
Data structures and implementation of an

adaptive hp finite element method

S u b m it t e d t o t h e U n iv e r s it y o f L e i c e s t e r f o r t h e

D e g r e e o f D o c t o r o f P h il o s o p h y

August 1998

By

Bill Senior

Department of Mathematics and Computer Science

UMI Number: U115572

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U115572
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

For a fully adaptive hp finite element programme to be implemented it is ne­

cessary to implement n-irregular meshes efficiently. This requires a sufficiently

flexible data structure to be implemented. Because such flexibility is required,

the traditional array based approach cannot be used because of its limited ap­

plicability. In this thesis this traditional approach has been replaced by an object

orientated design and implementation. This leads to an implementation that can

be extended easily and safely to include other problems for which it was not

originally designed.

The problems with maintaining continuity on such a diverse variety of meshes

and how continuity is maintained are discussed. Then the main structure of the

mesh is described in the form of domain, subdomains and elements. These are

used in conjunction with constraint mappings to give a conforming approximation

even with the most irregular of meshes.

There are several varieties of matrix generated by the method each with its

own problems of storage. Sparse matrices, with perhaps more than 95% of zero

entries, need to be used along side dense matrices. In this thesis an object

orientated matrix library is implemented that enables this variety of matrices to

be used.

An hp finite element algorithm is then implemented using the data structures,

and is tested on a range of test problems. The method is shown to be effective

on these problems.

Acknowledgements

I would like to thank my supervisors Dr. Mark Ainsworth and Mr. Derek

Andrews for their advice and guidance over the past few years. I would also like to

thank the Department of Mathematics and Computer Science at the University of

Leicester for their support throughout both my undergraduate and postgraduate

studies. Thanks are also given to the Engineering and Physical Sciences Research

Council for supporting me through my research studentship. I would also like to

thank Pat Coggins for his help during the writing of this thesis.

Contents

1 Introduction 1

1.1 The finite element m e th o d .. 2

1.2 Types of refinem ent... 3

1.2.1 h —type re fin em en t... 3

1.2.2 p —type re fin e m en t.. 3

1.2.3 hp—type refinement... 4

1.2.4 A daptivity ... 8

1.3 Constrained approximation.. 8

1.4 Systems of e q u a tio n s .. 9

1.5 Existing w o r k ... 11

1.6 Object orientated approach .. 12

1.6.1 Elem ents.. 12

1.6.2 Subdom ains... 12

1.6.3 The d o m a in .. 13

1.6.4 In te rfa c e s ... 13

1.6.5 Connectivity m a p p in g ... 13

1.7 Modular solution d e s ig n .. 13

1.8 Matrices and s o lv e r s .. 14

1.8.1 Direct so lv e rs ... 14

1.8.2 Iterative so lvers... 15

1.8.3 Sparse m a tric e s ... 16

ii

1.8.4 Dense m a tr ic e s ... 16

1.8.5 The matrix l ib r a r y .. 16

1.9 Hierarchic basis functions ... 18

2 Main data structures 20

2.1 Structure of the d o m a in .. 21

2.1.1 Implementation of g r a p h s .. 21

2.2 Structure of the subdom ains.. 25

2.2.1 Structure of the subdom ains... 25

2.2.2 Subdomains as a g ra p h ... 27

2.2.3 Parallelism within the subdom ain ... 27

2.2.4 Other types of refinement .. 30

2.3 Structure of the in te rfac e s ... 31

2.3.1 How to construct the connectivity mapping 31

2.3.2 The interface t r e e .. 32

2.3.3 D istribu tion ... 36

2.4 Structure of the elem ents.. 37

2.4.1 Element requirements... 38

2.4.2 Numerical integration... 41

2.4.3 Putting this to g e th e r ... 42

2.4.4 Approximation basis functions... 43

2.4.5 General Laplacian e le m e n ts ... 44

2.4.6 Linear elasticity elements... 45

2.4.7 Maintaining co n tin u ity ... 46

2.5 Structure of the connectivity m ap p in g s ... 47

2.5.1 Variant program m ing.. 48

2.6 C onclusions... 50

iii

3 The connectivity mapping 53

3.1 The classical a p p ro a c h ... 53

3.1.1 Assembling the stiffness m a t r i x ... 54

3.1.2 The classical storage schem e... 58

3.2 Nonuniform p-refinem ent.. 58

3.3 Generalising to nonuniform /i-refinements... 61

3.3.1 Explanation of the n o ta t io n .. 62

3.3.2 Generalising to arbitrary /i-refinem ents................................ 64

3.4 Generalising to hp-refinements... 65

3.4.1 Generalising to completely a rb itra ry /ip -m esh es................ 70

3.5 Generalising to multilevel /ip-refinements.. 74

3.5.1 Generalising to completely arbitrary multilevel hp-meshes . 78

3.6 C onclusions... 80

4 The matrix library and solvers 82

4.1 In troduction ... 82

4.2 Matrix im plem entation.. 83

4.3 Sparse m a t r ix .. 85

4.3.1 Linked row m a t r i x ... 85

4.3.2 Compressed row matrix .. 86

4.4 Dense m a t r i x .. 87

4.4.1 Fortran m a t r i x .. 87

4.4.2 Dense row m a tr ix ... 88

4.5 Other matrix ty p e s .. 88

4.6 Problems with the matrices generated by the finite element method 88

4.6.1 Sensitivity to rounding errors, the condition number 89

4.7 Solving the s y s te m .. 90

4.7.1 Direct so lv e rs ... 91

4.7.2 Static condensation, Schur com plem ent................................ 92

iv

4.7.3 Iterative so lvers... 95

4.7.4 Preconditioning... 97

4.8 C onclusions.. 98

5 Numerical examples 100

5.1 Scalar problem s...100

5.1.1 Crack d o m ain .. 101

5.1.2 L-shaped d o m a in ..108

5.1.3 C onclusions..113

5.2 Linear elasticity L-shaped domain p ro b le m s .. 114

5.2.1 L-shaped domain, mode 1 solution ..114

5.2.2 L-shaped domain, mode 2 solution ..119

5.2.3 C onclusions... 122

5.3 Linear elasticity cracked domain p ro b le m s ... 123

5.3.1 Crack domain, mode 1 s o lu t io n .. 124

5.3.2 Crack domain, mode 2 s o lu t io n .. 125

5.3.3 Conclusions... 125

v

List of Figures

1.1 One dimensional h-refinem ent... 5

1.2 One dimensional p-refinem ent... 6

1.3 A sequence of uniformly h-refined m eshes.. 7

1.4 (a)-shows a 1-irregular mesh, (b) a 2-irregular m e sh 9

1.5 Example of unconstrained approxim ation... 10

1.6 Domain with non-standard unconstrained degrees of freedom . . . 10

1.7 Domain that has both standard and nonstandard refinements . . 11

1.8 Some of the hierarchic basis functions for an e d g e 18

2.1 A simple g r a p h .. 21

2.2 Simple domain with its graph represen tation 23

2.3 Different graph representation and the domain that it represents . 23

2.4 Modified graph representation ... 24

2.5 Refined e lem en t.. 25

2.6 Multiple levels of refinem ent.. 26

2.7 Quad tree representation for one level of refinement, represents (b)

in Figure 2.6.. 27

2.8 Quad tree representation for a non-uniform refinement, represents

(c) in Figure 2 .6 ... 28

2.9 A subdomain represented as a g r a p h .. 29

2.10 Refinement around a singularity, indicated by a • 30

2.11 A highly refined d o m a in .. 32

vi

2.12 A nonuniform in terface ... 32

2.13 Showing where the edge tree came from .. 33

2.14 A mesh with both traditional, a = 0.5, type refinements and a =

0.15 type refinem ents.. 34

2.15 The isolated interface of the domain with both 0.15 and 0.5 type

re fin e m e n ts ... 34

2.16 Interface with tree ... 35

2.17 A rectangular e le m e n t ... 38

2.18 A general quadrilateral e le m e n t... 39

2.19 Mapping from the reference element to the actual element 40

2.20 Some interior basis functions.. 44

2.21 Some edge basis fu n c tio n s ... 45

2.22 Matching element basis fu n c tio n s .. 46

2.23 Unmatching element basis functions.. 47

2.24 The incidence graph m odel... 52

3.1 An actual hp-mesh, (red shading indicates low order elements, blue

higher order elements).. 54

3.2 A Domain of two linear elements ... 55

3.3 A simple nonuniformly p-refined m esh ... 59

3.4 A simple nonuniformly h-refined mesh .. 61

3.5 Problem showing an example of unconstrained discontinuous ap­

proximation 61

3.6 Optimally graded nonuniform A-refinement...................................... 64

3.7 Generalised hp—refined d o m a in ... 65

3.8 A edge refined traditionally in iso la tion .. 66

3.9 Nonuniform /ip-refinement. Local and global degree of freedom

numbers.. 71

3.10 A general edge refinement in isolation .. 72

vii

3.11 Generalised hp—refined d o m a in ... 75

3.12 Isolated irregular edge from Figure 3 .1 1 .. 75

3.13 Edge showing use of the imaginary element in constructing the

connectivity m apping .. 76

3.14 The 0.15 type refinement followed b y a 0 . 5 78

3.15 The inter-element interface from Figure 3 .1 4 78

4.1 The matrix h ierarchy.. 84

4.2 Storage representation of the linked row m a t r i x 86

4.3 Storage representation of the bounded row m a tr ix 86

4.4 Domain refinem ent.. 92

4.5 Elimination of interior degrees of freedom ... 92

4.6 Further elimination of interior degrees of f re e d o m 93

5.1 The full domain for the crack problem..101

5.2 Half slit domain for scalar case...102

5.3 Convergence for the crack domain with A = 1.5....................................102

5.4 Figures for the crack domain with A = 1.5. (red shading indicates

lower order, blue high order)..103

5.5 Refinements for the crack domain with A = 1.5. (red shading

indicates lower order, blue high order)...104

5.6 Convergence for the crack domain with A = 0.5....................................105

5.7 Refinements for the crack domain with A = 0.5. (red shading

indicates lower order, bluer high order)... 106

5.8 Refinements for the crack domain with A = 0.5. (red shading

indicates lower order, bluer high order)... 107

5.9 The domain for the L-shaped domain for scalar problems....................109

5.10 Refinements for the L-shaped domain (red shading indicates lower

order, blue high order).. 110

viii

5.11 Comparison of rates of convergence obtained using the automatic h

and /ip-refinement strategies to solve the L-shaped domain problem .Ill

5.12 Convergence curves for the various versions of the finite element

group of curves correspond to a uniformly increasing p on a se­

quence of meshes refined geometrically towards the origin with a

grading factor of 0.15. The single curve is that obtained from us­

ing the automatic hp-refinement strategy. The plots are shown on

different scales...112

5.13 Geometry for L-shaped domain.. 115

5.14 Adaptive hp meshes for mode 1 singularity, red elements indicate

low order elements, blue high order.. 117

5.15 Convergence Plots for mode 1 L-shaped domain singularity 118

5.16 Adaptive hp meshes for mode 2 singularity, red elements indicate

low order elements, blue high order.. 120

5.17 Convergence Plots for mode 2 L-shaped domain singularity 121

5.18 The geometry of the domain for the crack problem.............................123

5.19 Comparison of the rates of convergence of the 0.15 type grading

and 0.5 grading, both are /ip-refined meshes...126

5.20 Successive meshes obtained from the hp-adaptive strategy, with

grading factor, a = 0.5, red elements indicate low order elements,

blue high order... 127

5.21 Successive meshes obtained from the hp-adaptive strategy, with

grading factor, a = 0.15, red elements indicate low order elements,

blue high order..128

ix

Chapter 1

Introduction

Most partial differential equations are of a form that cannot be solved analytically.

However, an approximate numerical solution can be found using several methods,

the most common of which are:

• finite difference; and

• finite volume; and

• spectral methods; and

• finite element (whose implementation is the topic of this thesis).

The finite difference method [29, 44] is a method that approximates the deriv­

atives in an attempt to approximate the solution. It is difficult to approximate

general shaped domains using this method. The method can also be unstable,

due to inaccuracies in the approximation of the derivative. In the finite element

method [13, 14, 16, 29, 60], we divide up the domain into a number of smaller

regions called elements. On these elements we have functions, usually polynomi­

als, that approximate the solution. The finite volume method [48] approximates

the solution by breaking the domain up into volumes, each of which surrounds

a point. It is very similar to a piecewise constant finite element method. It is

1

used frequently in computational fluid dynamics. Finite difference, finite volume

and finite element methods are based on local representations of functions; this

is usually done with polynomials of a low degree. In contrast, spectral methods

[45] make use of global representations, usually high-order polynomials or Fourier

series over a single element.

1.1 The finite element method

Throughout this thesis we will discuss only two dimensional elements, but all of

the ideas can be modified for use in three dimensional problems quite easily. For

the elements in a regular mesh we have that:

1. each element is either a triangle or a quadrilateral; and

2. for any pair of elements k and j then the intersection k fl j is either

• the empty set; or

• a single common vertex; or

• a single common edge; or (in three dimensions)

• a single common face.

Sometimes the final approximation is not as accurate as we would like and so to

improve the accuracy of the approximation we add in more degrees of freedom;

these new degrees of freedom can be added in a variety of ways, [60]:

1. elements are locally refined (this is called the h—version); or

2. the elements may have the degree of their approximation polynomial en­

riched (this is called the p—version); or

3. a combination of the above two methods (called hp—version).

2

After this refinement process has taken place we must assemble a new approx­

imation, using the new partition. Each of these versions has its own advantages

and disadvantages as will be seen in what follows.

1.2 Types of refinement

1.2.1 h—type refinement

This is the standard refinement used in the finite element method. Figure 1.1

attempts to show the idea of h-refinement [25] in 1 dimension. When a greater

accuracy to the solution is required, the elements are divided to create more

elements, wliile at the same time keeping the polynomial degree on the elements

the same. The polynomial degree is usually low, typically linear, quadratic or

cubic on each of the elements. For a uniform h —refinement we have that hk « hj

for all elements k , j in the domain, where h is the size of the element. In uniform

refinement all of the elements are refined together at the same time in the same

way. This will usually lead to inefficiencies in computation because there will

be many elements in areas of the domain where refinement is not necessary.

This leads to the idea of nonuniform h—refinement. In this we only refine the

domain in the areas where the approximation is relatively inaccurate. This can

lead to problems with irregular meshes, which in turn can cause problems in

implementation.

1.2.2 p —type refinement

In this version the refinement [19, 60] increases the degree of the approximating

basis functions but leaves the partitioning alone. Figure 1.2 attempts to show

the idea in 1 dimension. Again, as in the case of the h—version, one can refine

uniformly in all of the elements, that is, increase the degree of the approximating

functions in all of the elements. This is known as the uniform p —version. As

3

in the case of the uniform h—version, this could be computationally inefficient

as the polynomial degree will also be unnecessarily increased in the areas of low

error. It is possible to increase the degree of the approximating functions in only

those elements where the error is largest; this is more computationally efficient

but can lead to problems in implementation due to what is known as hanging

degrees of freedom these are discussed later.

1.2.3 hp—type refinement

In this version we combine both the h— and p—versions [46] so that the best

attributes of each version can be utilised. This again can lead to problems with

irregular meshes. However, this time the situation is more complex since we

might not only have to think about elements of different sizes being adjacent to

each other but also the possibility of different degrees for their basis functions.

Maintaining the continuity of the approximation across interelement boundaries

can therefore be a problem with the hp—version. The problem now is that we will

require very elaborate data structures to encode all of the information required

by the method.

4

Figure 1.1: One dimensional /^-refinement

5

Figure 1.2: One dimensional p-refinement

6

Figure 1.3: A sequence of uniformly /i-refined meshes

7

1.2.4 Adaptivity

In general it is not known beforehand which mesh is the best one for the particular

problem being solved. In an adaptive strategy, error estimators are used to

identify areas in the mesh where the error is greatest, and at these places some

refinement is performed to reduce the error. The process that results in either

an /i-refinement or p-refinement is discussed in [10, 12]. This can be repeated

until the required accuracy is achieved throughout the mesh. This is known as

an adaptive strategy, and leads to efficient mesh design, as long as the error

estimators are effective.

1.3 Constrained approximation

After the elements have been locally refined, we may introduce what are called

hanging degrees of freedom or constrained degrees of freedom. These meshes with

such nodes are described as being irregular meshes. Figure 1.4 shows two such

meshes, a 1-irregular and a 2-irregular mesh. Continuity must be maintained

across the interelement boundary, so therefore these nodes must be fixed or con­

strained. Figure 1.5 attempts to show the problem for a 1-irregular mesh. For a

2-irregular mesh we would have more constraints, possibly up to four elements.

Many implementations allow such irregular meshes, [32], but they are usually

restricted to an index of irregularity of 1, the simplest case. If they do allow a

higher index it is usually implemented on a case by case basis, each needing to

be separately implemented, which increases the chances of programming errors

occurring. If we change the basis function type, then these procedures must all

be rewritten. Therefore in subsequent chapters we will develop data structures

that will allow us to maintain continuity across interfaces that are n-irregular,

and which for a general n with a simple change of a matrix (or set of polynomials)

allow the basis functions to be changed. This is one of the novelties in this thesis.

8

(a)

(b)

Figure 1.4: (a) shows a 1-irregular mesh, (b) a 2-irregular mesh

Allowing n-irregular meshes gives us more flexibility in our choice of mesh

and allows fewer restrictions on any adaptive refinement algorithm. We will also

modify the data structures to allow us to constrain the hanging nodes in meshes

such as those shown in Figure 1.6 and Figure 1.7. In these meshes the elements

are no longer refined equally but by a different ratio, possibly varying on different

edges depending on the strength of singularity that may be present.

1.4 Systems of equations

The majority of problems encountered are not scalar problems, but problems with

two or more components, such as linear elasticity, whose equations are shown

9

Figure 1.5: Example of unconstrained approximation

Figure 1.6: Domain with non-standard unconstrained degrees of freedom

below:

E{ 1 - v2)
l — 2i/

d2u 1
+

2v d2u
+

1 d2v
dx2 2(1 — v) dy2 2(1 — z/) ctecty

1 d2u 1 — 2 ̂ d2i> <92u
. 2(1 — v) dxdy 2(1 — v) dx2 dy2

— F r

- F ,
(1 .1)

where u and v represent the x — and y —displacements respectively, and E is

Young’s modulus and v is Poisson’s ratio.

This presents another set of problems as we must ensure that continuity across

the interelement boundary is still maintained for each of the components in the

system. The matrices generated for such problems are usually much larger be­

cause, for each component in the system, we have as many degrees of freedom

as in the scalar case. Therefore, because we have two components, we will have

twice as many degrees of freedom, implying that the matrix will also be twice as

large.

10

Figure 1.7: Domain that has both standard and nonstandard refinements

A data structure is needed that can handle not only any of the possible refine­

ments, with or without any h or p constraints, but also a wide range of situations

such as scalar problems, systems of equations, nonlinear problems, and also be

able to assemble and solve these problems in parallel, if required.

1.5 Existing work

Many commercial partial differential equation solving tools already exist, such

as Matlab PDEToolbox [1], MSC/NASTRAN [3], NAG library [2], ProPHLEX

[4, 47]. In these finite element tools certain meshes may lead to difficulties in

maintaining the continuity of the approximation across interelement boundaries.

Normally, there would be two options to the implementer: either not to allow

irregular meshes, or programme each case individually, and there is potentially

an infinite number of cases each of which could cause difficulties. This leads to

restrictions in their applicability. If an adaptive refinement strategy is adopted

then meshes that are highly irregular might be introduced. This means that

current finite element codes would not be able to simply adopt the refinements

suggested by the adaptive algorithm, and thus a sub-optimal mesh will be used.

Therefore it is of practical importance to address this problem.

In [32] this problem is addressed in a restricted way by implementing the most

straightforward case of a 1-irregular mesh. However, the problems of n-irregular

11

meshes are not discussed in [32], and the problem remains of how to implement

general irregular meshes. Chapters 2 and 3 of this thesis describe how this prob­

lem was overcome, where constrained nodes were successfully implemented; thus

meshes of a more irregular nature can be used. The effectiveness of this new

flexibility will be tested by solving various problems, both scalar and systems of

partial differential equations. The implementation of a parallel hp-version finite

element code has been looked at in [17], here they concluded that the compu­

tational costs of the hp-version are dominated by the local computations, i.e.,

the construction of the local stiffness matrices and subsequent elimination of the

interior degrees of freedom (the results shown in [17] are for a shared memory

parallel architecture).

1.6 Object orientated approach

An important feature of the code is the object orientated approach, [26, 38, 67,

68]. This enables the code to be far more flexible, in that once the objects

are implemented then most of the code remains the same for a wide variety of

problems.

1.6.1 Elements

These are fundamental to finite element implementations, as they provide the

interface to the problem functions in the form of the element contributions, i.e.

the element stiffness matrix and load vector.

1.6.2 Subdomains

These are patches, or groups of elements. They are sometimes referred to as su­

perelements. They are usually made up from elements, or subdomains that have

been h-refined. These are at the intermediate level in the hierarchy, between the

12

domain at the top and the elements at the bottom. They provide the connectiv­

ity and enable a simple h-refinement of the elements. This simplicity however,

can lead to a wide variety of refinements, catering for most, if not all, of the

refinements that will be required.

1.6.3 The domain

This is the main data structure that the user interfaces with the main part of

the code. Elements are added to the domain then a sequence of assemble; solve;

refine steps are performed.

1.6.4 Interfaces

These provide the connectivity information for the domains and the subdomains.

They also construct the connectivity mapping for the interfaces at a particular

level.

1.6.5 Connectivity mapping

The classical finite element assembly procedure may be described using Boolean

transformations representing the mappings between the local and the global de­

grees of freedom. While such transformations are implemented in every finite

element code, their presence has become obscured by the compact data repres­

entation, and its associated efficient implementation. Generalisations of these

basic Boolean transformations will form one of the main ideas behind our treat­

ment of /infinite element approximations in this thesis.

1.7 Modular solution design

A simple element class enables a wide range of problems to be tackled with

minimal change. Usually, the only changes that need to be made are to the

13

subprogrammes Assemble_Stiffness_Matrix and Assemble_Load_Vector plus a copying

operation. We added an element for nonlinear problems [42, 43] and a simple

implementation of elements for dimensional reduction to the subsystem without

changing any of the subdomain or domain programme code or most of the element

code.

1.8 Matrices and solvers

Matrices and solvers are an important part of any finite method implementation

as it is the resulting matrix equation that we are required to solve. This can be a

very big problem, not only from the size of the matrix, perhaps many hundreds

of thousands square, but also because it is almost always very ill-conditioned

as a result of using very small elements or a high degree for the approximating

polynomial basis function. There are a number of solvers used; these usually fall

into two types:

• direct solvers, [29, 37, 44]; and

• iterative solvers, [16, 24, 40, 56].

1.8.1 Direct solvers

These can be used on any general matrix, provided, of course, the matrix is

non-singular. The main methods are

• factorise;

• inverse (elementary row operations);

• Gaussian elimination.

Once the matrix has been factorised (or inverted) then this can be used on

any number of right hand sides without having to refactorise. But direct solvers

14

do suffer from fill-in, [16]; this is where most, if not all, of the zero entries in the

original matrix are now not zero. This can be a problem for large matrices, for

example a matrix that is about 100,000 square will require about 80 GB just to

store. So in many cases it is not feasible to use a direct method to solve.

There are some direct solvers for such sparse systems though [37], with these

it is beneficial to have a narrow band width as possible so as to minimise the

fill-in. Numerical stability for a symmetric positive definite matrix is not usually

a problem, however for the unsymmetric case Gaussian elimination for such a

system can be unstable, especially for large systems.

1.8.2 Iterative solvers

Iterative solvers usually work better if the matrix is sparse, because the work done

to perform a matrix vector product is much less than that for a dense matrix.

Therefore if the number of iterations taken to solve is small then the amount of

work used to solve will be much less than with a direct solver. Also as the matrix

vector product is usually the most computationally expensive step in this type

of solver, if this step is parallelised then the solver as a whole gains considerably.

We do not usually want the solution of the system exactly (to machine accuracy),

but to some predetermined tolerance.

If £* is are the solution after the current iteration then we would want to stop

the solving process when we have, for example,

l l ^ & ~ *11 ^ i n - 3

11*11
This saves on the amount of work required, because the exact solution is not

required. Iterative methods do have problems sometimes though, these usually

related to the condition number, k , of the matrix.

15

for some matrix norm, usually the 2 norm. If our matrix is symmetric then

this can be shown to be the ratio of the minimum and maximum eigenvalues

of the matrix. The closer to 1 that this number is then the better conditioned

the matrix is. Many iterative solvers exist now for solving a wide variety of

matrices, such as Gauss Seidel, conjugate gradient and generalised minimum

residual. Conjugate gradient is commonly used as the matrices that are generated

by the finite element method are of a form that this method can be used nicely.

We would use generalised minimum residual if we had to solve a non-symmetric

matrix iteratively.

1.8.3 Sparse matrices

These will normally be used at the domain and subdomain level, because there

will not be any interaction between some of the basis functions on the com­

ponents (whether they are elements or further subdomains) that go to make up

any particular domain or subdomain if they are only supported on one of these

components.

1.8.4 Dense matrices

These will normally be used at the element level because every degree of freedom

interacts with all of the others, and in a general quadrilateral element there will

not be any orthogonality between the basis functions. If, on the other hand, we

are required to perform static condensation on the matrix that is assembled in a

subdomain, then we must also use a dense matrix here because of the fill-in that

this process creates.

1.8.5 The matrix library

Both types of matrix have been implemented for this implementation, some with

several types; they are described more fully in Chapter 4:

16

• dense matrix;

- fortran matrix; and

- dense row matrix;

• sparse matrix;

We will discuss another type of matrix, a distributed matrix, in the summary.

The main operation, apart from any of the access operations, for any of the

above matrix types is that of a matrix-vector product, as it is this operation that

is called when we use an iterative solver.

17

1.9 Hierarchic basis functions

Linear basis function, <J>Q Linear bas is function, <t>1

Quadratic basis function, <|> Cubic basis function, <t>„

D egree 4 basis function, <|>4 D egree 5 basis function, <t>5

Figure 1.8: Some of the hierarchic basis functions for an edge

In Figure 1.8 we show the basis functions up to degree 5 polynomials. The figure

only shows the basis functions from a single edge, it does not show those from

the other edges or the interior. The approximation along the edge of the element

is made up of a sum of these basis functions, such as:

5

$ 0*0 = Y s ai(t>i(X)
i = 0

18

The coefficients a* are from the solution of the stiffness matrix equation. When

a p-refinement is required then it is simple just to add another, higher-degree

polynomial to the element.

19

Chapter 2

Main data structures

In order to implement the n —irregular meshes, the choice of data structure to

model the subdomain and domain is an important, if not crucial, feature of any

code. In this chapter details are given of the design of the data structure and its

implementation.

Some finite element codes number the elements and the degrees of freedom

in such a way so as to minimise the bandwidth of the resulting stiffness matrix,

[16, 60]. This is mainly because of the use of outdated programming languages,

such as Fortran 77. However, using modern programming languages, e.g. Ada

[21, 22, 30, 62], C + + [59], Fortran 90, more flexible data structures are able to

be developed [38, 41, 52, 53]. This is good, as we are now able to eliminate this

numbering, enabling a more flexible scheme to be used. So we can now number

the degrees of freedom so as to make the construction of the connectivity mapping

easier. The minimisation of the bandwidth was performed because of the fixed

nature of the data structures used in the matrix, and to help reduce the fill-in

if a direct solver is to be used. Although all the elements in all of the pictures

are numbered, usually in a systematic way, in the code this is not the case — no

such element numbering exists.

20

2.1 Structure of the domain

From a user’s perspective, the most critical aspect of the code is the partition -

this consists of the domain and the elements which make up the domain. The

domain is the key data structure that the user interfaces with the problem, as

it describes the geometry on which the problem to be approximated is solved.

This is the data structure that contains all the elements in the domain, plus all

connectivity information. In many implementations, the domain is implemen­

ted as an array, or several arrays, containing element information, connectivity

mappings, etc. This array based approach is too restrictive for the amount of

flexibility that we require, as it makes the adding of elements to the domain by

refinement difficult as the maximum number of elements is fixed. Therefore an­

other approach is needed — one possible approach with sufficient flexibility is a

graph. For implementation of a graph (and other abstract data types) in Ada

2.1.1 Implementation of graphs

A general implementation of a graph is just a set of nodes and a set of arcs con­

necting them. The Figure 2.1 shows a graph with five nodes and six arcs. In our

see [27]

Figure 2.1: A simple graph

21

code it was decided to disallow the initial domain level from having constrained

nodes, since the extra programming effort does not justify their inclusion. This

restriction means we are able to simplify the general graph data structure by

taking advantage of the knowledge that the nodes will have only three or four

edges connected to them. This is because our nodes are the elements, and the

only element shapes allowed are triangles and quadrilaterals. This is not too

restrictive because, if we require a particular mesh to begin with, then we can

refine the initial mesh appropriately.

While graphs are the most flexible data structure for the domain, allowing any

domain to be represented, the graph data structure in this case can be greatly

simplified as some sort of regularity exists:

• we will always have a simple graph, i.e. there will be no parallel arcs;

• the maximum degree of any node will be fixed, three for triangles and four

for quadrilaterals;

• no self loops;

• the operations allowed can be greatly simplified, because we will not need

to export many of them. The only operations where we will need to visit

all the nodes or arcs will be hidden; and

• no need to find paths between nodes.

This regularity exists because of the shape of each of the vertices in the graph.

The most difficult stage for the user is constructing the domain. The elements

must be added to the domain with all the appropriate connectivity information

embedded, so that the correct graph can be generated. The difficulty is in con­

necting the correct elements (nodes) together. For this we will make use of the

global node numbers and the boundary conditions data. After a correct graph

has been generated the user then has the option of doing some refinements, both

22

© ©

II III

I

©

©

III

® ©

Figure 2.2: Simple domain with its graph representation

h and p, to get to the initial mesh for approximation. The domain in Figure 2.2

has three nodes and two arcs. Notice that, because we have a modified data

structure for the graph, the graph representation in Figure 2.2 is not the same

graph representation as that shown in Figure 2.3, which also has three nodes and

A i

< s> ViHI

Figure 2.3: Different graph representation and the domain that it represents

two arcs, with each arc connecting the same node, implying that mathematically

they are equal. Although the arcs connect the same nodes, the nodes are not

connected along the same boundaries of the node; therefore each arc must also

23

'III

Figure 2.4: Modified graph representation

contain an additional piece of information, that of which boundary of the node it

is connected to. This may sound like a complication of the graph, but actually it

simplifies the construction a great deal, though the problem now is that the user

must add information about the global node numbers (only the numbers for the

linear degrees of freedom will be required, such as the numbers in circles shown

in Figure 2.2) so that elements can have their proper edges matched. Below we

have a code fragment taken from the programme that was used to construct the

domain shown in Figure 2.2:

Degree := ((2, 2));
Element_Geometry := ((—1.0, 0.0), (0.0, 0.0),

(0 .0 , 1.0), (- 1.0 , 1.0));
Node_Numbers := (1, 2, 3, 6);
Construct (Element, Element_Geometry,

Node_Numbers, Nodes, Boundary, Degree);
Add_Element_To_Domain (Domain, Element);

Since the domain level graph in Figure 2.2 remains the same even if the do­

main has been refined, because we change the element into a subdomain, all

we need to do is to construct the stiffness matrices for the super elements or

24

subdomains and their corresponding connectivity mappings. This is described

in Section 2.2. Therefore each graph vertex can be assembled independently of

any of the others. Hence we can assemble each of the contributions to the stiff­

ness matrix concurrently but care must be taken when applying the connectivity

mappings to avoid overwrites. This was achieved simply by performing this oper­

ation sequentially, which is fine because the time taken to perform this operation

is negligible compared to the assembly and solving operations.

2.2 Structure of the subdomains

The subdomains are at the intermediate level in the hierarchy, between the do­

main and the element levels. They are required to assemble the stiffness matrix

and perform any required static condensation from its component parts and then

give the resulting matrix to the domain level for further accumulation and con­

densation, ready for the solving operation. The function of the subdomain is

similar to that of the domain, except that the data structure does not need to be

as flexible.

2.2.1 Structure of the subdomains

A standard refinement technique to refine a mesh is a regular refinement. For

individual elements, in our case quadrilaterals, each edge is divided into half and

Q i q 3

Qi Q i

Figure 2.5: Refined element

then these midpoints are joined producing four new quadrilateral elements Qi,

25

Q±. This can be further refined in many ways. For example, in Figure 2.6 we

(a) (b) (c)

5 4

2
9 00

6 7

Figure 2.6: Multiple levels of refinement

have some kind of nested data structure, whereby one level is embedded within

another. This is represented in the data structure as a tree, see Figure 2.7, and

Figure 2.8, a quad tree in this case. These show how the tree structure represents

the subdomain refinement within the code. This tree type data-structure opens

up a whole new set of possibilities. Because static condensation, see [16, 17]

and Chapter 4, is such a valuable part of the solving stage, we would obviously

like to condense as much as we can. However, it is a very expensive process,

therefore there exists a trade-off between the assembly-condensation time and

the solve time. Using the tree data structure allows us to perform as much or

as little static condensation as we require, giving a much finer control over the

characteristics of the matrix system produced.

The refinement steps would go something like this: firstly locate the element

that requires refinement, typically chosen because the approximation is not accur­

ate enough in this element. Secondly we change this element into a subdomain,

then finally allocate four new elements for the subdomain. This process can be

repeated recursively until the required refinement is reached giving some thing

like that shown in Figure 2.8.

26

Figure 2.7: Quad tree representation for one level of refinement, represents (b)
in Figure 2.6.

2.2.2 Subdomains as a graph

As with the-domain, to construct the connectivity mapping for the subdomain

we need some of the connectivity information between the structures in the sub-

domain. So, as before, we represent the subdomain with its elements as a graph.

This time, though, we require less flexibility as there are only four structures in

the subdomain; once again we use the interfaces to perform this task. Figure 2.9

shows the simple interconnection for the subdomain graph. In this figure we have

the structures, whether they are elements or further subdomains, labelled as Si ,

where i G {1,2,3,4} are the vertexes of the graph. Each of these is connected by

an arc, the interface, labelled Ei, i € {1,2,3,4}.

2.2.3 Parallelism within the subdomain

Exploitation of the inherent parallelism is achieved easily, where each level in the

tree could be run as a separate process. This is because there is no interaction

between the different branches in the tree during the construction phase. The

only time that interaction occurs is when we want to accumulate the stiffness

matrix from each of the stiffness matrices obtained from each of the branches.

Indeed each level could be distributed onto another machine.

The global stiffness matrix can be computed from the local element stiffness

27

Figure 2.8: Quad tree representation for a non-uniform refinement, represents (c)
in Figure 2.6

matrices as shown in (2.1), this will be developed in Chapter 3:

A: = £ A eK eA‘ (2.1)
e £ f 2

From this we can see that the order of assembly is not important, therefore any of

the stiffness matrices can be assembled and put into the global matrix. Therefore

they can be assembled at the same time and then added to the global matrix.

Care must be taken with this step so as to not allow any overwrites. The time

taken to perform this step is very small compared to the time taken for the

assembly of the local matrix contributions. Hence this step can be performed

sequentially. We can also perform the static condensation step to each of the

local matrix contributions before they are added to the global matrix, therefore

we can also do this to each of the matrices at the parallel stage. Therefore we

have a partial parallel direct solve.

Equation (2.1) can be used to develop a distributed parallel matrix-vector

28

Figure 2.9: A subdomain represented as a graph

product quite simply. Consider:

Kt = E Aê eA‘f

= ' £ A eK e(AteO

= Y1 AeA'efe

= Y , Ae(Kete)

where £e = This enables a parallel matrix-vector product. The matrices

need not be on the same machine, they could be distributed on to several ma­

chines. If we were using an iterative solver we could make use of this step, called

an element by element method, see [23, 63], as the most expensive step is usually

the matrix-vector product step. These can be generalised easily to a subdomain

by subdomain method. If we keep the subdomain matrix at the subdomain level

using a distributed matrix type this gives us more control over the amount of

parallelism within the solving step.

29

2.2.4 Other types of refinement

We might be required to perform types of refinement that differ from the stand­

ard uniform refinement. For example, Figure 2.10 shows the optimal refinement

around a singularity, see Chapter 5 for some numerical examples using the kind of

refinement. Here we will examine only the the h —refinement, as the p —refinement

does not affect the structure of the subdomain. The graph structure of the sub-

p + i

p + i

Figure 2.10: Refinement around a singularity, indicated by a •

domain can be modified to accommodate this type of refinement. The modifica­

tion is in the construction of the connectivity of the graph. Notice that we now

do not have a quad tree, but a 3-tree. Another type of refinement, anisotropic

refinement, leads to a binary tree. Here we require only a simple modification of

the graph structure, again this modification is in the construction of the graph

connectivity. So for all of these different types of refinement the only modification

that is required is to the graph connectivity.

30

2.3 Structure of the interfaces

The interface between elements is represented by an arc in the graph, with addi­

tional functionality, such as assembling the connectivity mapping for the degrees

of freedom along an interface.

2.3.1 How to construct the connectivity mapping

For regular meshes, or at least regular edges, this is just a simple m atter of

numbering the degrees of freedom along the edge. The order of this numbering

will not be important for this case, just as long as we are consistent along both

sides of the interface. Also the degree of the approximating polynomial is not

important, just the number of degrees of freedom. So, for this case at least, there

is no real implementation detail. However, not all meshes will be regular. Some,

such as those pictured in Figures 2.11 and 2.14, will contain some hanging nodes,

so construction of the connectivity mapping for these poses a greater difficulty.

To make use of the process that is described in Chapter 3 for the construction

of the connectivity mapping, we need to know the internal structure from both

sides of the interface.

Use can be made of the hierarchical structure of the subdomains quite simply.

The construction of the subdomains has been shown, and is a simple n-tree,

where n — 2,3,4. But along each of the exterior boundaries of the subdomain

(for a single refinement) there is only ever 1 or 2 elements. This will also be

true for more levels of refinement, but instead of just elements there would be

subdomains or elements depending on the refinement and our level in the tree.

For constructing the constraint mapping we would like some form of recursive

type data structure, so that the constraint mapping can be generated simply

for any number of levels of refinement. The most obvious and simplest data

structure to use is a binary tree. Each level in the tree may be either an element

or a subdomain. If the item at a node is an element then we are at a leaf node

31

otherwise we are not.

2.3.2 The interface tree

We can make use of the tree-like form of the subdomains in construction of

the constraint mapping. The normal connectivity mapping is straight forward

enough; however, consider the domain shown in Figure 2.11. If we isolate the

Constrained edge

Figure 2.11: A highly refined domain

indicated interface and concentrate on the left side we get the situation shown

in Figure 2.12. This interface is built up from a series of refinement steps and is

shown in Figure 2.13, together with the interface tree. This binary tree structure

Figure 2.12: A nonuniform interface

is vital for the simple construction of the connectivity mappings in the case when

we have constraints, as we need to make use the recursive nature of the binary

tree for the method of construction of the connectivity mapping described in

Chapter 3.

32

Figure 2.13: Showing where the edge tree came from

We may not always have a traditional type of refinement: again isolating the

interface indicated with the coarser line we have Figure 2.14. The sequence of

refinements that gave rise to this mesh is shown in Figure 2.16, so again we have

a binary tree, although it does not appear to be as balanced (in some sense) as

the previous example. But again using the recursive nature of the binary tree we

can construct the connectivity mappings simply.

Figure 2.14: A mesh with both traditional, a = 0.5, type refinements and a =
0.15 type refinements

Figure 2.15: The isolated interface of the domain with both 0.15 and 0.5 type
refinements

34

Figure 2.16: Interface with tree

35

2.3.3 Distribution

During the process for assembling the constraint mapping, the only information

that is required is:

• whether the current item an element or subdomain;

• if it is an element, then what is its degree; and

• if it is a subdomain, then what is the grading factor, a.

This information can be assembled, packaged up, and passed over a network, en­

abling the same construction of the constraint mapping to be done for distributed

subdomains. These ideas have not been tested fully due to the unavailability, at

the time, of software that enabled the programming of distributed systems in Ada

(the distributed systems annex, annex E [21, 30, 62]). Although other systems

exist, such as PVM [39], it was decided not to use these because we wanted to

use a single language for as much of the system as was possible.

36

2.4 Structure of the elements

Elements are fundamental to all finite element programs. Contained within them

are the properties of the problem that are to be approximated such as: boundary

conditions, problem data etc. It was decided not to include any global degree

of freedom information within the element structure. This was so that a min­

imum amount of information was stored at the element level, thus eliminating

the possibility of non-local information being mistakenly altered, and to assist

the parallelism by not requiring any global data accesses. This leads to a more

distributed hierarchy of objects. The element’s primary role now is just per­

forming the most fundamental operations in any finite element code: that is, the

construction of the element contributions (such as element stiffness matrix, load

vector etc.), application of any boundary conditions and performing any static

condensation. So now at any level in the mesh we just have to follow a small set

of basic instructions:

1. assemble local system; then

2. perform any static condensation that is required; then

3. pass the assembled local system to next level above.

This simple algorithm is used at all levels, whether it is an element, a subdomain

or a domain.

A number of other, globally visible, operations must also be defined, such

as those that return information about the number of degrees of freedom in an

element. This is to enable a simple construction of a conforming mesh.

Elements will also hold information about the approximation, i.e. the coeffi­

cients of the basis functions. This has to be done as the elements do not possess

the ability to retrieve this data for themselves. This is a consequence of not

having the global degree of freedom data defined at the element level.

37

2.4.1 Element requirements

y

(a,b)

x

Figure 2.17: A rectangular element

Figure 2.17 shows a quadrilateral element (we will discuss only quadrilateral ele­

ments here, but the ideas also transfer directly to triangular elements). This has

the following shape functions, or geometry basis functions:

* - H H - !)
* . (, - g

x \ y
b

a - x v03 — “ Ta b

04 = - (i - fa \ b

(2 .2)

(2.3)

(2.4)

(2.5)

The geometry basis functions for a more general element, such as that shown

in Figure 2.18, are much more complicated. On this we have the approximation

basis; these are the functions that we will use to approximate the solution to the

partial differential equation. Some of the interior basis functions are shown in

Figure 2.20. These are defined on [—1,1] x [—1,1], as this will enable a simple

integration operation. So, rather than generating the approximation basis for

each of the elements, we perform a mapping from the reference element [16, 25],

38

y

► X

Figure 2.18: A general quadrilateral element

which is on [—1,1] x [—1,1] (for a quadrilateral), to the actual element, shown in

Figure 2.19. Therefore we must modify the geometry basis, we now get:

f a = 1 (1 - 0 (1 - *?). (2-6)

f a = + (2-7)

fa = | (1 + ?) (1 + v) > (2-8)

fa = ̂ (1 - 0 (1 + 77). (2.9)

Where the fc and fa are the basis functions on the reference element and the basis

functions on the actual element respectively. The mapping from the reference

element to the actual element is then:

X = X \(f) i + X2(j>2 + #303 + ^4 0 4

= x ■ 0

V = 2/101 + V2<j>2 + 2/303 + 2/404

= y ■ 4>

or put in programming terms:

Function_Evaluation_Point := Geometry_Matrix * Geometry_Basis;

39

Geometry -Matrix =

This returns both the y and the x values that make up the coordinate. Here

Geometry_Matrix is a matrix made up of the set of coordinates of the element, so

we have:

X i X 2 X 3 £4

y\ V2 U3 Va
and Geometry_Basis is each of the geometry basis functions: fa, evaluated at a

particular point in the reference element:

GeometryJ3asis = fa fa fa fa

This mapping can be performed for curvilinear elements as well, [16, 25, 60].

11

(-1,1) (1,1)

► x

Figure 2.19: Mapping from the reference element to the actual element

We must transform the derivatives of the equation on the actual element to the

corresponding derivatives on the reference element. This is achieved by making

use of the chain rule for derivatives:

or, put in matrix form:

d_

ae
d_

. dy

= J

dx dy
d(, d£
dy_ dy

. drj dr] .
d_

dx
d_

. dy .

d_
dx
d_

. dy .

where J is the Jacobian. This implies that, [57, 60]:

J v</>i(x,y) • V(f)j(x, y) dxdy =

/ - ! / - ! "A ' (V^ K> Vi) lJ l dT> (2-10)

2.4.2 Numerical integration

We will use a Gaussian quadrature rule for the integration, [29, 44, 58]. The

1-dimensional integration rule is

[f(x)dx = Y ^ wi f (x i),
J~l £

this integration rule is exact, for polynomials of up to degree 2n — 1. Some of

the integration points that are used are shown in Table (2.1); many more can

be found in [58]. For the 2 dimensional integrals over a quadrilateral that we

require, we just form the tensor product of the 1 dimensional points, giving

u rl
/ f(x , y)dx dy = ^]T wiwj f (x u y5)

'l J ~1 *=ij=i
(2 .11)

Again this would integrate polynomials with a maximum degree of x 2n 1y2m 1

exactly.

41

n Xi w{
1 0 2
2 0.57735 02691 89625 1

-0.57735 02691 89625 1
3 0.77459 66692 41483 0.55555 55555 55555

0 0.88888 88888 88888
-0.77459 66692 41483 0.55555 55555 55555

Table 2.1: Gauss quadrature points and weights for up to n = 3

2.4.3 Putting this together

We can now apply all the previous work to assemble the element stiffness matrix,

K , say for a Poisson type problem, with each entry, k^j , being: .

h i = j \ £ (v & tf , n)) ■ (V-M?, r r,)) \J\ d£. dr, (2.12)

i j = l , . . . , n .

So for our linear quadrilateral element, with n = 4, we have:

:i , i &1,2 ^1,3 &1,4

'2,1 &2,2 &2,3 &2,4

'3,1 &3,2 ^3,3 &3,4

'4,1 &4,2 &4,3 ^4,4

this is called the stiffness matrix [16, 42, 57, 60]. The entries in the matrix

correspond to the integrations of the basis functions in equations (2.6) to (2.9)

over the reference element. The following code fragment, taken from an actual

program, assembles this matrix:

for I in Index range X_Integration_Points’Range loop
Integration_Point(X_Coordinate) := X_Integration_Points(I);

for J in Index range Y_Integration_Points’Range loop
Integration_Point(Y_Coordinate) := Y_Integration_Points(J);
Integration_Weight := X_Integration_Weights(I) * Y_Integration_Weights(J);

Set_Geometry_Basis(Element, Geometry_Basis, Integration_Point);
Set_Grad_Geometry_Basis(Element, Grad_Geometry_Basis, Integration_Point);
Set_Grad_Approximation_Basis(Element, Grad_Basis, Integration_Point);

42

Jacobian := Geometry_Matrix * Grad_Geometry_Basis;
Integration_Scale := Integration_Weight * Determinant (Jacobian);
Element_Basis := Grad_Basis * Inverse (Jacobian);

Stiffness_Matrix := Stiffness_Matrix + Integration_Scale *
Element_Basis * Transpose (Element_Basis);

end loop;

end loop;

This sets the element stiffness matrix. Notice that we have two nested loops:

this is because we have a two dimensional integration, shown in equation (2.11).

Also notice that we have an XJntegrationJPoints and a YJntegration-Points. This is

because we might have different degrees of approximation in each of the variables.

Thus, by not using the maximum degree integration rule, we have saved some of

the computational work.

2.4.4 Approximation basis functions

An important feature of the finite element method are the functions used to

approximate the solution, the approximation basis. We have used integrated Le­

gendre polynomials for the quadratic and higher degree polynomials and Lagrange

for the linear basis functions. These are defined as:

<M«) = ^ (l - s) 0i(s) = ^(1 + «)

and

M s) = j_ x Pk-i(t)dt\ k = 2,3,...

where Pk{t) is the kth Legendre polynomial. Figures 2.20 and 2.21 show some of

the interior and boundary approximation basis functions.

43

Quadratic-quadratic bases Cubic-quadratic bases

0.4

0.2

0
1

0.05

0

- 0.05
1

Figure 2.20: Some interior basis functions

2.4.5 General Laplacian elem ents

These are almost identical to the element described previously, with the exception

that we might have to integrate the multiplying function, a(x)\

—V • (a(x)V u) = / . (2-14)

To do this we must change the construction of the stiffness matrix to include the
following:

Function_Evaluation_Point := Geometry_Matrix * Geometry_Basis;
Integration_Scale := Integration_Weight * Determinant (Jacobian) *

Function_A (Function_Evaluation_Point);

The rest of the process remains the same.

Cubic-cubic bases Quartic-cubic bases

0.05

- 0.05

-1 -1 -1 -1

44

Figure 2.21: Some edge basis functions

2.4.6 Linear elasticity elem ents

The equations for linear elasticity are, see [57, 60]:

E{ 1 - z/2)
l - 2 v

d2u 1 +
2v d2u

+
d2v

dx2 ' 2(1 — v) dy2 2(1 — v) dxdy
1 d2u I — 2v d2v d2v

+ r r :--------------+

- F x

- E ,
(2.15)

. 2(1 — v) dxdy 2(1 — v) dx2 dy2

where u and v represent the x - and ^-displacements, and E is Young’s modulus

and v is Poisson’s ratio. Notice this time we have a system of coupled equations

to solve. The discreatisation leads to the the element stiffness matrix, B , defined

to be:

E n E 12

B 21 B 22
B =

E(1 - u2)
\ - 2 v (2.16)

where

o f [(1 d f a d f a , l - 2 i / d f a d (j > j \ J J / 01tA

Bl2 = + y ’ (]
B n = B{2> (2.19)

This can be assembled using the transformations described previously, though

this time we must scale the basis differently, to take account of and

from equation (2.15) and equations (2.17) to (2.20). For a full description of

linear elasticity see [60, 61].

2.4.7 Maintaining continuity

Although we only concern ourselves with the construction of the element contri­

butions, we must still think, to some extent, about the overall global picture —

especially the matching of the element bases across the interelement boundaries.

Particular care must be taken to ensure that the basis function match. The prob­

lem can be eliminated with linear and quadratic basis functions because they can

mm

Figure 2.22: Matching element basis functions

be defined to be always positive (or negative). Cubics are the first of the bases

to display the problem. Figure 2.22 shows cubics that match, but in Figure 2.23

we can see that we must get the basis functions to match on both sides of the

interelement boundary. This is easily achieved by simply scaling one of the basis

functions by —1. This problem leads to the introduction of the basis direction

46

attribute, and all elements will need this. It contains the appropriate values so

that the tensor product of the one dimensional bases leads to correct continuous

basis functions.

Figure 2.23: Unmatching element basis functions

2.5 Structure of the connectivity mappings

The connectivity mappings are used to map the local contributions to the more

global ones. As they are used at every level in the subdomain, we would ideally

like them to be as efficient as possible. They were designed using an object orient­

ated design methodology. This approach was useful in identifying the operations

required for each of the different refinement methods used throughout this im­

plementation. We can see that on any one interface we might have any of, or

possibly a combination of, the following refinement types:

• a uniform mesh, leading to a Boolean mapping; or

• /i-constraint, leading to constrained nodes; or

• p-constraint, again leading to constrained nodes.

47

Having identified the three possibilities for any constraint mapping, we realise

that there are only two operations required after the mapping has been assembled:

accumulate the element contributions and restriction of the global contribution,

usually the global approximation vector, to the more local level, whether that be

a subdomain or element level. So therefore we have three types:

1. Boolean Mapping;

2. H Constraint Mapping; and

3. P Constraint Mapping.

Each degree of freedom will have an associated entry in the connectivity map­

ping that will be one of the above three. We now have a problem: in many

partitions there will be many thousands or hundreds of thousands of degrees of

freedom. This will mean that there will be millions of dispatching operations,

which could potentially slow the progress of the programme greatly. Therefore

another implementation technique must be looked at.

2.5.1 Variant programming

We decided to implement the connectivity mappings using variant programming

techniques, see [22]. After the basic design of the types and their associated

operations was done using the object orientated approach, we took these and

implemented the mapping using the variant programming.

This also helped us reduce the overall resource usage from this part of the

implementation, because now each of the entries in the mapping will not have

a dispatch table or the associated access value of one for the particular type, so

saving many millions of bytes of memory. An example, in Ada 95, of variant

programming is given with the representation of the connectivity mappings used

in the implementation:

48

type Mapping_Type is
(Boolean_Mapping,
H_Constraint_Mapping,
P_Constraint_Mapping);

ty p e Generalised_DOF (Map : Mapping_Type := P_Constraint_Mapping) is

reco rd

case Map is
w hen Boolean_Mapping = >
w hen H_Constraint_Mapping = >
w hen P_Constraint_Mapping = >

end case;

end record;

ty p e Connectivity_Mapping is array (Integer range < >) o f Generalised_DOF;

Global_DOF_Number : Integer;
Constraints : ConstraintJList;
null;

49

The discriminant, Map in this case, can have any of the three values defined by

the enumeration type Mapping_Type, the components of the record depend on this

value. So, for example, if the discriminant has the value Boolean_Mapping then the

component will be Global_DOF_Number which is of type Integer, only accessing this

component is correct any other will result in a run-time error. For the case when

Map has the value H_Constraint_Mapping, we have the component Constraints (of

type Constraint_List), this is a set of (W, IB) pairs that represent the constraints

for the particular degree of freedom.

Notice the default of P_Constraint_Mapping, this is because the p-constraint

is the simplest to assemble as it is just a null operation. This is a programme

optimisation' enabling us to skip doing anything when we are assembling the

connectivity mapping for the p-constraints. So in the operations we now have

to have a simple if-statement to check for each of the three possibilities; this has

taken the place of the dispatching operation.

2.6 Conclusions

The use of a graph for the domain enables an infinite number of domains to be

represented, even those which consist of many distinct, nonconnecting, regions.

It is obvious from all this that the tree structure for the subdomains and from

this the binary tree for the interfaces is a very important part of the implementa­

tion. It enables the simple construction of the connectivity mappings to make the

approximation continuous. Also the subdomain’s tree structure enables a very

effective parallel computation to be used.

The element data structure forms a simple way of interfacing with the prob­

lem, without having to be concerned with the connectivity mappings, static con­

densation, parallelism, etc. The user need only concern themselves with the

construction of the element contributions to the problem, the stiffness matrix

50

and load vector. There are problems that may require a different approximation

or geometry basis; these too can be simply added. The addition of a basis func­

tion type could be possible, and would be worth looking at in the future. This

would enable us to just plug in the required basis function type. This is especially

true for the geometry basis, as the approximation basis is unlikely to change from

element to element. A problem with changing the approximation basis is that

the constraint constants polynomials must also be changed. A better approach

for this would be achieved using generics and the signature approach, see [21].

The interfaces make use of the known structure of the subdomains to help

construct the connectivity mappings. Their representation could be enhanced by

making use of the incidence model for the arcs in a graph. This would separate out

the connectivity of the graph from the tree structure that is used to construct the

connectivity mapping. It might also help the implementation of the distributed

subdomains. The incidence is shown in Figure 2.24. Si represent the subdomains,

Ei the edges (arcs in the graph) and represent the incidences. (Compare it

with Figure 2.9.) These would contain the interface trees that are now contained

within the edges themselves. However, what has been implemented is only a short

step away from the incidence model as we have just moved the graph incidence

into the arc itself.

The connectivity mappings are an important feature of any finite element

implementation, never more so than in a fully adaptive hp-version, as there is a

wide variety of meshes that we could come across. So an efficient implementation

is very important. We believe that the object orientated design and subsequent

implementation as a variant record has given them this efficiency.

51

0

Figure 2.24: The incidence graph model

52

Chapter 3

The connectivity mapping

Figure 3.1 shows a typical mesh that could be obtained from the finite element

method; this one was obtained from [10]. The mesh contains elements of different

polynomial orders and element of different sizes next to each other. The construc­

tion of a conforming approximation from the mesh is not a simple matter and

requires a flexible data structure. In this chapter ideas are discussed that have

enabled such meshes to be managed simply and efficiently. We first develop the

classical data structure, [16, 57], through a series of refinements: the full blown

data structure will be a generalisation [12] of the classical data structure — this

is the key idea behind this approach.

3.1 The classical approach

Consider the simple mesh in Figure 3.2 consisting of two linear elements. The

global degree of freedom numbers are circled and the parenthesised numbers are

the local degree of freedom numbers, local to each of the elements. There is a

global approximation vector, which for this mesh consists of the six global degree

of freedom values. Similarly each element has its own approximation vector

consisting, in this case, of four values: the values of the local degrees of freedom.

53

M ~ s - • > R a f p a r i t i D s f t t t a s W w e a * }

Figure 3.1: An actual hp-mesh, (red shading indicates low order elements, blue

higher order elements).

So, the global approximation vector is

x = (xu x 2, x 3, x4, x 5, x 6) (3.1)

and the element approximation vectors are

x f = (x1, x 2, x 5, x 6) (3.2)

X u = (x2, x 3,X4, x 5) (3.3)

3.1 .1 A ssem b lin g th e stiffness m atrix

From the mesh, in Figure 3.2 we have the following stiffness matrix. The super­

scripts and subscripts on each entry correspond to the element number and local

54

© ©
(4) (3) (4) (3)

I II

(1) (2) (1) (2)

©

© ©

Figure 3.2: A Domain of two linear elements

node number respectively.

K,global

k 1Kl , l H,2 0 0 ^1,3
b l

1,4

k 12,1
b 1 _L b 11

2,2 *1,1
U I

1,2
u i

1,3
U i 1.77

2,3 ^ 1,4 A-72,4

0 k 112,1 b 112,2
1.7/

2,3
1.77

2,4 0

0 u i
3,1

U I
3,2

1.77
3,3

u i
*3 ,4 0

k 13,1
b 1 -L b 11
* 3 ,2 “t *4,1

l . / /
*4,2

U I
*4,3

1.7 1 U I
*3,3 + *4,4

k 1_ 4,1 k 1*4 ,2 0 0 k 14,3 ^4,4 .

This can be decomposed into a sum of the two element stiffness matrices:

K.global

1

sT
1 ^ h-1 A -71,2 0 0 ^1,3 A -71,4 ’ 0 0 0 0 0 0 "

A -7*2,1 ^2,2 0 0 ^2,3 ^2,4 0 u 1
* 1,1 b 111,2

u i
1,3

U I
* 1,4 0

0 0 0 0 0 0
4-

0 1.77
* 2,1 A-7 72,2 A '7 72,3

u i
2,4 0

0 0 0 0 0 0
F

0 u i
3,1

U I
3,2 A-7 73,3

u i
*3,4 0

b 1
3,1 A-7*3,2 0 0 A -73,3 ^3,4 0 A-7 7* 4,1 A-7 7/ i4 ,2 A-7 7*4,3

u i
4,4 0

b l
4,1 k 14,2 0 0 A-74,3

b l/C4 4 _ 0 0 0 0 0 0

(3.4)

(3.5)

55

Consider the raw element stiffness matrix from element I. This is assembled in

the usual way:

K t =

H,i k 11,2 ^1,3 k 11,4

^2,1 h 12,2 k 12,3 k 12,4

h 13,2 k 13,3 k 13,4

—i k 14,2 k 14,3 k 14,4 .

(3.6)

What is needed is a mapping that takes each entry in the element stiffness matrix

and maps it to the correct position in the global stiffness matrix:

K i =

k 1'*'1,1 A-7* 1,2 0 0 ^1,3 k 11,4

k 12,1 ^2,2 0 0 ^2,3 ^2,4

0 0 0 0 0 0

0 0 0 0 0 0

k 13,1 3,2 0 0 k 13,3 A-73,4

k 14,1 A-74,2 0 0 k 1KA,3 k 14,4

(3.7)

This is achieved by what is known as a Boolean matrix. The Boolean matrix for

element I is,

A / =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

(3.8)

Given the element stiffness matrix, see equation (3.6), for example, a pre- and

post-multiplication of K i by A/, as show in equation (3.9), gives equation (3.7),

the distributed element stiffness matrix

Similarly for element I I , we get:

A / ,= (3.10)

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

which can then be used to give K u — Au K ijA^j . So to get equation (3.4) we

have to sum the mapped element stiffness matrix:

K . global

or more generally:

= K i + K j /

= A / i f / A j + A / j X / jA jj

= £ A . K . A *

e€{I,II)

Kglobal — ^ y AeK eAe

A similar process can be developed for the load vector, resulting in:

(3.11)

Ggiobai — 2 2 A eG e. (3.12)
eefi

Also, the distribution of the approximation to each of the elements is done as

Xi = A]x, Xu = A ĵX. (3.13)

Because they are very sparse, storing the full Boolean matrix would be a very

inefficient use of the available storage. Also, as the only nonzero entries are ones,

it is possible to devise a data structure that minimises the overall storage for the

Boolean matrices.

57

3.1.2 The classical storage scheme

Looking at the two boolean matrices in equations (3.8) and (3.10), the only non

zero entries are ones, and there is only one non zero entry per column. All that

we need to do is to store the row position of this entry. The classical method,

[16, 57], for storing these is just an array of integers, where the index number is

the column position and the value stored at this index is the row position, so,

for example, for the mesh shown in Figure 3.2 we have:

A / = (1 , 2 , 5 , 6)

A j j = (2 , 3 , 4 , 5)

although this is usually stored as a two dimensional array, see equation (3.14),

where the first index, the row, is the element number and the second index is

the usual Boolean matrix, as described above. This is usually called ELNODE,

see [16].

f 1 2 5 6

2 3 4 5

The problem with this representation is that the mesh must be uniform, must

have a uniform degree throughout the mesh and there must be no constrained

degrees of freedom.

In most finite element codes the Boolean mappings take the form of an array,

which can represent the data in a convenient and very compact form. They are

essential to all finite element codes.

Rep (A,) = [{1},{2},{5},{6}] (3.15)

Hep (A//) = [{2}, {3}, {4}, {5}] (3.16)

E L N O D E = (3.14)

3.2 Nonuniform ^-refinement

Suppose now that the mesh in Figure 3.2 has its element I I p-refined to a quad­

ratic, with element I remaining the same to give Figure 3.3. The problem that

58

Figure 3.3: A simple nonuniformly p-refined mesh

we have now is to maintain continuity across the interelement boundary; there

are two things that could be done:

1. increase the approximating degree along the interelement boundary in ele­

ment I [31, 32]; or

2. decrease the approximating degree along the interelement boundary in ele­

ment I I .

The preferred approach is to choose 2. This will greatly simplify the implement­

ation for, possibly, a small loss in accuracy. Therefore, the value of the degree

of freedom (locally numbered with an eight) must be constrained to be zero, so

the the approximation along the interface can be linear; thus it is not assigned

a global degree of freedom number. We will always do this type of constraining

for the p-refined case, i.e. set the order of approximation along a common in­

terelement boundary to the minimum of the elements that share the interelement

boundary.

However, this kind of constraining requires a modification in the Boolean

m atrix (connectivity mapping) and the connectivity mappings for both elements

require updating, especially that of element I I (obviously due to the increase in

the number of degrees of freedom) thus:

1 0 0 0

1
o 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 A 11 = 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

r
...

...
o 0 0 0 0 0 0 0 0 0 1 0

notice that the last column is all zeros, this is because the corresponding degree

of freedom is constrained to zero. They have the corresponding representation:

Rep (A,) = [{1},{2},{5},{6}]

Rep(A „) = [{2},{3},{4},{5},{7}) {8}.{9},{}].

Notice in particular the {} in the last entry for Rep (A//). This empty set indicates

the fact tha t the degree of freedom has not been assigned a global degree of

freedom number. Also notice that Rep (A/) has remained unchanged; the same

is also true for the contributions to the global stiffness matrix and load vector.

So it is possible to use the same matrix and vector from the previous solve step;

had we increased the order of approximation along the interelement boundary

for element / , this would not be the case. This is another reason for making

this choice. As soon as we have the connectivity mappings the usual assembly

procedure is followed, as described in equation (3.11); as is the procedure for

distribution of the approximation vector.

60

3.3 Generalising to nonuniform /^-refinements

In the previous section we supposed a nonuniform p-refinement of the mesh; but

alternatively assume that the element had been h-refined giving the mesh in

Figure 3.4. Again, the key problem is to maintain continuity across the interele-

III

Figure 3.4: A simple nonuniformly h-refined mesh

ment boundary, so therefore the degree of freedom, labelled in Figure 3.4 with

a x , must be appropriately constrained. So again, it is not assigned a global

degree of freedom number. These degrees of freedom are usually described as

being constrained or hanging.

Figure 3.5: Problem showing an example of unconstrained discontinuous approx­
imation

However, this time it is not just a simple m atter of setting the constrained

value to be zero as in the previous case, because element I requires that the

61

approximation across the interelement boundary be linear. Thus on distribution

of a global approximation vector we would assign the local degree of freedom

numbered 4 for element I I the value of an average of the values of the global

degrees of freedom numbered 2 and 5; similarly for the local degree of freedom

numbered 1 in element I I I . We would then get the following connectivity map­

pings:

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1
2

1
2 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 A jj = 0 0 1 0 A m = 0 0 1 0

0 0 1 0 0 0 0 1
2

1
2 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

with their corresponding representations:

Rep (A/) = [{1}, {2}, {5}, {6}]

Rep (A//) = [{2}, {3}, {7}, {(2,1/2), (5,1/2)}] (3.18)

Rep (A///) = [{(2,1/2), (5,1/2)}, {7}, {4}, {5}]

It should be noticed that the contributions from element / remain unchanged

so again, as in the previous example, we can reuse the stiffness matrix and load

vector.

3.3.1 Explanation of the notation

From equation (3.18) for element I I we have

Rep (Az/) = [{2}, {3}, {7}, {(2,1/2), (5,1/2)}] (3.19)

We introduce some notation for sparse matrices. Assume that we represent the

matrices in a column-wise scheme. Column 4 of A// from equation (3.17) may

62

be represented by:

{(2,1/2), (5,1/2)}. (3.20)

W hat we have here is a simple set of (N ,1 R) pairs (R ,V) , where R represents

the row number and V the value of the matrix entry. So the whole matrix has

the form

R ep(A „) = [{2}, {3}, {7}, {(2,1/2), (5,1/2)}] (3.21)

Notice th a t the first three (in this case) entries in the Rep (A//) are of a different

form from the last. We could write them down, and store them using the sparse

m atrix storage scheme, as

{(2, 1)}

for example, but as the matrix entry 1 will always be a 1, storing it and perform­

ing its associated floating point operation is not necessary. The vast majority

of entries in the connectivity mappings will be of this form, because the vast

majority of the degrees of freedom will be “normal” degrees of freedom. So, for

example, taking A/ in equation (3.17) and Rep (A/) from equation (3.18) we can

see th a t we have the classical storage scheme which is very efficient in terms of

its use of storage and operations required.

Thus we would like any implementation to be able to take account of this

requirement. This is a good candidate for an object orientated approach: we

have the base type performing the classical accumulation, as done by the normal

Boolean matrices, with some types derived from this implementing the desired

p-constraint and /i-constraint behaviour. However, the cost of this kind of imple­

m entation in terms of both storage and the number of dispatching operations that

will be required could prove prohibitive. Also as the number of types is known

and will not change, another approach is suggested: that of variant programming,

[22].

63

3.3.2 Generalising to arbitrary /^-refinements

Around corner singularities it can be shown that the traditional type of refine­

ments here are not optimal, [60], and that the optimal refinement strategy in­

volves both h and p-refinements. In addition the optimal refinement is not of sub­

dividing the element edge in half but in the ratio of S^O1 [60] — for examples of

this see Figure 3.6 and Chapter 5. As before, the goal is to constrain the hanging

III

I V

© ©
Figure 3.6: Optimally graded nonuniform h-refinement

node to maintain continuity across the interelement boundary. This time we dis­

tribute the global approximation vector with a weighted average, 3:20, giving the

following connectivity mappings

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 17
20

17
20 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

> II A /// =
0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 3
20

3
20 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

1 Actually the optimal is slightly larger than this

64

similarly the representation is

Rep (A /) = [{ 1 } , { 2 } , { 6 } , { 7 }]

Rep (A//) = [{2}, {3}, {8}, {(2,17/20), (6,3/20)}]

Rep (A///) = [{(2,17/20), (6,3/20)}, {8}, {5}, {6}].

3.4 Generalising to /ip-refinements

Consider now the hp-refined mesh in Figure 3.7. Here we have both h- and

p-constraints.

16,17

(7) (3)(3) (4)(4)

I I I (7,8)(11, 12)

(5,6)
(11,12,13)

(14,15,16) I I (8,9,10)

(2) (1) (5,6,7)

Figure 3.7: Generalised hp—refined domain

65

We have already seen how to constrain the degrees of freedom along the in­

terelement boundary between elements I I and I I I . So we must therefore determ­

ine the connectivity mapping for the interface between element I and elements

I I and I I I . First, we must identify which of the degrees of freedom are to be

s=0
s = - l / S=1

©

^ -----------------------------------

I
---------- s ---------------- ►

©
(1) (14,15,16) (4)

II '

(1) (11,12) (4)

III

 ̂ J. ™^ i — J. p

Figure 3.8: A edge refined traditionally in isolation

constrained: the lowest order element, element 7, is a quadratic and this de­

termines th a t the approximation along the interface must also be a quadratic.

Consequently there are only three unconstrained degrees of freedom along the

interface numbered 2, 5, (the linear degrees of freedom) and 21 (the quadratic

degree of freedom). Construction of the connectivity mapping for element I is

rather simple, it is just:

A = [{1}, {2}, {5}, {6}, {20}, {21}, {18}, {19}]

But the construction of the connectivity mappings for elements I I and I I I is

rather more complicated. The values of the constraints will depend on the basis

functions that have been used and any scaling of them. The following procedure

will work for any hierarchical basis, the only difference will be the choice of

constraint constants that are to be used.

Suppose that the basis functions used are formed by taking tensor products

of Lagrange type, for the linear degrees of freedom, and the integrated Legendre

66

polynomials, for the higher degree polynomials, defined by:

<A>(s) = j (l - s) 0i(s) = ^(l + s)

and

M s) = f _ i Pk-i(t)dt- k = 2,3,...

where Pk{t) is the kth Legendre polynomial [60].

Figure 3.8 shows the interface in more detail. We first introduce a local co­

ordinate s G [—1,1] along the edge. We will denote the values of the global

degrees of freedom along the interface by x 2, x$ and £21. This gives the global

approximation along the interface as:

- u(s) = x2(/>o(s) 4- x 5(/>i(s) + x 21<j>2(s), s G [-1,1]. (3.23)

We will also denote the values of the local degrees of freedom for element I I

by x[! 1 x™, x{{, x[J5 and x{q; thus the local approximation along the interface for

element I I is given by

un (l) = x i ^ o {1) + 2 ^ 0 1 (Z) + 2 ^ 0 2 (Z) + x l i M 1) + Zi6 <MZ), 1 € [- 1 , 1]. (3.24)

where

I = 2s -j-1

For a conforming approximation, we must have:

u(s) = u n (l), s G [—1,0] (3.25)

where we have I = 2s + 1. For this particular case we get the following solution:

The connectivity mapping for element I I I is constructed in a similar manner,

but instead there is a local coordinate r which is related to s by:

r = 2s — 1

The constraint constants for the degrees of freedom needed to satisfy (3.25)

may easily be determined by the following procedure. Firstly, suppose a matrix

L exists such that

0(s) = L<j)(2s + 1), (3.27)

where

4>(s) =

M s)

M s)

M s)

(3.28)

(3.29)

(3.30)

for some p, the maximum polynomial degree of the basis functions. We may

formulate condition (3.25) equally as:

x t(j)(s) = x tII<j){2s + 1)

Substituting this into the above we get:

x tII<l)(2s + 1) = x tL(/>(2s + 1)

=> (x^j — x tL)(j){2s + 1) = 0.

However, because the basis functions are linearly independent we must have that:

Xu = Llx (3.31)

Therefore once the matrix L is known, the constraint values can be simply read

off using this result. Equally using the same procedure for element I I I from

Figure 3.8 where r = 2s — 1,

x tn i <j)(2s — 1) = x tR(j){2s — 1)

X ju = R lx , (3.32)

6 8

the m atrix R can be constructed. Naturally, the matrices L and R are computed

a pr io r i and stored in the code.

Because of our use of hierarchical basis functions only two of these matrices

are required: one for the left constraints and another for the right constraints.

The matrices for p = 4 are show in equation (3.33):

L =

1 1
2 0 0 o

1

1
2 0 0 0 o

1

0 1
2 0 0 0 1

2 1 0 0 0

0 1
~ 2

1
4 0 0 , R = 1

2 0 1
4 0 0

0 0 3
8

1
8 0 0 0 3

8
1
8 0

o
i

1
8

3
16

5
16

1
16 .

1
. 8 0 3

16
5
16

l
16 .

(3.33)

Thus the solution for the conforming approximation can be assembled, after

obtaining the leading submatrix from L, as follows

x ii

x

TII
x 4 1 1

2 0 0 0
i

X2

TII
X 11

= 0 1
2 0 0 0 x 5

TIIx 15 0 1
2

1
4 0 0 X21

(3.34)

which is the same as that found in equation (3.26). The constraint mapping for

element I I I is obtained similarly — except the R matrix is used instead of the

L matrix.

We have a series of steps that allow the construction of the constraint mapping

for this type of mesh:

1. find the minimum order in the elements that lie along the interface;

2. all of the degrees of freedom whose order is greater than this are assigned

to zero; and

69

3. constrain the remaining degrees of freedom using the process described

previously.

For 2 to be true it is important that we are using a hierarchical basis. If we were

not using a hierarchical basis but a Lagrange type basis, then every degree of

freedom would have a higher degree polynomial associated with it and we would

not be able to just assign particular ones to be zero to maintain continuity, we

would have to compute all of the contributions along the edge at the lower degree.

Again, after the construction of the constraint mappings is completed the stand­

ard assembly and distribution procedures can be followed giving a conforming

approximation.

This may not always be the type of constraints that we will have to deal with.

Earlier it was mentioned that around singularities a different type of refinement

would be optimal; if we were to have that type of constraint here how would they

be dealt with?

3.4.1 Generalising to com pletely arbitrary h p - m eshes

Sometimes we may require a more general type of refinement where the edge

of the element is not divided into the ratio of 0.5 or even 0.15, but a variable

amount, which is denoted by a G (0,1). Consider the mesh in Figure 3.9: this has

a o type refinement and has also been nonuniformly p-refined. The Figure 3.10

shows the interface between elements I and I I and elements I and I I I , from

Figure 3.9, in more detail.

Again the steps to construct a conforming approximation are similar to those

for the traditional refinements, as described in the previous section; we have the

usual global approximation:

u(s) = z 20o(s) + (s) + x2i 4>2{s), s G [-1,1] (3.35)

70

(6) ® (5) (16,17 ,18) q

I I I
/

(p=4) /(§)►-H /
(p -2) /

I V
I I (p=4)

(p=3)

15
14
13

(J) @ (?) (Ti]® (10,11,12) (?)

(11,12, 13)

(1) (5,6, 7) (2\
(8,9,10)(4) (9,10) (3)

(11,12) (7,8)

(1) (5,6) (2)

Figure 3.9: Nonuniform hp-refinement. Local and global degree of freedom num­
bers.

and the local approximation for element I I is given by:

U n (l) = x[T(l)o{l) + e I- 1 ’2a “ 1\' (3-36)

This time the local coordinates are given by:

S - f 1 — <7
(3.37)

a

Again they must be continuous across the interelement boundary, therefore:

u(s) = un (l)

_ uii 1 ̂ s ^ 2cr — 1). (3.38)

Similarly for the right hand element, element I I I :

s — a
, 5 € (2 a - 1,1). (3.39)

1 — a

71

s = 2 o - 1
S=1

(1) (1112) (4)1(1) (14,15,16)

III
s + l - o r =

1 - 0

Figure 3.10: A general edge refinement in isolation

As in the previous section we end up with:

X u = L f ^ x . (3.40)

Again this is a system of linear equations whose result is given in equation (3.41).

The difference this time, however, is that the result is in the form of polynomi­

als. Now we simply pull out the required block from the matrix, evaluate this

block with the appropriate a and apply the same procedure as before to get the

connectivity mapping:

L (a) =

o©

L
—

o'
*->0 0 0 0 O

-
1

0 h , i (v) 0 0 0 0

0 *2,1 M *2,2 (<?) 0 0 0

0 *3 ,1 (0 ") *3 ,2 (0 -) *3,3 (o ’) 0 0

0 h , i { a) *4 ,2 (0 -) *4,3 (cr) *4,4 (t f) 0

r"

O h , i (e) *5,2 (<7) *5,3 (cr) *5,4 (t f) *5 ,5 (0 ')

(3.41)

72

i **i,j(cO
i = 0 l 1 — a

1 — a 0
i = l 0 a

a 1
i = 2 0 —2a + 2a2

—2cr + 2 a 2 0
a 2 1 — 2a + a 2

i = 3 0 2a - 6a^ + 4a3
2(7 - 6<j 2 + 4a3 0

—3a2 + 3cr3 3a — 6a2 + 3a3
(73 1 - 3a + 3a2 - l a 3

i = 4 0 - 2 a + 12a2 - 20a3 + 10a4
-2(7 + 12a2 - 20a3 + 10a4 0

6a2 - 15a3 + 9a4 —3a + 15a2 — 21a3 + 9a4
—5a3 + 5a4 5a — 15a2 + 15a3 — 5a4

a 4 1 — 4a + 6a2 — 4a3 + a 4
2 = 5 0 2a - 20a2 + 60a3 - 70a4 + 28a5

2a - 20a2 + 60a3 - 70a4 + 28a5 0
- 1 0 a 2 + 45a3 - 63a4 + 28a5 3a - 27a2 + 73a3 - 77a4 + 28a5

15a3 - 35a4 + 20a5 - 5 a + 35a2 - 75a3 + 65a4 - 20a5
- 7 a 4 + 7a5 7a - 28a2 + 42a3 - 28a4 + 7a5

a 5 1 — 5a + 10a2 — 10a3 + 5a4 — a 5

Table 3.1: Components, kj{a) and ^ (a) , of the matrices L (a) and R(a)

J3,oo

I

r 0,i(c r) 0 0 0

10

n,oW 0 0 0 0 0

r2 ,o(a) 0 **2,2 (t f) 0 0 0

0 r 3,2 (<*) r w (?) 0 0

* 4 ,0 (0 0 0 r 4,2 (<r) f4 ,3 M **4,4 (?) 0

. r 5 ,o (f f) 0 **5,2 M *"5,3 (0 ") *’5 ,4 (0 ’) **5,5 (<*) .

The values for hj(a) and r^-(a) are given in Table (3.1). The approximation

for element I I can now be assembled, again by obtaining the leading submatrix

73

from L , as follows:

’ rf . I I '
X 1

rf . II
4

rf . IIx n
rf . II

. 12

oo
1_

k i {&) 0 0
t

x 2

0 0 0 x 5

0 *21 (o') *22(0") 0 X21

(3.43)

This gives

x i i

x i i

= %2,

= (1 - a)x2 + crx5 - 2<r(l - a)x2u

x
(3.44)

X

o X2U

= 0.

Note that for a = 0.5 we will get the same results as in the previous section.

So again we have a sequence of steps that will result in the connectivity

mapping for a conforming mesh:

1. find the minimum order in the elements that lie along the interface;

2. all of the degrees of freedom whose order is greater than this are assigned

to zero;

3. determine the value of the grading factor <r; and

4. the remaining local degrees of freedom are constrained in terms of the global

degrees of freedom using the coefficients read off from the correctly evalu­

ated matrix L(a) or H(cr) as appropriate.

3.5 Generalising to m ultilevel hp-refinements

Suppose now that the mesh in Figure 3.7 has its element I I h-refined to give us

Figure 3.11. The interface between elements I I I and elements V and V I I has

been dealt with in the previous section. Now the main problem is to construct the

74

I l l
p=4

VII
P=3

Figure 3.11: Generalised hp—refined domain

connectivity mapping for the interface between element I and elements I I I , V and

IV . Figure 3.12 shows the interface in more detail. We could develop a procedure

©
I

®
(1) (14,15,16) (4) (1) (14,15,16) (4) (1) (11,12) (4)

IV V III

Figure 3.12: Isolated irregular edge from Figure 3.11

similar to that described for the single level case, but this is not very practical

as it would require the storage of many matrices similar to L and R developed

previously for the many possible configurations that may exist. Another way of

constraining these meshes is required. Figure 3.13 shows how the element I V

and V were derived from h-refining element I I . But of course it does not exist

any more and so it is described as being imaginary. We can make use of these

75

© I ^© ©
(1) (14,15,16) (4) (1) (14,15,16) (4) (1) (11,12) (4)

IV V

B
////////////

Ui "l
(1) (14,15,16) (4)

(1) (14,15,16) (4) (1) (14,15,16) (4)

IV V

I
© © ©

(1) (14,15,16) (4) (1) (11,12) (4)

Hi III

© 1 © ©
(1) (14,15,16) (4) (1) (14,15,16) (4) (1) (11,12) (4)

IV V III

Figure 3.13: Edge showing use of the imaginary element in constructing the
connectivity mapping

76

imaginary degrees of freedom; we had previously that:

x i i

x

rr.IIx 4 1 1
2 0 0 0

t

X2

rr.II
14

= 0 1
2 0 0 0 x 5

rr.II
x 15 0 1

2
1
4 0 0 X21

(3.45)

The same can be used to get the constraints for elements I V and V in terms of

the imaginary element / / , thus:

-\
&

i

rr.IV
X A

rr.IV
14 =

rr.IV
•*15

1 i__
_

1
4

_ 3
8

3
16

5
16

1 1
rr.IIX1
rr.IIX4

rr.II
14

rr.II
15

rr.II
. 16

(3.46)

Then equations (3.46) are substituted into equations (3.45) to eliminate the ima­

ginary degrees of freedom, to get:

rr.IV
X 1

CNii

rr.IV
X A = \ x 2 + \ x b - |a : 2l

rr.IV
14 — T(iX 21,

rr.IV
15 II O

rr.IV
X \f) II o

(3.47)

Similarly for the element V we get

x IV

x I V

x

x

x

I V
15

I V
16

= \ x 2 + \ x b - \ x 2l ,

= \ x 2 + \ x b - \ x 2U

— 16 ̂ 215

= 0,

= 0 .

i v _ j ,
14 ' (3.48)

77

Thus it is now just the simple case of constructing the full connectivity mappings

for all the elements in the mesh. The process described here can be applied to

any number of levels of refinement because all that is required is the product of

the single level constraint constants.

3.5.1 Generalising to com pletely arbitrary m ultilevel hp-

m eshes

As described in the previous section we can construct the multilevel constraint

mappings. The ratio used for a partition need not be 0.5 and so it is now pos­

sible to construct the constraints for the mesh in Figure 3.14. Indeed more general

Figure 3.14: The 0.15 type refinement followed by a 0.5

meshes are possible: here we have a 0.15 type refinement followed by a traditional

type refinement. Figure 3.15 shows the interface in more detail. This again re-

I I I

Figure 3.15: The inter-element interface from Figure 3.14

quires the procedure described previously using imaginary elements but this time

78

we evaluate the constraint constants matrices at each level with the appropriate

value for a. So for the interface between element I and element I I I and the

imaginary element I I we would evaluate L(a) with a = 0.15 giving:

x i i

x

r 1 t r
rr.IIx 4 1 17

20 0 0 0 X2

rr.II
14

= 0 3
20 0 0 0 x 5

rr.ll
x 15 0 51

200
9

400 0 0 X21

(3.49)

Then for the lower level, we would evaluate with a — 0.5 giving

l

H
L-

rr. V Ix ±

T V I
14

=

rr.VI
x 15

1
S

3

i i

o i

0 -I

0 0

o h 3_
16

5 J_
16 16

1 1
IIXi
IIX4

rr.IIX u

rr.II
x 15

"............1

1

CD

 ̂
H

H
i

(3.50)

The elimination procedure is the same as for the previous case giving the required

result of

—
...

..i

i

1 0

1
o

rr.VI
x 4

37
40

3
40

i n
800

rpV Ix u = 0 0 9
1600

rrrVI
15 0 0 0

1

1 0 0 0

x 5

X21

(3.51)

Thus we have the approximation

Again, as with the all the previous examples, as soon as the connectivity mappings

are obtained the standard assembly and distribution procedures can be used,

equations (3.11) and (3.12).

As can be seen the simple evaluation of the constraint constant matrices

with the appropriate grading factor, a , for the single constraint, followed by the

composition of these, leads to the construction of the connectivity mapping for

these kinds of refinements also. This process extends to any number of levels of

refinement, possibly with each level having a different grading factor. As with

all previous refinements once the connectivity mapping is constructed the normal

assembly and distribution procedures can be used.

3.6 Conclusions

If a finer mesh is introduced over part of the domain it has been shown in this

chapter that it is easy to match the solutions across the boundary between the two

densities of mesh. If the degree of the basis functions is varied across the domain,

again it has been shown that there is a simple strategy to match the solutions.

W hat is surprising is that if both mesh density and basis function degree are

varied, the matching can be derived by just combing the two strategies.

There are further advantages to be gained when introducing a different density

of mesh — rather than just subdividing an element by half, the division point

along an edge can be a where o 6 (0,1); cr is not just restricted to be The

strategy for dealing with non-uniform meshes was just applied with some minor

adjustments to deal with the non-uniform division of boundaries.

The solution strategy does not build the stiffness matrix directly, but rather

calculates the connectivity mapping: the stiffness matrix is calculated from that.

Thus the problem of deriving the the stiffness matrix is reduced to constructing

the connectivity mapping. A set of systematic techniques for deriving the con­

nectivity mapping have been derived from consideration of each of the simple

80

possibilities. We have show that there is a way of providing a simple, efficient

assembly of the connectivity mappings for the /ip-refinement case. We have also

shown that the partition of part of the domain by a mesh can be generalised to a

variable grading factor and that any number of levels of refinement is simple to

construct.

81

Chapter 4

T he m atrix library and solvers

There are a variety of matrices used throughout any finite element code which

usually consist of either dense or sparse matrices. The dense matrices are usually

used for assembling the element contributions. Dense matrices are also required

when we do static condensation at any level (element, subdomain or domain)

because this causes fill in. At all other times we will use a sparse matrix, due to

the large number of zero entries in the matrix, perhaps more that 99% in some

cases.

4.1 Introduction

The matrix library is often an integral component of any finite element imple­

mentation. Often, in non-commercial implementations the matrix library will

just deal with simple two dimensional arrays; however, this is very often inappro­

priate, especially when large problems are to be attempted. The finite element

method generates very large sparse matrices, so obviously this array based ap­

proach is unsuitable. There is no single standard approach for the management

of sparse matrices — many methods exist for their implementation [2, 16, 66],

including some object orientated matrix libraries [35, 50, 55].

82

There are a number of matrices used throughout most finite element pro­

grammes. In addition to the dense, sparse matrices already mentioned, there

are triangular matrices and there is also the possibility of distributing matrices

across different computers. Each of these matrix representations, with the ex­

ception perhaps of the triangular matrix, should be interchangeable throughout

the code without any other changes being made. Because of this need, the object

orientated approach is used throughout the designing and implementation of the

main part of the finite element code.

Several matrix libraries already exist that could have been used, such as

Lapack [15, 33, 34] and some of the NAG routines [2], for example. Note that

in the interests of developing a completely independent code it was decided not

to use these. Reasons for this include the fact that users may not have access

to the NAG library, or some other matrix library, so it was decided to create

a m atrix library specifically for this finite element implementation. A further

problem with some of the existing libraries is their inflexibility.

4.2 M atrix implementation

Figure 4.1 shows the hierarchy of the matrix types, where we use the convention

th a t the arrows point towards the type from which it is derived. Those types in

the dashed boxes show the abstract types, the solid lined boxes show the concrete

types.

The base type in the hierarchy, Matrix, must be carefully designed to allow

all of the necessary operations that are likely to be required by any finite element

implementation. It turns out that this is a relatively small and simple set of oper­

ations, just the access operations and a matrix vector product (this is used in the

iterative solvers). Although some of the usual mathematical operations are also

there, + , x, multiplication by a scalar, . . . , but are only there for completeness.

They are abstract operations so that each concrete type has to implement its

83

Matrix

Dense Matrix

Sparse Matrix

Fortran Matrix Dense Row Matrix

Bounded Row MatrixLinked List Row Matrix

Figure 4.1: The matrix hierarchy

84

own optimised version. Other operations exist for construction, assignment and

destruction, but these are private operations that are not seen by the user.

4.3 Sparse matrix

A sparse m atrix is a matrix which has a large percentage of its entries with

zero value; this percentage is usually greater than about 80%. In the matrices

generated by the finite element method, many generated are over 95% sparse.

However, to simplify the storage of the matrix and speed up the operations on

the m atrix (the most important of which, for iterative solvers, is matrix vector

product), we will make use of the knowledge that each row of the matrix has at

least one entry. Therefore, we can store each row as a sparse vector whereby we

only have to store the position in the vector, which will be the column in the

matrix, and the value at the position. This again is an abstract type. It does not

add any more functionality, it is just the base type for the sparse matrix class.

4.3.1 Linked row matrix

As previously mentioned we will have at least one entry in every row of the

matrix, so our main task is how to store the entries of the row. The simplest

implementation is a linked list. Figure 4.2 shows the lists that make up the

matrix, with each of the elements in the list having the following three pieces of

information:

1. the column number; and

2. the entry value; and

3. the next entry pointer.

Using a linked list makes it simple to add entries to the matrix during its construc­

tion. Although the order of the entries is not important, we will use an ordered

85

Figure 4.2: Storage representation of the linked row matrix

list, ordered by column number, so as to simplify some of the other operations.

4.3.2 Compressed row matrix

This is similar to the previous matrix, in that each row contains an entry, but

this time the representation of the rows is different. Rather than have them as

 ► ----------------

 ► -------------------------

 ► -------

Figure 4.3: Storage representation of the bounded row matrix

linked lists we store them in an array, as shown in Figure 4.3, but each entry is

basically the same:

1. the column number; and

86

2. the entry value.

This representation speeds up the matrix vector product a great deal, because

we can bring most, if not all, of the information about the row into the CPU

cache rather than a single entry at a time as in the linked list case. Another

reason for storing the matrix as rows is to enable a simple parallel matrix-vector

product. Each processor can be given a set of the rows from the matrix and

the result vector, perform the inner-products and update the result without any

worry about overwrites.

4.4 Dense matrix

A dense matrix, as suggested by its name, stores all of the entries of the matrix.

This is almost always represented as a two dimensional array or an array of arrays.

In this implementation both kinds of matrix are employed. We can define many

more operations for this particular kind of matrix, ones that can be used for

dense type matrices such as factorisation, inversion, Gaussian elimination, etc.

The reason why these were not also defined for sparse matrices is, as already

mentioned, that when we perform these operations the matrix suffers with fill in

so the matrix becomes dense. If we still stored them in the sparse format then

we would be using more resources in either the storage or the operations, or both

of these. There have been two types implemented, as outlined below.

4.4.1 Fortran matrix

This is stored as a two dimensional array, with some additional compiler directives

(pragmas, in Ada), instructing the compiler to store the matrix in column major

order, the same as Fortran stores its matrices. The reason for this is that if a

user has some special Fortran code written, it can then be imported simply and

safely into the programme.

87

4.4.2 D ense row matrix

This m atrix is represented as an array of arrays. There are several reasons for

this:

• it should speed up the solving process, as only a single row and the vector

need be brought into the cache at any one time; and

• it is conceivable to store some, or all, of the rows on the backing store if

the m atrix is exceptionally large; and

• there may be problems on some systems with having large contiguous blocks

of memory.

4.5 Other matrix types

Using the object orientated approach for the matrix library could enable us to

add other matrix implementations, especially different sparse representations, to

the m atrix class hierarchy such as those from [50]. This would enable the use of a

representation that enabled the simple implementation of different precondition­

ers such as, incomplete factorisation or ILU [16, 50], while still keeping the code

for the construction of stiffness matrix and the solvers the same. Any of these

new m atrix or preconditioner types could be simply added to the existing code.

4.6 Problems w ith the matrices generated by

the finite elem ent m ethod

There are several problems with the matrices that are generated by the finite

element method, but a major one of these is shear size, sometimes many 100,000’s

square. It is obvious from this that they cannot be stored as a two dimensional

array, and so some sparse storage scheme must be employed. Many such schemes

88

exist and some involve knowing the number of matrix entries or the bandwidth a

priori. These are not useful in a fully adaptive finite element code, where these

are not known and in fact would change after each adaptive refinement operation.

Therefore it is desirable to have fully a adaptive matrix library, one where we

need not know the number of entries or the maximum bandwidth of the matrix

until we need to construct the matrix.

4.6.1 Sensitivity to ro u n d in g e r r o r s , the condition num­

ber

Those matrices that are generated can be extremely sensitive to small perturba­

tions that are inevitably introduced during the solving process, (errors also occur

during the assembling of the system, because the integral techniques used only

approximate the integrals of the given functions). These small perturbations,

rounding discrepancies or rounding errors, are introduced because we can use

only a finite precision arithmetic. Many books exist that explain the problems

with rounding errors and how to understand and deal with them, see [29, 44, 64]

Further insight into rounding errors can be gained by considering the system

K £ = 6, then using 6 + 5b for the right hand side. We would expect, after solving

the system, the solution to be f + <5£, where Sb is small relative to b and is

small relative to f . Is there any useful or convenient measure of this sensitivity?

The condition number usually written as «, is defined to be:

k = \ \ K \ \ - \ \ K - 1\\

in some matrix norm. From this we get the standard relationship:

i M < J M
lldl - 11*11

It is usual to use the 2-norm, and it can be shown that, for a symmetric matrix,

where \ max and Amjn are the maximum and minimum eigenvalues respectively.

This is, in turn, dependent on h , the mesh size, and p , the polynomial degree of

the elements. This number affects all aspects of solving, both direct and iterative

solvers. For iterative solvers the condition number determines the number of

iterations a solution will take to converge to the tolerance required by the user,

if indeed it converges at all.

4.7 Solving the system

After the system of linear equations has been assembled, it must be solved. There

are many ways of doing this:

• direct solvers, which may be one of the following:

- find the inverse, using elementary row operations;

- Gaussian elimination;

- one of the many factorisation techniques;

- static condensation (this is not really a complete solver but helps solv­

ers by giving smaller condition number and a smaller matrix);

• iterative solvers, four of which are:

- Gauss Seidel; and

- conjugate gradient, with or without preconditioning; and

- multilevel; and

- generalised minimum residual.

Both of the above methods, direct and iterative, have their own advantages and

disadvantages. Obviously finding the inverse directly is impossible for these kind

of problems, but we can make use of elementary row operations. The use of direct

90

solvers is generally used when there is an asymmetric system or when the matrix

is very ill conditioned, though now there are some powerful iterative methods for

solving such asymmetric systems.

The solving technique that we use is a hybrid version containing both a partial

static condensation and an iterative solver for the reduced system. This way

we help to reduce the condition number of the matrix, by the partial static

condensation, that is passed to the iterative solver, enabling a smaller number of

iterations for convergence.

4.7.1 D irect solvers

Several different types of direct solvers are frequently used for solving matrix

equations including those of Gaussian elimination and various factorisation tech­

niques. One factorisation technique that is frequently used is the LU factorisation.

In this we factorise the matrix into lower and upper triangular matrices, such that

LU = A

holds. So now, rather that having to solve x = A~lb, we have to first solve

y = L~1b, followed by x = U~ly. The solutions to each of these triangular

m atrix equations is easily computed. Another common direct solving technique,

as already mentioned, is that of Gaussian elimination. The solution is achieved

after a series of row operations usually with some pivoting strategy [29, 40]. Using

a pivoting strategy can help to reduce the effect of the high condition number

and stabilise the method from the effects of rounding errors. Analysis of these

and many other direct solving schemes can be found in [29, 40, 44]. Both of these

methods are related and have, in the worst case, 0 (n 3) floating point operation

count, so clearly with very large n these methods can prove prohibitive, although

some direct solvers for sparse systems exist [16, 37] and in these methods that sue

fewer than 0 (n 3) are described. Factorisation methods do have other advantages

91

though in that we only need to factorise the system once and we can solve for

any number of right hand sides.

4.7.2 Static condensation, Schur com plem ent

Consider the refinement of element in the subdomain in Figure 4.4. Having

X — >

V ^

(— *

/ S

*— *1

/ s

f — ¥

VA 7

s / \

^ /

/ \

K 7

/ S

k 7s

f VA 7

V ^

< 7

/ S

k 7

/ \ (VA ^

x — >

^ 7

<—)

— 7

*—)

< 7s

*— X

f ----------- *
IV

s / s

(-------------*

III

fA 7

i

X-----------)

k 7 s

ii

(------------ X

(i) (ii) (iii)

X Represents a degree of freedom

Figure 4.4: Domain refinement

assembled the stiffness matrix, we can improve its condition number and give

ourselves a smaller system by eliminating the interior degrees of freedom. By

this we mean a decoupling of the boundary and interior degrees of freedom. This

X ----- X -----)

X)

V V ^

<----- X ----- X

/ Vs A

(V VA A 7

x >

X ----- X ------>

A 7 s

< x

(------- X — x

X---- \

V 's

(— *

f s

k — *

/ \

k— ¥

f V/ V 7

V ^

k 7

f N

\ 7

' s

k 7 s

f VA 7

V ^

k 7

f \

s 7

✓ >

< 7 s

' V/ < 7

X -------)

\ 7

*—)

s 7

(—)

 ̂ 7 s

<— X

Figure 4.5: Elimination of interior degrees of freedom

process can also take place at the subdomain level, giving a further improvement

in the condition number. We can also eliminate further interior degrees of free­

dom, leaving just the degrees of freedom associated with the boundary of the

domain, as in Figure 4.6.

92

X--------X-------)

X)

N f \ S \

f —

< X

' V N/A /

s
X

X------- X—)

C X

s— X------- X

X X X----

X

X

X X----- X— X----X

Figure 4.6: Further elimination of interior degrees of freedom

Mathematically, we have the following process. The uncondensed global sys­

tem K £ = G obtained effectively, has this block matrix form:

K =
K b b

i

, G =

1
CQ

«
€ b

,£ =
K i b K „ 1

*-«1 . €/ .

(4.1)

where K bb is the interaction of boundary degrees of freedom with boundary de­

grees of freedom, K Bi and K i b is the interaction of boundary degrees of freedom

with interior degrees of freedom and K u is the interaction of interior degrees of

freedom with interior degrees of freedom. So effectively we have:

K b b £ b + K b i£ i — G b

KjBts + Kn t j = G,

Rearranging equation (4.3) we get

€i = K ^ G j - K r fK jB tB

Substituting this into equation (4.2) we get

(4.2)

(4.3)

(4.4)

K b b£b —

(KBb — K b iKJj K i b)£b —

G b ~ K Bi (KJj G i - K j j K ib$,b) (4-5)

G b ~ K b iK J }G j . (4.6)

(4.7)

Doing this enables the boundary problem to be solved first (the Schur complement

problem). Let S = K bb — K b iKJj K i b , be the Schur Complement, and G s =

93

G b — K b iK j j G i , so we now have to solve

S i B = G s (4-8)

This is a better conditioned system so should not take as many iterations to solve.

It is also a smaller system so each iteration will not take as long. To calculate the

interior solution, £7, we just do a back solve, substituting the boundary solution,

£b , obtained from solving equation (4.8), into equation (4.4):

e , = K r f G i - K r f K IBe B

= K J i (G i — K i b£ b)-

This process can be done before we accumulate the local stiffness matrices

into the more global system. This makes the process simpler because the system

is smaller, .although we have to do this four times, but overall we do save a

considerable amount of time. Because of this, the order of static condensation

and subsequent accumulation of the local systems into the global system does not

m atter. Therefore, this process can be done in parallel, so what we have in effect

is a parallel direct solve. As we have gained so much from this approach, why do

we not eliminate all of the interior nodes in the mesh as this would result in a

much better conditioned and smaller system that would be easier to solve? The

problem is, that doing this static condensation is an expensive process as we have

many elementary row operations on a large matrix. We are effectively calculating

the inverse of the sub matrix K u . Therefore there must be some optimal amount

of condensation that can be done, where doing more elimination will result in a

system with a lower solve time but whose assembly time is higher, due to the

excessive condensation, thereby making the overall run time greater.

94

4.7.3 Iterative solvers

In iterative solvers we are not interested in the inverse itself but only in the action

of the inverse. They usually take the form

£ n + l = T n£ n + Cn> (4 - 9)

for some £o? often = 0? where Tn and cn are dependent on the chosen method.

Iteration is continued until some specified tolerance is reached. This is usually

specified as

- < e. (4.10)
H&ll { }

Direct solvers usually give the exact solution (to the accuracy of the underlying

floating point number, this will also depend on the condition number of the

matrix). However, we frequently do not require such a high accuracy (something

in the range 0.1% to 1% is usually sufficient) and so again by using an iterative

scheme we have reduced the work required to solve the equations.

Though direct solvers can produce very accurate results they cannot usually

take advantage of the sparsity that exists in the matrix obtained from the finite

element method. Both Gaussian elimination and factorisation produce fill in,

which results in a more populated inverse matrix — this can be a problem with

the very large matrices that are the result of calculating of using direct solvers.

It should be noted that, as previously mentioned, this may be the only way to

solve certain systems. However large systems are usually solved more efficiently

to a required tolerance using an iterative solver.

Iterative solvers can also be more effective if they are given a good initial

approximation, £0> of the solution to the system, in equation (4.9). This will help

to further reduce the number of iterations required. If we refine the mesh, we can

then make use of the solution from the previous mesh as the starting solution,

fo, in the current solve. The only time that this cannot be done, obviously, is

95

for the first mesh; but this usually will be a smaller, perhaps better conditioned

system anyway, so finding the first solution will not be so difficult.

There are now some powerful methods for iteratively solving asymmetric sys­

tems, for example, generalised minimum residual [54], and for other iterative

solvers [20, 36]

One of the most powerful iterative solvers used in the finite element method,

for positive definite systems, is the conjugate gradient method, which is detailed

below for the solution of the system = b.

The conjugate gradient algorithm

Further details of this are given in [16, 24, 40]

9 i 9 i (4.11)
d i - A d i ’

ii+i = L + ndi, (4.12)

9 i + i = 9 i + n A d h (4.13)
_ 9 j + 1 ' 9 j + 1

9 i ' 9 i

d>i+ 1 = 9i- i-i 4 “ (4 . 1 5)

f t = (4.14)
9 i ' 9 i

where g0 = A x0 — b and do = —g0. As can be seen, the most computationally

expensive step is the matrix vector product, steps involving Adn, so we would

like to minimise the number of iterations so as to minimise the amount of work.

This method converges within n iterations (if we use exact arithmetic) where n is

the dimension of the matrix, although it usually takes less than this to converge

to within the required tolerance, e. However, as already mentioned, the number

of iterations is greatly influenced by the condition number. The amount by which

the error is reduced with each iteration can be shown to be the ratio:

0 T + T • (4 ’16)

Obviously a smaller condition number implies a smaller number of iterations have

to be performed to get to within the required tolerance. We must therefore ask

96

the question, can the stiffness matrix be modified in some way to reduce the

condition number?

4.7.4 Preconditioning

The process of reducing the condition number of a given matrix is called precon­

ditioning. To get the most computational benefit from the preconditioning step

the conjugate gradient method must be modified slightly. A matrix, C, the pre­

conditioning matrix is introduced, to use the preconditioned conjugate gradient

method then C must be symmetric positive definite. For it to be an effective

preconditioner we should have that k(C~1K) k(K)

It is well known that the process of static condensation reduces the condition

number, so this is also an important part of the preconditioning step.

The preconditioned conjugate gradient algorithm

For details of this see [16, 24, 40].

where g0 = Axo — b, ho = C~lgo and do = —ho. The step (4.20) is the

preconditioning step. A simple, yet effective, preconditioner is diagonal scaling.

This is just the inverse of the leading diagonal of the matrix, C = diag K. A very

effective preconditioner is described in [5, 6] and [9, 11] show the preconditioner

in use on some test problems. The structure of the refinements in the mesh is

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

£i+1 — T T{di.

9 i + i = 9 i + n K d i

hi+i = C~lgi+l.
9 j + 1 • h j + i

d>i+ 1 — ^ i + l + Pidi,

97

used to construct the preconditioner; the tree structure that is discussed in this

thesis enabled it to be implemented easily.

4.8 Conclusions

The solvers detailed above form an integral part of the matrix library and the

finite element implementation as a whole. The solvers were implemented in such

a way tha t the addition of another matrix type would not require any modifica­

tion. Indeed, a distributed matrix has been implemented and used successfully

in several test problems.

The m atrix library detailed here forms an easily expandable, efficient and im­

plementation and platform independent library, that can be used throughout any

finite element implementation, or indeed any other time that a flexible matrix

library is required. For maximum flexibility and efficiency a number of matrix

types has been implemented. Indeed, during the course of the research a dis­

tributed m atrix and triangular matrix were also added to this library and have

been used successfully in a number of test cases. The distributed matrix uses

the process for solving described in Chapter 3. If the user wanted to use any of

the many sparse m atrix representations available then they would simply have

to derive a new type, from the base type, that encoded the new representation.

All of the operations (solvers, etc.) would be available for use immediately with

no further effort. So what we have done is to implement a new object orientated

m atrix library in Ada. This has far wider applications than just the finite element

programme which is the topic of discussion in this thesis.

W ith the introduction of further element types the extension of the matrix

type will be essential, especially the implementation of matrices that have large

zero and non zero blocks.

There is another powerful iterative solver that is often used for solving the

m atrix equation, this is multilevel [28, 56]. It has not been mentioned because

98

it was not considered as a part of this thesis, but as the implementation of the

subdomain is the tree structure then the implementation of this solver is a fairly

simple one.

99

Chapter 5

N um erical exam ples

In this chapter we will show the ideas discussed previously in this thesis fitting

together, and illustrating the benefits that are obtained by using a more flexible

data structure. To get the meshes that are shown in various figures, we used an

automatic refinement strategy [10, 11], this relies on a reliable estimate of the

error [7, 8, 49] being known. To get this estimate of the error we used a technique

based on the procedure described in [8]. Other refinement strategies exist, such

as tha t described in [51], in here they make use of the data structures described

in [32] and the error estimator from [49].

5.1 Scalar problems

Both of the examples in this section are scalar analogues for the equivalent prob­

lems in linear elasticity. Each example is over different domains, with boundary

conditions chosen so that the analytical solution can be determined. Each of the

solutions will have a singularity, but of different strengths. As the analytical solu­

tions are known, this enable us to compare the results with the analytical solution

to get the convergence rates for each of the methods that will be discussed.

1 0 0

5.1.1 Crack domain

Figure 5.1 shows the full domain for the crack problem, but because of symmetry

along the x-&xis shown we need only solve the problem on half of the domain.

We chose the upper half of the domain, this can be seen in Figure 5.2. The

y

► x

Crack

Figure 5.1: The full domain for the crack problem.

boundary conditions were chosen so that the true solution has the form:

u(r, 6) = rx cos A6. (5.1)

We will solve the domain with A = 1.5 and A = 0.5. This corresponds to different

strengths of singularity.

The meshes that are shown in Figures 5.4, 5.5, 5.7 and 5.8 were obtained

using the adaptive refinement strategy and error estimation procedure described

earlier.

1 0 1

E
rr

or

y

X

Figure 5.2: Half slit domain for scalar case.

+ — hp-version

— h-version

o — p-version

D egrees of Freedom

Figure 5.3: Convergence for the crack domain with A = 1.5.

1 0 2

Mesh 1 - Polynomial Degree [Min=1, Max=1]

y
a s
a 4

0.3

0.8

0.4

0.2

*T -0.6 *0.0 -0<l -02 0 ft* 0 4 0.5 OjS
Mesh 3 - Polynomial Degree [Min=1, Max=2]

03
as]
v1.4j

0,2

-1 -0.6 -OS -34 -02 0 0 ? 0 /i OS OS
Mesh 4 - Polynomial Degree [Min=1, Max=3]

0.3]

O.Sj

fti
0 2

Figure 5.4: Figures for the crack domain with A = 1.5. (red shading indicates

lower order, blue high order).

■34 •05? 3 C.2 0 4 O S 0 .0
Mesh 2 - Polynomial Degree [Min=1, Max=2]

103

- - -

Figure 5.5: Refinements for the crack domain with A = 1.5. (red shading indicates

lower order, blue high order).

104

Er
ro

r

10'

+ — hp-version

x — h-version

o — p-version

Number of DOFs

Figure 5.6: Convergence for the crack domain with A = 0.5.

105

Mesh 1 - Polynomial Degree [Min=1, Max=1]

-CX; -OS -0 4 *0? 0 C.S ft.A
Mesh 2 - Polynomial Degree [Min=1, Max=1]

a s o x

•C.6 -0 6 -0 4 <f> 0 C-S! OX
Mesh 3 - Polynomial Degree [Min=1, Max=1]

a s a s

-OX -0 8 -Cl.4 -OX 0 C ? OX
Mesh 4 - Polynomial Degree [Min=1, Max=1]

a s a x

Si ft -ft.4 3 t S ftS iiJb

Figure 5.fi: Refinements for the crack domain with A = 0.5. (red shading indicates

lower order, bluer high order).

106

Mesh 5 - Polynomial Degree [Min=1, Max=1]

-C.fi *5.6 -CM -0 2 3 3.5 O.'l
Mesh 6 - Polynomial Degree [Min=1, Max=2]

m CJti

-3.5 3 5 6 •
Mesh 7 - Polynomial Degree [Min=1, Max=3]

Oj3 fijfi

-C;,H -0 5 -CM .1 3 ? CM
Mesh 8 - Polynomial Degree [Min=1, Max=3]

<?.* C.<! 1

-5 5 -5 1 -0.5 ' 5 5 5 Si

Figure 5.fi: Refinements for the crack domain with A = 0.5. (red shading indicates

lower order, bluer high order).

107

5.1.2 L-shaped domain

The domain is shown in Figure 5.9. It represents a corner singularity. The

problem, with its boundary conditions, to be solved on this domain is:

u (ri i t) = 0 on 0 < r < 1, z

u(r, 0) = 0 on 0 < r < 1,

—Au = 0 in Q (5.2)

(5.3)

(5.4)

_ _ = r » • n ondn, (5.5)
cos \e y

where dn is the boundary on which we have Neumann boundary conditions. This

problem has the following analytical solution:

The meshes tha t are shown in Figure 5.10 were obtained using the adaptive

refinement strategy and error estimation procedure already described.

Figure 5.11 shows a comparison in the performance of the h and hp methods.

As can be seen the hp-method quite easily outperforms the h-method, in terms

of error versus degrees of freedom. Figure 5.12 shows a group of curves that

correspond to increasing the polynomial degree uniformly on a sequence of meshes

refined with the 0.15 type refinements respectively.

(5.6)

1 0 8

y

u = 0

u = 0

Figure 5.9: The domain for the L-shaped domain for scalar problems.

109

MESH 1 - Polynomial Degree [Min=1, Max=1] MESH 2 - Polynomial Degree [Min=1, Max=2]

-0.5 -0.5

MESH 3 - Polynomial Degree [Min=1, Mai=3] MESH 4 - Polynomialbegree (Min=1, Mal<=4]

-0.5

MESH 5 -'Polynomial'Degree ,;fMln=1, Majt=5]

0.5

-O.S

Figure 5.10: Refinements for the L-shaped domain (red shading indicates lower

order, blue high order).

MESH 6 - Polynomial begree [Min=1, Mal<=6]

110

>N
©c0)
c
o
ui

- Adaptive h

to'4 x — Adaptive hp

Number of degrees of freedom

10"2>.o>a>c<DC
HI

— Adaptive h

x — Adaptive hp

20 30 40
sqrt (Number of d eg rees of freedom)

50 70

Figure 5.11: Comparison of rates of convergence obtained using the automatic h
and /ip-refinement strategies to solve the L-shaped domain problem.

I l l

a>c
®c
o
W

x — Adaptive hp

Number of of freedomdegrees

10*1

x — Adaptive hp

20 30 40
sqrt (Number of deg rees of freedom)

50 70

Figure 5.12: Convergence curves for the various versions of the finite element
method applied the the scalar L-shaped domain problem. The group of curves
correspond to a uniformly increasing p on a sequence of meshes refined geomet­
rically towards the origin with a grading factor of 0.15. The single curve is that
obtained from using the automatic /ap-refinement strategy. The plots are shown
on different scales.

1 1 2

5.1.3 Conclusions

The hp-method is usually superior, in terms of degrees of freedom versus error,

to the other methods used. When it is not it is as good as the better of the two

methods.

113

5.2 Linear elasticity L-shaped domain problems

We now show the data structure and the refinement strategy applied to a system

of equations, tha t of linear elasticity. The equations for linear elasticity, for plane

strain, are:

E{ 1 - is2)
l - 2 i s

d2u 1
+

2is d2u
+

1 d2v
dx2 2(1 — is) dy2 2(1 — is) dxdy

1 d2u 1 — 2v d2v d2v
+ t t : --------- r T T T +

- F x
(5.7)

2(1 — is) dxdy 2(1 — is) dx2 dy2 .

where u and v represent the x — and y —displacements respectively. E is Young’s

modulus and is is Poisson’s ratio. For our problems we have chosen E = 1

and v = 0.3. Derivation of the equation (5.7) can be found in [60, 61, 65], and

analysis of the following solution to the elasticity equations can be found in [60].

We will see numerics for what are known as mode 1 and mode 2 solutions, these

correspond to varying strengths of singularity in the solution.

5.2.1 L-shaped domain, mode 1 solution

The domain is shown in Figure 5.13. In both of the examples, this one and the

mode 2 solution, we have the definition (as we are doing plane strain)

k = 3 — 4is

and

G =
E

2 (1 + is)

We have the following solution of the equation (5.7) in polar coordinates (r, 6):

u = [(k — Q(X + 1)) cos A0 — Acos(A — 2)6]
2G

v = - ^ r x [(« + Q(X + 1)) sin \6 + Asin(A — 2)6]
2G

114

y

► X

Figure 5.13: Geometry for L-shaped domain.

115

Mode A Q Energy
1 0.5444837367825 0.5430755788367 4.154544
2 0.9085291898461 -0.2189232362488 0.655806

Table 5.1: Table of values, v = 0.3, E = 1.0.

this gives Fx = Fy = 0. At the point A on the domain we have 0 = 0, this enables

us to fix v to be zero at this point. The stress components for mode 1 are

ax = ArA_1 [(2 — Q (A -I-1)) cos(A — 1)0 — (A — 1) cos(A — 3)0],

G y — Ar A_1 [(2 + Q (A + 1)) cos(A — 1)0 + (A — 1) cos(A — 3)0],

T x y = ArA_1 [(A — 1) sin(A — 3)0 + Q (A + 1) sin(A — 1)0],

(5.8)

(5.9)

(5.10)

where A is a solution of the following equation

37T . 37T
sin A— + A sm — = 0,

and Q is defined to be:

37T
cos(A - 1)

Q = 7\ =cos(A + 1) —
4

• (\ i \ 3 7r

A + 1 . (, . ^ 3 ^ * sin(A + 1) —
4

The choice of A here, taken from Table (5.1), gives a very severe singularity at the

point A in Figure 5.13. Equations (5.8) to (5.10) give us the following boundary

conditions:

d u

d n

n, 0 n,

0 ny na
Gy

Txy

(5.11)

where u = (u, v) and n = (nx,n y) is the outward normal. The numerical

values for A and Q and the strain energy can be found in Table (5.1). The meshes

obtained from using the adaptive refinement strategy are shown in Figure 5.14,

from these we get the convergence plots, Figure 5.15.

116

MESH 1 - Polynom ial D eg ree [Min=1, Max=1] MESH 3 - Polynom ial D eg ree [Min=1, Max=2]

0 1 2
MESH 7 - Polynom ial D egree [Min=2, Max=2]MESH 5 - Polynom ial D eg ree [Min=1, Max=2]

i •:* •' 2
MESH 8 - Polynom ial D eg ree [Min=2, Max=2]

-I 0 1 2
MESH 9 - Polynom ial D eg ree [Min=2, Max=3]

Figure 5.14: Adaptive hp meshes for mode 1 singularity, red elements indicate

low order elements, blue high order.

117

Er
ro

r
in

E
ne

rg
y

-2
Uniform h

Uniform p

Adaptive h

Adaptive hp

>-3

Number of D egrees of Freedom

Figure 5.15: Convergence Plots for mode 1 L-shaped domain singularity.

118

5.2.2 L-shaped domain, m ode 2 solution

We also have the following solution of equation (5.7) corresponding to the mode

2 solution in polar coordinates (r, 0):

1
u —

2 G r [(/c — Q (A + 1)) sin A0 — A sin(A — 2)6]

v = — — rx [(« + Q(X + 1)) cos XO + Acos(A — 2)9]
2G

At the points A in the domain we have that 9 = 0, this enables us to set u = 0,

the x —displacement, here. The stress components for mode 2 are:

ox — ArA-1 [(2 — Q(X + 1)) sin(A — 1)0 — (A — 1) sin(A — 3)9] (5.12)

ay = Xrx~l [(2 + Q(X + 1)) sin(A — 1)9 + (A — 1) sin(A — 3)9] (5.13)

—ArA_1 [(A — 1) cos(A — 3)0 + Q(A + 1) cos(A — 1)0]T-xy (5.14)

This tim o A is a solution of the following equation:

. 3n . Sir
sin A—— Asm — = 0

2 2

and Q is defined to be:

37T
sin(A — 1)

Q = ---------------
sin(A + 1)

37r

r \ u 3?r A_ lCo s (A - l) —

A + l /X , iA3?rcos(A + l) —

The choice of A here, taken from Table (5.1), gives a less severe singularity than

the mode 1 solution. Equations (5.12) to (5.14) give us the following boundary

conditions:

d u

d n

n . 0 n ,

0 Thy Thx

Ox

Gy

T x y

(5.15)

where u = (u , v) and n = (nx , ny) is the outward normal. Again, the numerical

values for A, Q and the energy can be found in Table (5.1). The meshes obtained

from performing the adaptive refinement strategy are shown in Figure 5.16, from

these we get the convergence plots, Figure 5.17.

119

M ESH 1 - Polynom ial D eg ree [Min=1, Max=1] MESH 3 - Polynomial D egree [Min=1, Max=1]

0 '
- Polynom ial D egree [Min=2,

2
Max=2]

-2 1 1
-1 0 1 2
MESH 6 - Polynom ial D eg ree [Min=2, Max=3]M ESH 5

U it 2
MESH 7 - Polynom ial D eg ree [Min=2, Max=3]

- f Q 1 2
MESH 8 - Polynomial D eg ree [Min=2, Max=4]

W . W . T

"-1 0 2 1 -t 0 1 2
Figure 5.16: Adaptive hp meshes for mode 2 singularity, red elements indicate

low order elements, blue high order.

120

Er
ro

r
in

E
ne

rg
y

.-4

Uniform h

Uniform p

Adaptive h

Adaptive hp

-5

Number of D egrees of Freedom

Figure 5.17: Convergence Plots for mode 2 L-shaped domain singularity.

1 2 1

5.2.3 Conclusions

We have to conclude tha t the best approach for the refinements, in terms of the

minimum error for the minimum numbers of degrees of freedom, is to use an

/ip-refinement.

1 2 2

5.3 Linear elasticity cracked domain problems

As in the previous section, we will be testing the data structure and the refinement

strategy for a system of equations, and as before it will be for plain strain linear

elasticity. Our equation is

V

Crack

Figure 5.18: The geometry of the domain for the crack problem.

d2v
E (1 - v2)

1 — 2i/

d2u 1 — 2v d2u
+ ^ r ~ z r +

1
dx2 2(1 — v) dy2 2(1 — v) dxdy

1 d2u I — 2v d2v d2v
+ ------ r ~ ̂+

~F X

-F„
(5.16)

2(1 — u) dxdy 2(1 — v) dx2 ' dy2
where u and v represent the x — and y —displacements respectively, E is Young’s

modulus and v is Poisson’s ratio, which for our problems we have chosen to be

123

v — 0.3 and E = 1.0.

5.3.1 Crack domain, m ode 1 solution

We have the following solution of the equation (5.16) in polar coordinates (r, 0):

u = - ^ r x [(« — Q(X + 1)) cos A0 — Acos(A — 2)0]
26r

v = [(« + Q(A + 1)) sin A0 + Asin(A — 2)0]
2G

this gives Fx — Fy = 0. At the point A on the domain we have 9 = 0 this enables

us to fix v to be zero at this point. The stress components for mode 1 are:

Ox — ArA_1 [(2 — Q(X + 1)) cos(A — 1)9 — (A — 1) cos(A — 3)0],

Gy = ArA_1 [(2 + Q(A + 1)) cos(A — 1)9 + (A — 1) cos(A — 3)0],

Txy = ArA_1 [(A — 1) sin(A - 3)0 + Q (A + 1) sin(A — 1)0].

From (5.11) we again get the boundary conditions. Here A is a solution of the

following equation:

sin A27T = 0;

this gives (for both mode 1 and mode 2 solutions):

A = ± i , ±2, ± ^ , . . . (5.17)

and Q is defined to be:

cos(A — 1) 7r A — 1 sin(A — 1)t

cos(A + 1) 7T A + 1 sin(A + l)7r ’

124

5.3.2 Crack domain, m ode 2 solution

We also have the following solution of the equation corresponding to mode 2

solution in polar coordinates (r, 0):

u = i r A [(« — Q(X + 1)) sin A0 — Asin(A — 2)0]
2G

v = — ̂ r x [(k + Q(X + 1)) cos X9 + Acos(A — 2)9}
2G

At the point A on the domain we have 0 = 0 this enables us to set u = 0, the

^-displacement, at this point. The stress components for mode 2 are:

ax = ArA_1 [(2 — Q(X + 1)) sin(A — 1)0 — (A — 1) sin(A — 3)0],

Gy = ArA_1 [(2 + Q(A + 1)) sin(A — 1)0 + (A — 1) sin(A - 3)0],

rxy = —ArA_1 [(A — 1) cos(A — 3)0 + Q (A + 1) cos(A — 1)0],

and Q is defined to be:

_ sin(A — l)7r A — 1 cos(A — 1)7T
sin(A + l)7r A + 1 cos(A + l)7r ’

from (5.15) we again get the boundary conditions. Figure 5.18 shows the domain

approximated on. Figure 5.19 shows a comparison of the rates of convergence of

the 0.15 type grading and 0.5 grading; both are hp-refined meshes. Figures 5.20

and 5.21 show the meshes obtained.

5.3.3 Conclusions

As in the previous chapter we conclude again that the best approach is to do

a combination of h- and p-refinements. The best refinement strategy around

singularities is that to use the 0.15 type refinements and increase p the polynomial

degree in the outer elements, this is in agreement with the theory, predicted in

[18]. Figure 5.21 shows the use of the connectivity mapping for a 0.15 constraint.

125

o>
2«
c

Illi

+ — Adaptive hp with 0.15 refinem ents

x — Adaptive hp with 0.5 refinem ents

N um ber of d e g re e s of freedom

— Adaptive hp with 0 .15 refinem ents

— Adaptive hp with 0.5 refinem ents

>.
S>
S
®
c

20
sqrt (N um ber of d eg re e s of f reed o m)

40

Figure 5.19: Comparison of the rates of convergence of the 0.15 type grading and
0.5 grading, both are /ip-refined meshes.

126

MESH 2 - Polynomial D egree [Min=1, Max=1] MESH 4 - Polynomial D egree [Min=1, Max=1]

Polynomial D egree Min^
■'ti M VtUfcP

10 - Polynom ial D egree [Min: rolynomial D egree [Min:

Figure 5.20" Successive meshes obtained from the Tip-adaptive strategy, with

grading factor, a = 0.5, red elements indicate low order elements, blue high

order.

'olynomial D egree

127

MESH 1 - Polynomial D egree [Min=1, Max=1] MESH 2 - Polynomial D egree [Min=1, Max=2]

-0-5

MESH 3 - Polynom ial:D egree [Min=1, Max=2] MESH 4 -Polynom iaR D egree [Mifi=1, Max=2]

MESH 7 - Polynomial D egree [Min=1, Max=4] MESH 12-& Polynomial' D egree (Min=1, Max=5]

C.01

5.005
X :■ - 4 - . -

: s. m ■

V i ': ; ' : ' .

' ■ M . . . L

-0,335

M •
Figure 5.21: Successive meshes obtained from the /^-adaptive StKtegy, with

grading factor, a = 0.15, red elements indicate low order elements, blue high

order.

128

Bibliography

[1] Matlab, Language reference manual, The Math Works, Inc., (1996).

[2] NAG Fortran Library, Numerical Algorithms Group Ltd., (1990).

[3] Getting started with M SC/NASTRAN, The MacNeal-Schwendler Corpora­

tion.

[4] ProPHLEX User manuals, Hibbitt, Karlsson and Sorensen, Inc.

[5] M. A i n s w o r t h , A Preconditioner Based on Domain Decomposition for h-p

Finite-Element approximation on Quasi-Uniform Meshes, SIAM J. Numer.

Anal., 33, (4), pp. 1358-1376, (1996).

[6] M. A i n s w o r t h , A Hierarchical Domain Decomposition Preconditioner

for h-p Finite Element Approximation on Locally Refined Meshes, SIAM

Journal of scientific computing, pp. 1395-1413, 17, (6), (1996).

[7] M. A i n s w o r t h a n d J. T . O d e n , A Procedure for A Posteriori Error

Estimation for h —p Finite Element Methods, Computer Methods in Applied

Mechanics and Engineering, pp. 73-96, 101, (1-3), (1992).

[8] M. A i n s w o r t h a n d J. T . O d e n , A posteriori error estimation in finite

element analysis, Computer Methods in Applied Mechanics and Engineering,

pp. 1-88, 142, (1-2), (1997).

129

[9] M. A i n s w o r t h , D. A n d r e w s a n d B. S e n i o r , Preconditioners for the

Adaptive hp-version Finite Element Method, Proceedings of The Mathem­

atics of Finite Elements and Applications, John Wiley and Sons, pp. 81-91,

(1997).

[10] M. A i n s w o r t h a n d B. S e n i o r , An Adaptive Refinement Strategy for hp-

Finite Element Computations, Applied Numerical Mathematics, pp. 165—

178, 2 6 , (1-2), (1998).

[11] M. A i n s w o r t h a n d B. S e n i o r , Aspects o f an Adaptive hp-Finite Ele­

ment Method: Adaptive Strategy, Conforming Approximation and Efficient

Solvers, Computer methods in applied mechanics and engineering, pp. 65-87,

1 5 0 , (1-4), (1997).

[12] M. A i n s w o r t h a n d B. S e n i o r , hp-Finite Element Procedures on Non-

Uniform Geometric Meshes: Adaptivity and Constrained Approximation, To

appear in Proceedings of IMA Workshop on Mesh Generation and Adaptive

Methods for PDEs (to appear).

[13] J. E. A k i n , Finite element for analysis and design, Academic Press, (1994).

[14] J. E. A k i n , Finite element analysis for undergraduates, Academic Press,

(1986).

[15] E. A n d e r s o n , Z. B a i , C. B i s c h o f , J. W . D e m m e l , J. J. D o n g a r r a ,

J. D u C r o z A . G r e e n b a u m , S . H a m m a r l i n g , A . M c K e n n e a n d D.

S o r e n s e n , LAPACK: A portable linear algebra library for high-preformance

computers, Computer science dept, technical report CS-90-105 University of

Tennessee, (1990).

[16] O . A x e l s s o n a n d V. A. B a r k e r , Finite Element Solution o f Boundary

Value Problems, Academic Press, Inc., (1984).

130

[17] I. B a b u s k a , H. C. E l m a n a n d K . M a r k l e y , Parallel Implementation of

the hp-Version of the Finite Element Method on a Shared Memory Architec­

ture, SIAM Journal on Scientific and Statistical Computing, pp. 1433-1459,

1 3 , (6), (1992).

[18] B a b u s k a , I. a n d S u r i , M a n i l , The h-p version o f the Gnite element

method with quasi-uniform meshes, RAIRO Modelisation Mathematique et

Analyse Numerique, pp. 199-238, 21, (2), (1987).

[19] B a b u s k a , I v o a n d S u r i , M a n i l , The p- and h-p versions o f the Gnite

element method, an overview, Computer Methods in Applied Mechanics

and Engineering, 8 0 , (1-3), pp. 5-26, (1990).

[20] Z. J. B a i , D. D a y , J. D e m m e l , J. D o n g a r r a , M. G u a n d A. R u h e ,

Templates for Linear Algebra Problems, Lecture Nodes in Computer Science,

p p . 115-140, 1 0 0 0 , (1995)

[21] J . B a r n e s (E d .) , Ada 95 rationale, The language, The standard libraries,

Springer, (1997).

[22] J . B a r n e s , Programming in Ada 95, Addison-Wesley Publishing Company,

(1996).

[23] E. B a r r a g y a n d F . C a r e y , A Parallel Element by Element Solution

Scheme, International journal for numerical methods in engineering, pp.

2367-2382, 26, (1988).

[24] R. B a r r e t , M. B e r r y , T. F . C h a n , J . D e m m e l , J . D o n g a r r a , V.

E i j k h o u t , R . P o z o , C . R o m i n e a n d H . V a n d e r V o r s t , Templates for

the solution o f linear systems: Building blocks for iterative methods, SIAM,

(1994).

[25] E . B . B e c k e r , G . F . C a r e y a n d J . T . O d e n , Finite elements: An

introduction, Volume 1, Prentice-Hall, Inc, (1981).

131

[26] G. B o o c h , Object-Oriented Analysis and Design with Applications, second

edition, The Benjamin/Cummings Publishing Company, Inc., (1994).

[27] G. B o o c h , Software Components with Ada, Structures, Tools, and Subsys­

tems, The Benjamin/Cummings Publishing Company, Inc., (1987).

[28] J . H. B r a m b l e , Multigrid methods, Pitman, (1993).

[29] R. L. B u r d e n a n d J. D. F a i r e s , Numerical Analysis, Fourth Edition,

PWS-Kent, (1989).

[30] A. B u r n s a n d A. W e l l i n g s , Concurrency in Ada, Cambridge University

Press, (1995).

[31] L. D e m k o w i c z , A modified FE assembling procedure with applications to

electromagnetics, acoustics and hp-adaptivity, The Mathematics of Finite

Element Applications, pp. 93-102, (1997).

[3 2] L. D e m k o w i c z , J. T . O d e n , W . R a c h o w i c z a n d O . H a r d y , Towards

a Universal h-p Adaptive Finite Element Strategy, Part 1. Constrained Ap­

proximation and Data Structure, Computer methods in applied mechanics

and engineering, pp. 7 9 - 1 1 2 , 77, (1 - 2) , (1 9 8 9) .

[3 3] J. D e m m e l , LAPACK - A Portable Linear Algebra Library for High-

Performance Computers, Concurrency-Practice and Experience, pp. 655-

666, 3, (6), (1991)

[34] J. D o n g a r r a a n d J. D e m m e l , L A P A C K -A Portable High-Performance

Numerical Library for Linear Algebra, Supercomputer, pp. 33-38, 8, (6),

(1991)

[35] J. D o n g a r r a , R. P o z o a n d D. W a l k e r , LAPACK++: High perform­

ance linear algebra, University of Tennessee, (1996).

132

[36] J a c k D o n g a r r a a n d A n d r e w L u m s d a i n e , IML++: Iterative methods

library reference guide, (1996).

[37] I. S. D u f f , A. M. E r i s m a n a n d J. K. R e i d , Direct methods for sparse

matrices, Oxford Science Publications, (1992).

[38] B. W . R. F o r d e , R. O. F o s c h i a n d S. F . S t i e m e r , Object-oriented

finite elememt analysis, Computers and Structures, pp. 355-374, 34, (1990).

[39] A l G e i s t , A d a m B e r g u e l i n , J a c k D o n g a r r a , W e i c h e n g J i a n g ,

R o b e r t M a n c h e k a n d V a i d y S u n d e r a m , PVM: Parallel Virtual Ma­

chine, A users guide and tutorial for networked parallel computing, The MIT

Press, (1994).

[40] G. H. G o l u b a n d C. F. V a n L o a n , Matrix Computations, The Johns

Hopkins University Press, (1989).

[41] D. M. H a w k e n , P. T o w n s e n d a n d M. F. W e b s t e r , The use o f dy­

namic data structures in Unite element applications, International journal

for numerical methods in engineering, pp. 1795-1811, 33, (1992).

[42] C. J o h n s o n , Numerical solution o f partial differential equations by the

finite element method, Cambridge University Press, (1987).

[43] D. K a y , The p - and hp-finite element method applied to a class o f non­

linear elliptic partial differential equations, Thesis, Leicester University,

(1997).

[44] D. K i n c a i d a n d W . C h e n e y , Numerical analysis, second edition,

Brooks/Cole publishing company, (1996).

[45] E d i t e d b y W i l l L i g h t , Advances in Numerical Analysis, Oxford Uni­

versity Press, (1991).

133

[46] T . J . L i s z k a , An introduction to hp-adaptive Gnite element method, A

COMCO technical report, (1995).

[47] T . J. L i s z k a , W . W . T w o r z y d l o , J. M. B a s s , S. K. S h a r m a , T.

A. W e s t e r m a n n a n d B . B . Y a v a r i , ProPHLEX - An hp-adaptive Gnite

element kernel for solving coupled systems o f partial differential equations

in computational mechanics, Computer Methods in Applied Mechanics and

Engineering, pp. 251-271, 150, (1-4), (1997).

[48] M a c k e n z i e , J. A. a n d M o r t o n , K. W ., Finite volume solutions o f

convection-diffusion test problems, Mathematics of Computation, pp. 189-

220, 60, (201), (1992).

[49] J . T . O d e n , L . D e m k o w i c z , W . R a c h o w i c z a n d T . A. W e s t e r m a n n ,

Towards a Universal h-p Adaptive Finite Element Strategy, Part 2. A Pos­

teriori Error Estimation, Computer methods in applied mechanics and en­

gineering, pp. 113-180, 77, (1-2), (1989).

[50] R . P o z o a n d K. A. R e m i n g t o n , SparseLib-h-h v. 1.5, sparse m atrix class

library reference guide, (1996).

[51] W . R a c h o w i c z , J. T . O d e n a n d L . D e m k o w i c z , Towards a Universal

h-p Adaptive Finite Element Strategy, Part 3. Design o f h-p Meshes, Com­

puter methods in applied mechanics and engineering, pp. 181-212, 77, (1-2),

(1989).

[52] U. R u d e , Data Structures for Multilevel Adaptive Methods and Iterative

Solvers, www.mgnet.org/mgnet-papers.html, (1992).

[53] U. R u d e , Data Abstraction Techniques for Multilevel Algorithms, Prepared

for the proceedings of tha GAMM seminar on Multigrid methods, (1993).

134

http://www.mgnet.org/mgnet-papers.html

[54] S a a d , Y o u c e f a n d S c h u l t z , M a r t in H., GMRES: a generalized min­

imal residual algorithm for solving nonsymmetric linear systems, SIAM

Journal on Scientific and Statistical Computing, pp. 856-869, 7, (3), (1986).

[55] S. P . S c h o l z , Elements o f an object-oriented FEM++ program in C++,

Computers and Structures, pp. 517-529, 43, (1992).

[56] B. S m i t h , P. B j o r s t a d a n d W . G r o p p , Domain decomposition: Paral­

lel multilevel methods for elliptic partial differential equations, Cambridge

University Press, (1996).

[57] I. M. S m i t h a n d D. V. G r i f f i t h s , Programming the Finite Element

Method, John Wiley and Sons, (1982).

[58] A. H. S t r o u d a n d D. S e c r e s t , Gaussian Quadrature Formulas, Prentice-

Hall, Series in Automatic Computation, (1966).

[59] B. S t r o u s t r u p , The C++ programming language second edition, Addison-

Wesley publishing company, (1991).

[60] B. S z a b o AND I. B a b u s k a , Finite Element Analysis, John Wiley and Sons,

Inc., (1991).

[61] S. P . T i m o s h e n k o a n d J. N. G o o d i e r , Theory of Elasticity, McGraw-

Hill Book Company, (1970).

[62] S. T u c k e r T a f t a n d R. A. D u f f (E d s .), Ada 95 reference manual,

Language and standard libraries, Springer, (1997).

[63] A. J . W a t h e n , An Analysis o f some Element by Element Techniques,

Computer methods in applied mechanics and engineering, pp. 271-287, 74,

(1989).

[64] D. S. W a t k i n s , Fundamentals o f Matrix Computations, Wiley, (1991).

135

[65] M. L. W il l i a m s , Stress Singularities Resulting from Various Boundary

Conditions in Angular Corners o f Plates in Extension, Journal of Applied

Mechanics, (1952).

[66] Z e g l i n s k i G o r d o n W . a n d H a n R ay P . S., Object oriented matrix

classes for the use in a finite element code using C++, International journal

for the numerical methods in engineering methods in engineering, pp. 3921—

3937, 37, (1994).

[67] T. Z i m m e r m a n n , Y. D u b o is - P e l e r i n a n d P. B o m m e , Object-oriented

Gnite element programming: I. Governing principles, Computer methods in

applied mechanics and engineering, pp. 291-303, (1992).

[68] T. Z i m m e r m a n n , Y. D u b o is - P e l e r i n a n d P. B o m m e , Object-oriented

Gnite element programming: II. A prototype in Smalltalk, Computer meth­

ods in applied mechanics and engineering, pp. 361-397, (1992).

136

