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Carlos Augusto Gonçalves

Characterisation of Formation Heterogeneity 

Abstract

The characterisation of formation heterogeneities requires a multidisciplinary 
study of data acquired using a large number of numerical geophysical and geological 
measurements and a rigorous evaluation of the precision and accuracy of the data. 
Another essential aspect of the appraisal of any measurement is the quality assessment 
and quality control of the data.

In this work multivariate statistical techniques and an Artificial Neural Network 
(ANN) are used provide lithofacies characterisation and to identify heterogeneities in 
complex formations as well as to evaluate the boundaries they generate. The precision 
and accuracy of the data from different sources are very important and are considered 
here by using sample support in the integration of measurements at different scales. We 
use examples from two holes of the Ocean Drilling Program and two oilfield holes to 
show the differences in characterisation obtained with each technique.

Multivariate Statistical Analysis are initially used to group the petrophysical, 
geophysical and geological parameters extracted from the downhole measurements into 
distinct geologically definable zones. This technique has the advantage of being quasi- 
independent of any pre-determined ideas we have about the whole dataset, and has 
proved very reliable in formation characterisation. Thus the result obtained here is used 
as a basis for comparison with that obtained from the Neural Network.

Artificial Neural Network is used to characterise the different lithology 
sequences present in each well. Neural Networks are relatively new tools and have 
proved very useful in applications where conventional computing methods are 
inadequate. Another application is the possibility of determining quantitative 
petrophysical parameters from well logs and core data in uncored intervals.

The results are presented as a comparison between the two techniques. We 
show that both methods are very encouraging. When comparing the ANN derived 
petrophysical parameter logs with actual core measurements and other petrophysical 
parameters prediction techniques we see a good match. Low quality petrophysical 
measurements can be determined by a mismatch between the responses.
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INTRODUCTION

1.1 - Preface

The characterisation of subsurface formations using downhole logging has 
changed since the improvement of the available technology allows for more detailed 
geological and petrophysical descriptions of the subsurface sequences. The variety of 
data from downhole measurements is so large that a knowledge of a wide range of 
multidisciplinary techniques is necessary not only to give the interpreter help when 
worldng with this amount of data but also to prevent their misuse.

Downhole logging can be defined as the technique of using instruments in a 
borehole to measure continuously the properties (physical and chemical) of 
subsurface geological formations. The first logs were made in 1927, when Henry Doll 
used electrical devices in the borehole environment at Pechelbronn, France (Allaud & 
Martin, 1977). "Electrical coring" was a station-by-station plot of a single formation 
resistivity measurement used for well-to-well correlation and to localise possible 
hydrocarbon bearing zones by measuring formation resistivity in porous sedimentary 
sequences. In the course of attempting to make other formation resistivity 
measurements, "noise" was repeatedly noted and after sometime was attributed to a 
spontaneous potential (Ellis, 1987), which was most notable in front of permeable 
formations. These two first measurements are still performed routinely today and 
have performed a major role in hydrocarbon discoveries.

In the late 1930s, the first non-electrical measurement techniques were 
introduced. The nuclear logging tools, basically in the form of natural gamma-ray 
devices, were immediately considered useful for distinguishing shaly from clean 
formations. The gamma-ray tool, in a similar form to its predecessor, is still routinely 
used for this purpose. The spectral gamma tool, which measures the concentration of 
the radioisotopes present in a formation, was introduced later and is also still in use 
(Schlumberger, 1982).

Subsequent logging developments, driven primarily by the needs of the 
petroleum industry, were related predominantly to the analysis of the porous medium. 
Neutron porosity devices, sonic logging and nuclear magnetic tools were followed by 
those extending measurements away from the borehole (the borehole gravimeter tool 
and the vertical seismic profile). These enhanced the process of formation 
characterisation and the petrophysical description. The introduction of high resolution 
resistivity-based dipmeter tools guided important structural and sedimentological



interpretations. Recently, the Formation MicroScanner (FMS*) has been developed 
from these dipmeter tools and gives an improvement in the analysis of the features 
close to the borehole wall, such as natural and induced fractures and sedimentary 
structures, since its data are presented as an image of the formation.

One of the recent advances is in nuclear spectroscopy, which has resulted in 
the ability to determine in situ abundances of the major rock forming elements 
(Chapman et al., 1987). The GLT* (Geochemical Logging Tool) uses natural, 
activation and prompt neutron capture gamma-ray spectroscopy to measure 
continuously downhole elements such as Si, Al, Ti, Ca, Fe, K, S, H, Cl and (Mg+Na) 
as well as the minor elements Gd, Th and U (Hertzog et al., 1989; Lovell et al., 1993 
and Bristow, 1993).

Geophysical downhole logging has considerable potential in extending 
geological knowledge. The technique has been routinely used in hydrocarbon 
exploration for many years and is the focus of extensive research (Prensky, 1987, 
1990-1993). The enormous potential, however, for a wide range of geological and 
geophysical applications using all the information available has yet to be fully 
developed. Different techniques have been used for formation characterisation 
purposes and many examples can be found in the literature. The indiscriminate use of 
different techniques, however, without a careful study of the data can lead to 
misinterpretations and errors in the process of formation characterisation. This may 
be due to the complexity of the dataset rather than the geological formations. This 
work attempts to show the use of some of these techniques in formation 
characterisation when a broad range of downhole measurements are considered. The 
identification of formation heterogeneities through lithofacies and petrophysical 
characteristic changes is also one of the aspects studied.

1.2 - Aims and objectives of the thesis

The complete characterisation of subsurface formations from the 
interpretation of well logs and core data is perhaps a fundamental requirement when 
geologists and geophysicists are involved in the exploitation of energy resources. It 
generally requires a multidisciplinary study of data acquired using a large number of 
geophysical and geological measurements.

The principal aim of this research has been to assess the usefulness of well log 
measurements in the characterisation of formations as well as the identification of 
heterogeneities. Despite being widely used in hydrocarbon exploration for many 
years, logging has only recently begun to be employed in other fields and its use for
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purely scientific purposes has, to date, been limited mostly to the ODP (Ocean 
Drilling Program) and other continental drilling programs such as Troodos, KTB and 
Cajon Pass (Lovell, pers. eommun.). The broad range of downhole measurements and 
different geological environments investigated (e.g. sedimentary formations, igneous 
and metamorphic rocks) allow for the assessment of both the quality and validity of 
these measurements to determine the most efficient ways of extracting geological 
information from logging data.

An essential aspect of the appraisal of logging measurements, especially when 
using new technology such as the GLT, is the quality assessment and quality control 
of the data. The precision and accuracy of the data from different sources are very 
important and will be considered here by using sample support in the integration of 
measurements at different scales.

The basis of the use of a variety of techniques of value in partitioning logging 
data are presented in this work. From the use of simple conventional cross-plots 
analysis and the application of multivariate statistics to the use of more complex 
techniques such as Neural Network, this work discusses the benefits and shows some 
of the pitfalls of each technique. Data from the Ocean Drilling Program and two 
oilfield holes are used.

This research concentrates firstly on the use of Multivariate Statistical 
Analysis to group the petrophysical, geophysical and geological parameters extracted 
from the downhole measurements into distinct zones. These techniques have the 
advantage of being quasi-independent of any pre-determined ideas about the dataset. 
The diversity in terms of geological environments observed in each dataset used in 
this analysis can also be useful to identify different types of heterogeneities from 
geological sources.

Secondly, Neural Network is used to characterise the different lithofacies 
present in each hole investigated. The application of one of the most widely used 
Neural Networks - the Backpropagation - is shown. Neural Networks are relatively 
new tools in computing and have been shown to be very useful in applications where 
conventional computing methods are inadequate. In this case log or core 
measurements are used to base the training process. The result obtained from the 
Neural Network for lithofacies identification can then be compared with the results 
obtained using the Multivariate Statistical Techniques for the same datasets. The 
computation of different petrophysical parameter logs is another important 
application of Neural Networks. It is performed directly using the downhole 
measurements to predict some physical properties which were not possible to be 
measured thiough coring.

During the period of the study, additional logging acquisition, interpretation 
and processing experience was obtained through participation as one of the Logging



Scientists on ODP Leg 159 on the Côte DTvoire-Ghana margin. The cruise lasted for 
two months (January to March/95) and a paper with the preliminary logging results 
from that work (Gonçalves et al, 1995b) was presented at the I Latin American 
Geophysical Congress (Rio ‘95). A copy of this paper is given as Appendix A 
together with a general description of the Leg. Although that work is not directly 
concerned with the thesis, it was considered a fantastic experience in terms of 
research training.

1.3 - Structure of the thesis

The structure and format of the remainder of this thesis is as follows. In 
Chapter 2 an introduction to the Ocean Drilling Program is given and the well logging 
tool configurations that this program regularly deploys are described; the logging 
tools used are state-of-the-art industry tools, but have some modifications for ODP 
use. Descriptions of the spectroscopy measurements made by the GLT and the images 
obtained by the FMS tool are given, together with a description of the ODP holes and 
sites used as datasets in this work. Data quality and log characteristics are also 
discussed in this chapter.

In chapter 3 a Multivariate Statistical Analysis of the data is presented. 
Multivariate Statistical Techniques that have been applied to logging data in the 
course of this work are described. After a description of the theoretical fundamentals, 
the application of the Principal Component Analysis, Cluster Analysis and 
Discriminant Analysis used here are shown. In Discriminant Analysis, results from 
different models are presented and are also used for comparison with results from 
chapter 4. Finally, a discussion about the results obtained is given together with a 
summary and some conclusions.

Chapter 4 is based on the application of Neural Networks in formation 
characterisation. This technique has been used in other fields of science and some 
work has been done in well log characterisation. A review of what Neural Network is, 
showing the theoretical fundamentals is introduced. Then a description of the 
Backpropagation (BEP) Neural Network, its structure and algorithm and its 
application to different data sets is given. The first application of the BEP Neural 
Network is on the formation characterisation using well log data from ODP and two 
oilfield holes. The results are then compared with the ones obtained in chapter 3 with 
the statistical techniques. The second application is the use of the BEP Neural 
Network to generate petrophysical logs for uncored intervals. Firstly, 
Backpropagation Neural Network is used to predict physical property measurements 
in uncored intervals of ODP holes, using core measurements from the same hole. 
Then, the application is shown for well-to-well prediction where the Neural Network



is trained with data from one hole and the results are applied in a different hole. As in 
the previous chapter, a discussion of the results and some conclusions are shown at 
the end.

Chapter 5 summarises the results obtained from the statistical techniques and 
the Neural Network both for lithofacies identification and petrophysical parameters 
prediction. The strengths and weaknesses of all techniques are shown as well as a 
comparison between the results obtained. Suggestion for further work which can 
improve the characterisation of heterogeneities are given. Finally, this chapter draws 
together some discussions and conclusions about the use of those techniques.

1.4 - Author’s work and work of others

This section aims to highlight the author’s own contribution against the work 
of others used in this study. It also shows the source of the principal algorithms and 
lists the main software packages used.

The Leicester University Borehole Research program library provided all the 
multivariate statistical algorithms used in this study. Some changes in the original 
code of the algorithms were performed in other to implement the classification given 
by the techniques. One of these changes is the computation of the Delta values 
(sections 3.4.2 and 3.4.3) in the Non-Hieraichical Cluster analysis, which produces 
the importance of each log curve during classification.

The Backpropagation Neural Network algorithm was developed by the 
University of Genoa (Italy). The main change performed in the original algorithm is 
related to the input of data which had to be modified to allow its use for petrophysical 
parameter estimation (section 4.6).

The author’s work can be summarised by carrying out all the analysis and 
interpret the results geologically and in terms of the best models. It also consisted of 
the interpretation of the datasets in terms of the data reduction and its implications 
and limitations in the analysis, the evaluation of the performance of each technique 
and how they could help to improve the process of Formation Characterisation. One 
of the important contributions in this study is the change of the code and architecture 
of the Backpropagation Neural Network to adapt it for using in the petrophysical 
parameter estimation.

Some other software packages were used in this study. They are commonly 
used for drawing and typing in scientific work. Word Processor, Kaleidagraph, 
FreeHand, Minicad and EndNote are among them.
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THE OCEAN DRH.LING PROGRAM (ODP)

The Ocean Drilling Program (ODP) is the successor to the DSDP (Deep Sea 
Drilling Project) which was a global investigator of the ocean basins. DSDP began 
operations in the late 1960's using a 120 meters drillship, The Glomar Challenger. 
The DSDP started with an extensive involvement of international scientists who were 
invited to participate on drilling cruises. The international interest continued to grow 
during the 1970's and early 1980's with the formal participation of other nations. The 
remarkable scientific results obtained and the new questions about the ocean basins it 
had generated demanded a continuing capability for drilling in the ocean (Rea et al., 
1993).

In 1983, the Ocean Drilling Program was organised, international participation 
was co-ordinated, a new drillship {The JOIDES Resolution) was contracted and 
outfitted, and the first cruise sailed in early 1985. Among the principal objectives is 
the study of the geological processes that have shaped our planet and modified its 
environment. The scientific problems being addressed range from the geologic history 
and structure of continental margins to the study of the ocean crust including ocean 
history, climate and tectonics. The ODP is the only facility for continuously sampling 
the ocean basins. It has now operated in all oceans except the ice-covered Artie ocean.

The program operates a specially equipped deep-sea drilling ship. The 
JOIDES resolution (Sedeo/BP 471), which contains state-of-the-art laboratories, 
equipment and computers. The ship is 144 meters long and 21 meters wide. The size 
and iee-strengthening of the ship allow drilling in high seas and permits a large group 
of multidisciplinary scientists to interact as part of the scientific party. The derrick 
towers 64 meters above the sea level and has computer-controlled dynamic- 
positioning which holds the ship over a specific location while drilling in water depths 
up to 8200 meters. More than 1000 square meters in the ship are devoted to scientific 
laboratories and equipment allowing a high capacity of on board petrophysical 
measurements (Premoli Silva et al., 1993).

Logging is an important part of the program. The ODP provides a full suite of 
geochemical and geophysical measurements. For each hole investigated, basic oil- 
industry tools are used: nuclear, sonic and electrical. In addition. Geochemical 
Logging Tool (GLT) and a borehole televiewer are available. A 12-channel logging 
tool provides accurate velocity and elastic property measurements as well as sonic 
waveforms for spectral analysis. Finally a vertical seismic profile can record



reflectors from below the total depth of the hole and the Formation MicroScanner 
(FMS) provides images of the borehole wall.

Texas A&M University (TAMU) serves as science operator for ODP. The 
Lamont-Doherty Earth Observatory (LDEO) of Columbia University is responsible 
for the program's logging operation, including processing the data and providing 
assistance to scientists for data analysis. It has a sub-contract with Leicester 
University Borehole Research (University of Leicester - UK) and the Institut 
Mediterranean de Technologie (IMT - France) which provide planning, data 
processing, shipboard logging scientists and other services for the cruises. The ODP 
Data Bank, a repository for geophysical data is also managed by LDEO, whilst 
TAMU holds a database for core data.

The large variety of geological environments investigated and the use of new 
technology in downhole measurements and core recovery provide new challenges for 
the logging interpretation techniques.

2.1 - Well logging in ODP

Well log has been largely used in the oil-industry for many years and has been 
the subject of much research (see Prensky, 1987, 1990-1993). The use of logging 
tools in ODP operations is less well known and therefore is introduced in this chapter. 
The tools described are common to most ODP Legs. A more comprehensive guide on 
the well logging techniques can be found in ODP (1991).

Although log measurements are still dependent on core-based measurements 
in some terms, like calibration, the great advantage of the log measurements is that 
they represent quasi-continuous in situ measurements of the formations. After coring 
is completed, a combination of sensors is lowered downhole to monitor the physical 
and chemical properties of formations adjacent to the borehole wall (ODP, 1991; 
Gillis et al., 1993 ; Premoli Silva et al., 1993).

In ODP, under sea conditions, a heave motion compensator is generally 
employed to minimise the effect of ship heave on tool position in the borehole. The 
interpretations of those continuous in situ measurements can yield a stratigraphie, 
lithologie, structural, geophysical and geochemical characterisation of the hole. Six 
combinations of downhole sensors are available, although four of them are the most 
commonly used (ODP, 1991):
1) The Schlumberger Seismic Stratigraphie combination, which includes the long
spaced digital sonic tool (LSS-SDT), the natural gamma-ray spectrometry tool 
(NGT), the phasor dual induction tool (DITE) and the Lamont-Doherty Earth 
Observatory (LDEO) temperature logging tool (TLT);



2) The Lithoporosity combination, which includes the NGT, the dual porosity 
compensated neutron tool (CNT-G), the high temperature lithodensity tool (HLDT) 
and also the TLT ;
3) The Formation MicroScanner (FMS) tool string, composed of the general purpose 
inclinometry tool (GPIT) and the microelectrical scanning tool (MEST), together with 
the NGT;
4) The Geochemical logging combination consisting of an NGT, an aluminium 
activation clay tool (AACT) and an induced gamma-ray spectrometry tool (GST), to 
which also is attached the TLT;
5) The Schlumberger well seismic tool (WST);
6) The dual lateralog tool (DLT) with the NGT and the TLT.

The commonly used four tool strings are schematically shown in Figure 2.1 
while Table 2.1 also lists the tools in the above combinations, the main logs they 
produce, their approximate vertical resolution and range of depth of investigation. 
Data are typically recorded at vertical intervals of 0.1524 meters, equivalent to 6 
inches.

The NGT is run in all combinations to provide a common basis for depth 
correlation. The DLT is generally used for igneous rocks, where it is better suited than 
DITE because of the high electrical resistivity of these rocks (Schlumberger, 1989a). 
Most downhole data become quickly available on board ship, but a few of them like 
the geochemical log require further processing, which is done onshore after the end of 
each Leg.

Table 2.1

Tool Tool name Method M easurem ent Vertical Depth of Log
acronym resolution investigation acronym

(cm) range (cm)

CALI Caliper 4 bow arms Hole diameter CAU.HD
tXTE Dual Induction tool Induction Deep resistivity 200 120-150 ILD. IDPH

Spherically focused M edium  resistivity 150 6(F80 ILM. IMPH
current Shallow resistivity 75 XMO SFLU

DLT Dual lateralog Focused current Deep resistivity Shallow 60 >200 LLD
resistivity 60 < 100 LLS

LSS-SDT Long-spaced sonic digital 3 travels intervals Slowness and 61 5-75 LTTI-4
tool Full sonic P-wave DTLNUTLF

NGT N atural gam m a-ray tool Natural gamma-ray Total gamma-ray 45 30-50 SGR. CGR
U,1h.K 45

HLDT High-temperature Gamma-ray scattering Density 45 20-70 RHOB.DRHO
lithodensity tool Photoelectric effect PEFLPEFS

GST Gamma-ray spectrometry Induced gamma-ray Ca.SifefU.CI 45 20-70 CCA.CSl.
tool CFE.CSUL.

CHYCCHL
AACr A luminium activation Induced gamma-ray Al 45 20-70 UWAL.ALUM

clay tool
CNT-G Com pensated neutron tool Neutrons back- Porosity 45 20-70 NPHl.TNPH.

scattering ENPH
FMS Formation M icroScanner Image o f  the borehole Resistivity Oj 25
MESr M icroelectrical Scanning Caliper Hole diameter CI.C2

GHT G eneral purpose M agnetometer M agnetic field 4 FX.FYfZfN
inclinometry tool Accelerometer Acceleration 4 AXAY.AZ.

Inclinometry 4 F1NC.AZ1M.
DEVlflAZ.
RBUAZl

Table 2.1 - Downbole tools and principal logs table (modified from Gillis et al., 1993).



I
h ! II

I s < I!

.1 1

Ë
i ■M

. =  âg .'d II
Ï
• J I i

< J HE
b .

I

11

11 il
:1#

1
2

f!V.C

I
f l =

< :

s ;

11
I e i-5

1'5c/; " ÎÎ

fI
îii

Figure 2.1 - Sketch o f the four logging tool combinations used in ODP operations. 
The Seism ic Stratigraphie and the Lithoporosity combinations are 
usually com bined in the standard Quad Combo (after ODP, 1991).



2.1.1 - The ODP tool configuration

2.1.1.1 - The Seismic Stratigraphie combination

The Seismic Stratigraphie combination is designed to measure compressional 
wave velocity (with shear and tube wave velocity obtained from the full sonic 
waveform), deep, intermediate and shallow resistivities and the natural radioactivity 
of the formation in a single logging pass (Rea et al., 1993). It also includes the 
Lamont-Doherty temperature tool at the bottom of the string.

The DITE provides three measurements of electrical resistivity, all having 
different radial depths of investigation. The induction devices ("deep" and "medium" 
resistivities) send high frequency alternating current through transmitter coils, 
creating a magnetic field that induces a secondary (Foucault) current in the formation 
(Ellis, 1987). This produces a new signal, proportional to the conductivity of the 
formation. This signal is then converted to resistivity values. A third device, the 
spherically focused log (SEE), measures the current necessary to maintain a constant 
voltage potential across a fixed interval. The vertical resolutions (as shown in Table 
2.1) are 2 meters and 1.5 meters for the deep and medium resistivities respectively 
and approximately 0.75 meters for the SEE. These data are automatically corrected 
for irregularities in borehole diameter. Porosity, fluid salinity, clay and hydrocarbon 
content and temperature are important factors influencing electrical resistivity. Some 
other factors are also important as the concentration of hydrous and metallic minerals 
and the geometry of the porous space (Bateman, 1985).

The natural gamma spectroscopy tool (NGT) measures the natural gamma 
radiation of the formation (Eock and Hoyer, 1971). The gamma-ray spectrum is 
divided into five discrete energy windows and counts are recorded for each window. 
Most natural gamma-ray are emitted by U and Th isotopes and their decay series. 
Near the borehole wall, natural gamma-ray emissions from the formation are 
measured by a Nal scintillation detector mounted inside the sonde. K, Th and U are 
generally most abundant in clay minerals; thus this tool is commonly used as an 
estimator of the clay content of the formation. Silicic volcaniclastic material and K- 
feldspar-rich rocks can also have high concentration of these elements. Hurst and 
Milodowsky (1994) also show that some Th contents are related to the presence of 
detrital heavy minerals, like monazite and zircon, in sandstone. Therefore, the 
interpretation must be tied to the core Ethologies.

The ESS-SDT (long-spaced digital sonic tool) records time required for sound 
to travel along the borehole wall. It uses two acoustic transmitters and two receivers 
to measure the time interval for sound waves to travel vertically through the formation 
near the borehole wall. Eirst arrivals for the individual source-receiver paths are used
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to calculate sonic velocities, thus four velocities values are measured at each depth 
(Schlumberger, 1989a). The vertical resolution of the tool is approximately 61 cm. 
Only Vp (compressional velocity) is determined aboard the ship, but the full sonic 
waveform is generally recorded for future processing to determine V $ (shear velocity) 
and V( (tube wave velocity). Vp is controlled primarily by density and lithification. 

Increase in density and increase in lithification cause velocity to increase.

2.1.1.2 - The Lithoporosity combination

The Lithoporosity combination includes the lithodensity (HLDT), the 
compensated neutron porosity (CNT-G) and the NGT (Figure 2.1). The HLDT uses a 
gamma-ray source (137ce of 0.66 MeV) to induce a back-scattered flux of gamma- 
rays that is measured at fixed distances from the source. The source is mounted in the 
tool body and an eccentralising spring-loaded caliper arm forces it and a pair of 
detectors against the borehole wall (Ellis, 1987). The detectors measure the flux of the 
gamma-rays to determine the formation density (RHOB) and the photoelectric effect 
(PEE). Attenuation of these induced gamma-rays is mainly caused by Comptom 
scattering and, therefore, controlled by the density of electrons in the formation. 
Formation density is extrapolated by assuming that the atomic weight of most rock- 
forming elements is approximately twice the atomic number. Photoelectric absorption 
occurs in the energy window below 150 KeV and depends on the energy of the 
incident gamma-ray, the atomic cross-section and the nature of the atom. The PEE 
measurement is almost independent of porosity and, therefore, can be used directly as 
a matrix lithology indicator because it is function of the atomic number. Excessive 
roughness on the borehole wall allows drilling fluids between the tool and the 
formation and, consequently, leads to underestimated density measurements (ODP, 
1991). The depth of investigation also depends on the density of the rock; the higher 
the density, the lower the penetration. The vertical resolution of the tool (Table 2.1) is 
about 0.45 meters.

The CNT-G uses an americium-beryIlium source mounted in the sound which 
emits high energy neutrons (4 MeV) into the formation. These neutrons are scattered 
by collision with other nuclei (Schlumberger, 1989a). Collisions with heavy atoms do 
not exchange much energy, but collisions with hydrogen, which has a similar mass, 
significantly reduce the energy levels of the neutrons. When the neutrons reach a low 
energy level (less than 0.025 MeV) they are captured and absorbed by atomic nuclei 
such as hydrogen, chlorine, silicon and boron (ODP, 1991). The tool uses the 
seattering cross-seetion as the quantity that describes the rate at which neutrons are 
slowed. Because the scattering cross-sections of the hydrogen is about 100 times 
larger than for any other common element in the crust, most energy dissipation is
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caused by collision with water molecules. As the thermal neutron flux is affected by 
hydrogen which is both chemically bound as well as in free water, the device also 
performs a second measurement using changes in intermediate-energy (epithermal) 
neutron flux to potentially measure the free water contribution only (Schlumberger, 
1982 and Ellis, 1987). The vertical resolution of the tool is about 45 cm (Table 2.1).

2.1.1.3 - The Formation MicroScanner

The Formation MicroScanner (FMS) tool produces high resolution 
microresistivity images of the borehole wall that can be used for detailed 
sedimentological or structural interpretations (Ekstron et al., 1986; Pezai'd and Luthi, 
1988) and for determining fracture and breakout orientation (Luthi and Souhaité, 
1990 and Schlumberger, 1989b).

The tool (Figure 2.1) consists of sixteen electrodes (called "buttons") on each 
of four orthogonal pads that are pressed against the borehole wall. The electrodes are 
spaced about 2.5 mm apart and are arranged in two diagonally offset rows of eight 
electrodes each. It was originally introduced by Schlumberger in 1986 but a modified 
sensor was developed for ODP purposes in 1989 because of the restrictions in using it 
at the narrower-gauge drill pipe (Pezard et ah, 1990a and 1990b). The focused current 
that flows from the buttons is recorded as a series of curves that reflect the 
microresistivity variations of the formation (Schlumberger, 1989b). It uses a general 
purpose inclinometry tool (GPIT) which spatially orients the resistivity measurements 
from accelerometry measurements and from the declination and inclination of Earth's 
magnetic field vector. On board or shore-based processing converts the measurements 
into complete, spatially-oriented images of the borehole wall. The FMS string also 
contains the NGT so that the FMS data may be correlated with the other logs.

The measurement spacing is about 0.5 cm, but coverage is restricted to about 
22% of the borehole wall for each pass of the tool, assuming a 24.76 cm in hole 
diameter.

Applications of the FMS images include detailed correlations of coring and 
logging depths, orientation of cores, mapping of faults, fractures and formation 
structures as well as determining strikes and dips of hedding. The FMS can also be 
used to measure stress in the borehole through breakout delineation. An important 
limitation of the tool is the restriction of hole diameter to less than 38.10 cm (15 in). 
Thus no useful information can be obtained from washed-out hole sections.

A detailed study of the FMS tool, including fundamental physics of the 
measurements, the instrumentation and the processing of the images can be found in 
Schlumberger (1989b).
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2.1.1.4 - The Geochemical logging combination

The geochemical tool string deployed in ODP operations is a combination of 
the Geochemical logging tool (GLT) and the TLT as shown in Figure 2.1. The GLT 
includes basically the NGT, a gamma-ray spectrometry tool (GST) and an aluminium 
activation clay tool (AACT) (Hertzog et al., 1989; Lovell and Anderson, 1989).

The first part of the GLT is the NGT which was described in section 2.1.1.1. 
The AACT forms the second part of the geochemical logging tool and measures the 
concentration of A1 in the formation by delayed neutron activation (Scott and Smith, 
1973). When the natural isotope 27ai absorbs a thermal neutron derived from the 2.5 
MeV 252cf source of the AACT, it forces an unstable 28^1 atom having a half-life 
of about 2 minutes. When this unstable nucleus decays (to 28si), a gamma-ray having 
a characteristic energy (1779 KeV) is emitted and subsequently detected by the 
AACT. Because the AACT simultaneously counts the natural gamma-radiation of the 
formation, the A1 spectrum is determined by subtracting the count rates from the 
NGT, which is positioned above the AACT in the tool string.

The third part of the GLT is the GST which consists of a pulsed 14 MeV 
neutron generator and a Nal scintillation detector. Incident neutrons lose energy 
through inelastic scattering interactions and, on reaching thermal energy levels, are 
captured by elemental nuclei. Characteristic gamma-rays are emitted upon neutron 
capture; these gamma and their relative energy levels are recorded by the tool. The 
256-channel energy spectrum is deconvolved to determine relative abundances of Ca, 
Si, Fe, Cl, H and S on board the ship (Bristow, 1993). The post cruise processing of 
the GST data provide the additional elemental yields of Gd and Ti. The above yields 
(except Cl and H) are them eombined with elements determined from the NGT and 
the AACT to derive dry weight percentages of the elements Si, Ca, Fe, S, Ti, K and 
A1 in addition to Gd, Th and U (ppm) (Rea et al., 1993). An estimate of (Mg + Na) 
can be made by using the photoeleetric factor from the HLDT (Schweitzer et ah, 
1988; Hertzog et al., 1989; Lovell et al., 1993).

The post oxide percentages are simply obtained by multiplying the percentage 
of eaeh element by its associated oxide factor. Discretion is needed in determining 
which oxide or carbonate values are used, depending on the minerals present and the 
geological environment being logged. However, as a new technique, it has some 
potential sourees of error. These sources can be split in two main categories, errors 
associated with data acquisition and errors associated with post acquisition 
processing. The possible data acquisition errors are numerous but principally concern 
the quality of the gamma-ray signal which may be degraded by poor counting rates, 
poor detection resolution and poor signal to noise ratio caused by environmental 
effects. The post acquisition processing errors are principally attributed to errors in
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the spectral inversion of the raw data and errors in the oxide closure model (ODP,
1991). The latter includes errors in the A1 and K data, which will, in turn, induce 
errors into the other derived elements and errors in the oxide closure model caused by 
the presence of unmeasured elements in the formation and incorrect oxide factor 
assumptions. Bristow (1993) demonstrates a new method for estimating the statistical 
uncertainty associated with the GST-derived elements.

Considering the AACT source is 2.35 MeV and the GST is 14 MeV and that 
the distance that a fast neutron travels through a material is governed by the neutrons 
initial energy and nuclear properties of that material, it is likely that the distance 
which a neutron slows down to induee a capture reaction and therefore the distance a 
neutron flux penetrates into a formation, will vary (Lofts, 1993). Felling (1992) shows 
some simulation studies for a sandstone with 40% of porosity. For 14 MeV source 
neutrons slow to a capture reaction over a distance of 13.8 cm, while a 2.35 MeV 
source neutrons slow in only 8.1 cm. He also shows examples for a sandstone and a 
limestone for two different neutron sources and the effect porosity has on both. 
Porosity and source strength clearly affect the distance travelled by neutrons because 
of the area and volume of investigation. The AACT does not necessarily have the 
same depth of investigation as the GST.

2.2 - This section describes the ODP and other data used in this work

2.2.1 - ODP Hole 807C - Leg 130: Ontong Java Plateau

2.2.1.1 - Introduction

The Ontong Java Plateau in the western equatorial Pacific is a broad mid- 
oceanic submarine plateau striking Northwest and paralleling the Solomon Islands to 
the south. Its name is taken from an exceptionally large atoll north of these islands. 
The plateau occupies an extensive area (1000 x 1500 km) and rises to unusually 
shallow depths in its central region (around 1700 meters). Kroenke (1972) shows that 
the physiography along the margin is complex, with atolls or seamounts located near 
the western and south-western edges.

Previous drilling expeditions established the general stratigraphy of the 
sediment cover (Winterer, Riedel et ah, 1971; Andrews and Packham et al., 1975) 
which consists of a pelagic carbonate deposits of Mesozoic and Cenozoic age, well 
stratified, more than 1000 meters thick, and overlying a volcanic sequence. The 
sediments cover a large portion of the plateau.
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ODP Hole 807C is located on the northern rim of the Ontong Java Plateau 
(latitude 3°36.4' N, longitude 156°37.5' E) in 2805 meters of water depth (Figure 2.2). 
It was the third hole drilled in this location (site 807) - following the 807A and 807B 
holes - and reached 1528.4 meters below sea floor (mbsf) with 33.8% of total core 
recovery (Kroenke et ah, 1991). It was also successfully logged to the total depth 
drilled and a complete set of geophysical measurements, including Formation 
MicroScanner (FMS) images were obtained. The sedimentary sequence identified for 
the total depth in this hole consists of three main units, as follows;
Unit I (0 - 968.0 mbsf) - composed mainly of Pleistocene to upper/middle Eocene 
nanofossil ooze and chalk with foraminiferae.
Unit II (968.0 - 1351.4 mbsf) - composed of upper/middle Eocene to upper 
Campanian limestone, chert and nanofossil chalk with foraminiferae.
Unit III (1351.4 - 1379.7 mbsf) - composed of lower Cenomanian to upper Albian- 
Aptian claystone, siltstone with radiolarians and limestone.
Unit IV (1379.7 - 1528.4 mbsf) comprises igneous basement and is composed of 
Albian-Aptian tholeiitic basalts. The units will be described in more detail in the next 
section.

2.2.1.2 - Lithostratigraphy sequence

For the purpose of this study the interval between 1270 - 1400 mbsf was 
selected in the ODP Hole 807C. The reason is that it comprises in 130 meters interval 
three of the four main lithofacies observed in the whole section of the hole. Other 
reason is that the core recovery in this interval is about 65% which allows a good 
geological description of the sequences. A complete logging survey was also obtained 
in this interval and will be described later on.

The sedimentary sequence observed in this interval can be seen in Figure 2.3. 
It starts at the top with a white and grey limestone sequence (corresponding to the 
bottom part of unit II) with less than 5% of chert present in the recovered sediments. 
Some clay-rich clast bearing intervals are observed below 1290 mbsf. Chert is present 
as nodules or in layers up to 7 cm thick (Kroenke et ah, 1991).

The next unit consists of upper Albian to lower Cenomanian claystone and 
siltstone with varying amounts of radiolarians and Aptian to Albian limestone. The 
unit can be divided in two subunits (Kroenke et al., 1991) on the basis of claystone 
and limestone abundances. Subunit IIIA (1351.4 - 1369.7 mbsf) includes claystone, 
siltstone with radiolarians and sandy siltstone. Siltstone beds are rare at the top of 
subunit IIIA and become more abundant with depth. The downcore increase in 
siltstone frequency produces an overall upward fining sequence in subunit IIIA. The 
contacts between the siltstone and claystone intervals are dominantly gradational, but
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Figure 2.3 - Lithostratigraphic sequence in ODP Hole 807C with core recovery
(after Kroenke et a!., 1991 ).



sharp contacts and graded bedding are also present. Wavy contacts are common, 
producing wavy, lenticular and flaser bedding. The subunit IIIB is composed of 
bioturbated limestone. It is recovered from 1369.7 - 1375.7 mbsf, but a distinct 
decrease in drilling rates from 1379.7 mbsf suggests that the latter depth is the contact 
between limestone and basalt. The limestone is generally grey to light grey with some 
verticals and fine anostomosing fractures. Microfaults are also abundant.

Volcanic basement starts at 1379.7 mbsf. The basement rocks are 
predominantly tholeiitic basalts (Albian-Aptian ? in age) consisting of both pillow and 
thin massive flows. Remarkably, in view of their age, most of rocks are altered only 
slightly and alteration rarely exceeds a moderate level. The results of a X-Ray 
Fluorescence (XRF) spectrometer for three samples between 1379.7 and 1400 mbsf 
can be seen in Table 2.2.

Table 2.2

Core Section 7 4 R - 1 7 5 R -2 7 6 R -1
Interval (cm) 124 -127 6 1 -6 4 69 - 71

Subunit IV IV IV

M ajor elements (wt %):
SO 2 48.63 48.17 49.06
TK)2 1.66 1.39 1.61
AlgO) 14.73 14.07 14.33

4 ^ 2 0 3
I2J4 13.51 13.33

MnO 0.18 0.20 0.18
MgO 6.03 7.26 6.42
CX) 1143 11.77 11.94
N«20 2.43 132 2.43
K2 O 0.41 0.33 0.12

P2 O5 0.14 0.14 0.13
Total 99.91 99.99 99.78
LOI 0.66 0.62 0.20

*’CIPW  norms:
Quartz

Orthoclase 2.42 107 0.71
20.73 19.63 20.36

Anorthite 27.99 26.93 27.90
Diopside 27.08 23.16 23.21

Hypersthene 8.63 10.27 13.76
Olivine 3.63 8.43 2.60

Magnetite 116 133 130
limenite 3.13 3.02 3.06
Apatite 0.32 0.32 0.30

* All Fe expressed as Fc2 0 3 , F c2 0 3 /FeO  set at 0.15 and Mg num ber=(atom ic)100 M g/M g + Fe

Table 2.2 - XRF analysis o f 3 samples o f basalt o f ODP Hole 807C (after Berger et al., 1993).

2.2.1.3 - Downhole logging operations

Upon completion of coring at ODP Hole 807C a complete suit of three 
Schlumberger logging tools were run for the whole interval. These consisted of the 
Seismic Stratigraphie combination including NGT/LSS/DITE/TLT; the Lithoporosity 
combination modified with the inclusion of the AACT instead of CNT-G and also 
NGT and HLDT; and the Formation MicroScanner including NGT/FMS/GPIT.

18



The first two runs (the Seismic Stratigraphie combination and the modified 
Lithoporosity combination) were completed successfully from the base to the top 
within the interval between 1270 - 1400 mbsf. The third run, the FMS string, which 
was used with the objective to obtain detailed information about the structure of the 
sequence, was also logged successfully in the interval. A complete summary of the 
actual logging operations on ODP Hole 807C is shown in Table 2.3.

Table 2.3

Local day Local Time Cumulative hours Depth (mhrf) Comments

3/21/90 I9J0 0 Stall rig up
3/21/90 20^4 1.4 RIH with geophysical tool string
3G1/90 21:39 23 At mud line
3/21/90 22:13 2.7 330.4 Start down log: 

heave compensator on
3/21/90 23:36 4.1 1492.9 Stop downlog
3/21/90 23:39 4.1 1328.3 At bottom  o f hole: 0.6 m o f fill
3/21/90 2339 4.1 1328.3 start up log ; 

NGT/LSS/DITE/TLT 
up at 900 ft/hr

3/22/90 338 83 348.7 Tool in casing
3/22/90 3:23 9.9 Tool suing on deck
3/22/90 6:19 10.8 RIH with NGT/AACT/HLDT
3/22/90 7:33 12.4 1323.8 0  n bottom with 

NGT/AACT/HLDT
Start up log - 600 ft/hr 
heave compensator on

3/22AI0 8:11 12.7 1467.9 caliper jam m ed by debris in 
lower section. Stop log

3/22/90 8:16 12.8 1327.0 On bottom again 
Start main up log - 600 ft/hr

3/22/90 1403 18.9 348.7 Tool suing in casing
3/22/90 16:44 21.2 RIH with NGT/TMS/GPIT/TLT
3/22A0 I8KI6 22.6 0 Passing mud line; 

pause for TLT tie point
302/90 19.14 23.7 1309.1 Set down on bridge 

Start main up log - 90Ô A/hr 
heave compensator on

3/22/90 21:23 23.9 947.3 Stop main up log
hole above too wide for FMS cal 

going down for repeat
3/22/90 2130 26.3 1307.8 Start repeat up log from same 

bridge - 900 ft/hr
3/22/90 23:11 27.7 1093.3 Stop nepeot up log
3/23/90 1:20 29.8 NGT/FMSAjPIT/TLT at well

3/23/90 2K)9 30.7 Rigged down from logging runs 
on ODP Hole 807C

Table 2.3 - Summary of logging operations at ODP Hole 807C (Kroenke et al., 1991).

2.2.1.4 - Log quality

The quality of the log curves can be said to be reasonably good based on the 
caliper log (Figure 2.4). Tool sticking and borehole washouts are common problems 
in ODP which typically compromise log quality but these were not apparent in the 
interval between 1270 - 1400 mbsf in the ODP Hole 807C.

The FMS images appear damaged at intervals where the caliper shows values 
over 38.10 cm, which is the maximum extent of its spring loaded arms. Sections in 
the logs affected by washouts may be recognised by intervals in which the FMS tool 
string twisted rapidly in the hole.
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Depth correlation is very good between all of the logging runs and the 
lithostratigraphy boundaries obtained from the cores. The claystone/siltstone and 
limestone boundary at 1351 mbsf appears clearly in the logs as a reduction in density, 
resistivity and transit time measurements. Local maxima in the profiles are interpreted 
as limestone stringers within predominantly silt and claystone units.

The boundary of the sediments with basaltic basement is very well defined at 
1379.7 mbsf with an increase in density and resistivity and a decrease in transit time.

2.2.1.5 - Log characteristics

Considering the lithological variation observed between 1270 - 1400 mbsf in 
the ODP Hole 807C, the logging data provide a great deal of information about not 
only the major changes in lithology but also the more subtle physical and chemical 
characteristics and cyclicity present in the formations. The high sampling resolution 
of logging measurements (every 15 cm) allow for the delineation of heterogeneities in 
the formations which would be more difficult to detect using discrete sampling 
techniques.

As shown before, the lithologie units observed in the interval between 1270 - 
1400 mbsf can be easily identified through the logging data. Decrease in resistivity, 
bulk density and aluminium concentration and an increase in gamma-ray, transit time, 
K and Th contents and photoelectric effect show the transition between the limestone 
and the siltstone/claystone units at 1351 mbsf. At 1379.7 mbsf a decrease in gamma- 
ray, photoelectric effect and Th and K contents and an increase in resistivity and 
transit time values show the transition between the sediments and the basement. Any 
subtle variation in log values within the interval can be explained through the 
presence of heterogeneities in the formations and their confirmation is attempted 
through the use of the techniques implemented in chapters 3 and 4.

2.2.2 - ODP Hole 878A - ODP Leg 144: Northwest Pacific Atolls and Guyots

2.2.2.1 - Introduction

The ocean floor of the western Pacific Ocean is covered by numerous 
scattered seamounts and atolls that cluster together to form large complexes or are 
roughly organised along a preferential direction to form a chain. Most of the 
seamounts are guyots that have a flat top and are considered old, drowned atolls 
(Premoli Silva et ah, 1993).

Several authors explain such alignments, like the Hawaiian Chain, as having 
originated by the progression of a hotspot. Another alignment is illustrated by the

21



' Tfirv
i f  ' % TP

3 0 °N Alofî/) Wod-E/1 / i ) S  f \  W /\., =“
.— , Guvot  ~ £ Æ j  W L. .1 -

3  %  V ' l A # )  '- & * . i

io %

S niflu») y—  ^ '. -viWi Ws’- \ /  S LOOK ( j u y o l  (----   ( V  \

A newelak - ^ 
'- .T ' Aloll

-- (76 Ma)
( Lo-£n Guyol

872

# ' %

5°N

'% Mii-Lep Guyot 
(IlOMa)'

Hole 462A
•  (110 Ma)

LoMworkwot

. (87 Ma)

Limalok %>

Site 871

150°E 180°E

Figure 2.5 - Bathymetry around the Marshall Islands. Contour interval is 1000 m. The 
locations of ODP sites 871-878 are shown (after Premoli Silva et al.. 1993).



Mid-Pacific Mountains, which exhibit a roughly east-west orientation. Other guyots 
or cluster of guyots may not show any apparent preferred orientation or they may be 
isolated features. This is the case of MIT (Massachusetts Institute of Technology) 
Guyot which is the objective of the study by ODP Hole 878A.

The MIT Guyot is an isolated feature in the 18°-28° N guyot band. This guyot 
is interpreted to be a drowned atoll; on the basis of dredge hauls and geophysical data, 
the seismic facies were interpreted as a perimeter reef encircling a thick sequence of 
lagoonal sediments. At the close of the Albian, many of these Barremian-Aptian 
carbonate platforms and reefs, including the MIT Guyot, as well the younger ones 
constructed in the Albian, may have been uplifted above sea level (Winterer et ah,
1992).

Drilling plans for MIT Guyot included one lagoonal site, 878. ODP Hole 
878A is located at 27°19.143’ N, 151°53.028’ E in a water depth of 1323 meters, on 
the north-eastern part of MIT Guyot near its southern edge (Figure 2.5). In fact three 
holes were drilled in site 878. ODP Hole 878A was a multiple re-entry hole and holes 
878B and 878C were single-core holes, used for the purpose of recovering the 
surficial hard ground and pelagic sediments overlying the carbonate platform. During 
coring at ODP Hole 878A a thin sequence of pelagic sediments, two carbonate 
platform sequences divided by a volcanic limestone breccia and a portion of the 
igneous edifice were recovered.

2.2.2.2 - Lithostratigraphic sequence

The complete stratigraphie sequence for ODP Hole 878A can be observed in 
Table 2.4. Due to the excellent core recovery (+ 95%) and the well conditions, the 
interval between 515 - 600 mbsf was selected to be used in this work. As can be seen 
from Table 2.4, it comprises the subunit I VC which consists of a breccia 
predominantly siliciclastic at the top and calcareous at the bottom of the interval 
(Premoli Silva et al., 1993).

The overall variation in the polymictic breccia within the subunit I VC is as 
follows: volcanic clasts are dominant in the upper half and decrease in abundance 
towards the base of the subunit. Some alternation occurs between volcanic-rich and 
poor horizons throughout the subunit, but carbonate is dominant in the matrix and 
clasts below 575 mbsf. Premoli Silva et al. (1993) shows that the analysis of bulk 
carbonate content demonstrates the increase of carbonate in the matrix from the top to 
the bottom of the unit.
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Table 2.4

Unit/Subunit Depth (mbsf) Age Description

Subunit lA 0.0-0.95 Pliocene-Pleistocene Pelilic sediment with manganese 
nodules

Subunit IB 0.95 - 3.20 Miocene Pelilic sediment with manganese 
nodules and chalk fragments

Subunit IIA 3.20-67.26 Albian W ackestone and peloid packstone 
with recristallized fragments of 

gastropods

Subunit IIB 67.20 - 86.20 Albian W ackestone and Packstone

Subunit l i e 86.20 - 202.20 Albian/later Aptian W ackeston and Packstone with 
gastropods

Subunit I ID 202.20 - 236.07 Albian/later Aptian M udstone. Wackestone 
with gastropods

Subunit IIIA 236.07 - 312.65 Albian/later Aptian Fine to medium grained grainstone 
with intervals of rudstone

Subunit IIIB 312.65 - 389.80 Albian/later Aptian Fine to m edium grainstone with 
Orhitolina

Subunit m e 389.80 - 399.74 later Aptian Well iithified foram inifer wackestone 
and mudstone

Subunit IVA 399.74-406.10 later Aptian Bluish gray clay

Subunit IVB 406.10 - 514.74 later Aptian Vesicular breccia with volcanic and 
limestone clasts in a predominantly 

limestone matrix

Subunit IVe 514.74-604.30 Aptian Vesicular breccia with alternating 
carbonate-rich and volcanic-rich 

intervals

Subunit VA 604.03 - 703.00 early Aptian Peloid foram inifer wackestone. 
packstone and grainstone

Subunit VB 703.00 - 722.54 early Aptian Grainstone and rudstone

Subunit VI 722J4 - 907.80 Basaltic flows

Table 2.4 - Lithostratigraphic sequence for ODP Hole 878A (after Premoli Silva et
al., 1993).

The volcanic component throughout the interval is dominated by basalt clasts. 
The vesicles in these clasts are most spherical and rarely tubular (Premoli Silva et al., 
1993). Some of the clasts are completely altered to clay. Limestone clasts are also 
present. Several different lithologies are stained, including wackestone, peloid 
packstone and grainstone. Sometimes breccia matrix fills some voids both in basalt 
and limestone clasts.

Another characteristic feature of this interval is the steep inclined bedding 
angle (28° to 62°). The bedding is recognisable as an alter nation of coarser and finer 
grained intervals on a 2-10 cm scale. Some cross-bedding is apparent at the bottom. 
Rapid change in the dip orientation within a continuous cylinder and the presence of 
curved, convoluted and truncated beds strongly suggest that the steep bedding is the 
result of slumping.
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2.2.2.3 - Downhole logging operation

The logging operations in ODP Hole 87 8A were seriously affected by hole 
collapse, obstructions and long intervals with washouts. ODP Hole 878A was 
primarily cored to 910 mbsf of total depth but only 264.94 meters were recovered, 
leading to an average core recovery of 25.5%. The core recovery was only good 
within the polymictic breccia (unit I VC), reaching nearly 100% in this interval. It 
allows for a good sedimentary and structural description of the whole interval and was 
one of the reasons of the choice of this section for the study.

Upon completion of the drilling, a logging program including the Seismic 
Stratigraphie combination, the Geochemical tool string, the Lithoporosity 
combination and the Formation MicroScanner (FMS), was undertaken. The first log 
to be deployed was the FMS because it had the highest priority for that portion of the 
hole (Premoli Silva et ah, 1993). Fven though affected by borehole conditions, a good 
log was obtained for the sedimentary section, especially for the interval between 515 - 
600 mbsf. The next logging attempt was with the Seismic Stratigraphie combination. 
A good log was recorded all the way to the drill pipe (located at 17 mbsf). The quality 
of the sonic log, as did happen with the FMS, was degraded by the overgauge hole (> 
40 cm) for much of the interval. The ensuing logs - the Geochemical and 
Lithoporosity combinations - were stopped by a bridge that had formed at the top of 
the basalt. However, like the FMS, they produced generally good logs throughout the 
entire sediment section. The summary of the well log data obtained in ODP Hole 
878A can be seen in Table 2.5.

2.2.2.4 - Log quality

The quality of the downhole measurements in ODP Hole 878A is reasonably 
good. Only few intervals appear- with large borehole diameter, which affected some of 
the log curves. In a general sense the logs are valuable for interpreting the 
sedimentary succession and for identifying possible heterogeneities within the 
polymictic breccia. The Geochemical, FMS and Lithoporosity combinations were 
calibrated in terms of depth correlation to the Seismic Stratigraphie run by using the 
natural gamma-ray tool (NGT) on each string.

2.2.2.5 - Log characteristics

The polymictic breccia sequence (unit I VC) is characterised by high resistivity 
(6 Om increasing downhole to 12 Om), increasing density towards the bottom of the 
sequence (from 2.3 g/cc to 2.5 g/cc), stable natural gamma-ray radiation (20 - 25 API)
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from abundant uranium (1 .5-2  ppm) and thorium (2 ppm) and high abundance of Fe 
and A! relative to Ca. This interval also displays progressive downhole increase in Ca 
content and sonic velocity (Figure 2.6). The Fe/Ca ratio within the breccia interval 
provides a measure of the relative abundance of volcaniclastic versus carbonate 
components (Figure 2.7).

The steeply dipping crossbedding and possible slump deposits at the bottom of 
the interval can be checked through the FMS imagery.

Table 2.5

L o g  T y p e D e p th (m b s f )

Natural gamma-ray 17 740
17 740

Neutron porosity (AmBe neutron source) 17 740
Lithodensity (Ce gamma-ray source) 17 740
Resistivity 17 740

A luminium clay tool (Ca neutron source) 740

Gamma-ray spectrometry 0 - 740

These logs were recorded in pipe from 0 - 1 7  mbsf

Table 2.5 - Log summary for ODP Hole 878A (Premoli Silva et al., 1993).

2.2.3 - Oilfield Holes A and B, S.E. Brazil

Oilfield Holes A and B were drilled in an oilfield on SE Brazil. They were 
logged with gamma-ray (GRAY), porosity (NPHI), density (RHOB), sonic (DT), and 
resistivity (ILD and ILM) tools. Intervals with similar characteristics were selected in 
order to allow a reasonable characterisation between both holes.

The stratigraphie sequence for both holes consists of a shale/claystone 
sequence in which sandstone reservoirs are included. In Hole A, the sand reservoir is 
a consistent 25 metres thick layer with high resistivity (= lOOOm) and low density 
(Figure 2.8). In Hole B there is an interbedded sequence of sandstone and shale with 
the sand layers ranging from 2 to 5 metres thick. Resistivity reaches a maximum of 
lOOm with density values not less than 2.1 g/cc (Figure 2.9). Porosity logs also show 
differences between the two holes. In Hole A there is a constant value of 30% for all 
the interval selected for study while Hole B shows more variation in the values, with 
the sand layers presenting values up to 37%. Gamma-ray variations are typical for 
shale and sand sequences with values of 80 API and 120 API in shale given probably 
by the amount of clay in this sequence.

The idea is to use this dataset to provide hole-to-hole lithofacies 
characterisation using different statistical techniques and then compare the results 
with other novice techniques such as Neural Networks. Generation of petrophysical 
parameters will also be considered in this work. Core measurements in Hole A give 
support not only for a better lithofacies characterisation but also to provide physical
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property measurements which will be used as a training basis in the prediction of 
petrophysical parameters in Hole B using Neural Network.
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MULTIVARIATE STATISTICAL ANALYSIS OF WELL LOG DATA

3.1 - Introduction

Various techniques applied to lithofacies discrimination using well log data 
have been described in the literature (Davis, 1986). Most of these techniques are 
based on statistical analysis of trends within the dataset. Signal theory, pattern 
recognition and other methods of numerical analysis have been used with relative 
success.

The scope of a geological investigation may include not only the correct 
identification of lithofacies, but can also involve other aspects such as diagenetic 
changes, variation in composition and petrophysical characteristics (e.g. differences in 
porosity, pore geometry and cementation) (Doveton, 1994). Useful interpretations are 
still performed from visual examinations of log curves and cross-plots with available 
core integration support. The numerical and multidimensional format of log data, 
however, requires quantitative analysis of the data set where facies discrimination 
takes subtle and complex forms.

Simultaneous analysis of the log curves can show characters hidden in their 
mutual variation. Therefore, methods which can handle the multidimensional 
structure of the data are needed. In this work, a selection of multivariate statistical 
techniques are applied to well log data as aids in the interpretation of geological 
patterns.

3.2 - Multivariate Statistical Techniques

Multivariate statistical techniques have been used in data analysis to identify 
or classify a sample, or a group of samples. They include such recognised techniques 
as Cluster Analysis and Discriminant Analysis with the related techniques of Principal 
Component Analysis (PCA) and Factor analysis commonly applied to data at a pre
processing stage. It is an effective approach to data interpretation in geology and 
geophysics. For this reason, and also because of the confusion that has arisen over the 
use of some of these techniques, it is worth describing some of the concepts and 
terminology involved at this early stage.

Multivariate statistical techniques are also known as pattern recognition 
techniques. A pattern consists of a collection of measurements characterising a 
sample which are considered as an entity for the purpose of subsequent analysis 
(Sheppard, 1986). The classification imposed by the pattern recognition allocates
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entities to initially undefined classes so that the individuals in a class are in some 
sense close to one another. This method is internally based and does not depend on a 
priori knowledge about the relations between these entities or samples. The samples 
are free to enter any class such that they emerge in the process of classification. The 
result is that the entities should be placed into approximately homogeneous groups. 
These entities may be individual log curves, a number of log curves making up a 
sample, or classes of samples. Therefore the classes of one classification system may 
be the entities of another.

Two aspects of the pattern recognition problem are known. The first one is the 
development of a decision rule whose function is to divide multidimensional 
measurement space into different decision regions each corresponding to one class. 
The second one is the implementation of that rule (Young and Calvert, 1974). These 
two aspects may, for instance in the case of Cluster Analysis, occur simultaneously. 
This enables the technique to work without a priori knowledge, although clearly the 
existence of a training set allows a user to evaluate the efficiency of the algorithm. 
The alternative is that it occurs sequentially and therefore can be based on a priori 
knowledge as with Discriminant Analysis.

Sheppard (1986) shows that the successful application of a selected technique 
is dependent upon careful formulation of the decision rule by the user and on 
understanding of the assumptions and limitations involved. Without this a successful 
interpretation of the results may not be made. Careful consideration must be taken in 
the preparation of the dataset and in the selection and implementation of the methods 
to be used. The techniques have their origins in many fields of study with a significant 
amount of literature in diverse areas such as: life science (Simpson, 1961), medical 
science - including psychiatry (Try on and Bay ley, 1970) and earth science (Le Maitre, 
1982 and Davis, 1986). In the case of the oil industry, the term "electrofacies" has 
been used to describe lithofacies identified on the basis of logging data (Serra and 
Abbott, 1982; Delfiner et ah, 1987; Bucheb and Evans, 1994 and Doveton, 1994). In 
this work, the author suggests that the term lithofacies is used in replacement of 
electrofacies because of the use of core support during the analysis.

One of the aims of this work is to find ways of identifying such lithofacies in 
different geological environments using well log data. With an increasing number of 
log curves (e.g. density, resistivity, porosity, chemistry, etc.) the amount of 
information relating to the formation increases, and a more realistic picture of its 
nature can be produced. The aim of the application of the multivariate statistical 
techniques considered here is to search for structure and pattern within these data, a 
knowledge which may help to better understand the data set and simplify their 
interpretation. Another aim is the verification of when and where the different 
patterns observed can be interpreted as heterogeneities within the whole dataset.
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Of the techniques available. Principal Component Analysis, Cluster Analysis 
and Discriminant Analysis were found to be particularly useful in the characterisation 
of log data. These techniques are briefly described in the following sections and their 
application to well log data of the GDP are also shown.

3.3 - Principal Component Analysis

Principal Component Analysis (PCA) sets out to clarify the structure of a 
dataset and can, in turn, allow reduction of the system's dimensionality (in this case 
the number of log curves) and, hence, simplify the interpretation. It is the most 
commonly used technique for this purpose and has many additional useful properties. 
The technique is well established and widely used in many fields (Marriot, 1974 and 
Gnanadesikan, 1977) including both petrological (Le Maitre, 1982) and logging data 
studies (Doveton, 1986, 1994). In this work only a brief overview of the technique is 
provided. For a full discussion of the mathematics involved, the reader must refer to a 
specialist text such as Johnson and Wiehern (1982) or Davis (1986).

In logging analysis a dataset of N samples and M measured log curves 
(variables) can be plotted as points in a space with mutually orthogonal axes forming 
a M-dimensional cloud of N data points (Figure 3.1). Principal Component Analysis 
sets out to describe this cloud using a new set of M uncorrelated variables 
(eigenvectors or principal components) which correspond to the best fitting axes of 
the cloud. The new axes provide a different framework of reference which is aligned 
with the natural axes of the cloud, rather than the original log measurements axes. 
Eaeh of these eigenvectors (the new axes) represents a linear combination of the 
original variable, with each original variable contributing with some weight (loading) 
to each eigenvector. The orientation of the principal components are computed from 
either the variance-covariance or correlation matrix of the dataset. Because most logs 
are recorded in radically different units the latter operation is preferable. Given the 
disparate nature of the logging measurements used in this work, the analyses have all 
been performed using the correlation matrix with Z-standardised scores.

Doveton (1994) shows that the raw cloud is modelled by a single ellipsoid. 
The ellipsoid orientation and the directions of axis elongation reflect the relationship 
between the logs. The axis are the eigenveetors which have magnitudes given by their 
eigenvalues. For instance, consider a hypothetical cross-plot of Log a and Log b 
(Figure 3.2). Since the two logs are recorded in radically different units, it is 
appropriate to reseale them in a standardised form, with zero mean and unit standard 
deviation). This is achieved by relocating the cloud centroid to a new origin. The 
standardisation converts the variance-covariance matrix to a matrix of correlation 
coefficients. The correlation matrix is described geometrically by an ellipse. The
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eigenvectors of the correlation matrix locate the major and minor axis of the ellipse or 
the principal components. The eigenvalues associated with each eigenvectors are the 
length of each axis. Each eigenvector, extracted from the correlation matrix, not only 
accounts for the maximum possible amount of residual variance (which has the 
largest possible eigenvalue) but also preserves the orthogonal relationship between 
the vectors. Therefore, the first principal component accounts for the maximum 
variability and the remaining principal components pick up the rest of the variability 
in ordered allocation.

In the case of a multiple log curve dataset, with all principal components, all 
the variation present in the initial data set is fully described. In practice, however, 
many measurements show a significant decrease in the degree of intercorrelation that 
it is possible to select a number p  of eigenvectors (where p < M) which describe a 
substantial portion of the overall variation and use these to represent the dataset 
(Davis, 1986). This property highlights the amount of information redundancy within 
the log curves and reflects the dimensionality of the information eontent as a 
replacement for the original reference framework. This can he achieved by choosing a 
cut-off eigenvalue below which the eigenvectors are not considered to be important. 
In this work this value is usually 1.0 hut can be different depending on the importance 
and how the remaining eigenvectors account for the total variability. The loadings of 
the p  eigenvectors can be used to produce a principal component loading matrix for 
these p principal components. By considering the loadings on a given component, 
inferences about the geological processes whieh that component represents may be 
made. Using this loading matrix, it is also possible to transform the original data set 
so that it refers to the principal components only and, thus, produce a set of principal 
component scores (Felling, 1992).

The computation of the principal components and their scores is simply a 
geometrical operation which does not create any new data - it merely provides a new 
set of variables which are transformations of the original ones and which may help 
with its interpretation. In this work, the prime aim of the Principal Component 
Analysis is to evaluate the overall variability and reduce the number of log curves 
(dimensionality) of the datasets to improve interpretation. The principal component 
scores can also he used as input data for further processing (such as Cluster and 
Discriminant Analysis). This operation ensures that the variables are orthogonalised 
prior to analysis which, since it removes any correlation between variables, should 
allow more efficient statistical processing. The results of the Principal Component 
Analysis carried out on ODP well log datasets are presented below.
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3.3.1 - Application of Principal Component Analysis to well log data

3.3.1.1 - ODP Hole 807C 

The logging dataset used for this analysis consists of 10 log curves as follows:
gamma-ray (GRAY); potassium, thorium and uranium concentrations (respectively 
POT A, THO and URAN); three different resistivity measurements (IDPH, IMPH and 
SFLU); aluminium content (ALUM); density (RHOB) and photoelectric effect (PEF). 
The data contain 853 samples and were acquired between 1270 - 1400 mbsf in ODP 
Hole 807C. Transit time log from the LSS-SDT tool was also available, however, its 
quality was considered to be insufficient for inclusion in the analysis because of the 
acquisition of bad data during logging operations.

The physical/chemical properties obtained in ODP Hole 807C show 
considerable variation, reflecting the different lithofacies present in the interval (Table 
3.1). Gamma-ray and Th, K and U concentrations show their highest values for the 
interval between 1351 - 1379 mbsf due to the presence of clay intervals in the 
siltstone/claystone sequence (subunit III A). The other log curves also show variations 
in their measurements throughout the interval according to the different lithofacies 
present (Figure 2.4). The low density values are associated with the 
siltstone/claystone interval. The presence of a very low density peak is observed in 
the volcanic sequence and probably represents a fractured and/or altered interval in 
this unit, which also presents the maximum density values (3.0 g/cc). The PEF values 
show almost the same variation as the density ones, and again, the maximum values 
(5.0 bams/electron) are associated with the volcanic sequence. The aluminium content 
increases down hole from 0.1% in the carbonate sequence to 6.0% in the volcanic 
sequence.

Table 3.1

Log curves GRAY POTA THO GRAN IDPH ALUM RHOB PEF IMPH SFLU

N. of Samples 853 853 853 853 853 853 853 853 853 853
Standard deviation 10.72 0.31 1.26 0.31 293.76 1.26 0.30 1.06 200.11 395.61
Minimum 2.58 -0.05 -0.31 -0.29 0.64 0.09 1.23 1.36 0.536 0.6559
Maximum 70.82 1.87 7.73 1.95 1950.0 6.27 3.10 6.11 1950.0 9688.9
Range 68.23 1.92 8.04 2.24 1949.4 6.17 1.87 4.74 1949.4 9688.2

Table 3.1 - Summary statistics for the dataset used in ODP Hole 807C.
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General relationships in the dataset are summarised in the linear correlation 
matrix in Table 3.2. As expected a strong positive correlation (r = 0.95), exists 
between the GRAY, POTA and THO as well as with URAN (r = 0.719) and also 
between RHOB and PEF (r = 0.823). The latter correlation reflects the high PEF 
values of denser materials (Ellis, 1987), while the three first correlations reflect the 
high gamma-ray values in the claystone/siltstone sequence due to the high clay 
content. Strong negative correlations are observed between both RHOB and PEF and 
GRAY, POTA, THO and URAN. They reflect the low gamma-ray radiation present 
in the carbonate and volcanic sequences. The highest correlations for ALUM are with 
RHOB and all resistivity measurements (IDPH, IMPH and SFLU), again reflecting 
the high ALUM concentration in the volcanic sequence. Most log curves do not show 
strong correlations with each other. This is the case for IDPH, IMPH and SFLU. 
Despite the highest resistivity values observed in the volcanic sequence, the 
correlations between these log curves with RHOB and PEF are not very strong, rarely 
exceeding r = 0.20.

Table 3.2

GRAY POTA THO URAN IDPH IMPH SFLU ALUM RHOB PEF

GRAY 1.000 0.954 0.945 0.718 -0.050 -0.037 -0.040 0.246 -0.522 -0.602
POTA - 1.000 0.867 0.574 -0.017 -0 .014 -0.037 0.337 -0.413 -0.512
THO - - 1.000 0.544 -0.083 -0.065 -0.041 0.148 -0.553 -0.595
URAN - - - 1.000 -0.026 -0.009 -0.024 0.131 -0.436 -0.511
IDPH - - - - 1.000 0.239 0.316 0.4084 0.341 0.168
IMPH - - - - - 1.000 0.092 0.247 0.221 0.094
SFLU - - - - - - 1.000 0.301 0.220 0.126
ALUM - - - - - - 1.000 0.405 0.118
RHOB - - - - - - - 1.000 0.822
PEF - - - - - 1.000

Table 3.2 - Correlation matrix for the dataset used in ODP Hole 807C.

A Principal Component Analysis was carried out on the data using the 
correlation matrix, which is equivalent to performing the analysis on standardised log 
curves with zero mean and unit standard deviation. The resultant eigenvectors and 
their corresponding eigenvalues as well as the percentage contributions for each of the 
eigenvectors are given in Table 3.3. The first two eigenvectors, which show 
eigenvalues greater than 1.0, correspond to more than 64% of the total system 
variability. A principal component loading matrix was calculated using these two 
eigenvectors (Table 3.4).
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Table 3.3

eigenvalues %  eigenvalues cum . % eigenvalues

e-vecto r 1 4.2809 42.80 42.80
e-vector 2 2.1677 21.67 64.48
e-vector 3 0.9138 9.13 73.62
e-vector 4 0.8534 8.53 82.15
e-vector 5 0.6362 6.36 88.52
e-vecto r 6 0.5209 5.20 93.72
e-vecto r 7 0.4054 4.05 97.78
e-vector 8 0.1164 1.16 98.94
e-vector 9 0.1052 1.05 1 00.00

e-vector 1 0 0 .0 0 0 0 0 .0 0 1 00 .00

Table 3.3 - Eigenvalues and their percentage contributions for each eigenvector in
ODP Hole 807C.

Table 3.4

P rin c ip a l com ponent I II

GRAY 0.9517 0.2380
PO TA 0.8733 0.3104
T H O 0.9079 0.1504
URAN 0.7393 0.1458
ID PH -0.1792 0.6829
IM P H -0.1194 0.4536
SFLU -0.1329 0.5310
A LU M 0.0687 0.8443
R H OB -0.7387 0.5002
PEF -0.7919 0.2315

Table 3.4 - Principal component loading matrix.

The loadings on each of the two components are graphically displayed in 
Figure 3.3. The principal component I, which accounts for 42.8% of the total system 
variability, shows strong positive correlations with GRAY, THO, URAN and POTA 
(r = 0.90), accompanied by strong negative correlation (r = 0.75) with PEF and 
RHOB. This suggests that this component represents the relation between the high 
amount of gamma-ray radiation emitted by the rocks and their low densities, 
characteristic of the claystone/siltstone interval between 1351 - 1369 mbsf.

The principal component II is dominated by a strong positive correlation with 
ALUM and less strong correlations, with IDPH, IMPH, SFLU and RHOB. All other 
log curves have low positive correlation. This component accounts for 21.67% of the 
total system variability and contains, essentially, information concerning the amount
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of Al present in the rocks. As show n previously, this is characteristic of the volcanic 
sequence, which also shows high density and high resistivity values.

The principal component scores along the interval are seen in Figure 3.4. The 
correspondence between the principal components I and II with the different 
lithofacies is observed. The principal component scores I show strong positive values 
between 1351 - 1379 mbsf related to the increase in clay content in that section. 
Negative values in the upper carbonate sequence and even more negative values 
within the volcanic sequence are related to low gamma-ray values in these two units. 
A negative peak is observed in scores I between 1375-1377 mbsf and it is possibly the 
evidence of the presence of a eaihonate layer 2.5 meters thick in this interval. The 
scores of the principal component I hardly distinguish between the carbonate 
sequence at the top and the volcanic sequence at the bottom.

In the principal component scores II, strong positive values related to A1 
content are observed in the volcanic sequence at the bottom of the interval. Some 
other positive values are observed at the top of the siltstone/claystone sequence and 
can be explained by the presence of some A1 in clays. Apart from the high positive 
values related to the increase in clay content, the difference between the carbonate 
and the siltstone/claystone sequence is hardly distinguishable from principal 
components II.

Figure 3.4 shows that principal component scores I and II nearly track each 
other in the upper part of the interval. This pattern is also observed on a cross-plot of 
the scores (Figure 3.5). Negative values for both principal component scores define 
the carbonate sequence as a very tight cloud. As the variation of both principal 
component scores within the siltstone/claystone sequence as well as within the 
volcanic sequence increases, a more spread cloud is obtained for each of these 
sequences. High principal component scores I and low principal component scores II 
define the siltstone/claystone sequence while high values in principal component 
scores II and low values in principal component scores I define the volcanic 
sequence.

Summarising, the results of the Principal Component Analysis for ODP Hole 
807C suggest that the main variation present in the interval studied is that related to 
the gamma-ray content (high clay content). The presence of high concentrations of 
aluminium is reflected in the second principal component which also corresponds to 
high resistivity values. The principal component scores crossplot is very helpful in the 
determination of lithofacies heterogeneities. An example is the two dashed boxes in 
Figure 3.5 indicating the presence of clay intervals in the siltstone/claystone sequence. 
Another example are those high peaks in principal component scores II within the 
volcanic sequence which are probably related to high concentrations of Al.
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Another interesting aspect to be observed is the contribution of each log curve 
used in this analysis (Table 3.5). Most of the log curves have a high contribution 
(>50%) with GRAY, THO and POTA showing high contributions as they are closely 
related with principal component I. ALUM, RHOB and PEF also appear as high 
contributors with 71.76%, 79.60% and 68.07% respectively.

Table 3.5

Log curve %  accounted

GRAY 96.24
PO TA 85.90
T H O 84.68

URAN 56.79
IDPH 49.85
IM P H 22.00
SFLU 29.97

ALUM 71.76
RH OB 79.60

PEF 68.07

Table 3.5 - Percentage contributions for each log curve in Principal Component 
Analysis of ODP Hole 807C.

3.3.1.2- ODP Hole 878A

The logging dataset of ODP Hole 878A consists of 13 log curves as follows: 
porosity (NPHI), density (RHOB), two resistivity measurements (IDPH and SFLU), 
transit time (DT), thorium, uranium and potassium concentrations (THO, URAN and 
POTA respectively) and CaCOg, AlgOg, SiOg.FeO and TiOg concentrations (CAC03, 
AL203, SI02, FEO and TI02 respectively) from the Geochemical tool. As 
mentioned in chapter II the interval selected for the analysis contains a polymitic 
breccia (unit I VC - Table 2.4) between 515 and 600 mbsf.

The summary of the physical and chemical log measurements obtained in this 
hole are shown in Table 3.6. The large variation in most of the log measurements 
suggests changes in lithofacies. This is confirmed in Figure 2.6. Porosity (NPHI) and 
density (RHOB) show sharp changes in their values from 563 mbsf down the hole. 
The variation is different for each curve. When porosity decrease, density increase, 
reflecting changes not only in the matrix composition but also within the structure of 
the breccia itself. Other remarkable change observed in the dataset is in CaCOg, SiOj, 
AlgOg and FeO concentration. While SiO^ decrease in concentration from 563 mbsf 
downhole, CaCO, increase, denoting the main change in the breccia matrix
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composition which changes from a Si based matrix to a Ca based matrix. Changes in 
the other log curves (AL203 and FEO) reflect mainly the variation in presence of 
volcanic clasts in the matrix.

The relationship observed in the dataset can be summarised by the correlation 
matrix (Table 3.7). Strong positive correlation can be observed between RHOB, 
IDPH, SFLU and CAC03 and also between TI02, FEO, AL203, DT, SI02 and 
NPHI. Negative strong correlation is seen between CAC03 and SI02; and also 
between DT and the resistivity measurements (IDPH and SFLU). The first strong 
positive correlations reflect basically the high density, high resistivity and high 
CaCO] concentration of the Ca based matrix at the bottom of the interval and the 
other ones reflect mostly the high concentration of TiO], FeO, AI2 O3 and high transit 
time of the Si supported matrix at the top of the interval.

Using the correlation matrix, a Principal Component Analysis was carried out 
on the dataset. The resultant eigenvectors are shown in Table 3.8 together with their 
percentage contribution which represent the total variability of the system. The first 
three eigenvectors show eigenvalues greater than 1.0 and contain 86.5% of the total 
system variability. The first principal component (eigenvector 1) accounts for more 
than 65% with the other two, principal components II and III, accounting for 12.6% 
and 8.5% respectively.

Table 3.8

eigenvalues %  eigenvalues cum. % eigenvalues

e-vector 1 8.4924 65.32 65.32
e-vector 2 1.6477 12.67 78.00
e-vector 3 1.1061 8.50 86.50
e-vector 4 0.5926 4.55 91.06
e-vector 5 0.3004 231 93.37
e-vector 6 0.2409 1.85 95.23
e-vector 7 0.1983 1.52 96.75
e-vector 8 0.1250 0.96 97.71
e-vector 9 0.1053 0.80 98.52
e-vector 10 0.0890 0.68 99.21
e-vector 11 0.0774 0.59 99.80
e-vector 12 0.0249 0.19 99.99
e-vector 13 0.0000 0.01 100.0000

Table 3.8 - Eigenvalues and their percentage contribution for each eigenvector in
ODP Hole 878A.

Using these three first eigenvectors a principal component loading matrix was 
constructed (Table 3.9). The loading on each of the three first component are shown 
in Figure 3.6. The principal component I shows strong positive correlation with TI02, 
FEO, AL203, DT, THO, SI02 and NPHI, with negative correlations being observed
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with CAC03, SFLU, IDPH and RHOB. This suggests that the principal component I 
responds mainly to changes in matrix composition. The Si based matrix has high 
porosity and high Ti, Al and Fe content due to the presence of volcanic clasts in the 
matrix. It also shows low resistivity and density values because of the presence of 
some clay in the matrix (Premoli Silva et al., 1993). The Ca based matrix shows high 
values in resistivity and density, and low values in porosity, transit time and Al 
content, contrasting with the upper part of the interval.

Table 3.9

Log curve Component 1 Component II Component III

NPHI 0.8955 0.0177 0.0946
RHOB -0.9186 -0.0489 -0.1078
IDPH -0.8745 -0.0244 -0.4107
SFLU -0.8753 -0.0196 -0.4292
CAC03 4)9256 -0.0902 0.1957
SI02 0.7990 0.1613 -0.2117
THO 0.7108 -0.5473 -0.3053
URAN -0.0959 0.9332 0.1986
POTA -0.3497 -0.6477 0.5879
DT 0.9097 0.0984 0.2883
AL203 0.9293 -0.0554 -0.0354
FEO 0.8954 -0.0404 -0.1849
TI02 0.8312 -0.0741 -0.2293

Table 3.9 - Principal component loading matrix for ODP Hole 878A.

The principal component II shows strong positive correlation with URAN and 
negative correlation with POTA and THO. It represents 12.6% of the total variability 
present in the dataset and probably is related to clay concentrations within the Si 
based matrix or in fractures along the whole interval. The uranium would have 
concentrated in these fractures through secondary transport processes. However, these 
assumptions were not confirmed by core description which does not show such 
fractures.

The third principal component is mainly dominated by a high positive 
correlation with POTA and negative correlation with both resistivity measurements. It 
accounts for 8.5% of the system variability and possibly describes a secondary 
vesicular porosity present in volcanic clasts. Core description describes these vugs as 
commonly altered and filled with clay and CaCOg which explains the low but positive 
correlation of CAC03 and NPHI with this principal component.

The component scores along the whole interval are shown in Figure 3.7. The 
correspondence of the principal component I with the matrix composition is clearly 
observed by changes in the scores values. Positive scores in the upper section indicate '
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the Si based matrix while the negative scores below 563 mbsf represent the Ca based 
matrix. An interbedded interval can also be observed between 563-577 mbsf where 
two layers of Si based matrix appear within the Ca based matrix section. The principal 
component scores II and III do not show clear correlation with depth. Only principal 
component III show some positive peaks within the Si based matrix section possibly 
related with the intervals where vesicular porosity would be present.

The cross plot (Figure 3.8) of the principal component scores I and II shows a 
separation between the two different matrix compositions in principal component I. 
There is no clear separation of the dataset in principal component II direction. Any 
other relations using principal component scores II and III are very difficult to be 
defined.

The results of the Principal Component Analysis carried out on ODP Hole 
878A suggest that the principal variation observed in the interval is the different 
composition in the polymictic breccia matrix (given by principal component I). In 
fact, this is the only variation that can be clearly interpreted. Other variations are very 
difficult to be distinguished and the interpretation given above must be checked by the 
use of other techniques. The variation showed by the other two principal components 
also need the support of core description. The use of other statistical techniques can 
also help to better understand what these components represent.
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3.4 - Cluster Analysis

Cluster Analysis is another teehnique in multivariate statistics that can he 
defined by the methods which should sort the individual data units or samples into 
groups such that the degree of "natural association" is high among memhers of the 
same group, whilst the clusters themselves are relatively distinct from each other. 
Obviously the technique selected and the problem under study have a strong influence 
on the results. Its great advantage over most other techniques used in pattern 
recognition is that it does not need a priori information.

An important aspect in Cluster Analysis is that if the data itself forms well 
structured clusters that are compact and well separated from each other almost any 
clustering procedure would provide meaningful and unique cluster. On the other hand, 
if the distributions of the data resembles a uniform distribution, the resultant clusters 
may be different for different cluster techniques (Sheppard, 1986).

It is recognised (Andenhurg, 1973) that in Cluster Analysis two problems are 
often overlooked. The first is that the data itself may contain no cluster at all. This 
happens because of the absence of discriminating log curves and also because of a 
uniform distribution of the points in the measurement space. The second possibility is 
that the data may contain only one cluster, due mostly to the absence of 
discriminating log curves associated with a lack of meaningful mutual associatioh 
among data units.

Theoretically, Cluster Analysis can be used to develop generalisations. 
Although a set of results should be applied to the samples on which they were based, 
they may, with appropriate modification, be extended to describe the properties of 
other samples. It is this approach that is taken for some of the well log data 
characterisation helow.

Two different clustering approaches used in this work are the Hierarchical 
Cluster Analysis (also called the R-mode) and the Non-Hierarchical Cluster Analysis 
(Q-mode). In the first one the relationships between the resulting category structures 
are described in Figure 3.9a. In the Non-Hierarchical Cluster Analysis the data units 
are divided into groups producing a simple partitioning of the entire data set (Figure 
3.9b). In describing which approach may he most suitable for a particular problem it 
is necessary to he aware of the overall purpose of the study for which the results are 
required. In comparing the relationships between different sets of data. Hierarchical 
techniques may well he the most useful. If however, the object of the exercise is only 
to separate the various groups within a dataset it may be preferable to use Non- 
Hierarchical techniques (Davis, 1986).

53



Rb Mg Ca Sr FLi Na He Ne Ar Kr

(a)

(b)

He

NeAr

Kr

Na
Rb

Ca

Figure 3.9 - Partitioning o f  a hypothetical data set in (a) Hierarchical and 
(b) Non-Hierarchical Cluster Analysis



3.4.1 - Hierarchical Cluster Analysis

The Hierarchical methods operate on a similarity matrix which may be based 
on a variety of measurements. The most commonly used are distance, e.g. the distance 
between the nearest element in each cluster or the distance between the centroids of 
each cluster, or even measurements based on correlation. If standardised data are 
used, which is the case in this work, measurements of distance and correlation 
coefficients may he directly transformed from one to another. Similarly, distance may 
be looked on as a measure of dissimilarity.

Davis (1986) shows that in general distance-based measures tend to cluster 
more successfully using cophenetic correlation than correlation-based measures. They 
also appear to be less susceptible to changes in clustering method. Although the two 
measurements tend to give similar results, the distance-based methods are not 
constrained between +/- 1 . 0  and therefore may be expected to produce better results if 
a few of the data units are very dissimilar from one to another. The results are shown 
as a dendogram or a tree diagram (Figure 3.10). Sheppard (1986) explains in detail 
the alternative approaches in the construction of the dendogram which will be used in 
this work.

A serious problem with the Hierarchical procedures is that their theoretical 
basis is still incomplete. The statistical properties of the various techniques are poorly 
understood and there are few tests of significance. Therefore there is not the same 
need as with the other multivariate statistical techniques for a multivariate normal 
distribution. Multivariate normality does, however, become important if correlations 
are taken as the measure of similarity.

3.4.2 - Iterative Non-Hierarchical Cluster Analysis (INGA)

Iterative Non-Hierarchical Cluster Analysis (INCA) is a classification 
technique employed here to characterise the log responses and help define any 
stratigraphie zonation that might be identified from the data sets. INC A is a simple 
method, available for a number of years under one name or another, for instance, K- 
means clustering and relocation analysis (Le Maitre, 1982; Johnson and Wiehern, 
1982; Sheppard, 1986).

The objective of the technique is to classify (or split) a multivariate data set 
into groups of samples (log responses) which have similar characteristics. The 
teehnique partitions the entire data set of n samples into K  discrete groups on the basis 
of optimisation of a stated mathematical criterion (Doveton, 1986). The number of 
clusters formed, K, may either have been previously specified or determined during 
the clustering operation. The technique is not used for the classification of log curves.
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The basic concept of this method is to select some initial partition of the samples and 
then modify the cluster membership in order to obtain an improved partition. This 
initial partition may either be one based upon groups or a set of seed points (or 
centroids) around which such groups may be formed. The cluster are separated by 
precise linear boundaries (Figure 3.11). These are the locus of points equidistant from 
two given points in a straight line perpendicular to the line joining the two points. In a 
higher dimensional space the boundaries become segments of a hyperplane (Doveton, 
1994).

In this work the non-parametric technique is applied. It uses the nearest 
(Euclidean) centroid as the basis of classification rule. One of the major problems is 
the selection of the number of groups. This selection seems to be obvious in the two 
dimensional example of Figure 3.11, however it is not so simple in a real 
multidimensional situation, where there is no prior knowledge of the data. The 
approach used to solve this problem in this work involves running the analysis for a 
range of groups, and then choosing the optimum number of groups. This is the sum 
of the squared Euclidean distance from each data point to the centroid to which it has 
been allocated. Averaging during acquisition and processing means that distinct 
groups cannot occur in logging data. In addition, these data frequently represent 
gradational changes between lithofacies. The number of groups chosen is, therefore, 
not optimal in the true sense but represent convenient divisions within the data whose 
boundaries are gradational. On the other hand, subtle changes within the same 
lithofacies can lead to the classification of heterogeneities.

In addition to group membership for each log response, the analysis yields the 
centroid composition for each group, the position of each group relative to each other 
group and the "delta values" (6), which rate the importance of each log curve in terms 
of group discrimination. The centroid composition represents the mean of each group 
and a geological interpretation based on this can be used to make inferences about the 
nature of all points allocated to that group. Delta values provide a measure of the 
separating power of individual log curve for the various combinations of groups. 
They allow the importance of each log curve in group discrimination to be assessed. 
Two parameters are used to achieve this; the separation between the standardised 
group centroids and the standard deviations of the standardised data contained within 
each group. These were combined in such a way to give a value, 8 , which provide an 
indication of the relative importance of the individual log curves. A major difficulty is 
in deciding the relative weighting that should be given to the two parameters. 
Sheppard (1986) suggested that:

& = (ABS(C„-CA)/S,\
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where ô; is the value of 6  for the i* log curve, Cy is the standardised value of the i* 
log curve at the centroid of the j"' group, is the standardised value of i* log curve 
at the centroid of the k* group, and is the pooled standard deviation of the j* and 
k* groups for the standardised values of that log curve, where;

Sp' = (SPj + SPJ/(nj+n,-2),

SP,̂  is the sums of squares and cross-products of the x* group and n,. is the number of 
samples in the x* group. The resulting values of 8  then describe the separating power 
of individual log curves for the various combinations of groups. Figure 3.11a shows 
some hypothetical examples for the case of one variable only: a) large separation 
between group centroids and a small pooled standard deviation, resulting in a very 
high value of 8 ; b) small separation between group centroids and a small pooled 
standard deviation, leading to a moderate to low 8 ; and large separation between 
groups and large pooled standard deviation (low 8 ).

From the values of 8  obtained for each log curve in each combination of 
groups, three parameters are estimated. The first parameter is an overall least to most 
important log curve classification. This is achieved by calculating the mean of the 8  

values for each log curve and then sorting then into ascending order. The second 
parameter is the identification of the worst to best log curves of each group 
combination. Therefore, it allows the analyst to assess which of the log curves has 
more weight in the lithofacies discrimination. The 8  values of each log curve are 
comparable as they have all been standardised against standard deviation. The last 
parameter refers to the overall ease of distinguishing various group combinations. The 
mean of all 8  values for each combination are calculated and then sorted into 
ascending order. The use of 8  in the assessment of the importance of individual log 
curves as well as in distinguishing group combinations are well described in the 
analysis of each hole.

Initial seed points were, in all cases studied, chosen by the method of Ball and 
Hall (1967) where actual samples are selected as seeds. All analyses reported in this 
work were run until convergence, however, this is not always necessary. INC A 
analyses are performed on both original and transformed (principal component 
scores) log curves, and are presented in the later sections of this chapter. Statistically, 
analysis of principal component scores should be superior since the transform 
removes any correlation between log curves. This proved particularly pertinent to the 
datasets used in this work. A complete description of the theory and the mathematics 
of the technique and also the algorithms used is given by Sheppard (1986) and Davis 
(1986).
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3.4.3 - Application of Cluster Analysis to well log data

3.4.3.1 -ODP Hole 807C

Cluster Analysis was carried out in ODP Hole 807C using the same log curves 
used for Principal Component Analysis, except for IMPH and SFLU. As discussed 
before (Table 3.5), these two log curves showed very low contribution in that 
analysis, therefore, they were removed from the original dataset for the Hierarchical 
and Non-Hierarchical Cluster Analysis.

Hierarchical Cluster Analysis

The algorithm used in clustering can be viewed in three stages. The first stage 
is the input of the log data or a similarity matrix that could be computed from the 
Principal Component Analysis. The second stage is the computation of a 
similarity/dissimilarity matrix if one was not input directly in stage one. Therefore, 
the second stage can be optional. The third stage is the clustering of the 
similarity/dissimilarity matrix using one of a selection of models presented below 
(Harvey, P.K., pers. communication).

The similarity/dissimilarity matrix support: a) a product moment correlation 
matrix (similarity), b) a Euclidean distance - not normalised matrix (dissimilarity) or
c) a Euclidean distance - Z-standardised (dissimilarity). The clustering algorithms can 
be computed from the following different models: a) Nearest neighbours, which uses 
a single linkage and minimum method; b) Further neighbours, which uses complete 
linkage and maximum method; c) Simple averages, the weighted pair-group method;
d) Median, the weighted pair group centroid; e) Group averages, the unweighted pair- 
group method; f) centroid, the weighted pair-group centroid; and g) Wards method, 
which uses the minimum group variance. Most research using Hierarchical Cluster 
Analysis normally experience a variety of similarity measures and clustering 
techniques. Then a combination that appears to yield the most satisfactory results with 
their data is used. This, in turn, introduces an element of subjectivity into a process 
which is supposed to be objective. Because the log data are normalised before 
processing, the Hierarchical Clustering is conducted using the Euclidean distance - Z- 
standardised similarity/dissimilarity matrix. After running the algorithm for some of 
the linkage models listed above, a model with the highest cophenetic correlation is 
selected for a full analysis.

The results from the Hierarchical Cluster Analysis for ODP Hole 807C are 
shown in Table 3.10. It presents the Euclidean distance matrix, the results for some of 
the linkage methods and the detailed result for the method which presents the best
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Table 3.10

Hierarchical Cluster Analysis (RCL).... 807C.RCL 

Euclidean distance matrix.... Z-standardised

GRAY POTA THO URAN IDPH ALUM RHOB PEF

GRAY 0.0000 0.3007 0.3317 0.7498 1.4492 1.2277 1.7451 1.7905
POTA 0.0000 0.5147 0.9226 1.4268 1.1512 1.6811 1.7394
THO 0.0000 0.9542 1.4723 1.3047 1.7626 1.7862

URAN 0.0000 1.4331 1.3180 1.6947 1.7386
IDPH 0.0000 1.0878 1.1476 1.2893

ALUM 0.0000 1.0905 1.3277
RHOB 0.0000 0.5952

PEF 0.0000

Model Cophenetic Linkage method
Correlation

1 0.8731 Nearest Neighbours
2 0.9176 Furthest Neighbours
3 0.9278 Simple Averages
5 0.9258 Group Averages
7 0.6684 Wards Method

Model: .... 3 Simple averages

Cophenetic correlation .... 0.9278

link log curve log curve similarity linkage
retained deleted level order

1 1 2 0.3007 1
2 1 3 0.4232 2
3 7 8 0.5952 3
4 1 4 0.8952 4
5 5 6 1.0878 5
6 5 7 1.2138 6
7 1 5 1.5500 7

8

Table 3.10 - Hierarchical Cluster Analysis for ODP Hole 807C.
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Method: Simple averages 
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Figure 3.12 - Dendogram for Hierarchical ClusterAnalysis in ODP Hole 807C.
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cophenetic correlation. The cophenetic correlation, which represents the degree of 
distortion in the dendogram, are greater than 0 . 8  for most of the linkage methods 
presented. Davis (1986) shows that 0.8 is an acceptable value for cophenetic 
correlation. The pair-group methods, both models 3 and 5, show the best cophenetic 
correlation values, greater than 0.92. The reason for the minimum difference observed 
in both methods is because the data were normalised, giving no difference for the 
weighted or unweighted methods in this case. As the simple averages method shows 
the greater cophenetic value (0.9278) it was used for the analysis and its result is 
detailed in Table 3.10.

The dendogram (Figure 3.12) presents the relation between the log curves 
used in this analysis. It shows strong correlation between GRAY and POTA with 
approximately 0.30 units of dissimilarity. THO and URAN also appear connected 
with the previous log curves. On the other side, RHOB and PEF also show strong 
correlation (0.60 units of dissimilarity). The separation of the log curves in two 
different groups is clear from the dendogram. The first group is dominated by the 
nuclear measurements (GRAY, THO, POTA and URAN) which have high 
correlation. The second one is dominated by RHOB, PEF, IDPH and ALUM. These 
last two log curves have the largest degree of dissimilarity.

This result is confirmed when it is compared with the first principal 
component loading, which represents more than 65% of the system variability. For 
that case the nucleai' measurements present strong positive loading. RHOB and PEF, 
on the other hand, present strong negative loading whilst ALUM and IDPH have 
their loadings around zero.

The Non-Hierarchical Cluster Analvsis

The Non-Hierarchical Cluster Analysis (INGA) was carried out both on the 
original log curves and, on the principal component scores derived from the Principal 
Component Analysis and described in section 3.3.1. In both cases the iterative 
relocation and the Euclidean model were used in the analysis. Z-standardisation was 
applied to the data and the starting points for clustering were chosen with minimum 
distance between them.

a) Analysis using the original log curves

Initial testing for the number of groups present in the dataset resulted in three 
main groups being selected as the optimum number for the full analysis. Group I 
represents the carbonate sequence, Group 2 the siltstone/claystone sequence and 
Group 3 the volcanic sequence. The centroid compositions of the groups produced are
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detailed in Table 3.11. In terms of group discrimination, RHOB, PEF and ALUM 
were rated the three most important log curves in the analysis based on their averages 
delta values (Table 3.12). The plots of group centroids for each pair of these log 
curves are presented in Figure 3.13. As expected, they show good discrimination 
between the groups formed. The most important log curves for the discrimination 
between each group are also shown in Table 3.12. In the separation between Groups 1 
and 2 and between Groups 2 and 3, PEF and RHOB are the most important elements, 
which high delta values compared with other log curves. In the separation between 
Groups 1 and 3, ALUM and RHOB are the most important. It is in fact explained by 
the great difference in A1 concentration between the carbonate sequence (Group 1) 
and the volcanic sequence (Group 3). Table 3.12 also shows that IDPH and URAN 
are the log curves with overall least importance in the group identification.

Table 3.11

Logs GRAY POTA THO URAN roPH ALUM RHOB PEF No. in cluster

Group 1 5.9613 0.1384 0.4124 0.3073 3.5456 0.5444 2.3338 4.2922 550
Group 2 26.2763 0.7027 2.6265 0.7784 1.5609 1.4127 1.8703 2.1543 178
Group 3 9.6006 0.3487 0.4148 0.3597 377.7767 3.7742 2.7948 4.9580 125

Table 3.11 - Centroid composition for each group in Non-Hierarchical Cluster 
Analysis using log curves.

The group log is shown in Figure 3.14. As can be observed, Group 1 
represents the carbonate sequence at the top of the interval and also appears between 
1375-1377 mbsf and around 1389 mbsf. In the first case it represents a carbonate 
interval which occurs at that depth, however, in the second case it seems to be a 
reflection of a fractured/altered interval with low values of ALUM, RHOB and PEF.

Group 2 represents the siltstone/claystone sequence between 1351-1375 mbsf. 
The interval between 1377 - 1380 mbsf can be either this lithology or the alteration of 
the volcanic sequence below. Kroenke et al. (1991) show that the characteristic 
feature in considering the top of the basement at 1380 mbsf is the strong decreasing in 
the drill rate penetration at that depth. However, an altered interval could show the 
same drilling rate as a carbonate sequence. Finally, Group 3 represents the volcanic 
sequence between 1380 - 1400 mbsf.

Based on the means of the delta values for the separation between each group, 
Table 3.13 shows the hardest and the simplest combination of groups to distinguish. 
Groups 1 and 3 and Groups 2 and 3 are the more difficult combinations to distinguish, 
with means delta values of 2.28 and 2.29 respectively. Groups 1 and 2 appear as the 
simplest combination to distinguish with mean of delta value equal to 2.43.
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Table 3.12

roPH Overall least important element 0.85 (Mean of delta values)
URAN 1.09
THO 1.30
POTA 1.79
GRAY 1.95
PEF 3.62
ALUM 3.63
RHOB Overall most important element 4.46 (Mean of delta values)

IDPH Worst element for cluster 1 & 2 0.42 (delta)
URAN 1.83
ALUM 1.93
THO 2.33
POTA 2.48
GRAY 2.70
RHOB 3.41
PEF Best element for cluster 1 & 2 4.35 (delta)

THO Worst element for cluster s 1 & 3 0.01 (delta)
URAN 0.28
IDPH 1.27
PEF 1.46
GRAY 1.71
POTA 1.87
RHOB 5.35
ALUM Best element for clusters 1 & 3 6.30 (delta)

IDPH Worst element for clusters 2 & 3 0.86 (delta)
POTA 1.01
URAN 1.15
GRAY 1.44
THO 1.56
ALUM 265
RHOB 4.61
PEF Best element for clusters 2 & 3 5.05 (delta)

Table 3.12 - Importance of log curves in the group discrimination of ODP Hole 807C.

Table 3.13

Cluster 1 & 3 Hardest combination to distinguish 2.28 (means)
Cluster 2 & 3 2.29 (means)
Cluster 1 & 2 Simplest combination to distinguish 2.43 (means)

Table 3.13 - Hardest and simplest combination to distinguish in ODP Hole 807C.
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b) Analysis using principal component scores

A second Non-Hierarchical Cluster Analysis was performed using the 
principal component scores calculated using the loading matrix (Table 3.4) produced 
by the earlier Principal Component Analysis. Initial testing suggested that four groups 
were the optimum number of groups for the full analysis and details of the resultant 
group centroids are given in Table 3.14.

Table 3.14

Component I Component II No. in cluster

Group 1 -0.4066 -0.4162 551
Group 2 -0.6139 1.9766 119
Group 3 1.1904 -0.2421 151
Group 4 3.6663 0.9577 32

Table 3.14 - Centroid composition for Non-Hierarchical Cluster Analysis (using 
principal component scores).

Table 3.15

Component 2 
Component 1

Overall least important element 
Overall most important element

2.79 (Mean of delta value) 
7.61 (Mean of delta value)

Component 1 
Component 2

Worst element for clusters 1 & 2 
Best element for clusters 1 & 2

0.98 (delta)
4.28 (delta)

Component 2 
Component 1

Worst element for clusters 1 & 3 
Best element for clusters 1 & 3

0.67 (delta) 
6.22 (delta)

Component 2 
Component 1

Worst element for clusters 1 & 4 
Best element for clusters 1 & 4

6.07 (delta) 
18.67 (delta)

Component 2 
Component 1

Worst element for clusters 2 & 3 
Best element for clusters 2 & 3

2.44 (delta) 
4.43 (delta)

Component 2 
Component 1

Worst element for clusters 2 & 4 
Best element for clusters 2 & 4

0.87 (delta) 
10.24 (delta)

Component 2 
Component 1

Worst element for clusters 3 & 4 
Best element for clusters 3 & 4

2.44 (delta)
5.11 (delta)

Table 3.15- Importance of principal component scores I and II in group 
discrimination.

In terms of group discrimination, the principal component scores I, which has 
a mean delta value of 7.61, is the overall most important element (Table 3.15). It also
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appears as the most important element for the discrimination between each group, 
except for Groups 1 and 2, where the principal component scores II is the best 
element. This can be explained because of principal component II has strong positive 
loadings (Figure 3.3) in ALUM and IDPH which have their extreme values in the 
carbonate and volcanic sequences, represented in this analysis by Groups 1 and 2 
respectively. Group 3, now, represents the claystone/siltstone sequence (Figure 3.15). 
One new group (Group 4) was obtained in this analysis and can be observed between 
1352 - 1357 mbsf. This group represents the high clay content interval in 
claystone/siltstone sequence and can be considered as a heterogeneity detected by the 
analysis with the transformed data.

Table 3.16 shows the hardest and simplest combination of groups to 
distinguish based on means of delta values. Groups 1 and 2 appear as the hardest 
combination to distinguish because, as shown before, the great variation in log data 
between these two groups are given by ALUM and IDPH, strong in principal 
component II. The simplest combination, and therefore the groups which show the 
more distinguishable characteristics are Groups 1 and 4 with a mean delta value of 
12.37. The analysis with the principal component is very important because it 
indicates some features not detected using the original log curves. Although the 
interval between 1352 - 1357 mbsf might be distinguishable through visual analysis 
of the log curves, it was only detected as a new group in the analysis with the 
principal component scores, which uses a reduced dataset, therefore simplifying the 
process.

Table 3.16

Clusters 1 & 2 Hardest combination to distinguish 2.63 (means)
Clusters 2 & 3 3.43 (means)
Clusters 1 & 3 3.44 (means)
Clusters 3 & 4 3.77 (means)
Clusters 2 & 4 5.55 (means)
Clusters 1 & 4 Simplest combination to distinguish 12.37 (means)

Table 3.16 - Hardest and simplest combinations to distinguish in ODP Hole 807C.

Both Non-Hierarchical analysis have been able to identify most of the gross 
lithological changes which occur within the whole interval. The existence of large 
variations in some log curves is a major contributor to this success. Given this fact, 
some of the features could have been identified by visual appraisal if the number of 
log curves were reduced. However, when the number of log curves involved rises and 
some of the logs show more subtle changes, the visual approach becomes more 
complicated and the multivariate analysis is necessary. The principal component
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transform allows analysis (both statistical and visual) to be performed on a reduced 
dataset and, most important, simplifies the presentation of the logs and allows the 
detection of other structures or heterogeneities not observed in the analysis with the 
original log curves.

3.4.S.2 - ODP Hole 878A

In the case of ODP Hole 878A, Cluster Analysis used exactly the same dataset 
used in the earlier Principal Component Analysis. As the contribution for each log 
curve used in that technique (Table 3.17) shows that all of them account for more 
than 70% in the analysis, it was decided to keep all the log curves for the Cluster 
Analysis.

Table 3.17

Log curve % accounted

NPHI 81.11
RHOB 85.79
IDPH 93.40
SFLU 95.09
C A œ 3 90.32
SI02 70.92
THO 89.80
URAN 91.95
POTA 88.75
DT 92.03
AL203 86.79
FEO 83.76
TI02 74.89

Table 3.17 - Log curve contributions in Principal Component Analysis of ODP Hole
878A.

Hierarchical Cluster Analysis

Using the Euclidean distance - Z-standardised dissimilarity matrix and the 
Simple averages model, the results for the Hierarchical Cluster Analysis in ODP Hole 
878A are shown in Table 3.18. It contains the Euclidean distance matrix, the results 
for some of the models presented in section 3.3.3.1 and the detailed results for the 
simple averages model. As can be seen, this model does not show the best cophenetic 
correlation, but its value (0.9389) is approximately the same as for other models.

The dendogram (Figure 3.16) for this analysis expresses the same variation 
observed in the first principal component loadings. It shows that SFLU - IDPH, TI02
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- FEO and AL203 - NPHI contain the strongest correlation with the minimum 
dissimilarity values. Two main groups can also be distinguished from the dendogram. 
The first group consists of CAC03, SFLU, IDPH, RHOB, URAN and POTA, and

T able 3.18

Hierarchical Cluster Analysis (RCL)... 878A.RCL 
Euclidean distance matrix.... Z-standardised

NPHI RHOB IDPH SFLU CAC03 SI02 THO URAN POTA DT AL203 FEO TI02

NPHI 0.000 1.926 1.891 1.890 1.881 0.851 0.925 1.456 1.601 0.606 0.592 0.651 0.746
RHOB 0.000 0.608 0.580 0.648 1.818 1.786 1.395 1.171 1.925 1.929 1.896 1.854
IDPH 0.000 0.249 0.734 1.804 1.727 1.413 1.329 1.953 1.873 1.841 1.809
SFLU 0.000 0.734 1.806 1.728 1.407 1.336 1.964 1.879 1.831 1.795
CAC03 0.000 1.978 1.822 1.380 1.061 1.891 1.925 1.901 1.866
SI02 0.000 0.951 1.413 1.695 0.794 0.787 0.878 0.930
THO 0.000 1.790 1.479 0.974 0.776 0.800 0.853
URAN 0.000 1.669 1.384 1.487 1.496 1.518
POTA 0.000 1.577 1.598 1.657 1.640
DT 0.000 0.612 0.717 0.835
AL203 0.000 0.526 0.667
FEO 0.000 0.494
TI02 0.000

Model

1
2
3
5
7

Cophenetic
Correlation

0.948
0.964
0.963
0.965
0.683

Linkage method

Nearest Neighbours 
Furthest Neighbours 
Simple Averages 
Group Averages 
Wards Method

Model: ....3 Simple Averages Cophenetic correlation ...0.963

link log curve log curve similarity linkage
IK). retained deleted level order

1 3 4 0.249 1
2 12 13 0.494 11
3 1 11 0.592 10
4 2 3 0.594 12
5 1 10 0.609 13
6 2 5 0.691 6
7 1 12 0.712 7
8 1 6 0.855 2
9 1 7 0.910 3
10 2 9 1.156 4
11 2 8 1.530 5

8

Table 3.18 - Hierarchical Cluster Analysis for ODP Hole 878A.
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Method: Simple averages Cophenetic Correlation: 0.9631

URAN
POTA
CACO
SFLU
IDPH
RHOB
THO
SI02
TI02
FEO
TRATIM
AL203
NPHI

I _L J
0 .00  0.41 0 .8 3  1.24 1.66

Figure 3.16 - Dendogram for Hierarchical ClusterAnalysis in ODP Hole 878A.
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shows negative principal component loading values. The second group, with positive 
loading values, is defined by THO, SI02, TI02, FEO, DT, AL203 and NPHI. Most 
of the log curves present dissimilarity values less than 0.20 showing a good 
correlation. The largest degree of dissimilarity is shown by URAN and POTA which 
also present the lower first principal component loadings.

Non-Hierarchical Cluster Analysis

The Non-Hierarchical Cluster Analysis was performed in ODP Hole 878A 
only using the original log curves. The reason for this is that the first principal 
component is responsible for approximately 65% of the total system variability and 
the two other components represent less than 20%. Therefore, using only the first 
principal component scores the results would appear very similar as using the original 
log curves. Nonetheless, the results for the analysis using the principal component 
scores I are shown in Table 3.23 and Figure 3.20 at the end of this section in order 
only to malce a comparison between these results and the results using the original log 
curves. The Euclidean model and the iterative relocation as well as the Z- 
standardisation were also applied in this analysis.

a) Analysis using the original log curves

Initial testing for the number of groups resulted in four groups being selected 
as the optimum number to use for a full analysis. Table 3.19 shows the centroid 
composition of the groups produced. AL203, CAC03 and RHOB appear as the 
overall most important log curves in the analysis based on their average delta values 
(Table 3.20).

URAN and POTA are overall the least important log curves. The most 
important log curves for the discrimination between each group are also shown in 
Table 3.20. AL203 and CAC03 are the most important elements in the separation 
between Groups 1-2, 1-3, 1-4 and 2-3 while URAN and THO are the least important 
log curves. For the other groups separation (2-4 and 3-4) RHOB - AL203 and RHOB 
- SFLU are the most important ones.

Figure 3.17 shows the crossplots of the group centroids for the three overall 
most important log curves. It is observed that all crossplots show a reasonable 
separation between the four groups. The separation between the Si based matrix 
(Groups 1 and 2) and the Ca based matrix (Groups 3 and 4) into distinct zones in the 
plots can also be observed. Table 3.21 shows the simplest and the hardest 
combination of groups to distinguish. The lowest values are shown by the 
combinations of Groups 1-2 and Groups 3-4 with 1.23 and 1.52 means of delta values
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respectively. As expected these are the hardest combinations to distinguish. 
Combinations 1-4 and 2-4 are the simplest combinations to distinguish with means of 
delta values equal to 4.16 and 3.28 respectively.

T able 3.19

Table of centroid composition

Log curves Group 1 Group 2 Group 3 Group 4

NPHI 38.328 35.951 31.234 25.980
RHOB 2.322 2.347 2.397 2.454
IDPH 11.908 13.595 16.264 21.936
SFLU 11.440 13.526 16.777 23.849
CAC03 48.935 61.534 73.251 77.691
SI02 27.243 17.015 11.396 9.667
THO 2.106 1.785 1.195 0.820
URAN 1.988 1.914 1.853 2.092
POTA 0.230 0.360 0.398 0.321
DT 93.152 89.293 83.967 78.491
AL203 7.076 6.562 4.402 3.702
FEO 7.333 6.441 4.821 3.901
T I02 2.156 1.850 1.391 1.127

Table 3.19 - Centroid composition for Non-Hierarchical Cluster Analysis using the 
original log curves in ODP Hole 878A.

The group log is shown in Figure 3.18. It presents the group distribution over 
the whole interval in ODP Hole 878A. The upper section in the interval is dominated 
by Groups 1 and 2 where the principal component scores show positive values. They 
correspond to the Si based matrix. Where the principal component score values 
approach zero Group 2 is present while larger score values indicate Group 1. Between 
563 - 577 mbsf there is an alternating sequence of Group 2 and Group 3 showing the 
same variation observed in the principal component scores (Figure 3.19). Group 3 is 
observed for negative score values and Group 2 appears when the values are positive. 
Below 577 mbsf the interval is dominated by Groups 3 and 4 as well as by strong 
negative scores. These are characteristics of the Ca based matrix, with the difference 
between the two groups given by the content of Ca in the matrix.

Groups 1 and 2 define the Si based matrix at the top of the interval with Group 
2 related to the sections where carbonate/volcanic clasts and an increase in Ca content 
are observed. Groups 3 and 4 define the Ca based matrix with Group 3 showing the 
sections which have lower Ca content. Some variations in group distribution can be 
observed at 542 mbsf, which shows a Group 3 classification. It also corresponds to a 
negative value in the first principal component scores. The relation between the 
groups formed can also be observed when the clustering is carried out using the
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Table 3.20

Summary of delta values

URAN Overall least important element 0.49 Mean
POTA 1.13

c A œ s 3.52
AL203 Overall most important element 4.01 Mean

URAN Worst element for Groups 1 & 2 0.24 Delta
THO 0.58

SI02 224
CAC03 Best element for Group s I & 2 276 Delta

URAN Worst element for Group s 1 & 3 0.40 Delta
THO 1.56

AL203 4,53
C A œ 3 Best element for Groups 1 & 3 5.51 Delta

URAN Worst element for Group s 1 & 4 0.32 Delta
POTA 1.17

C A œ 3 6.18
AL203 Best element for Groups 1 & 4 6.96 Delta

URAN Worst element for Group s 2 & 3 0.24 Delta
POTA 0.46

CAC03 249
AL203 Best element for Groups 2 & 3 3.94 Delta

POTA Worst element for Group s 2 & 4 0.50 Delta
URAN 0.78

RHOB 5.12
AL203 Best element for Group s 2 & 4 6.31 Delta

SI02 Worst element for Groups 3 & 4 0.41 Delta
THO 0.91

RHOB 2.65
SFLU Best element for Group s 3 & 4 297 Delta

Table 3.20 - Importance of log curves in group discrimination in ODP Hole 878A.

groups obtained from the Non-Hierarchical Cluster Analysis. The results for all 
models are presented in Table 3.22 as well as the detailed description of the Simple
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Method: Simple averages Cophenetic Correlation: 0.7052 

GROUP 4

GROUP 3

GROUP 2

GROUP 1

1.00 7.91 -16.82 -25.73 -34.64

Figure 3.19 - D endogram  for H ierarchical Cluster Analysis using the groups produced by 
N on-H ierarchical Cluster Analysis in O D P Hole 878A.

Table 3.21

Groups 1 & 2 Hardest combination to distinguish 1.23 (Means)

Groups 3 & 4 1.52 (Means)

Groups 2 & 3 1.75 (Means)

Groups 1 & 3 2.9Ü (Means)

Groups 2 & 4 3.28 (Means)

Groups 1 & 4 Simplest combination to distinguish 4.16 (Means)

Table 3.21 - Hardest and Simplest combinations to distinguish in Non-Hierarchical
C luster A nalysis (ODP Hole 878A).



averages model which present the best cophenetic correlation (0.7052). The 
dendogram in Figure 3.19 shows that Groups 1 and 2 and Groups 3 and 4 are related 
with approximately same dissimilarity units. The two sets of groups show a strong 
dissimilarity determined mainly by the contents of Si and Ca.

Table 3.22

Hierarchical Cluster Analysis (RCL).... 878A.RCL 
Euclidean distance matrix .... Z-standardised

Group 1 Group 2 Group 3 Group 4

Group 1 0.000 7.130 32.290 66.209
Group 2 0.000 10.896 37.152
Group 3 0.000 10.615
Group 4 0.000

Model Cophenetic
Correlation

Linkage method

1 0.436 Nearest Neighbours
2 0.672 Furthest Neighbours
3 0.705 Simple Averages
4 0.699 Median
5 0.705 Group Averages
6 0.699 Centroid
7 0.683 Wards Method

Model; ....3 Simple Averages Cophenetic correlation ...0.705

link log curve log curve similarity linkage
retained deleted level order

1 1 2 -5.130 1
2 3 4 -8.615 2
3 1 3 -34.637 3

4

Table 3.22 - Hierarchical Cluster Analysis using groups extracted from Non- 
Hierarchical analysis (ODP Hole 878A).
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Table 3.23

Groups 3 & 4 Hardest combination to distinguish 3.55 (Means)
Groups 1 & 2 3.55 (Means)
Groups 2 & 3 4.55 (Means)
Groups 2 & 4 7.62 (Means)
Groups 1 & 3 7.65 (Means)
Groups 1 & 4 Simplest combination to distinguish 10.06 (Means)

Table 3.23 - Hardest and simplest combinations to distinguish in Non-Hierarchical 
Cluster Analysis using principal component scores (ODP Hole 878A).
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Figure 3.20 - Group log for Non-Hierarchical Cluster Analysis using the Principal 
Component scores I. II and III.



3.5 - Discriminant Analysis

3.5.1 - Introduction

Another important technique is the Discriminant Analysis. In this case, the 
approach differs eompletely from the use of Principal Component Analysis and 
Cluster Analysis. Lithofaeies are no longer defined implicitly from the data strueture 
but are identified a priori by core descriptions or other geological information. 
Therefore, a discriminant function can be developed in order to distinguish separate 
lithofaeies using the log responses of their contained zones. Where the discriminant 
function effectively distinguish the lithofaeies, sections in intervals that are not cored 
or from where no geological information is available can be assigned to one or other 
of these lithofaeies considering only the log responses. It must be noted, however, 
that core physical properties are not always accurate representation of formation 
properties. Some caution must be exercised when using them for such analysis.

In this work. Discriminant Analysis are used to distinguish lithofaeies within 
the same hole and also in an offset hole. Different methods of classification are tested 
and discussed for each of the examples. The results are then compared with the ones 
obtained for the Cluster Analysis.

3.5.2 - Principles

Discriminant Analysis is one of the most widely used multivariate techniques 
in geology because of its relative simplicity and robustness. This technique has been 
applied with reasonable success in many geological studies including well log 
analysis (Chaynes, 1964; Davis, 1986; Doveton, 1994).

It is a multivariate statistical technique in which the original log curves are 
combined in such a way to maximise differences between two pre-determined 
clusters or groups. Therefore, the need of a priori information distinguishes it from 
the Cluster Analysis described in the last section. The Discriminant Function (DP) 
computed from the groups previously defined (or their training sets) may then be used 
to allocate new samples of unknown origin to one of these groups (Doveton, 1986 
and1994). The DF transforms an original set of measurements on a sample or group 
of samples into discriminant scores. These scores then represent the position of the 
sample along the line defined by the DF in, for instance, the case of two groups. In 
the case of more than two groups. Multivariate Discriminant Analysis, in contrast, 
provides for the simultaneous comparison of several groups in multidimensional 
space.
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Log A

Figure 3.21 - Hypothetical two-dimensional example of the Linear Discriminant Function (LDF)
(after Davis, 1986).

Figure 3.21a - Euclidean measure, Mahalanobis measure and Group Generalised distance measure
(after Gnanadesikan, 1977).
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Figure 3.22 - Cross-plot of Discriminant scores showing the group centroids in ODP Hole 807C.



Figure 3.21 diagramatically shows a hypothetical two-dimensional example of 
the DF. No adequate separation may be made using either log curve Log A or Log B. 
The groups may however be distinguished by projecting members of the two groups 
onto the discriminant function line (Davis, 1986). This line is the one orthogonal to 
the line which best separates the two groups and minimises the degree of 
misclassification.

The equation which describes the DF has the form:

R= Àl.\|/1-t-A,2.\|/2 + ...-i-Xm.\|/m (1)

where R is the discriminant score in the sample, A,m is the coefficient associated with 
the m ^ variable and \|/m is the mean value of the m *  variable.

This can be solved through:

[ D ] =  [S p 2 ] . [X ]

where [D] is the column vector of m differences between the means of two groups:

Dj = Aj - Bj = ((Z,^ Aij)/n) - ((Zi,n Bij)/n)

where A j is the mean of the j variable in group A, and Bj is the mean of the j ̂  
variable in group B. [Sp2], which is the m x m matrix of the pooled variances and 
covariance of the m variables, is described as:

[ Sp2 ] = ([SpA] - [SpB]) / (ni + n2 - 2)

with SpA the matrix of sum of squares and cross products of all variables in [A] and 
ni is the number of samples in A. The same is for group B. [À,] is the column vector 
of m coefficients of the discriminant function.

At the end, the equation can be solved by inversion and multiplication where:

[A.] = [Sp2]-l [ D ] .

The values of X may now be inserted for use in the equation 1.
The discriminant index Rq is the point along the DF line which is exactly half

way between the centre of groups A and B. Its value may be found by the substitution 
of the midpoints between the two group means into each position of the equation 
1:

(Aj-kBj)/2 .
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Similarly the values of Ra  and Rb , the discriminant scores describing the 
centres of groups A and B, can be found in the same way.

The relative contribution of individual variables to the DF may be measured 
by using the quantity Ej, where:

Ej = ( l j .D j ) /D 2

Aj is the coefficient of DF as described earlier, Dj is the difference between the jlh 
means of the two groups, and D%is the Mahalanobis distance, which is a measure of 
the separation between the two multivariate means expressed in units of the pooled 
variance (Ra  - Rb) (Sheppard, 1986).

Given a space to represent the objects (depth measurements), the fundamental 
problem in classification is reduced to choosing a metric or a distance measure. For, if 
such a metric is available, an object which needs to be assigned to one of the groups 
may be identified to the group which it is closest as judged by the metric. From the 
point of view of well log analysis, the prescription of a distance function will 
generally be a trial and error task in which the use of some general techniques needs 
to be aided by other geological information such as core data (Gnanadesikan, 1977).

One useful general class of squared distance functions is provided by a class 
of positive semidefinite quadratic forms. Specifically, if u ’=(wp Wj.■•■.“,;) denotes the 
p-dimensional observation on an object that is to be assigned to one of the 
prespecified group, then for measuring the squared distance between u and the 
centroid of the i* group, one may consider the Mahalanobis distance

D^(i) = ( u-y, y M ( u-y2 ),

where M is a positive semidefinite matrix to ensure that D^(i) > 0. y, and y 2 are the 
object mean vectors of each group. The object will be assigned to the group for which 
D^(i) is smallest as i takes from the values from one through a g number of groups. 
Different choices of the matrix M lead to a different metrics, and the class of squared 
distance functions represented by the equation above is not unduly narrow.

Thus, when M = I , one obtains the familiar Euclidean squared distance 
between the unknown sample to be classified and the centroid of the i* group in the p 
dimensional space of response. Geometrically, as shown in Figure 3.21a for the case 
when p=2, the use of such measure of squared distance amounts to measuring 
distances by circles (or spheres when p>2). Points A, and Â  lying on the same circle 
are considered to be the same distance away from the centre C, while points B , and B̂  
lying on the outer circle are considered to be farther away from C than are A, and A .̂
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Another way of accomplishing this would be to use “elliptical” (or ellipsoidal) 
distance measures as shown in Figure 3.21a. Again A; and A  ̂ are considered to be 
equidistant from C, while B, and B  ̂are considered to be farther from C than A, and 
Ag. Algebraically, this measure of squared distance corresponds to specifying M in 
the equation to be a diagonal matrix. Still another extension of the distance measure 
may be made to accommodate intercorrelations among the responses as well as 
possible differences among their variances. When p=2 and the statistical correlations 
between yl and y2 is positive, the right part on Figure 3.21a shows how one may use 
“elliptical” distance measures by tilting the ellipses so that their major axis is oriented 
in a direction reflecting the positive correlation. This is called the Generalised 
squared distance measure.

Of considerable importance to the application of the technique is the fact that 
prior to its use a suitable training set must be selected which represents each class. 
Also the inclusion of measurements which poorly distinguish between groups may 
outweigh the beneficial effects of good discriminators. For this reason they should be 
removed at the earliest opportunity (Doveton, 1994).

In the analysis of log data, the training groups will be selected from the 
sections along the whole interval which best represent a litho facies or geological 
sequence. It means that most of the log curves of the sections selected should have 
distinguishable values for the litho facies they represent. With this purpose the same 
datasets studied with the previous techniques are used and the results compared at the 
end of this chapter. Another data set, now from two oilfield holes, are used to 
demonstrate the efficiency of this technique when applied in an offset well.

3.5.3 - Application of Discriminant Analysis to well log data

3.5.3.1 - GDP Hole 807C

A multigroup discriminant function analysis was used to distinguish the three 
units present in the interval between 1270-1400 mbsf in GDP Hole 807(1 The 
discrimination is made in terms of their well log responses. The main purposes for the 
analysis are: to assess whether the distinction was even possible, based only on the 
log curves; to verify which ones appear to contribute to any such distinction; and if 
possible, to determine the geological reasons that would account for any lithological 
or petrophysical distinctions. If the discriminant function was found to be useful then 
the functions could be used for classification purposes in other parts of the interval or 
other holes.

The log curves used for discrimination were all curves used in Cluster 
Analysis (section 3.3.3.1). The training set selected was based on the result of the
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Principal Component and the Cluster Analysis. The intervals selected for that are; 
between 1300 - 1310 mbsf in the carbonate sequence (TR_SET_1), between 1352 - 
1358 mbsf in the claystone/siltstone sequence (TR_SET_2) and between 1382 - 1387 
mbsf in the volcanic sequence (TR_SET_3). In the choice of the best sections for the 
training sets, we consider in general short intervals in order to reduce the processing 
time. We also compare the summary statistics of each interval considered as a 
training set (Table 3.24).

Table 3.24

Summary statistics for training set 1

Log curve Mean Standard deviation

GRAY i/n 8
POTA 0 119 cm53
THO 0.310 0.257

URAN 0L4O5 CU54
IDPH &206
ALUM 0A62 0.080
RHOB 2J93 0045

PEF 3.953 0.436

Summary statistics for training set 2

Log curve Mean Standard deviation

GRAY # .M 2 15.821
POTA LM9 0.439
THO L707

URAN Lm2 0631
IDPH 1.216 0211
ALUM l/MC 0.967
RHOB 1.960 0058

PEF 2J09 0346

Summary statistics for training set 3

Log curve Mean Standard deviation

GRAY 7.722 2t049
POTA &231 0W 8
THO 0.407 0.280

URAN 0.352 0.248
IDMi 568.813 801.505
ALUM 3j#4 &878
RHOB 2^21 0LO76

PEF 5J03 0.359

Table 3.24 - Summary statistics for the training sets of each of the lithofacies in ODP Hole
smc.

The result for this analysis is shown in Table 3.25. The computed F-test value, 
based on the Mahalanobis' distance, proved to be highly significant, rejecting the null
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hypothesis that there were no appreciable differences between the three groups. The 
Table also shows the discriminant functions for each log curve and the discriminant 
score distribution for each group centroid. Both discriminant functions I and II show 
that RHOB is the most important log curve in this analysis with values equal to 0.68 
and 0.54 respectively. Figure 3.22 shows the crossplot of the scores for the group 
centroids. A good separation between the groups is clearly seen. None of the samples 
in each group was misclassified and the discrimination can be considered as 
excellent.

Table 3.25

M ultiple Discriminant Analysis

Discriminant functions

Log curve D F#1 D F #2

GRAY 0038 0053
POTA -0.656
THO -0.137 -0.156

URAN -0.307
IDPH 0.000 0.000
ALUM 0.016 &081
RHOB & #5 0540

PEF 0029 -0.129

Discriminant scores for the group centroids

Groups D F#1 D F #2

Group 1 L # 6 0.768
Group 2 1.387 L244
Group 3 2H33 1T86

Total number of cases............................ 158
Number misclassified............................ 0
Percentage misclassified........................0.00

F-ratio for overall discrimination.......................278.566
Degrees of freedom........................................ 16 and 296

Computed level of probability for F ........................0.00

Ho: Group centroid = common centroid is rejected at alpha=0.001 
The group discrimination is excellent

Table 3.25 - Result for the Discriminant Analysis in ODP Hole 807C.
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Figure 3.23 - Discriminant scores log curves in ODP Hole 807C. Groups from the Cluster 
Analysis are also plotted for comparison.
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After the processing of the discriminant functions using the training sets, we 
applied them for the whole interval in ODP Hole 807(1 The result is not surprising in 
terms of the Z-score logs, which show an almost perfect separation between the three 
lithofacies (Figure 3.23). For the scores I, values between 1.6 and 1.8 are associated

Table 3.26

EUCLIDEAN DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct
number in group to group for group

1 548 694 527 96 17
2 167 134 108 6A67
3 138 25 25 1842

Totals 853 660 7737

MAHALANOBIS DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct
number ingroup to group in group for group

1 548 552 517 9434
2 167 165 134 8034
3 138 136 135 9733

Totals 853 786 9215

GROUP GENERALISED DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct
number m #™ p to group m # w ^ for group

1 548 491 491 89 60
2 167 225 167 100.00
3 138 137 137 99 28

Totals 853 795 9330

Table 3.26 - General distance classification using three different models in ODP Hole
807C.

with the carbonate sequence at the top of the interval. Values below 1.5 are associated 
with the claystone/siltstone sequence and values around and greater than 2.0 are 
associated to the volcanic sequence at the bottom of the interval. In terms of scores II, 
it is still possible to see the separation between the three lithofacies. However, the
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interval between 1352 - 1357 mbsf in the claystone/siltstone sequence shows values 
as high as the volcanic sequence. The groups obtained in the Cluster Analysis are also 
shown in order to make a comparison with the Discriminant Analysis. The general 
distance classification for the whole data can be seen in Table 3.26. The summary 
statistics for the three lithofacies and the result for three different classification 
models are shown. The Euclidean distance models show a relatively high percentage 
of disagreement with 22.63% of misclassified samples. However, this value is given 
mostly because of the low percentage of correct samples in Group 3. This is due to 
the similar values in density between this lithofacies and the carbonate sequence, to 
where most of the samples were misclassified. The other two models seem to be more 
efficient in the analysis with a total of 92.15% and 93.20% of correct samples for the 
total data set.

A plot of the two multigroup discriminant scores can be seen in Figure 3.24. It 
also shows clearly the separation between the three main lithofacies. It appears much 
better when compared with the principal component scores. The carbonate sequence 
appears as a dense cluster in the middle of the graph. The other two lithologies can 
also be easily detected. However, variations in log values, especially RHOB, within 
the intervals occupied by these lithofacies lead to a more scattered distribution of 
these cross-plots.

3.5.3.2-ODP Hole 878A

In ODP Hole 878A, a Discriminant Analysis was carried out to distinguish 
between the two different matrix based breccias present within the interval 515 - 600 
mbsf. The log measurements used in this case are the same as used in the Principal 
Components and Cluster Analysis (sections 3.3.1 and 3.4.3 respectively).

The training set selected in this method is also based on the comparison of the 
summary statistics for each group (Table 3.27) and using the minimum amount of 
samples to reduce the processing time. The training sets for both facies are as follow: 
TR_SET_1 (Si based matrix) 532 - 539 mbsf and TR_SET_2 (Ca based matrix) 579 - 
582 and 587 - 591 mbsf.

The result for this analysis can be observed in Table 3.28, where the F-test 
rejected the null hypothesis that there was no great difference between the two 
lithofacies. The discriminant function shows that RHOB is the most important log 
curve in this analysis with other log curves such as POTA and TI02 also being 
important. The discriminant scores for the group centroid do not show a strong 
difference in their values but they look enough different to perform the distinction 
between the lithofacies. As a final result, the group discrimination is also considered 
excellent.
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Table 3.27

Summary statistics for training set 1

Log curve Mean Standard deviation

NPHI 34.937 1.609
RHOB 2.348 0.006
IDPH 12.652 0354
SFLU 12506 0663

CAC03 59.772 5 241
SI02 18.720 5.666
THO 2T25 0.257

URAN 1.906 0423
POTA 0.334 0M 9

DT 1486
AL203 6.466 n # 7

FBO 6487 0303
TI02 1.971 0485

Summary statistics for training set 2

Log curve Mean Standard deviation

NPHI 26.552 3330
RHOB 2.446 0324
IDPH 21.487 3 661
SFLU 23.015 3324

CAC03 75396 4321
SI02 10326 3.718
THO 0.847 0.412

URAN 2328 0 ^ 4
POTA 0353 0.M7

DT 79.151 4430
AL203 3392 0382

FED 4T0I 0320
TI02 I486 0269

Table 3.27 - Summary statistics for the training sets of each of the lithofacies in ODP
Hole 878A.

The Discriminant Function was then applied for the whole interval. The linear 
discriminant scores (Figure 3.25) show a reasonable separation between the two 
lithofacies. The Si based matrix section can be seen to have low score values while 
the Ca based matrix has a high score value, in general higher than 8.0. The general 
distance classification for the whole data can be seen in Table 3.29 together with the 
summary statistics for both lithofacies and three different distance classification 
models which show very low percentage of misclassified samples. The Euclidean 
distance model classifies 93.73% of the samples correct while the Mahalanobis
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distance and the Group Generalised distance models, as observed in ODP Hole 807C, 
present better results with 99.28% and 99.46% of correct samples respectively.

Table 3.28

Multiple Discriminant Analysis

Discriminant functions

Log curves D F#1

NPHI 0W3
RHOB 0360
IDPH 4 ^ 0
SFLU 0.019

CAC03 0361
SI02
THO -0.047

URAN 4% 1
POTA mwn

DT om 8
AL203 om 8

FBO -0316
TI02 0116

Discriminant scores for the group centroids

Groups D F#1

Group 1 7338
Group 2 8.347

Total number of cases............................ 112
Number misclassified............................ 0
Percentage misclassified........................0.00

F-ratio for overall discrimination.......................303.447
; of freedom..........................................13 and 98

Computed level of probability for F ....................... 0.00

Ho; Group centroid = common centroid is rejected at alpha-0.001 
The group discrimination is excellent.

Table 3.28 - Result for the Discriminant Analysis in ODP Hole 878A.
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Table 3.29

EUCLIDEAN DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct
number in group to group ingroup for group

1 365 342 336 9235
2 193 216 187 9639

Totals 558 523 93T3

MAHALANOBIS DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct % correct
number ingroup to group in group for group

1 365 361 361 98 90
2 193 197 193 100.00

Totals 558 554 99 28

GROUP GENERALISED DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct
number in group to group m p w p for group

1 365 362 362 99 18
2 193 196 193 100.00

Totals 558 555 99.46

Table 3.29 - General distance classification using three different models in ODP Hole
878A.
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the density log are also plotted for comparison.



3.5.3.3 - Oilfield Holes A and B

A multigroup Discriminant Analysis was used in this case to obtain a 
lithofacies classification in Hole B using the discrimination based in terms of well log 
responses in the nearby Hole A. The purpose for this analysis is to check whether the 
lithofacies distinction was possible, based only on the log curves of a nearby hole. 
The challenge is to obtain a reasonable lithofacies classification and to verify how 
changes in facies across the holes affect the classification.

The six log curves in Hole A were used for discrimination. The training sets 
were selected based on the result of the Cluster Analysis (Figure 3.26) which found 
two groups in this hole. The intervals selected are: between X480 - X490 metres for 
the reservoir zone (Group 1) and between X450 - X460 and X510 - X515 metres for 
the rest of the interval (Group 2). Short intervals were considered in order to reduce 
the processing time. Bearing in mind that changes in facies between Oilfield Holes A 
and B are always possible to occur, the training sets must have different 
characteristics to allow good discrimination function to be obtained. The 
characteristics of each training set are summarised in Table 3.30.

The result for the discrimination function is shown in Table 3.31. The 
computed F-test value, based on the Mahalanobis' distance, proved to be highly 
significant, rejecting the null hypothesis about differences between the two groups. 
The Table also shows the discriminant functions for each log curve and the 
discriminant score distribution for each group centroid. The discriminant function 
shows that RHOB is the most important log curve in the separation of both groups 
with value of 0.999 while the other log curves have values around zero. The two 
training sets were considered excellent for the separation of the lithofacies observed 
in Hole A. Presuming that the same lithofacies occur in Hole B, the discriminant 
function obtained here should work in the nearby hole. However, in order to test how 
efficiently the discriminants work, they were firstly applied to the whole interval in 
Hole A and the result in terms of the discriminant score logs is seen in Figure 3.26.

After testing the discriminant functions in Hole A with a reasonable success 
they were applied to Hole B and the result in terms of the discriminant scores log is 
observed in Figure 3.27. Multigroup discriminant scores show high values (~ 2.75) 
associated with the shale sequence and low values (~ 2.55) associated with the 
sandstone reservoir. The discriminant functions obtained from Hole A seem to 
characterise well the two main lithofacies in Hole B. It is possible to observe the 
interbedded variation between the sandstone reservoir and the shale between X325 - 
X354 metres. However, when this result is compared with the one obtained for 
Cluster Analysis, it is observed that the discriminant function in Hole A does not
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complete describe the changes in facies in Hole B. That technique suggested three 
different groups: Group 3 as the sandstone reservoir and Groups 1 and 2 as the 
shale/claystone sequence. Group 1 only appears at the upper part of the interval, 
indicating some variation in facies for that section. Therefore, it appears that the 
training sets in Hole A were not able to identify this facies variation at the upper 
section in Hole B, resulting in the same value of discriminant scores for all 
shale/claystone sequence over the interval.

T able 3.30

Summary statistics for training set 1

Log curve M ean S tan d a rd  deviation

RHOB 2.335 0.028
ILD L128 0 106
ILM L217 0U17

NPm 36.712 2H27
GRAY 67.813 4.256

DT 112.957 2.949

Summary statistics for training set 2

Log curve M ean S ta n d a rd  deviation

RHOB 2.080 0.028
ILD 32.818 19.&W
ILM 86.762 184.559
NPHI 33.672 L333
GRAY 38.343 fh018

DT 126.535 4.988

Table 3.30 - Summary statistics for the training sets in Hole A.
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Table 3.31

Multiple Discriminant Analysis

Discriminant functions 

Log curve DF # 1

RHOB 0.99998
ILD -0.00012
ILM 0.00000

NPHI 0.00597
GRAY -0.00089

DT 0.00262

Discriminant scores for the group 
centroids

Groups

Group 1 
Group 2

DF# 1

2.789
2.574

Total number o f ca se s ............................. 118
Number m isclassified............................... 0
Percentage m isclassified.......................... 0.00

F-ratio for overall discrimination.........................511.233
Degrees o f freedom .............................................6 and 111

Computed level o f probability for F .......................... 0.00

Ho: Group centroid = common centroid is rejected at alpha=0.001 
The group discrimination is excellent

Table 3.31 - Result for the Discriminant Analysis using the training sets in Hole A.
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Figure 3.26 - Principal Component Scores, Groups and Discriminant scores for
Hole A.



Hole B 
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Figure 3.27 - Groups and Discriminant Scores in Hole B.



Table 3.32

EUCLIDEAN DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct % correct
number in group to group m #™ p

1 too 100 100 100.00
2 422 422 422 100.00

Totals 522 522 100.00

MAHALANOBIS DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct
number in group to group m #™ p for group

1 100 100 100 100.00
2 422 422 422 100.00

Totals 522 522 100.00

GROUP GENERALISED DISTANCE CLASSIFICATION

Classification Summary

Group Actual number Number assigned Number correct % correct
number in group to group in group for group

1 100 105 100 100.00
2 422 417 417 9&82

Totals 522 517 99.04

Table 3.32 - General distance classification using three different models in Hole B.

Compared with the other techniques, Discriminant Analysis proved to be 
useful where a priori information about changes in facies are available. Core data or 
other geological information can help to define the best training set to be used 
depending on the objective to be reached. Variation in facies not described in the 
training sets can lead to misclassifications as observed in Hole B.
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3.6 - Summary and Discussion

3.6.1 - Results from ODP Hole 807C

ODP Hole 807C which features three main lithofacies exhibiting both 
significant physical and chemical contrasts, provided an ideal opportunity in which to 
investigate the efficiency of the statistical techniques.

Initially, the physical and chemical log data were subjected to the analysis of 
principal components. The results of this analysis suggest that the principal 
component I responds to the variation in gamma-ray radiation while the principal 
component II responds to the high A1 concentration. Another aspect of the Principal 
Component Analysis is the determination of the poor contribution given by the log 
curves IMPH and SFLU with values lower than 30%.

Cluster Analysis was performed in two steps. The first step was the 
Hierarchical analysis, where the relations between the log curves were obtained. As 
observed earlier in the Principal Component Analysis, especially in principal 
component I, two main groups of log curves can be detected. The second step in the 
Cluster Analysis was the application of the Non-Hierarchical method. Firstly the 
analysis was performed on the raw data and succeeded in defining a stratigraphie 
zonation of three groups which closely corresponds to the lithologie description. The 
second analysis was carried out based on the two principal component scores, 
obtained from the earlier Principal Component Analysis, and features an almost 
identical zonation. However, in this case, only two component scores were used in its 
construction, illustrating the efficiency of the principal component transform.

The third technique applied to the data set was the Discriminant Analysis. 
Contrary to the Cluster Analysis, this technique uses a priori knowledge about the 
data set. The result is shown in different ways. The mathematics of the discriminant 
function generates some form of solution, even when there are no systematic 
differences between the groups. This contingency can be checked statistically by the 
F-test in ODP Hole 807C data which is based on the Mahalanobis’ distance. The F- 
test rejected a common centroid between the groups and established the group 
discrimination as excellent. Mahalanobis' distance was also used to assess the relative 
contribution of each log curve to discrimination. RHOB was considered the log curve 
which presented the highest relative contribution. In the earlier Non-Hierarchical 
analysis using the raw log data, this log curve had already been considered the overall 
most important with a high value of 4.46 delta mean. Finally, a Table of correct and 
incorrect classification for the calibration data set and later for the whole data set gave 
a direct measure of the classification performance
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3.6.2 - Results from ODP Hole 878A

ODP Hole 878A consists of a polymictic breccia with variation basically in 
the matrix composition and in the amount of clasts. Although the physical and 
chemical log data are more complete than the previous hole, especially concerning 
the geochemical measurements, the changes in their values are more subtle and 
therefore hard to detect.

The initial technique applied was the Principal Component Analysis. The 
result of this analysis suggested that the principal components represent the variation 
in the matrix composition of the breccia, mostly given by principal component I 
which accounts alone for 65.3% of the total variability. Once more, it is possible to 
see the great advantage exerted by the Principal Component Analysis, reducing the 
dimensionality of the problem without losing the main information present in the 
original log data.

Cluster Analysis was performed in ODP Hole 878A using the same raw log 
data. Firstly, the Non-Hierarchical analysis looked for the relation between the 
variables. In this case, two main groups were also distinguished (Figure 3.16). This 
result confirms what was observed in the loadings of principal component I, where 
the variables are well characterised by strong positive and negative loadings.

Secondly, a Non-Hierarchical (Q-mode) analysis was carried out both on the 
raw log data and in the principal component transformed data. On the first case, a 
four group discrimination was achieved. Groups 1 and 2 show the variation within the 
Si based matrix at the top of the interval while Groups 3 and 4 are related with the 
variation within the Ca based matrix at the bottom. The differences between Groups 1 
and 2 and between Groups 3 and 4 were considered to be due to the content of Si and 
Ca respectively in each zone. The analysis using the principal component scores 
showed basically the same zonation encountered before, with the advantage of using 
a reduced amount of data.

3.6.3 - Results from Oilfield Holes A and B

In the case of these two holes. Discriminant Analysis was used to interpret 
facies changes in Hole B using the discriminant functions obtained in Hole A.

In general, the results can be considered good for lithofacies identification 
with the discriminant scores showing the two main lithofacies. However, when these 
results are compared with the Groups obtained from Cluster Analysis, it is clear that 
the discriminant function from the training sets in Hole A were not capable of 
interpreting changes in facies spotted by Groups 1 and 2 in Cluster Analysis.
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Variations in facies which are not included in the training sets cannot be expected to 
be identified by the Discriminant Analysis.
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4.1 - Introduction

Different terminologies such as Neural Network, Neural Computing and 
Neurocomputing are the most used to designate this teehnique. Other names such as 
Parallel Distributed Proeessing and Super-positional Models refleet more the way in 
which Neural Networks represent concepts as pattern distributed over links between 
neurons. Another name commonly used is Connectionism, which refers more to the 
philosophy underlying the neural approach. There are other terms in the literature, but 
in this work we use Neural Network or Neural Computing simply because they are 
the most common.

The terminology varies and so do the definitions. Neural Networks are 
computational systems, either hardware or software, which mimic the computational 
abilities of biological systems by using large numbers of simple interconnected 
artificial neurons (Anderson and Rosenfeld, 1988). Other authors like Aleksander and 
Mortn (1989) go into more detail stating that “Neural Computing is the study of 
cellular networks that have a natural property for storing experimental knowledge. 
Such systems bear a resemblance to the brain in the sense that knowledge is acquired 
through training rather than programming and is retained due to changes in neural 
functions. The knowledge takes the form of stable states or cycles of states in the 
operation of the net”. He continues: “... A central property of such nets is to recall 
these states or cycles in response to the presentation of clues.”

The problem of such definitions is that they may be useful and accurate but 
they may seen confusing at first. In general working definitions it is possible to say 
that Neural Computing is a general activity of getting machines to do brain-like tasks 
by utilising some of the features of biological neural systems. It has to be said, 
however, that our artificial Neural Network are very simple and small compared to 
biological Neural Networks, but they can still perform a remarkable task that 
conventional computing cannot, or if they do so, complex mathematical models are 
needed.

So what is the difference between Neural Computing and conventional 
approaches? Conventional computing relies on the instructions we provide to the 
machines which then execute a series of operations. Neural Computing relies upon 
training where the maehine learns from experienees. In addition, in conventional
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computing the task is explicitly represented whereas the representation is implicit 
within the links of a Neural Network.

4.2 - What is Artificial Intelligence ?

Today there is a progressively increasing amount of numerical data coming to 
be interpreted by log analysts. It is natural, therefore, that they look for increasingly 
more sophisticated methods of analysis, and artificial intelligence can be such a 
method. It is a potentially very powerful tool which incorporates rudimentary 
reasoning and pattern recognition features. These techniques, while simple 
individually, become a powerful system when used together.

A number of books and articles in the use of artificial intelligence examples on 
logging analysis are available. Most of these show the two paradigms that currently 
compete as models of the human mind. The first is a symbolic system. Its approach 
takes thinking to be an abstract chain of reasoning, and its roots are the Cartesian 
notions of mind/body separation. The second paradigm is based on a system of 
conneetions observed by biological studies. In this case, thinking and learning are 
considered to result from electrochemical changes in the massive parallel neural 
architecture of the brain (Anderson and Rosenfeld, 1988). This connectionist model is 
inductive in operation because its learning process is not set by predetermined rales 
but evolves complex interactions where the generated solution is based on the 
structure of the data set itself. The symbolic and the connectionist approaches produce 
two different ways of analysis: the expert system and the Neural Network. Both 
paradigms have their strengths and weaknesses when applied to problems of log 
analysis (Crain, 1985, Caudhill, 1991). The choice between them is generally dictated 
by the form of the petrophysical problem.

In this study it was decided to work with the connectionist approach, which 
stalled until major conceptual breakthroughs were made in the mid-eighties (Anguita, 
1993). The reason for this choiee is that the connectionist approach theory is inspired 
by functional studies of human brains. Obviously, it is not hoped to use in this work a 
model that is even a feeble approximation of the human brain because of its immense 
structural complexity that links about a hundred million neurons (MacGregor, 1987). 
However, the central idea has been put to work for artifieial intelligenee applications.

Neural Networks differ from expert systems in several fundamental ways. 
They are trained by being exposed to a large number of input patterns that cause them 
to learn by experience. Therefore, they operate in contrast to the style of expert 
system which is directed by an external knowledge base. A Neural Network may be
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slower in its ability to work with data, especially when handling a huge amount of 
training data, but it has the potential for positive results.

4.3 - Neural Networks

In this work the back-error propagation (BEP) Neural Network has been 
employed for both the characterisation of formation heterogeneities, and also in the 
construction of petrophysical logs for uncored intervals of a borehole.

4.3.1 - Artificial Neural Networks

An artificial Neural Network is an information-processing system that has 
eertain performance characteristics in common with biological Neural Networks. 
They have been developed as generalisations of mathematical models of neural 
biology, based on the following assumptions:

° information is processed at many simple elements called neurons;
° signals are passed between neurons over connecting links;
° each connecting link has an associated weight, which, in a typical Neural Network 
multiplies the signal transmitted;
® each neuron applies an activation function (usually non-linear) to its input (sum of 
weighted input signals) to determine its output signal.

A Neural Network is characterised by its architecture (in which the neurons are 
interconnected), by the method of determining the weights on the connections (the 
algorithm) and by its activation function (Haykin, 1994). These defined 
characteristics, which distinguish Neural Networks from other approaches of 
information processing, are now considered in turn.

A Neural Network consists generally of a large number of processing elements 
called neurons, cells or nodes (Hetch-Nielsen, 1990). Eaeh neuron is connected with 
other neurons through conneetion links, each one with an associated weight. The 
weights represent the information being used by the neural net to resolve a problem. 
Each neuron has an internal state, called its activation function, which is a function of 
the input it has received. Typically, a neuron sends its activation as a signal to several 
other neurons. Even though neurons can only send one signal each time, this signal 
can be broadcast to several other neurons (Fausett, 1994). Let us consider a neuron Y 
in the simple example in Figure 4.1, which receives input from neurons Xi, X 2  and 
X3.. The output signals of these neurons are x i, xg and X3, respectively. The weights 
on the connections from Xi, X 2  and X 3 , to neuron Y are w%, W2 and W 3. Therefore,

107



w

&
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Figure 4.2 - Artificial Neural Network with one hidden layer (after Anguita et al.. 1993).



the Neural Network input y_in, to neuron Y is the sum of the weighted signals from 
neurons X i, X 2  and X 3 .

y jn  = wixi + W2X2 + W3X3 .

The activation y of neuron Y is then given by a function which is the sum of 
the inputs, y = f(y_in), for instance the sigmoid function,

f(x) = 1  / [ 1 + exp(-x) ] ,

or any other activation function. The most commonly used activation functions are 
described later, in a discussion about the back-error propagation Neural Network.

Now suppose that neuron Y is connected to neurons Zi and Z 2  as in Figure 4.2. 
The weights now between them are v, and V2  respectively. The neuron Y sends its 
signal to each one of these new neurons. In a typical Neural Network, the activations 
z\ and Z2  would depend on inputs from several or even many neurons, not just one, as 
shown here. Although the example in Figure 4.2 is very simple, the presence of a 
hidden unit, together with an activation function, gives it the ability to solve many 
more complicated problems.

4.3.2 - Biological Neural Networks

There is a close analogy between the structure of a biological neuron and the 
processing unit presented above. In fact, a biological neuron has three types of 
components that are of particular interests in understanding an artificial neuron: its 
dendrites, soma and axon. The millions of dendrites in a human brain receive signals 
from other neurons. The signals are electric impulses that are transmitted across a 
synaptic gap by means of a chemical process. The action of the chemical transmitter 
modifies the incoming signal in a manner similar to the action of the weights in an 
artificial Neural Network (Johnson and Brown, 1988).

The soma, or cell body, sums the incoming signals. When sufficient input is 
received, the cell transmits a signal over its axons to other cells. A generic biological 
neuron is shown in Figure 4.3, together with axons from two other neurons (from 
which the illustrated neuron could receive signals) and dendrites for two other 
neurons (to which the original neuron would send signals). Several key features of 
processing elements of artificial Neural Networks are suggested by the properties of 
the biological neuron:

• the processing unit receives many signals;
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° the signals may be modified by weights at the receiving synapse;
° the processing unit sums the weighted inputs;
° under appropriate circumstances (sufficient input), the neuron transmits a single 
output; and
° the output signal of a particular neuron can be transmitted to other neurons.

Some other artificial Neural Network features are also suggested by biological 
neurons, such as:

° the information processing is local; and 
° the memory is distributed:

- long-term memory resides in the neurons' synapses or weights;
- short-term memory corresponds to the signals sent by the neurons.

Yet another important characteristic that artificial Neural Networks share with 
biological neurons is fault tolerance (Fausett, 1994). Biological systems are fault 
tolerant in two ways. Firstly, humans are capable of recognising many input signals 
which are different from any other signal they have received before. An example of 
this is our ability to recognise any object in a picture we have not seen before or to 
recognise an object after a long period of time. Secondly, we are able to accept any 
fault in our own nervous system. The human is born with about 100 billion neurons. 
Most of these are located in the brain and most are not replaced when they die 
(Johnson and Brown, 1988). Despite the continuous loss of neurons, humans continue 
to learn. Even in cases of traumatic neural loss, other neurons can be trained to take 
over the functions of the damaged cells. In a similar manner, artificial Neural 
Networks can he designed to be insensitive to small damage to the network, and the 
network can he retrained in cases of significant damages, for instance, loss of data 
and/or some connections.

4.4 - Back-error propagation Neural Network (BEP)

Single layer Neural Networks were first used in mid 50s. As shown in Figure 
4.1, the earliest Neural Networks had the input signals directly broadcast to the output 
units, with the signals being multiplied by the weights present in these connections 
and the activation function. However, the limitations of these systems were a 
significant factor in their decline and lack of interest towards 1970 (Minsky and 
Papert, 1969). By the mid 80s, an increase was seen in the interest for a new system of 
Neural Networks, which include one or more hidden layers. In this new approach, 
called back-error propagation, the final result given by the Neural Network during the
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training process is compared with an expected result. The differences between them 
are retransmitted to the previous layer or layers, together with a change in their 
weights. The process is repeated until a convergence is achieved with the expected 
result.

As in the case of most Neural Networks, the aim of the back-error propagation 
Neural Network is to train the net to achieve a balance between the ability to respond 
correctly to the input patterns that are used for training (memorisation) and the ability 
to give reasonable responses to an input that is similar, but not identical, to that used 
in training (Fausett, 1994).

The training of a back-error propagation Neural Network involves three stages: 
the feedforward of the input training pattern, the computation and backpropagation of 
the associated error, and the adjustment of the weights. After training, the application 
of the net involves only the feedforward process. Even when the training process is 
slow, a trained net can produce its output very rapidly because there is no propagation 
of the errors in the opposite direction. Numerous variations of the backpropagation 
technique have been developed to improve the speed of the training process. In this 
work, the original algorithm for backpropagation training (Rumelhart et al., 1986) 
uses an implementation method called Yogi's acceleration (Anguita et al., 1993).

Although a single-layer net is severely limited in the mappings it can learn, a 
multilayer net, with one or more hidden layers, can learn any continuous mapping to 
an arbitrary accuracy. More than one and sometimes two layers may be beneficial for 
some applications, but generally one layer is sufficient. Figure 4.4 gives an idea about 
the relationship between the number of Neural Network layers and the complexity of 
partition boundaries that can be generated in a discrimination space. Depending on the 
number of neurons in the hidden layer, the partition can be improved. The optimum 
number of neurons depend on the performance of the Neural Network in learning a 
specific task. In some cases, too many neurons in the hidden layer can produce an 
overtrained Neural Network, which will not be able to interpret a general input data 
because it is too sensitive to small changes within the dataset (Baum and Haussier, 
1989).

4.4.1 - Architecture and algorithm

A typical back-error propagation Neural Network with one layer of hidden 
units is shown in Figure 4.5. The output units Y, the hidden layer units Z and the input 
units X are presented as well as the associated weights w and v . As can be seen, only 
the feedforward process propagation direction is shown. In the backpropagation stage 
the signals have the opposite direction.
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As mentioned earlier, the training process of a back-error propagation Neural 
Network involves three stages: the feedforward of the input training pattern, the 
backpropagation of the associated error and the adjustment of the weights. During the 
first stage, each input unit X; receives an input signal and broadcasts this signal to 
each of the hidden layer units Z % Z p .  Each unit then computes its activation 
function and sends its signal zj to each output unit. Each output unit computes its 
activation to form the response of the net to the previous input pattern.

Yet, during the training process, each output unit compares its computed 
activation y^ with the expected target value tk in order to determine the associated 
error or difference between both. Based on this error or difference, a factor ôk
(k=l,...,m) is computed. This value is used to distribute the errors at the output units
back to all units in the previous layer (the hidden layer). It is also used to update the 
weights between the output layer and the hidden layer. In a similar manner, the factor 
ôj (j=l,...,p) is computed for each hidden unit. In fact, it is not necessary to propagate 
the error back to the input layer, but ôj is used to update the weights between the 
hidden layer and the input layer (Haykin, 1994).

After all the 5 factors have been determined, the weights for all layers are 
adjusted simultaneously. The adjustment to the weight wjk is based on the factor ôk 
and the activation zj and the adjustment of the weight vy is based on the factor ôj and 
the activation Xj.

The training and validation algorithm for a back-error propagation Neural 
Network is described as follows (Fausett, 1994). For the training process we have:

Step 0 - Initialise weights (generally set to small random values).

Step 1 - While stopping condition is false, do steps 2 to 9.

Step 2 - For each training pair input/output, do steps 3 to 8 .

Feedforward process:

Step 3 - Each input unit X; (i=l,..., n) receives an input signal X{ and 
transmits this signal to all other units in the layer above.

Step 4 - Each hidden unit Zj (j=l,..., p) sums its weighted input signal 
through

Z_iUj =  Vqj +  X (l,n ) N  Vjj ,

114



where Voj is the bias on the hidden unit j (generally set as 1 ), and then 
applies its activation function (zj = f(z_iuj)) to compute its

output signal which will be sent to all units in the layer above.

Step 5 - Each output unit Yk (k=l,..., m) sums its weighted 
input signals from the hidden layer through

y_ink = Wok + Z(t.p)Z^Wjk ,

where Wok is the bias on the output unit k (generally set as 1 ), and then 
applies its activation function (yk = f(y_i%)) to compute its output 
signal which will be compared with the expected target value tk. 
Backpropagation of the error:

Step 6  - In each output unit Yk is computed the error
which is the difference between the expected value tk and the output
signal yk as

5k = (tk - Yk) f  (y_ink) ,

where ôk is the error due to the output signal yk and that will be used 
to correct the weights wjk through

Awjk = a  ôk Zj ,

where a  is the learning rate of the Neural Network. This value is also 
used to correct the bias Wok through

— 01 ôk .

Ôk is then send to the layer below.

Step? - Each hidden unit Z j (j=l,..., p) sums its delta inputs as

5_ipj = 2(1,m) 5k Wjk ,

and multiplies this value by the derivative of its activation unit 
to calculate its error information term. Then,
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ôj = Ô_inj f  (zjiij) .

The weight correction term, which is used to update vy later 
is obtained through

Avy = a Ôj Xi ,

and calculates its bias correction term (used to update Voj later) as 

AVqj — OC Ôj .

Update weights and biases:

Step 8 - Each output unit Y k update its bias and weights through 

Wjk(new) = Wjk(old) + Awjk , and 

each hidden unit Zj does the same using 

Vy(new) = Vy(old) + Avy .

Step 9 - Test stop condition.

The mathematical basis for the backpropagation algorithm is the optimisation 
technique known as gradient descent (Battiti, 1992). The gradient of a function (in this 
case, the function is the error and the variables are the weights of the Neural Network) 
gives the direction in which the function increases more rapidly; the negative of the 
gradient gives the direction in which the function decreases more rapidly. Fausett 
(1994) gives a complete explanation about the derivation of the weight update rules, 
which clarifies the reason why the weight updates should be done after all of the ôk 
and ôj expression have been calculated, rather than during the backpropagation 
process.

After training, a backpropagation Neural Network is applied by using only the 
feed-forward phase of the training algorithm. The application procedure is as follows:

Step 0 - Initialise weights (from training algorithm).

Step 1 - For each input vector, do steps 2-4.
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Step 2 - For i = 1,..., n: set activation of input unit x;.

Step 3 - For j = 1,..., p:

z_inj=Voj +  Z(]^)XiVij ;

=f(z_ii^) .

Step 4 - For k = 1,...., m:

y_ink = Wok + 2(i,p)^Wjk ;

Yk =  f(y_ink) .

In the case of a Neural Network with more than one hidden layer, only a few 
modifications in the algorithm for one hidden layer are necessary.

In this work, we use a implementation of the backpropagation algorithm, called 
"matrix back propagation" (Anguita, 1993). The purpose of this version is to 
implement an advanced backpropagation algorithm compared with the original one 
developed by Rumelhart et al. (1986). The backpropagation algorithm is taken from 
the classical method developed by Vogl et al. (1991). This is an effective gradient 
descent method. A modified version of Anguita et al. (1993) for RISC-based 
workstations and implemented in C was tested and used here.

4.4.2 - Activation function

An activation function for a back-error propagation Neural Network should 
have a few distinguishable characteristics. It should be continuous, differentiable (as 
can be seen in steps 6  and 7 of the backpropagation algorithm) and monotonically 
non-decreasing. Moreover, for computational efficiency, it is desirable that its 
derivative be easy to compute.

One of the most typical activation functions is the binary sigmoid function, 
which has a range of (0,1) and is defined in Figure 4.6a as:

fi(x)= 1 / ( 1  + exp(-x)) ,

with

fi(x ) = fi(x ) [ 1 - f i ( x ) ]  .
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Another common activation function is the bipolar sigmoid function (Figure 
4.6b), which range from -1 to +1 and is defined as:

fz(x) = ( 2  / ( 1  + exp (-x) ) ) - 1 ,

with

f 2 (x) = ( l/2 ) ( l + f 2 ( x ) ) ( l - f 2 (x)) .

4.5 - Application of the Back-error Propagation Neural Network to well log data

There are two principal objectives in the use of the back-error propagation 
Neural Network in the well log data of the OOP. The first objective is the lithofacies 
characterisation and identification of formation heterogeneities over specific intervals 
in different holes already investigated with the multivariate statistical techniques 
(Chapter 3). The ability of the Neural Network to characterise different geological 
sequences using both well log and core data was tested here. The results for each hole 
are compared with results obtained with the statistical techniques used in chapter 3.

The second objective is to test the ability of the Neural Network in determining 
quantitative physical property estimates from well logs in uncored intervals using core 
measurements from other intervals as a training basis. In this case the precision and 
accuracy of the data from different sources are very important in the training of the 
Neural Network, and are considered here by using sample support in the integration of 
measurements at different scales. We also show the ability of the Neural Network to 
construct physical property logs for uncored intervals.

4.5.1 - Data standardization

The aim of standardization or equalisation is to cause each variable or log 
curve to have a common numerical magnitude. This removes the problem which 
arises when different units of measurements are used to express element 
concentrations or physical properties (i.e. weight percent or part per million; 
resistivity and porosity). It also accommodates log curves which use the same scale of 
measurement but have different magnitudes. The process of standardization is 
achieved by dividing all the measurements for a variable by an equalising factor 
expressed in the same units. This converts all the log curves to a single index of 
similarity.

The method of homogenising the log curves used in this work is that of 
reducing to a standard form (i.e. zero mean and unit standard deviation) by:
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Zÿ =  (Xij -  X i) /  a i  ,

where Zÿ is the standardized value for the i^  log curve of the measurement, Xÿ is 
the i*̂  log curve of the measurement, Xi is the overall mean of all values of the i^  
log curve and Oi is the standard deviation associated with the i^  log curve

This process removes the effect of individual magnitude of the various log 
curves (e.g. 10% of 810% may now be equivalent to 5 ppm of Th or 3 ppm of U). In a 
large number of experiments which were earried out on both standardized and 
unstandardized data for which there was a priori knowledge, it was found that 
normalised data tended to give improved results.

4.5.2 - ODP Hole 807C

The interval studied in ODP Hole 807C, the one investigated by multivariate 
statistical analysis, is between 1270 - 1400 mbsf. The geological sequence, as 
described before, consists of a carbonate sequence from 1270 to 1351 mbsf (Unit A), 
followed by a siltstone/claystone sequence to 1380 mbsf (Unit B) and a basic volcanic 
sequence to the bottom of the hole (Unit C). In addition there is a thin carbonate 
sequence at the bottom of Unit B, between 1375 - 1377 mbsf. The first objective is to 
compare the lithofacies characterisation obtained here with the one produced by 
statistical techniques and also with the classification observed in the core description. 
The second objective is to produce physical property logs for the uncored sections of 
the hole using physical property measurements from the cores as training sets.

4.5.2.1 - The lithofacies characterisation

For comparison with multivariate statistical analysis in ODP Hole 807C the set 
of log curves were used. The data set consists of 10 log curves given by the resistivity 
tool (ILD and SFLU), the natural gamma tool (GRAY, THOR, POTA and UR AN), 
the lithodensity tool (RHOB and PEF), sonie tool (DT) and the aluminium clay tool 
(ALUM). The lithofacies characterisation obtained from core description is used here 
to build the training set. It consists of short intervals which best eharacterise each 
lithofacies. The intervals selected are the same as for the Discriminant Analysis (see 
chapter 3) in order to perform a comparison between the two results.

The training algorithm operates accordingly to the Neural Network structure. 
The user specifies the desired network size and initial structure, with the number of 
input and output neurons dictated by the task being solved (Gonçalves et al., 1995a).
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The structure of the Neural Network used for ODP Hole 807C has 10 neurons 
in the input layer, 7 neurons in the hidden layer and 3 neurons in the output layer 
(Figure 4.7). The input layer corresponds to the number of log curves used in this 
analysis and the output layer is given by the three different lithofacies to be identified. 
The number of neurons in the hidden layer is something to be defined by the 
performance of the Neural Network during the training process. Transformation tasks 
require exact or nearly exact solutions for use as targets. Very small, if any, errors are 
allowable. Any variance in input signals that are not due to noise represent true 
variations in formation characteristics that the network must be able to track. 
Therefore, the final number of neurons in the hidden layer is defined by the best result 
obtained in the training process, or the minimum error between the net result and the 
expected target. Figure 4.8 illustrates the performance of the back-error propagation 
for training process in ODP Hole 807C using 7 neurons in the hidden layer. It shows 
the number of iterations needed to obtain a minimum error between the result and the 
expected target. Other tests were done for different numbers of neurons in the hidden 
layer. Table 4.1 shows the result in terms of number of iterations and the minimum 
error achieved by the Neural Network.

Table 4.1

Number of neurons in the 
hidden layer

Number of iterations Minimum error achieved

5 150 &8%
6 212 2.5%
7 100 0.27%
8 327 1.90%
10 4 3 0 3.45%

Table 4.1 - Number of iterations and minimum error achieved for different number of 
neurons in the hidden layer for training process in ODP Hole 807(1

Verifying generalisation is a critical step in Neural Network training. The term 
generalisation refers to the ability of a trained Neural Network to process data that is 
not part of the training set. Good generalisation means that the network has learned 
general principles from a limited training set and that its final structure is most 
generally correct. Poor generalisation means that the network is not able to discover 
general data trends from the training set. Critical features are not learned or not 
learned well enough. Verification of generalisation is important because a network
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might learn the training set so well that it becomes too sensitive to small features 
which are normally not part of the routine data set.

The “brainstate” obtained by the training process outlined above is then 
applied in a feed-forward mode (see section 4.3.1) to the whole data set. It means that 
the output from all input layer neurons is modified by the connection weights found 
during training. The result of the generating output process for ODP Hole 807C is 
shown in Figure 4.9. The three different lithofacies are represented here as Unit A, 
Unit B and Unit C for the carbonate sequence, the siltstone/claystone sequence and 
for volcanic sequence respectively. As can be seen, most of the interval studied is in 
excellent agreement with the core description. The variations observed are generally 
due to two or even three lithofacies being characterised within the same interval, for 
instance at 1310-1315 mbsf, 1345-1350 mbsf and 1375-1380 mbsf where the three 
different lithofacies are defined by the Neural Network. In the first two intervals 
described above the predominance of Unit A over the other two lithofacies is clear. In 
the last interval, it seems that the Neural Network was not able to identify the right 
unit present as all lithofacies seem to be well characterised by the Neural Network. 
Between 1375-1377 mbsf the result gives the volcanic sequence (Unit C) as the 
strongest unit present in this interval, with the presence of Unit B and Unit A reduced. 
Between 1377-1380 mbsf although the Neural Network gives a strong 
siltstone/claystone characterisation, it also shows strong presence of Unit A 
(carbonates) for this interval. These misclassifications are the result of similar values 
in some log curves at these intervals or even bad hole conditions as can be observed 
in the caliper log (Figure 2.4).

Based on the absolute classification obtained from the core description, it is 
observed that the Neural Network gives a result with 2.87% of misclassified samples. 
This figure is given by the number of samples that do not match the classification 
given by the core description and Group classification. Comparing the classifications 
obtained here with the back-error propagation Neural Network and the one obtained 
by Discriminant Analysis in Chapter 3, the Neural Network still gives a better result 
than the one obtained by the Euclidean distance classification method which gives a 
22.67% of misclassified samples.

One way to find out the possible sources of the misclassifications observed for 
ODP Hole 807C is to run the analysis for different data sets. In this case, we use two 
criteria to split the data. The first one is based on the property dependence of each log 
curve. The second criterion is the vertical resolution and depth of investigation of 
each log curve. In the first one it is looking for whether some physical or chemical 
properties instead of all data set is responsible for the misclassifications.

In the second criterion, as measurements with different vertical resolutions and 
also different depth of investigations are being talcen, and assuming that both have
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generally the same value (Theys, 1990),. it is possible that some intervals are being 
affected by measurements from nearby intervals. Therefore, the whole data set is split 
into different groups of log curves depending on their property dependence and 
vertical resolution characteristics. The analysis for each group is shown below.

Property Dependence analysis

The log curves in ODP Hole 807C were divided into two different groups 
according to their property dependence. Group I is composed of the log curves which 
are more affected by the lithology type whilst Group II are defined by the log curves 
which respond to variations in porosity and fluid type present in the rock. Both groups 
can be observed in Table 4.2.

Table 4.2

Group I Group II

GRAY DT
THOR ILD
URAN SFLU
POTA RHOB

PEF
ALUM

Table 4.2 - Property dependence groups for back-error propagation Neural Network 
analysis in ODP Hole 807C.

The results for the analysis for each group are shown in Figures 4.10 and 4.11. 
While there is a general agreement between the two models and that obtained with the 
complete set of logs, some distinct differences are apparent. These differences in 
terms of misclassification (two or more lithofacies appearing at the same interval) are 
very strong.

In the analysis of Group I, it is observed that Unit C although only described 
by core description below 1380 mbsf, appear as a misclassification throughout the 
upper and middle section of the hole. These misclassifications are due to the presence 
of four log curves (GRAY, THOR, URAN, PEF) which present almost no difference 
in the range of their values in Units A and C. The misclassifications observed in the 
middle section (1352-1380 mbsf) are due mostly to the presence of the same URAN 
content within Units B and C.

For Group II, a different result in terms of misclassification is observed. As in 
the analysis with Group I, it is still possible to see a good characterisation of the three
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different units. However, in this case. Unit B appears as a strong misclassification in 
the upper part of the interval. Here, resistivity measurements (ILD and SFLU) appear 
to be the main source of these misclassifications.

From these analyses we can start to interpret the misclassifications obtained for 
the analysis with all of the log curves (Figure 4.9). Variations in porosity within Units 
A and B (given by resistivity measurements) can possibly be the source of the 
misclassifications observed within these two units. Small increases in potassium 
content and also small decreases in photoelectric factor values are the main sources of 
the misclassifications of Unit C in the upper part of the interval. In the same way, 
similar gamma-ray values (mainly between 1345-1350 mbsf) can also be a source for 
those misclassifications.

Vertical Resolution and depth of investigation analysis

The objective here is to see whether if any of the misclassification observed in 
the analysis with the complete set of log curves can also originate from different 
vertical resolutions and/or depths of investigation of the log curves. The log curves 
were divided into four different groups (Table 4.3).

The analysis with the Neural Network was carried out for each group and the 
results can be observed in Figures 4.12 to 4.15. Again, in general all the results 
identify well the three lithofacies. However, in each analysis the misclassifications 
appear differently. A major difference can be observed between Groups I, II and III 
and Group IV. Although the three first groups represent different vertical resolutions 
and consequently different depths of investigation, two of them contain a component 
of the resistivity measurement. They are the main source of all misclassifications 
observed within Units A and B. The misclassifications are more evident in the results 
of Groups I and III. In Group II, the presence of ALUM (different range of values 
within Units A and B) reduces the amplitude of the misclassifications. On the other 
hand Group IV, which does not contain any resistivity curve, gives a completely 
different response. In this case, the noise is represented by Unit C being characterised 
in the upper and middle interval. When we compare the result with the one obtained in 
Figure 4.10 (Group I of property dependence) we can see in general the same 
variation. In both cases the difference is that here we have RHOB (density) instead of 
ALUM. Possibly the close range of density values between Units A and C is 
responsible for the increase in the misclassifications in this case.

What happens is that instead of vertical resolution and/or depth of 
investigation, the results are responding more to the property dependence of each log 
curve combination. In all these examples, the reduction in the number of log curves 
results in a worst response by the Neural Network, while more miselassifications are
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observed. The results lose quality and resolution although it is still possible to detect 

the right unit at the right interval.

Table 4.3

Group I Group II Group III Group IV

ILD ALUM DT GRAY
ILM SFLU THOR

URAN
POTA

PEF
RHOB

average vertical resolution
2 meters 1.5 meter 0.75 meter 0.4 meter

Table 4.3 - Vertical resolution groups for back-error propagation Neural Network
analysis in ODP Hole 807C.

4.5.3 - ODP Hole 878A

The objectives for the analysis with the back-error propagation Neural 

Network for ODP Hole 878A  included a comparison between the result given by the 

Neural Network and the result obtained with the statistical techniques (chapter 3). The 

ability o f the Neural Network to produce petrophysical logs for the uncored intervals 

is also tested. The interval to be investigated is the same as in chapter 3, between 515- 

600 mbsf. As two different matrix breccias are the main lithofacies within the interval, 

they are represented in the training set as they were in the statistical analysis.

4.5.3.1 - The lithofacies characterisation

The structure o f the Neural Network used for ODP Hole 878A consists o f 13 

neurons in the input layer, 7 neurons in the hidden layer and 2 neurons in the output 

layer (Figure 4.16). The number o f neurons in the input layer correspond to the 13 log  

curves used as input and the number o f neurons in the output layer correspond to the 

two different matrix supported breccias observed in this hole. Again, the number o f  

neurons in the hidden layer was dictated by the performance o f the neural net during 

the training process. Figure 4.16a shows the performance o f the Neural Network for 

lithofacies characterisation in ODP Hole 878A. As observed, the number o f iterations 

to obtain the minimum error (400) are greater than in previous example. This is 

probably due to the variability in the log responses caused by the presence o f a more 

complex lithofacies in this hole.
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The weights obtained during the training process were then applied to the 
whole data set and the result can be observed in Figure 4.17. The two different 
lithofacies are here represented by Unit A (Si-matrix breccia) and Unit B (Ca-matrix 
breccia). The interpretation given by the Neural Network corresponds in general with 
the characterisation observed in the cores for the whole interval. The interval between 
563-571 mbsf, where an interbedded sequence of the two different units are observed, 
was also well chaiacterised.

Along the whole interval there are only two sections that were not well 
characterised by the net. Although the results show a strong presence of Unit A for the 
interval between 540-548 mbsf, Unit B is also well represented. The second section is 
the interval between 571-577 mbsf, which presents the same characteristic described 
above. Both misclassifications were also observed in the multivariate statistical 
analysis (chapter 3). The group classification of Cluster Analysis (Figure 3.19) shows 
Group 3 for the interval between 540-548 mbsf.

Compared with the absolute classification obtained through the excellent core 
recovery within the whole interval (95%), the Neural Network shows a value of 
4.84% of samples that do not agree with that classification. This value is mostly given 
by the intervals described in the last paragraph. The classification obtained from the 
Discriminant Analysis using the Euclidean distance classification method gives a 
value of 6.20% of misclassified samples. Even though the number of misclassified 
samples are so different, the intervals where they were observed are the same for both 
techniques. This last example shows how much better a Neural Network model can 
improve a lithofacies classification in a complex lithological sequence.

As in the previous hole, in order to find out possible sources of the 
misclassifications, the analysis with the back-error propagation Neural Network was 
run for different data sets. To do this, the original data set was once more split 
according to the same criteria used before. The first criterion is the property 
dependence and the second is the vertical resolution/depth of investigation of each log 
curve.

Property Dependence analysis

Five different groups were formed accordingly to the property dependence of 
each log curve in ODP Hole 878A (Table 4.4). Groups I and II are related to 
variations in rock porosity with Group II also showing influences of fluid type present 
in the rock. Groups III, IV and V are related with the lithology type.
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Table 4.4

G ro u p  I G ro u p  n G ro u p  n i G roup  IV G ro u p  V

NPHI DT THOR CA C03 A L 203
RHOB ILD URAN S I02 T I02

SFLU POTA FEO

Table 4.4 - Property dependence groups for back-error propagation Neural Network 
analysis in ODP Hole 878A.

The result for the analysis with each group can be observed in Figures 4.18 to 
4.22. As seen, the best result obtained is given by Group IV(Figure 4.21). This is 
because the main variation in the polymitic breccia is the presence of a Ca or Si 
matrix. In this case the CaCO, and 510% oxides show the best fit to the analysis with all 
set of log curves (Figure 4.17). The other groups show different results, but basically 
keep the two different units well characterised. The worst result, or the one with most 
misclassifications, is Group III which shows some mismatches not observed before. 
This are probably due to the small variation in THOR, URAN and POT A (Figure 3.6) 
within the interval.

These results confirm the lithologie description of the cores. The main 
variation is given by the matrix component. The variations in Ca and Si content are 
the principal sources of the mismatches. Another interesting factor here is that, 
contrary to the previous examples, the reduction in the number of log curves (when 
the right ones are used) does not affect the result of the analysis and also shortens the 
time needed for analysis.

Vertical resolution and depth of investigation analysis

Based on their vertical resolution, the log curves in ODP Hole 878A were 
divided into three different groups (Table 4.5). The result obtained for each group can 
be observed in Figures 4.23 to 4.25. The results given by the three different groups 
show a greater dependence on property rather than to the vertical resolution or depth 
of investigation of the log curves. Group I (Figure 4.23) shows a response very similar 
to that obtained for the analysis using all log curves (Figure 4.17) and to the one using 
CaCOg and SiOj oxides. The other two groups show a slightly different responses, 
with the mismatches increased or decreased depending on the log curves present.

Although some groups are still able to give a relatively equal response to that 
obtained with a complete set of log curves, it is clear that the analysis loses resolution. 
An example is the interval between 563-577 mbsf, where two thin interbedded layers
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Figure 4 . IS - Neural Network results for lithofacies identification using Group I
log curves from property dependence analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Property Dependence - Group 2
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Figure 4.19 - Neural Network results for lithofacies identification using Group 2 
log curves from property dependence analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Property Dependence - Group 3
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Figure 4.20 - Neural Network results for lithofacies identification using Group 3
log curves from property dependence analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Property Dependence - Group 4

£ c

O  C

UNIT A UNITB

59

60

I

]

1 0

c.

Figure 4.21 - Neural Network results for lithofacies identification using Group 4
log curves front property dependence analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Property Dependence - Group 5
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Figure 4.22 - Neural Network results for lithofacies identification using Group 5
log curves from property dependence analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Vertical Resolution - Group 1
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Figure 4.23 - Neural Network results for lithofacies identification using Group 1 log
curves from vertical resolution and depth o f investigation analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Vertical Resolution - Group 2
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Figure 4.24 - Neural Network results for lithofacies identification using Group 2 log 
curves from vertical resolution and depth of investigation analysis in ODP Hole 878A.



Hole 878A - Neural Network results
Vertical Rresolution - Group 3
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Figure 4.25 - Neural Network results for lithofacies identification using Group 3 log 
curves from vertical resolution and depth o f investigation analysis in ODP Hole 878A.



of Si and Ca matrix are observed. These layers were not well identified in the analysis 
with the other groups.

Table 4.5

G ro u p  I G ro u p  n G ro u p  III

A L 203 DT THOR
SI02 SFLU URAN

CA C03 POTA
FEO RHOB
T I02

average vertical resolution
1.5 meter 0.75 meter 0.4 meter

Table 4.5 - Vertical resolution groups for back-error propagation Neural Network 
analysis in ODP Hole 878A.

4.5.4 - Oilfield Holes A and B

4.5.4.1 - The lithofacies characterisation

Two oilfield holes from SE Brazil are used here to test the application of the 
backpropagation Neural Network in identifying lithofacies in an offset hole. The 
geological sequence in both holes is given by a sandstone reservoir within a 
shale/clay stone sequence. Hole A (Figure 2.8) shows a consistent sandstone reservoir 
25 metres thick with high resistivity (~ lOOQm) and low density. Hole B is 
characterised by a sequence of interbedded sandstone and shale between X325 - X354 
metres (Figure 2.9). Sand layers within the reservoir zone range from 2 to 5 metres 
thick. From a quick look analysis of the log curves, the shale/claystone appears as a 
uniform sequence throughout the interval.

The log curves in Hole A for the same interval selected in the Discriminant 
Analysis were used to train the backpropagation Neural Network to predict the two 
lithofacies present. As in the application of Discriminant Analysis, the Groups 
resulted from the Cluster Analysis were used as a basis for the lithofacies 
identification. The structure of the Neural Network for Hole A has 6  neurons in the 
input layer given by the six log curves and two neurons in the output layer given by 
the two different lithofacies to be identified (Figure 4.26). The number of neurons in 
the hidden layer was given by the performance of the Neural Network during training. 
Table 4.6 shows the result in terms of number of iterations and the minimum error 
achieved by different Neural Network structures compared with the expected target
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Figure 4.26 - Structure of the Neural Network for lithofacies identification in HoleA.
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Figure 4.27 - Neural Network performance during the training process for 
lithofacies identification in Hole A.
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during training. Figure 4.27 illustrates the performance of the Neural Network for the 
minimum error achieved in Table 4.6.

Table 4.6

Number of Number of Minimum error
neurons in the iterations achieved
hidden layer

3 210 1.85%
4 187 0.38%
5 202 1.96%
6 173 1.86%
7 257 1.36%

Table 4.6 - Number of iterations and minimum error achieved for different number of 
neurons in the hidden layer during training stage in Hole A.

After training, the final weights learned by the Neural Network from Hole A 
were applied to predict the lithofacies in Hole B. The result for the Neural Network 
predicted lithofacies is shown in Figure 4.28. The discriminant scores were also 
plotted for comparison. Both lithofacies were well defined by the Neural Network. 
The interbedded sand/shale reservoir zone was also well characterised with all the 
sand layers being identified. However, the upper part of the interval shows some 
variation in the characterisation. It is observed that the Neural Network identified both 
lithofacies between X305 - X324 metres. Although the classification given by the 
Neural Network shows that the shale/claystone sequence is the strongest for that 
section, the identification of some sand can be a result of facies changes in the 
shale/claystone sequence for the upper part of the interval in Hole B, which was not 
characterised by the discriminant scores. This variation had already been observed in 
the Groups of the Cluster Analysis (Figure 3.27), where Groups 1 and 2 were 
generated.

The result produced by the Neural Network can be considered reasonable 
good, where the main lithofacies were characterised and heterogeneities in one of the 
lithofacies were also identified.

4.6 - The generation of physical property logs

One of the important tasks for geologists and geophysicists during formation 
characterisation and evaluation is to provide estimates of the physical properties for 
the hole being investigated. Where core recovery is extensive throughout the intervals
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investigated, physical property values can be obtained for all sections and different 
lithofacies through direct core measurement. However, where there are gaps in the 
core recovery or even where some holes in the same area have no core at all, then a 
method of predicting physical properties must be derived.

There are many techniques available for physical properties prediction. 
Algorithms using simply the log responses, geochemically derived mineral abundance 
and of course direct core measurements are among them. However, all generally 
require the formation to be zoned into intervals of different petrophysical 
characteristics in order for the methods to come close to providing satisfactory results 
(Jenner and Baldwin, 1994). Another important aspect to be pointed out is the 
geographic dependence of these methods. When they aie applied elsewhere, they are 
less likely to be successful.

As in the classical procedure for most Neural Networks, physical properties are 
estimated here by training the system with measured core data from recovered 
sections. During training, the objective is to reduce the difference between the core 
measurements, which are used as target, and the Neural Network result. This is 
performed by adjusting the connecting weights in the Neural Network (Hetch-Nielsen, 
1990). The final weights obtained aie then applied to the whole interval for comparing 
the results between core and Neural Network estimates and also to generate physical 
property logs.

The structure of the Neural Network used for this procedure (Figure 4.29) is 
slightly different from that used for lithofacies characterisation. The number of the 
neurons in the input layer is given by the log curves and the output layer is defined by 
the physical properties to be estimated. However in this case, for each set of output 
values of physical properties, there are a few sets of input values used. Bearing in 
mind that the core measurements were taken from single or discrete points and the log 
data is an average over their vertical resolution, the use of a “windowing” technique 
allows for resolution matching as well as compensating for any minor depth matching 
error. The number of depth windows in the input layer depends on the vertical 
resolution of the logs used. Since the log measurements were talcen at intervals of 0.15 
metres and the average vertical resolutions of the logs used are 0.7 and 0.6 metres for 
the first and second examples respectively, different numbers of depth windows were 
necessaiy for each input and each output training pair.

Another important aspect is the reliability of the results. Comparison of 
generated output with core data can provide some information on how well the Neural 
Network has been trained. However, this does not provide any information about the 
quality or accuracy of the results estimated in intervals with no core recovery. In order 
to give a confident level for the result, the Neural Network is also trained to predict 
“known” quantities, which are different physical properties measurements previously
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obtained with other methods. When intervals where the Neural Network prediction 
agrees well with the “known” quantities, the network has been trained in a way to 
correctly identify the meaningful variations in the log data.

Because the Neural Network is being trained to predict physical properties on 
the strength of log response, the logs must be sensitive to changes in the physical 
properties. Changes in lithology, resulting in changes in physical properties which are 
not reflected in the log response will not be correetly predicted by the Neural 
Network.

4.6.1 - ODP Hole 807C

In ODP Hole 807C a number of physical properties were measured on core 
samples for the whole interval drilled. Between 1270-1400 mbsf, due to reduced core 
recovery (65%) complete physical property characterisation was not possible for the 
whole interval. Measurements of water content, grain density and porosity were taken 
at different depths depending on core recovery and core conditions. Below 1380 mbsf, 
due to the poor quality of the cores, no physical property measurements were made 
(Kroenke et al., 1991). The physical property measurements obtained in ODP Hole 
807C are shown in Table 4.7.

The structure of the Neural Network used in this case is given by 4 neurons at 
the input layer, which represent the four log curves (ILM, SFLU, DT and RHOB) 
used as input. The output layer has 3 neurons representing the three different physical 
properties to be estimated. The vertical resolution of the logs range from 0.4 metre 
(DT and RHOB) to 1.5 metres (ILM). In this case, we used a depth window of five 
measurements spaced at 0.15 metre in the training process. As mentioned before, this 
allows for resolution matching and any depth shift.

After training the computed weights were applied to the whole interval and a 
comparison of the Neural Network predicted physical properties to the actual core 
measurements is shown in Figures 4.30 to 4.32. The figures show the 1:1 ratio line 
and the Reduced Major Axis (RMA) solution. This solution is obtained by the fit 
which intersects the mean points of each variable and which slope is given by A,=Sy/ŝ  
(Sy and s  ̂ standard deviations). A quantitative measure of goodness of fit between the 
two solutions can be obtained by computing the standard normal deviate (Z) and 
verifying the hypothesis that Therefore, Z= (l;-A.2)/( sf+Sy )̂ ^̂ \̂ where s  ̂and Sy
are the variances of x and y variables respectively. For a 95% of confidence limit, Z 
should be less than 1.96. In ODP Hole 807C the values for Z are 0.007, 0.007 and 
2.42 for water content, porosity and grain density respectively. It shows that only for 
grain density the hypothesis is not verified.
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In general, a good agreement is observed for low porosity, low water content 
and high grain density. These values are related to the carbonate sequence (Unit A) at 
the top of the interval which shows less variation in the log measurements. The results 
are confirmed when Neural Network predicted physical property logs are generated 
for the whole interval (Figure 4.33). It is possible to observe the good agreement 
between core and Neural Network data for the top of the interval. Below 1351 mbsf, 
the Neural Network predicted curves are still able to follow the main trend present in 
core data, although it does not match all core measurements. One of the reasons for 
that is the reduced amount of core data used to train the Neural Network for the 
lithofacies variation within the interval 1351-1379 mbsf (siltstone/claystone sequence 
- Unit B). The upper part of the interval (carbonate sequence) was trained with a 
greater number of core measurements.

Table 4.7

O D P H ole 807C - Physical p ro p e rty  m easurem ents

C ore D epth W ate r  C on ten t Porosity G ra in  density
num ber/section (mbsO (% ) (% ) (g/cc)

63R - 1 1271.08 9.2 19.8 2.74
6 3 R -2 1272.87 8.9 19.2 2.73
6 6 R - 1 1301.07 11.9 24.2 2.74
6 6 R -2 1302.04 1 2 .1 24.3 2.72
6 6 R -3 1303.64 1 2 .0 24.2 2.73
67R - 1 1310.25 10.4 21.7 2.72
6 7 R .2 1312.09 9.5 2 0 .1 2.72
6 7 R -3 1313.23 10 .1 2 1 .1 2.71
6 7 R -4 1314.82 10.5 2 1 .8 2.71
6 7 R -5 1315.87 11.4 23.3 2.73
6 8 R -2 1320.88 11.4 23.1 2.70
6 8 R -3 1322.68 9.6 2 0 .2 2.71
6 9 R -2 1331.36 9.7 20.5 2 73
6 9 R -3 1331.83 9.3 19.8 2.72
6 9 R -4 1334.16 1 0 .0 2 1 .1 2 7 4
6 9 R -5 1334.95 9.8 2 0 .8 2.74
7 0 R -1 1339.09 10 .1 2 1 .0 2.71
7 0 R -2 1340.98 8 .6 18.7 2.74
7 0 R -3 1342.37 1 0 .8 22.4 2.73
7 0 R -4 1343.42 10.4 2 0 .8 2.58
7 1 R - 1 1348.45 1 1 .0 22.5 2.71
7 1 R -2 1350.80 1 1 .6 23.6 2.73
7 2 R -2 1359.62 39.5 48.6 2.44
7 3 R - 1 1368.07 31.3 42.7 2.45
7 3 R -2 1369.45 21.7 36.1 2.67

Table 4.7 - Some of the Physical property measurements for ODP Hole 807C between
1270-1400 mbsf.
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Figure 4.30 - Comparison of Neural Network predicted porosity with core porosity in ODP Hole 807C.
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Figure 4.31 - Comparison o f Neural Network predicted water content with core water
content in ODP Hole 807C.
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Figure 4.32 - Comparison of Neural Network predicted grain density with core grain density
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4.6.2 - ODP Hole 878A

In ODP Hole 878A, grain density, porosity and water content measurements 
were also talcen from cores and are listed in Table 4.8 .

The structure of the Neural Network used in this case is the same as used in the 
previous example. Four neurons are present at the input layer, which represent the 
four log curves (DT, RHOB, NPHI and SFLU) and three neurons at the output layer 
represent the three different physical properties to be estimated. The vertical 
resolution of the logs ranges from 0.4 metre (RHOB) to 0.75 metre (DT and SFLU). 
In this case, we used a depth window of three measurements spaced at 0.15 metre in 
the training process was used.

Despite the complex changes in lithofacies (mainly given by Si and Ca content 
and grain size variation within the polymitic breccia) the good core recovery and 
density of measurements along the whole interval allow a good correlation between 
predicted physical properties and core measurements (Figures 4.34 to 4.36). Again, 
the RMA solutions were obtained and compared with the 1:1 ratio lines. The standard 
normal deviate show that only for grain density the \= X 2 hypothesis is not valid. The 
grain density cross-plot appears to be more scattered probably due to the strong 
variations in the breccia matrix along the interval. These lithofacies variations within 
the breccia affect the log curves and consequently the physical property estimation. 
The Neural Network predicted physical property logs for the whole interval are 
observed in Figure 4.37. The main variation in the physical property characteristics 
are represented. As expected because of their close relation, porosity and water 
content show nearly the same variations along the interval, following in general the 
valuations observed in core measurements and lithofacies changes.

4.6.3 - Oilfield Holes A and B

The objective here is to obtain predicted petrophysical parameters using 
backpropagation Neural Network in an uncored hole using the well log curves and 
petrophysical parameters measured in a cored hole.

Core measurements were obtained in Hole A for clay volume (VCL). Effective 
porosity (PHIE) and water saturation (SW) (Figure 4.38). Using the log curves in 
Hole A, the Neural Network was trained to predict petrophysical parameters from 
core data. After training, the weights learned by the Neural Network for that hole were 
applied to predict the same petrophysical parameters in Hole B, where no core 
measurements were available.
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The results for the Neural Network predicted petrophysical parameters log 
curves are shown in Figure 4.39. In general, a good agreement between Neural 
Network predicted and log derived VCL, PHIE and SW are observed. In the upper 
section of the interval, however, there is a clear mismatch between both. The

Table 4.8

O D P Hole 878A - Physical p ro p e rty  m easurem ents

C ore D epth G ra in  density Porosity W a te r  con ten t
num ber/section (mbsf) (g/cc) (% ) (% )

5 6 R -3 515.58 2.83 31.6 16.9
5 6 R -5 518.46 2.75 26.6 13.1
5 6 R -3 519.20 2.79 26.6 13.1
5 7 R -1 521.57 2.80 25.3 12.2
5 7 R -3 524.42 2.79 25.7 12.4
57R -5 527.71 2.74 24.1 11.6
5 8 R -1 531.60 2.75 25.4 12.1
5 8 R -3 534.30 2.74 24.1 11.4
58R -5 536.48 2.74 25.5 12.4
5 8 R -7 538.87 2.77 29.3 14.2
58R -7 539.35 2.77 24.0 11.3
5 9 R - 1 540.33 2.79 26.1 12.0
5 9 R -3 543.04 2.80 25.1 11.6
59R -4 544.86 2.83 24.5 10.9
5 9 R -5 545.67 2.78 26.1 12.2
5 9 R -6 546.78 2.79 26.7 12.6
5 9 R -7 548.13 2.79 26.1 12.0
6Œ I-1 550.44 2.76 25.3 11.9
6Œ I-1 551.07 2.75 28.6 13.9
6 0 R -2 551.77 2.85 26.2 11.8
60R -3 553.67 2.76 24.6 11.4
60R -4 554.94 2.77 25.2 11.5
6 0 R -5 555 .67 2.74 22.0 10.1
6 1 R -2 560.84 2.79 25.0 11.8
61R -4 564.63 2.79 24.8 11.9
6 2 R -1 568.88 2.72 27.8 13.8
6 2 R -2 570.59 2.74 20.9 9.6
6 2 R -4 573.26 2.80 25.5 12.1
6 2 R -7 577.43 2.72 17.5 7.5
6 3 R -1 578.87 2.74 21.0 9.5
6 3 R -1 579.41 2.73 20.9 9.4
6 3 R -6 585.36 2.74 20.1 8.9
64R- I 587.73 2.76 18.7 8.1
6 4 R -2 589.68 2.73 16.7 7.2
6 4 R -5 594.24 2.79 23.1 10.7
6 5 R -1 597.23 2.81 24.9 11.6
6 5 R -1 597.61 2.82 24.2 11.2

Table 4.8 - Physical property measurements for ODP Hole 878A between 515 - 600
mbsf.
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Figure 4.34 - Comparison of Neural Network predicted porosity with core porosity in ODP Hole 878A.
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Figure 4.35 - Comparison of Neural Network predicted water content with core water content
in ODP Hole 878A.
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Figure 4.37 - Log curves for Neural Network predicted physical properties
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mismatch is observed for all three parameters, suggesting that it could be caused by 
changes in facies between the holes which affected the log curves in Hole B and that 
have not been trained by the Neural Network in Hole A.

It shows the same problem already observed in the lithofacies classification of 
the same hole (section 4.5.4). Here, despite the considerable amount of core data in 
Hole A to train the Neural Network, those do not entirely describe the changes in 
petrophysical characteristics in the upper part of Hole B.

For the other paits of the interval, there is a good match between both results. 
Figure 4.40 shows the cross-plot of the Neural Network and log derived petrophysical 
parameters within the reservoir zone (between X325 - X354 metres) in Hole B. Here, 
the standard normal deviate for the three petrophysical parameters show that in all of 
them the A,i= ^ 2  hypothesis is valid. Despite ehanges in the reservoir charaeteristics, a 
good match between both results is observed.

In this case, hole-to-hole prediction of petrophysical parameters seems to work 
well, produeing reasonable results. But again, lateral changes of facies which are not 
trained by the Neural Network require sldll in finding the best net structure to provide 
good results.
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Figure 4.38 - Petrophysical parameters measured from cores in Hole A.
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Figure 4.39 - Neural Network predicted petrophysical parameters
and log derived petrophysical parameters in Hole B.
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4.7 - Summary and Discussion

The Neural Network has been shown to give good results both for the 
lithofacies characterisation and for physical property estimation. The results for 
lithofacies characterisation from well logs were compared with other supervised 
classification methods; in this case statistical Discriminant Analysis. In terms of 
physical property estimation, Neurocomputing can also be considered a powerful tool 
for petrophysical evaluation. The results for the three examples in this work also show 
that petrophysical logs can be obtained for uncored intervals with a reasonably high 
degree of success.

Based on results obtained from two different holes from the Ocean Drilling 
Program, lithofacies characterisation using the Neural Network seems to work better 
than the other techniques using a large set of log curves is used. When the number of 
log curves is decreased, the interpretation given by the Neural Network may lose 
quality and resolution. In this case and also for a reduced number of input parameters 
(log curves) there are two ways to keep quality in the results. The first one is to select 
a set of log curves which best represent the lithologie variations observed. This is not 
a trivial task, since many times only a combination of log curves will best represent 
the variations. The second option is to change the structure of the Neural Network. In 
this case, an increase in the number of neurons in the hidden layer or even an increase 
in the number of hidden layers may help to produce a better partition of the data. 
Although both choices will lead to a longer training time, the results are likely to 
improve. In this work we used the first choice as an attempt to keep the computing 
time as low as possible. It has also been demonstrated that Neural Networks provide 
good results for hole-to-hole classification. In the example using Oilfield Holes A and 
B, despite some lateral vaiiation in facies between the holes, the results obtained are 
reasonably good. Mismatches in the result are expected when these facies variations 
are strong.

The Neural Network-based model also performed better than the statistical 
Discriminant Analysis in lithofacies characterisation. Despite its longer training time, 
the Neural Network model can provide significantly improved performance without 
any pre-determined formulas or ideas about the data set. While the Discriminant 
Analysis in GDP Hole 807C gives a misclassification of 22.67% of the total samples, 
the Neural Network model only gives a misclassification of 2.87%. For GDP Hole 
878A, where complex changes in lithofacies are present, again the Neural Network 
shows an improved result with only 6.20% of misclassified samples. In comparison, 
the Discriminant Analysis shows 22.87%. The same training sets were used in both 
techniques. In the case of Gilfield Holes A and B, it is observed that Neural Network
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results were able to pick up lateral changes in facies within the shale/claystone 
sequence at the top of the interval, although these variations in facies were not trained 
by the net. The same variations were not observed in the discriminant scores, showing 
that Neural Network had some advantage in the classification.

The physical property estimation based on the quantitative approach using 
Neural Networks also presents good results, even in complex lithological sequences 
such as in ODP Hole 878A. An important factor here is the use of a “windowing” 
technique, which allows not only a more realistic training set for the Neural Network, 
but also avoids any minor depth matching error between core and log data. The results 
for both Holes 807C and 878A have shown a very good match between actual core 
measurements and the Neural Network predicted physical properties. The physical 
property logs generated by the Neural Network also seem to follow the main 
lithological variations along both intervals. Again, ODP Hole 878A shows some 
degree of variation in the generated physical property logs due mostly to the complex 
lithologies present. In the case of Oilfield Holes A and B, the prediction of 
petrophysical parameters in an offset hole also showed good results. Clay volume, 
effective porosity and water saturation were estimated in Hole A using core 
measurements from Hole A. Variations in facies at the top of the interval, as observed 
in the lithofacies characterisation, affected the petrophysical characteristics of the 
section. Therefore, a mismatch between Neural Network and log derived 
petrophysical parameters is observed for this part of the interval. For the rest of the 
interval the results produced by Neural Network show a good match with the log 
derived ones.

As seen in this work, training a Neural Network is a heavy computational 
problem which really requires a RISC or SPARC workstation or possibly a high 
specification PC. The use of different Neural Network-based models, such as fuzzy 
Artmap (Wong et ah, 1995) can provide a competitive amount of time/effort required 
to solve a complex well log problem, but the performance and quality of the results 
hardly compare with the ones generated by the back-propagation model.

Comparison of Neural Network results with core data and other techniques to 
predict lithofacies and petrophysical parameters is very important to check the validity 
of this technique. In this work, the Neural Network proved to give better results and 
also showed a good match with actual core measurements.
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Chapter 5

SUMMARY AND CONCLUSIONS

5.1 - Introduction

Well log data offer an opportunity to interpret geological sequences in the 
intervals of a borehole where core is not recovered. For many years well log 
measurements have been used to this end both scientifically and commercially. 
Recently, the increase in the amount and diversity of log data acquired has offered the 
chance of enhancing the geological information which can be extracted by well logs. 
However, the large amount of measurements normally obtained from downhole 
logging, is somewhat difficult to manage. This study concerns the problem of 
assessing such large datasets. One of the aims was to investigate the applicability of 
statistical analysis of well log data, as an aid to lithology determination and 
heterogeneity characterisation. Another objective was to test the applicability of 
artificial intelligence through the use of a Neural Network, both in lithofacies 
determination and heterogeneity characterisation as well as in the prediction of 
petrophysical parameters. A summary of the results of this work for each of the 
techniques used is presented below.

5.2 - Statistical analysis

5.2.1 - Principal Component Analysis

Principal Component Analysis sets out to determine the structure of the dataset 
and improve interpretation through reducing the number of variables to those which 
represent most of the total variability of the system. Principal Component Analysis 
has been shown to be very useful in the case of large well logging datasets. The 
application of this technique in ODP Holes 807C and 878A showed that the number 
of log curves can be reduced to a smaller number of components (Principal 
Components) which represent the main variability of the system. In ODP Hole 807C, 
the initial 1 0  log curves were reduced to 2  principal components corresponding to 
64.5% of the total system variability. Component I was shown to represent variations 
in the natural gamma-ray radiation of the formations. Low density was another 
important factor represented by this component. The loadings of the original log 
curves in each of the principal component gives an idea about the interrelationship of 
the new variables.
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Principal component II represented the aluminium content in the formations 
which is evident in the high peaks of principal component scores in the volcanic 
sequence. Scores of both components show a good partition of the entire dataset 
(Figure 3.5) where the three different lithofacies can be determined. Another 
important aspect is the characterisation of some heterogeneities, given mainly by the 
variations in clay content within the siltstone/claystone sequence and high resistivity 
peaks in the volcanic sequence.

In ODP Hole 878A, the original 13 log curves were reduced to 3 principal 
components representing 86.5% of the total system variability. Component I responds 
mainly to variations in the breccia matrix composition. The principal component 
scores show positive values for the Si based matrix while negative values are 
observed for the Ca based matrix. Components II and III represent 12.7% and 8.7% 
respectively. The significance of each component was not clearly defined, although 
positive loadings in potassium and negative loadings in resistivity for principal 
component III suggest that this component can be related to secondary vesicular 
porosity present in the upper part of the interval. Only the first principal component 
could differentiate between both lithofacies based on the Si and Ca variation over the 
breccia. An important aspect here was the identification of the interbedded interval 
between 563-577 mbsf, which was defined by principal component I.

5.2.2 - Cluster Analysis

Cluster Analysis was used in this work in a way that permitted the dataset to 
be divided into different groups which show a high association among the members or 
samples of each group while the groups themselves are distinct from each other. The 
analysis was performed in two different ways. Firstly, it described the relationship 
between the log curves (Hierarchical method) of each dataset. Secondly, it described 
how the samples (depth measurements of each log curve) are associated, how they 
form the different groups, and which of them related to lithofacies variations (Non- 
Hierarchical method).

In ODP Hole 807C, the hierarchical analysis produced a dendogram (Figure 
3.12) which shows the correlation of the log curves. It was observed that gamma-ray, 
potassium, density and photoelectric effect presented the highest correlations. Another 
graphical representation of the dendogram is illustrated in Figure 5.1, where cross
plots of the principal log curves are shown. It is observed that the correlation shown in 
the dendogram match the ones observed in the cross-plots. The log curves also formed 
two main distinct groups which are similar to the loadings observed for the first 
principal component I. In other words it means that an increase, for instance, in PEF,
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RHOB and IDPH in the siltstone/claystone sequence is accompanied by a decrease in 
GRAY , POTA and URAN

The Non-Hierarchical Cluster Analysis for ODP Hole 807C was performed 
using firstly the original log curves and then the principal components. In the first 
case, the original dataset was divided into three different groups, each one 
representing one of the lithofacies to be characterised. The analysis also showed that 
RHOB, PEF and ALUM were the most important log curves to distinguish between 
the groups (lithofacies). As observed in Figure 3.14, the analysis using the original log 
curves was able to identify the major three lithofacies, however, no information about 
heterogeneity was obtained. When using the principal component scores as an input, 
there was a clear improvement in the results with not only the main lithofacies being 
identified but also the characterisation of heterogeneities being observed. The key 
features picked out in the second analysis were; a) the inclusion of an extra group 
(Group 4) in the analysis with the principal component scores compared to the 
analysis with the original log data. This new group is related to the high clay content 
present between 1352 - 1358 mbsf in the claystone/siltstone sequence; b) The 5 
meters thick carbonate layer between 1371 - 1375 mbsf which was considered thicker- 
based on the drill rate data. It was observed that when the analysis was performed 
using only the “essential” information contained in the dataset (the case of the 
principal component scores), improved results were obtained with the characterisation 
of heterogeneities not observed in the analysis using the original log curves.

In ODP Hole 878A, Hierarchical Cluster Analysis showed that the principal 
correlations are between the resistivity measurements (IDPH and SFLU) and between 
TI02 and FEO. Figure 5.2 shows the cross-plot of the principal log curves with the 
correlations observed in the dendogram of the Hierarchical analysis and in the 
correlation matrix (Table 3.18). Again, two main groups can be observed. The Non- 
Hierarchical Cluster Analysis was carried out using both the original log curves and 
the principal component scores. Apart from two or three minor intervals, there is not 
an evident difference between the groups resulting from each analysis. This might be 
because the three principal components represent more than 85% of the total 
variability contained in the dataset. The important point here is that both analyses 
were able to show variations within the two different breccia matrices. The variations 
were related to the Si and Ca content in each of the lithofacies. Therefore, for the top 
of the interval. Groups 1 and 2 in both analyses are related to the Si content while 
Groups 3 and 4 are related to the Ca content at the bottom of the interval. A 
Hierarchical analysis using the Groups obtained in the Non-Hierarchical analysis was 
performed to illustrate how the groups were correlated (Figure 3.19).
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5.2.3 - Discriminant Analysis

In the Discriminant Analysis an a priori knowledge about the dataset was 
used to construct a discriminant function which was able to identify and distinguish 
lithofacies using the well log responses. This technique was used not only to produce 
lithofacies characterisation in the two holes examined with the previous principal 
component and Cluster Analysis, but also in the two oilfield holes where the 
“knowledge” from one hole was applied to identify lithofacies in the other hole.

The result in terms of two discriminant scores for ODP Hole 807C shows a 
good separation between the three lithofacies present (Figure 3.24). The discriminant 
function obtained from short sets of data were able to identify the lithofacies however 
they do not confirm the heterogeneities observed with the two previous techniques.

In ODP Hole 878A the discriminant scores respond mainly to the variations in 
the Si and Ca content within the breccia and again were not able to identify any 
heterogeneity present within the dataset. Three different distance classification 
methods were tested for both datasets and showed high percentage s of corrected 
samples classified for each lithofacies. In ODP Hole 807C, only the Euclidean 
distance classification method shows a high percentage of misclassified samples 
(22.63%) due to the similar values in density for lithofacies 1 and 3 (Table 3.26). In 
ODP Hole 878A, all three classification models show high percentages (> 90%) of 
corrected samples, indicating that the discrimination function would have worked 
well.

An important step in the Discriminant Analysis was performed with the 
lithofacies discrimination of Hole B using the discriminant function obtained from 
Hole A. The results in terms of discriminant scores showed reasonable discrimination 
between the two main lithofacies including the interbedded sequence between 563 - 
577 mbsf. The discriminant scores do not show any major variation within each 
lithofacies, suggesting that no lithological heterogeneities were present, or at least, no 
variation was detected by the discriminant function in Hole A. The three distance 
classification models show “excellent” sample classification (~ 100%). However, a 
comparison with the groups from the Cluster Analysis show that variations do really 
occur in the upper part of the interval.

5.3 - Neural Network

In a different way from the statistical techniques described above, a Neural 
Network was used to provide not only lithofacies discrimination but also 
petrophysical parameters estimation for the three datasets. While the statistical
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techniques were based on mathematical models, where the tasks are explicitly 
represented, the Neural Network relies upon training where the machine learns from 
experience. Therefore, a training set which describe the main variations within the 
data is needed.

In the lithofacies characterisation of ODP Holes 807C and 878A, the results 
presented by the Backpropagation Neural Network were able to show not only a good 
description of the lithofacies but also formation heterogeneities which were detected 
in the Cluster Analysis. One of the examples is the interval between 540 - 550 mbsf in 
ODP Hole 878A. The identification of the sources of these heterogeneities was 
attempted through the application of the Neural Network exploiting the 
physical/chemical property dependence and vertical resolution of the log curves. 
These analyses were able to respond to some of the questions concerning the source of 
the heterogeneities, but in general, failed to produce reliable information about the 
sources. In general, it was demonstrated that a reduction of the number of the log 
curves tends to produce a result of low quality. When applied to Oilfield Holes A and 
B, there was a very good match between the Neural Network responses and the 
lithofacies characterisation. The important point here is the characterisation of 
formation heterogeneities for the upper part of the interval in Hole B which were not 
described in the training sets of Hole A. The results confirm what was observed in the 
Group classification (Cluster Analysis) where Groups 1 and 2 were identified for the 
upper part of Hole B.

The second objective of the application of the Backpropagation Neural 
Network is in predicting petrophysical parameters from well log data in uncored 
intervals, or in case of Oilfield Holes A and B, in uncored holes. Cored sections were 
used as a basis to provide the Neural Network with enough training. The results for 
ODP Holes 807C and 878A show a reasonable match between the predicted Neural 
Network physical properties and the core measurements. The Neural Network 
predicted petrophysical logs also show a good result, following the main variation 
observed in the core data. When applied to an offset hole, the Neural Network 
predicted petrophysical parameter also seem to work very well, although some 
changes in the petrophysical characteristics not described in the training sets lead to a 
mismatch between the Neural Network results and the log derived petrophysical 
parameters. These mismatches are the result of the heterogeneities observed during 
the lithofacies characterisation process.

5.4 - Conclusions

Investigation of the performance of statistical techniques and Neural Network 
in well log data was the central theme of this research work and, it has been
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demonstrated that for the data used here, these techniques are clearly of much use as a 
lithofacies discriminator and heterogeneities indicator, providing information which 
could not have been obtained by simply having a visual look at the log curves. This is 
in a good agreement with much previous work using these techniques.

It was realised at an early stage in this work that the task of producing 
lithofacies discrimination and heterogeneities characterisation using a large set of well 
log data could most easily be accomplished by the use of a variety of multivariate 
statistical techniques and also other non-linear new techniques such as the Neural 
Networks. Among other applications, prediction of petrophysical parameters was also 
included in the use of this technique.

Principal Component Analysis helped to get a better understanding about the 
structure of the data set and the importance of each original log curve. In addition, the 
transform of the original log curves into principal components, reducing the amount 
of data to be analysed, was a major step for future processing.

A powerful Cluster Analysis has been described in both the Hierarchical and 
Non-Hierarchical models. The advantage over some of the other multivariate 
statistical techniques currently being used is that there is no requirement for any a 
priori information, it is simple to use and it can handle large amounts of data (e.g. 
logging data). The use of the K-means algorithm in the Non-Hierarchical analysis 
makes this technique a powerful identification tool, capable of identifying lithological 
groups. The use of this technique together with the principal component scores can 
produce improved results in the interpretation as shown in ODP Hole 807C. Due to 
the huge amount of memory required, it is not possible to perform a Hierarchical 
analysis (R mode) using the depth measurements.

Discriminant Analysis was also considered to work well in terms of lithofacies 
discrimination, but showed poor results in terms of heterogeneities characterisation. 
Despite the use of a priori knowledge, when facies changes present within the 
formations are not described in the training sets the discriminant functions are 
unlikely to resolve these variations. The use of different distance classification models 
shows that the fundamental problem in classification is related to choosing an 
appropriate distance measure.

Neural Network proved to work well both in lithofacies discrimination and in 
prediction of petrophysical parameters. Variations in lithofacies, considered here as 
formation heterogeneities, were well characterised both in single holes and inter-hole 
correlation. The results for the three holes used in this work are shown in Table 5.1. In 
two of the cases. Neural Network provided superior results to that based on statistical 
Discriminant Analysis. In ODP Hole 807C, the Neural Network performed much 
better than Discriminant Analysis, however it took a long training stage to achieve this 
result. In ODP Hole 878A, again Neural Network produced a better result. The low
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difference in the number of misclassified samples between the two techniques are due 
to the high complexity of the breccia. Finally, in the inter-hole correlation. 
Discriminant Analysis performed better than the Neural Network. In this case, the 
variations observed in the Neural Network results for the upper part of the interval in 
Hole B was considered as a heterogeneity present in that lithofacies. Note that the 
response of the Neural Network (Figure 4.28) shows that UNIT I is more strongely 
represented in that interval.

From the case examples, it has been proved that Neural Network is a powerful 
technique in pattern recognition which suffers from some practical problems. Some of 
the practical difficulties are that before training a pre-specified network topology is 
required. It is known that too few layers and neurons will not learn satisfactorily, and 
too many of these elements will overtrain the network (Dayhoff, 1990). Therefore, a 
careful monitoring of training is required. Another problem is related to the 
incrementing of knowledge. Sometimes it is very difficult, or even impossible, to 
adapt the Neural Network to an additional input and it is necessary to re train the net.

Based on the results shown it was considered that the Backpropagation Neural 
Network performed in general better than some statistical analysis (e.g. Discriminant 
Analysis) in lithofacies characterisation. This fact is probably related to the non- 
linearity and non-parametric properties of the method.

Table 5.1

ODP Hole 
807C

ODP Hole 
878A

Holes A & B

Discriminant Analysis 
(Euclidean Distance Model)

2263 6J7 0

Backpropagation Neural 
Network

2j^ 4.84 , 3.23

Table 5.1 - Lithofacies classification results (measured in % of misclassified samples).

The Backpropagation Neural Network has been shown to give good results for 
petrophysical parameters estimation. It can also be considered a powerful tool for 
petrophysical evaluation in inter-hole interpretation as long as lithofacies and 
petrophysical characteristic changes can be trained. The results presented here showed

174



that petrophysical logs can be obtained for uncored intervals with a reasonable degree 
of success. An important factor for its success was the use of a “windowing” 
technique, which allowed a more realistic training set for the Neural Network. The 
results for all examples have shown good matches between actual core measurements 
and the Neural Network predicted physical properties. The physical property logs 
generated by the Neural Network match the main lithofacies variation present within 
the intervals. Again, ODP Hole 878A shows some degree of variation in the generated 
physical property logs due mostly to the complex changes in lithofacies. The Neural 
Network presented here also holds great promise in helping inter-hole prediction of 
petrophysical parameters. The results obtained with the examples show good 
correlation with other log derived values even in the presence of lateral changes of 
facies which generally request some sort of skill and trial and error procedures in 
producing good results. However, it is recognised that a complete comparison which 
includes other techniques of predicting petrophysical parameters should be performed 
in order to obtain a better idea on how efficiently this technique works.

5.5 - Recommendations

It is considered that future research in this area should include a more careful 
study of the Discriminant Analysis, including a detailed analysis of the group 
discriminant classification and its different models, which can help better understand 
how this technique works and also improve its results. The fact that the technique uses 
a priori knowledge about the data helps the integration between log and geology.

Finally, another aspect in which the research should be focused from now is in 
the use of different structures for the Backpropagation Neural Network, which could 
produce better results and consume less computing time. Most of the work so far has 
shown that other Neural Networks which do not use training as a major step in the 
processing, can produce a quicker response (Anderson et ah, 1990). The quality of the 
results, however, is uncertain. Therefore, the use of a training technique which will 
allow a refinement in the process of trial and error in selecting its better structure is 
the main direction in the future works.
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OOP LEG 159 - CÔTE DTVOIRE-GHANA TRANSFORjVI MARGIN

From 4'̂  January to 1“ March 1995, ODP Leg 159 drilled four sites on the west 
African Margin, along the Romanche fracture zone. The four sites drilled are located on 
continental crust on a ridge that mns close to the ocean-continent boundary. Drilling the 
Côte DTvoire-Ghana transform continental margin had both tectonic and 
paleoceanographic objectives. The main tectonic objective was to better understand the 
evolution of transform continental margins. Transform faults represent the third major 
category of plate boundaries, but are less well understood than either convergent and 
divergent examples and have never been investigated by scientific drilling. Among the 
paleoceanographic objectives was to document changes in deep and intermediate waters 
passing through the eastern equatorial Atlantic and the changing geometry of the Eastern 
Atlantic basins since continental break-up in the Early Cretaceous times.

The Lamont-Doheity Borehole Research Group, in conjunction with 
Schlumberger Well Logging Services, provides the geophysical well logging aboard the 
master drillship Joides Resolution. Designed for use in hydrocarbon exploration, the 
logging tools used have been adapted to meet ODP requirements, primarily the 
reduction of tool diameter to allow insertion into the 3.8 inches (9.65 cm) drill-string 
bore. Downhole logs are used to characterise the geophysical, geochemical and 
structural properties of the sequences drilled. Log data offer advantages over core-based 
analysis in that they are rapidly collected and represent continuous, in situ 
measurements of the formations. Four different Schlumberger tool combinations were 
used in Leg 159: a) a Seismic Stratigraphie tool string, b) a Lithoporosity tool string, c) 
the Formation MicroScanner (FMS) and d) the Geochemical tool string (see Chapter 2).

The role of the Logging Scientist is to promote acquisition, processing and 
interpretation of the well log data acquired. Soon after the data are collected, they have 
to be depth shifted and correlated between the different runs using the Natural Gamma- 
Ray Tool (NGT). This was a particularly difficult task during Leg 159 where rapidly 
varying lithology in zones with poor core recovery sometimes impaired the multilog 
analyses. The Sonic log was also corrected for cycle skipping and was an important tool 
in the refinement of the seismic horizons. A pre-process was performed onboard with 
the FMS images. Although borehole conditions were far from the ideal for this tool, 
FMS images were very important because of the structural objectives of the Leg. After 
processing, the interpretation of the well log data was performed in a multidisciplinary 
way which involved other members of the Scientific Party. The well log data on this 
Leg were of particulai- importance due to the low core recovery obtained in most of the 
holes drilled.



Even though the participation on ODP Leg 159 had no connection with the work 
presented in this Thesis, it was considered of the great importance in the training of well 
log analysis and formation evaluation. The experience acquired in the processing of 
different logging data gives an extra input to interpretation, allowing the Logging 
Scientist to better understand the mechanisms which generate the log responses.
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SUMMARY

ODP Leg 159 studied the Côte d'lvoire- 
Ghana transform margin in the eastern equatorial 
Atlantic during January and February, 1995. 
Thirteen holes were drilled at four sites, 
recovering sediments from Late Albian to 
Pleistocene age. The margin has been created by 
major transform motion between the African and 
South America plates and is one of the best 
known examples of a former transform boundary 
between continental and oceanic crust (Mascle 
and Blarez, 1987).

Logging data were collected at three of 
the sites, and despite bad hole conditions, 
logging runs were obtained in four holes. This 
paper shows the preliminary logging results 
which cover the full sedimentary sequence cored. 
Together with the standard tools used by the oil 
industry, the Geochemical Logging Tool 
(GLT™) and the Formation MicroScanner 
(F&IS™) tool were also used.

INTRODUCTION

From 4th January to 1st March 1995, the 
master drillship of the Ocean Drilling Program 
(ODP), Joides Resolution, drilled 13 holes on 
the west African margin, offshore Ghana (Figure 
1). The principal objectives of the cruise were the 
development of the transform margin, its nature, 
structure and deformation history, and the 
relationship between sedimentation and 
deformation. A detailed study of the Cenozoic 
paleoceanographic and climatic history of the 
central eastern equatorial Atlantic were also 
among the main objectives.

The four sites drilled. 959, 960, 961 and 
962. are located on continental crust on a ridge 
that runs close to the continent/ocean transition 
(Figure 2) (Mascle, Lohmann, Clift et ah, in 
press). Three of these sites were logged with the 
Quad Combo, the FMS tool and the Geochemical

tool string. The log curves were used to match 
the sedimentary cover with the FMS and GLT 
logs being used for structural and geochemical 
detail respectively. In addition to these tools, the 
Lamont-Doherty Earth Observatory temperature 
tool (TLT) was run with the Quad Combo tool 
string.

LOG QUALITY
PROCESSING

AND DATA

Logging runs were carried out in four 
holes in sites 959, 960 and 962, in water depths 
of 2102, 2050 and 4667 meters. Site 961 was 
not logged due to hole stability problems and the 
hole was abandoned after 390 meters. A 
complete combination of the three tool strings 
was run in Hole 959D between 395 - 1081 
meters below sea floor. Log quality is generally 
good throughout the interval despite intermittent 
borehole washout, especially near the top, where 
caliper measurements range from 14.5" to 17".

Holes 960A and 960C were logged at 
Site 960. Poor hole conditions in both holes 
prevented deployment of all three tool strings. 
Hole 960A was logged only with the Quad 
Combo tool string due to extreme hole diameter 
(greater then 17" for most of the interval). In 
Hole 960C, although the hole conditions were no 
better than in 960A. the FMS tool string was run 
due to the importance of collecting data on the 
structural development of the transform margin. 
In this hole, only a reduced combination of the 
Quad Combo tool string was run. consisting of 
the Natural Gamma-ray. the Phasor induction 
and the Array Sonic tools. Site 962 was also 
affected by poor hole conditions and once more 
only a reduced combination of the Quad Combo 
tool string and the FMS were run. Data from the 
Quad Combo and FMS tool strings underwent 
preliminary processing onboard. Data processing 
for the Quad tool string consisted of removing 
"cycle skipping" effects from the sonic data and
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depth-shifting all the log curves to match the core 
data. Preliminary shipboard processing of the 
FMS data was performed using Schlumberger's 
Geoframe software, but complete processing will 
be done post cruise. Geochemical data needs to 
undergo extensive onshore processing to convert 
the relative concentrations of Si, Ca, Fe. S, H 
and Cl and wet weight percentages of K, Th, U 
and A1 to dry weight percentages and to 
determine the Gd and Ti (Mascle, Lohmann, 
Clift et ah, in press).

LOGGING RESULTS

The natural gamma-ray, density, 
porosity, velocity and resistivity logs provide 
confirmation of most lithologie units derived 
from core description in Hole 959D (Figure 3). 
A sequence from Subunit HA (nannofossil ooze 
chalk) to Subunit IVA (calcareous sandstone) 
was covered by the logs (Mascle, Lohmann, 
Clift et ah, in press).

At Site 960, the natural gamma-ray. 
resistivity and caliper logs (Hole 960A only) and 
the density and porosity logs (Holes 960A and 
960C), show trends which correlate well with 
most of the lithologie unit boundaries derived 
from core description (Figure 4).

At Site 962, the logged interval does not 
cross any lithologie boundaries observed in the 
core description and fall entirely within Unit III 
(Figure 5), which includes claystones, siltstones, 
sandstone and also limestones.

The log intervals for the three sites 
correlate well with each other and the lithologie 
boundaries from the core description can be 
identified in all holes. Variations in the 
geochemical log observed in the non-processed 
data also enable future study of the variations of 
clay types observed in the cores.

FMS DATA

In situ structural measurements have been 
performed using the Formation MicroScanner 
tool between 547 and 936 mbsf in Hole 959D 
and between 173 and 354 mbsf in Hole 960C. 
The logged intervals cover a porcelanite unit 
(IIC) and the upper part of a black claystones 
(III) in Hole 959D. and a limestone unit (IVB) in 
Hole 960C (Mascle, Lohmann, Clift et al., in 
press)

In Hole 959D, bedding is dipping NW. 
with an increase from 5° to 14° with depth 
(Figure 6 ), as anticipated from the pre-cruise 
seismic lines (Basile et al.. 1993). More 
surprisingly, the bedding is dipping NE in Hole 
960C, and there is no evidence of increasing dips 
with depth (Figure 7).

At both sites, dips and azimuths of the 
bedding exhibit important variations around their 
average values at decimeter to meter scales. 
These variations may have been induced by fan
shaped deposits, and an associated rotation axis 
can be retrieved from successive bedding 
measurements.

At both sites, the rotation axes are mainly 
trending WNW to NNE (N300 to N30). In Hole 
960C. the WNW rotation axes are mostly due to 
cross-bedding dipping towards NNE. In Hole 
959D, the fan shape cannot be explained by 
sedimentary features, but is probably related to 
sliding of lithifled sediments along listric faults.

In both holes, the scattering of the 
rotation axes is believed to be related to time 
variations with the strike of the slope, and may 
reflect the interferences between uplift of the 
Marginal Ridge and subsidence of the Deep 
Ivorian Basin.

CONCLUSION

Logging data collected during ODP Leg 
159, although adversely affected by a 
combination of bridges and borehole wash out.
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are nonetheless informative and encourage 
further analysis of the fully processed data. 
Onboard interpretation allowed good correlation 
with the main lithologie sequences described by 
the core data. Pre-processed FMS measurements 
provided important clues about sedimentary 
structures and the structural history of the 
continental margin.
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ABSTRACT INTRODUCTION

T h e  c h a r a c te r i s a t io n  o f  fo r m a t io n  
heterogeneities requires a multidisciplinary study o f data 
acquired using a large number o f numerical geophysical 
and geological measurements and a rigorous evaluation of 
the precision and accuracy o f the data. Another essential 
aspect o f the appraisal o f any measurement is the quality 
assessment and quality control o f the data.

In this work m ultivariate statistical techniques 
and an artificial Neural Netw ork (ANN) are used to 
identify heterogeneities in com plex formations and to 
evaluate the boundaries they generate. The precision and 
accuracy o f the data from  different sources are very 
im portant and are considered here by using sam ple 
support in the integration o f measurem ents at different 
scales. We use exam ples from two wells to show the 
differences in charac te risa tion  obtained  w ith each 
technique.

Multivariate statistical analyses are initially used 
to group the petrophysical, geophysical and geological 
parameters extracted from the downhole m easurements 
into distinct geologically definable zones. This technique 
has the advantage of being quasi-independent o f any pre
determined ideas we have about the whole data set, and 
has show n to be very re lia b le  in fo rm atio n  
characterisation. Thus the result obtained here is a useful 
basis for comparison with that obtained from the Neural 
Network.

An artif ic ia l N eural N etw ork  is used to 
characterise the different lithology sequences present in 
each well. Neural Networks are relatively new tools and 
have proved  very usefu l in ap p licatio n s  w here 
conventional computing methods are inadequate. Another 
application is the possibility o f determ ining quantitative 
petrophysical parameters from well logs and core data in 
uncored intervals. We also show the ability of the Neural 
Network to construct petrophysical logs.

The results are p resented  as a com parison 
between the two techniques. We show that both methods 
are very encouraging. W hen comparing the ANN derived 
p e tro p h y s ica l p a ram e te r logs w ith  actual core  
m easurem ents we see a good m atch. Low quality  
petrophysical m easurem ents can be determ ined by a 
mismatch between the responses.

The c h a r a c ter isa tio n  o f  fo rm a tio n
heterogeneities and the determ ination o f petrophysical 
parameters are part o f a key issue in reservoir evaluation
using well logs. Because o f the com plexity  o f the 
different factors which influence the log responses, and 
also because the increasing  am ount o f  dow nhole 
m easurements em ployed, a large number o f techniques 
have been used to establish an adequate interpretation. 
Q uan tita tive  petrophysical m easurements are also 
influenced, and most o f the time it is difficu lt to 
determ ine any theoretical or empirical form ula for an 
accurate reservoir analysis.

There are m any techn iques a vailab le  for 
reservoir characterisation, giving different degrees of 
success in their responses. This paper com pares the 
response of some statistical techniques, which have been 
used  w ith  re a so n a b le  su ccess  in form ation  
characterisation , with the results obtained  from  an 
artificial Neural Network, using data from the Ocean 
Drilling Program (ODP).

When core recovery is good along the interval to 
be in v estig a ted , fo rm ation  characterisation and 
petrophysical param eters  can easily  be obtained. 
However, where the recovery is poor or even where there 
is no recovery, a different method o f interpretation and 
prediction o f petrophysical parameters must be derived. 
The artificial Neural Network shows how reliable values 
for petrophysical parameters can be obtained  from 
logging data even when the core recovery is poor.

MULTIVARIATE STATISTICAL TECHNIQUES

M ultivariate statistical techniques have been 
used in well log analysis to identify or classify lithofacies 
(Davis. 1986; Doveton, 1986: Bucheb and Evans, 1994). 
They include such recognised techniques as C luster 
Analysis and D iscrim inant Analysis with the related 
techniques o f principal com ponent analysis and factor 
analysis commonly applied to data as a pre-processing 
stage. They provide an effective  approach to data 
interpretation in geology and geophysics.

The m ultivariate statistical techniques are also 
known as pattern recognition. A pattern consists o f a 
collection o f measurements characterising a sam ple 
which are considered as an entity for the purpose of 
subsequent analysis. The classification imposed by the



pattern recognition allocates entities to initially undefined 
classes so that the individuals in a class are in some sense 
close to one another. It is internally based in as much as it 
does not depend on a p r io r i  know ledge about the 
relations between these entities or samples (Sheppard, 
1986). The samples are free to enter any class such that 
they emerge in the process o f classification. The result is 
that the entities should be placed into approxim ately 
homogeneous groups.

The successfu l app lication  o f  a selec ted  
technique is dependent upon careful formulation o f the 
decision rule by the analyst and on understanding o f the 
assum ptions and lim itations involved. W ithout this, a 
successful interpretation o f the results may not be made. 
Careful considerations must be taken in the preparation of 
the data set and in the selection and implementation o f the 
methods to be used. In the case o f the oil industry, the 
term "electrofacies" has coined to describe lithofacies 
identified on the basis o f logging data (Serra & Abbott, 
1982; Delfiner et al., 1987; and Doveton, 1994).

One o f the aims o f this work is to find ways of 
identifying such "electrofacies" in different geological 
environments observed in ODP data. With an increasing 
number of log curves, the amount of information relating 
to the formation increases, and a more realistic picture of 
its nature can be produced. The aim of the application of 
the multivariate statistical techniques considered here is 
to search for structure and pattern within these data, a 
know ledge  w hich m ay help to s im p lify  th e ir  
interpretation. Another aim is to obtain a reliable result to 
compare with the results obtained from core recovery and 
from Neural N etw ork. O f the techniques available. 
Cluster Analysis and Discriminant Analysis were found 
to be particularly useful in the characterisation o f logging 
data.

ARTIFICIAL NEURAL NETW ORKS

An artificial Neural Network is an information- 
p rocessing  system  tha t has certa in  p e rfo rm ance  
charac te ristics  in com m on with b io logical N eural 
Networks or the human brain. They have been developed 
as generalisations o f m athem atical models o f neural 
biology, based on the following assumptions:
• information processing occurs at many simple elements 
called neurons;
• signals are passed between neurons over connection 
links;
• each connection link has an associated weight which, in 
a typical neural net, multiplies the signal transmitted;
• each neuron applies an activation function (usually non
linear) to its net input (sum of weighted input signals) to 
determine its output signal.

A N eural N etw ork is charac te rised  by its 
architecture (the way in which the neurons - the key 
processing unit - are interconnected), by the method o f 
determining the weights on the connections (algorithm)

and by its activation function. Neural Networks can be 
d istinguished from o ther approaches to inform ation 
processing by both how and when they are used. Let us 
therefore consider some defining characteristics o f Neural 
Networks.

A neural net consists o f a large num ber of 
processing elements called n eurons, ce lls  or n odes. Each 
neuron is connected  with other neurons through 
connection links, each one with an associated weight. The 
weights represent the inform ation being used by the 
neural net to resolve a problem . Each neuron has an 
internal state, called its acràanoM /nHcfzoM. which is a 
function o f the input it has received. Typically, a neuron 
sends its activation as a signal to other neurons. Even 
though neurons can only send one signal each time, this 
signal can be broadcast to several other neurons (Pausett, 
1994).

In this work we specifically use the "back-error
propagation” (BE?) Neural Network. The proposal is not 
only the application o f the BEP Neural N etwork in the 
characterisation o f formation heterogeneity, but also to 
test its usefulness in the construction o f petrophysical 
logs.

Back-error propagtion (BEP) Neural Network

As in the case with most Neural Networks, the 
aim of the back-error propagation Neural Network is to 
train the net to achieve a balance between the ability to 
respond correctly to the input patterns that are used for 
training (memorisation) and the ability to give reasonable 
responses to a input that is sim ilar, but not identical 
(generalisation), to that used in training (Fausett, 1994).

The training o f a back-error propagation Neural 
Network involves three stages: the feedforward o f the 
inpu t training p a tte rn , the co m p u ta tio n  and 
Backpropagation of the assoc iated  e rror, and the 
adjustment of the weights. After training, the application 
of the net involves only the feedforward process.

A typical back -erro r p ropaga tion  N eural 
Network with one layer o f hidden units is shown in 
Figure 1. The output units Y. the hidden layer units Z and 
the input units X are presented as well as the associated 
weights vv and v. As can be seen, only the feedforward 
p rocess propagation d irec tio n  is show n. In the 
backpropagation stage the signals have the opposite 
direction. D uring the first stage, each input unit X, 
receives an input signal and broadcasts this signal to the
each o f the hidden units Z , Zp. Each hidden unit then
computes its activation function and sends its signal Zj to 
each output unit. Each output unit com putes its 
activation  ŷ . to form the response o f the net to the 
previous input pattern. During the training process, each 
output unit compares its computed activation y  ̂ with the 
expected target value t̂  in order to determ ine the 
associated error or difference between both. Based on this 
error or difference, the factor 5  ̂ (k = l m) is computed.



This value is used to distribute the errors at output units 
back to all units in the previous layer (the hidden layer). It 
is also used to update the weights between the output 
layer and the hidden layer. In a sim ilar manner, the factor 
6, (j= l,...,p) is computed for each hidden unit.

After all the 5 factors have been determined, the 
weights for all layers are adjusted simultaneously. The 
adjustment to the weight Wĵ  is based on the factor 5  ̂ and 
the activation z.. The adjustment o f the weight v^ is based 
on the factor 8j and the activation x,.

Even if the training process is slow, a trained net 
can produce its output very rapidly because there is no 
propagation o f  the errors in the opposite direction. 
Numerous variations o f backpropagation method have 
been developed to im prove the speed o f the training 
process. In this work, the original algorithm  for a 
backpropagation training (Rumelhart et al., 1986) uses an 
im plem entation  m ethod called  Y ogi's acce leration  
(Anguita et al., 1993).

FIELD  EX A M PLE S

Data from  two holes in the Ocean D rilling 
Program were selected to be tested with these techniques. 
Hole 807C is located in the northern rim o f the Ontong 
Java Plateau in the western equatorial pacific ocean 
(Kroenke et al., 1991). The interval between 1270 - 1400 
mbsf (meters below sea floor) was selected as the interval 
to be investigated. It shows a reasonable core recovery 
(65%) and consists o f three main lithofacies defined as 
follows: an upper unit com posed mainly o f limestone, 
chert and chalk: a middle unit consisting o f claystone and 
siltstone: and a lower unit which com prises igneous 
basement com posed o f tholeiitic basalts. The quality of 
the log curves obtained is generally good (Figure 2) and 
their precision and accuracy were considered through 
sample support and core analysis.

C onsidering the lithology variation observed 
between 1270 - 1400 mbsf in Hole 807C. the logging data 
provides a great deal o f information about not only the 
major changes in the different lithofacies. but also in the 
more subtle physical and chem ical charac te ris tics  
cyclically present in the formations.

The second example is from Hole 878A, located 
in the northeastern part o f the MIT Guyot in the western 
pacific ocean (Prem oli Silva et al., 1993). It was also 
selected due its excellent core recovery (95%) and well 
conditions. The interval to be investigated is located 
between 515 - 600 m bsf and consists basically  o f a 
polymitic breccia predominantly siliciclastic matrix at the 
top and calcareous at the bottom. The overall variation in 
the polym itic breccia is given by a predom inance of 
volcanic clasts in the upper half o f the interval with a 
decrease in abundance toward the bottom. Carbonate is 
dominant in the matrix and clasts below 577 m bsf but 
some alternation between volcanic and carbonate matrix 
occurs between 563 and 577 mbsf. In a general sense the

logging data set (Figure 3) for this hole has good quality 
and seems to be valuable for interpreting the sedimentary 
succession and for identifying possible heterogeneities.

M ultivaria te  statistical app ro ach

After a pre-processing analysis with principal 
com ponents, a C luster A nalysis and a D iscrim inant 
Analysis were carried out in the data from both holes. The 
result o f these techniques applying to the data sets is 
described in the following sections.

Hole 807C

In Hole 807C 10 log curves were used as input 
data. They are: gamma-ray (GR): potassium, thorium and 
uranium contents (POTA. THO and UR AN respectively); 
three different resistivity measurem ents (ILD, ILM and 
SFLU); aluminium content (ALUM ), density (RHOB) 
and photoelectric effect (PEF).

In the C luster A nalysis  using the N on- 
hierarchical or Q-mode model, initial testing for the 
number of groups present in the data set resulted in three 
being selected as an optim um  number (Figure 4). As can 
be seen, they match almost perfectly with the lithofacies 
identification obtained from the core recovery. Group I 
represents the carbonate section at the top o f the interval 
and also appears between 1375 - 1380 mbsf. G roup 2 
represents the claystone/siltstone lithofacies sequence 
present between 1351-1370 mbsf. and finally. Group 3 is 
defined by the tholeiitic basalt sequence from 1380 mbsf 
towards the bottom of the interval.

In terms of group d iscrim ination . RHOB. 
ALUM  and PEF were rated the most important curves 
based on their average delta values (Table 1), and Groups 
1 and 3 and Groups 2 and 3 arc the m ost d ifficult 
combinations to distinguish (Table 2).

Based on the classification obtained by the core 
recovery and also regarding the results from the Cluster 
Analysis, a Discriminant Analysis was used to distinguish 
the three units present in Hole 807C. A training set 
com posed by short intervals of each lithofacie was 
selected based on the core recovery. After the processing 
o f the discriminant functions using the training sets, those 
were applied for the whole interval. The result, not 
surprisingly in terms of the discriminant scores, also show 
a reasonable separation for the three lithofacies (Figure 
4). The groups obtained in the C luster Analysis and the 
core description are also shown in order to make a 
comparison with the discrim inant scores. O ther way to 
show how well the discriminant scores identify each 
lithofacie is looking to the cross-plot o f scores I and II 
(Figure 5).

A general distance classification was also
performed for the whole data. In this case the Euclidean 
distance model is used. It shows a relatively  high 
percentage o f disagreem ent (22 .63% ) betw een its



classification and the core description. However, this 
value is given mostly because o f the low percentage of 
corrected samples in lithofacie 3 (basalts). This is due to 
the sim ilar values in RHOB between this lithofacie and 
the carbonates (lithofacie 1), to w here m ost o f the 
samples were m isclassified. The result was expected 
since the Cluster Analysis had already pointed out Groups 
1 and 3 as the hardest combination to distinguish.

Hole 878A

The logging data set for Hole 878A consists of 
13 log curves: porosity (NPHI); density (RHOB); two 
resistivity m easurem ents (IDL and SFLU); transit time 
(DT); thorium, uranium and potassium  contents (THO, 
URAN and POTA respectively); and CaCO„ ALO„ SiO^, 
FeO and TiO? concentrations.

As in p revious exam ple, an initial C luster 
Analysis resulted in four different groups being selected 
as the optim um  number to define the data set (Figure 6). 
When these results are compared with core description 
and Cluster Analysis, Groups 1 and 2 seem to represent 
the silic ic lastic  m atrix breccia  w ith the d ifference 
between them related to the content o f Si present in the 
matrix. Groups 3 and 4 seem to represent the carbonate 
matrix breccia with the difference between them also 
related to the Ca content.

A LO i, C aC O , and RHOB appear as the most 
important variables for group discrimination (Table 3). 
The s im p lest and hardest group  com bina tion  to 
d istingu ish  are show n in Table  4. As expected , 
com binations 1-2 and 3-4. w hich rep resen t the 
siliciclastic and the carbonate matrix respectively, are the 
hardest ones to d istingu ish . On the o ther hand, 
combination 1-4 is the simplest one since it represents the 
extremes in the matrix composition.

Due to the fact that only two major lithofacies 
were d is tin g u ish ed  by core  recovery , a linear 
Discriminant Analysis was carried out. The training sets 
consisting o f short intervals for each lithology were based 
on the core description. The discriminant scores obtained 
by the discrim inant function for the whole interval can 
also be observed in Figure 6, where the groups from the 
Cluster Analysis are also shown. The linear discriminant 
scores show a reasonable separation between the two 
main lithofacies. However, it was not able to pick the 
differences in the content o f Si and Ca within both major 
units obtained by the Cluster Analysis.

A general distance c lassifica tion  was also 
performed using the Euclidean Distance model. Here, it 
shows a result with 93.73% of correct samples.

The Neural Network approach

The second part o f this paper concerns the 
application o f a back-error propagation Neural Network 
to the same data set. Firstly, the Neural Network is used

to obtain a lithofacies identification and the results are 
compared with the ones obtained by core recovery and by 
the multivariate statistical approach. Secondly, the Neural 
Network is used to generate petrophysical parameter logs, 
based on the measurements obtained in cored intervals.

As showed before, the training process is done in 
three stages. The first stage is the training o f the neural 
net w ith sam p les  w h ich  b est re p re s e n t the 
l i th o f a c ie s /p e t r o p h y  s ic a l  p a ra m e te r s  to  be 
characterised/com puted. The input layer o f the net is 
given by the number of log curves used. Bearing in mind 
the log data is an average over their resolution, the depth 
matching error must be minimum to avoid wrong input 
data set. This is perform ed using sample support from 
core data. In the case o f the petrophysical param eters, a 
windowing technique (Jenner and Baldwin, 1994) is used 
to compensate any minor depth shift. In this case, more 
than one depth unit is used to train the net (Figure 7).

The second stage is the com putation  and 
backpropagation of the errors, the difference between the 
output value and the expected (target) value. This error 
will be used in a third stage to change the connection 
weights and then to enhance the Neural Network result.

In order to give more confidence to the results, 
the net is also trained to provide values o f  known 
quantities, instead o f  only g iv in g the unknown 
information. This is applied in the com putation o f the 
petrophysical logs.

Results

The structure of the net used for lithofacies 
identification in Hole 807C has 10 neurons in the input 
layers. They correspond to the number of log curves used. 
The hidden layer has 7 neurons and the output layer 3 
neurons which represent the three different lithofacies 
observed. In this case and also for Hole 878A. we tried to 
use the same training interval used in disciminant analysis 
in order to make a comparison between the results. After 
the training process, the w eights com puted from the 
training set were applied in a feedforward process to the 
whole interval. The response given by the net for Hole 
807C can be observed in Figure 8. Unit A, Unit B and 
Unit C represent the carbonate section at the top. the 
siltstone/claystone sequence in the m iddle and the 
volcanic sequence at the bottom  o f  the interval 
respectively. As can be seen, all three lithofacies appear 
well defined by the net. There are some sections where 
the result given by the net is a mixture between two and 
even three lithofacies. This is mostly due to sim ilar log 
curve characteristics in those sections. However, it is 
possible to define the major lithofacie present in all this 
sections. The only interval where the net was not able to 
give a reasonable response is between 1375-1380 mbsf. 
Although Unit B appears to be stronger than the other 
lithofacies, they are also quite well represented in this 
interval. The group classification from  the C luster



Analysis is also shown in order to compare the results. 
For the above mentioned interval, it shows Group 1 (Unit 
A) as the strongest lithofacie in this interval. W hen 
com pared  w ith core d e sc rip tio n , the net resu lts  
misclassify 2.87% of the samples.

The structure o f the net for Hole 878A has 13 
neurons in the input layers corresponding to the 13 log 
curves used in the classification. The hidden layer has 8 
neurons and the output layer has 2 neurons corresponding 
to the two different matrix composition o f the polymitic 
breccia. Usually, the number o f nodes in the hidden layer 
is given by the performance of the net during the training 
process. Som etim es more than one step in the training 
process is necessary before we get the appropriate 
number o f nodes in the hidden layer.

The re su lt fo r the feedforw ard  process 
(generalisation) is shown in Figure 9. Unit A and Unit B 
represent the two different polymitic breccia matrix. As in 
Hole 807C, here the two main lithofacies also appear well 
defined by the neural net response. Only one interval, 
between 540 - 550 mbsf, appears with its result as a mix 
between the two lithofacies. The interval 563 - 577 m bsf 
which is defined as an interbedded interval between the 
two different lithofacies also appears well characterised. 
Both the thin layers o f Si and Ca matrix between 568 - 
571 m bsf were picked up by the net. W hen compared 
with the core description, the net result shows 4.84% of 
misclassified samples. The groups from Cluster Analysis 
also show good agreement with the net results.

C om parison  o f  the B E P N eural N etw ork 
predicted porosity and water content values to the actual 
core porosity and water content measurements were made 
for both holes. F igures 10a and I Ob show both 
petrophysical param eters m easurem ents from Neural 
Network and core for Holes 807C and 878A.

In case o f Hole 807C, a good agreement between 
both m easurem ents can be observed especially for the 
upper interval (carbonates - Unit A), represented by low 
porosity and low water content. For the intermediate unit 
(siltstone/claystone - Unit B), the results seem to be a 
little more scattered although a reasonable agreement can 
also be seen. In Hole 878A, due to the complex lithology 
determ ined  by the breccias, the resu lts  for both 
petrophysical parameters appear more scattered.

T hese  re su lts  are  a lso  re fle c te d  when 
petrophysical logs (Figures 11 and 12) are generated for 
the whole interval in both holes. As can be seen. Hole 
807C shows a better agreement between the generated log 
and the core data. For Hole 878A the variation obtained 
in the core measurem ents are reflected in the neural net 
result, which exhibits more variation than in the previous 
example.

CONCLUSION

The lithofacies characterisation given by the 
statistical techniques and the Neural Network has shown 
excellent results. In both Hole 807C and Hole 878A the 
discrepancies between the results obtained by each  
technique and the classification obtained by the core 
d esc rip tio n  g en e ra lly  do  n o t e x c eed  7% . T h e  N eural 
N e tw o rk  show s better resu lts  for bo th  ho les w ith  2 .87%  
and  4 .84%  o f  m isc lass ified  sam p les  for H oles 807C  and 
878A respectively, while the statistical D iscrim inant 
an a ly sis  show s 22 .63%  and 6 .27%  fo r the  sam e ho les. 
T he  d iffe rence  could  be due to  g rea te r com p lex ity  in the 
litho fac ies  o f  H ole 878A . T he  d iffe re n ces  in C a  and  Si 
con ten ts  can on ly  be o bserved  in som e o f  the log cu rves 
used for the analysis.

The ability o f the Neural Network to co n stru c t 
p e tro p h y s ic a l logs was also tested w ith  reasonable 
success. The water content and porosity values obtained 
for each well show  good quality when compared with the 
core m easurem ents. In Hole 878A, although the net 
results are still coherent w ith  the core data, a m inor 
discrepancy between the results is observed. The greater 
discrepancy for the bottom part o f the interval in Hole 
878A is due to the poor amount o f core m easurements 
used to train the net. It serves to illustrate the importance 
o f using a reaso n ab le  quantity o f  measurem ents in the 
tra in ing  process. The N eural Network can also be used to 
determine any other petrophysical parameter as long as it 
is provided with a correct tra in ing  set.
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Figure 1 - Typical back-error propagation neural network with one hidden layer.
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Figure 2 - Group classification and
multidiscriminant scores for Hole

807C.

Figure 3 - Group classification and
multidiscriminant scores for Hole

878A.
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Figure 4 - Result o f  back-error propagation neural network for lithofacies identification
in Hole 807C.
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Hole 878A - Net R esults
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Figure 5 - Result o f back-error propagation neural network tor lithofacies identification
in Hole 878A.
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Figure 6 - Cross-plot of predicted neural network and core porosity (top) and water 
content (bottom) for Holes 807C and 878A.
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Figure 7 - Neural network generated petrophysical parameters log for Hole 807C.
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Figure 8 - Neural Network generated petrophysical parameters log for Hole 878A.
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