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ABSTRACT

The Development of an Expert System and Adaptive Process Models for 
Hot Mill Setup 

Ian Robinson

A study was performed to develop new techniques for rolling mill setup and supervisory 
control. The study was based around three main components, namely a mathematical 
model of the process, its associated adaptation and an expert system. A novel architecture 
was developed to integrate the three components into a setup control system, along with 
some additional functions. The objective of the mill setup system is to determine the 
optimum mill actuator set points and control targets prior to the rolling of the slab. It is the 
function of the mill setup and supervisory control system to ensure that the material 
produced is of prime quality and that a high productivity level is achieved.

The novel control architecture incorporates three main components. Firstly, process models 
are used to predict the states of the rolling process prior to rolling. These models predict 
the rolling load, motor power and strip temperature, thermal camber of the work rolls, 
deflection of the mill stack and the profile and shape of the strip. Adaptation ensures that 
there is good agreement between measurements and the model predictions. The adaptation 
is split into two main levels. A Kalman filter is used to predict short term errors in the 
process model from one pass to the next. Long term variations in the process are tracked 
using the recursive least squares algorithm. Finally the expert system is used to schedule 
the mill, diagnose possible faults occurring within the process and to supervise the 
activities of the other components in the control system.

The system is demonstrated in simulation and comparisons are made with and without the 
expert system control. The results show that there are distinct improvements to be gained 
with the application of artificial intelligence to an industrial control problem, in this case 
a hot aluminium rolling mill.
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NOMENCLATURE

A strip cross sectional area

Ab = back-up roll cross sectional area

A,B,C = state transition matrices

Aw = work roll cross sectional area

a = set of model parameters

B length of work barrel

C strip crown

Cdf = roll deflection

Cfl = roll flattening

c  =v 'mech mechanical crown of rolls

Cp, = specific heat of strip

Cp2 = specific heat of roll

Cjh = thermal crown

E motor power

Eb = back-up roll Young’s modulus

Ew = work roll Young’s modulus

e 2 = Young’s modulus of work roll

f forward slip

f total horizontal force acting on a g

G torque

Gb = back-up roll shear modulus

Gw work roll shear modulus

h, entry strip thickness

h2 = exit strip thickness

hm = average strip thickness in roll bite

hn strip thickness at neutral plane

Ib back-up roll moment of inertia

Iw work roll moment of inertia

J cost function
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error covariance matrix 
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geometric factor in load model 
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TL = Leidenfrost temperature

Tw = coolant wash temperature

Twi = strip temperature into entry wash

Tw2 = strip exit temperature from exit w
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t 2 = final strip temperature for pass
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V = noise on system measurements
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V2 = exit strip speed

Vm = mill speed

W = strip width
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a = alloy strength factor

a, = thermal diffusivity of strip

a2 = thermal diffusivity of roll
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€ = strain

e = strip shape (I units)

8 = strip strain (shape)

€i = strip emissivity
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4> = length of strip perimeter
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CHAPTER 1

Introduction

Recent years have seen a rapid increase in the computational capabilities of industrial 

control systems. Consequently complex control algorithms are now used in many processes 

that would not have been possible 20 years ago. Accurate mathematical models are now 

run in real time alongside the process in both the closed loop controllers and their 

associated supervisory systems. There is, however, always the need for these models to 

incorporate an adaptation scheme that will maintain and further improve the model 

performance. Model inaccuracies may lie in both the input data and internal model 

structure and it is the values of these components that adaptation will aim to adjust to attain 

optimum model performance.

The increase in the use of computer technology has resulted in an upsurge of interest in the 

area of artificial intelligence (AI). AI concepts and algorithms that were developed earlier 

this century are now being put to the test. The notion that intelligence can be embedded 

into an industrial control systems is indeed an exciting prospect. The goal of an entirely 

intelligent machine is still a remote prospect. However, some degree of intelligence has 

been incorporated into industrial control systems using such techniques as fuzzy logic, 

neural networks and expert systems. It is the latter which is of interest in this thesis.
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The industrial application in this thesis is the hot rolling of aluminium. This thesis 

introduces an architecture for the integration of an expert system, process models and 

adaptation. The knowledge base within the expert system stores strategies which an 

experienced operator would use to ready the rolling mill to roll aluminium. The models 

provide forward predictions of process parameters, while the adaptation ensures model 

accuracy is maintained.

Chapter 2 contains background information on the various processing routes involved in 

forming aluminium into thin strip, in particular hot and cold rolling and strip casting. The 

chapter goes on to describe the parameters used to define the quality of the strip produced 

from the metal forming processes. The various levels of control within a hot mill are 

discussed together with some examples of mill actuation and instrumentation. The position 

of the control system described in this thesis within the overall process control hierarchy 

is defined, together with an illustrative example of how correct control leads to better 

performance. The chapter concludes with a survey of the literature relevant to this thesis.

In Chapter 3, the process models used within the control system are defined. An overview 

is first presented of the four primary process model blocks that describe the rolling process. 

These four model blocks are used to predict the rolling load, the main motor power and the 

strip temperature, thermal camber of the work rolls, the deflection of the mill stack and 

finally the profile and shape of the strip. Each model is discussed in detail in separate 

sections within this chapter.

The accuracy of the models, discussed in Chapter 3, is maintained with the use of 

adaptation and this is described in Chapter 4. The chapter begins by explaining why there 

is the need for adaptation and demonstrates how it interacts with the process models. It then 

goes on to define the method of producing first order derivatives needed when adapting the 

models. Later sections discuss the two levels of adaptation that track long term and short 

term variations within the process. The chapter concludes with a description of some 

implementation considerations that must be made to adapt the models in an on-line 

application.
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Chapter 5 demonstrates how an expert system is used to encapsulate operator strategies and 

control rules into a knowledge base. The first section introduces the concepts of AI and 

shows why the rolling process is a suitable application for AI techniques. The primary 

components of an expert system are described together with some examples of typical 

language constructs. The knowledge base within the rolling mill expert system is defined 

and it is shown how the strategies and rules have been grouped into three main blocks. 

These are used to store strategies concerning mill scheduling, diagnostics and monitoring 

model and adaptation performance. Each of the rule groups is described in a separate 

section within the chapter. The concluding section presents the novel architecture that 

integrates the expert system with the process models and adaptation. Other constituents of 

the control system are also described here.

Finally Chapter 6 presents the conclusions from the work presented in this thesis. The 

original aspects of the work are highlighted, in particular the novel architecture that 

encapsulates a combination of technologies into one system. The thesis demonstrates an 

innovative approach to the control of the rolling process using an expert system. The 

references are listed at the end of the thesis, together with a list of the author’s publications 

related to this thesis and to the subject of metal rolling.

It is the aim of this thesis to demonstrate how some of the control tasks required for 

supervisory control can be co-ordinated using an expert system. The main functions 

required at the supervisory level are:

I) A set of control strategies for setting the actuator set points prior to rolling.

ii) A suite of process models and their associated adaptation schemes, along with control 

of the updating of the adaptation algorithms.

iii) Measurement diagnostics and validation.

iv) Selecting suitable targets for the closed loop controllers.
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CHAPTER 2

Background

This chapter gives an introduction to the processes involved in forming aluminium into thin 

strip. The principal metal forming techniques are casting and rolling. Alting [1] provides 

a summary of the manufacturing routes. A number of different combinations of these 

processes are required to produce strip of the desired thickness, surface finish and 

microstructure. Further processing of the strip may be necessary to either alter its surface 

finish or its metallurgical properties. Davis [2] gives detailed information about aluminium 

alloy composition and characteristics. The desired physical properties of the final 

aluminium product will be dependent upon its final application. The end use for the 

aluminium strip or foil include, beverage can production, the automotive industry, 

household aluminium foil and building construction. Hayter [3] and IOM [4] provide some 

illustrative examples of aluminium products. Although the specific application of each of 

these end users is different, each requires aluminium strip of the highest quality. In 

particular they demand consistency in the material's surface finish, geometry and 

metallurgy.

The manufacturers of flat, rolled products are driven by an economic need to maintain the 

highest efficiency possible, see Nussbaum [5] and Frampton [6]. This efficiency will be 

based upon the amount of high quality strip they produce, the production rates and the 

amount of scrapped material, for example see Barnes [7]. To further complicate the 

problem the production of a variety of final products is commonly required in a single
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production line. These products are distinguished from one other by the particular 

aluminium alloy, strip width and finish gauge. In the production environment, aluminium 

products are grouped into batches and it is rare that the process will reach a completely 

steady state condition.

During each processing stage that the strip undergoes, careful control is required of both 

the strip's geometry and metallurgy as outlined by Brooks [8]. Traditionally experienced 

operators are used, who using their own knowledge of the process are able to manually 

control the various process variables to meet the quality conditions. With the drive to 

become more efficient, aluminium producers are seeking to install automatic control 

systems which remove process variability.

The first section of this chapter presents an overview of the hot rolling process which is the 

main focus of attention in this thesis. Also described is cold rolling which is down stream 

of the hot rolling process. Consequently control on the hot mill will have a direct influence 

on how the cold mill is controlled. The second section outlines the main levels of control 

which are required in a modem aluminium production plant. The importance of controlling 

the initial setup of the process is highlighted. A summary is also presented of the main 

types of hot mill actuation and instmmentation that is currently available. The third section 

presents a definition of the problem to be examined in this thesis, together with a 

description of the case study to be considered. An illustrative example is given of how 

good supervisory control can improve the performance of the rolled product. The chapter 

concludes with the literature survey covering all aspects of the control of the rolling 

process.
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2.1 Metal forming processes

The next two sub-sections provide an overview of the processes involved in hot and cold 

rolling and thin strip casting, Nussbaum [9] provides a very detailed description of each 

process involved in an aluminium plant. The third sub-section provides more detail on the 

mechanics of hot rolling. The final sub-section highlights the important factors which 

govern the production of good quality strip.

2.1.1 Hot forming processes

The forming of aluminium into thin strip requires several separate processes depending 

upon the desired final strip thickness, surface finish and metallurgical properties. Figure 2.1 

shows the main operations which are involved in producing strip at a thickness of around 

3mm to 8mm. The manufacture of aluminium strip commences with a process known as 

direct chill (DC) casting, some details are provided by Ocenasek [10]. The molten 

aluminium product is poured into a mould where it cools to form an ingot. This ingot is 

further processed by cutting it into shorter blocks and then scalping the surfaces. Scalping 

involves milling around 15mm off of the large flat surfaces to remove any oxides and 

segregates and to also present a smooth surface for rolling. The slabs produced in this way 

will be typically 500mm thick by 1000mm wide by 6000mm long. A batch of these slabs 

will then be placed into a preheat furnace for approximately 12 hours and heated to a 

temperature of around 500°C. This allows the complete homogenisation of the slab’s 

microstructure to take place. At this higher temperature the material’s yield stress is lower 

and forming of the material into thin strip is easier.

The slab’s thickness is reduced by passing it through a combination of hot mills until the 

final thickness is produced. A Metals Society publication [11] compares different mill 

configurations. The principal mechanism involved in rolling is to apply a sufficiently large 

load to the material as it passes between a pair of rotating steel rolls, so that it goes into 

yield and undergoes plastic deformation. For hot rolling Roberts [12] provides a great deal
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of background information and although written for hot steel mills much of the material 

is still applicable to aluminium. The gap between the work rolls is set such that the strip 

will be reduced by a prescribed amount. The gap is actually set to a distance slightly 

smaller than the desired strip thickness to allow for the stretch of the mill housing and rolls 

when the rolling load is applied to the strip. The rolls are driven by motors which provide 

the power required to force the material through the roll bite so that it is deformed to its 

new thickness.

M elting H olding H ot Line
Reversing
Rougher

Furnace

H B

Finishing
M ill

Slab Saw Scalper Preheat FurnaceDC Casting Unit

300 to 500m m  
thickness

Belt caster

3 to 8 mm  
thickness

Twin roll caster To cold & foil 
m ills for further 
processing

Figure 2.1 Hot processing of aluminium

Recently the development of strip casting processes for aluminium has meant that a ‘nearer 

net shape’ product can be produced, see Regan [13] and Birat [14]. This means the cast 

material has dimensions closer to those required for the final end product. There are two 

main types of continuous caster, twin roll and belt.

Twin roll casting involves pouring molten aluminium from a specially designed tip through 

a pair of rotating rolls, described by Cook [15]. The metal solidifies when it comes into 

contact with the rolls which are cooled internally with coolant sprays. The material is
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coiled once it leaves the caster and a shear will cut the material once a coil of sufficiently 

large size has been produced. Strip of around 3mm can be produced using this technique 

and the production rate is around 5m/min. Once the caster has reached a steady state 

condition, the process production time can be several days long. This makes it an ideal 

process for aluminium producer’s interested in a single or a small product range.

The belt caster involves injecting molten aluminium in between a pair of counter rotating 

belts. The distance between the belts gradually tappers down, so that as the material 

solidifies, its thickness reduces to the desired gauge. The material is then passed to a hot 

mill at a gauge of around 20mm where it is further reduced in thickness and then coiled. 

Strip leaving the hot line can either be passed to the cold mill for further processing or cut 

into lengths for use as plate.

Cold
Mill

Recoil coil annealing

0.3 to 0.9 mm 
thickness

THIN STRIP & 
FOIL

Final sheet preparation 

^Surface texturing, slitting and cutting

Rolling 
(incl edge trimming)►

3 to 8 mm 
thickness 

from hot mill
Surface treatment

THIN
STRIP

\ I 1 Degreasing
2 Rinsing
3 Coating
4 Rinsing
5 Drying

Intermediate
annealing

Continuous rolling 
(tandem mill)

FOIL
Strip
separation

Rolling 
single mill

Double Rolling

Figure 2.2 Cold processing of aluminium
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2.1.2 Cold rolling processes

Figure 2.2 shows the principal processes involved in producing strip at gauges ranging 

from a few millimetres to a few microns in thickness. The coils of aluminium produced 

from either hot rolling or continuous casting are passed to a cold mill. Again Roberts [16] 

is a useful reference, although steel biased. An Institute of Material publication [17] 

provides background material for aluminium rolling. A series of cold mill reductions will 

take place where the strip is reduced down to a thickness of approximately 0.3mm. During 

each reduction the strip is uncoiled, passed through the mill and then recoiled again on the 

other side of the mill. The temperature of the strip will increase from ambient temperature 

to around 80 °C. Reheating of the coil may be required to allow annealing to take place and 

consequently the production of the correct microstructure.

The final type of rolling mill is used to produce aluminium foil down to a gauge of a few 

microns in a series of reductions on a reversing mill or a tandem mill. At a certain 

thickness, dependent upon the work roll diameter and the rolling load, roll end contact will 

occur preventing any further reduction of the material. In order to make further reductions, 

the strip is doubled up by feeding two coils into the mill and coiling the doubled up 

material. It is then separated again by uncoiling and recoiling as two coils. Once the 

material has been reduced to the desired gauge, it can undergo some surface treatment, 

either coating or texturing depending upon the final application. The strip is then prepared 

for the customer by slitting and cutting to length before being packaged ready for shipment.

2.1.3 Mechanics of hot rolling

The primary metal forming process of interest in this thesis is the hot rolling of aluminium, 

see Starling [18]. Figure 2.3 shows the three main types of hot lines. From an initial DC 

cast thickness of 500mm the slab is reduced to a gauge of just a few millimetres, by a series 

of passes through one or two hot mills. Its thickness may then be further reduced by 

passing the strip through a cold mill and then a foil mill, as described above. Before hot
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rolling commences the slab is preheated in a furnace to a temperature of typically 500 °C. 

This allows the slab to become fully homogenised and eliminates the effects of 

macrosegregation formed when the slab was cast. Hot rolling normally commences on a 

reversing breakdown mill where the slab is reduced in thickness by successively passing 

it from one side of the mill to the other. As the slab’s thickness is reduced, its length will 

become longer and consequently a sufficiently long table is required to accommodate the 

strip. This table consists of a series of rollers which are motor driven and are capable of 

moving the slab from the furnace to the mill, for transfer to another mill or for shearing. 

The head and tail ends of the strip are often sheared to remove defects which can occur as 

the strip enters and leaves the rolls. The change in width of the strip during rolling is 

relatively small. However, some spread of material does occur during hot rolling, typically 

25mm over a 1500mm wide strip. The strip edges can be trimmed when the strip is coiled 

to give a smooth edge finish.

Light shearSlab lay on point 
from furnace

©

Single stand 2 high 
breakdown reversing mill

Three stand tandem mill
i) Tw o high single stand reversing m ill and three stand tandem  mill

Roller table Coiler
Heavy shear

Single stand 4 high Single stand 4 high
breakdown reversing mill reversing mill with twin coilers

ii) F our high sin g le  stand  reversing mill and four high single stand reversing m ill w ith tw in coilers

Single stand 4 high 
reversing mill with twin coilers

iii) F our high single stand reversing m ill w ith tw in coilers

Figure 2.3 Hot line configurations
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Once the strip is reduced to a thickness of typically 24mm it will typically be at a 

temperature of 450°C. Thereafter the strip must be coiled up, firstly to prevent too much 

heat loss to the surroundings and secondly so that its length can be accommodated in the 

production line. At this stage the strip can either be processed by a tandem mill or by a 

reversing mill. The tandem mill configuration consists of a series of stands, typically three 

or four. As the material passes through the mill, its thickness is reduced by each stand. The 

material is then coiled after the final stand at a temperature of around 300 °C. Such a mill 

requires a considerable capital investment, but has a larger production rate. The reversing 

mill type of configuration consists of a pair of coilers on either side of the mill. In some 

cases the same mill used to breakdown the slab is used for these final passes, as shown in 

Figure 2.3. In other cases a dedicated mill is used, the strip being passed from the 

breakdown mill along the connecting roller table. In the reversing mill the strip is passed 

from one coiler through the mill and then recoiled on the opposite side of the mill. A series 

of three or four passes are required to achieve the desired strip thickness. Having been 

reduced to a gauge of around 3mm the coiled strip is then allowed to cool before being 

passed from the hot mill to the cold mill.

In addition to the mill types described above, a number of different mill stack 

configurations exist. The two high configuration consists of a pair of work rolls, with the 

material passing between the rolls. By adding another pair of rolls, usually termed back-up 

rolls outside the existing work rolls, the stack becomes a four high mill. The added support 

of the back-up rolls has the advantage of allowing the work roll diameter to be reduced and 

consequently a reduction of the required rolling load. An additional pair of intermediate 

rolls can be added to the stack to form a six high mill. Such a configuration offers some 

additional control of the strip’s geometry.
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2.1.4 Definition of strip quality parameters

At all stages in these processes it is desirable to control the quality of the strip, which is 

mainly dependent upon its geometric and metallurgical properties as well as its surface 

finish. The strip geometry is defined by the following parameters as given by 

Ginzburg [19]:

i) Centreline gauge is defined as the thickness midway across the strip’s width hc.

ii) Profile is the difference between the strip centre and edge thicknesses expressed as a 

percentage ratio, defined by:

h .  (*,. + K )

K  = -----------------------   x 100%

iii) Wedge is the difference between the two edge thicknesses expressed as a percentage 

ratio, defined by:

(h. -  h~ )
w  = _ i f  x 1 0 0 %  (2 .2 )

h c

iv) Shape is defined as the deviation of the strip from perfect flatness in the longitudinal 

direction, defined by:

e  =
L

AI / -71 R 

v 2 1 /
(2.3)

and in terms of I units, which is a common conversion factor used when expressing shape:

x 105 (/ units) (2.4)( 7 1 R^28
2 L

v) Percentage of strip in the longitudinal direction which is within the quality limits.
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Figure 2.4 also gives a definition of these parameters.

Edge waves
Centre buckle

Figure 2.4 Definition of strip geometric properties

The microstructure and hence the strength of aluminium is influenced by the addition of 

alloying elements. For example, Mg, Cu, Zn and Si are added to increase the aluminium’s 

strength for use as can end, structural panels or auto body parts. Aluminium in its pure soft 

form is more commonly used for food packaging where a higher strength is not required. 

The addition of the alloying elements means that the temperature time transition of the 

material is critical if the correct grain size and phases are to be produced. This results in 

constraints being imposed on the process, typically the strain rate during rolling and limits 

on the strip temperature after hot and cold rolling. Sheppard [20] and Langdon [21] provide 

descriptions of the main factors influencing microstructural evolution during rolling.

The surface finish of the aluminium is also an important parameter, see an Aluminium 

Association publication [22]. Surface marks can occur if the work rolls become worn or 

damaged in some way. Hot spots on the work rolls can produce a band running along the 

length of the strip. This can be due to faulty roll coolant equipment or because the 

controlled coolant spray level is allowed to drop too low. Another surface problem is
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caused by mill vibration when the roll speed reaches a critical resonant point and this can 

lead to mills having to run at lower speeds.

Production engineers are also interested in ensuring that the production line is run with as 

near maximum capacity as possible to achieve high productivity. The process speed, 

handling time, the amount of scrapped strip and the mill down time being the primary 

contributors to the productivity.

14



2.2 Control of the rolling process

In order to meet the quality and productivity demands for the rolling process, aluminium 

producers require sophisticated controllers which will automate as much of the operation 

as possible. Examples of such systems may be found in Bryant [23], IOM [24] and 

MacAlister [25]. Such automation replaces the traditional function of the mill operator, 

who uses his or her expertise to control the various process variables to produce good 

quality strip. One drawback from using operators is that this inevitably introduces some 

variability, as not all operators have identical skill levels. Process automation introduces 

both a consistent and an accurate degree of control.

2.2.1 Control hierarchy

Control of the rolling process is normally divided into three main levels. Figure 2.5 shows 

a block diagram of how these levels are split up for a rolling mill automation system.

a (x 
c
<D £
l-H O
U  <D
£ Q

Production planning & 
schedulingLevel 3 Plant wide control

<u
i

Set-up & control 
strategy selectionLevel 2 Supervisory control

Closed loop controlLevel 1 Dynamic controloc

Actuators Sensors

PROCESS

Figure 2.5 Process control hierarchy 

Level 1 is concerned with controlling the inner closed loops of the system. These loops 

control the quality of the strip within a single coil. Measurements are fed into the 

controllers where the error is determined by comparison with the desired target value for
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the particular parameter. Modifications are then made to chosen actuators to eliminate this 

error. Variations in the exit gauge, strip temperature, profile and shape are typical 

parameters which are controlled at this level, Ginzburg [26], [27] and Beattie [28]. When 

designing the controllers particular consideration has to be made to the frequency response 

characteristics and the interacting nature of the rolling process.

The second level of control is usually termed supervisory control. This level is concerned 

with controlling the mill as a whole. The primary role is to provide suitable actuator set 

points and target values for the closed loops to aim for. For example, a run speed is 

required for the main mill motor to ramp up to, once the material has entered the roll bite. 

A suitable target strip profile is required by the closed loop profile controller in order to 

adjust the actuators during rolling. This control level also includes diagnostics to ensure 

that process measurements taken are valid and that the mill is producing good quality 

product. It is at this level that the thesis describes a novel approach to rolling mill process 

control. A full description of the requirements is given later in this chapter.

The third level of control is concerned with looking at the overall plant and evaluating the 

processing route for a given set of slabs. The task is traditionally performed by the 

scheduling engineer who looking at the order book, must decide in what sequence the slabs 

are to be rolled and how they will move around the production plant. The engineer must 

take into account how much room is available in the waiting bays, the length of mill down 

time due to maintenance and operate closely to a just in time philosophy. Similar products 

will be batched together to avoid variations in the mill operation. There will, however, be 

inevitable product changes which must be handled by the supervisory controller.

2.2.2 Rolling mill actuation

The actuators which are available to control the rolling process vary from mill to mill as 

does the degree of instrumentation. Ginzburg [29] describes the primary profile and 

flatness actuation available. The most common mill actuation scheme used to control the 

strip temperature is to use a combination of mill speed and strip cooling. Increasing the mill
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speed has the effect of increasing the temperature of the strip as it exits from the roll bite. 

This is due to the shorter contact time between the strip and the rolls and the strip and the 

coolant and hence a lower loss of heat. In some cases the mill speed cannot be modified 

because the aluminium product requires a specific strain rate. In this case control of the 

strip coolant provides a further temperature actuator. Additional coolant can be sprayed 

onto the strip to remove heat. Conversely the flow of coolant over the strip can be restricted 

with the use of a compressed air jet being blown onto the strip which has the effect of 

modifying the coolant wash length.

For strip profile a large variety of actuators are available, all of which in some way 

influence the roll gap profile and hence the strip profile. The four most common techniques 

used to control the strip profile are:

i) The rolling load is directly related to the reduction taken. By modifying the exit gauge 

for a given pass it is possible to influence the rolling load and hence the roll gap profile. 

When using this control method, careful checks are necessary to ensure that no problems 

are introduced for future passes, such as producing strip with dimensions longer than the 

maximum roller table length. Using such a control strategy is restricted to the setup level 

only.

ii) The work roll stack deflection can be influenced using work roll bend. This is, the 

application of a load between the work rolls using hydraulic cylinders to either push the roll 

ends apart or to bring them closer together. The work roll bend can be modified 

dynamically which enables it to be used by the closed loop controllers.

iii) The temperature and hence the thermal expansion of the work rolls can be affected by 

spraying more or less coolant onto them. This coolant comes from spray bars fitted with 

a number of nozzles spaced across the work roll barrel length. By setting the spray flow 

rate at different levels across the strip width it is possible to control the thermal camber and 

hence the strip profile. Work roll thermal camber control has a long time delay associated 

with it and for this reason it is most commonly used at the mill setup level, see Atack [30].

17



iv) The final type of profile actuator is based around the principle of replacing the work roll 

or the back-up roll with a specially modified roll or mechanism. Matsumoto [31] and 

Ginzburgh [32], compare around 54 patented types of profile actuation and examine their 

comparative control ranges. The type of actuation available is divided into three main 

groups:

a) The work rolls are modified usually with a special ground profile so that the roll 

gap profile is changed and the strip profile is affected. The controlling action can 

only be modified by changing the work rolls and the mill will be scheduled so as 

to roll products compatible with the particular ground camber.

b) The work rolls and/or the back-up rolls are replaced with a mechanism which 

allows the camber of the rolls to be modified when the mill is setup. Typical 

examples include: Side shifting work rolls which allow the roll camber seen by the 

strip to be varied by moving the work rolls axially, outlined by Nakajima [33]. The 

work rolls and back-up rolls can be rotated so that they cross at the strip centre-line, 

again providing a modification to the roll camber seen by the strip, for example see 

Kishi [34].

c) The top back-up roll is replaced with a hollow shell which contains 

hydrodynamic pads which can be controlled dynamically to influence the work roll 

to back-up roll load distribution and hence the roll gap profile, described by Morel 

and Bosh [35].

2.2.3 Rolling mill process measurements

The instrumentation which is available to the process controllers will vary from mill to 

mill. Ginzburg [36] presents a good summary of the available instrumentation for hot mill 

process control. The most common measurements which can be made are summarised 

below:
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I) Rolling load is measured from the roll load cylinder pressure or alternatively if the mill 

is only fitted with screws then strain gauges can be fitted between the back-up roll bearings 

and the mill housing.

ii) Main motor power can be computed by measuring the motor voltage and motor current 

being drawn during rolling and knowing the motor characteristics.

iii) Strip gauge is measured using an isotope or X-ray source. As the strip passes through 

the source the amount of absorption is measured using a detector and hence the strip 

thickness is determined from previous calibrations of the instrument’s absorption 

characteristics. Stayte [37] presents some recent advances in this area.

iv) Strip profile is measured by using multiple isotope or X ray sources across the strip 

width so that the thickness is measured at a series of points. The strip profile is calculated 

from the centre and edge strip thickness measurements. A description can be found in 

Shaw [38].

v) Strip shape is not commonly measured in aluminium hot mills. Techniques are available 

to either measure the latent shape of the strip, by passing the strip over a roll which is split 

into a number of independent zones. Each zone measures the tension within the strip and 

hence the strain and strip shape can be calculated. Manifest or visible strip shape is 

measured using lasers which can determine the size of any bad shape present as waves. One 

such device is described by Beattie [39].

vi) Strip temperature measurement is performed by using a contact thermocouple probe 

which is placed onto the strip either when it is being transferred from the furnace to the mill 

or when it is coiled up. Non-contact temperature measurement is performed using a 

pyrometer to measure the radiant energy emitted from the strip’s surface. Metcalfe [40] 

describes one such product.
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Such measurements will not be available at every processing stage of the slab. Typically 

temperature measurements can only be made if the strip remains underneath the pyrometer 

for a period long enough to ensure that the data acquisition is successful. The energy of the 

isotope sources used to measure strip profile and gauge are only strong enough to penetrate 

to a gauge of approximately 20mm which means that measurements of these parameters 

will be unavailable above this thickness. Other on-line measurements which one would like 

to have such as the size of the thermal camber on the work rolls cannot be directly 

measured at present. It is common to use process models to determine parameters which 

are not measured due to the lack of suitable instrumentation. Chapter 3 describes a set of 

process models which are used to provide predictions of such states.
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2.3 Case Study

2.3.1 Description of process

The chosen case study for the thesis is a single stand reversing mill with twin coilers. The 

mill parameters are given in Table 2.1.

Work roll Back-up roll

Diameter (mm) 845.0 1492.0

Barrel length (mm) 2450.0 2450.0

Roll material Cast steel Cast steel

Ground camber (microns) -200.0 parabolic 0.0

Cylinder centres (mm) 4000.0

Work roll coolant spray pitch (mm) 72.0

Coolant temperature (°C) 56.0
Table 2.1 Mill parameters

Such a mill is used to breakdown slabs of aluminium from an initial thickness of 480mm 

to 3mm in typically 23 passes for the relatively hard aluminium alloy, AA5182. Table 2.2 

gives the composition of this alloy. Table 2.3 gives a typical fixed schedule used to roll the 

material.

Alloy element Si Fe Cu Mn Mg Ni Sn

Percentage of composition 0.25 0.7 0.1 0.1 8.0 0.05 0.05
Table 2.2 Composition of aluminium alloy AA5182
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Initial slab condition Target values

Slab

No

No of 

passes

Alloy Width

(m)

Slab

length

(m)

Slab

gauge

(m)

Temp

(°C)

Profile

(%)

Temp

(°C)

Profile

(%)

nents

1 23 

Rolling schedule

5182 1.68 5.9 0.480 480 0.0 300 0.7

Measurei

Pass

No

Exit

gauge

(m ) ...

Roll

speed

(m/s)

Bend

(Tonnes)

Spray

level

centre

Spray

level

edge

Entry

tension

(N/m2)

Exit

tension

(N/m2)

Load

(Tonnes)

Power

(MW)

Temp

(°C)

Profile

(%)

1 0.460 1.40 35 10 10 0.0 0.0 2115 8.40

2 0.440 1.40 35 10 10 0.0 0.0 1909 6.74

3 0.420 1.40 35 10 10 0.0 0 .0 1997 7.85

4 0.395 1.40 35 10 10 0.0 0.0 2020 9.20

5 0.370 1.40 35 10 10 0.0 0 .0 1977 8.61

6 0.345 1.40 35 10 10 0.0 0.0 1994 9.51

7 0.320 1.40 35 10 10 0.0 0 .0 1878 8.34

8 0.295 1.40 35 10 10 0.0 0.0 1879 8.41

8 0.270 1.40 35 10 10 0.0 0.0 1758 7 .96

10 0.245 1.40 35 10 10 0.0 0.0 1726 7.99

11 0.220 1.40 35 10 10 0.0 0.0 1679 7.78

12 0.190 1.40 35 10 10 0.0 0.0 1703 8.52

13 0.160 1.40 35 10 10 0.0 0.0 1713 8.35

14 0.130 1.40 55 10 10 0.0 0.0 1717 8.28

15 0.100 1.40 80 10 10 0.0 0.0 1760 8.23

16 0.070 1.50 80 10 10 0.0 0.0 2145 10.74 487

17 0.048 2.20 85 10 10 0.0 0.0 2277 14.66

18 0.035 2.50 90 10 10 0.0 0.0 1795 9.63 478

19 0.025 2.60 95 10 10 0.0 0 .0 1861 8.48

20 0.018 3.10 35 10 10 0.0 0.0 1936 9.11 452

21 0.012 2.25 35 10 10 0.0 9e6 2605 6.60 385

22 0.006 2.70 45 10 10 9.0e6 1.7e7 1746 5.45 356

23 0.003 1.80 75 10 10 1.7e7 2.4e7 1531 1.61 308 0.78

Table 2.3 Typical schedule
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The control actuators available on this particular mill is roll speed to control the strip 

temperature and work roll bend plus work roll cooling sprays to control strip profile. The 

mill in question also has instrumentation available to measure the rolling load, main motor 

power, strip temperature on certain passes and the strip profile on the final pass. Figure 2.6 

shows a summary of the parameters involved in defining a pass on a single stand reversing 

mill.

Exit temperature 72Rolling load PMain m otor power E Exit profile K2

Exit tension ct2

Exit gauge h2
Roll speed Vm

Exit shape £2

W ork roll coolant sprays

Entry temperature T1

W ork roll bend Jww

Direction o f  
rolling >

Entry tension

Coolant washEntry gau ge/t/

Figure 2.6 Single stand reversing mill with twin coders

The rolling of aluminium is a batch process, which means that similar slabs are grouped 

together in a rolling sequence and each batch will consist of around five slabs. The slabs 

will be similar, in that they will be of the same product type. The characteristics which 

define a product are usually the aluminium alloy, strip width, the final gauge and final 

temperature. The slabs within each batch may however have some variation in their 

metallurgical composition and initial lay-on temperature. Such variations from batch to 

batch and from slab to slab will result in changes in the operating point of the mill. This 

operating point will be dependent upon the aluminium product being rolled, the particular 

schedule parameters and the mill conditions such as the thermal camber and the coolant 

properties.
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The work rolls in the mill are changed every three or four days because of the effect of roll 

wear which can cause marking on the strip surface. The roll wear is caused by contact of 

the aluminium strip with the roll and thus the width of the wear will be dependent upon the 

width of the strip rolled. After the rolls are taken out of the mill they will be reground to 

remove the effects of wear.

After the rolls are replaced or after a long delay, there will be no thermal camber on the 

work rolls. The result is that around three slabs must be rolled before the thermal camber 

has built up to a level where prime quality strip can be produced. Similarly the steady state 

thermal camber will be different from one product to another. Thus strategies must be 

developed which enable control of the thermal camber to maximise the quality of the strip.

2.3.2 Definition of problem

The rolling of aluminium requires control either by an operator or by an automation 

system. The control is split into three levels as described in Section 2.2.1. The middle 

control level is concerned with supervising the setup of the mill before rolling commences. 

This involves calculating the actuator set points which will result in the optimum 

performance of the process. This means producing the maximum possible within 

specification strip despite variations in the process operating point. The actuators available 

in the selected case study are mill speed, work roll coolant sprays and work roll bend.

The performance of the mill is measured by the percentage of the strip which meets the 

target quality parameters given in Section 2.1.4. Trade-offs between these quality 

parameters can often occur as explained by Robinson [41]. For example ensuring that flat 

strip is produced whilst ensuring that the strip profile is as close to the target value as 

possible. Likewise, the level of coolant being sprayed onto the mill may have to be 

maintained above a threshold value to avoid surface marking of the strip. This may be in 

conflict with the requirements for thermal camber control.
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The roll gap must be set so that the desired reduction of the material is achieved. In order 

to compensate for the mill stretch, the gap setting procedure requires a prediction of the 

steady state rolling load. This rolling load prediction also provides a means of checking that 

the proposed reduction will not exceed the mechanical limits of the mill. A prediction of 

the rolling power also ensures that the desired mill run speed will not overload the main 

mill motors.

In order to perform the above tasks information about the process must be gathered from 

either measurements, see Section 2.2.3 or from a set of process models, see Chapter 3. The 

models are used both as a forward prediction of parameters and to provide states within the 

process. Further, by differentiating the models, see Section 4.2, it is possible to obtain 

estimates of the actuator sensitivities which can be used for both mill setup and for closed 

loop control.

Maintaining the on-line accuracy of the process models is important if they are to provide 

information used to control the process. Model adaptation is used to recursively update 

parameter estimators which when applied to the models maintain their accuracy, see 

Chapter 4. Such model adaptation requires careful control to ensure that only validated 

measurements are passed to the algorithm.

Validating the measurements can be performed by comparing the measured data with 

previously logged information obtained from previous similar slabs. Measurements may 

also be validated by looking at the amount of scatter during the data logging interval or by 

cross checking several independent measurements and looking for consistency.
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2.3.3 Illustrative example

To illustrate why there is the need for mill setup consider the following example:

Before the strip is threaded into the mill a steady state run speed is required. This provides 

the main mill motor speed controller with a target speed, allowing the mill to be accelerated 

smoothly up to run speed. Once the mill is operating at steady state, the strip temperature 

leaving the mill should be as close as possible to the desired target. This temperature will 

be specified in order that the required strip metallurgical properties are achieved. It is the 

task of the mill setup system to calculate the target run speed which will produce strip at 

the desired temperature.

Once operating at run speed, the closed loop temperature controller will make adjustments 

to the mill speed to ensure that the exit strip temperature is maintained at the target 

temperature. It is also assumed that a non-contact measurement of the strip exit temperature 

is available. Figures 2.7 and 2.8 show simulations of the variation of the mill speed and the 

exit strip temperature for one pass on a single stand reversing mill. The simulation was 

performed using the process models described in Chapter 3 and with a closed loop 

temperature controller described by Beattie [28]. The graphs in Figure 2.7 show the effect 

of using a larger target run speed than is actually required. The resultant initial strip exit 

temperature produced is larger than the desired temperature of 270°C. Following the 

threading of the strip, the closed loop temperature controller adjusts the mill speed until the 

desired temperature is achieved. The result is that the head end of the strip will not have 

the same metallurgical properties as the body of the strip. Consequently the commercial 

value of such a coil will be lower than if it was rolled having a consistent quality along its 

entire length.
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Figure 2.7 Strip temperature variation with poor initial speed set point
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Figure 2.8 Strip temperature variation with good initial speed set point

300

The graphs in Figure 2.8 show the effect of using a target run speed which is close to that 

which is required at steady state. Subsequently once the strip is threaded the initial 

adjustment required to the run speed by the closed loop temperature controller is small. 

Hence the amount of off specification strip is now smaller than that shown in the previous 

figure.
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2.4 Literature survey

This section presents a survey of the literature relevant to this thesis. Many of the 

references cited in this section are referred to again within the body of the thesis where the 

reference is of particular relevance. The survey is split into four key areas. First a brief 

summary is presented of the literature relevant to rolling mill process models. The survey 

continues with closed loop control applications within the rolling industry. The 

publications on mill setup are then discussed and finally a summary is made of plant wide 

control literature. Particular emphasis is placed on papers which have some AI content 

because of there particular relevance to this thesis.

There is a large body of published material on the modelling of the rolling process. Many 

models to calculate the mechanics of both hot and cold rolling have been developed. 

Sandmark [92] reviews and compares a number of different rolling models, including 

Seibel [94], Orowan [93], Alexander and Ford [42] and Sims [43]. Each model the 

deformation within the roll bite and develop expressions for the rolling load, deformed roll 

radius and forward slip. Three papers Hollander [44], Seredynski [104] and Kimura [45] 

provide a summary of the modelling involved in predicting the strip temperature, both 

within and outside of the roll bite. Sheppard and Wright [99] develop the fundamental flow 

stress constitutive equations for hot rolling of aluminium. Lenard [102] presents a summary 

of the frictional conditions within the roll bite, including attempts at measurement. The 

modelling of the work roll thermal camber has been investigated by a number of people 

including Bryant [23], Saer [46], Goodwin [47], Schipper [48] and Atack [30]. The 

calculation of the heat removal rate of work roll cooling sprays has been investigated by 

Davenport [49] The models fall into two main groups: solving the thermal conduction 

problem using a finite difference method or solving the heat conduction equations directly 

to give an expression for the roll temperature mesh, usually producing equations involving 

Bessel functions.
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The deflection of the mill stack is another area where a number of papers has been 

published for a variety of mill stack configurations and actuators. Many are derived from 

the original work of Shohet [50]. Most use a discrete sampling of cross-directional 

variables to form a full width model of the roll stack. These account for non-linearity due 

to roll flattening, the variation of pressure distribution both axially and through the bite and 

conditions where partial roll contact occurs. Allwood [51] presents a fast roll stack model 

based on a matrix formulation and Misaka [110], Ogawa [114] and Huggins [52] are 

typical examples of roll deflection models based on classical roll bending theory. Shape 

and profile modelling are also well served within the literature. They range from very 

simple models based upon the principle of inheriting strip profile from one pass to the next 

and at the same time imprinting a new profile onto the strip from the roll gap, see 

Matsumoto [113] and Nakajima [53]. More complex iterative models take into account the 

variation of pressure distribution with the roll bite, lateral flow of the material and the 

effect on the tension distribution within the strip see for example Cresdee [54].

The advent of computer technology, firstly analogue and then digital, has seen a rapid and 

continual growth in the implementation of new closed loop control algorithms. These 

algorithms control the gauge, profile, shape and temperature of the rolled product. The 

earliest and most widely used gauge control principle was developed by the British 

Independent Steel Research Association (BISRA). The strategy for controlling gauge is 

largely dependent upon the type of mill. Large tandem mills require regulation of each 

stand whilst maintaining mass flow and tension between the stands. Both conventional and 

multivariable control techniques have been applied. Hoshino [55] adopts an observer based 

approach to tandem mill gauge control problem, Postlethwaite [56] treats the mill as a 

single system applying H*. optimisation and Hearns [57] treats each stand as an individual 

system again applying multivariable techniques. Gauge control on single stand mills is 

considered by Nishida [58] and Kikuchi [59] who both examine an observer based 

approach to the control problem.
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Shape control is mostly considered on cold mills, although some work is now being done 

on hot mills, see Beattie [39]. Papers consider and compare the use of different actuators 

for the control of shape. Any shape error is categorised into an appropriate polynomial 

form so that it can be corrected using the most suitable actuator. The papers by 

Naganuma [60], McDonald [61] and Carney [62] all develop models for predicting shape 

together with the control algorithms to divide shape correction between the appropriate 

actuator. Fuzzy logic has also been used to control shape. Hasegawa [63] and Jung [64] use 

fuzzy sets to categorise the shape defects and then infer the best corrective action to be 

taken using a knowledge base. Profile control is largely performed on the hot mills and 

practical control has only recently been possible due to recent advances in profile 

measurement. Beattie [65] describes a profile control system for an aluminium hot mill. 

Colas [66] and McNeilly [67] describe systems which integrate shape and profile control 

together for hot strip mills.

The control of temperature is more common within the steel industry to ensure the correct 

strip microstructure is produced. Ditzhuijzen [68] is a detailed summary of temperature 

control on a steel mill and Beattie [28] outlines a temperature control system for an 

aluminium hot mill.

There are many papers describing mill setup systems for both aluminium and steel mills. 

They are normally based around a suite of process models coupled with adaptation 

algorithms to adapt the models from pass to pass and slab to slab. Atack [106], [69], 

MacAlister [25], [70], [71] and Silvestrini [72] are some examples of such system for both 

aluminium and steel mills. None of these papers discuss in any detail the strategies which 

are to be used to setup the rolling mill. One paper by Stirling [73] uses an expert system 

for setup of a stainless steel rolling mill. Becker [74] describes how optimisation how has 

been used to determine rolling schedules given a set of target values for rolling load on 

each pass. Cotter [75] uses optimisation to determine the number of passes required to roll 

a particular product. The use of expert systems is more widespread in the plant wide 

scheduling of a production plant for tracking the location of coils within the plant, 

scheduling the order that coils should be rolled, surface inspection and shape defects.
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Fujimoto [76] describes an expert system for the sequencing of slabs to be rolled in plant 

based upon the current order book. Haataja [77] describes the use of an expert system for 

surface inspection of steel strip. Hosoda [78] develops rules for transporting coils around 

a steel plant. Ishikawa [79] developed an expert system for determining the order that coils 

should be rolled in steel plant. Konishi [80] has used an expert system for foil rolling to 

classify shape defects and identify the optimum actuator corrections. Lassila [81] uses a 

knowledge base to aid scheduling through a large steel works from the furnaces through 

to a plate mill. Ng [82] is concerned with identifying and diagnosing abnormal plan view 

shape of plates from a steel mill using an expert system. Stohl [83] develops a rule base for 

scheduling within a steel plant. Other AI techniques are also now being used for the control 

and modelling of the rolling process. For example, Chung [84] uses a neural network in the 

prediction of material flow stress. Portmann [85] and Straub [86] use neural networks 

within classical process models to give estimates of certain model parameters. Fuzzy logic 

has been applied both to setup, Sakawa [87], and to shape control, Jung [64]. All these 

papers demonstrate that AI techniques can be applied to the rolling process with some 

significant improvements to the plant performance.
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2.5 Conclusions

This chapter has presented a summary of the main processing routes in the production of 

aluminium strip. The various types of hot and cold mill lines have been presented together 

with the different types of mill stand configurations. A definition has been given of how 

the quality of the rolled product can be defined. A review has been made of the various 

control levels involved within a rolling mill control system. The actuators and 

instrumentation available on a rolling mill have been discussed. The problem to be 

addressed within this thesis is given together with an illustrative example which shows the 

advantages of introducing supervisory control at level 2 within the control hierarchy. 

Finally a review has been made of the literature relevant to this thesis.
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CHAPTER 3

Metal Rolling Process Modelling

3.1 Overview

Mathematical modelling has proven to be a valuable tool to describe the metal rolling 

process, for example Kimura [88]. Models are used on-line within the controllers to 

provide forward predictions of parameter states and adaptive control gains. Due to the 

recent improvements in computer technology it is now possible to run complex models 

on-line, see Atack [69]. Such models still have to make a number of simplifying 

assumptions to reduce their running time to the order of a few seconds. Thus, there must 

be a trade off between the model accuracy and its computation time. One solution is to 

build into the models, algorithms which can compensate for any inaccuracies. Adaptation 

algorithms serve this purpose and Chapter 4 gives a description.

Off-line models are used as tools for simulating the process and for validating control 

strategies. The conditions that apply to models running on-line, also apply to off-line 

models where process simulations are required in the order of a few minutes. Again the 

models must be calibrated to ensure they correctly reflect the process. More complex 

models, which for example use the finite element technique to compute the deformation 

within the roll bite may still take many hours of computation time to converge to a 

solution.

33



This section will outline the mathematical models used to describe the hot rolling of 

aluminium, see Atack and Abbott [89]. The simplifying assumptions made in order to 

reduce the complexity of the models are stated. These models together with the appropriate 

adaptation schemes have been used on-line to control the rolling process. The evaluation 

of the process models’ first order partial derivatives and the adaptation schemes for these 

models are described in detail in Chapter 4.

The models described in this chapter are divided into four groups.

i) Rolling load, motor power and strip temperature. The model for the cooling of the 

strip, includes the effect of heat transfer to air, the coolant wash and the work rolls. The 

model can be used to investigate the control of strip temperature using external strip 

cooling sprays and mill speed. The rolling load model considers the effect of the material’s 

flow stress, roll bite friction and roll gap geometry. An accurate prediction of the rolling 

load is important when setting the roll gap in order to compensate for mill stretch. The 

main motor power prediction allows the roll speed to be modified without risk of 

overloading the main mill motors.

ii) Thermal camber. During rolling the work rolls expand due to heat conduction from the 

strip. The temperature of the roll in contact with the strip will be greater than that at the roll 

end. This temperature gradient causes a differential expansion of the roll along its length 

which is termed the thermal camber. Thermal camber is controlled by modifying the 

coolant to roll heat transfer coefficient. This is done using special spraybars fitted with 

variable level sprays. The thermal camber control range can be determined from the 

thermal camber model.

iii) Stack deflection. When the rolling load is applied to the mill stack, the rolls will bend 

and bed together. Flattening occurs between the work rolls and the strip and between the 

back-up rolls and the work rolls. The deflection and flattening can be influenced by profile 

control actuators such as work roll bend or side shifting rolls. Again the model can be used
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to investigate the control action of such actuators on the deflection of the work rolls.

iv) Profile and shape. Combining the thermal camber, stack deflection and roll flattening 

results in a roll gap profile. This will then imprint itself onto the strip. However, profile is 

not only dependent on the roll gap profile, but the entry profile to the mill and how it is 

attenuated in the roll bite. Flatness or shape depends upon how the profile changes as the 

passes are rolled.

Figure 3.1 shows the order in which these process models are run and how they interact 

with two further blocks which complement the process models. These two additional 

modules are:

i) Partial derivatives. These compute the model derivatives with respect to a variety of 

different independent variables. They are used by other components within the overall 

control structure in particular the closed loop controllers and the model adaptation.

ii) Adaptation. The purpose of the adaptation is to maintain the accuracy of the models by 

adjusting pre-defined model coefficients using a suitable adaptation algorithm. The model 

accuracy is evaluated by comparing the predictions with the corresponding measurements 

from the process.
PROCESS MODELS

Load, power and 
temperature

Work roll 
thermal camber

Stack deflection 
and roll flattening

Strip profile 
and shape

ADAPTATION

Partial
derivatives

Adaptation
algorithm

Figure 3.1 Block diagram of process models and adaptation
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Although not discussed here there is a further model group which is important within the 

metal rolling industry. That is the models describing the microstructure of the material at 

each stage of rolling. Such models predict material properties such as the grain size, the 

degree of recrystallisation and texture. Microstructural control of the material during rolling 

is critical if it is to have the desired final properties. The temperature history of the material 

to a large extent determines the material’s microstructure. Other factors such as the strain 

rate may impose restrictions on the systems controlling the process. For this reason both 

control and scheduling of the strip’s temperature are important if the desired microstructure 

is to be achieved.

Figure 3.2 shows in more detail how the various process models interact with each other. 

Each of the modules shown in this figure is explained in this chapter.

ROLLING
SCHEDULE

ADAPTATION
COEFFICIENTS

MILL
DATA

ALLOY
PROPERTIES

roll
state

slab
state

THERMAL
CAMBER

ROLL
WEARGAUGE PROFILE SHAPETEMPERATURE

ENTRY 
AIR COOLING

EXIT 
AIR COOLINGMOTOR POWER

ROLL BITE 
HEAT TRANSFER
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WASH COOLINGFRICTION ROLLING LOAD
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INFLUENCE
COEFFICIENTS

ELEMENT
EXPANSION

ROLL
EXPANSION

STACK
DEFLECTION

ROLL
FLATTENING

STRIP
PROFILE

STRIP
SHAPE

Figure 3.2 Process model modules

The figure also shows the various sets of input parameters passed to the models.
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These are:

i) Rolling schedule The details used to define the initial slab state and the parameters 

required to roll each pass.

ii) Adaptation coefficients The adaptation coefficients which are used to calibrate the 

process models.

iii) Mill data This includes the roll and stack dimensions, the roll material properties and 

details of the roll and strip cooling configuration.

iv) Alloy properties These are the characteristics of the particular aluminium alloy being 

rolled and includes thermal, mechanical and microstructural properties.

3.2 Load, power and strip temperature models

When aluminium strip passes between a pair of rotating work rolls a certain load must be 

applied to deform the material to the desired thickness. This load is usually applied by 

hydraulic jacks through the back-up rolls and thus onto the strip. The size of this load 

depends upon a number of factors each of which must be determined before a prediction 

of the rolling load can be made. The load prediction is required when setting the roll gap 

to compensate for the stretch of the mill housing. The more accurate the load prediction the 

less gauge error there will be when the material is initially threaded into the mill. The load 

is also required when developing new schedules, so that a suitable drafts can be specified 

which will not exceed the load capability of the mill. Having calculated the load, the main 

motor power is relatively easy to evaluate. Again an accurate prediction of power is 

required to ensure that the motor limits are not exceeded when the schedule is developed. 

Predictions of strip temperature are required to ensure that the schedule is compatible with 

the microstructural requirements of the material.
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3.2.1 Roll bite geometry

Figure 3.3 shows the basic roll bite geometry for rolling. The material enters the roll bite 

with a thickness of /z, and is gradually reduced down between the work rolls, finally exiting 

with a thickness of h2. The size of the reduction made or the draft 6 is given by:

5 = (*, -  *2) (3.1)

Assuming a circular arc of contact, the average thickness of material within the roll bite hm 

is given by:

K  = } ( * ,  + 2hi )  (3-2)

Neutral
plane

Figure 3.3 Roll bite geometry

The mass flow for the rolling process relating the entry and exit states may be written down



This assumes that there is little or no lateral spread of material from one side of the bite to

the other, that is no significant change in the materials width W. Under normal rolling

conditions the work rolls are rotating at a speed of vm, which is slower than v2 but faster 

than Vj. As a consequence there is a point within the roll bite where the strip is travelling 

at the same speed as the roll. This point is termed the neutral plane of the strip. The strip 

thickness at this point is hn and is calculated within the rolling load model. The ratio 

between the strip speed at the neutral plane and that at the exit from the bite is termed the 

forward slip/ ,  given by:

f  - (3.4)
V m

The contact length L between the work roll of radius R and the strip may be written as:

L = f i T b  (3.5)

Provided it is assumed that the angles involved are small, Hosford and Caddell [90]. The 

ratio of hm/L  is an important geometric characteristic as it describes the operating region 

of the material; thin or thick stock. Now when the rolling load P is applied to the work 

rolls, roll flattening occurs such that the roll’s radius becomes larger. This has the effect 

of modifying the arc of contact to a longer length L/:

L 1 = s!r ' 6 (3.6)

where R 1, the deformed roll radius is given by the equation derived by Hitchcock [91]:

(3.7)R '  = R
b W

and C is a constant dependent upon the roll material, given by:

16 (1 -  v\)
C = ----- '---------   (3.8)

n E2

where v2 is the work roll Poisson’s ratio and E2 is the work roll Young’s modulus.
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3.2.2 Rolling load

The fundamental mechanics of rolling have been discussed in numerous papers, primarily 

covering the hot and cold rolling of steel. These models can be extended to aluminium as 

the basic rolling mechanics are the same. A review of twenty-one rolling models may be 

found in Sandmark [92]. The model presented here uses results obtained by Orowan [93], 

which is generally accepted as the basis for most modem rolling theories. Within this 

model a number of assumptions are made:

i) The arc of contact between the strip and the work roll is a circle of constant radius R' 

from entry to exit. It is also assumed that the exit plane is tangential to the roll.

ii) The roll bite angle is small such that Sin4>=<|) and Cosc|)=l .

iii) Following Siebel [94], the interfacial shear stress between the strip and the rolls is

constant along the arc of contact.

iv) Conditions within the roll bite are assumed to be constant, in particular the flow stress, 

strain rate and temperature.

v) The strip is fully plastic within the roll bite, the elastic zone at the entry and exit of the 

bite is assumed to have little or no effect on the rolling load.

vi) There is no significant change in the strip width and the ratio of the strip width to its 

thickness is such that the material is deformed under plane strain conditions.

vii) The material obeys the Von Mises yield criteria.

3.2.3 Derivation of load model

Referring to Figure 3.4 the forces exerted on the surface of a single element of strip per unit 

width for both top and bottom planes is:

—  = 2 R 1 s fo ± 2 R 1 x (3.9)
a*  K }

where/is the total horizontal force acting on a given cross section, c|) is the roll bite angle, 

s is the normal pressure between roll and strip and t is the interfacial shear stress.
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The use of the ± arises because the direction of the shear stress changes from one side of 

the neutral plane to the other due to the difference in the relative speeds of the roll and the 

strip.

f + 8 f
f + 8 f

Neutral
plane

Figure 3.4 Rolling load analysis

Orowan went on to show that the relationship between the horizontal force/ and the normal 

pressure s is given by:

/(♦ )  = A(<l>) (s -  n  (3.10)

where h(c()) is the gauge thickness at the roll bite angle $  and the modified flow stress, k* 

is introduced which corrects the flow stress k for thick stock and takes into account 

inhomogeneous deformation.

Now substituting Equation (3.10) into Equation (3.9) we obtain:

3[ A (<!>)(* -  k *)]
dcj)

= 2 R f s <$> ± 2 R f T (3.11)
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From the roll gap geometry it can be shown that:

h  ((J)) = h 2 + R f (.|>2

Differentiating Equation (3.12) with respect to <() gives:

(3.12)

dh

acj) = 2 R 1 (|) (3.13)

Substituting Equation (3.12) into (3.11) and using the result from (3.13) yields:

d( s  -  k * )  _ 2 R 1 k *  §  ^  2 R '  x

04> h + R 1 4>2 h + R  ' (|)/ A  2 (3.14)

Dividing Equation (3.14) through by k* produces:

-  1
/  -

04)

2 R 1 4)
h .  + R f 4)2

± 2
( \ 

T

\ * / A, + i?7 4>2
(3.15)

Now the rolling load per unit width P is found by integrating the area under the s vs 4> 
curve from the entry side (angle of 4>i) to the exit side (angle of 0):

—t = R '  fs(<t>y </<!> + r ' rf<i> (3.16)

Putting in the appropriate boundary conditions for entry and exit stress on the strip (a, and 

o2 respectively), yields the rolling load per unit width as:

P  = k *  L 1 arctan a - 2 R
In -  1 (3.17)

and the angle at the neutral plane 4>„ as:

/ \ / / \
h2 1 5 1 k* h . In h—  tan — arctan + --

\R 1 2 ^ h2 4 r ' K\ 1 /

(3.18)
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The gauge at the neutral plane hn can be calculated by substituting 4»n for cj) in 

Equation (3.12):

K  = h 2 + R 7 <$>l (3.19)

The total rolling load P is calculated using the equation below:

P = k* W L 1 Qp (3.20)

where Qp is the geometric function in square brackets in Equation (3.17).

3.2.4 Correction of flow stress

Within the rolling load model it has been stated that the flow stress k is corrected to account 

for thick stock and for inhomogeneous deformation, to produce a modified flow stress, k* 

given by:

k * = (Oj 0)2 k (3.21)

Lalli [95] showed that 0)1? the modification factor accounting for inhomogeneous 

deformation, that is the material not remaining plane during compression within the roll 

bite, can be written as:

/ / \ 2 1

= \
1 -  4

\
T

c 2 (3.22)

where c is given by:

h
c = 0.6 for  —  < 1.0 (3.23)

L 1

and

c = 1.1 -  -  —  fo r  —  > 1.0 (3.24)
2 L L'

the modification factor 0)2 which corrects for thick stock material when the ratio of hm /  L!
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becomes greater than 1.0, then following MacGregor and Palme [96]:

h
w2 - 1.0 f o r  —  < 1.0 (3.25)

L

O) = 0 .7 5  + 0 .2 5  —  f o r  1 .0  <  —  < 8 .0  (3.26)
l ' l  1

and

G)2 = 2 .7 5 f o r >  8.0 (3.27)

3.2.5 Model iterations

Within the load, power and strip temperature model it is necessary to set up two iteration 

loops in order to converge the models to a solution. This is necessary for two reasons:

i) The inter-dependence of the deformed roll radius and the rolling load, see 

Equations (3.7), and (3.17). Starting with the deformed roll radius set equal to the 

undeformed roll radius, the model calculates the rolling load P. This then gives a new 

estimate for R/ and the procedure is repeated until convergence is achieved.

ii) The dependence of the entry bite temperature TBI on the entry strip speed vi and 

consequently upon the forward slip. This relationship can be seen from Equations (3.3) 

and (3.28).

v2 = v m (l + / )  (3.28)

The forward slip calculation within the rolling load model is dependent upon the flow 

stress and therefore the bite entry temperature. A starting value for the forward slip is 

chosen and the load, power and strip temperature models are iterated until the forward slip 

converges.
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The second iteration loop is placed around the first with both loops placed around the load, 

power and strip temperature models.

3.2.6 Main motor torque and power

The torque G that is required to rotate one work roll, assuming that a roll separating force 

P is acting in the middle of the arc of contact is given by:

G  = —  P  
2

(3.29)

Within the process models the calculation of torque is split into two regimes; one model 

being applied for thick material and one for thin material. The model used for thick stock 

material extends Equation (3.29) with a parameterised form for the calculation of the length 

of the lever arm. The model following on from work initially carried out by Denton and 

Crane [97], takes the form of:

G  = 2 r I R U L '  P

where the lever arm ratio VARM is calculated from the parameteric model:

forr  = r  + rA R M  1 2

2 R 1 + r ,
.  *i . A

2 R 2 R

h.
< 2 5 .0

and

r  = r  +25  o r  + s o r
A A R M  1 2 3 for

2 R
> 2 5 .0

(3.30)

(3.31)

(3.32)

The method of determining the constants T, V2 and V3 is discussed in Chapter 4.

The model for thin material follows that developed by Darby [98], which calculates the 

torque by taking the difference between the interfacial shear stress at the entry and exit 

sides of the neutral plane, thus:
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G  = 2 R 1 W  T { L 1 -  2 L  )s n' (3.33)

where t is calculated by from:

t  = k
i \ 

T

]r \ K /
(3.34)

For both thick and thin material the total motor power is given by the following equation:

E  =
G  v m

R  Tj
(3.35)

where is the q motor efficiency.

3.2.7 Flow stress

For a particular aluminium alloy a prediction is required of the yield or flow stress of the 

material. This is the value of the stress at which the material will start to yield and undergo 

permanent plastic deformation and this is an important parameter within the rolling load 

model.

The flow stress k is calculated using a constitutive equation, see Sheppard & Wright [99] 

which takes the form:

B

k = a e 7*1 In

( \

( z \  ~
Z  " +  1

(3.36)

where Z is the temperature compensated strain rate given by:

Z = 6  exp Q
R 1 T

(3.37)
B l )
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The strain rate Cis given by:

h

\fR~b
In (3.38)

and the strain e is given by:

h
e = In (3.39)

The constants a, A, Q, B and n are determined experimentally for a range of different 

aluminium alloys, Atack [100].

3.2.8 Roll bite friction

between the strip surface and the work rolls must be developed. When the material is 

relatively thick (above 30mm) it is generally agreed that friction is relatively unimportant 

due to the nature of the deformation. This means that the interfacial shear stress t  is large 

enough to yield the material’s surface, so that the x/k ratio (the friction) is equal to 0.5. The 

shearing of the material occurs because at thicker gauges the material’s flow stress is lower 

than that at thin gauges. Below a gauge of 30mm the friction becomes smaller than 0.5 and 

shearing of the materials’s surface no longer occurs. The model developed by Abbott [101] 

assumes that the friction is a function of the strip bite entry temperature TB b  the roll speed 

and the geometrical ratio hm! V . The model has the following form:

Subject to the following constraint:

/  \

Figure 3.5 shows a plot of the variation of the friction with strip bite entry temperature. The

In order to accurately predict the rolling load, a model of the variation of the friction

(3.40)
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coefficients A, to A 5 are constants which are computed when the model is calibrated. The 

constants will vary from alloy to alloy and from mill to mill, because factors such as the 

mill lubrication properties, roll roughness and strip surface finish will greatly influence the 

friction. Attempts to directly measure the friction in the laboratory have been attempted by 

Lenard and Malinowski [102]. Here pressure pins mounted into the work roll are used to 

measure the shear stress and the pressure distribution under different hot rolling conditions.
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Figure 3.5 Variation of friction with strip bite entry temperature

3.2.9 Strip temperature models

There are four main mechanisms by which the strip will gain or lose heat during rolling. 

These are:

i) By contact with air when heat is lost due to radiation and natural convection.

ii) By forced convection when the strip moves through the coolant wash.

iii) By conduction of heat from the strip to the work rolls when the strip passes through the 

roll bite.

iv) Heat is generated within the strip due the plastic deformation.
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On some mills actuators are fitted which are used to control of the amount of coolant 

falling onto the strip. The most common control method is to use compressed air jets to 

blow the coolant off of the strip which has the effect of fixing the coolant wash length. 

Additional banks of sprays can be installed over the strip which are switched on or off to 

allow more or less strip cooling to take place. Figure 3.6 shows the five temperature zones 

that the strip will go through for one pass on a single stand reversing mill.
Roll bite

conduction zone

Entry coolant 
wash zon e

Exit coolant 
wash zone

Entry air 
zone

Exit air 
zone

Figure 3.6 Strip temperature model zones
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Within the strip temperature model a single point on the strip is tracked as it passes through 

the various temperature zones. The position of this point can be varied from the head to 

the tail end of the strip, so that variation in the strip’s temperature along it’s length can be 

predicted.

The change in temperature of the strip from entry Tx to exit T2 is given by:

^ 2  =  ^ 1  ^ E N T R Y  AIR ~  ^ E N T R Y  WASH ~  ^ B I T E  ~  ^ E X I T  WASH ~  ^ E X I T  AIR  (3.42)

where ATt is the change in temperature through the given temperature zone i.

The strip temperature model is divided into two main parts; firstly dealing with the heat 

transfer outside the roll bite and secondly the heat conduction to the work rolls.

3.2.10 Cooling outside the roll bite

The factors which are taken into account in this model are:

i) Natural convection during delays

ii) Radiation losses

iii) Forced convection losses when the slab is moving through air

iv) Heat extracted by the coolant wash

The assumption is made that because aluminium is a good conductor of heat, there will be 

no significant through thickness variation in the temperature. The general equation 

governing the temperature T of the slab is given by:

where A is the strip cross sectional area, (|> is the perimeter length of the strip cross section 

and Ta is the ambient temperature. If it is assumed that the heat transfer coefficient h is not 

a function of temperature then Equation (3.43) can be integrated to give:

d T

d t

<$> h ( T  -  T a ) 

A Pi CpX
(3.43)
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T  - T .  = ( T  , - T . )  e x pexit A  v en try  A '  r

f i \(p h  t

A Pi c Px
(3.44)

For each of the cooling modes the appropriate heat transfer coefficient h and ambient 

temperature TA is used.

3.2.11 Air heat transfer coefficient

For the losses due to radiation the Stefan Boltzmann equation is applicable, Holman [103], 

which is written as:

dT (M j a
dt ^ Pi Cpi

[(T  + 2 7 3 ) 4 -  ( T a + 2 7 3 ) 4 (3.45)

If Equation (3.45) is written in the form of Equation (3.43) then following 

Serendynski [104] the mean heat transfer coefficient for the rate of heat loss from the 

strip’s surface hR is given by:

=

€j O

{ T  ~ T 4)
( T  + 2 7 3 )  ~ ( T .  + 2 7 3 ) (3.46)

The heat transfer coefficient due to natural and forced convection of a horizontal plate in 

air, hc follows that of Holman [103] and is given by:

h c  = 1 .43 ( T  -  T a ) 033 (3.47)

Now by adding together Equations (3.46) and (3.47) gives the total heat transfer coefficient

hA:

h  -  h  + hn A n c  R (3.48)

Substituting hA for h in Equation (3.44) gives the strip exit temperature £xit from the air 

cooling zone for a given strip entry temperature Tentry into the air cooling zone:

51



(3.49)

3.2.12 Coolant wash heat transfer

Investigations by Bamberg and Prinz [105] have shown that the heat transfer coefficient 

for the coolant wash is a function of the strip temperature, strip speed and chemical 

composition of the coolant. Laboratory tests have been done, Atack et al [106] to measure 

the heat lost from a plate under various conditions. The following heat transfer coefficient 

for the coolant washover hw has been derived for strip at a temperature T and moving with 

a velocity Vs:

h w = A 1 exp(A 2 (T l  -  T ) )  + A 3 (V S -  VT) A4 f o r  Vg ;> V T a n d  T  < TL (3.53)

The base heat transfer coefficient A] is calibrated to suit the specific mill and alloy which 

the model is describing. Substituting hw for h in Equation (3.44) gives

Further temperature models can be produced for the effects of air jets or strip sprays by 

calculating the appropriate heat transfer coefficient for the cooling effect, along with the 

length of the temperature zone.

h w = A j f o r  V s  < V T a n d  T  > T h (3.50)

h w  = A j  + A 3 ( V s  -  V t ) A4 f o r  Vs  > V T a n d  T  > T h (3.51)

h w -  A 1 exp ( A 2 ( T l ~ T ) )  f o r  V s  < V T a n d  T  < T h (3.52)

A  P, C  .V p1 J
(3.54)
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3.2.13 Roll bite heat transfer

The roll bite heat transfer model is based upon that developed by Bradley et al [107]. The 

principal is that heat is generated within the strip during plastic deformation and there is 

heat conduction into the rolls along the arc of contact. Figure 3.7 shows how the heat 

conduction problem is defined.

TEMPERATURE 
T roll

ROLL
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T slab

h m 
2

X 2
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INITIAL
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X 1 TEMPERATURE

T 1 —Tslab -T roll

Figure 3.7 Roll bite heat transfer analysis

It is assumed that:

i) The strip and roll can be considered as semi-infinite planes initially at uniform although 

different temperatures.

ii) There is no thermal resistance to heat flow at the strip to roll interface.

iii) The heat is generated at a uniform rate per unit volume within the strip.

iv) The heat conduction is predominantly in the radial or through thickness direction.

v) Temperatures are normalised with respect to the initial roll temperature.

The heat conduction equations based on the above assumptions are: 

For the slab:

5  r , 4) 1 dT
  + — = ---------- (3.55)

*1 flTdx ,2 *i “ ■ dt
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where

T x (x i, 0  Tslab{x j, t) Tro//(0 , 0)

and

T  slab ~  T slab( x v b )  ~  T roU{ 0 , 0 )

and for the roll:

d 2T 2 _ ! d T 2 

d x l  a 2 d t

where

T 2(x v  t) -  T roll(x 2, t )  -  T roll(x v  0 )  

The initial condition for the slab is:

-  T slab

and for the roll:

f 2(x2,0 ) -  0

The boundary conditions are: 

at the strip to roll interface:

7 ^ 0 , 0  = f 2( 0 , 0  f o r  t >  0

and

d T x{ 0 , t )  d T 2( 0 , t )
k .  --------------  -  -  k 0----------------

die, dx:̂

At a considerable distance from the interface it is assumed that 

for the slab:

lim  T f x v t) = T islab

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)
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and for the roll:

l im  T 2{x2, t )  -  0
X2~* °°

The heat generated within the strip is given by:

(3.65)

E  T|

4) =
v2 h 2 W

+ (0 2 -  o,)
(3.66)

where the contact time t r  is:

h  L

V 2 h 2
(3.67)

Using Laplace transforms the partial differential Equations (3.55) and (3.58) are solved in 

conjunction with the boundary conditions. The solution for the variation in strip 

temperature with respect to x, and t  is given by:

j, 0  ^  slab +
4)

k
1 +  —  

k2\

CL,

CL,

T ,U b  *

«, 4>t

L V
t  +

2 a

(3.68)

x er fc
OCj $ xi

K \| rca.
e x p

4 a. t ,
\  1 / .

Equation (3.68) can be differentiated to give the rate of heat flow at the interface of the 

strip and the roll:

a Tt(0 , 0

k
1 +  —

CL,

CL,

slab 2 a. f)
s jn  OCj t  k \ \ iz a (3.69)
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Integrating Equation (3.69) with respect to time gives the total quantity of heat flow across 

the interface for the given contact time.

Q
2 kt

V™ 1

/ ... \

k l
1 + —

tt2

* > \ a 2 )

t  IT  + 2 $  t 2
T slab  V C

3 k t

The strip exit temperature ^B2 for a given bite entry temperature is:

4KT = TA B2 B1
Pi C»i h Pi C

(3.70)

(3.71)

The models given in this section allow the temperature of the workpiece to be predicted for 

a series of passes, from being brought out of the furnace as a thick slab to being coiled up 

as thin strip after its final pass.
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3.3 Work roll temperature and thermal camber

When the hot strip comes into contact with a work roll, heat is conducted across the 

interface and the work roll temperature increases from ambient to a steady state value. 

Those portions of the work roll not in contact with the strip will be at a lower temperature, 

as there is no heat being conducted into the roll’s surface. As a result, the roll will have a 

differential radial expansion along its length. The difference between the roll radial 

expansion at the strip’s centre line and that at the barrel edge is termed the thermal camber 

of the work roll. Tracking the variation in the thermal camber is important because of its 

effect on strip profile and shape.

This section will describe how the thermal camber can be calculated, following the work 

of Beeston and Edwards [108]. The finite difference method is used to solve the partial 

differential equations describing the heat conduction within the work roll.

It is assumed that the development of thermal camber is a long term phenomenon governed 

only by the radial and axial temperature distribution within the work roll. Any 

circumferencial variation in temperature caused by the rotation of the roll is assumed to 

have little or no effect on the camber. The heat transfer from the workpiece to the roll is 

considered to be evenly distributed around the roll as is the cooling effect of the sprays. 

The axial spacing of the nodes is set to correspond to the spray pitch. To determine the 

temperature distribution within the roll, the roll is discretised into a finite difference grid 

as shown in Figure 3.8. In the radial direction the nodes are organised such that, close to 

the surface the distance between the nodes is less than that deep within the body of the roll.
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Radial zones 

Figure 3.8 Work roll discretization

At points (r,z), the variation of temperature T with time t is given by the partial differential 

equation governing the heat conduction within a cylinder:

_1_dT_  = & T  + J_ dT_ & T

OL d t  d r 2 r  d r  d z 2
(3.72)

Equation (3.72) is solved numerically using the finite difference method, such that 

Equation (3.72) may be written in dimensionless form as:

d T :u _
d x

/  \ 2

1
T it 4-1//+ 1

V
1 +

2 j  -  1
+ T,ij-1 1 - 1

2 j  -  1
- I T .

bx
f r +1. + T. .. -  2 T . ]  L »-U yj

V /

(3.73)

where



* X  
X  =  —

R

The boundary conditions for the roll are:

dT = 0 ,  r -  = 0
d r

d T -  0 ,  x *  = 0
d x

Pit R- h ( x )  * *
dT [T ~ Tc(x)] + qt , r = 1

d T R  h__ * L
x  = —  

R
[T  ~ T ( x )  ] ,

where L=B/2.

Figures 3.9 and 3.10 show the nomenclature used in this model.

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)
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Figure 3.9 Work roll elements
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Figure 3.10 Work roll radial element

The heat input into each surface radial node is given by:

qVi =
2 f t  k 2 A  r

, i < P

-  0  , i  >  p

and total heat transferred to the roll is:

^ ^  total Q strip

roll
axis

(3.81)

(3.82)
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where

E  T1 + V, h2 (02 -  O,)
= ----------------------- 7--------  (3-83)

4 it W R 1

and

^p2 P 2 V2 ^2 (^B2 ^Bl^
4 strip = -------------------------;----------  (3.84)

2 TZ W R

The size of the finite difference mesh and time step is set to ensure that problem meets the 

Fourier stability criteria given by Equation (3.85).

A T
< 0.5 (3.85)

A r *A x

The model evaluates the temperature distribution within a quarter of the roll cross section 

as it is assumed that the problem is symmetrical about the strip centre line and the roll axis. 

The heat transfer coefficient used in Equation (3.79) was determined in the laboratory, 

Atack et al [109]. The coefficient is determined for different types of spray nozzles and for 

combinations of nozzles operating at different spray levels.

The expansion of each roll section is calculated from the radial temperature distribution 

using the work roll material’s coefficient of thermal expansion. It is firstly assumed that 

the restraining effect of adjacent axial elements can be neglected. Expansions found in this 

way are then smoothed to take into account the restraining effect of the combination of the 

axial elements. The surface expansion of the roll is computed by using a Green’s function 

to produce a set of influence coefficients relating the surface displacements to the internal 

stress distribution within the roll. The thermal camber at the strip edge is calculated by 

taking the difference between the roll expansion at the strip centreline and that at the strip 

edge.
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3.4 Stack deflection

3.4.1 Work roll axis deflection

When the rolling load is applied to the roll stack, the work rolls and the back-up rolls will 

deflect. Flattening will also occur between the work rolls and back-up rolls and between 

the work rolls and the strip. The model of the stack must firstly be configured for the 

number of rolls in the stack, in this case there are four rolls. Different model configurations 

must be used for other stack sizes such as a two high or six high mill. The models must also 

consider the effect of any profile actuators which are fitted to the mill, such as work roll 

bend or if there is the ability to shift the work rolls sideways.

The model of the four roll stack presented here is based upon the work by Misaka and 

Yokoi [110]. Figure 3.11 shows the top two rolls of the stack and the associated 

nomenclature.

P/2P/2 Lee

Jb

/ ( X )

/ ( X )

Jw

Figure 3.11 Stack deflection model notation

The work roll axis deflection is computed by firstly making the assumption that the
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pressure distribution between the work roll and the strip may be written down as a quartic 

equation:

p
/

(  \ 4 /  \
\

2

P(x) =  - i a i
V

X
~  P .

X
+ Y i

(3.86)
W

The total strip to work roll load Ps takes into account the effect of any roll bending either 

on the work rolls Jw  or on the back-up rolls Jr. The work roll to back-up roll is also assumed 

to have a quartic pressure distribution of the form:

/ (  \ 4 /  \ 2 \

A x )  =  £ a 2
X

-  p2
X

+  Y 2B \ K B  J v B  j /

To solve the problem the assumption is made that the pressure distribution between the 

work roll and the strip is a known function in this it is assumed to be linear. Thus, in 

Equation (3.87) ai and pi are set to 0 whilst yi is set to 1. There now remain three 

unknowns in the problem, namely <X2, p2 and yi. Three independent equations are now 

required for the problem to be solvable.

The compatibility equation for contact between the work roll and the back-up roll can be 

expressed as:

>V(*) " I'bW + m " / ( ° ) ]  + Six) = 0 (3.88)

where m is a constant used to define the inter-roll flattening produced when two cylinders 

come into contact, see Loo [111]. The term g(x) is the unloaded roll separation and is 

therefore the difference between the back-up roll camber and the work roll camber. Here 

camber is the sum of the roll thermal camber, the initial ground camber and the camber 

produced due to roll wear.

The equations for the work roll and back-up roll deflections, y^x) and yB{x) can be written 

down from beam theory, see Case and Chilver [112]. The roll axis deflection at a point x 

is the sum of the bending moment and the shear force being applied to the roll.
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So for the back-up roll y B(x) is written down as:

yB(x) =
Eb‘b

M , . x
X X  X

f f j J

XXX

' / ( ° d ! d x d x  + f f f i / ( 0 d  i d x d x
o o o  ooo

^B^B

X  X

I f /(C) d £ d x
o o

(3.89)

and for the work roll y^(x) is written down as:

y j x )  =
M ox  + P  L  J  n L  r J  m L  titcc B  B W  W

\

XXX XXX X X  X

+ /  J x J y ( O d ( d x  d x  ~ J  j j  C/(C) d ^ d x d x  -  I f f  P( C) d C , d x d x  

0 0 0  0 0 0  0 0 0

XXX

I I I
0 0 0

CjP(C) d ^ d x d x
'W JjWc* - f f iF(Odidx -  I lA O dtdx

L 0 0 0 0

(3.90)

where

M  =
P L  J Rcc B

B/2

M -
f[x) x dx (3.91)

and

p s =

W/2

f*>(x)x dx (3.92)

Performing the integrals in Equations (3.89) and (3.90) produces equations relatingy^x)  

and yB(x) to a2, P2 and yi , which may then be substituted into Equation (3.88). The 

assumption is now made that the back-up roll and work roll must come in contact at at least 

two positions along the roll barrel length. These two positions are firstly at the barrel edge 

and secondly at a point a quarter of the way along the barrel. If x is set to B/4 and B/2 and 

then substituted into Equation (3.88) two equations are produced with a 2, p2 and y2 being
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the only unknowns. Finally if Equation (3.87) is integrated along the work roll to back-up 

roll contact length and the result set to the rolling load, a third equation is produced. The 

solution may now be found by solving these three equations simultaneously to produce 

equations for 0C2, p2 and 72 . Substituting these coefficients into the equation for y^x)  

produces a prediction for the work roll stack deflection.

3.4.2 Work roll to strip flattening

The assumption made about the uniform work roll to strip pressure distribution, in the 

previous section, means that the work roll to strip flattening must be computed separately. 

When the strip comes into contact with the work rolls, the load between the two surfaces 

causes the rolls to flatten. The amount of flattening produced is dependent upon the rolling 

load applied, the roll material and the roll gap geometry. Within this analysis, following 

Matsumoto [113], it is assumed that the load distribution between the strip and the work 

roll is a known functionp /(%,Q, where the co-ordinates \  and £ are defined in Figure 3.12.

Exit

(x,z)

Entry

Figure 3.12 Flattening of work roll to strip contact area
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The expression to give the roll flattening at the co-ordinates (jc, z )  is given by:

u ( x , z ) =
r  1 -  v

J  71
p ' a ,  o

2 ) / ( x  -  $ ) 2 +  ( ^  -  0 2

(3.93)

where -S' is the contact surface between the work roll and the strip. It is now assumed that 

p 7 varies uniformly both across the strip width and along the arc of contact between the 

strip and the roll. Using this assumption the flattening of the roll at any position x is found 

by integrating Equation (3.93), thus:

u ( x )
* - V2
71

In /  b + x + y/(b + x ) 2 + L" * N

- b  + x + \](b -  x ) 2 + L 2

0b + X) L + ]/(b + x ) 2 + L 2 + (b ” In L + \/(b -  x ) 2 + L 2

L b + x ) L ( b -  x )

(3.94)

where b is W/2
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3.5 Strip profile and shape

Predictions of strip profile and shape are required to control the geometry of the strip. The 

profile across the strip width is generated because the roll gap profile will be imprinted 

onto to the strip as the material passes through the roll bite. This roll gap profile is 

produced by summing the work roll effects described in the previous two sections. Namely 

the work roll thermal camber, stack deflection and roll flattening. In addition the effects of 

the initial ground camber on the rolls and roll wear must be taken into account when 

calculating the roll gap profile. Shape is generated within the strip because of the 

differential gauge across the strip’s width. Consequently there is then a mismatch between 

the length of material at the edges and that at the centre of the strip. Some of this mismatch 

is accommodated by lateral flow of the material, whilst the remainder produces a strain 

distribution within the strip. Once this strain distribution reaches a certain level, bad shape 

will be produced which will manifest itself as visible waves or pockets on the strip.

3.5.1 Strip profile model

The mechanisms by which strip profile is created within the roll gap is a complex 

modelling problem. A simplified model has been developed which can be used on-line and 

which is also amenable to adaptation. The profile model follows that of Ogawa et al [114]. 

The mechanical camber on the work rolls can be calculated by:

^ m e c h  ~  ^  ( ~ C Th  + ^ D F  + ^ F L ^  (3.95)

This equation assumes that the camber will be the same for both top and bottom work rolls. 

The sign of the thermal crown CTH is indicating that a roll with a greater expansion in the 

centre of the strip than at the edge is termed a positive camber. The strip profile model is 

based around the following single equation:

c, = C, c,  mech * (1 -  Q  C(_, (3.96)

which expresses the exit strip crown C, to be composed of a proportion of the crown
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entering the m ill C M plus a proportion o f  the m echanical crow n on  the w ork  rolls. The term  

C is ca lled  the im printing ratio, w h ilst  the term  (1 - ( )  is  ca lled  the hereditary factor. The  

strip p rofile  m ay then  be calcu lated  from:

C
K =  —  * 1 0 0 %  

h„

(3.97)

T he im printing ratio is  exp ressed  by:

C = 1 -  0 .8 8  x 0 .0 7 3
W_ 

h,

f o r  0 .0 7 3 —  <  i (3.98)

and

C = 1 -  0.88 / o r  0 .0 7 3 I n (3.99)

A s the strip enters and ex its the roll gap it p a sses  through e la stic  reg io n s, see  F igure 3.13.

P la stic  

d eform ation  zo n e

Figure 3.13 E lastic and p lastic  reg ion s

The size  o f  these elastic reg ions generally increases as the strip b ecom es thinner. T he w ork  

o f  Jouet et al [115]  introduced the concept o f  secondary deform ation taking p lace at the roll 

bite exit. T his e ffect causes a m odification  o f  the strip profile across the strip w idth. A s  the

E xit e la stic  

zo n e

E ntry e la stic  

zo n e
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rolling load is removed from the strip as it leaves the roll bite, relaxation of the strip occurs, 

Kalpakjan [116]. Such relaxation increases with the application of forward tension onto the 

strip. The consequence of this mechanism is that Equation (3.96) must be modified to take 

into account the secondary deformation effect. Here it is postulated that Equation (3.96) 

can be modified by the addition of a elastic recovery term as shown below:

C , = C/ C , „«cA + ( '  “  0  C ,-l  + — —  ( 3 ’ 1 0 0 )/ / i m ech  / , 1 1 0 0 0 0

The elastic recovery constant X is used to calibrate the profile model for steady-state rolling 

conditions and the method for determining X is discussed in Chapter 4.

If Equation (3.100) is expressed in terms of strip profile then it becomes:

K , = C ‘ m “ h  * 100 + (1 -  Q  a + — - —  % (3.101)
h2 f a 2 100

The addition of the last term in Equation (3.100) is a novel idea in the modelling of strip 

profile. Chapter 4 discusses how the elastic recovery term has been used to eliminate the 

steady state error between the profile model and measured profile results.

3.5.2 Strip shape model

The generation of differential elongation across the strip width causes a strain distribution 

to be setup within the strip. The calculation of this strain or shape is given by:

e, = ?, (*, -  + e,-,) (3.102)

which relates the exit shape 8; to the entry shape eM plus the difference between the entry 

and exit profile. The shape change coefficient £ is defined as:
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£ = 0 . 1 7 1 5 log -
W 2 

4 7 2  h
1.5
1

(3.103)

which specifies how much of the profile change made during a particular pass can be 

accommodated by lateral flow of the material.

The work of Shoet and Townsend [117] investigated experimentally how much profile 

change could be made before bad shape is manifested. Following from the equations that 

they developed the shape limits for a particular pass are given by:

M a x  p o s i t i v e  p r o f i l e  c h a n g e  = — 10 0  x 15 (3.104)

and

M a x  n e g a t i v e  p r o f i l e  c h a n g e 100 x 15

1.64

(3.105)

Due to the lack of strip shape measurement at present for the hot rolling of aluminium, the 

shape model is difficult to calibrate. However it is possible to observe bad shape during 

rolling at certain gauges and relate this back to profile changes made within the roll bite. 

Consequently Equations (3.104) and (3.105) can be calibrated to produce profile change 

limits for a given gauge.
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3.6 Conclusions

This chapter has presented a survey of the process models which give predictions of the 

rolling mill parameters. The chapter opened with a discussion about how the models are 

interlinked. The next four sections described in detail the components of each model block. 

The model blocks described produce predictions of the rolling load, main motor power, 

strip temperature, work roll thermal camber, stack deflection, shape and profile. It can be 

concluded that the models presented describe in some detail the mechanisms involved in 

the rolling of aluminium. The models can be used to produce predictions of the key quality 

parameters which are important in the control of the rolling process. Novel and interesting 

aspects of this chapter include the presentation of a unified rolling load model for both 

thick and thin stock material, the solution of the roll bite heat conduction problem and the 

formulation of the strip profile and shape model.
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CHAPTER 4

Adaptation of Process Models

4.1 Introduction

This chapter describes the algorithms used to adapt the process models described in 

Chapter 3. Feldmann [118], MacAlister [119], Stephens [120], Randall [121], [122] and 

Atack [123], [124], [125] describe model adaptation schemes for both aluminium and steel 

rolling. The adaptation described in these papers quite specific to the applications and to 

the model configuration. The aim of adaptation is to ensure that model predictions are in 

good agreement with measurements made when rolling, see Bilkhu [126]. Measurements 

of the rolling load, main motor power, strip temperature and strip profile are compared with 

the corresponding model predictions and adjustments made to model parameters. The 

models described in the previous chapter are non-linear. In order to make them amenable 

to adaptation the models are firstly linearised about an operating point. The method 

adopted for doing this is to evaluate the model partial derivatives directly and this is 

discussed in the second section of this chapter.

Sections two and three present the adaptation algorithms and show how they are applied 

to the rolling process models, see Reeve [127] for a review of adaptation for use on a steel 

mill. Adaptation is split into two levels. The first level is used to compensate for long term 

variations in the process. Long term adaptation is run after each slab has been rolled and 

new adaptation coefficients calculated and used for the next slab predictions. The second
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level of the adaptation algorithm is used to track short term variations in the process. The 

short term algorithm is run after each pass to estimate the slab state. Within each section 

results from the algorithms are presented.

The final section in this chapter presents details on the implementation considerations 

which were made to ensure the algorithms operated successfully. This section also contains 

techniques which can be used by an expert system to improve the performance of the 

model adaptation. Details of how this is done are presented in Chapter 5.

PRODUCT & TARGET DATA

MEASUREMENTSSCHEDULE
UPDATE

/ "  PROCESS'N
SET-UPSCHEDULE

GENERATION

PROCESS
MODELS CLOSED LOOP 

CONTROL

SLAB TO SLAB 
ADAPTATION

PASS TO PASS 
ADAPTATION

Figure 4.1 Interaction of process model adaptation with other control functions

Figure 4.1 shows a block diagram of a rolling mill setup and control system, see 

Stephens [128]. The interactions between the adaptation, process models and the 

derivatives are shown.
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4.1.1 The need for model adaptation

There are several reasons why the models require adaptation, see Eykhoff [129] and 

Gevers [130]. These include:

i) A number of simplifying assumptions were made in describing the process 

mathematically. Such simplifications inevitable lead to model inaccuracies in some parts 

of their operating range.

ii) Model data, such as the aluminium flow stress or mill coolant heat transfer coefficient 

are measured off-line and may not completely describe the true situation on-line. The 

application of inaccurate or uncertain input data to the models leads to errors in the model 

predictions.

iii) Although the models are calibrated off-line, such a calibration is fixed. The use of an 

on-line adaptation algorithm allows the models to track long term variations in the 

operating point of the process. For example, the coolant properties will change with time, 

as will the roll bite friction.

iv) There will be short term variations in the process caused by slight differences in the 

alloy composition of the aluminium, differences in the initial geometry of the slab or 

inaccuracies in the measured slab temperature.

Figures 4.2 to 4.6 show the process models without any adaptation plotted against the 

corresponding actual plant measurements. Figure 4.2 shows that the unadapted rolling load 

model is over predicting by an average of 20%. The results for the power model in Figure

4.3 show better agreement although some points lie outside the ±10% error region. The 

strip temperature predictions in Figure 4.4 show that the model temperature error can be 

as high as 40 °C for some passes of the schedule. Finally the strip profile predictions are 

offset from the 0% error line. It is clear that improvements in the model prediction accuracy 

should be made before they are used on-line and this can be achieved using adaptation.
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Figure 4.2 Graph of predicted against actual measured rolling load for the 

unadapted models 
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Figure 4.3 Graph of predicted against actual measured motor power for the 

unadapted models
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Figure 4.4 Graph of predicted against actual measured strip temperature for the 

unadapted models
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Figure 4.5 Graph of predicted against actaul measured strip profile for the unadapted 

models
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Figure 4.6 Graph showing ratio of measured to predicted rolling load and 

distribution of error in process model

Figure 4.6 shows the load data given in Figure 4.2 plotted on a pass by pass basis and 

presented as the ratio of the measured to the predicted load. From the graph two types of 

error in the prediction can be seen. Firstly the fact that they are offset by a varying amount 

from pass to pass. Secondly that they are offset from slab to slab. The first type of offset 

will be removed with long term adaptation and the second type by the short term 

adaptation.
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4.2 Derivation of model derivatives

In order that the models described in Chapter 3 can be used to control the rolling process 

it is firstly necessary to differentiate them with respect to defined independent variables. 

This enables linear control theory to be directly applied. There are two applications within 

rolling mill automation where derivatives are required. The first being closed loop control 

gains and the second being the model adaptation.

Evaluation of the derivatives for the load, power and strip temperature models is performed 

in two parts. Firstly obtaining the partial derivatives for each of the individual models and 

then secondly combining these derivatives to produce a total derivative for a given pass. 

The computation of the profile model derivatives is performed in a similar manner. The 

form of the profile model is, however, much simpler making its differentiation relatively 

straightforward.

4.2.1 Partial derivatives

Bryant [23] describes the evaluation of derivatives for a steel tandem mill. Before 

commencing with this task, it must first be decided which parameters are the dependent 

variables and which are the independent variables for each model. The dependent variables 

are selected as the measurement set, namely the rolling load, main motor power, strip 

temperature and the strip profile. Whilst the independent variables are selected as the 

control actuators and the adaptation coefficients. In this case, the control actuators are the 

mill speed vm and the work roll bend Jw The selected adaptation coefficients are multipliers 

to the material flow stress, coolant wash HTC, motor torque and the elastic recovery 

constant. In practice, the independent variables includes other model parameters so that the 

derivatives set is as general as possible., So, for example, adaptation can be performed 

using the strip thermal properties.
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4.2.2 Load, power and strip temperature model derivatives

The model defining the rolling load given in Chapter 4 can be written as a function of its 

independent variables thus:

p  = /,(* ,. k \  x/k, r ') (4.1)

where jcj is defined by:

*i = (0,* V  r .) (4-2)

and 0 , the adaptation coefficients are given by:

e, = (0 ,. e2. e3) (4 .3 )

where

k = k 0j (4.4)

G  = G  02 (4.5)

and

A,  = A,  0, (4.6)

where A indicates an estimation of the given parameter.

Now if Equation (4.1) is perturbed with respect to each independent variable, the rolling 

load P can be expressed by the following equation:

_ d P  *  d P  * d P  *  n d P  -  /
P  = P  +  Ox, +  o £  +  o x  Ik +  O R  ( ± i \

° a*, 1 d k ‘ d m  d R 1 ’

This equation is a linearization of the load about an operating point P0. Each of the partial 

derivatives in Equation (4.7) are calculated by direct differentiation of the rolling load 

model. For each of the load, power and strip temperature models it is possible to write 

down a function relating each model to its set of independent variables.
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Thus for roll flattening:

« '  = / 2( * p ) (4.8)

for the flow stress:

k = f 3( x v TBI) (4.9)

for the roll bite friction:

T ~ f*(xv (4*10)k

for the strip temperature from the entry air cooling zone:

^W1 ~ f s ( XV Vl) (4*11)

for the strip temperature from the entry wash cooling zone:

^Bl ~ ^6^XV TWP Vl̂  (4*12)

for the strip temperature exiting from the roll bite:

B̂2 ~ f l ( XV ^Bl) 

for the strip temperature from the exit wash cooling zone:

Ŵ2 ~ TB2’ V2  ̂ (4*14)

for the strip temperature from the exit air cooling zone:

r 2 = f 9(x v  T wr  v2> (4.15)

and for the motor torque:

G = / 10(^P k, x/k) (4.16)

Each of the Equations (4.8) to (4.16) is differentiated to obtain an equation similar to (4.7).

Thus a complete set of partial derivatives for each of the models is obtained. An

examination of the above equations reveals that there are some interrelationships between
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the various models. In particular the rolling load model and the roll flattening model. If 

Equation (4.1) is perturbed by a small amount &t, then the following equation is obtained:

6  P  =
3/, 3/, dk 3/j dz/k df, dR
d x , dk d x l dx/k d x l 1 d x x

5x, (4.17)

Similarly perturbing Equation (4.7) by a similar amount 5x1 gives:

8 r ' = ■
3/, df  dP
d x  j d P  d x  j

(4.18)

Substituting Equation (4.18) into (4.17) and rearranging gives the derivative for the rolling 

load:

6  P  =

3/, 3/ ,  dk a/, dx/k a/, a/ 2   +  1   +  ±
d x . dk d x x dx/k d x x d R 1 d x :

, 3 / ,  a/ 2

d R '  d P

(4.19)

Now the computation of the total derivatives for the mill, for example dT2 /dTx or dT2 /dvm 

requires the multiplication of the various temperature partial derivatives. A general 

technique is described in Section 4.2.2 which allows the temperature derivatives to be 

calculated.

4.2.3 Strip profile model derivatives

The calculation of the strip profile model partial derivatives follows a similar procedure to 

that for the load, power and strip temperature models. The stack deflection model can be 

expressed as:

> V = / n ( * 2) (4.20)
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where:

* 2  =  ( ® 4 >  P ’ J W> (4.21)

and where:

X = A. 0
4 (4.22)

and X is the dynamic recovery constant.

The strip profile model can be written down as:

fi2(X2> ^W’ ^i-1) (4.23)

For a given pass, i, the strip profile model derivatives can be obtained by differentiation of 

Equations (4.20) and (4.23). The effect of modifying the adaptation coefficient 04 over a 

group of passes can be computed by multiplying the appropriate derivatives together.

4.2.4 Perturbation analysis

The perturbation analysis is used to calculate the total derivatives for the strip temperature 

models for a single pass on a reversing mill. Referring to Figure 3.6, the partial derivatives 

for the five temperature zones shown are combined together and coupled with the mass 

flow equation. The procedure uses the derivatives calculated in the previous section, 

effectively performing the chain rule operation using matrix algebra.

Perturbing Equations (4.11) through to (4.15) with respect to the independent variables 

produces for Twi'-

(4.24)
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for Tbi:

A t B1

B1

^ X i d T B i  x i + d T B] T W1 ^  A v t d T Bi

a x i T B1 T  d T  TWl  w  1 W1 1 B1 a v i T b i

(4.25)

for TB2:

A t B2 ^ * 1  a ^ 2  *1 + ^^Bl a^B2 1B1

B2 d x . B2 B1 d T  TB1 1 B2

(4.26)

for TW2:

W2 _ ^ X1 ^W2 X\ + B2 a^ W2 1B2 + ^ V2 W2 V2
T  x  d x  T  T  d T  T  v d v  T1 W2  1 W2 1 B2 B2  W2  v 2 u v 2 1 W2

(4.27)

and finally for T2:

^^2 _ ^ X\ a ^2 X1 + ^W2  a ^2 Ŵ2 + ^ V2 2 V2
T 2 T 2 T W2 d T W2 T 2 V2 d v 2 T 2

Now if Equation (3.3) is perturbed the following equation is obtained:

A v j A v 2 A /ij  A h 2

(4.28)

/ij h 2
(4.29)

which therefore means that the ratio AV2/V2 can be directly substituted for Avi/vi in 

Equations (4.24) and (4.25).

Now v2 is a function of the mill speed and the forward slip, which in turn is itself related 

to the strip temperature at the entry to the roll bite, thus:

v2 = g Y( x v  T b]) (4.30)

Perturbing this equation produces:

A v ,  A x  d v  x  A r  dv T

n r  (4-31)V2 x ,  a x ,  V2 T SI d T BI V2
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It is now possible to combine Equations (4.24) to (4.28) along with (4.31) into the 

following matrix form:

X.  = A Yj (4.32)

where Xj e for 1 <j<3 is defined by the vectors:

=

'  9, dTWI A8 '

Tw, 39, 0 ,

Tbi 30, O,

Tb! 30, 0 ,

0, 3 ry; A0, 

Tw, 50< 0-

0 37-, A01 __2  i
r, d0. 02 / /

0. dv2 AQ. 
V2 d e , l ~

v dT„, Avm B 2  n

t B2 3vm m

v„ 3v2 Av,
v-> dvm vm2 m m /

T dT AT

T dT T 1 wi 1 J 1

(4.33)

v4 e M6x6 is defined by the following matrix which will be invertible provided it is 

nonsingular.

A =

1 0 0 0 0 - a

- p ,

0 - 8„

o - K

0 - y T 1 0 0 0

0 0 - 5 r 1 0 -5
B 2  '

0 0 0 - e T 1 - e v
1 W 2  2

0 0 0 1

(4.34)
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and Y e  M6 is the vector:

Y  =
A tW1 A t b] A T B2 A t W2 A t 2 A v 2

T\  1 W l T  T  TB l  1 B 2  W2

(4.35)
2

By inverting the matrix^, the derivatives can be calculated by multiplying through by the 

appropriate^ containing the independent variables:

A ~ x X .  -  Yj (4.36)

The remaining terms in ̂ 4 are defined as:

a =
V2

Pv, =

6 =vi

V 1 d T wi

T W l d v x

T1 W l d T B l

T B1 ^ W l

V 1 d T B l

T1 B l 3 V 1

T B l d T B2

T B2 d T B l

TB2 ^ W 2

T1 W2 d T B2

V 2 W2

T W 2 d v 2

^ W 2 d r 2

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

m  T  d T
2 w  W2

(4.42)

(4.43)
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The derivatives derived in this section may now be used for on-line control. The 

application discussed in the next two sections is their use within the model adaptation 

schemes.



4.3 Long term adaptation scheme

The purpose of the long term adaptation is to determine adaptation coefficients which will 

track variations in the process for a group of similar slabs. The coefficients which are 

calculated will characterise the long term operating point for the particular product. The 

parameters selected to distinguish one product from another will vary from mill to mill. 

The alloy code, strip width, desired finish temperature and finish gauge can be used to 

identify the product.

The long term adaptation is run after all the passes have been rolled, when the measured 

data for every pass will become available. The results presented in this section were 

produced using measurements from a batch of twenty five slabs of a single product type.

4.3.1 Recursive least squares adaptation algorithm

This section describes the recursive least squares algorithm (RLS) used to estimate the long 

term adaptation coefficients, see Chen [131] and Cowan [132].

Z kUk

Figure 4.7 Block diagram of process S and model S

Referring to Figure 4.7, for a given process S it is possible to measure certain parameters y  

which are contaminated with noise v to give an observation z, thus for the kth such set of 

observations:

zk = y k + vk (4.46)
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The noise is of the form such that for a sequence of such measurements i= 1,2...,A: the noise 

has the following statistical properties:

E{v;.} = 0 (4.47)

and the v, are uncorrelated, having variance o2 thus:

E { v , V jT} = 0 2 6..  f o r  a l l  i , j (4.48)

where E is the expectation operator and 6  is the Kronecker delta function.

At the same time it is also possible to make an estimate of the parameter^ based upon the 

inputs u to the system using a non-linear model shown as S in Figure 4.7.

h  = /(«*) (4.49)

Now assume that S can be expressed as:

y\ = ak uk
T (4.50)

where ak e Mp is a vector of parameters that model the kth measurement and e Rp is a 

vector of input data for the kth measurement. The problem now posed is to estimate the 

values of the model parameters ak that will minimise the difference between the 

measurement zk and the prediction . This is done by minimizing the least squares cost 

function J. For k measurements this is written as:

Solving this equation produces the least squares algorithm, see Plackett [133] and 

Lawson [134] thus:

Provided uk ukT is nonsingular then an estimate ak can be found for ak. This can be further 

developed into a recursive form which is known as the recursive least squares algorithm, 

see Young [135]. The three stage RLS algorithm is given in Equations (4.53) to (4.55).

J  = a ^ u ~ z -i i i
2 (4.51)

( = 1

(4.52)



^* + 1 ^k + ^ k  + l ( Zk +1 + (4.53)

* * +i = p k “ k n  V  + « L i  P k ( 4 *5 4 >

P k + \ ~  P k ~ P k Mjfc+1 ^  + W* + l P k Mjfc + J  W* + l (4.55)

where P e R PxP is the error covariance matrix and Ke Rp is the gain vector. The error 

between the estimate and the actual value of ak is given by the estimation error vector:

s k = ak ~ ak (4.56)

The estimates have the following statistical properties:

E {dk} = 0 (4.57)

and the variance-covariance matrix Pk* is given by:

p k = (4-58)

By noting that:

P = o 2P k (4.59)

and substituting into the RLS algorithm given above, we get an algorithm which weights 

the contribution made from each measurement. Less precise measurements having a higher 

variance will be weighted less heavily than more precise measurements. Thus:

= p k “t .i t° 2 + “ L  p k u^ y '  (4-6°)

K i  = p i  - pk «*. ,  t ° 2 + “ L  p t « £ ,  p l  (4 -6i)

Equation (4.53) together with Equations (4.60) and (4.61) constitutes the recursive least 

squares regression algorithm. Information about the accuracy and rate of convergence of 

the estimates can be obtained by examining the diagonal elements of the Pk* matrix.
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A final modification to the algorithm can now be made by introduction of a forgetting 

factor p which when substituted into the RLS algorithm produces a fading memory 

implementation of the filter.

Consider the noise v/ associated with a group of k  measurements thus:

E fv .v ,. } = d i a g i o v  0 2, o k) (4.62)

Introducing the forgetting factor to weight more recent measurements more heavily than 

old measurements gives a weighting matrix W given by:

W  =  d i a g ( a v  p 'o 2, p‘ -‘o t) (4.63)

It can be shown that the fading memory implementation of the filter is given by:

= p i  «*., tp°2 + “ L  p k «*.,]■' (4-64>

j- '

P k  +1 M* +1 + U k +1 + J  U k +1 “ p “ (4.65)

where 0  < P < 1

The filter defined by Equation (4.53) together with Equations (4.64) and (4.65) is the form 

of the RLS algorithm which has been used for long term adaptation of the process models.

Figure 4.8 Block diagram of adaptation algorithm being applied to model S
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Figure 4.8 shows a modification of Figure 4.7 to include the RLS algorithm shown as E. 

The starting values a$ and P0 for the algorithm and control of the forgetting factor p are 

considered in Section 4.5.

4.3.2 Recursive least squares formulation for long term adaptation

The RLS algorithm is used in two different ways to adapt the process models. The first case 

is where it is used directly to identify the value of unknown model parameters. This method 

is applied to the estimation of the torque model parameters for thick stock material and is 

described in Section 4.3.3.

The second way that the RLS is used is to estimate the offset of adaptation coefficients 

which have a nominal value of 1.0. Such coefficients are used to multiply model 

parameters for example as shown in Equation (4.4). The formulation of the RLS algorithm 

for this second case is described below.

A vector 0 e  R4 of coefficients are introduced to adapt the models:

0, = (0j, 02, 03, 04)r (4.66)

The coefficients being defined by Equations (4.4) to (4.6) and (4.22). The problem now 

posed is to calculate the change in the coefficient vector away from a nominal operating 

point which will minimise the difference between measurements and predictions. For the 

kth prediction of the parameter y, Equation (4.50) can be rewritten as:

- n  + £  *I ' Aei <4-67)/ = 1

where yk° is the nominal model prediction, N is the number of coefficients and:

A04 = (A01,A02,A03, A 0 /  (4.68)

The RLS algorithm given in Equations (4.53) together with Equations (4.64) and (4.65) is
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used to estimate the value of A0k as each set of measurements becomes available. For the 

purposes of adapting the load, power, strip temperature and profile models the following 

vectors and matrices will apply:

ak = A6 t (4.69)

the adaptation coefficients are updated after each batch of measurements is applied to the 

adaptation algorithm, using:

= 6*-i + Ae* (4-70)

Initially:

e* = ( i , i , i , i f  (4.7i)

after every update:

A0, = (0 , 0 , 0 , 0 )r (4.72)

The measurement vector zk is replaced by:

(4.73)

where:

z !  = \ p  , G , T  , K  I7 (4.74)k [ m ’ m 9 m ’ m J v '

and:

K  = [Pp> Gp, Tp, Kp]T (4.75)

subscript m denotes a measured quantity and subscript p denotes a nominal model 

prediction.
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Finally the bk matrix is defined as:

dpk s p t a*.
30, 302 30,

30, 30, 30,

dT* dT»
30, 302 30,

0 0 0

0

0

0 *.

00.

(4.76)

The profile model is independent of the load, power and strip temperature models because 

measurements are used in the calculation of strip profile.

The next sections present the results from the implementation of the RLS algorithm for 

long term adaptation.

4.3.3 Torque model for thick stock material

The torque model is split into two regimes as described in Section 3.2.3. For each of these 

regimes an adaptation scheme has been designed. For thick stock three model parameters 

are estimated over the operating region of the model. The equation for the lever arm ratio 

can be obtained by rearranging Equation (3.30):

r A R M
2 L 1 P

(4.77)

where Gm is the measured torque and Pm is the measured rolling load. The length of the arc 

of contact L' is calculated from Equation (3.6) and R1 is calculated using Equation (3.7) by 

substituting Pm for P. This means that the lever arm can be estimated solely based 

upon measurements. The measured lever arm T™1{M is substituted for zk in the RLS 

algorithm, Equation (4.53). The model of the lever arm given in Equations (3.31) and
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(3.32) may written as:

A R M 1.0 ,
2 R 2 R

for 2 R
< 25.0 (4.78)

and

VARM = [•■<> • 25-° ■ 5 0  ] f o r
2 R

> 2 5 .0 (4.79)

which is in the form of:

 ̂ T 
A R M  U k + 1 ° k (4.80)

where:

O* = (r ,. r 2. r 3>r (4-81)

and:

a 0 = ( 0 .7 8 ,  0 .0 1 7 , - 0 .1 6 3  ) T (4.82)

The results in Figures 4.9 to 4.11 show the estimated torque model coefficients at the end 

of each slab for the selected batch of twenty five similar slabs. After some initial movement 

in the parameters the coefficients settle down to a steady value. The accuracy of the model 

predictions with the long term adapted torque model are given later in this section.
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L ever arm co e ffic ien t 1
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Figure 4.9 Variation in estimated lever arm coefficient 1 for sample of twenty five 

slabs
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Figure 4.10 Variation in estimated lever arm coefficient 2 for sample of twenty five 

slabs
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Figure 4.11 Variation in estimated lever arm coefficient 3 for sample of twenty five 

slabs

4.3.4 Adaptation of load and temperature model for thick stock material

Section 4.3.2 described how the RLS algorithm can be posed in order that it can be applied 

to the estimation of long term adaptation coefficients. The models applicable for thick 

stock material are applied above a bite entry gauge of 20mm. For the particular sample 

schedule, this means that the models must be adapted over a series of 20 passes. The 

method adopted was to divide the passes into groups by defining gauge breakpoints. Each 

breakpoint has associated with it an adaptation coefficient. When measurements fall in 

between two breakpoints the appropriate adaptation coefficients are updated. Different 

breakpoints are defined for the flow stress (0,) and for the coolant wash HTC (03). 

Figure 4.12 shows the estimated coefficients for flow stress after the sample twenty five 

slabs. Note that the coefficient is primarily less than 1 to correct for the over estimation of 

the load shown in Figure 4.2. At a given entry gauge the adaptation coefficient is calculated 

from the two breakpoints that it bisects using the following equation:
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6‘ = 6‘-  + (6 > V  (*. -  *<-i) (4-83)
(*, -  *, ,)

where 0 * is the adaptation coefficient at the gauge breakpoint hb and is the adaptation

coefficient at the gauge breakpoint hi.]b and:

h,b > hx > (4.84)

Figure 4.13 shows the estimated coefficients for the coolant wash HTC. A different set of 

breakpoints are applied because the strip temperature measurements are made primarily at 

thinner gauges. Equations (4.83) and (4.84) are also applicable to the calculation of the 

coefficient for the coolant wash HTC.

F lo w  stress adaptation coeffic ien t  

12 -----------------------------------------------------------------------

\
I --------------------------------------------------------------------- /

<»  -----
o . *  -  - - - -  - - - - - - - - - - . . . - j

6 passes 1 pass
8 passes 5 passes

0.6 -----

0.4  -------------

0.2

350mm 150mm 35mm
0 i —=--------- 1-------------- 1--------------1--------------1--------------

500 400  300  2 0 0  100 0
Entry gauge

Figure 4.12 Piecewise linearisation of adaptation coefficient for flow stress

6 passes
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lp

350mm 150mm 35mm
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Figure 4.13 Piecewise linearisation of adaptation coefficient for coolant wash HTC

4.3.5 Adaptation of load, torque and temperature model for thin stock material

As the gauge of the aluminium strip becomes thinner, friction within the roll bite becomes 

an important factor in predicting the load and power. In order to ensure that the models 

remain accurate within this operating region the adaptation is performed on the load and 

power models using a coefficient for each model and for each pass. With the sample 

schedule three passes fall into the thin stock material region.

Figures 4.14 and 4.15 show the variation in the adaptation coefficients estimated for the 

load and the power for the final pass of the schedule.
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Figure 4.14 Variation in estimated flow stress coefficient for pass number 23 of the 

sample of twenty five slabs

Torque adaptation co effic ien t  
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Figure 4.15 Variation in estimated torque coefficient for pass number 23 of the sample 

twenty five slabs
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4.3.6 Long term adaptation results for thick and thin stock material

This section presents the results from running the long term adaptation scheme for the load, 

power and strip temperature models. Figures 4.16 to 4.18 show scatter graphs of the actual 

measured versus predicted results for the adapted models and these graphs may be directly 

compared to those in Figures 4.2 to 4.4 which show the same results for the unadapted 

models. Table 4.1 compares the mean and standard deviation of the model error for the two 

sets of results. In all cases the long term adaptation shows an improvement of roughly a 

factor of 2  in the standard deviation and significant improvements in the offset of the 

results which can be seen from the mean value. Figure 4.19 shows the ratio of the measured 

to predicted rolling load with the long term model adaptation. Comparing this figure to 

Figure 4.6 it can be seen that the overall model offset has been reduced and there is also 

some improvement in the slab to slab variation in the model error.

Predicted ro lling load M N

30

25
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15

10
10 15 20  25 30

M easured ro llin g  load M N

Figure 4.16 Graph of predicted against actual measured rolling load for long term

adapted models
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Figure 4.17 Graph of predicted against actual measured motor power for long term 

adapted models 
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Figure 4.18 Graph of predicted against actual measured strip temperature for long 

term adapted models
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Model Unadapted models Long term adapted models

Mean Standard deviation Mean Standard deviation

Rolling load -20.34% 8.90% -0.14% 5.38%

Motor power -2.05% 12.73% 0.98% 8.49%

Strip temperature -11.96°C 22.38°C -3.80°C 12.82°C

Strip profile -0 .2 1 % 0.17% 0.04% 0.06%
Table 4.1 Comparison of statistical data for unadapted and long term adapted models

Measured / predicted rolling load

1.50
Adapted thin stock regime

Prediction offset to be removed  
by short term adaptation

1.25 -

1.00

0.75 -

0 .50

0 .4 0.50.30.0 0.1 0.2
Exit gauge m

Figure 4.19 Graph showing ratio of actual measured to predicted rolling load with 

long term adaptation

4.3.7 Adaptation of strip profile model

The aim of the strip profile adaptation is to recursively estimate a value for 04 which when 

multiplied by the elastic recovery constant X results in a better prediction of strip profile. 

The sample data used in this study has a single profile measurement made on the final pass. 

For this reason only one level of adaptation is applicable and this is done on a long term
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basis. The RLS algorithm is again used and its formulation for the profile model was 

described in Section 4.3.2. The estimate for X is applied to every pass of the schedule using 

Equation (3.101). The results for the set of sample slabs are shown in Figures 4.20 and the 

improvement in the model prediction is shown in table 4.1. The value of the calculated 

adaptation coefficient 04 is given in Figure 4.21.

Predicted strip profile %
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-0.15%
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0 0.4 0.8 1.2 1.6
M easured strip p rofile %

Figure 4.20 Graph of predicted against actual measured strip profile for long term 

adapted models
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Figure 4.21 Variation in estimated dynamic recovery constant for sample of twenty 

five slabs

104



4.4 Short term adaptation algorithm

The purpose of the short term adaptation algorithm is to track changes in rolling conditions 

from one slab to the next. Such variations can be caused by differences in the material 

metallurgical properties, the accuracy of the initial strip temperature measurement or the 

slab’s physical dimensions, such as its initial width or thickness. If variations occur to any 

one of these parameters the predictions made by the model will be initially offset because 

the input data set to the model will be incorrect. The role played by the short term or pass 

by pass adaptation is to identify and remove any offset in the short term data supplied to 

the process models.

4.4.1 Extended Kalman filter

This section describes the Extended Kalman filter algorithm (EKF) which has been used 

to estimate the short term adaptation coefficients, see Borrie [136] and Kalman [137]. The 

algorithm is derived directly from the Kalman filter estimator and its applicability to rolling 

mill adaptation is discussed. Randall [138] first pointed out that the discrete form of 

Extended Kalman filter could be used as an estimator to adapt rolling mill models on a pass 

to pass basis. Each pass is deemed the kth sampling interval for the filter.

A linear discrete time and stochastic system can be modelled with the following equations:

*Vi = A + B uk + r  w k (4-85)

h *  i = C £ t  + v k (4.86)

where v is the measurement noise and w is the system disturbance. In the context of the 

Kalman filter x e Mn is the state vector, where n is the number states. Figure 4.22 shows a

block diagram of such a system where S is the process and § is the model of the process.

The states x of the process may or may not be measured.
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Wk

U k

Figure 4.22 Block diagram of system with measurements zk and states x,

The noise is of the form such that it has zero mean:

E { v k} = E { w k} = 0

and the noise is uncorrelated such that:

E { v  v ,7} = R  6  
1 / j  } u

E { w . w / }  = Q b . .

(4.87)

(4.88)

(4.89)

with:

E { v . Wj  } = 0 f o r  a l l  i, j (4.90)

The recursive solution to the problem of estimating the system state x was first obtained 

by Kalman [139]. The estimate of x at time interval k+1 is based upon the state at time k 

and the a priori information contained within the state transition matrix A e Mnxn, thus:

(4.91)

the hat indicates that the state is an estimate and not based upon measurements. The error

covariance matrix Pk+l|k for the state estimate is calculated from:

' W  = a p *a t + r e r (4.92)

Equations (4.91) and (4.92) together form the prediction stage of the Kalman filter 

estimator. It can be shown that the correction of these state estimates which can be made
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after the measurements become available, see Young [140] and Bozic [141], are given by 

the following:

** + 1 *k  + R k + \ (.Zk + \ ~ ^£ + 1 + (4*93)

*k+i = P kn\kc T iR + C P k+llkC T V l (4 .9 4 )

p k+1 = * W  "  p » i \ k c T lR + C P t . i \ t C TV l C P k+l]k (4 .9 5 )

Equations (4.93) to (4.94) form the correction stage of the Kalman filter. Kk e Mn is usually 

termed the Kalman filter gain vector. The error covariance matrix Pk of the estimated errors 

is given by:

P t = E { x t x tT) (4 .9 6 )

where the error in the estimate is given by:

x t  = x\  -  x k (4 .9 7 )

The rolling process is inherently non-linear for this reason the linear representation given 

by Equations (4.85) to (4.86) will only be approximate. For a non-linear system 

Equation (4.85) can written as:

Xktl = f (xk, v  + rw t (4 .9 8 )

where/ represents the non-linear relationship for the state transition.

To take into account this non-linearity Equation (4.91) is replaced by:

lk+1

*k + J  f ( * k , u k)dt  (4 .9 9 )

This equation together with Equations (4.92) to (4.95) represent the EKF algorithm which 

has been used in this section to adapt the process models on a pass by pass basis. The way 

in which the algorithm has been applied is discussed in the follow sections.
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4.4.2 Extended Kalman filter formulation for pass by pass adaptation

This section describes how the EKF algorithm described above is formulated so that it can 

be used to estimate process model parameters on a pass by pass basis. The coefficients 

selected for use in the short term adaptation are defined by xk in Equation (4.100).

xkT = ( 0 ^ ,

where 0! and 02 are defined in Equations (4.4) and (4.5).

(4.100)

As in the case with the long term adaptation, the problem of estimating the coefficients is 

cast such that the change in the coefficients away from the current operating point x is 

calculated by the adaptation algorithm. In this case Axk is given by:

A x /  = ( A 0 , ,  A 0 2> A7-t )

and the updated coefficient is calculated using:

x k  x k - i  +  ^ x k

(4.101)

(4.102)

Equation (4.86) can be written down in terms of the rolling mill parameters as:

A P  

At
i+l

*+i
A Tfc+i)

3p „

3 0 1 0 0 2 d r „

dxk dxt
0 0 , 0 0 2 d r t

dT t
00, 00. d T ,

A0 ]
A0 ;
A T

(4.103)

*)
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and Equation (4.91) can be written down as:

A0 u*.
A V ,
Ajv, /

9 0 l , t * l a 0 l , M a 0 l , * , l

a 0 u 0 0 2 , 4 d r „

a 0 2 , 4 . l 5 0 2 , * . l a 0 2 , 4 . l

a 0 l , * a 0 2 , *

d T ^

3 0 , , t 0 0 2 , t 3 r *

A 0m

A0m

ATt ,

(4.104)

Thus the matrices A, C and z^, are defined for the EKF algorithm. The prediction stage of 

the algorithm defined by Equation (4.99) is obtained by running the process models to 

obtain the estimates of the exit slab state.

4.4.3 Short term adaptation for load and power models

The previous two sections described the EKF algorithm which is suitable for predicting 

short term variations in rolling mill process parameters. In this section the results from 

running the algorithm are presented. The coefficients selected for use in this algorithm, 

Equation (4.100) are weighted by means of the term TQY1 in Equation (4.92) so that either 

flow stress or strip temperature is used as the observer within the model. Each of these 

parameters is capable of adapting the load model to remove any disagreement with the 

measured data. Which to use, is discussed in Chapter 5. The short term adaptation is run 

after every pass, up to the pass where the strip is deemed to be thin stock, at which the 

point the algorithm is stopped and only long term adaptation is applied. The formulation 

of the EKF algorithm for use with the rolling mill process models was discussed in 

Section 4.4.2.
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4.4.4 Torque model adaptation

The torque model coefficient for short term adaptation is updated after each pass has been 

run. Figure 4.23 shows the variation in the estimated torque model parameter with long 

term adaptation being run to remove the overall model offset. Figure 4.24 shows a 

comparison between the measured and predicted motor power for each pass with the long 

term adaptation being run. It can be seen that there is a good agreement between the values 

shown in the graph.
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Figure 4.23 Variation in estimated torque coefficient
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Figure 4.24 Comparison of pass by pass actual measured and adapted motor power 

4.4.5 Flow stress as an observer

The load model is corrected for short term adaptation after each pass has been run. It is 

possible to use flow stress to perform this correction. The assumption is that not every slab 

will have identical material properties and that the flow stress will be affected by such 

variations. Figure 4.25 shows the variation in the estimated flow stress parameter with the 

long term adaptation being run. The average value for the coefficient is less than 1.0,0.955 

in fact which corresponds to the flow stress offset for the current slab. Figure 4.26 shows 

a comparison between the measured and predicted rolling load for each pass with the long 

term adaptation being run. It can be seen that there is a good agreement between the values 

shown in the graph.

measured adapted
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4.4.6 Strip temperature as an observer

Instead of assuming that the error in the rolling load is due to the flow stress offset it is also 

equally valid to assume that an error in the measured initial slab temperature was made. In 

this case the EKF algorithm is used to correct the observed temperature state based upon 

the measurement of rolling load. Figure 4.27 shows the estimated strip temperature when 

the lay-on temperature is correctly measured. In this case flow stress is used to correct for 

any load error. The second temperature prediction curve shows the effect of an error of 

20°C in the lay-on temperature measurement. The algorithm corrects for the temperature 

offset after 3 passes have been rolled. After these 3 passes it is assumed that the 

temperature state has been corrected. The EKF is switched so that flow stress is used to 

correct the rolling load and the any flow stress offset is identified. Figure 4.28 shows a 

comparison between the measured and model predicted rolling load using the temperature 

observer. The error in the rolling load for first two passes is caused by the incorrect strip 

temperature being applied to the process models.

Flow stress adaptation coefficient

1.20

1.10 Pass to pass load coefficient
with long term adaptation having been run
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Figure 4.25 Variation in estimated flow stress coefficient
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Figure 4.26 Comparison between actual measured and adapted rolling load with flow 

stress as adaptor
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Figure 4.27 Estimates of strip exit temperature
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Figure 4.28 Comparison of actual measured and predicted rolling load with offset in 

lay-on temperature measurement

4.4.7 Short term adaptation

The results shown below for the load, power and strip temperature models show the 

improvement that is made when the short term adaptation and long term adaptation are run 

together. Figures 4.29 to 4.31 show scatter graphs of the measured versus predicted results 

for the adapted models and these graphs may be directly compared to those in Figures 4.2 

to 4.4 and Figures 4.16 to 4.18 which show the same results for the unadapted and long 

term adapted models. Table 4.2 compares the mean and standard deviation of the model 

error for the three sets of results. In all cases there is improvement in the performance of 

the models over the case when just the long term adaptation is used. Figure 4.32 shows the 

ratio of the measured to predicted rolling load with the long term and the short model 

adaptation. Comparing this figure to Figures 4.6 and 4.19 it can be seen that the overall 

model offset has been reduced by the long term adaptation and the slab to slab variation in 

the model error is also less than in the previous two graphs.
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Figure 4.29 Graph of measured against actual measured rolling load for long and short 

term adapted models 
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Figure 4.30 Graph of predicted against actual measured motor power for long and 

short term adapted models
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Figure 4.31 Graph of predicted against actual measured strip temperature for long and 

short term adapted models

Model Unadapted models Long term adapted 

models

Short and long term 

adapted models

Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

Rolling load -20.34% 8.90% -0.14% 5.38% -0 .1 2 % 3.57%

Motor power -2.05% 12.73% 0.98% 8.49% 0.87% 6 .0 2 %

Strip temperature -11.96°C 22.38°C -3.80°C 12.82°C 3.72°C 9.41°C

Strip profile -0 .2 1 % 0.17% 0.04% 0.06% 0.04% 0.06%
Table 4.2 Comparison of statistical data for unadapted and long term adapted models
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Figure 4.32 Graph showing ratio of actual measured to predicted rolling load with 

long term and short term adaptation
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4.5 Implementation considerations

This section describes some considerations applied when implementing the adaptation 

algorithms, see Isermann [142] and Wittenmark [143]. All the techniques described here 

improve the performance of the adaptation scheme. They also provide mechanisms in the 

form of parameters whereby the functionality of adaptation algorithms can be influenced 

from an external source. In the case of this thesis such an external source is in the form of 

an expert system. Adaptation control strategies are described in Chapter 5 that allow the 

parameters to be adjusted for given scenarios and thus the adaptation is controlled.

4.5.1 Selection of weights

Within the two adaptation algorithms presented in Sections 4.3 and 4.4 the terms a2 and 

R each represent the measurement weighting matrix. The physical interpretation of this 

matrix is such that R or o2 is set to contain information concerning the confidence that is 

placed on a particular measurement. For this study R has been set as given below:

R  = d i a g ( l x l 0 12, 5 x l 0 10, 5 0 )  (4.105)

where the first two terms for load and power respectively correspond to a measurement 

standard deviation of around 5% and for strip temperature of 7°C.

4.5.2 Starting point for algorithms

The choice of the initial values taken for the error covariance matrix P0 and the adaptation 

coefficients 0O requires some consideration. Generally speaking the values taken for 0O are

1 .0  for the cases where the coefficient is being used as an offset from the nominal 

conditions, for example the flow stress offset see Equation (4.4). For cases where 0 is a true 

model parameter such as in Equation (4.78) then some initial values are determined from 

performing a least squares fit off-line on a sample set of data.

118



The initial values for the P matrix diagonal are large numbers typically 106, see 

Ljung [144].

4.5.3 Forgetting factor

The RLS algorithm presented in Section 4.3 assumes that the coefficients 0 do not vary 

with time. As already discussed the rolling process does vary slowly and this variation 

must be tracked by the long term adaptation scheme. To allow this to occur the RLS 

algorithm is modified to include a forgetting factor p which allows the filter to 

exponentially forget data, see Ljung [145]. The smaller the value of p the quicker the data 

is forgotten. A value of 0.99 has been used throughout for p.

The forgetting factor can be used to improve the performance of the adaptation algorithm. 

By lowering its value from its nominal value of 0.99 to a value of 0.95 the speed of 

response of the algorithm is increased. Such a modification is made when it is anticipated 

that the operating point for the process models is about to change.

The effect of modifying the forgetting factor is described in Chapter 5.

4.5.4 Drift

Parameter drift is a long term phenomena which may typically occur over 20 or so slabs. 

The technique discussed in this section has therefore only been applied to the long term 

adaptation. As described in Section 4.3, long term adaptation is used to track variations in 

the mill characteristics over a typical time scale of a few hundred slabs. The algorithm, see 

Hang et al [146] and results presented here demonstrate how the performance of the 

adaptation algorithm can be enhanced.

For the process models applied to the rolling of aluminium, parameter drift can occur for 

two main reasons.

119



Case 1. The elements in the error covariance matrix P may become small indicating a high 

confidence in the coefficient states and hence a restriction to the movement of the 

adaptation coefficients. If the process operating point starts to move away from its current 

position then because the coefficients must move to follow this change. However, because 

the coefficients are restricted by the size of the error covariance matrix then the coefficients 

will appear to drift slowly towards the new operating point.

Case 2. If a fault occurs with one of the measuring instruments such that the measurement 

drifts away from a true reading then the coefficient will follow this drift. Such a fault can 

be detected and 

rectified.

When the adaptation coefficient is close to its true value then due to the stochastic nature 

of the process the following equation is true:

P { A 0 ^ ,  A 0 t  >  0} = i> { A 0 [„  A 0 t  <  0} (4 .1 0 6 )

where P { }  denotes probability and

A0*+, = s , . ,  -  (4.107)

When a fault occurs such that the coefficients begin to drift Equation (4.106) will no longer 

hold and the following will be true:

P { A 0 [ . !  A 0 t  >  0 )  >  i ’ { A 0 [ tl  A 0 t  <  0} (4 .1 0 8 )

The algorithm to detect a consistent movement of the coefficients in any one direction is 

given by:

u t+1 = y l \)k + AQk 0 < y 1< l  (4 .1 0 9 )

s k+l = s ign{  A 0 [ +1u J  (4 .1 1 0 )

rk*i = ^2r k + o  ■ Y2)**+i 0 < Y2< 1  (4 .1 1 1 )
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i)* provides an indication of the trend in the movement of the coefficients and sk shows the 

correlation between this trend and the instantaneous value of 0. The successive movement 

of rk can be checked against a threshold value of r0 and a fault is said to have occurred if 

rk becomes greater than r0. Following Hagglund [147], the detection algorithm parameters 

were set as follows: y l = 0.85 y2 = 0.95 and r0 = 0.5.

Once the fault is detected the following action is taken. If the diagonal elements of the P 

matrix are less than 10'2 then case 1 indicated above is assumed to have occurred. The 

action taken is to increase the diagonal elements of the P matrix by 100 times and to 

decrease the forgetting factor to 0.95. This has the effect of giving much larger corrections 

to the estimates and to give new measurements a much larger weighting.

If, however, the diagonal elements of the P matrix are greater than 10'2 then it is assumed 

that case 2  has occurred in which case the adaptation algorithm is halted and the 

measurement in question is monitored.

The results from the fault detection algorithm are described in Chapter 5.

4.5.5 Cautioning

There is a strong interrelationship between the parameters involved in the process model 

adaptation. Such interrelationships can introduce some oscillation of parameters when the 

adaptation algorithm is started up for the first time. A technique known as parameter 

cautioning MacAlister and Reeve [148] is used to introduce a cost onto each of the 

adaptation coefficients. This prevents the coefficients from moving too far away from a 

known safe set. The same technique can also be used to impose direct physical constraints 

onto the coefficients to prevent them moving into an undesired operating region.

The cautioning algorithm functions by firstly running the unconstrained RLS algorithm. 

If any coefficients stray outside the acceptable limits then cautioning is applied to that 

coefficient.
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The cost function in Equation (4.51) is modified to include the cautious parameter set. The 

nature of the cost function is dependent upon the result from running the unconstrained 

RLS algorithm. Equation (4.51) is now modified to include the cautioning thus:

J  =

r /

L\ H a k -  a„),

( \  
Uk +1

A )
(4.112)

where A, is a weighting function and ao is the constraint on the coefficient.

Figure 4.33 shows a simulation of the effect on the coolant wash HTC adaptation 

coefficient for the final coiling pass with and without cautioning being applied. In this case 

a lower limit of 0.6 was applied. Figure 4.34 shows the corresponding adjustment of the 

flow stress adaptation coefficient with and without the cautioning applied to the coolant 

wash HTC. The accuracy of the models is slightly better when the coefficients are 

unconstrained than when constrained.
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Figure 4.33 Effect on the coolant wash HTC coefficient when cautioning is applied
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Figure 4.34 Effect on flow stress coefficient when cautioning is applied to coolant 

wash HTC coefficient
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4.6 Conclusions

Its has been shown in this chapter how the process models described in Chapter 3 can be 

adapted with both long and short term schemes. The first section presented an original 

method for determining the partial derivatives required for adaptation using a perturbation 

analysis. The next sections presented for the first time a two level adaptation scheme for 

the aluminium hot reversing mill. The results presented show that the long term adaptation 

removes the model offset error, whilst the short term adaptation reduces the standard 

deviation of the model error. The improvements that are made to model accuracy using the 

two schemes have been illustrated both tabular and graph form. Accurate model predictions 

are possible for the load, power and strip temperature models and for the strip profile 

model.

The final section described the implementational considerations that should be made before 

the adaptation schemes are used on-line. It has also been demonstrated how using a set of 

relatively straightforward modifications to the basic adaptation algorithms it is possible to 

further enhance the performance of the process model adaptation. Such enhancements can 

then be used by an expert system to automatically monitor and control the execution of the 

adaptation schemes. Rules to perform this task are discussed in Chapter 5.
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CHAPTER 5

Application of an Expert System

5.1 Introduction

This chapter describes the development of an expert system suitable for controlling the 

setup of an aluminium hot reversing mill. Setup is performed before the metal enters the 

mill, when suitable actuator set points are determined that will produce material as close 

to the desired quality as possible. Chapter 2 described the operation of mill setup systems 

and how they interface with the higher and lower level mill control systems. Traditionally 

mill operators have performed the tasks involved in setting up the mill. The operator's 

expertise and judgement will have been gained over many years. He or she will also be able 

to judge whether the mill's instrumentation and mechanical components are functioning 

normally. The supposition made in this thesis is that the tasks performed by the mill 

operators can be replicated using an expert system. To aid the expert system’s judgements 

the process models described in Chapter 3 give estimates of important mill parameters used 

when mill setup is performed. The accuracy of these estimates is maintained using the 

adaptation schemes described in Chapter 4. The combination of the three components 

described in Chapter 3 to 5 when integrated together, produces an advanced mill setup 

system. This utilises the strengths of each of its components to give a more powerful hybrid 

control system. The idea of producing such a system has given rise to an original control 

architecture.
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The task involved in this development was to construct a knowledge base containing the 

control strategies required to perform mill setup and supervisory control. Knowledge 

appropriate to this application was acquired and then defined in a syntax that could be 

stored within the expert system. This knowledge comprises a series of strategies that define 

a particular control aspect. Strategies maybe made up of several rules. Each rule is accessed 

in turn by the expert system, to perform the required control strategy. The sequence in 

which the rules are activated is determined by the configuration of the inferencing 

technique used within the expert system.

In Section 5.2 the basic concepts of expert systems are introduced. The overall architecture 

of the expert system is presented. Structures used for storing knowledge are described 

along with methods used to elicit the knowledge. A technique used to access the 

knowledge, called inferencing, is explained.

Section 5.3 then describes how an expert system can be structured for the rolling mill 

application. The expert system has been split into three main knowledge bases each 

containing a set of rules. Strategies are defined to perform diagnostics on both the mill 

measurements and the process quality and these are described in Section 5.4. A set of 

strategies are concerned with the control, scheduling and setup of the rolling mill and these 

are detailed in Section 5.5. The final group monitor the performance of the process models 

and the adaptation, presented in Section 5.6. As the system was tested off-line, simulations 

were performed to test the system's response to various scenarios that occur on the mill. For 

each strategy, results are given which demonstrate its operation and where appropriate a 

comparison is made without the expert system.

In Section 5.7, an original architecture is developed which integrates the expert system, 

process models and the adaptation into a single system. The components of this system 

which have not been described in any previous chapter are explained at this point. The 

implementation of the various components of the system are also discussed in this section.

The chapter ends with conclusions given in Section 5.8.
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The detailed descriptions of the implementation of the mill setup control strategies 

presented in this chapter will demonstrate that the expert system is an appropriate technique 

for control of the rolling process.
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5.2 Expert system structure and components

This chapter defines what constitutes an expert system and each of the constituent parts is 

described in detail.

5.2.1 A definition of artificial intelligence and an expert system

Durkin [149] defines artificial intelligence as 'the goal of making a computer reason in a 

manner similar to a human being'. The primary task is to construct a program that attempts 

to mimic the problem solving ability of a human, see Sardis and Valavanis [150]. 

Advantages to be gained by using such technology include the fact that less dependency 

is placed upon having a costly human expert. Table 5.1 summarises the advantages that a 

machine has over a human.

Factor Human operator Expert system

Time availability Work day Always

Geographic Local Anywhere availability

Safety Irreplaceable Replaceable

Perishable Yes No

Performance Variable Consistent

Speed Variable Consistent

Cost High Affordable
Table 5.1 Comparison of a human operator and an expert system

One subjective measure of the success of AI programs is given by applying the Turing test, 

Frenzel [151]. Briefly, the test involves having two identical terminals in a room, one 

linked to a human operator and the other to a computer. If the operator is unable to decide 

which terminal is connected to the human and which is connected to the computer, then the 

computer can be credited with intelligence. From an objective point of view one can 

imagine testing, for example, a rolling mill AI control system against a human operator by
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subjecting the plant to a series of scenarios. Each scenario would require some complex 

decision making process to be undertaken to control the process. By comparing the two 

performances one would have a measure of the intelligence of the system to control this 

application, see Vaithyanathan [152] for a review of machine learning in the metals 

industry.

To construct such an intelligent program, one must first establish what mechanisms are 

used by humans when problem solving. At present we do not have a complete 

understanding of how the human brain operates. In spite of this incomplete understanding 

Albus [153] identifies the following:

i) A mechanism for obtaining and processing the data related to a new problem.

ii) Storing or learning the knowledge and information gained from experience in a way that 

can be quickly accessed.

iii) Retrieving the relevant knowledge from the data store.

iv) Making a decision based upon experience for a given problem.

v) Making a decision for an unseen problem by either adapting previously leant data or 

learning from trial and error, as reviewed in Vepa [154].

Research in AI has several directions each one of which addresses some of the above 

elements. The particular branch of interest in this thesis is expert systems. An expert system 

attempts to solve (ii), (iii) and (iv) in the above list. Other branches include neural 

networks, genetic algorithms and fuzzy logic which address different combinations of 

items in the above list, see White [155] and Portmann [156]. These have learning 

mechanisms by which unseen data is automatically learnt and stored. Such algorithms are 

beyond the scope of this present study, but some ideas are discussed in the conclusions and 

further work presented in Chapter 6.
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An expert system is designed to model the problem-solving ability of a human expert, see 

Durkin [150] and Mockler [157]. Conventional expert systems have no direct learning 

mechanism, which means that they can only be applied to the application for which they 

were designed. All the knowledge stored within them must be preprogrammed. Guidelines 

for performing this task are given by DTI [158] and Cohen [159].

The fundamental qualities of the expert system are its ability to:

i) Deal with complex information that would normally require a considerable amount of 

human expertise.

ii) Explain or justify the reasons for the solutions and recommendations attained for a given 

problem, which is done by attaching an appropriate explanation to each rule.

iii) Provide a high degree of performance in terms of speed and reliability in order to be a 

useful tool.

5.2.2 Expert system architecture

This section will describe the typical architecture of an expert system. It can be seen in the 

simplified block diagram shown in Figure 5.1 that an expert system consists of five main 

components as described below:

i) A knowledge base containing all the preprogrammed facts, rules and knowledge 

appropriate to the expert system's application field. This is analogous to the long term 

memory of the human brain.

ii) A working memory that contains all the data relevant to the current problem being 

solved. The data stored here may have come as input data or have been inferred from rules 

contained within the knowledge base. This is analogous to the short term memory of the 

human brain.
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Figure 5.1 Expert system architecture

iii) An inference engine that processes data held within the working memory, drawing 

conclusions about the problem by accessing the relevant parts of the knowledge base.

iv) A knowledge acquisition phase, when the accumulated process rules are structured and 

programmed in to the knowledge base.

v) A user interface which provides a means of entering data into the expert system and then 

presenting the conclusions or recommended actions for the given problem.

For the work involved in this project a proprietary expert system shell has been used, see 

Vesey [160] and Laffey [161]. The work required to construct the expert system suitable 

for the hot rolling of aluminium addressed the areas of determining suitable rules via 

knowledge acquisition, constructing the knowledge base, sequencing the order in which 

the inferencing takes place, testing and creating a suitable user interface.

The following sections describe in more detail the main components of an expert system.
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5.2.3 Knowledge elicitation or acquisition

The process of acquiring expertise, the rules and strategies suitable for storing within the 

knowledge base is known as knowledge acquisition or elicitation, see Diaper [162]. There 

are several methods which can be used to acquire the knowledge suitable for developing 

a rolling mill setup and supervisory control expert system. These include:

i) Interviewing operators or engineers closely connected with the operation of the rolling 

mill, as described in Bainbridge [163]

ii) Analysing measurements logged when an operator is setting up the mill.

iii) Published literature on the subject which outline possible control strategies, see 

literature survey in Chapter 2.

iv) Performing off-line simulations with a model to develop new strategies.

In this thesis a combination of all these methods has been adopted in developing the 

knowledge base. Some typical examples include:

i) The strategy established to maintain good shape whilst rolling was first developed 

experimentally by Shoet and Townsend [118].

ii) Literature on quality control describes methods of detecting when the manufacture of 

a product is out of control, see for example Bissell [164].

iii) Distinct patterns were found in the variation of the roll speed.

An important consideration is to determine how good the data or information is, that has 

been acquired. For example each mill operator will use a slightly different operating 

practice to control the mill. Only good operating practice should be stored, based on
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knowledge acquired from the operators. Another dilemma which faces the knowledge 

engineer is should the expert system be designed to operate exactly as an operator would 

behave, by capturing the operator's knowledge precisely, or should he or she attempt to 

improve the knowledge, and how should this be done.

The resulting expert system may perform better than its human counter part if one uses 

knowledge which has been improved in some way. In such a scenario the Turing test 

described in Section 5.2.1 would fail because now the computer may perform the tasks 

more accurately than its human counter part.

5.2.4 Knowledge base

The knowledge base within the expert system contains all the facts, strategies and rules 

which are necessary to encapsulate the domain knowledge. The problem to be solved by 

the software engineer is how to construct the knowledge base from the information given 

to him or her by the knowledge engineer. Fortunately a number of tools are available which 

make the task easier. The first decision to be made is what are the important parameters in 

the problem. For each type of parameter a structure can be setup to enable information 

about that parameter to be stored within the system. The next task to be performed is to 

construct the rules which are to be held within the knowledge base. At this stage in the 

design, rules which are related must be grouped together into sets in order to reduce the 

processing time during the expert system's execution.

A proprietary expert system shell called LPA flex was used for the development, see 

Vesey [160]. This meant that the primary goal of the work was the creation of a knowledge 

base. During the development of the knowledge base it was found that the rules fell into 

one of three categories. Each category is in turn subdivided into the individual rules and 

strategies. The three main categories of rules are:

i) Diagnostic rules. A variety of measurements are made during the rolling of each pass. 

The rules in this part of the knowledge base check for normal mill operation. Decisions are
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largely based on whether or not sets of measurement are reliable and consistent.

ii) Scheduling and production rules define the strategies adopted to find the actuator set 

points that result in finished coils with the desired quality parameters as specified in the 

furnace queue. Information drawn upon to perform this task is taken from the schedule 

databases, model predictions and measurements. The production rules mainly consist of 

actuator constraints and simple if  then combinations of schedule parameters.

iii) Process models and adaptation rules systematically check the accuracy of model 

predictions and monitor the behaviour of the adaptation algorithms. The rules look for long 

term drift in the adaptation coefficients, check for instability and adjust weighting and 

forgetting factors accordingly.

5.2.5 Data representation

The object-orientated method for defining and storing data within an expert system is to 

use data structures known as frames, see Winston [165]. These frames are constructed for 

each different type of object, so for example, a frame can be defined for an object to 

represent a measurement, see Figure 5.2. For every instance of a measuring device this 

frame is replicated so that each measurement is represented by an identical structure.

The syntax for constructing a frame is as follows: 

frame frame name 

default attributes name

Instances of such a frame are created as follows: 

instance instance name is a frame name
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Frame

Name
profile measurement

lvalue 0.47

0.50expected value
Slots

std dev

drift 0.01

confidence 1.0

Figure 5.2 Typical frame structure for a measurement 

5.2.6 Knowledge representation

Having established the data to be represented within the system, the knowledge acquired 

at the acquisition phase must be defined. Several tools are available to make this task easier 

and allow the construction of the rules in an English like syntax. Some illustrations of this 

syntax are given below.

i) A rule is a knowledge structure that relates some information to other information that 

can be concluded or inferred to be known. It consists of two parts a ‘premise’ and a 

‘conclusion’. Each time the rule is fired by a forward chaining type inference engine the 

premise is checked before the conclusion can be activated. Additional information may be 

supplied within the rule to provide an explanation of the actions taken. Finally a score may 

be associated with the rule which helps in situations where rule conflicts occur. A high 

score associated with the rule would indicate to the inference engine that the rule was more 

important than a rule with a low score.

Rules are constructed as follows: 

rule rule name 

if premises then conclusion

ii) A ruleset is made up of several rules which are grouped together to form a strategy. For
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example:

ruleset ruleset name 

rule_names

iii) An action consists of one or more directives. A directive is simply an assignment which 

replaces the variant on the left hand side of the expression with the value on the right hand 

side. The operation is most commonly used for sequencing several operations. For 

example:

action actionname 

directives

iv) Relations are constructed to simplify the syntax of the rules. They consist of a premise 

which may contain a directive returning a value to the rule. For example:

relation relation_name(variable s) 

if premises and 

directive (variables)

v) Synonyms are used to replace frequently occurring terms or expressions within the 

rulebase with a usually shorter and more readable syntax. For example:

synonym longnamel 

shortnamel

Using the above constructs, the knowledge base for the aluminium hot mill expert system 

was created to have an English like syntax.

5.2.7 Working memory

The working memory holds data and conclusions inferred from the current run of the 

inference engine. The working memory is often termed the short term memory. During 

each run of the inference engine information about the current problem will be entered into 

the working memory. The system matches this information with knowledge contained in
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the knowledge base to infer new facts. The system then enters these facts into the working 

memory and the matching process continues until some conclusion is reached.

5.2.8 Inference engine

The expert system models the process of human reasoning with a module known as the 

inference engine. It works with the facts contained within the working memory and the 

knowledge domain contained within the knowledge base to derive new information. There 

are two main types of inference technique, forward chaining and backward chaining.

Forward chaining works from a given set of data and a predefined sequence for firing the 

rules held in the knowledge base. It searches the rules for a match between their premises 

and the information contained in the working memory. When the inference engine finds 

a match, it adds the rule's conclusion to the working memory and continues to scan the 

rules for new matches. Backward chaining works in the opposite sense in that the data 

stored in the working memory is used to scan the THEN parts of the rules. The conditions 

that must have been met to achieve this conclusion are then added to the working memory. 

The inferencing continues until a solution is achieved.

The work carried out in this thesis used the forward chaining type of inferencing technique.

5.2.9 User interface

The user interface provides a means of communication between the expert system and the 

outside world, which may either be a human or another computer. The basic requirement 

for such an interface is that the expert system will be triggered and given a set of input data. 

The expert system will then start to fire the sequence of rules which are appropriate for the 

task it is required to perform. The expert system may require further information to be 

given before a complete solution can be obtained. The solution or a list of possible 

solutions, will be provide to the operator together with an explanation.
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5.2.10 Design procedure for an expert system

The previous sections have described the main components which make up an expert 

system. There are a number of phases in the development of a typical expert system, as 

illustrated in Figure 5.3. Phase 1, should be an assessment of the problem area, including 

a feasibility study and a cost/benefit analysis to establish that the chosen field is suitable 

for the application of an expert system. Phase 2 consists of collecting the knowledge which 

will be needed to construct the expert system, as indicated in Section 5.2.3. Several 

techniques are available to perform this task. Having gathered the data, it must be 

structured into a suitable form so that it can be represented in the chosen expert system 

software tool and this occurs at phase 3. The design of the knowledge base and the 

sequencing of the inferencing to access the rules must also be considered at this stage. 

Phase 4 is concerned with testing the expert system to ensure that it is producing results 

consistent with the data used in its programming. Any gaps in the knowledge can also be 

established and modifications made by either acquiring new data or by restructuring the 

existing knowledge. The expert system becomes a useful tool for an operator with the 

attachment of a user interface at phase 5. Finally the finished product must be documented 

and have suitable maintenance facilities so that the knowledge base can be developed or 

modified if required.

1. Application area [ Feasibility study |

2. Knowledge 
engineering

3. Structuring

4. Evaluation

5. Product

6. Deliverable system

Knowledge acquisition

Design

Testing i Refinements and design changes

User interface

Documentation and 
maintenance

Development

Figure 5.3 Expert system development phases
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5.3 Development of the knowledge base for a rolling mill application

This section describes the structure of the expert system which has been designed to 

perform the task of supervisory control and setup for a rolling mill. The idea of using an 

expert system to perform mill setup on a hot aluminium rolling mill is an original idea. 

Section 5.3.1 describes the frames that have been created in order to represent the 

parameters involved in controlling the rolling process. Then Section 5.3.2 presents the 

architecture of the knowledge base constructed for this application.

The approach that has been adopted is to divide the knowledge base into three main 

sections. This simplifies the construction of the expert system and speeds up its execution 

because only the relevant rules are consulted when a given task is performed. The three 

groups of rules are:

i) Diagnostics. The rules in this section of the knowledge base are concerned with 

diagnosing any problems with the measurements or with the quality of the rolled product.

ii) Scheduling. The scheduling strategies adjust the actuator set points prior to the slab 

being rolled to counteract any variability in the process.

iii) Process models and adaptation. Rules check the model accuracy, adjust adaptation 

parameters, determine the state of the slab and assemble a schedule from measured data.

There is considerable novelty in the work described in the following sections, as this is the 

first time that the strategies involved in setting up an aluminium mill have been described 

in a single publication. Additionally new strategies have been developed for all three 

sections of the knowledge base. The approach of constructing an expert system to 

implement the strategies is completely novel. Finally the idea of combining the expert 

system with process models and adaptation has a considerable advantage over just using 

a single technology.
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Figure 5.4 Knowledge base components

Figure 5.4 shows a block diagram of the three main elements within the knowledge base. 

Also shown are the language constructs, some of which were described in the previous 

section which are used to create the knowledge base within the flex expert system shell.

Section 5.2 described how frames are used to describe objects which are used to store data 

about the process. This section describes the frames which have been constructed to 

represent the objects required for the rolling process. Each object is then replicated to 

represent all the instances that occur within the process and the automation system.

Frames are used to define the process measurement, model predictions, adaptation 

coefficients, actuator values, the slab state, process targets and schedule information.

The expert system has been designed so that it consists of several small partitioned rule 

sets. Each of these rule sets contains a control strategy for a particular component of the 

control system. Three main types of rules have been identified within the knowledge base 

as described above. Figure 5.5 shows how these three sections within the knowledge base 

have been split into smaller elements. Each individual element may in turn be made up of 

several rules to define its control function. Sections 5.4 to 5.6 now describe the strategies 

contained within each of the main three sections of the knowledge base.
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Figure 5.5 Structure of knowledge base

Appendix 1 gives samples of the expert system code which was constructed for the 

application described in this chapter.
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5.4 Diagnostics

This section describes the set of rules stored in the knowledge base concerned with 

identifying faults that may occur during rolling, see Pokkunuri [166] and Kumar [167]. 

These rules are divided into two main groups; one set is used to ensure that the process 

measurements are consistent both with each other and with previous experience, the other 

set is used for monitoring the quality of the rolled product. The first set of rules makes use 

of fault detection and fault diagnosis, see Sohlberg [168], Tzafestas [169] and Isermann 

[170]. The design of rules for fault diagnosis, involves four main steps:

i) Deciding which parameters to monitor in order to identify when a fault is occurring.

ii) Processing the chosen parameters in order to decide when a fault has occurred.

iii) Determining the most likely reason for the fault.

iv) Providing a suitable remedy or advice to remove the fault.

The set of rules used for checking the quality of the rolled product makes use of ideas from 

statistical process control.

The next sections describe the rules implemented within the knowledge base used for 

performing the hot mill diagnostics.

5.4.1 Measurement consistency with past experience

During the rolling of each pass of the schedule a set of process measurements is made, both 

of the slab state and the mill state. The slab state measurements are the strip temperature 

on later passes of the schedule and the gauge and profile on the final pass. The mill state 

measurements are the rolling load and main motor power. After the pass has been rolled 

and the measurements are made available to the system, their consistency with past 

experience can be established. This is achieved by comparing the measurements with the 

learnt schedule, which is described in detail later in this chapter. In summary, the learnt 

schedule contains a snap shot of measurements for a particular type of product which the
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expert system has deemed to be a good representation of how the slab is rolled.

Each measurement is allowed to deviate from the average operating point by a predefined 

amount. Figure 5.6 shows a typical set of measurements and clearly identifiable is a 

measurement that has strayed away from the nominal expected value. As soon as the 

deviation becomes larger than would normally be expected, the confidence of the 

measurement is reduced. Confidence in the measurement may be re-established if it is 

found that the measurement set is consistent. These consistency rules are described below.

Rolling load (tonnes)

2,300
Upper control limit.

2,250

2,200

2,150
.Lower control limit.

Nominal rolling load
2,100

Identified measurement error

2,050

Slab number

Figure 5.6 Measurement consistency with past experience 

5.4.2 Relationship between lay-on temperature and rolling load

The sequence of events that occur before the slab is rolled are that the slab will be removed 

from the furnace and is transported to the mill roller table. At some stage before the first 

pass is rolled the temperature of the slab is measured using a contact thermocouple. Such 

a measurement is usually termed the lay-on temperature. Such a measurement allows the 

process models to take into account any variation in the slab's lay-on temperature when a 

prediction of the rolling load is made. Under some circumstances the measurement of this 

lay-on temperature may be inaccurate. The reasons for this may be:
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i) The thermocouple did not make good contact with the surface of the slab due to the 

presence of oxide.

ii) The thermocouple is no longer correctly calibrated correctly.

iii) The surface temperature of the slab is not a good representation of the overall slab 

temperature. During a delay the surface cools differentially compared to the inside of the 

slab.

Measured first pass rolling load (tonnes)

2,800

nominal lay-on temperature

2,600

2,400

nominal rolling load

2,200

identified measurement error

2,000
450 460

Measured lay-on temperature (°C)
470 480 490

Figure 5.7 Relationship between lay-on temperature and rolling load

Diagnosing that a poor measurement of the lay-on temperature or rolling load has been 

made, is achieved by comparing the measurements with the nominal operating point stored 

in the learnt schedule, see Figure 5.7. The learnt schedule is described in Section 5.6.1. 

This operating point is extrapolated using the model prediction of the slope, to take into 

account variations in schedule parameters such as the reduction and mill speed. Any 

discrepancy between the load and lay-on temperature can then be identified and the 

confidences set accordingly. At this stage, however it is impossible to tell whether it is the 

load or the lay-on temperature that is at fault.
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5.4.3 Relationship between rolling load and main motor power

Figure 5.8 shows a plot of the rolling load against main motor power. It can be seen that 

there is a linear relationship between the load and power. Also shown is the differential of 

the power with respect to the load obtained from the process models. It can be seen that 

there is good agreement between the model predicted slope and the measurements.

Diagnosing that there is an error in either the load or power measurement is achieved by 

comparing the measurements with the stored nominal load and power for a given pass. Any 

discrepancy between the load and power is identifiable. This rule will establish whether the 

load and power measurements are consistent, if an error is identified, however, it is 

impossible to tell with which measurement the error lies.

Measured first pass motor power (MW)

12

nominal rolling load11

10
load and power consistent

9

8
nominal rmotor power

7 >—  
2,000 2,8002,6002,4002,200

Measured first pass rolling load (tonnes)

Figure 5 .8  Relationship between rolling load and motor power

5.4.4 Diagnosing a poor lay-on temperature measurement

For the first pass of the rolling schedule the information from the previous two sections is 

used to diagnose where the most likely measurement error lies. By cross checking the
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confidences of the lay-on temperature, rolling load and motor power it is possible to 

establish which, if  any, are likely to be in error. Looking at the encircled points in 

Figures 5.7 and 5.8, which are for the same slab, it is possible to see that the most likely 

conclusion to be drawn is that the measured lay-on temperature is incorrect. The true 

measurement should have been approximately 20°C higher.

Once the confidence of each measurement has been set, other parts of the knowledge base 

can use the information. In the case of a lay-on temperature measurement being found to 

be inaccurate, a strategy in the adaptation section of the knowledge base, configures the 

pass to pass adaptation scheme to identify the true temperature of the slab.

5.4.5 Diagnosing a poor measurement of strip temperature

A measurement of the temperature of the strip is usually taken on later passes of the 

schedule when control of temperature becomes important to achieve the correct 

microstructure. Inaccuracies in measuring the temperature of the strip can occur for a 

number of reasons as described in Section 5.4.2.

On later passes of the schedule, the relationship between the rolling load and strip 

temperature becomes highly nonlinear due to the temperature dependency of both the 

material flow stress and the roll bite friction. Checking a measurement of the strip 

temperature is achieved by comparison with the nominal value stored in the learnt schedule 

as described in Section 5.4.1.

5.4.6 Relationship between strip profile, roll bend, thermal camber and rolling load

When a measurement of the strip profile is available on the final pass of the schedule. The 

process model used to predict the strip profile is nonlinear and involves many parameters. 

Performing a check on the accuracy of the strip profile measurement with every 

independent variable is therefore difficult. However, using just three parameters has proved 

to be successful. Confidence in the measured profile is accomplished by examining its
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consistency with the work roll bend, the thermal state of the work rolls and the rolling load. 

Generally speaking it is known that an increase in the work roll bend leads to a decrease 

in the strip profile. An increase in the rolling load results in an increase in the strip profile, 

whilst cold work rolls produce a large strip profile. Using these generalisations and the 

nominal operating point stored within the learnt schedule, the accuracy and consistency of 

the strip profile measurements is established. Figure 5.9 shows the effect of work roll bend 

and thermal camber on the strip profile. The x-axis shows the relative state of the thermal 

camber of the work rolls, whilst the y-axis shows the strip profile of the strip. Also shown 

is the relative effect of work roll bend on the strip profile. The figure demonstrates the 

generalisations made earlier and allows the consistency of any profile measurement to be 

checked with what one would expect.

Measured last pass profile (%)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 5.9 Relationship between thermal state and strip profile 

5.4.7 Sample standard deviation

When measurements of the process are made, a number of samples are taken over a defined 

logging interval. The mean measurement value is then calculated by averaging all the 

samples. At the same time the standard deviation of this data set is also calculated. This

Effective work roll bend range & 
system disturbances
:________________:__________L - . :__________-H

Warm rolls

Work roll thermal camber state
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provides information about the accuracy of the measurement, a large deviation indicating 

that the process is noisy or that the measurement device is faulty. Once the standard 

deviation has been checked and is found to be large, the measurement confidence is set to 

uncertain as an indication to other parts of the knowledge base that less reliance should be 

placed on that particular measurement. For example the adaptation will take into account 

the standard deviation of the measurement as described in Section 4.5. Figure 5.10 shows 

the effect on the standard deviation when a signal has a high and low noise associated with 

it.

R olling load (tonnes)

2,600
standard deviation 10.3%

2,400

2,200

/  ' ! ' ‘ i i

standard deviation 2.6%2,000

1,800 Low  noise measurement N oisy  m easurement

1,600

Sample number

Figure 5.10 Rolling load measured for 50 samples with a low noise and high noise 

signals

5.4.8 Drift

Measurement drift can occur whereby the measuring instrument slowly moves away from 

a true reading. Any distinct drift can be determined by filtering the measurements to 

establish the trend of the movement. Once the trend crosses a control limit this strategy sets 

the measurement confidence to low to indicate that the measurement is probably 

inaccurate. At the same time any consistency in the observed drift between the 

measurements may, however, indicate a movement of the process operating point. For
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example Figure 5.11 shows such a change in the process operating point is identified and 

the information is passed on to other parts of the knowledge base.

Normal m easurem ent M easurement experiencing drift

First pass rolling load (tonnes)
2,400

2,300

2,200

2,100

2,000

1,900

1,800
0 5 10 15 20

Slab number 

Figure 5.11 Effect of measurement drift

5.4.9 Quality consistency

The quality of the rolled product is governed by the strip's coiling temperature, finish 

profile and flatness. The consistency of the quality is measured by recording the number 

of consecutive slabs which meet the quality parameters. If a number of slabs do not meet 

these quality parameters then a diagnostic strategy is run to attempt to correct the problem. 

Figure 5.12 shows the strip temperature of a number of slabs, at first the temperature is 

within the acceptable boundaries, however at the fifth slab the temperature falls outside of 

the acceptable boundaries. Further increase is strip temperature is not possible without the 

intervention of a suitable strategy. At present this strategy assumes that the actuators used 

to setup the mill must be saturated. If the mill speed is saturated on a particular pass or 

passes then the expert system advises that the amount of strip cooling should be modified 

if this cannot be performed automatically.
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If the work roll bend is saturated this indicates that the thermal state of the work rolls is 

incorrect. The expert system modifies the target thermal camber to attempt to solve this 

problem.

Final pass m easured strip tem perature (°C)
330

Slab delivery temperature 
decreases

Operator warned o f  problem by 
expert system - coolant decreased

320

Upper control limit for temperature
310

300

290
Lower control limit for temperature

280 Target temperature

270

Slab number

Figure 5.12 Tracking quality of rolled product
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5.5 Scheduling

The next set of rules consists of strategies to perform the scheduling functions to set each 

actuator prior to the rolling of a pass. When setting the actuators some consideration must 

be made to future slabs in the rolling queue so that the operation can be optimised.

5.5.1 Target setting for temperature

The temperature of each slab must be controlled in such a way that the strip is coiled at the 

desired target temperature, see Ditzhuijzen [171]. This is required so that the aluminium 

has the correct microstructure. To achieve this, temperature scheduling takes place from 

pass to pass to ensure that the strip is neither too hot nor too cold. Additionally the mill 

should ideally be rolled as fast as possible in order to maintain a high level of productivity. 

Information about the past evolution of the temperature is obtained from the learnt 

schedule. The target temperature for each pass is taken from the learnt schedule which only 

stores results from slabs that have been rolled with ideal finish quality. A forward 

prediction of the strip temperature is available from the process models and the actual 

temperature state can be measured on certain passes. The estimated deviation away from 

the pass target temperature is determined by comparing the target with the estimated slab 

exit temperature state. Figure 5.13 shows three sets of data concerning the temperature of 

the strip. Plotted on this graph is the predicted temperature from the process models, the 

measured temperature and the target temperature, which has only been specified for the 

last flat pass and the final pass of the schedule.
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Figure 5.13 Information regarding strip temperature target

5.5.2 Determining the rolling speed

Before each pass of the schedule is rolled the main mill motor controller must be provided 

with a target run speed so that the mill can be threaded and then accelerated up to the 

steady state speed. The setup value for the run speed of the mill is adjusted to ensure that 

the pass target temperature is achieved. The required correction to the run speed is 

determined using the process model partial derivative and the temperature error. Any 

modification to the mill speed is checked, (see Section 5.5.9), to ensure the change is 

realistic. In addition three main strategies are applied:

i) A dead band is applied about the target temperature to allow for small discrepancies in 

the exit strip temperature.

ii) On early passes the speed is only adjusted by small amounts in response to any 

temperature error. This is because the slab temperature is very insensitive to speed changes.
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iii) On later passes the speed is increased within the temperature dead band, wherever 

possible, so that the productivity is increased.

Figure 2.7 and 2.8 show two simulations showing the effect on the head end strip 

temperature when a good and bad target mill speed is given to the main motors. Figure 2.7 

shows the bad mill setup with a mill speed set point some distance away from the actual 

value required to produce strip at the target temperature. Once the mill has ramped up to 

the run speed closed loop temperature control adjusts the mill speed until the temperature 

target is achieved. Comparing Figure 2.7 with Figure 2.8 it can be seen that the quality of 

the latter coil is more consistent than the former due to the correct set point being provided 

to the controller.

5.5.3 Target setting for profile

The control of profile and flatness of the strip is highly interactive. To ensure the strip is 

coiled at the desired target profile and with good shape properties, profile scheduling takes 

place from pass to pass, see Shaw [172]. Information about the profile is available from the 

various data sources (learnt schedule, measurements and model predictions). The target 

profile for a particular pass is taken from the learnt schedule which only contains profile 

data for slabs that have been rolled with ideal finish quality. Forward prediction of the strip 

profile is available from the process models. The estimated deviation away from the pass 

target profile is determined by comparing the target with the estimated slab exit profile 

state. The desired change in profile for a pass is checked to ensure that it is not greater than 

the shape change limit. Figure 5.14 shows the target profile for the last six passes of twenty 

three pass schedule. Also shown are the limits imposed on the profile change from one pass 

to the next by the buckling criteria.
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Figure 5.14 Target profile from pass to pass

5.5.4 Spray selection after a roll change

After a work roll change or after a long delay between slabs the thermal camber on the rolls 

will be lower than the ideal steady state value. The amount of thermal camber present on 

the work rolls directly influences the value of the strip profile. In order to achieve the 

desired strip profile, there is an optimum value for the thermal camber. This camber can 

only be built up after the rolling of a number of slabs, typically 3 or 4, and the strip profile 

of these slabs is unlikely to be within the desired profile quality limits.

The work roll spray strategy developed adjusts the level of the sprays depending upon the 

state of the thermal camber. To determine the thermal state of the work rolls the current 

predicted thermal camber at the edge of the strip is compared to a target value. This target 

value is initially entered as a value gained from experience by the running the process 

models for the particular schedule.
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The comparison between the predicted and target thermal camber is categorised into one 

of five sets:

i) The camber is very small.

ii) There is some thermal camber, but it is still some way from the steady state value.

iii) The camber is at steady state.

iv) The camber is slightly larger than the steady state value.

v) The camber is very much larger than that required at steady state.

For each possible state of the work roll thermal camber a predefined spray pattern is stored 

which will result in the reduction of the error between the target and predicted thermal 

camber. The steady state spray pattern is defined and stored in the learnt schedule or if this 

is still to be defined, the fixed schedule is used. The patterns for the small camber and very 

large camber cases are calculated from the known limits on the spray level. Finally patterns 

ii and iv are calculated by taking the average of the patterns defined for i and iii, and the 

average of the patterns defined for iii and v respectively. So in fact only one spray pattern 

is actually defined.

Radial thermal camber at strip edge (microns)

100

W ithout expert system  With expert system

6000 80004000  
Tim e (s)

2000

Figure 5.15 Thermal camber from a cold start
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When the strategy is run, the sprays are adjusted before each pass is rolled and the new 

spray pattern is determined. Figure 5.15 shows the predicted work roll thermal camber with 

and without expert system control. Figure 5.16 shows the strip profile which results from 

this thermal camber. Finally Figure 5.17 to 5.19 show the spray patterns which are used for 

each pass for the cold, warm and steady-state rolling conditions. It can be seen that the 

expert system strategy is able to produce strip profile within the defined target limits 

quicker than if a fixed spray pattern is used.

The process knowledge stored within this strategy is a defined work roll coolant pattern 

associated with different levels of work roll thermal camber.

Profile %

W ithout expert system  W ith expert system

Upper and lower control lim its
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Target profile
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Figure 5.16 Profile after a cold start
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Figure 5.17 Work roll spray used for cold rolls

13 Strip edge
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Figure 5.18 Work roll sprays used for warm rolls

F  16
13 Strip edge

Pass number 22 Strip centre line

Figure 5.19 Work roll sprays used for hot rolls
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5.5.5 Spray selection at a product change

The rolling of aluminium slabs on a single stand reversing mill is a batch process. This 

means that several different types of products will have to rolled on a single mill. A product 

is usually defined by the aluminium alloy composition, slab width, finish gauge and target 

finish temperature. For each product the desired steady state thermal camber which will 

result in good quality material being produced is likely to vary. The desired thermal camber 

can vary in both its magnitude and width across the work roll. Figure 5.20 shows the steady 

state thermal camber which is required for two different widths of the same aluminium 

alloy. At a product change it takes 2 or 3 slabs for the thermal camber to completely 

transform itself from one steady state to another. The strategy which has been developed 

varies the work roll sprays to anticipate the product change and attempts to begin to modify 

the thermal camber to achieve an improved performance.

Strip w idth  1.68m  Strip w idth  1.24m

Therm al cam ber (m icron s)

350

300

250

200
150

100

0.5-0 .5

D istan ce from  strip centre lin e (m )

Figure 5.20 Steady state thermal camber required for different strip widths

The strategy deals with two possible situations. Firstly when the width of the material 

increases from one slab to the next and secondly when the width of the material decreases 

from one slab to the next.
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i) Increase in strip width

In these circumstances as can be observed from Figure 5.20 the camber which is seen at the 

edge of the wider strip immediately after the product change is larger than is actually 

required. The effect on the slab is to roll out the centre of the material leaving the edge 

shorter. Such a defect is usually termed a tight edge. To reduce the effect on the strip 

profile, immediately before the slab is rolled the work roll sprays are left on for a defined 

period of time which has the effect of removing heat from the roll and reducing the 

variation in roll expansion across the barrel width. Figure 5.21 shows profile results from 

a simulation with and without the expert system controlling the sprays. The process model 

is configured so that the work roll sprays can be left on or off in the delay between slabs. 

It can be seen that the error in the strip profile immediately after the product change has 

been reduced.

Profile %

W ithout expert system  With expert system

Upper control lim it

0.8 Target profile

0.6

Lower control lim it
Product change0.4

0.2

Slab number

Figure 5.21 Strip profile before and after an increase in strip width 

ii) Decrease in strip width

In these circumstances, again referring to Figure 5.20 the camber seen at the edge of the 

narrow strip immediately after the product change is less than is actually required. The
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effect on the strip profile can be seen from Figure 5.22. The strip sees virtually no thermal 

camber and hence a larger strip profile will be produced than is desirable. The situation is 

very similar to that at a cold start. The method adopted to reduce the effect at the product 

change is to reduce the spray level in the centre of the strip and increase the spray coolant 

at the edge of the strip. This has the result of increasing the overall thermal camber and 

results in a larger camber being seen by the narrower strip. Figure 5.22 shows the results 

of using the expert system control strategy. In the simulation the spray pattern of the two 

slabs prior to the product change were set to the warm spray pattern.

Profile %

Product change

Upper control limit
0.9

Target profile

0.6
Lower control lim it

W ithout expert system  W ith expert system

0.3

Slab number

Figure 5.22 Strip profile before and after a decrease in strip width

The two strategies discussed in this section store process knowledge about work roll 

coolant spray control at a product change.

A conflict occurs between these two strategies and the strategy setting the sprays during 

steady state rolling. This conflict is resolved by giving the product change strategies a 

higher priority provided that the last slab rolled met the profile performance.
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5.5.6 Work roll bend for good shape

A common method of controlling strip profile is to use work roll bend, see Fapiano [173], 

Fujimoto [174] and Tellman [175]. Associated with each product is a target final pass 

profile. As the slab is rolled and the profile is developed, the roll bend is adjusted to yield 

a coil with the desired profile. Once the thickness of the workpiece drops below a critical 

level (20 to 30 mm) adjusting the roll bend based solely on the profile error is no longer 

possible. Maintaining good strip shape becomes an important issue. Bad shape is developed 

if the profile change from the entry to exit sides of the mill is greater than the shape change 

limit for the pass in question, Shoet [118] and Konishi [176]. Establishing the profile 

trajectory that results in acceptable shape is therefore important. The rule-based strategy 

uses model predictions of profile and shape change limits to determine how to set the roll 

bend. Figure 5.23 compares the profile on the last six passes of a twenty three pass 

schedule using the fixed schedule set points and that from using the adjusted set points.
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Figure 5.23 Effect on strip profile of controlling the work roll bend setting
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5.5.7 Production rules

Process limits are split into two main groups. Firstly, there is a set that defines the actual 

physical limits that apply to the mill all of the time, such as the maximum motor power or 

the actuators ranges. A second set is used to store limits that are only applicable to certain 

passes of the schedule or to certain products. For example, the minimum allowable work 

roll coolant spray level must be limited for certain products to avoid large roll temperatures 

that can cause surface marking of the strip. The second type of production limit is tailored 

specifically to the mill to which the expert system is being applied.

5.5.8 Delays in production

The mill is subject to delays from time to time, for example due to equipment failure. 

During such a delay cooling occurs within the mill and heat is lost by the slab currently 

being processed. Loss of the work roll thermal camber is remedied using the strategy 

described above for a cold start. Heat lost from the work rolls is tracked by the thermal 

camber model and hence the spray setting strategy is able to correct the spray pattern 

according to the calculated camber error. Any reduction in the temperature of the slab 

results in higher rolling loads due to the hardening of the material. If the temperature drops 

below a critical threshold the expert system displays a warning to the operator that the slab 

is likely to produce inferior quality material and he or she may then decide to scrap the 

slab.

5.5.9 Checking the revised schedule.

Any revisions to the rolling schedule must be checked against the learnt schedule to ensure 

that realistic changes are made. Such a check avoids large fluctuations in the operation of 

the process. If the mill is subject to a change in its operating point, then this is 

accommodated in two or three smaller changes. Figure 5.24 shows a plot of the work roll 

bend for the last six passes of a schedule. The simulation shows the effect of a delay in 

production during which time both the slab and work roll temperature drops. The result of
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the decrease in the strip temperature is to increase the rolling load due to the 

interrelationship between the material flows tress and temperature. Consequently the 

deflection of the mill stack increases and there is a larger roll gap profile. The result of the 

decrease in the work roll temperature is a lower thermal camber and again an increase in 

the roll gap profile. The value of the work roll bend set point can be seen to increase 

following this delay. The strategy limits the work roll bend change away from the nominal 

value stored in the learnt schedule. It can be seen that after three passes have been rolled 

the work roll bend setting has returned closer to the nominal value. This strategy avoids 

large deviations away from nominal operating practice and the associated risks with doing 

so.

Work roll bend setting (tonnes)

100
Desired bend change

Limited bend movement

80

60

40
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232221201918

Pass number

Figure 5.24 Effect of limiting the actuator movement following a delay in production
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5.6 Model and adaptation control

The third and final set of rules are concerned with ensuring good performance of the 

process models, the adaptation algorithms and other components within the mill setup and 

supervisory control system.

5.6.1 Learnt schedule assembly

The rule set in Sections 5.4 and 5.5 make reference to the learnt schedule data for checking 

the accuracy of the measurements. The learnt schedule is updated after each slab has been 

rolled if the slab was deemed to be of good quality. This then provides a means of 

checking the measurements, the process model predictions and the generated actuator set 

points.

The data stored within the learnt schedule consists of a schedule which when applied to the 

mill at steady state, results in optimum quality material being produced. The schedule not 

only consists of optimum actuator settings but also a set of reference measurements. In the 

case where a measurement is not available, for example a profile measurement on a 

particular pass, then the appropriate model prediction is used. The learnt schedule is an 

invaluable tool for enabling the system to make consistency checks. The learnt schedule 

is updated after a slab has been rolled with superior quality.

The learnt schedule is updated using a simple filter algorithm. A weighting function allows 

more or less forgetting to take place. The nominal value for this weighting function is 0.5. 

In the case of the spray patterns the result must be adjusted to firstly ensure that only 

integers are to be stored and secondly to ensure that at least one of the spray levels is at the 

maximum level.
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5.6.2 Determining the slab state

A number of sources of information are available to the system to determine the most likely 

state of the slab before and after each pass is rolled. The information available comes from 

the model predictions, measurements and the database of learnt schedule information. The 

confidence of each source is examined to establish which is the best. The state of the slab 

is therefore made up of a combination of measurements and predictions. Wherever 

appropriate, a measurement is always to be preferred to a prediction provided it satisfies 

the diagnostic checks described earlier.

5.6.3 Checking predictions

The model predictions can become inaccurate for a number of reasons. For example, if 

inaccurate data is applied to the model then the model predictions are also likely to be 

inaccurate. The models are checked against the learnt schedule to ensure that they lie 

within an acceptable tolerance and then the confidence of each prediction is set 

appropriately. The models may be inaccurate for the following reasons:

i) The data related to the slab's state, namely the slab temperature, width, thickness or 

profile is not a true reflection of the true slab state. In such a case if inaccurate data is 

applied to the model then the prediction made by the model will also be inaccurate.

ii) Insufficient measurements have been applied to the adaptation algorithm to alow the 

models to be accurately calibrated.

iii) Conditions are applied to the models which are outside the models’ normal operating 

conditions.
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In Section 4.5 a number of techniques were discussed which can be used to improve the 

performance of the process model adaptation algorithms. The following sections discuss 

suitable rules which can be used to monitor and control these parameters.

5.6.4 Control of forgetting

The model adaptation algorithm contains a forgetting factor, which when adjusted, 

increases the response of the algorithm to a change in the process operating point. This 

strategy identifies any distinct changes in the process operating point, for example changes 

in the width of the material. The forgetting factor is then reduced from its nominal value 

of 0.99 to a value of 0.75, which greatly improves the response of the adaptation algorithm. 

The justification for using such a low value is that the models must adjust to the new 

operating point within one or two slabs. Traditionally the forgetting factor is only normally 

allowed to drop as low as 0.95. This however is for cases where very many more samples 

of data are being input into the filter during the interval when the operating point change 

occurs.

Once the models have adjusted to the new operating point, the forgetting factor is reset to 

its nominal value. Figure 5.25 shows the effect on the last pass rolling load prediction 

compared to the predicted value with and without the expert system strategy running.
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Figure 5.25 Effect on the load prediction at product change with and without control 

of adaptation forgetting factor

5.6.5 Control of error covariance matrix within the recursive least squares 

algorithm for correcting parameter drift

The error covariance matrix represents the memory of the adaptation algorithm. If the value 

of the diagonal of the matrix is increased, then the filter can be made to respond quicker 

to changes in the operating point of the process in a similar way to that described in 

Section 5.6.4. The drift of the adaptation parameters is monitored using the algorithm 

described in Section 4.5.4. The reasons given for parameter drift were firstly that the error 

covariance matrix has become small and secondly because the measuring instruments 

themselves are drifting or have become faulty. The expert system monitors the diagonal 

values in the error covariance matrix which correspond to the confidence placed upon the 

parameter. To ensure that the models continue to track variations in the process the fault 

detection algorithm described in Section 4.5.4 will identify if a parameter is consistently 

moving in a one direction. If it found that the corresponding diagonal term in the error 

covariance matrix is less than 10'2 then action is taken by multiplying he diagonal elements 

of the error covariance matrix by 100 and decreasing the forgetting factor to 0.95. 

Figure 5.26 shows the results from the operation of this strategy on the flows tress
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adaptation coefficient. Initially it can be seen that the coefficient is slowly decreasing 

because it is attempting track the variation in the rolling load. At the point indicated the 

fault detection algorithm detects that the parameter is slowly moving and increases the 

error covariance matrix. The movement of the coefficient is now observed to increase and 

settle down after 2 slabs. Thus the expert system has detected a fault within the adaptation 

algorithm and corrected it.

Flowstress adaptation coefficient

0.88

Expert system strategy 
activated0 .87

0.86

0 .85 Consistent movement 
downwards

0 .84

0 .83

Slab number

Figure 5.26 Detecting drift in the flow stress adaptation coefficient 

5.6.6 Selection of adaptor

In Section 4.1, a technique was described for identifying whether the lay-on temperature 

of the slab is accurate or not. The result from this strategy allows the expert system to 

configure the adaptation algorithm. The short term (pass to pass) adaptation is modified so 

that a temperature observer identifies the true slab temperature state. Otherwise, a flow 

stress offset is used as the pass to pass adaptation parameter. The results from using the 

temperature observer and the flows tress offset was discussed in Section 4.3 together with 

graphs showing the performance of such a strategy.
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5.6.7 Removing measurements from adaptation

The diagnostics described in Section 5.4 set the confidence of each measurement 

depending upon how accurate it is deemed to be. Additionally by observing the drift of the 

adaptation coefficients as described in Section 4.5.4 the measuring may b identified as 

defective. In situations where a measurement has been found not to be reliable, then both 

the long term and short term process model adaptation schemes must be configured to 

neglect that measurement. This avoids applying defective measurements to the adaptation 

which may be detrimental to the performance of the process models. The expert system 

examines the information gathered from the diagnostics and outputs the configuration to 

the adaptation schemes.

5.6.8 Setting measurement weighting

The long term and the short term adaptation algorithms allow the measurements to be 

weighted according to the confidence placed upon them. This weighting is provided by the 

standard deviation that was obtained when the measurement was sampled from the process. 

The larger this standard deviation is, the less confidence the system has in its accuracy. In 

some circumstances the diagnostics are unable to decide, with any degree of certainty, if 

a measurement is definitely correct or incorrect. In such cases the measurement can still 

provide useful information. This strategy assigns such a measurement with a higher 

standard deviation (weighting) than was actually measured.
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5.7 Overall system integration

T h is  s e c t io n  w ill  d escr ib e  the overa ll sy stem  architecture w h ich  in tegrates the p rocess  

m o d els  d escrib ed  in  C hapter 3 , the adaptation described  in  Chapter 4  and the expert system  

described  earlier in  th is chapter. T here is , in  addition  to th ese  three m ain  com p on en ts, som e  

further m o d u le s  w h ic h  w ill  b e d escrib ed  in  th is  section . T he architecture for a m ill setup  

system  based  o n  an expert sy stem  is  sh o w n  in  F igure 5 .2 7 . T he figu re  has the sam e le v e ls  

as that sh o w n  in  F igu re 2 .5 . T h e le v e ls  are the ro llin g  m ill at the lo w e s t  le v e l, the c lo se d  

loop  controllers at le v e l I, the setup sy stem  at le v e l II and fin a lly  the p lant w id e  control at 

le v e l III. T he figu re  illu strates le v e l II exp an d ed  in to  its fundam ental co m p o n en ts . T he  

m ain  com p on en ts w h ic h  m a k e up th is  le v e l II sy s tem  h ave already b een  d escrib ed  in  th is  

th esis  in detail, n am ely  the p rocess m o d e ls , adaptation , d er iv a tiv es  and th e  exp ert system . 

T he rem ain in g  co m p o n en ts  are d escr ib ed  b e low :

Level II Set-up systemLevel III Data

Set
PointsProduct

Queuing
Expert System

Engineer
Input

Schedule
LearningInference Engine Rolling MillRolling

Schedule
Product Quality 

ReportingSchedule
Optimization

Process Knowledge

GUI

Fault Detection 
Diagnostics' Process 

Models
Adaptation

Batch to batch 

Slab to slab 

Pass to pass

Measurements

Derivatives

Control
Gains

Closed Loop 
Control

LevelT

Figure 5.27 O v era ll le v e l II sy stem  arch itecture

T hree d istin c t ty p e s  o f  u ser  input can  b e  identified :

i) The product queue d e fin es  the order in  w h ich  slabs are rolled. L inked to each  slab are its 

in itia l and d esired  fin a l states.
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ii) Two databases containing pass schedules. Pass schedules hold the set point data needed 

to ready the mill to roll. What set point data is stored varies from mill to mill, depending 

upon the available control actuators. A typical pass schedule includes drafting and spray 

patterns along with mill speed and roll bend set points. Plant schedules are based on 

operator knowledge or are generated by a scheduling algorithm. Learnt schedules are 

assembled by the expert system as slabs are rolled.

iii) Measurements made when rolling allow the system to compare the expected 

performance of the mill against its actual performance.

The schedule optimisation block shown is used when more than one actuator is available 

to control a particular quality parameter. For example, strip temperature may be controlled 

using the mill speed or some external strip cooling. Where this occurs the expert system 

must call upon an optimisation routine to determine the set points. The optimisation routine 

must be provided with the first order derivatives of the objective function with respect to 

each actuator. The allowable limits for each actuator must also be provided. In the case of 

the architecture illustrated, the simplex algorithm has been used and Figure 5.28 illustrates 

how the optimisation algorithm works. The objective function is minimised subject to the 

allowed constraints on each of actuators.
Shape limit SI

MaxDSR
change

profile increasing or 
decreasing

Shape limit S2
Min DSR 
change

z v / / y / / / z
Min bend 
change

Max bend 
change

Figure 5 .28  Optimisation of strip profile with two available actuators

171



Using this input data the expert system adjusts the actuator set points such that the mill 

rolls a prime quality product. The inference engine processes the data using the knowledge 

base.

The typical sequence of operations that would occur is as follows:

i) The rolling queue for the next twenty slabs would be passed down from level III 

computer. The information contained within the rolling queue will be used to determine 

whether a product change is imminent and to activate the appropriate rules within the 

expert system.

ii) The rolling schedule for the next slab to be rolled is retrieved from the schedule database 

and the learnt schedule database will be searched for a matching schedule. This provides 

the expert system with a record of how the slab has been previously rolled.

iii) The slab’s temperature may be measured and the expert system will determine the entry 

state of the slab.

iv) The actuator set points will be determined by running the process models and the 

scheduling rules within the expert system. The model performance will be checked and the 

suggested set points checked with past experience. The predicted exit state can then be 

determined.

v) The mill will then be rolled and measurements will be collected to establish the quality 

of the rolled product and to use to adapt the process models.

vi) The measurements made will be passed through the diagnostics to ensure a consistent 

set and then adaptation will be run with any advice presented to it by the adaptation rules 

within the knowledge base. The new exit state can then be determined.
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vii) The slab is ready for the next pass when the procedure is repeated starting from item 

iii. The process is repeated until the final gauge is achieved, when the quality rules are run 

to establish if the process is producing a satisfactory product.

The expert system was implemented using a proprietary expert system shell called flex 

which has been constructed on top of the programming language Prolog. The shell consists 

of three main components. A knowledge specification language (KSL), a support predicate 

and an engine for integration into Prolog. The KSL at the top level enables the expert 

system rules to be written in English-like form which may be easily read by non

programmers. Sentences may be developed using the construct illustrated in Section 5.2. 

Appendix 1 gives samples of the expert system code developed. The adaptation and process 

models were implemented in C and the interface between the expert system and the model 

was built using dynamic data exchange (DDE) under Windows 3.1. Figure 5.29 shows how 

the expert system and process models were interfaced together via a Lotus 123 spreadsheet 

which held the databases used for the simulations.

W indow s 3.1

Dynamic Data 
Exchange Interface

Dynamic Data 
Exchange InterfaceLotus 123

Data Files 
Databases 
Charts

C ++ interface Prolog interface

Borland C ++ F lex  &  Prolog

Overall System Control 
Expert System 
Strategies 
Rule Bases

Process Models 
Optimization 
Parameter Estimation 
Database Interrogation

Figure 5.29 System integration

Figures 5.30 to 5.32 show sample screen displays from each of the three software programs 

used in the implementation of the prototype expert system.
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B orland C++ - [c:\ians\m odlib\revm od\revm od.c]
File Edit S ea rch  Run Com pile P roject B row se Options W indow

?fc*4Mai&ieJdBflaiaiPJSi I
Help

 : i ....: ,:i, ________________
/* First store the structures which are required later */

nev_temp = rev[pass]; rbmpd_temp ” rbmpd[stand]; aly_temp = alyprp; rbm_temp - rbmCstand]; radpt_temp = radpt;

/* store pass structure *//* store roll gap partials */
/* store alloy structure */
/* store roll bite model •/
/* store current adaptation data */

/• Now get back the new recursive slab-slab coefficients */

radpt « radpt_rss; /* set adaptation data to recursive ss •/
/* Adapt Reversing Hill data for current gauge with Just slab-slab coefficients */

adaptr C rev[pass]. h2,8ca 1 yprp. a 1 phab, 8crbm[stand] .tal. 8crbm[stand]. ta2, 8crbm[stand] .ta3, radpt.gbal, radpt.gbwc, radpt.alls, radpt.ales, dmadpt, radpt.alts, radpt.tals, radpt.ta2s, radpt.ta3s, dmadpt, dmadpt, radpt .wcls, alyprp.wcl,&alyprp.alphat, 8cthetaloadss,8ct het a washss, pass, numpas);

/* Exit gauge */
/* Flow stress term */
/* Torque arm factor (to be adaptedJ 
/* Torque arm factor (to be adaptedJ */

Torque arm factor (to be adapted) ■»//* Breakpoints for ALPHA */
/* Breakpoints for CPSB
/■* Adaptation factors for ALPHA (slab-slab)*/
/* Adaptation factors for ALPHA coiling (slab-sle 
/* Adaptation factor for ALPHA (pass-passJ */
/* Adaptation factor for torque Darby (pass-pass, /* Adapted factor for torque arm (slab-slab! */
/* Adapted factor for torque arm (slab-slabl */
/* Adapted factor for torque arm (slab-slabJ */
/* Adapted factor for torque arm (pass-pass) */
/* Adaptation factor for wash HTC (pass-pass) »/ 

Adaptation factor for wash HTC (slab-slab1 •/ 
/* Hash HTC to be adapted 
/* ALPHAB adapted for torque */
/• ss coefficient for load cuurently in usess coefficient for wash HTC currently in use * 
/* Pass number */
/* Number of passes

/* Run load, power and temperature models for the reversing mill */

Figure 5.30 Sample screen from process model code

= |  WIN-PROLOG IzJ
File Edit Search  Bun O ptions Fle>c W indow Help

TEMPLATE.KSL
% tem p la tes  for sp ra y  setting

tem plate cold_rolls
* are cold .

tem plate warm _rolls
* are w arm  .

tem plate cam b er_ a t_ s tead y _ s ta te
* a re  at s te a d y  s ta te  .

tem plate cam ber_too_large
*■ h a s  grown s ligh tly  too bit

tem plate c am ber_very_ large
* h a s  grown too big .

% tem p la te s  for product change

action
pnnwev^starg 
p r in tm e a s

FRAMES.KSL

fram e s l a b s t a t e  is  a s ta te  . 
fram e m ill_sta te  is  a s ta te  .

fram e width is  a s lab  s ta te  . 
fram e length is  a s lab  s ta te  . 
fram e gau g e  is  a s lab  s ta te  . 
fram e tem p era tu re  is  a s lab _ s ta te  . 
fram e profile is  a s lab  s ta te  . 
fram e s h a p e  is  a s lab  s ta te  .

fram e total s lab  s ta te ; 
default width is  a width and 
default length is  a length and 
default gauge  is  a gauge  and 
default tem p era tu re  is a tem pera tu re  and 
default profile is  a profile and 
default s h a p e  is  a sh ap e  .

fram e load is  a  mill s ta te  .

» A bolishing file SETUP.PL [C:\IANS\PROLOG\TEST\] 
action se tu p
I ? -

wTT

Figure 5.31 Sample screen from expert system code
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Lotus 1-2-3 R elea '
[ Eile Edit View S ty le  T o o ls  B an g e  W indow  Help

3.50E*05
3 50E+05 
3.50E-05 
5.50E-05 
8.00E*05 
8 00E-05
8 50E*05
9 00E+05

0E*00 9.0E*06
9 0E*06 1.7E*07
1.7E*07 2.4E*07 300

Figure 5.32 Sample screen of Lotus 123 simulation data
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5.8 Conclusions

This chapter has defined the structure of an expert system, its architecture and the way 

knowledge can be constructed into rules. The application of an expert system to controlling 

the setup of aluminium hot reversing mill has been discussed and the strategies involved 

have been outlined together with results from their implementation. Further, the expert 

system has been integrated into a control architecture along with a set of process models 

and adaptation. The examples that have been presented demonstrate that control of the 

rolling process is improved with the use of an expert system. The work has shown that the 

use of AI is of quantifiable benefit to an industrial control problem such as the rolling 

process. A number of existing strategies have been implemented within the expert system. 

Several new strategies have also been developed.
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CHAPTER 6

Conclusions and recommendations for 

further work

This chapter will summarise the work presented in this thesis, draw conclusions and offer 

some recommendations for further work. The thesis has presented the results of a study into 

setup and supervisory control for a hot aluminium rolling mill. The primary goal was to 

build upon and improve existing technology, namely the process model and adaptation, and 

to integrate this into a new architecture which would enhance the performance of the setup 

system. The literature survey revealed that the majority of present setup systems were 

based solely around process models and adaptation. This has the limitation that not every 

part of the process can be modelled accurately enough for the systems to perform well 

under all possible operating conditions. There was clearly a requirement for new techniques 

to be incorporated into these setup systems which would have some form of intelligence 

to assist the level 2 setup system. A novel contribution of this thesis has been the 

introduction of an expert system and its integration into the new level 2 system 

architecture.

The thesis firstly described the rolling process, how it is controlled and why there is the 

need for good initial actuator set points. The illustrative example clearly showed the 

improvements in product quality made when accurate set points are used. The literature 

survey revealed that expert systems have been used within the rolling industry but have
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tended to be applied to level 3 systems. The question that this thesis has posed and 

answered is: ‘can artificial intelligence be built into the setup system so that it can replicate 

strategies adopted by the mill operator?’.

Chapter 3 presented a detailed description of each process model. Novel and interesting 

aspects within this chapter included the presentation of a unified rolling load model for 

both thick and thin stock material, the solution to the roll bite heat conduction problem and 

the formulation for strip profile and shape. Chapter 4 presented an original method for 

determining the partial derivatives required for adaptation using a perturbation analysis. 

The next sections presented for the first time a two level adaptation scheme for the 

aluminium hot reversing mill. The results presented show that the long term adaptation 

removes the model offset error, whilst the short term adaptation reduces the standard 

deviation of the model error. Significant improvement in the accuracy of the process 

models was shown in both tabular and graphical form. The final section described the 

implementational considerations that should be made before implementing the adaptation 

schemes on-line. It was also stated that some of the techniques provided a mechanism 

whereby the expert system can be used to control the performance of the adaptation 

schemes.

Finally Chapter 5 discussed and presented an expert system for hot mill setup. It was 

demonstrated that a large variety of different strategies can be implemented in such an 

expert system. The idea of using an expert system to perform the aluminium hot mill setup 

is completely original. It was shown that the expert system’s knowledge base can be 

divided into three main sections. Firstly, a section of the knowledge base diagnoses and 

cross checks measurements to ensure consistency. It also contains some strategies to 

perform checks on product quality from slab to slab. Secondly, a section of the knowledge 

base stores the strategies used to set the actuators prior to the rolling of each pass. The final 

section stores rules which are used to control the adaptation and further enhance the 

accuracy of the model predictions. Within all the sections of the knowledge base new and 

original strategies have been developed, implemented and tested. The results presented 

clearly show that improvements can be made at level 2 with the introduction of an expert
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system. The thesis has proved that strategies can be implemented within a knowledge base 

of an expert system which encapsulate or replicate the actions of a mill operator. The 

programming of the knowledge base is performed in an English-like syntax which is easier 

to understand than a lower level language such as C. The knowledge is also distinctly 

separated from the main system code.

In conclusion, the thesis has demonstrated that artificial intelligence may be incorporated 

in a level 2 setup system with improvements in the system performance. The artificial 

intelligence has been introduced via an expert system which has been incorporated into a 

novel level 2 architecture. The thesis has produced new work worthy of publication in 

technical journals and conferences (see author’s list of publications at the end of the thesis).

There are several areas where the work can be extended:

i) The knowledge base is split into three main blocks. There is clearly work that can be 

done to add additional rules to each of the sections within the knowledge base. Additional 

rules could be added to the diagnostic, the scheduling or the model and adaptation parts of 

the knowledge base.

ii) The interface between the level 2 and the level 1 systems could be examined to answer 

questions such as what information needs to pass between the two levels and what is the 

optimal form for this data? Another consideration is the split between the two levels. 

Bearing in mind the sampling rates and complexity of the two levels, at what level the 

functions should be divided?

iii) The interface between the level 2 and the level 3 systems could also be investigated. As 

for ii above, the information and how the functions are split between the two levels could 

be examined.

iv) The expert system work could be extended to look at the level 3 system. For example, 

determining the optimum route for a slab around a plant involving a large number of
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possible processing routes. This would have to take into account the plant’s current order 

book, the capacity of each mill and furnace and the space within the various holding bays.

v) The expert system work could be extended to look at the level 1 system. For example 

to include rules for controller selection, strategies for threading the mill, tuning the 

controllers and gain scheduling.

vi) The final possible area of expansion is to examine techniques for automatic rule 

adaptation or generation. One limitation of the expert system is that all the rules are fixed. 

This will obviously limit the performance of the system when rules are approximated, 

contain expressions which may vary with time or when a rule has not been constructed at 

all. Clearly there is the need for rule adaptation or creation. There are several branches of 

artificial intelligence that offer the potential to perform this task, in particular neural 

networks and genetic algorithms.
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APPENDIX 1

This appendix contains sample listing from the expert system source code for reference. 

This appendix contains:

A. Frames.ksl Definition of frames used in the expert system

B. Consts.ksl Definition of instances and constants used in the expert system

C. Relations.ksl Definition of relations used in the expert system

D. Templates.ksl Definition of templates used in the expert system

E. Ruleset6.ksl Definition of ruleset used in the expert system

A. Frames.ksl Definition of frames used in the expert system

% File name: FRAMES.KSL 
% This file contains all the frames 
% used in the main expert system
%
% Created: 3 March 1995 
< ^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Define frames and their associated slots 
%*

%*
% Measurement frame

frame measurement; % standard frame for m easurem ents
default value is 0 and 
default standard_deviation is 0 and 
default expected_value is 0 and 
default drift is 0 and 
default confidence is 0 .

% Model predictions frame

frame prediction; % standard frame to hold predictions
default value is 0 and 
default standard_deviation is 0 and 
default average_deviation is 0 and 
default confidence is 1 and 
default learnt_flag is 1 .

( j i ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Derivatives frame

frame derivative; % standard frame to hold derivative
default value is 0 and 
default confidence is 1 .

%*
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%
% *

Adaptation frame
*********

frame coefficient; 
default value is 0 and 
default err cov is 0 .

% standard frame to for coefficient information

%
%
% *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Actuator frame

frame actuator; 
default value is 0 and 
default max_value is 0 and 
default min_value is 0 and 
default learnt_flag is 1 .

% define a frame for actuator data

%
%*

Slab state frame 
* * * * * * * * * * * * * * * * * * * * * * * * *

frame state; 
default value is 0 and 
default confidence is 0 and 
default learnt_flag is 1 .

% define a frame for the slab state

% *
%
%*

Slab identity

frame s lab jd ; 
default alloy is 0 and 
default slab_number is 0 and 
default numpas is 0 .

% Process targets
% *

frame process.targets; 
default target.profile is 0 and 
default target.tem perature is 0 and 
default target_gauge is 0 and 
default target.cam ber is 0 .

% standard frame for slab id details

% standard frame for slab targets

%*
%
%*

* * * * * * * * * * * * *

Create individual types of predictions

frame temperature_prediction is a prediction . 
frame load_prediction is a prediction . 
frame power_prediction is a prediction . 
frame profile_prediction is a prediction . 
frame shape_prediction is a prediction . 
frame thermal_camber_prediction is a prediction . 
frame gauge_prediction is a prediction . 
frame width_prediction is a prediction . 
frame length_prediction is a prediction . 
frame long_middle_prediction is a prediction . 
frame long_edge_prediction is a prediction .

frame predicted_mill_state; 
default load_prediction is a load_prediction and 
default power_prediction is a power_prediction and 
default thermal_camber_prediction is a thermal_camber_prediction

frame predicted_slab_state; 
default temperature_prediction is a temperature_prediction and 
default profile_prediction is a profile_prediction and 
default gauge_prediction is a gauge_prediction and
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default width_prediction is a width_prediction and 
default length_prediction is a length_prediction and 
default shape..prediction is a shape_prediction and 
default long_middle_prediction is a long_middle.prediction and 
default long_edge_prediction is a long_edge_prediction .

frame predictions is a predicted_mill_state, 
predicted_slab_state.

% Create individual types of slab state

frame slab_state is a state . 
frame mill_state is a state .

frame width is a slab_state . 
frame length is a slab_state . 
frame gauge is a slab_state . 
frame temperature is a slab_state . 
frame profile is a slab_state . 
frame shape is a slab_state .

frame total_slab_state; 
default width is a width and 
default length is a length and 
default gauge is a gauge and 
default temperature is a temperature and 
default profile is a profile and 
default shape is a shape .

frame load is a mill_state .
frame power is a mill_state .
frame thermal camber is a mill state .

( ^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Create individual types of actuator

frame exit_gauge is an ac tua to r. % create instances of actuators, this is done so that
frame speed is an ac tua to r. % all instances of an actuator can be accessed  with a
frame spray_cooiing is an ac tua to r. % single rule
frame roll_bend is an ac tua to r.
frame pc_angle is an ac tua to r.
frame centre_spray_level is an ac tu a to r.
frame edge_spray_level is an ac tu a to r.

frame spray_pattern; % spray pattern made up of edge and centre levels
default centre_spray_level is a centre_spray_level and 
default edge_spray_level is an edge_spray_level.

frame actuator_data; % standard frame for actuator set-points
default exit_gauge is an exit_gauge and 
default speed is a speed and 
default roll_bend is a roll_bend and 
default centre_spray_level is a centre_spray_level and 
default edge_spray_level is an edge_spray_level and 
default spray_cooling is a spray_cooling and 
default pc_angle is a pc_angle and 
default exit tension is 0 .

% Create frames for the temperature measurement

frame tem perature_m easurem ent is a m easurem ent.

% Create a frame for the slab pdi
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% *

frame slab_pdi is a total_slab_state, 
process_targets, 
s la b jd  ; 

default inter_slab_spray is 0 .

% pdi is made up of slab state, targets and id .

%*
% Frame to represent pass schedule data

frame pass_schedule_data is an actuator_data, % standard frame for schedule data
process_ targets;

default pass_.no is 0 .

% Frame to represent learnt schedule data

frame learnt_schedule is an actuator_data,
total_slab_state, 
process_targets , 
predicted_mill_state ;

default pass_no is 0 .

% learnt schedule data

% Frame to represent a flag (used to allow data
% to be passed to and from C)
% *

frame flag; 
default value is 0 .

B. Consts.ksl Definition of instances and constants used in the expert system
<^************************************************************** 

% File name: CONSTANTS.KSL 
% This file contains all the constants 
% used in the main expert system.
%
% Created: 3 March 1995 
0/  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Adaptation coefficients
%

instance load_coeff is a coefficient 
value is 1.0 and 
err cov is 0.01 .

% Load coefficient

instance washhtc_coeff is a coefficient 
value is 1.0 and 
err_cov is 0.01 .

instance torque_coeff is a coefficient 
value is 1.0 and 
err_cov is 0.01 .

instance profile_coeff is a  coefficient 
value is 1.0 and 
err_cov is 0.01 .

instance select_temp_or_flowstress is a flag 
value is 0 .

instance forgetting_factor is a flag 
value is 1 .0 .

instance increase_p is a flag

% Wash HTC coefficient

% Torque coefficient

% Profile coefficient

% Select flowstress or temperature coefficient 
% (pass-pass)

% Forgetting factor (slab-slab)

% Increase the P matrix (slab-slab)
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value is 1

% PDI for this slab and next slab 
%
%*
instance this_slab_pdi is a slab_pdi. 

instance next_slab_pdi is a slab_pdi. 

instance learnt_schedule_pdi is a slab_pdi.

% define the current slab’s  pdi 

% define the next slab's pdi

% Schedule data types:- 
% Fixed schedule 
% Learnt schedule 
% Revised schedule
%
%*

instance this_pass is a pass_schedule_data . 
instance previous_pass is a pass_schedule_data .

instance fixed_schedule is a pass_schedule_data .

% The revised pass schedule

% The fixed schedule

instance this_pass_of_learnt_schedule is a learnt_schedule . 
instance previous_pass_of_learnt_schedule is a learnt_schedule .

% The learnt schedule 
% The learnt schedule

% Slab entry and exit states
%

instance entry_state is a total_slab_state . % The estimated entry state of the slab

instance exit_state is a  total_slab_state . % The estimated exit sta te  of the slab

% Define some commonly used predictions from 
% the process models

instance entry_slab_prediction is a predicted_slab_state 
instance exit_slab_prediction is a predicted_slab_state . 
instance mill_state_prediction is a predicted_mill_state .

% Define derivatives used
%

instance temp_speed_derivative is a derivative . 
instance profile_bend_derivative is a derivative .

% Define som e commonly made m easurem ents 
% made during rolling
Q /q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

instance layon_temperature_measurement is a measurement; 
value is value of tem perature of this_slab_pdi and 
standard_deviation is 0.819 and 
drift is 1.0 and
expected_value is value of temperature of learnt_schedule_pdi.

instance entry_tem perature_measurement is a m easurem ent; % Measured entry temperature
standard_deviation is 0.819 and 
drift is 1.0 and
expected_value is value of temperature of previous_pass_of_learnt_schedule .
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instance entry_profile_measurement is a m easurem ent; % Measured exit profile
standard_deviation is 0.119 and 
drift is 0.1 and
expected_value is value of profile of previous_pass_of_learnt_schedule .

instance exit_temperature_measurement is a m easurem ent; % Measured exit temperature
standard_deviation is 0.819 and 
drift is 1.0 and
expected_value is value of temperature of this_pass_of_learnt_schedule .

instance exit_profile_measurement is a m easurem ent; % Measured exit profile
standard_deviation is 0.119 and 
drift is 0.1 and
expected_value is value of profile of this_pass_of_learnt_schedule .

instance exit_shape_m easurem ent is a m easurem en t; % Measured exit shape
standard_deviation is 0.05 and 
drift is 0.05 and
expected_value is value of shape of this_pass_of_learnt_schedule .

instance load_measurement is a m easurem en t; % Measured load
standard_deviation is 0.819 and 
drift is 5.0 and
expected_value is value of load_prediction of this_pass_of_learnt_schedule .

instance power_measurement is a m easurem ent; % Measured power
standard_deviation is 0.819 and 
drift is 5.0 and
expected_value is value of powerjarediction of this_pass_of_learnt_schedule .

% Create dummy measurem ents which are se t to schedule parameters

instance entry_gauge_measurement is a m easurem ent; % Measured entry gauge
value is value of exit_gauge of previous_pass .

instance exit_gauge_measurement is a m easurem ent; % Measured exit gauge
value is value of exit_gauge of this_pass and 
confidence is 2 .

instance entry_width_measurement is a m easurem ent; % Measured entry width
value is value of width of this_slab_pdi.

instance exit_width_measurement is a m easurem ent; % Measured exit width
value is value of width of this_slab_pdi.

instance entry_length_measurement is a m easurem ent; % Measured entry width
value is value of length of this_slab_pdi.

instance exit_Jength_measurement is a m easurem ent; % Measured exit width
value is value of length of this_slab_pdi.

instance entry_shape_m easurem ent is a m easurem ent; % Measured exit width
value is 0 .

% Spray patterns:
% The spray patterns are determined using the 
% max and min values for a particular pass

instance ss_spray_pattern is a spray_pattern . 

instance cold_spray_pattern is a spray_pattern . 

instance warm_spray_pattern is a spray_pattern . 

instance hot_spray_pattern is a spray_pattern . 

instance very_hot_spray_pattern is a spray_pattern

% set the ss  spray pattern equal to fixed schedule 

% set the ss  spray pattern equal to fixed schedule 

% se t the s s  spray pattern equal to fixed schedule

% set the ss  spray pattern equal to fixed schedule 

% set the ss spray pattern equal to fixed schedule
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% Global frame to define param eters

frame global 
default first_slab is 1 and 
default learnt_schedule_exists is 0 and 
default learnt_schedule_exists_profile is 0 and 
default this starting point is 1 and 
default next_starting_point is 1 and 
default halt_updating is 0 and 
default fault is 1 and 
default dt_dv is 25.0 and 
default dt_ds is 25.0 and 
default dk_dj is 0.02 and 
default dk_dt is 2.0 and 
default product_change is 0 and 
default beta is 0.5 and 
default uncertain is 0.5 and 
default correct is 1.0 and 
default incorrect is 0.0 and 
default first_pass is 1 and

% target setting model constants 
default breakdown_pass_breakpoint is 0.100 and 
default temp_gauge_breakpoint is 0.100 and 
default profile_gauge_breakpoint is 0.100 and

% Acceptable standard deviations and drifts for different types of measurem ents

default max_temperature_sd is 10 and 
default max_profile_sd is 0.2 and 
default max_shape_sd is 0.1 and 
default max_other_sd is 10 and 
default max_temperature_drift is 5 and 
default max_profile_drift is 0.1 and 
default max_shape_drift is 1 and 
default max_other_drift is 10 and 
default unexpected_measurements is 0 and 
default temp_controlJimit is 20 and 
default profile_control_limit is 0.5 and 
default shape_controlJimit is 0.3 and 
default other_control_limit is 15 and

% Acceptable deviation from targets

default profile_target_limit is 0.2 and 
default temperature_target_limit is 10 and

% Actuator limits

default max_roll_bend is 1000000 and 
default min_roll_bend is -1000000 .

% Action to store actuator limits in slots

action setjim its; 
do
max_value of exit_gauge := 0.5 and 
min_value of exit_gauge := 0 and 
max_value of speed := 5 and 
min_value of speed := 1.2 and 
max_value of roll_bend := max_roll_bend and 
min_value of roll_bend := min_roll_bend and 
max_value of pc_angle := 1 and 
min_value of pc_angle := 0 and 
max_value of centre_spray_level := 10 and 
min_value of centre_spray_level := 0 and 
max_value of edge_spray_level := 10 and 
min_value of edge_spray_level := 0 .

201



action set_patterns; 
do

value of centre_spray_level of ss_spray_pattern := 10 and 
value of edge_spray_level of ss_spray_pattern := 10 and 
value of centre_spray_level of cold_spray_pattern := 4 and 
value of edge_spray_level of cold_spray_pattern := 10 and 
value of centre_spray_level of warm_spray_pattern := 7 and 
value of edge_spray_level of warm_spray_pattern := 10 and 
value of centre_spray_level of hot_spray_pattern := 10 and 
value of edge_spray_level of hot_spray_pattern := 7 and 
value of centre_spray_level of very_hot_spray_pattern := 10 and 
value of edge_spray_level of very_hot_spray_pattern := 4 .

C. Relations.ksl Definition of relations used in the expert system

% File name: RELATION.KSL 
% This file contains all the relations
% used in the main expert system also refer to TEMPLATE.KSL
%
% Created: 3 March 1995 **************************************************************

synonym temp_target
target_temperature of th is_ p ass .

synonym temp_error
value of temperature of exit_state - temp_target .

synonym profile_target
target_profile of th is_ p ass .

synonym profile_error
value of profile of exit_state - profile_target .

synonym camber_target
target_camber of this_pass .

synonym camber_error
value of thermal_camber_prediction of the mill_state_prediction - cam ber_target.

% Measurement relations

% Acceptable standard deviations for different types of measurement

relation Measurement has a large_standard_deviation
if [ Measurement = exit_temperature_measurement or 
Measurement = layon_temperature_measurement or 
Measurement = entry_temperature_measurement ] and 
standard_deviation of M easurement > max_temperature_sd

or [ M easurement = entry_profile_measurement or 
M easurement = exit_profile_measurement ] and 
standard_deviation of M easurement > max_profile_sd

or [ Measurement = entry_shape_m easurem ent or 
M easurement = exit_shape_m easurem ent ] and 
standard_deviation of Measurement > max_shape_sd

or [ M easurement = load_measurement or 
Measurement = power_measurement ] and 
standard_deviation of M easurement > max_other_sd .

relation SD is a small_standard_deviation 
if S D <  10.0 .

% Acceptable drift for different types of measurem ent 

relation M easurement has a large_drift
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if [ Measurement = exit_temperature_measurement or 
M easurement = layon_temperature_measurement or 
M easurement = entry_temperature_measurement ] and 
drift of M easurement > max_temperature_drift

or [ Measurement = entry_profile_measurement or 
M easurement = exit_profile_measurement ] and 
drift of Measurement > max_profile_drift

or [ M easurement = exit_shape_m easurem ent or 
M easurement = entry_shape_m easurem ent ] and 
drift of M easurement > max_shape_drift

or [ M easurement = load_measurement or 
M easurement = power_measurement ] and 
drift of M easurement > max other drift .

relation X disagrees with Y 
if Y =0.

% Acceptable control limits for different types of measurem ent

relation Measurement above control limit
if [Measurement = exit_temperature_measurement or Measurement = entry_temperature_measurement 
or Measurement = layon_temperature_measurement ] and 
[ value of Measurement > expected_value of Measurement + temp_control_limit ]

or [Measurement = exit_profile_measurement or Measurement = entry_profile_measurement] and 
[ value of Measurement > expected_value of Measurement + profile_control_limit ]

or [Measurement = exit_shape_m easurem ent or Measurement = entry_shape_measurement] and 
[ value of Measurement > expected_value of Measurement + shape_control_limit ]

or [ Measurement = load_measurement or 
Measurement = power_measurement ] and
[ (value of Measurement - expected_value of Measurement) *100 / expected_value of Measurement

> other_control_limit ] .

relation Measurement below control limit
if [Measurement = exit_temperature_measurement or M easurement = entry_temperature_measurement 
or Measurement = layon_temperature_measurement ] and 
[ value of Measurement < expected_value of Measurement - temp_control_limit ]

or [Measurement = exit_profile_measurement or Measurement = entry_profile_measurement] and 
[value of M easurement < expected_value of Measurement - profile_control_limit ]

or [Measurement = exit_shape_m easurem ent or Measurement = entry_shape_measurement] and 
[ value of M easurement < expected_value of Measurement - shape_control_limit ]

or [ Measurement = load_measurement or 
Measurement = power_measurement ] and
[ (expected_value of M easurement - value of Measurement) *100 / expected_value of Measurement

> other_control_limit ] .

relation X is the_sam e_as Y 
if X = Y .

( ^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Prediction relations

relation Param eter agrees with Schedule
if [ Param eter is not equal to 0 and (Parameter - Schedule) *100 / Param eter 

< 30 and
(Schedule - Parameter) *100 / Param eter 

< 3 0 ] .

% Speed setting relations
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%* * * * * * * * * * * * *

relation P ass is a breakdown pass
if value of exit_gauge of P ass  is greater than or equal to breakdown_pass_breakpoint

relation P ass is an intermediate pass
if value of exit_gauge of P ass  is less than breakdown_pass_breakpoint 
and exit_tension of P a ss  is equal to 0 .

relation P ass is a coiling pass
if exit_tension of P ass  is greater than 0 .

relation Temperature is about the right temperature 
if temp_error =< 5.0 
and temp_error >= -5.0 .

relation Temperature is too hot
if temp_error > 5.0 . % and temp_error < 20.0 .

relation Temperature is too cold
if temp_error < -5.0 . % and temp_error > -20.0 .

relation Temperature is very hot 
if temp_error >= 20.0 .

relation Temperature is very cold 
if temp_error =< -20.0 .

%*
% Profile setting relations
% *

relation Profile is too large
if profile_error > 0.2 . %and profile_error < 0.5 .

relation Profile is too small
if profile_error < -0.2 . % and profile_error > -0.5.

relation Profile is very large
if profile_error >= 0.5 .

relation Profile is very small
if profile_error =< -0.5 .

relation Profile is about the right profile 
if profile_error =< 0.2 
and profile_error >= -0.2 .

( ^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Thermal camber setting relations

relation Rolls are cold
if camber_error =< -15.0 .

relation Rolls are warm
if camber_error < -5.0 and camber_error > -15.0 .

relation Rolls are at steady state
if camber_error >= -5.0 and camber_error =< 5.0 .

relation Roll_Camber has grown slightly too big
if camber_error > 5.0 and camber_error < 15.0 .

relation Roll_Camber has grown too big 
if camber_error >= 15.0 .

< ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% Product change
( ^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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relation Width_X increases width from Width_Y 
if (Width_X - Width_Y) > 0.25 .

relation Width_X decreases width from Width Y 
if (Width_X - Width_Y) < -0.25 .

relation Width_X changes width from Width_Y
if Width_X increases width from Width_Y or 
Width_X decreases width from Width_Y .

relation Temperature_X changes temperature from Temperature_Y 
if (Temperature_X - Temperature_Y) > 15 or 
(Temperature_X - Temperature_Y) < -15 .

relation Gauge_X changes gauge from Gauge_Y 
if (Gauge_X - Gauge_Y) > 0.001 or 
(Gauge_X - Gauge_Y) < -0.001 .

relation Confidence is a high confidence 
if Confidence > 0 .5  .

relation Confidence is a low confidence 
if Confidence < 0 .5  .

% Checking targets

relation State is on target
if [ State = value of temperature of exit_state and
[ State > target_temperature of this_pass - temperature_target_limit and
State < target_temperature of this_pass + temperature_target_limit ] ]
or [ State = value of profile of exit_state and
[ State > target_profile of this_pass - profile_target_limit and
State < target_profile of this_pass + profile_target_limit ] ] .

% Functions

function update(X, Y) = (1 - beta)*X + beta *Y .

D. Templates.ksl Definition of templates used in the expert system

% File name: TEMPLATE.KSL
% This file contains all the tem plates required
% used in the main expert system  for the rules and relations
%
% Created: 3 March 1995

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% templates for adaptation and measurem ent checking

template large_standard_deviation
A has a large_standard_deviation .

template small_standard_deviation
A is a small_standard_deviation .

template large_drift
A has a large_drift.

template disagrees_with
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A disagrees with A

template above_control_limit 
A above control limit.

template below_control_limit 
A below control limit.

template is_sam e_as
A is the sam e as

% tem plates for prediction checking
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 1

template agrees_with 
A agrees with

%*
% tem plates for speed setting
0^

template breakdown
A is a breakdown pass .

template intermediate
A is an intermediate pass .

template coiling
A is a coiling pass .

template too_hot
A is too h o t .

template too_cold
A is too cold .

template about_right_temperature
A is about the right temperature .

template very_cold
A is very cold .

template very_hot
A is very h o t .

< ^  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

% templates for profile actuator setting 
%*
template to o ja rg e

A is too large .

template too_small
A is too sm all.

template very_small
A is very sm a ll.

template very ja rge
A is very large .

template about_right_profile
A is about the right profile .

**************
% * * * * * ’

% templates for spray setting
* * * * * * * * * * * * * * * * * * *

template cold_rolls
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A are cold

template warm_rolls 
A are warm .

template cam ber_at_steady_state 
A are at steady state .

template camber_too_large
A has grown slightly too big .

template camber_very_large 
A has grown too big .

% tem plates for product change

template temperature_change
A changes temperature from A .

template width_change
A changes width from A .

template w id th jncrease
A increases width from A .

template w idth_decreases
A decreases width from A .

template gauge_change
A changes gauge from A .

% templates for slab state

template high_confidence
A is a high confidence .

template low_confidence
A is a low confidence .

%*
% templates for checking targets 
%*

template is_on_target 
A is on ta rg e t.

E. Ruleset6.ksl Definition of ruleset used in the expert system

% File name: RULESET6.KSL 
% This file contains rules relating to 
% determining the entry and exit state of the slab 
% and for checking measurem ent accuracy
%
% Created: 6 March 1995 
0̂  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%
% Confidence values 
% correct M easurement Ok
% uncertain Indicates that value is unexpected but may still be correct
% incorrect M easurement is not reliable

% Rules which process the m easurem ents

action check_m easurem ents

forward_chain(fcfs,true,fail,fixed,check_meas1) .
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forward_chain(fcfs,true,fail,once,check_meas2). 

group check_meas1
recalibrate, % Check for large standard deviation or drift
check_m easurem ent_against_expected . % Check m easurem ents with learnt schedule

group check_m eas2
cross_check_layon_load_1, 
cross_checkJayon _load_2, 
cross_checkJayon_load_3, 
cross_check_layon_load_4, 
cross_check_power_load_1, 
cross_check_power_load_2, 
cross_check_power_load_3, 
cross_check_power_load_4, 
cross_check_profile_load .

%
% Check the m easurem ent against the expected measurem ent value
%

rule check_m easurement_against_expected
if Measurement is som e instance of a measurement
and learnt_schedule_exists is 1
and confidence of Measurement is correct
and [Measurement below control limit or
M easurement above control limit ]
then confidence of Measurement becomes uncertain
and write('Unexpected ') and write(Measurement) and write(' P a s s ') and
write(pass_no of this_pass) and n l .

%
% Determine from the sampled information whether the measurement is valid
%

rule recalibrate
if M easurement is som e instance of a measurement
and confidence of Measurement is correct
and [Measurement has a large_standard_deviation
or M easurement has a large_drift]
then confidence of Measurement becomes incorrect and
write('Unreliable ') and write(Measurement) and nl.

% Use the results from check_measurement_against_expected
%
% Perform a cross check if layon temp & load lie outside the control limits 
% Case 1 layon is uncertain but load OK then layon is probably incorrect 
% Case 2 layon is OK but load is uncertain then load is probably incorrect 
% Case 3 layon and load are both uncertain the check for any consistency 
% using the fact that load and layon are are linearly dependent
% Case 4 layon an load incorrect

rule cross_check_layonJoad_1
if pass_no of this_pass is 1 and
confidence of layon_temperature_measurement is uncertain and % case 1

confidence of load_measurement is correct then 
confidence of layon_temperature_measurement becomes incorrect and 
write('Layon temperature m easurem ent is incorrect') and n l .

rule cross_check_layon_load_2
if pass_no of this_pass is 1 and

confidence of load_measurement is uncertain and % case  2
confidence of layon_temperaturer_measurement is correct then 
confidence of load_measurement becomes incorrect and 
write('Load measurem ent is incorrect') and n l .

rule cross_check_layon_load_3
if pass_.no of this_pass is 1 and

[layon_temperature_measurement above control limit and % case 3
load_measurement below control limit] or
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[layon_temperature_measurement below control limit and 
load_m easurement above control limit] then 
confidence of load_measurement becomes correct and 
confidence of layon_temperature_measurement becomes correct and 
write('Load and layon temperature m easurem ents consistent') and n l .

rule cross_check_layon_load_4
if pass_no of this_pass is 1 and

confidence of load_measurement is uncertain and % case  4
confidence of layon_temperature_measurement is uncertain then 
confidence of load_measurement becomes incorrect and 
confidence of layon_temperature_measurement becomes incorrect and 
write('Load and layon temperature m easurem ents incorrect') and n l .

% Use the results from check jneasu rem en t against_expected
%
% Perform a cross check if power & load lie outside the control limits for any pass
% C ase 1 power is uncertain but load OK then power is probably incorrect
% C ase 2 power is OK but load is uncertain then load is probably incorrect
% C ase 3 power and load are both uncertain the check for any consistency
% using the fact that load and power are are linearly dependent
% C ase 4 power an load incorrect

rule cross_check_power_load_1
if confidence of pow erjneasurem ent is uncertain and % case 1

confidence of load_measurement is correct then 
confidence of pow erjneasurem ent becomes incorrect and 
write('Power m easurem ent is incorrect') and n l .

rule cross_check_power_load_2
if confidence of loadjneasurem ent is uncertain and % case 2

confidence of pow erjneasurem ent is correct then 
confidence of loadjneasurem ent becomes incorrect and 
write('Load measurement is incorrect') and n l .

rule cross_checkj)ower_load_3
if [pow erjneasurem ent above control limit and % case  3

load jneasurem ent above control limit] or 
[pow erjneasurem ent above control limit and 
load jneasurem ent above control limit] then 
confidence of loadjneasurem ent becomes correct and 
confidence of pow erjneasurem ent becomes correct and 
write('Load and power measurements consistent') and n l .

rule cross_checkj)Ower_load_4
if confidence of load jneasurem ent is uncertain and % case  4

confidence of pow erjneasurem ent is uncertain then 
confidence of load jneasurem ent becomes incorrect and 
confidence of pow erjneasurem ent becomes incorrect and 
write('Load and power measurem ents incorrect') and n l .

%
% Perform a cross check if profile & load lie outside the control limits for any pass
%

rule cross_check_profile_load
if [exit_profile_measurement above control limit and 

load jneasu rem en t above control limit] or 
[exit_profile_measurement above control limit and 
load jneasu rem en t above control limit] then 
confidence of load jneasurem ent becom es correct and 
confidence of exit_profile_measurement becom es correct and 
write('Load and profile measurem ents consistent') and n l .

group determine_entry_state
set_entry_state_to_pd i, 
set_entry_state_to_exit_state, 
set_entry_state_to_sched u le,
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update_entry_state_to_measured .

% Always se t the entry state to the pdi for the first pass

rule set_entry_state_to_pdi
if State is som e instance of a slab_state and 
confidence of State of entry_state is 0 and 
pass_no of this_pass is 1 then 

value of State of entry_state := value of State of this_slab_pdi and 
confidence of State of entry_state := 1 

score 3 .

% Set the entry state to the exit state

rule set_entry_state_to_exit_state
if State is som e instance of a slab_state and 
confidence of State of entry_state is 0 then 

value of State of entry_state := value of State of exit_state and 
confidence of State of entry_state := 1 

score 1 .

% Unless a good measurem ent is made

rule update_entry_state_to_measured
if State is som e instance of a slab_state and 
confidence of State of entry_state is 0 and 
join2(,entry_,,State,Measurement,'_measurement') and 
confidence of Measurement is 1 then 

value of State of entry_state := value of Measurement and 
confidence of State of entry_state := 1 ; 

score 2 .

% Set the entry state to the exit state

rule set_entry_state_to_schedule
if State is som e instance of a slab_state and 
confidence of State of entry_state is 0 then 

value of State of entry_state := value of State of exit_state and 
confidence of State of entry_state := 1 

score 1 .

group determine_exit_state
set_exit_state_to_predicted, 
update_exit_state_to_m easured.

% Set the exit state to the predicted state

rule set_exit_state_to_predicted
if State is som e instance of a slab_state and 
confidence of State of exit_state is 0 then 
join(State,Prediction,'_prediction') and
value of State of exit_state := value of Prediction of exit_slab_prediction and 
confidence of State of exit_state := 0.5 ; 
score 1 .

% Unless a good m easurem ent is made

rule update_exit_state_to_measured
if State is som e instance of a slab_state and 
join2(’exit_,,State,M easurement,^measurement') and 
confidence of M easurement is 1 and 
confidence of State of exit_state is not equal to 1 then 

value of State of exit_state := value of Measurement and 
confidence of State of exit_state := 1 ; 

score 2 .
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