossé [49], ψn is recognisable. We notice that ψn is also a left-proper

substitution and so by Proposition 2.3.16, the first Čech cohomology of Ωψn (and

hence of Ωφn) is given by the direct limit of the transpose of the incidence matrix of

ψn acting on the group Zn.

The incidence matrix of ψn is the symmetric matrix Mn = 1n + In where 1n is the

n× n matrix of all 1s, and In is the n× n identity matrix. It is easy to check that

Mn has full rank and so

rkȞ1(Ωφn) = rkȞ1(Ωψn) = rk lim−→(Mn) = n.

To prove the claim about asymptotic orbits, we note that there exists a right infinite

sequence v such that for every i ∈ {1, 2, . . . , n} there exists a left infinite sequence

ui (found by repeated substitution on the sequence i.1) such that uii.1v is a point in

Xψn . By construction then, uii.1v = ujj.1v if and only if i = j, and the bi-infinite

sequences uii.1v and ujj.1v agree on all components right of the origin for all pairs

i, j. It follows that each pair i, j leads to a right asymptotic pair of orbits in Xψn

and so there exist at least n asymptotic orbits.

Equivalently then, Ωψn has at least n asymptotic arc components. These are pre-

served under homeomorphism and so Ωφn also has at least n asymptotic arc com-
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ponents. Equivalently, Xφn has at least n asymptotic orbits.

The following example illustrates how N can be greater than 1 (One can check

that the substitution is related to the Thue-Morse substitution 0 7→ 01, 1 7→ 10 by

mapping the letter c to the empty word ε).

Example 3.2.2. Let φ : a 7→ acb, b 7→ bca, c 7→ c.

The decomposition A = A∞ tA1 = {a, b} t {c} is quickly found and, as φ satisfies

the hypotheses of Lemma 3.1.3 we know that a can be used as the seed letter for

our return words. As per the proof of Lemma 3.1.3, the set

S = {x.cy, xc.y | x, y ∈ A∞}

has a fixed point under f 2(= IdS), and φ2(a) contains at least two distinct copies of

a so we can choose N = 2.

The return words to a are B = {ac, acbc, acbcbc}. Let vi = a(cb)i−1c, i = 1, 2, 3. The

word φN(a) = φ2(a) = acbcbca can be written as uv01 . . . v0r0 with u = ε the empty

word, r0 = 2, v01 = acbcbc = v3, and v0r0 = v02 = a. We can write:

φ2(v1) = φ2(a)w1 with

w1 = c, r1 = 0

φ2(v2) = φ2(a)w2v21v22 with

w2 = cbc, v21 = ac = v1, v22 = acbc = v2, r2 = 2

φ2(v3) = φ2(a)w3v31v32v33v34 with

w3 = cbc, v31 = ac = v1, v32 = acbcbc = v3, v33 = ac = v1, v34 = acbc = v2, r3 = 4.

As u = ε, v′iri = viri . As ri = 0 only if i = 1, we have:

w′1 = v0r0w1u = ac = v1

w′2 = v0r0w2 = acbc = v2

w′3 = v0r0w3 = acbc = v2

φ2(v1) = φ2(a)w1 with

w1 = c, r1 = 0

φ2(v2) = φ2(a)w2v21v22 with

w2 = cbc, v21 = ac = v1, v22 = acbc = v2, r2 = 2

φ2(v3) = φ2(a)w3v31v32v33v34 with

w3 = cbc, v31 = ac = v1, v32 = acbcbc = v3, v33 = ac = v1, v34 = acbc = v2, r3 = 4.
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As u = ε, v′iri = viri . As ri = 0 only if i = 1, we have

w′1 = v0r0w1u = ac = v1

w′2 = v0r0w2 = acbc = v2

w′3 = v0r0w3 = acbc = v2.

We form C = {ṽ | v ∈ B} = {ṽ1, ṽ2, ṽ3} and define the substitution ψ : C → C∗ by

ψ(ṽ1) = ṽ01w̃
′
1

= ṽ3ṽ1

ψ(ṽ2) = ṽ01w̃
′
2ṽ21ṽ

′
22

= ṽ3ṽ2ṽ1ṽ2.

ψ(ṽ3) = ṽ01w̃
′
3ṽ31ṽ32ṽ33ṽ

′
34

= ṽ3ṽ2ṽ1ṽ3ṽ1ṽ2.

This can more succinctly be written on the alphabet {1, 2, 3} as

ψ(1) = 31

ψ(2) = 3212

ψ(3) = 321312

The following example illustrates where u may be non-trivial. It is also an example

of a topologically equivalent primitive substitution on fewer letters than the original

minimal substitution (one can check that the associated tiling space is homeomorphic

to the tiling space of the Fibonacci substitution). We omit much of the writing and

just give a list of notation so that the reader may confirm their own calculations.

Example 3.2.3. Let φ : a 7→ bc, b 7→ b, c 7→ ca.

• A = A∞ t A1 = {a, c} t {b}

• Seed letter - a

• S = {a.bc, c.bc, ab.c, cb.c}

• f 2 has a fixed point

• φ4(a) contains at least two distinct copies of a =⇒ N = 4

• B = {abcbc, abc}, v1 = abcbc, v2 = abc

• φN(a) = φ4(a) = bcabcbca

• u = bc, v01 = abcbc = v1, v0r0 = v02 = a, r0 = 2
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• φ4(v1) = φ4(a)w1v11v12v13v14v15v16

• w1 = bc, v11 = v1, v12 = v2, v13 = v1, v14 = v1, v15 = v2, v16 = abc, r1 = 6

• φ4(v2) = φ4(a)w2v21v22v23

• w2 = bc, v21 = v1, v22 = v2, v23 = abc, r2 = 3

• v′16 = v16u = abcbc = v1

• v′23 = v23u = abcbc = v1

• w′1 = v0r0w1 = abc = v2

• w′2 = v0r0w2 = abc = v2

ψ(1) = 12121121

ψ(2) = 12121

We encourage the reader to try the example φ : a 7→ acb, b 7→ adb, c 7→ dd, d 7→ d

where the function f is not a bijection; and to also try the example of the non-

primitive Chacon substitution φ : a 7→ aaba, b 7→ b where B contains the single

letter return word a and so v0 needs to be treated.

3.3 The Non-Minimal Case

In this section, we now turn our attention to the case of those substitutions which

give rise to non-minimal subshifts. We call such substitutions non-minimal substi-

tutions.

Definition 3.3.1. We say the word u ∈ A∗ is a bounded word for φ if u ∈ L̂φ is a

legal word for φ and limn→∞ |φn(u)| < ∞. If u is a legal word for φ but u is not

bounded for φ, then we say u is expanding for φ. Let B be the set of bounded words

for the substitution φ. If B is finite, we say φ is tame. If B is infinite, we say φ is

wild.

Example 3.3.2. The substitution φ : a 7→ bab, b 7→ b is wild, as the periodic sequence

. . . bb.bb . . . is an element of the subshift and the words bn are all bounded for φ.

Example 3.3.3. The substitution φ′ : a 7→ bab, b 7→ bbb is tame, as |φ(u)| = 3|u| for

all words u.

Note that the subshifts Xφ and Xφ′ for these two examples are the same, so tameness

is only a property of a substitution and not its associated subshift.
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Let n ≥ 0. If a ∈ A is a letter admitted by φ and the word u = a−n . . . a−1aa1 . . . an

is legal, then we say the formal pair (a, u) is an n-collared letter and denote each

such pair by the new letter au.

We define a new alphabet An for φ, where A0 = A and An is the set of all n-collared

letters for the substitution φ. There is a forgetful map fn,m : An → Am where, if

u = a−n . . . a−m . . . a−1aa1 . . . am . . . an

and

v = a−m . . . a−1aa1 . . . am

then we define fn,m(au) = av. We can extend this forgetful map to A∗i and AZ
i .

If u is the word c1c2 . . . cl, then for those i and n where it is well-defined, let ci(n) be

the subword ci−n . . . ci . . . ci+n. Suppose φ(a) = b1 . . . bk and let au be an n-collared

letter. Note that b1 . . . bk is a subword of φ(u), so we can define bi(n) for each

1 ≤ i ≤ k. There is an induced substitution on An defined by

φn(au) = (b1)b1(n) . . . (bk)bk(n).

This induced substitution commutes with the forgetful maps. That is,

φm ◦ fn,m = fn,m ◦ φn.

Note also that fn,m : Xφn → Xφm is a topological conjugacy between subshifts, and

in particular Xφn is conjugate to Xφ for all n.

Lemma 3.3.4. Let φ be a tame substitution. Let N be one greater than the max-

imum length of any bounded word for φ, N = maxu∈B |u| + 1. The substitution

φN : AN → A+
N forces the border at some level k.

Proof. Let k be such that, for every expanding letter a ∈ A, we have |φk(a)| > N .

Let au ∈ AN be an N -collared letter such that φkN(au) appears as a subword of

w ∈ XφN . As φ is tame, there exists a letter l = wi−j to the left of a and a letter

r = wi+j′ to the right of a that are both expanding letters. Further, the indices j

and j′ can be chosen so that j, j′ < N .

So, u = wi−N . . . l . . . a . . . r . . . wi+N where wi = a is the central letter of the word

and then

φk(u) = φk(wi−N) . . . φk(l) . . . φk(a) . . . φk(r) . . . φk(wi+N)
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Let ul = φk(l) and ur = φk(r). As |φk(l)| > N and |φk(r)| > N , and we know all

tiles within N places of a in u, we can determine all N -collared tiles out until at

least the rightmost N -collared letter of φk(l) to the left, and at least the leftmost N -

collared letter of φk(r) to the right. These tiles lie outside of φkN(au) and so φkN(au)

uniquely extends in XφN . It follows that φN forces the border at level k.

Let A1 be the set of bounded letters for a substitution φ and let A∞ = A \ A1 be

the set of expanding letters for φ.

Lemma 3.3.5. If the leftmost and rightmost letter of φ(a) are elements of A∞ for

all a ∈ A∞, then φ is tame.

Proof. Suppose that φ is wild, so the set

B = {u ∈ L̂φ | lim
n→∞

|φn(u)| <∞}

of bounded words for φ is infinite. For a bounded letter b ∈ A1, let kb be the limit

kb = limn→∞ |φn(b)| and let k = supb∈A{kb | b ∈ B}, the length of the longest

bounded word which is an iterated substitute of a single bounded letter. For an

expanding letter a, let la be the length of the longest bounded subword of φ(a) and

let

l = sup
a∈A∞, n≥0

{|φn(u)| | u ∈ B, |u| ≤ la, u ⊂ φ(a)}

which is a finite set and so has a finite supremum.

Let v ∈ B be a bounded word of length |v| ≥ max{k, l} + 1 which exists because

φ is wild. As v is legal, there exists a sequence w ∈ Xφ for which v is a subword,

and as all legal words are in the language of φ, there exists a letter a ∈ A and a

minimal power n such that v ⊂ φn(a) and v is not a subword of φn−1(a′) for any

letter a′ ∈ A. By our choice of v, the letter a cannot be a bounded letter and so

limn→∞ |φn(a)| = ∞ and a is expanding. Partition φn(a) into words of the form

φn−1(ai) where φ(a) = a0 . . . al.

As n is minimal, v must be a subword of the concatenation of several words of the

form φn−1(ai) . . . φ
n−1(aj) and in particular v is not contained in any single word

of the form φn−1(ai) because |v| > l and so ‘overlaps’ at least two of these words.

Replace, if needed, the letters ai . . . aj with some minimal subset that still has this

property, so that w intersects either the leftmost or rightmost letter of every word

φn−1(ai), . . . , φ
n−1(aj). By our assumption on the leftmost and rightmost letters of

expanding letters, the letters ai, . . . , aj can therefore not be expanding, as otherwise

v would contain expanding letters itself and hence not be bounded. This means

that ai, . . . , aj must all be bounded letters. However, v was chosen to be longer
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than the length of any iterated substitution of bounded words appearing in φ(a) for

any expanding letter a. This gives a contradiction.

Let Aright ⊂ A∞ be the set of expanding letters such that for every a ∈ Aright the

rightmost letter of φ(a) is a bounded letter, and define Aleft similarly. If φ is wild,

then either Aright or Aleft is non-empty by Lemma 3.3.5.

Lemma 3.3.6. Let φ be a wild substitution. Either there exists a letter a ∈ Aright
and an increasing sequence of integers Ni such that the rightmost expanding letter

appearing in φNi(a) is also in Aright for all i ≥ 1 or there exists a letter a ∈ Aleft
and an increasing sequence of integers Ni such that the leftmost expanding letter

appearing in φNi(a) is also in Aleft for all i ≥ 1.

Proof. First, suppose that there is no a ∈ Aleft and increasing sequence of integers

Ni such that the leftmost expanding letter appearing in φNi(a) is also in Aleft for

all i ≥ 1. By this assumption, there exists an N such that the leftmost expanding

letter in φN+k(a) is never in Aleft for any expanding letter a. Let Uleft be the set

of bounded words that appear at the start of any word of the form φn(a) for any

expanding letter a. This set is finite because φN+k(a) will be a word of the form

ubv where u is bounded and the leftmost letter of φ(b) is expanding and also not in

Aleft. Let kleft = max{|u| | u ∈ Uleft}.

Suppose further that there is no a ∈ Aright and increasing sequence of integers Ni

such that the leftmost expanding letter appearing in φNi(a) is also in Aright for all

i ≥ 1. Then we can similarly form Uright, the set of bounded words that appear at the

end of any word of the form φN(a) for a ∈ Aright. Let kright = max{|u| | u ∈ Uright}.

It is easy to see that the only legal bounded words for φ are either bounded words

appearing as subwords contained in the interior of φ(a) for an expanding a, or words

of the form u1u2 for u1 ∈ Uright and u2 ∈ Uleft. It follows that every bounded word

has length at most max{kleft + kright, |φ(a)| | a ∈ A} and so φ is tame.

Recall that if Xφ contains no σ-periodic points, then we say φ is strongly aperiodic.

Theorem 3.3.7. Let φ be a substitution on the alphabet A. If φ is strongly aperiodic,

then φ is tame.

Proof. We prove the contrapositive. Suppose that φ is wild. By Lemma 3.3.6, we

may assume without loss of generality that there exists a letter a ∈ Aright and

an increasing sequence of integers Ni such that the rightmost expanding letter of

φNi(a) is also in Aright. Note that the rightmost expanding letter of φNk(a) must
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also have the same property as a for the shifted sequence of integers Mi = Ni−k. So,

by possibly choosing a different a ∈ Aright we may further assume without loss of

generality that there is a power N so that the rightmost expanding letter of φN(a)

is a. So, let φN(a) = vau where u is a bounded word. Then by induction, we have

φ(k+1)N(a) = φkN(v) . . . φN(v)vauφN(u) . . . φkN(u).

Now, as u is a bounded word, there exists a K such that |φ(K+1)N(u)| = |φKN(u)|
and as there are only finitely many words of this length, by possibly replacing φ

with a power, we can choose K such that φ(K+1)N(u) = φKN(u). So for all j ≥ K,

the word (φKN(u))j appears as a subword of φn(a) for some n. As such, the periodic

sequence

. . . φKN(u)φKN(u)φKN(u) . . .

is admitted by φ. This means that the subshift Xφ contains a periodic point.

Let φ be a substitution on the alphabet A and let Ω be the associated tiling space.

Use the convention that a point T ∈ Ω is written coordinate-wise as (w, t), w ∈ Xφ

and t ∈ [0, 1). Recall that we define the Anderson-Putnam complex Γ of φ to be

Ω/∼ where ∼ is the equivalence relation given by taking the transitive closure of the

relation (w, t) ∼ (w′, t′) if t = t′ ∈ (0, 1) and w0 = w′0 or t = t′ = 0 and w−1 = w′−1

or w0 = w′0.

Definition 3.3.8. We define the n-collared Anderson Putnam complex Γn to be the

Anderson-Putnam complex associated to the n-collared substitution φn.

Let pn : Ω→ Γn be the natural quotient map. We define a map fn : Γn → Γn to be

the unique map which makes the following square commute

Γn

Ω

Γn

Ω

pn pn

fn

φ

For a strongly aperiodic substitution φ, let Nφ = maxu∈B |u| + 1 be one greater

than the length of the longest bounded word for φ. This natural number exists by

Theorem 3.3.7. The following theorem removes the hypothesis of primitivity from

the classic Anderson-Putnam theorem [2] if we allow ourselves to collar letters out

to a sufficient radius.
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Theorem 3.3.9. Let φ be a strongly aperiodic recognisable substitution. The natural

map h : Ω→ lim←−(ΓNφ , fNφ) given by

h(x) = (pNφ(x), pNφ(φ−1(x)), pNφ(φ−2(x)), . . .)

is a homeomorphism.

Proof. Recognisability of φ means that φ : Ω→ Ω has a well-defined inverse and so h

is well-defined. By the choice of Nφ and Lemma 3.3.4, the Nφ-collared substitution

φNφ forces the border at level k. Hence, a point in the inverse limit describes a unique

tiling of the line, and so h is both injective and surjective. As h is a continuous

bijection from a compact space to a Hausdorff space, h is a homeomorphism.

We may further reduce the list of hypotheses for this theorem by making use of a

result of Bezuglyi, Kwiatowski and Medynets [15].

Theorem 3.3.10 (Bezuglyi-Kwiatowski-Medynets). If φ is strongly aperiodic, then

φ is recognisable.

Corollary 3.3.11. Let φ be a strongly aperiodic substitution. The map h : Ω →
lim←−(ΓNφ , fNφ) is a homeomorphism.

Remark 3.3.12. We remark that there exist recognisable substitutions which are

not strongly aperiodic or even aperiodic. Take as an example the substitution

φ : a 7→ ab, b 7→ b whose induced substitution on the tiling space is just the iden-

tity map on a circle, and so is injective, hence φ is recognisable even though φ is a

periodic substitution. This is perhaps surprising to a reader who is used to primi-

tive substitutions, where recognisability, aperiodicity and strong aperiodicity are all

equivalent.

3.4 Closed Invariant Subspaces of Non-minimal Tiling Spaces

3.4.1 Invariant Subspaces

Let Ω be a compact metric space and let G act continuously on the right of Ω via

ρ : Ω × G → Ω and let ρτ : Ω → Ω be given by x 7→ ρ(x, τ). We will normally only

consider G = R or G = Z, but the following machinery is suitable to be applied in

the general case (in particular, tiling spaces in higher dimensions which have actions

of higher dimensional Euclidean groups).

If Λ is a closed subspace of Ω such that ρτ (Λ) = Λ for all τ ∈ G, we call Λ a closed

invariant subspace with respect to the action, or CIS for short. The set of CISs C
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forms a lattice under inclusion of subspaces. The least elements of C that are not

empty are the minimal sets of the action on Ω. The unique maximal element of C is

the whole space Ω. We note without much further comment, but find it interesting,

that CC = {Ω \ Λ | Λ ∈ C} is a topology on the set Ω (in general, more coarse

than the original topology induced by the metric on Ω). This topology is indiscrete

if and only if (Ω, ρ) is minimal. Any continuous map between dynamical systems

which maps orbits to orbits will also induce a continuous map between the spaces

endowed with the topology CC , and so the homeomorphism type of the topological

space (Ω, CC) is an orbit equivalence invariant of the dynamical system (Ω, ρ).

Lemma 3.4.1. Let f : Ω → Ω′ be a continuous map which maps G-orbits to G-

orbits. If Λ is a CIS of Ω with respect to the action of G on Ω, then f(Λ) is a CIS

of Ω′ with respect to the action of G on Ω′.

Proof. Let Λ be a CIS of Ω. As Ω is compact and Λ is a closed subspace, Λ is

compact, so the image of Λ under a continuous map is compact. As Ω′ is Hausdorff,

a compact subspace of Ω′ must be closed, and so f(Λ) is a closed subspace of Ω′.

Let Ox = {ρτ (x) | τ ∈ G} be the orbit of a point x ∈ Ω under the G-action. From

the definition of a CIS, if x ∈ Λ then ρτ (x) ∈ Λ for all τ and so Λ contains Ox
for all points x ∈ Λ. If y ∈ f(Λ), then there exists an x ∈ Λ such that f(x) = y.

The image of an orbit under f is also an orbit, and so as f(Ox) ⊂ f(Λ), and as y

is a point on that orbit, we find that f(Ox) = Oy and Oy ⊂ f(Λ). Hence f(Λ) is

invariant under the action of G, and so forms a CIS.

Let Ω be a compact metric space on which the group G acts on the right and let C
be the set of CISs for Ω.

Definition 3.4.2. The inclusion diagram DΩ for Ω is a diagram whose objects are

the elements of C and whose arrows ijk : Λj → Λk are given by inclusion for every

pair j, k such that Λj ⊂ Λk.

The inclusion cohomology diagram of Ω, denoted Ȟ∗(DΩ), is given by the diagram

of groups induced by applying the Čech cohomology functor to DΩ.

Definition 3.4.3. The quotient diagram DΩ for Ω is a diagram with objects Ω/Λ

for every Λ ∈ C and an arrow qjk : Ω/Λj → Ω/Λk given by the quotient map for

every pair j, k such that Λj ⊂ Λk.

The quotient cohomology diagram of Ω, denoted Ȟ∗(DΩ), is given by the diagram

of groups induced by applying the Čech cohomology functor to DΩ.

Remark 3.4.4. Note that all of the arrows appearing in DΩ and DΩ commute with

the G-action induced on the objects Λ and Ω/Λ for all Λ ∈ C (The action is well
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defined on quotients because either an orbit is mapped injectively onto a subspace

of Ω/Λ or it is mapped to the point [Λ] ∈ Ω/Λ). So, the inclusion and quotient

diagrams both admit commuting G-actions.

If D and E are diagrams of groups, we say a collection of homomorphisms f =

{fi : G→ H | G ∈ D,H ∈ E} is a map of diagrams if the diagram DtfE commutes,

where the objects of D tf E are given by the disjoint union of the objects in D and

E and the homomorphisms of Dtf E are given by the union of the homomorphisms

in D and E together with the homomorphisms in f .

Definition 3.4.5. Let f : Ω→ Ω′ be an orbit-preserving map. We define the induced

map on inclusion cohomology diagrams f ∗ : Ȟ∗(DΩ′)→ Ȟ∗(DΩ) by

f ∗ = {f |∗Λ : Ȟ∗(Λ′)→ Ȟ∗(Λ) | f(Λ) = Λ′}.

Lemma 3.4.1 tells us that this induced map of diagrams of groups f ∗ is non-empty

(for all non-empty Ω′).

Lemma 3.4.6. The induced map on inclusion cohomology diagrams f ∗ is a map of

diagrams of groups.

Proof. Suppose f |∗Λ, f |∗Λ′ ∈ f ∗ and suppose without loss of generality that Λ ⊂ Λ′

with inclusion map i : Λ → Λ′. Then we must have f(Λ) ⊂ f(Λ′) and an inclusion

map j : f(Λ) → f(Λ′). If x ∈ Λ then f |Λ′(i(x)) = f |Λ′(x) = f(x) and j(f |Λ(x)) =

j(f(x)) = f(x). So,

f |Λ′ ◦ i = j ◦ f |Λ

and then by applying the Čech cohomology functor we get

i∗ ◦ f |∗Λ′ = f |∗Λ ◦ j∗

as required.

For a CIS Λ of Ω, let qΛ : Ω → Ω/Λ be the corresponding quotient map. For

an orbit-preserving map g : Ω → Ω′, if g(Λ) = Λ′, then there is a unique map

gΛ : Ω/Λ→ Ω′/Λ′ such that

gΛ ◦ qΛ = qΛ′ ◦ g

Definition 3.4.7. Let g : Ω→ Ω′ be an orbit-preserving map. We define the induced

map on quotient cohomology diagrams g∗ : Ȟ∗(DΩ′)→ Ȟ∗(DΩ) by

g∗ = {g∗Λ : Ȟ∗(Ω′/Λ′)→ Ȟ∗(Ω/Λ) | g(Λ) = Λ′}
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Lemma 3.4.1 tells us that this induced map g∗ is non-empty.

Lemma 3.4.8. The induced map on quotient cohomology diagrams g∗ is a map of

diagrams of groups.

The proof is very similar to the proof of Lemma 3.4.6

Theorem 3.4.9. Inclusion and quotient cohomology diagrams, together with their

induced maps are contravariant functors from the category of G-actions on compact

metric spaces and orbit-preserving maps to the category of diagrams of abelian groups

and homomorphisms.

Proof. Let Ω
f→ Ω′

g→ Ω′′ be a pair of orbit preserving maps. Let Λ be a CIS of

Ω. The map of diagrams of groups f ∗ ◦ g∗ is the set of all compositions f |∗Λ ◦ g|∗f(Λ)

which by functoriality of cohomology is equal to (g ◦ f)|∗Λ. The map of diagrams of

groups (g ◦f)∗ is the set of all maps (g ◦f)|∗Λ for CISs Λ of Ω and so f ∗ ◦g∗ = (g ◦f)∗

as required.

A similar argument shows the functoriality of the quotient cohomology diagram.

Corollary 3.4.10. Both Ȟ∗(DΩ) and Ȟ∗(DΩ) are at least as strong an invariant

of tiling spaces (up to orbit-equivalence) as Čech cohomology.

We will see in the next section that examples exist where Ȟ∗(DΩ) and Ȟ∗(DΩ) can

distinguish pairs of spaces whose cohomology coincides. So they are in fact strictly

stronger invariants than Čech cohomology on its own.

3.4.2 Invariant Subspaces of Substitution Tiling Spaces

From now on, we assume that φ is a strongly aperiodic substitution. Let Ω be the

associated tiling space and let ρ : Ω× R→ Ω be the associated flow on Ω given by

ρ((w, t), τ) = (σbt+τc(w), t+ τ mod 1).

Note that orbits in this setting are precisely the path components of the tiling space.

So, even though the previous machinery has been defined for dynamical systems,

for tiling spaces the dynamical and topological setting coincide. We could have just

as easily considered the set of closed unions of path components, rather than closed

invariant subspaces.

Lemma 3.4.11. Let C be the set of CISs for a substitution φ on the alphabet A.

The set C is finite.
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To reduce notation, we identify without further comment the tilings T ∈ ΩφN and

fN,0(T ) ∈ Ωφ where fN,0 is the induced forgetful map which removes collaring infor-

mation on a collared letter av ∈ AN .

Proof. Let fN : ΓN → ΓN be the induced substitution map on the N -collared AP-

complex for φ and suppose N is chosen large enough that Ω ∼= lim←−(ΓN , fN), which

exists by strong aperiodicity of φ and Theorem 3.3.9. Let Λ ∈ C be a CIS of Ω. As Λ

is invariant under translation ρ, the image of Λ under the quotient map pN : Ω→ ΓN

must be a subcomplex of ΓN .

Now, suppose Λ′ ∈ C and that pN(Λ) = pN(Λ′). We want to show that Λ and Λ′

must be the same subspace. Suppose for contradiction and without loss of generality,

that Λ′ \ Λ is non-empty. Let T be a tiling found in Λ′ but not Λ. By construction

then, T contains a patch of tiles labelled by the word u ∈ A∗ which does not appear

in any tiling in Λ. Given that φN forces the border, there exists a least natural

number n and a non-empty set of N -collared letters Au = {av1 , . . . , avm} ⊂ AN such

that u ⊂ φn(vi) for each avi . As vi is legal by definition, avi is a legal letter.

Recall that φN : Ω → Ω is a homeomorphism by recognisability, and this function

maps orbits to orbits, and so φ−nN (Λ) and φ−nN (Λ′) are CISs of Ω. By construction

φ−nN (T ) is in φ−nN (Λ′) but not φ−nN (Λ). The tiling φ−nN (T ) contains a tile avi ∈ Au and

so there exists a t ∈ R so that T0 = φ−nN (T ) − t has a tile avi ∈ Au which contains

the origin in its interior. As Λ and Λ′ are CISs, T0 ∈ φ−nN (Λ′) and T0 /∈ φ−nN (Λ). The

image of T0 under the quotient map pN lies in the interior of the edge of the N -

collared AP-complex ΓN which is labelled by the N -collared letter avi . If pN(φ−nN (Λ))

intersected this edge, then φ−nN (Λ) would contain a tiling which contained an avi tile,

but then Λ would contain a tiling which contained a patch labelled by the word u.

This contradicts the choice of u not being a patch in any tiling in Λ.

It follows that if pN(Λ) = pN(Λ′) for CISs Λ,Λ′, then Λ = Λ′. Hence, a CIS is fully

determined by the associated subcomplex of the AP-complex which it maps to under

the quotient map. There are only finitely many subcomplexes of any AP-complex

and so there can only be finitely many CISs in C of Ω.

Remark 3.4.12. It is important to note that the choice of N large enough to induce

border forcing is key in the proof of the above Lemma. If N is not chosen large

enough, then the quotient map pN : Ω → ΓN may send distinct CISs to the same

subcomplex of ΓN .

As an example, consider the substitution φ : a 7→ aba, b 7→ bbab, c 7→ aa whose tiling

space has exactly one non-empty proper CIS Λ corresponding to the tilings which

do not contain the patch labelled by the word aa (the tiling space associated to the
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same substitution restricted to the subalphabet {a, b}). However, if N is chosen to

be N = 0, and so φ0 = φ does not force the border, then Γ0 = Γ is just the wedge of

two circles; one given by the edge labelled a and the other given by the edge labelled

b. The image of the CIS Λ is the whole AP-complex Γ, which is also the image of

the entire tiling space Ω, and so we cannot distinguish these CISs by their image

under the map p0 in this case, as border forcing fails.

We will also see that the substitutions in Proposition 3.5.2 would also fail if N is

chosen too small (that is, if N = 0). For both substitutions, one would not be able

to distinguish the subspaces Λ4 and Λ5 = Ω by their images under the quotient map.

For any M ≥ 1, it is not hard to find examples where for any choice N ≥ M we

are able to distinguish all CISs by their images under pN , but there exist CISs Λ,Λ′

such that if N < M then pN(Λ) = pN(Λ′).

Theorem 3.4.13. Let fN : ΓN → ΓN be the induced substitution map on the N-

collared AP-complex for φ. There exists an integer n so that for all Λ ∈ C, there

exists a subcomplex ΓΛ ⊂ ΓN such that fnN(ΓΛ) = ΓΛ and lim←−(ΓΛ, f
n
N) = Λ.

Proof. As φ is recognisable, the substitution acts as a homeomorphism on Ω and so

the substitution permutes CISs of the tiling space. By Lemma 3.4.11, C is finite. As

such, an integer n can be chosen so that φn(Λ) = Λ for all Λ ∈ C.

Let pN : Ω → ΓN be the quotient map from the tiling space to the N -collared AP-

complex. Let p = pN |Λ, be the restriction of the quotient map to Λ. As Λ is a CIS,

the image ΓΛ of p is a subcomplex of ΓN . Recall that pN ◦ φ = fN ◦ pN , and so

p ◦ φn = fnN ◦ p. (3.2)

Let hΛ : Λ→ lim←−(ΓΛ, f
n
N) be defined by

hΛ(x) = (p(x), p(φ−n(x)), p(φ−2n(x)), . . .)

which is well defined by 3.2. As hΛ is a telescoped version of h with modified domain

and codomain, it is clearly injective, so it only remains to show that hΛ is surjective

onto the inverse limit.

A point in the inverse limit corresponds to a unique tiling in the tiling space as φN

forces the border. Suppose (x0, x1, x2, . . .) ∈ lim←−(ΓΛ, f
n
N) was not in the image of

hΛ, then there exists some i for which the patch described by the finite subsequence

of points (x0, x1, . . . , xi) does not appear in a tiling in Λ. But this means that

the shifted sequence (xi, xi+1, . . .) is also not in the image of hΛ, as the shift is a

homeomorphism, and so the point xi ∈ ΓΛ must not describe the label w0 of the tile
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at the origin of any tiling in Λ. This is impossible by how the Anderson-Putnam

complex and the quotient map p are defined, as ΓΛ is the image of Λ under p. It

follows that no such point in the inverse limit exists and hΛ is surjective.

3.4.3 Identifying Closed Invariant Subspaces

Let K be a subcomplex of ΓN and let EV (K) =
⋃
i≥0(fnN)i(K) be the eventual

range of K. The eventual range of a subcomplex is itself a subcomplex. The set of

eventual ranges EV = {EV (K) | K is a subcomplex of ΓN} therefore forms a finite

set. As has been shown, every CIS in C corresponds to a unique subcomplex in EV .

Proposition 3.4.14.

|C| ≤ |EV |

We show by example that this expression may be a strict inequality in general.

Example 3.4.15. The Chacon substitution φ : a 7→ aaba, b 7→ b is minimal and so

|C| = 1. The Chacon substitution is recognisable and tame, and we find that the set

of bounded words for φ is B = {b}, so N = 2. It has a 2-collared AP-complex with

exactly two subcomplexes which are eventual ranges. These are given by the single

edge [bbabaa] and the entire complex Γ2. It follows that |EV | = 2 and so |EV | > |C|.
Obviously, the image of Ω under p2 : Ω → Γ2 is the whole of Γ2, and so the edge

[bbabaa] does not correspond to any CIS of φ.

Note that the expression in Proposition 3.4.14 is an equality if and only if the set of

bounded words B is empty, as an inverse sequence of collections of edges which are

only labelled by bounded letters can only correspond to an invariant subspace whose

tilings have bounded words of arbitrary length, hence φN would in such a case be

wild. By Theorem 3.3.7 and our assumption that φ is strongly aperiodic, this cannot

happen. Hence, we can refine Proposition 3.4.14. Let EV∞ be the set of eventual

ranges of all possible finite unions of edges labelled by N -collared letter whose length

grows without bound under the substitution φN . That is, if a1, . . . , ak ∈ (AN)∞ let

Ka1,...,ak =
⋃
i≥0(fnN)i([a1] ∪ . . . ∪ [ak]), then

EV∞ = {Ka1,...,ak | {a1, . . . , ak} ⊂ (AN)∞}.

Proposition 3.4.16. There is a one-to-one correspondence

EV∞ ←→ C.

Moreover, for every Γ ∈ EV∞, there is a unique CIS Λ ∈ C such that Γ = ΓΛ, and

so lim←−(Γ, fnN) ∼= Λ.
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In general, each subcomplex in EV∞ can be found by substituting a finite collection

of edges under fnN corresponding to an element of the alphabet (AN)∞, the expanding

N -collared letters.

This gives us a general method for identifying CISs when φ is strongly aperiodic:

Find all N -collared letters in (AN)∞; Substitute the letter a ∈ (AN)∞ and for each

i ≥ 0 record the set of letters appearing in the substituted word φiN(a); When this

collection of sets of letters no longer changes, move to the next letter b ∈ (AN)∞

and repeat until all letters in (AN)∞ have been exhausted; Find a natural number

n such that for every a ∈ (AN)∞ the letters appearing in φknN (a) are the same for all

k, which exists by the above arguments; the sets of letters appearing in the words

φnN(a) correspond to a unique subcomplex of ΓN for each a. Every subcomplex of ΓN

in EV∞ then is a finite union of subcomplexes ‘born’ from such iterated expanding

letters, which in turn each correspond to a CIS of Ω. Every CIS is identified in such

a way.

Altogether, this gives us the (crude) bound

Proposition 3.4.17.

|EV∞| = |C| ≤ 2|(AN )∞|

3.4.4 Cohomology of Quotients

Given that we are considering closed subspaces of tiling spaces, the exact sequence in

relative cohomology is a valid method for calculating the cohomology of Ω in terms

of Ȟ i(Λ) and Ȟ i(Ω/Λ) for some CIS Λ of Ω. Indeed, this is one method of calculation

which is effective and we give an example of such a calculation in Example 3.5.1.

So, as well as fitting into the quotient cohomology diagram of a non-minimal tiling

space, the groups Ȟ i(Ω/Λ) are also useful in calculating the cohomology of the entire

space Ω in terms of smaller, more manageable pieces.

With this in mind, we identify the cohomology of Ω/Λ with the direct limit of

cohomology groups of the quotient complex ΓΛ = ΓN/ΓΛ. The associated inverse

limit of quotient complexes is in fact homoemorphic to the quotient space Ω/Λ.

However, the proof is more involved than what follows, and we do not need this

result to calculate cohomology. We refer the reader to our paper [47] for a detailed

proof of the existence of this homeomorphism.

Let Λ be a CIS of Ω and let ΓΛ be the associated subcomplex of ΓN as identified

in the previous section which, to some power n of the substitution φN , is a fixed

subcomplex. Let q : ΓN → ΓΛ be the quotient map. Let fΛ : ΓΛ → ΓΛ be the unique

continuous map such that q ◦ fnN = fΛ ◦ q.
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Theorem 3.4.18. There is an isomorphism

Ȟ i(Ω/Λ) ∼= lim−→(H̃ i(ΓΛ), f ∗Λ).

Proof. Consider the commuting diagram

Λ

ΓΛ

Ω

ΓN

Ω/Λ

ΓΛ

Λ

ΓΛ

Ω

ΓN

Ω/Λ

ΓΛ
pN pN pN

φnN |Λ φnN φnN

fnN |ΓΛ
fnN fΛ

where the rows are the cofibration sequences associated to the inclusions of each

of the closed subspaces Λ and ΓΛ into Ω and ΓN respectively. The upper diagonal

maps are (nth powers of) the substitution homeomorphisms on each of the spaces Λ

and Ω and the induced homeomorphism on the quotient Ω/Λ. The lower diagonal

maps are the bonding maps of the associated inverse sequences of complexes.

By passing to the long exact sequence in reduced Čech cohomology associated to a

cofibration sequence, and taking direct limits along the induced bonding homomor-

phisms, this gives us a map between LESs as follows (bonding maps of direct limits

are implicit by context).

Ȟ i−1(Ω) Ȟ i−1(Λ) Ȟ i(Ω/Λ) Ȟ i(Ω) Ȟ i(Λ)

lim−→(H̃ i−1(ΓN)) lim−→(H̃ i−1(ΓΛ)) lim−→(H̃ i−1(ΓΛ)) lim−→(H̃ i(ΓN)) lim−→(H̃ i(ΓΛ))

αi−1 βi−1 γi αi βi

The homomorphisms αi−1 and αi are isomorphisms by Theorem 3.3.9, and the homo-

morphisms βi−1 and βi are isomorphisms by Theorem 3.4.13. By the Five Lemma,

this implies that γi is an isomorphism.
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3.5 Examples

Example 3.5.1. We define the Fibonacci substitution with one handle to be given by

φ : 0 7→ 001, 1 7→ 01, 2 7→ 021

By substituting 1-collared letters (and noting that B = ∅), we find that there are two

non-empty invariant subcomplexes ΓΛ1 and ΓΛ2 , both fixed under φ1, corresponding

to the collections of 1-collared letters

ΓΛ1 = ∪{[0001], [1010], [0100], [0101]}

and

ΓΛ2 = ∪{[0001], [1010], [2021], [0100], [0101], [0102], [1210]}.

The 1-collared AP-complex appears in Figure 3.5.1. An oriented edge from ab to

bc denotes an edge labelled by the the letter babc in the alphabet A1 of 1-collared

letters.

10

01

00

21

02

Fig. 3.1: The 1-collared AP-complex for the Fibonacci substitution with one handle, with

the subcomplex ΓΛ1 coloured blue.

The subcomplex ΓΛ1 in blue corresponds to a CIS given by considering the restric-

tion of the substitution to the subalphabet {0, 1} which is (a re-encoding of) the

Fibonacci substitution which is connected and has first cohomology Ȟ1(ΩFib) ∼= Z2.

The subcomplex ΓΛ2 corresponds to the CIS which is the entire tiling space, which

is connected and has first cohomology Ȟ1(Ω) ∼= lim−→
(
Z3,
(

1 1 0
1 2 0
1 1 1

))
∼= Z3, where the

unimodular matrix
(

1 1 0
1 2 0
1 1 1

)
is found by choosing appropriate generators of H1(Γ1).

The only other CIS is the emptyset.
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So Ȟ∗(DΩ) is given by the diagrams

Ȟ0(DΩ) : Z→ Z→ 0

Ȟ1(DΩ) : Z3 → Z2 → 0

We can use Theorem 3.4.18 to see, as Γ1/ΓΛ1 is a circle and φ1 acts on this quo-

tient complex by a map which is homotopic to the identity, that Ȟ i(Ω/Λ1) ∼=
lim−→(H i(S1), Id) ∼= Z for i = 0, 1.

So Ȟ∗(DΩ) is given by the diagrams

Ȟ0(DΩ) : Z→ Z→ Z
Ȟ1(DΩ) : 0→ Z→ Z3

Alternatively, we could have used the fact that Λ1 is a closed connected subspace of

Ω and so we get an exact sequence in reduced Čech cohomology

0→ Ȟ1(Ω/Λ)→ Ȟ1(Ω)→ Ȟ1(Λ)→ 0

which splits (as Ȟ1(Λ) ∼= Z2) to give Ȟ1(Ω) ∼= Ȟ1(Ω/Λ) ⊕ Z2. As above, we can

identify Ȟ1(Ω/Λ) with H1(S1) and so Ȟ1(Ω) ∼= Z3.

This distinguishes Ω from the tiling space associated to the Tribonacci substitution

which has Ȟ0(ΩTrib) ∼= Z and Ȟ1(ΩTrib) ∼= Z3 but no proper, non-empty CISs. So

the diagrams Ȟ∗(DΩTrib
) and Ȟ∗(DΩTrib) have a different shape and so cannot be

isomorphic to the diagrams for φ.

Consider the following two substitutions.

‘Two Tribonaccis with a bridge’:

φ1 : 0 7→ 0201, 1 7→ 001, 2 7→ 0, 0 7→ 0201, 1 7→ 001, 2 7→ 0, X 7→ 10

and ‘Quadribonacci and Fibonacci with a bridge’:

φ2 : 0 7→ 0201, 1 7→ 0301, 2 7→ 001, 3 7→ 0, 0 7→ 001, 1 7→ 01, X 7→ 10

Proposition 3.5.2. Ȟ∗(Ωφ1) is isomorphic to Ȟ∗(Ωφ2) but they have degree 1 in-

clusion cohomology diagrams
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Z6

Z6

Z3 Z3

0

Ȟ1(DΩ1) :

Z6

Z6

Z4 Z2

0

Ȟ1(DΩ2) :

and degree 1 quotient cohomology diagrams

0

Z

Z3 Z3

Z6

Ȟ1(DΩ1) :

0

Z

Z2 Z4

Z6

Ȟ1(DΩ2) :

Proof. For both substitutions N = 1. For φ1, the 1-collared alphabet is given by

A1 = {0001, 0002, 1010, 2020, 0100, 0102, 0201} ∪ {1010, 0102}∪
{0001, 0002, 1010, 2020, 0100, 0102, 0201}

The 1-collared AP-complex for φ1 is given in Figure 3.2.

01

20

02

00

10

01

20

02

00

10

10

Fig. 3.2: The 1-collared AP-complex for the ‘Two Tribonaccis with a bridge’ substitution.

We note that Ω1 has five CISs:

• Λ1 = ∅, the empty set

• Λ2, given by restricting the substitution to the alphabet {0, 1, 2}

• Λ3, given by restricting the substitution to the alphabet {0, 1, 2}

78



• Λ4 = Λ2 t Λ3, the union of the disjoint CISs above, given by restricting the

substitution to the alphabet {0, 1, 2, 0, 1, 2}

• Λ5 = Ω1, the full tiling space

We note that a choice of 1-cycles generating the homology H1(Γ1) of the AP-complex

can be given by the oriented sum of edges

γ1 = [2020] + [0201] + [1010] + [0100] + [0002]

γ2 = [2020] + [0201] + [1010] + [0102]

γ3 = [0100] + [0001] + [1010]

γ4 = [2020] + [0201] + [1010] + [0100] + [0002]

γ5 = [2020] + [0201] + [1010] + [0102]

γ6 = [0100] + [0001] + [1010]

and the substitution acts on these 1-cycles by the matrix

M =



1 1 0 0 0 0

2 1 2 0 0 0

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 2 1 2

0 0 0 1 1 1


hence the cohomology of Ω1 is then given by the direct limit of the transpose of M .

Write M =

(
M1 0

0 M2

)
in block matrix form. Note that M1,M2 and M are all

unimodular. Using Theorem 3.4.13, we can identify each CIS with an inverse limit

of the substitution (in this case to the first power) acting on a particular subcomplex

of Γ1. These subcomplexes can be found using the method outlined in the above

discussion. We have chosen our generators γi in such a way that the homology of

each subcomplex is generated by some subset of these 1-cycles. We calculate

Ȟ1(Λ1) = Ȟ1(∅) = 0

Ȟ1(Λ2) = lim−→(Z3
〈γ1,γ2,γ3〉,M

T
1 ) = Z3

Ȟ1(Λ3) = lim−→(Z3
〈γ4,γ5,γ6〉,M

T
2 ) = Z3

Ȟ1(Λ4) = Ȟ1(Λ2)⊕ Ȟ1(Λ3) = Z6

Ȟ1(Λ5) = lim−→(Z3
〈γ1,...,γ6〉,M

T ) = Z6

From here, we can use the exact sequence in reduced Čech cohomology to find the

cohomology groups of each of the quotients, except for the quotient Ω/Λ4, where

the exact sequence does not reduce nicely to a split short exact sequence, since
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10

ΓΛ4

Fig. 3.3: The quotient complex Γ1/ΓΛ4 for the ‘Two Tribonaccis with a bridge’ substitu-
tion.

H̃0(Λ4) ∼= Z, as Λ4 is composed of exact two connected components.

Hence, to find the cohomology of the quotient Ω/Λ in this case, we use Theorem

3.4.18, and identify the quotient complex Γ1/ΓΛ4 , given in Figure 3.3. This quotient

complex is a circle. The induced substitution acts on Γ1/ΓΛ4 by a map which is

homotopic to the identity, and so Ȟ1(Ω/Λ4) ∼= lim−→(H1(S1), Id∗) ∼= Z.

In the case of the second considered substitution, we give the 1-collared AP-complex

for φ2 in Figure 3.4. The calculation of cohomology for φ2 is similar to φ1, except we

can choose six generating 1-cycles of H1(Γ1) in such a way that the matrix M acting

on H1 has a block diagonal structure with M1 and M2 of ranks 4 and 2 respectively,

and with all three of M1,M2,M still being unimodular. We leave the details to the

reader.

01

30
03

20

02

00
10

01

00

10

10

Fig. 3.4: The 1-collared AP-complex for the ‘Quadribonacci and Fibonacci with a bridge’

substitution.

Hence, Ȟ1(DΩ) and Ȟ1(DΩ) can distinguish tiling spaces which have the same
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cohomology and the same shape of diagrams of CISs.

3.5.1 Discussion

Barge-Diamond Complexes for Non-primitive Substitution

We provide some informal discussion for likely useful avenues of future study building

on the work outlined in this Chapter.

One may ask why we have been using collared Anderson-Putnam complexes and not

Barge-Diamond complexes in this section. It is a valid question and some thought

has been given to its answer. Mostly, (a slightly modified version of) the BD-complex

is a suitable replacement for the N -collared AP-complex and most of the previous

section would hold with very little changed. However, the advantages afforded to the

Barge-Diamond method are less apparent when there exist bounded letters in the

alphabet. When all letters are expanding and the substitution is strongly aperiodic,

a very similar argument to the original proof presented by Barge and Diamond

[7] will carry through, and one can then apply the usual method of replacing the

induced substitution on the BD-complex with a homotopic map which is simplicial

on the vertex-edges.

When there exist bounded words in the subshift, the usual BD-complex with an ε-

ball collaring at each point2 does not suffice to get the necessary homeomorphism to

the inverse limit (for broadly the same reasons that the 1-collaring does not suffice

to induce border-forcing when B is non-empty).

Instead, the approach that one could take is to collar points with a ball of radius

N − 1 + ε at each point—this is equivalent to replacing the substitution with its

(N − 1)-collared substitution and then using the ε-ball collaring on this collared

substitution (and so we are using the usual BD-complex KφN−1
for the collared

substitution φN−1). This has the advantage of needing to collar out one fewer

times than in the AP-complex approach. Moreover, we can still replace the induced

substitution map with a homotopic map which acts simplicially on the distinguished

subcomplex of transition edges. Unlike in the minimal case, it is not necessarily true

that H̃0(KφN−1
) is trivial, as Ωφ may have multiple connected components and so

extension problems coming from the Barge-Diamond exact sequence will in general

be more difficult.

To illustrate this alternative method, we briefly go over an example calculation using

the Chacon substitution.

2 See [9] for an explanation of what it means to collar points in the tiling, instead of collaring
tiles.
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Example 3.5.3. Let φ be given by φ : a 7→ aaba, b 7→ b, the Chacon substitution on

the alphabet {a, b}. Let

1 = aaaa, 2 = aaab, 3 = baba, 4 = abab, 5 = abaa.

The 1-collared substitution is given by

φ1 : 1 7→ 1235, 2 7→ 1234, 3 7→ 3, 4 7→ 5234, : 5 7→ 5325

and the BD-complex is given in Figure 3.5.

1

2

3

4 5

Fig. 3.5: The Barge-Diamond complex Kφ1 for the 1-collared Chacon substitution with
the subcomplex of transition edges in the eventual range coloured red

The eventual range of the map g acting on the subcomplex S of transition edges is

the collection {e35, e43, e51} coloured in red. The substitution acts on this eventual

range like the identity. Note that S has exactly three connected components, all of

which are contractible. It follows that the Barge-Diamond exact sequence for this

substitution is given by

0→ Z2 → lim−→

(
Z5,

(
1 1 1 0 1
1 1 1 1 0
0 0 1 0 0
0 1 1 1 1
0 1 1 0 2

))
→ Ȟ1(Ω)→ 0→ 0

Experience with examples seems to suggest that it is often the case that the eventual

range of S under the induced substitution will often have multiple connected com-

ponents whenever N > 1 and especially when φ is not minimal, and so we seem to

lose the advantage normally afforded to us with Barge-Diamond calculation where it

is often the case that the exact sequence splits. In fact, it is probably more efficient

in the above example to directly find generators of the cohomology of the entire
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complex Kφ1 (where in this case there are only three generators) and to calculate

the induced substitution on H1(Kφ1) in order to calculate Ȟ1(Ω). If we do that, we

find that Ȟ1(Ω) ∼= lim−→
(
Z3,
(

0 1 0
−1 3 1
−1 1 1

))
.

Extensions of Substitutions by Other Substitutions

So far, our only examples of non-minimal substitutions that have been presented

have been relatively tame—the tiling spaces have all been a finite collection of min-

imal tiling spaces which are possibly connected by a finite number of path compo-

nents which asymptotically approach some sub-collection of the minimal sets. In

particular, by quotienting out by the disjoint union of the minimal sets, we are left

with a space homeomorphic to a cell complex. While these spaces are interesting,

and serve as good test cases for our machinery, the range of possible behaviours for

non-minimal substitutions is much more varied.

For instance, we could break the asymptotic behaviour in the above described ex-

amples, and instead have new path components which approach minimal sets prox-

imally, instead of asymptotically. Such an example is given by

φ : 0 7→ 001, 1 7→ 01, 2 7→ X021X, X 7→ X

whose proximal path component is the orbit of the word

. . . X00100101X001X021X01X00101X . . .

where the sparse appearances of the symbols X, which become more rare the fur-

ther one travels from the single 2, serves to break the asymptotic nature of the

handle. One might call this substitution the Fibonacci with one proximal handle

substitution. Note that the inclusion and quotient cohomology diagrams of this

substitution and the Fibonacci with one handle substitution are isomorphic, while

they are most certainly not homeomorphic tiling spaces (consider the complement

of small neighbourhoods of the minimal set ΩFib in each example).

Example 3.5.4. Another interesting examples is given by

φ : 0 7→ 001, 1 7→ 01, a 7→ aaba, b 7→ b, X 7→ 1aXa0

which has a Fibonacci minimal CIS, a Chacon minimal CIS, two single path com-

ponents associated to the sequences

. . . 0010010100101aabaaababaaba . . .

. . . aabaaababaaba0010010100100 . . .
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which are asymptotic to the two distinct minimal sets in either direction, and a final

path component associated to the sequence

. . . 00101aabaaababaaba01aaba1aXa0aaba001aabaaababaaba00100101 . . .

which is proximal to all of the other CISs in both directions and asymptotic to none.

To support this direction of exploring more varied behaviour, we introduce a curi-

ous family of examples where the quotients of the tiling space by the CISs are of

particular interest, and where there is a natural factor map onto the minimal set

of the tiling space. In particular the complement Ω \ Λmin will often have uncount-

ably many path components, where Λmin is the disjoint union of the minimal CISs.

One might think of this construction as ‘extending’ one substitution by another in

a proximal fashion. Similar examples appear naturally in the literature [6].

Suppose that φ and ψ are primitive substitutions on A and B respectively and

suppose that |B| ≤ |A|. Let i : B → A be an injection. Assume that for each

b ∈ B, if ψ(b) = b1 . . . bn, then there exists an interior subsequence (ak1 , . . . , akn) of

φ(i(b)) = a1 . . . am of the form (i(b1), . . . , i(bn)) (if not, take a high enough power of

φ so that there is). Here by interior, we mean that ak1 6= a1 and akn 6= am.

Definition 3.5.5. Let φ and ψ be as above and choose an injection i : B → A and

a set of subsequences S = {sb = (ak1 , . . . , akn) | b ∈ B} of φ(i(b)) as above.

Define a new substitution [φ, ψ]S on the alphabet A t B by [φ, ψ]S(a) = φ(a) for

all a ∈ A and for b ∈ B by [φ, ψ]S(b) = φ(i(b)) except replace the occurrence of akj
with bj.

There is a natural factor map Ω[φ,ψ]S → Ωφ given by mapping the letters b ∈ B to

i(b).

Example 3.5.6. If φ : 0 7→ 00100101, 1 7→ 00101 and ψ : a 7→ aa, then we could

choose the injection a 7→ 0 and then choose as the subsequence of φ(i(a)) =

0(1)0(2)1(3)0(4)0(5)1(6)0(7)1(8) the sequence (0(4), 0(5)) so S = {(0(4), 0(5))}. Then our

extended substitution [φ, ψ]S is given by

[φ, ψ]S : 0 7→ 00100101, 1 7→ 00101, a 7→ 001aa101.

Example 3.5.7. Let ψ = Id be the substitution on the alphabet {x} given by Id(x) =

x, and let i : {x} → A be given by i(x) = a for some a ∈ A. As φ is primitive by

assumption, let ak1 be an occurrence of the letter a in the interior of the word φn(a)

for some positive natural n. Let S = {(ak1)}.

The substitution [φ, Id]S is just the substitution φ with a single handle. That is,
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the tiling space for [φ, Id]S is just the tiling space for φ with a single extra one-

dimensional path component which asymptotically approaches the minimal compo-

nent in both directions. The image of the handle under the factor map onto Ωφ

is precisely the orbit of the limit word limj→∞ φ
jn(a) expanded about the interior

letter ak1 appearing in φn(a). By iterating this method, we can add as many handles

as we like.

Example 3.5.8. The substitution

[TM,PD]: 0 7→ 01101001, 1 7→ 10010110, a 7→ 011ab001, b 7→ 10a1a110

is an extension of the (cube of the) Thue-Morse substitution TM: 0 7→ 01, 1 7→ 10

by the period doubling substitution PD: a 7→ ab, b 7→ aa.

In general, the substitution tiling space Ω[φ,ψ]S has exactly one non-empty proper

CIS which is exactly the tiling space Ωφ given by restriction of the substitution to

the subalphabet A.

There is a close relationship between the quotient complex ΓΩφ and the AP-complex

Γψ of the substitution ψ. Let f : ΓΩφ → ΓΩφ and g : Γψ → Γψ be the respective

bonding maps. It would appear that more often than not there is a map h : ΓΩφ → Γψ

which conjugates these bonding maps up to homotopy, that is g ◦ h ' h ◦ f . This

would seem to suggest a close relationship between the spaces Ω[φ,ψ]S/Ωφ and Ωψ,

perhaps up to shape equivalence3.

Question 3.5.9. What is the relationship between Ω[φ,ψ]S/Ωφ and Ωψ. What con-

ditions on φ and ψ are needed for this relationship to hold?

We note that in Example 3.5.6 above, ψ is not aperiodic, and we suspect that

Ω[φ,ψ]S/Ωφ is shape equivalent to the dyadic solenoid—in fact Γ1/ΓΩφ is a circle,

and the induced substitution [φ, ψ]S on this quotient complex is homotopic to the

doubling map, so by Theorem 3.4.18 the first cohomology of the quotient is given by

Ȟ1(Ω[φ,ψ]S/Ωφ) ∼= Z[1/2]. As Ωψ in this case is a circle with Ȟ1(Ωψ) ∼= Z, it would

appear that the relationship hinted at above relies at least on the recognisability of

ψ.

If S is chosen differently, then the quotient complex ΓΩφ can be different. For

example if S ′ = {(0(2), 0(7))} then ΓΩφ is homotopy equivalent to a wedge of two

circles. However, the induced map on cohomology acts like the matrix ( 1 1
1 1 ) and so

we still find that Ȟ1(Ω[φ,ψ]S′
/Ωφ) ∼= Z[1/2].

3 For an introduction and overview of the role of shape theory in the study of tiling spaces, we
refer the reader to [19]

85



Example 3.5.10. As mentioned, similar examples to these extended substitutions

appear naturally in the literature. In [6], Barge and Diamond outline a method

for associating, to a primitive aperiodic substiution φ, a new substitution φ̃ which

is non-minimal, and in general takes the form of a substitution built in the above

manner. They show that the homeomorphism type of the tiling space Ωφ̃ is a

homeomorphism invariant of the tiling space Ωφ, and so the cohomology Ȟ i(Ωφ̃) is

also a topological invariant for Ωφ. The method for forming the substitution φ̃ from

the so-called balanced pairs of words associated to pairs of asymptotic composants

is involved, and it would be cumbersome to reproduce the construction here. We

instead refer the reader to their paper [6].

Using this construction, it can be shown that given the Fibonacci substitution

φFib : 0 7→ 001, 1 7→ 01, the associated substitution φ̃Fib is given by φ̃Fib : a 7→
aab, b 7→ ab, c 7→ acab. The tiling space of this substitution is orbit equivalent to

a Fibonacci with one handle substitution [φFib, Id]S (the equivalence is given by the

single c tile absorbing the a tile to its right).

Example 3.5.11. Considering the substitutions

φ1 : a 7→ cab b 7→ ac c 7→ a

φ2 : a 7→ bbac b 7→ a c 7→ b.

It is an exercise for the reader to check that we have cohomology groups Ȟ1(Ωφ1) ∼=
Ȟ1(Ωφ2) ∼= Z5. So, cohomology does not distinguish the tiling spaces of these two

substitutions. It is also the case that several other invariants of primitive substitu-

tion tiling spaces fail to distinguish these substitutions. We can instead form the two

new substitutions φ̃1, φ̃2. We omit the specific presentations of these substitutions

owing to their extremely large size—φ̃1 has an alphabet on 19 letters, φ̃2 has an

alphabet on 87 letters.

Using the results of this chapter, we can calculate that rk Ȟ1(Ωφ̃1
) = 17 and

68 ≤ rk Ȟ1(Ωφ̃2
) ≤ 74 and so by the result of Barge and Diamond, these invari-

ants distinguish the substitutions φ1 and φ2. Hence we have Ωφ1 6∼= Ωφ2 .

Acknowledgement. The author would like to thank Scott Balchin for offering to write

a computer program to help determine the substitutions φ̃1 and φ̃2 after it became

apparent that hand calculations would not be feasible in a reasonable amount of

time.

The importance of the choice of the set of subsequences S in the construction of

[φ, ψ]S is not immediately apparent. It seems unlikely that the resulting tiling space

is independent of the choice of S. By taking powers of φ, one can generate infinitely

many distinct such choices. By construction, the inclusion and quotient cohomology

86



diagrams of these spaces will all be very similar (if not identical), and so a stronger

invariant is likely needed to distinguish such substitutions topologically.

Question 3.5.12. Does there exist a pair of substitution φ, ψ and sets of subse-

quences S, S ′ such that Ω[φ,ψ]S and Ω[φ,ψ]S′
are not homeomorphic? If such behaviour

is typical, what tools are needed to topologically or dynamically distinguish such

pairs of spaces in general?
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4. GROUT

Supplementary Resources

Grout is available to download for Windows and Mac OSX along with the supporting

documentation at the following URL

www2.le.ac.uk/departments/mathematics/extranet/staff-material/staff-profiles/scott-balchin

4.1 Outline

The material of this chapter appears in [5], largely unchanged from how it is pre-

sented here.

Grout is a program developed by the author and Scott Balchin for exploring various

notions related to 1-dimensional symbolic substitutions and their tiling spaces. In

this chapter, we explain the functions of Grout, the properties of substitutions that

Grout has been built to calculate, and provide explanations for how Grout has been

coded to calculate such properties using a deterministic algorithm. Of particular

note is the algorithm designed to check for recognisability of a primitive substitution

which, to our knowledge, is the first time such an algorithm has been written down

in full and implemented.

It is hoped that the use of this program will make testing conjectures in tiling the-

ory and symbolic substitutional dynamics more efficient, as well as allowing for the

confirmation of hand calculations and comparison of different methods of calcula-

tion (especially methods of calculating cohomology). Analysis of large data sets

which can be potentially generated by the Grout source code, and the recognition

of underlying patterns in the data may also aid to further the theory.

The GUI front end for Grout is powered by Qt[1]. Grout has been designed with

user experience in mind and includes many ease-of-use properties such as the ability

to save and load examples, and convenient methods of sharing examples with other

users via short strings that encode a substitution. There is also an option to export

all of the data that has been calculated to a pre formatted LATEX file including all the
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TikZ code for the considered complexes. This should be useful for those needing to

typeset such diagrams in the future by fully automating the generation of diagrams

in TikZ.

In Section 4.2 we introduce the relevant tiling theory along with pseudocode for

most of the non-trivial components of Grout that have been implemented. Section

4.3 will cover specifically those methods implemented to compute cohomology for

tiling spaces. Throughout, we give instances of these methods being applied to

the Fibonacci substitution. In Section 4.4 we give a range of other examples of

calculations from Grout.

The primary function of Grout is a collection of methods for calculating the Čech

cohomology Ȟ1 of the tiling space associated to a primitive recognisable substitution.

Grout implements three different methods for calculating the cohomology of tiling

spaces associated to symbolic substitutions on finite alphabets.

1. The method of Barge-Diamond complexes as introduced in [7]

2. The method of Anderson-Putnam complexes as introduced in [2]

3. The method of forming an equivalent left proper substitution as outlined in

[26]

All three outputs are algebraically equivalent—that is, they represent isomorphic

groups—but it is not always obvious that this is the case given the presentations.

This disparity between presentations of results for the equivalent methods was one

of the major motivating factors for developing Grout. These cohomology groups are

extremely laborious to calculate by hand for large alphabets unless special criteria

are met.

4.2 Grout and its Functions

4.2.1 Substitution Structure

We begin by outlining how we encode a substitution rule into Grout and how we im-

plement the substitution rule. In general, we have done most of the implementation

by string manipulation methods.

We use a class sub which has as its element a vector of strings. We always assume

that our alphabet is ordered a, b, c, . . .. The first entry of a sub class vector is φ(a),

the second is φ(b) and so on. To validate the input we check that the number of

unique characters appearing in all of the φ(x) is equal to the length of the alphabet,
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which is the length of the vector. The GUI also employs the use of regular expressions

to prevent illegal characters from being entered.

Example 4.2.1 (Fibonacci Substitution). The Fibonacci tiling is given by a substi-

tution rule on the alphabet A = {a, b} and is defined as

φ :

{
a 7→ b

b 7→ ba

The Fibonacci substitution is our main example used throughout this chapter. See

Section 4.4 for a selection of outputs for other common examples of substitutions.

Fig. 4.1: The Fibonacci substitution entered into Grout

Next we implement a way to perform an iteration of φ on a string. We do not

include any checks to validate that the string can be iterated on, as all strings that

will be passed to this function will be created by the program itself, and therefore

valid.

Algorithm 1 Substitution functions

1: function iterate(string rhs)
2: result = empty string
3: for each character x in rhs do
4: append φ(x) to result
5: output result

4.2.2 Substitution Matrices and their Properties

Recall that for a substitution φ on an l-letter alphabet A there is an associated

substitution matrix Mφ of dimension l × l given by setting mij to be the number of

times that the letter ai appears in φ(aj).

We will not give the algorithm for constructing the substitution matrix, the definition

can be taken as a pseudo-algorithm. We implement a square matrix class to work

with the substitution matrix. The first property that we will be checking for the

substitution matrix is primitivity.
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Recall that a substitution φ : A → A+ is called primitive if there exists a positive

natural number p such that the matrix Mp
φ has strictly positive entries. Such a

matrix M is also called primitive.

To check this condition on Mφ, we count the number of zeros in the matrix and if

the number of zeros is 0 then we can conclude that the substitution is primitive. If

not, then square the matrix and recount the number of zeros. If the number of zeros

does not change then we can conclude that the substitution is not primitive. This

means that this check always halts.

Algorithm 2 Primitivity check

1: function primitive
2: matrix = substitution matrix of φ
3: while true do {
4: a = number of zeros in matrix
5: matrix = matrix × matrix
6: b = number of zeros in matrix
7: if a=b and a!=0
8: output false
9: if b=0

10: output true
11: }

We will be checking primitivity for all substitutions before we do calculations on

them as if the substitution is not primitive many of the methods will not work,

or will return false positive results1. Grout will always display whether a given

substitution is primitive or not, it can also output the substitution matrix if asked

to do so.

The next thing that we can do with the substitution matrix is give the tile frequencies

and tile lengths of the substitution. This requires us to compute the eigenvalues of

the matrix. We have implemented the QR method for computing the eigenvalues

(for example see [37]). This gives us approximations to the real eigenvalues, and for

the complex ones we simply give the conjugate pairs by their absolute values, and

we give the results to two decimal places. The eigenvalues of a substitution matrix

may be printed out by ticking the eigenvalues box. We refer the reader to [45] for a

text on the Perron-Frobenius theory of primitive matrices.

Proposition 4.2.2 (Perron-Frobenius). Let M be a primitive matrix.

i There is a positive real number λPF , called the Perron-Frobenius eigenvalue, such

that λPF is a simple eigenvalue of M and any other eigenvalue λ is such that

|λ| < λPF .

1 We remark that one could use methods from Chapter 3 to extend some of the functions of
Grout to non-primitive substitutions.
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ii There exist left and right eigenvectors, called the left and right Perron-Frobenius

eigenvectors, lPF and rPF associated to λPF whose entries are all positive and

which are unique up to scaling.

Given the above theorem, it is natural to ask what information is contained in the

PF eigenvalue and eigenvectors of Mφ for a primitive substitution φ.

If we were to assign a length to the tiles labelled by each letter, then we would

hope for such a length assignment to behave well with the given substitution. The

left PF eigenvector offers a natural choice of length assignments. If we assign to

the letter ai the length (lPF )i, the ith component of the left PF eigenvector, then

we can replace our combinatorial substitution by a geometric substitution. This

geometric substitution expands the tile with label ai by a factor of λPF and then

partitions this new interval into tiles of lengths and labels given according to the

combinatorial substitution. In order to give a unique output, Grout normalises the

left PF eigenvector so that the smallest entry is 1.

The information contained in the right PF eigenvector is also useful. The right PF

eigenvector, once normalised so that the sum of the entries is 1, gives the relative

frequencies of each of the letters appearing in any particular bi-infinite sequence

which is admitted by a primitive φ. That is, if |u|i is the number of times the letter

ai appears in the word u, and letting w[−k,k] = w−k . . . w−1w0w1 . . . wk, then

lim
k→∞
|w[−k,k]|i/|w[−k,k]| = (rPF )i

for any w ∈ Xφ.

Fig. 4.2: The results for the matrix calculations for the Fibonacci substitutions

4.2.3 Enumerating n-Letter Words

Now that we have introduced the basic structure of the substitutions, and discussed

the problem of primitivity and other matrix related calculations, we will discuss our

first main function in Grout.
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Definition 4.2.3. Given a substitution φ : A → A+, we define the complexity func-

tion at n to be the number of unique n-letter words admitted by φ. We denote this

function by pφ(n), and so pφ(n) = |Ln|.

The complexity function of a tiling is a useful invariant [42]. One is usually interested

in either a deterministic formula for pφ or information about the growth rate of

pφ such as polynomial degree; Grout can be used to at least give circumstantial

evidence for these, though has no means of calculating either (this appears to be a

very difficult problem in general).

Of particular interest are the number of 2 and 3 letter words, as we will be using them

later to compute cohomology. Our function will not only enumerate the number of n-

letter words, but will also print out these words if required. The algorithm uses C++

sets as a data structure to store the n-letter words as it is automatically ordered and

does now allow repetitions which leads to fast computation. We start by generating

a length m admitted seed word w such that m ≥ n, and count all unique n-letter

words appearing as subwords of the seed. We then apply φ to the seed and add all

new n-letter words to the result. At each stage we count the size before and after

adding the new words. If the size does not change we can stop, as no new n-letter

words will be generated after a step without any new n-letter words. It follows that

the value pφ(n) is computable in finite time for any fixed n ≥ 1.

Algorithm 3 Finding all n-letter words

1: function nlw(int n)
2: result = empty ordered set
3: seed = ’a’
4: while seed length < n do
5: seed = iterate(seed)
6:

7: difference = 1
8: while difference != 0 do {
9: a = cardinality of result

10: seed = iterate(seed)
11: for each n length word w in seed do
12: append w to result
13: b = cardinality of result
14: difference = b-a
15: }
16: output result

Example 4.2.4. It is well known that the complexity for the Fibonacci substitution

satisfies pφ(n) = n + 1, and we can verify this for any value of n by computing its

complexity in Grout.
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Fig. 4.3: The words results for the Fibonacci substitution displayed in Grout

4.2.4 Barge-Diamond and Anderson-Putnam Complexes

Grout has the ability to output two simplicial complexes as PDFs (provided that

the user has PDFLaTeX installed). The first of these is the Barge-Diamond complex

[7].

For convenience to the reader, we recall the (combinatorial) construction of the

Barge-Diamond complex Kφ for a substitution φ on an alphabet A = {a1, . . . al}.
To construct the BD-complex, we have two vertices for each ai, an in node v+

i and

an out node v−i . We draw an edge from v+
i to v−i for all i (the tile edges). Then for

all two letter words aiaj ∈ L2 admitted by φ, we draw an edge from v−i to v+
j (the

vertex edges).

Example 4.2.5. As we have seen previously, the only two letter words admitted by the

Fibonacci substitution are ab, ba and bb, this gives us the following Barge-Diamond

complex output in Grout.

Fig. 4.4: The Barge-Diamond complex for the Fibonacci substitution.

The other complex that we consider for a substitution is (a variant of) the 1-collared

Anderson-Putnam complex [2]. For brevity we will shorten this to just the AP-
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complex for the remainder. This particular definition is based on what Gähler and

Maloney call the Modified Anderson-Putnam complex in [36]. The AP-complex is

constructed by making use of both the two and three letter words.

Definition 4.2.6. Let A = {a1, . . . , al} be an alphabet with a substitution φ : A →
A+, then we construct the (modified) Anderson-Putnam complex Γ̂ of φ as follows.

We have a vertex vij for each two letter word aiaj ∈ L2 admitted by φ. We draw an

edge from vij to vjk if and only if the three letter word aiajak is admitted by φ.

Remark 4.2.7. One should note that this modified AP-complex is slightly different

to the definition originally introduced by Anderson and Putnam. In particular,

the original definition distinguishes between different occurrences of a two letter

word aiaj if the occurrences of three letter words containing as a subword aiaj do

not overlap on some admitted four letter word. For example, if the language of a

substitution included the two letter word ab, the three letter words xab, yab, abw, abz,

and the four letter words xabw, yabz but the words xabz and yabw did not belong

to L, then the original definition of the AP-complex would have two instances of

vertices with the label ab, say (ab)1 and (ab)2. In our definition, these vertices are

identified, so that (ab)1 ∼ (ab)2 ∼ ab. An example of such a substitution is given

by φ : a 7→ bc, b 7→ baab, c 7→ caac where we label exactly one vertex with the label

aa, but the original definition would require we include two distinct vertices labelled

(aa)1 and (aa)2.

In our discussion of cohomology calculated via AP-complexes in Section 4.3.2, we

use this version of the AP-complex to describe the performed calculations, and

Grout implements this particular method. It would have been possible to use the

original definition, or one of the many variant AP-complexes that have been defined

in the literature. There are at least three such variants discussed in [36], of varying

complexities and situations in which they can be used.

ab

ba

bb

Fig. 4.5: The Modified Anderson-Putnam complex for the Fibonacci substitution
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4.2.5 Recognisability

Recall that we say φ is recognisable (equivalently, φ has the unique composition

property) if for every w ∈ Xφ there is a unique way of writing w as a substituted

bi-infinite sequence which is admitted by φ. That is, there exists a unique bi-infinite

sequence w′ = . . . w′−1w
′
0w
′
1 . . . ∈ Xφ and a finite shift n of at most |φ(w′0)| such that

w = σn(φ(w′)).

Equivalently, we say φ is recognisable if there exists a natural number K ≥ 1 such

that for all admitted words v ∈ L with |v| > 2K, there exist unique words x, y of

length |x|, |y| ≤ K and a unique admitted word u ∈ L such that v = xφ(u)y.

As has been emphasised in previous chapters, recognisability is an important prop-

erty of a substitution as many of the tools used to study the topology of the as-

sociated tiling space rely on recognisability as a hypothesis, much like primitivity.

Recall that recognisability of a primitive substitution is equivalent to aperiodicity

of the subshift Xφ [49], and we make use of this result to decide recognisability.

The algorithm designed to determine if a given substitution is recognisable relies on

finding a fixed letter and return words to that fixed letter.

Definition 4.2.8. Given a substitution φ on an alphabet A, the letter a is said to

be fixed (on the left) of order k if there exists some integer k such that φk(a) = au

for some word u. Every substitution has at least one fixed letter and the value of k

for such a letter is bounded by the size of the alphabet.

Let a be a letter fixed by φ on the left. Recall that a return word to a is a word

v such that v = au for some (possibly empty) word u ∈ (A \ {a})∗, and va is an

admitted word of the substitution.

Recall that if φ is primitive then, due to the minimality of the substitution, the set

of return words to any letter is finite. This is a consequence of the linear recurrence

of the subshift Xφ [22].

We will use these return words to determine whether a substitution is recognisable

or not. The following proposition appears in [40].

Proposition 4.2.9. Let φ be a primitive substitution on A and let a be a fixed

letter. Let R be the set of all return words to a. So R = {v | v = au, aua ∈ L, u ∈
(A \ {a})∗}. The substitution φ is not recognisable if and only if, for all v, v′ ∈ R,

there exists a p ≥ 1 such that φp(vv′) = φp(v′v).

As R is finite, and together with the next proposition which appears in [21] and

[29], this gives us a finite deterministic check for recognisability.
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Algorithm 4 Finding all return words to fixed letter f

1: function returnwords(character f)
2: result = empty ordered set
3: length = 2
4: while new return words are being added do {
5: nwords = nlw(length)
6: for all words w in nwords do {
7: if last character of w = first character of w= f and w has no other f

appearing do
8: append w to result
9: }

10: length = length + 1
11: }
12: output result

Proposition 4.2.10. Let φ be a substitution on A and let |A| = n. For words

u,w ∈ A+, there exists a p ≥ 1 such that φp(u) = φp(w) if and only if φn(u) = φn(w).

That is, if some iterated substitution of u and v are ever equal, then their iterates

must become equal by the nth iteration of the substitution at the latest, where n is

the size of the alphabet. In the algorithm, k is taken to be the k from the definition

of the fixed letter, and n is the size of the alphabet.

Algorithm 5 Recognisability check

1: function recognisable
2: rwords = returnwords(f)
3: for each word w in rwords do
4: for each word v 6= w in rwords do
5: if(φk×n(w + v) = φk×n(v + w))
6: output true
7: output false

Fig. 4.6: The recognisability results for the Fibonacci substitution
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4.3 Cohomology of Tiling Spaces in Grout

4.3.1 Via Barge-Diamond

Let φ be a primitive, recognisable substitution on the alphabet A. Let Kφ be the

Barge-Diamond complex of φ and let Sφ be the subcomplex of Kφ formed by the

vertex edges, all those edges labelled with two letter admitted words aiaj.

Let φ̃ : Sφ → Sφ be a graph morphism defined in the following way on vertices.

Let l(i) and r(i) be such that φ(ai) = al(i)uar(i) for some possibly empty word u,

and where in the case that u is empty, we may have φ(ai) = al(i) = ar(i). Define

φ̃(v+
i ) = v+

l(i) and φ̃(v−i ) = v−r(i). Note that if aiaj is admitted by φ, then ar(i)al(j) is

also admitted by φ, and so φ̃ is a well defined graph morphism on Sφ. As φ̃(Sφ) ⊂ Sφ,

we can define the eventual range ER =
⋂
m≥0 φ̃

m(Sφ) (which stabilises after finitely

many substitutions).

For this method of computation we make use of the following result attributed to

Barge and Diamond [7], and which is a special case of Theorem 2.3.9 from Chapter

2.

Proposition 4.3.1. There is a short exact sequence

0→ H̃0(ER)→ lim−→MT
φ → Ȟ1(Ωφ)→ H1(ER)→ 0.

The eventual range ER is a (possibly disconnected) graph, and so H̃0(ER) and

H1(ER) are finitely generated free abelian groups of some ranks k and l respectively.

Hence we have

Corollary 4.3.2.

Ȟ1(Ωφ) ∼= lim−→MT
φ /Zk ⊕ Zl.

Grout displays the Čech cohomology using the Barge-Diamond method in the above

form of Corollary 4.3.2.

These results fail in general if φ is not primitive or recognisable, and so Grout only

performs this calculation after checking these two conditions.

The only involved part of this calculation is finding the eventual range of the Barge-

Diamond complex. After we have this we can simply find the number of connected

components and use the Euler characteristic to find the reduced cohomology in rank

zero and one. Therefore, we now give the algorithm that we use to find the eventual

range. We denote by w[0] the first letter of the word ab and w[1] the second letter

of ab.
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Algorithm 6 Eventual range of the Barge-Diamond complex

1: function eventual range
2: twoletter = nlw(2)
3: difference = 1
4: while difference != 0 do {
5: temp = empty ordered set
6: for each word w in twoletter do
7: append last character of iterate(w[0]) + first character of iterate(w[1])

to temp
8: difference = cardinality of twoletter - cardinality of temp
9: twoletter = temp

10: }
11: output twoletter

4.3.2 Via Anderson-Putnam

Let φ be a primitive, recognisable substitution on the alphabet A. Let Γ be the

AP-complex of φ. Recall that Anderson and Putnam showed in [2] that the Čech

cohomology of Ωφ is determined by the direct limit of an induced map acting on the

cohomology of Γ. Using the modified AP-complex Γ̂, Gähler and Maloney showed

that this complex, as defined in Section 4.2.4, can be used in place of the originally

defined AP-complex. We define the map acting on the AP-complex Γ̂ in the following

way.

Again, let l(i) and r(i) be such that φ(ai) = al(i)uar(i) for some possible empty word

u, and where in the case that u is empty, we may have φ(ai) = a(l(i) = ar(i). Let E

be an edge with label aiajak and define L = |φ(aj)|. Suppose φ(aj) = a1a2 . . . aL.

Define a continuous map called the collared substitution φ̃ : Γ̃→ Γ̃ by mapping the

edge E to the ordered collection of edges with labels

[ar(i)a1a2][a1a2a3] · · · [aL−2aL−1aL][aL−1aLa
l(k)]

in an orientation preserving way and at normalised speed. This map is well de-

fined and continuous, hence an induced map φ̃∗ : H1(Γ̂) → H1(Γ̂) on cohomology

exists. We use the following result from [36] (Or [2] if Γ̂ is replaced with the original

definition of the AP-complex Γ).

Proposition 4.3.3.

Ȟ1(Ωφ) ∼= lim−→(H1(Γ̂), φ̃∗)

Let R = rkH1(Γ̂), the rank of the cohomology of Γ̂. Grout finds an explicit gener-

ating set of cocycles for the cohomology of Γ̂ and then outputs the induced map φ̃∗

as the associated R × R-matrix MAP , which should be interpreted as acting on ZR
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with respect to this generating set. So Ȟ1(Ωφ) ∼= lim−→MAP .

The algorithm for this computation begins by constructing the boundary matrix for

the AP-complex. To do this we take all of the admitted three letter words abc and we

use the convention that the boundary of this edge is bc−ab. Using this, we construct

the associated m×n boundary matrix B where m is the number of two letter words

and n is the number of three letter words. We then use standard methods from

linear algebra to find a maximal set of linearly independent n dimensional vectors g

such that Bg = 0, searching over the set of all vectors of 0s and 1s. By construction,

this set generates the kernel of the boundary map inside the simplicial 1-chain group

of Γ̂. This gives us a generating set of cycle vectors for the first homology of Γ̂.

We then apply the collared substitution to each of these generating vectors, giving

us a new set of image vectors. Using Gaussian elimination, we find the coordinates

of these image vectors in terms of the generating vectors. This induced map on

homology can be represented as a square matrix. The transpose of this matrix MAP

then represents the induced map on cohomology, and MAP is the output for the

cohomology calculation via the Anderson-Putnam method. It should be noted that

this algorithm is not efficient in the case where the substitution has many three

letter words, as the dimension m of the 1-chain complex is the dominant limiting

factor when finding linearly independent generating cycles. The time complexity

increases exponentially with respect to m.

4.3.3 Via Properisation

For this method of computation we make use of a technique involving return words,

as outlined in [26], for replacing a primitive substitution with an equivalent pre-left

proper primitive substitution. One may then use the fact that if φ is a recognisable

pre-left proper primitive substitution, then Ȟ1(Ωφ) ∼= lim−→MT
φ (a special case of

Proposition 2.3.16 for stationary systems).

We begin by defining what it means to be proper.

Definition 4.3.4.

A substitution is left proper if there exists a letter a ∈ A such that the leftmost

letter of φ(b) is a for all b ∈ A. That is, φ(b) = aub for some ub ∈ A∗.

A substitution is right proper if there exists a letter a ∈ A such that the rightmost

letter of φ(b) is a for all b ∈ A. That is, φ(b) = uba for some ub ∈ A∗.

A substitution is fully proper 2 if it is both left and right proper.

2 We will often abbreviate this to just proper.
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A substitution is pre-left proper if some power of the substitution is left proper.

Similarly for pre-right proper and pre-fully proper.

The following algorithm produces what we call the pre-left properisation of a sub-

stitution, so-called because there exists a finite power of the new substitution which

is left proper. As per usual k will be the one from the definition of the fixed letter

f .

Note that if v is a return word to the fixed letter a, then va ∈ L and so φk(va) must

also be admitted by φ. But φk(va) = φk(v)φk(a), and both of φk(v) and φk(a) begin

with the fixed letter a, hence φk(v) is an exact composition of return words to a. So,

if we apply φk to a return word, then the result is a composition of return words.

We will denote by ψ this newly constructed substitution rule on the new alphabet

R of return words.

Algorithm 7 Pre-left properisation

1: function preprop
2: rwords = returnwords(f)
3: ψ = empty substitution with alphabet size being the cardinality of rwords
4: for all words w in rwords do {
5: temp = φk(w)
6: decomposition = decompose temp into return words wi1 . . . wim
7: ψ(w) = decomposition
8: }
9: output ψ

This algorithm gives us a new substitution on possibly more letters than with what

we began, and we may take a power of this substitution to get a left proper one.

That such a power exists is clear. Indeed, every return word v ∈ R begins with the

fixed letter a and, by primitivity, φi(a) contains at least two copies of the letter a for

large enough i, so φi(a) = v0au for some return word v0 ∈ R and some other word

u. But then ψi(v) must begin with v0. It follows that ψi is a left-proper substitution

with leftmost letter v0.

We may also form an equivalent fully proper substitution on R by composing ψi

with its right conjugate. The right conjugate φ(R) of a left proper substitution φ is

given by setting φ(R)(b) = uba where a is the fixed letter such that φ(b) = aub for all

b ∈ A. The right conjugate is a right proper substitution, and the composition of a

left proper and right proper substitution is both left and right proper, hence fully

proper. It is easy to show (see [27]) that Xφ◦φ(R) and Xφ are topologically conjugate

subshifts. In fact, a word is admitted by φ ◦ φ(R) if and only if it is admitted by φ,

so Xφ◦φ(R) and Xφ are equal. Hence, Ȟ1(Ωφ◦φ(R)) ∼= Ȟ1(Ωφ).
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We make use of the following which has been paraphrased from results appearing

in the work of Durand, Host and Skau in [26].

Proposition 4.3.5. Let φ be a primitive substitution on A and let ψ be the pre-left

properisation of ψ. The tiling space Ωψ is homeomorphic to Ωφ.

Hence we get the corollary

Corollary 4.3.6.

Ȟ1(Ωψ) ∼= Ȟ1(Ωφ)

As ψi is left proper, Ȟ1(Ωψi) ∼= lim−→MT
ψi
∼= lim−→(M i

ψ)T ∼= lim−→MT
ψ . Hence Ȟ1(Ωφ) ∼=

lim−→MT
ψ .

Grout outputs the pre-left properisation ψ, the left properisation ψi, the full properi-

sation ψi ◦ (ψi)(R), and owing to the above, Grout also outputs the matrix MT
ψ in

the cohomology section.

Fig. 4.7: The properisation results of the Fibonacci substitution

Remark 4.3.7. If the substitution is already proper, the properisation algorithm

may return a different proper version of this substitution. This may seem like

it is a feature which has no use, but by iterating this process, we find that the

sequence of substitutions is eventually periodic, first proved by Durand [23]. It was

therefore decided to leave this feature intact, in order to study such sequences of

properisations.

Fig. 4.8: The cohomology results of the Fibonacci substitution

4.4 Example Outputs

In this section we provide the LATEX output of cohomological calculations from Grout

for a selection of both well-known and not so well-known substitutions appearing in
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the literature.

1. The Thue-Morse substitution is one of the most well-studied substitutions in

symbolic dynamics [52], possibly only superseded by the Fibonacci substitution

in the attention it has received. It would be remiss to include a list of example

outputs which did not include the results for this substitution.

2. The Tribonacci substitution is an example of a unimodular irreducible Pisot

substitution, first described by Rauzy in his seminal paper [53] introducing the

so-called Rauzy fractals, and still actively studied for its interest to symbolic

dynamicists and fractal geometers.

3. The Disconnected Subcomplex substitution was first described by Barge and

Diamond [7] as an example of a substitution whose BD-complex has a discon-

nected subcomplex of edges labelled by two letter words. This is reflected in

the cohomology calculation via the BD-complex, where a non-trivial quotient

appears according to the formula for the cohomology described in Corollary

4.3.2.

4. The Fibonacci and Tribonacci substitutions are the first and second in an

infinite family of primitive recognisable substitutions which take the form

aj 7→ a1aj+1, if 1 ≤ j < n

an 7→ a1

for an alphabet {a1, . . . an} on n letters. One might call these substitutions

the n-ibonacci substitutions. We have chosen to show the output for the Hex-

ibonacci substitution where n = 6, as the associated Barge-Diamond complex

is particularly pleasing.

Thue-Morse

a 7→ ab

b 7→ ba

Substitution Matrix :
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(
1 1

1 1

)

Full Properisation :

a 7→ cacbacab

b 7→ cbabcacbabcbacab

c 7→ cbabcacbacabcacbabcbacab

Barge-Diamond Cohomology Group : lim−→MT ⊕ Z1

Properisation Cohomology Matrix :

 0 1 1

1 0 1

0 1 1


Anderson-Putnman Cohomology Matrix :

 0 0 0

1 0 2

1 1 1


Cohomology Rank : 2

Barge-Diamond Complex
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a

b

aa

ab

ba

bb

Tribonacci

a 7→ ab

b 7→ ac

c 7→ a

Substitution Matrix :

 1 1 1

1 0 0

0 1 0


Fixed Letter : a

Return Words : a, ab, ac

Recognisable : Yes

Full Properisation :
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a 7→ bc

b 7→ babc

c 7→ bbc

Barge-Diamond Cohomology Group : lim−→MT

Properisation Cohomology Matrix :

 0 0 1

1 1 1

0 1 0


Anderson-Putnman Cohomology Matrix :

 0 0 1

1 0 0

1 1 1


Cohomology Rank : 3

Barge-Diamond Complex

ab

c

aa

ab
ac

ba

ca
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Disconnected Subcomplex

a 7→ abcda

b 7→ ab

c 7→ cdbc

d 7→ db

Substitution Matrix :


2 1 0 0

1 1 1 1

1 0 2 0

1 0 1 1


Fixed Letter : a

Return Words : a, ab, abcd, abcdbcdb

Recognisable : Yes

Full Properisation :

a 7→ cacad

b 7→ cacabcad

c 7→ cacaddbcad

d 7→ cacaddbcaddbcabcad

Barge-Diamond Cohomology Group : lim−→MT/Z1

Properisation Cohomology Matrix :


1 1 1 1

0 1 0 1

1 1 1 1

0 0 1 2
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Anderson-Putnman Cohomology Matrix :


1 0 1 0

1 2 1 0

0 1 1 1

0 1 1 1


Cohomology Rank : 3

Barge-Diamond Complex

a

b

c

d

Hexibonacci

a 7→ ab

b 7→ ac

c 7→ ad

d 7→ ae

e 7→ af

f 7→ a

Substitution Matrix :
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1 1 1 1 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


Fixed Letter : a

Return Words : a, ab, ac, ad, ae, af

Recognisable : Yes

Full Properisation :

a 7→ bc

b 7→ bdbc

c 7→ bebc

d 7→ bfbc

e 7→ babc

f 7→ bbc

Barge-Diamond Cohomology Group : lim−→MT

Properisation Cohomology Matrix :



0 0 0 0 0 1

1 1 1 1 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


Anderson-Putnman Cohomology Matrix :
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0 0 0 0 0 1

1 0 0 0 0 0

1 1 1 1 1 1

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


Cohomology Rank : 6

Barge-Diamond Complex :

a

b

c

d

e

f
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